thesis.lyx 333 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002
  1. #LyX 2.3 created this file. For more info see http://www.lyx.org/
  2. \lyxformat 544
  3. \begin_document
  4. \begin_header
  5. \save_transient_properties true
  6. \origin unavailable
  7. \textclass extbook
  8. \begin_preamble
  9. % List all used files in log output
  10. \listfiles
  11. % Add a DRAFT watermark
  12. \usepackage{draftwatermark}
  13. \SetWatermarkLightness{0.97}
  14. \SetWatermarkScale{1}
  15. % Set up required header format
  16. \usepackage{fancyhdr}
  17. \pagestyle{fancy}
  18. \renewcommand{\headrulewidth}{0pt}
  19. \rhead{}
  20. \lhead{}
  21. \rfoot{}
  22. \lfoot{}
  23. \cfoot{\thepage} % Page number bottom center
  24. % Allow FloatBarrier command
  25. \usepackage{placeins}
  26. % Allow landscape pages
  27. \usepackage{pdflscape}
  28. % Allow doing things after the end of the current page
  29. % (to avoid landscape figures breaking up text)
  30. \usepackage{afterpage}
  31. % This one breaks subfigs so it's disabled
  32. % https://tex.stackexchange.com/questions/65680/automatically-bold-first-sentence-of-a-floats-caption
  33. \end_preamble
  34. \use_default_options true
  35. \begin_modules
  36. todonotes
  37. \end_modules
  38. \maintain_unincluded_children false
  39. \language english
  40. \language_package default
  41. \inputencoding utf8
  42. \fontencoding default
  43. \font_roman "default" "default"
  44. \font_sans "default" "default"
  45. \font_typewriter "default" "default"
  46. \font_math "auto" "auto"
  47. \font_default_family default
  48. \use_non_tex_fonts false
  49. \font_sc false
  50. \font_osf false
  51. \font_sf_scale 100 100
  52. \font_tt_scale 100 100
  53. \use_microtype false
  54. \use_dash_ligatures true
  55. \graphics default
  56. \default_output_format pdf4
  57. \output_sync 0
  58. \bibtex_command biber
  59. \index_command default
  60. \paperfontsize 12
  61. \spacing double
  62. \use_hyperref true
  63. \pdf_bookmarks true
  64. \pdf_bookmarksnumbered false
  65. \pdf_bookmarksopen false
  66. \pdf_bookmarksopenlevel 1
  67. \pdf_breaklinks false
  68. \pdf_pdfborder false
  69. \pdf_colorlinks false
  70. \pdf_backref false
  71. \pdf_pdfusetitle true
  72. \papersize letterpaper
  73. \use_geometry true
  74. \use_package amsmath 1
  75. \use_package amssymb 1
  76. \use_package cancel 1
  77. \use_package esint 1
  78. \use_package mathdots 1
  79. \use_package mathtools 1
  80. \use_package mhchem 1
  81. \use_package stackrel 1
  82. \use_package stmaryrd 1
  83. \use_package undertilde 1
  84. \cite_engine biblatex
  85. \cite_engine_type authoryear
  86. \biblio_style plain
  87. \biblatex_bibstyle authoryear
  88. \biblatex_citestyle numeric
  89. \use_bibtopic false
  90. \use_indices false
  91. \paperorientation portrait
  92. \suppress_date false
  93. \justification true
  94. \use_refstyle 1
  95. \use_minted 0
  96. \index Index
  97. \shortcut idx
  98. \color #008000
  99. \end_index
  100. \leftmargin 1.5in
  101. \topmargin 1in
  102. \rightmargin 1in
  103. \bottommargin 1in
  104. \secnumdepth 3
  105. \tocdepth 3
  106. \paragraph_separation indent
  107. \paragraph_indentation default
  108. \is_math_indent 0
  109. \math_numbering_side default
  110. \quotes_style english
  111. \dynamic_quotes 0
  112. \papercolumns 1
  113. \papersides 1
  114. \paperpagestyle default
  115. \tracking_changes false
  116. \output_changes false
  117. \html_math_output 0
  118. \html_css_as_file 0
  119. \html_be_strict false
  120. \end_header
  121. \begin_body
  122. \begin_layout Title
  123. Bioinformatic analysis of complex, high-throughput genomic and epigenomic
  124. data in the context of immunology and transplant rejection
  125. \end_layout
  126. \begin_layout Author
  127. A thesis presented
  128. \begin_inset Newline newline
  129. \end_inset
  130. by
  131. \begin_inset Newline newline
  132. \end_inset
  133. Ryan C.
  134. Thompson
  135. \begin_inset Newline newline
  136. \end_inset
  137. to
  138. \begin_inset Newline newline
  139. \end_inset
  140. The Scripps Research Institute Graduate Program
  141. \begin_inset Newline newline
  142. \end_inset
  143. in partial fulfillment of the requirements for the degree of
  144. \begin_inset Newline newline
  145. \end_inset
  146. Doctor of Philosophy in the subject of Biology
  147. \begin_inset Newline newline
  148. \end_inset
  149. for
  150. \begin_inset Newline newline
  151. \end_inset
  152. The Scripps Research Institute
  153. \begin_inset Newline newline
  154. \end_inset
  155. La Jolla, California
  156. \end_layout
  157. \begin_layout Date
  158. October 2019
  159. \end_layout
  160. \begin_layout Standard
  161. [Copyright notice]
  162. \end_layout
  163. \begin_layout Standard
  164. [Thesis acceptance form]
  165. \end_layout
  166. \begin_layout Standard
  167. [Dedication]
  168. \end_layout
  169. \begin_layout Standard
  170. [Acknowledgements]
  171. \end_layout
  172. \begin_layout Standard
  173. \begin_inset Flex TODO Note (inline)
  174. status open
  175. \begin_layout Plain Layout
  176. I'm looking for feedback on: Section titles; figure formatting; figure legends;
  177. typographical errors; ...
  178. \end_layout
  179. \end_inset
  180. \end_layout
  181. \begin_layout Standard
  182. \begin_inset CommandInset toc
  183. LatexCommand tableofcontents
  184. \end_inset
  185. \end_layout
  186. \begin_layout Standard
  187. \begin_inset FloatList table
  188. \end_inset
  189. \end_layout
  190. \begin_layout Standard
  191. \begin_inset FloatList figure
  192. \end_inset
  193. \end_layout
  194. \begin_layout Standard
  195. [List of Abbreviations]
  196. \end_layout
  197. \begin_layout List of TODOs
  198. \end_layout
  199. \begin_layout Standard
  200. \begin_inset Flex TODO Note (inline)
  201. status open
  202. \begin_layout Plain Layout
  203. Check all figures to make sure they fit on the page with their legends.
  204. \end_layout
  205. \end_inset
  206. \end_layout
  207. \begin_layout Standard
  208. \begin_inset Flex TODO Note (inline)
  209. status open
  210. \begin_layout Plain Layout
  211. Search and replace: naive -> naïve
  212. \end_layout
  213. \end_inset
  214. \end_layout
  215. \begin_layout Standard
  216. \begin_inset Flex TODO Note (inline)
  217. status open
  218. \begin_layout Plain Layout
  219. Look into auto-generated nomenclature list: https://wiki.lyx.org/Tips/Nomenclature.
  220. Otherwise, do a manual pass for all abbreviations at the end.
  221. Do nomenclature/abbreviations independently for each chapter.
  222. \end_layout
  223. \end_inset
  224. \end_layout
  225. \begin_layout Standard
  226. \begin_inset Flex TODO Note (inline)
  227. status open
  228. \begin_layout Plain Layout
  229. Make all descriptions consistent in terms of
  230. \begin_inset Quotes eld
  231. \end_inset
  232. we did X
  233. \begin_inset Quotes erd
  234. \end_inset
  235. vs
  236. \begin_inset Quotes eld
  237. \end_inset
  238. I did X
  239. \begin_inset Quotes erd
  240. \end_inset
  241. vs
  242. \begin_inset Quotes eld
  243. \end_inset
  244. X was done
  245. \begin_inset Quotes erd
  246. \end_inset
  247. .
  248. \end_layout
  249. \end_inset
  250. \end_layout
  251. \begin_layout Chapter*
  252. Abstract
  253. \end_layout
  254. \begin_layout Standard
  255. \begin_inset Note Note
  256. status open
  257. \begin_layout Plain Layout
  258. It is included as an integral part of the thesis and should immediately
  259. precede the introduction.
  260. \end_layout
  261. \begin_layout Plain Layout
  262. Preparing your Abstract.
  263. Your abstract (a succinct description of your work) is limited to 350 words.
  264. UMI will shorten it if they must; please do not exceed the limit.
  265. \end_layout
  266. \begin_layout Itemize
  267. Include pertinent place names, names of persons (in full), and other proper
  268. nouns.
  269. These are useful in automated retrieval.
  270. \end_layout
  271. \begin_layout Itemize
  272. Display symbols, as well as foreign words and phrases, clearly and accurately.
  273. Include transliterations for characters other than Roman and Greek letters
  274. and Arabic numerals.
  275. Include accents and diacritical marks.
  276. \end_layout
  277. \begin_layout Itemize
  278. Do not include graphs, charts, tables, or illustrations in your abstract.
  279. \end_layout
  280. \end_inset
  281. \end_layout
  282. \begin_layout Standard
  283. \begin_inset Flex TODO Note (inline)
  284. status open
  285. \begin_layout Plain Layout
  286. Obviously the abstract gets written last.
  287. \end_layout
  288. \end_inset
  289. \end_layout
  290. \begin_layout Chapter
  291. Introduction
  292. \end_layout
  293. \begin_layout Section
  294. Background & Significance
  295. \end_layout
  296. \begin_layout Subsection
  297. Biological motivation
  298. \end_layout
  299. \begin_layout Standard
  300. \begin_inset Flex TODO Note (inline)
  301. status open
  302. \begin_layout Plain Layout
  303. Rethink the subsection organization after the intro is written.
  304. \end_layout
  305. \end_inset
  306. \end_layout
  307. \begin_layout Standard
  308. \begin_inset Flex TODO Note (inline)
  309. status open
  310. \begin_layout Plain Layout
  311. Citations are needed all over the place.
  312. A lot of this is knowledge I've just absorbed from years of conversation
  313. in the Salomon lab, without ever having seen a citation for it.
  314. \end_layout
  315. \end_inset
  316. \end_layout
  317. \begin_layout Subsubsection
  318. Rejection is the major long-term threat to organ and tissue allografts
  319. \end_layout
  320. \begin_layout Standard
  321. Organ and tissue transplants are a life-saving treatment for people who
  322. have lost the function of an important organ.
  323. In some cases, it is possible to transplant a patient's own tissue from
  324. one area of their body to another, referred to as an autograft.
  325. This is common for tissues that are distributed throughout many areas of
  326. the body, such as skin and bone.
  327. However, in cases of organ failure, there is no functional self tissue
  328. remaining, and a transplant from another person – the donor – is required.
  329. This is referred to as an allograft.
  330. \end_layout
  331. \begin_layout Standard
  332. \begin_inset Flex TODO Note (inline)
  333. status open
  334. \begin_layout Plain Layout
  335. Possible citation for degree of generic variability: https://www.ncbi.nlm.nih.gov/pu
  336. bmed/22424236?dopt=Abstract
  337. \end_layout
  338. \end_inset
  339. \end_layout
  340. \begin_layout Standard
  341. \begin_inset Flex TODO Note (inline)
  342. status open
  343. \begin_layout Plain Layout
  344. How much mechanistic detail is needed here? My work doesn't really go into
  345. specific rejection mechanisms, so I think it's best to keep it basic.
  346. \end_layout
  347. \end_inset
  348. \end_layout
  349. \begin_layout Standard
  350. Because an allograft comes from a different person, it is genetically distinct
  351. from the rest of the recipient's body.
  352. Some genetic variants occur in protein coding regions, resulting in protein
  353. products that differ from the equivalent proteins in the graft recipient's
  354. own tissue.
  355. As a result, without intervention, the recipient's immune system will eventuall
  356. y identify the graft as foreign tissue and begin attacking it, eventually
  357. resulting in failure and death of the graft, a process referred to as transplan
  358. t rejection.
  359. Rejection is the most significant challenge to the long-term health of
  360. an allograft.
  361. Like any adaptive immune response, graft rejection generally occurs via
  362. two broad mechanisms: cellular immunity, in which CD8+ T-cells induce apoptosis
  363. in the graft cells; and humoral immunity, in which B-cells produce antibodies
  364. that bind to graft proteins and direct an immune response against the graft.
  365. In either case, rejection shows most of the typical hallmarks of an adaptive
  366. immune response, in particular mediation by CD4+ T-cells and formation
  367. of immune memory.
  368. \end_layout
  369. \begin_layout Subsubsection
  370. Diagnosis and treatment of allograft rejection is a major challenge
  371. \end_layout
  372. \begin_layout Standard
  373. To prevent rejection, allograft recipients are treated with immune suppression.
  374. The goal is to achieve sufficient suppression of the immune system to prevent
  375. rejection of the graft without compromising the ability of the immune system
  376. to raise a normal response against infection.
  377. As such, a delicate balance must be struck: insufficient immune suppression
  378. may lead to rejection and ultimately loss of the graft; exceissive suppression
  379. leaves the patient vulnerable to life-threatening opportunistic infections.
  380. Because every patient is different, immune suppression must be tailored
  381. for each patient.
  382. Furthermore, immune suppression must be tuned over time, as the immune
  383. system's activity is not static, nor is it held in a steady state.
  384. In order to properly adjust the dosage of immune suppression drugs, it
  385. is necessary to monitor the health of the transplant and increase the dosage
  386. if evidence of rejection is observed.
  387. \end_layout
  388. \begin_layout Standard
  389. However, diagnosis of rejection is a significant challenge.
  390. Early diagnosis is essential in order to step up immune suppression before
  391. the immune system damages the graft beyond recovery.
  392. The current gold standard test for graft rejection is a tissue biopsy,
  393. examained for visible signs of rejection by a trained histologist.
  394. When a patient shows symptoms of possible rejection, a
  395. \begin_inset Quotes eld
  396. \end_inset
  397. for cause
  398. \begin_inset Quotes erd
  399. \end_inset
  400. biopsy is performed to confirm the diagnosis, and immune suppression is
  401. adjusted as necessary.
  402. However, in many cases, the early stages of rejection are asymptomatic,
  403. known as
  404. \begin_inset Quotes eld
  405. \end_inset
  406. sub-clinical
  407. \begin_inset Quotes erd
  408. \end_inset
  409. rejection.
  410. In light of this, is is now common to perform
  411. \begin_inset Quotes eld
  412. \end_inset
  413. protocol biopsies
  414. \begin_inset Quotes erd
  415. \end_inset
  416. at specific times after transplantation of a graft, even if no symptoms
  417. of rejection are apparent, in addition to
  418. \begin_inset Quotes eld
  419. \end_inset
  420. for cause
  421. \begin_inset Quotes erd
  422. \end_inset
  423. biopsies
  424. \begin_inset CommandInset citation
  425. LatexCommand cite
  426. key "Wilkinson2006"
  427. literal "false"
  428. \end_inset
  429. .
  430. \end_layout
  431. \begin_layout Standard
  432. However, biopsies have a number of downsides that limit their effectiveness
  433. as a diagnostic tool.
  434. First, the need for manual inspection by a histologist means that diagnosis
  435. is subject to the biases of the particular histologist examining the biopsy.
  436. In marginal cases two different histologists may give two different diagnoses
  437. to the same biopsy.
  438. Second, a biopsy can only evaluate if rejection is occurring in the section
  439. of the graft from which the tissue was extracted.
  440. If rejection is only occurring in one section of the graft and the tissue
  441. is extracted from a different section, it may result in a false negative
  442. diagnosis.
  443. Most importantly, however, extraction of tissue from a graft is invasive
  444. and is treated as an injury by the body, which results in inflammation
  445. that in turn promotes increased immune system activity.
  446. Hence, the invasiveness of biopsies severely limits the frequency with
  447. which the can safely be performed.
  448. Typically protocol biopsies are not scheduled more than about once per
  449. month
  450. \begin_inset CommandInset citation
  451. LatexCommand cite
  452. key "Wilkinson2006"
  453. literal "false"
  454. \end_inset
  455. .
  456. A less invasive diagnostic test for rejection would bring manifold benefits.
  457. Such a test would enable more frequent testing and therefore earlier detection
  458. of rejection events.
  459. In addition, having a larger pool of historical data for a given patient
  460. would make it easier to evaluate when a given test is outside the normal
  461. parameters for that specific patient, rather than relying on normal ranges
  462. for the population as a whole.
  463. Lastly, more frequent tests would be a boon to the transplant research
  464. community.
  465. Beyond simply providing more data, the increased time granularity of the
  466. tests will enable studying the progression of a rejection event on the
  467. scale of days to weeks, rather than months.
  468. \end_layout
  469. \begin_layout Subsubsection
  470. Memory cells are resistant to immune suppression
  471. \end_layout
  472. \begin_layout Standard
  473. One of the defining features of the adaptive immune system is immune memory:
  474. the ability of the immune system to recognize a previously encountered
  475. foreign antigen and respond more quickly and more strongly to that antigen
  476. in subsequent encounters.
  477. When the immune system first encounters a new antigen, the lymphocytes
  478. that respond are known as naive cells – T-cells and B-cells that have never
  479. detected their target antigens before.
  480. Once activated by their specific antigen presented by an antigen-presenting
  481. cell in the proper co-stimulatory context, naive cells differentiate into
  482. effector cells that carry out their respective functions in targeting and
  483. destroying the source of the foreign antigen.
  484. The requirement for co-stimulation is an important feature of naive cells
  485. that limits
  486. \begin_inset Quotes eld
  487. \end_inset
  488. false positive
  489. \begin_inset Quotes erd
  490. \end_inset
  491. immune responses, because antigen-presenting cells usually only express
  492. the proper co-stimulation after detecting evidence of an infection, such
  493. as the presence of common bacterial cell components or inflamed tissue.
  494. Most effector cells die after the foreign antigen is cleared, but some
  495. remain and differentiate into memory cells.
  496. Like naive cells, memory cells respond to detection of their specific antigen
  497. by differentiating into effector cells, ready to fight an infection.
  498. However, unlike naive cells, memory cells do not require the same degree
  499. of co-stimulatory signaling for activation, and once activated, they proliferat
  500. e and differentiate into effector cells more quickly than naive cells do.
  501. \end_layout
  502. \begin_layout Standard
  503. In the context of a pathogenic infection, immune memory is a major advantage,
  504. allowing an organism to rapidly fight off a previously encountered pathogen
  505. much more quickly and effectively than the first time it was encountered.
  506. However, if effector cells that recognize an antigen from an allograft
  507. are allowed to differentiate into memory cells, suppressing rejection of
  508. the graft becomes much more difficult.
  509. Many immune suppression drugs work by interfering with the co-stimulation
  510. that naive cells require in order to mount an immune response.
  511. Since memory cells do not require this co-stimulation, these drugs are
  512. not effective at suppressing an immune response that is mediated by memory
  513. cells.
  514. Secondly, because memory cells are able to mount a stronger and faster
  515. response to an antigen, all else being equal they require stronger immune
  516. suppression than naive cells to prevent an immune response.
  517. However, immune suppression affects the entire immune system, not just
  518. cells recognizing a specific antigen, so increasing the dosage of immune
  519. suppression drugs also increases the risk of complications from a compromised
  520. immune system, such as opportunistic infections.
  521. While the differences in cell surface markers between naive and memory
  522. cells have been fairly well characterized, the internal regulatory mechanisms
  523. that allow memory cells to respond more quickly and without co-stimulation
  524. are still poorly understood.
  525. In order to develop immune suppression that either prevents the formation
  526. of memory cells or works more effectively against memory cells, the mechanisms
  527. of immune memory formation and regulation must be better understood.
  528. \end_layout
  529. \begin_layout Subsection
  530. Overview of bioinformatic analysis methods
  531. \end_layout
  532. \begin_layout Standard
  533. The studies presented in this work all involve the analysis of high-throughput
  534. genomic and epigenomic data.
  535. These data present many unique analysis challenges, and a wide array of
  536. software tools are available to analyze them.
  537. This section presents an overview of the methods used, including what problems
  538. they solve, what assumptions they make, and a basic description of how
  539. they work.
  540. \end_layout
  541. \begin_layout Standard
  542. \begin_inset Flex TODO Note (inline)
  543. status open
  544. \begin_layout Plain Layout
  545. Many of these points may also be addressed in the approach/methods sections
  546. of the following chapters? Redundant?
  547. \end_layout
  548. \end_inset
  549. \end_layout
  550. \begin_layout Subsubsection
  551. Limma: The standard linear modeling framework for genomics
  552. \end_layout
  553. \begin_layout Standard
  554. Linear models are a generalization of the
  555. \begin_inset Formula $t$
  556. \end_inset
  557. -test and ANOVA to arbitrarily complex experimental designs.
  558. In a typical linear model, there is one dependent variable observation
  559. per sample.
  560. For example, in a linear model of height as a function of age and sex,
  561. there is one height measurement per person.
  562. However, when analyzing genomic data, each sample consists of observations
  563. of thousands of dependent variables.
  564. For example, in an RNA-seq experiment, the dependent variables may be the
  565. count of RNA-seq reads for each annotated gene.
  566. In abstract terms, each dependent variable being measured is referred to
  567. as a feature.
  568. The simplest approach to analyzing such data would be to fit the same model
  569. independently to each feature.
  570. However, this is undesirable for most genomics data sets.
  571. Genomics assays like high-throughput sequencing are expensive, and often
  572. generating the samples is also quite expensive and time-consuming.
  573. This expense limits the sample sizes typically employed in genomics experiments
  574. , and as a result the statistical power of each individual feature's linear
  575. model is likewise limited.
  576. However, because thousands of features from the same samples are analyzed
  577. together, there is an opportunity to improve the statistical power of the
  578. analysis by exploiting shared patterns of variation across features.
  579. This is the core feature of limma, a linear modeling framework designed
  580. for genomic data.
  581. Limma is typically used to analyze expression microarray data, and more
  582. recently RNA-seq data, but it can also be used to analyze any other data
  583. for which linear modeling is appropriate.
  584. \end_layout
  585. \begin_layout Standard
  586. The central challenge when fitting a linear model is to estimate the variance
  587. of the data accurately.
  588. This quantity is the most difficult to estimate when sample sizes are small.
  589. A single shared variance could be estimated for all of the features together,
  590. and this estimate would be very stable, in contrast to the individual feature
  591. variance estimates.
  592. However, this would require the assumption that every feature is equally
  593. variable, which is known to be false for most genomic data sets.
  594. Limma offers a compromise between these two extremes by using a method
  595. called empirical Bayes moderation to
  596. \begin_inset Quotes eld
  597. \end_inset
  598. squeeze
  599. \begin_inset Quotes erd
  600. \end_inset
  601. the distribution of estimated variances toward a single common value that
  602. represents the variance of an average feature in the data
  603. \begin_inset CommandInset citation
  604. LatexCommand cite
  605. key "Smyth2004"
  606. literal "false"
  607. \end_inset
  608. .
  609. While the individual feature variance estimates are not stable, the common
  610. variance estiamate for the entire data set is quite stable, so using a
  611. combination of the two yields a variance estimate for each feature with
  612. greater precision than the individual feature varaiances.
  613. The trade-off for this improvement is that squeezing each estimated variance
  614. toward the common value introduces some bias – the variance will be underestima
  615. ted for features with high variance and overestimated for features with
  616. low variance.
  617. Essentially, limma assumes that extreme variances are less common than
  618. variances close to the common value.
  619. The variance estimates from this empirical Bayes procedure are shown empiricall
  620. y to yield greater statistical power than either the individual feature
  621. variances or the single common value.
  622. \end_layout
  623. \begin_layout Standard
  624. On top of this core framework, limma also implements many other enhancements
  625. that, further relax the assumptions of the model and extend the scope of
  626. what kinds of data it can analyze.
  627. Instead of squeezing toward a single common variance value, limma can model
  628. the common variance as a function of a covariate, such as average expression
  629. \begin_inset CommandInset citation
  630. LatexCommand cite
  631. key "Law2013"
  632. literal "false"
  633. \end_inset
  634. .
  635. This is essential for RNA-seq data, where higher gene counts yield more
  636. precise expression measurements and therefore smaller variances than low-count
  637. genes.
  638. While linear models typically assume that all samples have equal variance,
  639. limma is able to relax this assumption by identifying and down-weighting
  640. samples the diverge more strongly from the lienar model across many features
  641. \begin_inset CommandInset citation
  642. LatexCommand cite
  643. key "Ritchie2006,Liu2015"
  644. literal "false"
  645. \end_inset
  646. .
  647. In addition, limma is also able to fit simple mixed models incorporating
  648. one random effect in addition to the fixed effects represented by an ordinary
  649. linear model
  650. \begin_inset CommandInset citation
  651. LatexCommand cite
  652. key "Smyth2005a"
  653. literal "false"
  654. \end_inset
  655. .
  656. Once again, limma shares information between features to obtain a robust
  657. estimate for the random effect correlation.
  658. \end_layout
  659. \begin_layout Subsubsection
  660. edgeR provides limma-like analysis features for count data
  661. \end_layout
  662. \begin_layout Standard
  663. Although limma can be applied to read counts from RNA-seq data, it is less
  664. suitable for counts from ChIP-seq data, which tend to be much smaller and
  665. therefore violate the assumption of a normal distribution more severely.
  666. For all count-based data, the edgeR package works similarly to limma, but
  667. uses a generalized linear model instead of a linear model.
  668. The most important difference is that the GLM in edgeR models the counts
  669. directly using a negative binomial distribution rather than modeling the
  670. normalized log counts using a normal distribution
  671. \begin_inset CommandInset citation
  672. LatexCommand cite
  673. key "Chen2014,McCarthy2012,Robinson2010a"
  674. literal "false"
  675. \end_inset
  676. .
  677. The negative binomial is a good fit for count data because it can be derived
  678. as a gamma-distributed mixture of Poisson distributions.
  679. The Poisson distribution accurately represents the distribution of counts
  680. expected for a given gene abundance, and the gamma distribution is then
  681. used to represent the variation in gene abundance between biological replicates.
  682. For this reason, the square root of the dispersion paramter of the negative
  683. binomial is sometimes referred to as the biological coefficient of variation,
  684. since it represents the variability that was present in the samples prior
  685. to the Poisson
  686. \begin_inset Quotes eld
  687. \end_inset
  688. noise
  689. \begin_inset Quotes erd
  690. \end_inset
  691. that was generated by the random sampling of reads in proportion to feature
  692. abundances.
  693. The choice of a gamma distribution is arbitrary and motivated by mathematical
  694. convenience, since a gamma-Poisson mixture yields the numerically tractable
  695. negative binomial distribution.
  696. Thus, edgeR assumes
  697. \emph on
  698. a prioi
  699. \emph default
  700. that the variation in abundances between replicates follows a gamma distribution.
  701. For differential abundance testing, edgeR offers a likelihood ratio test,
  702. but more recently recommends a quasi-likelihood test that properly factors
  703. the uncertainty in variance estimation into the statistical significance
  704. for each feature
  705. \begin_inset CommandInset citation
  706. LatexCommand cite
  707. key "Lund2012"
  708. literal "false"
  709. \end_inset
  710. .
  711. \end_layout
  712. \begin_layout Subsubsection
  713. ChIP-seq Peak calling
  714. \end_layout
  715. \begin_layout Standard
  716. Unlike RNA-seq data, in which gene annotations provide a well-defined set
  717. of genomic regions in which to count reads, ChIP-seq data can potentially
  718. occur anywhere in the genome.
  719. However, most genome regions will not contain significant ChIP-seq read
  720. coverage, and analyzing every position in the entire genome is statistically
  721. and computationally infeasible, so it is necesary to identify regions of
  722. interest inside which ChIP-seq reads will be counted and analyzed.
  723. One option is to define a set of interesting regions
  724. \emph on
  725. a priori
  726. \emph default
  727. , for example by defining a promoter region for each annotated gene.
  728. However, it is also possible to use the ChIP-seq data itself to identify
  729. regions with ChIP-seq read coverage significantly above the background
  730. level, known as peaks.
  731. \end_layout
  732. \begin_layout Standard
  733. There are generally two kinds of peaks that can be identified: narrow peaks
  734. and broadly enriched regions.
  735. Proteins like transcription factors that bind specific sites in the genome
  736. typically show most of their read coverage at these specific sites and
  737. very little coverage anywhere else.
  738. Because the footprint of the protein is consistent wherever it binds, each
  739. peak has a consistent size, typically tens to hundreds of base pairs.
  740. Algorithms like MACS exploit this pattern to identify specific loci at
  741. which such
  742. \begin_inset Quotes eld
  743. \end_inset
  744. narrow peaks
  745. \begin_inset Quotes erd
  746. \end_inset
  747. occur by looking for the characteristic peak shape in the ChIP-seq coverage
  748. rising above the surrounding background coverage
  749. \begin_inset CommandInset citation
  750. LatexCommand cite
  751. key "Zhang2008"
  752. literal "false"
  753. \end_inset
  754. .
  755. In contrast, some proteins, chief among them histones, do not bind only
  756. at a small number of specific sites, but rather bind potentailly almost
  757. everywhere in the entire genome.
  758. When looking at histone marks, adjacent histones tend to be similarly marked,
  759. and a given mark may be present on an arbitrary number of consecutive histones
  760. along the genome.
  761. Hence, there is no consistent
  762. \begin_inset Quotes eld
  763. \end_inset
  764. footprint size
  765. \begin_inset Quotes erd
  766. \end_inset
  767. for ChIP-seq peaks based on histone marks, and peaks typically span many
  768. histones.
  769. Hence, typical peaks span many hundreds or even thousands of base pairs.
  770. Instead of identifying specific loci of strong enrichment, algorithms like
  771. SICER assume that peaks are represented in the ChIP-seq data by modest
  772. enrichment above background occurring across broad regions, and they attempt
  773. to identify the extent of those regions
  774. \begin_inset CommandInset citation
  775. LatexCommand cite
  776. key "Zang2009"
  777. literal "false"
  778. \end_inset
  779. .
  780. In all cases, better results are obtained if the local background coverage
  781. level can be estimated from ChIP-seq input samples, since various biases
  782. can result in uneven background coverage.
  783. \end_layout
  784. \begin_layout Standard
  785. Regardless of the type of peak identified, it is important to identify peaks
  786. that occur consistently across biological replicates.
  787. The ENCODE project has developed a method called irreproducible discovery
  788. rate for this purpose
  789. \begin_inset CommandInset citation
  790. LatexCommand cite
  791. key "Li2006"
  792. literal "false"
  793. \end_inset
  794. .
  795. The IDR is defined as the probability that a peak identified in one biological
  796. replicate will
  797. \emph on
  798. not
  799. \emph default
  800. also be identified in a second replicate.
  801. Where the more familiar false discovery rate measures the degree of corresponde
  802. nce between a data-derived ranked list and the true list of significant
  803. features, IDR instead measures the degree of correspondence between two
  804. ranked lists derived from different data.
  805. IDR assumes that the highest-ranked features are
  806. \begin_inset Quotes eld
  807. \end_inset
  808. signal
  809. \begin_inset Quotes erd
  810. \end_inset
  811. peaks that tend to be listed in the same order in both lists, while the
  812. lowest-ranked features are essentially noise peaks, listed in random order
  813. with no correspondence between the lists.
  814. IDR attempts to locate the
  815. \begin_inset Quotes eld
  816. \end_inset
  817. crossover point
  818. \begin_inset Quotes erd
  819. \end_inset
  820. between the signal and the noise by determining how for down the list the
  821. correspondence between feature ranks breaks down.
  822. \end_layout
  823. \begin_layout Standard
  824. In addition to other considerations, if called peaks are to be used as regions
  825. of interest for differential abundance analysis, then care must be taken
  826. to call peaks in a way that is blind to differential abundance between
  827. experimental conditions, or else the statistical significance calculations
  828. for differential abundance will overstate their confidence in the results.
  829. The csaw package provides guidelines for calling peaks in this way: peaks
  830. are called based on a combination of all ChIP-seq reads from all experimental
  831. conditions, so that the identified peaks are based on the average abundance
  832. across all conditions, which is independent of any differential abundance
  833. between condtions
  834. \begin_inset CommandInset citation
  835. LatexCommand cite
  836. key "Lun2015a"
  837. literal "false"
  838. \end_inset
  839. .
  840. \end_layout
  841. \begin_layout Subsubsection
  842. Normalization of high-throughput data is non-trivial and application-dependant
  843. \end_layout
  844. \begin_layout Standard
  845. High-throughput data sets invariable require some kind of normalization
  846. before further analysis can be conducted.
  847. In general, the goal of normalization is to remove effects in the data
  848. that are caused by technical factors that have nothing to do with the biology
  849. being studied.
  850. \end_layout
  851. \begin_layout Standard
  852. For Affymetrix expression arrays, the standard normalization algorithm used
  853. in most analyses is Robust Multichip Average (RMA).
  854. RMA is designed with the assumption that some fraction of probes on each
  855. array will be artifactual and takes advantage of the fact that each gene
  856. is represented by multiple probes by implementing normalization and summarizati
  857. on steps that are robust against outlier probes.
  858. However, RMA uses the probe intensities of all arrays in the data set in
  859. the normalization of each individual array, meaning that the normalized
  860. expression values in each array depend on every array in the data set,
  861. and will necessarily change each time an array is added or removed from
  862. the data set.
  863. If this is undesirable, frozen RMA implements a variant of RMA where the
  864. relevant distributional parameters are learned from a large reference set
  865. of diverse public array data sets and then
  866. \begin_inset Quotes eld
  867. \end_inset
  868. frozen
  869. \begin_inset Quotes erd
  870. \end_inset
  871. , so that each array is effectively normalized against this frozen reference
  872. set rather than the other arrays in the data set under study.
  873. \end_layout
  874. \begin_layout Standard
  875. In contrast, high-throughput sequencing data present very different normalizatio
  876. n challenges.
  877. The simplest case is RNA-seq in which read counts are obtained for a set
  878. of gene annotations, yielding a matrix of counts with rows representing
  879. genes and columns representing samples.
  880. Because RNA-seq approximates a process of sampling from a population with
  881. replacement, each gene's count is only interpretable as a fraction of the
  882. total reads for that sample.
  883. For that reason, RNA-seq abundances are often reported as counts per million
  884. (CPM).
  885. Furthermore, if the abundance of a single gene increases, then in order
  886. for its fraction of the total reads to increase, all other genes' fractions
  887. must decrease to accomodate it.
  888. This effect is known as composition bias, and it is an artifact of the
  889. read sampling process that has nothing to do with the biology of the samples
  890. and must therefore be normalized out.
  891. The most commonly used methods to normalize for composition bias in RNA-seq
  892. data seek to equalize the average gene abundance across samples, under
  893. the assumption that the average gene is likely not changing
  894. \begin_inset CommandInset citation
  895. LatexCommand cite
  896. key "Robinson2010,Anders2010"
  897. literal "false"
  898. \end_inset
  899. .
  900. \end_layout
  901. \begin_layout Standard
  902. In ChIP-seq data, normalization is not as straightforward.
  903. The csaw package implements several different normalization strategies
  904. and provides guidance on when to use each one
  905. \begin_inset CommandInset citation
  906. LatexCommand cite
  907. key "Lun2015a"
  908. literal "false"
  909. \end_inset
  910. .
  911. Briefly, a typical ChIP-seq sample has a bimodal distribution of read counts:
  912. a low-abundance mode representing background regions and a high-abundance
  913. mode representing signal regions.
  914. This offers two potential normalization targets: equalizing background
  915. coverage or equalizing signal coverage.
  916. If the experiment is well controlled and ChIP efficiency is known to be
  917. consistent across all samples, then normalizing the background coverage
  918. to be equal across all samples is a reasonable strategy.
  919. If this is not a safe assumption, then the preferred strategy is to normalize
  920. the signal regions in a way similar to RNA-seq data by assuming that the
  921. average signal region is not changing abundance between samples.
  922. Beyond this, if a ChIP-seq experiment has a more complicated structure
  923. that doesn't show the typical bimodal count distribution, it may be necessary
  924. to implement a normalization as a smooth function of abundance.
  925. However, this strategy makes a much stronger assumption about the data:
  926. that the average log fold change is zero across all abundance levels.
  927. Hence, the simpler scaling normalziations based on background or signal
  928. regions are generally preferred whenever possible.
  929. \end_layout
  930. \begin_layout Subsubsection
  931. ComBat and SVA for correction of known and unknown batch effects
  932. \end_layout
  933. \begin_layout Standard
  934. In addition to well-understood effects that can be easily normalized out,
  935. a data set often contains confounding biological effects that must be accounted
  936. for in the modeling step.
  937. For instance, in an experiment with pre-treatment and post-treatment samples
  938. of cells from several different donors, donor variability represents a
  939. known batch effect.
  940. The most straightforward correction for known batches is to estimate the
  941. mean for each batch independently and subtract out the differences, so
  942. that all batches have identical means for each feature.
  943. However, as with variance estimation, estimating the differences in batch
  944. means is not necessarily robust at the feature level, so the ComBat method
  945. adds empirical Bayes squeezing of the batch mean differences toward a common
  946. value, analogous to limma's empirical Bayes squeezing of feature variance
  947. estimates
  948. \begin_inset CommandInset citation
  949. LatexCommand cite
  950. key "Johnson2007"
  951. literal "false"
  952. \end_inset
  953. .
  954. Effectively, ComBat assumes that modest differences between batch means
  955. are real batch effects, but extreme differences between batch means are
  956. more likely to be the result of outlier observations that happen to line
  957. up with the batches rather than a genuine batch effect.
  958. The result is a batch correction that is more robust against outliers than
  959. simple subtraction of mean differences subtraction.
  960. \end_layout
  961. \begin_layout Standard
  962. In some data sets, unknown batch effects may be present due to inherent
  963. variability in in the data, either caused by technical or biological effects.
  964. Examples of unknown batch effects include variations in enrichment efficiency
  965. between ChIP-seq samples, variations in populations of different cell types,
  966. and the effects of uncontrolled environmental factors on gene expression
  967. in humans or live animals.
  968. In an ordinary linear model context, unknown batch effects cannot be inferred
  969. and must be treated as random noise.
  970. However, in high-throughput experiments, once again information can be
  971. shared across features to identify patterns of un-modeled variation that
  972. are repeated in many features.
  973. One attractive strategy would be to perform singular value decomposition
  974. (SVD) on the matrix os linear model residuals (which contain all the un-modeled
  975. variation in the data) and take the first few singular vectors as batch
  976. effects.
  977. While this can be effective, it makes the unreasonable assumption that
  978. all batch effects are uncorrelated with any of the effects being modeled.
  979. Surrogate variable analysis (SVA) starts with this approach, but takes
  980. some additional steps to identify batch effects in the full data that are
  981. both highly correlated with the singular vectors in the residuals and least
  982. correlated with the effects of interest
  983. \begin_inset CommandInset citation
  984. LatexCommand cite
  985. key "Leek2007"
  986. literal "false"
  987. \end_inset
  988. .
  989. Since the final batch effects are estimated from the full data, moderate
  990. correlations between the batch effects and effects of interest are allowed,
  991. which gives SVA much more freedom to estimate the true extent of the batch
  992. effects compared to simple residual SVD.
  993. Once the surrogate variables are estimated, they can be included as coefficient
  994. s in the linear model in a similar fashion to known batch effects in order
  995. to subtract out their effects on each feature's abundance.
  996. \end_layout
  997. \begin_layout Subsubsection
  998. Factor analysis: PCA, MDS, MOFA
  999. \end_layout
  1000. \begin_layout Standard
  1001. \begin_inset Flex TODO Note (inline)
  1002. status open
  1003. \begin_layout Plain Layout
  1004. Not sure if this merits a subsection here.
  1005. \end_layout
  1006. \end_inset
  1007. \end_layout
  1008. \begin_layout Itemize
  1009. Batch-corrected PCA is informative, but careful application is required
  1010. to avoid bias
  1011. \end_layout
  1012. \begin_layout Section
  1013. Innovation
  1014. \end_layout
  1015. \begin_layout Standard
  1016. \begin_inset Flex TODO Note (inline)
  1017. status open
  1018. \begin_layout Plain Layout
  1019. Is this entire section redundant with the Approach sections of each chapter?
  1020. I'm not really sure what to write here.
  1021. \end_layout
  1022. \end_inset
  1023. \end_layout
  1024. \begin_layout Subsection
  1025. MSC infusion to improve transplant outcomes (prevent/delay rejection)
  1026. \end_layout
  1027. \begin_layout Standard
  1028. \begin_inset Flex TODO Note (inline)
  1029. status open
  1030. \begin_layout Plain Layout
  1031. Do I still talk about this? It's the motivation for chapter 4, but I don't
  1032. actually present any work related to MSCs.
  1033. \end_layout
  1034. \end_inset
  1035. \end_layout
  1036. \begin_layout Itemize
  1037. Demonstrated in mice, but not yet in primates
  1038. \end_layout
  1039. \begin_layout Itemize
  1040. Mechanism currently unknown, but MSC are known to be immune modulatory
  1041. \end_layout
  1042. \begin_layout Itemize
  1043. Characterize MSC response to interferon gamma
  1044. \end_layout
  1045. \begin_layout Itemize
  1046. IFN-g is thought to stimulate their function
  1047. \end_layout
  1048. \begin_layout Itemize
  1049. Test IFN-g treated MSC infusion as a therapy to delay graft rejection in
  1050. cynomolgus monkeys
  1051. \end_layout
  1052. \begin_layout Itemize
  1053. Monitor animals post-transplant using blood RNA-seq at serial time points
  1054. \end_layout
  1055. \begin_layout Subsection
  1056. Investigate dynamics of histone marks in CD4 T-cell activation and memory
  1057. \end_layout
  1058. \begin_layout Itemize
  1059. Previous studies have looked at single snapshots of histone marks
  1060. \end_layout
  1061. \begin_layout Itemize
  1062. Instead, look at changes in histone marks across activation and memory
  1063. \end_layout
  1064. \begin_layout Subsection
  1065. High-throughput sequencing and microarray technologies
  1066. \end_layout
  1067. \begin_layout Itemize
  1068. Powerful methods for assaying gene expression and epigenetics across entire
  1069. genomes
  1070. \end_layout
  1071. \begin_layout Itemize
  1072. Proper analysis requires finding and exploiting systematic genome-wide trends
  1073. \end_layout
  1074. \begin_layout Chapter
  1075. Reproducible genome-wide epigenetic analysis of H3K4 and H3K27 methylation
  1076. in naive and memory CD4 T-cell activation
  1077. \end_layout
  1078. \begin_layout Standard
  1079. \begin_inset Flex TODO Note (inline)
  1080. status open
  1081. \begin_layout Plain Layout
  1082. Chapter author list: Me, Sarah, Dan
  1083. \end_layout
  1084. \end_inset
  1085. \end_layout
  1086. \begin_layout Standard
  1087. \begin_inset Flex TODO Note (inline)
  1088. status open
  1089. \begin_layout Plain Layout
  1090. Need better section titles throughout the entire chapter
  1091. \end_layout
  1092. \end_inset
  1093. \end_layout
  1094. \begin_layout Section
  1095. Approach
  1096. \end_layout
  1097. \begin_layout Standard
  1098. \begin_inset Flex TODO Note (inline)
  1099. status open
  1100. \begin_layout Plain Layout
  1101. Check on the exact correct way to write
  1102. \begin_inset Quotes eld
  1103. \end_inset
  1104. CD4 T-cell
  1105. \begin_inset Quotes erd
  1106. \end_inset
  1107. .
  1108. I think there might be a plus sign somwehere in there now? Also, maybe
  1109. figure out a reasonable way to abbreviate
  1110. \begin_inset Quotes eld
  1111. \end_inset
  1112. naive CD4 T-cells
  1113. \begin_inset Quotes erd
  1114. \end_inset
  1115. and
  1116. \begin_inset Quotes eld
  1117. \end_inset
  1118. memory CD4 T-cells
  1119. \begin_inset Quotes erd
  1120. \end_inset
  1121. .
  1122. \end_layout
  1123. \end_inset
  1124. \end_layout
  1125. \begin_layout Standard
  1126. \begin_inset Flex TODO Note (inline)
  1127. status open
  1128. \begin_layout Plain Layout
  1129. Is it ok to just copy a bunch of citations from the intros to Sarah's papers?
  1130. That feels like cheating somehow.
  1131. \end_layout
  1132. \end_inset
  1133. \end_layout
  1134. \begin_layout Standard
  1135. CD4 T-cells are central to all adaptive immune responses, as well as immune
  1136. memory [CITE?].
  1137. After an infection is cleared, a subset of the naive CD4 T-cells that responded
  1138. to that infection differentiate into memory CD4 T-cells, which are responsible
  1139. for responding to the same pathogen in the future.
  1140. Memory CD4 T-cells are functionally distinct, able to respond to an infection
  1141. more quickly and without the co-stimulation requried by naive CD4 T-cells.
  1142. However, the molecular mechanisms underlying this functional distinction
  1143. are not well-understood.
  1144. Epigenetic regulation via histone modification is thought to play an important
  1145. role, but while many studies have looked at static snapshots of histone
  1146. methylation in T-cells, few studies have looked at the dynamics of histone
  1147. regulation after T-cell activation, nor the differences in histone methylation
  1148. between naive and memory T-cells.
  1149. H3K4me2, H3K4me3 and H3K27me3 are three histone marks thought to be major
  1150. epigenetic regulators of gene expression.
  1151. The goal of the present study is to investigate the role of these histone
  1152. marks in CD4 T-cell activation kinetics and memory differentiation.
  1153. In static snapshots, H3K4me2 and H3K4me3 are often observed in the promoters
  1154. of highly transcribed genes, while H3K27me3 is more often observed in promoters
  1155. of inactive genes with little to no transcription occurring.
  1156. As a result, the two H3K4 marks have been characterized as
  1157. \begin_inset Quotes eld
  1158. \end_inset
  1159. activating
  1160. \begin_inset Quotes erd
  1161. \end_inset
  1162. marks, while H3K27me3 has been characterized as
  1163. \begin_inset Quotes eld
  1164. \end_inset
  1165. deactivating
  1166. \begin_inset Quotes erd
  1167. \end_inset
  1168. .
  1169. Despite these characterizations, the actual causal relationship between
  1170. these histone modifications and gene transcription is complex and likely
  1171. involves positive and negative feedback loops between the two.
  1172. \end_layout
  1173. \begin_layout Standard
  1174. In order to investigate the relationship between gene expression and these
  1175. histone modifications in the context of naive and memory CD4 T-cell activation,
  1176. a previously published data set of combined RNA-seq and ChIP-seq data was
  1177. re-analyzed using up-to-date methods designed to address the specific analysis
  1178. challenges posed by this data set.
  1179. The data set contains naive and memory CD4 T-cell samples in a time course
  1180. before and after activation.
  1181. Like the original analysis, this analysis looks at the dynamics of these
  1182. marks histone marks and compare them to gene expression dynamics at the
  1183. same time points during activation, as well as comapre them between naive
  1184. and memory cells, in hope of discovering evidence of new mechanistic details
  1185. in the interplay between them.
  1186. The original analysis of this data treated each gene promoter as a monolithinc
  1187. unit and mostly assumed that ChIP-seq reads or peaks occuring anywhere
  1188. within a promoter were equivalent, regardless of where they occurred relative
  1189. to the gene structure.
  1190. For an initial analysis of the data, this was a necessary simplifying assumptio
  1191. n.
  1192. The current analysis aims to relax this assumption, first by directly analyzing
  1193. ChIP-seq peaks for differential modification, and second by taking a mor
  1194. granular look at the ChIP-seq read coverage within promoter regions to
  1195. ask whether the location of histone modifications relative to the gene's
  1196. TSS is an important factor, as opposed to simple proximity.
  1197. \end_layout
  1198. \begin_layout Section
  1199. Methods
  1200. \end_layout
  1201. \begin_layout Standard
  1202. \begin_inset Flex TODO Note (inline)
  1203. status open
  1204. \begin_layout Plain Layout
  1205. Look up some more details from the papers (e.g.
  1206. activation method).
  1207. \end_layout
  1208. \end_inset
  1209. \end_layout
  1210. \begin_layout Standard
  1211. A reproducible workflow was written to analyze the raw ChIP-seq and RNA-seq
  1212. data from previous studies
  1213. \begin_inset CommandInset citation
  1214. LatexCommand cite
  1215. key "gh-cd4-csaw,LaMere2016,LaMere2017"
  1216. literal "true"
  1217. \end_inset
  1218. .
  1219. Briefly, this data consists of RNA-seq and ChIP-seq from CD4 T-cells cultured
  1220. from 4 donors.
  1221. From each donor, naive and memory CD4 T-cells were isolated separately.
  1222. Then cultures of both cells were activated [how?], and samples were taken
  1223. at 4 time points: Day 0 (pre-activation), Day 1 (early activation), Day
  1224. 5 (peak activation), and Day 14 (post-activation).
