thesis.lyx 149 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650
  1. #LyX 2.3 created this file. For more info see http://www.lyx.org/
  2. \lyxformat 544
  3. \begin_document
  4. \begin_header
  5. \save_transient_properties true
  6. \origin unavailable
  7. \textclass extbook
  8. \begin_preamble
  9. % List all used files in log output
  10. \listfiles
  11. % Add a DRAFT watermark
  12. \usepackage{draftwatermark}
  13. \SetWatermarkLightness{0.97}
  14. \SetWatermarkScale{1}
  15. % Set up required header format
  16. \usepackage{fancyhdr}
  17. \pagestyle{fancy}
  18. \renewcommand{\headrulewidth}{0pt}
  19. \rhead{}
  20. \lhead{}
  21. \rfoot{}
  22. \lfoot{}
  23. \cfoot{\thepage} % Page number bottom center
  24. % https://tex.stackexchange.com/questions/65680/automatically-bold-first-sentence-of-a-floats-caption
  25. \usepackage{xstring}
  26. \usepackage{etoolbox}
  27. \usepackage{caption}
  28. \captionsetup{labelfont=bf,tableposition=top}
  29. \makeatletter
  30. \newcommand\formatlabel[1]{%
  31. \noexpandarg
  32. \IfSubStr{#1}{.}{%
  33. \StrBefore{#1}{.}[\firstcaption]%
  34. \StrBehind{#1}{.}[\secondcaption]%
  35. \textbf{\firstcaption.} \secondcaption}{%
  36. #1}%
  37. }
  38. \patchcmd{\@caption}{#3}{\formatlabel{#3}}
  39. \makeatother
  40. % Allow FloatBarrier command
  41. \usepackage{placeins}
  42. \end_preamble
  43. \use_default_options true
  44. \begin_modules
  45. todonotes
  46. \end_modules
  47. \maintain_unincluded_children false
  48. \language english
  49. \language_package default
  50. \inputencoding utf8
  51. \fontencoding default
  52. \font_roman "default" "default"
  53. \font_sans "default" "default"
  54. \font_typewriter "default" "default"
  55. \font_math "auto" "auto"
  56. \font_default_family default
  57. \use_non_tex_fonts false
  58. \font_sc false
  59. \font_osf false
  60. \font_sf_scale 100 100
  61. \font_tt_scale 100 100
  62. \use_microtype false
  63. \use_dash_ligatures true
  64. \graphics default
  65. \default_output_format pdf4
  66. \output_sync 0
  67. \bibtex_command default
  68. \index_command default
  69. \paperfontsize 12
  70. \spacing double
  71. \use_hyperref true
  72. \pdf_bookmarks true
  73. \pdf_bookmarksnumbered false
  74. \pdf_bookmarksopen false
  75. \pdf_bookmarksopenlevel 1
  76. \pdf_breaklinks false
  77. \pdf_pdfborder false
  78. \pdf_colorlinks false
  79. \pdf_backref false
  80. \pdf_pdfusetitle true
  81. \papersize letterpaper
  82. \use_geometry true
  83. \use_package amsmath 1
  84. \use_package amssymb 1
  85. \use_package cancel 1
  86. \use_package esint 1
  87. \use_package mathdots 1
  88. \use_package mathtools 1
  89. \use_package mhchem 1
  90. \use_package stackrel 1
  91. \use_package stmaryrd 1
  92. \use_package undertilde 1
  93. \cite_engine basic
  94. \cite_engine_type default
  95. \biblio_style plain
  96. \use_bibtopic false
  97. \use_indices false
  98. \paperorientation portrait
  99. \suppress_date false
  100. \justification true
  101. \use_refstyle 1
  102. \use_minted 0
  103. \index Index
  104. \shortcut idx
  105. \color #008000
  106. \end_index
  107. \leftmargin 1.5in
  108. \topmargin 1in
  109. \rightmargin 1in
  110. \bottommargin 1in
  111. \secnumdepth 3
  112. \tocdepth 3
  113. \paragraph_separation indent
  114. \paragraph_indentation default
  115. \is_math_indent 0
  116. \math_numbering_side default
  117. \quotes_style english
  118. \dynamic_quotes 0
  119. \papercolumns 1
  120. \papersides 2
  121. \paperpagestyle default
  122. \tracking_changes false
  123. \output_changes false
  124. \html_math_output 0
  125. \html_css_as_file 0
  126. \html_be_strict false
  127. \end_header
  128. \begin_body
  129. \begin_layout Title
  130. Bioinformatic analysis of complex, high-throughput genomic and epigenomic
  131. data in the context of immunology and transplant rejection
  132. \end_layout
  133. \begin_layout Author
  134. A thesis presented
  135. \begin_inset Newline newline
  136. \end_inset
  137. by
  138. \begin_inset Newline newline
  139. \end_inset
  140. Ryan C.
  141. Thompson
  142. \begin_inset Newline newline
  143. \end_inset
  144. to
  145. \begin_inset Newline newline
  146. \end_inset
  147. The Scripps Research Institute Graduate Program
  148. \begin_inset Newline newline
  149. \end_inset
  150. in partial fulfillment of the requirements for the degree of
  151. \begin_inset Newline newline
  152. \end_inset
  153. Doctor of Philosophy in the subject of Biology
  154. \begin_inset Newline newline
  155. \end_inset
  156. for
  157. \begin_inset Newline newline
  158. \end_inset
  159. The Scripps Research Institute
  160. \begin_inset Newline newline
  161. \end_inset
  162. La Jolla, California
  163. \end_layout
  164. \begin_layout Date
  165. May 2019
  166. \end_layout
  167. \begin_layout Standard
  168. [Copyright notice]
  169. \end_layout
  170. \begin_layout Standard
  171. [Thesis acceptance form]
  172. \end_layout
  173. \begin_layout Standard
  174. [Dedication]
  175. \end_layout
  176. \begin_layout Standard
  177. [Acknowledgements]
  178. \end_layout
  179. \begin_layout Standard
  180. \begin_inset CommandInset toc
  181. LatexCommand tableofcontents
  182. \end_inset
  183. \end_layout
  184. \begin_layout Standard
  185. \begin_inset FloatList table
  186. \end_inset
  187. \end_layout
  188. \begin_layout Standard
  189. \begin_inset FloatList figure
  190. \end_inset
  191. \end_layout
  192. \begin_layout Standard
  193. [List of Abbreviations]
  194. \end_layout
  195. \begin_layout Standard
  196. \begin_inset Flex TODO Note (inline)
  197. status open
  198. \begin_layout Plain Layout
  199. Look into auto-generated nomenclature list: https://wiki.lyx.org/Tips/Nomenclature
  200. \end_layout
  201. \end_inset
  202. \end_layout
  203. \begin_layout List of TODOs
  204. \end_layout
  205. \begin_layout Standard
  206. [Abstract]
  207. \end_layout
  208. \begin_layout Chapter*
  209. Abstract
  210. \end_layout
  211. \begin_layout Chapter
  212. Introduction
  213. \end_layout
  214. \begin_layout Section
  215. Background & Significance
  216. \end_layout
  217. \begin_layout Subsection
  218. Biological motivation
  219. \end_layout
  220. \begin_layout Itemize
  221. Rejection is the major long-term threat to organ and tissue grafts
  222. \end_layout
  223. \begin_deeper
  224. \begin_layout Itemize
  225. Common mechanisms of rejection
  226. \end_layout
  227. \begin_layout Itemize
  228. Effective immune suppression requires monitoring for rejection and tuning
  229. \end_layout
  230. \begin_layout Itemize
  231. Current tests for rejection (tissue biopsy) are invasive and biased
  232. \end_layout
  233. \begin_layout Itemize
  234. A blood test based on microarrays would be less biased and invasive
  235. \end_layout
  236. \end_deeper
  237. \begin_layout Itemize
  238. Memory cells are resistant to immune suppression
  239. \end_layout
  240. \begin_deeper
  241. \begin_layout Itemize
  242. Mechanisms of resistance in memory cells are poorly understood
  243. \end_layout
  244. \begin_layout Itemize
  245. A better understanding of immune memory formation is needed
  246. \end_layout
  247. \end_deeper
  248. \begin_layout Itemize
  249. Mesenchymal stem cell infusion is a promising new treatment to prevent/delay
  250. rejection
  251. \end_layout
  252. \begin_deeper
  253. \begin_layout Itemize
  254. Demonstrated in mice, but not yet in primates
  255. \end_layout
  256. \begin_layout Itemize
  257. Mechanism currently unknown, but MSC are known to be immune modulatory
  258. \end_layout
  259. \end_deeper
  260. \begin_layout Subsection
  261. Overview of bioinformatic analysis methods
  262. \end_layout
  263. \begin_layout Standard
  264. An overview of all the methods used, including what problem they solve,
  265. what assumptions they make, and a basic description of how they work.
  266. \end_layout
  267. \begin_layout Itemize
  268. ChIP-seq Peak calling
  269. \end_layout
  270. \begin_deeper
  271. \begin_layout Itemize
  272. Cross-correlation analysis to determine fragment size
  273. \end_layout
  274. \begin_layout Itemize
  275. Broad vs narrow peaks
  276. \end_layout
  277. \begin_layout Itemize
  278. SICER for broad peaks
  279. \end_layout
  280. \begin_layout Itemize
  281. IDR for biologically reproducible peaks
  282. \end_layout
  283. \begin_layout Itemize
  284. csaw peak filtering guidelines for unbiased downstream analysis
  285. \end_layout
  286. \end_deeper
  287. \begin_layout Itemize
  288. Normalization is non-trivial and application-dependant
  289. \end_layout
  290. \begin_deeper
  291. \begin_layout Itemize
  292. Expression arrays: RMA & fRMA; why fRMA is needed
  293. \end_layout
  294. \begin_layout Itemize
  295. Methylation arrays: M-value transformation approximates normal data but
  296. induces heteroskedasticity
  297. \end_layout
  298. \begin_layout Itemize
  299. RNA-seq: normalize based on assumption that the average gene is not changing
  300. \end_layout
  301. \begin_layout Itemize
  302. ChIP-seq: complex with many considerations, dependent on experimental methods,
  303. biological system, and analysis goals
  304. \end_layout
  305. \end_deeper
  306. \begin_layout Itemize
  307. Limma: The standard linear modeling framework for genomics
  308. \end_layout
  309. \begin_deeper
  310. \begin_layout Itemize
  311. empirical Bayes variance modeling: limma's core feature
  312. \end_layout
  313. \begin_layout Itemize
  314. edgeR & DESeq2: Extend with negative bonomial GLM for RNA-seq and other
  315. count data
  316. \end_layout
  317. \begin_layout Itemize
  318. voom: Extend with precision weights to model mean-variance trend
  319. \end_layout
  320. \begin_layout Itemize
  321. arrayWeights and duplicateCorrelation to handle complex variance structures
  322. \end_layout
  323. \end_deeper
  324. \begin_layout Itemize
  325. sva and ComBat for batch correction
  326. \end_layout
  327. \begin_layout Itemize
  328. Factor analysis: PCA, MDS, MOFA
  329. \end_layout
  330. \begin_deeper
  331. \begin_layout Itemize
  332. Batch-corrected PCA is informative, but careful application is required
  333. to avoid bias
  334. \end_layout
  335. \end_deeper
  336. \begin_layout Itemize
  337. Gene set analysis: camera and SPIA
  338. \end_layout
  339. \begin_layout Section
  340. Innovation
  341. \end_layout
  342. \begin_layout Itemize
  343. MSC infusion to improve transplant outcomes (prevent/delay rejection)
  344. \end_layout
  345. \begin_deeper
  346. \begin_layout Itemize
  347. Characterize MSC response to interferon gamma
  348. \end_layout
  349. \begin_layout Itemize
  350. IFN-g is thought to stimulate their function
  351. \end_layout
  352. \begin_layout Itemize
  353. Test IFN-g treated MSC infusion as a therapy to delay graft rejection in
  354. cynomolgus monkeys
  355. \end_layout
  356. \begin_layout Itemize
  357. Monitor animals post-transplant using blood RNA-seq at serial time points
  358. \end_layout
  359. \end_deeper
  360. \begin_layout Itemize
  361. Investigate dynamics of histone marks in CD4 T-cell activation and memory
  362. \end_layout
  363. \begin_deeper
  364. \begin_layout Itemize
  365. Previous studies have looked at single snapshots of histone marks
  366. \end_layout
  367. \begin_layout Itemize
  368. Instead, look at changes in histone marks across activation and memory
  369. \end_layout
  370. \end_deeper
  371. \begin_layout Itemize
  372. High-throughput sequencing and microarray technologies
  373. \end_layout
  374. \begin_deeper
  375. \begin_layout Itemize
  376. Powerful methods for assaying gene expression and epigenetics across entire
  377. genomes
  378. \end_layout
  379. \begin_layout Itemize
  380. Proper analysis requires finding and exploiting systematic genome-wide trends
  381. \end_layout
  382. \end_deeper
  383. \begin_layout Chapter
  384. Reproducible genome-wide epigenetic analysis of H3K4 and H3K27 methylation
  385. in naive and memory CD4 T-cell activation
  386. \end_layout
  387. \begin_layout Standard
  388. \begin_inset Flex TODO Note (inline)
  389. status open
  390. \begin_layout Plain Layout
  391. Author list: Me, Sarah, Dan
  392. \end_layout
  393. \end_inset
  394. \end_layout
  395. \begin_layout Section
  396. Approach
  397. \end_layout
  398. \begin_layout Itemize
  399. CD4 T-cells are central to all adaptive immune responses and memory
  400. \end_layout
  401. \begin_layout Itemize
  402. H3K4 and H3K27 methylation are major epigenetic regulators of gene expression
  403. \end_layout
  404. \begin_layout Itemize
  405. Canonically, H3K4 is activating and H3K27 is inhibitory, but the reality
  406. is complex
  407. \end_layout
  408. \begin_layout Itemize
  409. Looking at these marks during CD4 activation and memory should reveal new
  410. mechanistic details
  411. \end_layout
  412. \begin_layout Itemize
  413. Test
  414. \begin_inset Quotes eld
  415. \end_inset
  416. poised promoter
  417. \begin_inset Quotes erd
  418. \end_inset
  419. hypothesis in which H3K4 and H3K27 are both methylated
  420. \end_layout
  421. \begin_layout Itemize
  422. Expand scope of analysis beyond simple promoter counts
  423. \end_layout
  424. \begin_deeper
  425. \begin_layout Itemize
  426. Analyze peaks genome-wide, including in intergenic regions
  427. \end_layout
  428. \begin_layout Itemize
  429. Analysis of coverage distribution shape within promoters, e.g.
  430. upstream vs downstream coverage
  431. \end_layout
  432. \end_deeper
  433. \begin_layout Section
  434. Methods
  435. \end_layout
  436. \begin_layout Standard
  437. \begin_inset Float figure
  438. wide false
  439. sideways true
  440. status open
  441. \begin_layout Plain Layout
  442. \align center
  443. \begin_inset Graphics
  444. filename graphics/CD4-csaw/rulegraphs/rulegraph-all.pdf
  445. width 100theight%
  446. \end_inset
  447. \end_layout
  448. \begin_layout Plain Layout
  449. \begin_inset Caption Standard
  450. \begin_layout Plain Layout
  451. \begin_inset CommandInset label
  452. LatexCommand label
  453. name "fig:rulegraph"
  454. \end_inset
  455. \series bold
  456. Dependency graph of steps in reproducible workflow
  457. \end_layout
  458. \end_inset
  459. \end_layout
  460. \end_inset
  461. \end_layout
  462. \begin_layout Standard
  463. A reproducible workflow
  464. \begin_inset CommandInset citation
  465. LatexCommand cite
  466. key "gh-cd4-csaw"
  467. literal "false"
  468. \end_inset
  469. was written to analyze the raw ChIP-seq and RNA-seq data from previous
  470. studies
  471. \begin_inset CommandInset citation
  472. LatexCommand cite
  473. key "LaMere2016,LaMere2017"
  474. literal "true"
  475. \end_inset
  476. .
  477. Briefly, this data consists of RNA-seq and ChIP-seq from CD4 T-cells cultured
  478. from 4 donors.
  479. From each donor, naive and memory CD4 T-cells were isolated separately.
  480. Then cultures of both cells were activated [how?], and samples were taken
  481. at 4 time points: Day 0 (pre-activation), Day 1 (early activation), Day
  482. 5 (peak activation), and Day 14 (post-activation).
  483. For each combination of cell type and time point, RNA was isolated, and
  484. ChIP-seq was performed for each of 3 histone marks: H3K4me2, H3K4me3, and
  485. H3K27me3.
  486. The ChIP-seq input was also sequenced for each sample.
  487. The result was 32 samples for each assay.
  488. \end_layout
  489. \begin_layout Standard
  490. Sequence reads were retrieved from the Sequence Read Archive (SRA)
  491. \begin_inset CommandInset citation
  492. LatexCommand cite
  493. key "Leinonen2011"
  494. literal "false"
  495. \end_inset
  496. .
  497. ChIP-seq (and input) reads were aligned to CRCh38 genome assembly using
  498. Bowtie 2
  499. \begin_inset CommandInset citation
  500. LatexCommand cite
  501. key "Langmead2012,Schneider2017,gh-hg38-ref"
  502. literal "false"
  503. \end_inset
  504. .
  505. Artifact regions were annotated using a custom implementation of the GreyListCh
  506. IP algorithm, and these
  507. \begin_inset Quotes eld
  508. \end_inset
  509. greylists
  510. \begin_inset Quotes erd
  511. \end_inset
  512. were merged with the ENCODE blacklist
  513. \begin_inset CommandInset citation
  514. LatexCommand cite
  515. key "greylistchip,Amemiya2019,Dunham2012"
  516. literal "false"
  517. \end_inset
  518. .
  519. Any read or peak overlapping one of these regions was regarded as artifactual
  520. and excluded from downstream analyses.
  521. \end_layout
  522. \begin_layout Standard
  523. Peaks are called using epic, an implementation of the SICER algorithm
  524. \begin_inset CommandInset citation
  525. LatexCommand cite
  526. key "Zang2009,gh-epic"
  527. literal "false"
  528. \end_inset
  529. .
  530. Peaks are also called separately using MACS, but MACS was determined to
  531. be a poor fit for the data, and these peak calls are not used further
  532. \begin_inset CommandInset citation
  533. LatexCommand cite
  534. key "Zhang2008"
  535. literal "false"
  536. \end_inset
  537. .
  538. \end_layout
  539. \begin_layout Itemize
  540. Re-analyze previously published CD4 ChIP-seq & RNA-seq data
  541. \end_layout
  542. \begin_deeper
  543. \begin_layout Itemize
  544. Completely reimplement analysis from scratch as a reproducible workflow
  545. \end_layout
  546. \begin_layout Itemize
  547. Use newly published methods & algorithms not available during the original
  548. analysis: SICER, csaw, MOFA, ComBat, sva, GREAT, and more
  549. \end_layout
  550. \end_deeper
  551. \begin_layout Itemize
  552. SICER, IDR, csaw, & GREAT to call ChIP-seq peaks genome-wide, perform differenti
  553. al abundance analysis, and relate those peaks to gene expression
  554. \end_layout
  555. \begin_layout Itemize
  556. Promoter counts in sliding windows around each gene's highest-expressed
  557. TSS to investigate coverage distribution within promoters
  558. \end_layout
  559. \begin_layout Section
  560. Results
  561. \end_layout
  562. \begin_layout Standard
  563. \begin_inset Note Note
  564. status open
  565. \begin_layout Plain Layout
  566. Focus on what hypotheses were tested, then select figures that show how
  567. those hypotheses were tested, even if the result is a negative.
  568. \end_layout
  569. \end_inset
  570. \end_layout
  571. \begin_layout Subsection
  572. H3K4 and H3K27 methylation occur in broad regions and are enriched near
  573. promoters
  574. \end_layout
  575. \begin_layout Itemize
  576. Figures comparing MACS (non-broad peak caller) to SICER/epic (broad peak
  577. caller)
  578. \end_layout
  579. \begin_deeper
  580. \begin_layout Itemize
  581. Compare peak sizes and number of called peaks
  582. \end_layout
  583. \begin_layout Itemize
  584. Show representative IDR consistency plots for both
  585. \end_layout
  586. \end_deeper
  587. \begin_layout Itemize
  588. IDR analysis shows that SICER-called peaks are much more reproducible between
  589. biological replicates
  590. \end_layout
  591. \begin_layout Itemize
  592. Each histone mark is enriched within a certain radius of gene TSS positions,
  593. but that radius is different for each mark (figure)
  594. \end_layout
  595. \begin_layout Subsection
  596. RNA-seq has a large confounding batch effect
  597. \end_layout
  598. \begin_layout Itemize
  599. RNA-seq batch effect can be partially corrected, but still induces uncorrectable
  600. biases in downstream analysis
  601. \end_layout
  602. \begin_deeper
  603. \begin_layout Itemize
  604. Figure showing MDS plot before & after ComBat
  605. \end_layout
  606. \begin_layout Itemize
  607. Figure relating sample weights to batches, cell types, time points, etc.,
  608. showing that one batch is significantly worse quality
  609. \end_layout
  610. \begin_layout Itemize
  611. Figures showing p-value histograms for within-batch and cross-batch contrasts,
  612. showing that cross-batch contrasts have attenuated signal, as do comparisons
  613. within the bad batch
  614. \end_layout
  615. \end_deeper
  616. \begin_layout Subsection
  617. ChIP-seq must be corrected for hidden confounding factors
  618. \end_layout
  619. \begin_layout Itemize
  620. Figures showing pre- and post-SVA MDS plots for each histone mark
  621. \end_layout
  622. \begin_layout Itemize
  623. Figures showing BCV plots with and without SVA for each histone mark
  624. \end_layout
  625. \begin_layout Subsection
  626. H3K4 and H3K27 promoter methylation has broadly the expected correlation
  627. with gene expression
  628. \end_layout
  629. \begin_layout Itemize
  630. H3K4 is correlated with higher expression, and H3K27 is correlated with
  631. lower expression genome-wide
  632. \end_layout
  633. \begin_layout Itemize
  634. Figures showing these correlations: box/violin plots of expression distributions
  635. with every combination of peak presence/absence in promoter
  636. \end_layout
  637. \begin_layout Itemize
  638. Appropriate statistical tests showing significant differences in expected
  639. directions
  640. \end_layout
  641. \begin_layout Subsection
  642. MOFA recovers biologically relevant variation from blind analysis by correlating
  643. across datasets
  644. \end_layout
  645. \begin_layout Itemize
  646. MOFA
  647. \begin_inset CommandInset citation
  648. LatexCommand cite
  649. key "Argelaguet2018"
  650. literal "false"
  651. \end_inset
  652. successfully separates biologically relevant patterns of variation from
  653. technical confounding factors without knowing the sample labels, by finding
  654. latent factors that explain variation across multiple data sets.
