thesis.lyx 197 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262
  1. #LyX 2.3 created this file. For more info see http://www.lyx.org/
  2. \lyxformat 544
  3. \begin_document
  4. \begin_header
  5. \save_transient_properties true
  6. \origin unavailable
  7. \textclass extbook
  8. \begin_preamble
  9. % List all used files in log output
  10. \listfiles
  11. % Add a DRAFT watermark
  12. \usepackage{draftwatermark}
  13. \SetWatermarkLightness{0.97}
  14. \SetWatermarkScale{1}
  15. % Set up required header format
  16. \usepackage{fancyhdr}
  17. \pagestyle{fancy}
  18. \renewcommand{\headrulewidth}{0pt}
  19. \rhead{}
  20. \lhead{}
  21. \rfoot{}
  22. \lfoot{}
  23. \cfoot{\thepage} % Page number bottom center
  24. % https://tex.stackexchange.com/questions/65680/automatically-bold-first-sentence-of-a-floats-caption
  25. \usepackage{xstring}
  26. \usepackage{etoolbox}
  27. \usepackage{caption}
  28. \captionsetup{labelfont=bf,tableposition=top}
  29. \makeatletter
  30. \newcommand\formatlabel[1]{%
  31. \noexpandarg
  32. \IfSubStr{#1}{.}{%
  33. \StrBefore{#1}{.}[\firstcaption]%
  34. \StrBehind{#1}{.}[\secondcaption]%
  35. \textbf{\firstcaption.} \secondcaption}{%
  36. #1}%
  37. }
  38. \patchcmd{\@caption}{#3}{\formatlabel{#3}}
  39. \makeatother
  40. % Allow FloatBarrier command
  41. \usepackage{placeins}
  42. \end_preamble
  43. \use_default_options true
  44. \begin_modules
  45. todonotes
  46. \end_modules
  47. \maintain_unincluded_children false
  48. \language english
  49. \language_package default
  50. \inputencoding utf8
  51. \fontencoding default
  52. \font_roman "default" "default"
  53. \font_sans "default" "default"
  54. \font_typewriter "default" "default"
  55. \font_math "auto" "auto"
  56. \font_default_family default
  57. \use_non_tex_fonts false
  58. \font_sc false
  59. \font_osf false
  60. \font_sf_scale 100 100
  61. \font_tt_scale 100 100
  62. \use_microtype false
  63. \use_dash_ligatures true
  64. \graphics default
  65. \default_output_format pdf4
  66. \output_sync 0
  67. \bibtex_command default
  68. \index_command default
  69. \paperfontsize 12
  70. \spacing double
  71. \use_hyperref true
  72. \pdf_bookmarks true
  73. \pdf_bookmarksnumbered false
  74. \pdf_bookmarksopen false
  75. \pdf_bookmarksopenlevel 1
  76. \pdf_breaklinks false
  77. \pdf_pdfborder false
  78. \pdf_colorlinks false
  79. \pdf_backref false
  80. \pdf_pdfusetitle true
  81. \papersize letterpaper
  82. \use_geometry true
  83. \use_package amsmath 1
  84. \use_package amssymb 1
  85. \use_package cancel 1
  86. \use_package esint 1
  87. \use_package mathdots 1
  88. \use_package mathtools 1
  89. \use_package mhchem 1
  90. \use_package stackrel 1
  91. \use_package stmaryrd 1
  92. \use_package undertilde 1
  93. \cite_engine basic
  94. \cite_engine_type default
  95. \biblio_style plain
  96. \use_bibtopic false
  97. \use_indices false
  98. \paperorientation portrait
  99. \suppress_date false
  100. \justification true
  101. \use_refstyle 1
  102. \use_minted 0
  103. \index Index
  104. \shortcut idx
  105. \color #008000
  106. \end_index
  107. \leftmargin 1.5in
  108. \topmargin 1in
  109. \rightmargin 1in
  110. \bottommargin 1in
  111. \secnumdepth 3
  112. \tocdepth 3
  113. \paragraph_separation indent
  114. \paragraph_indentation default
  115. \is_math_indent 0
  116. \math_numbering_side default
  117. \quotes_style english
  118. \dynamic_quotes 0
  119. \papercolumns 1
  120. \papersides 2
  121. \paperpagestyle default
  122. \tracking_changes false
  123. \output_changes false
  124. \html_math_output 0
  125. \html_css_as_file 0
  126. \html_be_strict false
  127. \end_header
  128. \begin_body
  129. \begin_layout Title
  130. Bioinformatic analysis of complex, high-throughput genomic and epigenomic
  131. data in the context of immunology and transplant rejection
  132. \end_layout
  133. \begin_layout Author
  134. A thesis presented
  135. \begin_inset Newline newline
  136. \end_inset
  137. by
  138. \begin_inset Newline newline
  139. \end_inset
  140. Ryan C.
  141. Thompson
  142. \begin_inset Newline newline
  143. \end_inset
  144. to
  145. \begin_inset Newline newline
  146. \end_inset
  147. The Scripps Research Institute Graduate Program
  148. \begin_inset Newline newline
  149. \end_inset
  150. in partial fulfillment of the requirements for the degree of
  151. \begin_inset Newline newline
  152. \end_inset
  153. Doctor of Philosophy in the subject of Biology
  154. \begin_inset Newline newline
  155. \end_inset
  156. for
  157. \begin_inset Newline newline
  158. \end_inset
  159. The Scripps Research Institute
  160. \begin_inset Newline newline
  161. \end_inset
  162. La Jolla, California
  163. \end_layout
  164. \begin_layout Date
  165. May 2019
  166. \end_layout
  167. \begin_layout Standard
  168. [Copyright notice]
  169. \end_layout
  170. \begin_layout Standard
  171. [Thesis acceptance form]
  172. \end_layout
  173. \begin_layout Standard
  174. [Dedication]
  175. \end_layout
  176. \begin_layout Standard
  177. [Acknowledgements]
  178. \end_layout
  179. \begin_layout Standard
  180. \begin_inset CommandInset toc
  181. LatexCommand tableofcontents
  182. \end_inset
  183. \end_layout
  184. \begin_layout Standard
  185. \begin_inset FloatList table
  186. \end_inset
  187. \end_layout
  188. \begin_layout Standard
  189. \begin_inset FloatList figure
  190. \end_inset
  191. \end_layout
  192. \begin_layout Standard
  193. [List of Abbreviations]
  194. \end_layout
  195. \begin_layout Standard
  196. \begin_inset Flex TODO Note (inline)
  197. status open
  198. \begin_layout Plain Layout
  199. Look into auto-generated nomenclature list: https://wiki.lyx.org/Tips/Nomenclature
  200. \end_layout
  201. \end_inset
  202. \end_layout
  203. \begin_layout List of TODOs
  204. \end_layout
  205. \begin_layout Standard
  206. [Abstract]
  207. \end_layout
  208. \begin_layout Chapter*
  209. Abstract
  210. \end_layout
  211. \begin_layout Chapter
  212. Introduction
  213. \end_layout
  214. \begin_layout Section
  215. Background & Significance
  216. \end_layout
  217. \begin_layout Subsection
  218. Biological motivation
  219. \end_layout
  220. \begin_layout Itemize
  221. Rejection is the major long-term threat to organ and tissue grafts
  222. \end_layout
  223. \begin_deeper
  224. \begin_layout Itemize
  225. Common mechanisms of rejection
  226. \end_layout
  227. \begin_layout Itemize
  228. Effective immune suppression requires monitoring for rejection and tuning
  229. \end_layout
  230. \begin_layout Itemize
  231. Current tests for rejection (tissue biopsy) are invasive and biased
  232. \end_layout
  233. \begin_layout Itemize
  234. A blood test based on microarrays would be less biased and invasive
  235. \end_layout
  236. \end_deeper
  237. \begin_layout Itemize
  238. Memory cells are resistant to immune suppression
  239. \end_layout
  240. \begin_deeper
  241. \begin_layout Itemize
  242. Mechanisms of resistance in memory cells are poorly understood
  243. \end_layout
  244. \begin_layout Itemize
  245. A better understanding of immune memory formation is needed
  246. \end_layout
  247. \end_deeper
  248. \begin_layout Itemize
  249. Mesenchymal stem cell infusion is a promising new treatment to prevent/delay
  250. rejection
  251. \end_layout
  252. \begin_deeper
  253. \begin_layout Itemize
  254. Demonstrated in mice, but not yet in primates
  255. \end_layout
  256. \begin_layout Itemize
  257. Mechanism currently unknown, but MSC are known to be immune modulatory
  258. \end_layout
  259. \end_deeper
  260. \begin_layout Subsection
  261. Overview of bioinformatic analysis methods
  262. \end_layout
  263. \begin_layout Standard
  264. An overview of all the methods used, including what problem they solve,
  265. what assumptions they make, and a basic description of how they work.
  266. \end_layout
  267. \begin_layout Itemize
  268. ChIP-seq Peak calling
  269. \end_layout
  270. \begin_deeper
  271. \begin_layout Itemize
  272. Cross-correlation analysis to determine fragment size
  273. \end_layout
  274. \begin_layout Itemize
  275. Broad vs narrow peaks
  276. \end_layout
  277. \begin_layout Itemize
  278. SICER for broad peaks
  279. \end_layout
  280. \begin_layout Itemize
  281. IDR for biologically reproducible peaks
  282. \end_layout
  283. \begin_layout Itemize
  284. csaw peak filtering guidelines for unbiased downstream analysis
  285. \end_layout
  286. \end_deeper
  287. \begin_layout Itemize
  288. Normalization is non-trivial and application-dependant
  289. \end_layout
  290. \begin_deeper
  291. \begin_layout Itemize
  292. Expression arrays: RMA & fRMA; why fRMA is needed
  293. \end_layout
  294. \begin_layout Itemize
  295. Methylation arrays: M-value transformation approximates normal data but
  296. induces heteroskedasticity
  297. \end_layout
  298. \begin_layout Itemize
  299. RNA-seq: normalize based on assumption that the average gene is not changing
  300. \end_layout
  301. \begin_layout Itemize
  302. ChIP-seq: complex with many considerations, dependent on experimental methods,
  303. biological system, and analysis goals
  304. \end_layout
  305. \end_deeper
  306. \begin_layout Itemize
  307. Limma: The standard linear modeling framework for genomics
  308. \end_layout
  309. \begin_deeper
  310. \begin_layout Itemize
  311. empirical Bayes variance modeling: limma's core feature
  312. \end_layout
  313. \begin_layout Itemize
  314. edgeR & DESeq2: Extend with negative bonomial GLM for RNA-seq and other
  315. count data
  316. \end_layout
  317. \begin_layout Itemize
  318. voom: Extend with precision weights to model mean-variance trend
  319. \end_layout
  320. \begin_layout Itemize
  321. arrayWeights and duplicateCorrelation to handle complex variance structures
  322. \end_layout
  323. \end_deeper
  324. \begin_layout Itemize
  325. sva and ComBat for batch correction
  326. \end_layout
  327. \begin_layout Itemize
  328. Factor analysis: PCA, MDS, MOFA
  329. \end_layout
  330. \begin_deeper
  331. \begin_layout Itemize
  332. Batch-corrected PCA is informative, but careful application is required
  333. to avoid bias
  334. \end_layout
  335. \end_deeper
  336. \begin_layout Itemize
  337. Gene set analysis: camera and SPIA
  338. \end_layout
  339. \begin_layout Section
  340. Innovation
  341. \end_layout
  342. \begin_layout Itemize
  343. MSC infusion to improve transplant outcomes (prevent/delay rejection)
  344. \end_layout
  345. \begin_deeper
  346. \begin_layout Itemize
  347. Characterize MSC response to interferon gamma
  348. \end_layout
  349. \begin_layout Itemize
  350. IFN-g is thought to stimulate their function
  351. \end_layout
  352. \begin_layout Itemize
  353. Test IFN-g treated MSC infusion as a therapy to delay graft rejection in
  354. cynomolgus monkeys
  355. \end_layout
  356. \begin_layout Itemize
  357. Monitor animals post-transplant using blood RNA-seq at serial time points
  358. \end_layout
  359. \end_deeper
  360. \begin_layout Itemize
  361. Investigate dynamics of histone marks in CD4 T-cell activation and memory
  362. \end_layout
  363. \begin_deeper
  364. \begin_layout Itemize
  365. Previous studies have looked at single snapshots of histone marks
  366. \end_layout
  367. \begin_layout Itemize
  368. Instead, look at changes in histone marks across activation and memory
  369. \end_layout
  370. \end_deeper
  371. \begin_layout Itemize
  372. High-throughput sequencing and microarray technologies
  373. \end_layout
  374. \begin_deeper
  375. \begin_layout Itemize
  376. Powerful methods for assaying gene expression and epigenetics across entire
  377. genomes
  378. \end_layout
  379. \begin_layout Itemize
  380. Proper analysis requires finding and exploiting systematic genome-wide trends
  381. \end_layout
  382. \end_deeper
  383. \begin_layout Chapter
  384. Reproducible genome-wide epigenetic analysis of H3K4 and H3K27 methylation
  385. in naive and memory CD4 T-cell activation
  386. \end_layout
  387. \begin_layout Standard
  388. \begin_inset Flex TODO Note (inline)
  389. status open
  390. \begin_layout Plain Layout
  391. Author list: Me, Sarah, Dan
  392. \end_layout
  393. \end_inset
  394. \end_layout
  395. \begin_layout Section
  396. Approach
  397. \end_layout
  398. \begin_layout Itemize
  399. CD4 T-cells are central to all adaptive immune responses and memory
  400. \end_layout
  401. \begin_layout Itemize
  402. H3K4 and H3K27 methylation are major epigenetic regulators of gene expression
  403. \end_layout
  404. \begin_layout Itemize
  405. Canonically, H3K4 is activating and H3K27 is inhibitory, but the reality
  406. is complex
  407. \end_layout
  408. \begin_layout Itemize
  409. Looking at these marks during CD4 activation and memory should reveal new
  410. mechanistic details
  411. \end_layout
  412. \begin_layout Itemize
  413. Test
  414. \begin_inset Quotes eld
  415. \end_inset
  416. poised promoter
  417. \begin_inset Quotes erd
  418. \end_inset
  419. hypothesis in which H3K4 and H3K27 are both methylated
  420. \end_layout
  421. \begin_layout Itemize
  422. Expand scope of analysis beyond simple promoter counts
  423. \end_layout
  424. \begin_deeper
  425. \begin_layout Itemize
  426. Analyze peaks genome-wide, including in intergenic regions
  427. \end_layout
  428. \begin_layout Itemize
  429. Analysis of coverage distribution shape within promoters, e.g.
  430. upstream vs downstream coverage
  431. \end_layout
  432. \end_deeper
  433. \begin_layout Section
  434. Methods
  435. \end_layout
  436. \begin_layout Standard
  437. \begin_inset Float figure
  438. wide false
  439. sideways true
  440. status open
  441. \begin_layout Plain Layout
  442. \align center
  443. \begin_inset Graphics
  444. filename graphics/CD4-csaw/rulegraphs/rulegraph-all.pdf
  445. width 100theight%
  446. \end_inset
  447. \end_layout
  448. \begin_layout Plain Layout
  449. \begin_inset Caption Standard
  450. \begin_layout Plain Layout
  451. \begin_inset CommandInset label
  452. LatexCommand label
  453. name "fig:rulegraph"
  454. \end_inset
  455. \series bold
  456. Dependency graph of steps in reproducible workflow
  457. \end_layout
  458. \end_inset
  459. \end_layout
  460. \end_inset
  461. \end_layout
  462. \begin_layout Standard
  463. A reproducible workflow
  464. \begin_inset CommandInset citation
  465. LatexCommand cite
  466. key "gh-cd4-csaw"
  467. literal "false"
  468. \end_inset
  469. was written to analyze the raw ChIP-seq and RNA-seq data from previous
  470. studies
  471. \begin_inset CommandInset citation
  472. LatexCommand cite
  473. key "LaMere2016,LaMere2017"
  474. literal "true"
  475. \end_inset
  476. .
  477. Briefly, this data consists of RNA-seq and ChIP-seq from CD4 T-cells cultured
  478. from 4 donors.
  479. From each donor, naive and memory CD4 T-cells were isolated separately.
  480. Then cultures of both cells were activated [how?], and samples were taken
  481. at 4 time points: Day 0 (pre-activation), Day 1 (early activation), Day
  482. 5 (peak activation), and Day 14 (post-activation).
  483. For each combination of cell type and time point, RNA was isolated, and
  484. ChIP-seq was performed for each of 3 histone marks: H3K4me2, H3K4me3, and
  485. H3K27me3.
  486. The ChIP-seq input was also sequenced for each sample.
  487. The result was 32 samples for each assay.
  488. \end_layout
  489. \begin_layout Standard
  490. Sequence reads were retrieved from the Sequence Read Archive (SRA)
  491. \begin_inset CommandInset citation
  492. LatexCommand cite
  493. key "Leinonen2011"
  494. literal "false"
  495. \end_inset
  496. .
  497. ChIP-seq (and input) reads were aligned to CRCh38 genome assembly using
  498. Bowtie 2
  499. \begin_inset CommandInset citation
  500. LatexCommand cite
  501. key "Langmead2012,Schneider2017,gh-hg38-ref"
  502. literal "false"
  503. \end_inset
  504. .
  505. Artifact regions were annotated using a custom implementation of the GreyListCh
  506. IP algorithm, and these
  507. \begin_inset Quotes eld
  508. \end_inset
  509. greylists
  510. \begin_inset Quotes erd
  511. \end_inset
  512. were merged with the ENCODE blacklist
  513. \begin_inset CommandInset citation
  514. LatexCommand cite
  515. key "greylistchip,Amemiya2019,Dunham2012"
  516. literal "false"
  517. \end_inset
  518. .
  519. Any read or peak overlapping one of these regions was regarded as artifactual
  520. and excluded from downstream analyses.
  521. \end_layout
  522. \begin_layout Standard
  523. Peaks are called using epic, an implementation of the SICER algorithm
  524. \begin_inset CommandInset citation
  525. LatexCommand cite
  526. key "Zang2009,gh-epic"
  527. literal "false"
  528. \end_inset
  529. .
  530. Peaks are also called separately using MACS, but MACS was determined to
  531. be a poor fit for the data, and these peak calls are not used further
  532. \begin_inset CommandInset citation
  533. LatexCommand cite
  534. key "Zhang2008"
  535. literal "false"
  536. \end_inset
  537. .
  538. \end_layout
  539. \begin_layout Itemize
  540. Re-analyze previously published CD4 ChIP-seq & RNA-seq data
  541. \end_layout
  542. \begin_deeper
  543. \begin_layout Itemize
  544. Completely reimplement analysis from scratch as a reproducible workflow
  545. \end_layout
  546. \begin_layout Itemize
  547. Use newly published methods & algorithms not available during the original
  548. analysis: SICER, csaw, MOFA
  549. \begin_inset CommandInset citation
  550. LatexCommand cite
  551. key "Argelaguet2018"
  552. literal "false"
  553. \end_inset
  554. , ComBat, sva, GREAT, and more
  555. \end_layout
  556. \end_deeper
  557. \begin_layout Itemize
  558. SICER, IDR, csaw, & GREAT to call ChIP-seq peaks genome-wide, perform differenti
  559. al abundance analysis, and relate those peaks to gene expression
  560. \end_layout
  561. \begin_layout Itemize
  562. Promoter counts in sliding windows around each gene's highest-expressed
  563. TSS to investigate coverage distribution within promoters
  564. \end_layout
  565. \begin_layout Section
  566. Results
  567. \end_layout
  568. \begin_layout Standard
  569. \begin_inset Note Note
  570. status open
  571. \begin_layout Plain Layout
  572. Focus on what hypotheses were tested, then select figures that show how
  573. those hypotheses were tested, even if the result is a negative.
  574. \end_layout
  575. \end_inset
  576. \end_layout
  577. \begin_layout Standard
  578. \begin_inset Flex TODO Note (inline)
  579. status open
  580. \begin_layout Plain Layout
  581. Maybe reorder these sections to do RNA-seq, then ChIP-seq, then combined
  582. analyses?
  583. \end_layout
  584. \end_inset
  585. \end_layout
  586. \begin_layout Subsection
  587. H3K4 and H3K27 methylation occur in broad regions and are enriched near
  588. promoters
  589. \end_layout
  590. \begin_layout Standard
  591. \begin_inset Float figure
  592. wide false
  593. sideways false
  594. status open
  595. \begin_layout Plain Layout
  596. \begin_inset Flex TODO Note (inline)
  597. status open
  598. \begin_layout Plain Layout
  599. Re-generate IDR rank consistency plots for SICER and MACS side-by-side
  600. \end_layout
  601. \end_inset
  602. \end_layout
  603. \begin_layout Plain Layout
  604. \begin_inset Caption Standard
  605. \begin_layout Plain Layout
  606. \series bold
  607. \begin_inset CommandInset label
  608. LatexCommand label
  609. name "fig:IDR-RC-H3K4me2"
  610. \end_inset
  611. Irreproducible Discovery Rate consistency plots for H3K4me2
  612. \end_layout
  613. \end_inset
  614. \end_layout
  615. \end_inset
  616. \end_layout
  617. \begin_layout Standard
  618. \begin_inset Float figure
  619. wide false
  620. sideways false
  621. status open
  622. \begin_layout Plain Layout
  623. \begin_inset Flex TODO Note (inline)
  624. status open
  625. \begin_layout Plain Layout
  626. Re-generate IDR rank consistency plots for SICER and MACS side-by-side
  627. \end_layout
  628. \end_inset
  629. \end_layout
  630. \begin_layout Plain Layout
  631. \begin_inset Caption Standard
  632. \begin_layout Plain Layout
  633. \series bold
  634. \begin_inset CommandInset label
  635. LatexCommand label
  636. name "fig:IDR-RC-H3K4me3"
  637. \end_inset
  638. Irreproducible Discovery Rate consistency plots for H3K4me3
  639. \end_layout
  640. \end_inset
  641. \end_layout
  642. \end_inset
  643. \end_layout
  644. \begin_layout Standard
  645. \begin_inset Float figure
  646. wide false
  647. sideways false
  648. status open
  649. \begin_layout Plain Layout
  650. \begin_inset Flex TODO Note (inline)
  651. status open
  652. \begin_layout Plain Layout
  653. Re-generate IDR rank consistency plots for SICER and MACS side-by-side
  654. \end_layout
  655. \end_inset
  656. \end_layout
  657. \begin_layout Plain Layout
  658. \begin_inset Caption Standard
  659. \begin_layout Plain Layout
  660. \series bold
  661. \begin_inset CommandInset label
  662. LatexCommand label
  663. name "fig:IDR-RC-H3K27me3"
  664. \end_inset
  665. Irreproducible Discovery Rate consistency plots for H3K27me3
  666. \end_layout
  667. \end_inset
  668. \end_layout
  669. \end_inset
  670. \end_layout
  671. \begin_layout Standard
  672. \begin_inset Float table
  673. wide false
  674. sideways false
  675. status open
  676. \begin_layout Plain Layout
  677. \align center
  678. \begin_inset Flex TODO Note (inline)
  679. status open
  680. \begin_layout Plain Layout
  681. Need
  682. \emph on
  683. median
  684. \emph default
  685. peak width, not mean
  686. \end_layout
  687. \end_inset
  688. \end_layout
  689. \begin_layout Plain Layout
  690. \align center
  691. \begin_inset Tabular
  692. <lyxtabular version="3" rows="4" columns="5">
  693. <features tabularvalignment="middle">
  694. <column alignment="center" valignment="top">
  695. <column alignment="center" valignment="top">
  696. <column alignment="center" valignment="top">
  697. <column alignment="center" valignment="top">
  698. <column alignment="center" valignment="top">
  699. <row>
  700. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  701. \begin_inset Text
  702. \begin_layout Plain Layout
  703. Histone Mark
  704. \end_layout
  705. \end_inset
  706. </cell>
  707. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  708. \begin_inset Text
  709. \begin_layout Plain Layout
  710. # Peaks
  711. \end_layout
  712. \end_inset
  713. </cell>
  714. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  715. \begin_inset Text
  716. \begin_layout Plain Layout
  717. Mean peak width
  718. \end_layout
  719. \end_inset
  720. </cell>
  721. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  722. \begin_inset Text
  723. \begin_layout Plain Layout
  724. genome coverage
  725. \end_layout
  726. \end_inset
  727. </cell>
  728. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  729. \begin_inset Text
  730. \begin_layout Plain Layout
  731. read coverage
  732. \end_layout
  733. \end_inset
  734. </cell>
  735. </row>
  736. <row>
  737. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  738. \begin_inset Text
  739. \begin_layout Plain Layout
  740. H3K4me2
  741. \end_layout
  742. \end_inset
  743. </cell>
  744. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  745. \begin_inset Text
  746. \begin_layout Plain Layout
  747. 14965
  748. \end_layout
  749. \end_inset
  750. </cell>
  751. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  752. \begin_inset Text
  753. \begin_layout Plain Layout
  754. 3970
  755. \end_layout
  756. \end_inset
  757. </cell>
  758. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  759. \begin_inset Text
  760. \begin_layout Plain Layout
  761. 1.92%
  762. \end_layout
  763. \end_inset
  764. </cell>
  765. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  766. \begin_inset Text
  767. \begin_layout Plain Layout
  768. 14.2%
  769. \end_layout
  770. \end_inset
  771. </cell>
  772. </row>
  773. <row>
  774. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  775. \begin_inset Text
  776. \begin_layout Plain Layout
  777. H3K4me3
  778. \end_layout
  779. \end_inset
  780. </cell>
  781. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  782. \begin_inset Text
  783. \begin_layout Plain Layout
  784. 6163
  785. \end_layout
  786. \end_inset
  787. </cell>
  788. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  789. \begin_inset Text
  790. \begin_layout Plain Layout
  791. 2946
  792. \end_layout
  793. \end_inset
  794. </cell>
  795. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  796. \begin_inset Text
  797. \begin_layout Plain Layout
  798. 0.588%
  799. \end_layout
  800. \end_inset
  801. </cell>
  802. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  803. \begin_inset Text
  804. \begin_layout Plain Layout
  805. 6.57%
  806. \end_layout
  807. \end_inset
  808. </cell>
  809. </row>
  810. <row>
  811. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  812. \begin_inset Text
  813. \begin_layout Plain Layout
  814. H3K27me3
  815. \end_layout
  816. \end_inset
  817. </cell>
  818. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  819. \begin_inset Text
  820. \begin_layout Plain Layout
  821. 18139
  822. \end_layout
  823. \end_inset
  824. </cell>
  825. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  826. \begin_inset Text
  827. \begin_layout Plain Layout
  828. 18967
  829. \end_layout
  830. \end_inset
  831. </cell>
  832. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  833. \begin_inset Text
  834. \begin_layout Plain Layout
  835. 11.1%
  836. \end_layout
  837. \end_inset
  838. </cell>
  839. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  840. \begin_inset Text
  841. \begin_layout Plain Layout
  842. 22.5%
  843. \end_layout
  844. \end_inset
  845. </cell>
  846. </row>
  847. </lyxtabular>
  848. \end_inset
  849. \end_layout
  850. \begin_layout Plain Layout
  851. \begin_inset Caption Standard
  852. \begin_layout Plain Layout
  853. \series bold
  854. \begin_inset CommandInset label
  855. LatexCommand label
  856. name "tab:peak-calling-summary"
  857. \end_inset
  858. SICER+IDR peak-calling summary
  859. \end_layout
  860. \end_inset
  861. \end_layout
  862. \end_inset
  863. \end_layout
  864. \begin_layout Standard
  865. Figures
  866. \begin_inset CommandInset ref
  867. LatexCommand ref
  868. reference "fig:IDR-RC-H3K4me2"
  869. plural "false"
  870. caps "false"
  871. noprefix "false"
  872. \end_inset
  873. ,
  874. \begin_inset CommandInset ref
  875. LatexCommand ref
  876. reference "fig:IDR-RC-H3K4me3"
  877. plural "false"
  878. caps "false"
  879. noprefix "false"
  880. \end_inset
  881. , and
  882. \begin_inset CommandInset ref
  883. LatexCommand ref
  884. reference "fig:IDR-RC-H3K27me3"
  885. plural "false"
  886. caps "false"
  887. noprefix "false"
  888. \end_inset
  889. show the IDR rank-consistency plots for peaks called in an arbitrarily-chosen
  890. pair of donors.
  891. For all 3 histone marks, when the peaks for each donor are ranked according
  892. to their scores, SICER produces much more reproducible results between
  893. donors.
  894. This is consistent with SICER's stated goal of identifying broad peaks,
  895. in contrast to MACS, which is designed for identifying sharp peaks.
  896. Based on this observation, the SICER peak calls were used for all downstream
  897. analyses that involved ChIP-seq peaks.
  898. Table
  899. \begin_inset CommandInset ref
  900. LatexCommand ref
  901. reference "tab:peak-calling-summary"
  902. plural "false"
  903. caps "false"
  904. noprefix "false"
  905. \end_inset
  906. gives a summary of the peak calling statistics for each histone mark.