  1225. For each combination of cell type and time point, RNA was isolated and
  1226. sequenced, and ChIP-seq was performed for each of 3 histone marks: H3K4me2,
  1227. H3K4me3, and H3K27me3.
  1228. The ChIP-seq input DNA was also sequenced for each sample.
  1229. The result was 32 samples for each assay.
  1230. \end_layout
  1231. \begin_layout Subsection
  1232. RNA-seq differential expression analysis
  1233. \end_layout
  1234. \begin_layout Standard
  1235. \begin_inset Note Note
  1236. status collapsed
  1237. \begin_layout Plain Layout
  1238. \begin_inset Float figure
  1239. wide false
  1240. sideways false
  1241. status open
  1242. \begin_layout Plain Layout
  1243. \align center
  1244. \begin_inset Float figure
  1245. wide false
  1246. sideways false
  1247. status collapsed
  1248. \begin_layout Plain Layout
  1249. \align center
  1250. \begin_inset Graphics
  1251. filename graphics/CD4-csaw/rnaseq-compare/ensmebl-vs-entrez-star-CROP.png
  1252. lyxscale 25
  1253. width 35col%
  1254. groupId rna-comp-subfig
  1255. \end_inset
  1256. \end_layout
  1257. \begin_layout Plain Layout
  1258. \begin_inset Caption Standard
  1259. \begin_layout Plain Layout
  1260. STAR quantification, Entrez vs Ensembl gene annotation
  1261. \end_layout
  1262. \end_inset
  1263. \end_layout
  1264. \end_inset
  1265. \begin_inset space \qquad{}
  1266. \end_inset
  1267. \begin_inset Float figure
  1268. wide false
  1269. sideways false
  1270. status collapsed
  1271. \begin_layout Plain Layout
  1272. \align center
  1273. \begin_inset Graphics
  1274. filename graphics/CD4-csaw/rnaseq-compare/ensmebl-vs-entrez-shoal-CROP.png
  1275. lyxscale 25
  1276. width 35col%
  1277. groupId rna-comp-subfig
  1278. \end_inset
  1279. \end_layout
  1280. \begin_layout Plain Layout
  1281. \begin_inset Caption Standard
  1282. \begin_layout Plain Layout
  1283. Salmon+Shoal quantification, Entrez vs Ensembl gene annotation
  1284. \end_layout
  1285. \end_inset
  1286. \end_layout
  1287. \end_inset
  1288. \end_layout
  1289. \begin_layout Plain Layout
  1290. \align center
  1291. \begin_inset Float figure
  1292. wide false
  1293. sideways false
  1294. status collapsed
  1295. \begin_layout Plain Layout
  1296. \align center
  1297. \begin_inset Graphics
  1298. filename graphics/CD4-csaw/rnaseq-compare/star-vs-hisat2-CROP.png
  1299. lyxscale 25
  1300. width 35col%
  1301. groupId rna-comp-subfig
  1302. \end_inset
  1303. \end_layout
  1304. \begin_layout Plain Layout
  1305. \begin_inset Caption Standard
  1306. \begin_layout Plain Layout
  1307. STAR vs HISAT2 quantification, Ensembl gene annotation
  1308. \end_layout
  1309. \end_inset
  1310. \end_layout
  1311. \end_inset
  1312. \begin_inset space \qquad{}
  1313. \end_inset
  1314. \begin_inset Float figure
  1315. wide false
  1316. sideways false
  1317. status collapsed
  1318. \begin_layout Plain Layout
  1319. \align center
  1320. \begin_inset Graphics
  1321. filename graphics/CD4-csaw/rnaseq-compare/star-vs-salmon-CROP.png
  1322. lyxscale 25
  1323. width 35col%
  1324. groupId rna-comp-subfig
  1325. \end_inset
  1326. \end_layout
  1327. \begin_layout Plain Layout
  1328. \begin_inset Caption Standard
  1329. \begin_layout Plain Layout
  1330. Salomn vs STAR quantification, Ensembl gene annotation
  1331. \end_layout
  1332. \end_inset
  1333. \end_layout
  1334. \end_inset
  1335. \end_layout
  1336. \begin_layout Plain Layout
  1337. \align center
  1338. \begin_inset Float figure
  1339. wide false
  1340. sideways false
  1341. status collapsed
  1342. \begin_layout Plain Layout
  1343. \align center
  1344. \begin_inset Graphics
  1345. filename graphics/CD4-csaw/rnaseq-compare/salmon-vs-kallisto-CROP.png
  1346. lyxscale 25
  1347. width 35col%
  1348. groupId rna-comp-subfig
  1349. \end_inset
  1350. \end_layout
  1351. \begin_layout Plain Layout
  1352. \begin_inset Caption Standard
  1353. \begin_layout Plain Layout
  1354. Salmon vs Kallisto quantification, Ensembl gene annotation
  1355. \end_layout
  1356. \end_inset
  1357. \end_layout
  1358. \end_inset
  1359. \begin_inset space \qquad{}
  1360. \end_inset
  1361. \begin_inset Float figure
  1362. wide false
  1363. sideways false
  1364. status collapsed
  1365. \begin_layout Plain Layout
  1366. \align center
  1367. \begin_inset Graphics
  1368. filename graphics/CD4-csaw/rnaseq-compare/salmon-vs-shoal-CROP.png
  1369. lyxscale 25
  1370. width 35col%
  1371. groupId rna-comp-subfig
  1372. \end_inset
  1373. \end_layout
  1374. \begin_layout Plain Layout
  1375. \begin_inset Caption Standard
  1376. \begin_layout Plain Layout
  1377. Salmon+Shoal vs Salmon alone, Ensembl gene annotation
  1378. \end_layout
  1379. \end_inset
  1380. \end_layout
  1381. \end_inset
  1382. \end_layout
  1383. \begin_layout Plain Layout
  1384. \begin_inset Caption Standard
  1385. \begin_layout Plain Layout
  1386. \begin_inset CommandInset label
  1387. LatexCommand label
  1388. name "fig:RNA-norm-comp"
  1389. \end_inset
  1390. RNA-seq comparisons
  1391. \end_layout
  1392. \end_inset
  1393. \end_layout
  1394. \end_inset
  1395. \end_layout
  1396. \end_inset
  1397. \end_layout
  1398. \begin_layout Standard
  1399. Sequence reads were retrieved from the Sequence Read Archive (SRA)
  1400. \begin_inset CommandInset citation
  1401. LatexCommand cite
  1402. key "Leinonen2011"
  1403. literal "false"
  1404. \end_inset
  1405. .
  1406. Five different alignment and quantification methods were tested for the
  1407. RNA-seq data
  1408. \begin_inset CommandInset citation
  1409. LatexCommand cite
  1410. key "Dobin2012,Kim2019,Liao2014,Pimentel2016,Patro2017,gh-shoal,gh-hg38-ref"
  1411. literal "false"
  1412. \end_inset
  1413. .
  1414. Each quantification was tested with both Ensembl transcripts and UCSC known
  1415. gene annotations [CITE? Also which versions of each?].
  1416. Comparisons of downstream results from each combination of quantification
  1417. method and reference revealed that all quantifications gave broadly similar
  1418. results for most genes, so shoal with the Ensembl annotation was chosen
  1419. as the method theoretically most likely to partially mitigate some of the
  1420. batch effect in the data.
  1421. \end_layout
  1422. \begin_layout Standard
  1423. \begin_inset Float figure
  1424. wide false
  1425. sideways false
  1426. status collapsed
  1427. \begin_layout Plain Layout
  1428. \align center
  1429. \begin_inset Float figure
  1430. wide false
  1431. sideways false
  1432. status open
  1433. \begin_layout Plain Layout
  1434. \align center
  1435. \begin_inset Graphics
  1436. filename graphics/CD4-csaw/RNA-seq/PCA-no-batchsub-CROP.png
  1437. lyxscale 25
  1438. width 75col%
  1439. groupId rna-pca-subfig
  1440. \end_inset
  1441. \end_layout
  1442. \begin_layout Plain Layout
  1443. \begin_inset Caption Standard
  1444. \begin_layout Plain Layout
  1445. \series bold
  1446. \begin_inset CommandInset label
  1447. LatexCommand label
  1448. name "fig:RNA-PCA-no-batchsub"
  1449. \end_inset
  1450. Before batch correction
  1451. \end_layout
  1452. \end_inset
  1453. \end_layout
  1454. \end_inset
  1455. \end_layout
  1456. \begin_layout Plain Layout
  1457. \align center
  1458. \begin_inset Float figure
  1459. wide false
  1460. sideways false
  1461. status open
  1462. \begin_layout Plain Layout
  1463. \align center
  1464. \begin_inset Graphics
  1465. filename graphics/CD4-csaw/RNA-seq/PCA-combat-batchsub-CROP.png
  1466. lyxscale 25
  1467. width 75col%
  1468. groupId rna-pca-subfig
  1469. \end_inset
  1470. \end_layout
  1471. \begin_layout Plain Layout
  1472. \begin_inset Caption Standard
  1473. \begin_layout Plain Layout
  1474. \series bold
  1475. \begin_inset CommandInset label
  1476. LatexCommand label
  1477. name "fig:RNA-PCA-ComBat-batchsub"
  1478. \end_inset
  1479. After batch correction with ComBat
  1480. \end_layout
  1481. \end_inset
  1482. \end_layout
  1483. \end_inset
  1484. \end_layout
  1485. \begin_layout Plain Layout
  1486. \begin_inset Caption Standard
  1487. \begin_layout Plain Layout
  1488. \series bold
  1489. \begin_inset CommandInset label
  1490. LatexCommand label
  1491. name "fig:RNA-PCA"
  1492. \end_inset
  1493. PCoA plots of RNA-seq data showing effect of batch correction.
  1494. \end_layout
  1495. \end_inset
  1496. \end_layout
  1497. \end_inset
  1498. \end_layout
  1499. \begin_layout Standard
  1500. Due to an error in sample preparation, the RNA from the samples for days
  1501. 0 and 5 were sequenced using a different kit than those for days 1 and
  1502. 14.
  1503. This induced a substantial batch effect in the data due to differences
  1504. in sequencing biases between the two kits, and this batch effect is unfortunate
  1505. ly confounded with the time point variable (Figure
  1506. \begin_inset CommandInset ref
  1507. LatexCommand ref
  1508. reference "fig:RNA-PCA-no-batchsub"
  1509. plural "false"
  1510. caps "false"
  1511. noprefix "false"
  1512. \end_inset
  1513. ).
  1514. To do the best possible analysis with this data, this batch effect was
  1515. subtracted out from the data using ComBat
  1516. \begin_inset CommandInset citation
  1517. LatexCommand cite
  1518. key "Johnson2007"
  1519. literal "false"
  1520. \end_inset
  1521. , ignoring the time point variable due to the confounding with the batch
  1522. variable.
  1523. The result is a marked improvement, but the unavoidable counfounding with
  1524. time point means that certain real patterns of gene expression will be
  1525. indistinguishable from the batch effect and subtracted out as a result.
  1526. Specifically, any
  1527. \begin_inset Quotes eld
  1528. \end_inset
  1529. zig-zag
  1530. \begin_inset Quotes erd
  1531. \end_inset
  1532. pattern, such as a gene whose expression goes up on day 1, down on day
  1533. 5, and back up again on day 14, will be attenuated or eliminated entirely.
  1534. In the context of a T-cell activation time course, it is unlikely that
  1535. many genes of interest will follow such an expression pattern, so this
  1536. loss was deemed an acceptable cost for correcting the batch effect.
  1537. \end_layout
  1538. \begin_layout Standard
  1539. \begin_inset Float figure
  1540. wide false
  1541. sideways false
  1542. status collapsed
  1543. \begin_layout Plain Layout
  1544. \begin_inset Flex TODO Note (inline)
  1545. status open
  1546. \begin_layout Plain Layout
  1547. Just take the top row
  1548. \end_layout
  1549. \end_inset
  1550. \end_layout
  1551. \begin_layout Plain Layout
  1552. \align center
  1553. \begin_inset Graphics
  1554. filename graphics/CD4-csaw/RNA-seq/weights-vs-covars-CROP.png
  1555. lyxscale 25
  1556. width 100col%
  1557. groupId colwidth-raster
  1558. \end_inset
  1559. \end_layout
  1560. \begin_layout Plain Layout
  1561. \begin_inset Caption Standard
  1562. \begin_layout Plain Layout
  1563. \series bold
  1564. \begin_inset CommandInset label
  1565. LatexCommand label
  1566. name "fig:RNA-seq-weights-vs-covars"
  1567. \end_inset
  1568. RNA-seq sample weights, grouped by experimental and technical covariates.
  1569. \end_layout
  1570. \end_inset
  1571. \end_layout
  1572. \end_inset
  1573. \end_layout
  1574. \begin_layout Standard
  1575. However, removing the systematic component of the batch effect still leaves
  1576. the noise component.
  1577. The gene quantifications from the first batch are substantially noisier
  1578. than those in the second batch.
  1579. This analysis corrected for this by using limma's sample weighting method
  1580. to assign lower weights to the noisy samples of batch 1
  1581. \begin_inset CommandInset citation
  1582. LatexCommand cite
  1583. key "Ritchie2006,Liu2015"
  1584. literal "false"
  1585. \end_inset
  1586. .
  1587. The resulting analysis gives an accurate assessment of statistical significance
  1588. for all comparisons, which unfortuantely means a loss of statistical power
  1589. for comparisons involving samples in batch 1.
  1590. \end_layout
  1591. \begin_layout Standard
  1592. In any case, the RNA-seq counts were first normalized using trimmed mean
  1593. of M-values
  1594. \begin_inset CommandInset citation
  1595. LatexCommand cite
  1596. key "Robinson2010"
  1597. literal "false"
  1598. \end_inset
  1599. , converted to normalized logCPM with quality weights using voomWithQualityWeigh
  1600. ts
  1601. \begin_inset CommandInset citation
  1602. LatexCommand cite
  1603. key "Law2013,Liu2015"
  1604. literal "false"
  1605. \end_inset
  1606. , and batch-corrected at this point using ComBat.
  1607. A linear model was fit to the batch-corrected, quality-weighted data for
  1608. each gene using limma, and each gene was tested for differential expression
  1609. using limma's empirical Bayes moderated
  1610. \begin_inset Formula $t$
  1611. \end_inset
  1612. -test
  1613. \begin_inset CommandInset citation
  1614. LatexCommand cite
  1615. key "Smyth2005,Law2013,Phipson2013"
  1616. literal "false"
  1617. \end_inset
  1618. .
  1619. \end_layout
  1620. \begin_layout Subsection
  1621. ChIP-seq differential modification analysis
  1622. \end_layout
  1623. \begin_layout Standard
  1624. \begin_inset Float figure
  1625. wide false
  1626. sideways false
  1627. status collapsed
  1628. \begin_layout Plain Layout
  1629. \align center
  1630. \begin_inset Float figure
  1631. wide false
  1632. sideways false
  1633. status open
  1634. \begin_layout Plain Layout
  1635. \align center
  1636. \begin_inset Graphics
  1637. filename graphics/CD4-csaw/csaw/CCF-plots-noBL-PAGE2-CROP.pdf
  1638. lyxscale 50
  1639. height 40theight%
  1640. groupId ccf-subfig
  1641. \end_inset
  1642. \end_layout
  1643. \begin_layout Plain Layout
  1644. \begin_inset Caption Standard
  1645. \begin_layout Plain Layout
  1646. \series bold
  1647. \begin_inset CommandInset label
  1648. LatexCommand label
  1649. name "fig:CCF-without-blacklist"
  1650. \end_inset
  1651. Cross-correlation plots without removing blacklisted reads.
  1652. \series default
  1653. Without blacklisting, many artifactual peaks are visible in the cross-correlatio
  1654. ns of the ChIP-seq samples, and the peak at the true fragment size (147
  1655. \begin_inset space ~
  1656. \end_inset
  1657. bp) is frequently overshadowed by the artifactual peak at the read length
  1658. (100
  1659. \begin_inset space ~
  1660. \end_inset
  1661. bp).
  1662. \end_layout
  1663. \end_inset
  1664. \end_layout
  1665. \end_inset
  1666. \end_layout
  1667. \begin_layout Plain Layout
  1668. \align center
  1669. \begin_inset Float figure
  1670. wide false
  1671. sideways false
  1672. status open
  1673. \begin_layout Plain Layout
  1674. \align center
  1675. \begin_inset Graphics
  1676. filename graphics/CD4-csaw/csaw/CCF-plots-PAGE2-CROP.pdf
  1677. lyxscale 50
  1678. height 40theight%
  1679. groupId ccf-subfig
  1680. \end_inset
  1681. \end_layout
  1682. \begin_layout Plain Layout
  1683. \begin_inset Caption Standard
  1684. \begin_layout Plain Layout
  1685. \series bold
  1686. \begin_inset CommandInset label
  1687. LatexCommand label
  1688. name "fig:CCF-with-blacklist"
  1689. \end_inset
  1690. Cross-correlation plots with blacklisted reads removed.
  1691. \series default
  1692. After blacklisting, most ChIP-seq samples have clean-looking periodic cross-cor
  1693. relation plots, with the largest peak around 147
  1694. \begin_inset space ~
  1695. \end_inset
  1696. bp, the expected size for a fragment of DNA from a single nucleosome, and
  1697. little to no peak at the read length, 100
  1698. \begin_inset space ~
  1699. \end_inset
  1700. bp.
  1701. \end_layout
  1702. \end_inset
  1703. \end_layout
  1704. \end_inset
  1705. \end_layout
  1706. \begin_layout Plain Layout
  1707. \begin_inset Caption Standard
  1708. \begin_layout Plain Layout
  1709. \series bold
  1710. \begin_inset CommandInset label
  1711. LatexCommand label
  1712. name "fig:CCF-master"
  1713. \end_inset
  1714. Strand cross-correlation plots for ChIP-seq data, before and after blacklisting.
  1715. \end_layout
  1716. \end_inset
  1717. \end_layout
  1718. \end_inset
  1719. \end_layout
  1720. \begin_layout Standard
  1721. \begin_inset Note Note
  1722. status open
  1723. \begin_layout Plain Layout
  1724. \begin_inset Float figure
  1725. wide false
  1726. sideways false
  1727. status collapsed
  1728. \begin_layout Plain Layout
  1729. \align center
  1730. \begin_inset Graphics
  1731. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-sample-MAplot-bins-CROP.png
  1732. lyxscale 25
  1733. width 100col%
  1734. groupId colwidth-raster
  1735. \end_inset
  1736. \end_layout
  1737. \begin_layout Plain Layout
  1738. \begin_inset Caption Standard
  1739. \begin_layout Plain Layout
  1740. \series bold
  1741. \begin_inset CommandInset label
  1742. LatexCommand label
  1743. name "fig:MA-plot-bigbins"
  1744. \end_inset
  1745. MA plot of H3K4me2 read counts in 10kb bins for two arbitrary samples.
  1746. \end_layout
  1747. \end_inset
  1748. \end_layout
  1749. \end_inset
  1750. \end_layout
  1751. \end_inset
  1752. \end_layout
  1753. \begin_layout Standard
  1754. \begin_inset Flex TODO Note (inline)
  1755. status open
  1756. \begin_layout Plain Layout
  1757. Be consistent about use of
  1758. \begin_inset Quotes eld
  1759. \end_inset
  1760. differential binding
  1761. \begin_inset Quotes erd
  1762. \end_inset
  1763. vs
  1764. \begin_inset Quotes eld
  1765. \end_inset
  1766. differential modification
  1767. \begin_inset Quotes erd
  1768. \end_inset
  1769. throughout this chapter.
  1770. The latter is usually preferred.
  1771. \end_layout
  1772. \end_inset
  1773. \end_layout
  1774. \begin_layout Standard
  1775. Sequence reads were retrieved from SRA
  1776. \begin_inset CommandInset citation
  1777. LatexCommand cite
  1778. key "Leinonen2011"
  1779. literal "false"
  1780. \end_inset
  1781. .
  1782. ChIP-seq (and input) reads were aligned to GRCh38 genome assembly using
  1783. Bowtie 2
  1784. \begin_inset CommandInset citation
  1785. LatexCommand cite
  1786. key "Langmead2012,Schneider2017,gh-hg38-ref"
  1787. literal "false"
  1788. \end_inset
  1789. .
  1790. Artifact regions were annotated using a custom implementation of the GreyListCh
  1791. IP algorithm, and these
  1792. \begin_inset Quotes eld
  1793. \end_inset
  1794. greylists
  1795. \begin_inset Quotes erd
  1796. \end_inset
  1797. were merged with the published ENCODE blacklists
  1798. \begin_inset CommandInset citation
  1799. LatexCommand cite
  1800. key "greylistchip,Amemiya2019,Dunham2012,gh-cd4-csaw"
  1801. literal "false"
  1802. \end_inset
  1803. .
  1804. Any read or called peak overlapping one of these regions was regarded as
  1805. artifactual and excluded from downstream analyses.
  1806. Figure
  1807. \begin_inset CommandInset ref
  1808. LatexCommand ref
  1809. reference "fig:CCF-master"
  1810. plural "false"
  1811. caps "false"
  1812. noprefix "false"
  1813. \end_inset
  1814. shows the improvement after blacklisting in the strand cross-correlation
  1815. plots, a common quality control plot for ChIP-seq data.
  1816. Peaks were called using epic, an implementation of the SICER algorithm
  1817. \begin_inset CommandInset citation
  1818. LatexCommand cite
  1819. key "Zang2009,gh-epic"
  1820. literal "false"
  1821. \end_inset
  1822. .
  1823. Peaks were also called separately using MACS, but MACS was determined to
  1824. be a poor fit for the data, and these peak calls are not used in any further
  1825. analyses
  1826. \begin_inset CommandInset citation
  1827. LatexCommand cite
  1828. key "Zhang2008"
  1829. literal "false"
  1830. \end_inset
  1831. .
  1832. Consensus peaks were determined by applying the irreproducible discovery
  1833. rate (IDR) framework
  1834. \begin_inset CommandInset citation
  1835. LatexCommand cite
  1836. key "Li2006,gh-idr"
  1837. literal "false"
  1838. \end_inset
  1839. to find peaks consistently called in the same locations across all 4 donors.
  1840. \end_layout
  1841. \begin_layout Standard
  1842. Promoters were defined by computing the distance from each annotated TSS
  1843. to the nearest called peak and examining the distribution of distances,
  1844. observing that peaks for each histone mark were enriched within a certain
  1845. distance of the TSS.
  1846. For H3K4me2 and H3K4me3, this distance was about 1
  1847. \begin_inset space ~
  1848. \end_inset
  1849. kb, while for H3K27me3 it was 2.5
  1850. \begin_inset space ~
  1851. \end_inset
  1852. kb.
  1853. These distances were used as an
  1854. \begin_inset Quotes eld
  1855. \end_inset
  1856. effective promoter radius
  1857. \begin_inset Quotes erd
  1858. \end_inset
  1859. for each mark.
  1860. The promoter region for each gene was defined as the region of the genome
  1861. within this distance upstream or downstream of the gene's annotated TSS.
  1862. For genes with multiple annotated TSSs, a promoter region was defined for
  1863. each TSS individually, and any promoters that overlapped (due to multiple
  1864. TSSs being closer than 2 times the radius) were merged into one large promoter.
  1865. Thus, some genes had multiple promoters defined, which were each analyzed
  1866. separately for differential modification.
  1867. \end_layout
  1868. \begin_layout Standard
  1869. \begin_inset Float figure
  1870. wide false
  1871. sideways false
  1872. status collapsed
  1873. \begin_layout Plain Layout
  1874. \begin_inset Float figure
  1875. wide false
  1876. sideways false
  1877. status collapsed
  1878. \begin_layout Plain Layout
  1879. \align center
  1880. \begin_inset Graphics
  1881. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-PCA-raw-CROP.png
  1882. lyxscale 25
  1883. width 45col%
  1884. groupId pcoa-subfig
  1885. \end_inset
  1886. \end_layout
  1887. \begin_layout Plain Layout
  1888. \begin_inset Caption Standard
  1889. \begin_layout Plain Layout
  1890. \series bold
  1891. \begin_inset CommandInset label
  1892. LatexCommand label
  1893. name "fig:PCoA-H3K4me2-bad"
  1894. \end_inset
  1895. H3K4me2, no correction
  1896. \end_layout
  1897. \end_inset
  1898. \end_layout
  1899. \end_inset
  1900. \begin_inset space \hfill{}
  1901. \end_inset
  1902. \begin_inset Float figure
  1903. wide false
  1904. sideways false
  1905. status collapsed
  1906. \begin_layout Plain Layout
  1907. \align center
  1908. \begin_inset Graphics
  1909. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-PCA-SVsub-CROP.png
  1910. lyxscale 25
  1911. width 45col%
  1912. groupId pcoa-subfig
  1913. \end_inset
  1914. \end_layout
  1915. \begin_layout Plain Layout
  1916. \begin_inset Caption Standard
  1917. \begin_layout Plain Layout
  1918. \series bold
  1919. \begin_inset CommandInset label
  1920. LatexCommand label
  1921. name "fig:PCoA-H3K4me2-good"
  1922. \end_inset
  1923. H3K4me2, SVs subtracted
  1924. \end_layout
  1925. \end_inset
  1926. \end_layout
  1927. \end_inset
  1928. \end_layout
  1929. \begin_layout Plain Layout
  1930. \begin_inset Float figure
  1931. wide false
  1932. sideways false
  1933. status collapsed
  1934. \begin_layout Plain Layout
  1935. \align center
  1936. \begin_inset Graphics
  1937. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-PCA-raw-CROP.png
  1938. lyxscale 25
  1939. width 45col%
  1940. groupId pcoa-subfig
  1941. \end_inset
  1942. \end_layout
  1943. \begin_layout Plain Layout
  1944. \begin_inset Caption Standard
  1945. \begin_layout Plain Layout
  1946. \series bold
  1947. \begin_inset CommandInset label
  1948. LatexCommand label
  1949. name "fig:PCoA-H3K4me3-bad"
  1950. \end_inset
  1951. H3K4me3, no correction
  1952. \end_layout
  1953. \end_inset
  1954. \end_layout
  1955. \end_inset
  1956. \begin_inset space \hfill{}
  1957. \end_inset
  1958. \begin_inset Float figure
  1959. wide false
  1960. sideways false
  1961. status collapsed
  1962. \begin_layout Plain Layout
  1963. \align center
  1964. \begin_inset Graphics
  1965. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-PCA-SVsub-CROP.png
  1966. lyxscale 25
  1967. width 45col%
  1968. groupId pcoa-subfig
  1969. \end_inset
  1970. \end_layout
  1971. \begin_layout Plain Layout
  1972. \begin_inset Caption Standard
  1973. \begin_layout Plain Layout
  1974. \series bold
  1975. \begin_inset CommandInset label
  1976. LatexCommand label
  1977. name "fig:PCoA-H3K4me3-good"
  1978. \end_inset
  1979. H3K4me3, SVs subtracted
  1980. \end_layout
  1981. \end_inset
  1982. \end_layout
  1983. \end_inset
  1984. \end_layout
  1985. \begin_layout Plain Layout
  1986. \begin_inset Float figure
  1987. wide false
  1988. sideways false
  1989. status collapsed
  1990. \begin_layout Plain Layout
  1991. \align center
  1992. \begin_inset Graphics
  1993. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-PCA-raw-CROP.png
  1994. lyxscale 25
  1995. width 45col%
  1996. groupId pcoa-subfig
  1997. \end_inset
  1998. \end_layout
  1999. \begin_layout Plain Layout
  2000. \begin_inset Caption Standard
  2001. \begin_layout Plain Layout
  2002. \series bold
  2003. \begin_inset CommandInset label
  2004. LatexCommand label
  2005. name "fig:PCoA-H3K27me3-bad"
  2006. \end_inset
  2007. H3K27me3, no correction
  2008. \end_layout
  2009. \end_inset
  2010. \end_layout
  2011. \end_inset
  2012. \begin_inset space \hfill{}
  2013. \end_inset
  2014. \begin_inset Float figure
  2015. wide false
  2016. sideways false
  2017. status collapsed
  2018. \begin_layout Plain Layout
  2019. \align center
  2020. \begin_inset Graphics
  2021. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-PCA-SVsub-CROP.png
  2022. lyxscale 25
  2023. width 45col%
  2024. groupId pcoa-subfig
  2025. \end_inset
  2026. \end_layout
  2027. \begin_layout Plain Layout
  2028. \begin_inset Caption Standard
  2029. \begin_layout Plain Layout
  2030. \series bold
  2031. \begin_inset CommandInset label
  2032. LatexCommand label
  2033. name "fig:PCoA-H3K27me3-good"
  2034. \end_inset
  2035. H3K27me3, SVs subtracted
  2036. \end_layout
  2037. \end_inset
  2038. \end_layout
  2039. \end_inset
  2040. \end_layout
  2041. \begin_layout Plain Layout
  2042. \begin_inset Caption Standard
  2043. \begin_layout Plain Layout
  2044. \series bold
  2045. \begin_inset CommandInset label
  2046. LatexCommand label
  2047. name "fig:PCoA-ChIP"
  2048. \end_inset
  2049. PCoA plots of ChIP-seq sliding window data, before and after subtracting
  2050. surrogate variables (SVs).
  2051. \end_layout
  2052. \end_inset
  2053. \end_layout
  2054. \end_inset
  2055. \end_layout
  2056. \begin_layout Standard
  2057. Reads in promoters, peaks, and sliding windows across the genome were counted
  2058. and normalized using csaw and analyzed for differential modification using
  2059. edgeR
  2060. \begin_inset CommandInset citation
  2061. LatexCommand cite
  2062. key "Lun2014,Lun2015a,Lund2012,Phipson2016"
  2063. literal "false"
  2064. \end_inset
  2065. .
  2066. Unobserved confounding factors in the ChIP-seq data were corrected using
  2067. SVA
  2068. \begin_inset CommandInset citation
  2069. LatexCommand cite
  2070. key "Leek2007,Leek2014"
  2071. literal "false"
  2072. \end_inset
  2073. .
  2074. Principal coordinate plots of the promoter count data for each histone
  2075. mark before and after subtracting surrogate variable effects are shown
  2076. in Figure
  2077. \begin_inset CommandInset ref
  2078. LatexCommand ref
  2079. reference "fig:PCoA-ChIP"
  2080. plural "false"
  2081. caps "false"
  2082. noprefix "false"
  2083. \end_inset
  2084. .
  2085. \end_layout
  2086. \begin_layout Standard
  2087. To investigate whether the location of a peak within the promoter region
  2088. was important,
  2089. \begin_inset Quotes eld
  2090. \end_inset
  2091. relative coverage profiles
  2092. \begin_inset Quotes erd
  2093. \end_inset
  2094. were generated.
  2095. First, 500-bp sliding windows were tiled around each annotated TSS: one
  2096. window centered on the TSS itself, and 10 windows each upstream and downstream,
  2097. thus covering a 10.5-kb region centered on the TSS with 21 windows.
  2098. Reads in each window for each TSS were counted in each sample, and the
  2099. counts were normalized and converted to log CPM as in the differential
  2100. modification analysis.
  2101. Then, the logCPM values within each promoter were normalized to an average
  2102. of zero, such that each window's normalized abundance now represents the
  2103. relative read depth of that window compared to all other windows in the
  2104. same promoter.
  2105. The normalized abundance values for each window in a promoter are collectively
  2106. referred to as that promoter's
  2107. \begin_inset Quotes eld
  2108. \end_inset
  2109. relative coverage profile
  2110. \begin_inset Quotes erd
  2111. \end_inset
  2112. .
  2113. \end_layout
  2114. \begin_layout Subsection
  2115. MOFA recovers biologically relevant variation from blind analysis by correlating
  2116. across datasets
  2117. \end_layout
  2118. \begin_layout Standard
  2119. \begin_inset ERT
  2120. status open
  2121. \begin_layout Plain Layout
  2122. \backslash
  2123. afterpage{
  2124. \end_layout
  2125. \begin_layout Plain Layout
  2126. \backslash
  2127. begin{landscape}
  2128. \end_layout
  2129. \end_inset
  2130. \end_layout
  2131. \begin_layout Standard
  2132. \begin_inset Float figure
  2133. wide false
  2134. sideways false
  2135. status open
  2136. \begin_layout Plain Layout
  2137. \begin_inset Float figure
  2138. wide false
  2139. sideways false
  2140. status open
  2141. \begin_layout Plain Layout
  2142. \align center
  2143. \begin_inset Graphics
  2144. filename graphics/CD4-csaw/MOFA-varExplaiend-matrix-CROP.png
  2145. lyxscale 25
  2146. width 45col%
  2147. groupId mofa-subfig
  2148. \end_inset
  2149. \end_layout
  2150. \begin_layout Plain Layout
  2151. \begin_inset Caption Standard
  2152. \begin_layout Plain Layout
  2153. \series bold
  2154. \begin_inset CommandInset label
  2155. LatexCommand label
  2156. name "fig:mofa-varexplained"
  2157. \end_inset
  2158. Variance explained in each data set by each latent factor estimated by MOFA.
  2159. \series default
  2160. For each latent factor (LF) learned by MOFA, the variance explained by
  2161. that factor in each data set (
  2162. \begin_inset Quotes eld
  2163. \end_inset
  2164. view
  2165. \begin_inset Quotes erd
  2166. \end_inset
  2167. ) is shown by the shading of the cells in the lower section.
  2168. The upper section shows the total fraction of each data set's variance
  2169. that is explained by all LFs combined.
  2170. \end_layout
  2171. \end_inset
  2172. \end_layout
  2173. \end_inset
  2174. \begin_inset space \hfill{}
  2175. \end_inset
  2176. \begin_inset Float figure
  2177. wide false
  2178. sideways false
  2179. status open
  2180. \begin_layout Plain Layout
  2181. \align center
  2182. \begin_inset Graphics
  2183. filename graphics/CD4-csaw/MOFA-LF-scatter-CROP.png
  2184. lyxscale 25
  2185. width 45col%
  2186. groupId mofa-subfig
  2187. \end_inset
  2188. \end_layout
  2189. \begin_layout Plain Layout
  2190. \begin_inset Caption Standard
  2191. \begin_layout Plain Layout
  2192. \series bold
  2193. \begin_inset CommandInset label
  2194. LatexCommand label
  2195. name "fig:mofa-lf-scatter"
  2196. \end_inset
  2197. Scatter plots of specific pairs of MOFA latent factors.
  2198. \series default
  2199. LFs 1, 4, and 5 explain substantial variation in all data sets, so they
  2200. are plotted against each other in order to reveal patterns of variation
  2201. that are shared across all data sets.
  2202. \end_layout
  2203. \end_inset
  2204. \end_layout
  2205. \end_inset
  2206. \end_layout
  2207. \begin_layout Plain Layout
  2208. \begin_inset Caption Standard
  2209. \begin_layout Plain Layout
  2210. \series bold
  2211. \begin_inset CommandInset label
  2212. LatexCommand label
  2213. name "fig:MOFA-master"
  2214. \end_inset
  2215. MOFA latent factors separate technical confounders from
  2216. \end_layout
  2217. \end_inset
  2218. \end_layout
  2219. \end_inset
  2220. \end_layout
  2221. \begin_layout Standard
  2222. \begin_inset ERT
  2223. status open
  2224. \begin_layout Plain Layout
  2225. \backslash
  2226. end{landscape}
  2227. \end_layout
  2228. \begin_layout Plain Layout
  2229. }
  2230. \end_layout
  2231. \end_inset
  2232. \end_layout
  2233. \begin_layout Standard
  2234. MOFA was run on all the ChIP-seq windows overlapping consensus peaks for
  2235. each histone mark, as well as the RNA-seq data, in order to identify patterns
  2236. of coordinated variation across all data sets
  2237. \begin_inset CommandInset citation
  2238. LatexCommand cite
  2239. key "Argelaguet2018"
  2240. literal "false"
  2241. \end_inset
  2242. .
  2243. The results are summarized in Figure
  2244. \begin_inset CommandInset ref
  2245. LatexCommand ref
  2246. reference "fig:MOFA-master"
  2247. plural "false"
  2248. caps "false"
  2249. noprefix "false"
  2250. \end_inset
  2251. .
  2252. Latent factors 1, 4, and 5 were determined to explain the most variation
  2253. consistently across all data sets (Fgure
  2254. \begin_inset CommandInset ref
  2255. LatexCommand ref
  2256. reference "fig:mofa-varexplained"
  2257. plural "false"
  2258. caps "false"
  2259. noprefix "false"
  2260. \end_inset
  2261. ), and scatter plots of these factors show that they also correlate best
  2262. with the experimental factors (Figure
  2263. \begin_inset CommandInset ref
  2264. LatexCommand ref
  2265. reference "fig:mofa-lf-scatter"
  2266. plural "false"
  2267. caps "false"
  2268. noprefix "false"
  2269. \end_inset
  2270. ).
  2271. Latent factor 2 captures the batch effect in the RNA-seq data.
  2272. Removing the effect of LF2 using MOFA theoretically yields a batch correction
  2273. that does not depend on knowing the experimental factors.
  2274. When this was attempted, the resulting batch correction was comparable
  2275. to ComBat (see Figure
  2276. \begin_inset CommandInset ref
  2277. LatexCommand ref
  2278. reference "fig:RNA-PCA-ComBat-batchsub"
  2279. plural "false"
  2280. caps "false"
  2281. noprefix "false"
  2282. \end_inset
  2283. ), indicating that the ComBat-based batch correction has little room for
  2284. improvement given the problems with the data set.
  2285. \end_layout
  2286. \begin_layout Standard
  2287. \begin_inset Note Note
  2288. status collapsed
  2289. \begin_layout Plain Layout
  2290. \begin_inset Float figure
  2291. wide false
  2292. sideways false
  2293. status open
  2294. \begin_layout Plain Layout
  2295. \align center
  2296. \begin_inset Graphics
  2297. filename graphics/CD4-csaw/MOFA-batch-correct-CROP.png
  2298. lyxscale 25
  2299. width 100col%
  2300. groupId colwidth-raster
  2301. \end_inset
  2302. \end_layout
  2303. \begin_layout Plain Layout
  2304. \begin_inset Caption Standard
  2305. \begin_layout Plain Layout
  2306. \series bold
  2307. \begin_inset CommandInset label
  2308. LatexCommand label
  2309. name "fig:mofa-batchsub"
  2310. \end_inset
  2311. Result of RNA-seq batch-correction using MOFA latent factors
  2312. \end_layout
  2313. \end_inset
  2314. \end_layout
  2315. \end_inset
  2316. \end_layout
  2317. \end_inset
  2318. \end_layout
  2319. \begin_layout Section
  2320. Results
  2321. \end_layout
  2322. \begin_layout Standard
  2323. \begin_inset Flex TODO Note (inline)
  2324. status open
  2325. \begin_layout Plain Layout
  2326. Focus on what hypotheses were tested, then select figures that show how
  2327. those hypotheses were tested, even if the result is a negative.
  2328. Not every interesting result needs to be in here.
  2329. Chapter should tell a story.
  2330. \end_layout
  2331. \end_inset
  2332. \end_layout
  2333. \begin_layout Standard
  2334. \begin_inset Flex TODO Note (inline)
  2335. status open
  2336. \begin_layout Plain Layout
  2337. Maybe reorder these sections to do RNA-seq, then ChIP-seq, then combined
  2338. analyses?
  2339. \end_layout
  2340. \end_inset
  2341. \end_layout
  2342. \begin_layout Subsection
  2343. Interpretation of RNA-seq analysis is limited by a major confounding factor
  2344. \end_layout
  2345. \begin_layout Standard
  2346. \begin_inset Float table
  2347. wide false
  2348. sideways false
  2349. status collapsed
  2350. \begin_layout Plain Layout
  2351. \align center
  2352. \begin_inset Tabular
  2353. <lyxtabular version="3" rows="11" columns="3">
  2354. <features tabularvalignment="middle">
  2355. <column alignment="center" valignment="top">
  2356. <column alignment="center" valignment="top">
  2357. <column alignment="center" valignment="top">
  2358. <row>
  2359. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2360. \begin_inset Text
  2361. \begin_layout Plain Layout
  2362. Test
  2363. \end_layout
  2364. \end_inset
  2365. </cell>
  2366. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2367. \begin_inset Text
  2368. \begin_layout Plain Layout
  2369. Est.
  2370. non-null
  2371. \end_layout
  2372. \end_inset
  2373. </cell>
  2374. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2375. \begin_inset Text
  2376. \begin_layout Plain Layout
  2377. \begin_inset Formula $\mathrm{FDR}\le10\%$
  2378. \end_inset
  2379. \end_layout
  2380. \end_inset
  2381. </cell>
  2382. </row>
  2383. <row>
  2384. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2385. \begin_inset Text
  2386. \begin_layout Plain Layout
  2387. Naive Day 0 vs Day 1
  2388. \end_layout
  2389. \end_inset
  2390. </cell>
  2391. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2392. \begin_inset Text
  2393. \begin_layout Plain Layout
  2394. 5992
  2395. \end_layout
  2396. \end_inset
  2397. </cell>
  2398. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2399. \begin_inset Text
  2400. \begin_layout Plain Layout
  2401. 1613
  2402. \end_layout
  2403. \end_inset
  2404. </cell>
  2405. </row>
  2406. <row>
  2407. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2408. \begin_inset Text
  2409. \begin_layout Plain Layout
  2410. Naive Day 0 vs Day 5
  2411. \end_layout
  2412. \end_inset
  2413. </cell>
  2414. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2415. \begin_inset Text
  2416. \begin_layout Plain Layout
  2417. 3038
  2418. \end_layout
  2419. \end_inset
  2420. </cell>
  2421. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2422. \begin_inset Text
  2423. \begin_layout Plain Layout
  2424. 32
  2425. \end_layout
  2426. \end_inset
  2427. </cell>
  2428. </row>
  2429. <row>
  2430. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2431. \begin_inset Text
  2432. \begin_layout Plain Layout
  2433. Naive Day 0 vs Day 14
  2434. \end_layout
  2435. \end_inset
  2436. </cell>
  2437. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2438. \begin_inset Text
  2439. \begin_layout Plain Layout
  2440. 1870
  2441. \end_layout
  2442. \end_inset
  2443. </cell>
  2444. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2445. \begin_inset Text
  2446. \begin_layout Plain Layout
  2447. 190
  2448. \end_layout
  2449. \end_inset
  2450. </cell>
  2451. </row>
  2452. <row>
  2453. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2454. \begin_inset Text
  2455. \begin_layout Plain Layout
  2456. Memory Day 0 vs Day 1
  2457. \end_layout
  2458. \end_inset
  2459. </cell>
  2460. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2461. \begin_inset Text
  2462. \begin_layout Plain Layout
  2463. 3195
  2464. \end_layout
  2465. \end_inset
  2466. </cell>
  2467. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2468. \begin_inset Text
  2469. \begin_layout Plain Layout
  2470. 411
  2471. \end_layout
  2472. \end_inset
  2473. </cell>
  2474. </row>
  2475. <row>
  2476. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2477. \begin_inset Text
  2478. \begin_layout Plain Layout
  2479. Memory Day 0 vs Day 5
  2480. \end_layout
  2481. \end_inset
  2482. </cell>
  2483. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2484. \begin_inset Text
  2485. \begin_layout Plain Layout
  2486. 2688
  2487. \end_layout
  2488. \end_inset
  2489. </cell>
  2490. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2491. \begin_inset Text
  2492. \begin_layout Plain Layout
  2493. 18
  2494. \end_layout
  2495. \end_inset
  2496. </cell>
  2497. </row>
  2498. <row>
  2499. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2500. \begin_inset Text
  2501. \begin_layout Plain Layout
  2502. Memory Day 0 vs Day 14
  2503. \end_layout
  2504. \end_inset
  2505. </cell>
  2506. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2507. \begin_inset Text
  2508. \begin_layout Plain Layout
  2509. 1911
  2510. \end_layout
  2511. \end_inset
  2512. </cell>
  2513. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2514. \begin_inset Text
  2515. \begin_layout Plain Layout
  2516. 227
  2517. \end_layout
  2518. \end_inset
  2519. </cell>
  2520. </row>
  2521. <row>
  2522. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2523. \begin_inset Text
  2524. \begin_layout Plain Layout
  2525. Day 0 Naive vs Memory
  2526. \end_layout
  2527. \end_inset
  2528. </cell>
  2529. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2530. \begin_inset Text
  2531. \begin_layout Plain Layout
  2532. 0
  2533. \end_layout
  2534. \end_inset
  2535. </cell>
  2536. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2537. \begin_inset Text
  2538. \begin_layout Plain Layout
  2539. 2
  2540. \end_layout
  2541. \end_inset
  2542. </cell>
  2543. </row>
  2544. <row>
  2545. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2546. \begin_inset Text
  2547. \begin_layout Plain Layout
  2548. Day 1 Naive vs Memory
  2549. \end_layout
  2550. \end_inset
  2551. </cell>
  2552. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2553. \begin_inset Text
  2554. \begin_layout Plain Layout
  2555. 9167
  2556. \end_layout
  2557. \end_inset
  2558. </cell>
  2559. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2560. \begin_inset Text
  2561. \begin_layout Plain Layout
  2562. 5532
  2563. \end_layout
  2564. \end_inset
  2565. </cell>
  2566. </row>
  2567. <row>
  2568. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2569. \begin_inset Text
  2570. \begin_layout Plain Layout
  2571. Day 5 Naive vs Memory
  2572. \end_layout
  2573. \end_inset
  2574. </cell>
  2575. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2576. \begin_inset Text
  2577. \begin_layout Plain Layout
  2578. 0
  2579. \end_layout
  2580. \end_inset
  2581. </cell>
  2582. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2583. \begin_inset Text
  2584. \begin_layout Plain Layout
  2585. 0
  2586. \end_layout
  2587. \end_inset
  2588. </cell>
  2589. </row>
  2590. <row>
  2591. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2592. \begin_inset Text
  2593. \begin_layout Plain Layout
  2594. Day 14 Naive vs Memory
  2595. \end_layout
  2596. \end_inset
  2597. </cell>
  2598. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2599. \begin_inset Text
  2600. \begin_layout Plain Layout
  2601. 6446
  2602. \end_layout
  2603. \end_inset
  2604. </cell>
  2605. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2606. \begin_inset Text
  2607. \begin_layout Plain Layout
  2608. 2319
  2609. \end_layout
  2610. \end_inset
  2611. </cell>
  2612. </row>
  2613. </lyxtabular>
  2614. \end_inset
  2615. \end_layout
  2616. \begin_layout Plain Layout
  2617. \begin_inset Caption Standard
  2618. \begin_layout Plain Layout
  2619. \series bold
  2620. \begin_inset CommandInset label
  2621. LatexCommand label
  2622. name "tab:Estimated-and-detected-rnaseq"
  2623. \end_inset
  2624. Estimated and detected differentially expressed genes.
  2625. \series default
  2626. \begin_inset Quotes eld
  2627. \end_inset
  2628. Test
  2629. \begin_inset Quotes erd
  2630. \end_inset
  2631. : Which sample groups were compared;
  2632. \begin_inset Quotes eld
  2633. \end_inset
  2634. Est non-null
  2635. \begin_inset Quotes erd
  2636. \end_inset
  2637. : Estimated number of differentially expressed genes, using the method of
  2638. averaging local FDR values
  2639. \begin_inset CommandInset citation
  2640. LatexCommand cite
  2641. key "Phipson2013Thesis"
  2642. literal "false"
  2643. \end_inset
  2644. ;
  2645. \begin_inset Quotes eld
  2646. \end_inset
  2647. \begin_inset Formula $\mathrm{FDR}\le10\%$
  2648. \end_inset
  2649. \begin_inset Quotes erd
  2650. \end_inset
  2651. : Number of significantly differentially expressed genes at an FDR threshold
  2652. of 10%.
  2653. The total number of genes tested was 16707.
  2654. \end_layout
  2655. \end_inset
  2656. \end_layout
  2657. \end_inset
  2658. \end_layout
  2659. \begin_layout Standard
  2660. \begin_inset Float figure
  2661. wide false
  2662. sideways false
  2663. status collapsed
  2664. \begin_layout Plain Layout
  2665. \align center
  2666. \begin_inset Graphics
  2667. filename graphics/CD4-csaw/RNA-seq/PCA-final-12-CROP.png
  2668. lyxscale 25
  2669. width 100col%
  2670. groupId colwidth-raster
  2671. \end_inset
  2672. \end_layout
  2673. \begin_layout Plain Layout
  2674. \begin_inset Caption Standard
  2675. \begin_layout Plain Layout
  2676. \series bold
  2677. \begin_inset CommandInset label
  2678. LatexCommand label
  2679. name "fig:rna-pca-final"
  2680. \end_inset
  2681. PCoA plot of RNA-seq samples after ComBat batch correction.
  2682. \series default
  2683. Each point represents an individual sample.
  2684. Samples with the same combination of cell type and time point are encircled
  2685. with a shaded region to aid in visual identification of the sample groups.
  2686. Samples with of same cell type from the same donor are connected by lines
  2687. to indicate the
  2688. \begin_inset Quotes eld
  2689. \end_inset
  2690. trajectory
  2691. \begin_inset Quotes erd
  2692. \end_inset
  2693. of each donor's cells over time in PCoA space.
  2694. \end_layout
  2695. \end_inset
  2696. \end_layout
  2697. \begin_layout Plain Layout
  2698. \end_layout
  2699. \end_inset
  2700. \end_layout
  2701. \begin_layout Standard
  2702. Genes called present in the RNA-seq data were tested for differential expression
  2703. between all time points and cell types.
  2704. The counts of differentially expressed genes are shown in Table
  2705. \begin_inset CommandInset ref
  2706. LatexCommand ref
  2707. reference "tab:Estimated-and-detected-rnaseq"
  2708. plural "false"
  2709. caps "false"
  2710. noprefix "false"
  2711. \end_inset
  2712. .
  2713. Notably, all the results for Day 0 and Day 5 have substantially fewer genes
  2714. called differentially expressed than any of the results for other time
  2715. points.
  2716. This is an unfortunate result of the difference in sample quality between
  2717. the two batches of RNA-seq data.
  2718. All the samples in Batch 1, which includes all the samples from Days 0
  2719. and 5, have substantially more variability than the samples in Batch 2,
  2720. which includes the other time points.
  2721. This is reflected in the substantially higher weights assigned to Batch
  2722. 2 (Figure
  2723. \begin_inset CommandInset ref
  2724. LatexCommand ref
  2725. reference "fig:RNA-seq-weights-vs-covars"
  2726. plural "false"
  2727. caps "false"
  2728. noprefix "false"
  2729. \end_inset
  2730. ).
  2731. The batch effect has both a systematic component and a random noise component.
  2732. While the systematic component was subtracted out using ComBat (Figure
  2733. \begin_inset CommandInset ref
  2734. LatexCommand ref
  2735. reference "fig:RNA-PCA"
  2736. plural "false"
  2737. caps "false"
  2738. noprefix "false"
  2739. \end_inset
  2740. ), no such correction is possible for the noise component: Batch 1 simply
  2741. has substantially more random noise in it, which reduces the statistical
  2742. power for any differential expression tests involving samples in that batch.
  2743. \end_layout
  2744. \begin_layout Standard
  2745. Despite the difficulty in detecting specific differentially expressed genes,
  2746. there is still evidence that differential expression is present for these
  2747. time points.
  2748. In Figure
  2749. \begin_inset CommandInset ref
  2750. LatexCommand ref
  2751. reference "fig:rna-pca-final"
  2752. plural "false"
  2753. caps "false"
  2754. noprefix "false"
  2755. \end_inset
  2756. , there is a clear separation between naive and memory samples at Day 0,
  2757. despite the fact that only 2 genes were significantly differentially expressed
  2758. for this comparison.
