thesis.lyx 149 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646
  1. #LyX 2.3 created this file. For more info see http://www.lyx.org/
  2. \lyxformat 544
  3. \begin_document
  4. \begin_header
  5. \save_transient_properties true
  6. \origin unavailable
  7. \textclass extbook
  8. \begin_preamble
  9. % List all used files in log output
  10. \listfiles
  11. % Add a DRAFT watermark
  12. \usepackage{draftwatermark}
  13. \SetWatermarkLightness{0.97}
  14. \SetWatermarkScale{1}
  15. % Set up required header format
  16. \usepackage{fancyhdr}
  17. \pagestyle{fancy}
  18. \renewcommand{\headrulewidth}{0pt}
  19. \rhead{}
  20. \lhead{}
  21. \rfoot{}
  22. \lfoot{}
  23. \cfoot{\thepage} % Page number bottom center
  24. % https://tex.stackexchange.com/questions/65680/automatically-bold-first-sentence-of-a-floats-caption
  25. \usepackage{xstring}
  26. \usepackage{etoolbox}
  27. \usepackage{caption}
  28. \captionsetup{labelfont=bf,tableposition=top}
  29. \makeatletter
  30. \newcommand\formatlabel[1]{%
  31. \noexpandarg
  32. \IfSubStr{#1}{.}{%
  33. \StrBefore{#1}{.}[\firstcaption]%
  34. \StrBehind{#1}{.}[\secondcaption]%
  35. \textbf{\firstcaption.} \secondcaption}{%
  36. #1}%
  37. }
  38. \patchcmd{\@caption}{#3}{\formatlabel{#3}}
  39. \makeatother
  40. % Allow FloatBarrier command
  41. \usepackage{placeins}
  42. \end_preamble
  43. \use_default_options true
  44. \begin_modules
  45. todonotes
  46. \end_modules
  47. \maintain_unincluded_children false
  48. \language english
  49. \language_package default
  50. \inputencoding utf8
  51. \fontencoding default
  52. \font_roman "default" "default"
  53. \font_sans "default" "default"
  54. \font_typewriter "default" "default"
  55. \font_math "auto" "auto"
  56. \font_default_family default
  57. \use_non_tex_fonts false
  58. \font_sc false
  59. \font_osf false
  60. \font_sf_scale 100 100
  61. \font_tt_scale 100 100
  62. \use_microtype false
  63. \use_dash_ligatures true
  64. \graphics default
  65. \default_output_format pdf4
  66. \output_sync 0
  67. \bibtex_command default
  68. \index_command default
  69. \paperfontsize 12
  70. \spacing double
  71. \use_hyperref true
  72. \pdf_bookmarks true
  73. \pdf_bookmarksnumbered false
  74. \pdf_bookmarksopen false
  75. \pdf_bookmarksopenlevel 1
  76. \pdf_breaklinks false
  77. \pdf_pdfborder false
  78. \pdf_colorlinks false
  79. \pdf_backref false
  80. \pdf_pdfusetitle true
  81. \papersize letterpaper
  82. \use_geometry true
  83. \use_package amsmath 1
  84. \use_package amssymb 1
  85. \use_package cancel 1
  86. \use_package esint 1
  87. \use_package mathdots 1
  88. \use_package mathtools 1
  89. \use_package mhchem 1
  90. \use_package stackrel 1
  91. \use_package stmaryrd 1
  92. \use_package undertilde 1
  93. \cite_engine basic
  94. \cite_engine_type default
  95. \biblio_style plain
  96. \use_bibtopic false
  97. \use_indices false
  98. \paperorientation portrait
  99. \suppress_date false
  100. \justification true
  101. \use_refstyle 1
  102. \use_minted 0
  103. \index Index
  104. \shortcut idx
  105. \color #008000
  106. \end_index
  107. \leftmargin 1.5in
  108. \topmargin 1in
  109. \rightmargin 1in
  110. \bottommargin 1in
  111. \secnumdepth 3
  112. \tocdepth 3
  113. \paragraph_separation indent
  114. \paragraph_indentation default
  115. \is_math_indent 0
  116. \math_numbering_side default
  117. \quotes_style english
  118. \dynamic_quotes 0
  119. \papercolumns 1
  120. \papersides 2
  121. \paperpagestyle default
  122. \tracking_changes false
  123. \output_changes false
  124. \html_math_output 0
  125. \html_css_as_file 0
  126. \html_be_strict false
  127. \end_header
  128. \begin_body
  129. \begin_layout Title
  130. Bioinformatic analysis of complex, high-throughput genomic and epigenomic
  131. data in the context of immunology and transplant rejection
  132. \end_layout
  133. \begin_layout Author
  134. A thesis presented
  135. \begin_inset Newline newline
  136. \end_inset
  137. by
  138. \begin_inset Newline newline
  139. \end_inset
  140. Ryan C.
  141. Thompson
  142. \begin_inset Newline newline
  143. \end_inset
  144. to
  145. \begin_inset Newline newline
  146. \end_inset
  147. The Scripps Research Institute Graduate Program
  148. \begin_inset Newline newline
  149. \end_inset
  150. in partial fulfillment of the requirements for the degree of
  151. \begin_inset Newline newline
  152. \end_inset
  153. Doctor of Philosophy in the subject of Biology
  154. \begin_inset Newline newline
  155. \end_inset
  156. for
  157. \begin_inset Newline newline
  158. \end_inset
  159. The Scripps Research Institute
  160. \begin_inset Newline newline
  161. \end_inset
  162. La Jolla, California
  163. \end_layout
  164. \begin_layout Date
  165. May 2019
  166. \end_layout
  167. \begin_layout Standard
  168. [Copyright notice]
  169. \end_layout
  170. \begin_layout Standard
  171. [Thesis acceptance form]
  172. \end_layout
  173. \begin_layout Standard
  174. [Dedication]
  175. \end_layout
  176. \begin_layout Standard
  177. [Acknowledgements]
  178. \end_layout
  179. \begin_layout Standard
  180. \begin_inset CommandInset toc
  181. LatexCommand tableofcontents
  182. \end_inset
  183. \end_layout
  184. \begin_layout Standard
  185. \begin_inset FloatList table
  186. \end_inset
  187. \end_layout
  188. \begin_layout Standard
  189. \begin_inset FloatList figure
  190. \end_inset
  191. \end_layout
  192. \begin_layout Standard
  193. [List of Abbreviations]
  194. \end_layout
  195. \begin_layout Standard
  196. \begin_inset Flex TODO Note (inline)
  197. status open
  198. \begin_layout Plain Layout
  199. Look into auto-generated nomenclature list: https://wiki.lyx.org/Tips/Nomenclature
  200. \end_layout
  201. \end_inset
  202. \end_layout
  203. \begin_layout List of TODOs
  204. \end_layout
  205. \begin_layout Standard
  206. [Abstract]
  207. \end_layout
  208. \begin_layout Chapter*
  209. Abstract
  210. \end_layout
  211. \begin_layout Chapter
  212. Introduction
  213. \end_layout
  214. \begin_layout Section
  215. Background & Significance
  216. \end_layout
  217. \begin_layout Subsection
  218. Biological motivation
  219. \end_layout
  220. \begin_layout Itemize
  221. Rejection is the major long-term threat to organ and tissue grafts
  222. \end_layout
  223. \begin_deeper
  224. \begin_layout Itemize
  225. Common mechanisms of rejection
  226. \end_layout
  227. \begin_layout Itemize
  228. Effective immune suppression requires monitoring for rejection and tuning
  229. \end_layout
  230. \begin_layout Itemize
  231. Current tests for rejection (tissue biopsy) are invasive and biased
  232. \end_layout
  233. \begin_layout Itemize
  234. A blood test based on microarrays would be less biased and invasive
  235. \end_layout
  236. \end_deeper
  237. \begin_layout Itemize
  238. Memory cells are resistant to immune suppression
  239. \end_layout
  240. \begin_deeper
  241. \begin_layout Itemize
  242. Mechanisms of resistance in memory cells are poorly understood
  243. \end_layout
  244. \begin_layout Itemize
  245. A better understanding of immune memory formation is needed
  246. \end_layout
  247. \end_deeper
  248. \begin_layout Itemize
  249. Mesenchymal stem cell infusion is a promising new treatment to prevent/delay
  250. rejection
  251. \end_layout
  252. \begin_deeper
  253. \begin_layout Itemize
  254. Demonstrated in mice, but not yet in primates
  255. \end_layout
  256. \begin_layout Itemize
  257. Mechanism currently unknown, but MSC are known to be immune modulatory
  258. \end_layout
  259. \end_deeper
  260. \begin_layout Subsection
  261. Overview of bioinformatic analysis methods
  262. \end_layout
  263. \begin_layout Standard
  264. An overview of all the methods used, including what problem they solve,
  265. what assumptions they make, and a basic description of how they work.