  655. \end_layout
  656. \begin_deeper
  657. \begin_layout Itemize
  658. Figure: show percent-variance-explained plot from MOFA and PCA-like plots
  659. for the relevant latent factors
  660. \end_layout
  661. \begin_layout Itemize
  662. MOFA analysis also shows that batch effect correction can't get much better
  663. than it already is (Figure comparing blind MOFA batch correction to ComBat
  664. correction)
  665. \end_layout
  666. \end_deeper
  667. \begin_layout Subsection
  668. Naive-to-memory convergence observed in H3K4 and RNA-seq data, not in H3K27me3
  669. \end_layout
  670. \begin_layout Itemize
  671. H3K4 and RNA-seq data show clear evidence of naive convergence with memory
  672. between days 1 and 5 (MDS plot figure, also compare with last figure from
  673. \begin_inset CommandInset citation
  674. LatexCommand cite
  675. key "LaMere2016"
  676. literal "false"
  677. \end_inset
  678. )
  679. \end_layout
  680. \begin_layout Standard
  681. \begin_inset Flex TODO Note (inline)
  682. status open
  683. \begin_layout Plain Layout
  684. Note that Sarah has granted permission to use her figures
  685. \end_layout
  686. \end_inset
  687. \end_layout
  688. \begin_layout Itemize
  689. Table of numbers of genes different between N & M at each time point, showing
  690. dwindling differences at later time points, consistent with convergence
  691. \end_layout
  692. \begin_layout Itemize
  693. Similar figure for H3K27me3 showing lack of convergence
  694. \end_layout
  695. \begin_layout Subsection
  696. Effect of promoter coverage upstream vs downstream of TSS
  697. \end_layout
  698. \begin_layout Itemize
  699. H3K4me peaks seem to correlate with increased expression as long as they
  700. are anywhere near the TSS
  701. \end_layout
  702. \begin_layout Itemize
  703. H3K27me3 peaks can have different correlations to gene expression depending
  704. on their position relative to TSS (e.g.
  705. upstream vs downstream) Results consistent with
  706. \begin_inset CommandInset citation
  707. LatexCommand cite
  708. key "Young2011"
  709. literal "false"
  710. \end_inset
  711. \end_layout
  712. \begin_layout Section
  713. Discussion
  714. \end_layout
  715. \begin_layout Itemize
  716. "Promoter radius" is not constant and must be defined empirically for a
  717. given data set
  718. \end_layout
  719. \begin_layout Itemize
  720. MOFA shows great promise for accelerating discovery of major biological
  721. effects in multi-omics datasets
  722. \end_layout
  723. \begin_deeper
  724. \begin_layout Itemize
  725. MOFA was added to this analysis late and played primarily a confirmatory
  726. role, but it was able to confirm earlier conclusions with much less prior
  727. information (no sample labels) and much less analyst effort
  728. \end_layout
  729. \begin_layout Itemize
  730. MOFA confirmed that the already-implemented batch correction in the RNA-seq
  731. data was already performing as well as possible given the limitations of
  732. the data
  733. \end_layout
  734. \end_deeper
  735. \begin_layout Itemize
  736. Naive-to-memory convergence implies that naive cells are differentiating
  737. into memory cells, and that gene expression and H3K4 methylation are involved
  738. in this differentiation while H3K27me3 is less involved
  739. \end_layout
  740. \begin_layout Itemize
  741. H3K27me3, canonically regarded as a deactivating mark, seems to have a more
  742. complex
  743. \end_layout
  744. \begin_layout Itemize
  745. Discuss advantages of developing using a reproducible workflow
  746. \end_layout
  747. \begin_layout Chapter
  748. Improving array-based analyses of transplant rejection by optimizing data
  749. preprocessing
  750. \end_layout
  751. \begin_layout Standard
  752. \begin_inset Note Note
  753. status open
  754. \begin_layout Plain Layout
  755. Author list: Me, Sunil, Tom, Padma, Dan
  756. \end_layout
  757. \end_inset
  758. \end_layout
  759. \begin_layout Section
  760. Approach
  761. \end_layout
  762. \begin_layout Subsection
  763. Proper pre-processing is essential for array data
  764. \end_layout
  765. \begin_layout Standard
  766. \begin_inset Flex TODO Note (inline)
  767. status open
  768. \begin_layout Plain Layout
  769. This section could probably use some citations
  770. \end_layout
  771. \end_inset
  772. \end_layout
  773. \begin_layout Standard
  774. Microarrays, bead ararys, and similar assays produce raw data in the form
  775. of fluorescence intensity measurements, with the each intensity measurement
  776. proportional to the abundance of some fluorescently-labelled target DNA
  777. or RNA sequence that base pairs to a specific probe sequence.
  778. However, these measurements for each probe are also affected my many technical
  779. confounding factors, such as the concentration of target material, strength
  780. of off-target binding, and the sensitivity of the imaging sensor.
  781. Some array designs also use multiple probe sequences for each target.
  782. Hence, extensive pre-processing of array data is necessary to normalize
  783. out the effects of these technical factors and summarize the information
  784. from multiple probes to arrive at a single usable estimate of abundance
  785. or other relevant quantity, such as a ratio of two abundances, for each
  786. target.
  787. \end_layout
  788. \begin_layout Standard
  789. The choice of pre-processing algorithms used in the analysis of an array
  790. data set can have a large effect on the results of that analysis.
  791. However, despite their importance, these steps are often neglected or rushed
  792. in order to get to the more scientifically interesting analysis steps involving
  793. the actual biology of the system under study.
  794. Hence, it is often possible to achieve substantial gains in statistical
  795. power, model goodness-of-fit, or other relevant performance measures, by
  796. checking the assumptions made by each preprocessing step and choosing specific
  797. normalization methods tailored to the specific goals of the current analysis.
  798. \end_layout
  799. \begin_layout Subsection
  800. Normalization for clinical microarray classifiers must be single-channel
  801. \end_layout
  802. \begin_layout Subsubsection
  803. Standard normalization methods are unsuitable for clinical application
  804. \end_layout
  805. \begin_layout Standard
  806. As the cost of performing microarray assays falls, there is increasing interest
  807. in using genomic assays for diagnostic purposes, such as distinguishing
  808. healthy transplants (TX) from transplants undergoing acute rejection (AR)
  809. or acute dysfunction with no rejection (ADNR).
  810. However, the the standard normalization algorithm used for microarray data,
  811. Robust Multi-chip Average (RMA)
  812. \begin_inset CommandInset citation
  813. LatexCommand cite
  814. key "Irizarry2003a"
  815. literal "false"
  816. \end_inset
  817. , is not applicable in a clinical setting.
  818. Two of the steps in RMA, quantile normalization and probe summarization
  819. by median polish, depend on every array in the data set being normalized.
  820. This means that adding or removing any arrays from a data set changes the
  821. normalized values for all arrays, and data sets that have been normalized
  822. separately cannot be compared to each other.
  823. Hence, when using RMA, any arrays to be analyzed together must also be
  824. normalized together, and the set of arrays included in the data set must
  825. be held constant throughout an analysis.
  826. \end_layout
  827. \begin_layout Standard
  828. These limitations present serious impediments to the use of arrays as a
  829. diagnostic tool.
  830. When training a classifier, the samples to be classified must not be involved
  831. in any step of the training process, lest their inclusion bias the training
  832. process.
  833. Once a classifier is deployed in a clinical setting, the samples to be
  834. classified will not even
  835. \emph on
  836. exist
  837. \emph default
  838. at the time of training, so including them would be impossible even if
  839. it were statistically justifiable.
  840. Therefore, any machine learning application for microarrays demands that
  841. the normalized expression values computed for an array must depend only
  842. on information contained within that array.
  843. This would ensure that each array's normalization is independent of every
  844. other array, and that arrays normalized separately can still be compared
  845. to each other without bias.
  846. Such a normalization is commonly referred to as
  847. \begin_inset Quotes eld
  848. \end_inset
  849. single-channel normalization
  850. \begin_inset Quotes erd
  851. \end_inset
  852. .
  853. \end_layout
  854. \begin_layout Subsubsection
  855. Several strategies are available to meet clinical normalization requirements
  856. \end_layout
  857. \begin_layout Standard
  858. Frozen RMA (fRMA) addresses these concerns by replacing the quantile normalizati
  859. on and median polish with alternatives that do not introduce inter-array
  860. dependence, allowing each array to be normalized independently of all others
  861. \begin_inset CommandInset citation
  862. LatexCommand cite
  863. key "McCall2010"
  864. literal "false"
  865. \end_inset
  866. .
  867. Quantile normalization is performed against a pre-generated set of quantiles
  868. learned from a collection of 850 publically available arrays sampled from
  869. a wide variety of tissues in the Gene Expression Omnibus (GEO).
  870. Each array's probe intensity distribution is normalized against these pre-gener
  871. ated quantiles.
  872. The median polish step is replaced with a robust weighted average of probe
  873. intensities, using inverse variance weights learned from the same public
  874. GEO data.
  875. The result is a normalization that satisfies the requirements mentioned
  876. above: each array is normalized independently of all others, and any two
  877. normalized arrays can be compared directly to each other.
  878. \end_layout
  879. \begin_layout Standard
  880. One important limitation of fRMA is that it requires a separate reference
  881. data set from which to learn the parameters (reference quantiles and probe
  882. weights) that will be used to normalize each array.
  883. These parameters are specific to a given array platform, and pre-generated
  884. parameters are only provided for the most common platforms, such as Affymetrix
  885. hgu133plus2.
  886. For a less common platform, such as hthgu133pluspm, is is necessary to
  887. learn custom parameters from in-house data before fRMA can be used to normalize
  888. samples on that platform
  889. \begin_inset CommandInset citation
  890. LatexCommand cite
  891. key "McCall2011"
  892. literal "false"
  893. \end_inset
  894. .
  895. \end_layout
  896. \begin_layout Standard
  897. One other option is the aptly-named Single Channel Array Normalization (SCAN),
  898. which adapts a normalization method originally designed for tiling arrays
  899. \begin_inset CommandInset citation
  900. LatexCommand cite
  901. key "Piccolo2012"
  902. literal "false"
  903. \end_inset
  904. .
  905. SCAN is truly single-channel in that it does not require a set of normalization
  906. paramters estimated from an external set of reference samples like fRMA
  907. does.
  908. \end_layout
  909. \begin_layout Subsection
  910. Heteroskedasticity must be accounted for in methylation array data
  911. \end_layout
  912. \begin_layout Subsubsection
  913. Methylation array preprocessing induces heteroskedasticity
  914. \end_layout
  915. \begin_layout Standard
  916. DNA methylation arrays are a relatively new kind of assay that uses microarrays
  917. to measure the degree of methylation on cytosines in specific regions arrayed
  918. across the genome.
  919. First, bisulfite treatment converts all unmethylated cytosines to uracil
  920. (which then become thymine after amplication) while leaving methylated
  921. cytosines unaffected.
  922. Then, each target region is interrogated with two probes: one binds to
  923. the original genomic sequence and interrogates the level of methylated
  924. DNA, and the other binds to the same sequence with all cytosines replaced
  925. by thymidines and interrogates the level of unmethylated DNA.
  926. \end_layout
  927. \begin_layout Standard
  928. \begin_inset Float figure
  929. wide false
  930. sideways false
  931. status collapsed
  932. \begin_layout Plain Layout
  933. \align center
  934. \begin_inset Graphics
  935. filename graphics/methylvoom/sigmoid.pdf
  936. \end_inset
  937. \end_layout
  938. \begin_layout Plain Layout
  939. \begin_inset Caption Standard
  940. \begin_layout Plain Layout
  941. \begin_inset CommandInset label
  942. LatexCommand label
  943. name "fig:Sigmoid-beta-m-mapping"
  944. \end_inset
  945. \series bold
  946. Sigmoid shape of the mapping between β and M values
  947. \end_layout
  948. \end_inset
  949. \end_layout
  950. \end_inset
  951. \end_layout
  952. \begin_layout Standard
  953. After normalization, these two probe intensities are summarized in one of
  954. two ways, each with advantages and disadvantages.
  955. β
  956. \series bold
  957. \series default
  958. values, interpreted as fraction of DNA copies methylated, range from 0 to
  959. 1.
  960. β
  961. \series bold
  962. \series default
  963. values are conceptually easy to interpret, but the constrained range makes
  964. them unsuitable for linear modeling, and their error distributions are
  965. highly non-normal, which also frustrates linear modeling.
  966. M-values, interpreted as the log ratio of methylated to unmethylated copies,
  967. are computed by mapping the beta values from
  968. \begin_inset Formula $[0,1]$
  969. \end_inset
  970. onto
  971. \begin_inset Formula $(-\infty,+\infty)$
  972. \end_inset
  973. using a sigmoid curve (Figure
  974. \begin_inset CommandInset ref
  975. LatexCommand ref
  976. reference "fig:Sigmoid-beta-m-mapping"
  977. plural "false"
  978. caps "false"
  979. noprefix "false"
  980. \end_inset
  981. ).
  982. This transformation results in values with better statistical perperties:
  983. the unconstrained range is suitable for linear modeling, and the error
  984. distributions are more normal.
  985. Hence, most linear modeling and other statistical testing on methylation
  986. arrays is performed using M-values.
  987. \end_layout
  988. \begin_layout Standard
  989. However, the steep slope of the sigmoid transformation near 0 and 1 tends
  990. to over-exaggerate small differences in β values near those extremes, which
  991. in turn amplifies the error in those values, leading to a U-shaped trend
  992. in the mean-variance curve: extreme values have higher variances than values
  993. near the middle.
  994. This mean-variance dependency must be accounted for when fitting the linear
  995. model for differential methylation, or else the variance will be systematically
  996. overestimated for probes with moderate M-values and underestimated for
  997. probes with extreme M-values.
  998. \end_layout
  999. \begin_layout Subsubsection
  1000. The voom method for RNA-seq data can model M-value heteroskedasticity
  1001. \end_layout
  1002. \begin_layout Standard
  1003. RNA-seq read count data are also known to show heteroskedasticity, and the
  1004. voom method was developed for modeling this heteroskedasticity by estimating
  1005. the mean-variance trend in the data and using this trend to assign precision
  1006. weights to each observation
  1007. \begin_inset CommandInset citation
  1008. LatexCommand cite
  1009. key "Law2013"
  1010. literal "false"
  1011. \end_inset
  1012. .
  1013. While methylation array data are not derived from counts and have a very
  1014. different mean-variance relationship from that of typical RNA-seq data,
  1015. the voom method makes no specific assumptions on the shape of the mean-variance
  1016. relationship - it only assumes that the relationship is smooth enough to
  1017. model using a lowess curve.
  1018. Hence, the method is sufficiently general to model the mean-variance relationsh
  1019. ip in methylation array data.
  1020. However, the standard implementation of voom assumes that the input is
  1021. given in raw read counts, and it must be adapted to run on methylation
  1022. M-values.
  1023. \end_layout
  1024. \begin_layout Section
  1025. Methods
  1026. \end_layout
  1027. \begin_layout Subsection
  1028. Evaluation of classifier performance with different normalization methods
  1029. \end_layout
  1030. \begin_layout Standard
  1031. For testing different expression microarray normalizations, a data set of
  1032. 157 hgu133plus2 arrays was used, consisting of blood samples from kidney
  1033. transplant patients whose grafts had been graded as TX, AR, or ADNR via
  1034. biopsy and histology (46 TX, 69 AR, 42 ADNR)
  1035. \begin_inset CommandInset citation
  1036. LatexCommand cite
  1037. key "Kurian2014"
  1038. literal "true"
  1039. \end_inset
  1040. .
  1041. Additionally, an external validation set of 75 samples was gathered from
  1042. public GEO data (37 TX, 38 AR, no ADNR).
  1043. \end_layout
  1044. \begin_layout Standard
  1045. \begin_inset Flex TODO Note (inline)
  1046. status collapsed
  1047. \begin_layout Plain Layout
  1048. Find appropriate GEO identifiers if possible.
  1049. Kurian 2014 says GSE15296, but this seems to be different data.
  1050. I also need to look up the GEO accession for the external validation set.
  1051. \end_layout
  1052. \end_inset
  1053. \end_layout
  1054. \begin_layout Standard
  1055. To evaluate the effect of each normalization on classifier performance,
  1056. the same classifier training and validation procedure was used after each
  1057. normalization method.
  1058. The PAM package was used to train a nearest shrunken centroid classifier
  1059. on the training set and select the appropriate threshold for centroid shrinking.
  1060. Then the trained classifier was used to predict the class probabilities
  1061. of each validation sample.
  1062. From these class probabilities, ROC curves and area-under-curve (AUC) values
  1063. were generated
  1064. \begin_inset CommandInset citation
  1065. LatexCommand cite
  1066. key "Turck2011"
  1067. literal "false"
  1068. \end_inset
  1069. .
  1070. Each normalization was tested on two different sets of training and validation
  1071. samples.
  1072. For internal validation, the 115 TX and AR arrays in the internal set were
  1073. split at random into two equal sized sets, one for training and one for
  1074. validation, each containing the same numbers of TX and AR samples as the
  1075. other set.
  1076. For external validation, the full set of 115 TX and AR samples were used
  1077. as a training set, and the 75 external TX and AR samples were used as the
  1078. validation set.
  1079. Thus, 2 ROC curves and AUC values were generated for each normalization
  1080. method: one internal and one external.
  1081. Because the external validation set contains no ADNR samples, only classificati
  1082. on of TX and AR samples was considered.
  1083. The ADNR samples were included during normalization but excluded from all
  1084. classifier training and validation.
  1085. This ensures that the performance on internal and external validation sets
  1086. is directly comparable, since both are performing the same task: distinguising
  1087. TX from AR.
  1088. \end_layout
  1089. \begin_layout Standard
  1090. \begin_inset Flex TODO Note (inline)
  1091. status collapsed
  1092. \begin_layout Plain Layout
  1093. Summarize the get.best.threshold algorithm for PAM threshold selection
  1094. \end_layout
  1095. \end_inset
  1096. \end_layout
  1097. \begin_layout Standard
  1098. Six different normalization strategies were evaluated.
  1099. First, 2 well-known non-single-channel normalization methods were considered:
  1100. RMA and dChip
  1101. \begin_inset CommandInset citation
  1102. LatexCommand cite
  1103. key "Li2001,Irizarry2003a"
  1104. literal "false"
  1105. \end_inset
  1106. .
  1107. Since RMA produces expression values on a log2 scale and dChip does not,
  1108. the values from dChip were log2 transformed after normalization.
  1109. Next, RMA and dChip followed by Global Rank-invariant Set Normalization
  1110. (GRSN) were tested
  1111. \begin_inset CommandInset citation
  1112. LatexCommand cite
  1113. key "Pelz2008"
  1114. literal "false"
  1115. \end_inset
  1116. .
  1117. Post-processing with GRSN does not turn RMA or dChip into single-channel
  1118. methods, but it may help mitigate batch effects and is therefore useful
  1119. as a benchmark.
  1120. Lastly, the two single-channel normalization methods, fRMA and SCAN, were
  1121. tested
  1122. \begin_inset CommandInset citation
  1123. LatexCommand cite
  1124. key "McCall2010,Piccolo2012"
  1125. literal "false"
  1126. \end_inset
  1127. .
  1128. When evaluting internal validation performance, only the 157 internal samples
  1129. were normalized; when evaluating external validation performance, all 157
  1130. internal samples and 75 external samples were normalized together.
  1131. \end_layout
  1132. \begin_layout Standard
  1133. For demonstrating the problem with separate normalization of training and
  1134. validation data, one additional normalization was performed: the internal
  1135. and external sets were each normalized separately using RMA, and the normalized
  1136. data for each set were combined into a single set with no further attempts
  1137. at normalizing between the two sets.
  1138. The represents approximately how RMA would have to be used in a clinical
  1139. setting, where the samples to be classified are not available at the time
  1140. the classifier is trained.
  1141. \end_layout
  1142. \begin_layout Subsection
  1143. Generating custom fRMA vectors for hthgu133pluspm array platform
  1144. \end_layout
  1145. \begin_layout Standard
  1146. In order to enable fRMA normalization for the hthgu133pluspm array platform,
  1147. custom fRMA normalization vectors were trained using the frmaTools package
  1148. \begin_inset CommandInset citation
  1149. LatexCommand cite
  1150. key "McCall2011"
  1151. literal "false"
  1152. \end_inset
  1153. .
  1154. Separate vectors were created for two types of samples: kidney graft biopsy
  1155. samples and blood samples from graft recipients.
  1156. For training, a 341 kidney biopsy samples from 2 data sets and 965 blood
  1157. samples from 5 data sets were used as the reference set.
  1158. Arrays were groups into batches based on unique combinations of sample
  1159. type (blood or biopsy), diagnosis (TX, AR, etc.), data set, and scan date.
  1160. Thus, each batch represents arrays of the same kind that were run together
  1161. on the same day.
  1162. For estimating the probe inverse variance weights, frmaTools requires equal-siz
  1163. ed batches, which means a batch size must be chosen, and then batches smaller
  1164. than that size must be ignored, while batches larger than the chosen size
  1165. must be downsampled.
  1166. This downsampling is performed randomly, so the sampling process is repeated
  1167. 5 times and the resulting normalizations are compared to each other.
  1168. \end_layout
  1169. \begin_layout Standard
  1170. To evaluate the consistency of the generated normalization vectors, the
  1171. 5 fRMA vector sets generated from 5 random batch samplings were each used
  1172. to normalize the same 20 randomly selected samples from each tissue.
  1173. Then the normalized expression values for each probe on each array were
  1174. compared across all normalizations.
  1175. Each fRMA normalization was also compared against the normalized expression
  1176. values obtained by normalizing the same 20 samples with ordinary RMA.
  1177. \end_layout
  1178. \begin_layout Subsection
  1179. Modeling methylation array M-value heteroskedasticy in linear models with
  1180. modified voom implementation
  1181. \end_layout
  1182. \begin_layout Standard
  1183. \begin_inset Flex TODO Note (inline)
  1184. status open
  1185. \begin_layout Plain Layout
  1186. Put code on Github and reference it.
  1187. \end_layout
  1188. \end_inset
  1189. \end_layout
  1190. \begin_layout Standard
  1191. To investigate the whether DNA methylation could be used to distinguish
  1192. between healthy and dysfunctional transplants, a data set of 78 Illumina
  1193. 450k methylation arrays from human kidney graft biopsies was analyzed for
  1194. differential metylation between 4 transplant statuses: healthy transplant
  1195. (TX), transplants undergoing acute rejection (AR), acute dysfunction with
  1196. no rejection (ADNR), and chronic allograpft nephropathy (CAN).