  2759. Similarly, the small numbers of genes detected for the Day 0 vs Day 5 compariso
  2760. ns do not reflect the large separation between these time points in Figure
  2761. \begin_inset CommandInset ref
  2762. LatexCommand ref
  2763. reference "fig:rna-pca-final"
  2764. plural "false"
  2765. caps "false"
  2766. noprefix "false"
  2767. \end_inset
  2768. .
  2769. In addition, the MOFA latent factor plots in Figure
  2770. \begin_inset CommandInset ref
  2771. LatexCommand ref
  2772. reference "fig:mofa-lf-scatter"
  2773. plural "false"
  2774. caps "false"
  2775. noprefix "false"
  2776. \end_inset
  2777. .
  2778. This suggests that there is indeed a differential expression signal present
  2779. in the data for these comparisons, but the large variability in the Batch
  2780. 1 samples obfuscates this signal at the individual gene level.
  2781. As a result, it is impossible to make any meaningful statements about the
  2782. \begin_inset Quotes eld
  2783. \end_inset
  2784. size
  2785. \begin_inset Quotes erd
  2786. \end_inset
  2787. of the gene signature for any time point, since the number of significant
  2788. genes as well as the estimated number of differentially expressed genes
  2789. depends so strongly on the variations in sample quality in addition to
  2790. the size of the differential expression signal in the data.
  2791. Gene-set enrichment analyses are similarly impractical.
  2792. However, analyses looking at genome-wide patterns of expression are still
  2793. practical.
  2794. \end_layout
  2795. \begin_layout Subsection
  2796. H3K4 and H3K27 methylation occur in broad regions and are enriched near
  2797. promoters
  2798. \end_layout
  2799. \begin_layout Standard
  2800. \begin_inset Float table
  2801. wide false
  2802. sideways false
  2803. status collapsed
  2804. \begin_layout Plain Layout
  2805. \align center
  2806. \begin_inset Flex TODO Note (inline)
  2807. status open
  2808. \begin_layout Plain Layout
  2809. Also get
  2810. \emph on
  2811. median
  2812. \emph default
  2813. peak width and maybe other quantiles (25%, 75%)
  2814. \end_layout
  2815. \end_inset
  2816. \end_layout
  2817. \begin_layout Plain Layout
  2818. \align center
  2819. \begin_inset Tabular
  2820. <lyxtabular version="3" rows="4" columns="5">
  2821. <features tabularvalignment="middle">
  2822. <column alignment="center" valignment="top">
  2823. <column alignment="center" valignment="top">
  2824. <column alignment="center" valignment="top">
  2825. <column alignment="center" valignment="top">
  2826. <column alignment="center" valignment="top">
  2827. <row>
  2828. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2829. \begin_inset Text
  2830. \begin_layout Plain Layout
  2831. Histone Mark
  2832. \end_layout
  2833. \end_inset
  2834. </cell>
  2835. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2836. \begin_inset Text
  2837. \begin_layout Plain Layout
  2838. # Peaks
  2839. \end_layout
  2840. \end_inset
  2841. </cell>
  2842. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2843. \begin_inset Text
  2844. \begin_layout Plain Layout
  2845. Mean peak width
  2846. \end_layout
  2847. \end_inset
  2848. </cell>
  2849. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2850. \begin_inset Text
  2851. \begin_layout Plain Layout
  2852. genome coverage
  2853. \end_layout
  2854. \end_inset
  2855. </cell>
  2856. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2857. \begin_inset Text
  2858. \begin_layout Plain Layout
  2859. FRiP
  2860. \end_layout
  2861. \end_inset
  2862. </cell>
  2863. </row>
  2864. <row>
  2865. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2866. \begin_inset Text
  2867. \begin_layout Plain Layout
  2868. H3K4me2
  2869. \end_layout
  2870. \end_inset
  2871. </cell>
  2872. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2873. \begin_inset Text
  2874. \begin_layout Plain Layout
  2875. 14965
  2876. \end_layout
  2877. \end_inset
  2878. </cell>
  2879. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2880. \begin_inset Text
  2881. \begin_layout Plain Layout
  2882. 3970
  2883. \end_layout
  2884. \end_inset
  2885. </cell>
  2886. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2887. \begin_inset Text
  2888. \begin_layout Plain Layout
  2889. 1.92%
  2890. \end_layout
  2891. \end_inset
  2892. </cell>
  2893. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2894. \begin_inset Text
  2895. \begin_layout Plain Layout
  2896. 14.2%
  2897. \end_layout
  2898. \end_inset
  2899. </cell>
  2900. </row>
  2901. <row>
  2902. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2903. \begin_inset Text
  2904. \begin_layout Plain Layout
  2905. H3K4me3
  2906. \end_layout
  2907. \end_inset
  2908. </cell>
  2909. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2910. \begin_inset Text
  2911. \begin_layout Plain Layout
  2912. 6163
  2913. \end_layout
  2914. \end_inset
  2915. </cell>
  2916. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2917. \begin_inset Text
  2918. \begin_layout Plain Layout
  2919. 2946
  2920. \end_layout
  2921. \end_inset
  2922. </cell>
  2923. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2924. \begin_inset Text
  2925. \begin_layout Plain Layout
  2926. 0.588%
  2927. \end_layout
  2928. \end_inset
  2929. </cell>
  2930. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2931. \begin_inset Text
  2932. \begin_layout Plain Layout
  2933. 6.57%
  2934. \end_layout
  2935. \end_inset
  2936. </cell>
  2937. </row>
  2938. <row>
  2939. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2940. \begin_inset Text
  2941. \begin_layout Plain Layout
  2942. H3K27me3
  2943. \end_layout
  2944. \end_inset
  2945. </cell>
  2946. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2947. \begin_inset Text
  2948. \begin_layout Plain Layout
  2949. 18139
  2950. \end_layout
  2951. \end_inset
  2952. </cell>
  2953. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2954. \begin_inset Text
  2955. \begin_layout Plain Layout
  2956. 18967
  2957. \end_layout
  2958. \end_inset
  2959. </cell>
  2960. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2961. \begin_inset Text
  2962. \begin_layout Plain Layout
  2963. 11.1%
  2964. \end_layout
  2965. \end_inset
  2966. </cell>
  2967. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2968. \begin_inset Text
  2969. \begin_layout Plain Layout
  2970. 22.5%
  2971. \end_layout
  2972. \end_inset
  2973. </cell>
  2974. </row>
  2975. </lyxtabular>
  2976. \end_inset
  2977. \end_layout
  2978. \begin_layout Plain Layout
  2979. \begin_inset Caption Standard
  2980. \begin_layout Plain Layout
  2981. \series bold
  2982. \begin_inset CommandInset label
  2983. LatexCommand label
  2984. name "tab:peak-calling-summary"
  2985. \end_inset
  2986. Peak-calling summary.
  2987. \series default
  2988. For each histone mark, the number of peaks called using SICER at an IDR
  2989. threshold of ???, the mean width of those peaks, the fraction of the genome
  2990. covered by peaks, and the fraction of reads in peaks (FRiP).
  2991. \end_layout
  2992. \end_inset
  2993. \end_layout
  2994. \end_inset
  2995. \end_layout
  2996. \begin_layout Standard
  2997. Table
  2998. \begin_inset CommandInset ref
  2999. LatexCommand ref
  3000. reference "tab:peak-calling-summary"
  3001. plural "false"
  3002. caps "false"
  3003. noprefix "false"
  3004. \end_inset
  3005. gives a summary of the peak calling statistics for each histone mark.
  3006. Consistent with previous observations [CITATION NEEDED], all 3 histone
  3007. marks occur in broad regions spanning many consecutive nucleosomes, rather
  3008. than in sharp peaks as would be expected for a transcription factor or
  3009. other molecule that binds to specific sites.
  3010. This conclusion is further supported by Figure
  3011. \begin_inset CommandInset ref
  3012. LatexCommand ref
  3013. reference "fig:CCF-with-blacklist"
  3014. plural "false"
  3015. caps "false"
  3016. noprefix "false"
  3017. \end_inset
  3018. , in which a clear nucleosome-sized periodicity is visible in the cross-correlat
  3019. ion value for each sample, indicating that each time a given mark is present
  3020. on one histone, it is also likely to be found on adjacent histones as well.
  3021. H3K27me3 enrichment in particular is substantially more broad than either
  3022. H3K4 mark, with a mean peak width of almost 19,000 bp.
  3023. This is also reflected in the periodicity observed in Figure
  3024. \begin_inset CommandInset ref
  3025. LatexCommand ref
  3026. reference "fig:CCF-with-blacklist"
  3027. plural "false"
  3028. caps "false"
  3029. noprefix "false"
  3030. \end_inset
  3031. , which remains strong much farther out for H3K27me3 than the other marks,
  3032. showing H3K27me3 especially tends to be found on long runs of consecutive
  3033. histones.
  3034. \end_layout
  3035. \begin_layout Standard
  3036. \begin_inset Float figure
  3037. wide false
  3038. sideways false
  3039. status open
  3040. \begin_layout Plain Layout
  3041. \begin_inset Flex TODO Note (inline)
  3042. status open
  3043. \begin_layout Plain Layout
  3044. Ensure this figure uses the peak calls from the new analysis.
  3045. \end_layout
  3046. \end_inset
  3047. \end_layout
  3048. \begin_layout Plain Layout
  3049. \begin_inset Flex TODO Note (inline)
  3050. status open
  3051. \begin_layout Plain Layout
  3052. Need a control: shuffle all peaks and repeat, N times.
  3053. Do real vs shuffled control both in a top/bottom arrangement.
  3054. \end_layout
  3055. \end_inset
  3056. \end_layout
  3057. \begin_layout Plain Layout
  3058. \begin_inset Flex TODO Note (inline)
  3059. status open
  3060. \begin_layout Plain Layout
  3061. Consider counting TSS inside peaks as negative number indicating how far
  3062. \emph on
  3063. inside
  3064. \emph default
  3065. the peak the TSS is (i.e.
  3066. distance to nearest non-peak area).
  3067. \end_layout
  3068. \end_inset
  3069. \end_layout
  3070. \begin_layout Plain Layout
  3071. \begin_inset Flex TODO Note (inline)
  3072. status open
  3073. \begin_layout Plain Layout
  3074. The H3K4 part of this figure is included in
  3075. \begin_inset CommandInset citation
  3076. LatexCommand cite
  3077. key "LaMere2016"
  3078. literal "false"
  3079. \end_inset
  3080. as Fig.
  3081. S2.
  3082. Do I need to do anything about that?
  3083. \end_layout
  3084. \end_inset
  3085. \end_layout
  3086. \begin_layout Plain Layout
  3087. \align center
  3088. \begin_inset Graphics
  3089. filename graphics/CD4-csaw/Promoter Peak Distance Profile-PAGE1-CROP.pdf
  3090. lyxscale 50
  3091. width 80col%
  3092. \end_inset
  3093. \end_layout
  3094. \begin_layout Plain Layout
  3095. \begin_inset Caption Standard
  3096. \begin_layout Plain Layout
  3097. \series bold
  3098. \begin_inset CommandInset label
  3099. LatexCommand label
  3100. name "fig:near-promoter-peak-enrich"
  3101. \end_inset
  3102. Enrichment of peaks in promoter neighborhoods.
  3103. \series default
  3104. This plot shows the distribution of distances from each annotated transcription
  3105. start site in the genome to the nearest called peak.
  3106. Each line represents one combination of histone mark, cell type, and time
  3107. point.
  3108. Distributions are smoothed using kernel density estimation [CITE? see ggplot2
  3109. stat_density()].
  3110. Transcription start sites that occur
  3111. \emph on
  3112. within
  3113. \emph default
  3114. peaks were excluded from this plot to avoid a large spike at zero that
  3115. would overshadow the rest of the distribution.
  3116. \end_layout
  3117. \end_inset
  3118. \end_layout
  3119. \end_inset
  3120. \end_layout
  3121. \begin_layout Standard
  3122. \begin_inset Float table
  3123. wide false
  3124. sideways false
  3125. status collapsed
  3126. \begin_layout Plain Layout
  3127. \align center
  3128. \begin_inset Tabular
  3129. <lyxtabular version="3" rows="4" columns="2">
  3130. <features tabularvalignment="middle">
  3131. <column alignment="center" valignment="top">
  3132. <column alignment="center" valignment="top">
  3133. <row>
  3134. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3135. \begin_inset Text
  3136. \begin_layout Plain Layout
  3137. Histone mark
  3138. \end_layout
  3139. \end_inset
  3140. </cell>
  3141. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3142. \begin_inset Text
  3143. \begin_layout Plain Layout
  3144. Effective promoter radius
  3145. \end_layout
  3146. \end_inset
  3147. </cell>
  3148. </row>
  3149. <row>
  3150. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3151. \begin_inset Text
  3152. \begin_layout Plain Layout
  3153. H3K4me2
  3154. \end_layout
  3155. \end_inset
  3156. </cell>
  3157. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3158. \begin_inset Text
  3159. \begin_layout Plain Layout
  3160. 1 kb
  3161. \end_layout
  3162. \end_inset
  3163. </cell>
  3164. </row>
  3165. <row>
  3166. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3167. \begin_inset Text
  3168. \begin_layout Plain Layout
  3169. H3K4me3
  3170. \end_layout
  3171. \end_inset
  3172. </cell>
  3173. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3174. \begin_inset Text
  3175. \begin_layout Plain Layout
  3176. 1 kb
  3177. \end_layout
  3178. \end_inset
  3179. </cell>
  3180. </row>
  3181. <row>
  3182. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3183. \begin_inset Text
  3184. \begin_layout Plain Layout
  3185. H3K27me3
  3186. \end_layout
  3187. \end_inset
  3188. </cell>
  3189. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3190. \begin_inset Text
  3191. \begin_layout Plain Layout
  3192. 2.5 kb
  3193. \end_layout
  3194. \end_inset
  3195. </cell>
  3196. </row>
  3197. </lyxtabular>
  3198. \end_inset
  3199. \end_layout
  3200. \begin_layout Plain Layout
  3201. \begin_inset Caption Standard
  3202. \begin_layout Plain Layout
  3203. \series bold
  3204. \begin_inset CommandInset label
  3205. LatexCommand label
  3206. name "tab:effective-promoter-radius"
  3207. \end_inset
  3208. Effective promoter radius for each histone mark.
  3209. \series default
  3210. These values represent the approximate distance from transcription start
  3211. site positions within which an excess of peaks are found, as shown in Figure
  3212. \begin_inset CommandInset ref
  3213. LatexCommand ref
  3214. reference "fig:near-promoter-peak-enrich"
  3215. plural "false"
  3216. caps "false"
  3217. noprefix "false"
  3218. \end_inset
  3219. .
  3220. \end_layout
  3221. \end_inset
  3222. \end_layout
  3223. \begin_layout Plain Layout
  3224. \end_layout
  3225. \end_inset
  3226. \end_layout
  3227. \begin_layout Standard
  3228. All 3 histone marks tend to occur more often near promoter regions, as shown
  3229. in Figure
  3230. \begin_inset CommandInset ref
  3231. LatexCommand ref
  3232. reference "fig:near-promoter-peak-enrich"
  3233. plural "false"
  3234. caps "false"
  3235. noprefix "false"
  3236. \end_inset
  3237. .
  3238. The majority of each density distribution is flat, representing the background
  3239. density of peaks genome-wide.
  3240. Each distribution has a peak near zero, representing an enrichment of peaks
  3241. close transcription start site (TSS) positions relative to the remainder
  3242. of the genome.
  3243. Interestingly, the
  3244. \begin_inset Quotes eld
  3245. \end_inset
  3246. radius
  3247. \begin_inset Quotes erd
  3248. \end_inset
  3249. within which this enrichment occurs is not the same for every histone mark
  3250. (Table
  3251. \begin_inset CommandInset ref
  3252. LatexCommand ref
  3253. reference "tab:effective-promoter-radius"
  3254. plural "false"
  3255. caps "false"
  3256. noprefix "false"
  3257. \end_inset
  3258. ).
  3259. For H3K4me2 and H3K4me3, peaks are most enriched within 1
  3260. \begin_inset space ~
  3261. \end_inset
  3262. kbp of TSS positions, while for H3K27me3, enrichment is broader, extending
  3263. to 2.5
  3264. \begin_inset space ~
  3265. \end_inset
  3266. kbp.
  3267. These
  3268. \begin_inset Quotes eld
  3269. \end_inset
  3270. effective promoter radii
  3271. \begin_inset Quotes erd
  3272. \end_inset
  3273. remain approximately the same across all combinations of experimental condition
  3274. (cell type, time point, and donor), so they appear to be a property of
  3275. the histone mark itself.
  3276. Hence, these radii were used to define the promoter regions for each histone
  3277. mark in all further analyses.
  3278. \end_layout
  3279. \begin_layout Standard
  3280. \begin_inset Flex TODO Note (inline)
  3281. status open
  3282. \begin_layout Plain Layout
  3283. Consider also showing figure for distance to nearest peak center, and reference
  3284. median peak size once that is known.
  3285. \end_layout
  3286. \end_inset
  3287. \end_layout
  3288. \begin_layout Subsection
  3289. H3K4 and H3K27 promoter methylation has broadly the expected correlation
  3290. with gene expression
  3291. \end_layout
  3292. \begin_layout Standard
  3293. \begin_inset Float figure
  3294. wide false
  3295. sideways false
  3296. status collapsed
  3297. \begin_layout Plain Layout
  3298. \begin_inset Flex TODO Note (inline)
  3299. status open
  3300. \begin_layout Plain Layout
  3301. This figure is generated from the old analysis.
  3302. Eiher note that in some way or re-generate it from the new peak calls.
  3303. \end_layout
  3304. \end_inset
  3305. \end_layout
  3306. \begin_layout Plain Layout
  3307. \align center
  3308. \begin_inset Graphics
  3309. filename graphics/CD4-csaw/FPKM by Peak Violin Plots-CROP.pdf
  3310. lyxscale 50
  3311. width 100col%
  3312. \end_inset
  3313. \end_layout
  3314. \begin_layout Plain Layout
  3315. \begin_inset Caption Standard
  3316. \begin_layout Plain Layout
  3317. \series bold
  3318. \begin_inset CommandInset label
  3319. LatexCommand label
  3320. name "fig:fpkm-by-peak"
  3321. \end_inset
  3322. Expression distributions of genes with and without promoter peaks.
  3323. \end_layout
  3324. \end_inset
  3325. \end_layout
  3326. \end_inset
  3327. \end_layout
  3328. \begin_layout Standard
  3329. H3K4me2 and H3K4me2 have previously been reported as activating marks whose
  3330. presence in a gene's promoter is associated with higher gene expression,
  3331. while H3K27me3 has been reported as inactivating [CITE].
  3332. The data are consistent with this characterization: genes whose promoters
  3333. (as defined by the radii for each histone mark listed in
  3334. \begin_inset CommandInset ref
  3335. LatexCommand ref
  3336. reference "tab:effective-promoter-radius"
  3337. plural "false"
  3338. caps "false"
  3339. noprefix "false"
  3340. \end_inset
  3341. ) overlap with a H3K4me2 or H3K4me3 peak tend to have higher expression
  3342. than those that don't, while H3K27me3 is likewise associated with lower
  3343. gene expression, as shown in
  3344. \begin_inset CommandInset ref
  3345. LatexCommand ref
  3346. reference "fig:fpkm-by-peak"
  3347. plural "false"
  3348. caps "false"
  3349. noprefix "false"
  3350. \end_inset
  3351. .
  3352. This pattern holds across all combinations of cell type and time point
  3353. (Welch's
  3354. \emph on
  3355. t
  3356. \emph default
  3357. -test, all
  3358. \begin_inset Formula $p\mathrm{-values}\ll2.2\times10^{-16}$
  3359. \end_inset
  3360. ).
  3361. The difference in average log FPKM values when a peak overlaps the promoter
  3362. is about
  3363. \begin_inset Formula $+5.67$
  3364. \end_inset
  3365. for H3K4me2,
  3366. \begin_inset Formula $+5.76$
  3367. \end_inset
  3368. for H3K4me2, and
  3369. \begin_inset Formula $-4.00$
  3370. \end_inset
  3371. for H3K27me3.
  3372. \end_layout
  3373. \begin_layout Standard
  3374. \begin_inset Flex TODO Note (inline)
  3375. status open
  3376. \begin_layout Plain Layout
  3377. I also have some figures looking at interactions between marks (e.g.
  3378. what if a promoter has both H3K4me3 and H3K27me3), but I don't know if
  3379. that much detail is warranted here, since all the effects just seem approximate
  3380. ly additive anyway.
  3381. \end_layout
  3382. \end_inset
  3383. \end_layout
  3384. \begin_layout Subsection
  3385. Gene expression and promoter histone methylation patterns in naive and memory
  3386. show convergence at day 14
  3387. \end_layout
  3388. \begin_layout Standard
  3389. \begin_inset ERT
  3390. status open
  3391. \begin_layout Plain Layout
  3392. \backslash
  3393. afterpage{
  3394. \end_layout
  3395. \begin_layout Plain Layout
  3396. \backslash
  3397. begin{landscape}
  3398. \end_layout
  3399. \end_inset
  3400. \end_layout
  3401. \begin_layout Standard
  3402. \begin_inset Float table
  3403. wide false
  3404. sideways false
  3405. status open
  3406. \begin_layout Plain Layout
  3407. \align center
  3408. \begin_inset Tabular
  3409. <lyxtabular version="3" rows="6" columns="7">
  3410. <features tabularvalignment="middle">
  3411. <column alignment="center" valignment="top">
  3412. <column alignment="center" valignment="top">
  3413. <column alignment="center" valignment="top">
  3414. <column alignment="center" valignment="top">
  3415. <column alignment="center" valignment="top">
  3416. <column alignment="center" valignment="top">
  3417. <column alignment="center" valignment="top">
  3418. <row>
  3419. <cell alignment="center" valignment="top" usebox="none">
  3420. \begin_inset Text
  3421. \begin_layout Plain Layout
  3422. \end_layout
  3423. \end_inset
  3424. </cell>
  3425. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3426. \begin_inset Text
  3427. \begin_layout Plain Layout
  3428. Number of significant promoters
  3429. \end_layout
  3430. \end_inset
  3431. </cell>
  3432. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3433. \begin_inset Text
  3434. \begin_layout Plain Layout
  3435. \end_layout
  3436. \end_inset
  3437. </cell>
  3438. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3439. \begin_inset Text
  3440. \begin_layout Plain Layout
  3441. \end_layout
  3442. \end_inset
  3443. </cell>
  3444. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3445. \begin_inset Text
  3446. \begin_layout Plain Layout
  3447. Est.
  3448. differentially modified promoters
  3449. \end_layout
  3450. \end_inset
  3451. </cell>
  3452. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3453. \begin_inset Text
  3454. \begin_layout Plain Layout
  3455. \end_layout
  3456. \end_inset
  3457. </cell>
  3458. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3459. \begin_inset Text
  3460. \begin_layout Plain Layout
  3461. \end_layout
  3462. \end_inset
  3463. </cell>
  3464. </row>
  3465. <row>
  3466. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3467. \begin_inset Text
  3468. \begin_layout Plain Layout
  3469. Time Point
  3470. \end_layout
  3471. \end_inset
  3472. </cell>
  3473. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3474. \begin_inset Text
  3475. \begin_layout Plain Layout
  3476. H3K4me2
  3477. \end_layout
  3478. \end_inset
  3479. </cell>
  3480. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3481. \begin_inset Text
  3482. \begin_layout Plain Layout
  3483. H3K4me3
  3484. \end_layout
  3485. \end_inset
  3486. </cell>
  3487. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3488. \begin_inset Text
  3489. \begin_layout Plain Layout
  3490. H3K27me3
  3491. \end_layout
  3492. \end_inset
  3493. </cell>
  3494. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3495. \begin_inset Text
  3496. \begin_layout Plain Layout
  3497. H3K4me2
  3498. \end_layout
  3499. \end_inset
  3500. </cell>
  3501. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3502. \begin_inset Text
  3503. \begin_layout Plain Layout
  3504. H3K4me3
  3505. \end_layout
  3506. \end_inset
  3507. </cell>
  3508. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3509. \begin_inset Text
  3510. \begin_layout Plain Layout
  3511. H3K27me3
  3512. \end_layout
  3513. \end_inset
  3514. </cell>
  3515. </row>
  3516. <row>
  3517. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3518. \begin_inset Text
  3519. \begin_layout Plain Layout
  3520. Day 0
  3521. \end_layout
  3522. \end_inset
  3523. </cell>
  3524. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3525. \begin_inset Text
  3526. \begin_layout Plain Layout
  3527. 4553
  3528. \end_layout
  3529. \end_inset
  3530. </cell>
  3531. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3532. \begin_inset Text
  3533. \begin_layout Plain Layout
  3534. 927
  3535. \end_layout
  3536. \end_inset
  3537. </cell>
  3538. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3539. \begin_inset Text
  3540. \begin_layout Plain Layout
  3541. 6
  3542. \end_layout
  3543. \end_inset
  3544. </cell>
  3545. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3546. \begin_inset Text
  3547. \begin_layout Plain Layout
  3548. 9967
  3549. \end_layout
  3550. \end_inset
  3551. </cell>
  3552. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3553. \begin_inset Text
  3554. \begin_layout Plain Layout
  3555. 4149
  3556. \end_layout
  3557. \end_inset
  3558. </cell>
  3559. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3560. \begin_inset Text
  3561. \begin_layout Plain Layout
  3562. 2404
  3563. \end_layout
  3564. \end_inset
  3565. </cell>
  3566. </row>
  3567. <row>
  3568. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3569. \begin_inset Text
  3570. \begin_layout Plain Layout
  3571. Day 1
  3572. \end_layout
  3573. \end_inset
  3574. </cell>
  3575. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3576. \begin_inset Text
  3577. \begin_layout Plain Layout
  3578. 567
  3579. \end_layout
  3580. \end_inset
  3581. </cell>
  3582. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3583. \begin_inset Text
  3584. \begin_layout Plain Layout
  3585. 278
  3586. \end_layout
  3587. \end_inset
  3588. </cell>
  3589. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3590. \begin_inset Text
  3591. \begin_layout Plain Layout
  3592. 1570
  3593. \end_layout
  3594. \end_inset
  3595. </cell>
  3596. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3597. \begin_inset Text
  3598. \begin_layout Plain Layout
  3599. 4370
  3600. \end_layout
  3601. \end_inset
  3602. </cell>
  3603. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3604. \begin_inset Text
  3605. \begin_layout Plain Layout
  3606. 2145
  3607. \end_layout
  3608. \end_inset
  3609. </cell>
  3610. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3611. \begin_inset Text
  3612. \begin_layout Plain Layout
  3613. 6598
  3614. \end_layout
  3615. \end_inset
  3616. </cell>
  3617. </row>
  3618. <row>
  3619. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3620. \begin_inset Text
  3621. \begin_layout Plain Layout
  3622. Day 5
  3623. \end_layout
  3624. \end_inset
  3625. </cell>
  3626. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3627. \begin_inset Text
  3628. \begin_layout Plain Layout
  3629. 2313
  3630. \end_layout
  3631. \end_inset
  3632. </cell>
  3633. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3634. \begin_inset Text
  3635. \begin_layout Plain Layout
  3636. 139
  3637. \end_layout
  3638. \end_inset
  3639. </cell>
  3640. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3641. \begin_inset Text
  3642. \begin_layout Plain Layout
  3643. 490
  3644. \end_layout
  3645. \end_inset
  3646. </cell>
  3647. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3648. \begin_inset Text
  3649. \begin_layout Plain Layout
  3650. 9450
  3651. \end_layout
  3652. \end_inset
  3653. </cell>
  3654. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3655. \begin_inset Text
  3656. \begin_layout Plain Layout
  3657. 1148
  3658. \end_layout
  3659. \end_inset
  3660. </cell>
  3661. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3662. \begin_inset Text
  3663. \begin_layout Plain Layout
  3664. 4141
  3665. \end_layout
  3666. \end_inset
  3667. </cell>
  3668. </row>
  3669. <row>
  3670. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3671. \begin_inset Text
  3672. \begin_layout Plain Layout
  3673. Day 14
  3674. \end_layout
  3675. \end_inset
  3676. </cell>
  3677. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3678. \begin_inset Text
  3679. \begin_layout Plain Layout
  3680. 0
  3681. \end_layout
  3682. \end_inset
  3683. </cell>
  3684. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3685. \begin_inset Text
  3686. \begin_layout Plain Layout
  3687. 0
  3688. \end_layout
  3689. \end_inset
  3690. </cell>
  3691. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3692. \begin_inset Text
  3693. \begin_layout Plain Layout
  3694. 0
  3695. \end_layout
  3696. \end_inset
  3697. </cell>
  3698. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3699. \begin_inset Text
  3700. \begin_layout Plain Layout
  3701. 0
  3702. \end_layout
  3703. \end_inset
  3704. </cell>
  3705. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3706. \begin_inset Text
  3707. \begin_layout Plain Layout
  3708. 0
  3709. \end_layout
  3710. \end_inset
  3711. </cell>
  3712. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3713. \begin_inset Text
  3714. \begin_layout Plain Layout
  3715. 0
  3716. \end_layout
  3717. \end_inset
  3718. </cell>
  3719. </row>
  3720. </lyxtabular>
  3721. \end_inset
  3722. \end_layout
  3723. \begin_layout Plain Layout
  3724. \begin_inset Caption Standard
  3725. \begin_layout Plain Layout
  3726. \series bold
  3727. \begin_inset CommandInset label
  3728. LatexCommand label
  3729. name "tab:Number-signif-promoters"
  3730. \end_inset
  3731. Number of differentially modified promoters between naive and memory cells
  3732. at each time point after activation.
  3733. \series default
  3734. This table shows both the number of differentially modified promoters detected
  3735. at a 10% FDR threshold (left half), and the total number of differentially
  3736. modified promoters as estimated using the method of
  3737. \begin_inset CommandInset citation
  3738. LatexCommand cite
  3739. key "Phipson2013"
  3740. literal "false"
  3741. \end_inset
  3742. (right half).
  3743. \end_layout
  3744. \end_inset
  3745. \end_layout
  3746. \end_inset
  3747. \end_layout
  3748. \begin_layout Standard
  3749. \begin_inset ERT
  3750. status open
  3751. \begin_layout Plain Layout
  3752. \backslash
  3753. end{landscape}
  3754. \end_layout
  3755. \begin_layout Plain Layout
  3756. }
  3757. \end_layout
  3758. \end_inset
  3759. \end_layout
  3760. \begin_layout Standard
  3761. \begin_inset Float figure
  3762. placement p
  3763. wide false
  3764. sideways false
  3765. status open
  3766. \begin_layout Plain Layout
  3767. \align center
  3768. \begin_inset Float figure
  3769. wide false
  3770. sideways false
  3771. status open
  3772. \begin_layout Plain Layout
  3773. \align center
  3774. \begin_inset Graphics
  3775. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-promoter-PCA-group-CROP.png
  3776. lyxscale 25
  3777. width 45col%
  3778. groupId pcoa-prom-subfig
  3779. \end_inset
  3780. \end_layout
  3781. \begin_layout Plain Layout
  3782. \begin_inset Caption Standard
  3783. \begin_layout Plain Layout
  3784. \series bold
  3785. \begin_inset CommandInset label
  3786. LatexCommand label
  3787. name "fig:PCoA-H3K4me2-prom"
  3788. \end_inset
  3789. PCoA plot of H3K4me2 promoters, after subtracting surrogate variables
  3790. \end_layout
  3791. \end_inset
  3792. \end_layout
  3793. \end_inset
  3794. \begin_inset space \hfill{}
  3795. \end_inset
  3796. \begin_inset Float figure
  3797. wide false
  3798. sideways false
  3799. status open
  3800. \begin_layout Plain Layout
  3801. \align center
  3802. \begin_inset Graphics
  3803. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-promoter-PCA-group-CROP.png
  3804. lyxscale 25
  3805. width 45col%
  3806. groupId pcoa-prom-subfig
  3807. \end_inset
  3808. \end_layout
  3809. \begin_layout Plain Layout
  3810. \begin_inset Caption Standard
  3811. \begin_layout Plain Layout
  3812. \series bold
  3813. \begin_inset CommandInset label
  3814. LatexCommand label
  3815. name "fig:PCoA-H3K4me3-prom"
  3816. \end_inset
  3817. PCoA plot of H3K4me3 promoters, after subtracting surrogate variables
  3818. \end_layout
  3819. \end_inset
  3820. \end_layout
  3821. \end_inset
  3822. \end_layout
  3823. \begin_layout Plain Layout
  3824. \align center
  3825. \begin_inset Float figure
  3826. wide false
  3827. sideways false
  3828. status collapsed
  3829. \begin_layout Plain Layout
  3830. \align center
  3831. \begin_inset Graphics
  3832. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-promoter-PCA-group-CROP.png
  3833. lyxscale 25
  3834. width 45col%
  3835. groupId pcoa-prom-subfig
  3836. \end_inset
  3837. \end_layout
  3838. \begin_layout Plain Layout
  3839. \begin_inset Caption Standard
  3840. \begin_layout Plain Layout
  3841. \series bold
  3842. \begin_inset CommandInset label
  3843. LatexCommand label
  3844. name "fig:PCoA-H3K27me3-prom"
  3845. \end_inset
  3846. PCoA plot of H3K27me3 promoters, after subtracting surrogate variables
  3847. \end_layout
  3848. \end_inset
  3849. \end_layout
  3850. \end_inset
  3851. \begin_inset space \hfill{}
  3852. \end_inset
  3853. \begin_inset Float figure
  3854. wide false
  3855. sideways false
  3856. status open
  3857. \begin_layout Plain Layout
  3858. \align center
  3859. \begin_inset Graphics
  3860. filename graphics/CD4-csaw/RNA-seq/PCA-final-23-CROP.png
  3861. lyxscale 25
  3862. width 45col%
  3863. groupId pcoa-prom-subfig
  3864. \end_inset
  3865. \end_layout
  3866. \begin_layout Plain Layout
  3867. \begin_inset Caption Standard
  3868. \begin_layout Plain Layout
  3869. \series bold
  3870. \begin_inset CommandInset label
  3871. LatexCommand label
  3872. name "fig:RNA-PCA-group"
  3873. \end_inset
  3874. RNA-seq PCoA showing principal coordiantes 2 and 3.
  3875. \end_layout
  3876. \end_inset
  3877. \end_layout
  3878. \end_inset
  3879. \end_layout
  3880. \begin_layout Plain Layout
  3881. \begin_inset Caption Standard
  3882. \begin_layout Plain Layout
  3883. \series bold
  3884. \begin_inset CommandInset label
  3885. LatexCommand label
  3886. name "fig:PCoA-promoters"
  3887. \end_inset
  3888. PCoA plots for promoter ChIP-seq and expression RNA-seq data
  3889. \end_layout
  3890. \end_inset
  3891. \end_layout
  3892. \end_inset
  3893. \end_layout
  3894. \begin_layout Standard
  3895. \begin_inset Flex TODO Note (inline)
  3896. status open
  3897. \begin_layout Plain Layout
  3898. Check up on figure refs in this paragraph
  3899. \end_layout
  3900. \end_inset
  3901. \end_layout
  3902. \begin_layout Standard
  3903. We hypothesized that if naive cells had differentiated into memory cells
  3904. by Day 14, then their patterns of expression and histone modification should
  3905. converge with those of memory cells at Day 14.
  3906. Figure
  3907. \begin_inset CommandInset ref
  3908. LatexCommand ref
  3909. reference "fig:PCoA-promoters"
  3910. plural "false"
  3911. caps "false"
  3912. noprefix "false"
  3913. \end_inset
  3914. shows the patterns of variation in all 3 histone marks in the promoter
  3915. regions of the genome using principal coordinate analysis.
  3916. All 3 marks show a noticeable convergence between the naive and memory
  3917. samples at day 14, visible as an overlapping of the day 14 groups on each
  3918. plot.
  3919. This is consistent with the counts of significantly differentially modified
  3920. promoters and estimates of the total numbers of differentially modified
  3921. promoters shown in Table
  3922. \begin_inset CommandInset ref
  3923. LatexCommand ref
  3924. reference "tab:Number-signif-promoters"
  3925. plural "false"
  3926. caps "false"
  3927. noprefix "false"
  3928. \end_inset
  3929. .
  3930. For all histone marks, evidence of differential modification between naive
  3931. and memory samples was detected at every time point except day 14.
  3932. The day 14 convergence pattern is also present in the RNA-seq data (Figure
  3933. \begin_inset CommandInset ref
  3934. LatexCommand ref
  3935. reference "fig:RNA-PCA-group"
  3936. plural "false"
  3937. caps "false"
  3938. noprefix "false"
  3939. \end_inset
  3940. ), albiet in the 2nd and 3rd principal coordinates, indicating that it is
  3941. not the most dominant pattern driving gene expression.
  3942. Taken together, the data show that promoter histone methylation for these
  3943. 3 histone marks and RNA expression for naive and memory cells are most
  3944. similar at day 14, the furthest time point after activation.
  3945. MOFA was also able to capture this day 14 convergence pattern in latent
  3946. factor 5 (Figure
  3947. \begin_inset CommandInset ref
  3948. LatexCommand ref
  3949. reference "fig:mofa-lf-scatter"
  3950. plural "false"
  3951. caps "false"
  3952. noprefix "false"
  3953. \end_inset
  3954. ), which accounts for shared variation across all 3 histone marks and the
  3955. RNA-seq data, confirming that this convergence is a coordinated pattern
  3956. across all 4 data sets.
  3957. While this observation does not prove that the naive cells have differentiated
  3958. into memory cells at Day 14, it is consistent with that hypothesis.
  3959. \end_layout
  3960. \begin_layout Subsection
  3961. Effect of H3K4me2 and H3K4me3 promoter coverage upstream vs downstream of
  3962. TSS
  3963. \end_layout
  3964. \begin_layout Standard
  3965. \begin_inset Flex TODO Note (inline)
  3966. status open
  3967. \begin_layout Plain Layout
  3968. Need a better section title, for this and the next one.
  3969. \end_layout
  3970. \end_inset
  3971. \end_layout
  3972. \begin_layout Standard
  3973. \begin_inset Flex TODO Note (inline)
  3974. status open
  3975. \begin_layout Plain Layout
  3976. Make sure use of coverage/abundance/whatever is consistent.
  3977. \end_layout
  3978. \end_inset
  3979. \end_layout
  3980. \begin_layout Standard
  3981. \begin_inset Flex TODO Note (inline)
  3982. status open
  3983. \begin_layout Plain Layout
  3984. For the figures in this section and the next, the group labels are arbitrary,
  3985. so if time allows, it would be good to manually reorder them in a logical
  3986. way, e.g.
  3987. most upstream to most downstream.
  3988. If this is done, make sure to update the text with the correct group labels.
  3989. \end_layout
  3990. \end_inset
  3991. \end_layout
  3992. \begin_layout Standard
  3993. \begin_inset ERT
  3994. status open
  3995. \begin_layout Plain Layout
  3996. \backslash
  3997. afterpage{
  3998. \end_layout
  3999. \begin_layout Plain Layout
  4000. \backslash
  4001. begin{landscape}
  4002. \end_layout
  4003. \end_inset
  4004. \end_layout
  4005. \begin_layout Standard
  4006. \begin_inset Float figure
  4007. wide false
  4008. sideways false
  4009. status open
  4010. \begin_layout Plain Layout
  4011. \align center
  4012. \begin_inset Float figure
  4013. wide false
  4014. sideways false
  4015. status open
  4016. \begin_layout Plain Layout
  4017. \align center
  4018. \begin_inset Graphics
  4019. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-neighborhood-clusters-CROP.png
  4020. lyxscale 25
  4021. width 30col%
  4022. groupId covprof-subfig
  4023. \end_inset
  4024. \end_layout
  4025. \begin_layout Plain Layout
  4026. \begin_inset Caption Standard
  4027. \begin_layout Plain Layout
  4028. \series bold
  4029. \begin_inset CommandInset label
  4030. LatexCommand label
  4031. name "fig:H3K4me2-neighborhood-clusters"
  4032. \end_inset
  4033. Average relative coverage for each bin in each cluster
  4034. \end_layout
  4035. \end_inset
  4036. \end_layout
  4037. \end_inset
  4038. \begin_inset space \hfill{}
  4039. \end_inset
  4040. \begin_inset Float figure
  4041. wide false
  4042. sideways false
  4043. status open
  4044. \begin_layout Plain Layout
  4045. \align center
  4046. \begin_inset Graphics
  4047. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-neighborhood-PCA-CROP.png
  4048. lyxscale 25
  4049. width 30col%
  4050. groupId covprof-subfig
  4051. \end_inset
  4052. \end_layout
  4053. \begin_layout Plain Layout
  4054. \begin_inset Caption Standard
  4055. \begin_layout Plain Layout
  4056. \series bold
  4057. \begin_inset CommandInset label
  4058. LatexCommand label
  4059. name "fig:H3K4me2-neighborhood-pca"
  4060. \end_inset
  4061. PCA of relative coverage depth, colored by K-means cluster membership.
  4062. \end_layout
  4063. \end_inset
  4064. \end_layout
  4065. \end_inset
  4066. \begin_inset space \hfill{}
  4067. \end_inset
  4068. \begin_inset Float figure
  4069. wide false
  4070. sideways false
  4071. status open
  4072. \begin_layout Plain Layout
  4073. \align center
  4074. \begin_inset Graphics
  4075. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-neighborhood-expression-CROP.png
  4076. lyxscale 25
  4077. width 30col%
  4078. groupId covprof-subfig
  4079. \end_inset
  4080. \end_layout
  4081. \begin_layout Plain Layout
  4082. \begin_inset Caption Standard
  4083. \begin_layout Plain Layout
  4084. \series bold
  4085. \begin_inset CommandInset label
  4086. LatexCommand label
  4087. name "fig:H3K4me2-neighborhood-expression"
  4088. \end_inset
  4089. Gene expression grouped by promoter coverage clusters.
  4090. \end_layout
  4091. \end_inset
  4092. \end_layout
  4093. \end_inset
  4094. \end_layout
  4095. \begin_layout Plain Layout
  4096. \begin_inset Caption Standard
  4097. \begin_layout Plain Layout
  4098. \series bold
  4099. \begin_inset CommandInset label
  4100. LatexCommand label
  4101. name "fig:H3K4me2-neighborhood"
  4102. \end_inset
  4103. K-means clustering of promoter H3K4me2 relative coverage depth in naive
  4104. day 0 samples.
  4105. \series default
  4106. H3K4me2 ChIP-seq reads were binned into 500-bp windows tiled across each
  4107. promoter from 5
  4108. \begin_inset space ~
  4109. \end_inset
  4110. kbp upstream to 5
  4111. \begin_inset space ~
  4112. \end_inset
  4113. kbp downstream, and the logCPM values were normalized within each promoter
  4114. to an average of 0, yielding relative coverage depths.
  4115. These were then grouped using K-means clustering with
  4116. \begin_inset Formula $K=6$
  4117. \end_inset
  4118. ,
  4119. \series bold
  4120. \series default
  4121. and the average bin values were plotted for each cluster (a).
  4122. The
  4123. \begin_inset Formula $x$
  4124. \end_inset
  4125. -axis is the genomic coordinate of each bin relative to the the transcription
  4126. start site, and the
  4127. \begin_inset Formula $y$
  4128. \end_inset
  4129. -axis is the mean relative coverage depth of that bin across all promoters
  4130. in the cluster.
  4131. Each line represents the average
  4132. \begin_inset Quotes eld
  4133. \end_inset
  4134. shape
  4135. \begin_inset Quotes erd
  4136. \end_inset
  4137. of the promoter coverage for promoters in that cluster.
  4138. PCA was performed on the same data, and the first two principal components
  4139. were plotted, coloring each point by its K-means cluster identity (b).
  4140. For each cluster, the distribution of gene expression values was plotted
  4141. (c).
  4142. \end_layout
  4143. \end_inset
  4144. \end_layout
  4145. \end_inset
  4146. \end_layout
  4147. \begin_layout Standard
  4148. \begin_inset ERT
  4149. status open
  4150. \begin_layout Plain Layout
  4151. \backslash
  4152. end{landscape}
  4153. \end_layout
  4154. \begin_layout Plain Layout
  4155. }
  4156. \end_layout
  4157. \end_inset
  4158. \end_layout
  4159. \begin_layout Standard
  4160. To test whether the position of a histone mark relative to a gene's transcriptio
  4161. n start site (TSS) was important, we looked at the
  4162. \begin_inset Quotes eld
  4163. \end_inset
  4164. landscape
  4165. \begin_inset Quotes erd
  4166. \end_inset
  4167. of ChIP-seq read coverage in naive Day 0 samples within 5 kb of each gene's
  4168. TSS by binning reads into 500-bp windows tiled across each promoter LogCPM
  4169. values were calculated for the bins in each promoter and then the average
  4170. logCPM for each promoter's bins was normalized to zero, such that the values
  4171. represent coverage relative to other regions of the same promoter rather
  4172. than being proportional to absolute read count.
  4173. The promoters were then clustered based on the normalized bin abundances
  4174. using
  4175. \begin_inset Formula $k$
  4176. \end_inset
  4177. -means clustering with
  4178. \begin_inset Formula $K=6$
  4179. \end_inset
  4180. .
  4181. Different values of
  4182. \begin_inset Formula $K$
  4183. \end_inset
  4184. were also tested, but did not substantially change the interpretation of
  4185. the data.
  4186. \end_layout
  4187. \begin_layout Standard
  4188. For H3K4me2, plotting the average bin abundances for each cluster reveals
  4189. a simple pattern (Figure
  4190. \begin_inset CommandInset ref
  4191. LatexCommand ref
  4192. reference "fig:H3K4me2-neighborhood-clusters"
  4193. plural "false"
  4194. caps "false"
  4195. noprefix "false"
  4196. \end_inset
  4197. ): Cluster 5 represents a completely flat promoter coverage profile, likely
  4198. consisting of genes with no H3K4me2 methylation in the promoter.
  4199. All the other clusters represent a continuum of peak positions relative
  4200. to the TSS.
  4201. In order from must upstream to most downstream, they are Clusters 6, 4,
  4202. 3, 1, and 2.
  4203. There do not appear to be any clusters representing coverage patterns other
  4204. than lone peaks, such as coverage troughs or double peaks.
  4205. Next, all promoters were plotted in a PCA plot based on the same relative
  4206. bin abundance data, and colored based on cluster membership (Figure
  4207. \begin_inset CommandInset ref
  4208. LatexCommand ref
  4209. reference "fig:H3K4me2-neighborhood-pca"
  4210. plural "false"
  4211. caps "false"
  4212. noprefix "false"
  4213. \end_inset
  4214. ).
  4215. The PCA plot shows Cluster 5 (the
  4216. \begin_inset Quotes eld
  4217. \end_inset
  4218. no peak
  4219. \begin_inset Quotes erd
  4220. \end_inset
  4221. cluster) at the center, with the other clusters arranged in a counter-clockwise
  4222. arc around it in the order noted above, from most upstream peak to most
  4223. downstream.
  4224. Notably, the
  4225. \begin_inset Quotes eld
  4226. \end_inset
  4227. clusters
  4228. \begin_inset Quotes erd
  4229. \end_inset
  4230. form a single large
  4231. \begin_inset Quotes eld
  4232. \end_inset
  4233. cloud
  4234. \begin_inset Quotes erd
  4235. \end_inset
  4236. with no apparent separation between them, further supporting the conclusion
  4237. that these clusters represent an arbitrary partitioning of a continuous
  4238. distribution of promoter coverage landscapes.
  4239. While the clusters are a useful abstraction that aids in visualization,
  4240. they are ultimately not an accurate representation of the data.
  4241. A better representation might be something like a polar coordinate system
  4242. with the origin at the center of Cluster 5, where the radius represents
  4243. the peak height above the background and the angle represents the peak's
  4244. position upstream or downstream of the TSS.
  4245. The continuous nature of the distribution also explains why different values
  4246. of
  4247. \begin_inset Formula $K$
  4248. \end_inset
  4249. led to similar conclusions.
  4250. \end_layout
  4251. \begin_layout Standard
  4252. \begin_inset Flex TODO Note (inline)
  4253. status open
  4254. \begin_layout Plain Layout
  4255. RNA-seq values in the plots use logCPM but should really use logFPKM or
  4256. logTPM.
  4257. Fix if time allows.
  4258. \end_layout
  4259. \end_inset
  4260. \end_layout
  4261. \begin_layout Standard
  4262. \begin_inset Flex TODO Note (inline)
  4263. status open
  4264. \begin_layout Plain Layout
  4265. Should have a table of p-values on difference of means between Cluster 5
  4266. and the others.
  4267. \end_layout
  4268. \end_inset
  4269. \end_layout
  4270. \begin_layout Standard
  4271. To investigate the association between relative peak position and gene expressio
  4272. n, we plotted the Naive Day 0 expression for the genes in each cluster (Figure
  4273. \begin_inset CommandInset ref
  4274. LatexCommand ref
  4275. reference "fig:H3K4me2-neighborhood-expression"
  4276. plural "false"
  4277. caps "false"
  4278. noprefix "false"
  4279. \end_inset
  4280. ).
  4281. Most genes in Cluster 5, the
  4282. \begin_inset Quotes eld
  4283. \end_inset
  4284. no peak
  4285. \begin_inset Quotes erd
  4286. \end_inset
  4287. cluster, have low expression values.
  4288. Taking this as the
  4289. \begin_inset Quotes eld
  4290. \end_inset
  4291. baseline
  4292. \begin_inset Quotes erd
  4293. \end_inset
  4294. distribution when no H3K4me2 methylation is present, we can compare the
  4295. other clusters' distributions to determine which peak positions are associated
  4296. with elevated expression.
  4297. As might be expected, the 3 clusters representing peaks closest to the
  4298. TSS, Clusters 1, 3, and 4, show the highest average expression distributions.
  4299. Specifically, these clusters all have their highest ChIP-seq abundance
  4300. within 1kb of the TSS, consistent with the previously determined promoter
  4301. radius.
  4302. In contrast, cluster 6, which represents peaks several kb upstream of the
  4303. TSS, shows a slightly higher average expression than baseline, while Cluster
  4304. 2, which represents peaks several kb downstream, doesn't appear to show
  4305. any appreciable difference.