  907. \end_layout
  908. \begin_layout Standard
  909. \begin_inset Float figure
  910. wide false
  911. sideways false
  912. status open
  913. \begin_layout Plain Layout
  914. \align center
  915. \begin_inset Graphics
  916. filename graphics/CD4-csaw/Promoter Peak Distance Profile-PAGE1-CROP.pdf
  917. lyxscale 50
  918. width 100col%
  919. groupId colwidth
  920. \end_inset
  921. \end_layout
  922. \begin_layout Plain Layout
  923. \begin_inset Caption Standard
  924. \begin_layout Plain Layout
  925. \series bold
  926. \begin_inset CommandInset label
  927. LatexCommand label
  928. name "fig:effective-promoter-radius"
  929. \end_inset
  930. Enrichment of peaks in promoter neighborhoods.
  931. \end_layout
  932. \end_inset
  933. \end_layout
  934. \begin_layout Plain Layout
  935. \end_layout
  936. \end_inset
  937. \end_layout
  938. \begin_layout Itemize
  939. Each histone mark is enriched within a certain radius of gene TSS positions,
  940. but that radius is different for each mark (figure
  941. \begin_inset CommandInset ref
  942. LatexCommand ref
  943. reference "fig:effective-promoter-radius"
  944. plural "false"
  945. caps "false"
  946. noprefix "false"
  947. \end_inset
  948. , previously in
  949. \begin_inset CommandInset citation
  950. LatexCommand cite
  951. key "LaMere2016"
  952. literal "false"
  953. \end_inset
  954. Fig.
  955. S2)
  956. \end_layout
  957. \begin_layout Subsection
  958. RNA-seq align+quant method comparison
  959. \end_layout
  960. \begin_layout Standard
  961. \begin_inset Flex TODO Note (inline)
  962. status open
  963. \begin_layout Plain Layout
  964. Maybe fix up the excessive axis ranges for these plots?
  965. \end_layout
  966. \end_inset
  967. \end_layout
  968. \begin_layout Standard
  969. \begin_inset Float figure
  970. wide false
  971. sideways false
  972. status collapsed
  973. \begin_layout Plain Layout
  974. \align center
  975. \begin_inset Graphics
  976. filename graphics/CD4-csaw/rnaseq-compare/ensmebl-vs-entrez-star-CROP.png
  977. lyxscale 25
  978. width 100col%
  979. groupId colwidth-raster
  980. \end_inset
  981. \end_layout
  982. \begin_layout Plain Layout
  983. \begin_inset Caption Standard
  984. \begin_layout Plain Layout
  985. Comparison of STAR quantification between Ensembl and Entrez gene identifiers
  986. \end_layout
  987. \end_inset
  988. \end_layout
  989. \begin_layout Plain Layout
  990. \end_layout
  991. \end_inset
  992. \end_layout
  993. \begin_layout Standard
  994. \begin_inset Float figure
  995. wide false
  996. sideways false
  997. status collapsed
  998. \begin_layout Plain Layout
  999. \align center
  1000. \begin_inset Graphics
  1001. filename graphics/CD4-csaw/rnaseq-compare/ensmebl-vs-entrez-shoal-CROP.png
  1002. lyxscale 25
  1003. width 100col%
  1004. groupId colwidth-raster
  1005. \end_inset
  1006. \end_layout
  1007. \begin_layout Plain Layout
  1008. \begin_inset Caption Standard
  1009. \begin_layout Plain Layout
  1010. Comparison of Salmon+Shoal quantification between Ensembl and Entrez gene
  1011. identifiers
  1012. \end_layout
  1013. \end_inset
  1014. \end_layout
  1015. \end_inset
  1016. \end_layout
  1017. \begin_layout Standard
  1018. \begin_inset Float figure
  1019. wide false
  1020. sideways false
  1021. status collapsed
  1022. \begin_layout Plain Layout
  1023. \align center
  1024. \begin_inset Graphics
  1025. filename graphics/CD4-csaw/rnaseq-compare/star-vs-hisat2-CROP.png
  1026. lyxscale 25
  1027. width 100col%
  1028. groupId colwidth-raster
  1029. \end_inset
  1030. \end_layout
  1031. \begin_layout Plain Layout
  1032. \begin_inset Caption Standard
  1033. \begin_layout Plain Layout
  1034. Comparison of quantification between STAR and HISAT2 for identical annotation
  1035. \end_layout
  1036. \end_inset
  1037. \end_layout
  1038. \end_inset
  1039. \end_layout
  1040. \begin_layout Standard
  1041. \begin_inset Float figure
  1042. wide false
  1043. sideways false
  1044. status collapsed
  1045. \begin_layout Plain Layout
  1046. \align center
  1047. \begin_inset Graphics
  1048. filename graphics/CD4-csaw/rnaseq-compare/star-vs-salmon-CROP.png
  1049. lyxscale 25
  1050. width 100col%
  1051. groupId colwidth-raster
  1052. \end_inset
  1053. \end_layout
  1054. \begin_layout Plain Layout
  1055. \begin_inset Caption Standard
  1056. \begin_layout Plain Layout
  1057. Comparison of quantification between STAR and Salmon for identical annotation
  1058. \end_layout
  1059. \end_inset
  1060. \end_layout
  1061. \end_inset
  1062. \end_layout
  1063. \begin_layout Standard
  1064. \begin_inset Float figure
  1065. wide false
  1066. sideways false
  1067. status collapsed
  1068. \begin_layout Plain Layout
  1069. \align center
  1070. \begin_inset Graphics
  1071. filename graphics/CD4-csaw/rnaseq-compare/salmon-vs-kallisto-CROP.png
  1072. lyxscale 25
  1073. width 100col%
  1074. groupId colwidth-raster
  1075. \end_inset
  1076. \end_layout
  1077. \begin_layout Plain Layout
  1078. \begin_inset Caption Standard
  1079. \begin_layout Plain Layout
  1080. Comparison of quantification between Salmon and Kallisto for identical annotatio
  1081. n
  1082. \end_layout
  1083. \end_inset
  1084. \end_layout
  1085. \end_inset
  1086. \end_layout
  1087. \begin_layout Standard
  1088. \begin_inset Float figure
  1089. wide false
  1090. sideways false
  1091. status collapsed
  1092. \begin_layout Plain Layout
  1093. \align center
  1094. \begin_inset Graphics
  1095. filename graphics/CD4-csaw/rnaseq-compare/salmon-vs-shoal-CROP.png
  1096. lyxscale 25
  1097. width 100col%
  1098. groupId colwidth-raster
  1099. \end_inset
  1100. \end_layout
  1101. \begin_layout Plain Layout
  1102. \begin_inset Caption Standard
  1103. \begin_layout Plain Layout
  1104. Comparison of quantification between Salmon with and without Shoal for identical
  1105. annotation
  1106. \end_layout
  1107. \end_inset
  1108. \end_layout
  1109. \end_inset
  1110. \end_layout
  1111. \begin_layout Itemize
  1112. Ultimately selected shoal as quantification, Ensembl as annotation.
  1113. Why? Running downstream analyses with all quant methods and both annotations
  1114. showed very little practical difference, so choice was not terribly important.
  1115. To note in discussion: reproducible workflow made it easy to do this, enabling
  1116. an informed decision.
  1117. \end_layout
  1118. \begin_layout Subsection
  1119. RNA-seq has a large confounding batch effect
  1120. \end_layout
  1121. \begin_layout Standard
  1122. \begin_inset Float figure
  1123. wide false
  1124. sideways false
  1125. status collapsed
  1126. \begin_layout Plain Layout
  1127. \align center
  1128. \begin_inset Graphics
  1129. filename graphics/CD4-csaw/RNA-seq/weights-vs-covars-CROP.png
  1130. lyxscale 25
  1131. width 100col%
  1132. groupId colwidth-raster
  1133. \end_inset
  1134. \end_layout
  1135. \begin_layout Plain Layout
  1136. \begin_inset Caption Standard
  1137. \begin_layout Plain Layout
  1138. \series bold
  1139. \begin_inset CommandInset label
  1140. LatexCommand label
  1141. name "fig:RNA-seq-weights-vs-covars"
  1142. \end_inset
  1143. RNA-seq sample weights, grouped by experimental and technical covariates
  1144. \end_layout
  1145. \end_inset
  1146. \end_layout
  1147. \begin_layout Plain Layout
  1148. \end_layout
  1149. \end_inset
  1150. \end_layout
  1151. \begin_layout Standard
  1152. \begin_inset Float figure
  1153. wide false
  1154. sideways false
  1155. status open
  1156. \begin_layout Plain Layout
  1157. \align center
  1158. \begin_inset Graphics
  1159. filename graphics/CD4-csaw/RNA-seq/PCA-no-batchsub-CROP.png
  1160. lyxscale 25
  1161. width 100col%
  1162. groupId colwidth-raster
  1163. \end_inset
  1164. \end_layout
  1165. \begin_layout Plain Layout
  1166. \begin_inset Caption Standard
  1167. \begin_layout Plain Layout
  1168. \series bold
  1169. \begin_inset CommandInset label
  1170. LatexCommand label
  1171. name "fig:RNA-PCA-no-batchsub"
  1172. \end_inset
  1173. RNA-seq PCoA plot showing clear batch effect
  1174. \end_layout
  1175. \end_inset
  1176. \end_layout
  1177. \end_inset
  1178. \end_layout
  1179. \begin_layout Standard
  1180. \begin_inset Float figure
  1181. wide false
  1182. sideways false
  1183. status open
  1184. \begin_layout Plain Layout
  1185. \align center
  1186. \begin_inset Graphics
  1187. filename graphics/CD4-csaw/RNA-seq/PCA-naive-batchsub-CROP.png
  1188. lyxscale 25
  1189. width 100col%
  1190. groupId colwidth-raster
  1191. \end_inset
  1192. \end_layout
  1193. \begin_layout Plain Layout
  1194. \begin_inset Caption Standard
  1195. \begin_layout Plain Layout
  1196. \series bold
  1197. \begin_inset CommandInset label
  1198. LatexCommand label
  1199. name "fig:RNA-PCA-limma-batchsub"
  1200. \end_inset
  1201. RNA-seq PCoA plot showing clear batch effect
  1202. \end_layout
  1203. \end_inset
  1204. \end_layout
  1205. \end_inset
  1206. \end_layout
  1207. \begin_layout Standard
  1208. \begin_inset Float figure
  1209. wide false
  1210. sideways false
  1211. status open
  1212. \begin_layout Plain Layout
  1213. \align center
  1214. \begin_inset Graphics
  1215. filename graphics/CD4-csaw/RNA-seq/PCA-combat-batchsub-CROP.png
  1216. lyxscale 25
  1217. width 100col%
  1218. groupId colwidth-raster
  1219. \end_inset
  1220. \end_layout
  1221. \begin_layout Plain Layout
  1222. \begin_inset Caption Standard
  1223. \begin_layout Plain Layout
  1224. \series bold
  1225. \begin_inset CommandInset label
  1226. LatexCommand label
  1227. name "fig:RNA-PCA-ComBat-batchsub"
  1228. \end_inset
  1229. RNA-seq PCoA plot showing clear batch effect
  1230. \end_layout
  1231. \end_inset
  1232. \end_layout
  1233. \end_inset
  1234. \end_layout
  1235. \begin_layout Itemize
  1236. RNA-seq batch effect can be partially corrected, but still induces uncorrectable
  1237. biases in downstream analysis
  1238. \end_layout
  1239. \begin_layout Standard
  1240. \begin_inset Flex TODO Note (inline)
  1241. status open
  1242. \begin_layout Plain Layout
  1243. Figures showing p-value histograms for within-batch and cross-batch contrasts,
  1244. showing that cross-batch contrasts have attenuated signal, as do comparisons
  1245. within the bad batch
  1246. \end_layout
  1247. \end_inset
  1248. \end_layout
  1249. \begin_layout Subsection
  1250. ChIP-seq blacklisting is important
  1251. \end_layout
  1252. \begin_layout Standard
  1253. \begin_inset Float figure
  1254. wide false
  1255. sideways false
  1256. status collapsed
  1257. \begin_layout Plain Layout
  1258. \align center
  1259. \begin_inset Graphics
  1260. filename graphics/CD4-csaw/csaw/CCF-plots-PAGE2-CROP.pdf
  1261. lyxscale 50
  1262. width 100col%
  1263. groupId colwidth
  1264. \end_inset
  1265. \end_layout
  1266. \begin_layout Plain Layout
  1267. \begin_inset Caption Standard
  1268. \begin_layout Plain Layout
  1269. Cross-correlation plots with blacklisted reads removed
  1270. \end_layout
  1271. \end_inset
  1272. \end_layout
  1273. \end_inset
  1274. \end_layout
  1275. \begin_layout Standard
  1276. \begin_inset Float figure
  1277. wide false
  1278. sideways false
  1279. status collapsed
  1280. \begin_layout Plain Layout
  1281. \align center
  1282. \begin_inset Graphics
  1283. filename graphics/CD4-csaw/csaw/CCF-plots-noBL-PAGE2-CROP.pdf
  1284. lyxscale 50
  1285. width 100col%
  1286. groupId colwidth
  1287. \end_inset
  1288. \end_layout
  1289. \begin_layout Plain Layout
  1290. \begin_inset Caption Standard
  1291. \begin_layout Plain Layout
  1292. Cross-correlation plots without removing blacklisted reads
  1293. \end_layout
  1294. \end_inset
  1295. \end_layout
  1296. \end_inset
  1297. \end_layout
  1298. \begin_layout Standard
  1299. \begin_inset Float figure
  1300. wide false
  1301. sideways false
  1302. status collapsed
  1303. \begin_layout Plain Layout
  1304. \align center
  1305. \begin_inset Flex TODO Note (inline)
  1306. status open
  1307. \begin_layout Plain Layout
  1308. Un-break the figure legend
  1309. \end_layout
  1310. \end_inset
  1311. \end_layout
  1312. \begin_layout Plain Layout
  1313. \align center
  1314. \begin_inset Graphics
  1315. filename graphics/CD4-csaw/csaw/CCF-max-plot-CROP.pdf
  1316. lyxscale 50
  1317. width 100col%
  1318. groupId colwidth
  1319. \end_inset
  1320. \end_layout
  1321. \begin_layout Plain Layout
  1322. \begin_inset Caption Standard
  1323. \begin_layout Plain Layout
  1324. Estimated fragment size in samples before and after blacklisting
  1325. \end_layout
  1326. \end_inset
  1327. \end_layout
  1328. \end_inset
  1329. \end_layout
  1330. \begin_layout Subsection
  1331. ChIP-seq normalization
  1332. \end_layout
  1333. \begin_layout Standard
  1334. \begin_inset Float figure
  1335. wide false
  1336. sideways false
  1337. status collapsed
  1338. \begin_layout Plain Layout
  1339. \align center
  1340. \begin_inset Graphics
  1341. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-sample-MAplot-bins-CROP.png
  1342. lyxscale 25
  1343. width 100col%
  1344. groupId colwidth-raster
  1345. \end_inset
  1346. \end_layout
  1347. \begin_layout Plain Layout
  1348. \begin_inset Caption Standard
  1349. \begin_layout Plain Layout
  1350. \series bold
  1351. MA plot of H3K4me2 read counts in 10kb bins for two arbitrary samples
  1352. \end_layout
  1353. \end_inset
  1354. \end_layout
  1355. \end_inset
  1356. \end_layout
  1357. \begin_layout Standard
  1358. \begin_inset Float figure
  1359. wide false
  1360. sideways false
  1361. status collapsed
  1362. \begin_layout Plain Layout
  1363. \align center
  1364. \begin_inset Graphics
  1365. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-sample-MAplot-bins-CROP.png
  1366. lyxscale 25
  1367. width 100col%
  1368. groupId colwidth-raster
  1369. \end_inset
  1370. \end_layout
  1371. \begin_layout Plain Layout
  1372. \begin_inset Caption Standard
  1373. \begin_layout Plain Layout
  1374. \series bold
  1375. MA plot of H3K4me3 read counts in 10kb bins for two arbitrary samples
  1376. \end_layout
  1377. \end_inset
  1378. \end_layout
  1379. \end_inset
  1380. \end_layout
  1381. \begin_layout Standard
  1382. \begin_inset Float figure
  1383. wide false
  1384. sideways false
  1385. status collapsed
  1386. \begin_layout Plain Layout
  1387. \align center
  1388. \begin_inset Graphics
  1389. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-sample-MAplot-bins-CROP.png
  1390. lyxscale 25
  1391. width 100col%
  1392. groupId colwidth-raster
  1393. \end_inset
  1394. \end_layout
  1395. \begin_layout Plain Layout
  1396. \begin_inset Caption Standard
  1397. \begin_layout Plain Layout
  1398. \series bold
  1399. MA plot of H3K27me3 read counts in 10kb bins for two arbitrary samples
  1400. \end_layout
  1401. \end_inset
  1402. \end_layout
  1403. \end_inset
  1404. \end_layout
  1405. \begin_layout Subsection
  1406. ChIP-seq must be corrected for hidden confounding factors
  1407. \end_layout
  1408. \begin_layout Standard
  1409. \begin_inset Float figure
  1410. wide false
  1411. sideways false
  1412. status collapsed
  1413. \begin_layout Plain Layout
  1414. \align center
  1415. \begin_inset Graphics
  1416. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-PCA-raw-CROP.png
  1417. lyxscale 25
  1418. width 100col%
  1419. groupId colwidth-raster
  1420. \end_inset
  1421. \end_layout
  1422. \begin_layout Plain Layout
  1423. \begin_inset Caption Standard
  1424. \begin_layout Plain Layout
  1425. \series bold
  1426. \begin_inset CommandInset label
  1427. LatexCommand label
  1428. name "fig:PCoA-H3K4me2-bad"
  1429. \end_inset
  1430. PCoA plot of H3K4me2 windows, before subtracting surrogate variables
  1431. \end_layout
  1432. \end_inset
  1433. \end_layout
  1434. \end_inset
  1435. \end_layout
  1436. \begin_layout Standard
  1437. \begin_inset Float figure
  1438. wide false
  1439. sideways false
  1440. status collapsed
  1441. \begin_layout Plain Layout
  1442. \align center
  1443. \begin_inset Graphics
  1444. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-PCA-SVsub-CROP.png
  1445. lyxscale 25
  1446. width 100col%
  1447. groupId colwidth-raster
  1448. \end_inset
  1449. \end_layout
  1450. \begin_layout Plain Layout
  1451. \begin_inset Caption Standard
  1452. \begin_layout Plain Layout
  1453. \series bold
  1454. \begin_inset CommandInset label
  1455. LatexCommand label
  1456. name "fig:PCoA-H3K4me2-good"
  1457. \end_inset
  1458. PCoA plot of H3K4me2 windows, after subtracting surrogate variables
  1459. \end_layout
  1460. \end_inset
  1461. \end_layout
  1462. \end_inset
  1463. \end_layout
  1464. \begin_layout Standard
  1465. \begin_inset Float figure
  1466. wide false
  1467. sideways false
  1468. status collapsed
  1469. \begin_layout Plain Layout
  1470. \align center
  1471. \begin_inset Graphics
  1472. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-PCA-raw-CROP.png
  1473. lyxscale 25
  1474. width 100col%
  1475. groupId colwidth-raster
  1476. \end_inset
  1477. \end_layout
  1478. \begin_layout Plain Layout
  1479. \begin_inset Caption Standard
  1480. \begin_layout Plain Layout
  1481. \series bold
  1482. \begin_inset CommandInset label
  1483. LatexCommand label
  1484. name "fig:PCoA-H3K4me3-bad"
  1485. \end_inset
  1486. PCoA plot of H3K4me3 windows, before subtracting surrogate variables
  1487. \end_layout
  1488. \end_inset
  1489. \end_layout
  1490. \end_inset
  1491. \end_layout
  1492. \begin_layout Standard
  1493. \begin_inset Float figure
  1494. wide false
  1495. sideways false
  1496. status collapsed
  1497. \begin_layout Plain Layout
  1498. \align center
  1499. \begin_inset Graphics
  1500. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-PCA-SVsub-CROP.png
  1501. lyxscale 25
  1502. width 100col%
  1503. groupId colwidth-raster
  1504. \end_inset
  1505. \end_layout
  1506. \begin_layout Plain Layout
  1507. \begin_inset Caption Standard
  1508. \begin_layout Plain Layout
  1509. \series bold
  1510. \begin_inset CommandInset label
  1511. LatexCommand label
  1512. name "fig:PCoA-H3K4me3-good"
  1513. \end_inset
  1514. PCoA plot of H3K4me3 windows, after subtracting surrogate variables
  1515. \end_layout
  1516. \end_inset
  1517. \end_layout
  1518. \end_inset
  1519. \end_layout
  1520. \begin_layout Standard
  1521. \begin_inset Float figure
  1522. wide false
  1523. sideways false
  1524. status collapsed
  1525. \begin_layout Plain Layout
  1526. \align center
  1527. \begin_inset Graphics
  1528. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-PCA-raw-CROP.png
  1529. lyxscale 25
  1530. width 100col%
  1531. groupId colwidth-raster
  1532. \end_inset
  1533. \end_layout
  1534. \begin_layout Plain Layout
  1535. \begin_inset Caption Standard
  1536. \begin_layout Plain Layout
  1537. \series bold
  1538. \begin_inset CommandInset label
  1539. LatexCommand label
  1540. name "fig:PCoA-H3K27me3-bad"
  1541. \end_inset
  1542. PCoA plot of H3K27me3 windows, before subtracting surrogate variables
  1543. \end_layout
  1544. \end_inset
  1545. \end_layout
  1546. \end_inset
  1547. \end_layout
  1548. \begin_layout Standard
  1549. \begin_inset Float figure
  1550. wide false
  1551. sideways false
  1552. status collapsed
  1553. \begin_layout Plain Layout
  1554. \align center
  1555. \begin_inset Graphics
  1556. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-PCA-SVsub-CROP.png
  1557. lyxscale 25
  1558. width 100col%
  1559. groupId colwidth-raster
  1560. \end_inset
  1561. \end_layout
  1562. \begin_layout Plain Layout
  1563. \begin_inset Caption Standard
  1564. \begin_layout Plain Layout
  1565. \series bold
  1566. \begin_inset CommandInset label
  1567. LatexCommand label
  1568. name "fig:PCoA-H3K27me3-good"
  1569. \end_inset
  1570. PCoA plot of H3K27me3 windows, after subtracting surrogate variables
  1571. \end_layout
  1572. \end_inset
  1573. \end_layout
  1574. \end_inset
  1575. \end_layout
  1576. \begin_layout Itemize
  1577. Figures showing BCV plots with and without SVA for each histone mark.
  1578. \end_layout
  1579. \begin_layout Itemize
  1580. \begin_inset Flex TODO Note (inline)
  1581. status open
  1582. \begin_layout Plain Layout
  1583. Can I do supplementary data on a thesis? This is a lot of plots for this
  1584. section.
  1585. \end_layout
  1586. \end_inset
  1587. \end_layout
  1588. \begin_layout Subsection
  1589. H3K4 and H3K27 promoter methylation has broadly the expected correlation
  1590. with gene expression
  1591. \end_layout
  1592. \begin_layout Itemize
  1593. H3K4 is correlated with higher expression, and H3K27 is correlated with
  1594. lower expression genome-wide
  1595. \end_layout
  1596. \begin_layout Standard
  1597. \begin_inset Flex TODO Note (inline)
  1598. status open
  1599. \begin_layout Plain Layout
  1600. Grr, gotta find these figures.
  1601. Maybe in the old analysis?
  1602. \end_layout
  1603. \end_inset
  1604. \end_layout
  1605. \begin_layout Itemize
  1606. Figures showing these correlations: box/violin plots of expression distributions
  1607. with every combination of peak presence/absence in promoter
  1608. \end_layout
  1609. \begin_layout Itemize
  1610. Appropriate statistical tests showing significant differences in expected
  1611. directions
  1612. \end_layout
  1613. \begin_layout Subsection
  1614. MOFA recovers biologically relevant variation from blind analysis by correlating
  1615. across datasets
  1616. \end_layout
  1617. \begin_layout Standard
  1618. \begin_inset Float figure
  1619. wide false
  1620. sideways false
  1621. status collapsed
  1622. \begin_layout Plain Layout
  1623. \align center
  1624. \begin_inset Graphics
  1625. filename graphics/CD4-csaw/MOFA-varExplaiend-matrix-CROP.png
  1626. lyxscale 25
  1627. width 100col%
  1628. groupId colwidth-raster
  1629. \end_inset
  1630. \end_layout
  1631. \begin_layout Plain Layout
  1632. \begin_inset Caption Standard
  1633. \begin_layout Plain Layout
  1634. \series bold
  1635. \begin_inset CommandInset label
  1636. LatexCommand label
  1637. name "fig:mofa-varexplained"
  1638. \end_inset
  1639. Variance explained in each data set by each latent factor estimated by MOFA.
  1640. \end_layout
  1641. \end_inset
  1642. \end_layout
  1643. \end_inset
  1644. \end_layout
  1645. \begin_layout Itemize
  1646. Figure
  1647. \begin_inset CommandInset ref
  1648. LatexCommand ref
  1649. reference "fig:mofa-varexplained"
  1650. plural "false"
  1651. caps "false"
  1652. noprefix "false"
  1653. \end_inset
  1654. shows that LF1, 4, and 5 explain substantial var in all data sets
  1655. \end_layout
  1656. \begin_layout Standard
  1657. \begin_inset Float figure
  1658. wide false
  1659. sideways false
  1660. status collapsed
  1661. \begin_layout Plain Layout
  1662. \align center
  1663. \begin_inset Graphics
  1664. filename graphics/CD4-csaw/MOFA-LF-distributions-CROP.png
  1665. lyxscale 25
  1666. width 100col%
  1667. groupId colwidth-raster
  1668. \end_inset
  1669. \end_layout
  1670. \begin_layout Plain Layout
  1671. \begin_inset Caption Standard
  1672. \begin_layout Plain Layout
  1673. \series bold
  1674. \begin_inset CommandInset label
  1675. LatexCommand label
  1676. name "fig:mofa-lf-dist"
  1677. \end_inset
  1678. Sample distribution for each latent factor estimated by MOFA.
  1679. \end_layout
  1680. \end_inset
  1681. \end_layout
  1682. \end_inset
  1683. \end_layout
  1684. \begin_layout Standard
  1685. \begin_inset Float figure
  1686. wide false
  1687. sideways false
  1688. status collapsed
  1689. \begin_layout Plain Layout
  1690. \align center
  1691. \begin_inset Graphics
  1692. filename graphics/CD4-csaw/MOFA-LF-scatter-CROP.png
  1693. lyxscale 25
  1694. width 100col%
  1695. groupId colwidth-raster
  1696. \end_inset
  1697. \end_layout
  1698. \begin_layout Plain Layout
  1699. \begin_inset Caption Standard
  1700. \begin_layout Plain Layout
  1701. \series bold
  1702. \begin_inset CommandInset label
  1703. LatexCommand label
  1704. name "fig:mofa-lf-scatter"
  1705. \end_inset
  1706. Scatter plots of specific pairs of MOFA latent factors.
  1707. \end_layout
  1708. \end_inset
  1709. \end_layout
  1710. \end_inset
  1711. \end_layout
  1712. \begin_layout Itemize
  1713. Figures
  1714. \begin_inset CommandInset ref
  1715. LatexCommand ref
  1716. reference "fig:mofa-lf-dist"
  1717. plural "false"
  1718. caps "false"
  1719. noprefix "false"
  1720. \end_inset
  1721. and
  1722. \begin_inset CommandInset ref
  1723. LatexCommand ref
  1724. reference "fig:mofa-lf-scatter"
  1725. plural "false"
  1726. caps "false"
  1727. noprefix "false"
  1728. \end_inset
  1729. show that those same 3 LFs, (1, 4, & 5) also correlate best with the experiment
  1730. al factors (cell type & time point)
  1731. \end_layout
  1732. \begin_layout Itemize
  1733. LF2 is clearly the RNA-seq batch effect
  1734. \end_layout
  1735. \begin_layout Standard
  1736. \begin_inset Float figure
  1737. wide false
  1738. sideways false
  1739. status collapsed
  1740. \begin_layout Plain Layout
  1741. \align center
  1742. \begin_inset Graphics
  1743. filename graphics/CD4-csaw/MOFA-batch-correct-CROP.png
  1744. lyxscale 25
  1745. width 100col%
  1746. groupId colwidth-raster
  1747. \end_inset
  1748. \end_layout
  1749. \begin_layout Plain Layout
  1750. \begin_inset Caption Standard
  1751. \begin_layout Plain Layout
  1752. \series bold
  1753. \begin_inset CommandInset label
  1754. LatexCommand label
  1755. name "fig:mofa-batchsub"
  1756. \end_inset
  1757. Result of RNA-seq batch-correction using MOFA latent factors
  1758. \end_layout
  1759. \end_inset
  1760. \end_layout
  1761. \end_inset
  1762. \end_layout
  1763. \begin_layout Itemize
  1764. Attempting to remove the effect of LF2 (Figure
  1765. \begin_inset CommandInset ref
  1766. LatexCommand ref
  1767. reference "fig:mofa-batchsub"
  1768. plural "false"
  1769. caps "false"
  1770. noprefix "false"
  1771. \end_inset
  1772. ) results in batch correction comparable to ComBat (Figure
  1773. \begin_inset CommandInset ref
  1774. LatexCommand ref
  1775. reference "fig:RNA-PCA-ComBat-batchsub"
  1776. plural "false"
  1777. caps "false"
  1778. noprefix "false"
  1779. \end_inset
  1780. )
  1781. \end_layout
  1782. \begin_layout Itemize
  1783. MOFA was able to do this batch subtraction without directly using the sample
  1784. labels (sample labels were used implicitly to select which factor to subtract)
  1785. \end_layout
  1786. \begin_layout Itemize
  1787. Similarity of results shows that batch correction can't get much better
  1788. than ComBat (despite ComBat ignoring time point)
  1789. \end_layout
  1790. \begin_layout Subsection
  1791. Naive-to-memory convergence observed in H3K4 and RNA-seq data, not in H3K27me3
  1792. \end_layout
  1793. \begin_layout Standard
  1794. \begin_inset Float figure
  1795. wide false
  1796. sideways false
  1797. status open
  1798. \begin_layout Plain Layout
  1799. \align center
  1800. \begin_inset Graphics
  1801. filename graphics/CD4-csaw/RNA-seq/PCA-final-23-CROP.png
  1802. lyxscale 25
  1803. width 100col%
  1804. groupId colwidth-raster
  1805. \end_inset
  1806. \end_layout
  1807. \begin_layout Plain Layout
  1808. \begin_inset Caption Standard
  1809. \begin_layout Plain Layout
  1810. \series bold
  1811. \begin_inset CommandInset label
  1812. LatexCommand label
  1813. name "fig:RNA-PCA-group"
  1814. \end_inset
  1815. RNA-seq PCoA showing principal coordiantes 2 and 3.
  1816. \end_layout
  1817. \end_inset
  1818. \end_layout
  1819. \end_inset
  1820. \end_layout
  1821. \begin_layout Itemize
  1822. H3K4 and RNA-seq data show clear evidence of naive convergence with memory
  1823. between days 1 and 5 (Figures
  1824. \begin_inset CommandInset ref
  1825. LatexCommand ref
  1826. reference "fig:PCoA-H3K4me2-good"
  1827. plural "false"
  1828. caps "false"
  1829. noprefix "false"
  1830. \end_inset
  1831. ,
  1832. \begin_inset CommandInset ref
  1833. LatexCommand ref
  1834. reference "fig:PCoA-H3K4me3-good"
  1835. plural "false"
  1836. caps "false"
  1837. noprefix "false"
  1838. \end_inset
  1839. , and
  1840. \begin_inset CommandInset ref
  1841. LatexCommand ref
  1842. reference "fig:RNA-PCA-group"
  1843. plural "false"
  1844. caps "false"
  1845. noprefix "false"
  1846. \end_inset
  1847. .