  1197. The data consisted of 33 TX, 9 AR, 8 ADNR, and 28 CAN samples.
  1198. The uneven group sizes are a result of taking the biopsy samples before
  1199. the eventual fate of the transplant was known.
  1200. Each sample was additionally annotated with a donor ID (anonymized), Sex,
  1201. Age, Ethnicity, Creatinine Level, and Diabetes diagnosois (all samples
  1202. in this data set came from patients with either Type 1 or Type 2 diabetes).
  1203. \end_layout
  1204. \begin_layout Standard
  1205. The intensity data were first normalized using subset-quantile within array
  1206. normalization (SWAN)
  1207. \begin_inset CommandInset citation
  1208. LatexCommand cite
  1209. key "Maksimovic2012"
  1210. literal "false"
  1211. \end_inset
  1212. , then converted to intensity ratios (beta values)
  1213. \begin_inset CommandInset citation
  1214. LatexCommand cite
  1215. key "Aryee2014"
  1216. literal "false"
  1217. \end_inset
  1218. .
  1219. Any probes binding to loci that overlapped annotated SNPs were dropped,
  1220. and the annotated sex of each sample was verified against the sex inferred
  1221. from the ratio of median probe intensities for the X and Y chromosomes.
  1222. Then, the ratios were transformed to M-values.
  1223. \end_layout
  1224. \begin_layout Standard
  1225. From the M-values, a series of parallel analyses was performed, each adding
  1226. additional steps into the model fit to accomodate a feature of the data.
  1227. First, a
  1228. \begin_inset Quotes eld
  1229. \end_inset
  1230. basic
  1231. \begin_inset Quotes erd
  1232. \end_inset
  1233. linear modeling analysis was performed, compensating for known features
  1234. of the data using existing tools.
  1235. A design matrix was prepared including terms for the factor of interest
  1236. as well as the known biological confounders: sex, age, ethnicity, and diabetes.
  1237. Since some samples came from the same patients at differen times, the intra-pat
  1238. ient correlation was modeled as a random effect, estimating a shared correlation
  1239. value across all probes
  1240. \begin_inset CommandInset citation
  1241. LatexCommand cite
  1242. key "Smyth2005a"
  1243. literal "false"
  1244. \end_inset
  1245. .
  1246. Then the linear model was fit, and the variance was modeled using empirical
  1247. Bayes squeezing toward the mean-variance trend
  1248. \begin_inset CommandInset citation
  1249. LatexCommand cite
  1250. key "Ritchie2015"
  1251. literal "false"
  1252. \end_inset
  1253. .
  1254. Finally, t-tests or F-tests were performed a appropriate for each test:
  1255. t-tests for single contrasts, and F-tests for multiple contrasts.
  1256. \end_layout
  1257. \begin_layout Standard
  1258. For the second analysis, surrogate variable analysis (SVA) was used to infer
  1259. additional unobserved sources of heterogeneity in the data
  1260. \begin_inset CommandInset citation
  1261. LatexCommand cite
  1262. key "Leek2007"
  1263. literal "false"
  1264. \end_inset
  1265. .
  1266. These surrogate variables were added to the design matrix before fitting
  1267. the linear model.
  1268. In addition, sample quality weights were estimated from the data and used
  1269. during linear modeling to down-weight the contribution of highly variable
  1270. arrays while increasing the weight to arrays with lower variability
  1271. \begin_inset CommandInset citation
  1272. LatexCommand cite
  1273. key "Ritchie2006"
  1274. literal "false"
  1275. \end_inset
  1276. .
  1277. For the third analysis, the voom method was adapted to run on methylation
  1278. array data and used to model the mean-variance trend as individual observation
  1279. weights
  1280. \begin_inset CommandInset citation
  1281. LatexCommand cite
  1282. key "Law2013"
  1283. literal "false"
  1284. \end_inset
  1285. , which were combined with the sample weights
  1286. \begin_inset CommandInset citation
  1287. LatexCommand cite
  1288. key "Liu2015"
  1289. literal "false"
  1290. \end_inset
  1291. .
  1292. Each time weights were used, they were estimated once before estimating
  1293. the random effect correlation value, and then the weights were re-estimated
  1294. taking the random effect into account.
  1295. \end_layout
  1296. \begin_layout Section
  1297. Results
  1298. \end_layout
  1299. \begin_layout Standard
  1300. \begin_inset Flex TODO Note (inline)
  1301. status open
  1302. \begin_layout Plain Layout
  1303. Improve subsection titles in this section
  1304. \end_layout
  1305. \end_inset
  1306. \end_layout
  1307. \begin_layout Subsection
  1308. fRMA eliminates unwanted dependence of classifier training on normalization
  1309. strategy caused by RMA
  1310. \end_layout
  1311. \begin_layout Subsubsection
  1312. Separate normalization with RMA introduces unwanted biases in classification
  1313. \end_layout
  1314. \begin_layout Standard
  1315. \begin_inset Float figure
  1316. wide false
  1317. sideways false
  1318. status open
  1319. \begin_layout Plain Layout
  1320. \align center
  1321. \begin_inset Graphics
  1322. filename graphics/PAM/predplot.pdf
  1323. width 100col%
  1324. groupId colwidth
  1325. \end_inset
  1326. \end_layout
  1327. \begin_layout Plain Layout
  1328. \begin_inset Caption Standard
  1329. \begin_layout Plain Layout
  1330. \begin_inset CommandInset label
  1331. LatexCommand label
  1332. name "fig:Classifier-probabilities-RMA"
  1333. \end_inset
  1334. \series bold
  1335. Classifier probabilities on validation samples when normalized with RMA
  1336. together vs.
  1337. separately.
  1338. \end_layout
  1339. \end_inset
  1340. \end_layout
  1341. \end_inset
  1342. \end_layout
  1343. \begin_layout Standard
  1344. To demonstrate the problem with non-single-channel methods, we considered
  1345. the problem of training a classifier to distinguish TX from AR using the
  1346. samples from the internal set as training data, evaluating performance
  1347. on the external set.
  1348. First, training and evaluation were performed after normalizing all array
  1349. samples together as a single set using RMA, and second, the internal samples
  1350. were normalized separately from the external samples and the training and
  1351. evaluation were repeated.
  1352. For each sample in the validation set, the classifier probabilities from
  1353. both classifiers were plotted against each other (Fig.
  1354. \begin_inset CommandInset ref
  1355. LatexCommand ref
  1356. reference "fig:Classifier-probabilities-RMA"
  1357. plural "false"
  1358. caps "false"
  1359. noprefix "false"
  1360. \end_inset
  1361. ).
  1362. As expected, separate normalization biases the classifier probabilities,
  1363. resulting in several misclassifications.
  1364. In this case, the bias from separate normalization causes the classifier
  1365. to assign a lower probability of AR to every sample.
  1366. \end_layout
  1367. \begin_layout Subsubsection
  1368. fRMA and SCAN achieve maintain classification performance while eliminating
  1369. dependence on normalization strategy
  1370. \end_layout
  1371. \begin_layout Standard
  1372. \begin_inset Float figure
  1373. placement tb
  1374. wide false
  1375. sideways false
  1376. status collapsed
  1377. \begin_layout Plain Layout
  1378. \align center
  1379. \begin_inset Graphics
  1380. filename graphics/PAM/ROC-TXvsAR-internal.pdf
  1381. width 100col%
  1382. groupId colwidth
  1383. \end_inset
  1384. \end_layout
  1385. \begin_layout Plain Layout
  1386. \begin_inset Caption Standard
  1387. \begin_layout Plain Layout
  1388. \begin_inset CommandInset label
  1389. LatexCommand label
  1390. name "fig:ROC-PAM-int"
  1391. \end_inset
  1392. ROC curves for PAM on internal validation data using different normalization
  1393. strategies
  1394. \end_layout
  1395. \end_inset
  1396. \end_layout
  1397. \end_inset
  1398. \end_layout
  1399. \begin_layout Standard
  1400. \begin_inset Float table
  1401. wide false
  1402. sideways false
  1403. status collapsed
  1404. \begin_layout Plain Layout
  1405. \align center
  1406. \begin_inset Tabular
  1407. <lyxtabular version="3" rows="7" columns="4">
  1408. <features tabularvalignment="middle">
  1409. <column alignment="center" valignment="top">
  1410. <column alignment="center" valignment="top">
  1411. <column alignment="center" valignment="top">
  1412. <column alignment="center" valignment="top">
  1413. <row>
  1414. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1415. \begin_inset Text
  1416. \begin_layout Plain Layout
  1417. \family roman
  1418. \series medium
  1419. \shape up
  1420. \size normal
  1421. \emph off
  1422. \bar no
  1423. \strikeout off
  1424. \xout off
  1425. \uuline off
  1426. \uwave off
  1427. \noun off
  1428. \color none
  1429. Normalization
  1430. \end_layout
  1431. \end_inset
  1432. </cell>
  1433. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1434. \begin_inset Text
  1435. \begin_layout Plain Layout
  1436. Single-channel?
  1437. \end_layout
  1438. \end_inset
  1439. </cell>
  1440. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1441. \begin_inset Text
  1442. \begin_layout Plain Layout
  1443. \family roman
  1444. \series medium
  1445. \shape up
  1446. \size normal
  1447. \emph off
  1448. \bar no
  1449. \strikeout off
  1450. \xout off
  1451. \uuline off
  1452. \uwave off
  1453. \noun off
  1454. \color none
  1455. Internal Val.
  1456. AUC
  1457. \end_layout
  1458. \end_inset
  1459. </cell>
  1460. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  1461. \begin_inset Text
  1462. \begin_layout Plain Layout
  1463. External Val.
  1464. AUC
  1465. \end_layout
  1466. \end_inset
  1467. </cell>
  1468. </row>
  1469. <row>
  1470. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1471. \begin_inset Text
  1472. \begin_layout Plain Layout
  1473. \family roman
  1474. \series medium
  1475. \shape up
  1476. \size normal
  1477. \emph off
  1478. \bar no
  1479. \strikeout off
  1480. \xout off
  1481. \uuline off
  1482. \uwave off
  1483. \noun off
  1484. \color none
  1485. RMA
  1486. \end_layout
  1487. \end_inset
  1488. </cell>
  1489. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1490. \begin_inset Text
  1491. \begin_layout Plain Layout
  1492. No
  1493. \end_layout
  1494. \end_inset
  1495. </cell>
  1496. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1497. \begin_inset Text
  1498. \begin_layout Plain Layout
  1499. \family roman
  1500. \series medium
  1501. \shape up
  1502. \size normal
  1503. \emph off
  1504. \bar no
  1505. \strikeout off
  1506. \xout off
  1507. \uuline off
  1508. \uwave off
  1509. \noun off
  1510. \color none
  1511. 0.852
  1512. \end_layout
  1513. \end_inset
  1514. </cell>
  1515. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  1516. \begin_inset Text
  1517. \begin_layout Plain Layout
  1518. \family roman
  1519. \series medium
  1520. \shape up
  1521. \size normal
  1522. \emph off
  1523. \bar no
  1524. \strikeout off
  1525. \xout off
  1526. \uuline off
  1527. \uwave off
  1528. \noun off
  1529. \color none
  1530. 0.713
  1531. \end_layout
  1532. \end_inset
  1533. </cell>
  1534. </row>
  1535. <row>
  1536. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1537. \begin_inset Text
  1538. \begin_layout Plain Layout
  1539. \family roman
  1540. \series medium
  1541. \shape up
  1542. \size normal
  1543. \emph off
  1544. \bar no
  1545. \strikeout off
  1546. \xout off
  1547. \uuline off
  1548. \uwave off
  1549. \noun off
  1550. \color none
  1551. dChip
  1552. \end_layout
  1553. \end_inset
  1554. </cell>
  1555. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1556. \begin_inset Text
  1557. \begin_layout Plain Layout
  1558. No
  1559. \end_layout
  1560. \end_inset
  1561. </cell>
  1562. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1563. \begin_inset Text
  1564. \begin_layout Plain Layout
  1565. \family roman
  1566. \series medium
  1567. \shape up
  1568. \size normal
  1569. \emph off
  1570. \bar no
  1571. \strikeout off
  1572. \xout off
  1573. \uuline off
  1574. \uwave off
  1575. \noun off
  1576. \color none
  1577. 0.891
  1578. \end_layout
  1579. \end_inset
  1580. </cell>
  1581. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  1582. \begin_inset Text
  1583. \begin_layout Plain Layout
  1584. \family roman
  1585. \series medium
  1586. \shape up
  1587. \size normal
  1588. \emph off
  1589. \bar no
  1590. \strikeout off
  1591. \xout off
  1592. \uuline off
  1593. \uwave off
  1594. \noun off
  1595. \color none
  1596. 0.657
  1597. \end_layout
  1598. \end_inset
  1599. </cell>
  1600. </row>
  1601. <row>
  1602. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1603. \begin_inset Text
  1604. \begin_layout Plain Layout
  1605. \family roman
  1606. \series medium
  1607. \shape up
  1608. \size normal
  1609. \emph off
  1610. \bar no
  1611. \strikeout off
  1612. \xout off
  1613. \uuline off
  1614. \uwave off
  1615. \noun off
  1616. \color none
  1617. RMA + GRSN
  1618. \end_layout
  1619. \end_inset
  1620. </cell>
  1621. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1622. \begin_inset Text
  1623. \begin_layout Plain Layout
  1624. No
  1625. \end_layout
  1626. \end_inset
  1627. </cell>
  1628. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1629. \begin_inset Text
  1630. \begin_layout Plain Layout
  1631. \family roman
  1632. \series medium
  1633. \shape up
  1634. \size normal
  1635. \emph off
  1636. \bar no
  1637. \strikeout off
  1638. \xout off
  1639. \uuline off
  1640. \uwave off
  1641. \noun off
  1642. \color none
  1643. 0.816
  1644. \end_layout
  1645. \end_inset
  1646. </cell>
  1647. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  1648. \begin_inset Text
  1649. \begin_layout Plain Layout
  1650. \family roman
  1651. \series medium
  1652. \shape up
  1653. \size normal
  1654. \emph off
  1655. \bar no
  1656. \strikeout off
  1657. \xout off
  1658. \uuline off
  1659. \uwave off
  1660. \noun off
  1661. \color none
  1662. 0.750
  1663. \end_layout
  1664. \end_inset
  1665. </cell>
  1666. </row>
  1667. <row>
  1668. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1669. \begin_inset Text
  1670. \begin_layout Plain Layout
  1671. \family roman
  1672. \series medium
  1673. \shape up
  1674. \size normal
  1675. \emph off
  1676. \bar no
  1677. \strikeout off
  1678. \xout off
  1679. \uuline off
  1680. \uwave off
  1681. \noun off
  1682. \color none
  1683. dChip + GRSN
  1684. \end_layout
  1685. \end_inset
  1686. </cell>
  1687. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1688. \begin_inset Text
  1689. \begin_layout Plain Layout
  1690. No
  1691. \end_layout
  1692. \end_inset
  1693. </cell>
  1694. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1695. \begin_inset Text
  1696. \begin_layout Plain Layout
  1697. \family roman
  1698. \series medium
  1699. \shape up
  1700. \size normal
  1701. \emph off
  1702. \bar no
  1703. \strikeout off
  1704. \xout off
  1705. \uuline off
  1706. \uwave off
  1707. \noun off
  1708. \color none
  1709. 0.875
  1710. \end_layout
  1711. \end_inset
  1712. </cell>
  1713. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  1714. \begin_inset Text
  1715. \begin_layout Plain Layout
  1716. \family roman
  1717. \series medium
  1718. \shape up
  1719. \size normal
  1720. \emph off
  1721. \bar no
  1722. \strikeout off
  1723. \xout off
  1724. \uuline off
  1725. \uwave off
  1726. \noun off
  1727. \color none
  1728. 0.642
  1729. \end_layout
  1730. \end_inset
  1731. </cell>
  1732. </row>
  1733. <row>
  1734. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1735. \begin_inset Text
  1736. \begin_layout Plain Layout
  1737. \family roman
  1738. \series medium
  1739. \shape up
  1740. \size normal
  1741. \emph off
  1742. \bar no
  1743. \strikeout off
  1744. \xout off
  1745. \uuline off
  1746. \uwave off
  1747. \noun off
  1748. \color none
  1749. fRMA
  1750. \end_layout
  1751. \end_inset
  1752. </cell>
  1753. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1754. \begin_inset Text
  1755. \begin_layout Plain Layout
  1756. Yes
  1757. \end_layout
  1758. \end_inset
  1759. </cell>
  1760. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1761. \begin_inset Text
  1762. \begin_layout Plain Layout
  1763. \family roman
  1764. \series medium
  1765. \shape up
  1766. \size normal
  1767. \emph off
  1768. \bar no
  1769. \strikeout off
  1770. \xout off
  1771. \uuline off
  1772. \uwave off
  1773. \noun off
  1774. \color none
  1775. 0.863
  1776. \end_layout
  1777. \end_inset
  1778. </cell>
  1779. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  1780. \begin_inset Text
  1781. \begin_layout Plain Layout
  1782. \family roman
  1783. \series medium
  1784. \shape up
  1785. \size normal
  1786. \emph off
  1787. \bar no
  1788. \strikeout off
  1789. \xout off
  1790. \uuline off
  1791. \uwave off
  1792. \noun off
  1793. \color none
  1794. 0.718
  1795. \end_layout
  1796. \end_inset
  1797. </cell>
  1798. </row>
  1799. <row>
  1800. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1801. \begin_inset Text
  1802. \begin_layout Plain Layout
  1803. \family roman
  1804. \series medium
  1805. \shape up
  1806. \size normal
  1807. \emph off
  1808. \bar no
  1809. \strikeout off
  1810. \xout off
  1811. \uuline off
  1812. \uwave off
  1813. \noun off
  1814. \color none
  1815. SCAN
  1816. \end_layout
  1817. \end_inset
  1818. </cell>
  1819. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1820. \begin_inset Text
  1821. \begin_layout Plain Layout
  1822. Yes
  1823. \end_layout
  1824. \end_inset
  1825. </cell>
  1826. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1827. \begin_inset Text
  1828. \begin_layout Plain Layout
  1829. \family roman
  1830. \series medium
  1831. \shape up
  1832. \size normal
  1833. \emph off
  1834. \bar no
  1835. \strikeout off
  1836. \xout off
  1837. \uuline off
  1838. \uwave off
  1839. \noun off
  1840. \color none
  1841. 0.853
  1842. \end_layout
  1843. \end_inset
  1844. </cell>
  1845. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  1846. \begin_inset Text
  1847. \begin_layout Plain Layout
  1848. \family roman
  1849. \series medium
  1850. \shape up
  1851. \size normal
  1852. \emph off
  1853. \bar no
  1854. \strikeout off
  1855. \xout off
  1856. \uuline off
  1857. \uwave off
  1858. \noun off
  1859. \color none
  1860. 0.689
  1861. \end_layout
  1862. \end_inset
  1863. </cell>
  1864. </row>
  1865. </lyxtabular>
  1866. \end_inset
  1867. \end_layout
  1868. \begin_layout Plain Layout
  1869. \begin_inset Caption Standard
  1870. \begin_layout Plain Layout
  1871. \begin_inset CommandInset label
  1872. LatexCommand label
  1873. name "tab:AUC-PAM"
  1874. \end_inset
  1875. \series bold
  1876. AUC values for internal and external validation with 6 different normalization
  1877. strategies.
  1878. \series default
  1879. Only fRMA and SCAN are single-channel normalizations.
  1880. The other 4 normalizations are for comparison.
  1881. \end_layout
  1882. \end_inset
  1883. \end_layout
  1884. \end_inset
  1885. \end_layout
  1886. \begin_layout Standard
  1887. For internal validation, the 6 methods' AUC values ranged from 0.816 to 0.891,
  1888. as shown in Table
  1889. \begin_inset CommandInset ref
  1890. LatexCommand ref
  1891. reference "tab:AUC-PAM"
  1892. plural "false"
  1893. caps "false"
  1894. noprefix "false"
  1895. \end_inset
  1896. .
  1897. Among the non-single-channel normalizations, dChip outperformed RMA, while
  1898. GRSN reduced the AUC values for both dChip and RMA.
  1899. Both single-channel methods, fRMA and SCAN, slightly outperformed RMA,
  1900. with fRMA ahead of SCAN.
  1901. However, the difference between RMA and fRMA is still quite small.
  1902. Figure
  1903. \begin_inset CommandInset ref
  1904. LatexCommand ref
  1905. reference "fig:ROC-PAM-int"
  1906. plural "false"
  1907. caps "false"
  1908. noprefix "false"
  1909. \end_inset
  1910. shows that the ROC curves for RMA, dChip, and fRMA look very similar and
  1911. relatively smooth, while both GRSN curves and the curve for SCAN have a
  1912. more jagged appearance.
  1913. \end_layout
  1914. \begin_layout Standard
  1915. \begin_inset Float figure
  1916. placement tb
  1917. wide false
  1918. sideways false
  1919. status open
  1920. \begin_layout Plain Layout
  1921. \align center
  1922. \begin_inset Graphics
  1923. filename graphics/PAM/ROC-TXvsAR-external.pdf
  1924. width 100col%
  1925. groupId colwidth
  1926. \end_inset
  1927. \end_layout
  1928. \begin_layout Plain Layout
  1929. \begin_inset Caption Standard
  1930. \begin_layout Plain Layout
  1931. \begin_inset CommandInset label
  1932. LatexCommand label
  1933. name "fig:ROC-PAM-ext"
  1934. \end_inset
  1935. ROC curve for PAM on external validation data using different normalization
  1936. strategies
  1937. \end_layout
  1938. \end_inset
  1939. \end_layout
  1940. \end_inset
  1941. \end_layout
  1942. \begin_layout Standard
  1943. For external validation, as expected, all the AUC values are lower than
  1944. the internal validations, ranging from 0.642 to 0.750 (Table
  1945. \begin_inset CommandInset ref
  1946. LatexCommand ref
  1947. reference "tab:AUC-PAM"
  1948. plural "false"
  1949. caps "false"
  1950. noprefix "false"
  1951. \end_inset
  1952. ).
  1953. With or without GRSN, RMA shows its dominance over dChip in this more challengi
  1954. ng test.
  1955. Unlike in the internal validation, GRSN actually improves the classifier
  1956. performance for RMA, although it does not for dChip.
  1957. Once again, both single-channel methods perform about on par with RMA,
  1958. with fRMA performing slightly better and SCAN performing a bit worse.
  1959. Figure
  1960. \begin_inset CommandInset ref
  1961. LatexCommand ref
  1962. reference "fig:ROC-PAM-ext"
  1963. plural "false"
  1964. caps "false"
  1965. noprefix "false"
  1966. \end_inset
  1967. shows the ROC curves for the external validation test.
  1968. As expected, none of them are as clean-looking as the internal validation
  1969. ROC curves.
  1970. The curves for RMA, RMA+GRSN, and fRMA all look similar, while the other
  1971. curves look more divergent.