  4306. Interestingly, the cluster with the highest average expression is Cluster
  4307. 1, which represents peaks about 1 kb downstream of the TSS, rather than
  4308. Cluster 3, which represents peaks centered directly at the TSS.
  4309. This suggests that conceptualizing the promoter as a region centered on
  4310. the TSS with a certain
  4311. \begin_inset Quotes eld
  4312. \end_inset
  4313. radius
  4314. \begin_inset Quotes erd
  4315. \end_inset
  4316. may be an oversimplification – a peak that is a specific distance from
  4317. the TSS may have a different degree of influence depending on whether it
  4318. is upstream or downstream of the TSS.
  4319. \end_layout
  4320. \begin_layout Standard
  4321. \begin_inset ERT
  4322. status open
  4323. \begin_layout Plain Layout
  4324. \backslash
  4325. afterpage{
  4326. \end_layout
  4327. \begin_layout Plain Layout
  4328. \backslash
  4329. begin{landscape}
  4330. \end_layout
  4331. \end_inset
  4332. \end_layout
  4333. \begin_layout Standard
  4334. \begin_inset Float figure
  4335. wide false
  4336. sideways false
  4337. status open
  4338. \begin_layout Plain Layout
  4339. \align center
  4340. \begin_inset Float figure
  4341. wide false
  4342. sideways false
  4343. status open
  4344. \begin_layout Plain Layout
  4345. \align center
  4346. \begin_inset Graphics
  4347. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-neighborhood-clusters-CROP.png
  4348. lyxscale 25
  4349. width 30col%
  4350. groupId covprof-subfig
  4351. \end_inset
  4352. \end_layout
  4353. \begin_layout Plain Layout
  4354. \begin_inset Caption Standard
  4355. \begin_layout Plain Layout
  4356. \series bold
  4357. \begin_inset CommandInset label
  4358. LatexCommand label
  4359. name "fig:H3K4me3-neighborhood-clusters"
  4360. \end_inset
  4361. Average relative coverage for each bin in each cluster
  4362. \end_layout
  4363. \end_inset
  4364. \end_layout
  4365. \end_inset
  4366. \begin_inset space \hfill{}
  4367. \end_inset
  4368. \begin_inset Float figure
  4369. wide false
  4370. sideways false
  4371. status open
  4372. \begin_layout Plain Layout
  4373. \align center
  4374. \begin_inset Graphics
  4375. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-neighborhood-PCA-CROP.png
  4376. lyxscale 25
  4377. width 30col%
  4378. groupId covprof-subfig
  4379. \end_inset
  4380. \end_layout
  4381. \begin_layout Plain Layout
  4382. \begin_inset Caption Standard
  4383. \begin_layout Plain Layout
  4384. \series bold
  4385. \begin_inset CommandInset label
  4386. LatexCommand label
  4387. name "fig:H3K4me3-neighborhood-pca"
  4388. \end_inset
  4389. PCA of relative coverage depth, colored by K-means cluster membership.
  4390. \end_layout
  4391. \end_inset
  4392. \end_layout
  4393. \end_inset
  4394. \begin_inset space \hfill{}
  4395. \end_inset
  4396. \begin_inset Float figure
  4397. wide false
  4398. sideways false
  4399. status open
  4400. \begin_layout Plain Layout
  4401. \align center
  4402. \begin_inset Graphics
  4403. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-neighborhood-expression-CROP.png
  4404. lyxscale 25
  4405. width 30col%
  4406. groupId covprof-subfig
  4407. \end_inset
  4408. \end_layout
  4409. \begin_layout Plain Layout
  4410. \begin_inset Caption Standard
  4411. \begin_layout Plain Layout
  4412. \series bold
  4413. \begin_inset CommandInset label
  4414. LatexCommand label
  4415. name "fig:H3K4me3-neighborhood-expression"
  4416. \end_inset
  4417. Gene expression grouped by promoter coverage clusters.
  4418. \end_layout
  4419. \end_inset
  4420. \end_layout
  4421. \end_inset
  4422. \end_layout
  4423. \begin_layout Plain Layout
  4424. \begin_inset Caption Standard
  4425. \begin_layout Plain Layout
  4426. \series bold
  4427. \begin_inset CommandInset label
  4428. LatexCommand label
  4429. name "fig:H3K4me3-neighborhood"
  4430. \end_inset
  4431. K-means clustering of promoter H3K4me3 relative coverage depth in naive
  4432. day 0 samples.
  4433. \series default
  4434. H3K4me2 ChIP-seq reads were binned into 500-bp windows tiled across each
  4435. promoter from 5
  4436. \begin_inset space ~
  4437. \end_inset
  4438. kbp upstream to 5
  4439. \begin_inset space ~
  4440. \end_inset
  4441. kbp downstream, and the logCPM values were normalized within each promoter
  4442. to an average of 0, yielding relative coverage depths.
  4443. These were then grouped using K-means clustering with
  4444. \begin_inset Formula $K=6$
  4445. \end_inset
  4446. ,
  4447. \series bold
  4448. \series default
  4449. and the average bin values were plotted for each cluster (a).
  4450. The
  4451. \begin_inset Formula $x$
  4452. \end_inset
  4453. -axis is the genomic coordinate of each bin relative to the the transcription
  4454. start site, and the
  4455. \begin_inset Formula $y$
  4456. \end_inset
  4457. -axis is the mean relative coverage depth of that bin across all promoters
  4458. in the cluster.
  4459. Each line represents the average
  4460. \begin_inset Quotes eld
  4461. \end_inset
  4462. shape
  4463. \begin_inset Quotes erd
  4464. \end_inset
  4465. of the promoter coverage for promoters in that cluster.
  4466. PCA was performed on the same data, and the first two principal components
  4467. were plotted, coloring each point by its K-means cluster identity (b).
  4468. For each cluster, the distribution of gene expression values was plotted
  4469. (c).
  4470. \end_layout
  4471. \end_inset
  4472. \end_layout
  4473. \end_inset
  4474. \end_layout
  4475. \begin_layout Standard
  4476. \begin_inset ERT
  4477. status open
  4478. \begin_layout Plain Layout
  4479. \backslash
  4480. end{landscape}
  4481. \end_layout
  4482. \begin_layout Plain Layout
  4483. }
  4484. \end_layout
  4485. \end_inset
  4486. \end_layout
  4487. \begin_layout Standard
  4488. \begin_inset Flex TODO Note (inline)
  4489. status open
  4490. \begin_layout Plain Layout
  4491. Is there more to say here?
  4492. \end_layout
  4493. \end_inset
  4494. \end_layout
  4495. \begin_layout Standard
  4496. All observations described above for H3K4me2 ChIP-seq also appear to hold
  4497. for H3K4me3 as well (Figure
  4498. \begin_inset CommandInset ref
  4499. LatexCommand ref
  4500. reference "fig:H3K4me3-neighborhood"
  4501. plural "false"
  4502. caps "false"
  4503. noprefix "false"
  4504. \end_inset
  4505. ).
  4506. This is expected, since there is a high correlation between the positions
  4507. where both histone marks occur.
  4508. \end_layout
  4509. \begin_layout Subsection
  4510. Promoter coverage H3K27me3
  4511. \end_layout
  4512. \begin_layout Standard
  4513. \begin_inset ERT
  4514. status open
  4515. \begin_layout Plain Layout
  4516. \backslash
  4517. afterpage{
  4518. \end_layout
  4519. \begin_layout Plain Layout
  4520. \backslash
  4521. begin{landscape}
  4522. \end_layout
  4523. \end_inset
  4524. \end_layout
  4525. \begin_layout Standard
  4526. \begin_inset Float figure
  4527. wide false
  4528. sideways false
  4529. status collapsed
  4530. \begin_layout Plain Layout
  4531. \align center
  4532. \begin_inset Float figure
  4533. wide false
  4534. sideways false
  4535. status open
  4536. \begin_layout Plain Layout
  4537. \align center
  4538. \begin_inset Graphics
  4539. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-neighborhood-clusters-CROP.png
  4540. lyxscale 25
  4541. width 30col%
  4542. groupId covprof-subfig
  4543. \end_inset
  4544. \end_layout
  4545. \begin_layout Plain Layout
  4546. \begin_inset Caption Standard
  4547. \begin_layout Plain Layout
  4548. \series bold
  4549. \begin_inset CommandInset label
  4550. LatexCommand label
  4551. name "fig:H3K27me3-neighborhood-clusters"
  4552. \end_inset
  4553. Average relative coverage for each bin in each cluster
  4554. \end_layout
  4555. \end_inset
  4556. \end_layout
  4557. \end_inset
  4558. \begin_inset space \hfill{}
  4559. \end_inset
  4560. \begin_inset Float figure
  4561. wide false
  4562. sideways false
  4563. status open
  4564. \begin_layout Plain Layout
  4565. \align center
  4566. \begin_inset Graphics
  4567. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-neighborhood-PCA-CROP.png
  4568. lyxscale 25
  4569. width 30col%
  4570. groupId covprof-subfig
  4571. \end_inset
  4572. \end_layout
  4573. \begin_layout Plain Layout
  4574. \begin_inset Caption Standard
  4575. \begin_layout Plain Layout
  4576. \series bold
  4577. \begin_inset CommandInset label
  4578. LatexCommand label
  4579. name "fig:H3K27me3-neighborhood-pca"
  4580. \end_inset
  4581. PCA of relative coverage depth, colored by K-means cluster membership.
  4582. \series default
  4583. Note that Cluster 6 is hidden behind all the other clusters.
  4584. \end_layout
  4585. \end_inset
  4586. \end_layout
  4587. \end_inset
  4588. \begin_inset space \hfill{}
  4589. \end_inset
  4590. \begin_inset Float figure
  4591. wide false
  4592. sideways false
  4593. status open
  4594. \begin_layout Plain Layout
  4595. \align center
  4596. \begin_inset Graphics
  4597. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-neighborhood-expression-CROP.png
  4598. lyxscale 25
  4599. width 30col%
  4600. groupId covprof-subfig
  4601. \end_inset
  4602. \end_layout
  4603. \begin_layout Plain Layout
  4604. \begin_inset Caption Standard
  4605. \begin_layout Plain Layout
  4606. \series bold
  4607. \begin_inset CommandInset label
  4608. LatexCommand label
  4609. name "fig:H3K27me3-neighborhood-expression"
  4610. \end_inset
  4611. Gene expression grouped by promoter coverage clusters.
  4612. \end_layout
  4613. \end_inset
  4614. \end_layout
  4615. \end_inset
  4616. \end_layout
  4617. \begin_layout Plain Layout
  4618. \begin_inset Flex TODO Note (inline)
  4619. status open
  4620. \begin_layout Plain Layout
  4621. Repeated figure legends are kind of an issue here.
  4622. What to do?
  4623. \end_layout
  4624. \end_inset
  4625. \end_layout
  4626. \begin_layout Plain Layout
  4627. \begin_inset Caption Standard
  4628. \begin_layout Plain Layout
  4629. \series bold
  4630. \begin_inset CommandInset label
  4631. LatexCommand label
  4632. name "fig:H3K27me3-neighborhood"
  4633. \end_inset
  4634. K-means clustering of promoter H3K27me3 relative coverage depth in naive
  4635. day 0 samples.
  4636. \series default
  4637. H3K27me3 ChIP-seq reads were binned into 500-bp windows tiled across each
  4638. promoter from 5
  4639. \begin_inset space ~
  4640. \end_inset
  4641. kbp upstream to 5
  4642. \begin_inset space ~
  4643. \end_inset
  4644. kbp downstream, and the logCPM values were normalized within each promoter
  4645. to an average of 0, yielding relative coverage depths.
  4646. These were then grouped using
  4647. \begin_inset Formula $k$
  4648. \end_inset
  4649. -means clustering with
  4650. \begin_inset Formula $K=6$
  4651. \end_inset
  4652. ,
  4653. \series bold
  4654. \series default
  4655. and the average bin values were plotted for each cluster (a).
  4656. The
  4657. \begin_inset Formula $x$
  4658. \end_inset
  4659. -axis is the genomic coordinate of each bin relative to the the transcription
  4660. start site, and the
  4661. \begin_inset Formula $y$
  4662. \end_inset
  4663. -axis is the mean relative coverage depth of that bin across all promoters
  4664. in the cluster.
  4665. Each line represents the average
  4666. \begin_inset Quotes eld
  4667. \end_inset
  4668. shape
  4669. \begin_inset Quotes erd
  4670. \end_inset
  4671. of the promoter coverage for promoters in that cluster.
  4672. PCA was performed on the same data, and the first two principal components
  4673. were plotted, coloring each point by its K-means cluster identity (b).
  4674. For each cluster, the distribution of gene expression values was plotted
  4675. (c).
  4676. \end_layout
  4677. \end_inset
  4678. \end_layout
  4679. \end_inset
  4680. \end_layout
  4681. \begin_layout Standard
  4682. \begin_inset ERT
  4683. status open
  4684. \begin_layout Plain Layout
  4685. \backslash
  4686. end{landscape}
  4687. \end_layout
  4688. \begin_layout Plain Layout
  4689. }
  4690. \end_layout
  4691. \end_inset
  4692. \end_layout
  4693. \begin_layout Standard
  4694. \begin_inset Flex TODO Note (inline)
  4695. status open
  4696. \begin_layout Plain Layout
  4697. Should maybe re-explain what was done or refer back to the previous section.
  4698. \end_layout
  4699. \end_inset
  4700. \end_layout
  4701. \begin_layout Standard
  4702. Unlike both H3K4 marks, whose main patterns of variation appear directly
  4703. related to the size and position of a single peak within the promoter,
  4704. the patterns of H3K27me3 methylation in promoters are more complex (Figure
  4705. \begin_inset CommandInset ref
  4706. LatexCommand ref
  4707. reference "fig:H3K27me3-neighborhood"
  4708. plural "false"
  4709. caps "false"
  4710. noprefix "false"
  4711. \end_inset
  4712. ).
  4713. Once again looking at the relative coverage in a 500-bp wide bins in a
  4714. 5kb radius around each TSS, promoters were clustered based on the normalized
  4715. relative coverage values in each bin using
  4716. \begin_inset Formula $k$
  4717. \end_inset
  4718. -means clustering with
  4719. \begin_inset Formula $K=6$
  4720. \end_inset
  4721. (Figure
  4722. \begin_inset CommandInset ref
  4723. LatexCommand ref
  4724. reference "fig:H3K27me3-neighborhood-clusters"
  4725. plural "false"
  4726. caps "false"
  4727. noprefix "false"
  4728. \end_inset
  4729. ).
  4730. This time, 3
  4731. \begin_inset Quotes eld
  4732. \end_inset
  4733. axes
  4734. \begin_inset Quotes erd
  4735. \end_inset
  4736. of variation can be observed, each represented by 2 clusters with opposing
  4737. patterns.
  4738. The first axis is greater upstream coverage (Cluster 1) vs.
  4739. greater downstream coverage (Cluster 3); the second axis is the coverage
  4740. at the TSS itself: peak (Cluster 4) or trough (Cluster 2); lastly, the
  4741. third axis represents a trough upstream of the TSS (Cluster 5) vs.
  4742. downstream of the TSS (Cluster 6).
  4743. Referring to these opposing pairs of clusters as axes of variation is justified
  4744. , because they correspond precisely to the first 3 principal components
  4745. in the PCA plot of the relative coverage values (Figure
  4746. \begin_inset CommandInset ref
  4747. LatexCommand ref
  4748. reference "fig:H3K27me3-neighborhood-pca"
  4749. plural "false"
  4750. caps "false"
  4751. noprefix "false"
  4752. \end_inset
  4753. ).
  4754. The PCA plot reveals that as in the case of H3K4me2, all the
  4755. \begin_inset Quotes eld
  4756. \end_inset
  4757. clusters
  4758. \begin_inset Quotes erd
  4759. \end_inset
  4760. are really just sections of a single connected cloud rather than discrete
  4761. clusters.
  4762. The cloud is approximately ellipsoid-shaped, with each PC being an axis
  4763. of the ellipse, and each cluster consisting of a pyrimidal section of the
  4764. ellipsoid.
  4765. \end_layout
  4766. \begin_layout Standard
  4767. In Figure
  4768. \begin_inset CommandInset ref
  4769. LatexCommand ref
  4770. reference "fig:H3K27me3-neighborhood-expression"
  4771. plural "false"
  4772. caps "false"
  4773. noprefix "false"
  4774. \end_inset
  4775. , we can see that Clusters 1 and 2 are the only clusters with higher gene
  4776. expression than the others.
  4777. For Cluster 2, this is expected, since this cluster represents genes with
  4778. depletion of H3K27me3 near the promoter.
  4779. Hence, elevated expression in cluster 2 is consistent with the conventional
  4780. view of H3K27me3 as a deactivating mark.
  4781. However, Cluster 1, the cluster with the most elevated gene expression,
  4782. represents genes with elevated coverage upstream of the TSS, or equivalently,
  4783. decreased coverage downstream, inside the gene body.
  4784. The opposite pattern, in which H3K27me3 is more abundant within the gene
  4785. body and less abundance in the upstream promoter region, does not show
  4786. any elevation in gene expression.
  4787. As with H3K4me2, this shows that the location of H3K27 trimethylation relative
  4788. to the TSS is potentially an important factor beyond simple proximity.
  4789. \end_layout
  4790. \begin_layout Standard
  4791. \begin_inset Flex TODO Note (inline)
  4792. status open
  4793. \begin_layout Plain Layout
  4794. Show the figures where the negative result ended this line of inquiry.
  4795. I need to debug some errors resulting from an R upgrade to do this.
  4796. \end_layout
  4797. \end_inset
  4798. \end_layout
  4799. \begin_layout Subsection
  4800. Defined pattern analysis
  4801. \end_layout
  4802. \begin_layout Standard
  4803. \begin_inset Flex TODO Note (inline)
  4804. status open
  4805. \begin_layout Plain Layout
  4806. This was where I defined interesting expression patterns and then looked
  4807. at initial relative promoter coverage for each expression pattern.
  4808. Negative result.
  4809. I forgot about this until recently.
  4810. Worth including? Remember to also write methods.
  4811. \end_layout
  4812. \end_inset
  4813. \end_layout
  4814. \begin_layout Subsection
  4815. Promoter CpG islands?
  4816. \end_layout
  4817. \begin_layout Standard
  4818. \begin_inset Flex TODO Note (inline)
  4819. status collapsed
  4820. \begin_layout Plain Layout
  4821. I forgot until recently about the work I did on this.
  4822. Worth including? Remember to also write methods.
  4823. \end_layout
  4824. \end_inset
  4825. \end_layout
  4826. \begin_layout Section
  4827. Discussion
  4828. \end_layout
  4829. \begin_layout Standard
  4830. \begin_inset Flex TODO Note (inline)
  4831. status open
  4832. \begin_layout Plain Layout
  4833. Write better section headers
  4834. \end_layout
  4835. \end_inset
  4836. \end_layout
  4837. \begin_layout Subsection
  4838. Effective promoter radius
  4839. \end_layout
  4840. \begin_layout Standard
  4841. Figure
  4842. \begin_inset CommandInset ref
  4843. LatexCommand ref
  4844. reference "fig:near-promoter-peak-enrich"
  4845. plural "false"
  4846. caps "false"
  4847. noprefix "false"
  4848. \end_inset
  4849. shows that H3K4me2, H3K4me3, and H3K27me3 are all enriched near promoters,
  4850. relative to the rest of the genome, consistent with their conventionally
  4851. understood role in regulating gene transcription.
  4852. Interestingly, the radius within this enrichment occurs is not the same
  4853. for each histone mark.
  4854. H3K4me2 and H3K4me3 are enriched within a 1
  4855. \begin_inset space \thinspace{}
  4856. \end_inset
  4857. kb radius, while H3K27me3 is enriched within 2.5
  4858. \begin_inset space \thinspace{}
  4859. \end_inset
  4860. kb.
  4861. Notably, the determined promoter radius was consistent across all experimental
  4862. conditions, varying only between different histone marks.
  4863. This suggests that the conventional
  4864. \begin_inset Quotes eld
  4865. \end_inset
  4866. one size fits all
  4867. \begin_inset Quotes erd
  4868. \end_inset
  4869. approach of defining a single promoter region for each gene (or each TSS)
  4870. and using that same promoter region for analyzing all types of genomic
  4871. data within an experiment may not be appropriate, and a better approach
  4872. may be to use a separate promoter radius for each kind of data, with each
  4873. radius being derived from the data itself.
  4874. Furthermore, the apparent assymetry of upstream and downstream promoter
  4875. histone modification with respect to gene expression, seen in Figures
  4876. \begin_inset CommandInset ref
  4877. LatexCommand ref
  4878. reference "fig:H3K4me2-neighborhood"
  4879. plural "false"
  4880. caps "false"
  4881. noprefix "false"
  4882. \end_inset
  4883. ,
  4884. \begin_inset CommandInset ref
  4885. LatexCommand ref
  4886. reference "fig:H3K4me3-neighborhood"
  4887. plural "false"
  4888. caps "false"
  4889. noprefix "false"
  4890. \end_inset
  4891. , and
  4892. \begin_inset CommandInset ref
  4893. LatexCommand ref
  4894. reference "fig:H3K27me3-neighborhood"
  4895. plural "false"
  4896. caps "false"
  4897. noprefix "false"
  4898. \end_inset
  4899. , shows that even the concept of a promoter
  4900. \begin_inset Quotes eld
  4901. \end_inset
  4902. radius
  4903. \begin_inset Quotes erd
  4904. \end_inset
  4905. is likely an oversimplification.
  4906. At a minimum, nearby enrichment of peaks should be evaluated separately
  4907. for both upstream and downstream peaks, and an appropriate
  4908. \begin_inset Quotes eld
  4909. \end_inset
  4910. radius
  4911. \begin_inset Quotes erd
  4912. \end_inset
  4913. should be selected for each direction.
  4914. \end_layout
  4915. \begin_layout Standard
  4916. Figures
  4917. \begin_inset CommandInset ref
  4918. LatexCommand ref
  4919. reference "fig:H3K4me2-neighborhood"
  4920. plural "false"
  4921. caps "false"
  4922. noprefix "false"
  4923. \end_inset
  4924. and
  4925. \begin_inset CommandInset ref
  4926. LatexCommand ref
  4927. reference "fig:H3K4me3-neighborhood"
  4928. plural "false"
  4929. caps "false"
  4930. noprefix "false"
  4931. \end_inset
  4932. show that the determined promoter radius of 1
  4933. \begin_inset space ~
  4934. \end_inset
  4935. kb is approximately consistent with the distance from the TSS at which enrichmen
  4936. t of H3K4 methylationis correlates with increased expression, showing that
  4937. this radius, which was determined by a simple analysis of measuring the
  4938. distance from each TSS to the nearest peak, also has functional significance.
  4939. For H3K27me3, the correlation between histone modification near the promoter
  4940. and gene expression is more complex, involving non-peak variations such
  4941. as troughs in coverage at the TSS and asymmetric coverage upstream and
  4942. downstream, so it is difficult in this case to evaluate whether the 2.5
  4943. \begin_inset space ~
  4944. \end_inset
  4945. kb radius determined from TSS-to-peak distances is functionally significant.
  4946. However, the two patterns of coverage associated with elevated expression
  4947. levels both have interesting features within this radius.
  4948. \end_layout
  4949. \begin_layout Standard
  4950. \begin_inset Flex TODO Note (inline)
  4951. status open
  4952. \begin_layout Plain Layout
  4953. My instinct is to say
  4954. \begin_inset Quotes eld
  4955. \end_inset
  4956. further study is needed
  4957. \begin_inset Quotes erd
  4958. \end_inset
  4959. here, but that goes in Chapter 5, right?
  4960. \end_layout
  4961. \end_inset
  4962. \end_layout
  4963. \begin_layout Subsection
  4964. Convergence
  4965. \end_layout
  4966. \begin_layout Standard
  4967. \begin_inset Flex TODO Note (inline)
  4968. status open
  4969. \begin_layout Plain Layout
  4970. Look up some more references for these histone marks being involved in memory
  4971. differentiation.
  4972. (Ask Sarah)
  4973. \end_layout
  4974. \end_inset
  4975. \end_layout
  4976. \begin_layout Standard
  4977. We have observed that all 3 histone marks and the gene expression data all
  4978. exhibit evidence of convergence in abundance between naive and memory cells
  4979. by day 14 after activation (Figure
  4980. \begin_inset CommandInset ref
  4981. LatexCommand ref
  4982. reference "fig:PCoA-promoters"
  4983. plural "false"
  4984. caps "false"
  4985. noprefix "false"
  4986. \end_inset
  4987. , Table
  4988. \begin_inset CommandInset ref
  4989. LatexCommand ref
  4990. reference "tab:Number-signif-promoters"
  4991. plural "false"
  4992. caps "false"
  4993. noprefix "false"
  4994. \end_inset
  4995. ).
  4996. The MOFA latent factor scatter plots (Figure
  4997. \begin_inset CommandInset ref
  4998. LatexCommand ref
  4999. reference "fig:mofa-lf-scatter"
  5000. plural "false"
  5001. caps "false"
  5002. noprefix "false"
  5003. \end_inset
  5004. ) show that this pattern of convergence is captured in latent factor 5.
  5005. Like all the latent factors in this plot, this factor explains a substantial
  5006. portion of the variance in all 4 data sets, indicating a coordinated pattern
  5007. of variation shared across all histone marks and gene expression.
  5008. This, of course, is consistent with the expectation that any naive CD4
  5009. T-cells remaining at day 14 should have differentiated into memory cells
  5010. by that time, and should therefore have a genomic state similar to memory
  5011. cells.
  5012. This convergence is evidence that these histone marks all play an important
  5013. role in the naive-to-memory differentiation process.
  5014. A histone mark that was not involved in naive-to-memory differentiation
  5015. would not be expected to converge in this way after activation.
  5016. \end_layout
  5017. \begin_layout Standard
  5018. \begin_inset Float figure
  5019. wide false
  5020. sideways false
  5021. status collapsed
  5022. \begin_layout Plain Layout
  5023. \align center
  5024. \begin_inset Graphics
  5025. filename graphics/CD4-csaw/LaMere2016_fig8.pdf
  5026. lyxscale 50
  5027. width 60col%
  5028. groupId colwidth
  5029. \end_inset
  5030. \end_layout
  5031. \begin_layout Plain Layout
  5032. \begin_inset Caption Standard
  5033. \begin_layout Plain Layout
  5034. \series bold
  5035. \begin_inset CommandInset label
  5036. LatexCommand label
  5037. name "fig:Lamere2016-Fig8"
  5038. \end_inset
  5039. Lamere 2016 Figure 8
  5040. \begin_inset CommandInset citation
  5041. LatexCommand cite
  5042. key "LaMere2016"
  5043. literal "false"
  5044. \end_inset
  5045. ,
  5046. \begin_inset Quotes eld
  5047. \end_inset
  5048. Model for the role of H3K4 methylation during CD4 T-cell activation.
  5049. \begin_inset Quotes erd
  5050. \end_inset
  5051. \series default
  5052. Reproduced with permission.
  5053. \end_layout
  5054. \end_inset
  5055. \end_layout
  5056. \end_inset
  5057. \end_layout
  5058. \begin_layout Standard
  5059. In H3K4me2, H3K4me3, and RNA-seq, this convergence appears to be in progress
  5060. already by Day 5, shown by the smaller distance between naive and memory
  5061. cells at day 5 along the
  5062. \begin_inset Formula $y$
  5063. \end_inset
  5064. -axes in Figures
  5065. \begin_inset CommandInset ref
  5066. LatexCommand ref
  5067. reference "fig:PCoA-H3K4me2-prom"
  5068. plural "false"
  5069. caps "false"
  5070. noprefix "false"
  5071. \end_inset
  5072. ,
  5073. \begin_inset CommandInset ref
  5074. LatexCommand ref
  5075. reference "fig:PCoA-H3K4me3-prom"
  5076. plural "false"
  5077. caps "false"
  5078. noprefix "false"
  5079. \end_inset
  5080. , and
  5081. \begin_inset CommandInset ref
  5082. LatexCommand ref
  5083. reference "fig:RNA-PCA-group"
  5084. plural "false"
  5085. caps "false"
  5086. noprefix "false"
  5087. \end_inset
  5088. .
  5089. This agrees with the model proposed by Sarah Lamere based on an prior analysis
  5090. of the same data, shown in Figure
  5091. \begin_inset CommandInset ref
  5092. LatexCommand ref
  5093. reference "fig:Lamere2016-Fig8"
  5094. plural "false"
  5095. caps "false"
  5096. noprefix "false"
  5097. \end_inset
  5098. , which shows the pattern of H3K4 methylation and expression for naive cells
  5099. and memory cells converging at day 5.
  5100. This model was developed without the benefit of the PCoA plots in Figure
  5101. \begin_inset CommandInset ref
  5102. LatexCommand ref
  5103. reference "fig:PCoA-promoters"
  5104. plural "false"
  5105. caps "false"
  5106. noprefix "false"
  5107. \end_inset
  5108. , which have been corrected for confounding factors by ComBat and SVA.
  5109. This shows that proper batch correction assists in extracting meaningful
  5110. patterns in the data while eliminating systematic sources of irrelevant
  5111. variation in the data, allowing simple automated procedures like PCoA to
  5112. reveal interesting behaviors in the data that were previously only detectable
  5113. by a detailed manual analysis.
  5114. \end_layout
  5115. \begin_layout Standard
  5116. While the ideal comparison to demonstrate this convergence would be naive
  5117. cells at day 14 to memory cells at day 0, this is not feasible in this
  5118. experimental system, since neither naive nor memory cells are able to fully
  5119. return to their pre-activation state, as shown by the lack of overlap between
  5120. days 0 and 14 for either naive or memory cells in Figure
  5121. \begin_inset CommandInset ref
  5122. LatexCommand ref
  5123. reference "fig:PCoA-promoters"
  5124. plural "false"
  5125. caps "false"
  5126. noprefix "false"
  5127. \end_inset
  5128. .
  5129. \end_layout
  5130. \begin_layout Subsection
  5131. Positional
  5132. \end_layout
  5133. \begin_layout Standard
  5134. When looking at patterns in the relative coverage of each histone mark near
  5135. the TSS of each gene, several interesting patterns were apparent.
  5136. For H3K4me2 and H3K4me3, the pattern was straightforward: the consistent
  5137. pattern across all promoters was a single peak a few kb wide, with the
  5138. main axis of variation being the position of this peak relative to the
  5139. TSS (Figures
  5140. \begin_inset CommandInset ref
  5141. LatexCommand ref
  5142. reference "fig:H3K4me2-neighborhood"
  5143. plural "false"
  5144. caps "false"
  5145. noprefix "false"
  5146. \end_inset
  5147. &
  5148. \begin_inset CommandInset ref
  5149. LatexCommand ref
  5150. reference "fig:H3K4me3-neighborhood"
  5151. plural "false"
  5152. caps "false"
  5153. noprefix "false"
  5154. \end_inset
  5155. ).
  5156. There were no obvious
  5157. \begin_inset Quotes eld
  5158. \end_inset
  5159. preferred
  5160. \begin_inset Quotes erd
  5161. \end_inset
  5162. positions, but rather a continuous distribution of relative positions ranging
  5163. all across the promoter region.
  5164. The association with gene expression was also straightforward: peaks closer
  5165. to the TSS were more strongly associated with elevated gene expression.
  5166. Coverage downstream of the TSS appears to be more strongly associated with
  5167. elevated expression than coverage the same distance upstream, indicating
  5168. that the
  5169. \begin_inset Quotes eld
  5170. \end_inset
  5171. effective promoter region
  5172. \begin_inset Quotes erd
  5173. \end_inset
  5174. for H3K4me2 and H3K4me3 may be centered downstream of the TSS.
  5175. \end_layout
  5176. \begin_layout Standard
  5177. The relative promoter coverage for H3K27me3 had a more complex pattern,
  5178. with two specific patterns of promoter coverage associated with elevated
  5179. expression: a sharp depletion of H3K27me3 around the TSS relative to the
  5180. surrounding area, and a depletion of H3K27me3 downstream of the TSS relative
  5181. to upstream (Figure
  5182. \begin_inset CommandInset ref
  5183. LatexCommand ref
  5184. reference "fig:H3K27me3-neighborhood"
  5185. plural "false"
  5186. caps "false"
  5187. noprefix "false"
  5188. \end_inset
  5189. ).
  5190. A previous study found that H3K27me3 depletion within the gene body was
  5191. associated with elevated gene expression in 4 different cell types in mice
  5192. \begin_inset CommandInset citation
  5193. LatexCommand cite
  5194. key "Young2011"
  5195. literal "false"
  5196. \end_inset
  5197. .
  5198. This is consistent with the second pattern described here.
  5199. This study also reported that a spike in coverage at the TSS was associated
  5200. with
  5201. \emph on
  5202. lower
  5203. \emph default
  5204. expression, which is indirectly consistent with the first pattern described
  5205. here, in the sense that it associates lower H3K27me3 levels near the TSS
  5206. with higher expression.
  5207. \end_layout
  5208. \begin_layout Subsection
  5209. Workflow
  5210. \end_layout
  5211. \begin_layout Standard
  5212. \begin_inset ERT
  5213. status open
  5214. \begin_layout Plain Layout
  5215. \backslash
  5216. afterpage{
  5217. \end_layout
  5218. \begin_layout Plain Layout
  5219. \backslash
  5220. begin{landscape}
  5221. \end_layout
  5222. \end_inset
  5223. \end_layout
  5224. \begin_layout Standard
  5225. \begin_inset Float figure
  5226. wide false
  5227. sideways false
  5228. status open
  5229. \begin_layout Plain Layout
  5230. \align center
  5231. \begin_inset Graphics
  5232. filename graphics/CD4-csaw/rulegraphs/rulegraph-all.pdf
  5233. lyxscale 50
  5234. width 100col%
  5235. height 95theight%
  5236. \end_inset
  5237. \end_layout
  5238. \begin_layout Plain Layout
  5239. \begin_inset Caption Standard
  5240. \begin_layout Plain Layout
  5241. \begin_inset CommandInset label
  5242. LatexCommand label
  5243. name "fig:rulegraph"
  5244. \end_inset
  5245. \series bold
  5246. Dependency graph of steps in reproducible workflow.
  5247. \end_layout
  5248. \end_inset
  5249. \end_layout
  5250. \end_inset
  5251. \end_layout
  5252. \begin_layout Standard
  5253. \begin_inset ERT
  5254. status open
  5255. \begin_layout Plain Layout
  5256. \backslash
  5257. end{landscape}
  5258. \end_layout
  5259. \begin_layout Plain Layout
  5260. }
  5261. \end_layout
  5262. \end_inset
  5263. \end_layout
  5264. \begin_layout Standard
  5265. The analyses described in this chapter were organized into a reproducible
  5266. workflow using the Snakemake workflow management system.
  5267. As shown in Figure
  5268. \begin_inset CommandInset ref
  5269. LatexCommand ref
  5270. reference "fig:rulegraph"
  5271. plural "false"
  5272. caps "false"
  5273. noprefix "false"
  5274. \end_inset
  5275. , the workflow includes many steps with complex dependencies between them.
  5276. For example, the step that counts the number of ChIP-seq reads in 500
  5277. \begin_inset space ~
  5278. \end_inset
  5279. bp windows in each promoter (the starting point for Figures
  5280. \begin_inset CommandInset ref
  5281. LatexCommand ref
  5282. reference "fig:H3K4me2-neighborhood"
  5283. plural "false"
  5284. caps "false"
  5285. noprefix "false"
  5286. \end_inset
  5287. ,
  5288. \begin_inset CommandInset ref
  5289. LatexCommand ref
  5290. reference "fig:H3K4me3-neighborhood"
  5291. plural "false"
  5292. caps "false"
  5293. noprefix "false"
  5294. \end_inset
  5295. , and
  5296. \begin_inset CommandInset ref
  5297. LatexCommand ref
  5298. reference "fig:H3K27me3-neighborhood"
  5299. plural "false"
  5300. caps "false"
  5301. noprefix "false"
  5302. \end_inset
  5303. ), named
  5304. \begin_inset Formula $\texttt{chipseq\_count\_tss\_neighborhoods}$
  5305. \end_inset
  5306. , depends on the RNA-seq abundance estimates in order to select the most-used
  5307. TSS for each gene, the aligned ChIP-seq reads, the index for those reads,
  5308. and the blacklist of regions to be excluded from ChIP-seq analysis.
  5309. Each step declares its inputs and outputs, and Snakemake uses these to
  5310. determine the dependencies between steps.
  5311. Each step is marked as depending on all the steps whose outputs match its
  5312. inputs, generating the workflow graph in Figure
  5313. \begin_inset CommandInset ref
  5314. LatexCommand ref
  5315. reference "fig:rulegraph"
  5316. plural "false"
  5317. caps "false"
  5318. noprefix "false"
  5319. \end_inset
  5320. , which Snakemake uses to determine order in which to execute each step
  5321. so that each step is executed only after all of the steps it depends on
  5322. have completed, thereby automating the entire workflow from start to finish.
  5323. \end_layout
  5324. \begin_layout Standard
  5325. In addition to simply making it easier to organize the steps in the analysis,
  5326. structuring the analysis as a workflow allowed for some analysis strategies
  5327. that would not have been practical otherwise.
  5328. For example, 5 different RNA-seq quantification methods were tested against
  5329. two different reference transcriptome annotations for a total of 10 different
  5330. quantifications of the same RNA-seq data.
  5331. These were then compared against each other in the exploratory data analysis
  5332. step, to determine that the results were not very sensitive to either the
  5333. choice of quantification method or the choice of annotation.
  5334. This was possible with a single script for the exploratory data analysis,
  5335. because Snakemake was able to automate running this script for every combinatio
  5336. n of method and reference.
  5337. In a similar manner, two different peak calling methods were tested against
  5338. each other, and in this case it was determined that SICER was unambiguously
  5339. superior to MACS for all histone marks studied.
  5340. By enabling these types of comparisons, structuring the analysis as an
  5341. automated workflow allowed important analysis decisions to be made in a
  5342. data-driven way, by running every reasonable option through the downstream
  5343. steps, seeing the consequences of choosing each option, and deciding accordingl
  5344. y.
  5345. \end_layout
  5346. \begin_layout Subsection
  5347. Data quality issues limit conclusions
  5348. \end_layout
  5349. \begin_layout Standard
  5350. \begin_inset Flex TODO Note (inline)
  5351. status open
  5352. \begin_layout Plain Layout
  5353. Is this needed?
  5354. \end_layout
  5355. \end_inset
  5356. \end_layout
  5357. \begin_layout Section
  5358. Future Directions
  5359. \end_layout
  5360. \begin_layout Standard
  5361. The analysis of RNA-seq and ChIP-seq in CD4 T-cells in Chapter 2 is in many
  5362. ways a preliminary study that suggests a multitude of new avenues of investigat
  5363. ion.
  5364. Here we consider a selection of such avenues.
  5365. \end_layout
  5366. \begin_layout Subsection
  5367. Negative results
  5368. \end_layout
  5369. \begin_layout Standard
  5370. Two additional analyses were conducted beyond those reported in the results.
  5371. First, we searched for evidence that the presence or absence of a CpG island
  5372. in the promoter was correlated with increases or decreases in gene expression
  5373. or any histone mark in any of the tested contrasts.
  5374. Second, we searched for evidence that the relative ChIP-seq coverage profiles
  5375. prior to activations could predict the change in expression of a gene after
  5376. activation.
  5377. Neither analysis turned up any clear positive results.
  5378. \end_layout
  5379. \begin_layout Subsection
  5380. Improve on the idea of an effective promoter radius
  5381. \end_layout
  5382. \begin_layout Standard
  5383. This study introduced the concept of an
  5384. \begin_inset Quotes eld
  5385. \end_inset
  5386. effective promoter radius
  5387. \begin_inset Quotes erd
  5388. \end_inset
  5389. specific to each histone mark based on distince from the TSS within which
  5390. an excess of peaks was called for that mark.
  5391. This concept was then used to guide further analyses throughout the study.
  5392. However, while the effective promoter radius was useful in those analyses,
  5393. it is both limited in theory and shown in practice to be a possible oversimplif
  5394. ication.
  5395. First, the effective promoter radii used in this study were chosen based
  5396. on manual inspection of the TSS-to-peak distance distributions in Figure
  5397. \begin_inset CommandInset ref
  5398. LatexCommand ref
  5399. reference "fig:near-promoter-peak-enrich"
  5400. plural "false"
  5401. caps "false"
  5402. noprefix "false"
  5403. \end_inset
  5404. , selecting round numbers of analyst convenience (Table
  5405. \begin_inset CommandInset ref
  5406. LatexCommand ref
  5407. reference "tab:effective-promoter-radius"
  5408. plural "false"
  5409. caps "false"
  5410. noprefix "false"
  5411. \end_inset
  5412. ).
  5413. It would be better to define an algorithm that selects a more precise radius
  5414. based on the features of the graph.
  5415. One possible way to do this would be to randomly rearrange the called peaks
  5416. throughout the genome many (while preserving the distribution of peak widths)
  5417. and re-generate the same plot as in Figure
  5418. \begin_inset CommandInset ref
  5419. LatexCommand ref
  5420. reference "fig:near-promoter-peak-enrich"
  5421. plural "false"
  5422. caps "false"
  5423. noprefix "false"
  5424. \end_inset
  5425. .
  5426. This would yield a better
  5427. \begin_inset Quotes eld
  5428. \end_inset
  5429. background
  5430. \begin_inset Quotes erd
  5431. \end_inset
  5432. distribution that demonstrates the degree of near-TSS enrichment that would
  5433. be expected by random chance.
  5434. The effective promoter radius could be defined as the point where the true
  5435. distribution diverges from the randomized background distribution.
  5436. \end_layout
  5437. \begin_layout Standard
  5438. Furthermore, the above definition of effective promoter radius has the significa
  5439. nt limitation of being based on the peak calling method.
  5440. It is thus very sensitive to the choice of peak caller and significance
  5441. threshold for calling peaks, as well as the degree of saturation in the
  5442. sequencing.
  5443. Calling peaks from ChIP-seq samples with insufficient coverage depth, with
  5444. the wrong peak caller, or with a different significance threshold could
  5445. give a drastically different number of called peaks, and hence a drastically
  5446. different distribution of peak-to-TSS distances.
  5447. To address this, it is desirable to develop a better method of determining
  5448. the effective promoter radius that relies only on the distribution of read
  5449. coverage around the TSS, independent of the peak calling.
  5450. Furthermore, as demonstrated by the upstream-downstream asymmetries observed
  5451. in Figures
  5452. \begin_inset CommandInset ref
  5453. LatexCommand ref
  5454. reference "fig:H3K4me2-neighborhood"
  5455. plural "false"
  5456. caps "false"
  5457. noprefix "false"
  5458. \end_inset
  5459. ,
  5460. \begin_inset CommandInset ref
  5461. LatexCommand ref
  5462. reference "fig:H3K4me3-neighborhood"
  5463. plural "false"
  5464. caps "false"
  5465. noprefix "false"
  5466. \end_inset
  5467. , and
  5468. \begin_inset CommandInset ref
  5469. LatexCommand ref
  5470. reference "fig:H3K27me3-neighborhood"
  5471. plural "false"
  5472. caps "false"
  5473. noprefix "false"
  5474. \end_inset
  5475. , this definition should determine a different radius for the upstream and
  5476. downstream directions.
  5477. At this point, it may be better to rename this concept
  5478. \begin_inset Quotes eld
  5479. \end_inset
  5480. effective promoter extent
  5481. \begin_inset Quotes erd
  5482. \end_inset
  5483. and avoid the word
  5484. \begin_inset Quotes eld
  5485. \end_inset
  5486. radius
  5487. \begin_inset Quotes erd
  5488. \end_inset
  5489. , since a radius implies a symmetry about the TSS that is not supported
  5490. by the data.
  5491. \end_layout
  5492. \begin_layout Standard
  5493. Beyond improving the definition of effective promoter extent, functional
  5494. validation is necessary to show that this measure of near-TSS enrichment
  5495. has biological meaning.
  5496. Figures
  5497. \begin_inset CommandInset ref
  5498. LatexCommand ref
  5499. reference "fig:H3K4me2-neighborhood"
  5500. plural "false"
  5501. caps "false"
  5502. noprefix "false"
  5503. \end_inset
  5504. and
  5505. \begin_inset CommandInset ref
  5506. LatexCommand ref
  5507. reference "fig:H3K4me3-neighborhood"
  5508. plural "false"
  5509. caps "false"
  5510. noprefix "false"
  5511. \end_inset
  5512. already provide a very limited functional validation of the chosen promoter
  5513. extents for H3K4me2 and H3K4me3 by showing that spikes in coverage within
  5514. this region are most strongly correlated with elevated gene expression.
  5515. However, there are other ways to show functional relevance of the promoter
  5516. extent.
  5517. For example, correlations could be computed between read counts in peaks
  5518. nearby gene promoters and the expression level of those genes, and these
  5519. correlations could be plotted against the distance of the peak upstream
  5520. or downstream of the gene's TSS.
  5521. If the promoter extent truly defines a
  5522. \begin_inset Quotes eld
  5523. \end_inset
  5524. sphere of influence
  5525. \begin_inset Quotes erd
  5526. \end_inset
  5527. within which a histone mark is involved with the regulation of a gene,
  5528. then the correlations for peaks within this extent should be significantly
  5529. higher than those further upstream or downstream.
  5530. Peaks within these extents may also be more likely to show differential
  5531. modification than those outside genic regions of the genome.
  5532. \end_layout
  5533. \begin_layout Subsection
  5534. Design experiments to focus on post-activation convergence of naive & memory
  5535. cells
  5536. \end_layout
  5537. \begin_layout Standard
  5538. In this study, a convergence between naive and memory cells was observed
  5539. in both the pattern of gene expression and in epigenetic state of the 3
  5540. histone marks studied, consistent with the hypothesis that any naive cells
  5541. remaining 14 days after activation have differentiated into memory cells,
  5542. and that both gene expression and these histone marks are involved in this
  5543. differentiation.
  5544. However, the current study was not designed with this specific hypothesis
  5545. in mind, and it therefore has some deficiencies with regard to testing
  5546. it.
  5547. The memory CD4 samples at day 14 do not resemble the memory samples at
  5548. day 0, indicating that in the specific model of activation used for this
  5549. experiment, the cells are not guaranteed to return to their original pre-activa
  5550. tion state, or perhaps this process takes substantially longer than 14 days.
  5551. This is a challenge for the convergence hypothesis because the ideal comparison
  5552. to prove that naive cells are converging to a resting memory state would
  5553. be to compare the final naive time point to the Day 0 memory samples, but
  5554. this comparison is only meaningful if memory cells generally return to
  5555. the same
  5556. \begin_inset Quotes eld
  5557. \end_inset
  5558. resting
  5559. \begin_inset Quotes erd
  5560. \end_inset
  5561. state that they started at.
  5562. \end_layout
  5563. \begin_layout Standard
  5564. To better study the convergence hypothesis, a new experiment should be designed
  5565. using a model system for T-cell activation that is known to allow cells
  5566. to return as closely as possible to their pre-activation state.
  5567. Alternatively, if it is not possible to find or design such a model system,
  5568. the same cell cultures could be activated serially multiple times, and
  5569. sequenced after each activation cycle right before the next activation.
  5570. It is likely that several activations in the same model system will settle
  5571. into a cylical pattern, converging to a consistent
  5572. \begin_inset Quotes eld
  5573. \end_inset
  5574. resting
  5575. \begin_inset Quotes erd
  5576. \end_inset
  5577. state after each activation, even if this state is different from the initial
  5578. resting state at Day 0.
  5579. If so, it will be possible to compare the final states of both naive and
  5580. memory cells to show that they converge despite different initial conditions.
  5581. \end_layout
  5582. \begin_layout Standard
  5583. In addition, if naive-to-memory convergence is a general pattern, it should
  5584. also be detectable in other epigenetic marks, including other histone marks
  5585. and DNA methylation.
  5586. An experiment should be designed studying a large number of epigenetic
  5587. marks known or suspected to be involved in regulation of gene expression,
  5588. assaying all of these at the same pre- and post-activation time points.
  5589. Multi-dataset factor analysis methods like MOFA can then be used to identify
  5590. coordinated patterns of regulation shared across many epigenetic marks.
  5591. If possible, some
  5592. \begin_inset Quotes eld
  5593. \end_inset
  5594. negative control
  5595. \begin_inset Quotes erd
  5596. \end_inset
  5597. marks should be included that are known
  5598. \emph on
  5599. not
  5600. \emph default
  5601. to be involved in T-cell activation or memory formation.
  5602. Of course, CD4 T-cells are not the only adaptive immune cells with memory.
  5603. A similar study could be designed for CD8 T-cells, B-cells, and even specific
  5604. subsets of CD4 T-cells.
  5605. \end_layout
  5606. \begin_layout Subsection
  5607. Follow up on hints of interesting patterns in promoter relative coverage
  5608. profiles
  5609. \end_layout
  5610. \begin_layout Standard
  5611. \begin_inset Flex TODO Note (inline)
  5612. status open
  5613. \begin_layout Plain Layout
  5614. I think I might need to write up the negative results for the Promoter CpG
  5615. and defined pattern analysis before writing this section.
  5616. \end_layout
  5617. \end_inset
  5618. \end_layout
  5619. \begin_layout Itemize
  5620. Also find better normalizations: maybe borrow from MACS/SICER background
  5621. correction methods?
  5622. \end_layout
  5623. \begin_layout Itemize
  5624. For H3K4, define polar coordinates based on PC1 & 2: R = peak size, Theta
  5625. = peak position.
  5626. Then correlate with expression.
  5627. \end_layout
  5628. \begin_layout Itemize
  5629. Current analysis only at Day 0.
  5630. Need to study across time points.
  5631. \end_layout
  5632. \begin_layout Itemize
  5633. Integrating data across so many dimensions is a significant analysis challenge
  5634. \end_layout
  5635. \begin_layout Subsection
  5636. Investigate causes of high correlation between mutually exclusive histone
  5637. marks
  5638. \end_layout
  5639. \begin_layout Standard
  5640. The high correlation between coverage depth observed between H3K4me2 and
  5641. H3K4me3 is both expected and unexpected.
  5642. Since both marks are associated with elevated gene transcription, a positive
  5643. correlation between them is not surprising.
  5644. However, these two marks represent different post-translational modifications
  5645. of the
  5646. \emph on
  5647. same
  5648. \emph default
  5649. lysine residue on the histone H3 polypeptide, which means that they cannot
  5650. both be present on the same H3 subunit.
  5651. Thus, the high correlation between them has several potential explanations.
  5652. One possible reason is cell population heterogeneity: perhaps some genomic
  5653. loci are frequently marked with H3K4me2 in some cells, while in other cells
  5654. the same loci are marked with H3K4me3.