  266. \end_layout
  267. \begin_layout Itemize
  268. ChIP-seq Peak calling
  269. \end_layout
  270. \begin_deeper
  271. \begin_layout Itemize
  272. Cross-correlation analysis to determine fragment size
  273. \end_layout
  274. \begin_layout Itemize
  275. Broad vs narrow peaks
  276. \end_layout
  277. \begin_layout Itemize
  278. SICER for broad peaks
  279. \end_layout
  280. \begin_layout Itemize
  281. IDR for biologically reproducible peaks
  282. \end_layout
  283. \begin_layout Itemize
  284. csaw peak filtering guidelines for unbiased downstream analysis
  285. \end_layout
  286. \end_deeper
  287. \begin_layout Itemize
  288. Normalization is non-trivial and application-dependant
  289. \end_layout
  290. \begin_deeper
  291. \begin_layout Itemize
  292. Expression arrays: RMA & fRMA; why fRMA is needed
  293. \end_layout
  294. \begin_layout Itemize
  295. Methylation arrays: M-value transformation approximates normal data but
  296. induces heteroskedasticity
  297. \end_layout
  298. \begin_layout Itemize
  299. RNA-seq: normalize based on assumption that the average gene is not changing
  300. \end_layout
  301. \begin_layout Itemize
  302. ChIP-seq: complex with many considerations, dependent on experimental methods,
  303. biological system, and analysis goals
  304. \end_layout
  305. \end_deeper
  306. \begin_layout Itemize
  307. Limma: The standard linear modeling framework for genomics
  308. \end_layout
  309. \begin_deeper
  310. \begin_layout Itemize
  311. empirical Bayes variance modeling: limma's core feature
  312. \end_layout
  313. \begin_layout Itemize
  314. edgeR & DESeq2: Extend with negative bonomial GLM for RNA-seq and other
  315. count data
  316. \end_layout
  317. \begin_layout Itemize
  318. voom: Extend with precision weights to model mean-variance trend
  319. \end_layout
  320. \begin_layout Itemize
  321. arrayWeights and duplicateCorrelation to handle complex variance structures
  322. \end_layout
  323. \end_deeper
  324. \begin_layout Itemize
  325. sva and ComBat for batch correction
  326. \end_layout
  327. \begin_layout Itemize
  328. Factor analysis: PCA, MDS, MOFA
  329. \end_layout
  330. \begin_deeper
  331. \begin_layout Itemize
  332. Batch-corrected PCA is informative, but careful application is required
  333. to avoid bias
  334. \end_layout
  335. \end_deeper
  336. \begin_layout Itemize
  337. Gene set analysis: camera and SPIA
  338. \end_layout
  339. \begin_layout Section
  340. Innovation
  341. \end_layout
  342. \begin_layout Itemize
  343. MSC infusion to improve transplant outcomes (prevent/delay rejection)
  344. \end_layout
  345. \begin_deeper
  346. \begin_layout Itemize
  347. Characterize MSC response to interferon gamma
  348. \end_layout
  349. \begin_layout Itemize
  350. IFN-g is thought to stimulate their function
  351. \end_layout
  352. \begin_layout Itemize
  353. Test IFN-g treated MSC infusion as a therapy to delay graft rejection in
  354. cynomolgus monkeys
  355. \end_layout
  356. \begin_layout Itemize
  357. Monitor animals post-transplant using blood RNA-seq at serial time points
  358. \end_layout
  359. \end_deeper
  360. \begin_layout Itemize
  361. Investigate dynamics of histone marks in CD4 T-cell activation and memory
  362. \end_layout
  363. \begin_deeper
  364. \begin_layout Itemize
  365. Previous studies have looked at single snapshots of histone marks
  366. \end_layout
  367. \begin_layout Itemize
  368. Instead, look at changes in histone marks across activation and memory
  369. \end_layout
  370. \end_deeper
  371. \begin_layout Itemize
  372. High-throughput sequencing and microarray technologies
  373. \end_layout
  374. \begin_deeper
  375. \begin_layout Itemize
  376. Powerful methods for assaying gene expression and epigenetics across entire
  377. genomes
  378. \end_layout
  379. \begin_layout Itemize
  380. Proper analysis requires finding and exploiting systematic genome-wide trends
  381. \end_layout
  382. \end_deeper
  383. \begin_layout Chapter
  384. Reproducible genome-wide epigenetic analysis of H3K4 and H3K27 methylation
  385. in naive and memory CD4 T-cell activation
  386. \end_layout
  387. \begin_layout Standard
  388. \begin_inset Flex TODO Note (inline)
  389. status open
  390. \begin_layout Plain Layout
  391. Author list: Me, Sarah, Dan
  392. \end_layout
  393. \end_inset
  394. \end_layout
  395. \begin_layout Section
  396. Approach
  397. \end_layout
  398. \begin_layout Itemize
  399. CD4 T-cells are central to all adaptive immune responses and memory
  400. \end_layout
  401. \begin_layout Itemize
  402. H3K4 and H3K27 methylation are major epigenetic regulators of gene expression
  403. \end_layout
  404. \begin_layout Itemize
  405. Canonically, H3K4 is activating and H3K27 is inhibitory, but the reality
  406. is complex
  407. \end_layout
  408. \begin_layout Itemize
  409. Looking at these marks during CD4 activation and memory should reveal new
  410. mechanistic details
  411. \end_layout
  412. \begin_layout Itemize
  413. Test
  414. \begin_inset Quotes eld
  415. \end_inset
  416. poised promoter
  417. \begin_inset Quotes erd
  418. \end_inset
  419. hypothesis in which H3K4 and H3K27 are both methylated
  420. \end_layout
  421. \begin_layout Itemize
  422. Expand scope of analysis beyond simple promoter counts
  423. \end_layout
  424. \begin_deeper
  425. \begin_layout Itemize
  426. Analyze peaks genome-wide, including in intergenic regions
  427. \end_layout
  428. \begin_layout Itemize
  429. Analysis of coverage distribution shape within promoters, e.g.
  430. upstream vs downstream coverage
  431. \end_layout
  432. \end_deeper
  433. \begin_layout Section
  434. Methods
  435. \end_layout
  436. \begin_layout Standard
  437. \begin_inset Float figure
  438. wide false
  439. sideways true
  440. status open
  441. \begin_layout Plain Layout
  442. \align center
  443. \begin_inset Graphics
  444. filename graphics/CD4-csaw/rulegraphs/rulegraph-all.pdf
  445. width 100theight%
  446. \end_inset
  447. \end_layout
  448. \begin_layout Plain Layout
  449. \begin_inset Caption Standard
  450. \begin_layout Plain Layout
  451. \begin_inset CommandInset label
  452. LatexCommand label
  453. name "fig:rulegraph"
  454. \end_inset
  455. \series bold
  456. Dependency graph of steps in reproducible workflow
  457. \end_layout
  458. \end_inset
  459. \end_layout
  460. \end_inset
  461. \end_layout
  462. \begin_layout Standard
  463. A reproducible workflow
  464. \begin_inset CommandInset citation
  465. LatexCommand cite
  466. key "gh-cd4-csaw"
  467. literal "false"
  468. \end_inset
  469. was written to analyze the raw ChIP-seq and RNA-seq data from previous
  470. studies
  471. \begin_inset CommandInset citation
  472. LatexCommand cite
  473. key "LaMere2016,LaMere2017"
  474. literal "true"
  475. \end_inset
  476. .
  477. Briefly, this data consists of RNA-seq and ChIP-seq from CD4 T-cells cultured
  478. from 4 donors.
  479. From each donor, naive and memory CD4 T-cells were isolated separately.
  480. Then cultures of both cells were activated [how?], and samples were taken
  481. at 4 time points: Day 0 (pre-activation), Day 1 (early activation), Day
  482. 5 (peak activation), and Day 14 (post-activation).
  483. For each combination of cell type and time point, RNA was isolated, and
  484. ChIP-seq was performed for each of 3 histone marks: H3K4me2, H3K4me3, and
  485. H3K27me3.
  486. The ChIP-seq input was also sequenced for each sample.
  487. The result was 32 samples for each assay.
  488. \end_layout
  489. \begin_layout Standard
  490. Sequence reads were retrieved from the Sequence Read Archive (SRA)
  491. \begin_inset CommandInset citation
  492. LatexCommand cite
  493. key "Leinonen2011"
  494. literal "false"
  495. \end_inset
  496. .
  497. ChIP-seq (and input) reads were aligned to CRCh38 genome assembly using
  498. Bowtie 2
  499. \begin_inset CommandInset citation
  500. LatexCommand cite
  501. key "Langmead2012,Schneider2017,gh-hg38-ref"
  502. literal "false"
  503. \end_inset
  504. .
  505. Artifact regions were annotated using a custom implementation of the GreyListCh
  506. IP algorithm, and these
  507. \begin_inset Quotes eld
  508. \end_inset
  509. greylists
  510. \begin_inset Quotes erd
  511. \end_inset
  512. were merged with the ENCODE blacklist
  513. \begin_inset CommandInset citation
  514. LatexCommand cite
  515. key "greylistchip,Amemiya2019,Dunham2012"
  516. literal "false"
  517. \end_inset
  518. .
  519. Any read or peak overlapping one of these regions was regarded as artifactual
  520. and excluded from downstream analyses.
  521. \end_layout
  522. \begin_layout Standard
  523. Peaks are called using epic, an implementation of the SICER algorithm
  524. \begin_inset CommandInset citation
  525. LatexCommand cite
  526. key "Zang2009,gh-epic"
  527. literal "false"
  528. \end_inset
  529. .
  530. Peaks are also called separately using MACS, but MACS was determined to
  531. be a poor fit for the data, and these peak calls are not used further
  532. \begin_inset CommandInset citation
  533. LatexCommand cite
  534. key "Zhang2008"
  535. literal "false"
  536. \end_inset
  537. .
  538. \end_layout
  539. \begin_layout Itemize
  540. Re-analyze previously published CD4 ChIP-seq & RNA-seq data
  541. \end_layout
  542. \begin_deeper
  543. \begin_layout Itemize
  544. Completely reimplement analysis from scratch as a reproducible workflow
  545. \end_layout
  546. \begin_layout Itemize
  547. Use newly published methods & algorithms not available during the original
  548. analysis: SICER, csaw, MOFA, ComBat, sva, GREAT, and more
  549. \end_layout
  550. \end_deeper
  551. \begin_layout Itemize
  552. SICER, IDR, csaw, & GREAT to call ChIP-seq peaks genome-wide, perform differenti
  553. al abundance analysis, and relate those peaks to gene expression
  554. \end_layout
  555. \begin_layout Itemize
  556. Promoter counts in sliding windows around each gene's highest-expressed
  557. TSS to investigate coverage distribution within promoters
  558. \end_layout
  559. \begin_layout Section
  560. Results
  561. \end_layout
  562. \begin_layout Standard
  563. \begin_inset Note Note
  564. status open
  565. \begin_layout Plain Layout
  566. Focus on what hypotheses were tested, then select figures that show how
  567. those hypotheses were tested, even if the result is a negative.
  568. \end_layout
  569. \end_inset
  570. \end_layout
  571. \begin_layout Subsection
  572. H3K4 and H3K27 methylation occur in broad regions and are enriched near
  573. promoters
  574. \end_layout
  575. \begin_layout Itemize
  576. Figures comparing MACS (non-broad peak caller) to SICER/epic (broad peak
  577. caller)
  578. \end_layout
  579. \begin_deeper
  580. \begin_layout Itemize
  581. Compare peak sizes and number of called peaks
  582. \end_layout
  583. \begin_layout Itemize
  584. Show representative IDR consistency plots for both
  585. \end_layout
  586. \end_deeper
  587. \begin_layout Itemize
  588. IDR analysis shows that SICER-called peaks are much more reproducible between
  589. biological replicates
  590. \end_layout
  591. \begin_layout Itemize
  592. Each histone mark is enriched within a certain radius of gene TSS positions,
  593. but that radius is different for each mark (figure)
  594. \end_layout
  595. \begin_layout Subsection
  596. RNA-seq has a large confounding batch effect
  597. \end_layout
  598. \begin_layout Itemize
  599. RNA-seq batch effect can be partially corrected, but still induces uncorrectable
  600. biases in downstream analysis
  601. \end_layout
  602. \begin_deeper
  603. \begin_layout Itemize
  604. Figure showing MDS plot before & after ComBat
  605. \end_layout
  606. \begin_layout Itemize
  607. Figure relating sample weights to batches, cell types, time points, etc.,
  608. showing that one batch is significantly worse quality
  609. \end_layout
  610. \begin_layout Itemize
  611. Figures showing p-value histograms for within-batch and cross-batch contrasts,
  612. showing that cross-batch contrasts have attenuated signal, as do comparisons
  613. within the bad batch
  614. \end_layout
  615. \end_deeper
  616. \begin_layout Subsection
  617. ChIP-seq must be corrected for hidden confounding factors
  618. \end_layout
  619. \begin_layout Itemize
  620. Figures showing pre- and post-SVA MDS plots for each histone mark
  621. \end_layout
  622. \begin_layout Itemize
  623. Figures showing BCV plots with and without SVA for each histone mark
  624. \end_layout
  625. \begin_layout Subsection
  626. H3K4 and H3K27 promoter methylation has broadly the expected correlation
  627. with gene expression
  628. \end_layout
  629. \begin_layout Itemize
  630. H3K4 is correlated with higher expression, and H3K27 is correlated with
  631. lower expression genome-wide
  632. \end_layout
  633. \begin_layout Itemize
  634. Figures showing these correlations: box/violin plots of expression distributions
  635. with every combination of peak presence/absence in promoter
  636. \end_layout
  637. \begin_layout Itemize
  638. Appropriate statistical tests showing significant differences in expected
  639. directions
  640. \end_layout
  641. \begin_layout Subsection
  642. MOFA recovers biologically relevant variation from blind analysis by correlating
  643. across datasets
  644. \end_layout
  645. \begin_layout Itemize
  646. MOFA
  647. \begin_inset CommandInset citation
  648. LatexCommand cite
  649. key "Argelaguet2018"
  650. literal "false"
  651. \end_inset
  652. successfully separates biologically relevant patterns of variation from
  653. technical confounding factors without knowing the sample labels, by finding
  654. latent factors that explain variation across multiple data sets.