  1972. \end_layout
  1973. \begin_layout Standard
  1974. \begin_inset ERT
  1975. status collapsed
  1976. \begin_layout Plain Layout
  1977. \backslash
  1978. FloatBarrier
  1979. \end_layout
  1980. \end_inset
  1981. \end_layout
  1982. \begin_layout Subsection
  1983. fRMA with custom-generated vectors enables normalization on hthgu133pluspm
  1984. \end_layout
  1985. \begin_layout Standard
  1986. \begin_inset Float figure
  1987. placement tb
  1988. wide false
  1989. sideways false
  1990. status open
  1991. \begin_layout Plain Layout
  1992. \align center
  1993. \begin_inset Graphics
  1994. filename graphics/frma-pax-bx/batchsize_batches.pdf
  1995. \end_inset
  1996. \end_layout
  1997. \begin_layout Plain Layout
  1998. \begin_inset Caption Standard
  1999. \begin_layout Plain Layout
  2000. \begin_inset CommandInset label
  2001. LatexCommand label
  2002. name "fig:batch-size-batches"
  2003. \end_inset
  2004. \series bold
  2005. Effect of batch size selection on number of batches included in fRMA probe
  2006. weight learning.
  2007. \series default
  2008. For batch sizes ranging from 3 to 15, the number of batches with at least
  2009. that many samples was plotted for biopsy (BX) and blood (PAX) samples.
  2010. The selected batch size, 5, is marked with a dotted vertical line.
  2011. \end_layout
  2012. \end_inset
  2013. \end_layout
  2014. \end_inset
  2015. \end_layout
  2016. \begin_layout Standard
  2017. \begin_inset Float figure
  2018. placement tb
  2019. wide false
  2020. sideways false
  2021. status open
  2022. \begin_layout Plain Layout
  2023. \align center
  2024. \begin_inset Graphics
  2025. filename graphics/frma-pax-bx/batchsize_samples.pdf
  2026. \end_inset
  2027. \end_layout
  2028. \begin_layout Plain Layout
  2029. \begin_inset Caption Standard
  2030. \begin_layout Plain Layout
  2031. \begin_inset CommandInset label
  2032. LatexCommand label
  2033. name "fig:batch-size-samples"
  2034. \end_inset
  2035. \series bold
  2036. Effect of batch size selection on number of samples included in fRMA probe
  2037. weight learning.
  2038. \series default
  2039. For batch sizes ranging from 3 to 15, the number of samples included in
  2040. probe weight training was plotted for biopsy (BX) and blood (PAX) samples.
  2041. The selected batch size, 5, is marked with a dotted vertical line.
  2042. \end_layout
  2043. \end_inset
  2044. \end_layout
  2045. \end_inset
  2046. \end_layout
  2047. \begin_layout Standard
  2048. In order to enable use of fRMA to normalize hthgu133pluspm, a custom set
  2049. of fRMA vectors was created.
  2050. First, an appropriate batch size was chosen by looking at the number of
  2051. batches and number of samples included as a function of batch size (Figures
  2052. \begin_inset CommandInset ref
  2053. LatexCommand ref
  2054. reference "fig:batch-size-batches"
  2055. plural "false"
  2056. caps "false"
  2057. noprefix "false"
  2058. \end_inset
  2059. and
  2060. \begin_inset CommandInset ref
  2061. LatexCommand ref
  2062. reference "fig:batch-size-samples"
  2063. plural "false"
  2064. caps "false"
  2065. noprefix "false"
  2066. \end_inset
  2067. , respectively).
  2068. For a given batch size, all batches with fewer samples that the chosen
  2069. size must be ignored during training, while larger batches must be randomly
  2070. downsampled to the chosen size.
  2071. Hence, the number of samples included for a given batch size equals the
  2072. batch size times the number of batches with at least that many samples.
  2073. From Figure
  2074. \begin_inset CommandInset ref
  2075. LatexCommand ref
  2076. reference "fig:batch-size-samples"
  2077. plural "false"
  2078. caps "false"
  2079. noprefix "false"
  2080. \end_inset
  2081. , it is apparent that that a batch size of 8 maximizes the number of samples
  2082. included in training.
  2083. Increasing the batch size beyond this causes too many smaller batches to
  2084. be excluded, reducing the total number of samples for both tissue types.
  2085. However, a batch size of 8 is not necessarily optimal.
  2086. The article introducing frmaTools concluded that it was highly advantageous
  2087. to use a smaller batch size in order to include more batches, even at the
  2088. expense of including fewer total samples in training
  2089. \begin_inset CommandInset citation
  2090. LatexCommand cite
  2091. key "McCall2011"
  2092. literal "false"
  2093. \end_inset
  2094. .
  2095. To strike an appropriate balance between more batches and more samples,
  2096. a batch size of 5 was chosen.
  2097. For both blood and biopsy samples, this increased the number of batches
  2098. included by 10, with only a modest reduction in the number of samples compared
  2099. to a batch size of 8.
  2100. With a batch size of 5, 26 batches of biopsy samples and 46 batches of
  2101. blood samples were available.
  2102. \end_layout
  2103. \begin_layout Standard
  2104. \begin_inset Float figure
  2105. wide false
  2106. sideways false
  2107. status open
  2108. \begin_layout Plain Layout
  2109. \align center
  2110. \begin_inset Graphics
  2111. filename graphics/frma-pax-bx/M-BX-violin.pdf
  2112. lyxscale 40
  2113. height 80theight%
  2114. groupId m-violin
  2115. \end_inset
  2116. \end_layout
  2117. \begin_layout Plain Layout
  2118. \begin_inset Caption Standard
  2119. \begin_layout Plain Layout
  2120. \begin_inset CommandInset label
  2121. LatexCommand label
  2122. name "fig:m-bx-violin"
  2123. \end_inset
  2124. \series bold
  2125. Violin plot of log ratios between normalizations for 20 biopsy samples.
  2126. \series default
  2127. Each of 20 randomly selected biopsy samples was normalized with RMA and
  2128. with 5 different sets of fRMA vectors.
  2129. This shows the distribution of log ratios between normalized expression
  2130. values, aggregated across all 20 arrays.
  2131. \end_layout
  2132. \end_inset
  2133. \end_layout
  2134. \end_inset
  2135. \end_layout
  2136. \begin_layout Standard
  2137. Since fRMA training requires equal-size batches, larger batches are downsampled
  2138. randomly.
  2139. This introduces a nondeterministic step in the generation of normalization
  2140. vectors.
  2141. To show that this randomness does not substantially change the outcome,
  2142. the random downsampling and subsequent vector learning was repeated 5 times,
  2143. with a different random seed each time.
  2144. 20 samples were selected at random as a test set and normalized with each
  2145. of the 5 sets of fRMA normalization vectors as well as ordinary RMA, and
  2146. the normalized expression values were compared across normalizations.
  2147. Figure
  2148. \begin_inset CommandInset ref
  2149. LatexCommand ref
  2150. reference "fig:m-bx-violin"
  2151. plural "false"
  2152. caps "false"
  2153. noprefix "false"
  2154. \end_inset
  2155. shows a summary of these comparisons for biopsy samples.
  2156. Comparing RMA to each of the 5 fRMA normalizations, the distribution of
  2157. log ratios is somewhat wide, indicating that the normalizations disagree
  2158. on the expression values of a fair number of probe sets.
  2159. In contrast, comparisons of fRMA against fRMA, the vast mojority of probe
  2160. sets have very small log ratios, indicating a very high agreement between
  2161. the normalized values generated by the two normalizations.
  2162. This shows that the fRMA normalization's behavior is not very sensitive
  2163. to the random downsampling of larger batches during training.
  2164. \end_layout
  2165. \begin_layout Standard
  2166. \begin_inset Float figure
  2167. wide false
  2168. sideways false
  2169. status open
  2170. \begin_layout Plain Layout
  2171. \align center
  2172. \begin_inset Graphics
  2173. filename graphics/frma-pax-bx/MA-BX-RMA.fRMA.pdf
  2174. lyxscale 50
  2175. width 100text%
  2176. groupId ma-frma
  2177. \end_inset
  2178. \end_layout
  2179. \begin_layout Plain Layout
  2180. \begin_inset Caption Standard
  2181. \begin_layout Plain Layout
  2182. \begin_inset CommandInset label
  2183. LatexCommand label
  2184. name "fig:ma-bx-rma-frma"
  2185. \end_inset
  2186. \series bold
  2187. Representative MA plot comparing RMA against fRMA for 20 biopsy samples.
  2188. \series default
  2189. Averages and log ratios were computed for every probe in each of 20 biopsy
  2190. samples between RMA normalization and fRMA.
  2191. Density of points is represented by darkness of shading, and individual
  2192. outlier points are plotted.
  2193. \end_layout
  2194. \end_inset
  2195. \end_layout
  2196. \end_inset
  2197. \end_layout
  2198. \begin_layout Standard
  2199. \begin_inset Float figure
  2200. wide false
  2201. sideways false
  2202. status open
  2203. \begin_layout Plain Layout
  2204. \align center
  2205. \begin_inset Graphics
  2206. filename graphics/frma-pax-bx/MA-BX-fRMA.fRMA.pdf
  2207. lyxscale 50
  2208. width 100text%
  2209. groupId ma-frma
  2210. \end_inset
  2211. \end_layout
  2212. \begin_layout Plain Layout
  2213. \begin_inset Caption Standard
  2214. \begin_layout Plain Layout
  2215. \begin_inset CommandInset label
  2216. LatexCommand label
  2217. name "fig:ma-bx-frma-frma"
  2218. \end_inset
  2219. \series bold
  2220. Representative MA plot comparing different fRMA vectors for 20 biopsy samples.
  2221. \series default
  2222. Averages and log ratios were computed for every probe in each of 20 biopsy
  2223. samples between fRMA normalizations using vectors from two different batch
  2224. samplings.
  2225. Density of points is represented by darkness of shading, and individual
  2226. outlier points are plotted.
  2227. \end_layout
  2228. \end_inset
  2229. \end_layout
  2230. \end_inset
  2231. \end_layout
  2232. \begin_layout Standard
  2233. Figure
  2234. \begin_inset CommandInset ref
  2235. LatexCommand ref
  2236. reference "fig:ma-bx-rma-frma"
  2237. plural "false"
  2238. caps "false"
  2239. noprefix "false"
  2240. \end_inset
  2241. shows an MA plot of the RMA-normalized values against the fRMA-normalized
  2242. values for the same probe sets and arrays, corresponding to the first row
  2243. of Figure
  2244. \begin_inset CommandInset ref
  2245. LatexCommand ref
  2246. reference "fig:m-bx-violin"
  2247. plural "false"
  2248. caps "false"
  2249. noprefix "false"
  2250. \end_inset
  2251. .
  2252. This MA plot shows that not only is there a wide distribution of M-values,
  2253. but the trend of M-values is dependent on the average normalized intensity.
  2254. This is expected, since the overall trend represents the differences in
  2255. the quantile normalization step.
  2256. When running RMA, only the quantiles for these specific 20 arrays are used,
  2257. while for fRMA the quantile distribution is taking from all arrays used
  2258. in training.
  2259. Figure
  2260. \begin_inset CommandInset ref
  2261. LatexCommand ref
  2262. reference "fig:ma-bx-frma-frma"
  2263. plural "false"
  2264. caps "false"
  2265. noprefix "false"
  2266. \end_inset
  2267. shows a similar MA plot comparing 2 different fRMA normalizations, correspondin
  2268. g to the 6th row of Figure
  2269. \begin_inset CommandInset ref
  2270. LatexCommand ref
  2271. reference "fig:m-bx-violin"
  2272. plural "false"
  2273. caps "false"
  2274. noprefix "false"
  2275. \end_inset
  2276. .
  2277. The MA plot is very tightly centered around zero with no visible trend.
  2278. Figures
  2279. \begin_inset CommandInset ref
  2280. LatexCommand ref
  2281. reference "fig:m-pax-violin"
  2282. plural "false"
  2283. caps "false"
  2284. noprefix "false"
  2285. \end_inset
  2286. ,
  2287. \begin_inset CommandInset ref
  2288. LatexCommand ref
  2289. reference "fig:MA-PAX-rma-frma"
  2290. plural "false"
  2291. caps "false"
  2292. noprefix "false"
  2293. \end_inset
  2294. , and
  2295. \begin_inset CommandInset ref
  2296. LatexCommand ref
  2297. reference "fig:ma-bx-frma-frma"
  2298. plural "false"
  2299. caps "false"
  2300. noprefix "false"
  2301. \end_inset
  2302. show exactly the same information for the blood samples, once again comparing
  2303. the normalized expression values between normalizations for all probe sets
  2304. across 20 randomly selected test arrays.
  2305. Once again, there is a wider distribution of log ratios between RMA-normalized
  2306. values and fRMA-normalized, and a much tighter distribution when comparing
  2307. different fRMA normalizations to each other, indicating that the fRMA training
  2308. process is robust to random batch downsampling for the blood samples as
  2309. well.
  2310. \end_layout
  2311. \begin_layout Standard
  2312. \begin_inset Float figure
  2313. wide false
  2314. sideways false
  2315. status open
  2316. \begin_layout Plain Layout
  2317. \align center
  2318. \begin_inset Graphics
  2319. filename graphics/frma-pax-bx/M-PAX-violin.pdf
  2320. lyxscale 40
  2321. height 80theight%
  2322. groupId m-violin
  2323. \end_inset
  2324. \end_layout
  2325. \begin_layout Plain Layout
  2326. \begin_inset Caption Standard
  2327. \begin_layout Plain Layout
  2328. \begin_inset CommandInset label
  2329. LatexCommand label
  2330. name "fig:m-pax-violin"
  2331. \end_inset
  2332. \series bold
  2333. Violin plot of log ratios between normalizations for 20 blood samples.
  2334. \series default
  2335. Each of 20 randomly selected blood samples was normalized with RMA and with
  2336. 5 different sets of fRMA vectors.
  2337. This shows the distribution of log ratios between normalized expression
  2338. values, aggregated across all 20 arrays.
  2339. \end_layout
  2340. \end_inset
  2341. \end_layout
  2342. \end_inset
  2343. \end_layout
  2344. \begin_layout Standard
  2345. \begin_inset Float figure
  2346. wide false
  2347. sideways false
  2348. status open
  2349. \begin_layout Plain Layout
  2350. \align center
  2351. \begin_inset Graphics
  2352. filename graphics/frma-pax-bx/MA-PAX-RMA.fRMA.pdf
  2353. lyxscale 50
  2354. width 100text%
  2355. groupId ma-frma
  2356. \end_inset
  2357. \end_layout
  2358. \begin_layout Plain Layout
  2359. \begin_inset Caption Standard
  2360. \begin_layout Plain Layout
  2361. \begin_inset CommandInset label
  2362. LatexCommand label
  2363. name "fig:MA-PAX-rma-frma"
  2364. \end_inset
  2365. \series bold
  2366. Representative MA plot comparing RMA against fRMA for 20 blood samples.
  2367. \series default
  2368. Averages and log ratios were computed for every probe in each of 20 blood
  2369. samples between RMA normalization and fRMA.
  2370. Density of points is represented by darkness of shading, and individual
  2371. outlier points are plotted.
  2372. \end_layout
  2373. \end_inset
  2374. \end_layout
  2375. \begin_layout Plain Layout
  2376. \end_layout
  2377. \end_inset
  2378. \end_layout
  2379. \begin_layout Standard
  2380. \begin_inset Float figure
  2381. wide false
  2382. sideways false
  2383. status open
  2384. \begin_layout Plain Layout
  2385. \align center
  2386. \begin_inset Graphics
  2387. filename graphics/frma-pax-bx/MA-PAX-fRMA.fRMA.pdf
  2388. lyxscale 50
  2389. width 100text%
  2390. groupId ma-frma
  2391. \end_inset
  2392. \end_layout
  2393. \begin_layout Plain Layout
  2394. \begin_inset Caption Standard
  2395. \begin_layout Plain Layout
  2396. \begin_inset CommandInset label
  2397. LatexCommand label
  2398. name "fig:MA-PAX-frma-frma"
  2399. \end_inset
  2400. \series bold
  2401. Representative MA plot comparing different fRMA vectors for 20 blood samples.
  2402. \series default
  2403. Averages and log ratios were computed for every probe in each of 20 blood
  2404. samples between fRMA normalizations using vectors from two different batch
  2405. samplings.
  2406. Density of points is represented by darkness of shading, and individual
  2407. outlier points are plotted.
  2408. \end_layout
  2409. \end_inset
  2410. \end_layout
  2411. \end_inset
  2412. \end_layout
  2413. \begin_layout Standard
  2414. \begin_inset ERT
  2415. status collapsed
  2416. \begin_layout Plain Layout
  2417. \backslash
  2418. FloatBarrier
  2419. \end_layout
  2420. \end_inset
  2421. \end_layout
  2422. \begin_layout Subsection
  2423. Adapting voom to methylation array data improves model fit
  2424. \end_layout
  2425. \begin_layout Standard
  2426. \begin_inset Flex TODO Note (inline)
  2427. status open
  2428. \begin_layout Plain Layout
  2429. Write figure legends
  2430. \end_layout
  2431. \end_inset
  2432. \end_layout
  2433. \begin_layout Standard
  2434. \begin_inset Float figure
  2435. wide false
  2436. sideways false
  2437. status open
  2438. \begin_layout Plain Layout
  2439. \begin_inset Graphics
  2440. filename graphics/methylvoom/unadj.dupcor/meanvar-trends-PAGE1-RASTER.png
  2441. lyxscale 15
  2442. width 100col%
  2443. groupId raster-600ppi
  2444. \end_inset
  2445. \end_layout
  2446. \begin_layout Plain Layout
  2447. \begin_inset Caption Standard
  2448. \begin_layout Plain Layout
  2449. \series bold
  2450. \begin_inset CommandInset label
  2451. LatexCommand label
  2452. name "fig:meanvar-basic"
  2453. \end_inset
  2454. Mean-variance trend with no SVA or weights
  2455. \end_layout
  2456. \end_inset
  2457. \end_layout
  2458. \end_inset
  2459. \end_layout
  2460. \begin_layout Standard
  2461. \begin_inset Float figure
  2462. wide false
  2463. sideways false
  2464. status open
  2465. \begin_layout Plain Layout
  2466. \begin_inset Graphics
  2467. filename graphics/methylvoom/unadj.dupcor.sva.aw/meanvar-trends-PAGE1-RASTER.png
  2468. lyxscale 15
  2469. width 100col%
  2470. groupId raster-600ppi
  2471. \end_inset
  2472. \end_layout
  2473. \begin_layout Plain Layout
  2474. \begin_inset Caption Standard
  2475. \begin_layout Plain Layout
  2476. \series bold
  2477. \begin_inset CommandInset label
  2478. LatexCommand label
  2479. name "fig:meanvar-sva-aw"
  2480. \end_inset
  2481. Mean-variance trend with SVA and sample quality weights.
  2482. \end_layout
  2483. \end_inset
  2484. \end_layout
  2485. \end_inset
  2486. \end_layout
  2487. \begin_layout Standard
  2488. \begin_inset Float figure
  2489. wide false
  2490. sideways false
  2491. status open
  2492. \begin_layout Plain Layout
  2493. \begin_inset Graphics
  2494. filename graphics/methylvoom/unadj.dupcor.sva.voomaw/meanvar-trends-PAGE1-RASTER.png
  2495. lyxscale 15
  2496. width 100col%
  2497. groupId raster-600ppi
  2498. \end_inset
  2499. \end_layout
  2500. \begin_layout Plain Layout
  2501. \begin_inset Caption Standard
  2502. \begin_layout Plain Layout
  2503. \series bold
  2504. \begin_inset CommandInset label
  2505. LatexCommand label
  2506. name "fig:voom-sva-voomaw"
  2507. \end_inset
  2508. Mean-variance trend modelled by voom, with SVA and sample weights.
  2509. \series default
  2510. The y-axis is the square root of the standard deviation for each probe,
  2511. because this is the scale on which voom fits its lowess curve.
  2512. \end_layout
  2513. \end_inset
  2514. \end_layout
  2515. \end_inset
  2516. \begin_inset Float figure
  2517. wide false
  2518. sideways false
  2519. status open
  2520. \begin_layout Plain Layout
  2521. \begin_inset Graphics
  2522. filename graphics/methylvoom/unadj.dupcor.sva.voomaw/meanvar-trends-PAGE2-RASTER.png
  2523. lyxscale 15
  2524. width 100col%
  2525. groupId raster-600ppi
  2526. \end_inset
  2527. \end_layout
  2528. \begin_layout Plain Layout
  2529. \begin_inset Caption Standard
  2530. \begin_layout Plain Layout
  2531. \series bold
  2532. \begin_inset CommandInset label
  2533. LatexCommand label
  2534. name "fig:meanvar-sva-voomaw"
  2535. \end_inset
  2536. Residual mean-variance trend after modeling with SVA, sample weights, and
  2537. voom.
  2538. \end_layout
  2539. \end_inset
  2540. \end_layout
  2541. \end_inset
  2542. \end_layout
  2543. \begin_layout Itemize
  2544. U-shaped mean-var trend visible in data, even after accounting for unobserved
  2545. confounders (SVA) and array quality (sample weights)
  2546. \end_layout
  2547. \begin_layout Itemize
  2548. \begin_inset Quotes eld
  2549. \end_inset
  2550. vooma
  2551. \begin_inset Quotes erd
  2552. \end_inset
  2553. models this trend, and after voom, the mean-variance trend is flat and
  2554. the median varaiance is approximately 1 (0 on log scale)
  2555. \end_layout
  2556. \begin_layout Itemize
  2557. M-value distribution is bimodal - expected if most CpG methylation states
  2558. are homogeneous among cell populations, either all methylated or all unmethylat
  2559. ed.