  1848. \end_layout
  1849. \begin_layout Itemize
  1850. Table of numbers of genes different between N & M at each time point, showing
  1851. dwindling differences at later time points, consistent with convergence
  1852. \end_layout
  1853. \begin_layout Itemize
  1854. Similar figure for H3K27me3 showing lack of convergence (Figure
  1855. \begin_inset CommandInset ref
  1856. LatexCommand ref
  1857. reference "fig:PCoA-H3K27me3-good"
  1858. plural "false"
  1859. caps "false"
  1860. noprefix "false"
  1861. \end_inset
  1862. )
  1863. \end_layout
  1864. \begin_layout Subsection
  1865. Effect of promoter coverage upstream vs downstream of TSS
  1866. \end_layout
  1867. \begin_layout Itemize
  1868. H3K4me peaks seem to correlate with increased expression as long as they
  1869. are anywhere near the TSS
  1870. \end_layout
  1871. \begin_layout Itemize
  1872. H3K27me3 peaks can have different correlations to gene expression depending
  1873. on their position relative to TSS (e.g.
  1874. upstream vs downstream) Results consistent with
  1875. \begin_inset CommandInset citation
  1876. LatexCommand cite
  1877. key "Young2011"
  1878. literal "false"
  1879. \end_inset
  1880. \end_layout
  1881. \begin_layout Section
  1882. Discussion
  1883. \end_layout
  1884. \begin_layout Itemize
  1885. "Promoter radius" is not constant and must be defined empirically for a
  1886. given data set
  1887. \end_layout
  1888. \begin_layout Itemize
  1889. MOFA shows great promise for accelerating discovery of major biological
  1890. effects in multi-omics datasets
  1891. \end_layout
  1892. \begin_deeper
  1893. \begin_layout Itemize
  1894. MOFA successfully separates biologically relevant patterns of variation
  1895. from technical confounding factors without knowing the sample labels, by
  1896. finding latent factors that explain variation across multiple data sets.
  1897. \end_layout
  1898. \begin_layout Itemize
  1899. MOFA was added to this analysis late and played primarily a confirmatory
  1900. role, but it was able to confirm earlier conclusions with much less prior
  1901. information (no sample labels) and much less analyst effort
  1902. \end_layout
  1903. \begin_layout Itemize
  1904. MOFA confirmed that the already-implemented batch correction in the RNA-seq
  1905. data was already performing as well as possible given the limitations of
  1906. the data
  1907. \end_layout
  1908. \end_deeper
  1909. \begin_layout Itemize
  1910. Naive-to-memory convergence implies that naive cells are differentiating
  1911. into memory cells, and that gene expression and H3K4 methylation are involved
  1912. in this differentiation while H3K27me3 is less involved
  1913. \end_layout
  1914. \begin_layout Standard
  1915. \begin_inset Float figure
  1916. wide false
  1917. sideways false
  1918. status open
  1919. \begin_layout Plain Layout
  1920. \align center
  1921. \begin_inset Graphics
  1922. filename graphics/CD4-csaw/LaMere2016_fig8.pdf
  1923. lyxscale 50
  1924. width 100col%
  1925. groupId colwidth
  1926. \end_inset
  1927. \end_layout
  1928. \begin_layout Plain Layout
  1929. \begin_inset Caption Standard
  1930. \begin_layout Plain Layout
  1931. \series bold
  1932. LaMere 2016 Figure 8, reproduced with permission.
  1933. \end_layout
  1934. \end_inset
  1935. \end_layout
  1936. \end_inset
  1937. \end_layout
  1938. \begin_layout Itemize
  1939. Convergence is consistent with Lamere2016 fig 8
  1940. \begin_inset CommandInset citation
  1941. LatexCommand cite
  1942. key "LaMere2016"
  1943. literal "false"
  1944. \end_inset
  1945. (which was created without the benefit of SVA)
  1946. \end_layout
  1947. \begin_layout Itemize
  1948. H3K27me3, canonically regarded as a deactivating mark, seems to have a more
  1949. complex effect
  1950. \end_layout
  1951. \begin_layout Itemize
  1952. Discuss advantages of developing using a reproducible workflow
  1953. \end_layout
  1954. \begin_layout Chapter
  1955. Improving array-based analyses of transplant rejection by optimizing data
  1956. preprocessing
  1957. \end_layout
  1958. \begin_layout Standard
  1959. \begin_inset Note Note
  1960. status open
  1961. \begin_layout Plain Layout
  1962. Author list: Me, Sunil, Tom, Padma, Dan
  1963. \end_layout
  1964. \end_inset
  1965. \end_layout
  1966. \begin_layout Section
  1967. Approach
  1968. \end_layout
  1969. \begin_layout Subsection
  1970. Proper pre-processing is essential for array data
  1971. \end_layout
  1972. \begin_layout Standard
  1973. \begin_inset Flex TODO Note (inline)
  1974. status open
  1975. \begin_layout Plain Layout
  1976. This section could probably use some citations
  1977. \end_layout
  1978. \end_inset
  1979. \end_layout
  1980. \begin_layout Standard
  1981. Microarrays, bead arrays, and similar assays produce raw data in the form
  1982. of fluorescence intensity measurements, with the each intensity measurement
  1983. proportional to the abundance of some fluorescently-labelled target DNA
  1984. or RNA sequence that base pairs to a specific probe sequence.
  1985. However, these measurements for each probe are also affected my many technical
  1986. confounding factors, such as the concentration of target material, strength
  1987. of off-target binding, and the sensitivity of the imaging sensor.
  1988. Some array designs also use multiple probe sequences for each target.
  1989. Hence, extensive pre-processing of array data is necessary to normalize
  1990. out the effects of these technical factors and summarize the information
  1991. from multiple probes to arrive at a single usable estimate of abundance
  1992. or other relevant quantity, such as a ratio of two abundances, for each
  1993. target.
  1994. \end_layout
  1995. \begin_layout Standard
  1996. The choice of pre-processing algorithms used in the analysis of an array
  1997. data set can have a large effect on the results of that analysis.
  1998. However, despite their importance, these steps are often neglected or rushed
  1999. in order to get to the more scientifically interesting analysis steps involving
  2000. the actual biology of the system under study.
  2001. Hence, it is often possible to achieve substantial gains in statistical
  2002. power, model goodness-of-fit, or other relevant performance measures, by
  2003. checking the assumptions made by each preprocessing step and choosing specific
  2004. normalization methods tailored to the specific goals of the current analysis.
  2005. \end_layout
  2006. \begin_layout Subsection
  2007. Normalization for clinical microarray classifiers must be single-channel
  2008. \end_layout
  2009. \begin_layout Subsubsection
  2010. Standard normalization methods are unsuitable for clinical application
  2011. \end_layout
  2012. \begin_layout Standard
  2013. As the cost of performing microarray assays falls, there is increasing interest
  2014. in using genomic assays for diagnostic purposes, such as distinguishing
  2015. healthy transplants (TX) from transplants undergoing acute rejection (AR)
  2016. or acute dysfunction with no rejection (ADNR).
  2017. However, the the standard normalization algorithm used for microarray data,
  2018. Robust Multi-chip Average (RMA)
  2019. \begin_inset CommandInset citation
  2020. LatexCommand cite
  2021. key "Irizarry2003a"
  2022. literal "false"
  2023. \end_inset
  2024. , is not applicable in a clinical setting.
  2025. Two of the steps in RMA, quantile normalization and probe summarization
  2026. by median polish, depend on every array in the data set being normalized.
  2027. This means that adding or removing any arrays from a data set changes the
  2028. normalized values for all arrays, and data sets that have been normalized
  2029. separately cannot be compared to each other.
  2030. Hence, when using RMA, any arrays to be analyzed together must also be
  2031. normalized together, and the set of arrays included in the data set must
  2032. be held constant throughout an analysis.
  2033. \end_layout
  2034. \begin_layout Standard
  2035. These limitations present serious impediments to the use of arrays as a
  2036. diagnostic tool.
  2037. When training a classifier, the samples to be classified must not be involved
  2038. in any step of the training process, lest their inclusion bias the training
  2039. process.
  2040. Once a classifier is deployed in a clinical setting, the samples to be
  2041. classified will not even
  2042. \emph on
  2043. exist
  2044. \emph default
  2045. at the time of training, so including them would be impossible even if
  2046. it were statistically justifiable.
  2047. Therefore, any machine learning application for microarrays demands that
  2048. the normalized expression values computed for an array must depend only
  2049. on information contained within that array.
  2050. This would ensure that each array's normalization is independent of every
  2051. other array, and that arrays normalized separately can still be compared
  2052. to each other without bias.
  2053. Such a normalization is commonly referred to as
  2054. \begin_inset Quotes eld
  2055. \end_inset
  2056. single-channel normalization
  2057. \begin_inset Quotes erd
  2058. \end_inset
  2059. .
  2060. \end_layout
  2061. \begin_layout Subsubsection
  2062. Several strategies are available to meet clinical normalization requirements
  2063. \end_layout
  2064. \begin_layout Standard
  2065. Frozen RMA (fRMA) addresses these concerns by replacing the quantile normalizati
  2066. on and median polish with alternatives that do not introduce inter-array
  2067. dependence, allowing each array to be normalized independently of all others
  2068. \begin_inset CommandInset citation
  2069. LatexCommand cite
  2070. key "McCall2010"
  2071. literal "false"
  2072. \end_inset
  2073. .
  2074. Quantile normalization is performed against a pre-generated set of quantiles
  2075. learned from a collection of 850 publically available arrays sampled from
  2076. a wide variety of tissues in the Gene Expression Omnibus (GEO).
  2077. Each array's probe intensity distribution is normalized against these pre-gener
  2078. ated quantiles.
  2079. The median polish step is replaced with a robust weighted average of probe
  2080. intensities, using inverse variance weights learned from the same public
  2081. GEO data.
  2082. The result is a normalization that satisfies the requirements mentioned
  2083. above: each array is normalized independently of all others, and any two
  2084. normalized arrays can be compared directly to each other.
  2085. \end_layout
  2086. \begin_layout Standard
  2087. One important limitation of fRMA is that it requires a separate reference
  2088. data set from which to learn the parameters (reference quantiles and probe
  2089. weights) that will be used to normalize each array.
  2090. These parameters are specific to a given array platform, and pre-generated
  2091. parameters are only provided for the most common platforms, such as Affymetrix
  2092. hgu133plus2.
  2093. For a less common platform, such as hthgu133pluspm, is is necessary to
  2094. learn custom parameters from in-house data before fRMA can be used to normalize
  2095. samples on that platform
  2096. \begin_inset CommandInset citation
  2097. LatexCommand cite
  2098. key "McCall2011"
  2099. literal "false"
  2100. \end_inset
  2101. .
  2102. \end_layout
  2103. \begin_layout Standard
  2104. One other option is the aptly-named Single Channel Array Normalization (SCAN),
  2105. which adapts a normalization method originally designed for tiling arrays
  2106. \begin_inset CommandInset citation
  2107. LatexCommand cite
  2108. key "Piccolo2012"
  2109. literal "false"
  2110. \end_inset
  2111. .
  2112. SCAN is truly single-channel in that it does not require a set of normalization
  2113. paramters estimated from an external set of reference samples like fRMA
  2114. does.
  2115. \end_layout
  2116. \begin_layout Subsection
  2117. Heteroskedasticity must be accounted for in methylation array data
  2118. \end_layout
  2119. \begin_layout Subsubsection
  2120. Methylation array preprocessing induces heteroskedasticity
  2121. \end_layout
  2122. \begin_layout Standard
  2123. DNA methylation arrays are a relatively new kind of assay that uses microarrays
  2124. to measure the degree of methylation on cytosines in specific regions arrayed
  2125. across the genome.
  2126. First, bisulfite treatment converts all unmethylated cytosines to uracil
  2127. (which then become thymine after amplication) while leaving methylated
  2128. cytosines unaffected.
  2129. Then, each target region is interrogated with two probes: one binds to
  2130. the original genomic sequence and interrogates the level of methylated
  2131. DNA, and the other binds to the same sequence with all cytosines replaced
  2132. by thymidines and interrogates the level of unmethylated DNA.
  2133. \end_layout
  2134. \begin_layout Standard
  2135. \begin_inset Float figure
  2136. wide false
  2137. sideways false
  2138. status collapsed
  2139. \begin_layout Plain Layout
  2140. \align center
  2141. \begin_inset Graphics
  2142. filename graphics/methylvoom/sigmoid.pdf
  2143. \end_inset
  2144. \end_layout
  2145. \begin_layout Plain Layout
  2146. \begin_inset Caption Standard
  2147. \begin_layout Plain Layout
  2148. \begin_inset CommandInset label
  2149. LatexCommand label
  2150. name "fig:Sigmoid-beta-m-mapping"
  2151. \end_inset
  2152. \series bold
  2153. Sigmoid shape of the mapping between β and M values
  2154. \end_layout
  2155. \end_inset
  2156. \end_layout
  2157. \end_inset
  2158. \end_layout
  2159. \begin_layout Standard
  2160. After normalization, these two probe intensities are summarized in one of
  2161. two ways, each with advantages and disadvantages.
  2162. β
  2163. \series bold
  2164. \series default
  2165. values, interpreted as fraction of DNA copies methylated, range from 0 to
  2166. 1.
  2167. β
  2168. \series bold
  2169. \series default
  2170. values are conceptually easy to interpret, but the constrained range makes
  2171. them unsuitable for linear modeling, and their error distributions are
  2172. highly non-normal, which also frustrates linear modeling.
  2173. M-values, interpreted as the log ratio of methylated to unmethylated copies,
  2174. are computed by mapping the beta values from
  2175. \begin_inset Formula $[0,1]$
  2176. \end_inset
  2177. onto
  2178. \begin_inset Formula $(-\infty,+\infty)$
  2179. \end_inset
  2180. using a sigmoid curve (Figure
  2181. \begin_inset CommandInset ref
  2182. LatexCommand ref
  2183. reference "fig:Sigmoid-beta-m-mapping"
  2184. plural "false"
  2185. caps "false"
  2186. noprefix "false"
  2187. \end_inset
  2188. ).
  2189. This transformation results in values with better statistical perperties:
  2190. the unconstrained range is suitable for linear modeling, and the error
  2191. distributions are more normal.
  2192. Hence, most linear modeling and other statistical testing on methylation
  2193. arrays is performed using M-values.
  2194. \end_layout
  2195. \begin_layout Standard
  2196. However, the steep slope of the sigmoid transformation near 0 and 1 tends
  2197. to over-exaggerate small differences in β values near those extremes, which
  2198. in turn amplifies the error in those values, leading to a U-shaped trend
  2199. in the mean-variance curve: extreme values have higher variances than values
  2200. near the middle.
  2201. This mean-variance dependency must be accounted for when fitting the linear
  2202. model for differential methylation, or else the variance will be systematically
  2203. overestimated for probes with moderate M-values and underestimated for
  2204. probes with extreme M-values.
  2205. \end_layout
  2206. \begin_layout Subsubsection
  2207. The voom method for RNA-seq data can model M-value heteroskedasticity
  2208. \end_layout
  2209. \begin_layout Standard
  2210. RNA-seq read count data are also known to show heteroskedasticity, and the
  2211. voom method was developed for modeling this heteroskedasticity by estimating
  2212. the mean-variance trend in the data and using this trend to assign precision
  2213. weights to each observation
  2214. \begin_inset CommandInset citation
  2215. LatexCommand cite
  2216. key "Law2013"
  2217. literal "false"
  2218. \end_inset
  2219. .
  2220. While methylation array data are not derived from counts and have a very
  2221. different mean-variance relationship from that of typical RNA-seq data,
  2222. the voom method makes no specific assumptions on the shape of the mean-variance
  2223. relationship - it only assumes that the relationship is smooth enough to
  2224. model using a lowess curve.
  2225. Hence, the method is sufficiently general to model the mean-variance relationsh
  2226. ip in methylation array data.
  2227. However, the standard implementation of voom assumes that the input is
  2228. given in raw read counts, and it must be adapted to run on methylation
  2229. M-values.
  2230. \end_layout
  2231. \begin_layout Section
  2232. Methods
  2233. \end_layout
  2234. \begin_layout Subsection
  2235. Evaluation of classifier performance with different normalization methods
  2236. \end_layout
  2237. \begin_layout Standard
  2238. For testing different expression microarray normalizations, a data set of
  2239. 157 hgu133plus2 arrays was used, consisting of blood samples from kidney
  2240. transplant patients whose grafts had been graded as TX, AR, or ADNR via
  2241. biopsy and histology (46 TX, 69 AR, 42 ADNR)
  2242. \begin_inset CommandInset citation
  2243. LatexCommand cite
  2244. key "Kurian2014"
  2245. literal "true"
  2246. \end_inset
  2247. .
  2248. Additionally, an external validation set of 75 samples was gathered from
  2249. public GEO data (37 TX, 38 AR, no ADNR).
  2250. \end_layout
  2251. \begin_layout Standard
  2252. \begin_inset Flex TODO Note (inline)
  2253. status collapsed
  2254. \begin_layout Plain Layout
  2255. Find appropriate GEO identifiers if possible.
  2256. Kurian 2014 says GSE15296, but this seems to be different data.
  2257. I also need to look up the GEO accession for the external validation set.
  2258. \end_layout
  2259. \end_inset
  2260. \end_layout
  2261. \begin_layout Standard
  2262. To evaluate the effect of each normalization on classifier performance,
  2263. the same classifier training and validation procedure was used after each
  2264. normalization method.
  2265. The PAM package was used to train a nearest shrunken centroid classifier
  2266. on the training set and select the appropriate threshold for centroid shrinking.
  2267. Then the trained classifier was used to predict the class probabilities
  2268. of each validation sample.
  2269. From these class probabilities, ROC curves and area-under-curve (AUC) values
  2270. were generated
  2271. \begin_inset CommandInset citation
  2272. LatexCommand cite
  2273. key "Turck2011"
  2274. literal "false"
  2275. \end_inset
  2276. .
  2277. Each normalization was tested on two different sets of training and validation
  2278. samples.
  2279. For internal validation, the 115 TX and AR arrays in the internal set were
  2280. split at random into two equal sized sets, one for training and one for
  2281. validation, each containing the same numbers of TX and AR samples as the
  2282. other set.
  2283. For external validation, the full set of 115 TX and AR samples were used
  2284. as a training set, and the 75 external TX and AR samples were used as the
  2285. validation set.
  2286. Thus, 2 ROC curves and AUC values were generated for each normalization
  2287. method: one internal and one external.
  2288. Because the external validation set contains no ADNR samples, only classificati
  2289. on of TX and AR samples was considered.
  2290. The ADNR samples were included during normalization but excluded from all
  2291. classifier training and validation.
  2292. This ensures that the performance on internal and external validation sets
  2293. is directly comparable, since both are performing the same task: distinguising
  2294. TX from AR.
  2295. \end_layout
  2296. \begin_layout Standard
  2297. \begin_inset Flex TODO Note (inline)
  2298. status collapsed
  2299. \begin_layout Plain Layout
  2300. Summarize the get.best.threshold algorithm for PAM threshold selection
  2301. \end_layout
  2302. \end_inset
  2303. \end_layout
  2304. \begin_layout Standard
  2305. Six different normalization strategies were evaluated.
  2306. First, 2 well-known non-single-channel normalization methods were considered:
  2307. RMA and dChip
  2308. \begin_inset CommandInset citation
  2309. LatexCommand cite
  2310. key "Li2001,Irizarry2003a"
  2311. literal "false"
  2312. \end_inset
  2313. .
  2314. Since RMA produces expression values on a log2 scale and dChip does not,
  2315. the values from dChip were log2 transformed after normalization.
  2316. Next, RMA and dChip followed by Global Rank-invariant Set Normalization
  2317. (GRSN) were tested
  2318. \begin_inset CommandInset citation
  2319. LatexCommand cite
  2320. key "Pelz2008"
  2321. literal "false"
  2322. \end_inset
  2323. .
  2324. Post-processing with GRSN does not turn RMA or dChip into single-channel
  2325. methods, but it may help mitigate batch effects and is therefore useful
  2326. as a benchmark.
  2327. Lastly, the two single-channel normalization methods, fRMA and SCAN, were
  2328. tested
  2329. \begin_inset CommandInset citation
  2330. LatexCommand cite
  2331. key "McCall2010,Piccolo2012"
  2332. literal "false"
  2333. \end_inset
  2334. .
  2335. When evaluting internal validation performance, only the 157 internal samples
  2336. were normalized; when evaluating external validation performance, all 157
  2337. internal samples and 75 external samples were normalized together.
  2338. \end_layout
  2339. \begin_layout Standard
  2340. For demonstrating the problem with separate normalization of training and
  2341. validation data, one additional normalization was performed: the internal
  2342. and external sets were each normalized separately using RMA, and the normalized
  2343. data for each set were combined into a single set with no further attempts
  2344. at normalizing between the two sets.
  2345. The represents approximately how RMA would have to be used in a clinical
  2346. setting, where the samples to be classified are not available at the time
  2347. the classifier is trained.
  2348. \end_layout
  2349. \begin_layout Subsection
  2350. Generating custom fRMA vectors for hthgu133pluspm array platform
  2351. \end_layout
  2352. \begin_layout Standard
  2353. In order to enable fRMA normalization for the hthgu133pluspm array platform,
  2354. custom fRMA normalization vectors were trained using the frmaTools package
  2355. \begin_inset CommandInset citation
  2356. LatexCommand cite
  2357. key "McCall2011"
  2358. literal "false"
  2359. \end_inset
  2360. .
  2361. Separate vectors were created for two types of samples: kidney graft biopsy
  2362. samples and blood samples from graft recipients.
  2363. For training, a 341 kidney biopsy samples from 2 data sets and 965 blood
  2364. samples from 5 data sets were used as the reference set.
  2365. Arrays were groups into batches based on unique combinations of sample
  2366. type (blood or biopsy), diagnosis (TX, AR, etc.), data set, and scan date.
  2367. Thus, each batch represents arrays of the same kind that were run together
  2368. on the same day.
  2369. For estimating the probe inverse variance weights, frmaTools requires equal-siz
  2370. ed batches, which means a batch size must be chosen, and then batches smaller
  2371. than that size must be ignored, while batches larger than the chosen size
  2372. must be downsampled.
  2373. This downsampling is performed randomly, so the sampling process is repeated
  2374. 5 times and the resulting normalizations are compared to each other.
  2375. \end_layout
  2376. \begin_layout Standard
  2377. To evaluate the consistency of the generated normalization vectors, the
  2378. 5 fRMA vector sets generated from 5 random batch samplings were each used
  2379. to normalize the same 20 randomly selected samples from each tissue.
  2380. Then the normalized expression values for each probe on each array were
  2381. compared across all normalizations.
  2382. Each fRMA normalization was also compared against the normalized expression
  2383. values obtained by normalizing the same 20 samples with ordinary RMA.
  2384. \end_layout
  2385. \begin_layout Subsection
  2386. Modeling methylation array M-value heteroskedasticy in linear models with
  2387. modified voom implementation
  2388. \end_layout
  2389. \begin_layout Standard
  2390. \begin_inset Flex TODO Note (inline)
  2391. status open
  2392. \begin_layout Plain Layout
  2393. Put code on Github and reference it.
  2394. \end_layout
  2395. \end_inset
  2396. \end_layout
  2397. \begin_layout Standard
  2398. To investigate the whether DNA methylation could be used to distinguish
  2399. between healthy and dysfunctional transplants, a data set of 78 Illumina
  2400. 450k methylation arrays from human kidney graft biopsies was analyzed for
  2401. differential metylation between 4 transplant statuses: healthy transplant
  2402. (TX), transplants undergoing acute rejection (AR), acute dysfunction with
  2403. no rejection (ADNR), and chronic allograpft nephropathy (CAN).
  2404. The data consisted of 33 TX, 9 AR, 8 ADNR, and 28 CAN samples.
  2405. The uneven group sizes are a result of taking the biopsy samples before
  2406. the eventual fate of the transplant was known.
  2407. Each sample was additionally annotated with a donor ID (anonymized), Sex,
  2408. Age, Ethnicity, Creatinine Level, and Diabetes diagnosois (all samples
  2409. in this data set came from patients with either Type 1 or Type 2 diabetes).
  2410. \end_layout
  2411. \begin_layout Standard
  2412. The intensity data were first normalized using subset-quantile within array
  2413. normalization (SWAN)
  2414. \begin_inset CommandInset citation
  2415. LatexCommand cite
  2416. key "Maksimovic2012"
  2417. literal "false"
  2418. \end_inset
  2419. , then converted to intensity ratios (beta values)
  2420. \begin_inset CommandInset citation
  2421. LatexCommand cite
  2422. key "Aryee2014"
  2423. literal "false"
  2424. \end_inset
  2425. .
  2426. Any probes binding to loci that overlapped annotated SNPs were dropped,
  2427. and the annotated sex of each sample was verified against the sex inferred
  2428. from the ratio of median probe intensities for the X and Y chromosomes.
  2429. Then, the ratios were transformed to M-values.
  2430. \end_layout
  2431. \begin_layout Standard
  2432. \begin_inset Float table
  2433. wide false
  2434. sideways false
  2435. status collapsed
  2436. \begin_layout Plain Layout
  2437. \begin_inset Tabular
  2438. <lyxtabular version="3" rows="4" columns="6">
  2439. <features tabularvalignment="middle">
  2440. <column alignment="center" valignment="top">
  2441. <column alignment="center" valignment="top">
  2442. <column alignment="center" valignment="top">
  2443. <column alignment="center" valignment="top">
  2444. <column alignment="center" valignment="top">
  2445. <column alignment="center" valignment="top">
  2446. <row>
  2447. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2448. \begin_inset Text
  2449. \begin_layout Plain Layout
  2450. Analysis
  2451. \end_layout
  2452. \end_inset
  2453. </cell>
  2454. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2455. \begin_inset Text
  2456. \begin_layout Plain Layout
  2457. patient random effect
  2458. \end_layout
  2459. \end_inset
  2460. </cell>
  2461. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2462. \begin_inset Text
  2463. \begin_layout Plain Layout
  2464. empirical Bayes
  2465. \end_layout
  2466. \end_inset
  2467. </cell>
  2468. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2469. \begin_inset Text
  2470. \begin_layout Plain Layout
  2471. SVA
  2472. \end_layout
  2473. \end_inset
  2474. </cell>
  2475. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2476. \begin_inset Text
  2477. \begin_layout Plain Layout
  2478. sample weights
  2479. \end_layout
  2480. \end_inset
  2481. </cell>
  2482. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2483. \begin_inset Text
  2484. \begin_layout Plain Layout
  2485. voom
  2486. \end_layout
  2487. \end_inset
  2488. </cell>
  2489. </row>
  2490. <row>
  2491. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2492. \begin_inset Text
  2493. \begin_layout Plain Layout
  2494. A
  2495. \end_layout
  2496. \end_inset
  2497. </cell>
  2498. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2499. \begin_inset Text
  2500. \begin_layout Plain Layout
  2501. Yes
  2502. \end_layout
  2503. \end_inset
  2504. </cell>
  2505. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2506. \begin_inset Text
  2507. \begin_layout Plain Layout
  2508. Yes
  2509. \end_layout
  2510. \end_inset
  2511. </cell>
  2512. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2513. \begin_inset Text
  2514. \begin_layout Plain Layout
  2515. No
  2516. \end_layout
  2517. \end_inset
  2518. </cell>
  2519. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2520. \begin_inset Text
  2521. \begin_layout Plain Layout
  2522. No
  2523. \end_layout
  2524. \end_inset
  2525. </cell>
  2526. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2527. \begin_inset Text
  2528. \begin_layout Plain Layout
  2529. No
  2530. \end_layout
  2531. \end_inset
  2532. </cell>
  2533. </row>
  2534. <row>
  2535. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2536. \begin_inset Text
  2537. \begin_layout Plain Layout
  2538. B
  2539. \end_layout
  2540. \end_inset
  2541. </cell>
  2542. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2543. \begin_inset Text
  2544. \begin_layout Plain Layout
  2545. Yes
  2546. \end_layout
  2547. \end_inset
  2548. </cell>
  2549. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2550. \begin_inset Text
  2551. \begin_layout Plain Layout
  2552. Yes
  2553. \end_layout
  2554. \end_inset
  2555. </cell>
  2556. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2557. \begin_inset Text
  2558. \begin_layout Plain Layout
  2559. Yes
  2560. \end_layout
  2561. \end_inset
  2562. </cell>
  2563. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2564. \begin_inset Text
  2565. \begin_layout Plain Layout
  2566. Yes
  2567. \end_layout
  2568. \end_inset
  2569. </cell>
  2570. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2571. \begin_inset Text
  2572. \begin_layout Plain Layout
  2573. No
  2574. \end_layout
  2575. \end_inset
  2576. </cell>
  2577. </row>
  2578. <row>
  2579. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2580. \begin_inset Text
  2581. \begin_layout Plain Layout
  2582. C
  2583. \end_layout
  2584. \end_inset
  2585. </cell>
  2586. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2587. \begin_inset Text
  2588. \begin_layout Plain Layout
  2589. Yes
  2590. \end_layout
  2591. \end_inset
  2592. </cell>
  2593. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2594. \begin_inset Text
  2595. \begin_layout Plain Layout
  2596. Yes
  2597. \end_layout
  2598. \end_inset
  2599. </cell>
  2600. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2601. \begin_inset Text
  2602. \begin_layout Plain Layout
  2603. Yes
  2604. \end_layout
  2605. \end_inset
  2606. </cell>
  2607. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2608. \begin_inset Text
  2609. \begin_layout Plain Layout
  2610. Yes
  2611. \end_layout
  2612. \end_inset
  2613. </cell>
  2614. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2615. \begin_inset Text
  2616. \begin_layout Plain Layout
  2617. Yes
  2618. \end_layout
  2619. \end_inset
  2620. </cell>
  2621. </row>
  2622. </lyxtabular>
  2623. \end_inset
  2624. \end_layout
  2625. \begin_layout Plain Layout
  2626. \begin_inset Caption Standard
  2627. \begin_layout Plain Layout
  2628. \series bold
  2629. \begin_inset CommandInset label
  2630. LatexCommand label
  2631. name "tab:Summary-of-meth-analysis"
  2632. \end_inset
  2633. Summary of analysis variants for methylation array data.
  2634. \series default
  2635. Each analysis included a different set of steps to adjust or account for
  2636. various systematic features of the data.