  655. \end_layout
  656. \begin_deeper
  657. \begin_layout Itemize
  658. Figure: show percent-variance-explained plot from MOFA and PCA-like plots
  659. for the relevant latent factors
  660. \end_layout
  661. \begin_layout Itemize
  662. MOFA analysis also shows that batch effect correction can't get much better
  663. than it already is (Figure comparing blind MOFA batch correction to ComBat
  664. correction)
  665. \end_layout
  666. \end_deeper
  667. \begin_layout Subsection
  668. Naive-to-memory convergence observed in H3K4 and RNA-seq data, not in H3K27me3
  669. \end_layout
  670. \begin_layout Itemize
  671. H3K4 and RNA-seq data show clear evidence of naive convergence with memory
  672. between days 1 and 5 (MDS plot figure, also compare with last figure from
  673. \begin_inset CommandInset citation
  674. LatexCommand cite
  675. key "LaMere2016"
  676. literal "false"
  677. \end_inset
  678. )
  679. \end_layout
  680. \begin_layout Standard
  681. \begin_inset Flex TODO Note (inline)
  682. status open
  683. \begin_layout Plain Layout
  684. Note that Sarah has granted permission to use her figures
  685. \end_layout
  686. \end_inset
  687. \end_layout
  688. \begin_layout Itemize
  689. Table of numbers of genes different between N & M at each time point, showing
  690. dwindling differences at later time points, consistent with convergence
  691. \end_layout
  692. \begin_layout Itemize
  693. Similar figure for H3K27me3 showing lack of convergence
  694. \end_layout
  695. \begin_layout Subsection
  696. Effect of promoter coverage upstream vs downstream of TSS
  697. \end_layout
  698. \begin_layout Itemize
  699. H3K4me peaks seem to correlate with increased expression as long as they
  700. are anywhere near the TSS
  701. \end_layout
  702. \begin_layout Itemize
  703. H3K27me3 peaks can have different correlations to gene expression depending
  704. on their position relative to TSS (e.g.
  705. upstream vs downstream) Results consistent with
  706. \begin_inset CommandInset citation
  707. LatexCommand cite
  708. key "Young2011"
  709. literal "false"
  710. \end_inset
  711. \end_layout
  712. \begin_layout Section
  713. Discussion
  714. \end_layout
  715. \begin_layout Itemize
  716. "Promoter radius" is not constant and must be defined empirically for a
  717. given data set
  718. \end_layout
  719. \begin_layout Itemize
  720. MOFA shows great promise for accelerating discovery of major biological
  721. effects in multi-omics datasets
  722. \end_layout
  723. \begin_deeper
  724. \begin_layout Itemize
  725. MOFA was added to this analysis late and played primarily a confirmatory
  726. role, but it was able to confirm earlier conclusions with much less prior
  727. information (no sample labels) and much less analyst effort
  728. \end_layout
  729. \begin_layout Itemize
  730. MOFA confirmed that the already-implemented batch correction in the RNA-seq
  731. data was already performing as well as possible given the limitations of
  732. the data
  733. \end_layout
  734. \end_deeper
  735. \begin_layout Itemize
  736. Naive-to-memory convergence implies that naive cells are differentiating
  737. into memory cells, and that gene expression and H3K4 methylation are involved
  738. in this differentiation while H3K27me3 is less involved
  739. \end_layout
  740. \begin_layout Itemize
  741. H3K27me3, canonically regarded as a deactivating mark, seems to have a more
  742. complex
  743. \end_layout
  744. \begin_layout Itemize
  745. Discuss advantages of developing using a reproducible workflow
  746. \end_layout
  747. \begin_layout Chapter
  748. Improving array-based analyses of transplant rejection by optimizing data
  749. preprocessing
  750. \end_layout
  751. \begin_layout Standard
  752. \begin_inset Note Note
  753. status open
  754. \begin_layout Plain Layout
  755. Author list: Me, Sunil, Tom, Padma, Dan
  756. \end_layout
  757. \end_inset
  758. \end_layout
  759. \begin_layout Section
  760. Approach
  761. \end_layout
  762. \begin_layout Subsection
  763. Proper pre-processing is essential for array data
  764. \end_layout
  765. \begin_layout Standard
  766. \begin_inset Flex TODO Note (inline)
  767. status open
  768. \begin_layout Plain Layout
  769. This section could probably use some citations
  770. \end_layout
  771. \end_inset
  772. \end_layout
  773. \begin_layout Standard
  774. Microarrays, bead ararys, and similar assays produce raw data in the form
  775. of fluorescence intensity measurements, with the each intensity measurement
  776. proportional to the abundance of some fluorescently-labelled target DNA
  777. or RNA sequence that base pairs to a specific probe sequence.
  778. However, these measurements for each probe are also affected my many technical
  779. confounding factors, such as the concentration of target material, strength
  780. of off-target binding, and the sensitivity of the imaging sensor.
  781. Some array designs also use multiple probe sequences for each target.
  782. Hence, extensive pre-processing of array data is necessary to normalize
  783. out the effects of these technical factors and summarize the information
  784. from multiple probes to arrive at a single usable estimate of abundance
  785. or other relevant quantity, such as a ratio of two abundances, for each
  786. target.
  787. \end_layout
  788. \begin_layout Standard
  789. The choice of pre-processing algorithms used in the analysis of an array
  790. data set can have a large effect on the results of that analysis.
  791. However, despite their importance, these steps are often neglected or rushed
  792. in order to get to the more scientifically interesting analysis steps involving
  793. the actual biology of the system under study.
  794. Hence, it is often possible to achieve substantial gains in statistical
  795. power, model goodness-of-fit, or other relevant performance measures, by
  796. checking the assumptions made by each preprocessing step and choosing specific
  797. normalization methods tailored to the specific goals of the current analysis.
  798. \end_layout
  799. \begin_layout Subsection
  800. Normalization for clinical microarray classifiers must be single-channel
  801. \end_layout
  802. \begin_layout Subsubsection
  803. Standard normalization methods are unsuitable for clinical application
  804. \end_layout
  805. \begin_layout Standard
  806. As the cost of performing microarray assays falls, there is increasing interest
  807. in using genomic assays for diagnostic purposes, such as distinguishing
  808. healthy transplants (TX) from transplants undergoing acute rejection (AR)
  809. or acute dysfunction with no rejection (ADNR).
  810. However, the the standard normalization algorithm used for microarray data,
  811. Robust Multi-chip Average (RMA)
  812. \begin_inset CommandInset citation
  813. LatexCommand cite
  814. key "Irizarry2003a"
  815. literal "false"
  816. \end_inset
  817. , is not applicable in a clinical setting.
  818. Two of the steps in RMA, quantile normalization and probe summarization
  819. by median polish, depend on every array in the data set being normalized.
  820. This means that adding or removing any arrays from a data set changes the
  821. normalized values for all arrays, and data sets that have been normalized
  822. separately cannot be compared to each other.
  823. Hence, when using RMA, any arrays to be analyzed together must also be
  824. normalized together, and the set of arrays included in the data set must
  825. be held constant throughout an analysis.
  826. \end_layout
  827. \begin_layout Standard
  828. These limitations present serious impediments to the use of arrays as a
  829. diagnostic tool.
  830. When training a classifier, the samples to be classified must not be involved
  831. in any step of the training process, lest their inclusion bias the training
  832. process.
  833. Once a classifier is deployed in a clinical setting, the samples to be
  834. classified will not even
  835. \emph on
  836. exist
  837. \emph default
  838. at the time of training, so including them would be impossible even if
  839. it were statistically justifiable.
  840. Therefore, any machine learning application for microarrays demands that
  841. the normalized expression values computed for an array must depend only
  842. on information contained within that array.
  843. This would ensure that each array's normalization is independent of every
  844. other array, and that arrays normalized separately can still be compared
  845. to each other without bias.
  846. Such a normalization is commonly referred to as
  847. \begin_inset Quotes eld
  848. \end_inset
  849. single-channel normalization
  850. \begin_inset Quotes erd
  851. \end_inset
  852. .
  853. \end_layout
  854. \begin_layout Subsubsection
  855. Several strategies are available to meet clinical normalization requirements
  856. \end_layout
  857. \begin_layout Standard
  858. Frozen RMA (fRMA) addresses these concerns by replacing the quantile normalizati
  859. on and median polish with alternatives that do not introduce inter-array
  860. dependence, allowing each array to be normalized independently of all others
  861. \begin_inset CommandInset citation
  862. LatexCommand cite
  863. key "McCall2010"
  864. literal "false"
  865. \end_inset
  866. .
  867. Quantile normalization is performed against a pre-generated set of quantiles
  868. learned from a collection of 850 publically available arrays sampled from
  869. a wide variety of tissues in the Gene Expression Omnibus (GEO).
  870. Each array's probe intensity distribution is normalized against these pre-gener
  871. ated quantiles.
  872. The median polish step is replaced with a robust weighted average of probe
  873. intensities, using inverse variance weights learned from the same public
  874. GEO data.
  875. The result is a normalization that satisfies the requirements mentioned
  876. above: each array is normalized independently of all others, and any two
  877. normalized arrays can be compared directly to each other.
  878. \end_layout
  879. \begin_layout Standard
  880. One important limitation of fRMA is that it requires a separate reference
  881. data set from which to learn the parameters (reference quantiles and probe
  882. weights) that will be used to normalize each array.
  883. These parameters are specific to a given array platform, and pre-generated
  884. parameters are only provided for the most common platforms, such as Affymetrix
  885. hgu133plus2.
  886. For a less common platform, such as hthgu133pluspm, is is necessary to
  887. learn custom parameters from in-house data before fRMA can be used to normalize
  888. samples on that platform
  889. \begin_inset CommandInset citation
  890. LatexCommand cite
  891. key "McCall2011"
  892. literal "false"
  893. \end_inset
  894. .