  2560. \end_layout
  2561. \begin_layout Standard
  2562. \begin_inset Float table
  2563. wide false
  2564. sideways false
  2565. status open
  2566. \begin_layout Plain Layout
  2567. \align center
  2568. \begin_inset Tabular
  2569. <lyxtabular version="3" rows="5" columns="2">
  2570. <features tabularvalignment="middle">
  2571. <column alignment="center" valignment="top">
  2572. <column alignment="center" valignment="top">
  2573. <row>
  2574. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2575. \begin_inset Text
  2576. \begin_layout Plain Layout
  2577. Covariate
  2578. \end_layout
  2579. \end_inset
  2580. </cell>
  2581. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2582. \begin_inset Text
  2583. \begin_layout Plain Layout
  2584. p-value
  2585. \end_layout
  2586. \end_inset
  2587. </cell>
  2588. </row>
  2589. <row>
  2590. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2591. \begin_inset Text
  2592. \begin_layout Plain Layout
  2593. Transplant Status
  2594. \end_layout
  2595. \end_inset
  2596. </cell>
  2597. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2598. \begin_inset Text
  2599. \begin_layout Plain Layout
  2600. 0.404
  2601. \end_layout
  2602. \end_inset
  2603. </cell>
  2604. </row>
  2605. <row>
  2606. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2607. \begin_inset Text
  2608. \begin_layout Plain Layout
  2609. Diabetes Diagnosis
  2610. \end_layout
  2611. \end_inset
  2612. </cell>
  2613. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2614. \begin_inset Text
  2615. \begin_layout Plain Layout
  2616. 0.00106
  2617. \end_layout
  2618. \end_inset
  2619. </cell>
  2620. </row>
  2621. <row>
  2622. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2623. \begin_inset Text
  2624. \begin_layout Plain Layout
  2625. Sex
  2626. \end_layout
  2627. \end_inset
  2628. </cell>
  2629. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2630. \begin_inset Text
  2631. \begin_layout Plain Layout
  2632. 0.148
  2633. \end_layout
  2634. \end_inset
  2635. </cell>
  2636. </row>
  2637. <row>
  2638. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2639. \begin_inset Text
  2640. \begin_layout Plain Layout
  2641. Age
  2642. \end_layout
  2643. \end_inset
  2644. </cell>
  2645. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2646. \begin_inset Text
  2647. \begin_layout Plain Layout
  2648. 0.212
  2649. \end_layout
  2650. \end_inset
  2651. </cell>
  2652. </row>
  2653. </lyxtabular>
  2654. \end_inset
  2655. \end_layout
  2656. \begin_layout Plain Layout
  2657. \begin_inset Caption Standard
  2658. \begin_layout Plain Layout
  2659. \begin_inset CommandInset label
  2660. LatexCommand label
  2661. name "tab:weight-covariate-tests"
  2662. \end_inset
  2663. Association of sample weights with clinical covariates.
  2664. \end_layout
  2665. \end_inset
  2666. \end_layout
  2667. \begin_layout Plain Layout
  2668. \end_layout
  2669. \end_inset
  2670. \end_layout
  2671. \begin_layout Standard
  2672. \begin_inset Flex TODO Note (inline)
  2673. status open
  2674. \begin_layout Plain Layout
  2675. Redo the sample weight boxplot with notches and without fill colors
  2676. \end_layout
  2677. \end_inset
  2678. \end_layout
  2679. \begin_layout Standard
  2680. \begin_inset Float figure
  2681. wide false
  2682. sideways false
  2683. status open
  2684. \begin_layout Plain Layout
  2685. \begin_inset Graphics
  2686. filename graphics/methylvoom/unadj.dupcor.sva.voomaw/sample-weights-PAGE3.pdf
  2687. \end_inset
  2688. \end_layout
  2689. \begin_layout Plain Layout
  2690. \begin_inset Caption Standard
  2691. \begin_layout Plain Layout
  2692. \begin_inset CommandInset label
  2693. LatexCommand label
  2694. name "fig:diabetes-sample-weights"
  2695. \end_inset
  2696. \series bold
  2697. Boxplot of sample quality weights grouped by diabetes diagnosis.
  2698. \end_layout
  2699. \end_inset
  2700. \end_layout
  2701. \begin_layout Plain Layout
  2702. \end_layout
  2703. \end_inset
  2704. \end_layout
  2705. \begin_layout Itemize
  2706. Based on estimated sample weights, T2D samples are significantly more variable
  2707. than T1D samples (t-test p = 1.06e-3)
  2708. \end_layout
  2709. \begin_layout Itemize
  2710. Should not affect further analysis
  2711. \end_layout
  2712. \begin_layout Standard
  2713. \begin_inset Float table
  2714. wide false
  2715. sideways false
  2716. status open
  2717. \begin_layout Plain Layout
  2718. \align center
  2719. \begin_inset Tabular
  2720. <lyxtabular version="3" rows="5" columns="4">
  2721. <features tabularvalignment="middle">
  2722. <column alignment="center" valignment="top">
  2723. <column alignment="center" valignment="top">
  2724. <column alignment="center" valignment="top">
  2725. <column alignment="center" valignment="top">
  2726. <row>
  2727. <cell alignment="center" valignment="top" usebox="none">
  2728. \begin_inset Text
  2729. \begin_layout Plain Layout
  2730. \end_layout
  2731. \end_inset
  2732. </cell>
  2733. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2734. \begin_inset Text
  2735. \begin_layout Plain Layout
  2736. Analysis
  2737. \end_layout
  2738. \end_inset
  2739. </cell>
  2740. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2741. \begin_inset Text
  2742. \begin_layout Plain Layout
  2743. \end_layout
  2744. \end_inset
  2745. </cell>
  2746. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2747. \begin_inset Text
  2748. \begin_layout Plain Layout
  2749. \end_layout
  2750. \end_inset
  2751. </cell>
  2752. </row>
  2753. <row>
  2754. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2755. \begin_inset Text
  2756. \begin_layout Plain Layout
  2757. Contrast
  2758. \end_layout
  2759. \end_inset
  2760. </cell>
  2761. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2762. \begin_inset Text
  2763. \begin_layout Plain Layout
  2764. A
  2765. \end_layout
  2766. \end_inset
  2767. </cell>
  2768. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2769. \begin_inset Text
  2770. \begin_layout Plain Layout
  2771. B
  2772. \end_layout
  2773. \end_inset
  2774. </cell>
  2775. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2776. \begin_inset Text
  2777. \begin_layout Plain Layout
  2778. C
  2779. \end_layout
  2780. \end_inset
  2781. </cell>
  2782. </row>
  2783. <row>
  2784. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2785. \begin_inset Text
  2786. \begin_layout Plain Layout
  2787. TX vs AR
  2788. \end_layout
  2789. \end_inset
  2790. </cell>
  2791. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2792. \begin_inset Text
  2793. \begin_layout Plain Layout
  2794. 0
  2795. \end_layout
  2796. \end_inset
  2797. </cell>
  2798. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2799. \begin_inset Text
  2800. \begin_layout Plain Layout
  2801. 25
  2802. \end_layout
  2803. \end_inset
  2804. </cell>
  2805. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2806. \begin_inset Text
  2807. \begin_layout Plain Layout
  2808. 22
  2809. \end_layout
  2810. \end_inset
  2811. </cell>
  2812. </row>
  2813. <row>
  2814. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2815. \begin_inset Text
  2816. \begin_layout Plain Layout
  2817. TX vs ADNR
  2818. \end_layout
  2819. \end_inset
  2820. </cell>
  2821. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2822. \begin_inset Text
  2823. \begin_layout Plain Layout
  2824. 7
  2825. \end_layout
  2826. \end_inset
  2827. </cell>
  2828. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2829. \begin_inset Text
  2830. \begin_layout Plain Layout
  2831. 338
  2832. \end_layout
  2833. \end_inset
  2834. </cell>
  2835. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2836. \begin_inset Text
  2837. \begin_layout Plain Layout
  2838. 369
  2839. \end_layout
  2840. \end_inset
  2841. </cell>
  2842. </row>
  2843. <row>
  2844. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2845. \begin_inset Text
  2846. \begin_layout Plain Layout
  2847. TX vs CAN
  2848. \end_layout
  2849. \end_inset
  2850. </cell>
  2851. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2852. \begin_inset Text
  2853. \begin_layout Plain Layout
  2854. 0
  2855. \end_layout
  2856. \end_inset
  2857. </cell>
  2858. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2859. \begin_inset Text
  2860. \begin_layout Plain Layout
  2861. 231
  2862. \end_layout
  2863. \end_inset
  2864. </cell>
  2865. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2866. \begin_inset Text
  2867. \begin_layout Plain Layout
  2868. 278
  2869. \end_layout
  2870. \end_inset
  2871. </cell>
  2872. </row>
  2873. </lyxtabular>
  2874. \end_inset
  2875. \end_layout
  2876. \begin_layout Plain Layout
  2877. \begin_inset Caption Standard
  2878. \begin_layout Plain Layout
  2879. \begin_inset CommandInset label
  2880. LatexCommand label
  2881. name "tab:methyl-num-signif"
  2882. \end_inset
  2883. \series bold
  2884. Number of probes significant at 10% FDR for each contrast in each analysis.
  2885. \end_layout
  2886. \end_inset
  2887. \end_layout
  2888. \end_inset
  2889. \end_layout
  2890. \begin_layout Standard
  2891. \begin_inset Flex TODO Note (inline)
  2892. status open
  2893. \begin_layout Plain Layout
  2894. Cite the pi0 estimation method from propTrueNull
  2895. \end_layout
  2896. \end_inset
  2897. \end_layout
  2898. \begin_layout Standard
  2899. \begin_inset Float table
  2900. wide false
  2901. sideways false
  2902. status open
  2903. \begin_layout Plain Layout
  2904. \align center
  2905. \begin_inset Tabular
  2906. <lyxtabular version="3" rows="5" columns="4">
  2907. <features tabularvalignment="middle">
  2908. <column alignment="center" valignment="top">
  2909. <column alignment="center" valignment="top">
  2910. <column alignment="center" valignment="top">
  2911. <column alignment="center" valignment="top">
  2912. <row>
  2913. <cell alignment="center" valignment="top" usebox="none">
  2914. \begin_inset Text
  2915. \begin_layout Plain Layout
  2916. \end_layout
  2917. \end_inset
  2918. </cell>
  2919. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2920. \begin_inset Text
  2921. \begin_layout Plain Layout
  2922. Analysis
  2923. \end_layout
  2924. \end_inset
  2925. </cell>
  2926. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2927. \begin_inset Text
  2928. \begin_layout Plain Layout
  2929. \end_layout
  2930. \end_inset
  2931. </cell>
  2932. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2933. \begin_inset Text
  2934. \begin_layout Plain Layout
  2935. \end_layout
  2936. \end_inset
  2937. </cell>
  2938. </row>
  2939. <row>
  2940. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2941. \begin_inset Text
  2942. \begin_layout Plain Layout
  2943. Contrast
  2944. \end_layout
  2945. \end_inset
  2946. </cell>
  2947. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2948. \begin_inset Text
  2949. \begin_layout Plain Layout
  2950. A
  2951. \end_layout
  2952. \end_inset
  2953. </cell>
  2954. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2955. \begin_inset Text
  2956. \begin_layout Plain Layout
  2957. B
  2958. \end_layout
  2959. \end_inset
  2960. </cell>
  2961. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2962. \begin_inset Text
  2963. \begin_layout Plain Layout
  2964. C
  2965. \end_layout
  2966. \end_inset
  2967. </cell>
  2968. </row>
  2969. <row>
  2970. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2971. \begin_inset Text
  2972. \begin_layout Plain Layout
  2973. TX vs AR
  2974. \end_layout
  2975. \end_inset
  2976. </cell>
  2977. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2978. \begin_inset Text
  2979. \begin_layout Plain Layout
  2980. 0
  2981. \end_layout
  2982. \end_inset
  2983. </cell>
  2984. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2985. \begin_inset Text
  2986. \begin_layout Plain Layout
  2987. 10,063
  2988. \end_layout
  2989. \end_inset
  2990. </cell>
  2991. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2992. \begin_inset Text
  2993. \begin_layout Plain Layout
  2994. 11,225
  2995. \end_layout
  2996. \end_inset
  2997. </cell>
  2998. </row>
  2999. <row>
  3000. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3001. \begin_inset Text
  3002. \begin_layout Plain Layout
  3003. TX vs ADNR
  3004. \end_layout
  3005. \end_inset
  3006. </cell>
  3007. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3008. \begin_inset Text
  3009. \begin_layout Plain Layout
  3010. 27
  3011. \end_layout
  3012. \end_inset
  3013. </cell>
  3014. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3015. \begin_inset Text
  3016. \begin_layout Plain Layout
  3017. 12,674
  3018. \end_layout
  3019. \end_inset
  3020. </cell>
  3021. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3022. \begin_inset Text
  3023. \begin_layout Plain Layout
  3024. 13,086
  3025. \end_layout
  3026. \end_inset
  3027. </cell>
  3028. </row>
  3029. <row>
  3030. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3031. \begin_inset Text
  3032. \begin_layout Plain Layout
  3033. TX vs CAN
  3034. \end_layout
  3035. \end_inset
  3036. </cell>
  3037. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3038. \begin_inset Text
  3039. \begin_layout Plain Layout
  3040. 966
  3041. \end_layout
  3042. \end_inset
  3043. </cell>
  3044. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3045. \begin_inset Text
  3046. \begin_layout Plain Layout
  3047. 20,039
  3048. \end_layout
  3049. \end_inset
  3050. </cell>
  3051. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3052. \begin_inset Text
  3053. \begin_layout Plain Layout
  3054. 20,955
  3055. \end_layout
  3056. \end_inset
  3057. </cell>
  3058. </row>
  3059. </lyxtabular>
  3060. \end_inset
  3061. \end_layout
  3062. \begin_layout Plain Layout
  3063. \begin_inset Caption Standard
  3064. \begin_layout Plain Layout
  3065. \begin_inset CommandInset label
  3066. LatexCommand label
  3067. name "tab:methyl-est-nonnull"
  3068. \end_inset
  3069. \series bold
  3070. Estimated number of non-null tests for each contrast in each analysis.
  3071. \end_layout
  3072. \end_inset
  3073. \end_layout
  3074. \end_inset
  3075. \end_layout
  3076. \begin_layout Standard
  3077. \begin_inset Flex TODO Note (inline)
  3078. status open
  3079. \begin_layout Plain Layout
  3080. Re-generate p-value histograms for all relevant contrasts in a single figure.
  3081. \end_layout
  3082. \end_inset
  3083. \end_layout
  3084. \begin_layout Itemize
  3085. Better variance properties in analyses B and C give more significant probes
  3086. (10% FDR)
  3087. \begin_inset CommandInset ref
  3088. LatexCommand ref
  3089. reference "tab:methyl-num-signif"
  3090. plural "false"
  3091. caps "false"
  3092. noprefix "false"
  3093. \end_inset
  3094. , more probes estimated to be differentially methylated
  3095. \begin_inset CommandInset ref
  3096. LatexCommand ref
  3097. reference "tab:methyl-est-nonnull"
  3098. plural "false"
  3099. caps "false"
  3100. noprefix "false"
  3101. \end_inset
  3102. , and better looking p-value distributions [histogram figures].
  3103. \end_layout
  3104. \begin_layout Section
  3105. Discussion
  3106. \end_layout
  3107. \begin_layout Subsection
  3108. fRMA achieves clinically applicable normalization without sacrificing classifica
  3109. tion performance
  3110. \end_layout
  3111. \begin_layout Standard
  3112. As shown in Figure
  3113. \begin_inset CommandInset ref
  3114. LatexCommand ref
  3115. reference "fig:Classifier-probabilities-RMA"
  3116. plural "false"
  3117. caps "false"
  3118. noprefix "false"
  3119. \end_inset
  3120. , improper normalization, particularly separate normalization of training
  3121. and test samples, leads to unwanted biases in classification.
  3122. In a controlled experimental context, it is always possible to correct
  3123. this issue by normalizing all experimental samples together.
  3124. However, because it is not feasible to normalize all samples together in
  3125. a clinical context, a single-channel normalization is required is required.
  3126. \end_layout
  3127. \begin_layout Standard
  3128. The major concern in using a single-channel normalization is that non-single-cha
  3129. nnel methods can share information between arrays to improve the normalization,
  3130. and single-channel methods risk sacrificing the gains in normalization
  3131. accuracy that come from this information sharing.
  3132. In the case of RMA, this information sharing is accomplished through quantile
  3133. normalization and median polish steps.
  3134. The need for information sharing in quantile normalization can easily be
  3135. removed by learning a fixed set of quantiles from external data and normalizing
  3136. each array to these fixed quantiles, instead of the quantiles of the data
  3137. itself.
  3138. As long as the fixed quantiles are reasonable, the result will be similar
  3139. to standard RMA.
  3140. However, there is no analogous way to eliminate cross-array information
  3141. sharing in the median polish step, so fRMA replaces this with a weighted
  3142. average of probes on each array, with the weights learned from external
  3143. data.
  3144. This step of fRMA has the greatest potential to diverge from RMA un undesirable
  3145. ways.
  3146. \end_layout
  3147. \begin_layout Standard
  3148. However, when run on real data, fRMA performed at least as well as RMA in
  3149. both the internal validation and external validation tests.
  3150. This shows that fRMA can be used to normalize individual clinical samples
  3151. in a class prediction context without sacrificing the classifier performance
  3152. that would be obtained by using the more well-established RMA for normalization.
  3153. The other single-channel normalization method considered, SCAN, showed
  3154. some loss of AUC in the external validation test.
  3155. Based on these results, fRMA is the preferred normalization for clinical
  3156. samples in a class prediction context.
  3157. \end_layout
  3158. \begin_layout Subsection
  3159. Robust fRMA vectors can be generated for new array platforms
  3160. \end_layout
  3161. \begin_layout Standard
  3162. \begin_inset Flex TODO Note (inline)
  3163. status open
  3164. \begin_layout Plain Layout
  3165. Look up the exact numbers, do a find & replace for
  3166. \begin_inset Quotes eld
  3167. \end_inset
  3168. 850
  3169. \begin_inset Quotes erd
  3170. \end_inset
  3171. \end_layout
  3172. \end_inset
  3173. \end_layout
  3174. \begin_layout Standard
  3175. The published fRMA normalization vectors for the hgu133plus2 platform were
  3176. generated from a set of about 850 samples chosen from a wide range of tissues,
  3177. which the authors determined was sufficient to generate a robust set of
  3178. normalization vectors that could be applied across all tissues
  3179. \begin_inset CommandInset citation
  3180. LatexCommand cite
  3181. key "McCall2010"
  3182. literal "false"
  3183. \end_inset
  3184. .
  3185. Since we only had hthgu133pluspm for 2 tissues of interest, our needs were
  3186. more modest.
  3187. Even using only 130 samples in 26 batches of 5 samples each for kidney
  3188. biopsies, we were able to train a robust set of fRMA normalization vectors
  3189. that were not meaningfully affected by the random selection of 5 samples
  3190. from each batch.
  3191. As expected, the training process was just as robust for the blood samples
  3192. with 230 samples in 46 batches of 5 samples each.
  3193. Because these vectors were each generated using training samples from a
  3194. single tissue, they are not suitable for general use, unlike the vectors
  3195. provided with fRMA itself.
  3196. They are purpose-build for normalizing a specific type of sample on a specific
  3197. platform.
  3198. \end_layout
  3199. \begin_layout Subsection
  3200. voom
  3201. \end_layout
  3202. \begin_layout Itemize
  3203. Methods like voom designed for RNA-seq can also help with array analysis
  3204. \end_layout
  3205. \begin_layout Itemize
  3206. Extracting and modeling confounders common to many features improves model
  3207. correspondence to known biology
  3208. \end_layout
  3209. \begin_layout Chapter
  3210. Globin-blocking for more effective blood RNA-seq analysis in primate animal
  3211. model
  3212. \end_layout
  3213. \begin_layout Standard
  3214. \begin_inset Flex TODO Note (inline)
  3215. status open
  3216. \begin_layout Plain Layout
  3217. Choose between above and the paper title: Optimizing yield of deep RNA sequencin
  3218. g for gene expression profiling by globin reduction of peripheral blood
  3219. samples from cynomolgus monkeys (Macaca fascicularis).
  3220. \end_layout
  3221. \end_inset
  3222. \end_layout
  3223. \begin_layout Standard
  3224. \begin_inset Flex TODO Note (inline)
  3225. status open
  3226. \begin_layout Plain Layout
  3227. Chapter author list: https://tex.stackexchange.com/questions/156862/displaying-aut
  3228. hor-for-each-chapter-in-book Every chapter gets an author list, which may
  3229. or may not be part of a citation to a published/preprinted paper.
  3230. \end_layout
  3231. \end_inset
  3232. \end_layout
  3233. \begin_layout Standard
  3234. \begin_inset Flex TODO Note (inline)
  3235. status open
  3236. \begin_layout Plain Layout
  3237. Preprint then cite the paper
  3238. \end_layout
  3239. \end_inset
  3240. \end_layout
  3241. \begin_layout Section*
  3242. Abstract
  3243. \end_layout
  3244. \begin_layout Paragraph
  3245. Background
  3246. \end_layout
  3247. \begin_layout Standard
  3248. Primate blood contains high concentrations of globin messenger RNA.
  3249. Globin reduction is a standard technique used to improve the expression
  3250. results obtained by DNA microarrays on RNA from blood samples.
  3251. However, with whole transcriptome RNA-sequencing (RNA-seq) quickly replacing
  3252. microarrays for many applications, the impact of globin reduction for RNA-seq
  3253. has not been previously studied.
  3254. Moreover, no off-the-shelf kits are available for globin reduction in nonhuman
  3255. primates.
  3256. \end_layout
  3257. \begin_layout Paragraph
  3258. Results
  3259. \end_layout
  3260. \begin_layout Standard
  3261. Here we report a protocol for RNA-seq in primate blood samples that uses
  3262. complimentary oligonucleotides to block reverse transcription of the alpha
  3263. and beta globin genes.
  3264. In test samples from cynomolgus monkeys (Macaca fascicularis), this globin
  3265. blocking protocol approximately doubles the yield of informative (non-globin)
  3266. reads by greatly reducing the fraction of globin reads, while also improving
  3267. the consistency in sequencing depth between samples.
  3268. The increased yield enables detection of about 2000 more genes, significantly
  3269. increases the correlation in measured gene expression levels between samples,
  3270. and increases the sensitivity of differential gene expression tests.
  3271. \end_layout
  3272. \begin_layout Paragraph
  3273. Conclusions
  3274. \end_layout
  3275. \begin_layout Standard
  3276. These results show that globin blocking significantly improves the cost-effectiv
  3277. eness of mRNA sequencing in primate blood samples by doubling the yield
  3278. of useful reads, allowing detection of more genes, and improving the precision
  3279. of gene expression measurements.
  3280. Based on these results, a globin reducing or blocking protocol is recommended
  3281. for all RNA-seq studies of primate blood samples.