  2637. See the text for a more detailed explanation of each step.
  2638. \end_layout
  2639. \end_inset
  2640. \end_layout
  2641. \end_inset
  2642. \end_layout
  2643. \begin_layout Standard
  2644. From the M-values, a series of parallel analyses was performed, each adding
  2645. additional steps into the model fit to accomodate a feature of the data
  2646. (see Table
  2647. \begin_inset CommandInset ref
  2648. LatexCommand ref
  2649. reference "tab:Summary-of-meth-analysis"
  2650. plural "false"
  2651. caps "false"
  2652. noprefix "false"
  2653. \end_inset
  2654. ).
  2655. For analysis A, a
  2656. \begin_inset Quotes eld
  2657. \end_inset
  2658. basic
  2659. \begin_inset Quotes erd
  2660. \end_inset
  2661. linear modeling analysis was performed, compensating for known confounders
  2662. by including terms for the factor of interest (transplant status) as well
  2663. as the known biological confounders: sex, age, ethnicity, and diabetes.
  2664. Since some samples came from the same patients at different times, the
  2665. intra-patient correlation was modeled as a random effect, estimating a
  2666. shared correlation value across all probes
  2667. \begin_inset CommandInset citation
  2668. LatexCommand cite
  2669. key "Smyth2005a"
  2670. literal "false"
  2671. \end_inset
  2672. .
  2673. Then the linear model was fit, and the variance was modeled using empirical
  2674. Bayes squeezing toward the mean-variance trend
  2675. \begin_inset CommandInset citation
  2676. LatexCommand cite
  2677. key "Ritchie2015"
  2678. literal "false"
  2679. \end_inset
  2680. .
  2681. Finally, t-tests or F-tests were performed as appropriate for each test:
  2682. t-tests for single contrasts, and F-tests for multiple contrasts.
  2683. P-values were corrected for multiple testing using the Benjamini-Hochberg
  2684. procedure for FDR control
  2685. \begin_inset CommandInset citation
  2686. LatexCommand cite
  2687. key "Benjamini1995"
  2688. literal "false"
  2689. \end_inset
  2690. .
  2691. \end_layout
  2692. \begin_layout Standard
  2693. For the analysis B, surrogate variable analysis (SVA) was used to infer
  2694. additional unobserved sources of heterogeneity in the data
  2695. \begin_inset CommandInset citation
  2696. LatexCommand cite
  2697. key "Leek2007"
  2698. literal "false"
  2699. \end_inset
  2700. .
  2701. These surrogate variables were added to the design matrix before fitting
  2702. the linear model.
  2703. In addition, sample quality weights were estimated from the data and used
  2704. during linear modeling to down-weight the contribution of highly variable
  2705. arrays while increasing the weight to arrays with lower variability
  2706. \begin_inset CommandInset citation
  2707. LatexCommand cite
  2708. key "Ritchie2006"
  2709. literal "false"
  2710. \end_inset
  2711. .
  2712. The remainder of the analysis proceeded as in analysis A.
  2713. For analysis C, the voom method was adapted to run on methylation array
  2714. data and used to model and correct for the mean-variance trend using individual
  2715. observation weights
  2716. \begin_inset CommandInset citation
  2717. LatexCommand cite
  2718. key "Law2013"
  2719. literal "false"
  2720. \end_inset
  2721. , which were combined with the sample weights
  2722. \begin_inset CommandInset citation
  2723. LatexCommand cite
  2724. key "Liu2015"
  2725. literal "false"
  2726. \end_inset
  2727. .
  2728. Each time weights were used, they were estimated once before estimating
  2729. the random effect correlation value, and then the weights were re-estimated
  2730. taking the random effect into account.
  2731. The remainder of the analysis proceeded as in analysis B.
  2732. \end_layout
  2733. \begin_layout Section
  2734. Results
  2735. \end_layout
  2736. \begin_layout Standard
  2737. \begin_inset Flex TODO Note (inline)
  2738. status open
  2739. \begin_layout Plain Layout
  2740. Improve subsection titles in this section
  2741. \end_layout
  2742. \end_inset
  2743. \end_layout
  2744. \begin_layout Subsection
  2745. fRMA eliminates unwanted dependence of classifier training on normalization
  2746. strategy caused by RMA
  2747. \end_layout
  2748. \begin_layout Standard
  2749. \begin_inset Flex TODO Note (inline)
  2750. status open
  2751. \begin_layout Plain Layout
  2752. Write figure legends
  2753. \end_layout
  2754. \end_inset
  2755. \end_layout
  2756. \begin_layout Subsubsection
  2757. Separate normalization with RMA introduces unwanted biases in classification
  2758. \end_layout
  2759. \begin_layout Standard
  2760. \begin_inset Float figure
  2761. wide false
  2762. sideways false
  2763. status collapsed
  2764. \begin_layout Plain Layout
  2765. \align center
  2766. \begin_inset Graphics
  2767. filename graphics/PAM/predplot.pdf
  2768. lyxscale 50
  2769. width 100col%
  2770. groupId colwidth
  2771. \end_inset
  2772. \end_layout
  2773. \begin_layout Plain Layout
  2774. \begin_inset Caption Standard
  2775. \begin_layout Plain Layout
  2776. \begin_inset CommandInset label
  2777. LatexCommand label
  2778. name "fig:Classifier-probabilities-RMA"
  2779. \end_inset
  2780. \series bold
  2781. Classifier probabilities on validation samples when normalized with RMA
  2782. together vs.
  2783. separately.
  2784. \end_layout
  2785. \end_inset
  2786. \end_layout
  2787. \end_inset
  2788. \end_layout
  2789. \begin_layout Standard
  2790. To demonstrate the problem with non-single-channel normalization methods,
  2791. we considered the problem of training a classifier to distinguish TX from
  2792. AR using the samples from the internal set as training data, evaluating
  2793. performance on the external set.
  2794. First, training and evaluation were performed after normalizing all array
  2795. samples together as a single set using RMA, and second, the internal samples
  2796. were normalized separately from the external samples and the training and
  2797. evaluation were repeated.
  2798. For each sample in the validation set, the classifier probabilities from
  2799. both classifiers were plotted against each other (Fig.
  2800. \begin_inset CommandInset ref
  2801. LatexCommand ref
  2802. reference "fig:Classifier-probabilities-RMA"
  2803. plural "false"
  2804. caps "false"
  2805. noprefix "false"
  2806. \end_inset
  2807. ).
  2808. As expected, separate normalization biases the classifier probabilities,
  2809. resulting in several misclassifications.
  2810. In this case, the bias from separate normalization causes the classifier
  2811. to assign a lower probability of AR to every sample.
  2812. \end_layout
  2813. \begin_layout Subsubsection
  2814. fRMA and SCAN achieve maintain classification performance while eliminating
  2815. dependence on normalization strategy
  2816. \end_layout
  2817. \begin_layout Standard
  2818. \begin_inset Float figure
  2819. placement tb
  2820. wide false
  2821. sideways false
  2822. status collapsed
  2823. \begin_layout Plain Layout
  2824. \align center
  2825. \begin_inset Graphics
  2826. filename graphics/PAM/ROC-TXvsAR-internal.pdf
  2827. lyxscale 50
  2828. width 100col%
  2829. groupId colwidth
  2830. \end_inset
  2831. \end_layout
  2832. \begin_layout Plain Layout
  2833. \begin_inset Caption Standard
  2834. \begin_layout Plain Layout
  2835. \series bold
  2836. \begin_inset CommandInset label
  2837. LatexCommand label
  2838. name "fig:ROC-PAM-int"
  2839. \end_inset
  2840. ROC curves for PAM on internal validation data using different normalization
  2841. strategies
  2842. \end_layout
  2843. \end_inset
  2844. \end_layout
  2845. \end_inset
  2846. \end_layout
  2847. \begin_layout Standard
  2848. \begin_inset Float table
  2849. wide false
  2850. sideways false
  2851. status collapsed
  2852. \begin_layout Plain Layout
  2853. \align center
  2854. \begin_inset Tabular
  2855. <lyxtabular version="3" rows="7" columns="4">
  2856. <features tabularvalignment="middle">
  2857. <column alignment="center" valignment="top">
  2858. <column alignment="center" valignment="top">
  2859. <column alignment="center" valignment="top">
  2860. <column alignment="center" valignment="top">
  2861. <row>
  2862. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2863. \begin_inset Text
  2864. \begin_layout Plain Layout
  2865. \family roman
  2866. \series medium
  2867. \shape up
  2868. \size normal
  2869. \emph off
  2870. \bar no
  2871. \strikeout off
  2872. \xout off
  2873. \uuline off
  2874. \uwave off
  2875. \noun off
  2876. \color none
  2877. Normalization
  2878. \end_layout
  2879. \end_inset
  2880. </cell>
  2881. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2882. \begin_inset Text
  2883. \begin_layout Plain Layout
  2884. Single-channel?
  2885. \end_layout
  2886. \end_inset
  2887. </cell>
  2888. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2889. \begin_inset Text
  2890. \begin_layout Plain Layout
  2891. \family roman
  2892. \series medium
  2893. \shape up
  2894. \size normal
  2895. \emph off
  2896. \bar no
  2897. \strikeout off
  2898. \xout off
  2899. \uuline off
  2900. \uwave off
  2901. \noun off
  2902. \color none
  2903. Internal Val.
  2904. AUC
  2905. \end_layout
  2906. \end_inset
  2907. </cell>
  2908. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2909. \begin_inset Text
  2910. \begin_layout Plain Layout
  2911. External Val.
  2912. AUC
  2913. \end_layout
  2914. \end_inset
  2915. </cell>
  2916. </row>
  2917. <row>
  2918. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2919. \begin_inset Text
  2920. \begin_layout Plain Layout
  2921. \family roman
  2922. \series medium
  2923. \shape up
  2924. \size normal
  2925. \emph off
  2926. \bar no
  2927. \strikeout off
  2928. \xout off
  2929. \uuline off
  2930. \uwave off
  2931. \noun off
  2932. \color none
  2933. RMA
  2934. \end_layout
  2935. \end_inset
  2936. </cell>
  2937. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2938. \begin_inset Text
  2939. \begin_layout Plain Layout
  2940. No
  2941. \end_layout
  2942. \end_inset
  2943. </cell>
  2944. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2945. \begin_inset Text
  2946. \begin_layout Plain Layout
  2947. \family roman
  2948. \series medium
  2949. \shape up
  2950. \size normal
  2951. \emph off
  2952. \bar no
  2953. \strikeout off
  2954. \xout off
  2955. \uuline off
  2956. \uwave off
  2957. \noun off
  2958. \color none
  2959. 0.852
  2960. \end_layout
  2961. \end_inset
  2962. </cell>
  2963. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2964. \begin_inset Text
  2965. \begin_layout Plain Layout
  2966. \family roman
  2967. \series medium
  2968. \shape up
  2969. \size normal
  2970. \emph off
  2971. \bar no
  2972. \strikeout off
  2973. \xout off
  2974. \uuline off
  2975. \uwave off
  2976. \noun off
  2977. \color none
  2978. 0.713
  2979. \end_layout
  2980. \end_inset
  2981. </cell>
  2982. </row>
  2983. <row>
  2984. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2985. \begin_inset Text
  2986. \begin_layout Plain Layout
  2987. \family roman
  2988. \series medium
  2989. \shape up
  2990. \size normal
  2991. \emph off
  2992. \bar no
  2993. \strikeout off
  2994. \xout off
  2995. \uuline off
  2996. \uwave off
  2997. \noun off
  2998. \color none
  2999. dChip
  3000. \end_layout
  3001. \end_inset
  3002. </cell>
  3003. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3004. \begin_inset Text
  3005. \begin_layout Plain Layout
  3006. No
  3007. \end_layout
  3008. \end_inset
  3009. </cell>
  3010. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3011. \begin_inset Text
  3012. \begin_layout Plain Layout
  3013. \family roman
  3014. \series medium
  3015. \shape up
  3016. \size normal
  3017. \emph off
  3018. \bar no
  3019. \strikeout off
  3020. \xout off
  3021. \uuline off
  3022. \uwave off
  3023. \noun off
  3024. \color none
  3025. 0.891
  3026. \end_layout
  3027. \end_inset
  3028. </cell>
  3029. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3030. \begin_inset Text
  3031. \begin_layout Plain Layout
  3032. \family roman
  3033. \series medium
  3034. \shape up
  3035. \size normal
  3036. \emph off
  3037. \bar no
  3038. \strikeout off
  3039. \xout off
  3040. \uuline off
  3041. \uwave off
  3042. \noun off
  3043. \color none
  3044. 0.657
  3045. \end_layout
  3046. \end_inset
  3047. </cell>
  3048. </row>
  3049. <row>
  3050. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3051. \begin_inset Text
  3052. \begin_layout Plain Layout
  3053. \family roman
  3054. \series medium
  3055. \shape up
  3056. \size normal
  3057. \emph off
  3058. \bar no
  3059. \strikeout off
  3060. \xout off
  3061. \uuline off
  3062. \uwave off
  3063. \noun off
  3064. \color none
  3065. RMA + GRSN
  3066. \end_layout
  3067. \end_inset
  3068. </cell>
  3069. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3070. \begin_inset Text
  3071. \begin_layout Plain Layout
  3072. No
  3073. \end_layout
  3074. \end_inset
  3075. </cell>
  3076. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3077. \begin_inset Text
  3078. \begin_layout Plain Layout
  3079. \family roman
  3080. \series medium
  3081. \shape up
  3082. \size normal
  3083. \emph off
  3084. \bar no
  3085. \strikeout off
  3086. \xout off
  3087. \uuline off
  3088. \uwave off
  3089. \noun off
  3090. \color none
  3091. 0.816
  3092. \end_layout
  3093. \end_inset
  3094. </cell>
  3095. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3096. \begin_inset Text
  3097. \begin_layout Plain Layout
  3098. \family roman
  3099. \series medium
  3100. \shape up
  3101. \size normal
  3102. \emph off
  3103. \bar no
  3104. \strikeout off
  3105. \xout off
  3106. \uuline off
  3107. \uwave off
  3108. \noun off
  3109. \color none
  3110. 0.750
  3111. \end_layout
  3112. \end_inset
  3113. </cell>
  3114. </row>
  3115. <row>
  3116. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3117. \begin_inset Text
  3118. \begin_layout Plain Layout
  3119. \family roman
  3120. \series medium
  3121. \shape up
  3122. \size normal
  3123. \emph off
  3124. \bar no
  3125. \strikeout off
  3126. \xout off
  3127. \uuline off
  3128. \uwave off
  3129. \noun off
  3130. \color none
  3131. dChip + GRSN
  3132. \end_layout
  3133. \end_inset
  3134. </cell>
  3135. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3136. \begin_inset Text
  3137. \begin_layout Plain Layout
  3138. No
  3139. \end_layout
  3140. \end_inset
  3141. </cell>
  3142. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3143. \begin_inset Text
  3144. \begin_layout Plain Layout
  3145. \family roman
  3146. \series medium
  3147. \shape up
  3148. \size normal
  3149. \emph off
  3150. \bar no
  3151. \strikeout off
  3152. \xout off
  3153. \uuline off
  3154. \uwave off
  3155. \noun off
  3156. \color none
  3157. 0.875
  3158. \end_layout
  3159. \end_inset
  3160. </cell>
  3161. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3162. \begin_inset Text
  3163. \begin_layout Plain Layout
  3164. \family roman
  3165. \series medium
  3166. \shape up
  3167. \size normal
  3168. \emph off
  3169. \bar no
  3170. \strikeout off
  3171. \xout off
  3172. \uuline off
  3173. \uwave off
  3174. \noun off
  3175. \color none
  3176. 0.642
  3177. \end_layout
  3178. \end_inset
  3179. </cell>
  3180. </row>
  3181. <row>
  3182. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3183. \begin_inset Text
  3184. \begin_layout Plain Layout
  3185. \family roman
  3186. \series medium
  3187. \shape up
  3188. \size normal
  3189. \emph off
  3190. \bar no
  3191. \strikeout off
  3192. \xout off
  3193. \uuline off
  3194. \uwave off
  3195. \noun off
  3196. \color none
  3197. fRMA
  3198. \end_layout
  3199. \end_inset
  3200. </cell>
  3201. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3202. \begin_inset Text
  3203. \begin_layout Plain Layout
  3204. Yes
  3205. \end_layout
  3206. \end_inset
  3207. </cell>
  3208. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3209. \begin_inset Text
  3210. \begin_layout Plain Layout
  3211. \family roman
  3212. \series medium
  3213. \shape up
  3214. \size normal
  3215. \emph off
  3216. \bar no
  3217. \strikeout off
  3218. \xout off
  3219. \uuline off
  3220. \uwave off
  3221. \noun off
  3222. \color none
  3223. 0.863
  3224. \end_layout
  3225. \end_inset
  3226. </cell>
  3227. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3228. \begin_inset Text
  3229. \begin_layout Plain Layout
  3230. \family roman
  3231. \series medium
  3232. \shape up
  3233. \size normal
  3234. \emph off
  3235. \bar no
  3236. \strikeout off
  3237. \xout off
  3238. \uuline off
  3239. \uwave off
  3240. \noun off
  3241. \color none
  3242. 0.718
  3243. \end_layout
  3244. \end_inset
  3245. </cell>
  3246. </row>
  3247. <row>
  3248. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3249. \begin_inset Text
  3250. \begin_layout Plain Layout
  3251. \family roman
  3252. \series medium
  3253. \shape up
  3254. \size normal
  3255. \emph off
  3256. \bar no
  3257. \strikeout off
  3258. \xout off
  3259. \uuline off
  3260. \uwave off
  3261. \noun off
  3262. \color none
  3263. SCAN
  3264. \end_layout
  3265. \end_inset
  3266. </cell>
  3267. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3268. \begin_inset Text
  3269. \begin_layout Plain Layout
  3270. Yes
  3271. \end_layout
  3272. \end_inset
  3273. </cell>
  3274. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3275. \begin_inset Text
  3276. \begin_layout Plain Layout
  3277. \family roman
  3278. \series medium
  3279. \shape up
  3280. \size normal
  3281. \emph off
  3282. \bar no
  3283. \strikeout off
  3284. \xout off
  3285. \uuline off
  3286. \uwave off
  3287. \noun off
  3288. \color none
  3289. 0.853
  3290. \end_layout
  3291. \end_inset
  3292. </cell>
  3293. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3294. \begin_inset Text
  3295. \begin_layout Plain Layout
  3296. \family roman
  3297. \series medium
  3298. \shape up
  3299. \size normal
  3300. \emph off
  3301. \bar no
  3302. \strikeout off
  3303. \xout off
  3304. \uuline off
  3305. \uwave off
  3306. \noun off
  3307. \color none
  3308. 0.689
  3309. \end_layout
  3310. \end_inset
  3311. </cell>
  3312. </row>
  3313. </lyxtabular>
  3314. \end_inset
  3315. \end_layout
  3316. \begin_layout Plain Layout
  3317. \begin_inset Caption Standard
  3318. \begin_layout Plain Layout
  3319. \begin_inset CommandInset label
  3320. LatexCommand label
  3321. name "tab:AUC-PAM"
  3322. \end_inset
  3323. \series bold
  3324. AUC values for internal and external validation with 6 different normalization
  3325. strategies.
  3326. \series default
  3327. Only fRMA and SCAN are single-channel normalizations.
  3328. The other 4 normalizations are for comparison.
  3329. \end_layout
  3330. \end_inset
  3331. \end_layout
  3332. \end_inset
  3333. \end_layout
  3334. \begin_layout Standard
  3335. For internal validation, the 6 methods' AUC values ranged from 0.816 to 0.891,
  3336. as shown in Table
  3337. \begin_inset CommandInset ref
  3338. LatexCommand ref
  3339. reference "tab:AUC-PAM"
  3340. plural "false"
  3341. caps "false"
  3342. noprefix "false"
  3343. \end_inset
  3344. .
  3345. Among the non-single-channel normalizations, dChip outperformed RMA, while
  3346. GRSN reduced the AUC values for both dChip and RMA.
  3347. Both single-channel methods, fRMA and SCAN, slightly outperformed RMA,
  3348. with fRMA ahead of SCAN.
  3349. However, the difference between RMA and fRMA is still quite small.
  3350. Figure
  3351. \begin_inset CommandInset ref
  3352. LatexCommand ref
  3353. reference "fig:ROC-PAM-int"
  3354. plural "false"
  3355. caps "false"
  3356. noprefix "false"
  3357. \end_inset
  3358. shows that the ROC curves for RMA, dChip, and fRMA look very similar and
  3359. relatively smooth, while both GRSN curves and the curve for SCAN have a
  3360. more jagged appearance.
  3361. \end_layout
  3362. \begin_layout Standard
  3363. \begin_inset Float figure
  3364. placement tb
  3365. wide false
  3366. sideways false
  3367. status collapsed
  3368. \begin_layout Plain Layout
  3369. \align center
  3370. \begin_inset Graphics
  3371. filename graphics/PAM/ROC-TXvsAR-external.pdf
  3372. lyxscale 50
  3373. width 100col%
  3374. groupId colwidth
  3375. \end_inset
  3376. \end_layout
  3377. \begin_layout Plain Layout
  3378. \begin_inset Caption Standard
  3379. \begin_layout Plain Layout
  3380. \series bold
  3381. \begin_inset CommandInset label
  3382. LatexCommand label
  3383. name "fig:ROC-PAM-ext"
  3384. \end_inset
  3385. ROC curve for PAM on external validation data using different normalization
  3386. strategies
  3387. \end_layout
  3388. \end_inset
  3389. \end_layout
  3390. \end_inset
  3391. \end_layout
  3392. \begin_layout Standard
  3393. For external validation, as expected, all the AUC values are lower than
  3394. the internal validations, ranging from 0.642 to 0.750 (Table
  3395. \begin_inset CommandInset ref
  3396. LatexCommand ref
  3397. reference "tab:AUC-PAM"
  3398. plural "false"
  3399. caps "false"
  3400. noprefix "false"
  3401. \end_inset
  3402. ).
  3403. With or without GRSN, RMA shows its dominance over dChip in this more challengi
  3404. ng test.
  3405. Unlike in the internal validation, GRSN actually improves the classifier
  3406. performance for RMA, although it does not for dChip.
  3407. Once again, both single-channel methods perform about on par with RMA,
  3408. with fRMA performing slightly better and SCAN performing a bit worse.
  3409. Figure
  3410. \begin_inset CommandInset ref
  3411. LatexCommand ref
  3412. reference "fig:ROC-PAM-ext"
  3413. plural "false"
  3414. caps "false"
  3415. noprefix "false"
  3416. \end_inset
  3417. shows the ROC curves for the external validation test.
  3418. As expected, none of them are as clean-looking as the internal validation
  3419. ROC curves.
  3420. The curves for RMA, RMA+GRSN, and fRMA all look similar, while the other
  3421. curves look more divergent.
  3422. \end_layout
  3423. \begin_layout Standard
  3424. \begin_inset ERT
  3425. status collapsed
  3426. \begin_layout Plain Layout
  3427. \backslash
  3428. FloatBarrier
  3429. \end_layout
  3430. \end_inset
  3431. \end_layout
  3432. \begin_layout Subsection
  3433. fRMA with custom-generated vectors enables normalization on hthgu133pluspm
  3434. \end_layout
  3435. \begin_layout Standard
  3436. \begin_inset Float figure
  3437. placement tb
  3438. wide false
  3439. sideways false
  3440. status collapsed
  3441. \begin_layout Plain Layout
  3442. \align center
  3443. \begin_inset Graphics
  3444. filename graphics/frma-pax-bx/batchsize_batches.pdf
  3445. \end_inset
  3446. \end_layout
  3447. \begin_layout Plain Layout
  3448. \begin_inset Caption Standard
  3449. \begin_layout Plain Layout
  3450. \begin_inset CommandInset label
  3451. LatexCommand label
  3452. name "fig:batch-size-batches"
  3453. \end_inset
  3454. \series bold
  3455. Effect of batch size selection on number of batches included in fRMA probe
  3456. weight learning.
  3457. \series default
  3458. For batch sizes ranging from 3 to 15, the number of batches with at least
  3459. that many samples was plotted for biopsy (BX) and blood (PAX) samples.
  3460. The selected batch size, 5, is marked with a dotted vertical line.
  3461. \end_layout
  3462. \end_inset
  3463. \end_layout
  3464. \end_inset
  3465. \end_layout
  3466. \begin_layout Standard
  3467. \begin_inset Float figure
  3468. placement tb
  3469. wide false
  3470. sideways false
  3471. status collapsed
  3472. \begin_layout Plain Layout
  3473. \align center
  3474. \begin_inset Graphics
  3475. filename graphics/frma-pax-bx/batchsize_samples.pdf
  3476. \end_inset
  3477. \end_layout
  3478. \begin_layout Plain Layout
  3479. \begin_inset Caption Standard
  3480. \begin_layout Plain Layout
  3481. \begin_inset CommandInset label
  3482. LatexCommand label
  3483. name "fig:batch-size-samples"
  3484. \end_inset
  3485. \series bold
  3486. Effect of batch size selection on number of samples included in fRMA probe
  3487. weight learning.
  3488. \series default
  3489. For batch sizes ranging from 3 to 15, the number of samples included in
  3490. probe weight training was plotted for biopsy (BX) and blood (PAX) samples.
  3491. The selected batch size, 5, is marked with a dotted vertical line.
  3492. \end_layout
  3493. \end_inset
  3494. \end_layout
  3495. \end_inset
  3496. \end_layout
  3497. \begin_layout Standard
  3498. In order to enable use of fRMA to normalize hthgu133pluspm, a custom set
  3499. of fRMA vectors was created.
  3500. First, an appropriate batch size was chosen by looking at the number of
  3501. batches and number of samples included as a function of batch size (Figures
  3502. \begin_inset CommandInset ref
  3503. LatexCommand ref
  3504. reference "fig:batch-size-batches"
  3505. plural "false"
  3506. caps "false"
  3507. noprefix "false"
  3508. \end_inset
  3509. and
  3510. \begin_inset CommandInset ref
  3511. LatexCommand ref
  3512. reference "fig:batch-size-samples"
  3513. plural "false"
  3514. caps "false"
  3515. noprefix "false"
  3516. \end_inset
  3517. , respectively).
  3518. For a given batch size, all batches with fewer samples that the chosen
  3519. size must be ignored during training, while larger batches must be randomly
  3520. downsampled to the chosen size.
  3521. Hence, the number of samples included for a given batch size equals the
  3522. batch size times the number of batches with at least that many samples.
  3523. From Figure
  3524. \begin_inset CommandInset ref
  3525. LatexCommand ref
  3526. reference "fig:batch-size-samples"
  3527. plural "false"
  3528. caps "false"
  3529. noprefix "false"
  3530. \end_inset
  3531. , it is apparent that that a batch size of 8 maximizes the number of samples
  3532. included in training.
  3533. Increasing the batch size beyond this causes too many smaller batches to
  3534. be excluded, reducing the total number of samples for both tissue types.
  3535. However, a batch size of 8 is not necessarily optimal.
  3536. The article introducing frmaTools concluded that it was highly advantageous
  3537. to use a smaller batch size in order to include more batches, even at the
  3538. expense of including fewer total samples in training
  3539. \begin_inset CommandInset citation
  3540. LatexCommand cite
  3541. key "McCall2011"
  3542. literal "false"
  3543. \end_inset
  3544. .
  3545. To strike an appropriate balance between more batches and more samples,
  3546. a batch size of 5 was chosen.
  3547. For both blood and biopsy samples, this increased the number of batches
  3548. included by 10, with only a modest reduction in the number of samples compared
  3549. to a batch size of 8.
  3550. With a batch size of 5, 26 batches of biopsy samples and 46 batches of
  3551. blood samples were available.
  3552. \end_layout
  3553. \begin_layout Standard
  3554. \begin_inset Float figure
  3555. wide false
  3556. sideways false
  3557. status collapsed
  3558. \begin_layout Plain Layout
  3559. \align center
  3560. \begin_inset Graphics
  3561. filename graphics/frma-pax-bx/M-BX-violin.pdf
  3562. lyxscale 40
  3563. height 80theight%
  3564. groupId m-violin
  3565. \end_inset
  3566. \end_layout
  3567. \begin_layout Plain Layout
  3568. \begin_inset Caption Standard
  3569. \begin_layout Plain Layout
  3570. \begin_inset CommandInset label
  3571. LatexCommand label
  3572. name "fig:m-bx-violin"
  3573. \end_inset
  3574. \series bold
  3575. Violin plot of log ratios between normalizations for 20 biopsy samples.
  3576. \series default
  3577. Each of 20 randomly selected biopsy samples was normalized with RMA and
  3578. with 5 different sets of fRMA vectors.
  3579. This shows the distribution of log ratios between normalized expression
  3580. values, aggregated across all 20 arrays.
  3581. \end_layout
  3582. \end_inset
  3583. \end_layout
  3584. \end_inset
  3585. \end_layout
  3586. \begin_layout Standard
  3587. Since fRMA training requires equal-size batches, larger batches are downsampled
  3588. randomly.
  3589. This introduces a nondeterministic step in the generation of normalization
  3590. vectors.
  3591. To show that this randomness does not substantially change the outcome,
  3592. the random downsampling and subsequent vector learning was repeated 5 times,
  3593. with a different random seed each time.
  3594. 20 samples were selected at random as a test set and normalized with each
  3595. of the 5 sets of fRMA normalization vectors as well as ordinary RMA, and
  3596. the normalized expression values were compared across normalizations.
  3597. Figure
  3598. \begin_inset CommandInset ref
  3599. LatexCommand ref
  3600. reference "fig:m-bx-violin"
  3601. plural "false"
  3602. caps "false"
  3603. noprefix "false"
  3604. \end_inset
  3605. shows a summary of these comparisons for biopsy samples.
  3606. Comparing RMA to each of the 5 fRMA normalizations, the distribution of
  3607. log ratios is somewhat wide, indicating that the normalizations disagree
  3608. on the expression values of a fair number of probe sets.
  3609. In contrast, comparisons of fRMA against fRMA, the vast mojority of probe
  3610. sets have very small log ratios, indicating a very high agreement between
  3611. the normalized values generated by the two normalizations.
  3612. This shows that the fRMA normalization's behavior is not very sensitive
  3613. to the random downsampling of larger batches during training.