  895. \end_layout
  896. \begin_layout Standard
  897. One other option is the aptly-named Single Channel Array Normalization (SCAN),
  898. which adapts a normalization method originally designed for tiling arrays
  899. \begin_inset CommandInset citation
  900. LatexCommand cite
  901. key "Piccolo2012"
  902. literal "false"
  903. \end_inset
  904. .
  905. SCAN is truly single-channel in that it does not require a set of normalization
  906. paramters estimated from an external set of reference samples like fRMA
  907. does.
  908. \end_layout
  909. \begin_layout Subsection
  910. Heteroskedasticity must be accounted for in methylation array data
  911. \end_layout
  912. \begin_layout Subsubsection
  913. Methylation array preprocessing induces heteroskedasticity
  914. \end_layout
  915. \begin_layout Standard
  916. DNA methylation arrays are a relatively new kind of assay that uses microarrays
  917. to measure the degree of methylation on cytosines in specific regions arrayed
  918. across the genome.
  919. First, bisulfite treatment converts all unmethylated cytosines to uracil
  920. (which then become thymine after amplication) while leaving methylated
  921. cytosines unaffected.
  922. Then, each target region is interrogated with two probes: one binds to
  923. the original genomic sequence and interrogates the level of methylated
  924. DNA, and the other binds to the same sequence with all cytosines replaced
  925. by thymidines and interrogates the level of unmethylated DNA.
  926. \end_layout
  927. \begin_layout Standard
  928. \begin_inset Float figure
  929. wide false
  930. sideways false
  931. status collapsed
  932. \begin_layout Plain Layout
  933. \align center
  934. \begin_inset Graphics
  935. filename graphics/methylvoom/sigmoid.pdf
  936. \end_inset
  937. \end_layout
  938. \begin_layout Plain Layout
  939. \begin_inset Caption Standard
  940. \begin_layout Plain Layout
  941. \begin_inset CommandInset label
  942. LatexCommand label
  943. name "fig:Sigmoid-beta-m-mapping"
  944. \end_inset
  945. \series bold
  946. Sigmoid shape of the mapping between β and M values
  947. \end_layout
  948. \end_inset
  949. \end_layout
  950. \end_inset
  951. \end_layout
  952. \begin_layout Standard
  953. After normalization, these two probe intensities are summarized in one of
  954. two ways, each with advantages and disadvantages.
  955. β
  956. \series bold
  957. \series default
  958. values, interpreted as fraction of DNA copies methylated, range from 0 to
  959. 1.
  960. β
  961. \series bold
  962. \series default
  963. values are conceptually easy to interpret, but the constrained range makes
  964. them unsuitable for linear modeling, and their error distributions are
  965. highly non-normal, which also frustrates linear modeling.
  966. M-values, interpreted as the log ratio of methylated to unmethylated copies,
  967. are computed by mapping the beta values from
  968. \begin_inset Formula $[0,1]$
  969. \end_inset
  970. onto
  971. \begin_inset Formula $(-\infty,+\infty)$
  972. \end_inset
  973. using a sigmoid curve (Figure
  974. \begin_inset CommandInset ref
  975. LatexCommand ref
  976. reference "fig:Sigmoid-beta-m-mapping"
  977. plural "false"
  978. caps "false"
  979. noprefix "false"
  980. \end_inset
  981. ).
  982. This transformation results in values with better statistical perperties:
  983. the unconstrained range is suitable for linear modeling, and the error
  984. distributions are more normal.
  985. Hence, most linear modeling and other statistical testing on methylation
  986. arrays is performed using M-values.
  987. \end_layout
  988. \begin_layout Standard
  989. However, the steep slope of the sigmoid transformation near 0 and 1 tends
  990. to over-exaggerate small differences in β values near those extremes, which
  991. in turn amplifies the error in those values, leading to a U-shaped trend
  992. in the mean-variance curve: extreme values have higher variances than values
  993. near the middle.
  994. This mean-variance dependency must be accounted for when fitting the linear
  995. model for differential methylation, or else the variance will be systematically
  996. overestimated for probes with moderate M-values and underestimated for
  997. probes with extreme M-values.
  998. \end_layout
  999. \begin_layout Subsubsection
  1000. The voom method for RNA-seq data can model M-value heteroskedasticity
  1001. \end_layout
  1002. \begin_layout Standard
  1003. RNA-seq read count data are also known to show heteroskedasticity, and the
  1004. voom method was developed for modeling this heteroskedasticity by estimating
  1005. the mean-variance trend in the data and using this trend to assign precision
  1006. weights to each observation
  1007. \begin_inset CommandInset citation
  1008. LatexCommand cite
  1009. key "Law2013"
  1010. literal "false"
  1011. \end_inset
  1012. .
  1013. While methylation array data are not derived from counts and have a very
  1014. different mean-variance relationship from that of typical RNA-seq data,
  1015. the voom method makes no specific assumptions on the shape of the mean-variance
  1016. relationship - it only assumes that the relationship is smooth enough to
  1017. model using a lowess curve.
  1018. Hence, the method is sufficiently general to model the mean-variance relationsh
  1019. ip in methylation array data.
  1020. However, the standard implementation of voom assumes that the input is
  1021. given in raw read counts, and it must be adapted to run on methylation
  1022. M-values.
  1023. \end_layout
  1024. \begin_layout Section
  1025. Methods
  1026. \end_layout
  1027. \begin_layout Subsection
  1028. Evaluation of classifier performance with different normalization methods
  1029. \end_layout
  1030. \begin_layout Standard
  1031. For testing different expression microarray normalizations, a data set of
  1032. 157 hgu133plus2 arrays was used, consisting of blood samples from kidney
  1033. transplant patients whose grafts had been graded as TX, AR, or ADNR via
  1034. biopsy and histology (46 TX, 69 AR, 42 ADNR)
  1035. \begin_inset CommandInset citation
  1036. LatexCommand cite
  1037. key "Kurian2014"
  1038. literal "true"
  1039. \end_inset
  1040. .
  1041. Additionally, an external validation set of 75 samples was gathered from
  1042. public GEO data (37 TX, 38 AR, no ADNR).
  1043. \end_layout
  1044. \begin_layout Standard
  1045. \begin_inset Flex TODO Note (inline)
  1046. status collapsed
  1047. \begin_layout Plain Layout
  1048. Find appropriate GEO identifiers if possible.
  1049. Kurian 2014 says GSE15296, but this seems to be different data.
  1050. I also need to look up the GEO accession for the external validation set.
  1051. \end_layout
  1052. \end_inset
  1053. \end_layout
  1054. \begin_layout Standard
  1055. To evaluate the effect of each normalization on classifier performance,
  1056. the same classifier training and validation procedure was used after each
  1057. normalization method.
  1058. The PAM package was used to train a nearest shrunken centroid classifier
  1059. on the training set and select the appropriate threshold for centroid shrinking.
  1060. Then the trained classifier was used to predict the class probabilities
  1061. of each validation sample.
  1062. From these class probabilities, ROC curves and area-under-curve (AUC) values
  1063. were generated
  1064. \begin_inset CommandInset citation
  1065. LatexCommand cite
  1066. key "Turck2011"
  1067. literal "false"
  1068. \end_inset
  1069. .
  1070. Each normalization was tested on two different sets of training and validation
  1071. samples.
  1072. For internal validation, the 115 TX and AR arrays in the internal set were
  1073. split at random into two equal sized sets, one for training and one for
  1074. validation, each containing the same numbers of TX and AR samples as the
  1075. other set.
  1076. For external validation, the full set of 115 TX and AR samples were used
  1077. as a training set, and the 75 external TX and AR samples were used as the
  1078. validation set.
  1079. Thus, 2 ROC curves and AUC values were generated for each normalization
  1080. method: one internal and one external.
  1081. Because the external validation set contains no ADNR samples, only classificati
  1082. on of TX and AR samples was considered.
  1083. The ADNR samples were included during normalization but excluded from all
  1084. classifier training and validation.
  1085. This ensures that the performance on internal and external validation sets
  1086. is directly comparable, since both are performing the same task: distinguising
  1087. TX from AR.
  1088. \end_layout
  1089. \begin_layout Standard
  1090. \begin_inset Flex TODO Note (inline)
  1091. status collapsed
  1092. \begin_layout Plain Layout
  1093. Summarize the get.best.threshold algorithm for PAM threshold selection
  1094. \end_layout
  1095. \end_inset
  1096. \end_layout
  1097. \begin_layout Standard
  1098. Six different normalization strategies were evaluated.
  1099. First, 2 well-known non-single-channel normalization methods were considered:
  1100. RMA and dChip
  1101. \begin_inset CommandInset citation
  1102. LatexCommand cite
  1103. key "Li2001,Irizarry2003a"
  1104. literal "false"
  1105. \end_inset
  1106. .
  1107. Since RMA produces expression values on a log2 scale and dChip does not,
  1108. the values from dChip were log2 transformed after normalization.
  1109. Next, RMA and dChip followed by Global Rank-invariant Set Normalization
  1110. (GRSN) were tested
  1111. \begin_inset CommandInset citation
  1112. LatexCommand cite
  1113. key "Pelz2008"
  1114. literal "false"
  1115. \end_inset
  1116. .
  1117. Post-processing with GRSN does not turn RMA or dChip into single-channel
  1118. methods, but it may help mitigate batch effects and is therefore useful
  1119. as a benchmark.
  1120. Lastly, the two single-channel normalization methods, fRMA and SCAN, were
  1121. tested
  1122. \begin_inset CommandInset citation
  1123. LatexCommand cite
  1124. key "McCall2010,Piccolo2012"
  1125. literal "false"
  1126. \end_inset
  1127. .
  1128. When evaluting internal validation performance, only the 157 internal samples
  1129. were normalized; when evaluating external validation performance, all 157
  1130. internal samples and 75 external samples were normalized together.
  1131. \end_layout
  1132. \begin_layout Standard
  1133. For demonstrating the problem with separate normalization of training and
  1134. validation data, one additional normalization was performed: the internal
  1135. and external sets were each normalized separately using RMA, and the normalized
  1136. data for each set were combined into a single set with no further attempts
  1137. at normalizing between the two sets.
  1138. The represents approximately how RMA would have to be used in a clinical
  1139. setting, where the samples to be classified are not available at the time
  1140. the classifier is trained.
  1141. \end_layout
  1142. \begin_layout Subsection
  1143. Generating custom fRMA vectors for hthgu133pluspm array platform
  1144. \end_layout
  1145. \begin_layout Standard
  1146. In order to enable fRMA normalization for the hthgu133pluspm array platform,
  1147. custom fRMA normalization vectors were trained using the frmaTools package
  1148. \begin_inset CommandInset citation
  1149. LatexCommand cite
  1150. key "McCall2011"
  1151. literal "false"
  1152. \end_inset
  1153. .
  1154. Separate vectors were created for two types of samples: kidney graft biopsy
  1155. samples and blood samples from graft recipients.
  1156. For training, a 341 kidney biopsy samples from 2 data sets and 965 blood
  1157. samples from 5 data sets were used as the reference set.
  1158. Arrays were groups into batches based on unique combinations of sample
  1159. type (blood or biopsy), diagnosis (TX, AR, etc.), data set, and scan date.