  3282. \end_layout
  3283. \begin_layout Section
  3284. Approach
  3285. \end_layout
  3286. \begin_layout Standard
  3287. \begin_inset Note Note
  3288. status open
  3289. \begin_layout Plain Layout
  3290. Consider putting some of this in the Intro chapter
  3291. \end_layout
  3292. \begin_layout Itemize
  3293. Cynomolgus monkeys as a model organism
  3294. \end_layout
  3295. \begin_deeper
  3296. \begin_layout Itemize
  3297. Highly related to humans
  3298. \end_layout
  3299. \begin_layout Itemize
  3300. Small size and short life cycle - good research animal
  3301. \end_layout
  3302. \begin_layout Itemize
  3303. Genomics resources still in development
  3304. \end_layout
  3305. \end_deeper
  3306. \begin_layout Itemize
  3307. Inadequacy of existing blood RNA-seq protocols
  3308. \end_layout
  3309. \begin_deeper
  3310. \begin_layout Itemize
  3311. Existing protocols use a separate globin pulldown step, slowing down processing
  3312. \end_layout
  3313. \end_deeper
  3314. \end_inset
  3315. \end_layout
  3316. \begin_layout Standard
  3317. Increasingly, researchers are turning to high-throughput mRNA sequencing
  3318. technologies (RNA-seq) in preference to expression microarrays for analysis
  3319. of gene expression
  3320. \begin_inset CommandInset citation
  3321. LatexCommand cite
  3322. key "Mutz2012"
  3323. literal "false"
  3324. \end_inset
  3325. .
  3326. The advantages are even greater for study of model organisms with no well-estab
  3327. lished array platforms available, such as the cynomolgus monkey (Macaca
  3328. fascicularis).
  3329. High fractions of globin mRNA are naturally present in mammalian peripheral
  3330. blood samples (up to 70% of total mRNA) and these are known to interfere
  3331. with the results of array-based expression profiling
  3332. \begin_inset CommandInset citation
  3333. LatexCommand cite
  3334. key "Winn2010"
  3335. literal "false"
  3336. \end_inset
  3337. .
  3338. The importance of globin reduction for RNA-seq of blood has only been evaluated
  3339. for a deepSAGE protocol on human samples
  3340. \begin_inset CommandInset citation
  3341. LatexCommand cite
  3342. key "Mastrokolias2012"
  3343. literal "false"
  3344. \end_inset
  3345. .
  3346. In the present report, we evaluated globin reduction using custom blocking
  3347. oligonucleotides for deep RNA-seq of peripheral blood samples from a nonhuman
  3348. primate, cynomolgus monkey, using the Illumina technology platform.
  3349. We demonstrate that globin reduction significantly improves the cost-effectiven
  3350. ess of RNA-seq in blood samples.
  3351. Thus, our protocol offers a significant advantage to any investigator planning
  3352. to use RNA-seq for gene expression profiling of nonhuman primate blood
  3353. samples.
  3354. Our method can be generally applied to any species by designing complementary
  3355. oligonucleotide blocking probes to the globin gene sequences of that species.
  3356. Indeed, any highly expressed but biologically uninformative transcripts
  3357. can also be blocked to further increase sequencing efficiency and value
  3358. \begin_inset CommandInset citation
  3359. LatexCommand cite
  3360. key "Arnaud2016"
  3361. literal "false"
  3362. \end_inset
  3363. .
  3364. \end_layout
  3365. \begin_layout Section
  3366. Methods
  3367. \end_layout
  3368. \begin_layout Subsection*
  3369. Sample collection
  3370. \end_layout
  3371. \begin_layout Standard
  3372. All research reported here was done under IACUC-approved protocols at the
  3373. University of Miami and complied with all applicable federal and state
  3374. regulations and ethical principles for nonhuman primate research.
  3375. Blood draws occurred between 16 April 2012 and 18 June 2015.
  3376. The experimental system involved intrahepatic pancreatic islet transplantation
  3377. into Cynomolgus monkeys with induced diabetes mellitus with or without
  3378. concomitant infusion of mesenchymal stem cells.
  3379. Blood was collected at serial time points before and after transplantation
  3380. into PAXgene Blood RNA tubes (PreAnalytiX/Qiagen, Valencia, CA) at the
  3381. precise volume:volume ratio of 2.5 ml whole blood into 6.9 ml of PAX gene
  3382. additive.
  3383. \end_layout
  3384. \begin_layout Subsection*
  3385. Globin Blocking
  3386. \end_layout
  3387. \begin_layout Standard
  3388. Four oligonucleotides were designed to hybridize to the 3’ end of the transcript
  3389. s for Cynomolgus HBA1, HBA2 and HBB, with two hybridization sites for HBB
  3390. and 2 sites for HBA (the chosen sites were identical in both HBA genes).
  3391. All oligos were purchased from Sigma and were entirely composed of 2’O-Me
  3392. bases with a C3 spacer positioned at the 3’ ends to prevent any polymerase
  3393. mediated primer extension.
  3394. \end_layout
  3395. \begin_layout Quote
  3396. HBA1/2 site 1: GCCCACUCAGACUUUAUUCAAAG-C3spacer
  3397. \end_layout
  3398. \begin_layout Quote
  3399. HBA1/2 site 2: GGUGCAAGGAGGGGAGGAG-C3spacer
  3400. \end_layout
  3401. \begin_layout Quote
  3402. HBB site 1: AAUGAAAAUAAAUGUUUUUUAUUAG-C3spacer
  3403. \end_layout
  3404. \begin_layout Quote
  3405. HBB site 2: CUCAAGGCCCUUCAUAAUAUCCC-C3spacer
  3406. \end_layout
  3407. \begin_layout Subsection*
  3408. RNA-seq Library Preparation
  3409. \end_layout
  3410. \begin_layout Standard
  3411. Sequencing libraries were prepared with 200ng total RNA from each sample.
  3412. Polyadenylated mRNA was selected from 200 ng aliquots of cynomologus blood-deri
  3413. ved total RNA using Ambion Dynabeads Oligo(dT)25 beads (Invitrogen) following
  3414. manufacturer’s recommended protocol.
  3415. PolyA selected RNA was then combined with 8 pmol of HBA1/2 (site 1), 8
  3416. pmol of HBA1/2 (site 2), 12 pmol of HBB (site 1) and 12 pmol of HBB (site
  3417. 2) oligonucleotides.
  3418. In addition, 20 pmol of RT primer containing a portion of the Illumina
  3419. adapter sequence (B-oligo-dTV: GAGTTCCTTGGCACCCGAGAATTCCATTTTTTTTTTTTTTTTTTTV)
  3420. and 4 µL of 5X First Strand buffer (250 mM Tris-HCl pH 8.3, 375 mM KCl,
  3421. 15mM MgCl2) were added in a total volume of 15 µL.
  3422. The RNA was fragmented by heating this cocktail for 3 minutes at 95°C and
  3423. then placed on ice.
  3424. This was followed by the addition of 2 µL 0.1 M DTT, 1 µL RNaseOUT, 1 µL
  3425. 10mM dNTPs 10% biotin-16 aminoallyl-2’- dUTP and 10% biotin-16 aminoallyl-2’-
  3426. dCTP (TriLink Biotech, San Diego, CA), 1 µL Superscript II (200U/ µL, Thermo-Fi
  3427. sher).
  3428. A second “unblocked” library was prepared in the same way for each sample
  3429. but replacing the blocking oligos with an equivalent volume of water.
  3430. The reaction was carried out at 25°C for 15 minutes and 42°C for 40 minutes,
  3431. followed by incubation at 75°C for 10 minutes to inactivate the reverse
  3432. transcriptase.
  3433. \end_layout
  3434. \begin_layout Standard
  3435. The cDNA/RNA hybrid molecules were purified using 1.8X Ampure XP beads (Agencourt
  3436. ) following supplier’s recommended protocol.
  3437. The cDNA/RNA hybrid was eluted in 25 µL of 10 mM Tris-HCl pH 8.0, and then
  3438. bound to 25 µL of M280 Magnetic Streptavidin beads washed per recommended
  3439. protocol (Thermo-Fisher).
  3440. After 30 minutes of binding, beads were washed one time in 100 µL 0.1N NaOH
  3441. to denature and remove the bound RNA, followed by two 100 µL washes with
  3442. 1X TE buffer.
  3443. \end_layout
  3444. \begin_layout Standard
  3445. Subsequent attachment of the 5-prime Illumina A adapter was performed by
  3446. on-bead random primer extension of the following sequence (A-N8 primer:
  3447. TTCAGAGTTCTACAGTCCGACGATCNNNNNNNN).
  3448. Briefly, beads were resuspended in a 20 µL reaction containing 5 µM A-N8
  3449. primer, 40mM Tris-HCl pH 7.5, 20mM MgCl2, 50mM NaCl, 0.325U/µL Sequenase
  3450. 2.0 (Affymetrix, Santa Clara, CA), 0.0025U/µL inorganic pyrophosphatase (Affymetr
  3451. ix) and 300 µM each dNTP.
  3452. Reaction was incubated at 22°C for 30 minutes, then beads were washed 2
  3453. times with 1X TE buffer (200µL).
  3454. \end_layout
  3455. \begin_layout Standard
  3456. The magnetic streptavidin beads were resuspended in 34 µL nuclease-free
  3457. water and added directly to a PCR tube.
  3458. The two Illumina protocol-specified PCR primers were added at 0.53 µM (Illumina
  3459. TruSeq Universal Primer 1 and Illumina TruSeq barcoded PCR primer 2), along
  3460. with 40 µL 2X KAPA HiFi Hotstart ReadyMix (KAPA, Willmington MA) and thermocycl
  3461. ed as follows: starting with 98°C (2 min-hold); 15 cycles of 98°C, 20sec;
  3462. 60°C, 30sec; 72°C, 30sec; and finished with a 72°C (2 min-hold).
  3463. \end_layout
  3464. \begin_layout Standard
  3465. PCR products were purified with 1X Ampure Beads following manufacturer’s
  3466. recommended protocol.
  3467. Libraries were then analyzed using the Agilent TapeStation and quantitation
  3468. of desired size range was performed by “smear analysis”.
  3469. Samples were pooled in equimolar batches of 16 samples.
  3470. Pooled libraries were size selected on 2% agarose gels (E-Gel EX Agarose
  3471. Gels; Thermo-Fisher).
  3472. Products were cut between 250 and 350 bp (corresponding to insert sizes
  3473. of 130 to 230 bps).
  3474. Finished library pools were then sequenced on the Illumina NextSeq500 instrumen
  3475. t with 75 base read lengths.
  3476. \end_layout
  3477. \begin_layout Subsection*
  3478. Read alignment and counting
  3479. \end_layout
  3480. \begin_layout Standard
  3481. Reads were aligned to the cynomolgus genome using STAR
  3482. \begin_inset CommandInset citation
  3483. LatexCommand cite
  3484. key "Dobin2013,Wilson2013"
  3485. literal "false"
  3486. \end_inset
  3487. .
  3488. Counts of uniquely mapped reads were obtained for every gene in each sample
  3489. with the “featureCounts” function from the Rsubread package, using each
  3490. of the three possibilities for the “strandSpecific” option: sense, antisense,
  3491. and unstranded
  3492. \begin_inset CommandInset citation
  3493. LatexCommand cite
  3494. key "Liao2014"
  3495. literal "false"
  3496. \end_inset
  3497. .
  3498. A few artifacts in the cynomolgus genome annotation complicated read counting.
  3499. First, no ortholog is annotated for alpha globin in the cynomolgus genome,
  3500. presumably because the human genome has two alpha globin genes with nearly
  3501. identical sequences, making the orthology relationship ambiguous.
  3502. However, two loci in the cynomolgus genome are as “hemoglobin subunit alpha-lik
  3503. e” (LOC102136192 and LOC102136846).
  3504. LOC102136192 is annotated as a pseudogene while LOC102136846 is annotated
  3505. as protein-coding.
  3506. Our globin reduction protocol was designed to include blocking of these
  3507. two genes.
  3508. Indeed, these two genes have almost the same read counts in each library
  3509. as the properly-annotated HBB gene and much larger counts than any other
  3510. gene in the unblocked libraries, giving confidence that reads derived from
  3511. the real alpha globin are mapping to both genes.
  3512. Thus, reads from both of these loci were counted as alpha globin reads
  3513. in all further analyses.
  3514. The second artifact is a small, uncharacterized non-coding RNA gene (LOC1021365
  3515. 91), which overlaps the HBA-like gene (LOC102136192) on the opposite strand.
  3516. If counting is not performed in stranded mode (or if a non-strand-specific
  3517. sequencing protocol is used), many reads mapping to the globin gene will
  3518. be discarded as ambiguous due to their overlap with this ncRNA gene, resulting
  3519. in significant undercounting of globin reads.
  3520. Therefore, stranded sense counts were used for all further analysis in
  3521. the present study to insure that we accurately accounted for globin transcript
  3522. reduction.
  3523. However, we note that stranded reads are not necessary for RNA-seq using
  3524. our protocol in standard practice.
  3525. \end_layout
  3526. \begin_layout Subsection*
  3527. Normalization and Exploratory Data Analysis
  3528. \end_layout
  3529. \begin_layout Standard
  3530. Libraries were normalized by computing scaling factors using the edgeR package’s
  3531. Trimmed Mean of M-values method
  3532. \begin_inset CommandInset citation
  3533. LatexCommand cite
  3534. key "Robinson2010"
  3535. literal "false"
  3536. \end_inset
  3537. .
  3538. Log2 counts per million values (logCPM) were calculated using the cpm function
  3539. in edgeR for individual samples and aveLogCPM function for averages across
  3540. groups of samples, using those functions’ default prior count values to
  3541. avoid taking the logarithm of 0.
  3542. Genes were considered “present” if their average normalized logCPM values
  3543. across all libraries were at least -1.
  3544. Normalizing for gene length was unnecessary because the sequencing protocol
  3545. is 3’-biased and hence the expected read count for each gene is related
  3546. to the transcript’s copy number but not its length.
  3547. \end_layout
  3548. \begin_layout Standard
  3549. In order to assess the effect of blocking on reproducibility, Pearson and
  3550. Spearman correlation coefficients were computed between the logCPM values
  3551. for every pair of libraries within the globin-blocked (GB) and unblocked
  3552. (non-GB) groups, and edgeR's “estimateDisp” function was used to compute
  3553. negative binomial dispersions separately for the two groups
  3554. \begin_inset CommandInset citation
  3555. LatexCommand cite
  3556. key "Chen2014"
  3557. literal "false"
  3558. \end_inset
  3559. .
  3560. \end_layout
  3561. \begin_layout Subsection*
  3562. Differential Expression Analysis
  3563. \end_layout
  3564. \begin_layout Standard
  3565. All tests for differential gene expression were performed using edgeR, by
  3566. first fitting a negative binomial generalized linear model to the counts
  3567. and normalization factors and then performing a quasi-likelihood F-test
  3568. with robust estimation of outlier gene dispersions
  3569. \begin_inset CommandInset citation
  3570. LatexCommand cite
  3571. key "Lund2012,Phipson2016"
  3572. literal "false"
  3573. \end_inset
  3574. .
  3575. To investigate the effects of globin blocking on each gene, an additive
  3576. model was fit to the full data with coefficients for globin blocking and
  3577. SampleID.
  3578. To test the effect of globin blocking on detection of differentially expressed
  3579. genes, the GB samples and non-GB samples were each analyzed independently
  3580. as follows: for each animal with both a pre-transplant and a post-transplant
  3581. time point in the data set, the pre-transplant sample and the earliest
  3582. post-transplant sample were selected, and all others were excluded, yielding
  3583. a pre-/post-transplant pair of samples for each animal (N=7 animals with
  3584. paired samples).
  3585. These samples were analyzed for pre-transplant vs.
  3586. post-transplant differential gene expression while controlling for inter-animal
  3587. variation using an additive model with coefficients for transplant and
  3588. animal ID.
  3589. In all analyses, p-values were adjusted using the Benjamini-Hochberg procedure
  3590. for FDR correction
  3591. \begin_inset CommandInset citation
  3592. LatexCommand cite
  3593. key "Benjamini1995"
  3594. literal "false"
  3595. \end_inset
  3596. .
  3597. \end_layout
  3598. \begin_layout Standard
  3599. \begin_inset Note Note
  3600. status open
  3601. \begin_layout Itemize
  3602. New blood RNA-seq protocol to block reverse transcription of globin genes
  3603. \end_layout
  3604. \begin_layout Itemize
  3605. Blood RNA-seq time course after transplants with/without MSC infusion
  3606. \end_layout
  3607. \end_inset
  3608. \end_layout
  3609. \begin_layout Section
  3610. Results
  3611. \end_layout
  3612. \begin_layout Subsection*
  3613. Globin blocking yields a larger and more consistent fraction of useful reads
  3614. \end_layout
  3615. \begin_layout Standard
  3616. The objective of the present study was to validate a new protocol for deep
  3617. RNA-seq of whole blood drawn into PaxGene tubes from cynomolgus monkeys
  3618. undergoing islet transplantation, with particular focus on minimizing the
  3619. loss of useful sequencing space to uninformative globin reads.
  3620. The details of the analysis with respect to transplant outcomes and the
  3621. impact of mesenchymal stem cell treatment will be reported in a separate
  3622. manuscript (in preparation).
  3623. To focus on the efficacy of our globin blocking protocol, 37 blood samples,
  3624. 16 from pre-transplant and 21 from post-transplant time points, were each
  3625. prepped once with and once without globin blocking oligos, and were then
  3626. sequenced on an Illumina NextSeq500 instrument.
  3627. The number of reads aligning to each gene in the cynomolgus genome was
  3628. counted.
  3629. Table 1 summarizes the distribution of read fractions among the GB and
  3630. non-GB libraries.
  3631. In the libraries with no globin blocking, globin reads made up an average
  3632. of 44.6% of total input reads, while reads assigned to all other genes made
  3633. up an average of 26.3%.
  3634. The remaining reads either aligned to intergenic regions (that include
  3635. long non-coding RNAs) or did not align with any annotated transcripts in
  3636. the current build of the cynomolgus genome.
  3637. In the GB libraries, globin reads made up only 3.48% and reads assigned
  3638. to all other genes increased to 50.4%.
  3639. Thus, globin blocking resulted in a 92.2% reduction in globin reads and
  3640. a 91.6% increase in yield of useful non-globin reads.
  3641. \end_layout
  3642. \begin_layout Standard
  3643. This reduction is not quite as efficient as the previous analysis showed
  3644. for human samples by DeepSAGE (<0.4% globin reads after globin reduction)
  3645. \begin_inset CommandInset citation
  3646. LatexCommand cite
  3647. key "Mastrokolias2012"
  3648. literal "false"
  3649. \end_inset
  3650. .
  3651. Nonetheless, this degree of globin reduction is sufficient to nearly double
  3652. the yield of useful reads.
  3653. Thus, globin blocking cuts the required sequencing effort (and costs) to
  3654. achieve a target coverage depth by almost 50%.
  3655. Consistent with this near doubling of yield, the average difference in
  3656. un-normalized logCPM across all genes between the GB libraries and non-GB
  3657. libraries is approximately 1 (mean = 1.01, median = 1.08), an overall 2-fold
  3658. increase.
  3659. Un-normalized values are used here because the TMM normalization correctly
  3660. identifies this 2-fold difference as biologically irrelevant and removes
  3661. it.
  3662. \end_layout
  3663. \begin_layout Standard
  3664. \begin_inset Float figure
  3665. wide false
  3666. sideways false
  3667. status open
  3668. \begin_layout Plain Layout
  3669. \align center
  3670. \begin_inset Graphics
  3671. filename graphics/Globin Paper/figure1 - globin-fractions.pdf
  3672. \end_inset
  3673. \end_layout
  3674. \begin_layout Plain Layout
  3675. \begin_inset Caption Standard
  3676. \begin_layout Plain Layout
  3677. \series bold
  3678. \begin_inset Argument 1
  3679. status collapsed
  3680. \begin_layout Plain Layout
  3681. Fraction of genic reads in each sample aligned to non-globin genes, with
  3682. and without globin blocking (GB).
  3683. \end_layout
  3684. \end_inset
  3685. \begin_inset CommandInset label
  3686. LatexCommand label
  3687. name "fig:Fraction-of-genic-reads"
  3688. \end_inset
  3689. Fraction of genic reads in each sample aligned to non-globin genes, with
  3690. and without globin blocking (GB).
  3691. \series default
  3692. All reads in each sequencing library were aligned to the cyno genome, and
  3693. the number of reads uniquely aligning to each gene was counted.
  3694. For each sample, counts were summed separately for all globin genes and
  3695. for the remainder of the genes (non-globin genes), and the fraction of
  3696. genic reads aligned to non-globin genes was computed.
  3697. Each point represents an individual sample.
  3698. Gray + signs indicate the means for globin-blocked libraries and unblocked
  3699. libraries.
  3700. The overall distribution for each group is represented as a notched box
  3701. plots.