  3614. \end_layout
  3615. \begin_layout Standard
  3616. \begin_inset Float figure
  3617. wide false
  3618. sideways false
  3619. status collapsed
  3620. \begin_layout Plain Layout
  3621. \align center
  3622. \begin_inset Graphics
  3623. filename graphics/frma-pax-bx/MA-BX-RMA.fRMA.pdf
  3624. lyxscale 50
  3625. width 100text%
  3626. groupId ma-frma
  3627. \end_inset
  3628. \end_layout
  3629. \begin_layout Plain Layout
  3630. \begin_inset Caption Standard
  3631. \begin_layout Plain Layout
  3632. \begin_inset CommandInset label
  3633. LatexCommand label
  3634. name "fig:ma-bx-rma-frma"
  3635. \end_inset
  3636. \series bold
  3637. Representative MA plot comparing RMA against fRMA for 20 biopsy samples.
  3638. \series default
  3639. Averages and log ratios were computed for every probe in each of 20 biopsy
  3640. samples between RMA normalization and fRMA.
  3641. Density of points is represented by darkness of shading, and individual
  3642. outlier points are plotted.
  3643. \end_layout
  3644. \end_inset
  3645. \end_layout
  3646. \end_inset
  3647. \end_layout
  3648. \begin_layout Standard
  3649. \begin_inset Float figure
  3650. wide false
  3651. sideways false
  3652. status collapsed
  3653. \begin_layout Plain Layout
  3654. \align center
  3655. \begin_inset Graphics
  3656. filename graphics/frma-pax-bx/MA-BX-fRMA.fRMA.pdf
  3657. lyxscale 50
  3658. width 100text%
  3659. groupId ma-frma
  3660. \end_inset
  3661. \end_layout
  3662. \begin_layout Plain Layout
  3663. \begin_inset Caption Standard
  3664. \begin_layout Plain Layout
  3665. \begin_inset CommandInset label
  3666. LatexCommand label
  3667. name "fig:ma-bx-frma-frma"
  3668. \end_inset
  3669. \series bold
  3670. Representative MA plot comparing different fRMA vectors for 20 biopsy samples.
  3671. \series default
  3672. Averages and log ratios were computed for every probe in each of 20 biopsy
  3673. samples between fRMA normalizations using vectors from two different batch
  3674. samplings.
  3675. Density of points is represented by darkness of shading, and individual
  3676. outlier points are plotted.
  3677. \end_layout
  3678. \end_inset
  3679. \end_layout
  3680. \end_inset
  3681. \end_layout
  3682. \begin_layout Standard
  3683. Figure
  3684. \begin_inset CommandInset ref
  3685. LatexCommand ref
  3686. reference "fig:ma-bx-rma-frma"
  3687. plural "false"
  3688. caps "false"
  3689. noprefix "false"
  3690. \end_inset
  3691. shows an MA plot of the RMA-normalized values against the fRMA-normalized
  3692. values for the same probe sets and arrays, corresponding to the first row
  3693. of Figure
  3694. \begin_inset CommandInset ref
  3695. LatexCommand ref
  3696. reference "fig:m-bx-violin"
  3697. plural "false"
  3698. caps "false"
  3699. noprefix "false"
  3700. \end_inset
  3701. .
  3702. This MA plot shows that not only is there a wide distribution of M-values,
  3703. but the trend of M-values is dependent on the average normalized intensity.
  3704. This is expected, since the overall trend represents the differences in
  3705. the quantile normalization step.
  3706. When running RMA, only the quantiles for these specific 20 arrays are used,
  3707. while for fRMA the quantile distribution is taking from all arrays used
  3708. in training.
  3709. Figure
  3710. \begin_inset CommandInset ref
  3711. LatexCommand ref
  3712. reference "fig:ma-bx-frma-frma"
  3713. plural "false"
  3714. caps "false"
  3715. noprefix "false"
  3716. \end_inset
  3717. shows a similar MA plot comparing 2 different fRMA normalizations, correspondin
  3718. g to the 6th row of Figure
  3719. \begin_inset CommandInset ref
  3720. LatexCommand ref
  3721. reference "fig:m-bx-violin"
  3722. plural "false"
  3723. caps "false"
  3724. noprefix "false"
  3725. \end_inset
  3726. .
  3727. The MA plot is very tightly centered around zero with no visible trend.
  3728. Figures
  3729. \begin_inset CommandInset ref
  3730. LatexCommand ref
  3731. reference "fig:m-pax-violin"
  3732. plural "false"
  3733. caps "false"
  3734. noprefix "false"
  3735. \end_inset
  3736. ,
  3737. \begin_inset CommandInset ref
  3738. LatexCommand ref
  3739. reference "fig:MA-PAX-rma-frma"
  3740. plural "false"
  3741. caps "false"
  3742. noprefix "false"
  3743. \end_inset
  3744. , and
  3745. \begin_inset CommandInset ref
  3746. LatexCommand ref
  3747. reference "fig:ma-bx-frma-frma"
  3748. plural "false"
  3749. caps "false"
  3750. noprefix "false"
  3751. \end_inset
  3752. show exactly the same information for the blood samples, once again comparing
  3753. the normalized expression values between normalizations for all probe sets
  3754. across 20 randomly selected test arrays.
  3755. Once again, there is a wider distribution of log ratios between RMA-normalized
  3756. values and fRMA-normalized, and a much tighter distribution when comparing
  3757. different fRMA normalizations to each other, indicating that the fRMA training
  3758. process is robust to random batch downsampling for the blood samples as
  3759. well.
  3760. \end_layout
  3761. \begin_layout Standard
  3762. \begin_inset Float figure
  3763. wide false
  3764. sideways false
  3765. status collapsed
  3766. \begin_layout Plain Layout
  3767. \align center
  3768. \begin_inset Graphics
  3769. filename graphics/frma-pax-bx/M-PAX-violin.pdf
  3770. lyxscale 40
  3771. height 80theight%
  3772. groupId m-violin
  3773. \end_inset
  3774. \end_layout
  3775. \begin_layout Plain Layout
  3776. \begin_inset Caption Standard
  3777. \begin_layout Plain Layout
  3778. \begin_inset CommandInset label
  3779. LatexCommand label
  3780. name "fig:m-pax-violin"
  3781. \end_inset
  3782. \series bold
  3783. Violin plot of log ratios between normalizations for 20 blood samples.
  3784. \series default
  3785. Each of 20 randomly selected blood samples was normalized with RMA and with
  3786. 5 different sets of fRMA vectors.
  3787. This shows the distribution of log ratios between normalized expression
  3788. values, aggregated across all 20 arrays.
  3789. \end_layout
  3790. \end_inset
  3791. \end_layout
  3792. \end_inset
  3793. \end_layout
  3794. \begin_layout Standard
  3795. \begin_inset Float figure
  3796. wide false
  3797. sideways false
  3798. status collapsed
  3799. \begin_layout Plain Layout
  3800. \align center
  3801. \begin_inset Graphics
  3802. filename graphics/frma-pax-bx/MA-PAX-RMA.fRMA.pdf
  3803. lyxscale 50
  3804. width 100text%
  3805. groupId ma-frma
  3806. \end_inset
  3807. \end_layout
  3808. \begin_layout Plain Layout
  3809. \begin_inset Caption Standard
  3810. \begin_layout Plain Layout
  3811. \begin_inset CommandInset label
  3812. LatexCommand label
  3813. name "fig:MA-PAX-rma-frma"
  3814. \end_inset
  3815. \series bold
  3816. Representative MA plot comparing RMA against fRMA for 20 blood samples.
  3817. \series default
  3818. Averages and log ratios were computed for every probe in each of 20 blood
  3819. samples between RMA normalization and fRMA.
  3820. Density of points is represented by darkness of shading, and individual
  3821. outlier points are plotted.
  3822. \end_layout
  3823. \end_inset
  3824. \end_layout
  3825. \begin_layout Plain Layout
  3826. \end_layout
  3827. \end_inset
  3828. \end_layout
  3829. \begin_layout Standard
  3830. \begin_inset Float figure
  3831. wide false
  3832. sideways false
  3833. status collapsed
  3834. \begin_layout Plain Layout
  3835. \align center
  3836. \begin_inset Graphics
  3837. filename graphics/frma-pax-bx/MA-PAX-fRMA.fRMA.pdf
  3838. lyxscale 50
  3839. width 100text%
  3840. groupId ma-frma
  3841. \end_inset
  3842. \end_layout
  3843. \begin_layout Plain Layout
  3844. \begin_inset Caption Standard
  3845. \begin_layout Plain Layout
  3846. \begin_inset CommandInset label
  3847. LatexCommand label
  3848. name "fig:MA-PAX-frma-frma"
  3849. \end_inset
  3850. \series bold
  3851. Representative MA plot comparing different fRMA vectors for 20 blood samples.
  3852. \series default
  3853. Averages and log ratios were computed for every probe in each of 20 blood
  3854. samples between fRMA normalizations using vectors from two different batch
  3855. samplings.
  3856. Density of points is represented by darkness of shading, and individual
  3857. outlier points are plotted.
  3858. \end_layout
  3859. \end_inset
  3860. \end_layout
  3861. \end_inset
  3862. \end_layout
  3863. \begin_layout Standard
  3864. \begin_inset ERT
  3865. status collapsed
  3866. \begin_layout Plain Layout
  3867. \backslash
  3868. FloatBarrier
  3869. \end_layout
  3870. \end_inset
  3871. \end_layout
  3872. \begin_layout Subsection
  3873. SVA, voom, and array weights improve model fit for methylation array data
  3874. \end_layout
  3875. \begin_layout Standard
  3876. \begin_inset Float figure
  3877. wide false
  3878. sideways false
  3879. status collapsed
  3880. \begin_layout Plain Layout
  3881. \align center
  3882. \begin_inset Flex TODO Note (inline)
  3883. status open
  3884. \begin_layout Plain Layout
  3885. Fix axis labels:
  3886. \begin_inset Quotes eld
  3887. \end_inset
  3888. log2 M-value
  3889. \begin_inset Quotes erd
  3890. \end_inset
  3891. is redundant because M-values are already log scale
  3892. \end_layout
  3893. \end_inset
  3894. \end_layout
  3895. \begin_layout Plain Layout
  3896. \align center
  3897. \begin_inset Graphics
  3898. filename graphics/methylvoom/unadj.dupcor/meanvar-trends-PAGE1-CROP-RASTER.png
  3899. lyxscale 15
  3900. width 100col%
  3901. groupId raster-600ppi
  3902. \end_inset
  3903. \end_layout
  3904. \begin_layout Plain Layout
  3905. \begin_inset Caption Standard
  3906. \begin_layout Plain Layout
  3907. \series bold
  3908. \begin_inset CommandInset label
  3909. LatexCommand label
  3910. name "fig:meanvar-basic"
  3911. \end_inset
  3912. Mean-variance trend for analysis A.
  3913. \series default
  3914. The log2(standard deviation) for each probe is plotted against the probe's
  3915. average M-value across all samples as a black point, with some transparency
  3916. to make overplotting more visible, since there are about 450,000 points.
  3917. Density of points is also indicated by the dark blue contour lines.
  3918. The prior variance trend estimated by eBayes is shown in light blue, while
  3919. the lowess trend of the points is shown in red.
  3920. \end_layout
  3921. \end_inset
  3922. \end_layout
  3923. \end_inset
  3924. \end_layout
  3925. \begin_layout Standard
  3926. Figure
  3927. \begin_inset CommandInset ref
  3928. LatexCommand ref
  3929. reference "fig:meanvar-basic"
  3930. plural "false"
  3931. caps "false"
  3932. noprefix "false"
  3933. \end_inset
  3934. shows the relationship between the mean M-value and the standard deviation
  3935. calculated for each probe in the methylation array data set.
  3936. A few features of the data are apparent.
  3937. First, the data are very strongly bimodal, with peaks in the density around
  3938. M-values of +4 and -4.
  3939. These modes correspond to methylation sites that are nearly 100% methylated
  3940. and nearly 100% unmethylated, respectively.
  3941. The strong bomodality indicates that a majority of probes interrogate sites
  3942. that fall into one of these two categories.
  3943. The points in between these modes represent sites that are either partially
  3944. methylated in many samples, or are fully methylated in some samples and
  3945. fully unmethylated in other samples, or some combination.
  3946. The next visible feature of the data is the W-shaped variance trend.
  3947. The upticks in the variance trend on either side are expected, based on
  3948. the sigmoid transformation exaggerating small differences at extreme M-values
  3949. (Figure
  3950. \begin_inset CommandInset ref
  3951. LatexCommand ref
  3952. reference "fig:Sigmoid-beta-m-mapping"
  3953. plural "false"
  3954. caps "false"
  3955. noprefix "false"
  3956. \end_inset
  3957. ).
  3958. However, the uptick in the center is interesting: it indicates that sites
  3959. that are not constitutitively methylated or unmethylated have a higher
  3960. variance.
  3961. This could be a genuine biological effect, or it could be spurious noise
  3962. that is only observable at sites with varying methylation.
  3963. \end_layout
  3964. \begin_layout Standard
  3965. \begin_inset Float figure
  3966. wide false
  3967. sideways false
  3968. status open
  3969. \begin_layout Plain Layout
  3970. \begin_inset Graphics
  3971. filename graphics/methylvoom/unadj.dupcor.sva.aw/meanvar-trends-PAGE1-CROP-RASTER.png
  3972. lyxscale 15
  3973. width 100col%
  3974. groupId raster-600ppi
  3975. \end_inset
  3976. \end_layout
  3977. \begin_layout Plain Layout
  3978. \begin_inset Caption Standard
  3979. \begin_layout Plain Layout
  3980. \series bold
  3981. \begin_inset CommandInset label
  3982. LatexCommand label
  3983. name "fig:meanvar-sva-aw"
  3984. \end_inset
  3985. Mean-variance trend for analysis B.
  3986. \series default
  3987. Interpretation is as in Figure
  3988. \begin_inset CommandInset ref
  3989. LatexCommand ref
  3990. reference "fig:meanvar-basic"
  3991. plural "false"
  3992. caps "false"
  3993. noprefix "false"
  3994. \end_inset
  3995. .
  3996. \end_layout
  3997. \end_inset
  3998. \end_layout
  3999. \end_inset
  4000. \end_layout
  4001. \begin_layout Standard
  4002. In Figure
  4003. \begin_inset CommandInset ref
  4004. LatexCommand ref
  4005. reference "fig:meanvar-sva-aw"
  4006. plural "false"
  4007. caps "false"
  4008. noprefix "false"
  4009. \end_inset
  4010. , we see the mean-variance trend for the same methylation array data, this
  4011. time with surrogate variables and sample quality weights estimated from
  4012. the data and included in the model.
  4013. As expected, the overall average variance is smaller, since the surrogate
  4014. variables account for some of the variance.
  4015. In addition, the uptick in variance in the middle of the M-value range
  4016. has disappeared, turning the W shape into a wide U shape.
  4017. This indicates that the excess variance in the probes with intermediate
  4018. M-values was explained by systematic variations not correlated with known
  4019. covariates, and these variations were modeled by the surrogate variables.
  4020. The result is a nearly flat variance trend for the entire intermediate
  4021. M-value range from about -3 to +3.
  4022. In contrast, the excess variance at the extremes was not
  4023. \begin_inset Quotes eld
  4024. \end_inset
  4025. absorbed
  4026. \begin_inset Quotes erd
  4027. \end_inset
  4028. by the surrogate variables and remains in the plot, indicating that this
  4029. variation has no systematic component: probes with extreme M-values are
  4030. uniformly more variable across all samples, as expected.
  4031. \end_layout
  4032. \begin_layout Standard
  4033. \begin_inset Float figure
  4034. wide false
  4035. sideways false
  4036. status collapsed
  4037. \begin_layout Plain Layout
  4038. \begin_inset Graphics
  4039. filename graphics/methylvoom/unadj.dupcor.sva.voomaw/meanvar-trends-PAGE2-CROP-RASTER.png
  4040. lyxscale 15
  4041. width 100col%
  4042. groupId raster-600ppi
  4043. \end_inset
  4044. \end_layout
  4045. \begin_layout Plain Layout
  4046. \begin_inset Caption Standard
  4047. \begin_layout Plain Layout
  4048. \series bold
  4049. \begin_inset CommandInset label
  4050. LatexCommand label
  4051. name "fig:meanvar-sva-voomaw"
  4052. \end_inset
  4053. Mean-variance trend after voom modeling in analysis C.
  4054. \series default
  4055. Interpretation is as in Figure
  4056. \begin_inset CommandInset ref
  4057. LatexCommand ref
  4058. reference "fig:meanvar-basic"
  4059. plural "false"
  4060. caps "false"
  4061. noprefix "false"
  4062. \end_inset
  4063. .
  4064. \end_layout
  4065. \end_inset
  4066. \end_layout
  4067. \end_inset
  4068. \end_layout
  4069. \begin_layout Standard
  4070. Figure
  4071. \begin_inset CommandInset ref
  4072. LatexCommand ref
  4073. reference "fig:meanvar-sva-voomaw"
  4074. plural "false"
  4075. caps "false"
  4076. noprefix "false"
  4077. \end_inset
  4078. shows the mean-variance trend after fitting the model with the observation
  4079. weights assigned by voom based on the mean-variance trend shown in Figure
  4080. \begin_inset CommandInset ref
  4081. LatexCommand ref
  4082. reference "fig:meanvar-sva-aw"
  4083. plural "false"
  4084. caps "false"
  4085. noprefix "false"
  4086. \end_inset
  4087. .
  4088. As expected, the weights exactly counteract the trend in the data, resulting
  4089. in a nearly flat trend centered vertically at 1 (i.e.
  4090. 0 on the log scale).
  4091. This shows that the observations with extreme M-values have been appropriately
  4092. down-weighted to account for the fact that the noise in those observations
  4093. has been amplified by the non-linear M-value transformation.
  4094. In turn, this gives relatively more weight to observervations in the middle
  4095. region, which are more likely to correspond to probes measuring interesting
  4096. biology (not constitutively methylated or unmethylated).
  4097. \end_layout
  4098. \begin_layout Standard
  4099. \begin_inset Float table
  4100. wide false
  4101. sideways false
  4102. status collapsed
  4103. \begin_layout Plain Layout
  4104. \align center
  4105. \begin_inset Tabular
  4106. <lyxtabular version="3" rows="5" columns="3">
  4107. <features tabularvalignment="middle">
  4108. <column alignment="center" valignment="top">
  4109. <column alignment="center" valignment="top">
  4110. <column alignment="center" valignment="top">
  4111. <row>
  4112. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  4113. \begin_inset Text
  4114. \begin_layout Plain Layout
  4115. Covariate
  4116. \end_layout
  4117. \end_inset
  4118. </cell>
  4119. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  4120. \begin_inset Text
  4121. \begin_layout Plain Layout
  4122. Test used
  4123. \end_layout
  4124. \end_inset
  4125. </cell>
  4126. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  4127. \begin_inset Text
  4128. \begin_layout Plain Layout
  4129. p-value
  4130. \end_layout
  4131. \end_inset
  4132. </cell>
  4133. </row>
  4134. <row>
  4135. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4136. \begin_inset Text
  4137. \begin_layout Plain Layout
  4138. Transplant Status
  4139. \end_layout
  4140. \end_inset
  4141. </cell>
  4142. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4143. \begin_inset Text
  4144. \begin_layout Plain Layout
  4145. F-test
  4146. \end_layout
  4147. \end_inset
  4148. </cell>
  4149. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  4150. \begin_inset Text
  4151. \begin_layout Plain Layout
  4152. 0.404
  4153. \end_layout
  4154. \end_inset
  4155. </cell>
  4156. </row>
  4157. <row>
  4158. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4159. \begin_inset Text
  4160. \begin_layout Plain Layout
  4161. Diabetes Diagnosis
  4162. \end_layout
  4163. \end_inset
  4164. </cell>
  4165. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4166. \begin_inset Text
  4167. \begin_layout Plain Layout
  4168. t-test
  4169. \end_layout
  4170. \end_inset
  4171. </cell>
  4172. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  4173. \begin_inset Text
  4174. \begin_layout Plain Layout
  4175. 0.00106
  4176. \end_layout
  4177. \end_inset
  4178. </cell>
  4179. </row>
  4180. <row>
  4181. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4182. \begin_inset Text
  4183. \begin_layout Plain Layout
  4184. Sex
  4185. \end_layout
  4186. \end_inset
  4187. </cell>
  4188. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4189. \begin_inset Text
  4190. \begin_layout Plain Layout
  4191. t-test
  4192. \end_layout
  4193. \end_inset
  4194. </cell>
  4195. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  4196. \begin_inset Text
  4197. \begin_layout Plain Layout
  4198. 0.148
  4199. \end_layout
  4200. \end_inset
  4201. </cell>
  4202. </row>
  4203. <row>
  4204. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  4205. \begin_inset Text
  4206. \begin_layout Plain Layout
  4207. Age
  4208. \end_layout
  4209. \end_inset
  4210. </cell>
  4211. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  4212. \begin_inset Text
  4213. \begin_layout Plain Layout
  4214. linear regression
  4215. \end_layout
  4216. \end_inset
  4217. </cell>
  4218. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  4219. \begin_inset Text
  4220. \begin_layout Plain Layout
  4221. 0.212
  4222. \end_layout
  4223. \end_inset
  4224. </cell>
  4225. </row>
  4226. </lyxtabular>
  4227. \end_inset
  4228. \end_layout
  4229. \begin_layout Plain Layout
  4230. \begin_inset Caption Standard
  4231. \begin_layout Plain Layout
  4232. \series bold
  4233. \begin_inset CommandInset label
  4234. LatexCommand label
  4235. name "tab:weight-covariate-tests"
  4236. \end_inset
  4237. Association of sample weights with clinical covariates in methylation array
  4238. data.
  4239. \series default
  4240. Computed sample quality log weights were tested for significant association
  4241. with each of the variables in the model (1st column).
  4242. An appropriate test was selected for each variable (2nd column).
  4243. P-values for significant association are shown in the 3rd column.
  4244. \end_layout
  4245. \end_inset
  4246. \end_layout
  4247. \end_inset
  4248. \end_layout
  4249. \begin_layout Standard
  4250. \begin_inset Flex TODO Note (inline)
  4251. status open
  4252. \begin_layout Plain Layout
  4253. Redo the sample weight boxplot with notches and without fill colors (and
  4254. update the legend)
  4255. \end_layout
  4256. \end_inset
  4257. \end_layout
  4258. \begin_layout Standard
  4259. \begin_inset Float figure
  4260. wide false
  4261. sideways false
  4262. status collapsed
  4263. \begin_layout Plain Layout
  4264. \begin_inset Graphics
  4265. filename graphics/methylvoom/unadj.dupcor.sva.voomaw/sample-weights-PAGE3-CROP.pdf
  4266. \end_inset
  4267. \end_layout
  4268. \begin_layout Plain Layout
  4269. \begin_inset Caption Standard
  4270. \begin_layout Plain Layout
  4271. \begin_inset CommandInset label
  4272. LatexCommand label
  4273. name "fig:diabetes-sample-weights"
  4274. \end_inset
  4275. \series bold
  4276. Boxplot of sample quality weights grouped by diabetes diagnosis.
  4277. \series default
  4278. Sample were grouped based on diabetes diagnosis, and the distribution of
  4279. sample quality weights for each diagnosis was plotted.
  4280. \end_layout
  4281. \end_inset
  4282. \end_layout
  4283. \begin_layout Plain Layout
  4284. \end_layout
  4285. \end_inset
  4286. \end_layout
  4287. \begin_layout Standard
  4288. To determine whether any of the known experimental factors had an impact
  4289. on data quality, the sample quality weights estimated from the data were
  4290. tested for association with each of the experimental factors (Table
  4291. \begin_inset CommandInset ref
  4292. LatexCommand ref
  4293. reference "tab:weight-covariate-tests"
  4294. plural "false"
  4295. caps "false"
  4296. noprefix "false"
  4297. \end_inset
  4298. ).
  4299. Diabetes diagnosis was found to have a potentially significant association
  4300. with the sample weights, with a t-test p-value of
  4301. \begin_inset Formula $1.06\times10^{-3}$
  4302. \end_inset
  4303. .
  4304. Figure
  4305. \begin_inset CommandInset ref
  4306. LatexCommand ref
  4307. reference "fig:diabetes-sample-weights"
  4308. plural "false"
  4309. caps "false"
  4310. noprefix "false"
  4311. \end_inset
  4312. shows the distribution of sample weights grouped by diabetes diagnosis.
  4313. The samples from patients with Type 2 diabetes were assigned significantly
  4314. lower weights than those from patients with Type 1 diabetes.
  4315. This indicates that the type 2 diabetes samples had an overall higher variance
  4316. on average across all probes.
  4317. \end_layout
  4318. \begin_layout Standard
  4319. \begin_inset Float table
  4320. wide false
  4321. sideways false
  4322. status collapsed
  4323. \begin_layout Plain Layout
  4324. \align center
  4325. \begin_inset Flex TODO Note (inline)
  4326. status open
  4327. \begin_layout Plain Layout
  4328. Consider transposing this table and the next one
  4329. \end_layout
  4330. \end_inset
  4331. \end_layout
  4332. \begin_layout Plain Layout
  4333. \align center
  4334. \begin_inset Tabular
  4335. <lyxtabular version="3" rows="5" columns="4">
  4336. <features tabularvalignment="middle">
  4337. <column alignment="center" valignment="top">
  4338. <column alignment="center" valignment="top">
  4339. <column alignment="center" valignment="top">
  4340. <column alignment="center" valignment="top">
  4341. <row>
  4342. <cell alignment="center" valignment="top" usebox="none">
  4343. \begin_inset Text
  4344. \begin_layout Plain Layout
  4345. \end_layout
  4346. \end_inset
  4347. </cell>
  4348. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  4349. \begin_inset Text
  4350. \begin_layout Plain Layout
  4351. Analysis
  4352. \end_layout
  4353. \end_inset
  4354. </cell>
  4355. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4356. \begin_inset Text
  4357. \begin_layout Plain Layout
  4358. \end_layout
  4359. \end_inset
  4360. </cell>
  4361. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  4362. \begin_inset Text
  4363. \begin_layout Plain Layout
  4364. \end_layout
  4365. \end_inset
  4366. </cell>
  4367. </row>
  4368. <row>
  4369. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  4370. \begin_inset Text
  4371. \begin_layout Plain Layout
  4372. Contrast
  4373. \end_layout
  4374. \end_inset
  4375. </cell>
  4376. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  4377. \begin_inset Text
  4378. \begin_layout Plain Layout
  4379. A
  4380. \end_layout
  4381. \end_inset
  4382. </cell>
  4383. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  4384. \begin_inset Text
  4385. \begin_layout Plain Layout
  4386. B
  4387. \end_layout
  4388. \end_inset
  4389. </cell>
  4390. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  4391. \begin_inset Text
  4392. \begin_layout Plain Layout
  4393. C
  4394. \end_layout
  4395. \end_inset
  4396. </cell>
  4397. </row>
  4398. <row>
  4399. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4400. \begin_inset Text
  4401. \begin_layout Plain Layout
  4402. TX vs AR
  4403. \end_layout
  4404. \end_inset
  4405. </cell>
  4406. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4407. \begin_inset Text
  4408. \begin_layout Plain Layout
  4409. 0
  4410. \end_layout
  4411. \end_inset
  4412. </cell>
  4413. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4414. \begin_inset Text
  4415. \begin_layout Plain Layout
  4416. 25
  4417. \end_layout
  4418. \end_inset
  4419. </cell>
  4420. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  4421. \begin_inset Text
  4422. \begin_layout Plain Layout
  4423. 22
  4424. \end_layout
  4425. \end_inset
  4426. </cell>
  4427. </row>
  4428. <row>
  4429. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4430. \begin_inset Text
  4431. \begin_layout Plain Layout
  4432. TX vs ADNR
  4433. \end_layout
  4434. \end_inset
  4435. </cell>
  4436. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4437. \begin_inset Text
  4438. \begin_layout Plain Layout
  4439. 7
  4440. \end_layout
  4441. \end_inset
  4442. </cell>
  4443. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4444. \begin_inset Text
  4445. \begin_layout Plain Layout
  4446. 338
  4447. \end_layout
  4448. \end_inset
  4449. </cell>
  4450. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  4451. \begin_inset Text
  4452. \begin_layout Plain Layout
  4453. 369
  4454. \end_layout
  4455. \end_inset
  4456. </cell>
  4457. </row>
  4458. <row>
  4459. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  4460. \begin_inset Text
  4461. \begin_layout Plain Layout
  4462. TX vs CAN
  4463. \end_layout
  4464. \end_inset
  4465. </cell>
  4466. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  4467. \begin_inset Text
  4468. \begin_layout Plain Layout
  4469. 0
  4470. \end_layout
  4471. \end_inset
  4472. </cell>
  4473. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  4474. \begin_inset Text
  4475. \begin_layout Plain Layout
  4476. 231
  4477. \end_layout
  4478. \end_inset
  4479. </cell>
  4480. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  4481. \begin_inset Text
  4482. \begin_layout Plain Layout
  4483. 278
  4484. \end_layout
  4485. \end_inset
  4486. </cell>
  4487. </row>
  4488. </lyxtabular>
  4489. \end_inset
  4490. \end_layout
  4491. \begin_layout Plain Layout
  4492. \begin_inset Caption Standard
  4493. \begin_layout Plain Layout
  4494. \begin_inset CommandInset label
  4495. LatexCommand label
  4496. name "tab:methyl-num-signif"
  4497. \end_inset
  4498. \series bold
  4499. Number of probes significant at 10% FDR for each contrast in each analysis.
  4500. \series default
  4501. For each of the analyses in Table
  4502. \begin_inset CommandInset ref
  4503. LatexCommand ref
  4504. reference "tab:Summary-of-meth-analysis"
  4505. plural "false"
  4506. caps "false"
  4507. noprefix "false"
  4508. \end_inset
  4509. , the table shows the number of probes called significantly differentially
  4510. methylated at a threshold of 10% FDR for each comparison between TX and
  4511. the other 3 transplant statuses.