  5655. Another possibility is allele-specific modifications: the loci are marked
  5656. in each diploid cell with H3K4me2 on one allele and H3K4me3 on the other
  5657. allele.
  5658. Lastly, since each histone octamer contains 2 H3 subunits, it is possible
  5659. that having one H3K4me2 mark and one H3K4me3 mark on a given histone octamer
  5660. represents a distinct epigenetic state with a different function than either
  5661. double H3K4me2 or double H3K4me3.
  5662. \end_layout
  5663. \begin_layout Standard
  5664. These three hypotheses could be disentangled by single-cell ChIP-seq.
  5665. If the correlation between these two histone marks persists even within
  5666. the reads for each individual cell, then cell population heterogeneity
  5667. cannot explain the correlation.
  5668. Allele-specific modification can be tested for by looking at the correlation
  5669. between read coverage of the two histone marks at heterozygous loci.
  5670. If the correlation between read counts for opposite loci is low, then this
  5671. is consistent with allele-specific modification.
  5672. Finally if the modifications do not separate by either cell or allele,
  5673. the colocation of these two marks is most likely occurring at the level
  5674. of individual histones, with the heterogenously modified histone representing
  5675. a distinct state.
  5676. \end_layout
  5677. \begin_layout Standard
  5678. However, another experiment would be required to show direct evidence of
  5679. such a heterogeneously modified state.
  5680. Specifically a
  5681. \begin_inset Quotes eld
  5682. \end_inset
  5683. double ChIP
  5684. \begin_inset Quotes erd
  5685. \end_inset
  5686. experiment would need to be performed, where the input DNA is first subjected
  5687. to an immunoprecipitation pulldown from the anti-H3K4me2 antibody, and
  5688. then the enriched material is collected, with proteins still bound, and
  5689. immunoprecipitated
  5690. \emph on
  5691. again
  5692. \emph default
  5693. using the anti-H3K4me3 antibody.
  5694. If this yields significant numbers of non-artifactual reads in the same
  5695. regions as the individual pulldowns of the two marks, this is strong evidence
  5696. that the two marks are occurring on opposite H3 subunits of the same histones.
  5697. \end_layout
  5698. \begin_layout Standard
  5699. \begin_inset Flex TODO Note (inline)
  5700. status open
  5701. \begin_layout Plain Layout
  5702. Try to see if double ChIP-seq is actually feasible, and if not, come up
  5703. with some other idea for directly detecting the mixed mod state.
  5704. Oh! Actually ChIP-seq isn't required, only double ChIP followed by quantificati
  5705. on.
  5706. That's one possible angle.
  5707. \end_layout
  5708. \end_inset
  5709. \end_layout
  5710. \begin_layout Chapter
  5711. Improving array-based diagnostics for transplant rejection by optimizing
  5712. data preprocessing
  5713. \end_layout
  5714. \begin_layout Standard
  5715. \begin_inset Note Note
  5716. status open
  5717. \begin_layout Plain Layout
  5718. Chapter author list: Me, Sunil, Tom, Padma, Dan
  5719. \end_layout
  5720. \end_inset
  5721. \end_layout
  5722. \begin_layout Section
  5723. Approach
  5724. \end_layout
  5725. \begin_layout Subsection
  5726. Proper pre-processing is essential for array data
  5727. \end_layout
  5728. \begin_layout Standard
  5729. \begin_inset Flex TODO Note (inline)
  5730. status open
  5731. \begin_layout Plain Layout
  5732. This section could probably use some citations
  5733. \end_layout
  5734. \end_inset
  5735. \end_layout
  5736. \begin_layout Standard
  5737. Microarrays, bead arrays, and similar assays produce raw data in the form
  5738. of fluorescence intensity measurements, with the each intensity measurement
  5739. proportional to the abundance of some fluorescently-labelled target DNA
  5740. or RNA sequence that base pairs to a specific probe sequence.
  5741. However, these measurements for each probe are also affected my many technical
  5742. confounding factors, such as the concentration of target material, strength
  5743. of off-target binding, and the sensitivity of the imaging sensor.
  5744. Some array designs also use multiple probe sequences for each target.
  5745. Hence, extensive pre-processing of array data is necessary to normalize
  5746. out the effects of these technical factors and summarize the information
  5747. from multiple probes to arrive at a single usable estimate of abundance
  5748. or other relevant quantity, such as a ratio of two abundances, for each
  5749. target.
  5750. \end_layout
  5751. \begin_layout Standard
  5752. The choice of pre-processing algorithms used in the analysis of an array
  5753. data set can have a large effect on the results of that analysis.
  5754. However, despite their importance, these steps are often neglected or rushed
  5755. in order to get to the more scientifically interesting analysis steps involving
  5756. the actual biology of the system under study.
  5757. Hence, it is often possible to achieve substantial gains in statistical
  5758. power, model goodness-of-fit, or other relevant performance measures, by
  5759. checking the assumptions made by each preprocessing step and choosing specific
  5760. normalization methods tailored to the specific goals of the current analysis.
  5761. \end_layout
  5762. \begin_layout Subsection
  5763. Clinical diagnostic applications for microarrays require single-channel
  5764. normalization
  5765. \end_layout
  5766. \begin_layout Standard
  5767. As the cost of performing microarray assays falls, there is increasing interest
  5768. in using genomic assays for diagnostic purposes, such as distinguishing
  5769. healthy transplants (TX) from transplants undergoing acute rejection (AR)
  5770. or acute dysfunction with no rejection (ADNR).
  5771. However, the the standard normalization algorithm used for microarray data,
  5772. Robust Multi-chip Average (RMA)
  5773. \begin_inset CommandInset citation
  5774. LatexCommand cite
  5775. key "Irizarry2003a"
  5776. literal "false"
  5777. \end_inset
  5778. , is not applicable in a clinical setting.
  5779. Two of the steps in RMA, quantile normalization and probe summarization
  5780. by median polish, depend on every array in the data set being normalized.
  5781. This means that adding or removing any arrays from a data set changes the
  5782. normalized values for all arrays, and data sets that have been normalized
  5783. separately cannot be compared to each other.
  5784. Hence, when using RMA, any arrays to be analyzed together must also be
  5785. normalized together, and the set of arrays included in the data set must
  5786. be held constant throughout an analysis.
  5787. \end_layout
  5788. \begin_layout Standard
  5789. These limitations present serious impediments to the use of arrays as a
  5790. diagnostic tool.
  5791. When training a classifier, the samples to be classified must not be involved
  5792. in any step of the training process, lest their inclusion bias the training
  5793. process.
  5794. Once a classifier is deployed in a clinical setting, the samples to be
  5795. classified will not even
  5796. \emph on
  5797. exist
  5798. \emph default
  5799. at the time of training, so including them would be impossible even if
  5800. it were statistically justifiable.
  5801. Therefore, any machine learning application for microarrays demands that
  5802. the normalized expression values computed for an array must depend only
  5803. on information contained within that array.
  5804. This would ensure that each array's normalization is independent of every
  5805. other array, and that arrays normalized separately can still be compared
  5806. to each other without bias.
  5807. Such a normalization is commonly referred to as
  5808. \begin_inset Quotes eld
  5809. \end_inset
  5810. single-channel normalization
  5811. \begin_inset Quotes erd
  5812. \end_inset
  5813. .
  5814. \end_layout
  5815. \begin_layout Standard
  5816. Frozen RMA (fRMA) addresses these concerns by replacing the quantile normalizati
  5817. on and median polish with alternatives that do not introduce inter-array
  5818. dependence, allowing each array to be normalized independently of all others
  5819. \begin_inset CommandInset citation
  5820. LatexCommand cite
  5821. key "McCall2010"
  5822. literal "false"
  5823. \end_inset
  5824. .
  5825. Quantile normalization is performed against a pre-generated set of quantiles
  5826. learned from a collection of 850 publically available arrays sampled from
  5827. a wide variety of tissues in the Gene Expression Omnibus (GEO).
  5828. Each array's probe intensity distribution is normalized against these pre-gener
  5829. ated quantiles.
  5830. The median polish step is replaced with a robust weighted average of probe
  5831. intensities, using inverse variance weights learned from the same public
  5832. GEO data.
  5833. The result is a normalization that satisfies the requirements mentioned
  5834. above: each array is normalized independently of all others, and any two
  5835. normalized arrays can be compared directly to each other.
  5836. \end_layout
  5837. \begin_layout Standard
  5838. One important limitation of fRMA is that it requires a separate reference
  5839. data set from which to learn the parameters (reference quantiles and probe
  5840. weights) that will be used to normalize each array.
  5841. These parameters are specific to a given array platform, and pre-generated
  5842. parameters are only provided for the most common platforms, such as Affymetrix
  5843. hgu133plus2.
  5844. For a less common platform, such as hthgu133pluspm, is is necessary to
  5845. learn custom parameters from in-house data before fRMA can be used to normalize
  5846. samples on that platform
  5847. \begin_inset CommandInset citation
  5848. LatexCommand cite
  5849. key "McCall2011"
  5850. literal "false"
  5851. \end_inset
  5852. .
  5853. \end_layout
  5854. \begin_layout Standard
  5855. One other option is the aptly-named Single Channel Array Normalization (SCAN),
  5856. which adapts a normalization method originally designed for tiling arrays
  5857. \begin_inset CommandInset citation
  5858. LatexCommand cite
  5859. key "Piccolo2012"
  5860. literal "false"
  5861. \end_inset
  5862. .
  5863. SCAN is truly single-channel in that it does not require a set of normalization
  5864. paramters estimated from an external set of reference samples like fRMA
  5865. does.
  5866. \end_layout
  5867. \begin_layout Subsection
  5868. Heteroskedasticity must be accounted for in methylation array data
  5869. \end_layout
  5870. \begin_layout Standard
  5871. DNA methylation arrays are a relatively new kind of assay that uses microarrays
  5872. to measure the degree of methylation on cytosines in specific regions arrayed
  5873. across the genome.
  5874. First, bisulfite treatment converts all unmethylated cytosines to uracil
  5875. (which then become thymine after amplication) while leaving methylated
  5876. cytosines unaffected.
  5877. Then, each target region is interrogated with two probes: one binds to
  5878. the original genomic sequence and interrogates the level of methylated
  5879. DNA, and the other binds to the same sequence with all cytosines replaced
  5880. by thymidines and interrogates the level of unmethylated DNA.
  5881. \end_layout
  5882. \begin_layout Standard
  5883. \begin_inset Float figure
  5884. wide false
  5885. sideways false
  5886. status collapsed
  5887. \begin_layout Plain Layout
  5888. \align center
  5889. \begin_inset Graphics
  5890. filename graphics/methylvoom/sigmoid.pdf
  5891. lyxscale 50
  5892. width 60col%
  5893. groupId colwidth
  5894. \end_inset
  5895. \end_layout
  5896. \begin_layout Plain Layout
  5897. \begin_inset Caption Standard
  5898. \begin_layout Plain Layout
  5899. \begin_inset CommandInset label
  5900. LatexCommand label
  5901. name "fig:Sigmoid-beta-m-mapping"
  5902. \end_inset
  5903. \series bold
  5904. Sigmoid shape of the mapping between β and M values
  5905. \end_layout
  5906. \end_inset
  5907. \end_layout
  5908. \end_inset
  5909. \end_layout
  5910. \begin_layout Standard
  5911. After normalization, these two probe intensities are summarized in one of
  5912. two ways, each with advantages and disadvantages.
  5913. β
  5914. \series bold
  5915. \series default
  5916. values, interpreted as fraction of DNA copies methylated, range from 0 to
  5917. 1.
  5918. β
  5919. \series bold
  5920. \series default
  5921. values are conceptually easy to interpret, but the constrained range makes
  5922. them unsuitable for linear modeling, and their error distributions are
  5923. highly non-normal, which also frustrates linear modeling.
  5924. M-values, interpreted as the log ratio of methylated to unmethylated copies,
  5925. are computed by mapping the beta values from
  5926. \begin_inset Formula $[0,1]$
  5927. \end_inset
  5928. onto
  5929. \begin_inset Formula $(-\infty,+\infty)$
  5930. \end_inset
  5931. using a sigmoid curve (Figure
  5932. \begin_inset CommandInset ref
  5933. LatexCommand ref
  5934. reference "fig:Sigmoid-beta-m-mapping"
  5935. plural "false"
  5936. caps "false"
  5937. noprefix "false"
  5938. \end_inset
  5939. ).
  5940. This transformation results in values with better statistical perperties:
  5941. the unconstrained range is suitable for linear modeling, and the error
  5942. distributions are more normal.
  5943. Hence, most linear modeling and other statistical testing on methylation
  5944. arrays is performed using M-values.
  5945. \end_layout
  5946. \begin_layout Standard
  5947. However, the steep slope of the sigmoid transformation near 0 and 1 tends
  5948. to over-exaggerate small differences in β values near those extremes, which
  5949. in turn amplifies the error in those values, leading to a U-shaped trend
  5950. in the mean-variance curve: extreme values have higher variances than values
  5951. near the middle.
  5952. This mean-variance dependency must be accounted for when fitting the linear
  5953. model for differential methylation, or else the variance will be systematically
  5954. overestimated for probes with moderate M-values and underestimated for
  5955. probes with extreme M-values.
  5956. This is particularly undesirable for methylation data because the intermediate
  5957. M-values are the ones of most interest, since they are more likely to represent
  5958. areas of varying methylation, whereas extreme M-values typically represent
  5959. complete methylation or complete lack of methylation.
  5960. \end_layout
  5961. \begin_layout Standard
  5962. RNA-seq read count data are also known to show heteroskedasticity, and the
  5963. voom method was introduced for modeling this heteroskedasticity by estimating
  5964. the mean-variance trend in the data and using this trend to assign precision
  5965. weights to each observation
  5966. \begin_inset CommandInset citation
  5967. LatexCommand cite
  5968. key "Law2013"
  5969. literal "false"
  5970. \end_inset
  5971. .
  5972. While methylation array data are not derived from counts and have a very
  5973. different mean-variance relationship from that of typical RNA-seq data,
  5974. the voom method makes no specific assumptions on the shape of the mean-variance
  5975. relationship – it only assumes that the relationship can be modeled as
  5976. a smooth curve.
  5977. Hence, the method is sufficiently general to model the mean-variance relationsh
  5978. ip in methylation array data.
  5979. However, the standard implementation of voom assumes that the input is
  5980. given in raw read counts, and it must be adapted to run on methylation
  5981. M-values.
  5982. \end_layout
  5983. \begin_layout Section
  5984. Methods
  5985. \end_layout
  5986. \begin_layout Subsection
  5987. Evaluation of classifier performance with different normalization methods
  5988. \end_layout
  5989. \begin_layout Standard
  5990. For testing different expression microarray normalizations, a data set of
  5991. 157 hgu133plus2 arrays was used, consisting of blood samples from kidney
  5992. transplant patients whose grafts had been graded as TX, AR, or ADNR via
  5993. biopsy and histology (46 TX, 69 AR, 42 ADNR)
  5994. \begin_inset CommandInset citation
  5995. LatexCommand cite
  5996. key "Kurian2014"
  5997. literal "true"
  5998. \end_inset
  5999. .
  6000. Additionally, an external validation set of 75 samples was gathered from
  6001. public GEO data (37 TX, 38 AR, no ADNR).
  6002. \end_layout
  6003. \begin_layout Standard
  6004. \begin_inset Flex TODO Note (inline)
  6005. status open
  6006. \begin_layout Plain Layout
  6007. Find appropriate GEO identifiers if possible.
  6008. Kurian 2014 says GSE15296, but this seems to be different data.
  6009. I also need to look up the GEO accession for the external validation set.
  6010. \end_layout
  6011. \end_inset
  6012. \end_layout
  6013. \begin_layout Standard
  6014. To evaluate the effect of each normalization on classifier performance,
  6015. the same classifier training and validation procedure was used after each
  6016. normalization method.
  6017. The PAM package was used to train a nearest shrunken centroid classifier
  6018. on the training set and select the appropriate threshold for centroid shrinking.
  6019. Then the trained classifier was used to predict the class probabilities
  6020. of each validation sample.
  6021. From these class probabilities, ROC curves and area-under-curve (AUC) values
  6022. were generated
  6023. \begin_inset CommandInset citation
  6024. LatexCommand cite
  6025. key "Turck2011"
  6026. literal "false"
  6027. \end_inset
  6028. .
  6029. Each normalization was tested on two different sets of training and validation
  6030. samples.
  6031. For internal validation, the 115 TX and AR arrays in the internal set were
  6032. split at random into two equal sized sets, one for training and one for
  6033. validation, each containing the same numbers of TX and AR samples as the
  6034. other set.
  6035. For external validation, the full set of 115 TX and AR samples were used
  6036. as a training set, and the 75 external TX and AR samples were used as the
  6037. validation set.
  6038. Thus, 2 ROC curves and AUC values were generated for each normalization
  6039. method: one internal and one external.
  6040. Because the external validation set contains no ADNR samples, only classificati
  6041. on of TX and AR samples was considered.
  6042. The ADNR samples were included during normalization but excluded from all
  6043. classifier training and validation.
  6044. This ensures that the performance on internal and external validation sets
  6045. is directly comparable, since both are performing the same task: distinguising
  6046. TX from AR.
  6047. \end_layout
  6048. \begin_layout Standard
  6049. \begin_inset Flex TODO Note (inline)
  6050. status open
  6051. \begin_layout Plain Layout
  6052. Summarize the get.best.threshold algorithm for PAM threshold selection, or
  6053. just put the code online?
  6054. \end_layout
  6055. \end_inset
  6056. \end_layout
  6057. \begin_layout Standard
  6058. Six different normalization strategies were evaluated.
  6059. First, 2 well-known non-single-channel normalization methods were considered:
  6060. RMA and dChip
  6061. \begin_inset CommandInset citation
  6062. LatexCommand cite
  6063. key "Li2001,Irizarry2003a"
  6064. literal "false"
  6065. \end_inset
  6066. .
  6067. Since RMA produces expression values on a log2 scale and dChip does not,
  6068. the values from dChip were log2 transformed after normalization.
  6069. Next, RMA and dChip followed by Global Rank-invariant Set Normalization
  6070. (GRSN) were tested
  6071. \begin_inset CommandInset citation
  6072. LatexCommand cite
  6073. key "Pelz2008"
  6074. literal "false"
  6075. \end_inset
  6076. .
  6077. Post-processing with GRSN does not turn RMA or dChip into single-channel
  6078. methods, but it may help mitigate batch effects and is therefore useful
  6079. as a benchmark.
  6080. Lastly, the two single-channel normalization methods, fRMA and SCAN, were
  6081. tested
  6082. \begin_inset CommandInset citation
  6083. LatexCommand cite
  6084. key "McCall2010,Piccolo2012"
  6085. literal "false"
  6086. \end_inset
  6087. .
  6088. When evaluting internal validation performance, only the 157 internal samples
  6089. were normalized; when evaluating external validation performance, all 157
  6090. internal samples and 75 external samples were normalized together.
  6091. \end_layout
  6092. \begin_layout Standard
  6093. For demonstrating the problem with separate normalization of training and
  6094. validation data, one additional normalization was performed: the internal
  6095. and external sets were each normalized separately using RMA, and the normalized
  6096. data for each set were combined into a single set with no further attempts
  6097. at normalizing between the two sets.
  6098. The represents approximately how RMA would have to be used in a clinical
  6099. setting, where the samples to be classified are not available at the time
  6100. the classifier is trained.
  6101. \end_layout
  6102. \begin_layout Subsection
  6103. Generating custom fRMA vectors for hthgu133pluspm array platform
  6104. \end_layout
  6105. \begin_layout Standard
  6106. In order to enable fRMA normalization for the hthgu133pluspm array platform,
  6107. custom fRMA normalization vectors were trained using the frmaTools package
  6108. \begin_inset CommandInset citation
  6109. LatexCommand cite
  6110. key "McCall2011"
  6111. literal "false"
  6112. \end_inset
  6113. .
  6114. Separate vectors were created for two types of samples: kidney graft biopsy
  6115. samples and blood samples from graft recipients.
  6116. For training, a 341 kidney biopsy samples from 2 data sets and 965 blood
  6117. samples from 5 data sets were used as the reference set.
  6118. Arrays were groups into batches based on unique combinations of sample
  6119. type (blood or biopsy), diagnosis (TX, AR, etc.), data set, and scan date.
  6120. Thus, each batch represents arrays of the same kind that were run together
  6121. on the same day.
  6122. For estimating the probe inverse variance weights, frmaTools requires equal-siz
  6123. ed batches, which means a batch size must be chosen, and then batches smaller
  6124. than that size must be ignored, while batches larger than the chosen size
  6125. must be downsampled.
  6126. This downsampling is performed randomly, so the sampling process is repeated
  6127. 5 times and the resulting normalizations are compared to each other.
  6128. \end_layout
  6129. \begin_layout Standard
  6130. To evaluate the consistency of the generated normalization vectors, the
  6131. 5 fRMA vector sets generated from 5 random batch samplings were each used
  6132. to normalize the same 20 randomly selected samples from each tissue.
  6133. Then the normalized expression values for each probe on each array were
  6134. compared across all normalizations.
  6135. Each fRMA normalization was also compared against the normalized expression
  6136. values obtained by normalizing the same 20 samples with ordinary RMA.
  6137. \end_layout
  6138. \begin_layout Subsection
  6139. Modeling methylation array M-value heteroskedasticy in linear models with
  6140. modified voom implementation
  6141. \end_layout
  6142. \begin_layout Standard
  6143. \begin_inset Flex TODO Note (inline)
  6144. status open
  6145. \begin_layout Plain Layout
  6146. Put code on Github and reference it.
  6147. \end_layout
  6148. \end_inset
  6149. \end_layout
  6150. \begin_layout Standard
  6151. To investigate the whether DNA methylation could be used to distinguish
  6152. between healthy and dysfunctional transplants, a data set of 78 Illumina
  6153. 450k methylation arrays from human kidney graft biopsies was analyzed for
  6154. differential metylation between 4 transplant statuses: healthy transplant
  6155. (TX), transplants undergoing acute rejection (AR), acute dysfunction with
  6156. no rejection (ADNR), and chronic allograpft nephropathy (CAN).
  6157. The data consisted of 33 TX, 9 AR, 8 ADNR, and 28 CAN samples.
  6158. The uneven group sizes are a result of taking the biopsy samples before
  6159. the eventual fate of the transplant was known.
  6160. Each sample was additionally annotated with a donor ID (anonymized), Sex,
  6161. Age, Ethnicity, Creatinine Level, and Diabetes diagnosois (all samples
  6162. in this data set came from patients with either Type 1 or Type 2 diabetes).
  6163. \end_layout
  6164. \begin_layout Standard
  6165. The intensity data were first normalized using subset-quantile within array
  6166. normalization (SWAN)
  6167. \begin_inset CommandInset citation
  6168. LatexCommand cite
  6169. key "Maksimovic2012"
  6170. literal "false"
  6171. \end_inset
  6172. , then converted to intensity ratios (beta values)
  6173. \begin_inset CommandInset citation
  6174. LatexCommand cite
  6175. key "Aryee2014"
  6176. literal "false"
  6177. \end_inset
  6178. .
  6179. Any probes binding to loci that overlapped annotated SNPs were dropped,
  6180. and the annotated sex of each sample was verified against the sex inferred
  6181. from the ratio of median probe intensities for the X and Y chromosomes.
  6182. Then, the ratios were transformed to M-values.
  6183. \end_layout
  6184. \begin_layout Standard
  6185. \begin_inset Float table
  6186. wide false
  6187. sideways false
  6188. status open
  6189. \begin_layout Plain Layout
  6190. \align center
  6191. \begin_inset Tabular
  6192. <lyxtabular version="3" rows="4" columns="6">
  6193. <features tabularvalignment="middle">
  6194. <column alignment="center" valignment="top">
  6195. <column alignment="center" valignment="top">
  6196. <column alignment="center" valignment="top">
  6197. <column alignment="center" valignment="top">
  6198. <column alignment="center" valignment="top">
  6199. <column alignment="center" valignment="top">
  6200. <row>
  6201. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6202. \begin_inset Text
  6203. \begin_layout Plain Layout
  6204. Analysis
  6205. \end_layout
  6206. \end_inset
  6207. </cell>
  6208. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6209. \begin_inset Text
  6210. \begin_layout Plain Layout
  6211. random effect
  6212. \end_layout
  6213. \end_inset
  6214. </cell>
  6215. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6216. \begin_inset Text
  6217. \begin_layout Plain Layout
  6218. eBayes
  6219. \end_layout
  6220. \end_inset
  6221. </cell>
  6222. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6223. \begin_inset Text
  6224. \begin_layout Plain Layout
  6225. SVA
  6226. \end_layout
  6227. \end_inset
  6228. </cell>
  6229. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6230. \begin_inset Text
  6231. \begin_layout Plain Layout
  6232. weights
  6233. \end_layout
  6234. \end_inset
  6235. </cell>
  6236. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  6237. \begin_inset Text
  6238. \begin_layout Plain Layout
  6239. voom
  6240. \end_layout
  6241. \end_inset
  6242. </cell>
  6243. </row>
  6244. <row>
  6245. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6246. \begin_inset Text
  6247. \begin_layout Plain Layout
  6248. A
  6249. \end_layout
  6250. \end_inset
  6251. </cell>
  6252. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6253. \begin_inset Text
  6254. \begin_layout Plain Layout
  6255. Yes
  6256. \end_layout
  6257. \end_inset
  6258. </cell>
  6259. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6260. \begin_inset Text
  6261. \begin_layout Plain Layout
  6262. Yes
  6263. \end_layout
  6264. \end_inset
  6265. </cell>
  6266. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6267. \begin_inset Text
  6268. \begin_layout Plain Layout
  6269. No
  6270. \end_layout
  6271. \end_inset
  6272. </cell>
  6273. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6274. \begin_inset Text
  6275. \begin_layout Plain Layout
  6276. No
  6277. \end_layout
  6278. \end_inset
  6279. </cell>
  6280. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  6281. \begin_inset Text
  6282. \begin_layout Plain Layout
  6283. No
  6284. \end_layout
  6285. \end_inset
  6286. </cell>
  6287. </row>
  6288. <row>
  6289. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6290. \begin_inset Text
  6291. \begin_layout Plain Layout
  6292. B
  6293. \end_layout
  6294. \end_inset
  6295. </cell>
  6296. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6297. \begin_inset Text
  6298. \begin_layout Plain Layout
  6299. Yes
  6300. \end_layout
  6301. \end_inset
  6302. </cell>
  6303. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6304. \begin_inset Text
  6305. \begin_layout Plain Layout
  6306. Yes
  6307. \end_layout
  6308. \end_inset
  6309. </cell>
  6310. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6311. \begin_inset Text
  6312. \begin_layout Plain Layout
  6313. Yes
  6314. \end_layout
  6315. \end_inset
  6316. </cell>
  6317. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6318. \begin_inset Text
  6319. \begin_layout Plain Layout
  6320. Yes
  6321. \end_layout
  6322. \end_inset
  6323. </cell>
  6324. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  6325. \begin_inset Text
  6326. \begin_layout Plain Layout
  6327. No
  6328. \end_layout
  6329. \end_inset
  6330. </cell>
  6331. </row>
  6332. <row>
  6333. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6334. \begin_inset Text
  6335. \begin_layout Plain Layout
  6336. C
  6337. \end_layout
  6338. \end_inset
  6339. </cell>
  6340. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6341. \begin_inset Text
  6342. \begin_layout Plain Layout
  6343. Yes
  6344. \end_layout
  6345. \end_inset
  6346. </cell>
  6347. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6348. \begin_inset Text
  6349. \begin_layout Plain Layout
  6350. Yes
  6351. \end_layout
  6352. \end_inset
  6353. </cell>
  6354. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6355. \begin_inset Text
  6356. \begin_layout Plain Layout
  6357. Yes
  6358. \end_layout
  6359. \end_inset
  6360. </cell>
  6361. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6362. \begin_inset Text
  6363. \begin_layout Plain Layout
  6364. Yes
  6365. \end_layout
  6366. \end_inset
  6367. </cell>
  6368. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  6369. \begin_inset Text
  6370. \begin_layout Plain Layout
  6371. Yes
  6372. \end_layout
  6373. \end_inset
  6374. </cell>
  6375. </row>
  6376. </lyxtabular>
  6377. \end_inset
  6378. \end_layout
  6379. \begin_layout Plain Layout
  6380. \begin_inset Caption Standard
  6381. \begin_layout Plain Layout
  6382. \series bold
  6383. \begin_inset CommandInset label
  6384. LatexCommand label
  6385. name "tab:Summary-of-meth-analysis"
  6386. \end_inset
  6387. Summary of analysis variants for methylation array data.
  6388. \series default
  6389. Each analysis included a different set of steps to adjust or account for
  6390. various systematic features of the data.
  6391. Random effect: The model included a random effect accounting for correlation
  6392. between samples from the same patient
  6393. \begin_inset CommandInset citation
  6394. LatexCommand cite
  6395. key "Smyth2005a"
  6396. literal "false"
  6397. \end_inset
  6398. ; eBayes: Empirical bayes squeezing of per-probe variances toward the mean-varia
  6399. nce trend
  6400. \begin_inset CommandInset citation
  6401. LatexCommand cite
  6402. key "Ritchie2015"
  6403. literal "false"
  6404. \end_inset
  6405. ; SVA: Surrogate variable analysis to account for unobserved confounders
  6406. \begin_inset CommandInset citation
  6407. LatexCommand cite
  6408. key "Leek2007"
  6409. literal "false"
  6410. \end_inset
  6411. ; Weights: Estimate sample weights to account for differences in sample
  6412. quality
  6413. \begin_inset CommandInset citation
  6414. LatexCommand cite
  6415. key "Liu2015,Ritchie2006"
  6416. literal "false"
  6417. \end_inset
  6418. ; voom: Use mean-variance trend to assign individual sample weights
  6419. \begin_inset CommandInset citation
  6420. LatexCommand cite
  6421. key "Law2013"
  6422. literal "false"
  6423. \end_inset
  6424. .
  6425. See the text for a more detailed explanation of each step.
  6426. \end_layout
  6427. \end_inset
  6428. \end_layout
  6429. \end_inset
  6430. \end_layout
  6431. \begin_layout Standard
  6432. From the M-values, a series of parallel analyses was performed, each adding
  6433. additional steps into the model fit to accomodate a feature of the data
  6434. (see Table
  6435. \begin_inset CommandInset ref
  6436. LatexCommand ref
  6437. reference "tab:Summary-of-meth-analysis"
  6438. plural "false"
  6439. caps "false"
  6440. noprefix "false"
  6441. \end_inset
  6442. ).
  6443. For analysis A, a
  6444. \begin_inset Quotes eld
  6445. \end_inset
  6446. basic
  6447. \begin_inset Quotes erd
  6448. \end_inset
  6449. linear modeling analysis was performed, compensating for known confounders
  6450. by including terms for the factor of interest (transplant status) as well
  6451. as the known biological confounders: sex, age, ethnicity, and diabetes.
  6452. Since some samples came from the same patients at different times, the
  6453. intra-patient correlation was modeled as a random effect, estimating a
  6454. shared correlation value across all probes
  6455. \begin_inset CommandInset citation
  6456. LatexCommand cite
  6457. key "Smyth2005a"
  6458. literal "false"
  6459. \end_inset
  6460. .
  6461. Then the linear model was fit, and the variance was modeled using empirical
  6462. Bayes squeezing toward the mean-variance trend
  6463. \begin_inset CommandInset citation
  6464. LatexCommand cite
  6465. key "Ritchie2015"
  6466. literal "false"
  6467. \end_inset
  6468. .
  6469. Finally, t-tests or F-tests were performed as appropriate for each test:
  6470. t-tests for single contrasts, and F-tests for multiple contrasts.
  6471. P-values were corrected for multiple testing using the Benjamini-Hochberg
  6472. procedure for FDR control
  6473. \begin_inset CommandInset citation
  6474. LatexCommand cite
  6475. key "Benjamini1995"
  6476. literal "false"
  6477. \end_inset
  6478. .
  6479. \end_layout
  6480. \begin_layout Standard
  6481. For the analysis B, surrogate variable analysis (SVA) was used to infer
  6482. additional unobserved sources of heterogeneity in the data
  6483. \begin_inset CommandInset citation
  6484. LatexCommand cite
  6485. key "Leek2007"
  6486. literal "false"
  6487. \end_inset
  6488. .
  6489. These surrogate variables were added to the design matrix before fitting
  6490. the linear model.
  6491. In addition, sample quality weights were estimated from the data and used
  6492. during linear modeling to down-weight the contribution of highly variable
  6493. arrays while increasing the weight to arrays with lower variability
  6494. \begin_inset CommandInset citation
  6495. LatexCommand cite
  6496. key "Ritchie2006"
  6497. literal "false"
  6498. \end_inset
  6499. .
  6500. The remainder of the analysis proceeded as in analysis A.
  6501. For analysis C, the voom method was adapted to run on methylation array
  6502. data and used to model and correct for the mean-variance trend using individual
  6503. observation weights
  6504. \begin_inset CommandInset citation
  6505. LatexCommand cite
  6506. key "Law2013"
  6507. literal "false"
  6508. \end_inset
  6509. , which were combined with the sample weights
  6510. \begin_inset CommandInset citation
  6511. LatexCommand cite
  6512. key "Liu2015,Ritchie2006"
  6513. literal "false"
  6514. \end_inset
  6515. .
  6516. Each time weights were used, they were estimated once before estimating
  6517. the random effect correlation value, and then the weights were re-estimated
  6518. taking the random effect into account.
  6519. The remainder of the analysis proceeded as in analysis B.
  6520. \end_layout
  6521. \begin_layout Section
  6522. Results
  6523. \end_layout
  6524. \begin_layout Standard
  6525. \begin_inset Flex TODO Note (inline)
  6526. status open
  6527. \begin_layout Plain Layout
  6528. Improve subsection titles in this section.
  6529. \end_layout
  6530. \end_inset
  6531. \end_layout
  6532. \begin_layout Standard
  6533. \begin_inset Flex TODO Note (inline)
  6534. status open
  6535. \begin_layout Plain Layout
  6536. Reconsider subsection organization?
  6537. \end_layout
  6538. \end_inset
  6539. \end_layout
  6540. \begin_layout Subsection
  6541. Separate normalization with RMA introduces unwanted biases in classification
  6542. \end_layout
  6543. \begin_layout Standard
  6544. \begin_inset Float figure
  6545. wide false
  6546. sideways false
  6547. status open
  6548. \begin_layout Plain Layout
  6549. \align center
  6550. \begin_inset Graphics
  6551. filename graphics/PAM/predplot.pdf
  6552. lyxscale 50
  6553. width 60col%
  6554. groupId colwidth
  6555. \end_inset
  6556. \end_layout
  6557. \begin_layout Plain Layout
  6558. \begin_inset Caption Standard
  6559. \begin_layout Plain Layout
  6560. \begin_inset CommandInset label
  6561. LatexCommand label
  6562. name "fig:Classifier-probabilities-RMA"
  6563. \end_inset
  6564. \series bold
  6565. Classifier probabilities on validation samples when normalized with RMA
  6566. together vs.
  6567. separately.
  6568. \series default
  6569. The PAM classifier algorithm was trained on the training set of arrays to
  6570. distinguish AR from TX and then used to assign class probabilities to the
  6571. validation set.
  6572. The process was performed after normalizing all samples together and after
  6573. normalizing the training and test sets separately, and the class probabilities
  6574. assigned to each sample in the validation set were plotted against each
  6575. other (PP(AR), posterior probability of being AR).
  6576. The color of each point indicates the true classification of that sample.
  6577. \end_layout
  6578. \end_inset
  6579. \end_layout
  6580. \end_inset
  6581. \end_layout
  6582. \begin_layout Standard
  6583. To demonstrate the problem with non-single-channel normalization methods,
  6584. we considered the problem of training a classifier to distinguish TX from
  6585. AR using the samples from the internal set as training data, evaluating
  6586. performance on the external set.
  6587. First, training and evaluation were performed after normalizing all array
  6588. samples together as a single set using RMA, and second, the internal samples
  6589. were normalized separately from the external samples and the training and
  6590. evaluation were repeated.
  6591. For each sample in the validation set, the classifier probabilities from
  6592. both classifiers were plotted against each other (Fig.
  6593. \begin_inset CommandInset ref
  6594. LatexCommand ref
  6595. reference "fig:Classifier-probabilities-RMA"
  6596. plural "false"
  6597. caps "false"
  6598. noprefix "false"
  6599. \end_inset
  6600. ).
  6601. As expected, separate normalization biases the classifier probabilities,
  6602. resulting in several misclassifications.
  6603. In this case, the bias from separate normalization causes the classifier
  6604. to assign a lower probability of AR to every sample.
  6605. \end_layout
  6606. \begin_layout Subsection
  6607. fRMA and SCAN maintain classification performance while eliminating dependence
  6608. on normalization strategy
  6609. \end_layout
  6610. \begin_layout Standard
  6611. \begin_inset Float figure
  6612. wide false
  6613. sideways false
  6614. status open
  6615. \begin_layout Plain Layout
  6616. \align center
  6617. \begin_inset Float figure
  6618. placement tb
  6619. wide false
  6620. sideways false
  6621. status open
  6622. \begin_layout Plain Layout
  6623. \align center
  6624. \begin_inset Graphics
  6625. filename graphics/PAM/ROC-TXvsAR-internal.pdf
  6626. lyxscale 50
  6627. height 40theight%
  6628. groupId roc-pam
  6629. \end_inset
  6630. \end_layout
  6631. \begin_layout Plain Layout
  6632. \begin_inset Caption Standard
  6633. \begin_layout Plain Layout
  6634. \begin_inset CommandInset label
  6635. LatexCommand label
  6636. name "fig:ROC-PAM-int"
  6637. \end_inset
  6638. ROC curves for PAM on internal validation data
  6639. \end_layout
  6640. \end_inset
  6641. \end_layout
  6642. \end_inset
  6643. \end_layout
  6644. \begin_layout Plain Layout
  6645. \align center
  6646. \begin_inset Float figure
  6647. placement tb
  6648. wide false
  6649. sideways false
  6650. status open
  6651. \begin_layout Plain Layout
  6652. \align center
  6653. \begin_inset Graphics
  6654. filename graphics/PAM/ROC-TXvsAR-external.pdf
  6655. lyxscale 50
  6656. height 40theight%
  6657. groupId roc-pam
  6658. \end_inset
  6659. \end_layout
  6660. \begin_layout Plain Layout
  6661. \begin_inset Caption Standard
  6662. \begin_layout Plain Layout
  6663. \begin_inset CommandInset label
  6664. LatexCommand label
  6665. name "fig:ROC-PAM-ext"
  6666. \end_inset
  6667. ROC curves for PAM on external validation data
  6668. \end_layout
  6669. \end_inset
  6670. \end_layout
  6671. \end_inset
  6672. \end_layout
  6673. \begin_layout Plain Layout
  6674. \begin_inset Caption Standard
  6675. \begin_layout Plain Layout
  6676. \series bold
  6677. \begin_inset CommandInset label
  6678. LatexCommand label
  6679. name "fig:ROC-PAM-main"
  6680. \end_inset
  6681. ROC curves for PAM using different normalization strategies.
  6682. \series default
  6683. ROC curves were generated for PAM classification of AR vs TX after 6 different
  6684. normalization strategies applied to the same data sets.
  6685. Only fRMA and SCAN are single-channel normalizations.
  6686. The other normalizations are for comparison.
  6687. \end_layout
  6688. \end_inset
  6689. \end_layout
  6690. \end_inset
  6691. \end_layout
  6692. \begin_layout Standard
  6693. \begin_inset Float table
  6694. wide false
  6695. sideways false
  6696. status open
  6697. \begin_layout Plain Layout
  6698. \align center
  6699. \begin_inset Tabular
  6700. <lyxtabular version="3" rows="7" columns="4">
  6701. <features tabularvalignment="middle">
  6702. <column alignment="center" valignment="top">
  6703. <column alignment="center" valignment="top">
  6704. <column alignment="center" valignment="top">
  6705. <column alignment="center" valignment="top">
  6706. <row>
  6707. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6708. \begin_inset Text
  6709. \begin_layout Plain Layout
  6710. \family roman
  6711. \series medium
  6712. \shape up
  6713. \size normal
  6714. \emph off
  6715. \bar no
  6716. \strikeout off
  6717. \xout off
  6718. \uuline off
  6719. \uwave off
  6720. \noun off
  6721. \color none
  6722. Normalization
  6723. \end_layout
  6724. \end_inset
  6725. </cell>
  6726. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6727. \begin_inset Text
  6728. \begin_layout Plain Layout
  6729. Single-channel?
  6730. \end_layout
  6731. \end_inset
  6732. </cell>
  6733. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6734. \begin_inset Text
  6735. \begin_layout Plain Layout
  6736. \family roman
  6737. \series medium
  6738. \shape up
  6739. \size normal
  6740. \emph off
  6741. \bar no
  6742. \strikeout off
  6743. \xout off
  6744. \uuline off
  6745. \uwave off
  6746. \noun off
  6747. \color none
  6748. Internal Val.
  6749. AUC
  6750. \end_layout
  6751. \end_inset
  6752. </cell>
  6753. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  6754. \begin_inset Text
  6755. \begin_layout Plain Layout
  6756. External Val.
  6757. AUC
  6758. \end_layout
  6759. \end_inset
  6760. </cell>
  6761. </row>
  6762. <row>
  6763. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6764. \begin_inset Text
  6765. \begin_layout Plain Layout
  6766. \family roman
  6767. \series medium
  6768. \shape up
  6769. \size normal
  6770. \emph off
  6771. \bar no
  6772. \strikeout off
  6773. \xout off
  6774. \uuline off
  6775. \uwave off
  6776. \noun off
  6777. \color none
  6778. RMA
  6779. \end_layout
  6780. \end_inset
  6781. </cell>
  6782. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6783. \begin_inset Text
  6784. \begin_layout Plain Layout
  6785. No
  6786. \end_layout
  6787. \end_inset
  6788. </cell>
  6789. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6790. \begin_inset Text
  6791. \begin_layout Plain Layout
  6792. \family roman
  6793. \series medium
  6794. \shape up
  6795. \size normal
  6796. \emph off
  6797. \bar no
  6798. \strikeout off
  6799. \xout off
  6800. \uuline off
  6801. \uwave off
  6802. \noun off
  6803. \color none
  6804. 0.852
  6805. \end_layout
  6806. \end_inset
  6807. </cell>
  6808. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  6809. \begin_inset Text
  6810. \begin_layout Plain Layout
  6811. \family roman
  6812. \series medium
  6813. \shape up
  6814. \size normal
  6815. \emph off
  6816. \bar no
  6817. \strikeout off
  6818. \xout off
  6819. \uuline off
  6820. \uwave off
  6821. \noun off
  6822. \color none
  6823. 0.713
  6824. \end_layout
  6825. \end_inset
  6826. </cell>
  6827. </row>
  6828. <row>
  6829. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6830. \begin_inset Text
  6831. \begin_layout Plain Layout
  6832. \family roman
  6833. \series medium
  6834. \shape up
  6835. \size normal
  6836. \emph off
  6837. \bar no
  6838. \strikeout off
  6839. \xout off
  6840. \uuline off
  6841. \uwave off
  6842. \noun off
  6843. \color none
  6844. dChip
  6845. \end_layout
  6846. \end_inset
  6847. </cell>
  6848. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6849. \begin_inset Text
  6850. \begin_layout Plain Layout
  6851. No
  6852. \end_layout
  6853. \end_inset
  6854. </cell>
  6855. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6856. \begin_inset Text
  6857. \begin_layout Plain Layout
  6858. \family roman
  6859. \series medium
  6860. \shape up
  6861. \size normal
  6862. \emph off
  6863. \bar no
  6864. \strikeout off
  6865. \xout off
  6866. \uuline off
  6867. \uwave off
  6868. \noun off
  6869. \color none
  6870. 0.891
  6871. \end_layout
  6872. \end_inset
  6873. </cell>
  6874. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  6875. \begin_inset Text
  6876. \begin_layout Plain Layout
  6877. \family roman
  6878. \series medium
  6879. \shape up
  6880. \size normal
  6881. \emph off
  6882. \bar no
  6883. \strikeout off
  6884. \xout off
  6885. \uuline off
  6886. \uwave off
  6887. \noun off
  6888. \color none
  6889. 0.657
  6890. \end_layout
  6891. \end_inset
  6892. </cell>
  6893. </row>
  6894. <row>
  6895. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6896. \begin_inset Text
  6897. \begin_layout Plain Layout
  6898. \family roman
  6899. \series medium
  6900. \shape up
  6901. \size normal
  6902. \emph off
  6903. \bar no
  6904. \strikeout off
  6905. \xout off
  6906. \uuline off
  6907. \uwave off
  6908. \noun off
  6909. \color none
  6910. RMA + GRSN
  6911. \end_layout
  6912. \end_inset
  6913. </cell>
  6914. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6915. \begin_inset Text
  6916. \begin_layout Plain Layout
  6917. No
  6918. \end_layout
  6919. \end_inset
  6920. </cell>
  6921. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6922. \begin_inset Text
  6923. \begin_layout Plain Layout
  6924. \family roman
  6925. \series medium
  6926. \shape up
  6927. \size normal
  6928. \emph off
  6929. \bar no
  6930. \strikeout off
  6931. \xout off
  6932. \uuline off
  6933. \uwave off
  6934. \noun off
  6935. \color none
  6936. 0.816
  6937. \end_layout
  6938. \end_inset
  6939. </cell>
  6940. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  6941. \begin_inset Text
  6942. \begin_layout Plain Layout
  6943. \family roman
  6944. \series medium
  6945. \shape up
  6946. \size normal
  6947. \emph off
  6948. \bar no
  6949. \strikeout off
  6950. \xout off
  6951. \uuline off
  6952. \uwave off
  6953. \noun off
  6954. \color none
  6955. 0.750
  6956. \end_layout
  6957. \end_inset
  6958. </cell>
  6959. </row>
  6960. <row>
  6961. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6962. \begin_inset Text
  6963. \begin_layout Plain Layout
  6964. \family roman
  6965. \series medium
  6966. \shape up
  6967. \size normal
  6968. \emph off
  6969. \bar no
  6970. \strikeout off
  6971. \xout off
  6972. \uuline off
  6973. \uwave off
  6974. \noun off
  6975. \color none
  6976. dChip + GRSN
  6977. \end_layout
  6978. \end_inset
  6979. </cell>
  6980. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6981. \begin_inset Text
  6982. \begin_layout Plain Layout
  6983. No
  6984. \end_layout
  6985. \end_inset
  6986. </cell>
  6987. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6988. \begin_inset Text
  6989. \begin_layout Plain Layout
  6990. \family roman
  6991. \series medium
  6992. \shape up
  6993. \size normal
  6994. \emph off
  6995. \bar no
  6996. \strikeout off
  6997. \xout off
  6998. \uuline off
  6999. \uwave off
  7000. \noun off
  7001. \color none
  7002. 0.875
  7003. \end_layout
  7004. \end_inset
  7005. </cell>
  7006. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  7007. \begin_inset Text
  7008. \begin_layout Plain Layout
  7009. \family roman
  7010. \series medium
  7011. \shape up
  7012. \size normal
  7013. \emph off
  7014. \bar no
  7015. \strikeout off
  7016. \xout off
  7017. \uuline off
  7018. \uwave off
  7019. \noun off
  7020. \color none
  7021. 0.642
  7022. \end_layout
  7023. \end_inset
  7024. </cell>
  7025. </row>
  7026. <row>
  7027. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7028. \begin_inset Text
  7029. \begin_layout Plain Layout
  7030. \family roman
  7031. \series medium
  7032. \shape up
  7033. \size normal
  7034. \emph off
  7035. \bar no
  7036. \strikeout off
  7037. \xout off
  7038. \uuline off
  7039. \uwave off
  7040. \noun off
  7041. \color none
  7042. fRMA
  7043. \end_layout
  7044. \end_inset
  7045. </cell>
  7046. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7047. \begin_inset Text
  7048. \begin_layout Plain Layout
  7049. Yes
  7050. \end_layout
  7051. \end_inset
  7052. </cell>
  7053. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7054. \begin_inset Text
  7055. \begin_layout Plain Layout
  7056. \family roman
  7057. \series medium
  7058. \shape up
  7059. \size normal
  7060. \emph off
  7061. \bar no
  7062. \strikeout off
  7063. \xout off
  7064. \uuline off
  7065. \uwave off
  7066. \noun off
  7067. \color none
  7068. 0.863
  7069. \end_layout
  7070. \end_inset
  7071. </cell>
  7072. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  7073. \begin_inset Text
  7074. \begin_layout Plain Layout
  7075. \family roman
  7076. \series medium
  7077. \shape up
  7078. \size normal
  7079. \emph off
  7080. \bar no
  7081. \strikeout off
  7082. \xout off
  7083. \uuline off
  7084. \uwave off
  7085. \noun off
  7086. \color none
  7087. 0.718
  7088. \end_layout
  7089. \end_inset
  7090. </cell>
  7091. </row>
  7092. <row>
  7093. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  7094. \begin_inset Text
  7095. \begin_layout Plain Layout
  7096. \family roman
  7097. \series medium
  7098. \shape up
  7099. \size normal
  7100. \emph off
  7101. \bar no
  7102. \strikeout off
  7103. \xout off
  7104. \uuline off
  7105. \uwave off
  7106. \noun off
  7107. \color none
  7108. SCAN
  7109. \end_layout
  7110. \end_inset
  7111. </cell>
  7112. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  7113. \begin_inset Text
  7114. \begin_layout Plain Layout
  7115. Yes
  7116. \end_layout
  7117. \end_inset
  7118. </cell>
  7119. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  7120. \begin_inset Text
  7121. \begin_layout Plain Layout
  7122. \family roman
  7123. \series medium
  7124. \shape up
  7125. \size normal
  7126. \emph off
  7127. \bar no
  7128. \strikeout off
  7129. \xout off
  7130. \uuline off
  7131. \uwave off
  7132. \noun off
  7133. \color none
  7134. 0.853
  7135. \end_layout
  7136. \end_inset
  7137. </cell>
  7138. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  7139. \begin_inset Text
  7140. \begin_layout Plain Layout
  7141. \family roman
  7142. \series medium
  7143. \shape up
  7144. \size normal
  7145. \emph off
  7146. \bar no
  7147. \strikeout off
  7148. \xout off
  7149. \uuline off
  7150. \uwave off
  7151. \noun off
  7152. \color none
  7153. 0.689
  7154. \end_layout
  7155. \end_inset
  7156. </cell>
  7157. </row>
  7158. </lyxtabular>
  7159. \end_inset
  7160. \end_layout
  7161. \begin_layout Plain Layout
  7162. \begin_inset Caption Standard
  7163. \begin_layout Plain Layout
  7164. \begin_inset CommandInset label
  7165. LatexCommand label
  7166. name "tab:AUC-PAM"
  7167. \end_inset
  7168. \series bold
  7169. ROC curve AUC values for internal and external validation with 6 different
  7170. normalization strategies.