  3702. Points are randomly spread vertically to avoid excessive overlapping.
  3703. \end_layout
  3704. \end_inset
  3705. \end_layout
  3706. \begin_layout Plain Layout
  3707. \end_layout
  3708. \end_inset
  3709. \end_layout
  3710. \begin_layout Standard
  3711. \begin_inset Float table
  3712. placement p
  3713. wide false
  3714. sideways true
  3715. status open
  3716. \begin_layout Plain Layout
  3717. \align center
  3718. \begin_inset Tabular
  3719. <lyxtabular version="3" rows="4" columns="7">
  3720. <features tabularvalignment="middle">
  3721. <column alignment="center" valignment="top">
  3722. <column alignment="center" valignment="top">
  3723. <column alignment="center" valignment="top">
  3724. <column alignment="center" valignment="top">
  3725. <column alignment="center" valignment="top">
  3726. <column alignment="center" valignment="top">
  3727. <column alignment="center" valignment="top">
  3728. <row>
  3729. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3730. \begin_inset Text
  3731. \begin_layout Plain Layout
  3732. \end_layout
  3733. \end_inset
  3734. </cell>
  3735. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3736. \begin_inset Text
  3737. \begin_layout Plain Layout
  3738. \family roman
  3739. \series medium
  3740. \shape up
  3741. \size normal
  3742. \emph off
  3743. \bar no
  3744. \strikeout off
  3745. \xout off
  3746. \uuline off
  3747. \uwave off
  3748. \noun off
  3749. \color none
  3750. Percent of Total Reads
  3751. \end_layout
  3752. \end_inset
  3753. </cell>
  3754. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3755. \begin_inset Text
  3756. \begin_layout Plain Layout
  3757. \end_layout
  3758. \end_inset
  3759. </cell>
  3760. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3761. \begin_inset Text
  3762. \begin_layout Plain Layout
  3763. \end_layout
  3764. \end_inset
  3765. </cell>
  3766. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3767. \begin_inset Text
  3768. \begin_layout Plain Layout
  3769. \end_layout
  3770. \end_inset
  3771. </cell>
  3772. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3773. \begin_inset Text
  3774. \begin_layout Plain Layout
  3775. \family roman
  3776. \series medium
  3777. \shape up
  3778. \size normal
  3779. \emph off
  3780. \bar no
  3781. \strikeout off
  3782. \xout off
  3783. \uuline off
  3784. \uwave off
  3785. \noun off
  3786. \color none
  3787. Percent of Genic Reads
  3788. \end_layout
  3789. \end_inset
  3790. </cell>
  3791. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3792. \begin_inset Text
  3793. \begin_layout Plain Layout
  3794. \end_layout
  3795. \end_inset
  3796. </cell>
  3797. </row>
  3798. <row>
  3799. <cell alignment="center" valignment="top" bottomline="true" leftline="true" usebox="none">
  3800. \begin_inset Text
  3801. \begin_layout Plain Layout
  3802. GB
  3803. \end_layout
  3804. \end_inset
  3805. </cell>
  3806. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3807. \begin_inset Text
  3808. \begin_layout Plain Layout
  3809. \family roman
  3810. \series medium
  3811. \shape up
  3812. \size normal
  3813. \emph off
  3814. \bar no
  3815. \strikeout off
  3816. \xout off
  3817. \uuline off
  3818. \uwave off
  3819. \noun off
  3820. \color none
  3821. Non-globin Reads
  3822. \end_layout
  3823. \end_inset
  3824. </cell>
  3825. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3826. \begin_inset Text
  3827. \begin_layout Plain Layout
  3828. \family roman
  3829. \series medium
  3830. \shape up
  3831. \size normal
  3832. \emph off
  3833. \bar no
  3834. \strikeout off
  3835. \xout off
  3836. \uuline off
  3837. \uwave off
  3838. \noun off
  3839. \color none
  3840. Globin Reads
  3841. \end_layout
  3842. \end_inset
  3843. </cell>
  3844. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3845. \begin_inset Text
  3846. \begin_layout Plain Layout
  3847. \family roman
  3848. \series medium
  3849. \shape up
  3850. \size normal
  3851. \emph off
  3852. \bar no
  3853. \strikeout off
  3854. \xout off
  3855. \uuline off
  3856. \uwave off
  3857. \noun off
  3858. \color none
  3859. All Genic Reads
  3860. \end_layout
  3861. \end_inset
  3862. </cell>
  3863. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3864. \begin_inset Text
  3865. \begin_layout Plain Layout
  3866. \family roman
  3867. \series medium
  3868. \shape up
  3869. \size normal
  3870. \emph off
  3871. \bar no
  3872. \strikeout off
  3873. \xout off
  3874. \uuline off
  3875. \uwave off
  3876. \noun off
  3877. \color none
  3878. All Aligned Reads
  3879. \end_layout
  3880. \end_inset
  3881. </cell>
  3882. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3883. \begin_inset Text
  3884. \begin_layout Plain Layout
  3885. \family roman
  3886. \series medium
  3887. \shape up
  3888. \size normal
  3889. \emph off
  3890. \bar no
  3891. \strikeout off
  3892. \xout off
  3893. \uuline off
  3894. \uwave off
  3895. \noun off
  3896. \color none
  3897. Non-globin Reads
  3898. \end_layout
  3899. \end_inset
  3900. </cell>
  3901. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3902. \begin_inset Text
  3903. \begin_layout Plain Layout
  3904. \family roman
  3905. \series medium
  3906. \shape up
  3907. \size normal
  3908. \emph off
  3909. \bar no
  3910. \strikeout off
  3911. \xout off
  3912. \uuline off
  3913. \uwave off
  3914. \noun off
  3915. \color none
  3916. Globin Reads
  3917. \end_layout
  3918. \end_inset
  3919. </cell>
  3920. </row>
  3921. <row>
  3922. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3923. \begin_inset Text
  3924. \begin_layout Plain Layout
  3925. \family roman
  3926. \series medium
  3927. \shape up
  3928. \size normal
  3929. \emph off
  3930. \bar no
  3931. \strikeout off
  3932. \xout off
  3933. \uuline off
  3934. \uwave off
  3935. \noun off
  3936. \color none
  3937. Yes
  3938. \end_layout
  3939. \end_inset
  3940. </cell>
  3941. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3942. \begin_inset Text
  3943. \begin_layout Plain Layout
  3944. \family roman
  3945. \series medium
  3946. \shape up
  3947. \size normal
  3948. \emph off
  3949. \bar no
  3950. \strikeout off
  3951. \xout off
  3952. \uuline off
  3953. \uwave off
  3954. \noun off
  3955. \color none
  3956. 50.4% ± 6.82
  3957. \end_layout
  3958. \end_inset
  3959. </cell>
  3960. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3961. \begin_inset Text
  3962. \begin_layout Plain Layout
  3963. \family roman
  3964. \series medium
  3965. \shape up
  3966. \size normal
  3967. \emph off
  3968. \bar no
  3969. \strikeout off
  3970. \xout off
  3971. \uuline off
  3972. \uwave off
  3973. \noun off
  3974. \color none
  3975. 3.48% ± 2.94
  3976. \end_layout
  3977. \end_inset
  3978. </cell>
  3979. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3980. \begin_inset Text
  3981. \begin_layout Plain Layout
  3982. \family roman
  3983. \series medium
  3984. \shape up
  3985. \size normal
  3986. \emph off
  3987. \bar no
  3988. \strikeout off
  3989. \xout off
  3990. \uuline off
  3991. \uwave off
  3992. \noun off
  3993. \color none
  3994. 53.9% ± 6.81
  3995. \end_layout
  3996. \end_inset
  3997. </cell>
  3998. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3999. \begin_inset Text
  4000. \begin_layout Plain Layout
  4001. \family roman
  4002. \series medium
  4003. \shape up
  4004. \size normal
  4005. \emph off
  4006. \bar no
  4007. \strikeout off
  4008. \xout off
  4009. \uuline off
  4010. \uwave off
  4011. \noun off
  4012. \color none
  4013. 89.7% ± 2.40
  4014. \end_layout
  4015. \end_inset
  4016. </cell>
  4017. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4018. \begin_inset Text
  4019. \begin_layout Plain Layout
  4020. \family roman
  4021. \series medium
  4022. \shape up
  4023. \size normal
  4024. \emph off
  4025. \bar no
  4026. \strikeout off
  4027. \xout off
  4028. \uuline off
  4029. \uwave off
  4030. \noun off
  4031. \color none
  4032. 93.5% ± 5.25
  4033. \end_layout
  4034. \end_inset
  4035. </cell>
  4036. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  4037. \begin_inset Text
  4038. \begin_layout Plain Layout
  4039. \family roman
  4040. \series medium
  4041. \shape up
  4042. \size normal
  4043. \emph off
  4044. \bar no
  4045. \strikeout off
  4046. \xout off
  4047. \uuline off
  4048. \uwave off
  4049. \noun off
  4050. \color none
  4051. 6.49% ± 5.25
  4052. \end_layout
  4053. \end_inset
  4054. </cell>
  4055. </row>
  4056. <row>
  4057. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  4058. \begin_inset Text
  4059. \begin_layout Plain Layout
  4060. \family roman
  4061. \series medium
  4062. \shape up
  4063. \size normal
  4064. \emph off
  4065. \bar no
  4066. \strikeout off
  4067. \xout off
  4068. \uuline off
  4069. \uwave off
  4070. \noun off
  4071. \color none
  4072. No
  4073. \end_layout
  4074. \end_inset
  4075. </cell>
  4076. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  4077. \begin_inset Text
  4078. \begin_layout Plain Layout
  4079. \family roman
  4080. \series medium
  4081. \shape up
  4082. \size normal
  4083. \emph off
  4084. \bar no
  4085. \strikeout off
  4086. \xout off
  4087. \uuline off
  4088. \uwave off
  4089. \noun off
  4090. \color none
  4091. 26.3% ± 8.95
  4092. \end_layout
  4093. \end_inset
  4094. </cell>
  4095. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  4096. \begin_inset Text
  4097. \begin_layout Plain Layout
  4098. \family roman
  4099. \series medium
  4100. \shape up
  4101. \size normal
  4102. \emph off
  4103. \bar no
  4104. \strikeout off
  4105. \xout off
  4106. \uuline off
  4107. \uwave off
  4108. \noun off
  4109. \color none
  4110. 44.6% ± 16.6
  4111. \end_layout
  4112. \end_inset
  4113. </cell>
  4114. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  4115. \begin_inset Text
  4116. \begin_layout Plain Layout
  4117. \family roman
  4118. \series medium
  4119. \shape up
  4120. \size normal
  4121. \emph off
  4122. \bar no
  4123. \strikeout off
  4124. \xout off
  4125. \uuline off
  4126. \uwave off
  4127. \noun off
  4128. \color none
  4129. 70.1% ± 9.38
  4130. \end_layout
  4131. \end_inset
  4132. </cell>
  4133. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  4134. \begin_inset Text
  4135. \begin_layout Plain Layout
  4136. \family roman
  4137. \series medium
  4138. \shape up
  4139. \size normal
  4140. \emph off
  4141. \bar no
  4142. \strikeout off
  4143. \xout off
  4144. \uuline off
  4145. \uwave off
  4146. \noun off
  4147. \color none
  4148. 90.7% ± 5.16
  4149. \end_layout
  4150. \end_inset
  4151. </cell>
  4152. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  4153. \begin_inset Text
  4154. \begin_layout Plain Layout
  4155. \family roman
  4156. \series medium
  4157. \shape up
  4158. \size normal
  4159. \emph off
  4160. \bar no
  4161. \strikeout off
  4162. \xout off
  4163. \uuline off
  4164. \uwave off
  4165. \noun off
  4166. \color none
  4167. 38.8% ± 17.1
  4168. \end_layout
  4169. \end_inset
  4170. </cell>
  4171. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  4172. \begin_inset Text
  4173. \begin_layout Plain Layout
  4174. \family roman
  4175. \series medium
  4176. \shape up
  4177. \size normal
  4178. \emph off
  4179. \bar no
  4180. \strikeout off
  4181. \xout off
  4182. \uuline off
  4183. \uwave off
  4184. \noun off
  4185. \color none
  4186. 61.2% ± 17.1
  4187. \end_layout
  4188. \end_inset
  4189. </cell>
  4190. </row>
  4191. </lyxtabular>
  4192. \end_inset
  4193. \end_layout
  4194. \begin_layout Plain Layout
  4195. \begin_inset Caption Standard
  4196. \begin_layout Plain Layout
  4197. \series bold
  4198. \begin_inset Argument 1
  4199. status collapsed
  4200. \begin_layout Plain Layout
  4201. Fractions of reads mapping to genomic features in GB and non-GB samples.
  4202. \end_layout
  4203. \end_inset
  4204. \begin_inset CommandInset label
  4205. LatexCommand label
  4206. name "tab:Fractions-of-reads"
  4207. \end_inset
  4208. Fractions of reads mapping to genomic features in GB and non-GB samples.
  4209. \series default
  4210. All values are given as mean ± standard deviation.
  4211. \end_layout
  4212. \end_inset
  4213. \end_layout
  4214. \begin_layout Plain Layout
  4215. \end_layout
  4216. \end_inset
  4217. \end_layout
  4218. \begin_layout Standard
  4219. Another important aspect is that the standard deviations in Table
  4220. \begin_inset CommandInset ref
  4221. LatexCommand ref
  4222. reference "tab:Fractions-of-reads"
  4223. plural "false"
  4224. caps "false"
  4225. noprefix "false"
  4226. \end_inset
  4227. are uniformly smaller in the GB samples than the non-GB ones, indicating
  4228. much greater consistency of yield.
  4229. This is best seen in the percentage of non-globin reads as a fraction of
  4230. total reads aligned to annotated genes (genic reads).
  4231. For the non-GB samples, this measure ranges from 10.9% to 80.9%, while for
  4232. the GB samples it ranges from 81.9% to 99.9% (Figure
  4233. \begin_inset CommandInset ref
  4234. LatexCommand ref
  4235. reference "fig:Fraction-of-genic-reads"
  4236. plural "false"
  4237. caps "false"
  4238. noprefix "false"
  4239. \end_inset
  4240. ).
  4241. This means that for applications where it is critical that each sample
  4242. achieve a specified minimum coverage in order to provide useful information,
  4243. it would be necessary to budget up to 10 times the sequencing depth per
  4244. sample without globin blocking, even though the average yield improvement
  4245. for globin blocking is only 2-fold, because every sample has a chance of
  4246. being 90% globin and 10% useful reads.
  4247. Hence, the more consistent behavior of GB samples makes planning an experiment
  4248. easier and more efficient because it eliminates the need to over-sequence
  4249. every sample in order to guard against the worst case of a high-globin
  4250. fraction.
  4251. \end_layout
  4252. \begin_layout Subsection*
  4253. Globin blocking lowers the noise floor and allows detection of about 2000
  4254. more genes
  4255. \end_layout
  4256. \begin_layout Standard
  4257. \begin_inset Flex TODO Note (inline)
  4258. status open
  4259. \begin_layout Plain Layout
  4260. Remove redundant titles from figures
  4261. \end_layout
  4262. \end_inset
  4263. \end_layout
  4264. \begin_layout Standard
  4265. \begin_inset Float figure
  4266. wide false
  4267. sideways false
  4268. status open
  4269. \begin_layout Plain Layout
  4270. \align center
  4271. \begin_inset Graphics
  4272. filename graphics/Globin Paper/figure2 - aveLogCPM-colored.pdf
  4273. \end_inset
  4274. \end_layout
  4275. \begin_layout Plain Layout
  4276. \begin_inset Caption Standard
  4277. \begin_layout Plain Layout
  4278. \series bold
  4279. \begin_inset Argument 1
  4280. status collapsed
  4281. \begin_layout Plain Layout
  4282. Distributions of average group gene abundances when normalized separately
  4283. or together.
  4284. \end_layout
  4285. \end_inset
  4286. \begin_inset CommandInset label
  4287. LatexCommand label
  4288. name "fig:logcpm-dists"
  4289. \end_inset
  4290. Distributions of average group gene abundances when normalized separately
  4291. or together.
  4292. \series default
  4293. All reads in each sequencing library were aligned to the cyno genome, and
  4294. the number of reads uniquely aligning to each gene was counted.
  4295. Genes with zero counts in all libraries were discarded.
  4296. Libraries were normalized using the TMM method.
  4297. Libraries were split into globin-blocked (GB) and non-GB groups and the
  4298. average abundance for each gene in both groups, measured in log2 counts
  4299. per million reads counted, was computed using the aveLogCPM function.
  4300. The distribution of average gene logCPM values was plotted for both groups
  4301. using a kernel density plot to approximate a continuous distribution.
  4302. The logCPM GB distributions are marked in red, non-GB in blue.
  4303. The black vertical line denotes the chosen detection threshold of -1.
  4304. Top panel: Libraries were split into GB and non-GB groups first and normalized
  4305. separately.
  4306. Bottom panel: Libraries were all normalized together first and then split
  4307. into groups.
  4308. \end_layout
  4309. \end_inset
  4310. \end_layout
  4311. \begin_layout Plain Layout
  4312. \end_layout
  4313. \end_inset
  4314. \end_layout
  4315. \begin_layout Standard
  4316. Since globin blocking yields more usable sequencing depth, it should also
  4317. allow detection of more genes at any given threshold.
  4318. When we looked at the distribution of average normalized logCPM values
  4319. across all libraries for genes with at least one read assigned to them,
  4320. we observed the expected bimodal distribution, with a high-abundance "signal"
  4321. peak representing detected genes and a low-abundance "noise" peak representing
  4322. genes whose read count did not rise above the noise floor (Figure
  4323. \begin_inset CommandInset ref
  4324. LatexCommand ref
  4325. reference "fig:logcpm-dists"
  4326. plural "false"
  4327. caps "false"
  4328. noprefix "false"
  4329. \end_inset
  4330. ).
  4331. Consistent with the 2-fold increase in raw counts assigned to non-globin
  4332. genes, the signal peak for GB samples is shifted to the right relative
  4333. to the non-GB signal peak.
  4334. When all the samples are normalized together, this difference is normalized
  4335. out, lining up the signal peaks, and this reveals that, as expected, the
  4336. noise floor for the GB samples is about 2-fold lower.
  4337. This greater separation between signal and noise peaks in the GB samples
  4338. means that low-expression genes should be more easily detected and more
  4339. precisely quantified than in the non-GB samples.
  4340. \end_layout
  4341. \begin_layout Standard
  4342. \begin_inset Float figure
  4343. wide false
  4344. sideways false
  4345. status open
  4346. \begin_layout Plain Layout
  4347. \align center
  4348. \begin_inset Graphics
  4349. filename graphics/Globin Paper/figure3 - detection.pdf
  4350. \end_inset
  4351. \end_layout
  4352. \begin_layout Plain Layout
  4353. \begin_inset Caption Standard
  4354. \begin_layout Plain Layout
  4355. \series bold
  4356. \begin_inset Argument 1
  4357. status collapsed
  4358. \begin_layout Plain Layout
  4359. Gene detections as a function of abundance thresholds in globin-blocked
  4360. (GB) and non-GB samples.
  4361. \end_layout
  4362. \end_inset
  4363. \begin_inset CommandInset label
  4364. LatexCommand label
  4365. name "fig:Gene-detections"
  4366. \end_inset
  4367. Gene detections as a function of abundance thresholds in globin-blocked
  4368. (GB) and non-GB samples.
  4369. \series default
  4370. Average abundance (logCPM,
  4371. \begin_inset Formula $\log_{2}$
  4372. \end_inset
  4373. counts per million reads counted) was computed by separate group normalization
  4374. as described in Figure
  4375. \begin_inset CommandInset ref
  4376. LatexCommand ref
  4377. reference "fig:logcpm-dists"
  4378. plural "false"
  4379. caps "false"
  4380. noprefix "false"
  4381. \end_inset
  4382. for both the GB and non-GB groups, as well as for all samples considered
  4383. as one large group.
  4384. For each every integer threshold from -2 to 3, the number of genes detected
  4385. at or above that logCPM threshold was plotted for each group.
  4386. \end_layout
  4387. \end_inset
  4388. \end_layout
  4389. \begin_layout Plain Layout
  4390. \end_layout
  4391. \end_inset
  4392. \end_layout
  4393. \begin_layout Standard
  4394. Based on these distributions, we selected a detection threshold of -1, which
  4395. is approximately the leftmost edge of the trough between the signal and
  4396. noise peaks.
  4397. This represents the most liberal possible detection threshold that doesn't
  4398. call substantial numbers of noise genes as detected.
  4399. Among the full dataset, 13429 genes were detected at this threshold, and
  4400. 22276 were not.
  4401. When considering the GB libraries and non-GB libraries separately and re-comput
  4402. ing normalization factors independently within each group, 14535 genes were
  4403. detected in the GB libraries while only 12460 were detected in the non-GB
  4404. libraries.
  4405. Thus, GB allowed the detection of 2000 extra genes that were buried under
  4406. the noise floor without GB.
  4407. This pattern of at least 2000 additional genes detected with GB was also
  4408. consistent across a wide range of possible detection thresholds, from -2
  4409. to 3 (see Figure
  4410. \begin_inset CommandInset ref
  4411. LatexCommand ref
  4412. reference "fig:Gene-detections"
  4413. plural "false"
  4414. caps "false"
  4415. noprefix "false"
  4416. \end_inset
  4417. ).
  4418. \end_layout
  4419. \begin_layout Subsection*
  4420. Globin blocking does not add significant additional noise or decrease sample
  4421. quality
  4422. \end_layout
  4423. \begin_layout Standard
  4424. One potential worry is that the globin blocking protocol could perturb the
  4425. levels of non-globin genes.
  4426. There are two kinds of possible perturbations: systematic and random.
  4427. The former is not a major concern for detection of differential expression,
  4428. since a 2-fold change in every sample has no effect on the relative fold
  4429. change between samples.
  4430. In contrast, random perturbations would increase the noise and obscure
  4431. the signal in the dataset, reducing the capacity to detect differential
  4432. expression.
  4433. \end_layout
  4434. \begin_layout Standard
  4435. \begin_inset Float figure
  4436. wide false
  4437. sideways false
  4438. status open
  4439. \begin_layout Plain Layout
  4440. \align center
  4441. \begin_inset Graphics
  4442. filename graphics/Globin Paper/figure4 - maplot-colored.pdf
  4443. \end_inset
  4444. \end_layout
  4445. \begin_layout Plain Layout
  4446. \begin_inset Caption Standard
  4447. \begin_layout Plain Layout
  4448. \begin_inset Argument 1
  4449. status collapsed
  4450. \begin_layout Plain Layout
  4451. MA plot showing effects of globin blocking on each gene's abundance.
  4452. \end_layout
  4453. \end_inset
  4454. \begin_inset CommandInset label
  4455. LatexCommand label
  4456. name "fig:MA-plot"
  4457. \end_inset
  4458. \series bold
  4459. MA plot showing effects of globin blocking on each gene's abundance.
  4460. \series default
  4461. All libraries were normalized together as described in Figure
  4462. \begin_inset CommandInset ref
  4463. LatexCommand ref
  4464. reference "fig:logcpm-dists"
  4465. plural "false"
  4466. caps "false"
  4467. noprefix "false"
  4468. \end_inset
  4469. , and genes with an average logCPM below -1 were filtered out.
  4470. Each remaining gene was tested for differential abundance with respect
  4471. to globin blocking (GB) using edgeR’s quasi-likelihod F-test, fitting a
  4472. negative binomial generalized linear model to table of read counts in each
  4473. library.
  4474. For each gene, edgeR reported average abundance (logCPM),
  4475. \begin_inset Formula $\log_{2}$
  4476. \end_inset
  4477. fold change (logFC), p-value, and Benjamini-Hochberg adjusted false discovery
  4478. rate (FDR).
  4479. Each gene's logFC was plotted against its logCPM, colored by FDR.
  4480. Red points are significant at ≤10% FDR, and blue are not significant at
  4481. that threshold.
  4482. The alpha and beta globin genes targeted for blocking are marked with large
  4483. triangles, while all other genes are represented as small points.
  4484. \end_layout
  4485. \end_inset
  4486. \end_layout
  4487. \begin_layout Plain Layout
  4488. \end_layout
  4489. \end_inset
  4490. \end_layout
  4491. \begin_layout Standard
  4492. \begin_inset Flex TODO Note (inline)
  4493. status open
  4494. \begin_layout Plain Layout
  4495. Standardize on
  4496. \begin_inset Quotes eld
  4497. \end_inset
  4498. log2
  4499. \begin_inset Quotes erd
  4500. \end_inset
  4501. notation
  4502. \end_layout
  4503. \end_inset
  4504. \end_layout
  4505. \begin_layout Standard
  4506. The data do indeed show small systematic perturbations in gene levels (Figure
  4507. \begin_inset CommandInset ref
  4508. LatexCommand ref
  4509. reference "fig:MA-plot"
  4510. plural "false"
  4511. caps "false"
  4512. noprefix "false"
  4513. \end_inset
  4514. ).
  4515. Other than the 3 designated alpha and beta globin genes, two other genes
  4516. stand out as having especially large negative log fold changes: HBD and
  4517. LOC1021365.
  4518. HBD, delta globin, is most likely targeted by the blocking oligos due to
  4519. high sequence homology with the other globin genes.