  4512. \end_layout
  4513. \end_inset
  4514. \end_layout
  4515. \end_inset
  4516. \end_layout
  4517. \begin_layout Standard
  4518. \begin_inset Float table
  4519. wide false
  4520. sideways false
  4521. status collapsed
  4522. \begin_layout Plain Layout
  4523. \align center
  4524. \begin_inset Tabular
  4525. <lyxtabular version="3" rows="5" columns="4">
  4526. <features tabularvalignment="middle">
  4527. <column alignment="center" valignment="top">
  4528. <column alignment="center" valignment="top">
  4529. <column alignment="center" valignment="top">
  4530. <column alignment="center" valignment="top">
  4531. <row>
  4532. <cell alignment="center" valignment="top" usebox="none">
  4533. \begin_inset Text
  4534. \begin_layout Plain Layout
  4535. \end_layout
  4536. \end_inset
  4537. </cell>
  4538. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  4539. \begin_inset Text
  4540. \begin_layout Plain Layout
  4541. Analysis
  4542. \end_layout
  4543. \end_inset
  4544. </cell>
  4545. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4546. \begin_inset Text
  4547. \begin_layout Plain Layout
  4548. \end_layout
  4549. \end_inset
  4550. </cell>
  4551. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  4552. \begin_inset Text
  4553. \begin_layout Plain Layout
  4554. \end_layout
  4555. \end_inset
  4556. </cell>
  4557. </row>
  4558. <row>
  4559. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  4560. \begin_inset Text
  4561. \begin_layout Plain Layout
  4562. Contrast
  4563. \end_layout
  4564. \end_inset
  4565. </cell>
  4566. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  4567. \begin_inset Text
  4568. \begin_layout Plain Layout
  4569. A
  4570. \end_layout
  4571. \end_inset
  4572. </cell>
  4573. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  4574. \begin_inset Text
  4575. \begin_layout Plain Layout
  4576. B
  4577. \end_layout
  4578. \end_inset
  4579. </cell>
  4580. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  4581. \begin_inset Text
  4582. \begin_layout Plain Layout
  4583. C
  4584. \end_layout
  4585. \end_inset
  4586. </cell>
  4587. </row>
  4588. <row>
  4589. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4590. \begin_inset Text
  4591. \begin_layout Plain Layout
  4592. TX vs AR
  4593. \end_layout
  4594. \end_inset
  4595. </cell>
  4596. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4597. \begin_inset Text
  4598. \begin_layout Plain Layout
  4599. 0
  4600. \end_layout
  4601. \end_inset
  4602. </cell>
  4603. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4604. \begin_inset Text
  4605. \begin_layout Plain Layout
  4606. 10,063
  4607. \end_layout
  4608. \end_inset
  4609. </cell>
  4610. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  4611. \begin_inset Text
  4612. \begin_layout Plain Layout
  4613. 11,225
  4614. \end_layout
  4615. \end_inset
  4616. </cell>
  4617. </row>
  4618. <row>
  4619. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4620. \begin_inset Text
  4621. \begin_layout Plain Layout
  4622. TX vs ADNR
  4623. \end_layout
  4624. \end_inset
  4625. </cell>
  4626. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4627. \begin_inset Text
  4628. \begin_layout Plain Layout
  4629. 27
  4630. \end_layout
  4631. \end_inset
  4632. </cell>
  4633. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4634. \begin_inset Text
  4635. \begin_layout Plain Layout
  4636. 12,674
  4637. \end_layout
  4638. \end_inset
  4639. </cell>
  4640. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  4641. \begin_inset Text
  4642. \begin_layout Plain Layout
  4643. 13,086
  4644. \end_layout
  4645. \end_inset
  4646. </cell>
  4647. </row>
  4648. <row>
  4649. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  4650. \begin_inset Text
  4651. \begin_layout Plain Layout
  4652. TX vs CAN
  4653. \end_layout
  4654. \end_inset
  4655. </cell>
  4656. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  4657. \begin_inset Text
  4658. \begin_layout Plain Layout
  4659. 966
  4660. \end_layout
  4661. \end_inset
  4662. </cell>
  4663. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  4664. \begin_inset Text
  4665. \begin_layout Plain Layout
  4666. 20,039
  4667. \end_layout
  4668. \end_inset
  4669. </cell>
  4670. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  4671. \begin_inset Text
  4672. \begin_layout Plain Layout
  4673. 20,955
  4674. \end_layout
  4675. \end_inset
  4676. </cell>
  4677. </row>
  4678. </lyxtabular>
  4679. \end_inset
  4680. \end_layout
  4681. \begin_layout Plain Layout
  4682. \begin_inset Caption Standard
  4683. \begin_layout Plain Layout
  4684. \begin_inset CommandInset label
  4685. LatexCommand label
  4686. name "tab:methyl-est-nonnull"
  4687. \end_inset
  4688. \series bold
  4689. Estimated number of non-null tests for each contrast in each analysis.
  4690. \series default
  4691. For each of the analyses in Table
  4692. \begin_inset CommandInset ref
  4693. LatexCommand ref
  4694. reference "tab:Summary-of-meth-analysis"
  4695. plural "false"
  4696. caps "false"
  4697. noprefix "false"
  4698. \end_inset
  4699. , the table shows the number of probes estimated to be differentially methylated
  4700. between TX and the other 3 transplant statuses.
  4701. \end_layout
  4702. \end_inset
  4703. \end_layout
  4704. \end_inset
  4705. \end_layout
  4706. \begin_layout Standard
  4707. \begin_inset Float figure
  4708. wide false
  4709. sideways false
  4710. status collapsed
  4711. \begin_layout Plain Layout
  4712. \begin_inset Flex TODO Note (inline)
  4713. status open
  4714. \begin_layout Plain Layout
  4715. Re-generate p-value histograms for all relevant contrasts in a single page,
  4716. then write an appropriate legend.
  4717. \end_layout
  4718. \end_inset
  4719. \end_layout
  4720. \begin_layout Plain Layout
  4721. \align center
  4722. \series bold
  4723. [Figure goes here]
  4724. \end_layout
  4725. \begin_layout Plain Layout
  4726. \begin_inset Caption Standard
  4727. \begin_layout Plain Layout
  4728. \series bold
  4729. \begin_inset CommandInset label
  4730. LatexCommand label
  4731. name "fig:meth-p-value-histograms"
  4732. \end_inset
  4733. Probe p-value histograms for each contrast in each analysis.
  4734. \end_layout
  4735. \end_inset
  4736. \end_layout
  4737. \begin_layout Plain Layout
  4738. \end_layout
  4739. \end_inset
  4740. \end_layout
  4741. \begin_layout Standard
  4742. Table
  4743. \begin_inset CommandInset ref
  4744. LatexCommand ref
  4745. reference "tab:methyl-num-signif"
  4746. plural "false"
  4747. caps "false"
  4748. noprefix "false"
  4749. \end_inset
  4750. shows the number of significantly differentially methylated probes reported
  4751. by each analysis for each comparison of interest at an FDR of 10%.
  4752. As expected, the more elaborate analyses, B and C, report more significant
  4753. probes than the more basic analysis A, consistent with the conclusions
  4754. above that the data contain hidden systematic variations that must be modeled.
  4755. Table
  4756. \begin_inset CommandInset ref
  4757. LatexCommand ref
  4758. reference "tab:methyl-est-nonnull"
  4759. plural "false"
  4760. caps "false"
  4761. noprefix "false"
  4762. \end_inset
  4763. shows the estimated number differentially methylated probes for each test
  4764. from each analysis.
  4765. This was computed by estimating the proportion of null hypotheses that
  4766. were true using the method of
  4767. \begin_inset CommandInset citation
  4768. LatexCommand cite
  4769. key "Phipson2013"
  4770. literal "false"
  4771. \end_inset
  4772. and subtracting that fraction from the total number of probes, yielding
  4773. an estimate of the number of null hypotheses that are false based on the
  4774. distribution of p-values across the entire dataset.
  4775. Note that this does not identify which null hypotheses should be rejected
  4776. (i.e.
  4777. which probes are significant); it only estimates the true number of such
  4778. probes.
  4779. Once again, analyses B and C result it much larger estimates for the number
  4780. of differentially methylated probes.
  4781. In this case, analysis C, the only analysis that includes voom, estimates
  4782. the largest number of differentially methylated probes for all 3 contrasts.
  4783. If the assumptions of all the methods employed hold, then this represents
  4784. a gain in statistical power over the simpler analysis A.
  4785. Figure
  4786. \begin_inset CommandInset ref
  4787. LatexCommand ref
  4788. reference "fig:meth-p-value-histograms"
  4789. plural "false"
  4790. caps "false"
  4791. noprefix "false"
  4792. \end_inset
  4793. shows the p-value distributions for each test, from which the numbers in
  4794. Table
  4795. \begin_inset CommandInset ref
  4796. LatexCommand ref
  4797. reference "tab:methyl-est-nonnull"
  4798. plural "false"
  4799. caps "false"
  4800. noprefix "false"
  4801. \end_inset
  4802. were generated.
  4803. The distributions for analysis A all have a dip in density near zero, which
  4804. is a strong sign of a poor model fit.
  4805. The histograms for analyses B and C are more well-behaved, with a uniform
  4806. component stretching all the way from 0 to 1 representing the probes for
  4807. which the null hypotheses is true (no differential methylation), and a
  4808. zero-biased component representing the probes for which the null hypothesis
  4809. is false (differentially methylated).
  4810. These histograms do not indicate any major issues with the model fit.
  4811. \end_layout
  4812. \begin_layout Standard
  4813. \begin_inset Flex TODO Note (inline)
  4814. status open
  4815. \begin_layout Plain Layout
  4816. Maybe include the PCA plots before/after SVA effect subtraction?
  4817. \end_layout
  4818. \end_inset
  4819. \end_layout
  4820. \begin_layout Standard
  4821. \begin_inset ERT
  4822. status collapsed
  4823. \begin_layout Plain Layout
  4824. \backslash
  4825. FloatBarrier
  4826. \end_layout
  4827. \end_inset
  4828. \end_layout
  4829. \begin_layout Section
  4830. Discussion
  4831. \end_layout
  4832. \begin_layout Subsection
  4833. fRMA achieves clinically applicable normalization without sacrificing classifica
  4834. tion performance
  4835. \end_layout
  4836. \begin_layout Standard
  4837. As shown in Figure
  4838. \begin_inset CommandInset ref
  4839. LatexCommand ref
  4840. reference "fig:Classifier-probabilities-RMA"
  4841. plural "false"
  4842. caps "false"
  4843. noprefix "false"
  4844. \end_inset
  4845. , improper normalization, particularly separate normalization of training
  4846. and test samples, leads to unwanted biases in classification.
  4847. In a controlled experimental context, it is always possible to correct
  4848. this issue by normalizing all experimental samples together.
  4849. However, because it is not feasible to normalize all samples together in
  4850. a clinical context, a single-channel normalization is required is required.
  4851. \end_layout
  4852. \begin_layout Standard
  4853. The major concern in using a single-channel normalization is that non-single-cha
  4854. nnel methods can share information between arrays to improve the normalization,
  4855. and single-channel methods risk sacrificing the gains in normalization
  4856. accuracy that come from this information sharing.
  4857. In the case of RMA, this information sharing is accomplished through quantile
  4858. normalization and median polish steps.
  4859. The need for information sharing in quantile normalization can easily be
  4860. removed by learning a fixed set of quantiles from external data and normalizing
  4861. each array to these fixed quantiles, instead of the quantiles of the data
  4862. itself.
  4863. As long as the fixed quantiles are reasonable, the result will be similar
  4864. to standard RMA.
  4865. However, there is no analogous way to eliminate cross-array information
  4866. sharing in the median polish step, so fRMA replaces this with a weighted
  4867. average of probes on each array, with the weights learned from external
  4868. data.
  4869. This step of fRMA has the greatest potential to diverge from RMA un undesirable
  4870. ways.
  4871. \end_layout
  4872. \begin_layout Standard
  4873. However, when run on real data, fRMA performed at least as well as RMA in
  4874. both the internal validation and external validation tests.
  4875. This shows that fRMA can be used to normalize individual clinical samples
  4876. in a class prediction context without sacrificing the classifier performance
  4877. that would be obtained by using the more well-established RMA for normalization.
  4878. The other single-channel normalization method considered, SCAN, showed
  4879. some loss of AUC in the external validation test.
  4880. Based on these results, fRMA is the preferred normalization for clinical
  4881. samples in a class prediction context.
  4882. \end_layout
  4883. \begin_layout Subsection
  4884. Robust fRMA vectors can be generated for new array platforms
  4885. \end_layout
  4886. \begin_layout Standard
  4887. \begin_inset Flex TODO Note (inline)
  4888. status open
  4889. \begin_layout Plain Layout
  4890. Look up the exact numbers, do a find & replace for
  4891. \begin_inset Quotes eld
  4892. \end_inset
  4893. 850
  4894. \begin_inset Quotes erd
  4895. \end_inset
  4896. \end_layout
  4897. \end_inset
  4898. \end_layout
  4899. \begin_layout Standard
  4900. The published fRMA normalization vectors for the hgu133plus2 platform were
  4901. generated from a set of about 850 samples chosen from a wide range of tissues,
  4902. which the authors determined was sufficient to generate a robust set of
  4903. normalization vectors that could be applied across all tissues
  4904. \begin_inset CommandInset citation
  4905. LatexCommand cite
  4906. key "McCall2010"
  4907. literal "false"
  4908. \end_inset
  4909. .
  4910. Since we only had hthgu133pluspm for 2 tissues of interest, our needs were
  4911. more modest.
  4912. Even using only 130 samples in 26 batches of 5 samples each for kidney
  4913. biopsies, we were able to train a robust set of fRMA normalization vectors
  4914. that were not meaningfully affected by the random selection of 5 samples
  4915. from each batch.
  4916. As expected, the training process was just as robust for the blood samples
  4917. with 230 samples in 46 batches of 5 samples each.
  4918. Because these vectors were each generated using training samples from a
  4919. single tissue, they are not suitable for general use, unlike the vectors
  4920. provided with fRMA itself.
  4921. They are purpose-built for normalizing a specific type of sample on a specific
  4922. platform.
  4923. This is a mostly acceptable limitation in the context of developing a machine
  4924. learning classifier for diagnosing a disease based on samples of a specific
  4925. tissue.
  4926. \end_layout
  4927. \begin_layout Standard
  4928. \begin_inset Flex TODO Note (inline)
  4929. status open
  4930. \begin_layout Plain Layout
  4931. How to bring up that these custom vectors were used in another project by
  4932. someone else that was never published?
  4933. \end_layout
  4934. \end_inset
  4935. \end_layout
  4936. \begin_layout Subsection
  4937. Methylation array data can be successfully analyzed using existing techniques,
  4938. but machine learning poses additional challenges
  4939. \end_layout
  4940. \begin_layout Standard
  4941. Both analysis strategies B and C both yield a reasonable analysis, with
  4942. a mean-variance trend that matches the expected behavior for the non-linear
  4943. M-value transformation (Figure
  4944. \begin_inset CommandInset ref
  4945. LatexCommand ref
  4946. reference "fig:meanvar-sva-aw"
  4947. plural "false"
  4948. caps "false"
  4949. noprefix "false"
  4950. \end_inset
  4951. ) and well-behaved p-value distributions (Figure
  4952. \begin_inset CommandInset ref
  4953. LatexCommand ref
  4954. reference "fig:meth-p-value-histograms"
  4955. plural "false"
  4956. caps "false"
  4957. noprefix "false"
  4958. \end_inset
  4959. ).
  4960. These two analyses also yield similar numbers of significant probes (Table
  4961. \begin_inset CommandInset ref
  4962. LatexCommand ref
  4963. reference "tab:methyl-num-signif"
  4964. plural "false"
  4965. caps "false"
  4966. noprefix "false"
  4967. \end_inset
  4968. ) and similar estimates of the number of differentially methylated probes
  4969. (Table
  4970. \begin_inset CommandInset ref
  4971. LatexCommand ref
  4972. reference "tab:methyl-est-nonnull"
  4973. plural "false"
  4974. caps "false"
  4975. noprefix "false"
  4976. \end_inset
  4977. ).
  4978. The main difference between these two analyses is the method used to account
  4979. for the mean-variance trend.
  4980. In analysis B, the trend is estimated and applied at the probe level: each
  4981. probe's estimated variance is squeezed toward the trend using an empirical
  4982. Bayes procedure (Figure
  4983. \begin_inset CommandInset ref
  4984. LatexCommand ref
  4985. reference "fig:meanvar-sva-aw"
  4986. plural "false"
  4987. caps "false"
  4988. noprefix "false"
  4989. \end_inset
  4990. ).
  4991. In analysis C, the trend is still estimated at the probe level, but instead
  4992. of estimating a single variance value shared across all observations for
  4993. a given probe, the voom method computes an initial estiamte of the variance
  4994. for each observation individually based on where its model-fitted M-value
  4995. falls on the trend line and then assigns inverse-variance weights to model
  4996. the difference in variance between observations.
  4997. An overall variance is still estimated for each probe using the same empirical
  4998. Bayes method, but now the residual trend is flat (Figure
  4999. \begin_inset CommandInset ref
  5000. LatexCommand ref
  5001. reference "fig:meanvar-sva-voomaw"
  5002. plural "false"
  5003. caps "false"
  5004. noprefix "false"
  5005. \end_inset
  5006. ), and the mean-variance trend is modeled by scaling the probe's estimated
  5007. variance for each observation using the weights computed by voom.
  5008. The difference between these two methods is analogous to the difference
  5009. between a t-test with equal variance and a t-test with unequal variance,
  5010. except that the unequal group variances used in the latter test are estimated
  5011. based on the mean-variance trend from all the probes rather than the data
  5012. for the specific probe being tested, thus stabilizing the group variance
  5013. estimates by sharing information between probes.
  5014. In practice, allowing voom to model the variance using observation weights
  5015. in this manner allows the linear model fit to concentrate statistical power
  5016. where it will do the most good.
  5017. For example, if a particular probe's M-values are always at the extreme
  5018. of the M-value range (e.g.
  5019. less than -4) for ADNR samples, but the M-values for that probe in TX and
  5020. CAN samples are within the flat region of the mean-variance trend (between
  5021. -3 and +3), voom is able to down-weight the contribution of the high-variance
  5022. M-values from the ADNR samples in order to gain more statistical power
  5023. while testing for differential methylation between TX and CAN.
  5024. In contrast, modeling the mean-variance trend only at the probe level would
  5025. combine the high-variance ADNR samples and lower-variance samples from
  5026. other conditions and estimate an intermediate variance for this probe.
  5027. In practice, analysis B shows that this approach is adequate, but the voom
  5028. approach in analysis C is at least as good on all model fit criteria and
  5029. yields a larger estimate for the number of differentially methylated genes.
  5030. \end_layout
  5031. \begin_layout Standard
  5032. The significant association of diebetes diagnosis with sample quality is
  5033. interesting.
  5034. The samples with Type 2 diabetes tended to have more variation, averaged
  5035. across all probes, than those with Type 1 diabetes.
  5036. This is consistent with the consensus that type 2 disbetes and the associated
  5037. metabolic syndrome represent a broad dysregulation of the body's endocrine
  5038. signalling related to metabolism [citation needed].
  5039. This dysregulation could easily manifest as a greater degree of variation
  5040. in the DNA methylation patterns of affected tissues.
  5041. In contrast, Type 1 disbetes has a more specific cause and effect, so a
  5042. less variable methylation signature is expected.
  5043. \end_layout
  5044. \begin_layout Standard
  5045. This preliminary anlaysis suggests that some degree of differential methylation
  5046. exists between TX and each of the three types of transplant disfunction
  5047. studied.
  5048. Hence, it may be feasible to train a classifier to diagnose transplant
  5049. disfunction from DNA methylation array data.
  5050. However, the major importance of both SVA and sample quality weighting
  5051. for proper modeling of this data poses significant challenges for any attempt
  5052. at a machine learning on data of similar quality.
  5053. While these are easily used in a modeling context with full sample information,
  5054. neither of these methods is directly applicable in a machine learning context,
  5055. where the diagnosis is not known ahead of time.
  5056. If a machine learning approach for methylation-based diagnosis is to be
  5057. pursued, it will either require machine-learning-friendly methods to address
  5058. the same systematic trends in the data that SVA and sample quality weighting
  5059. address, or it will require higher quality data with substantially less
  5060. systematic perturbation of the data.
  5061. \end_layout
  5062. \begin_layout Chapter
  5063. Globin-blocking for more effective blood RNA-seq analysis in primate animal
  5064. model
  5065. \end_layout
  5066. \begin_layout Standard
  5067. \begin_inset Flex TODO Note (inline)
  5068. status open
  5069. \begin_layout Plain Layout
  5070. Choose between above and the paper title: Optimizing yield of deep RNA sequencin
  5071. g for gene expression profiling by globin reduction of peripheral blood
  5072. samples from cynomolgus monkeys (Macaca fascicularis).
  5073. \end_layout
  5074. \end_inset
  5075. \end_layout
  5076. \begin_layout Standard
  5077. \begin_inset Flex TODO Note (inline)
  5078. status open
  5079. \begin_layout Plain Layout
  5080. Chapter author list: https://tex.stackexchange.com/questions/156862/displaying-aut
  5081. hor-for-each-chapter-in-book Every chapter gets an author list, which may
  5082. or may not be part of a citation to a published/preprinted paper.
  5083. \end_layout
  5084. \end_inset
  5085. \end_layout
  5086. \begin_layout Standard
  5087. \begin_inset Flex TODO Note (inline)
  5088. status open
  5089. \begin_layout Plain Layout
  5090. Preprint then cite the paper
  5091. \end_layout
  5092. \end_inset
  5093. \end_layout
  5094. \begin_layout Section*
  5095. Abstract
  5096. \end_layout
  5097. \begin_layout Paragraph
  5098. Background
  5099. \end_layout
  5100. \begin_layout Standard
  5101. Primate blood contains high concentrations of globin messenger RNA.
  5102. Globin reduction is a standard technique used to improve the expression
  5103. results obtained by DNA microarrays on RNA from blood samples.
  5104. However, with whole transcriptome RNA-sequencing (RNA-seq) quickly replacing
  5105. microarrays for many applications, the impact of globin reduction for RNA-seq
  5106. has not been previously studied.
  5107. Moreover, no off-the-shelf kits are available for globin reduction in nonhuman
  5108. primates.
  5109. \end_layout
  5110. \begin_layout Paragraph
  5111. Results
  5112. \end_layout
  5113. \begin_layout Standard
  5114. Here we report a protocol for RNA-seq in primate blood samples that uses
  5115. complimentary oligonucleotides to block reverse transcription of the alpha
  5116. and beta globin genes.
  5117. In test samples from cynomolgus monkeys (Macaca fascicularis), this globin
  5118. blocking protocol approximately doubles the yield of informative (non-globin)
  5119. reads by greatly reducing the fraction of globin reads, while also improving
  5120. the consistency in sequencing depth between samples.
  5121. The increased yield enables detection of about 2000 more genes, significantly
  5122. increases the correlation in measured gene expression levels between samples,
  5123. and increases the sensitivity of differential gene expression tests.
  5124. \end_layout
  5125. \begin_layout Paragraph
  5126. Conclusions
  5127. \end_layout
  5128. \begin_layout Standard
  5129. These results show that globin blocking significantly improves the cost-effectiv
  5130. eness of mRNA sequencing in primate blood samples by doubling the yield
  5131. of useful reads, allowing detection of more genes, and improving the precision
  5132. of gene expression measurements.
  5133. Based on these results, a globin reducing or blocking protocol is recommended
  5134. for all RNA-seq studies of primate blood samples.
  5135. \end_layout
  5136. \begin_layout Section
  5137. Approach
  5138. \end_layout
  5139. \begin_layout Standard
  5140. \begin_inset Note Note
  5141. status open
  5142. \begin_layout Plain Layout
  5143. Consider putting some of this in the Intro chapter
  5144. \end_layout
  5145. \begin_layout Itemize
  5146. Cynomolgus monkeys as a model organism
  5147. \end_layout
  5148. \begin_deeper
  5149. \begin_layout Itemize
  5150. Highly related to humans
  5151. \end_layout
  5152. \begin_layout Itemize
  5153. Small size and short life cycle - good research animal
  5154. \end_layout
  5155. \begin_layout Itemize
  5156. Genomics resources still in development
  5157. \end_layout
  5158. \end_deeper
  5159. \begin_layout Itemize
  5160. Inadequacy of existing blood RNA-seq protocols
  5161. \end_layout
  5162. \begin_deeper
  5163. \begin_layout Itemize
  5164. Existing protocols use a separate globin pulldown step, slowing down processing
  5165. \end_layout
  5166. \end_deeper
  5167. \end_inset
  5168. \end_layout
  5169. \begin_layout Standard
  5170. Increasingly, researchers are turning to high-throughput mRNA sequencing
  5171. technologies (RNA-seq) in preference to expression microarrays for analysis
  5172. of gene expression
  5173. \begin_inset CommandInset citation
  5174. LatexCommand cite
  5175. key "Mutz2012"
  5176. literal "false"
  5177. \end_inset
  5178. .
  5179. The advantages are even greater for study of model organisms with no well-estab
  5180. lished array platforms available, such as the cynomolgus monkey (Macaca
  5181. fascicularis).
  5182. High fractions of globin mRNA are naturally present in mammalian peripheral
  5183. blood samples (up to 70% of total mRNA) and these are known to interfere
  5184. with the results of array-based expression profiling
  5185. \begin_inset CommandInset citation
  5186. LatexCommand cite
  5187. key "Winn2010"
  5188. literal "false"
  5189. \end_inset
  5190. .
  5191. The importance of globin reduction for RNA-seq of blood has only been evaluated
  5192. for a deepSAGE protocol on human samples
  5193. \begin_inset CommandInset citation
  5194. LatexCommand cite
  5195. key "Mastrokolias2012"
  5196. literal "false"
  5197. \end_inset
  5198. .
  5199. In the present report, we evaluated globin reduction using custom blocking
  5200. oligonucleotides for deep RNA-seq of peripheral blood samples from a nonhuman
  5201. primate, cynomolgus monkey, using the Illumina technology platform.
  5202. We demonstrate that globin reduction significantly improves the cost-effectiven
  5203. ess of RNA-seq in blood samples.
  5204. Thus, our protocol offers a significant advantage to any investigator planning
  5205. to use RNA-seq for gene expression profiling of nonhuman primate blood
  5206. samples.
  5207. Our method can be generally applied to any species by designing complementary
  5208. oligonucleotide blocking probes to the globin gene sequences of that species.
  5209. Indeed, any highly expressed but biologically uninformative transcripts
  5210. can also be blocked to further increase sequencing efficiency and value
  5211. \begin_inset CommandInset citation
  5212. LatexCommand cite
  5213. key "Arnaud2016"
  5214. literal "false"
  5215. \end_inset
  5216. .
  5217. \end_layout
  5218. \begin_layout Section
  5219. Methods
  5220. \end_layout
  5221. \begin_layout Subsection
  5222. Sample collection
  5223. \end_layout
  5224. \begin_layout Standard
  5225. All research reported here was done under IACUC-approved protocols at the
  5226. University of Miami and complied with all applicable federal and state
  5227. regulations and ethical principles for nonhuman primate research.
  5228. Blood draws occurred between 16 April 2012 and 18 June 2015.
  5229. The experimental system involved intrahepatic pancreatic islet transplantation
  5230. into Cynomolgus monkeys with induced diabetes mellitus with or without
  5231. concomitant infusion of mesenchymal stem cells.
  5232. Blood was collected at serial time points before and after transplantation
  5233. into PAXgene Blood RNA tubes (PreAnalytiX/Qiagen, Valencia, CA) at the
  5234. precise volume:volume ratio of 2.5 ml whole blood into 6.9 ml of PAX gene
  5235. additive.
  5236. \end_layout
  5237. \begin_layout Subsection
  5238. Globin Blocking
  5239. \end_layout
  5240. \begin_layout Standard
  5241. Four oligonucleotides were designed to hybridize to the 3’ end of the transcript
  5242. s for Cynomolgus HBA1, HBA2 and HBB, with two hybridization sites for HBB
  5243. and 2 sites for HBA (the chosen sites were identical in both HBA genes).
  5244. All oligos were purchased from Sigma and were entirely composed of 2’O-Me
  5245. bases with a C3 spacer positioned at the 3’ ends to prevent any polymerase
  5246. mediated primer extension.
  5247. \end_layout
  5248. \begin_layout Quote
  5249. HBA1/2 site 1: GCCCACUCAGACUUUAUUCAAAG-C3spacer
  5250. \end_layout
  5251. \begin_layout Quote
  5252. HBA1/2 site 2: GGUGCAAGGAGGGGAGGAG-C3spacer
  5253. \end_layout
  5254. \begin_layout Quote
  5255. HBB site 1: AAUGAAAAUAAAUGUUUUUUAUUAG-C3spacer
  5256. \end_layout
  5257. \begin_layout Quote
  5258. HBB site 2: CUCAAGGCCCUUCAUAAUAUCCC-C3spacer
  5259. \end_layout
  5260. \begin_layout Subsection
  5261. RNA-seq Library Preparation
  5262. \end_layout
  5263. \begin_layout Standard
  5264. Sequencing libraries were prepared with 200ng total RNA from each sample.
  5265. Polyadenylated mRNA was selected from 200 ng aliquots of cynomologus blood-deri
  5266. ved total RNA using Ambion Dynabeads Oligo(dT)25 beads (Invitrogen) following
  5267. manufacturer’s recommended protocol.
  5268. PolyA selected RNA was then combined with 8 pmol of HBA1/2 (site 1), 8
  5269. pmol of HBA1/2 (site 2), 12 pmol of HBB (site 1) and 12 pmol of HBB (site
  5270. 2) oligonucleotides.
  5271. In addition, 20 pmol of RT primer containing a portion of the Illumina
  5272. adapter sequence (B-oligo-dTV: GAGTTCCTTGGCACCCGAGAATTCCATTTTTTTTTTTTTTTTTTTV)
  5273. and 4 µL of 5X First Strand buffer (250 mM Tris-HCl pH 8.3, 375 mM KCl,
  5274. 15mM MgCl2) were added in a total volume of 15 µL.
  5275. The RNA was fragmented by heating this cocktail for 3 minutes at 95°C and
  5276. then placed on ice.
  5277. This was followed by the addition of 2 µL 0.1 M DTT, 1 µL RNaseOUT, 1 µL
  5278. 10mM dNTPs 10% biotin-16 aminoallyl-2’- dUTP and 10% biotin-16 aminoallyl-2’-
  5279. dCTP (TriLink Biotech, San Diego, CA), 1 µL Superscript II (200U/ µL, Thermo-Fi
  5280. sher).
  5281. A second “unblocked” library was prepared in the same way for each sample
  5282. but replacing the blocking oligos with an equivalent volume of water.
  5283. The reaction was carried out at 25°C for 15 minutes and 42°C for 40 minutes,
  5284. followed by incubation at 75°C for 10 minutes to inactivate the reverse
  5285. transcriptase.
  5286. \end_layout
  5287. \begin_layout Standard
  5288. The cDNA/RNA hybrid molecules were purified using 1.8X Ampure XP beads (Agencourt
  5289. ) following supplier’s recommended protocol.