  1160. Thus, each batch represents arrays of the same kind that were run together
  1161. on the same day.
  1162. For estimating the probe inverse variance weights, frmaTools requires equal-siz
  1163. ed batches, which means a batch size must be chosen, and then batches smaller
  1164. than that size must be ignored, while batches larger than the chosen size
  1165. must be downsampled.
  1166. This downsampling is performed randomly, so the sampling process is repeated
  1167. 5 times and the resulting normalizations are compared to each other.
  1168. \end_layout
  1169. \begin_layout Standard
  1170. To evaluate the consistency of the generated normalization vectors, the
  1171. 5 fRMA vector sets generated from 5 random batch samplings were each used
  1172. to normalize the same 20 randomly selected samples from each tissue.
  1173. Then the normalized expression values for each probe on each array were
  1174. compared across all normalizations.
  1175. Each fRMA normalization was also compared against the normalized expression
  1176. values obtained by normalizing the same 20 samples with ordinary RMA.
  1177. \end_layout
  1178. \begin_layout Subsection
  1179. Modeling methylation array M-value heteroskedasticy in linear models with
  1180. modified voom implementation
  1181. \end_layout
  1182. \begin_layout Standard
  1183. \begin_inset Flex TODO Note (inline)
  1184. status open
  1185. \begin_layout Plain Layout
  1186. Put code on Github and reference it.
  1187. \end_layout
  1188. \end_inset
  1189. \end_layout
  1190. \begin_layout Standard
  1191. To investigate the whether DNA methylation could be used to distinguish
  1192. between healthy and dysfunctional transplants, a data set of 78 Illumina
  1193. 450k methylation arrays from human kidney graft biopsies was analyzed for
  1194. differential metylation between 4 transplant statuses: healthy transplant
  1195. (TX), transplants undergoing acute rejection (AR), acute dysfunction with
  1196. no rejection (ADNR), and chronic allograpft nephropathy (CAN).
  1197. The data consisted of 33 TX, 9 AR, 8 ADNR, and 28 CAN samples.
  1198. The uneven group sizes are a result of taking the biopsy samples before
  1199. the eventual fate of the transplant was known.
  1200. Each sample was additionally annotated with a donor ID (anonymized), Sex,
  1201. Age, Ethnicity, Creatinine Level, and Diabetes diagnosois (all samples
  1202. in this data set came from patients with either Type 1 or Type 2 diabetes).
  1203. \end_layout
  1204. \begin_layout Standard
  1205. The intensity data were first normalized using subset-quantile within array
  1206. normalization (SWAN)
  1207. \begin_inset CommandInset citation
  1208. LatexCommand cite
  1209. key "Maksimovic2012"
  1210. literal "false"
  1211. \end_inset
  1212. , then converted to intensity ratios (beta values)
  1213. \begin_inset CommandInset citation
  1214. LatexCommand cite
  1215. key "Aryee2014"
  1216. literal "false"
  1217. \end_inset
  1218. .
  1219. Any probes binding to loci that overlapped annotated SNPs were dropped,
  1220. and the annotated sex of each sample was verified against the sex inferred
  1221. from the ratio of median probe intensities for the X and Y chromosomes.
  1222. Then, the ratios were transformed to M-values.
  1223. \end_layout
  1224. \begin_layout Standard
  1225. From the M-values, a series of parallel analyses was performed, each adding
  1226. additional steps into the model fit to accomodate a feature of the data.
  1227. First, a
  1228. \begin_inset Quotes eld
  1229. \end_inset
  1230. basic
  1231. \begin_inset Quotes erd
  1232. \end_inset
  1233. linear modeling analysis was performed, compensating for known features
  1234. of the data using existing tools.
  1235. A design matrix was prepared including terms for the factor of interest
  1236. as well as the known biological confounders: sex, age, ethnicity, and diabetes.
  1237. Since some samples came from the same patients at differen times, the intra-pat
  1238. ient correlation was modeled as a random effect, estimating a shared correlation
  1239. value across all probes
  1240. \begin_inset CommandInset citation
  1241. LatexCommand cite
  1242. key "Smyth2005a"
  1243. literal "false"
  1244. \end_inset
  1245. .
  1246. Then the linear model was fit, and the variance was modeled using empirical
  1247. Bayes squeezing toward the mean-variance trend
  1248. \begin_inset CommandInset citation
  1249. LatexCommand cite
  1250. key "Ritchie2015"
  1251. literal "false"
  1252. \end_inset
  1253. .
  1254. Finally, t-tests or F-tests were performed a appropriate for each test:
  1255. t-tests for single contrasts, and F-tests for multiple contrasts.
  1256. \end_layout
  1257. \begin_layout Standard
  1258. For the second analysis, surrogate variable analysis (SVA) was used to infer
  1259. additional unobserved sources of heterogeneity in the data
  1260. \begin_inset CommandInset citation
  1261. LatexCommand cite
  1262. key "Leek2007"
  1263. literal "false"
  1264. \end_inset
  1265. .
  1266. These surrogate variables were added to the design matrix before fitting
  1267. the linear model.
  1268. In addition, sample quality weights were estimated from the data and used
  1269. during linear modeling to down-weight the contribution of highly variable
  1270. arrays while increasing the weight to arrays with lower variability
  1271. \begin_inset CommandInset citation
  1272. LatexCommand cite
  1273. key "Ritchie2006"
  1274. literal "false"
  1275. \end_inset
  1276. .
  1277. For the third analysis, the voom method was adapted to run on methylation
  1278. array data and used to model the mean-variance trend as individual observation
  1279. weights
  1280. \begin_inset CommandInset citation
  1281. LatexCommand cite
  1282. key "Law2013"
  1283. literal "false"
  1284. \end_inset
  1285. , which were combined with the sample weights
  1286. \begin_inset CommandInset citation
  1287. LatexCommand cite
  1288. key "Liu2015"
  1289. literal "false"
  1290. \end_inset
  1291. .
  1292. Each time weights were used, they were estimated once before estimating
  1293. the random effect correlation value, and then the weights were re-estimated
  1294. taking the random effect into account.
  1295. \end_layout
  1296. \begin_layout Section
  1297. Results
  1298. \end_layout
  1299. \begin_layout Standard
  1300. \begin_inset Flex TODO Note (inline)
  1301. status open
  1302. \begin_layout Plain Layout
  1303. Improve subsection titles in this section
  1304. \end_layout
  1305. \end_inset
  1306. \end_layout
  1307. \begin_layout Subsection
  1308. fRMA eliminates unwanted dependence of classifier training on normalization
  1309. strategy caused by RMA
  1310. \end_layout
  1311. \begin_layout Subsubsection
  1312. Separate normalization with RMA introduces unwanted biases in classification
  1313. \end_layout
  1314. \begin_layout Standard
  1315. \begin_inset Float figure
  1316. wide false
  1317. sideways false
  1318. status open
  1319. \begin_layout Plain Layout
  1320. \align center
  1321. \begin_inset Graphics
  1322. filename graphics/PAM/predplot.pdf
  1323. width 100col%
  1324. groupId colwidth
  1325. \end_inset
  1326. \end_layout
  1327. \begin_layout Plain Layout
  1328. \begin_inset Caption Standard
  1329. \begin_layout Plain Layout
  1330. \begin_inset CommandInset label
  1331. LatexCommand label
  1332. name "fig:Classifier-probabilities-RMA"
  1333. \end_inset
  1334. \series bold
  1335. Classifier probabilities on validation samples when normalized with RMA
  1336. together vs.
  1337. separately.
  1338. \end_layout
  1339. \end_inset
  1340. \end_layout
  1341. \end_inset
  1342. \end_layout
  1343. \begin_layout Standard
  1344. To demonstrate the problem with non-single-channel methods, we considered
  1345. the problem of training a classifier to distinguish TX from AR using the
  1346. samples from the internal set as training data, evaluating performance
  1347. on the external set.
  1348. First, training and evaluation were performed after normalizing all array
  1349. samples together as a single set using RMA, and second, the internal samples
  1350. were normalized separately from the external samples and the training and
  1351. evaluation were repeated.
  1352. For each sample in the validation set, the classifier probabilities from
  1353. both classifiers were plotted against each other (Fig.
  1354. \begin_inset CommandInset ref
  1355. LatexCommand ref
  1356. reference "fig:Classifier-probabilities-RMA"
  1357. plural "false"
  1358. caps "false"
  1359. noprefix "false"
  1360. \end_inset
  1361. ).
  1362. As expected, separate normalization biases the classifier probabilities,
  1363. resulting in several misclassifications.
  1364. In this case, the bias from separate normalization causes the classifier
  1365. to assign a lower probability of AR to every sample.
  1366. \end_layout
  1367. \begin_layout Subsubsection
  1368. fRMA and SCAN achieve maintain classification performance while eliminating
  1369. dependence on normalization strategy
  1370. \end_layout
  1371. \begin_layout Standard
  1372. \begin_inset Float figure
  1373. wide false
  1374. sideways false
  1375. status collapsed
  1376. \begin_layout Plain Layout
  1377. \align center
  1378. \begin_inset Graphics
  1379. filename graphics/PAM/ROC-TXvsAR-internal.pdf
  1380. width 100col%
  1381. groupId colwidth
  1382. \end_inset
  1383. \end_layout
  1384. \begin_layout Plain Layout
  1385. \begin_inset Caption Standard
  1386. \begin_layout Plain Layout
  1387. \begin_inset CommandInset label
  1388. LatexCommand label
  1389. name "fig:ROC-PAM-int"
  1390. \end_inset
  1391. ROC curves for PAM on internal validation data using different normalization
  1392. strategies
  1393. \end_layout
  1394. \end_inset
  1395. \end_layout
  1396. \end_inset
  1397. \end_layout
  1398. \begin_layout Standard
  1399. \begin_inset Float table
  1400. wide false
  1401. sideways false
  1402. status collapsed
  1403. \begin_layout Plain Layout
  1404. \align center
  1405. \begin_inset Tabular
  1406. <lyxtabular version="3" rows="7" columns="4">
  1407. <features tabularvalignment="middle">
  1408. <column alignment="center" valignment="top">
  1409. <column alignment="center" valignment="top">
  1410. <column alignment="center" valignment="top">
  1411. <column alignment="center" valignment="top">
  1412. <row>
  1413. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1414. \begin_inset Text
  1415. \begin_layout Plain Layout
  1416. \family roman
  1417. \series medium
  1418. \shape up
  1419. \size normal
  1420. \emph off
  1421. \bar no
  1422. \strikeout off
  1423. \xout off
  1424. \uuline off
  1425. \uwave off
  1426. \noun off
  1427. \color none
  1428. Normalization
  1429. \end_layout
  1430. \end_inset
  1431. </cell>
  1432. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1433. \begin_inset Text