  4520. LOC1021365 is the aforementioned ncRNA that is reverse-complementary to
  4521. one of the alpha-like genes and that would be expected to be removed during
  4522. the globin blocking step.
  4523. All other genes appear in a cluster centered vertically at 0, and the vast
  4524. majority of genes in this cluster show an absolute log2(FC) of 0.5 or less.
  4525. Nevertheless, many of these small perturbations are still statistically
  4526. significant, indicating that the globin blocking oligos likely cause very
  4527. small but non-zero systematic perturbations in measured gene expression
  4528. levels.
  4529. \end_layout
  4530. \begin_layout Standard
  4531. \begin_inset Float figure
  4532. wide false
  4533. sideways false
  4534. status open
  4535. \begin_layout Plain Layout
  4536. \align center
  4537. \begin_inset Graphics
  4538. filename graphics/Globin Paper/figure5 - corrplot.pdf
  4539. \end_inset
  4540. \end_layout
  4541. \begin_layout Plain Layout
  4542. \begin_inset Caption Standard
  4543. \begin_layout Plain Layout
  4544. \series bold
  4545. \begin_inset Argument 1
  4546. status collapsed
  4547. \begin_layout Plain Layout
  4548. Comparison of inter-sample gene abundance correlations with and without
  4549. globin blocking.
  4550. \end_layout
  4551. \end_inset
  4552. \begin_inset CommandInset label
  4553. LatexCommand label
  4554. name "fig:gene-abundance-correlations"
  4555. \end_inset
  4556. Comparison of inter-sample gene abundance correlations with and without
  4557. globin blocking (GB).
  4558. \series default
  4559. All libraries were normalized together as described in Figure 2, and genes
  4560. with an average abundance (logCPM, log2 counts per million reads counted)
  4561. less than -1 were filtered out.
  4562. Each gene’s logCPM was computed in each library using the edgeR cpm function.
  4563. For each pair of biological samples, the Pearson correlation between those
  4564. samples' GB libraries was plotted against the correlation between the same
  4565. samples’ non-GB libraries.
  4566. Each point represents an unique pair of samples.
  4567. The solid gray line shows a quantile-quantile plot of distribution of GB
  4568. correlations vs.
  4569. that of non-GB correlations.
  4570. The thin dashed line is the identity line, provided for reference.
  4571. \end_layout
  4572. \end_inset
  4573. \end_layout
  4574. \begin_layout Plain Layout
  4575. \end_layout
  4576. \end_inset
  4577. \end_layout
  4578. \begin_layout Standard
  4579. To evaluate the possibility of globin blocking causing random perturbations
  4580. and reducing sample quality, we computed the Pearson correlation between
  4581. logCPM values for every pair of samples with and without GB and plotted
  4582. them against each other (Figure
  4583. \begin_inset CommandInset ref
  4584. LatexCommand ref
  4585. reference "fig:gene-abundance-correlations"
  4586. plural "false"
  4587. caps "false"
  4588. noprefix "false"
  4589. \end_inset
  4590. ).
  4591. The plot indicated that the GB libraries have higher sample-to-sample correlati
  4592. ons than the non-GB libraries.
  4593. Parametric and nonparametric tests for differences between the correlations
  4594. with and without GB both confirmed that this difference was highly significant
  4595. (2-sided paired t-test: t = 37.2, df = 665, P ≪ 2.2e-16; 2-sided Wilcoxon
  4596. sign-rank test: V = 2195, P ≪ 2.2e-16).
  4597. Performing the same tests on the Spearman correlations gave the same conclusion
  4598. (t-test: t = 26.8, df = 665, P ≪ 2.2e-16; sign-rank test: V = 8781, P ≪ 2.2e-16).
  4599. The edgeR package was used to compute the overall biological coefficient
  4600. of variation (BCV) for GB and non-GB libraries, and found that globin blocking
  4601. resulted in a negligible increase in the BCV (0.417 with GB vs.
  4602. 0.400 without).
  4603. The near equality of the BCVs for both sets indicates that the higher correlati
  4604. ons in the GB libraries are most likely a result of the increased yield
  4605. of useful reads, which reduces the contribution of Poisson counting uncertainty
  4606. to the overall variance of the logCPM values
  4607. \begin_inset CommandInset citation
  4608. LatexCommand cite
  4609. key "McCarthy2012"
  4610. literal "false"
  4611. \end_inset
  4612. .
  4613. This improves the precision of expression measurements and more than offsets
  4614. the negligible increase in BCV.
  4615. \end_layout
  4616. \begin_layout Subsection*
  4617. More differentially expressed genes are detected with globin blocking
  4618. \end_layout
  4619. \begin_layout Standard
  4620. \begin_inset Float table
  4621. wide false
  4622. sideways false
  4623. status open
  4624. \begin_layout Plain Layout
  4625. \align center
  4626. \begin_inset Tabular
  4627. <lyxtabular version="3" rows="5" columns="5">
  4628. <features tabularvalignment="middle">
  4629. <column alignment="center" valignment="top">
  4630. <column alignment="center" valignment="top">
  4631. <column alignment="center" valignment="top">
  4632. <column alignment="center" valignment="top">
  4633. <column alignment="center" valignment="top">
  4634. <row>
  4635. <cell alignment="center" valignment="top" usebox="none">
  4636. \begin_inset Text
  4637. \begin_layout Plain Layout
  4638. \end_layout
  4639. \end_inset
  4640. </cell>
  4641. <cell alignment="center" valignment="top" usebox="none">
  4642. \begin_inset Text
  4643. \begin_layout Plain Layout
  4644. \end_layout
  4645. \end_inset
  4646. </cell>
  4647. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  4648. \begin_inset Text
  4649. \begin_layout Plain Layout
  4650. \series bold
  4651. No Globin Blocking
  4652. \end_layout
  4653. \end_inset
  4654. </cell>
  4655. <cell multicolumn="2" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  4656. \begin_inset Text
  4657. \begin_layout Plain Layout
  4658. \end_layout
  4659. \end_inset
  4660. </cell>
  4661. <cell multicolumn="2" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  4662. \begin_inset Text
  4663. \begin_layout Plain Layout
  4664. \end_layout
  4665. \end_inset
  4666. </cell>
  4667. </row>
  4668. <row>
  4669. <cell alignment="center" valignment="top" usebox="none">
  4670. \begin_inset Text
  4671. \begin_layout Plain Layout
  4672. \end_layout
  4673. \end_inset
  4674. </cell>
  4675. <cell alignment="center" valignment="top" usebox="none">
  4676. \begin_inset Text
  4677. \begin_layout Plain Layout
  4678. \end_layout
  4679. \end_inset
  4680. </cell>
  4681. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4682. \begin_inset Text
  4683. \begin_layout Plain Layout
  4684. \series bold
  4685. Up
  4686. \end_layout
  4687. \end_inset
  4688. </cell>
  4689. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4690. \begin_inset Text
  4691. \begin_layout Plain Layout
  4692. \series bold
  4693. NS
  4694. \end_layout
  4695. \end_inset
  4696. </cell>
  4697. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  4698. \begin_inset Text
  4699. \begin_layout Plain Layout
  4700. \series bold
  4701. Down
  4702. \end_layout
  4703. \end_inset
  4704. </cell>
  4705. </row>
  4706. <row>
  4707. <cell multirow="3" alignment="center" valignment="middle" topline="true" bottomline="true" leftline="true" usebox="none">
  4708. \begin_inset Text
  4709. \begin_layout Plain Layout
  4710. \series bold
  4711. Globin-Blocking
  4712. \end_layout
  4713. \end_inset
  4714. </cell>
  4715. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4716. \begin_inset Text
  4717. \begin_layout Plain Layout
  4718. \series bold
  4719. Up
  4720. \end_layout
  4721. \end_inset
  4722. </cell>
  4723. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4724. \begin_inset Text
  4725. \begin_layout Plain Layout
  4726. \family roman
  4727. \series medium
  4728. \shape up
  4729. \size normal
  4730. \emph off
  4731. \bar no
  4732. \strikeout off
  4733. \xout off
  4734. \uuline off
  4735. \uwave off
  4736. \noun off
  4737. \color none
  4738. 231
  4739. \end_layout
  4740. \end_inset
  4741. </cell>
  4742. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4743. \begin_inset Text
  4744. \begin_layout Plain Layout
  4745. \family roman
  4746. \series medium
  4747. \shape up
  4748. \size normal
  4749. \emph off
  4750. \bar no
  4751. \strikeout off
  4752. \xout off
  4753. \uuline off
  4754. \uwave off
  4755. \noun off
  4756. \color none
  4757. 515
  4758. \end_layout
  4759. \end_inset
  4760. </cell>
  4761. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  4762. \begin_inset Text
  4763. \begin_layout Plain Layout
  4764. \family roman
  4765. \series medium
  4766. \shape up
  4767. \size normal
  4768. \emph off
  4769. \bar no
  4770. \strikeout off
  4771. \xout off
  4772. \uuline off
  4773. \uwave off
  4774. \noun off
  4775. \color none
  4776. 2
  4777. \end_layout
  4778. \end_inset
  4779. </cell>
  4780. </row>
  4781. <row>
  4782. <cell multirow="4" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4783. \begin_inset Text
  4784. \begin_layout Plain Layout
  4785. \end_layout
  4786. \end_inset
  4787. </cell>
  4788. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4789. \begin_inset Text
  4790. \begin_layout Plain Layout
  4791. \series bold
  4792. NS
  4793. \end_layout
  4794. \end_inset
  4795. </cell>
  4796. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4797. \begin_inset Text
  4798. \begin_layout Plain Layout
  4799. \family roman
  4800. \series medium
  4801. \shape up
  4802. \size normal
  4803. \emph off
  4804. \bar no
  4805. \strikeout off
  4806. \xout off
  4807. \uuline off
  4808. \uwave off
  4809. \noun off
  4810. \color none
  4811. 160
  4812. \end_layout
  4813. \end_inset
  4814. </cell>
  4815. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4816. \begin_inset Text
  4817. \begin_layout Plain Layout
  4818. \family roman
  4819. \series medium
  4820. \shape up
  4821. \size normal
  4822. \emph off
  4823. \bar no
  4824. \strikeout off
  4825. \xout off
  4826. \uuline off
  4827. \uwave off
  4828. \noun off
  4829. \color none
  4830. 11235
  4831. \end_layout
  4832. \end_inset
  4833. </cell>
  4834. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  4835. \begin_inset Text
  4836. \begin_layout Plain Layout
  4837. \family roman
  4838. \series medium
  4839. \shape up
  4840. \size normal
  4841. \emph off
  4842. \bar no
  4843. \strikeout off
  4844. \xout off
  4845. \uuline off
  4846. \uwave off
  4847. \noun off
  4848. \color none
  4849. 136
  4850. \end_layout
  4851. \end_inset
  4852. </cell>
  4853. </row>
  4854. <row>
  4855. <cell multirow="4" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  4856. \begin_inset Text
  4857. \begin_layout Plain Layout
  4858. \end_layout
  4859. \end_inset
  4860. </cell>
  4861. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  4862. \begin_inset Text
  4863. \begin_layout Plain Layout
  4864. \series bold
  4865. Down
  4866. \end_layout
  4867. \end_inset
  4868. </cell>
  4869. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  4870. \begin_inset Text
  4871. \begin_layout Plain Layout
  4872. \family roman
  4873. \series medium
  4874. \shape up
  4875. \size normal
  4876. \emph off
  4877. \bar no
  4878. \strikeout off
  4879. \xout off
  4880. \uuline off
  4881. \uwave off
  4882. \noun off
  4883. \color none
  4884. 0
  4885. \end_layout
  4886. \end_inset
  4887. </cell>
  4888. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  4889. \begin_inset Text
  4890. \begin_layout Plain Layout
  4891. \family roman
  4892. \series medium
  4893. \shape up
  4894. \size normal
  4895. \emph off
  4896. \bar no
  4897. \strikeout off
  4898. \xout off
  4899. \uuline off
  4900. \uwave off
  4901. \noun off
  4902. \color none
  4903. 548
  4904. \end_layout
  4905. \end_inset
  4906. </cell>
  4907. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  4908. \begin_inset Text
  4909. \begin_layout Plain Layout
  4910. \family roman
  4911. \series medium
  4912. \shape up
  4913. \size normal
  4914. \emph off
  4915. \bar no
  4916. \strikeout off
  4917. \xout off
  4918. \uuline off
  4919. \uwave off
  4920. \noun off
  4921. \color none
  4922. 127
  4923. \end_layout
  4924. \end_inset
  4925. </cell>
  4926. </row>
  4927. </lyxtabular>
  4928. \end_inset
  4929. \end_layout
  4930. \begin_layout Plain Layout
  4931. \begin_inset Caption Standard
  4932. \begin_layout Plain Layout
  4933. \series bold
  4934. \begin_inset Argument 1
  4935. status open
  4936. \begin_layout Plain Layout
  4937. Comparison of significantly differentially expressed genes with and without
  4938. globin blocking.
  4939. \end_layout
  4940. \end_inset
  4941. \begin_inset CommandInset label
  4942. LatexCommand label
  4943. name "tab:Comparison-of-significant"
  4944. \end_inset
  4945. Comparison of significantly differentially expressed genes with and without
  4946. globin blocking.
  4947. \series default
  4948. Up, Down: Genes significantly up/down-regulated in post-transplant samples
  4949. relative to pre-transplant samples, with a false discovery rate of 10%
  4950. or less.
  4951. NS: Non-significant genes (false discovery rate greater than 10%).
  4952. \end_layout
  4953. \end_inset
  4954. \end_layout
  4955. \begin_layout Plain Layout
  4956. \end_layout
  4957. \end_inset
  4958. \end_layout
  4959. \begin_layout Standard
  4960. To compare performance on differential gene expression tests, we took subsets
  4961. of both the GB and non-GB libraries with exactly one pre-transplant and
  4962. one post-transplant sample for each animal that had paired samples available
  4963. for analysis (N=7 animals, N=14 samples in each subset).
  4964. The same test for pre- vs.
  4965. post-transplant differential gene expression was performed on the same
  4966. 7 pairs of samples from GB libraries and non-GB libraries, in each case
  4967. using an FDR of 10% as the threshold of significance.
  4968. Out of 12954 genes that passed the detection threshold in both subsets,
  4969. 358 were called significantly differentially expressed in the same direction
  4970. in both sets; 1063 were differentially expressed in the GB set only; 296
  4971. were differentially expressed in the non-GB set only; 2 genes were called
  4972. significantly up in the GB set but significantly down in the non-GB set;
  4973. and the remaining 11235 were not called differentially expressed in either
  4974. set.
  4975. These data are summarized in Table
  4976. \begin_inset CommandInset ref
  4977. LatexCommand ref
  4978. reference "tab:Comparison-of-significant"
  4979. plural "false"
  4980. caps "false"
  4981. noprefix "false"
  4982. \end_inset
  4983. .
  4984. The differences in BCV calculated by EdgeR for these subsets of samples
  4985. were negligible (BCV = 0.302 for GB and 0.297 for non-GB).
  4986. \end_layout
  4987. \begin_layout Standard
  4988. The key point is that the GB data results in substantially more differentially
  4989. expressed calls than the non-GB data.
  4990. Since there is no gold standard for this dataset, it is impossible to be
  4991. certain whether this is due to under-calling of differential expression
  4992. in the non-GB samples or over-calling in the GB samples.
  4993. However, given that both datasets are derived from the same biological
  4994. samples and have nearly equal BCVs, it is more likely that the larger number
  4995. of DE calls in the GB samples are genuine detections that were enabled
  4996. by the higher sequencing depth and measurement precision of the GB samples.
  4997. Note that the same set of genes was considered in both subsets, so the
  4998. larger number of differentially expressed gene calls in the GB data set
  4999. reflects a greater sensitivity to detect significant differential gene
  5000. expression and not simply the larger total number of detected genes in
  5001. GB samples described earlier.
  5002. \end_layout
  5003. \begin_layout Section
  5004. Discussion
  5005. \end_layout
  5006. \begin_layout Standard
  5007. The original experience with whole blood gene expression profiling on DNA
  5008. microarrays demonstrated that the high concentration of globin transcripts
  5009. reduced the sensitivity to detect genes with relatively low expression
  5010. levels, in effect, significantly reducing the sensitivity.
  5011. To address this limitation, commercial protocols for globin reduction were
  5012. developed based on strategies to block globin transcript amplification
  5013. during labeling or physically removing globin transcripts by affinity bead
  5014. methods
  5015. \begin_inset CommandInset citation
  5016. LatexCommand cite
  5017. key "Winn2010"
  5018. literal "false"
  5019. \end_inset
  5020. .
  5021. More recently, using the latest generation of labeling protocols and arrays,
  5022. it was determined that globin reduction was no longer necessary to obtain
  5023. sufficient sensitivity to detect differential transcript expression
  5024. \begin_inset CommandInset citation
  5025. LatexCommand cite
  5026. key "NuGEN2010"
  5027. literal "false"
  5028. \end_inset
  5029. .
  5030. However, we are not aware of any publications using these currently available
  5031. protocols the with latest generation of microarrays that actually compare
  5032. the detection sensitivity with and without globin reduction.
  5033. However, in practice this has now been adopted generally primarily driven
  5034. by concerns for cost control.
  5035. The main objective of our work was to directly test the impact of globin
  5036. gene transcripts and a new globin blocking protocol for application to
  5037. the newest generation of differential gene expression profiling determined
  5038. using next generation sequencing.
  5039. \end_layout
  5040. \begin_layout Standard
  5041. The challenge of doing global gene expression profiling in cynomolgus monkeys
  5042. is that the current available arrays were never designed to comprehensively
  5043. cover this genome and have not been updated since the first assemblies
  5044. of the cynomolgus genome were published.
  5045. Therefore, we determined that the best strategy for peripheral blood profiling
  5046. was to do deep RNA-seq and inform the workflow using the latest available
  5047. genome assembly and annotation
  5048. \begin_inset CommandInset citation
  5049. LatexCommand cite
  5050. key "Wilson2013"
  5051. literal "false"
  5052. \end_inset
  5053. .
  5054. However, it was not immediately clear whether globin reduction was necessary
  5055. for RNA-seq or how much improvement in efficiency or sensitivity to detect
  5056. differential gene expression would be achieved for the added cost and work.
  5057. \end_layout
  5058. \begin_layout Standard
  5059. We only found one report that demonstrated that globin reduction significantly
  5060. improved the effective read yields for sequencing of human peripheral blood
  5061. cell RNA using a DeepSAGE protocol
  5062. \begin_inset CommandInset citation
  5063. LatexCommand cite
  5064. key "Mastrokolias2012"
  5065. literal "false"
  5066. \end_inset
  5067. .
  5068. The approach to DeepSAGE involves two different restriction enzymes that
  5069. purify and then tag small fragments of transcripts at specific locations
  5070. and thus, significantly reduces the complexity of the transcriptome.
  5071. Therefore, we could not determine how DeepSAGE results would translate
  5072. to the common strategy in the field for assaying the entire transcript
  5073. population by whole-transcriptome 3’-end RNA-seq.
  5074. Furthermore, if globin reduction is necessary, we also needed a globin
  5075. reduction method specific to cynomolgus globin sequences that would work
  5076. an organism for which no kit is available off the shelf.
  5077. \end_layout
  5078. \begin_layout Standard
  5079. As mentioned above, the addition of globin blocking oligos has a very small
  5080. impact on measured expression levels of gene expression.
  5081. However, this is a non-issue for the purposes of differential expression
  5082. testing, since a systematic change in a gene in all samples does not affect
  5083. relative expression levels between samples.
  5084. However, we must acknowledge that simple comparisons of gene expression
  5085. data obtained by GB and non-GB protocols are not possible without additional
  5086. normalization.
  5087. \end_layout
  5088. \begin_layout Standard
  5089. More importantly, globin blocking not only nearly doubles the yield of usable
  5090. reads, it also increases inter-sample correlation and sensitivity to detect
  5091. differential gene expression relative to the same set of samples profiled
  5092. without blocking.
  5093. In addition, globin blocking does not add a significant amount of random
  5094. noise to the data.
  5095. Globin blocking thus represents a cost-effective way to squeeze more data
  5096. and statistical power out of the same blood samples and the same amount
  5097. of sequencing.
  5098. In conclusion, globin reduction greatly increases the yield of useful RNA-seq
  5099. reads mapping to the rest of the genome, with minimal perturbations in
  5100. the relative levels of non-globin genes.
  5101. Based on these results, globin transcript reduction using sequence-specific,
  5102. complementary blocking oligonucleotides is recommended for all deep RNA-seq
  5103. of cynomolgus and other nonhuman primate blood samples.
  5104. \end_layout
  5105. \begin_layout Chapter
  5106. Future Directions
  5107. \end_layout
  5108. \begin_layout Standard
  5109. \begin_inset Flex TODO Note (inline)
  5110. status open
  5111. \begin_layout Plain Layout
  5112. Consider per-chapter future directions.
  5113. Check instructions.
  5114. \end_layout
  5115. \end_inset
  5116. \end_layout
  5117. \begin_layout Itemize
  5118. Study other epigenetic marks in more contexts
  5119. \end_layout
  5120. \begin_deeper
  5121. \begin_layout Itemize
  5122. DNA methylation, histone marks, chromatin accessibility & conformation in
  5123. CD4 T-cells
  5124. \end_layout
  5125. \begin_layout Itemize
  5126. Also look at other types of lymphocytes: CD8 T-cells, B-cells, NK cells
  5127. \end_layout
  5128. \end_deeper
  5129. \begin_layout Itemize
  5130. Use CV or bootstrap to better evaluate classifiers
  5131. \end_layout
  5132. \begin_layout Itemize
  5133. fRMAtools could be adapted to not require equal-sized groups
  5134. \end_layout
  5135. \begin_layout Standard
  5136. \begin_inset ERT
  5137. status open
  5138. \begin_layout Plain Layout
  5139. % Call it "References" instead of "Bibliography"
  5140. \end_layout
  5141. \begin_layout Plain Layout
  5142. \backslash
  5143. renewcommand{
  5144. \backslash
  5145. bibname}{References}
  5146. \end_layout
  5147. \end_inset
  5148. \end_layout
  5149. \begin_layout Standard
  5150. \begin_inset Flex TODO Note (inline)
  5151. status open
  5152. \begin_layout Plain Layout
  5153. Check bib entry formatting & sort order
  5154. \end_layout
  5155. \end_inset
  5156. \end_layout
  5157. \begin_layout Standard
  5158. \begin_inset CommandInset bibtex
  5159. LatexCommand bibtex
  5160. btprint "btPrintCited"
  5161. bibfiles "refs,code-refs"
  5162. options "bibtotoc,unsrt"
  5163. \end_inset
  5164. \end_layout
  5165. \end_body
  5166. \end_document