  5290. The cDNA/RNA hybrid was eluted in 25 µL of 10 mM Tris-HCl pH 8.0, and then
  5291. bound to 25 µL of M280 Magnetic Streptavidin beads washed per recommended
  5292. protocol (Thermo-Fisher).
  5293. After 30 minutes of binding, beads were washed one time in 100 µL 0.1N NaOH
  5294. to denature and remove the bound RNA, followed by two 100 µL washes with
  5295. 1X TE buffer.
  5296. \end_layout
  5297. \begin_layout Standard
  5298. Subsequent attachment of the 5-prime Illumina A adapter was performed by
  5299. on-bead random primer extension of the following sequence (A-N8 primer:
  5300. TTCAGAGTTCTACAGTCCGACGATCNNNNNNNN).
  5301. Briefly, beads were resuspended in a 20 µL reaction containing 5 µM A-N8
  5302. primer, 40mM Tris-HCl pH 7.5, 20mM MgCl2, 50mM NaCl, 0.325U/µL Sequenase
  5303. 2.0 (Affymetrix, Santa Clara, CA), 0.0025U/µL inorganic pyrophosphatase (Affymetr
  5304. ix) and 300 µM each dNTP.
  5305. Reaction was incubated at 22°C for 30 minutes, then beads were washed 2
  5306. times with 1X TE buffer (200µL).
  5307. \end_layout
  5308. \begin_layout Standard
  5309. The magnetic streptavidin beads were resuspended in 34 µL nuclease-free
  5310. water and added directly to a PCR tube.
  5311. The two Illumina protocol-specified PCR primers were added at 0.53 µM (Illumina
  5312. TruSeq Universal Primer 1 and Illumina TruSeq barcoded PCR primer 2), along
  5313. with 40 µL 2X KAPA HiFi Hotstart ReadyMix (KAPA, Willmington MA) and thermocycl
  5314. ed as follows: starting with 98°C (2 min-hold); 15 cycles of 98°C, 20sec;
  5315. 60°C, 30sec; 72°C, 30sec; and finished with a 72°C (2 min-hold).
  5316. \end_layout
  5317. \begin_layout Standard
  5318. PCR products were purified with 1X Ampure Beads following manufacturer’s
  5319. recommended protocol.
  5320. Libraries were then analyzed using the Agilent TapeStation and quantitation
  5321. of desired size range was performed by “smear analysis”.
  5322. Samples were pooled in equimolar batches of 16 samples.
  5323. Pooled libraries were size selected on 2% agarose gels (E-Gel EX Agarose
  5324. Gels; Thermo-Fisher).
  5325. Products were cut between 250 and 350 bp (corresponding to insert sizes
  5326. of 130 to 230 bps).
  5327. Finished library pools were then sequenced on the Illumina NextSeq500 instrumen
  5328. t with 75 base read lengths.
  5329. \end_layout
  5330. \begin_layout Subsection
  5331. Read alignment and counting
  5332. \end_layout
  5333. \begin_layout Standard
  5334. Reads were aligned to the cynomolgus genome using STAR
  5335. \begin_inset CommandInset citation
  5336. LatexCommand cite
  5337. key "Dobin2013,Wilson2013"
  5338. literal "false"
  5339. \end_inset
  5340. .
  5341. Counts of uniquely mapped reads were obtained for every gene in each sample
  5342. with the “featureCounts” function from the Rsubread package, using each
  5343. of the three possibilities for the “strandSpecific” option: sense, antisense,
  5344. and unstranded
  5345. \begin_inset CommandInset citation
  5346. LatexCommand cite
  5347. key "Liao2014"
  5348. literal "false"
  5349. \end_inset
  5350. .
  5351. A few artifacts in the cynomolgus genome annotation complicated read counting.
  5352. First, no ortholog is annotated for alpha globin in the cynomolgus genome,
  5353. presumably because the human genome has two alpha globin genes with nearly
  5354. identical sequences, making the orthology relationship ambiguous.
  5355. However, two loci in the cynomolgus genome are as “hemoglobin subunit alpha-lik
  5356. e” (LOC102136192 and LOC102136846).
  5357. LOC102136192 is annotated as a pseudogene while LOC102136846 is annotated
  5358. as protein-coding.
  5359. Our globin reduction protocol was designed to include blocking of these
  5360. two genes.
  5361. Indeed, these two genes have almost the same read counts in each library
  5362. as the properly-annotated HBB gene and much larger counts than any other
  5363. gene in the unblocked libraries, giving confidence that reads derived from
  5364. the real alpha globin are mapping to both genes.
  5365. Thus, reads from both of these loci were counted as alpha globin reads
  5366. in all further analyses.
  5367. The second artifact is a small, uncharacterized non-coding RNA gene (LOC1021365
  5368. 91), which overlaps the HBA-like gene (LOC102136192) on the opposite strand.
  5369. If counting is not performed in stranded mode (or if a non-strand-specific
  5370. sequencing protocol is used), many reads mapping to the globin gene will
  5371. be discarded as ambiguous due to their overlap with this ncRNA gene, resulting
  5372. in significant undercounting of globin reads.
  5373. Therefore, stranded sense counts were used for all further analysis in
  5374. the present study to insure that we accurately accounted for globin transcript
  5375. reduction.
  5376. However, we note that stranded reads are not necessary for RNA-seq using
  5377. our protocol in standard practice.
  5378. \end_layout
  5379. \begin_layout Subsection
  5380. Normalization and Exploratory Data Analysis
  5381. \end_layout
  5382. \begin_layout Standard
  5383. Libraries were normalized by computing scaling factors using the edgeR package’s
  5384. Trimmed Mean of M-values method
  5385. \begin_inset CommandInset citation
  5386. LatexCommand cite
  5387. key "Robinson2010"
  5388. literal "false"
  5389. \end_inset
  5390. .
  5391. Log2 counts per million values (logCPM) were calculated using the cpm function
  5392. in edgeR for individual samples and aveLogCPM function for averages across
  5393. groups of samples, using those functions’ default prior count values to
  5394. avoid taking the logarithm of 0.
  5395. Genes were considered “present” if their average normalized logCPM values
  5396. across all libraries were at least -1.
  5397. Normalizing for gene length was unnecessary because the sequencing protocol
  5398. is 3’-biased and hence the expected read count for each gene is related
  5399. to the transcript’s copy number but not its length.
  5400. \end_layout
  5401. \begin_layout Standard
  5402. In order to assess the effect of blocking on reproducibility, Pearson and
  5403. Spearman correlation coefficients were computed between the logCPM values
  5404. for every pair of libraries within the globin-blocked (GB) and unblocked
  5405. (non-GB) groups, and edgeR's “estimateDisp” function was used to compute
  5406. negative binomial dispersions separately for the two groups
  5407. \begin_inset CommandInset citation
  5408. LatexCommand cite
  5409. key "Chen2014"
  5410. literal "false"
  5411. \end_inset
  5412. .
  5413. \end_layout
  5414. \begin_layout Subsection
  5415. Differential Expression Analysis
  5416. \end_layout
  5417. \begin_layout Standard
  5418. All tests for differential gene expression were performed using edgeR, by
  5419. first fitting a negative binomial generalized linear model to the counts
  5420. and normalization factors and then performing a quasi-likelihood F-test
  5421. with robust estimation of outlier gene dispersions
  5422. \begin_inset CommandInset citation
  5423. LatexCommand cite
  5424. key "Lund2012,Phipson2016"
  5425. literal "false"
  5426. \end_inset
  5427. .
  5428. To investigate the effects of globin blocking on each gene, an additive
  5429. model was fit to the full data with coefficients for globin blocking and
  5430. SampleID.
  5431. To test the effect of globin blocking on detection of differentially expressed
  5432. genes, the GB samples and non-GB samples were each analyzed independently
  5433. as follows: for each animal with both a pre-transplant and a post-transplant
  5434. time point in the data set, the pre-transplant sample and the earliest
  5435. post-transplant sample were selected, and all others were excluded, yielding
  5436. a pre-/post-transplant pair of samples for each animal (N=7 animals with
  5437. paired samples).
  5438. These samples were analyzed for pre-transplant vs.
  5439. post-transplant differential gene expression while controlling for inter-animal
  5440. variation using an additive model with coefficients for transplant and
  5441. animal ID.
  5442. In all analyses, p-values were adjusted using the Benjamini-Hochberg procedure
  5443. for FDR control
  5444. \begin_inset CommandInset citation
  5445. LatexCommand cite
  5446. key "Benjamini1995"
  5447. literal "false"
  5448. \end_inset
  5449. .
  5450. \end_layout
  5451. \begin_layout Standard
  5452. \begin_inset Note Note
  5453. status open
  5454. \begin_layout Itemize
  5455. New blood RNA-seq protocol to block reverse transcription of globin genes
  5456. \end_layout
  5457. \begin_layout Itemize
  5458. Blood RNA-seq time course after transplants with/without MSC infusion
  5459. \end_layout
  5460. \end_inset
  5461. \end_layout
  5462. \begin_layout Section
  5463. Results
  5464. \end_layout
  5465. \begin_layout Subsection
  5466. Globin blocking yields a larger and more consistent fraction of useful reads
  5467. \end_layout
  5468. \begin_layout Standard
  5469. The objective of the present study was to validate a new protocol for deep
  5470. RNA-seq of whole blood drawn into PaxGene tubes from cynomolgus monkeys
  5471. undergoing islet transplantation, with particular focus on minimizing the
  5472. loss of useful sequencing space to uninformative globin reads.
  5473. The details of the analysis with respect to transplant outcomes and the
  5474. impact of mesenchymal stem cell treatment will be reported in a separate
  5475. manuscript (in preparation).
  5476. To focus on the efficacy of our globin blocking protocol, 37 blood samples,
  5477. 16 from pre-transplant and 21 from post-transplant time points, were each
  5478. prepped once with and once without globin blocking oligos, and were then
  5479. sequenced on an Illumina NextSeq500 instrument.
  5480. The number of reads aligning to each gene in the cynomolgus genome was
  5481. counted.
  5482. Table 1 summarizes the distribution of read fractions among the GB and
  5483. non-GB libraries.
  5484. In the libraries with no globin blocking, globin reads made up an average
  5485. of 44.6% of total input reads, while reads assigned to all other genes made
  5486. up an average of 26.3%.
  5487. The remaining reads either aligned to intergenic regions (that include
  5488. long non-coding RNAs) or did not align with any annotated transcripts in
  5489. the current build of the cynomolgus genome.
  5490. In the GB libraries, globin reads made up only 3.48% and reads assigned
  5491. to all other genes increased to 50.4%.
  5492. Thus, globin blocking resulted in a 92.2% reduction in globin reads and
  5493. a 91.6% increase in yield of useful non-globin reads.
  5494. \end_layout
  5495. \begin_layout Standard
  5496. This reduction is not quite as efficient as the previous analysis showed
  5497. for human samples by DeepSAGE (<0.4% globin reads after globin reduction)
  5498. \begin_inset CommandInset citation
  5499. LatexCommand cite
  5500. key "Mastrokolias2012"
  5501. literal "false"
  5502. \end_inset
  5503. .
  5504. Nonetheless, this degree of globin reduction is sufficient to nearly double
  5505. the yield of useful reads.
  5506. Thus, globin blocking cuts the required sequencing effort (and costs) to
  5507. achieve a target coverage depth by almost 50%.
  5508. Consistent with this near doubling of yield, the average difference in
  5509. un-normalized logCPM across all genes between the GB libraries and non-GB
  5510. libraries is approximately 1 (mean = 1.01, median = 1.08), an overall 2-fold
  5511. increase.
  5512. Un-normalized values are used here because the TMM normalization correctly
  5513. identifies this 2-fold difference as biologically irrelevant and removes
  5514. it.
  5515. \end_layout
  5516. \begin_layout Standard
  5517. \begin_inset Float figure
  5518. wide false
  5519. sideways false
  5520. status open
  5521. \begin_layout Plain Layout
  5522. \align center
  5523. \begin_inset Graphics
  5524. filename graphics/Globin Paper/figure1 - globin-fractions.pdf
  5525. \end_inset
  5526. \end_layout
  5527. \begin_layout Plain Layout
  5528. \begin_inset Caption Standard
  5529. \begin_layout Plain Layout
  5530. \series bold
  5531. \begin_inset Argument 1
  5532. status collapsed
  5533. \begin_layout Plain Layout
  5534. Fraction of genic reads in each sample aligned to non-globin genes, with
  5535. and without globin blocking (GB).
  5536. \end_layout
  5537. \end_inset
  5538. \begin_inset CommandInset label
  5539. LatexCommand label
  5540. name "fig:Fraction-of-genic-reads"
  5541. \end_inset
  5542. Fraction of genic reads in each sample aligned to non-globin genes, with
  5543. and without globin blocking (GB).
  5544. \series default
  5545. All reads in each sequencing library were aligned to the cyno genome, and
  5546. the number of reads uniquely aligning to each gene was counted.
  5547. For each sample, counts were summed separately for all globin genes and
  5548. for the remainder of the genes (non-globin genes), and the fraction of
  5549. genic reads aligned to non-globin genes was computed.
  5550. Each point represents an individual sample.
  5551. Gray + signs indicate the means for globin-blocked libraries and unblocked
  5552. libraries.
  5553. The overall distribution for each group is represented as a notched box
  5554. plots.
  5555. Points are randomly spread vertically to avoid excessive overlapping.
  5556. \end_layout
  5557. \end_inset
  5558. \end_layout
  5559. \begin_layout Plain Layout
  5560. \end_layout
  5561. \end_inset
  5562. \end_layout
  5563. \begin_layout Standard
  5564. \begin_inset Float table
  5565. placement p
  5566. wide false
  5567. sideways true
  5568. status open
  5569. \begin_layout Plain Layout
  5570. \align center
  5571. \begin_inset Tabular
  5572. <lyxtabular version="3" rows="4" columns="7">
  5573. <features tabularvalignment="middle">
  5574. <column alignment="center" valignment="top">
  5575. <column alignment="center" valignment="top">
  5576. <column alignment="center" valignment="top">
  5577. <column alignment="center" valignment="top">
  5578. <column alignment="center" valignment="top">
  5579. <column alignment="center" valignment="top">
  5580. <column alignment="center" valignment="top">
  5581. <row>
  5582. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  5583. \begin_inset Text
  5584. \begin_layout Plain Layout
  5585. \end_layout
  5586. \end_inset
  5587. </cell>
  5588. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  5589. \begin_inset Text
  5590. \begin_layout Plain Layout
  5591. \family roman
  5592. \series medium
  5593. \shape up
  5594. \size normal
  5595. \emph off
  5596. \bar no
  5597. \strikeout off
  5598. \xout off
  5599. \uuline off
  5600. \uwave off
  5601. \noun off
  5602. \color none
  5603. Percent of Total Reads
  5604. \end_layout
  5605. \end_inset
  5606. </cell>
  5607. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  5608. \begin_inset Text
  5609. \begin_layout Plain Layout
  5610. \end_layout
  5611. \end_inset
  5612. </cell>
  5613. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  5614. \begin_inset Text
  5615. \begin_layout Plain Layout
  5616. \end_layout
  5617. \end_inset
  5618. </cell>
  5619. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  5620. \begin_inset Text
  5621. \begin_layout Plain Layout
  5622. \end_layout
  5623. \end_inset
  5624. </cell>
  5625. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  5626. \begin_inset Text
  5627. \begin_layout Plain Layout
  5628. \family roman
  5629. \series medium
  5630. \shape up
  5631. \size normal
  5632. \emph off
  5633. \bar no
  5634. \strikeout off
  5635. \xout off
  5636. \uuline off
  5637. \uwave off
  5638. \noun off
  5639. \color none
  5640. Percent of Genic Reads
  5641. \end_layout
  5642. \end_inset
  5643. </cell>
  5644. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  5645. \begin_inset Text
  5646. \begin_layout Plain Layout
  5647. \end_layout
  5648. \end_inset
  5649. </cell>
  5650. </row>
  5651. <row>
  5652. <cell alignment="center" valignment="top" bottomline="true" leftline="true" usebox="none">
  5653. \begin_inset Text
  5654. \begin_layout Plain Layout
  5655. GB
  5656. \end_layout
  5657. \end_inset
  5658. </cell>
  5659. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  5660. \begin_inset Text
  5661. \begin_layout Plain Layout
  5662. \family roman
  5663. \series medium
  5664. \shape up
  5665. \size normal
  5666. \emph off
  5667. \bar no
  5668. \strikeout off
  5669. \xout off
  5670. \uuline off
  5671. \uwave off
  5672. \noun off
  5673. \color none
  5674. Non-globin Reads
  5675. \end_layout
  5676. \end_inset
  5677. </cell>
  5678. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  5679. \begin_inset Text
  5680. \begin_layout Plain Layout
  5681. \family roman
  5682. \series medium
  5683. \shape up
  5684. \size normal
  5685. \emph off
  5686. \bar no
  5687. \strikeout off
  5688. \xout off
  5689. \uuline off
  5690. \uwave off
  5691. \noun off
  5692. \color none
  5693. Globin Reads
  5694. \end_layout
  5695. \end_inset
  5696. </cell>
  5697. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  5698. \begin_inset Text
  5699. \begin_layout Plain Layout
  5700. \family roman
  5701. \series medium
  5702. \shape up
  5703. \size normal
  5704. \emph off
  5705. \bar no
  5706. \strikeout off
  5707. \xout off
  5708. \uuline off
  5709. \uwave off
  5710. \noun off
  5711. \color none
  5712. All Genic Reads
  5713. \end_layout
  5714. \end_inset
  5715. </cell>
  5716. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  5717. \begin_inset Text
  5718. \begin_layout Plain Layout
  5719. \family roman
  5720. \series medium
  5721. \shape up
  5722. \size normal
  5723. \emph off
  5724. \bar no
  5725. \strikeout off
  5726. \xout off
  5727. \uuline off
  5728. \uwave off
  5729. \noun off
  5730. \color none
  5731. All Aligned Reads
  5732. \end_layout
  5733. \end_inset
  5734. </cell>
  5735. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  5736. \begin_inset Text
  5737. \begin_layout Plain Layout
  5738. \family roman
  5739. \series medium
  5740. \shape up
  5741. \size normal
  5742. \emph off
  5743. \bar no
  5744. \strikeout off
  5745. \xout off
  5746. \uuline off
  5747. \uwave off
  5748. \noun off
  5749. \color none
  5750. Non-globin Reads
  5751. \end_layout
  5752. \end_inset
  5753. </cell>
  5754. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  5755. \begin_inset Text
  5756. \begin_layout Plain Layout
  5757. \family roman
  5758. \series medium
  5759. \shape up
  5760. \size normal
  5761. \emph off
  5762. \bar no
  5763. \strikeout off
  5764. \xout off
  5765. \uuline off
  5766. \uwave off
  5767. \noun off
  5768. \color none
  5769. Globin Reads
  5770. \end_layout
  5771. \end_inset
  5772. </cell>
  5773. </row>
  5774. <row>
  5775. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  5776. \begin_inset Text
  5777. \begin_layout Plain Layout
  5778. \family roman
  5779. \series medium
  5780. \shape up
  5781. \size normal
  5782. \emph off
  5783. \bar no
  5784. \strikeout off
  5785. \xout off
  5786. \uuline off
  5787. \uwave off
  5788. \noun off
  5789. \color none
  5790. Yes
  5791. \end_layout
  5792. \end_inset
  5793. </cell>
  5794. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  5795. \begin_inset Text
  5796. \begin_layout Plain Layout
  5797. \family roman
  5798. \series medium
  5799. \shape up
  5800. \size normal
  5801. \emph off
  5802. \bar no
  5803. \strikeout off
  5804. \xout off
  5805. \uuline off
  5806. \uwave off
  5807. \noun off
  5808. \color none
  5809. 50.4% ± 6.82
  5810. \end_layout
  5811. \end_inset
  5812. </cell>
  5813. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  5814. \begin_inset Text
  5815. \begin_layout Plain Layout
  5816. \family roman
  5817. \series medium
  5818. \shape up
  5819. \size normal
  5820. \emph off
  5821. \bar no
  5822. \strikeout off
  5823. \xout off
  5824. \uuline off
  5825. \uwave off
  5826. \noun off
  5827. \color none
  5828. 3.48% ± 2.94
  5829. \end_layout
  5830. \end_inset
  5831. </cell>
  5832. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  5833. \begin_inset Text
  5834. \begin_layout Plain Layout
  5835. \family roman
  5836. \series medium
  5837. \shape up
  5838. \size normal
  5839. \emph off
  5840. \bar no
  5841. \strikeout off
  5842. \xout off
  5843. \uuline off
  5844. \uwave off
  5845. \noun off
  5846. \color none
  5847. 53.9% ± 6.81
  5848. \end_layout
  5849. \end_inset
  5850. </cell>
  5851. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  5852. \begin_inset Text
  5853. \begin_layout Plain Layout
  5854. \family roman
  5855. \series medium
  5856. \shape up
  5857. \size normal
  5858. \emph off
  5859. \bar no
  5860. \strikeout off
  5861. \xout off
  5862. \uuline off
  5863. \uwave off
  5864. \noun off
  5865. \color none
  5866. 89.7% ± 2.40
  5867. \end_layout
  5868. \end_inset
  5869. </cell>
  5870. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  5871. \begin_inset Text
  5872. \begin_layout Plain Layout
  5873. \family roman
  5874. \series medium
  5875. \shape up
  5876. \size normal
  5877. \emph off
  5878. \bar no
  5879. \strikeout off
  5880. \xout off
  5881. \uuline off
  5882. \uwave off
  5883. \noun off
  5884. \color none
  5885. 93.5% ± 5.25
  5886. \end_layout
  5887. \end_inset
  5888. </cell>
  5889. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  5890. \begin_inset Text
  5891. \begin_layout Plain Layout
  5892. \family roman
  5893. \series medium
  5894. \shape up
  5895. \size normal
  5896. \emph off
  5897. \bar no
  5898. \strikeout off
  5899. \xout off
  5900. \uuline off
  5901. \uwave off
  5902. \noun off
  5903. \color none
  5904. 6.49% ± 5.25
  5905. \end_layout
  5906. \end_inset
  5907. </cell>
  5908. </row>
  5909. <row>
  5910. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  5911. \begin_inset Text
  5912. \begin_layout Plain Layout
  5913. \family roman
  5914. \series medium
  5915. \shape up
  5916. \size normal
  5917. \emph off
  5918. \bar no
  5919. \strikeout off
  5920. \xout off
  5921. \uuline off
  5922. \uwave off
  5923. \noun off
  5924. \color none
  5925. No
  5926. \end_layout
  5927. \end_inset
  5928. </cell>
  5929. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  5930. \begin_inset Text
  5931. \begin_layout Plain Layout
  5932. \family roman
  5933. \series medium
  5934. \shape up
  5935. \size normal
  5936. \emph off
  5937. \bar no
  5938. \strikeout off
  5939. \xout off
  5940. \uuline off
  5941. \uwave off
  5942. \noun off
  5943. \color none
  5944. 26.3% ± 8.95
  5945. \end_layout
  5946. \end_inset
  5947. </cell>
  5948. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  5949. \begin_inset Text
  5950. \begin_layout Plain Layout
  5951. \family roman
  5952. \series medium
  5953. \shape up
  5954. \size normal
  5955. \emph off
  5956. \bar no
  5957. \strikeout off
  5958. \xout off
  5959. \uuline off
  5960. \uwave off
  5961. \noun off
  5962. \color none
  5963. 44.6% ± 16.6
  5964. \end_layout
  5965. \end_inset
  5966. </cell>
  5967. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  5968. \begin_inset Text
  5969. \begin_layout Plain Layout
  5970. \family roman
  5971. \series medium
  5972. \shape up
  5973. \size normal
  5974. \emph off
  5975. \bar no
  5976. \strikeout off
  5977. \xout off
  5978. \uuline off
  5979. \uwave off
  5980. \noun off
  5981. \color none
  5982. 70.1% ± 9.38
  5983. \end_layout
  5984. \end_inset
  5985. </cell>
  5986. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  5987. \begin_inset Text
  5988. \begin_layout Plain Layout
  5989. \family roman
  5990. \series medium
  5991. \shape up
  5992. \size normal
  5993. \emph off
  5994. \bar no
  5995. \strikeout off
  5996. \xout off
  5997. \uuline off
  5998. \uwave off
  5999. \noun off
  6000. \color none
  6001. 90.7% ± 5.16
  6002. \end_layout
  6003. \end_inset
  6004. </cell>
  6005. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6006. \begin_inset Text
  6007. \begin_layout Plain Layout
  6008. \family roman
  6009. \series medium
  6010. \shape up
  6011. \size normal
  6012. \emph off
  6013. \bar no
  6014. \strikeout off
  6015. \xout off
  6016. \uuline off
  6017. \uwave off
  6018. \noun off
  6019. \color none
  6020. 38.8% ± 17.1
  6021. \end_layout
  6022. \end_inset
  6023. </cell>
  6024. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  6025. \begin_inset Text
  6026. \begin_layout Plain Layout
  6027. \family roman
  6028. \series medium
  6029. \shape up
  6030. \size normal
  6031. \emph off
  6032. \bar no
  6033. \strikeout off
  6034. \xout off
  6035. \uuline off
  6036. \uwave off
  6037. \noun off
  6038. \color none
  6039. 61.2% ± 17.1
  6040. \end_layout
  6041. \end_inset
  6042. </cell>
  6043. </row>
  6044. </lyxtabular>
  6045. \end_inset
  6046. \end_layout
  6047. \begin_layout Plain Layout
  6048. \begin_inset Caption Standard
  6049. \begin_layout Plain Layout
  6050. \series bold
  6051. \begin_inset Argument 1
  6052. status collapsed
  6053. \begin_layout Plain Layout
  6054. Fractions of reads mapping to genomic features in GB and non-GB samples.
  6055. \end_layout
  6056. \end_inset
  6057. \begin_inset CommandInset label
  6058. LatexCommand label
  6059. name "tab:Fractions-of-reads"
  6060. \end_inset
  6061. Fractions of reads mapping to genomic features in GB and non-GB samples.
  6062. \series default
  6063. All values are given as mean ± standard deviation.
  6064. \end_layout
  6065. \end_inset
  6066. \end_layout
  6067. \begin_layout Plain Layout
  6068. \end_layout
  6069. \end_inset
  6070. \end_layout
  6071. \begin_layout Standard
  6072. Another important aspect is that the standard deviations in Table
  6073. \begin_inset CommandInset ref
  6074. LatexCommand ref
  6075. reference "tab:Fractions-of-reads"
  6076. plural "false"
  6077. caps "false"
  6078. noprefix "false"
  6079. \end_inset
  6080. are uniformly smaller in the GB samples than the non-GB ones, indicating
  6081. much greater consistency of yield.
  6082. This is best seen in the percentage of non-globin reads as a fraction of
  6083. total reads aligned to annotated genes (genic reads).
  6084. For the non-GB samples, this measure ranges from 10.9% to 80.9%, while for
  6085. the GB samples it ranges from 81.9% to 99.9% (Figure
  6086. \begin_inset CommandInset ref
  6087. LatexCommand ref
  6088. reference "fig:Fraction-of-genic-reads"
  6089. plural "false"
  6090. caps "false"
  6091. noprefix "false"
  6092. \end_inset
  6093. ).
  6094. This means that for applications where it is critical that each sample
  6095. achieve a specified minimum coverage in order to provide useful information,
  6096. it would be necessary to budget up to 10 times the sequencing depth per
  6097. sample without globin blocking, even though the average yield improvement
  6098. for globin blocking is only 2-fold, because every sample has a chance of
  6099. being 90% globin and 10% useful reads.
  6100. Hence, the more consistent behavior of GB samples makes planning an experiment
  6101. easier and more efficient because it eliminates the need to over-sequence
  6102. every sample in order to guard against the worst case of a high-globin
  6103. fraction.
  6104. \end_layout
  6105. \begin_layout Subsection
  6106. Globin blocking lowers the noise floor and allows detection of about 2000
  6107. more genes
  6108. \end_layout
  6109. \begin_layout Standard
  6110. \begin_inset Flex TODO Note (inline)
  6111. status open
  6112. \begin_layout Plain Layout
  6113. Remove redundant titles from figures
  6114. \end_layout
  6115. \end_inset
  6116. \end_layout
  6117. \begin_layout Standard
  6118. \begin_inset Float figure
  6119. wide false
  6120. sideways false
  6121. status open
  6122. \begin_layout Plain Layout
  6123. \align center
  6124. \begin_inset Graphics
  6125. filename graphics/Globin Paper/figure2 - aveLogCPM-colored.pdf
  6126. \end_inset
  6127. \end_layout
  6128. \begin_layout Plain Layout
  6129. \begin_inset Caption Standard
  6130. \begin_layout Plain Layout
  6131. \series bold
  6132. \begin_inset Argument 1
  6133. status collapsed
  6134. \begin_layout Plain Layout
  6135. Distributions of average group gene abundances when normalized separately
  6136. or together.
  6137. \end_layout
  6138. \end_inset
  6139. \begin_inset CommandInset label
  6140. LatexCommand label
  6141. name "fig:logcpm-dists"
  6142. \end_inset
  6143. Distributions of average group gene abundances when normalized separately
  6144. or together.
  6145. \series default
  6146. All reads in each sequencing library were aligned to the cyno genome, and
  6147. the number of reads uniquely aligning to each gene was counted.
  6148. Genes with zero counts in all libraries were discarded.
  6149. Libraries were normalized using the TMM method.
  6150. Libraries were split into globin-blocked (GB) and non-GB groups and the
  6151. average abundance for each gene in both groups, measured in log2 counts
  6152. per million reads counted, was computed using the aveLogCPM function.
  6153. The distribution of average gene logCPM values was plotted for both groups
  6154. using a kernel density plot to approximate a continuous distribution.
  6155. The logCPM GB distributions are marked in red, non-GB in blue.
  6156. The black vertical line denotes the chosen detection threshold of -1.
  6157. Top panel: Libraries were split into GB and non-GB groups first and normalized
  6158. separately.
  6159. Bottom panel: Libraries were all normalized together first and then split
  6160. into groups.
  6161. \end_layout
  6162. \end_inset
  6163. \end_layout
  6164. \begin_layout Plain Layout
  6165. \end_layout
  6166. \end_inset
  6167. \end_layout
  6168. \begin_layout Standard
  6169. Since globin blocking yields more usable sequencing depth, it should also
  6170. allow detection of more genes at any given threshold.