  1434. \begin_layout Plain Layout
  1435. Single-channel?
  1436. \end_layout
  1437. \end_inset
  1438. </cell>
  1439. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1440. \begin_inset Text
  1441. \begin_layout Plain Layout
  1442. \family roman
  1443. \series medium
  1444. \shape up
  1445. \size normal
  1446. \emph off
  1447. \bar no
  1448. \strikeout off
  1449. \xout off
  1450. \uuline off
  1451. \uwave off
  1452. \noun off
  1453. \color none
  1454. Internal Val.
  1455. AUC
  1456. \end_layout
  1457. \end_inset
  1458. </cell>
  1459. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  1460. \begin_inset Text
  1461. \begin_layout Plain Layout
  1462. External Val.
  1463. AUC
  1464. \end_layout
  1465. \end_inset
  1466. </cell>
  1467. </row>
  1468. <row>
  1469. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1470. \begin_inset Text
  1471. \begin_layout Plain Layout
  1472. \family roman
  1473. \series medium
  1474. \shape up
  1475. \size normal
  1476. \emph off
  1477. \bar no
  1478. \strikeout off
  1479. \xout off
  1480. \uuline off
  1481. \uwave off
  1482. \noun off
  1483. \color none
  1484. RMA
  1485. \end_layout
  1486. \end_inset
  1487. </cell>
  1488. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1489. \begin_inset Text
  1490. \begin_layout Plain Layout
  1491. No
  1492. \end_layout
  1493. \end_inset
  1494. </cell>
  1495. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1496. \begin_inset Text
  1497. \begin_layout Plain Layout
  1498. \family roman
  1499. \series medium
  1500. \shape up
  1501. \size normal
  1502. \emph off
  1503. \bar no
  1504. \strikeout off
  1505. \xout off
  1506. \uuline off
  1507. \uwave off
  1508. \noun off
  1509. \color none
  1510. 0.852
  1511. \end_layout
  1512. \end_inset
  1513. </cell>
  1514. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  1515. \begin_inset Text
  1516. \begin_layout Plain Layout
  1517. \family roman
  1518. \series medium
  1519. \shape up
  1520. \size normal
  1521. \emph off
  1522. \bar no
  1523. \strikeout off
  1524. \xout off
  1525. \uuline off
  1526. \uwave off
  1527. \noun off
  1528. \color none
  1529. 0.713
  1530. \end_layout
  1531. \end_inset
  1532. </cell>
  1533. </row>
  1534. <row>
  1535. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1536. \begin_inset Text
  1537. \begin_layout Plain Layout
  1538. \family roman
  1539. \series medium
  1540. \shape up
  1541. \size normal
  1542. \emph off
  1543. \bar no
  1544. \strikeout off
  1545. \xout off
  1546. \uuline off
  1547. \uwave off
  1548. \noun off
  1549. \color none
  1550. dChip
  1551. \end_layout
  1552. \end_inset
  1553. </cell>
  1554. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1555. \begin_inset Text
  1556. \begin_layout Plain Layout
  1557. No
  1558. \end_layout
  1559. \end_inset
  1560. </cell>
  1561. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1562. \begin_inset Text
  1563. \begin_layout Plain Layout
  1564. \family roman
  1565. \series medium
  1566. \shape up
  1567. \size normal
  1568. \emph off
  1569. \bar no
  1570. \strikeout off
  1571. \xout off
  1572. \uuline off
  1573. \uwave off
  1574. \noun off
  1575. \color none
  1576. 0.891
  1577. \end_layout
  1578. \end_inset
  1579. </cell>
  1580. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  1581. \begin_inset Text
  1582. \begin_layout Plain Layout
  1583. \family roman
  1584. \series medium
  1585. \shape up
  1586. \size normal
  1587. \emph off
  1588. \bar no
  1589. \strikeout off
  1590. \xout off
  1591. \uuline off
  1592. \uwave off
  1593. \noun off
  1594. \color none
  1595. 0.657
  1596. \end_layout
  1597. \end_inset
  1598. </cell>
  1599. </row>
  1600. <row>
  1601. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1602. \begin_inset Text
  1603. \begin_layout Plain Layout
  1604. \family roman
  1605. \series medium
  1606. \shape up
  1607. \size normal
  1608. \emph off
  1609. \bar no
  1610. \strikeout off
  1611. \xout off
  1612. \uuline off
  1613. \uwave off
  1614. \noun off
  1615. \color none
  1616. RMA + GRSN
  1617. \end_layout
  1618. \end_inset
  1619. </cell>
  1620. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1621. \begin_inset Text
  1622. \begin_layout Plain Layout
  1623. No
  1624. \end_layout
  1625. \end_inset
  1626. </cell>
  1627. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1628. \begin_inset Text
  1629. \begin_layout Plain Layout
  1630. \family roman
  1631. \series medium
  1632. \shape up
  1633. \size normal
  1634. \emph off
  1635. \bar no
  1636. \strikeout off
  1637. \xout off
  1638. \uuline off
  1639. \uwave off
  1640. \noun off
  1641. \color none
  1642. 0.816
  1643. \end_layout
  1644. \end_inset
  1645. </cell>
  1646. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  1647. \begin_inset Text
  1648. \begin_layout Plain Layout
  1649. \family roman
  1650. \series medium
  1651. \shape up
  1652. \size normal
  1653. \emph off
  1654. \bar no
  1655. \strikeout off
  1656. \xout off
  1657. \uuline off
  1658. \uwave off
  1659. \noun off
  1660. \color none
  1661. 0.750
  1662. \end_layout
  1663. \end_inset
  1664. </cell>
  1665. </row>
  1666. <row>
  1667. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1668. \begin_inset Text
  1669. \begin_layout Plain Layout
  1670. \family roman
  1671. \series medium
  1672. \shape up
  1673. \size normal
  1674. \emph off
  1675. \bar no
  1676. \strikeout off
  1677. \xout off
  1678. \uuline off
  1679. \uwave off
  1680. \noun off
  1681. \color none
  1682. dChip + GRSN
  1683. \end_layout
  1684. \end_inset
  1685. </cell>
  1686. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1687. \begin_inset Text
  1688. \begin_layout Plain Layout
  1689. No
  1690. \end_layout
  1691. \end_inset
  1692. </cell>
  1693. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1694. \begin_inset Text
  1695. \begin_layout Plain Layout
  1696. \family roman
  1697. \series medium
  1698. \shape up
  1699. \size normal
  1700. \emph off
  1701. \bar no
  1702. \strikeout off
  1703. \xout off
  1704. \uuline off
  1705. \uwave off
  1706. \noun off
  1707. \color none
  1708. 0.875
  1709. \end_layout
  1710. \end_inset
  1711. </cell>
  1712. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  1713. \begin_inset Text
  1714. \begin_layout Plain Layout
  1715. \family roman
  1716. \series medium
  1717. \shape up
  1718. \size normal
  1719. \emph off
  1720. \bar no
  1721. \strikeout off
  1722. \xout off
  1723. \uuline off
  1724. \uwave off
  1725. \noun off
  1726. \color none
  1727. 0.642
  1728. \end_layout
  1729. \end_inset
  1730. </cell>
  1731. </row>
  1732. <row>
  1733. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1734. \begin_inset Text
  1735. \begin_layout Plain Layout
  1736. \family roman
  1737. \series medium
  1738. \shape up
  1739. \size normal
  1740. \emph off
  1741. \bar no
  1742. \strikeout off
  1743. \xout off
  1744. \uuline off
  1745. \uwave off
  1746. \noun off
  1747. \color none
  1748. fRMA
  1749. \end_layout
  1750. \end_inset
  1751. </cell>
  1752. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1753. \begin_inset Text
  1754. \begin_layout Plain Layout
  1755. Yes
  1756. \end_layout
  1757. \end_inset
  1758. </cell>
  1759. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1760. \begin_inset Text
  1761. \begin_layout Plain Layout
  1762. \family roman
  1763. \series medium
  1764. \shape up
  1765. \size normal
  1766. \emph off
  1767. \bar no
  1768. \strikeout off
  1769. \xout off
  1770. \uuline off
  1771. \uwave off
  1772. \noun off
  1773. \color none
  1774. 0.863
  1775. \end_layout
  1776. \end_inset
  1777. </cell>
  1778. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  1779. \begin_inset Text
  1780. \begin_layout Plain Layout
  1781. \family roman
  1782. \series medium
  1783. \shape up
  1784. \size normal
  1785. \emph off
  1786. \bar no
  1787. \strikeout off
  1788. \xout off
  1789. \uuline off
  1790. \uwave off
  1791. \noun off
  1792. \color none
  1793. 0.718
  1794. \end_layout
  1795. \end_inset
  1796. </cell>
  1797. </row>
  1798. <row>
  1799. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1800. \begin_inset Text
  1801. \begin_layout Plain Layout
  1802. \family roman
  1803. \series medium
  1804. \shape up
  1805. \size normal
  1806. \emph off
  1807. \bar no
  1808. \strikeout off
  1809. \xout off
  1810. \uuline off
  1811. \uwave off
  1812. \noun off
  1813. \color none
  1814. SCAN
  1815. \end_layout
  1816. \end_inset
  1817. </cell>
  1818. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1819. \begin_inset Text
  1820. \begin_layout Plain Layout
  1821. Yes
  1822. \end_layout
  1823. \end_inset
  1824. </cell>
  1825. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1826. \begin_inset Text
  1827. \begin_layout Plain Layout
  1828. \family roman
  1829. \series medium
  1830. \shape up
  1831. \size normal
  1832. \emph off
  1833. \bar no
  1834. \strikeout off
  1835. \xout off
  1836. \uuline off
  1837. \uwave off
  1838. \noun off
  1839. \color none
  1840. 0.853
  1841. \end_layout
  1842. \end_inset
  1843. </cell>
  1844. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  1845. \begin_inset Text
  1846. \begin_layout Plain Layout
  1847. \family roman
  1848. \series medium
  1849. \shape up
  1850. \size normal
  1851. \emph off
  1852. \bar no
  1853. \strikeout off
  1854. \xout off
  1855. \uuline off
  1856. \uwave off
  1857. \noun off
  1858. \color none
  1859. 0.689
  1860. \end_layout
  1861. \end_inset
  1862. </cell>
  1863. </row>
  1864. </lyxtabular>
  1865. \end_inset
  1866. \end_layout
  1867. \begin_layout Plain Layout
  1868. \begin_inset Caption Standard
  1869. \begin_layout Plain Layout
  1870. \begin_inset CommandInset label
  1871. LatexCommand label
  1872. name "tab:AUC-PAM"
  1873. \end_inset
  1874. \series bold
  1875. AUC values for internal and external validation with 6 different normalization
  1876. strategies.
  1877. \series default
  1878. Only fRMA and SCAN are single-channel normalizations.
  1879. The other 4 normalizations are for comparison.
  1880. \end_layout
  1881. \end_inset
  1882. \end_layout
  1883. \end_inset
  1884. \end_layout
  1885. \begin_layout Standard
  1886. For internal validation, the 6 methods' AUC values ranged from 0.816 to 0.891,
  1887. as shown in Table
  1888. \begin_inset CommandInset ref
  1889. LatexCommand ref
  1890. reference "tab:AUC-PAM"
  1891. plural "false"
  1892. caps "false"
  1893. noprefix "false"
  1894. \end_inset
  1895. .