  7171. \series default
  7172. These AUC values correspond to the ROC curves in Figure
  7173. \begin_inset CommandInset ref
  7174. LatexCommand ref
  7175. reference "fig:ROC-PAM-main"
  7176. plural "false"
  7177. caps "false"
  7178. noprefix "false"
  7179. \end_inset
  7180. .
  7181. \end_layout
  7182. \end_inset
  7183. \end_layout
  7184. \end_inset
  7185. \end_layout
  7186. \begin_layout Standard
  7187. For internal validation, the 6 methods' AUC values ranged from 0.816 to 0.891,
  7188. as shown in Table
  7189. \begin_inset CommandInset ref
  7190. LatexCommand ref
  7191. reference "tab:AUC-PAM"
  7192. plural "false"
  7193. caps "false"
  7194. noprefix "false"
  7195. \end_inset
  7196. .
  7197. Among the non-single-channel normalizations, dChip outperformed RMA, while
  7198. GRSN reduced the AUC values for both dChip and RMA.
  7199. Both single-channel methods, fRMA and SCAN, slightly outperformed RMA,
  7200. with fRMA ahead of SCAN.
  7201. However, the difference between RMA and fRMA is still quite small.
  7202. Figure
  7203. \begin_inset CommandInset ref
  7204. LatexCommand ref
  7205. reference "fig:ROC-PAM-int"
  7206. plural "false"
  7207. caps "false"
  7208. noprefix "false"
  7209. \end_inset
  7210. shows that the ROC curves for RMA, dChip, and fRMA look very similar and
  7211. relatively smooth, while both GRSN curves and the curve for SCAN have a
  7212. more jagged appearance.
  7213. \end_layout
  7214. \begin_layout Standard
  7215. For external validation, as expected, all the AUC values are lower than
  7216. the internal validations, ranging from 0.642 to 0.750 (Table
  7217. \begin_inset CommandInset ref
  7218. LatexCommand ref
  7219. reference "tab:AUC-PAM"
  7220. plural "false"
  7221. caps "false"
  7222. noprefix "false"
  7223. \end_inset
  7224. ).
  7225. With or without GRSN, RMA shows its dominance over dChip in this more challengi
  7226. ng test.
  7227. Unlike in the internal validation, GRSN actually improves the classifier
  7228. performance for RMA, although it does not for dChip.
  7229. Once again, both single-channel methods perform about on par with RMA,
  7230. with fRMA performing slightly better and SCAN performing a bit worse.
  7231. Figure
  7232. \begin_inset CommandInset ref
  7233. LatexCommand ref
  7234. reference "fig:ROC-PAM-ext"
  7235. plural "false"
  7236. caps "false"
  7237. noprefix "false"
  7238. \end_inset
  7239. shows the ROC curves for the external validation test.
  7240. As expected, none of them are as clean-looking as the internal validation
  7241. ROC curves.
  7242. The curves for RMA, RMA+GRSN, and fRMA all look similar, while the other
  7243. curves look more divergent.
  7244. \end_layout
  7245. \begin_layout Subsection
  7246. fRMA with custom-generated vectors enables single-channel normalization
  7247. on hthgu133pluspm platform
  7248. \end_layout
  7249. \begin_layout Standard
  7250. \begin_inset Float figure
  7251. wide false
  7252. sideways false
  7253. status open
  7254. \begin_layout Plain Layout
  7255. \align center
  7256. \begin_inset Float figure
  7257. placement tb
  7258. wide false
  7259. sideways false
  7260. status collapsed
  7261. \begin_layout Plain Layout
  7262. \align center
  7263. \begin_inset Graphics
  7264. filename graphics/frma-pax-bx/batchsize_batches.pdf
  7265. lyxscale 50
  7266. height 35theight%
  7267. groupId frmatools-subfig
  7268. \end_inset
  7269. \end_layout
  7270. \begin_layout Plain Layout
  7271. \begin_inset Caption Standard
  7272. \begin_layout Plain Layout
  7273. \begin_inset CommandInset label
  7274. LatexCommand label
  7275. name "fig:batch-size-batches"
  7276. \end_inset
  7277. \series bold
  7278. Number of batches usable in fRMA probe weight learning as a function of
  7279. batch size.
  7280. \end_layout
  7281. \end_inset
  7282. \end_layout
  7283. \end_inset
  7284. \end_layout
  7285. \begin_layout Plain Layout
  7286. \align center
  7287. \begin_inset Float figure
  7288. placement tb
  7289. wide false
  7290. sideways false
  7291. status collapsed
  7292. \begin_layout Plain Layout
  7293. \align center
  7294. \begin_inset Graphics
  7295. filename graphics/frma-pax-bx/batchsize_samples.pdf
  7296. lyxscale 50
  7297. height 35theight%
  7298. groupId frmatools-subfig
  7299. \end_inset
  7300. \end_layout
  7301. \begin_layout Plain Layout
  7302. \begin_inset Caption Standard
  7303. \begin_layout Plain Layout
  7304. \begin_inset CommandInset label
  7305. LatexCommand label
  7306. name "fig:batch-size-samples"
  7307. \end_inset
  7308. \series bold
  7309. Number of samples usable in fRMA probe weight learning as a function of
  7310. batch size.
  7311. \end_layout
  7312. \end_inset
  7313. \end_layout
  7314. \end_inset
  7315. \end_layout
  7316. \begin_layout Plain Layout
  7317. \begin_inset Caption Standard
  7318. \begin_layout Plain Layout
  7319. \series bold
  7320. \begin_inset CommandInset label
  7321. LatexCommand label
  7322. name "fig:frmatools-batch-size"
  7323. \end_inset
  7324. Effect of batch size selection on number of batches and number of samples
  7325. included in fRMA probe weight learning.
  7326. \series default
  7327. For batch sizes ranging from 3 to 15, the number of batches (a) and samples
  7328. (b) included in probe weight training were plotted for biopsy (BX) and
  7329. blood (PAX) samples.
  7330. The selected batch size, 5, is marked with a dotted vertical line.
  7331. \end_layout
  7332. \end_inset
  7333. \end_layout
  7334. \end_inset
  7335. \end_layout
  7336. \begin_layout Standard
  7337. In order to enable use of fRMA to normalize hthgu133pluspm, a custom set
  7338. of fRMA vectors was created.
  7339. First, an appropriate batch size was chosen by looking at the number of
  7340. batches and number of samples included as a function of batch size (Figure
  7341. \begin_inset CommandInset ref
  7342. LatexCommand ref
  7343. reference "fig:frmatools-batch-size"
  7344. plural "false"
  7345. caps "false"
  7346. noprefix "false"
  7347. \end_inset
  7348. ).
  7349. For a given batch size, all batches with fewer samples that the chosen
  7350. size must be ignored during training, while larger batches must be randomly
  7351. downsampled to the chosen size.
  7352. Hence, the number of samples included for a given batch size equals the
  7353. batch size times the number of batches with at least that many samples.
  7354. From Figure
  7355. \begin_inset CommandInset ref
  7356. LatexCommand ref
  7357. reference "fig:batch-size-samples"
  7358. plural "false"
  7359. caps "false"
  7360. noprefix "false"
  7361. \end_inset
  7362. , it is apparent that that a batch size of 8 maximizes the number of samples
  7363. included in training.
  7364. Increasing the batch size beyond this causes too many smaller batches to
  7365. be excluded, reducing the total number of samples for both tissue types.
  7366. However, a batch size of 8 is not necessarily optimal.
  7367. The article introducing frmaTools concluded that it was highly advantageous
  7368. to use a smaller batch size in order to include more batches, even at the
  7369. expense of including fewer total samples in training
  7370. \begin_inset CommandInset citation
  7371. LatexCommand cite
  7372. key "McCall2011"
  7373. literal "false"
  7374. \end_inset
  7375. .
  7376. To strike an appropriate balance between more batches and more samples,
  7377. a batch size of 5 was chosen.
  7378. For both blood and biopsy samples, this increased the number of batches
  7379. included by 10, with only a modest reduction in the number of samples compared
  7380. to a batch size of 8.
  7381. With a batch size of 5, 26 batches of biopsy samples and 46 batches of
  7382. blood samples were available.
  7383. \end_layout
  7384. \begin_layout Standard
  7385. \begin_inset Float figure
  7386. wide false
  7387. sideways false
  7388. status collapsed
  7389. \begin_layout Plain Layout
  7390. \begin_inset Float figure
  7391. wide false
  7392. sideways false
  7393. status open
  7394. \begin_layout Plain Layout
  7395. \align center
  7396. \begin_inset Graphics
  7397. filename graphics/frma-pax-bx/M-BX-violin.pdf
  7398. lyxscale 40
  7399. width 45col%
  7400. groupId m-violin
  7401. \end_inset
  7402. \end_layout
  7403. \begin_layout Plain Layout
  7404. \begin_inset Caption Standard
  7405. \begin_layout Plain Layout
  7406. \begin_inset CommandInset label
  7407. LatexCommand label
  7408. name "fig:m-bx-violin"
  7409. \end_inset
  7410. \series bold
  7411. Violin plot of inter-normalization log ratios for biopsy samples.
  7412. \end_layout
  7413. \end_inset
  7414. \end_layout
  7415. \end_inset
  7416. \begin_inset space \hfill{}
  7417. \end_inset
  7418. \begin_inset Float figure
  7419. wide false
  7420. sideways false
  7421. status collapsed
  7422. \begin_layout Plain Layout
  7423. \align center
  7424. \begin_inset Graphics
  7425. filename graphics/frma-pax-bx/M-PAX-violin.pdf
  7426. lyxscale 40
  7427. width 45col%
  7428. groupId m-violin
  7429. \end_inset
  7430. \end_layout
  7431. \begin_layout Plain Layout
  7432. \begin_inset Caption Standard
  7433. \begin_layout Plain Layout
  7434. \begin_inset CommandInset label
  7435. LatexCommand label
  7436. name "fig:m-pax-violin"
  7437. \end_inset
  7438. \series bold
  7439. Violin plot of inter-normalization log ratios for blood samples.
  7440. \end_layout
  7441. \end_inset
  7442. \end_layout
  7443. \end_inset
  7444. \end_layout
  7445. \begin_layout Plain Layout
  7446. \begin_inset Caption Standard
  7447. \begin_layout Plain Layout
  7448. \begin_inset CommandInset label
  7449. LatexCommand label
  7450. name "fig:frma-violin"
  7451. \end_inset
  7452. \series bold
  7453. Violin plot of log ratios between normalizations for 20 biopsy samples.
  7454. \series default
  7455. Each of 20 randomly selected samples was normalized with RMA and with 5
  7456. different sets of fRMA vectors.
  7457. The distribution of log ratios between normalized expression values, aggregated
  7458. across all 20 arrays, was plotted for each pair of normalizations.
  7459. \end_layout
  7460. \end_inset
  7461. \end_layout
  7462. \end_inset
  7463. \end_layout
  7464. \begin_layout Standard
  7465. Since fRMA training requires equal-size batches, larger batches are downsampled
  7466. randomly.
  7467. This introduces a nondeterministic step in the generation of normalization
  7468. vectors.
  7469. To show that this randomness does not substantially change the outcome,
  7470. the random downsampling and subsequent vector learning was repeated 5 times,
  7471. with a different random seed each time.
  7472. 20 samples were selected at random as a test set and normalized with each
  7473. of the 5 sets of fRMA normalization vectors as well as ordinary RMA, and
  7474. the normalized expression values were compared across normalizations.
  7475. Figure
  7476. \begin_inset CommandInset ref
  7477. LatexCommand ref
  7478. reference "fig:m-bx-violin"
  7479. plural "false"
  7480. caps "false"
  7481. noprefix "false"
  7482. \end_inset
  7483. shows a summary of these comparisons for biopsy samples.
  7484. Comparing RMA to each of the 5 fRMA normalizations, the distribution of
  7485. log ratios is somewhat wide, indicating that the normalizations disagree
  7486. on the expression values of a fair number of probe sets.
  7487. In contrast, comparisons of fRMA against fRMA, the vast mojority of probe
  7488. sets have very small log ratios, indicating a very high agreement between
  7489. the normalized values generated by the two normalizations.
  7490. This shows that the fRMA normalization's behavior is not very sensitive
  7491. to the random downsampling of larger batches during training.
  7492. \end_layout
  7493. \begin_layout Standard
  7494. \begin_inset Float figure
  7495. wide false
  7496. sideways false
  7497. status open
  7498. \begin_layout Plain Layout
  7499. \align center
  7500. \begin_inset Float figure
  7501. wide false
  7502. sideways false
  7503. status collapsed
  7504. \begin_layout Plain Layout
  7505. \align center
  7506. \begin_inset Graphics
  7507. filename graphics/frma-pax-bx/MA-BX-RMA.fRMA-RASTER.png
  7508. lyxscale 10
  7509. width 45col%
  7510. groupId ma-frma
  7511. \end_inset
  7512. \end_layout
  7513. \begin_layout Plain Layout
  7514. \begin_inset Caption Standard
  7515. \begin_layout Plain Layout
  7516. \begin_inset CommandInset label
  7517. LatexCommand label
  7518. name "fig:ma-bx-rma-frma"
  7519. \end_inset
  7520. RMA vs.
  7521. fRMA for biopsy samples.
  7522. \end_layout
  7523. \end_inset
  7524. \end_layout
  7525. \end_inset
  7526. \begin_inset space \hfill{}
  7527. \end_inset
  7528. \begin_inset Float figure
  7529. wide false
  7530. sideways false
  7531. status collapsed
  7532. \begin_layout Plain Layout
  7533. \align center
  7534. \begin_inset Graphics
  7535. filename graphics/frma-pax-bx/MA-BX-fRMA.fRMA-RASTER.png
  7536. lyxscale 10
  7537. width 45col%
  7538. groupId ma-frma
  7539. \end_inset
  7540. \end_layout
  7541. \begin_layout Plain Layout
  7542. \begin_inset Caption Standard
  7543. \begin_layout Plain Layout
  7544. \begin_inset CommandInset label
  7545. LatexCommand label
  7546. name "fig:ma-bx-frma-frma"
  7547. \end_inset
  7548. fRMA vs fRMA for biopsy samples.
  7549. \end_layout
  7550. \end_inset
  7551. \end_layout
  7552. \end_inset
  7553. \end_layout
  7554. \begin_layout Plain Layout
  7555. \align center
  7556. \begin_inset Float figure
  7557. wide false
  7558. sideways false
  7559. status collapsed
  7560. \begin_layout Plain Layout
  7561. \align center
  7562. \begin_inset Graphics
  7563. filename graphics/frma-pax-bx/MA-PAX-RMA.fRMA-RASTER.png
  7564. lyxscale 10
  7565. width 45col%
  7566. groupId ma-frma
  7567. \end_inset
  7568. \end_layout
  7569. \begin_layout Plain Layout
  7570. \begin_inset Caption Standard
  7571. \begin_layout Plain Layout
  7572. \begin_inset CommandInset label
  7573. LatexCommand label
  7574. name "fig:MA-PAX-rma-frma"
  7575. \end_inset
  7576. RMA vs.
  7577. fRMA for blood samples.
  7578. \end_layout
  7579. \end_inset
  7580. \end_layout
  7581. \end_inset
  7582. \begin_inset space \hfill{}
  7583. \end_inset
  7584. \begin_inset Float figure
  7585. wide false
  7586. sideways false
  7587. status collapsed
  7588. \begin_layout Plain Layout
  7589. \align center
  7590. \begin_inset Graphics
  7591. filename graphics/frma-pax-bx/MA-PAX-fRMA.fRMA-RASTER.png
  7592. lyxscale 10
  7593. width 45col%
  7594. groupId ma-frma
  7595. \end_inset
  7596. \end_layout
  7597. \begin_layout Plain Layout
  7598. \begin_inset Caption Standard
  7599. \begin_layout Plain Layout
  7600. \begin_inset CommandInset label
  7601. LatexCommand label
  7602. name "fig:MA-PAX-frma-frma"
  7603. \end_inset
  7604. fRMA vs fRMA for blood samples.
  7605. \end_layout
  7606. \end_inset
  7607. \end_layout
  7608. \end_inset
  7609. \end_layout
  7610. \begin_layout Plain Layout
  7611. \begin_inset Caption Standard
  7612. \begin_layout Plain Layout
  7613. \series bold
  7614. \begin_inset CommandInset label
  7615. LatexCommand label
  7616. name "fig:Representative-MA-plots"
  7617. \end_inset
  7618. Representative MA plots comparing RMA and custom fRMA normalizations.
  7619. \series default
  7620. For each plot, 20 samples were normalized using 2 different normalizations,
  7621. and then averages (A) and log ratios (M) were plotted between the two different
  7622. normalizations for every probe.
  7623. For the
  7624. \begin_inset Quotes eld
  7625. \end_inset
  7626. fRMA vs fRMA
  7627. \begin_inset Quotes erd
  7628. \end_inset
  7629. plots (b & d), two different fRMA normalizations using vectors from two
  7630. independent batch samplings were compared.
  7631. Density of points is represented by blue shading, and individual outlier
  7632. points are plotted.
  7633. \end_layout
  7634. \end_inset
  7635. \end_layout
  7636. \end_inset
  7637. \end_layout
  7638. \begin_layout Standard
  7639. Figure
  7640. \begin_inset CommandInset ref
  7641. LatexCommand ref
  7642. reference "fig:ma-bx-rma-frma"
  7643. plural "false"
  7644. caps "false"
  7645. noprefix "false"
  7646. \end_inset
  7647. shows an MA plot of the RMA-normalized values against the fRMA-normalized
  7648. values for the same probe sets and arrays, corresponding to the first row
  7649. of Figure
  7650. \begin_inset CommandInset ref
  7651. LatexCommand ref
  7652. reference "fig:m-bx-violin"
  7653. plural "false"
  7654. caps "false"
  7655. noprefix "false"
  7656. \end_inset
  7657. .
  7658. This MA plot shows that not only is there a wide distribution of M-values,
  7659. but the trend of M-values is dependent on the average normalized intensity.
  7660. This is expected, since the overall trend represents the differences in
  7661. the quantile normalization step.
  7662. When running RMA, only the quantiles for these specific 20 arrays are used,
  7663. while for fRMA the quantile distribution is taking from all arrays used
  7664. in training.
  7665. Figure
  7666. \begin_inset CommandInset ref
  7667. LatexCommand ref
  7668. reference "fig:ma-bx-frma-frma"
  7669. plural "false"
  7670. caps "false"
  7671. noprefix "false"
  7672. \end_inset
  7673. shows a similar MA plot comparing 2 different fRMA normalizations, correspondin
  7674. g to the 6th row of Figure
  7675. \begin_inset CommandInset ref
  7676. LatexCommand ref
  7677. reference "fig:m-bx-violin"
  7678. plural "false"
  7679. caps "false"
  7680. noprefix "false"
  7681. \end_inset
  7682. .
  7683. The MA plot is very tightly centered around zero with no visible trend.
  7684. Figures
  7685. \begin_inset CommandInset ref
  7686. LatexCommand ref
  7687. reference "fig:m-pax-violin"
  7688. plural "false"
  7689. caps "false"
  7690. noprefix "false"
  7691. \end_inset
  7692. ,
  7693. \begin_inset CommandInset ref
  7694. LatexCommand ref
  7695. reference "fig:MA-PAX-rma-frma"
  7696. plural "false"
  7697. caps "false"
  7698. noprefix "false"
  7699. \end_inset
  7700. , and
  7701. \begin_inset CommandInset ref
  7702. LatexCommand ref
  7703. reference "fig:ma-bx-frma-frma"
  7704. plural "false"
  7705. caps "false"
  7706. noprefix "false"
  7707. \end_inset
  7708. show exactly the same information for the blood samples, once again comparing
  7709. the normalized expression values between normalizations for all probe sets
  7710. across 20 randomly selected test arrays.
  7711. Once again, there is a wider distribution of log ratios between RMA-normalized
  7712. values and fRMA-normalized, and a much tighter distribution when comparing
  7713. different fRMA normalizations to each other, indicating that the fRMA training
  7714. process is robust to random batch downsampling for the blood samples as
  7715. well.
  7716. \end_layout
  7717. \begin_layout Subsection
  7718. SVA, voom, and array weights improve model fit for methylation array data
  7719. \end_layout
  7720. \begin_layout Standard
  7721. \begin_inset ERT
  7722. status open
  7723. \begin_layout Plain Layout
  7724. \backslash
  7725. afterpage{
  7726. \end_layout
  7727. \begin_layout Plain Layout
  7728. \backslash
  7729. begin{landscape}
  7730. \end_layout
  7731. \end_inset
  7732. \end_layout
  7733. \begin_layout Standard
  7734. \begin_inset Float figure
  7735. wide false
  7736. sideways false
  7737. status open
  7738. \begin_layout Plain Layout
  7739. \begin_inset Flex TODO Note (inline)
  7740. status open
  7741. \begin_layout Plain Layout
  7742. Fix axis labels:
  7743. \begin_inset Quotes eld
  7744. \end_inset
  7745. log2 M-value
  7746. \begin_inset Quotes erd
  7747. \end_inset
  7748. is redundant because M-values are already log scale
  7749. \end_layout
  7750. \end_inset
  7751. \end_layout
  7752. \begin_layout Plain Layout
  7753. \begin_inset Float figure
  7754. wide false
  7755. sideways false
  7756. status collapsed
  7757. \begin_layout Plain Layout
  7758. \align center
  7759. \begin_inset Graphics
  7760. filename graphics/methylvoom/unadj.dupcor/meanvar-trends-PAGE1-CROP-RASTER.png
  7761. lyxscale 15
  7762. width 30col%
  7763. groupId voomaw-subfig
  7764. \end_inset
  7765. \end_layout
  7766. \begin_layout Plain Layout
  7767. \begin_inset Caption Standard
  7768. \begin_layout Plain Layout
  7769. \begin_inset CommandInset label
  7770. LatexCommand label
  7771. name "fig:meanvar-basic"
  7772. \end_inset
  7773. Mean-variance trend for analysis A.
  7774. \end_layout
  7775. \end_inset
  7776. \end_layout
  7777. \end_inset
  7778. \begin_inset space \hfill{}
  7779. \end_inset
  7780. \begin_inset Float figure
  7781. wide false
  7782. sideways false
  7783. status collapsed
  7784. \begin_layout Plain Layout
  7785. \align center
  7786. \begin_inset Graphics
  7787. filename graphics/methylvoom/unadj.dupcor.sva.aw/meanvar-trends-PAGE1-CROP-RASTER.png
  7788. lyxscale 15
  7789. width 30col%
  7790. groupId voomaw-subfig
  7791. \end_inset
  7792. \end_layout
  7793. \begin_layout Plain Layout
  7794. \begin_inset Caption Standard
  7795. \begin_layout Plain Layout
  7796. \begin_inset CommandInset label
  7797. LatexCommand label
  7798. name "fig:meanvar-sva-aw"
  7799. \end_inset
  7800. Mean-variance trend for analysis B.
  7801. \end_layout
  7802. \end_inset
  7803. \end_layout
  7804. \end_inset
  7805. \begin_inset space \hfill{}
  7806. \end_inset
  7807. \begin_inset Float figure
  7808. wide false
  7809. sideways false
  7810. status collapsed
  7811. \begin_layout Plain Layout
  7812. \align center
  7813. \begin_inset Graphics
  7814. filename graphics/methylvoom/unadj.dupcor.sva.voomaw/meanvar-trends-PAGE2-CROP-RASTER.png
  7815. lyxscale 15
  7816. width 30col%
  7817. groupId voomaw-subfig
  7818. \end_inset
  7819. \end_layout
  7820. \begin_layout Plain Layout
  7821. \begin_inset Caption Standard
  7822. \begin_layout Plain Layout
  7823. \begin_inset CommandInset label
  7824. LatexCommand label
  7825. name "fig:meanvar-sva-voomaw"
  7826. \end_inset
  7827. Mean-variance trend after voom modeling in analysis C.
  7828. \end_layout
  7829. \end_inset
  7830. \end_layout
  7831. \end_inset
  7832. \end_layout
  7833. \begin_layout Plain Layout
  7834. \begin_inset Caption Standard
  7835. \begin_layout Plain Layout
  7836. \series bold
  7837. Mean-variance trend modeling in methylation array data.
  7838. \series default
  7839. The estimated log2(standard deviation) for each probe is plotted against
  7840. the probe's average M-value across all samples as a black point, with some
  7841. transparency to make overplotting more visible, since there are about 450,000
  7842. points.
  7843. Density of points is also indicated by the dark blue contour lines.
  7844. The prior variance trend estimated by eBayes is shown in light blue, while
  7845. the lowess trend of the points is shown in red.
  7846. \end_layout
  7847. \end_inset
  7848. \end_layout
  7849. \end_inset
  7850. \end_layout
  7851. \begin_layout Standard
  7852. \begin_inset ERT
  7853. status open
  7854. \begin_layout Plain Layout
  7855. \backslash
  7856. end{landscape}
  7857. \end_layout
  7858. \begin_layout Plain Layout
  7859. }
  7860. \end_layout
  7861. \end_inset
  7862. \end_layout
  7863. \begin_layout Standard
  7864. Figure
  7865. \begin_inset CommandInset ref
  7866. LatexCommand ref
  7867. reference "fig:meanvar-basic"
  7868. plural "false"
  7869. caps "false"
  7870. noprefix "false"
  7871. \end_inset
  7872. shows the relationship between the mean M-value and the standard deviation
  7873. calculated for each probe in the methylation array data set.
  7874. A few features of the data are apparent.
  7875. First, the data are very strongly bimodal, with peaks in the density around
  7876. M-values of +4 and -4.
  7877. These modes correspond to methylation sites that are nearly 100% methylated
  7878. and nearly 100% unmethylated, respectively.
  7879. The strong bomodality indicates that a majority of probes interrogate sites
  7880. that fall into one of these two categories.
  7881. The points in between these modes represent sites that are either partially
  7882. methylated in many samples, or are fully methylated in some samples and
  7883. fully unmethylated in other samples, or some combination.
  7884. The next visible feature of the data is the W-shaped variance trend.
  7885. The upticks in the variance trend on either side are expected, based on
  7886. the sigmoid transformation exaggerating small differences at extreme M-values
  7887. (Figure
  7888. \begin_inset CommandInset ref
  7889. LatexCommand ref
  7890. reference "fig:Sigmoid-beta-m-mapping"
  7891. plural "false"
  7892. caps "false"
  7893. noprefix "false"
  7894. \end_inset
  7895. ).
  7896. However, the uptick in the center is interesting: it indicates that sites
  7897. that are not constitutitively methylated or unmethylated have a higher
  7898. variance.
  7899. This could be a genuine biological effect, or it could be spurious noise
  7900. that is only observable at sites with varying methylation.
  7901. \end_layout
  7902. \begin_layout Standard
  7903. In Figure
  7904. \begin_inset CommandInset ref
  7905. LatexCommand ref
  7906. reference "fig:meanvar-sva-aw"
  7907. plural "false"
  7908. caps "false"
  7909. noprefix "false"
  7910. \end_inset
  7911. , we see the mean-variance trend for the same methylation array data, this
  7912. time with surrogate variables and sample quality weights estimated from
  7913. the data and included in the model.
  7914. As expected, the overall average variance is smaller, since the surrogate
  7915. variables account for some of the variance.
  7916. In addition, the uptick in variance in the middle of the M-value range
  7917. has disappeared, turning the W shape into a wide U shape.
  7918. This indicates that the excess variance in the probes with intermediate
  7919. M-values was explained by systematic variations not correlated with known
  7920. covariates, and these variations were modeled by the surrogate variables.
  7921. The result is a nearly flat variance trend for the entire intermediate
  7922. M-value range from about -3 to +3.
  7923. Note that this corresponds closely to the range within which the M-value
  7924. transformation shown in Figure
  7925. \begin_inset CommandInset ref
  7926. LatexCommand ref
  7927. reference "fig:Sigmoid-beta-m-mapping"
  7928. plural "false"
  7929. caps "false"
  7930. noprefix "false"
  7931. \end_inset
  7932. is nearly linear.
  7933. In contrast, the excess variance at the extremes (greater than +3 and less
  7934. than -3) was not
  7935. \begin_inset Quotes eld
  7936. \end_inset
  7937. absorbed
  7938. \begin_inset Quotes erd
  7939. \end_inset
  7940. by the surrogate variables and remains in the plot, indicating that this
  7941. variation has no systematic component: probes with extreme M-values are
  7942. uniformly more variable across all samples, as expected.
  7943. \end_layout
  7944. \begin_layout Standard
  7945. Figure
  7946. \begin_inset CommandInset ref
  7947. LatexCommand ref
  7948. reference "fig:meanvar-sva-voomaw"
  7949. plural "false"
  7950. caps "false"
  7951. noprefix "false"
  7952. \end_inset
  7953. shows the mean-variance trend after fitting the model with the observation
  7954. weights assigned by voom based on the mean-variance trend shown in Figure
  7955. \begin_inset CommandInset ref
  7956. LatexCommand ref
  7957. reference "fig:meanvar-sva-aw"
  7958. plural "false"
  7959. caps "false"
  7960. noprefix "false"
  7961. \end_inset
  7962. .
  7963. As expected, the weights exactly counteract the trend in the data, resulting
  7964. in a nearly flat trend centered vertically at 1 (i.e.
  7965. 0 on the log scale).
  7966. This shows that the observations with extreme M-values have been appropriately
  7967. down-weighted to account for the fact that the noise in those observations
  7968. has been amplified by the non-linear M-value transformation.
  7969. In turn, this gives relatively more weight to observervations in the middle
  7970. region, which are more likely to correspond to probes measuring interesting
  7971. biology (not constitutively methylated or unmethylated).
  7972. \end_layout
  7973. \begin_layout Standard
  7974. \begin_inset Float table
  7975. wide false
  7976. sideways false
  7977. status open
  7978. \begin_layout Plain Layout
  7979. \align center
  7980. \begin_inset Tabular
  7981. <lyxtabular version="3" rows="5" columns="3">
  7982. <features tabularvalignment="middle">
  7983. <column alignment="center" valignment="top">
  7984. <column alignment="center" valignment="top">
  7985. <column alignment="center" valignment="top">
  7986. <row>
  7987. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  7988. \begin_inset Text
  7989. \begin_layout Plain Layout
  7990. Covariate
  7991. \end_layout
  7992. \end_inset
  7993. </cell>
  7994. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  7995. \begin_inset Text
  7996. \begin_layout Plain Layout
  7997. Test used
  7998. \end_layout
  7999. \end_inset
  8000. </cell>
  8001. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  8002. \begin_inset Text
  8003. \begin_layout Plain Layout
  8004. p-value
  8005. \end_layout
  8006. \end_inset
  8007. </cell>
  8008. </row>
  8009. <row>
  8010. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8011. \begin_inset Text
  8012. \begin_layout Plain Layout
  8013. Transplant Status
  8014. \end_layout
  8015. \end_inset
  8016. </cell>
  8017. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8018. \begin_inset Text
  8019. \begin_layout Plain Layout
  8020. F-test
  8021. \end_layout
  8022. \end_inset
  8023. </cell>
  8024. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8025. \begin_inset Text
  8026. \begin_layout Plain Layout
  8027. 0.404
  8028. \end_layout
  8029. \end_inset
  8030. </cell>
  8031. </row>
  8032. <row>
  8033. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8034. \begin_inset Text
  8035. \begin_layout Plain Layout
  8036. Diabetes Diagnosis
  8037. \end_layout
  8038. \end_inset
  8039. </cell>
  8040. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8041. \begin_inset Text
  8042. \begin_layout Plain Layout
  8043. \emph on
  8044. t
  8045. \emph default
  8046. -test
  8047. \end_layout
  8048. \end_inset
  8049. </cell>
  8050. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8051. \begin_inset Text
  8052. \begin_layout Plain Layout
  8053. 0.00106
  8054. \end_layout
  8055. \end_inset
  8056. </cell>
  8057. </row>
  8058. <row>
  8059. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8060. \begin_inset Text
  8061. \begin_layout Plain Layout
  8062. Sex
  8063. \end_layout
  8064. \end_inset
  8065. </cell>
  8066. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8067. \begin_inset Text
  8068. \begin_layout Plain Layout
  8069. \emph on
  8070. t
  8071. \emph default
  8072. -test
  8073. \end_layout
  8074. \end_inset
  8075. </cell>
  8076. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8077. \begin_inset Text
  8078. \begin_layout Plain Layout
  8079. 0.148
  8080. \end_layout
  8081. \end_inset
  8082. </cell>
  8083. </row>
  8084. <row>
  8085. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8086. \begin_inset Text
  8087. \begin_layout Plain Layout
  8088. Age
  8089. \end_layout
  8090. \end_inset
  8091. </cell>
  8092. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8093. \begin_inset Text
  8094. \begin_layout Plain Layout
  8095. linear regression
  8096. \end_layout
  8097. \end_inset
  8098. </cell>
  8099. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  8100. \begin_inset Text
  8101. \begin_layout Plain Layout
  8102. 0.212
  8103. \end_layout
  8104. \end_inset
  8105. </cell>
  8106. </row>
  8107. </lyxtabular>
  8108. \end_inset
  8109. \end_layout
  8110. \begin_layout Plain Layout
  8111. \begin_inset Caption Standard
  8112. \begin_layout Plain Layout
  8113. \series bold
  8114. \begin_inset CommandInset label
  8115. LatexCommand label
  8116. name "tab:weight-covariate-tests"
  8117. \end_inset
  8118. Association of sample weights with clinical covariates in methylation array
  8119. data.
  8120. \series default
  8121. Computed sample quality log weights were tested for significant association
  8122. with each of the variables in the model (1st column).
  8123. An appropriate test was selected for each variable based on whether the
  8124. variable had 2 categories (
  8125. \emph on
  8126. t
  8127. \emph default
  8128. -test), had more than 2 categories (F-test), or was numeric (linear regression).
  8129. The test selected is shown in the 2nd column.
  8130. P-values for association with the log weights are shown in the 3rd column.
  8131. No multiple testing adjustment was performed for these p-values.
  8132. \end_layout
  8133. \end_inset
  8134. \end_layout
  8135. \end_inset
  8136. \end_layout
  8137. \begin_layout Standard
  8138. \begin_inset Float figure
  8139. wide false
  8140. sideways false
  8141. status open
  8142. \begin_layout Plain Layout
  8143. \begin_inset Flex TODO Note (inline)
  8144. status open
  8145. \begin_layout Plain Layout
  8146. Redo the sample weight boxplot with notches, and remove fill colors
  8147. \end_layout
  8148. \end_inset
  8149. \end_layout
  8150. \begin_layout Plain Layout
  8151. \align center
  8152. \begin_inset Graphics
  8153. filename graphics/methylvoom/unadj.dupcor.sva.voomaw/sample-weights-PAGE3-CROP.pdf
  8154. lyxscale 50
  8155. width 60col%
  8156. groupId colwidth
  8157. \end_inset
  8158. \end_layout
  8159. \begin_layout Plain Layout
  8160. \begin_inset Caption Standard
  8161. \begin_layout Plain Layout
  8162. \begin_inset CommandInset label
  8163. LatexCommand label
  8164. name "fig:diabetes-sample-weights"
  8165. \end_inset
  8166. \series bold
  8167. Box-and-whiskers plot of sample quality weights grouped by diabetes diagnosis.
  8168. \series default
  8169. Samples were grouped based on diabetes diagnosis, and the distribution of
  8170. sample quality weights for each diagnosis was plotted as a box-and-whiskers
  8171. plot
  8172. \begin_inset CommandInset citation
  8173. LatexCommand cite
  8174. key "McGill1978"
  8175. literal "false"
  8176. \end_inset
  8177. .
  8178. \end_layout
  8179. \end_inset
  8180. \end_layout
  8181. \begin_layout Plain Layout
  8182. \end_layout
  8183. \end_inset
  8184. \end_layout
  8185. \begin_layout Standard
  8186. To determine whether any of the known experimental factors had an impact
  8187. on data quality, the sample quality weights estimated from the data were
  8188. tested for association with each of the experimental factors (Table
  8189. \begin_inset CommandInset ref
  8190. LatexCommand ref
  8191. reference "tab:weight-covariate-tests"
  8192. plural "false"
  8193. caps "false"
  8194. noprefix "false"
  8195. \end_inset
  8196. ).
  8197. Diabetes diagnosis was found to have a potentially significant association
  8198. with the sample weights, with a t-test p-value of
  8199. \begin_inset Formula $1.06\times10^{-3}$
  8200. \end_inset
  8201. .
  8202. Figure
  8203. \begin_inset CommandInset ref
  8204. LatexCommand ref
  8205. reference "fig:diabetes-sample-weights"
  8206. plural "false"
  8207. caps "false"
  8208. noprefix "false"
  8209. \end_inset
  8210. shows the distribution of sample weights grouped by diabetes diagnosis.
  8211. The samples from patients with Type 2 diabetes were assigned significantly
  8212. lower weights than those from patients with Type 1 diabetes.
  8213. This indicates that the type 2 diabetes samples had an overall higher variance
  8214. on average across all probes.
  8215. \end_layout
  8216. \begin_layout Standard
  8217. \begin_inset Float table
  8218. wide false
  8219. sideways false
  8220. status open
  8221. \begin_layout Plain Layout
  8222. \align center
  8223. \begin_inset Flex TODO Note (inline)
  8224. status open
  8225. \begin_layout Plain Layout
  8226. Consider transposing these tables
  8227. \end_layout
  8228. \end_inset
  8229. \end_layout
  8230. \begin_layout Plain Layout
  8231. \begin_inset Float table
  8232. wide false
  8233. sideways false
  8234. status open
  8235. \begin_layout Plain Layout
  8236. \align center
  8237. \begin_inset Tabular
  8238. <lyxtabular version="3" rows="5" columns="4">
  8239. <features tabularvalignment="middle">
  8240. <column alignment="center" valignment="top">
  8241. <column alignment="center" valignment="top">
  8242. <column alignment="center" valignment="top">
  8243. <column alignment="center" valignment="top">
  8244. <row>
  8245. <cell alignment="center" valignment="top" usebox="none">
  8246. \begin_inset Text
  8247. \begin_layout Plain Layout
  8248. \end_layout
  8249. \end_inset
  8250. </cell>
  8251. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8252. \begin_inset Text
  8253. \begin_layout Plain Layout
  8254. Analysis
  8255. \end_layout
  8256. \end_inset
  8257. </cell>
  8258. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8259. \begin_inset Text
  8260. \begin_layout Plain Layout
  8261. \end_layout
  8262. \end_inset
  8263. </cell>
  8264. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8265. \begin_inset Text
  8266. \begin_layout Plain Layout
  8267. \end_layout
  8268. \end_inset
  8269. </cell>
  8270. </row>
  8271. <row>
  8272. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8273. \begin_inset Text
  8274. \begin_layout Plain Layout
  8275. Contrast
  8276. \end_layout
  8277. \end_inset
  8278. </cell>
  8279. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8280. \begin_inset Text
  8281. \begin_layout Plain Layout
  8282. A
  8283. \end_layout
  8284. \end_inset
  8285. </cell>
  8286. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8287. \begin_inset Text
  8288. \begin_layout Plain Layout
  8289. B
  8290. \end_layout
  8291. \end_inset
  8292. </cell>
  8293. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  8294. \begin_inset Text
  8295. \begin_layout Plain Layout
  8296. C
  8297. \end_layout
  8298. \end_inset
  8299. </cell>
  8300. </row>
  8301. <row>
  8302. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8303. \begin_inset Text
  8304. \begin_layout Plain Layout
  8305. TX vs AR
  8306. \end_layout
  8307. \end_inset
  8308. </cell>
  8309. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8310. \begin_inset Text
  8311. \begin_layout Plain Layout
  8312. 0
  8313. \end_layout
  8314. \end_inset
  8315. </cell>
  8316. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8317. \begin_inset Text
  8318. \begin_layout Plain Layout
  8319. 25
  8320. \end_layout
  8321. \end_inset
  8322. </cell>
  8323. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8324. \begin_inset Text
  8325. \begin_layout Plain Layout
  8326. 22
  8327. \end_layout
  8328. \end_inset
  8329. </cell>
  8330. </row>
  8331. <row>
  8332. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8333. \begin_inset Text
  8334. \begin_layout Plain Layout
  8335. TX vs ADNR
  8336. \end_layout
  8337. \end_inset
  8338. </cell>
  8339. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8340. \begin_inset Text
  8341. \begin_layout Plain Layout
  8342. 7
  8343. \end_layout
  8344. \end_inset
  8345. </cell>
  8346. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8347. \begin_inset Text
  8348. \begin_layout Plain Layout
  8349. 338
  8350. \end_layout
  8351. \end_inset
  8352. </cell>
  8353. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8354. \begin_inset Text
  8355. \begin_layout Plain Layout
  8356. 369
  8357. \end_layout
  8358. \end_inset
  8359. </cell>
  8360. </row>
  8361. <row>
  8362. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8363. \begin_inset Text
  8364. \begin_layout Plain Layout
  8365. TX vs CAN
  8366. \end_layout
  8367. \end_inset
  8368. </cell>
  8369. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8370. \begin_inset Text
  8371. \begin_layout Plain Layout
  8372. 0
  8373. \end_layout
  8374. \end_inset
  8375. </cell>
  8376. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8377. \begin_inset Text
  8378. \begin_layout Plain Layout
  8379. 231
  8380. \end_layout
  8381. \end_inset
  8382. </cell>
  8383. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  8384. \begin_inset Text
  8385. \begin_layout Plain Layout
  8386. 278
  8387. \end_layout
  8388. \end_inset
  8389. </cell>
  8390. </row>
  8391. </lyxtabular>
  8392. \end_inset
  8393. \end_layout
  8394. \begin_layout Plain Layout
  8395. \begin_inset Caption Standard
  8396. \begin_layout Plain Layout
  8397. \begin_inset CommandInset label
  8398. LatexCommand label
  8399. name "tab:methyl-num-signif"
  8400. \end_inset
  8401. Number of probes significant at 10% FDR.
  8402. \end_layout
  8403. \end_inset
  8404. \end_layout
  8405. \end_inset
  8406. \begin_inset space \hfill{}
  8407. \end_inset
  8408. \begin_inset Float table
  8409. wide false
  8410. sideways false
  8411. status open
  8412. \begin_layout Plain Layout
  8413. \align center
  8414. \begin_inset Tabular
  8415. <lyxtabular version="3" rows="5" columns="4">
  8416. <features tabularvalignment="middle">
  8417. <column alignment="center" valignment="top">
  8418. <column alignment="center" valignment="top">
  8419. <column alignment="center" valignment="top">
  8420. <column alignment="center" valignment="top">
  8421. <row>
  8422. <cell alignment="center" valignment="top" usebox="none">
  8423. \begin_inset Text
  8424. \begin_layout Plain Layout
  8425. \end_layout
  8426. \end_inset
  8427. </cell>
  8428. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8429. \begin_inset Text
  8430. \begin_layout Plain Layout
  8431. Analysis
  8432. \end_layout
  8433. \end_inset
  8434. </cell>
  8435. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8436. \begin_inset Text
  8437. \begin_layout Plain Layout
  8438. \end_layout
  8439. \end_inset
  8440. </cell>
  8441. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8442. \begin_inset Text
  8443. \begin_layout Plain Layout
  8444. \end_layout
  8445. \end_inset
  8446. </cell>
  8447. </row>
  8448. <row>
  8449. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8450. \begin_inset Text
  8451. \begin_layout Plain Layout
  8452. Contrast
  8453. \end_layout
  8454. \end_inset
  8455. </cell>
  8456. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8457. \begin_inset Text
  8458. \begin_layout Plain Layout
  8459. A
  8460. \end_layout
  8461. \end_inset
  8462. </cell>
  8463. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8464. \begin_inset Text
  8465. \begin_layout Plain Layout
  8466. B
  8467. \end_layout
  8468. \end_inset
  8469. </cell>
  8470. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  8471. \begin_inset Text
  8472. \begin_layout Plain Layout
  8473. C
  8474. \end_layout
  8475. \end_inset
  8476. </cell>
  8477. </row>
  8478. <row>
  8479. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8480. \begin_inset Text
  8481. \begin_layout Plain Layout
  8482. TX vs AR
  8483. \end_layout
  8484. \end_inset
  8485. </cell>
  8486. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8487. \begin_inset Text
  8488. \begin_layout Plain Layout
  8489. 0
  8490. \end_layout
  8491. \end_inset
  8492. </cell>
  8493. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8494. \begin_inset Text
  8495. \begin_layout Plain Layout
  8496. 10,063
  8497. \end_layout
  8498. \end_inset
  8499. </cell>
  8500. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8501. \begin_inset Text
  8502. \begin_layout Plain Layout
  8503. 11,225
  8504. \end_layout
  8505. \end_inset
  8506. </cell>
  8507. </row>
  8508. <row>
  8509. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8510. \begin_inset Text
  8511. \begin_layout Plain Layout
  8512. TX vs ADNR
  8513. \end_layout
  8514. \end_inset
  8515. </cell>
  8516. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8517. \begin_inset Text
  8518. \begin_layout Plain Layout
  8519. 27
  8520. \end_layout
  8521. \end_inset
  8522. </cell>
  8523. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8524. \begin_inset Text
  8525. \begin_layout Plain Layout
  8526. 12,674
  8527. \end_layout
  8528. \end_inset
  8529. </cell>
  8530. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8531. \begin_inset Text
  8532. \begin_layout Plain Layout
  8533. 13,086
  8534. \end_layout
  8535. \end_inset
  8536. </cell>
  8537. </row>
  8538. <row>
  8539. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8540. \begin_inset Text
  8541. \begin_layout Plain Layout
  8542. TX vs CAN
  8543. \end_layout
  8544. \end_inset
  8545. </cell>
  8546. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8547. \begin_inset Text
  8548. \begin_layout Plain Layout
  8549. 966
  8550. \end_layout
  8551. \end_inset
  8552. </cell>
  8553. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8554. \begin_inset Text
  8555. \begin_layout Plain Layout
  8556. 20,039
  8557. \end_layout
  8558. \end_inset
  8559. </cell>
  8560. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  8561. \begin_inset Text
  8562. \begin_layout Plain Layout
  8563. 20,955
  8564. \end_layout
  8565. \end_inset
  8566. </cell>
  8567. </row>
  8568. </lyxtabular>
  8569. \end_inset
  8570. \end_layout
  8571. \begin_layout Plain Layout
  8572. \begin_inset Caption Standard
  8573. \begin_layout Plain Layout
  8574. \begin_inset CommandInset label
  8575. LatexCommand label
  8576. name "tab:methyl-est-nonnull"
  8577. \end_inset
  8578. Estimated number of non-null tests, using the method of averaging local
  8579. FDR values
  8580. \begin_inset CommandInset citation
  8581. LatexCommand cite
  8582. key "Phipson2013Thesis"
  8583. literal "false"
  8584. \end_inset
  8585. .
  8586. \end_layout
  8587. \end_inset
  8588. \end_layout
  8589. \end_inset
  8590. \end_layout
  8591. \begin_layout Plain Layout
  8592. \begin_inset Caption Standard
  8593. \begin_layout Plain Layout
  8594. \series bold
  8595. Estimates of degree of differential methylation in for each contrast in
  8596. each analysis.
  8597. \series default
  8598. For each of the analyses in Table
  8599. \begin_inset CommandInset ref
  8600. LatexCommand ref
  8601. reference "tab:Summary-of-meth-analysis"
  8602. plural "false"
  8603. caps "false"
  8604. noprefix "false"
  8605. \end_inset
  8606. , these tables show the number of probes called significantly differentially
  8607. methylated at a threshold of 10% FDR for each comparison between TX and
  8608. the other 3 transplant statuses (a) and the estimated total number of probes
  8609. that are differentially methylated (b).