  6171. When we looked at the distribution of average normalized logCPM values
  6172. across all libraries for genes with at least one read assigned to them,
  6173. we observed the expected bimodal distribution, with a high-abundance "signal"
  6174. peak representing detected genes and a low-abundance "noise" peak representing
  6175. genes whose read count did not rise above the noise floor (Figure
  6176. \begin_inset CommandInset ref
  6177. LatexCommand ref
  6178. reference "fig:logcpm-dists"
  6179. plural "false"
  6180. caps "false"
  6181. noprefix "false"
  6182. \end_inset
  6183. ).
  6184. Consistent with the 2-fold increase in raw counts assigned to non-globin
  6185. genes, the signal peak for GB samples is shifted to the right relative
  6186. to the non-GB signal peak.
  6187. When all the samples are normalized together, this difference is normalized
  6188. out, lining up the signal peaks, and this reveals that, as expected, the
  6189. noise floor for the GB samples is about 2-fold lower.
  6190. This greater separation between signal and noise peaks in the GB samples
  6191. means that low-expression genes should be more easily detected and more
  6192. precisely quantified than in the non-GB samples.
  6193. \end_layout
  6194. \begin_layout Standard
  6195. \begin_inset Float figure
  6196. wide false
  6197. sideways false
  6198. status open
  6199. \begin_layout Plain Layout
  6200. \align center
  6201. \begin_inset Graphics
  6202. filename graphics/Globin Paper/figure3 - detection.pdf
  6203. \end_inset
  6204. \end_layout
  6205. \begin_layout Plain Layout
  6206. \begin_inset Caption Standard
  6207. \begin_layout Plain Layout
  6208. \series bold
  6209. \begin_inset Argument 1
  6210. status collapsed
  6211. \begin_layout Plain Layout
  6212. Gene detections as a function of abundance thresholds in globin-blocked
  6213. (GB) and non-GB samples.
  6214. \end_layout
  6215. \end_inset
  6216. \begin_inset CommandInset label
  6217. LatexCommand label
  6218. name "fig:Gene-detections"
  6219. \end_inset
  6220. Gene detections as a function of abundance thresholds in globin-blocked
  6221. (GB) and non-GB samples.
  6222. \series default
  6223. Average abundance (logCPM,
  6224. \begin_inset Formula $\log_{2}$
  6225. \end_inset
  6226. counts per million reads counted) was computed by separate group normalization
  6227. as described in Figure
  6228. \begin_inset CommandInset ref
  6229. LatexCommand ref
  6230. reference "fig:logcpm-dists"
  6231. plural "false"
  6232. caps "false"
  6233. noprefix "false"
  6234. \end_inset
  6235. for both the GB and non-GB groups, as well as for all samples considered
  6236. as one large group.
  6237. For each every integer threshold from -2 to 3, the number of genes detected
  6238. at or above that logCPM threshold was plotted for each group.
  6239. \end_layout
  6240. \end_inset
  6241. \end_layout
  6242. \begin_layout Plain Layout
  6243. \end_layout
  6244. \end_inset
  6245. \end_layout
  6246. \begin_layout Standard
  6247. Based on these distributions, we selected a detection threshold of -1, which
  6248. is approximately the leftmost edge of the trough between the signal and
  6249. noise peaks.
  6250. This represents the most liberal possible detection threshold that doesn't
  6251. call substantial numbers of noise genes as detected.
  6252. Among the full dataset, 13429 genes were detected at this threshold, and
  6253. 22276 were not.
  6254. When considering the GB libraries and non-GB libraries separately and re-comput
  6255. ing normalization factors independently within each group, 14535 genes were
  6256. detected in the GB libraries while only 12460 were detected in the non-GB
  6257. libraries.
  6258. Thus, GB allowed the detection of 2000 extra genes that were buried under
  6259. the noise floor without GB.
  6260. This pattern of at least 2000 additional genes detected with GB was also
  6261. consistent across a wide range of possible detection thresholds, from -2
  6262. to 3 (see Figure
  6263. \begin_inset CommandInset ref
  6264. LatexCommand ref
  6265. reference "fig:Gene-detections"
  6266. plural "false"
  6267. caps "false"
  6268. noprefix "false"
  6269. \end_inset
  6270. ).
  6271. \end_layout
  6272. \begin_layout Subsection
  6273. Globin blocking does not add significant additional noise or decrease sample
  6274. quality
  6275. \end_layout
  6276. \begin_layout Standard
  6277. One potential worry is that the globin blocking protocol could perturb the
  6278. levels of non-globin genes.
  6279. There are two kinds of possible perturbations: systematic and random.
  6280. The former is not a major concern for detection of differential expression,
  6281. since a 2-fold change in every sample has no effect on the relative fold
  6282. change between samples.
  6283. In contrast, random perturbations would increase the noise and obscure
  6284. the signal in the dataset, reducing the capacity to detect differential
  6285. expression.
  6286. \end_layout
  6287. \begin_layout Standard
  6288. \begin_inset Float figure
  6289. wide false
  6290. sideways false
  6291. status open
  6292. \begin_layout Plain Layout
  6293. \align center
  6294. \begin_inset Graphics
  6295. filename graphics/Globin Paper/figure4 - maplot-colored.pdf
  6296. \end_inset
  6297. \end_layout
  6298. \begin_layout Plain Layout
  6299. \begin_inset Caption Standard
  6300. \begin_layout Plain Layout
  6301. \begin_inset Argument 1
  6302. status collapsed
  6303. \begin_layout Plain Layout
  6304. MA plot showing effects of globin blocking on each gene's abundance.
  6305. \end_layout
  6306. \end_inset
  6307. \begin_inset CommandInset label
  6308. LatexCommand label
  6309. name "fig:MA-plot"
  6310. \end_inset
  6311. \series bold
  6312. MA plot showing effects of globin blocking on each gene's abundance.
  6313. \series default
  6314. All libraries were normalized together as described in Figure
  6315. \begin_inset CommandInset ref
  6316. LatexCommand ref
  6317. reference "fig:logcpm-dists"
  6318. plural "false"
  6319. caps "false"
  6320. noprefix "false"
  6321. \end_inset
  6322. , and genes with an average logCPM below -1 were filtered out.
  6323. Each remaining gene was tested for differential abundance with respect
  6324. to globin blocking (GB) using edgeR’s quasi-likelihod F-test, fitting a
  6325. negative binomial generalized linear model to table of read counts in each
  6326. library.
  6327. For each gene, edgeR reported average abundance (logCPM),
  6328. \begin_inset Formula $\log_{2}$
  6329. \end_inset
  6330. fold change (logFC), p-value, and Benjamini-Hochberg adjusted false discovery
  6331. rate (FDR).
  6332. Each gene's logFC was plotted against its logCPM, colored by FDR.
  6333. Red points are significant at ≤10% FDR, and blue are not significant at
  6334. that threshold.
  6335. The alpha and beta globin genes targeted for blocking are marked with large
  6336. triangles, while all other genes are represented as small points.
  6337. \end_layout
  6338. \end_inset
  6339. \end_layout
  6340. \begin_layout Plain Layout
  6341. \end_layout
  6342. \end_inset
  6343. \end_layout
  6344. \begin_layout Standard
  6345. \begin_inset Flex TODO Note (inline)
  6346. status open
  6347. \begin_layout Plain Layout
  6348. Standardize on
  6349. \begin_inset Quotes eld
  6350. \end_inset
  6351. log2
  6352. \begin_inset Quotes erd
  6353. \end_inset
  6354. notation
  6355. \end_layout
  6356. \end_inset
  6357. \end_layout
  6358. \begin_layout Standard
  6359. The data do indeed show small systematic perturbations in gene levels (Figure
  6360. \begin_inset CommandInset ref
  6361. LatexCommand ref
  6362. reference "fig:MA-plot"
  6363. plural "false"
  6364. caps "false"
  6365. noprefix "false"
  6366. \end_inset
  6367. ).
  6368. Other than the 3 designated alpha and beta globin genes, two other genes
  6369. stand out as having especially large negative log fold changes: HBD and
  6370. LOC1021365.
  6371. HBD, delta globin, is most likely targeted by the blocking oligos due to
  6372. high sequence homology with the other globin genes.
  6373. LOC1021365 is the aforementioned ncRNA that is reverse-complementary to
  6374. one of the alpha-like genes and that would be expected to be removed during
  6375. the globin blocking step.
  6376. All other genes appear in a cluster centered vertically at 0, and the vast
  6377. majority of genes in this cluster show an absolute log2(FC) of 0.5 or less.
  6378. Nevertheless, many of these small perturbations are still statistically
  6379. significant, indicating that the globin blocking oligos likely cause very
  6380. small but non-zero systematic perturbations in measured gene expression
  6381. levels.
  6382. \end_layout
  6383. \begin_layout Standard
  6384. \begin_inset Float figure
  6385. wide false
  6386. sideways false
  6387. status open
  6388. \begin_layout Plain Layout
  6389. \align center
  6390. \begin_inset Graphics
  6391. filename graphics/Globin Paper/figure5 - corrplot.pdf
  6392. \end_inset
  6393. \end_layout
  6394. \begin_layout Plain Layout
  6395. \begin_inset Caption Standard
  6396. \begin_layout Plain Layout
  6397. \series bold
  6398. \begin_inset Argument 1
  6399. status collapsed
  6400. \begin_layout Plain Layout
  6401. Comparison of inter-sample gene abundance correlations with and without
  6402. globin blocking.
  6403. \end_layout
  6404. \end_inset
  6405. \begin_inset CommandInset label
  6406. LatexCommand label
  6407. name "fig:gene-abundance-correlations"
  6408. \end_inset
  6409. Comparison of inter-sample gene abundance correlations with and without
  6410. globin blocking (GB).
  6411. \series default
  6412. All libraries were normalized together as described in Figure 2, and genes
  6413. with an average abundance (logCPM, log2 counts per million reads counted)
  6414. less than -1 were filtered out.
  6415. Each gene’s logCPM was computed in each library using the edgeR cpm function.
  6416. For each pair of biological samples, the Pearson correlation between those
  6417. samples' GB libraries was plotted against the correlation between the same
  6418. samples’ non-GB libraries.
  6419. Each point represents an unique pair of samples.
  6420. The solid gray line shows a quantile-quantile plot of distribution of GB
  6421. correlations vs.
  6422. that of non-GB correlations.
  6423. The thin dashed line is the identity line, provided for reference.
  6424. \end_layout
  6425. \end_inset
  6426. \end_layout
  6427. \begin_layout Plain Layout
  6428. \end_layout
  6429. \end_inset
  6430. \end_layout
  6431. \begin_layout Standard
  6432. To evaluate the possibility of globin blocking causing random perturbations
  6433. and reducing sample quality, we computed the Pearson correlation between
  6434. logCPM values for every pair of samples with and without GB and plotted
  6435. them against each other (Figure
  6436. \begin_inset CommandInset ref
  6437. LatexCommand ref
  6438. reference "fig:gene-abundance-correlations"
  6439. plural "false"
  6440. caps "false"
  6441. noprefix "false"
  6442. \end_inset
  6443. ).
  6444. The plot indicated that the GB libraries have higher sample-to-sample correlati
  6445. ons than the non-GB libraries.
  6446. Parametric and nonparametric tests for differences between the correlations
  6447. with and without GB both confirmed that this difference was highly significant
  6448. (2-sided paired t-test: t = 37.2, df = 665, P ≪ 2.2e-16; 2-sided Wilcoxon
  6449. sign-rank test: V = 2195, P ≪ 2.2e-16).
  6450. Performing the same tests on the Spearman correlations gave the same conclusion
  6451. (t-test: t = 26.8, df = 665, P ≪ 2.2e-16; sign-rank test: V = 8781, P ≪ 2.2e-16).
  6452. The edgeR package was used to compute the overall biological coefficient
  6453. of variation (BCV) for GB and non-GB libraries, and found that globin blocking
  6454. resulted in a negligible increase in the BCV (0.417 with GB vs.
  6455. 0.400 without).
  6456. The near equality of the BCVs for both sets indicates that the higher correlati
  6457. ons in the GB libraries are most likely a result of the increased yield
  6458. of useful reads, which reduces the contribution of Poisson counting uncertainty
  6459. to the overall variance of the logCPM values
  6460. \begin_inset CommandInset citation
  6461. LatexCommand cite
  6462. key "McCarthy2012"
  6463. literal "false"
  6464. \end_inset
  6465. .
  6466. This improves the precision of expression measurements and more than offsets
  6467. the negligible increase in BCV.
  6468. \end_layout
  6469. \begin_layout Subsection
  6470. More differentially expressed genes are detected with globin blocking
  6471. \end_layout
  6472. \begin_layout Standard
  6473. \begin_inset Float table
  6474. wide false
  6475. sideways false
  6476. status open
  6477. \begin_layout Plain Layout
  6478. \align center
  6479. \begin_inset Tabular
  6480. <lyxtabular version="3" rows="5" columns="5">
  6481. <features tabularvalignment="middle">
  6482. <column alignment="center" valignment="top">
  6483. <column alignment="center" valignment="top">
  6484. <column alignment="center" valignment="top">
  6485. <column alignment="center" valignment="top">
  6486. <column alignment="center" valignment="top">
  6487. <row>
  6488. <cell alignment="center" valignment="top" usebox="none">
  6489. \begin_inset Text
  6490. \begin_layout Plain Layout
  6491. \end_layout
  6492. \end_inset
  6493. </cell>
  6494. <cell alignment="center" valignment="top" usebox="none">
  6495. \begin_inset Text
  6496. \begin_layout Plain Layout
  6497. \end_layout
  6498. \end_inset
  6499. </cell>
  6500. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  6501. \begin_inset Text
  6502. \begin_layout Plain Layout
  6503. \series bold
  6504. No Globin Blocking
  6505. \end_layout
  6506. \end_inset
  6507. </cell>
  6508. <cell multicolumn="2" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6509. \begin_inset Text
  6510. \begin_layout Plain Layout
  6511. \end_layout
  6512. \end_inset
  6513. </cell>
  6514. <cell multicolumn="2" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  6515. \begin_inset Text
  6516. \begin_layout Plain Layout
  6517. \end_layout
  6518. \end_inset
  6519. </cell>
  6520. </row>
  6521. <row>
  6522. <cell alignment="center" valignment="top" usebox="none">
  6523. \begin_inset Text
  6524. \begin_layout Plain Layout
  6525. \end_layout
  6526. \end_inset
  6527. </cell>
  6528. <cell alignment="center" valignment="top" usebox="none">
  6529. \begin_inset Text
  6530. \begin_layout Plain Layout
  6531. \end_layout
  6532. \end_inset
  6533. </cell>
  6534. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6535. \begin_inset Text
  6536. \begin_layout Plain Layout
  6537. \series bold
  6538. Up
  6539. \end_layout
  6540. \end_inset
  6541. </cell>
  6542. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6543. \begin_inset Text
  6544. \begin_layout Plain Layout
  6545. \series bold
  6546. NS
  6547. \end_layout
  6548. \end_inset
  6549. </cell>
  6550. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  6551. \begin_inset Text
  6552. \begin_layout Plain Layout
  6553. \series bold
  6554. Down
  6555. \end_layout
  6556. \end_inset
  6557. </cell>
  6558. </row>
  6559. <row>
  6560. <cell multirow="3" alignment="center" valignment="middle" topline="true" bottomline="true" leftline="true" usebox="none">
  6561. \begin_inset Text
  6562. \begin_layout Plain Layout
  6563. \series bold
  6564. Globin-Blocking
  6565. \end_layout
  6566. \end_inset
  6567. </cell>
  6568. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6569. \begin_inset Text
  6570. \begin_layout Plain Layout
  6571. \series bold
  6572. Up
  6573. \end_layout
  6574. \end_inset
  6575. </cell>
  6576. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6577. \begin_inset Text
  6578. \begin_layout Plain Layout
  6579. \family roman
  6580. \series medium
  6581. \shape up
  6582. \size normal
  6583. \emph off
  6584. \bar no
  6585. \strikeout off
  6586. \xout off
  6587. \uuline off
  6588. \uwave off
  6589. \noun off
  6590. \color none
  6591. 231
  6592. \end_layout
  6593. \end_inset
  6594. </cell>
  6595. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6596. \begin_inset Text
  6597. \begin_layout Plain Layout
  6598. \family roman
  6599. \series medium
  6600. \shape up
  6601. \size normal
  6602. \emph off
  6603. \bar no
  6604. \strikeout off
  6605. \xout off
  6606. \uuline off
  6607. \uwave off
  6608. \noun off
  6609. \color none
  6610. 515
  6611. \end_layout
  6612. \end_inset
  6613. </cell>
  6614. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  6615. \begin_inset Text
  6616. \begin_layout Plain Layout
  6617. \family roman
  6618. \series medium
  6619. \shape up
  6620. \size normal
  6621. \emph off
  6622. \bar no
  6623. \strikeout off
  6624. \xout off
  6625. \uuline off
  6626. \uwave off
  6627. \noun off
  6628. \color none
  6629. 2
  6630. \end_layout
  6631. \end_inset
  6632. </cell>
  6633. </row>
  6634. <row>
  6635. <cell multirow="4" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6636. \begin_inset Text
  6637. \begin_layout Plain Layout
  6638. \end_layout
  6639. \end_inset
  6640. </cell>
  6641. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6642. \begin_inset Text
  6643. \begin_layout Plain Layout
  6644. \series bold
  6645. NS
  6646. \end_layout
  6647. \end_inset
  6648. </cell>
  6649. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6650. \begin_inset Text
  6651. \begin_layout Plain Layout
  6652. \family roman
  6653. \series medium
  6654. \shape up
  6655. \size normal
  6656. \emph off
  6657. \bar no
  6658. \strikeout off
  6659. \xout off
  6660. \uuline off
  6661. \uwave off
  6662. \noun off
  6663. \color none
  6664. 160
  6665. \end_layout
  6666. \end_inset
  6667. </cell>
  6668. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6669. \begin_inset Text
  6670. \begin_layout Plain Layout
  6671. \family roman
  6672. \series medium
  6673. \shape up
  6674. \size normal
  6675. \emph off
  6676. \bar no
  6677. \strikeout off
  6678. \xout off
  6679. \uuline off
  6680. \uwave off
  6681. \noun off
  6682. \color none
  6683. 11235
  6684. \end_layout
  6685. \end_inset
  6686. </cell>
  6687. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  6688. \begin_inset Text
  6689. \begin_layout Plain Layout
  6690. \family roman
  6691. \series medium
  6692. \shape up
  6693. \size normal
  6694. \emph off
  6695. \bar no
  6696. \strikeout off
  6697. \xout off
  6698. \uuline off
  6699. \uwave off
  6700. \noun off
  6701. \color none
  6702. 136
  6703. \end_layout
  6704. \end_inset
  6705. </cell>
  6706. </row>
  6707. <row>
  6708. <cell multirow="4" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6709. \begin_inset Text
  6710. \begin_layout Plain Layout
  6711. \end_layout
  6712. \end_inset
  6713. </cell>
  6714. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6715. \begin_inset Text
  6716. \begin_layout Plain Layout
  6717. \series bold
  6718. Down
  6719. \end_layout
  6720. \end_inset
  6721. </cell>
  6722. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6723. \begin_inset Text
  6724. \begin_layout Plain Layout
  6725. \family roman
  6726. \series medium
  6727. \shape up
  6728. \size normal
  6729. \emph off
  6730. \bar no
  6731. \strikeout off
  6732. \xout off
  6733. \uuline off
  6734. \uwave off
  6735. \noun off
  6736. \color none
  6737. 0
  6738. \end_layout
  6739. \end_inset
  6740. </cell>
  6741. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6742. \begin_inset Text
  6743. \begin_layout Plain Layout
  6744. \family roman
  6745. \series medium
  6746. \shape up
  6747. \size normal
  6748. \emph off
  6749. \bar no
  6750. \strikeout off
  6751. \xout off
  6752. \uuline off
  6753. \uwave off
  6754. \noun off
  6755. \color none
  6756. 548
  6757. \end_layout
  6758. \end_inset
  6759. </cell>
  6760. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  6761. \begin_inset Text
  6762. \begin_layout Plain Layout
  6763. \family roman
  6764. \series medium
  6765. \shape up
  6766. \size normal
  6767. \emph off
  6768. \bar no
  6769. \strikeout off
  6770. \xout off
  6771. \uuline off
  6772. \uwave off
  6773. \noun off
  6774. \color none
  6775. 127
  6776. \end_layout
  6777. \end_inset
  6778. </cell>
  6779. </row>
  6780. </lyxtabular>
  6781. \end_inset
  6782. \end_layout
  6783. \begin_layout Plain Layout
  6784. \begin_inset Caption Standard
  6785. \begin_layout Plain Layout
  6786. \series bold
  6787. \begin_inset Argument 1
  6788. status open
  6789. \begin_layout Plain Layout
  6790. Comparison of significantly differentially expressed genes with and without
  6791. globin blocking.
  6792. \end_layout
  6793. \end_inset
  6794. \begin_inset CommandInset label
  6795. LatexCommand label
  6796. name "tab:Comparison-of-significant"
  6797. \end_inset
  6798. Comparison of significantly differentially expressed genes with and without
  6799. globin blocking.
  6800. \series default
  6801. Up, Down: Genes significantly up/down-regulated in post-transplant samples
  6802. relative to pre-transplant samples, with a false discovery rate of 10%
  6803. or less.
  6804. NS: Non-significant genes (false discovery rate greater than 10%).
  6805. \end_layout
  6806. \end_inset
  6807. \end_layout
  6808. \begin_layout Plain Layout
  6809. \end_layout
  6810. \end_inset
  6811. \end_layout
  6812. \begin_layout Standard
  6813. To compare performance on differential gene expression tests, we took subsets
  6814. of both the GB and non-GB libraries with exactly one pre-transplant and
  6815. one post-transplant sample for each animal that had paired samples available
  6816. for analysis (N=7 animals, N=14 samples in each subset).
  6817. The same test for pre- vs.
  6818. post-transplant differential gene expression was performed on the same
  6819. 7 pairs of samples from GB libraries and non-GB libraries, in each case
  6820. using an FDR of 10% as the threshold of significance.
  6821. Out of 12954 genes that passed the detection threshold in both subsets,
  6822. 358 were called significantly differentially expressed in the same direction
  6823. in both sets; 1063 were differentially expressed in the GB set only; 296
  6824. were differentially expressed in the non-GB set only; 2 genes were called
  6825. significantly up in the GB set but significantly down in the non-GB set;
  6826. and the remaining 11235 were not called differentially expressed in either
  6827. set.
  6828. These data are summarized in Table
  6829. \begin_inset CommandInset ref
  6830. LatexCommand ref
  6831. reference "tab:Comparison-of-significant"
  6832. plural "false"
  6833. caps "false"
  6834. noprefix "false"
  6835. \end_inset
  6836. .
  6837. The differences in BCV calculated by EdgeR for these subsets of samples
  6838. were negligible (BCV = 0.302 for GB and 0.297 for non-GB).
  6839. \end_layout
  6840. \begin_layout Standard
  6841. The key point is that the GB data results in substantially more differentially
  6842. expressed calls than the non-GB data.
  6843. Since there is no gold standard for this dataset, it is impossible to be
  6844. certain whether this is due to under-calling of differential expression
  6845. in the non-GB samples or over-calling in the GB samples.
  6846. However, given that both datasets are derived from the same biological
  6847. samples and have nearly equal BCVs, it is more likely that the larger number
  6848. of DE calls in the GB samples are genuine detections that were enabled
  6849. by the higher sequencing depth and measurement precision of the GB samples.
  6850. Note that the same set of genes was considered in both subsets, so the
  6851. larger number of differentially expressed gene calls in the GB data set
  6852. reflects a greater sensitivity to detect significant differential gene
  6853. expression and not simply the larger total number of detected genes in
  6854. GB samples described earlier.
  6855. \end_layout
  6856. \begin_layout Section
  6857. Discussion
  6858. \end_layout
  6859. \begin_layout Standard
  6860. The original experience with whole blood gene expression profiling on DNA
  6861. microarrays demonstrated that the high concentration of globin transcripts
  6862. reduced the sensitivity to detect genes with relatively low expression
  6863. levels, in effect, significantly reducing the sensitivity.
  6864. To address this limitation, commercial protocols for globin reduction were
  6865. developed based on strategies to block globin transcript amplification
  6866. during labeling or physically removing globin transcripts by affinity bead
  6867. methods
  6868. \begin_inset CommandInset citation
  6869. LatexCommand cite
  6870. key "Winn2010"
  6871. literal "false"
  6872. \end_inset
  6873. .
  6874. More recently, using the latest generation of labeling protocols and arrays,
  6875. it was determined that globin reduction was no longer necessary to obtain
  6876. sufficient sensitivity to detect differential transcript expression
  6877. \begin_inset CommandInset citation
  6878. LatexCommand cite
  6879. key "NuGEN2010"
  6880. literal "false"
  6881. \end_inset
  6882. .
  6883. However, we are not aware of any publications using these currently available
  6884. protocols the with latest generation of microarrays that actually compare
  6885. the detection sensitivity with and without globin reduction.
  6886. However, in practice this has now been adopted generally primarily driven
  6887. by concerns for cost control.
  6888. The main objective of our work was to directly test the impact of globin
  6889. gene transcripts and a new globin blocking protocol for application to
  6890. the newest generation of differential gene expression profiling determined
  6891. using next generation sequencing.
  6892. \end_layout
  6893. \begin_layout Standard
  6894. The challenge of doing global gene expression profiling in cynomolgus monkeys
  6895. is that the current available arrays were never designed to comprehensively
  6896. cover this genome and have not been updated since the first assemblies
  6897. of the cynomolgus genome were published.
  6898. Therefore, we determined that the best strategy for peripheral blood profiling
  6899. was to do deep RNA-seq and inform the workflow using the latest available
  6900. genome assembly and annotation
  6901. \begin_inset CommandInset citation
  6902. LatexCommand cite
  6903. key "Wilson2013"
  6904. literal "false"
  6905. \end_inset
  6906. .
  6907. However, it was not immediately clear whether globin reduction was necessary
  6908. for RNA-seq or how much improvement in efficiency or sensitivity to detect
  6909. differential gene expression would be achieved for the added cost and work.
  6910. \end_layout
  6911. \begin_layout Standard
  6912. We only found one report that demonstrated that globin reduction significantly
  6913. improved the effective read yields for sequencing of human peripheral blood
  6914. cell RNA using a DeepSAGE protocol
  6915. \begin_inset CommandInset citation
  6916. LatexCommand cite
  6917. key "Mastrokolias2012"
  6918. literal "false"
  6919. \end_inset
  6920. .
  6921. The approach to DeepSAGE involves two different restriction enzymes that
  6922. purify and then tag small fragments of transcripts at specific locations
  6923. and thus, significantly reduces the complexity of the transcriptome.
  6924. Therefore, we could not determine how DeepSAGE results would translate
  6925. to the common strategy in the field for assaying the entire transcript
  6926. population by whole-transcriptome 3’-end RNA-seq.
  6927. Furthermore, if globin reduction is necessary, we also needed a globin
  6928. reduction method specific to cynomolgus globin sequences that would work
  6929. an organism for which no kit is available off the shelf.
  6930. \end_layout
  6931. \begin_layout Standard
  6932. As mentioned above, the addition of globin blocking oligos has a very small
  6933. impact on measured expression levels of gene expression.
  6934. However, this is a non-issue for the purposes of differential expression
  6935. testing, since a systematic change in a gene in all samples does not affect
  6936. relative expression levels between samples.
  6937. However, we must acknowledge that simple comparisons of gene expression
  6938. data obtained by GB and non-GB protocols are not possible without additional
  6939. normalization.
  6940. \end_layout
  6941. \begin_layout Standard
  6942. More importantly, globin blocking not only nearly doubles the yield of usable
  6943. reads, it also increases inter-sample correlation and sensitivity to detect
  6944. differential gene expression relative to the same set of samples profiled
  6945. without blocking.
  6946. In addition, globin blocking does not add a significant amount of random
  6947. noise to the data.
  6948. Globin blocking thus represents a cost-effective way to squeeze more data
  6949. and statistical power out of the same blood samples and the same amount
  6950. of sequencing.
  6951. In conclusion, globin reduction greatly increases the yield of useful RNA-seq
  6952. reads mapping to the rest of the genome, with minimal perturbations in
  6953. the relative levels of non-globin genes.
  6954. Based on these results, globin transcript reduction using sequence-specific,
  6955. complementary blocking oligonucleotides is recommended for all deep RNA-seq
  6956. of cynomolgus and other nonhuman primate blood samples.
  6957. \end_layout
  6958. \begin_layout Chapter
  6959. Future Directions
  6960. \end_layout
  6961. \begin_layout Standard
  6962. \begin_inset Flex TODO Note (inline)
  6963. status open
  6964. \begin_layout Plain Layout
  6965. Consider per-chapter future directions.
  6966. Check instructions.
  6967. \end_layout
  6968. \end_inset
  6969. \end_layout
  6970. \begin_layout Itemize
  6971. Study other epigenetic marks in more contexts
  6972. \end_layout
  6973. \begin_deeper
  6974. \begin_layout Itemize
  6975. DNA methylation, histone marks, chromatin accessibility & conformation in
  6976. CD4 T-cells
  6977. \end_layout
  6978. \begin_layout Itemize
  6979. Also look at other types of lymphocytes: CD8 T-cells, B-cells, NK cells
  6980. \end_layout
  6981. \end_deeper
  6982. \begin_layout Itemize
  6983. Use CV or bootstrap to better evaluate classifiers
  6984. \end_layout
  6985. \begin_layout Itemize
  6986. fRMAtools could be adapted to not require equal-sized groups
  6987. \end_layout
  6988. \begin_layout Standard
  6989. \begin_inset ERT
  6990. status open
  6991. \begin_layout Plain Layout
  6992. % Call it "References" instead of "Bibliography"
  6993. \end_layout
  6994. \begin_layout Plain Layout
  6995. \backslash
  6996. renewcommand{
  6997. \backslash
  6998. bibname}{References}
  6999. \end_layout
  7000. \end_inset
  7001. \end_layout
  7002. \begin_layout Standard
  7003. \begin_inset Flex TODO Note (inline)
  7004. status open
  7005. \begin_layout Plain Layout
  7006. Check bib entry formatting & sort order
  7007. \end_layout
  7008. \end_inset
  7009. \end_layout
  7010. \begin_layout Standard
  7011. \begin_inset CommandInset bibtex
  7012. LatexCommand bibtex
  7013. btprint "btPrintCited"
  7014. bibfiles "refs,code-refs"
  7015. options "bibtotoc,unsrt"
  7016. \end_inset
  7017. \end_layout
  7018. \end_body
  7019. \end_document