  1896. Among the non-single-channel normalizations, dChip outperformed RMA, while
  1897. GRSN reduced the AUC values for both dChip and RMA.
  1898. Both single-channel methods, fRMA and SCAN, slightly outperformed RMA,
  1899. with fRMA ahead of SCAN.
  1900. However, the difference between RMA and fRMA is still quite small.
  1901. Figure
  1902. \begin_inset CommandInset ref
  1903. LatexCommand ref
  1904. reference "fig:ROC-PAM-int"
  1905. plural "false"
  1906. caps "false"
  1907. noprefix "false"
  1908. \end_inset
  1909. shows that the ROC curves for RMA, dChip, and fRMA look very similar and
  1910. relatively smooth, while both GRSN curves and the curve for SCAN have a
  1911. more jagged appearance.
  1912. \end_layout
  1913. \begin_layout Standard
  1914. \begin_inset Float figure
  1915. wide false
  1916. sideways false
  1917. status open
  1918. \begin_layout Plain Layout
  1919. \align center
  1920. \begin_inset Graphics
  1921. filename graphics/PAM/ROC-TXvsAR-external.pdf
  1922. width 100col%
  1923. groupId colwidth
  1924. \end_inset
  1925. \end_layout
  1926. \begin_layout Plain Layout
  1927. \begin_inset Caption Standard
  1928. \begin_layout Plain Layout
  1929. \begin_inset CommandInset label
  1930. LatexCommand label
  1931. name "fig:ROC-PAM-ext"
  1932. \end_inset
  1933. ROC curve for PAM on external validation data using different normalization
  1934. strategies
  1935. \end_layout
  1936. \end_inset
  1937. \end_layout
  1938. \end_inset
  1939. \end_layout
  1940. \begin_layout Standard
  1941. For external validation, as expected, all the AUC values are lower than
  1942. the internal validations, ranging from 0.642 to 0.750 (Table
  1943. \begin_inset CommandInset ref
  1944. LatexCommand ref
  1945. reference "tab:AUC-PAM"
  1946. plural "false"
  1947. caps "false"
  1948. noprefix "false"
  1949. \end_inset
  1950. ).
  1951. With or without GRSN, RMA shows its dominance over dChip in this more challengi
  1952. ng test.
  1953. Unlike in the internal validation, GRSN actually improves the classifier
  1954. performance for RMA, although it does not for dChip.
  1955. Once again, both single-channel methods perform about on par with RMA,
  1956. with fRMA performing slightly better and SCAN performing a bit worse.
  1957. Figure
  1958. \begin_inset CommandInset ref
  1959. LatexCommand ref
  1960. reference "fig:ROC-PAM-ext"
  1961. plural "false"
  1962. caps "false"
  1963. noprefix "false"
  1964. \end_inset
  1965. shows the ROC curves for the external validation test.
  1966. As expected, none of them are as clean-looking as the internal validation
  1967. ROC curves.
  1968. The curves for RMA, RMA+GRSN, and fRMA all look similar, while the other
  1969. curves look more divergent.
  1970. \end_layout
  1971. \begin_layout Standard
  1972. \begin_inset ERT
  1973. status open
  1974. \begin_layout Plain Layout
  1975. \backslash
  1976. FloatBarrier
  1977. \end_layout
  1978. \end_inset
  1979. \end_layout
  1980. \begin_layout Subsection
  1981. fRMA with custom-generated vectors enables normalization on hthgu133pluspm
  1982. \end_layout
  1983. \begin_layout Standard
  1984. \begin_inset Float figure
  1985. wide false
  1986. sideways false
  1987. status open
  1988. \begin_layout Plain Layout
  1989. \align center
  1990. \begin_inset Graphics
  1991. filename graphics/frma-pax-bx/batchsize_batches.pdf
  1992. \end_inset
  1993. \end_layout
  1994. \begin_layout Plain Layout
  1995. \begin_inset Caption Standard
  1996. \begin_layout Plain Layout
  1997. \begin_inset CommandInset label
  1998. LatexCommand label
  1999. name "fig:batch-size-batches"
  2000. \end_inset
  2001. \series bold
  2002. Effect of batch size selection on number of batches included in fRMA probe
  2003. weight learning.
  2004. \series default
  2005. For batch sizes ranging from 3 to 15, the number of batches with at least
  2006. that many samples was plotted for biopsy (BX) and blood (PAX) samples.
  2007. The selected batch size, 5, is marked with a dotted vertical line.
  2008. \end_layout
  2009. \end_inset
  2010. \end_layout
  2011. \end_inset
  2012. \end_layout
  2013. \begin_layout Standard
  2014. \begin_inset Float figure
  2015. wide false
  2016. sideways false
  2017. status open
  2018. \begin_layout Plain Layout
  2019. \align center
  2020. \begin_inset Graphics
  2021. filename graphics/frma-pax-bx/batchsize_samples.pdf
  2022. \end_inset
  2023. \end_layout
  2024. \begin_layout Plain Layout
  2025. \begin_inset Caption Standard
  2026. \begin_layout Plain Layout
  2027. \begin_inset CommandInset label
  2028. LatexCommand label
  2029. name "fig:batch-size-samples"
  2030. \end_inset
  2031. \series bold
  2032. Effect of batch size selection on number of samples included in fRMA probe
  2033. weight learning.
  2034. \series default
  2035. For batch sizes ranging from 3 to 15, the number of samples included in
  2036. probe weight training was plotted for biopsy (BX) and blood (PAX) samples.
  2037. The selected batch size, 5, is marked with a dotted vertical line.
  2038. \end_layout
  2039. \end_inset
  2040. \end_layout
  2041. \end_inset
  2042. \end_layout
  2043. \begin_layout Standard
  2044. In order to enable use of fRMA to normalize hthgu133pluspm, a custom set
  2045. of fRMA vectors was created.
  2046. First, an appropriate batch size was chosen by looking at the number of
  2047. batches and number of samples included as a function of batch size (Figures
  2048. \begin_inset CommandInset ref
  2049. LatexCommand ref
  2050. reference "fig:batch-size-batches"
  2051. plural "false"
  2052. caps "false"
  2053. noprefix "false"
  2054. \end_inset
  2055. and
  2056. \begin_inset CommandInset ref
  2057. LatexCommand ref
  2058. reference "fig:batch-size-samples"
  2059. plural "false"
  2060. caps "false"
  2061. noprefix "false"
  2062. \end_inset
  2063. , respectively).
  2064. For a given batch size, all batches with fewer samples that the chosen
  2065. size must be ignored during training, while larger batches must be randomly
  2066. downsampled to the chosen size.
  2067. Hence, the number of samples included for a given batch size equals the
  2068. batch size times the number of batches with at least that many samples.
  2069. From Figure
  2070. \begin_inset CommandInset ref
  2071. LatexCommand ref
  2072. reference "fig:batch-size-samples"
  2073. plural "false"
  2074. caps "false"
  2075. noprefix "false"
  2076. \end_inset
  2077. , it is apparent that that a batch size of 8 maximizes the number of samples
  2078. included in training.
  2079. Increasing the batch size beyond this causes too many smaller batches to
  2080. be excluded, reducing the total number of samples for both tissue types.
  2081. However, a batch size of 8 is not necessarily optimal.
  2082. The article introducing frmaTools concluded that it was highly advantageous
  2083. to use a smaller batch size in order to include more batches, even at the
  2084. expense of including fewer total samples in training
  2085. \begin_inset CommandInset citation
  2086. LatexCommand cite
  2087. key "McCall2011"
  2088. literal "false"
  2089. \end_inset
  2090. .
  2091. To strike an appropriate balance between more batches and more samples,
  2092. a batch size of 5 was chosen.
  2093. For both blood and biopsy samples, this increased the number of batches
  2094. included by 10, with only a modest reduction in the number of samples compared
  2095. to a batch size of 8.
  2096. With a batch size of 5, 26 batches of biopsy samples and 46 batches of
  2097. blood samples were available.
  2098. \end_layout
  2099. \begin_layout Standard
  2100. \begin_inset Float figure
  2101. wide false
  2102. sideways false
  2103. status open
  2104. \begin_layout Plain Layout
  2105. \align center
  2106. \begin_inset Graphics
  2107. filename graphics/frma-pax-bx/M-BX-violin.pdf
  2108. lyxscale 40
  2109. height 80theight%
  2110. groupId m-violin
  2111. \end_inset
  2112. \end_layout
  2113. \begin_layout Plain Layout
  2114. \begin_inset Caption Standard
  2115. \begin_layout Plain Layout
  2116. \begin_inset CommandInset label
  2117. LatexCommand label
  2118. name "fig:m-bx-violin"
  2119. \end_inset
  2120. \series bold
  2121. Violin plot of log ratios between normalizations for 20 biopsy samples.
  2122. \series default
  2123. Each of 20 randomly selected biopsy samples was normalized with RMA and
  2124. with 5 different sets of fRMA vectors.
  2125. This shows the distribution of log ratios between normalized expression
  2126. values, aggregated across all 20 arrays.
  2127. \end_layout
  2128. \end_inset
  2129. \end_layout
  2130. \end_inset
  2131. \end_layout
  2132. \begin_layout Standard
  2133. Since fRMA training requires equal-size batches, larger batches are downsampled
  2134. randomly.
  2135. This introduces a nondeterministic step in the generation of normalization
  2136. vectors.
  2137. To show that this randomness does not substantially change the outcome,
  2138. the random downsampling and subsequent vector learning was repeated 5 times,
  2139. with a different random seed each time.
  2140. 20 samples were selected at random as a test set and normalized with each
  2141. of the 5 sets of fRMA normalization vectors as well as ordinary RMA, and
  2142. the normalized expression values were compared across normalizations.
  2143. Figure
  2144. \begin_inset CommandInset ref
  2145. LatexCommand ref
  2146. reference "fig:m-bx-violin"
  2147. plural "false"
  2148. caps "false"
  2149. noprefix "false"
  2150. \end_inset
  2151. shows a summary of these comparisons for biopsy samples.
  2152. Comparing RMA to each of the 5 fRMA normalizations, the distribution of
  2153. log ratios is somewhat wide, indicating that the normalizations disagree
  2154. on the expression values of a fair number of probe sets.
  2155. In contrast, comparisons of fRMA against fRMA, the vast mojority of probe
  2156. sets have very small log ratios, indicating a very high agreement between
  2157. the normalized values generated by the two normalizations.
  2158. This shows that the fRMA normalization's behavior is not very sensitive
  2159. to the random downsampling of larger batches during training.