  8610. \end_layout
  8611. \end_inset
  8612. \end_layout
  8613. \end_inset
  8614. \end_layout
  8615. \begin_layout Standard
  8616. \begin_inset Float figure
  8617. wide false
  8618. sideways false
  8619. status open
  8620. \begin_layout Plain Layout
  8621. \align center
  8622. \series bold
  8623. \begin_inset Float figure
  8624. wide false
  8625. sideways false
  8626. status collapsed
  8627. \begin_layout Plain Layout
  8628. \align center
  8629. \begin_inset Graphics
  8630. filename graphics/methylvoom/unadj.dupcor/pval-histograms-PAGE1.pdf
  8631. lyxscale 33
  8632. width 30col%
  8633. groupId meth-pval-hist
  8634. \end_inset
  8635. \end_layout
  8636. \begin_layout Plain Layout
  8637. \series bold
  8638. \begin_inset Caption Standard
  8639. \begin_layout Plain Layout
  8640. AR vs.
  8641. TX, Analysis A
  8642. \end_layout
  8643. \end_inset
  8644. \end_layout
  8645. \begin_layout Plain Layout
  8646. \end_layout
  8647. \end_inset
  8648. \begin_inset space \hfill{}
  8649. \end_inset
  8650. \begin_inset Float figure
  8651. wide false
  8652. sideways false
  8653. status collapsed
  8654. \begin_layout Plain Layout
  8655. \align center
  8656. \begin_inset Graphics
  8657. filename graphics/methylvoom/unadj.dupcor/pval-histograms-PAGE2.pdf
  8658. lyxscale 33
  8659. width 30col%
  8660. groupId meth-pval-hist
  8661. \end_inset
  8662. \end_layout
  8663. \begin_layout Plain Layout
  8664. \series bold
  8665. \begin_inset Caption Standard
  8666. \begin_layout Plain Layout
  8667. ADNR vs.
  8668. TX, Analysis A
  8669. \end_layout
  8670. \end_inset
  8671. \end_layout
  8672. \end_inset
  8673. \begin_inset space \hfill{}
  8674. \end_inset
  8675. \begin_inset Float figure
  8676. wide false
  8677. sideways false
  8678. status collapsed
  8679. \begin_layout Plain Layout
  8680. \align center
  8681. \begin_inset Graphics
  8682. filename graphics/methylvoom/unadj.dupcor/pval-histograms-PAGE3.pdf
  8683. lyxscale 33
  8684. width 30col%
  8685. groupId meth-pval-hist
  8686. \end_inset
  8687. \end_layout
  8688. \begin_layout Plain Layout
  8689. \series bold
  8690. \begin_inset Caption Standard
  8691. \begin_layout Plain Layout
  8692. CAN vs.
  8693. TX, Analysis A
  8694. \end_layout
  8695. \end_inset
  8696. \end_layout
  8697. \end_inset
  8698. \end_layout
  8699. \begin_layout Plain Layout
  8700. \align center
  8701. \series bold
  8702. \begin_inset Float figure
  8703. wide false
  8704. sideways false
  8705. status collapsed
  8706. \begin_layout Plain Layout
  8707. \align center
  8708. \begin_inset Graphics
  8709. filename graphics/methylvoom/unadj.dupcor.sva.aw/pval-histograms-PAGE1.pdf
  8710. lyxscale 33
  8711. width 30col%
  8712. groupId meth-pval-hist
  8713. \end_inset
  8714. \end_layout
  8715. \begin_layout Plain Layout
  8716. \series bold
  8717. \begin_inset Caption Standard
  8718. \begin_layout Plain Layout
  8719. AR vs.
  8720. TX, Analysis B
  8721. \end_layout
  8722. \end_inset
  8723. \end_layout
  8724. \end_inset
  8725. \begin_inset space \hfill{}
  8726. \end_inset
  8727. \begin_inset Float figure
  8728. wide false
  8729. sideways false
  8730. status collapsed
  8731. \begin_layout Plain Layout
  8732. \align center
  8733. \begin_inset Graphics
  8734. filename graphics/methylvoom/unadj.dupcor.sva.aw/pval-histograms-PAGE2.pdf
  8735. lyxscale 33
  8736. width 30col%
  8737. groupId meth-pval-hist
  8738. \end_inset
  8739. \end_layout
  8740. \begin_layout Plain Layout
  8741. \series bold
  8742. \begin_inset Caption Standard
  8743. \begin_layout Plain Layout
  8744. ADNR vs.
  8745. TX, Analysis B
  8746. \end_layout
  8747. \end_inset
  8748. \end_layout
  8749. \end_inset
  8750. \begin_inset space \hfill{}
  8751. \end_inset
  8752. \begin_inset Float figure
  8753. wide false
  8754. sideways false
  8755. status collapsed
  8756. \begin_layout Plain Layout
  8757. \align center
  8758. \begin_inset Graphics
  8759. filename graphics/methylvoom/unadj.dupcor.sva.aw/pval-histograms-PAGE3.pdf
  8760. lyxscale 33
  8761. width 30col%
  8762. groupId meth-pval-hist
  8763. \end_inset
  8764. \end_layout
  8765. \begin_layout Plain Layout
  8766. \series bold
  8767. \begin_inset Caption Standard
  8768. \begin_layout Plain Layout
  8769. CAN vs.
  8770. TX, Analysis B
  8771. \end_layout
  8772. \end_inset
  8773. \end_layout
  8774. \end_inset
  8775. \end_layout
  8776. \begin_layout Plain Layout
  8777. \align center
  8778. \series bold
  8779. \begin_inset Float figure
  8780. wide false
  8781. sideways false
  8782. status collapsed
  8783. \begin_layout Plain Layout
  8784. \align center
  8785. \begin_inset Graphics
  8786. filename graphics/methylvoom/unadj.dupcor.sva.voomaw/pval-histograms-PAGE1.pdf
  8787. lyxscale 33
  8788. width 30col%
  8789. groupId meth-pval-hist
  8790. \end_inset
  8791. \end_layout
  8792. \begin_layout Plain Layout
  8793. \series bold
  8794. \begin_inset Caption Standard
  8795. \begin_layout Plain Layout
  8796. AR vs.
  8797. TX, Analysis C
  8798. \end_layout
  8799. \end_inset
  8800. \end_layout
  8801. \end_inset
  8802. \begin_inset space \hfill{}
  8803. \end_inset
  8804. \begin_inset Float figure
  8805. wide false
  8806. sideways false
  8807. status collapsed
  8808. \begin_layout Plain Layout
  8809. \align center
  8810. \begin_inset Graphics
  8811. filename graphics/methylvoom/unadj.dupcor.sva.voomaw/pval-histograms-PAGE2.pdf
  8812. lyxscale 33
  8813. width 30col%
  8814. groupId meth-pval-hist
  8815. \end_inset
  8816. \end_layout
  8817. \begin_layout Plain Layout
  8818. \series bold
  8819. \begin_inset Caption Standard
  8820. \begin_layout Plain Layout
  8821. ADNR vs.
  8822. TX, Analysis C
  8823. \end_layout
  8824. \end_inset
  8825. \end_layout
  8826. \end_inset
  8827. \begin_inset space \hfill{}
  8828. \end_inset
  8829. \begin_inset Float figure
  8830. wide false
  8831. sideways false
  8832. status collapsed
  8833. \begin_layout Plain Layout
  8834. \align center
  8835. \begin_inset Graphics
  8836. filename graphics/methylvoom/unadj.dupcor.sva.voomaw/pval-histograms-PAGE3.pdf
  8837. lyxscale 33
  8838. width 30col%
  8839. groupId meth-pval-hist
  8840. \end_inset
  8841. \end_layout
  8842. \begin_layout Plain Layout
  8843. \series bold
  8844. \begin_inset Caption Standard
  8845. \begin_layout Plain Layout
  8846. CAN vs.
  8847. TX, Analysis C
  8848. \end_layout
  8849. \end_inset
  8850. \end_layout
  8851. \end_inset
  8852. \end_layout
  8853. \begin_layout Plain Layout
  8854. \begin_inset Caption Standard
  8855. \begin_layout Plain Layout
  8856. \series bold
  8857. \begin_inset CommandInset label
  8858. LatexCommand label
  8859. name "fig:meth-p-value-histograms"
  8860. \end_inset
  8861. Probe p-value histograms for each contrast in each analysis.
  8862. \series default
  8863. For each differential methylation test of interest, the distribution of
  8864. p-values across all probes is plotted as a histogram.
  8865. The red solid line indicates the density that would be expected under the
  8866. null hypothesis for all probes (a
  8867. \begin_inset Formula $\mathrm{Uniform}(0,1)$
  8868. \end_inset
  8869. distribution), while the blue dotted line indicates the fraction of p-values
  8870. that actually follow the null hypothesis (
  8871. \begin_inset Formula $\hat{\pi}_{0}$
  8872. \end_inset
  8873. ) estimated using the method of averaging local FDR values
  8874. \begin_inset CommandInset citation
  8875. LatexCommand cite
  8876. key "Phipson2013Thesis"
  8877. literal "false"
  8878. \end_inset
  8879. .
  8880. the blue line is only shown in each plot if the estimate of
  8881. \begin_inset Formula $\hat{\pi}_{0}$
  8882. \end_inset
  8883. for that p-value distribution is different from 1.
  8884. \end_layout
  8885. \end_inset
  8886. \end_layout
  8887. \end_inset
  8888. \end_layout
  8889. \begin_layout Standard
  8890. Table
  8891. \begin_inset CommandInset ref
  8892. LatexCommand ref
  8893. reference "tab:methyl-num-signif"
  8894. plural "false"
  8895. caps "false"
  8896. noprefix "false"
  8897. \end_inset
  8898. shows the number of significantly differentially methylated probes reported
  8899. by each analysis for each comparison of interest at an FDR of 10%.
  8900. As expected, the more elaborate analyses, B and C, report more significant
  8901. probes than the more basic analysis A, consistent with the conclusions
  8902. above that the data contain hidden systematic variations that must be modeled.
  8903. Table
  8904. \begin_inset CommandInset ref
  8905. LatexCommand ref
  8906. reference "tab:methyl-est-nonnull"
  8907. plural "false"
  8908. caps "false"
  8909. noprefix "false"
  8910. \end_inset
  8911. shows the estimated number differentially methylated probes for each test
  8912. from each analysis.
  8913. This was computed by estimating the proportion of null hypotheses that
  8914. were true using the method of
  8915. \begin_inset CommandInset citation
  8916. LatexCommand cite
  8917. key "Phipson2013Thesis"
  8918. literal "false"
  8919. \end_inset
  8920. and subtracting that fraction from the total number of probes, yielding
  8921. an estimate of the number of null hypotheses that are false based on the
  8922. distribution of p-values across the entire dataset.
  8923. Note that this does not identify which null hypotheses should be rejected
  8924. (i.e.
  8925. which probes are significant); it only estimates the true number of such
  8926. probes.
  8927. Once again, analyses B and C result it much larger estimates for the number
  8928. of differentially methylated probes.
  8929. In this case, analysis C, the only analysis that includes voom, estimates
  8930. the largest number of differentially methylated probes for all 3 contrasts.
  8931. If the assumptions of all the methods employed hold, then this represents
  8932. a gain in statistical power over the simpler analysis A.
  8933. Figure
  8934. \begin_inset CommandInset ref
  8935. LatexCommand ref
  8936. reference "fig:meth-p-value-histograms"
  8937. plural "false"
  8938. caps "false"
  8939. noprefix "false"
  8940. \end_inset
  8941. shows the p-value distributions for each test, from which the numbers in
  8942. Table
  8943. \begin_inset CommandInset ref
  8944. LatexCommand ref
  8945. reference "tab:methyl-est-nonnull"
  8946. plural "false"
  8947. caps "false"
  8948. noprefix "false"
  8949. \end_inset
  8950. were generated.
  8951. The distributions for analysis A all have a dip in density near zero, which
  8952. is a strong sign of a poor model fit.
  8953. The histograms for analyses B and C are more well-behaved, with a uniform
  8954. component stretching all the way from 0 to 1 representing the probes for
  8955. which the null hypotheses is true (no differential methylation), and a
  8956. zero-biased component representing the probes for which the null hypothesis
  8957. is false (differentially methylated).
  8958. These histograms do not indicate any major issues with the model fit.
  8959. \end_layout
  8960. \begin_layout Standard
  8961. \begin_inset Flex TODO Note (inline)
  8962. status open
  8963. \begin_layout Plain Layout
  8964. If time allows, maybe generate the PCA plots before/after SVA effect subtraction
  8965. ?
  8966. \end_layout
  8967. \end_inset
  8968. \end_layout
  8969. \begin_layout Section
  8970. Discussion
  8971. \end_layout
  8972. \begin_layout Subsection
  8973. fRMA achieves clinically applicable normalization without sacrificing classifica
  8974. tion performance
  8975. \end_layout
  8976. \begin_layout Standard
  8977. As shown in Figure
  8978. \begin_inset CommandInset ref
  8979. LatexCommand ref
  8980. reference "fig:Classifier-probabilities-RMA"
  8981. plural "false"
  8982. caps "false"
  8983. noprefix "false"
  8984. \end_inset
  8985. , improper normalization, particularly separate normalization of training
  8986. and test samples, leads to unwanted biases in classification.
  8987. In a controlled experimental context, it is always possible to correct
  8988. this issue by normalizing all experimental samples together.
  8989. However, because it is not feasible to normalize all samples together in
  8990. a clinical context, a single-channel normalization is required is required.
  8991. \end_layout
  8992. \begin_layout Standard
  8993. The major concern in using a single-channel normalization is that non-single-cha
  8994. nnel methods can share information between arrays to improve the normalization,
  8995. and single-channel methods risk sacrificing the gains in normalization
  8996. accuracy that come from this information sharing.
  8997. In the case of RMA, this information sharing is accomplished through quantile
  8998. normalization and median polish steps.
  8999. The need for information sharing in quantile normalization can easily be
  9000. removed by learning a fixed set of quantiles from external data and normalizing
  9001. each array to these fixed quantiles, instead of the quantiles of the data
  9002. itself.
  9003. As long as the fixed quantiles are reasonable, the result will be similar
  9004. to standard RMA.
  9005. However, there is no analogous way to eliminate cross-array information
  9006. sharing in the median polish step, so fRMA replaces this with a weighted
  9007. average of probes on each array, with the weights learned from external
  9008. data.
  9009. This step of fRMA has the greatest potential to diverge from RMA un undesirable
  9010. ways.
  9011. \end_layout
  9012. \begin_layout Standard
  9013. However, when run on real data, fRMA performed at least as well as RMA in
  9014. both the internal validation and external validation tests.
  9015. This shows that fRMA can be used to normalize individual clinical samples
  9016. in a class prediction context without sacrificing the classifier performance
  9017. that would be obtained by using the more well-established RMA for normalization.
  9018. The other single-channel normalization method considered, SCAN, showed
  9019. some loss of AUC in the external validation test.
  9020. Based on these results, fRMA is the preferred normalization for clinical
  9021. samples in a class prediction context.
  9022. \end_layout
  9023. \begin_layout Subsection
  9024. Robust fRMA vectors can be generated for new array platforms
  9025. \end_layout
  9026. \begin_layout Standard
  9027. \begin_inset Flex TODO Note (inline)
  9028. status open
  9029. \begin_layout Plain Layout
  9030. Look up the exact numbers, do a find & replace for
  9031. \begin_inset Quotes eld
  9032. \end_inset
  9033. 850
  9034. \begin_inset Quotes erd
  9035. \end_inset
  9036. \end_layout
  9037. \end_inset
  9038. \end_layout
  9039. \begin_layout Standard
  9040. The published fRMA normalization vectors for the hgu133plus2 platform were
  9041. generated from a set of about 850 samples chosen from a wide range of tissues,
  9042. which the authors determined was sufficient to generate a robust set of
  9043. normalization vectors that could be applied across all tissues
  9044. \begin_inset CommandInset citation
  9045. LatexCommand cite
  9046. key "McCall2010"
  9047. literal "false"
  9048. \end_inset
  9049. .
  9050. Since we only had hthgu133pluspm for 2 tissues of interest, our needs were
  9051. more modest.
  9052. Even using only 130 samples in 26 batches of 5 samples each for kidney
  9053. biopsies, we were able to train a robust set of fRMA normalization vectors
  9054. that were not meaningfully affected by the random selection of 5 samples
  9055. from each batch.
  9056. As expected, the training process was just as robust for the blood samples
  9057. with 230 samples in 46 batches of 5 samples each.
  9058. Because these vectors were each generated using training samples from a
  9059. single tissue, they are not suitable for general use, unlike the vectors
  9060. provided with fRMA itself.
  9061. They are purpose-built for normalizing a specific type of sample on a specific
  9062. platform.
  9063. This is a mostly acceptable limitation in the context of developing a machine
  9064. learning classifier for diagnosing a disease based on samples of a specific
  9065. tissue.
  9066. \end_layout
  9067. \begin_layout Standard
  9068. \begin_inset Flex TODO Note (inline)
  9069. status open
  9070. \begin_layout Plain Layout
  9071. Talk about how these vectors can be used for any data from these tissues
  9072. on this platform even though they were custom made for this data set.
  9073. \end_layout
  9074. \end_inset
  9075. \end_layout
  9076. \begin_layout Standard
  9077. \begin_inset Flex TODO Note (inline)
  9078. status open
  9079. \begin_layout Plain Layout
  9080. How to bring up that these custom vectors were used in another project by
  9081. someone else that was never published?
  9082. \end_layout
  9083. \end_inset
  9084. \end_layout
  9085. \begin_layout Subsection
  9086. Methylation array data can be successfully analyzed using existing techniques,
  9087. but machine learning poses additional challenges
  9088. \end_layout
  9089. \begin_layout Standard
  9090. Both analysis strategies B and C both yield a reasonable analysis, with
  9091. a mean-variance trend that matches the expected behavior for the non-linear
  9092. M-value transformation (Figure
  9093. \begin_inset CommandInset ref
  9094. LatexCommand ref
  9095. reference "fig:meanvar-sva-aw"
  9096. plural "false"
  9097. caps "false"
  9098. noprefix "false"
  9099. \end_inset
  9100. ) and well-behaved p-value distributions (Figure
  9101. \begin_inset CommandInset ref
  9102. LatexCommand ref
  9103. reference "fig:meth-p-value-histograms"
  9104. plural "false"
  9105. caps "false"
  9106. noprefix "false"
  9107. \end_inset
  9108. ).
  9109. These two analyses also yield similar numbers of significant probes (Table
  9110. \begin_inset CommandInset ref
  9111. LatexCommand ref
  9112. reference "tab:methyl-num-signif"
  9113. plural "false"
  9114. caps "false"
  9115. noprefix "false"
  9116. \end_inset
  9117. ) and similar estimates of the number of differentially methylated probes
  9118. (Table
  9119. \begin_inset CommandInset ref
  9120. LatexCommand ref
  9121. reference "tab:methyl-est-nonnull"
  9122. plural "false"
  9123. caps "false"
  9124. noprefix "false"
  9125. \end_inset
  9126. ).
  9127. The main difference between these two analyses is the method used to account
  9128. for the mean-variance trend.
  9129. In analysis B, the trend is estimated and applied at the probe level: each
  9130. probe's estimated variance is squeezed toward the trend using an empirical
  9131. Bayes procedure (Figure
  9132. \begin_inset CommandInset ref
  9133. LatexCommand ref
  9134. reference "fig:meanvar-sva-aw"
  9135. plural "false"
  9136. caps "false"
  9137. noprefix "false"
  9138. \end_inset
  9139. ).
  9140. In analysis C, the trend is still estimated at the probe level, but instead
  9141. of estimating a single variance value shared across all observations for
  9142. a given probe, the voom method computes an initial estiamte of the variance
  9143. for each observation individually based on where its model-fitted M-value
  9144. falls on the trend line and then assigns inverse-variance weights to model
  9145. the difference in variance between observations.
  9146. An overall variance is still estimated for each probe using the same empirical
  9147. Bayes method, but now the residual trend is flat (Figure
  9148. \begin_inset CommandInset ref
  9149. LatexCommand ref
  9150. reference "fig:meanvar-sva-voomaw"
  9151. plural "false"
  9152. caps "false"
  9153. noprefix "false"
  9154. \end_inset
  9155. ), indicating that the mean-variance trend is adequately modeled by scaling
  9156. the estimated variance for each observation using the weights computed
  9157. by voom.
  9158. \end_layout
  9159. \begin_layout Standard
  9160. The difference between the standard empirical Bayes trended variance modeling
  9161. (analysis B) and voom (analysis C) is analogous to the difference between
  9162. a t-test with equal variance and a t-test with unequal variance, except
  9163. that the unequal group variances used in the latter test are estimated
  9164. based on the mean-variance trend from all the probes rather than the data
  9165. for the specific probe being tested, thus stabilizing the group variance
  9166. estimates by sharing information between probes.
  9167. Allowing voom to model the variance using observation weights in this manner
  9168. allows the linear model fit to concentrate statistical power where it will
  9169. do the most good.
  9170. For example, if a particular probe's M-values are always at the extreme
  9171. of the M-value range (e.g.
  9172. less than -4) for ADNR samples, but the M-values for that probe in TX and
  9173. CAN samples are within the flat region of the mean-variance trend (between
  9174. -3 and +3), voom is able to down-weight the contribution of the high-variance
  9175. M-values from the ADNR samples in order to gain more statistical power
  9176. while testing for differential methylation between TX and CAN.
  9177. In contrast, modeling the mean-variance trend only at the probe level would
  9178. combine the high-variance ADNR samples and lower-variance samples from
  9179. other conditions and estimate an intermediate variance for this probe.
  9180. In practice, analysis B shows that this approach is adequate, but the voom
  9181. approach in analysis C is at least as good on all model fit criteria and
  9182. yields a larger estimate for the number of differentially methylated genes,
  9183. \emph on
  9184. and
  9185. \emph default
  9186. it matches up better with the theoretical
  9187. \end_layout
  9188. \begin_layout Standard
  9189. The significant association of diebetes diagnosis with sample quality is
  9190. interesting.
  9191. The samples with Type 2 diabetes tended to have more variation, averaged
  9192. across all probes, than those with Type 1 diabetes.
  9193. This is consistent with the consensus that type 2 disbetes and the associated
  9194. metabolic syndrome represent a broad dysregulation of the body's endocrine
  9195. signalling related to metabolism [citation needed].
  9196. This dysregulation could easily manifest as a greater degree of variation
  9197. in the DNA methylation patterns of affected tissues.
  9198. In contrast, Type 1 disbetes has a more specific cause and effect, so a
  9199. less variable methylation signature is expected.
  9200. \end_layout
  9201. \begin_layout Standard
  9202. This preliminary anlaysis suggests that some degree of differential methylation
  9203. exists between TX and each of the three types of transplant disfunction
  9204. studied.
  9205. Hence, it may be feasible to train a classifier to diagnose transplant
  9206. disfunction from DNA methylation array data.
  9207. However, the major importance of both SVA and sample quality weighting
  9208. for proper modeling of this data poses significant challenges for any attempt
  9209. at a machine learning on data of similar quality.
  9210. While these are easily used in a modeling context with full sample information,
  9211. neither of these methods is directly applicable in a machine learning context,
  9212. where the diagnosis is not known ahead of time.
  9213. If a machine learning approach for methylation-based diagnosis is to be
  9214. pursued, it will either require machine-learning-friendly methods to address
  9215. the same systematic trends in the data that SVA and sample quality weighting
  9216. address, or it will require higher quality data with substantially less
  9217. systematic perturbation of the data.
  9218. \end_layout
  9219. \begin_layout Section
  9220. Future Directions
  9221. \end_layout
  9222. \begin_layout Standard
  9223. \begin_inset Flex TODO Note (inline)
  9224. status open
  9225. \begin_layout Plain Layout
  9226. Some work was already being done with the existing fRMA vectors.
  9227. Do I mention that here?
  9228. \end_layout
  9229. \end_inset
  9230. \end_layout
  9231. \begin_layout Subsection
  9232. Improving fRMA to allow training from batches of unequal size
  9233. \end_layout
  9234. \begin_layout Standard
  9235. Because the tools for building fRMA normalization vectors require equal-size
  9236. batches, many samples must be discarded from the training data.
  9237. This is undesirable for a few reasons.
  9238. First, more data is simply better, all other things being equal.
  9239. In this case,
  9240. \begin_inset Quotes eld
  9241. \end_inset
  9242. better
  9243. \begin_inset Quotes erd
  9244. \end_inset
  9245. means a more precise estimate of normalization parameters.
  9246. In addition, the samples to be discarded must be chosen arbitrarily, which
  9247. introduces an unnecessary element of randomness into the estimation process.
  9248. While the randomness can be made deterministic by setting a consistent
  9249. random seed, the need for equal size batches also introduces a need for
  9250. the analyst to decide on the appropriate trade-off between batch size and
  9251. the number of batches.
  9252. This introduces an unnecessary and undesirable
  9253. \begin_inset Quotes eld
  9254. \end_inset
  9255. researcher degree of freedom
  9256. \begin_inset Quotes erd
  9257. \end_inset
  9258. into the analysis, since the generated normalization vectors now depend
  9259. on the choice of batch size based on vague selection criteria and instinct,
  9260. which can unintentionally inproduce bias if the researcher chooses a batch
  9261. size based on what seems to yield the most favorable downstream results
  9262. \begin_inset CommandInset citation
  9263. LatexCommand cite
  9264. key "Simmons2011"
  9265. literal "false"
  9266. \end_inset
  9267. .
  9268. \end_layout
  9269. \begin_layout Standard
  9270. Fortunately, the requirement for equal-size batches is not inherent to the
  9271. fRMA algorithm but rather a limitation of the implementation in the frmaTools
  9272. package.
  9273. In personal communication, the package's author, Matthew McCall, has indicated
  9274. that with some work, it should be possible to improve the implementation
  9275. to work with batches of unequal sizes.
  9276. The current implementation ignores the batch size when calculating with-batch
  9277. and between-batch residual variances, since the batch size constant cancels
  9278. out later in the calculations as long as all batches are of equal size.
  9279. Hence, the calculations of these parameters would need to be modified to
  9280. remove this optimization and properly calculate the variances using the
  9281. full formula.
  9282. Once this modification is made, a new strategy would need to be developed
  9283. for assessing the stability of parameter estimates, since the random subsamplin
  9284. g step is eliminated, meaning that different subsamplings can no longer
  9285. be compared as in Figures
  9286. \begin_inset CommandInset ref
  9287. LatexCommand ref
  9288. reference "fig:frma-violin"
  9289. plural "false"
  9290. caps "false"
  9291. noprefix "false"
  9292. \end_inset
  9293. and
  9294. \begin_inset CommandInset ref
  9295. LatexCommand ref
  9296. reference "fig:Representative-MA-plots"
  9297. plural "false"
  9298. caps "false"
  9299. noprefix "false"
  9300. \end_inset
  9301. .
  9302. Bootstrap resampling is likely a good candidate here: sample many training
  9303. sets of equal size from the existing training set with replacement, estimate
  9304. parameters from each resampled training set, and compare the estimated
  9305. parameters between bootstraps in order to quantify the variability in each
  9306. parameter's estimation.
  9307. \end_layout
  9308. \begin_layout Subsection
  9309. Developing methylation arrays as a diagnostic tool for kidney transplant
  9310. rejection
  9311. \end_layout
  9312. \begin_layout Standard
  9313. The current study has showed that DNA methylation, as assayed by Illumina
  9314. 450k methylation arrays, has some potential for diagnosing transplant dysfuncti
  9315. ons, including rejection.
  9316. However, very few probes could be confidently identified as differentially
  9317. methylated between healthy and dysfunctional transplants.
  9318. One likely explanation for this is the predominant influence of unobserved
  9319. confounding factors.
  9320. SVA can model and correct for such factors, but the correction can never
  9321. be perfect, so some degree of unwanted systematic variation will always
  9322. remain after SVA correction.
  9323. If the effect size of the confounding factors was similar to that of the
  9324. factor of interest (in this case, transplant status), this would be an
  9325. acceptable limitation, since removing most of the confounding factors'
  9326. effects would allow the main effect to stand out.
  9327. However, in this data set, the confounding factors have a much larger effect
  9328. size than transplant status, which means that the small degree of remaining
  9329. variation not removed by SVA can still swamp the effect of interest, making
  9330. it difficult to detect.
  9331. This is, of course, a major issue when the end goal is to develop a classifier
  9332. to diagnose transplant rejection from methylation data, since batch-correction
  9333. methods like SVA that work in a linear modeling context cannot be applied
  9334. in a machine learning context.
  9335. \end_layout
  9336. \begin_layout Standard
  9337. Currently, the source of these unwanted systematic variations in the data
  9338. is unknown.
  9339. The best solution would be to determine the cause of the variation and
  9340. eliminate it, thereby eliminating the need to model and remove that variation.
  9341. However, if this proves impractical, another option is to use SVA to identify
  9342. probes that are highly associated with the surrogate variables that describe
  9343. the unwanted variation in the data.
  9344. These probes could be discarded prior to classifier training, in order
  9345. to maximize the chance that the training algorithm will be able to identify
  9346. highly predictive probes from those remaining.
  9347. Lastly, it is possible that some of this unwanted variation is a result
  9348. of the array-based assay being used and would be eliminated by switching
  9349. to assaying DNA methylation using bisulphite sequencing.
  9350. However, this carries the risk that the sequencing assay will have its
  9351. own set of biases that must be corrected for in a different way.
  9352. \end_layout
  9353. \begin_layout Chapter
  9354. Globin-blocking for more effective blood RNA-seq analysis in primate animal
  9355. model
  9356. \end_layout
  9357. \begin_layout Standard
  9358. \begin_inset Flex TODO Note (inline)
  9359. status open
  9360. \begin_layout Plain Layout
  9361. Choose between above and the paper title: Optimizing yield of deep RNA sequencin
  9362. g for gene expression profiling by globin reduction of peripheral blood
  9363. samples from cynomolgus monkeys (Macaca fascicularis).
  9364. \end_layout
  9365. \end_inset
  9366. \end_layout
  9367. \begin_layout Standard
  9368. \begin_inset Flex TODO Note (inline)
  9369. status open
  9370. \begin_layout Plain Layout
  9371. Chapter author list: https://tex.stackexchange.com/questions/156862/displaying-aut
  9372. hor-for-each-chapter-in-book Every chapter gets an author list, which may
  9373. or may not be part of a citation to a published/preprinted paper.
  9374. \end_layout
  9375. \end_inset
  9376. \end_layout
  9377. \begin_layout Standard
  9378. \begin_inset Flex TODO Note (inline)
  9379. status open
  9380. \begin_layout Plain Layout
  9381. Preprint then cite the paper
  9382. \end_layout
  9383. \end_inset
  9384. \end_layout
  9385. \begin_layout Section*
  9386. Abstract
  9387. \end_layout
  9388. \begin_layout Paragraph
  9389. Background
  9390. \end_layout
  9391. \begin_layout Standard
  9392. Primate blood contains high concentrations of globin messenger RNA.
  9393. Globin reduction is a standard technique used to improve the expression
  9394. results obtained by DNA microarrays on RNA from blood samples.
  9395. However, with whole transcriptome RNA-sequencing (RNA-seq) quickly replacing
  9396. microarrays for many applications, the impact of globin reduction for RNA-seq
  9397. has not been previously studied.
  9398. Moreover, no off-the-shelf kits are available for globin reduction in nonhuman
  9399. primates.
  9400. \end_layout
  9401. \begin_layout Paragraph
  9402. Results
  9403. \end_layout
  9404. \begin_layout Standard
  9405. Here we report a protocol for RNA-seq in primate blood samples that uses
  9406. complimentary oligonucleotides to block reverse transcription of the alpha
  9407. and beta globin genes.
  9408. In test samples from cynomolgus monkeys (Macaca fascicularis), this globin
  9409. blocking protocol approximately doubles the yield of informative (non-globin)
  9410. reads by greatly reducing the fraction of globin reads, while also improving
  9411. the consistency in sequencing depth between samples.
  9412. The increased yield enables detection of about 2000 more genes, significantly
  9413. increases the correlation in measured gene expression levels between samples,
  9414. and increases the sensitivity of differential gene expression tests.
  9415. \end_layout
  9416. \begin_layout Paragraph
  9417. Conclusions
  9418. \end_layout
  9419. \begin_layout Standard
  9420. These results show that globin blocking significantly improves the cost-effectiv
  9421. eness of mRNA sequencing in primate blood samples by doubling the yield
  9422. of useful reads, allowing detection of more genes, and improving the precision
  9423. of gene expression measurements.
  9424. Based on these results, a globin reducing or blocking protocol is recommended
  9425. for all RNA-seq studies of primate blood samples.
  9426. \end_layout
  9427. \begin_layout Section
  9428. Approach
  9429. \end_layout
  9430. \begin_layout Standard
  9431. \begin_inset Note Note
  9432. status open
  9433. \begin_layout Plain Layout
  9434. Consider putting some of this in the Intro chapter
  9435. \end_layout
  9436. \begin_layout Itemize
  9437. Cynomolgus monkeys as a model organism
  9438. \end_layout
  9439. \begin_deeper
  9440. \begin_layout Itemize
  9441. Highly related to humans
  9442. \end_layout
  9443. \begin_layout Itemize
  9444. Small size and short life cycle - good research animal
  9445. \end_layout
  9446. \begin_layout Itemize
  9447. Genomics resources still in development
  9448. \end_layout
  9449. \end_deeper
  9450. \begin_layout Itemize
  9451. Inadequacy of existing blood RNA-seq protocols
  9452. \end_layout
  9453. \begin_deeper
  9454. \begin_layout Itemize
  9455. Existing protocols use a separate globin pulldown step, slowing down processing
  9456. \end_layout
  9457. \end_deeper
  9458. \end_inset
  9459. \end_layout
  9460. \begin_layout Standard
  9461. Increasingly, researchers are turning to high-throughput mRNA sequencing
  9462. technologies (RNA-seq) in preference to expression microarrays for analysis
  9463. of gene expression
  9464. \begin_inset CommandInset citation
  9465. LatexCommand cite
  9466. key "Mutz2012"
  9467. literal "false"
  9468. \end_inset
  9469. .
  9470. The advantages are even greater for study of model organisms with no well-estab
  9471. lished array platforms available, such as the cynomolgus monkey (Macaca
  9472. fascicularis).
  9473. High fractions of globin mRNA are naturally present in mammalian peripheral
  9474. blood samples (up to 70% of total mRNA) and these are known to interfere
  9475. with the results of array-based expression profiling
  9476. \begin_inset CommandInset citation
  9477. LatexCommand cite
  9478. key "Winn2010"
  9479. literal "false"
  9480. \end_inset
  9481. .
  9482. The importance of globin reduction for RNA-seq of blood has only been evaluated
  9483. for a deepSAGE protocol on human samples
  9484. \begin_inset CommandInset citation
  9485. LatexCommand cite
  9486. key "Mastrokolias2012"
  9487. literal "false"
  9488. \end_inset
  9489. .
  9490. In the present report, we evaluated globin reduction using custom blocking
  9491. oligonucleotides for deep RNA-seq of peripheral blood samples from a nonhuman
  9492. primate, cynomolgus monkey, using the Illumina technology platform.
  9493. We demonstrate that globin reduction significantly improves the cost-effectiven
  9494. ess of RNA-seq in blood samples.
  9495. Thus, our protocol offers a significant advantage to any investigator planning
  9496. to use RNA-seq for gene expression profiling of nonhuman primate blood
  9497. samples.
  9498. Our method can be generally applied to any species by designing complementary
  9499. oligonucleotide blocking probes to the globin gene sequences of that species.
  9500. Indeed, any highly expressed but biologically uninformative transcripts
  9501. can also be blocked to further increase sequencing efficiency and value
  9502. \begin_inset CommandInset citation
  9503. LatexCommand cite
  9504. key "Arnaud2016"
  9505. literal "false"
  9506. \end_inset
  9507. .
  9508. \end_layout
  9509. \begin_layout Section
  9510. Methods
  9511. \end_layout
  9512. \begin_layout Subsection
  9513. Sample collection
  9514. \end_layout
  9515. \begin_layout Standard
  9516. All research reported here was done under IACUC-approved protocols at the
  9517. University of Miami and complied with all applicable federal and state
  9518. regulations and ethical principles for nonhuman primate research.
  9519. Blood draws occurred between 16 April 2012 and 18 June 2015.
  9520. The experimental system involved intrahepatic pancreatic islet transplantation
  9521. into Cynomolgus monkeys with induced diabetes mellitus with or without
  9522. concomitant infusion of mesenchymal stem cells.
  9523. Blood was collected at serial time points before and after transplantation
  9524. into PAXgene Blood RNA tubes (PreAnalytiX/Qiagen, Valencia, CA) at the
  9525. precise volume:volume ratio of 2.5 ml whole blood into 6.9 ml of PAX gene
  9526. additive.
  9527. \end_layout
  9528. \begin_layout Subsection
  9529. Globin Blocking
  9530. \end_layout
  9531. \begin_layout Standard
  9532. Four oligonucleotides were designed to hybridize to the 3’ end of the transcript
  9533. s for Cynomolgus HBA1, HBA2 and HBB, with two hybridization sites for HBB
  9534. and 2 sites for HBA (the chosen sites were identical in both HBA genes).
  9535. All oligos were purchased from Sigma and were entirely composed of 2’O-Me
  9536. bases with a C3 spacer positioned at the 3’ ends to prevent any polymerase
  9537. mediated primer extension.
  9538. \end_layout
  9539. \begin_layout Quote
  9540. HBA1/2 site 1: GCCCACUCAGACUUUAUUCAAAG-C3spacer
  9541. \end_layout
  9542. \begin_layout Quote
  9543. HBA1/2 site 2: GGUGCAAGGAGGGGAGGAG-C3spacer
  9544. \end_layout
  9545. \begin_layout Quote
  9546. HBB site 1: AAUGAAAAUAAAUGUUUUUUAUUAG-C3spacer
  9547. \end_layout
  9548. \begin_layout Quote
  9549. HBB site 2: CUCAAGGCCCUUCAUAAUAUCCC-C3spacer
  9550. \end_layout
  9551. \begin_layout Subsection
  9552. RNA-seq Library Preparation
  9553. \end_layout
  9554. \begin_layout Standard
  9555. Sequencing libraries were prepared with 200ng total RNA from each sample.
  9556. Polyadenylated mRNA was selected from 200 ng aliquots of cynomologus blood-deri
  9557. ved total RNA using Ambion Dynabeads Oligo(dT)25 beads (Invitrogen) following
  9558. manufacturer’s recommended protocol.
  9559. PolyA selected RNA was then combined with 8 pmol of HBA1/2 (site 1), 8
  9560. pmol of HBA1/2 (site 2), 12 pmol of HBB (site 1) and 12 pmol of HBB (site
  9561. 2) oligonucleotides.
  9562. In addition, 20 pmol of RT primer containing a portion of the Illumina
  9563. adapter sequence (B-oligo-dTV: GAGTTCCTTGGCACCCGAGAATTCCATTTTTTTTTTTTTTTTTTTV)
  9564. and 4 µL of 5X First Strand buffer (250 mM Tris-HCl pH 8.3, 375 mM KCl,
  9565. 15mM MgCl2) were added in a total volume of 15 µL.
  9566. The RNA was fragmented by heating this cocktail for 3 minutes at 95°C and
  9567. then placed on ice.
  9568. This was followed by the addition of 2 µL 0.1 M DTT, 1 µL RNaseOUT, 1 µL
  9569. 10mM dNTPs 10% biotin-16 aminoallyl-2’- dUTP and 10% biotin-16 aminoallyl-2’-
  9570. dCTP (TriLink Biotech, San Diego, CA), 1 µL Superscript II (200U/ µL, Thermo-Fi
  9571. sher).
  9572. A second “unblocked” library was prepared in the same way for each sample
  9573. but replacing the blocking oligos with an equivalent volume of water.
  9574. The reaction was carried out at 25°C for 15 minutes and 42°C for 40 minutes,
  9575. followed by incubation at 75°C for 10 minutes to inactivate the reverse
  9576. transcriptase.
  9577. \end_layout
  9578. \begin_layout Standard
  9579. The cDNA/RNA hybrid molecules were purified using 1.8X Ampure XP beads (Agencourt
  9580. ) following supplier’s recommended protocol.
  9581. The cDNA/RNA hybrid was eluted in 25 µL of 10 mM Tris-HCl pH 8.0, and then
  9582. bound to 25 µL of M280 Magnetic Streptavidin beads washed per recommended
  9583. protocol (Thermo-Fisher).
  9584. After 30 minutes of binding, beads were washed one time in 100 µL 0.1N NaOH
  9585. to denature and remove the bound RNA, followed by two 100 µL washes with
  9586. 1X TE buffer.
  9587. \end_layout
  9588. \begin_layout Standard
  9589. Subsequent attachment of the 5-prime Illumina A adapter was performed by
  9590. on-bead random primer extension of the following sequence (A-N8 primer:
  9591. TTCAGAGTTCTACAGTCCGACGATCNNNNNNNN).
  9592. Briefly, beads were resuspended in a 20 µL reaction containing 5 µM A-N8
  9593. primer, 40mM Tris-HCl pH 7.5, 20mM MgCl2, 50mM NaCl, 0.325U/µL Sequenase
  9594. 2.0 (Affymetrix, Santa Clara, CA), 0.0025U/µL inorganic pyrophosphatase (Affymetr
  9595. ix) and 300 µM each dNTP.
  9596. Reaction was incubated at 22°C for 30 minutes, then beads were washed 2
  9597. times with 1X TE buffer (200µL).
  9598. \end_layout
  9599. \begin_layout Standard
  9600. The magnetic streptavidin beads were resuspended in 34 µL nuclease-free
  9601. water and added directly to a PCR tube.
  9602. The two Illumina protocol-specified PCR primers were added at 0.53 µM (Illumina
  9603. TruSeq Universal Primer 1 and Illumina TruSeq barcoded PCR primer 2), along
  9604. with 40 µL 2X KAPA HiFi Hotstart ReadyMix (KAPA, Willmington MA) and thermocycl
  9605. ed as follows: starting with 98°C (2 min-hold); 15 cycles of 98°C, 20sec;
  9606. 60°C, 30sec; 72°C, 30sec; and finished with a 72°C (2 min-hold).
  9607. \end_layout
  9608. \begin_layout Standard
  9609. PCR products were purified with 1X Ampure Beads following manufacturer’s
  9610. recommended protocol.
  9611. Libraries were then analyzed using the Agilent TapeStation and quantitation
  9612. of desired size range was performed by “smear analysis”.
  9613. Samples were pooled in equimolar batches of 16 samples.
  9614. Pooled libraries were size selected on 2% agarose gels (E-Gel EX Agarose
  9615. Gels; Thermo-Fisher).
  9616. Products were cut between 250 and 350 bp (corresponding to insert sizes
  9617. of 130 to 230 bps).
  9618. Finished library pools were then sequenced on the Illumina NextSeq500 instrumen
  9619. t with 75 base read lengths.
  9620. \end_layout
  9621. \begin_layout Subsection
  9622. Read alignment and counting
  9623. \end_layout
  9624. \begin_layout Standard
  9625. Reads were aligned to the cynomolgus genome using STAR
  9626. \begin_inset CommandInset citation
  9627. LatexCommand cite
  9628. key "Dobin2013,Wilson2013"
  9629. literal "false"
  9630. \end_inset
  9631. .
  9632. Counts of uniquely mapped reads were obtained for every gene in each sample
  9633. with the “featureCounts” function from the Rsubread package, using each
  9634. of the three possibilities for the “strandSpecific” option: sense, antisense,
  9635. and unstranded
  9636. \begin_inset CommandInset citation
  9637. LatexCommand cite
  9638. key "Liao2014"
  9639. literal "false"
  9640. \end_inset
  9641. .
  9642. A few artifacts in the cynomolgus genome annotation complicated read counting.
  9643. First, no ortholog is annotated for alpha globin in the cynomolgus genome,
  9644. presumably because the human genome has two alpha globin genes with nearly
  9645. identical sequences, making the orthology relationship ambiguous.
  9646. However, two loci in the cynomolgus genome are as “hemoglobin subunit alpha-lik
  9647. e” (LOC102136192 and LOC102136846).
  9648. LOC102136192 is annotated as a pseudogene while LOC102136846 is annotated
  9649. as protein-coding.
  9650. Our globin reduction protocol was designed to include blocking of these
  9651. two genes.
  9652. Indeed, these two genes have almost the same read counts in each library
  9653. as the properly-annotated HBB gene and much larger counts than any other
  9654. gene in the unblocked libraries, giving confidence that reads derived from
  9655. the real alpha globin are mapping to both genes.
  9656. Thus, reads from both of these loci were counted as alpha globin reads
  9657. in all further analyses.
  9658. The second artifact is a small, uncharacterized non-coding RNA gene (LOC1021365
  9659. 91), which overlaps the HBA-like gene (LOC102136192) on the opposite strand.
  9660. If counting is not performed in stranded mode (or if a non-strand-specific
  9661. sequencing protocol is used), many reads mapping to the globin gene will
  9662. be discarded as ambiguous due to their overlap with this ncRNA gene, resulting
  9663. in significant undercounting of globin reads.
  9664. Therefore, stranded sense counts were used for all further analysis in
  9665. the present study to insure that we accurately accounted for globin transcript
  9666. reduction.
  9667. However, we note that stranded reads are not necessary for RNA-seq using
  9668. our protocol in standard practice.
  9669. \end_layout
  9670. \begin_layout Subsection
  9671. Normalization and Exploratory Data Analysis
  9672. \end_layout
  9673. \begin_layout Standard
  9674. Libraries were normalized by computing scaling factors using the edgeR package’s
  9675. Trimmed Mean of M-values method
  9676. \begin_inset CommandInset citation
  9677. LatexCommand cite
  9678. key "Robinson2010"
  9679. literal "false"
  9680. \end_inset
  9681. .
  9682. Log2 counts per million values (logCPM) were calculated using the cpm function
  9683. in edgeR for individual samples and aveLogCPM function for averages across
  9684. groups of samples, using those functions’ default prior count values to
  9685. avoid taking the logarithm of 0.
  9686. Genes were considered “present” if their average normalized logCPM values
  9687. across all libraries were at least -1.
  9688. Normalizing for gene length was unnecessary because the sequencing protocol
  9689. is 3’-biased and hence the expected read count for each gene is related
  9690. to the transcript’s copy number but not its length.
  9691. \end_layout
  9692. \begin_layout Standard
  9693. In order to assess the effect of blocking on reproducibility, Pearson and
  9694. Spearman correlation coefficients were computed between the logCPM values
  9695. for every pair of libraries within the globin-blocked (GB) and unblocked
  9696. (non-GB) groups, and edgeR's “estimateDisp” function was used to compute
  9697. negative binomial dispersions separately for the two groups
  9698. \begin_inset CommandInset citation
  9699. LatexCommand cite
  9700. key "Chen2014"
  9701. literal "false"
  9702. \end_inset
  9703. .
  9704. \end_layout
  9705. \begin_layout Subsection
  9706. Differential Expression Analysis
  9707. \end_layout
  9708. \begin_layout Standard
  9709. All tests for differential gene expression were performed using edgeR, by
  9710. first fitting a negative binomial generalized linear model to the counts
  9711. and normalization factors and then performing a quasi-likelihood F-test
  9712. with robust estimation of outlier gene dispersions
  9713. \begin_inset CommandInset citation
  9714. LatexCommand cite
  9715. key "Lund2012,Phipson2016"
  9716. literal "false"
  9717. \end_inset
  9718. .
  9719. To investigate the effects of globin blocking on each gene, an additive
  9720. model was fit to the full data with coefficients for globin blocking and
  9721. SampleID.
  9722. To test the effect of globin blocking on detection of differentially expressed
  9723. genes, the GB samples and non-GB samples were each analyzed independently
  9724. as follows: for each animal with both a pre-transplant and a post-transplant
  9725. time point in the data set, the pre-transplant sample and the earliest
  9726. post-transplant sample were selected, and all others were excluded, yielding
  9727. a pre-/post-transplant pair of samples for each animal (N=7 animals with
  9728. paired samples).
  9729. These samples were analyzed for pre-transplant vs.
  9730. post-transplant differential gene expression while controlling for inter-animal
  9731. variation using an additive model with coefficients for transplant and
  9732. animal ID.
  9733. In all analyses, p-values were adjusted using the Benjamini-Hochberg procedure
  9734. for FDR control
  9735. \begin_inset CommandInset citation
  9736. LatexCommand cite
  9737. key "Benjamini1995"
  9738. literal "false"
  9739. \end_inset
  9740. .
  9741. \end_layout
  9742. \begin_layout Standard
  9743. \begin_inset Note Note
  9744. status open
  9745. \begin_layout Itemize
  9746. New blood RNA-seq protocol to block reverse transcription of globin genes
  9747. \end_layout
  9748. \begin_layout Itemize
  9749. Blood RNA-seq time course after transplants with/without MSC infusion
  9750. \end_layout
  9751. \end_inset
  9752. \end_layout
  9753. \begin_layout Section
  9754. Results
  9755. \end_layout
  9756. \begin_layout Subsection
  9757. Globin blocking yields a larger and more consistent fraction of useful reads
  9758. \end_layout
  9759. \begin_layout Standard
  9760. \begin_inset ERT
  9761. status open
  9762. \begin_layout Plain Layout
  9763. \backslash
  9764. afterpage{
  9765. \end_layout
  9766. \begin_layout Plain Layout
  9767. \backslash
  9768. begin{landscape}
  9769. \end_layout
  9770. \end_inset
  9771. \end_layout
  9772. \begin_layout Standard
  9773. \begin_inset Float table
  9774. placement p
  9775. wide false
  9776. sideways false
  9777. status open
  9778. \begin_layout Plain Layout
  9779. \align center
  9780. \begin_inset Tabular
  9781. <lyxtabular version="3" rows="4" columns="7">
  9782. <features tabularvalignment="middle">
  9783. <column alignment="center" valignment="top">
  9784. <column alignment="center" valignment="top">
  9785. <column alignment="center" valignment="top">
  9786. <column alignment="center" valignment="top">
  9787. <column alignment="center" valignment="top">
  9788. <column alignment="center" valignment="top">
  9789. <column alignment="center" valignment="top">
  9790. <row>
  9791. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  9792. \begin_inset Text
  9793. \begin_layout Plain Layout
  9794. \end_layout
  9795. \end_inset
  9796. </cell>
  9797. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  9798. \begin_inset Text
  9799. \begin_layout Plain Layout
  9800. \family roman
  9801. \series medium
  9802. \shape up
  9803. \size normal
  9804. \emph off
  9805. \bar no
  9806. \strikeout off
  9807. \xout off
  9808. \uuline off
  9809. \uwave off
  9810. \noun off
  9811. \color none
  9812. Percent of Total Reads
  9813. \end_layout
  9814. \end_inset
  9815. </cell>
  9816. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  9817. \begin_inset Text
  9818. \begin_layout Plain Layout
  9819. \end_layout
  9820. \end_inset
  9821. </cell>
  9822. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  9823. \begin_inset Text
  9824. \begin_layout Plain Layout
  9825. \end_layout
  9826. \end_inset
  9827. </cell>
  9828. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  9829. \begin_inset Text
  9830. \begin_layout Plain Layout
  9831. \end_layout
  9832. \end_inset
  9833. </cell>
  9834. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  9835. \begin_inset Text
  9836. \begin_layout Plain Layout
  9837. \family roman
  9838. \series medium
  9839. \shape up
  9840. \size normal
  9841. \emph off
  9842. \bar no
  9843. \strikeout off
  9844. \xout off
  9845. \uuline off
  9846. \uwave off
  9847. \noun off
  9848. \color none
  9849. Percent of Genic Reads
  9850. \end_layout
  9851. \end_inset
  9852. </cell>
  9853. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  9854. \begin_inset Text
  9855. \begin_layout Plain Layout
  9856. \end_layout
  9857. \end_inset
  9858. </cell>
  9859. </row>
  9860. <row>
  9861. <cell alignment="center" valignment="top" bottomline="true" leftline="true" usebox="none">
  9862. \begin_inset Text
  9863. \begin_layout Plain Layout
  9864. GB
  9865. \end_layout
  9866. \end_inset
  9867. </cell>
  9868. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  9869. \begin_inset Text
  9870. \begin_layout Plain Layout
  9871. \family roman
  9872. \series medium
  9873. \shape up
  9874. \size normal
  9875. \emph off
  9876. \bar no
  9877. \strikeout off
  9878. \xout off
  9879. \uuline off
  9880. \uwave off
  9881. \noun off
  9882. \color none
  9883. Non-globin Reads
  9884. \end_layout
  9885. \end_inset
  9886. </cell>
  9887. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  9888. \begin_inset Text
  9889. \begin_layout Plain Layout
  9890. \family roman
  9891. \series medium
  9892. \shape up
  9893. \size normal
  9894. \emph off
  9895. \bar no
  9896. \strikeout off
  9897. \xout off
  9898. \uuline off
  9899. \uwave off
  9900. \noun off
  9901. \color none
  9902. Globin Reads
  9903. \end_layout
  9904. \end_inset
  9905. </cell>
  9906. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  9907. \begin_inset Text
  9908. \begin_layout Plain Layout
  9909. \family roman
  9910. \series medium
  9911. \shape up
  9912. \size normal
  9913. \emph off
  9914. \bar no
  9915. \strikeout off
  9916. \xout off
  9917. \uuline off
  9918. \uwave off
  9919. \noun off
  9920. \color none
  9921. All Genic Reads
  9922. \end_layout
  9923. \end_inset
  9924. </cell>
  9925. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  9926. \begin_inset Text
  9927. \begin_layout Plain Layout
  9928. \family roman
  9929. \series medium
  9930. \shape up
  9931. \size normal
  9932. \emph off
  9933. \bar no
  9934. \strikeout off
  9935. \xout off
  9936. \uuline off
  9937. \uwave off
  9938. \noun off
  9939. \color none
  9940. All Aligned Reads
  9941. \end_layout
  9942. \end_inset
  9943. </cell>
  9944. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  9945. \begin_inset Text
  9946. \begin_layout Plain Layout
  9947. \family roman
  9948. \series medium
  9949. \shape up
  9950. \size normal
  9951. \emph off
  9952. \bar no
  9953. \strikeout off
  9954. \xout off
  9955. \uuline off
  9956. \uwave off
  9957. \noun off
  9958. \color none
  9959. Non-globin Reads
  9960. \end_layout
  9961. \end_inset
  9962. </cell>
  9963. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  9964. \begin_inset Text
  9965. \begin_layout Plain Layout
  9966. \family roman
  9967. \series medium
  9968. \shape up
  9969. \size normal
  9970. \emph off
  9971. \bar no
  9972. \strikeout off
  9973. \xout off
  9974. \uuline off
  9975. \uwave off
  9976. \noun off
  9977. \color none
  9978. Globin Reads
  9979. \end_layout
  9980. \end_inset
  9981. </cell>
  9982. </row>
  9983. <row>
  9984. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  9985. \begin_inset Text
  9986. \begin_layout Plain Layout
  9987. \family roman
  9988. \series medium
  9989. \shape up
  9990. \size normal
  9991. \emph off
  9992. \bar no
  9993. \strikeout off
  9994. \xout off
  9995. \uuline off
  9996. \uwave off
  9997. \noun off
  9998. \color none
  9999. Yes
  10000. \end_layout
  10001. \end_inset
  10002. </cell>
  10003. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10004. \begin_inset Text
  10005. \begin_layout Plain Layout
  10006. \family roman
  10007. \series medium
  10008. \shape up
  10009. \size normal
  10010. \emph off
  10011. \bar no
  10012. \strikeout off
  10013. \xout off
  10014. \uuline off
  10015. \uwave off
  10016. \noun off
  10017. \color none
  10018. 50.4% ± 6.82
  10019. \end_layout
  10020. \end_inset
  10021. </cell>
  10022. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10023. \begin_inset Text
  10024. \begin_layout Plain Layout
  10025. \family roman
  10026. \series medium
  10027. \shape up
  10028. \size normal
  10029. \emph off
  10030. \bar no
  10031. \strikeout off
  10032. \xout off
  10033. \uuline off
  10034. \uwave off
  10035. \noun off
  10036. \color none
  10037. 3.48% ± 2.94
  10038. \end_layout
  10039. \end_inset
  10040. </cell>
  10041. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10042. \begin_inset Text
  10043. \begin_layout Plain Layout
  10044. \family roman
  10045. \series medium
  10046. \shape up
  10047. \size normal
  10048. \emph off
  10049. \bar no
  10050. \strikeout off
  10051. \xout off
  10052. \uuline off
  10053. \uwave off
  10054. \noun off
  10055. \color none
  10056. 53.9% ± 6.81
  10057. \end_layout
  10058. \end_inset
  10059. </cell>
  10060. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10061. \begin_inset Text
  10062. \begin_layout Plain Layout
  10063. \family roman
  10064. \series medium
  10065. \shape up
  10066. \size normal
  10067. \emph off
  10068. \bar no
  10069. \strikeout off
  10070. \xout off
  10071. \uuline off
  10072. \uwave off
  10073. \noun off
  10074. \color none
  10075. 89.7% ± 2.40
  10076. \end_layout
  10077. \end_inset
  10078. </cell>
  10079. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10080. \begin_inset Text
  10081. \begin_layout Plain Layout
  10082. \family roman
  10083. \series medium
  10084. \shape up
  10085. \size normal
  10086. \emph off
  10087. \bar no
  10088. \strikeout off
  10089. \xout off
  10090. \uuline off
  10091. \uwave off
  10092. \noun off
  10093. \color none
  10094. 93.5% ± 5.25
  10095. \end_layout
  10096. \end_inset
  10097. </cell>
  10098. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  10099. \begin_inset Text
  10100. \begin_layout Plain Layout
  10101. \family roman
  10102. \series medium
  10103. \shape up
  10104. \size normal
  10105. \emph off
  10106. \bar no
  10107. \strikeout off
  10108. \xout off
  10109. \uuline off
  10110. \uwave off
  10111. \noun off
  10112. \color none
  10113. 6.49% ± 5.25
  10114. \end_layout
  10115. \end_inset
  10116. </cell>
  10117. </row>
  10118. <row>
  10119. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10120. \begin_inset Text
  10121. \begin_layout Plain Layout
  10122. \family roman
  10123. \series medium
  10124. \shape up
  10125. \size normal
  10126. \emph off
  10127. \bar no
  10128. \strikeout off
  10129. \xout off
  10130. \uuline off
  10131. \uwave off
  10132. \noun off
  10133. \color none
  10134. No
  10135. \end_layout
  10136. \end_inset
  10137. </cell>
  10138. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10139. \begin_inset Text
  10140. \begin_layout Plain Layout
  10141. \family roman
  10142. \series medium
  10143. \shape up
  10144. \size normal
  10145. \emph off
  10146. \bar no
  10147. \strikeout off
  10148. \xout off
  10149. \uuline off
  10150. \uwave off
  10151. \noun off
  10152. \color none
  10153. 26.3% ± 8.95
  10154. \end_layout
  10155. \end_inset
  10156. </cell>
  10157. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10158. \begin_inset Text
  10159. \begin_layout Plain Layout
  10160. \family roman
  10161. \series medium
  10162. \shape up
  10163. \size normal
  10164. \emph off
  10165. \bar no
  10166. \strikeout off
  10167. \xout off
  10168. \uuline off
  10169. \uwave off
  10170. \noun off
  10171. \color none
  10172. 44.6% ± 16.6
  10173. \end_layout
  10174. \end_inset
  10175. </cell>
  10176. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10177. \begin_inset Text
  10178. \begin_layout Plain Layout
  10179. \family roman
  10180. \series medium
  10181. \shape up
  10182. \size normal
  10183. \emph off
  10184. \bar no
  10185. \strikeout off
  10186. \xout off
  10187. \uuline off
  10188. \uwave off
  10189. \noun off
  10190. \color none
  10191. 70.1% ± 9.38
  10192. \end_layout
  10193. \end_inset
  10194. </cell>
  10195. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10196. \begin_inset Text
  10197. \begin_layout Plain Layout
  10198. \family roman
  10199. \series medium
  10200. \shape up
  10201. \size normal
  10202. \emph off
  10203. \bar no
  10204. \strikeout off
  10205. \xout off
  10206. \uuline off
  10207. \uwave off
  10208. \noun off
  10209. \color none
  10210. 90.7% ± 5.16
  10211. \end_layout
  10212. \end_inset
  10213. </cell>
  10214. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10215. \begin_inset Text
  10216. \begin_layout Plain Layout
  10217. \family roman
  10218. \series medium
  10219. \shape up
  10220. \size normal
  10221. \emph off
  10222. \bar no
  10223. \strikeout off
  10224. \xout off
  10225. \uuline off
  10226. \uwave off
  10227. \noun off
  10228. \color none
  10229. 38.8% ± 17.1
  10230. \end_layout
  10231. \end_inset
  10232. </cell>
  10233. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  10234. \begin_inset Text
  10235. \begin_layout Plain Layout
  10236. \family roman
  10237. \series medium
  10238. \shape up
  10239. \size normal
  10240. \emph off
  10241. \bar no
  10242. \strikeout off
  10243. \xout off
  10244. \uuline off
  10245. \uwave off
  10246. \noun off
  10247. \color none
  10248. 61.2% ± 17.1
  10249. \end_layout
  10250. \end_inset
  10251. </cell>
  10252. </row>
  10253. </lyxtabular>
  10254. \end_inset
  10255. \end_layout
  10256. \begin_layout Plain Layout
  10257. \begin_inset Caption Standard
  10258. \begin_layout Plain Layout
  10259. \series bold
  10260. \begin_inset Argument 1
  10261. status collapsed
  10262. \begin_layout Plain Layout
  10263. Fractions of reads mapping to genomic features in GB and non-GB samples.
  10264. \end_layout
  10265. \end_inset
  10266. \begin_inset CommandInset label
  10267. LatexCommand label
  10268. name "tab:Fractions-of-reads"
  10269. \end_inset
  10270. Fractions of reads mapping to genomic features in GB and non-GB samples.
  10271. \series default
  10272. All values are given as mean ± standard deviation.
  10273. \end_layout
  10274. \end_inset
  10275. \end_layout
  10276. \end_inset
  10277. \end_layout
  10278. \begin_layout Standard
  10279. \begin_inset ERT
  10280. status open
  10281. \begin_layout Plain Layout
  10282. \backslash
  10283. end{landscape}
  10284. \end_layout
  10285. \begin_layout Plain Layout
  10286. }
  10287. \end_layout
  10288. \end_inset
  10289. \end_layout
  10290. \begin_layout Standard
  10291. The objective of the present study was to validate a new protocol for deep
  10292. RNA-seq of whole blood drawn into PaxGene tubes from cynomolgus monkeys
  10293. undergoing islet transplantation, with particular focus on minimizing the
  10294. loss of useful sequencing space to uninformative globin reads.
  10295. The details of the analysis with respect to transplant outcomes and the
  10296. impact of mesenchymal stem cell treatment will be reported in a separate
  10297. manuscript (in preparation).
  10298. To focus on the efficacy of our globin blocking protocol, 37 blood samples,
  10299. 16 from pre-transplant and 21 from post-transplant time points, were each
  10300. prepped once with and once without globin blocking oligos, and were then
  10301. sequenced on an Illumina NextSeq500 instrument.
  10302. The number of reads aligning to each gene in the cynomolgus genome was
  10303. counted.
  10304. Table 1 summarizes the distribution of read fractions among the GB and
  10305. non-GB libraries.
  10306. In the libraries with no globin blocking, globin reads made up an average
  10307. of 44.6% of total input reads, while reads assigned to all other genes made
  10308. up an average of 26.3%.
  10309. The remaining reads either aligned to intergenic regions (that include
  10310. long non-coding RNAs) or did not align with any annotated transcripts in
  10311. the current build of the cynomolgus genome.
  10312. In the GB libraries, globin reads made up only 3.48% and reads assigned
  10313. to all other genes increased to 50.4%.
  10314. Thus, globin blocking resulted in a 92.2% reduction in globin reads and
  10315. a 91.6% increase in yield of useful non-globin reads.
  10316. \end_layout
  10317. \begin_layout Standard
  10318. This reduction is not quite as efficient as the previous analysis showed
  10319. for human samples by DeepSAGE (<0.4% globin reads after globin reduction)
  10320. \begin_inset CommandInset citation
  10321. LatexCommand cite
  10322. key "Mastrokolias2012"
  10323. literal "false"
  10324. \end_inset
  10325. .
  10326. Nonetheless, this degree of globin reduction is sufficient to nearly double
  10327. the yield of useful reads.
  10328. Thus, globin blocking cuts the required sequencing effort (and costs) to
  10329. achieve a target coverage depth by almost 50%.
  10330. Consistent with this near doubling of yield, the average difference in
  10331. un-normalized logCPM across all genes between the GB libraries and non-GB
  10332. libraries is approximately 1 (mean = 1.01, median = 1.08), an overall 2-fold
  10333. increase.
  10334. Un-normalized values are used here because the TMM normalization correctly
  10335. identifies this 2-fold difference as biologically irrelevant and removes
  10336. it.
  10337. \end_layout
  10338. \begin_layout Standard
  10339. \begin_inset Float figure
  10340. wide false
  10341. sideways false
  10342. status collapsed
  10343. \begin_layout Plain Layout
  10344. \align center
  10345. \begin_inset Graphics
  10346. filename graphics/Globin Paper/figure1 - globin-fractions.pdf
  10347. lyxscale 50
  10348. width 75col%
  10349. \end_inset
  10350. \end_layout
  10351. \begin_layout Plain Layout
  10352. \begin_inset Caption Standard
  10353. \begin_layout Plain Layout
  10354. \series bold
  10355. \begin_inset Argument 1
  10356. status collapsed
  10357. \begin_layout Plain Layout
  10358. Fraction of genic reads in each sample aligned to non-globin genes, with
  10359. and without globin blocking (GB).
  10360. \end_layout
  10361. \end_inset
  10362. \begin_inset CommandInset label
  10363. LatexCommand label
  10364. name "fig:Fraction-of-genic-reads"
  10365. \end_inset
  10366. Fraction of genic reads in each sample aligned to non-globin genes, with
  10367. and without globin blocking (GB).
  10368. \series default
  10369. All reads in each sequencing library were aligned to the cyno genome, and
  10370. the number of reads uniquely aligning to each gene was counted.
  10371. For each sample, counts were summed separately for all globin genes and
  10372. for the remainder of the genes (non-globin genes), and the fraction of
  10373. genic reads aligned to non-globin genes was computed.
  10374. Each point represents an individual sample.
  10375. Gray + signs indicate the means for globin-blocked libraries and unblocked
  10376. libraries.
  10377. The overall distribution for each group is represented as a notched box
  10378. plots.
  10379. Points are randomly spread vertically to avoid excessive overlapping.
  10380. \end_layout
  10381. \end_inset
  10382. \end_layout
  10383. \end_inset
  10384. \end_layout
  10385. \begin_layout Standard
  10386. Another important aspect is that the standard deviations in Table
  10387. \begin_inset CommandInset ref
  10388. LatexCommand ref
  10389. reference "tab:Fractions-of-reads"
  10390. plural "false"
  10391. caps "false"
  10392. noprefix "false"
  10393. \end_inset
  10394. are uniformly smaller in the GB samples than the non-GB ones, indicating
  10395. much greater consistency of yield.
  10396. This is best seen in the percentage of non-globin reads as a fraction of
  10397. total reads aligned to annotated genes (genic reads).
  10398. For the non-GB samples, this measure ranges from 10.9% to 80.9%, while for
  10399. the GB samples it ranges from 81.9% to 99.9% (Figure
  10400. \begin_inset CommandInset ref
  10401. LatexCommand ref
  10402. reference "fig:Fraction-of-genic-reads"
  10403. plural "false"
  10404. caps "false"
  10405. noprefix "false"
  10406. \end_inset
  10407. ).
  10408. This means that for applications where it is critical that each sample
  10409. achieve a specified minimum coverage in order to provide useful information,
  10410. it would be necessary to budget up to 10 times the sequencing depth per
  10411. sample without globin blocking, even though the average yield improvement
  10412. for globin blocking is only 2-fold, because every sample has a chance of
  10413. being 90% globin and 10% useful reads.
  10414. Hence, the more consistent behavior of GB samples makes planning an experiment
  10415. easier and more efficient because it eliminates the need to over-sequence
  10416. every sample in order to guard against the worst case of a high-globin
  10417. fraction.
  10418. \end_layout
  10419. \begin_layout Subsection
  10420. Globin blocking lowers the noise floor and allows detection of about 2000
  10421. more low-expression genes
  10422. \end_layout
  10423. \begin_layout Standard
  10424. \begin_inset Flex TODO Note (inline)
  10425. status open
  10426. \begin_layout Plain Layout
  10427. Remove redundant titles from figures
  10428. \end_layout
  10429. \end_inset
  10430. \end_layout
  10431. \begin_layout Standard
  10432. \begin_inset Float figure
  10433. wide false
  10434. sideways false
  10435. status collapsed
  10436. \begin_layout Plain Layout
  10437. \align center
  10438. \begin_inset Graphics
  10439. filename graphics/Globin Paper/figure2 - aveLogCPM-colored.pdf
  10440. lyxscale 50
  10441. height 60theight%
  10442. \end_inset
  10443. \end_layout
  10444. \begin_layout Plain Layout
  10445. \begin_inset Caption Standard
  10446. \begin_layout Plain Layout
  10447. \series bold
  10448. \begin_inset Argument 1
  10449. status collapsed
  10450. \begin_layout Plain Layout
  10451. Distributions of average group gene abundances when normalized separately
  10452. or together.
  10453. \end_layout
  10454. \end_inset
  10455. \begin_inset CommandInset label
  10456. LatexCommand label
  10457. name "fig:logcpm-dists"
  10458. \end_inset
  10459. Distributions of average group gene abundances when normalized separately
  10460. or together.
  10461. \series default
  10462. All reads in each sequencing library were aligned to the cyno genome, and
  10463. the number of reads uniquely aligning to each gene was counted.
  10464. Genes with zero counts in all libraries were discarded.
  10465. Libraries were normalized using the TMM method.
  10466. Libraries were split into globin-blocked (GB) and non-GB groups and the
  10467. average abundance for each gene in both groups, measured in log2 counts
  10468. per million reads counted, was computed using the aveLogCPM function.
  10469. The distribution of average gene logCPM values was plotted for both groups
  10470. using a kernel density plot to approximate a continuous distribution.
  10471. The logCPM GB distributions are marked in red, non-GB in blue.
  10472. The black vertical line denotes the chosen detection threshold of -1.
  10473. Top panel: Libraries were split into GB and non-GB groups first and normalized
  10474. separately.
  10475. Bottom panel: Libraries were all normalized together first and then split
  10476. into groups.
  10477. \end_layout
  10478. \end_inset
  10479. \end_layout
  10480. \begin_layout Plain Layout
  10481. \end_layout
  10482. \end_inset
  10483. \end_layout
  10484. \begin_layout Standard
  10485. Since globin blocking yields more usable sequencing depth, it should also
  10486. allow detection of more genes at any given threshold.
  10487. When we looked at the distribution of average normalized logCPM values
  10488. across all libraries for genes with at least one read assigned to them,
  10489. we observed the expected bimodal distribution, with a high-abundance "signal"
  10490. peak representing detected genes and a low-abundance "noise" peak representing
  10491. genes whose read count did not rise above the noise floor (Figure
  10492. \begin_inset CommandInset ref
  10493. LatexCommand ref
  10494. reference "fig:logcpm-dists"
  10495. plural "false"
  10496. caps "false"
  10497. noprefix "false"
  10498. \end_inset
  10499. ).
  10500. Consistent with the 2-fold increase in raw counts assigned to non-globin
  10501. genes, the signal peak for GB samples is shifted to the right relative
  10502. to the non-GB signal peak.
  10503. When all the samples are normalized together, this difference is normalized
  10504. out, lining up the signal peaks, and this reveals that, as expected, the
  10505. noise floor for the GB samples is about 2-fold lower.
  10506. This greater separation between signal and noise peaks in the GB samples
  10507. means that low-expression genes should be more easily detected and more
  10508. precisely quantified than in the non-GB samples.
  10509. \end_layout
  10510. \begin_layout Standard
  10511. \begin_inset Float figure
  10512. wide false
  10513. sideways false
  10514. status collapsed
  10515. \begin_layout Plain Layout
  10516. \align center
  10517. \begin_inset Graphics
  10518. filename graphics/Globin Paper/figure3 - detection.pdf
  10519. lyxscale 50
  10520. width 70col%
  10521. \end_inset
  10522. \end_layout
  10523. \begin_layout Plain Layout
  10524. \begin_inset Caption Standard
  10525. \begin_layout Plain Layout
  10526. \series bold
  10527. \begin_inset Argument 1
  10528. status collapsed
  10529. \begin_layout Plain Layout
  10530. Gene detections as a function of abundance thresholds in globin-blocked
  10531. (GB) and non-GB samples.
  10532. \end_layout
  10533. \end_inset
  10534. \begin_inset CommandInset label
  10535. LatexCommand label
  10536. name "fig:Gene-detections"
  10537. \end_inset
  10538. Gene detections as a function of abundance thresholds in globin-blocked
  10539. (GB) and non-GB samples.
  10540. \series default
  10541. Average abundance (logCPM,
  10542. \begin_inset Formula $\log_{2}$
  10543. \end_inset
  10544. counts per million reads counted) was computed by separate group normalization
  10545. as described in Figure
  10546. \begin_inset CommandInset ref
  10547. LatexCommand ref
  10548. reference "fig:logcpm-dists"
  10549. plural "false"
  10550. caps "false"
  10551. noprefix "false"
  10552. \end_inset
  10553. for both the GB and non-GB groups, as well as for all samples considered
  10554. as one large group.
  10555. For each every integer threshold from -2 to 3, the number of genes detected
  10556. at or above that logCPM threshold was plotted for each group.
  10557. \end_layout
  10558. \end_inset
  10559. \end_layout
  10560. \begin_layout Plain Layout
  10561. \end_layout
  10562. \end_inset
  10563. \end_layout
  10564. \begin_layout Standard
  10565. Based on these distributions, we selected a detection threshold of -1, which
  10566. is approximately the leftmost edge of the trough between the signal and
  10567. noise peaks.
  10568. This represents the most liberal possible detection threshold that doesn't
  10569. call substantial numbers of noise genes as detected.
  10570. Among the full dataset, 13429 genes were detected at this threshold, and
  10571. 22276 were not.
  10572. When considering the GB libraries and non-GB libraries separately and re-comput
  10573. ing normalization factors independently within each group, 14535 genes were
  10574. detected in the GB libraries while only 12460 were detected in the non-GB
  10575. libraries.
  10576. Thus, GB allowed the detection of 2000 extra genes that were buried under
  10577. the noise floor without GB.
  10578. This pattern of at least 2000 additional genes detected with GB was also
  10579. consistent across a wide range of possible detection thresholds, from -2
  10580. to 3 (see Figure
  10581. \begin_inset CommandInset ref
  10582. LatexCommand ref
  10583. reference "fig:Gene-detections"
  10584. plural "false"
  10585. caps "false"
  10586. noprefix "false"
  10587. \end_inset
  10588. ).
  10589. \end_layout
  10590. \begin_layout Subsection
  10591. Globin blocking does not add significant additional noise or decrease sample
  10592. quality
  10593. \end_layout
  10594. \begin_layout Standard
  10595. One potential worry is that the globin blocking protocol could perturb the
  10596. levels of non-globin genes.
  10597. There are two kinds of possible perturbations: systematic and random.
  10598. The former is not a major concern for detection of differential expression,
  10599. since a 2-fold change in every sample has no effect on the relative fold
  10600. change between samples.
  10601. In contrast, random perturbations would increase the noise and obscure
  10602. the signal in the dataset, reducing the capacity to detect differential
  10603. expression.
  10604. \end_layout
  10605. \begin_layout Standard
  10606. \begin_inset Float figure
  10607. wide false
  10608. sideways false
  10609. status collapsed
  10610. \begin_layout Plain Layout
  10611. \align center
  10612. \begin_inset Graphics
  10613. filename graphics/Globin Paper/figure4 - maplot-colored.pdf
  10614. lyxscale 50
  10615. width 60col%
  10616. groupId colwidth
  10617. \end_inset
  10618. \end_layout
  10619. \begin_layout Plain Layout
  10620. \begin_inset Caption Standard
  10621. \begin_layout Plain Layout
  10622. \begin_inset Argument 1
  10623. status collapsed
  10624. \begin_layout Plain Layout
  10625. MA plot showing effects of globin blocking on each gene's abundance.
  10626. \end_layout
  10627. \end_inset
  10628. \begin_inset CommandInset label
  10629. LatexCommand label
  10630. name "fig:MA-plot"
  10631. \end_inset
  10632. \series bold
  10633. MA plot showing effects of globin blocking on each gene's abundance.
  10634. \series default
  10635. All libraries were normalized together as described in Figure
  10636. \begin_inset CommandInset ref
  10637. LatexCommand ref
  10638. reference "fig:logcpm-dists"
  10639. plural "false"
  10640. caps "false"
  10641. noprefix "false"
  10642. \end_inset
  10643. , and genes with an average logCPM below -1 were filtered out.
  10644. Each remaining gene was tested for differential abundance with respect
  10645. to globin blocking (GB) using edgeR’s quasi-likelihood F-test, fitting
  10646. a negative binomial generalized linear model to table of read counts in
  10647. each library.
  10648. For each gene, edgeR reported average abundance (logCPM),
  10649. \begin_inset Formula $\log_{2}$
  10650. \end_inset
  10651. fold change (logFC), p-value, and Benjamini-Hochberg adjusted false discovery
  10652. rate (FDR).
  10653. Each gene's logFC was plotted against its logCPM, colored by FDR.
  10654. Red points are significant at ≤10% FDR, and blue are not significant at
  10655. that threshold.
  10656. The alpha and beta globin genes targeted for blocking are marked with large
  10657. triangles, while all other genes are represented as small points.
  10658. \end_layout
  10659. \end_inset
  10660. \end_layout
  10661. \begin_layout Plain Layout
  10662. \end_layout
  10663. \end_inset
  10664. \end_layout
  10665. \begin_layout Standard
  10666. \begin_inset Flex TODO Note (inline)
  10667. status open
  10668. \begin_layout Plain Layout
  10669. Standardize on
  10670. \begin_inset Quotes eld
  10671. \end_inset
  10672. log2
  10673. \begin_inset Quotes erd
  10674. \end_inset
  10675. notation
  10676. \end_layout
  10677. \end_inset
  10678. \end_layout
  10679. \begin_layout Standard
  10680. The data do indeed show small systematic perturbations in gene levels (Figure
  10681. \begin_inset CommandInset ref
  10682. LatexCommand ref
  10683. reference "fig:MA-plot"
  10684. plural "false"
  10685. caps "false"
  10686. noprefix "false"
  10687. \end_inset
  10688. ).
  10689. Other than the 3 designated alpha and beta globin genes, two other genes
  10690. stand out as having especially large negative log fold changes: HBD and
  10691. LOC1021365.
  10692. HBD, delta globin, is most likely targeted by the blocking oligos due to
  10693. high sequence homology with the other globin genes.
  10694. LOC1021365 is the aforementioned ncRNA that is reverse-complementary to
  10695. one of the alpha-like genes and that would be expected to be removed during
  10696. the globin blocking step.
  10697. All other genes appear in a cluster centered vertically at 0, and the vast
  10698. majority of genes in this cluster show an absolute log2(FC) of 0.5 or less.
  10699. Nevertheless, many of these small perturbations are still statistically
  10700. significant, indicating that the globin blocking oligos likely cause very
  10701. small but non-zero systematic perturbations in measured gene expression
  10702. levels.
  10703. \end_layout
  10704. \begin_layout Standard
  10705. \begin_inset Float figure
  10706. wide false
  10707. sideways false
  10708. status collapsed
  10709. \begin_layout Plain Layout
  10710. \align center
  10711. \begin_inset Graphics
  10712. filename graphics/Globin Paper/figure5 - corrplot.pdf
  10713. lyxscale 50
  10714. width 70col%
  10715. \end_inset
  10716. \end_layout
  10717. \begin_layout Plain Layout
  10718. \begin_inset Caption Standard
  10719. \begin_layout Plain Layout
  10720. \series bold
  10721. \begin_inset Argument 1
  10722. status collapsed
  10723. \begin_layout Plain Layout
  10724. Comparison of inter-sample gene abundance correlations with and without
  10725. globin blocking.
  10726. \end_layout
  10727. \end_inset
  10728. \begin_inset CommandInset label
  10729. LatexCommand label
  10730. name "fig:gene-abundance-correlations"
  10731. \end_inset
  10732. Comparison of inter-sample gene abundance correlations with and without
  10733. globin blocking (GB).
  10734. \series default
  10735. All libraries were normalized together as described in Figure 2, and genes
  10736. with an average abundance (logCPM, log2 counts per million reads counted)
  10737. less than -1 were filtered out.
  10738. Each gene’s logCPM was computed in each library using the edgeR cpm function.
  10739. For each pair of biological samples, the Pearson correlation between those
  10740. samples' GB libraries was plotted against the correlation between the same
  10741. samples’ non-GB libraries.
  10742. Each point represents an unique pair of samples.
  10743. The solid gray line shows a quantile-quantile plot of distribution of GB
  10744. correlations vs.
  10745. that of non-GB correlations.
  10746. The thin dashed line is the identity line, provided for reference.
  10747. \end_layout
  10748. \end_inset
  10749. \end_layout
  10750. \begin_layout Plain Layout
  10751. \end_layout
  10752. \end_inset
  10753. \end_layout
  10754. \begin_layout Standard
  10755. To evaluate the possibility of globin blocking causing random perturbations
  10756. and reducing sample quality, we computed the Pearson correlation between
  10757. logCPM values for every pair of samples with and without GB and plotted
  10758. them against each other (Figure
  10759. \begin_inset CommandInset ref
  10760. LatexCommand ref
  10761. reference "fig:gene-abundance-correlations"
  10762. plural "false"
  10763. caps "false"
  10764. noprefix "false"
  10765. \end_inset
  10766. ).
  10767. The plot indicated that the GB libraries have higher sample-to-sample correlati
  10768. ons than the non-GB libraries.
  10769. Parametric and nonparametric tests for differences between the correlations
  10770. with and without GB both confirmed that this difference was highly significant
  10771. (2-sided paired t-test: t = 37.2, df = 665, P ≪ 2.2e-16; 2-sided Wilcoxon
  10772. sign-rank test: V = 2195, P ≪ 2.2e-16).
  10773. Performing the same tests on the Spearman correlations gave the same conclusion
  10774. (t-test: t = 26.8, df = 665, P ≪ 2.2e-16; sign-rank test: V = 8781, P ≪ 2.2e-16).
  10775. The edgeR package was used to compute the overall biological coefficient
  10776. of variation (BCV) for GB and non-GB libraries, and found that globin blocking
  10777. resulted in a negligible increase in the BCV (0.417 with GB vs.
  10778. 0.400 without).
  10779. The near equality of the BCVs for both sets indicates that the higher correlati
  10780. ons in the GB libraries are most likely a result of the increased yield
  10781. of useful reads, which reduces the contribution of Poisson counting uncertainty
  10782. to the overall variance of the logCPM values
  10783. \begin_inset CommandInset citation
  10784. LatexCommand cite
  10785. key "McCarthy2012"
  10786. literal "false"
  10787. \end_inset
  10788. .
  10789. This improves the precision of expression measurements and more than offsets
  10790. the negligible increase in BCV.
  10791. \end_layout
  10792. \begin_layout Subsection
  10793. More differentially expressed genes are detected with globin blocking
  10794. \end_layout
  10795. \begin_layout Standard
  10796. \begin_inset Float table
  10797. wide false
  10798. sideways false
  10799. status collapsed
  10800. \begin_layout Plain Layout
  10801. \align center
  10802. \begin_inset Tabular
  10803. <lyxtabular version="3" rows="5" columns="5">
  10804. <features tabularvalignment="middle">
  10805. <column alignment="center" valignment="top">
  10806. <column alignment="center" valignment="top">
  10807. <column alignment="center" valignment="top">
  10808. <column alignment="center" valignment="top">
  10809. <column alignment="center" valignment="top">
  10810. <row>
  10811. <cell alignment="center" valignment="top" usebox="none">
  10812. \begin_inset Text
  10813. \begin_layout Plain Layout
  10814. \end_layout
  10815. \end_inset
  10816. </cell>
  10817. <cell alignment="center" valignment="top" usebox="none">
  10818. \begin_inset Text
  10819. \begin_layout Plain Layout
  10820. \end_layout
  10821. \end_inset
  10822. </cell>
  10823. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  10824. \begin_inset Text
  10825. \begin_layout Plain Layout
  10826. \series bold
  10827. No Globin Blocking
  10828. \end_layout
  10829. \end_inset
  10830. </cell>
  10831. <cell multicolumn="2" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10832. \begin_inset Text
  10833. \begin_layout Plain Layout
  10834. \end_layout
  10835. \end_inset
  10836. </cell>
  10837. <cell multicolumn="2" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  10838. \begin_inset Text
  10839. \begin_layout Plain Layout
  10840. \end_layout
  10841. \end_inset
  10842. </cell>
  10843. </row>
  10844. <row>
  10845. <cell alignment="center" valignment="top" usebox="none">
  10846. \begin_inset Text
  10847. \begin_layout Plain Layout
  10848. \end_layout
  10849. \end_inset
  10850. </cell>
  10851. <cell alignment="center" valignment="top" usebox="none">
  10852. \begin_inset Text
  10853. \begin_layout Plain Layout
  10854. \end_layout
  10855. \end_inset
  10856. </cell>
  10857. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10858. \begin_inset Text
  10859. \begin_layout Plain Layout
  10860. \series bold
  10861. Up
  10862. \end_layout
  10863. \end_inset
  10864. </cell>
  10865. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10866. \begin_inset Text
  10867. \begin_layout Plain Layout
  10868. \series bold
  10869. NS
  10870. \end_layout
  10871. \end_inset
  10872. </cell>
  10873. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  10874. \begin_inset Text
  10875. \begin_layout Plain Layout
  10876. \series bold
  10877. Down
  10878. \end_layout
  10879. \end_inset
  10880. </cell>
  10881. </row>
  10882. <row>
  10883. <cell multirow="3" alignment="center" valignment="middle" topline="true" bottomline="true" leftline="true" usebox="none">
  10884. \begin_inset Text
  10885. \begin_layout Plain Layout
  10886. \series bold
  10887. Globin-Blocking
  10888. \end_layout
  10889. \end_inset
  10890. </cell>
  10891. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10892. \begin_inset Text
  10893. \begin_layout Plain Layout
  10894. \series bold
  10895. Up
  10896. \end_layout
  10897. \end_inset
  10898. </cell>
  10899. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10900. \begin_inset Text
  10901. \begin_layout Plain Layout
  10902. \family roman
  10903. \series medium
  10904. \shape up
  10905. \size normal
  10906. \emph off
  10907. \bar no
  10908. \strikeout off
  10909. \xout off
  10910. \uuline off
  10911. \uwave off
  10912. \noun off
  10913. \color none
  10914. 231
  10915. \end_layout
  10916. \end_inset
  10917. </cell>
  10918. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10919. \begin_inset Text
  10920. \begin_layout Plain Layout
  10921. \family roman
  10922. \series medium
  10923. \shape up
  10924. \size normal
  10925. \emph off
  10926. \bar no
  10927. \strikeout off
  10928. \xout off
  10929. \uuline off
  10930. \uwave off
  10931. \noun off
  10932. \color none
  10933. 515
  10934. \end_layout
  10935. \end_inset
  10936. </cell>
  10937. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  10938. \begin_inset Text
  10939. \begin_layout Plain Layout
  10940. \family roman
  10941. \series medium
  10942. \shape up
  10943. \size normal
  10944. \emph off
  10945. \bar no
  10946. \strikeout off
  10947. \xout off
  10948. \uuline off
  10949. \uwave off
  10950. \noun off
  10951. \color none
  10952. 2
  10953. \end_layout
  10954. \end_inset
  10955. </cell>
  10956. </row>
  10957. <row>
  10958. <cell multirow="4" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10959. \begin_inset Text
  10960. \begin_layout Plain Layout
  10961. \end_layout
  10962. \end_inset
  10963. </cell>
  10964. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10965. \begin_inset Text
  10966. \begin_layout Plain Layout
  10967. \series bold
  10968. NS
  10969. \end_layout
  10970. \end_inset
  10971. </cell>
  10972. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10973. \begin_inset Text
  10974. \begin_layout Plain Layout
  10975. \family roman
  10976. \series medium
  10977. \shape up
  10978. \size normal
  10979. \emph off
  10980. \bar no
  10981. \strikeout off
  10982. \xout off
  10983. \uuline off
  10984. \uwave off
  10985. \noun off
  10986. \color none
  10987. 160
  10988. \end_layout
  10989. \end_inset
  10990. </cell>
  10991. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10992. \begin_inset Text
  10993. \begin_layout Plain Layout
  10994. \family roman
  10995. \series medium
  10996. \shape up
  10997. \size normal
  10998. \emph off
  10999. \bar no
  11000. \strikeout off
  11001. \xout off
  11002. \uuline off
  11003. \uwave off
  11004. \noun off
  11005. \color none
  11006. 11235
  11007. \end_layout
  11008. \end_inset
  11009. </cell>
  11010. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  11011. \begin_inset Text
  11012. \begin_layout Plain Layout
  11013. \family roman
  11014. \series medium
  11015. \shape up
  11016. \size normal
  11017. \emph off
  11018. \bar no
  11019. \strikeout off
  11020. \xout off
  11021. \uuline off
  11022. \uwave off
  11023. \noun off
  11024. \color none
  11025. 136
  11026. \end_layout
  11027. \end_inset
  11028. </cell>
  11029. </row>
  11030. <row>
  11031. <cell multirow="4" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  11032. \begin_inset Text
  11033. \begin_layout Plain Layout
  11034. \end_layout
  11035. \end_inset
  11036. </cell>
  11037. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  11038. \begin_inset Text
  11039. \begin_layout Plain Layout
  11040. \series bold
  11041. Down
  11042. \end_layout
  11043. \end_inset
  11044. </cell>
  11045. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  11046. \begin_inset Text
  11047. \begin_layout Plain Layout
  11048. \family roman
  11049. \series medium
  11050. \shape up
  11051. \size normal
  11052. \emph off
  11053. \bar no
  11054. \strikeout off
  11055. \xout off
  11056. \uuline off
  11057. \uwave off
  11058. \noun off
  11059. \color none
  11060. 0
  11061. \end_layout
  11062. \end_inset
  11063. </cell>
  11064. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  11065. \begin_inset Text
  11066. \begin_layout Plain Layout
  11067. \family roman
  11068. \series medium
  11069. \shape up
  11070. \size normal
  11071. \emph off
  11072. \bar no
  11073. \strikeout off
  11074. \xout off
  11075. \uuline off
  11076. \uwave off
  11077. \noun off
  11078. \color none
  11079. 548
  11080. \end_layout
  11081. \end_inset
  11082. </cell>
  11083. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  11084. \begin_inset Text
  11085. \begin_layout Plain Layout
  11086. \family roman
  11087. \series medium
  11088. \shape up
  11089. \size normal
  11090. \emph off
  11091. \bar no
  11092. \strikeout off
  11093. \xout off
  11094. \uuline off
  11095. \uwave off
  11096. \noun off
  11097. \color none
  11098. 127
  11099. \end_layout
  11100. \end_inset
  11101. </cell>
  11102. </row>
  11103. </lyxtabular>
  11104. \end_inset
  11105. \end_layout
  11106. \begin_layout Plain Layout
  11107. \begin_inset Caption Standard
  11108. \begin_layout Plain Layout
  11109. \series bold
  11110. \begin_inset Argument 1
  11111. status open
  11112. \begin_layout Plain Layout
  11113. Comparison of significantly differentially expressed genes with and without
  11114. globin blocking.
  11115. \end_layout
  11116. \end_inset
  11117. \begin_inset CommandInset label
  11118. LatexCommand label
  11119. name "tab:Comparison-of-significant"
  11120. \end_inset
  11121. Comparison of significantly differentially expressed genes with and without
  11122. globin blocking.
  11123. \series default
  11124. Up, Down: Genes significantly up/down-regulated in post-transplant samples
  11125. relative to pre-transplant samples, with a false discovery rate of 10%
  11126. or less.
  11127. NS: Non-significant genes (false discovery rate greater than 10%).
  11128. \end_layout
  11129. \end_inset
  11130. \end_layout
  11131. \begin_layout Plain Layout
  11132. \end_layout
  11133. \end_inset
  11134. \end_layout
  11135. \begin_layout Standard
  11136. To compare performance on differential gene expression tests, we took subsets
  11137. of both the GB and non-GB libraries with exactly one pre-transplant and
  11138. one post-transplant sample for each animal that had paired samples available
  11139. for analysis (N=7 animals, N=14 samples in each subset).
  11140. The same test for pre- vs.
  11141. post-transplant differential gene expression was performed on the same
  11142. 7 pairs of samples from GB libraries and non-GB libraries, in each case
  11143. using an FDR of 10% as the threshold of significance.
  11144. Out of 12954 genes that passed the detection threshold in both subsets,
  11145. 358 were called significantly differentially expressed in the same direction
  11146. in both sets; 1063 were differentially expressed in the GB set only; 296
  11147. were differentially expressed in the non-GB set only; 2 genes were called
  11148. significantly up in the GB set but significantly down in the non-GB set;
  11149. and the remaining 11235 were not called differentially expressed in either
  11150. set.
  11151. These data are summarized in Table
  11152. \begin_inset CommandInset ref
  11153. LatexCommand ref
  11154. reference "tab:Comparison-of-significant"
  11155. plural "false"
  11156. caps "false"
  11157. noprefix "false"
  11158. \end_inset
  11159. .
  11160. The differences in BCV calculated by EdgeR for these subsets of samples
  11161. were negligible (BCV = 0.302 for GB and 0.297 for non-GB).
  11162. \end_layout
  11163. \begin_layout Standard
  11164. The key point is that the GB data results in substantially more differentially
  11165. expressed calls than the non-GB data.
  11166. Since there is no gold standard for this dataset, it is impossible to be
  11167. certain whether this is due to under-calling of differential expression
  11168. in the non-GB samples or over-calling in the GB samples.
  11169. However, given that both datasets are derived from the same biological
  11170. samples and have nearly equal BCVs, it is more likely that the larger number
  11171. of DE calls in the GB samples are genuine detections that were enabled
  11172. by the higher sequencing depth and measurement precision of the GB samples.
  11173. Note that the same set of genes was considered in both subsets, so the
  11174. larger number of differentially expressed gene calls in the GB data set
  11175. reflects a greater sensitivity to detect significant differential gene
  11176. expression and not simply the larger total number of detected genes in
  11177. GB samples described earlier.
  11178. \end_layout
  11179. \begin_layout Section
  11180. Discussion
  11181. \end_layout
  11182. \begin_layout Standard
  11183. The original experience with whole blood gene expression profiling on DNA
  11184. microarrays demonstrated that the high concentration of globin transcripts
  11185. reduced the sensitivity to detect genes with relatively low expression
  11186. levels, in effect, significantly reducing the sensitivity.
  11187. To address this limitation, commercial protocols for globin reduction were
  11188. developed based on strategies to block globin transcript amplification
  11189. during labeling or physically removing globin transcripts by affinity bead
  11190. methods
  11191. \begin_inset CommandInset citation
  11192. LatexCommand cite
  11193. key "Winn2010"
  11194. literal "false"
  11195. \end_inset
  11196. .
  11197. More recently, using the latest generation of labeling protocols and arrays,
  11198. it was determined that globin reduction was no longer necessary to obtain
  11199. sufficient sensitivity to detect differential transcript expression
  11200. \begin_inset CommandInset citation
  11201. LatexCommand cite
  11202. key "NuGEN2010"
  11203. literal "false"
  11204. \end_inset
  11205. .
  11206. However, we are not aware of any publications using these currently available
  11207. protocols the with latest generation of microarrays that actually compare
  11208. the detection sensitivity with and without globin reduction.
  11209. However, in practice this has now been adopted generally primarily driven
  11210. by concerns for cost control.
  11211. The main objective of our work was to directly test the impact of globin
  11212. gene transcripts and a new globin blocking protocol for application to
  11213. the newest generation of differential gene expression profiling determined
  11214. using next generation sequencing.
  11215. \end_layout
  11216. \begin_layout Standard
  11217. The challenge of doing global gene expression profiling in cynomolgus monkeys
  11218. is that the current available arrays were never designed to comprehensively
  11219. cover this genome and have not been updated since the first assemblies
  11220. of the cynomolgus genome were published.
  11221. Therefore, we determined that the best strategy for peripheral blood profiling
  11222. was to do deep RNA-seq and inform the workflow using the latest available
  11223. genome assembly and annotation
  11224. \begin_inset CommandInset citation
  11225. LatexCommand cite
  11226. key "Wilson2013"
  11227. literal "false"
  11228. \end_inset
  11229. .
  11230. However, it was not immediately clear whether globin reduction was necessary
  11231. for RNA-seq or how much improvement in efficiency or sensitivity to detect
  11232. differential gene expression would be achieved for the added cost and work.
  11233. \end_layout
  11234. \begin_layout Standard
  11235. We only found one report that demonstrated that globin reduction significantly
  11236. improved the effective read yields for sequencing of human peripheral blood
  11237. cell RNA using a DeepSAGE protocol
  11238. \begin_inset CommandInset citation
  11239. LatexCommand cite
  11240. key "Mastrokolias2012"
  11241. literal "false"
  11242. \end_inset
  11243. .
  11244. The approach to DeepSAGE involves two different restriction enzymes that
  11245. purify and then tag small fragments of transcripts at specific locations
  11246. and thus, significantly reduces the complexity of the transcriptome.
  11247. Therefore, we could not determine how DeepSAGE results would translate
  11248. to the common strategy in the field for assaying the entire transcript
  11249. population by whole-transcriptome 3’-end RNA-seq.
  11250. Furthermore, if globin reduction is necessary, we also needed a globin
  11251. reduction method specific to cynomolgus globin sequences that would work
  11252. an organism for which no kit is available off the shelf.
  11253. \end_layout
  11254. \begin_layout Standard
  11255. As mentioned above, the addition of globin blocking oligos has a very small
  11256. impact on measured expression levels of gene expression.
  11257. However, this is a non-issue for the purposes of differential expression
  11258. testing, since a systematic change in a gene in all samples does not affect
  11259. relative expression levels between samples.
  11260. However, we must acknowledge that simple comparisons of gene expression
  11261. data obtained by GB and non-GB protocols are not possible without additional
  11262. normalization.
  11263. \end_layout
  11264. \begin_layout Standard
  11265. More importantly, globin blocking not only nearly doubles the yield of usable
  11266. reads, it also increases inter-sample correlation and sensitivity to detect
  11267. differential gene expression relative to the same set of samples profiled
  11268. without blocking.
  11269. In addition, globin blocking does not add a significant amount of random
  11270. noise to the data.
  11271. Globin blocking thus represents a cost-effective way to squeeze more data
  11272. and statistical power out of the same blood samples and the same amount
  11273. of sequencing.
  11274. In conclusion, globin reduction greatly increases the yield of useful RNA-seq
  11275. reads mapping to the rest of the genome, with minimal perturbations in
  11276. the relative levels of non-globin genes.
  11277. Based on these results, globin transcript reduction using sequence-specific,
  11278. complementary blocking oligonucleotides is recommended for all deep RNA-seq
  11279. of cynomolgus and other nonhuman primate blood samples.
  11280. \end_layout
  11281. \begin_layout Section
  11282. Future Directions
  11283. \end_layout
  11284. \begin_layout Standard
  11285. One drawback of the globin blocking method presented in this analysis is
  11286. a poor yield of genic reads, only around 50%.
  11287. In a separate experiment, the reagent mixture was modified so as to address
  11288. this drawback, resulting in a method that produces an even better reduction
  11289. in globin reads without reducing the overall fraction of genic reads.
  11290. However, the data showing this improvement consists of only a few test
  11291. samples, so the larger data set analyzed above was chosen in order to demonstra
  11292. te the effectiveness of the method in reducing globin reads while preserving
  11293. the biological signal.
  11294. \end_layout
  11295. \begin_layout Standard
  11296. The motivation for developing a fast practical way to enrich for non-globin
  11297. reads in cyno blood samples was to enable a large-scale RNA-seq experiment
  11298. investigating the effects of mesenchymal stem cell infusion on blood gene
  11299. expression in cynomologus transplant recipients in a time course after
  11300. transplantation.
  11301. With the globin blocking method in place, the way is now clear for this
  11302. experiment to proceed.
  11303. \end_layout
  11304. \begin_layout Chapter
  11305. Future Directions
  11306. \end_layout
  11307. \begin_layout Standard
  11308. \begin_inset Flex TODO Note (inline)
  11309. status open
  11310. \begin_layout Plain Layout
  11311. If there are any chapter-independent future directions, put them here.
  11312. Otherwise, delete this section.
  11313. Check in the directions if this is OK.
  11314. \end_layout
  11315. \end_inset
  11316. \end_layout
  11317. \begin_layout Standard
  11318. \begin_inset ERT
  11319. status collapsed
  11320. \begin_layout Plain Layout
  11321. % Use "References" as the title of the Bibliography
  11322. \end_layout
  11323. \begin_layout Plain Layout
  11324. \backslash
  11325. renewcommand{
  11326. \backslash
  11327. bibname}{References}
  11328. \end_layout
  11329. \end_inset
  11330. \end_layout
  11331. \begin_layout Standard
  11332. \begin_inset CommandInset bibtex
  11333. LatexCommand bibtex
  11334. btprint "btPrintCited"
  11335. bibfiles "code-refs,refs-PROCESSED"
  11336. options "bibtotoc,unsrt"
  11337. \end_inset
  11338. \end_layout
  11339. \begin_layout Standard
  11340. \begin_inset Flex TODO Note (inline)
  11341. status open
  11342. \begin_layout Plain Layout
  11343. Check bib entry formatting & sort order
  11344. \end_layout
  11345. \end_inset
  11346. \end_layout
  11347. \begin_layout Standard
  11348. \begin_inset Flex TODO Note (inline)
  11349. status open
  11350. \begin_layout Plain Layout
  11351. Check in-text citation format.
  11352. Probably don't just want [1], [2], etc.
  11353. \end_layout
  11354. \end_inset
  11355. \end_layout
  11356. \end_body
  11357. \end_document