  2160. \end_layout
  2161. \begin_layout Standard
  2162. \begin_inset Float figure
  2163. wide false
  2164. sideways false
  2165. status open
  2166. \begin_layout Plain Layout
  2167. \align center
  2168. \begin_inset Graphics
  2169. filename graphics/frma-pax-bx/MA-BX-RMA.fRMA.pdf
  2170. lyxscale 50
  2171. width 100text%
  2172. groupId ma-frma
  2173. \end_inset
  2174. \end_layout
  2175. \begin_layout Plain Layout
  2176. \begin_inset Caption Standard
  2177. \begin_layout Plain Layout
  2178. \begin_inset CommandInset label
  2179. LatexCommand label
  2180. name "fig:ma-bx-rma-frma"
  2181. \end_inset
  2182. \series bold
  2183. Representative MA plot comparing RMA against fRMA for 20 biopsy samples.
  2184. \series default
  2185. Averages and log ratios were computed for every probe in each of 20 biopsy
  2186. samples between RMA normalization and fRMA.
  2187. Density of points is represented by darkness of shading, and individual
  2188. outlier points are plotted.
  2189. \end_layout
  2190. \end_inset
  2191. \end_layout
  2192. \end_inset
  2193. \end_layout
  2194. \begin_layout Standard
  2195. \begin_inset Float figure
  2196. wide false
  2197. sideways false
  2198. status open
  2199. \begin_layout Plain Layout
  2200. \align center
  2201. \begin_inset Graphics
  2202. filename graphics/frma-pax-bx/MA-BX-fRMA.fRMA.pdf
  2203. lyxscale 50
  2204. width 100text%
  2205. groupId ma-frma
  2206. \end_inset
  2207. \end_layout
  2208. \begin_layout Plain Layout
  2209. \begin_inset Caption Standard
  2210. \begin_layout Plain Layout
  2211. \begin_inset CommandInset label
  2212. LatexCommand label
  2213. name "fig:ma-bx-frma-frma"
  2214. \end_inset
  2215. \series bold
  2216. Representative MA plot comparing different fRMA vectors for 20 biopsy samples.
  2217. \series default
  2218. Averages and log ratios were computed for every probe in each of 20 biopsy
  2219. samples between fRMA normalizations using vectors from two different batch
  2220. samplings.
  2221. Density of points is represented by darkness of shading, and individual
  2222. outlier points are plotted.
  2223. \end_layout
  2224. \end_inset
  2225. \end_layout
  2226. \end_inset
  2227. \end_layout
  2228. \begin_layout Standard
  2229. Figure
  2230. \begin_inset CommandInset ref
  2231. LatexCommand ref
  2232. reference "fig:ma-bx-rma-frma"
  2233. plural "false"
  2234. caps "false"
  2235. noprefix "false"
  2236. \end_inset
  2237. shows an MA plot of the RMA-normalized values against the fRMA-normalized
  2238. values for the same probe sets and arrays, corresponding to the first row
  2239. of Figure
  2240. \begin_inset CommandInset ref
  2241. LatexCommand ref
  2242. reference "fig:m-bx-violin"
  2243. plural "false"
  2244. caps "false"
  2245. noprefix "false"
  2246. \end_inset
  2247. .
  2248. This MA plot shows that not only is there a wide distribution of M-values,
  2249. but the trend of M-values is dependent on the average normalized intensity.
  2250. This is expected, since the overall trend represents the differences in
  2251. the quantile normalization step.
  2252. When running RMA, only the quantiles for these specific 20 arrays are used,
  2253. while for fRMA the quantile distribution is taking from all arrays used
  2254. in training.
  2255. Figure
  2256. \begin_inset CommandInset ref
  2257. LatexCommand ref
  2258. reference "fig:ma-bx-frma-frma"
  2259. plural "false"
  2260. caps "false"
  2261. noprefix "false"
  2262. \end_inset
  2263. shows a similar MA plot comparing 2 different fRMA normalizations, correspondin
  2264. g to the 6th row of Figure
  2265. \begin_inset CommandInset ref
  2266. LatexCommand ref
  2267. reference "fig:m-bx-violin"
  2268. plural "false"
  2269. caps "false"
  2270. noprefix "false"
  2271. \end_inset
  2272. .
  2273. The MA plot is very tightly centered around zero with no visible trend.
  2274. Figures
  2275. \begin_inset CommandInset ref
  2276. LatexCommand ref
  2277. reference "fig:m-pax-violin"
  2278. plural "false"
  2279. caps "false"
  2280. noprefix "false"
  2281. \end_inset
  2282. ,
  2283. \begin_inset CommandInset ref
  2284. LatexCommand ref
  2285. reference "fig:MA-PAX-rma-frma"
  2286. plural "false"
  2287. caps "false"
  2288. noprefix "false"
  2289. \end_inset
  2290. , and
  2291. \begin_inset CommandInset ref
  2292. LatexCommand ref
  2293. reference "fig:ma-bx-frma-frma"
  2294. plural "false"
  2295. caps "false"
  2296. noprefix "false"
  2297. \end_inset
  2298. show exactly the same information for the blood samples, once again comparing
  2299. the normalized expression values between normalizations for all probe sets
  2300. across 20 randomly selected test arrays.
  2301. Once again, there is a wider distribution of log ratios between RMA-normalized
  2302. values and fRMA-normalized, and a much tighter distribution when comparing
  2303. different fRMA normalizations to each other, indicating that the fRMA training
  2304. process is robust to random batch downsampling for the blood samples as
  2305. well.
  2306. \end_layout
  2307. \begin_layout Standard
  2308. \begin_inset Float figure
  2309. wide false
  2310. sideways false
  2311. status open
  2312. \begin_layout Plain Layout
  2313. \align center
  2314. \begin_inset Graphics
  2315. filename graphics/frma-pax-bx/M-PAX-violin.pdf
  2316. lyxscale 40
  2317. height 80theight%
  2318. groupId m-violin
  2319. \end_inset
  2320. \end_layout
  2321. \begin_layout Plain Layout
  2322. \begin_inset Caption Standard
  2323. \begin_layout Plain Layout
  2324. \begin_inset CommandInset label
  2325. LatexCommand label
  2326. name "fig:m-pax-violin"
  2327. \end_inset
  2328. \series bold
  2329. Violin plot of log ratios between normalizations for 20 blood samples.
  2330. \series default
  2331. Each of 20 randomly selected blood samples was normalized with RMA and with
  2332. 5 different sets of fRMA vectors.
  2333. This shows the distribution of log ratios between normalized expression
  2334. values, aggregated across all 20 arrays.
  2335. \end_layout
  2336. \end_inset
  2337. \end_layout
  2338. \end_inset
  2339. \end_layout
  2340. \begin_layout Standard
  2341. \begin_inset Float figure
  2342. wide false
  2343. sideways false
  2344. status open
  2345. \begin_layout Plain Layout
  2346. \align center
  2347. \begin_inset Graphics
  2348. filename graphics/frma-pax-bx/MA-PAX-RMA.fRMA.pdf
  2349. lyxscale 50
  2350. width 100text%
  2351. groupId ma-frma
  2352. \end_inset
  2353. \end_layout
  2354. \begin_layout Plain Layout
  2355. \begin_inset Caption Standard
  2356. \begin_layout Plain Layout
  2357. \begin_inset CommandInset label
  2358. LatexCommand label
  2359. name "fig:MA-PAX-rma-frma"
  2360. \end_inset
  2361. \series bold
  2362. Representative MA plot comparing RMA against fRMA for 20 blood samples.
  2363. \series default
  2364. Averages and log ratios were computed for every probe in each of 20 blood
  2365. samples between RMA normalization and fRMA.
  2366. Density of points is represented by darkness of shading, and individual
  2367. outlier points are plotted.
  2368. \end_layout
  2369. \end_inset
  2370. \end_layout
  2371. \begin_layout Plain Layout
  2372. \end_layout
  2373. \end_inset
  2374. \end_layout
  2375. \begin_layout Standard
  2376. \begin_inset Float figure
  2377. wide false
  2378. sideways false
  2379. status open
  2380. \begin_layout Plain Layout
  2381. \align center
  2382. \begin_inset Graphics
  2383. filename graphics/frma-pax-bx/MA-PAX-fRMA.fRMA.pdf
  2384. lyxscale 50
  2385. width 100text%
  2386. groupId ma-frma
  2387. \end_inset
  2388. \end_layout
  2389. \begin_layout Plain Layout
  2390. \begin_inset Caption Standard
  2391. \begin_layout Plain Layout
  2392. \begin_inset CommandInset label
  2393. LatexCommand label
  2394. name "fig:MA-PAX-frma-frma"
  2395. \end_inset
  2396. \series bold
  2397. Representative MA plot comparing different fRMA vectors for 20 blood samples.
  2398. \series default
  2399. Averages and log ratios were computed for every probe in each of 20 blood
  2400. samples between fRMA normalizations using vectors from two different batch
  2401. samplings.
  2402. Density of points is represented by darkness of shading, and individual
  2403. outlier points are plotted.
  2404. \end_layout
  2405. \end_inset
  2406. \end_layout
  2407. \end_inset
  2408. \end_layout
  2409. \begin_layout Standard
  2410. \begin_inset ERT
  2411. status open
  2412. \begin_layout Plain Layout
  2413. \backslash
  2414. FloatBarrier
  2415. \end_layout
  2416. \end_inset
  2417. \end_layout
  2418. \begin_layout Subsection
  2419. Adapting voom to methylation array data improves model fit
  2420. \end_layout
  2421. \begin_layout Standard
  2422. \begin_inset Flex TODO Note (inline)
  2423. status open
  2424. \begin_layout Plain Layout
  2425. Write figure legends
  2426. \end_layout
  2427. \end_inset
  2428. \end_layout
  2429. \begin_layout Standard
  2430. \begin_inset Float figure
  2431. wide false
  2432. sideways false
  2433. status open
  2434. \begin_layout Plain Layout
  2435. \begin_inset Graphics
  2436. filename graphics/methylvoom/unadj.dupcor/meanvar-trends-PAGE1-RASTER.png
  2437. lyxscale 15
  2438. width 100col%
  2439. groupId raster-600ppi
  2440. \end_inset
  2441. \end_layout
  2442. \begin_layout Plain Layout
  2443. \begin_inset Caption Standard
  2444. \begin_layout Plain Layout
  2445. \series bold
  2446. \begin_inset CommandInset label
  2447. LatexCommand label
  2448. name "fig:meanvar-basic"
  2449. \end_inset
  2450. Mean-variance trend with no SVA or weights
  2451. \end_layout
  2452. \end_inset
  2453. \end_layout
  2454. \end_inset
  2455. \end_layout
  2456. \begin_layout Standard
  2457. \begin_inset Float figure
  2458. wide false
  2459. sideways false
  2460. status open
  2461. \begin_layout Plain Layout
  2462. \begin_inset Graphics
  2463. filename graphics/methylvoom/unadj.dupcor.sva.aw/meanvar-trends-PAGE1-RASTER.png
  2464. lyxscale 15
  2465. width 100col%
  2466. groupId raster-600ppi
  2467. \end_inset
  2468. \end_layout
  2469. \begin_layout Plain Layout
  2470. \begin_inset Caption Standard
  2471. \begin_layout Plain Layout
  2472. \series bold
  2473. \begin_inset CommandInset label
  2474. LatexCommand label
  2475. name "fig:meanvar-sva-aw"
  2476. \end_inset
  2477. Mean-variance trend with SVA and sample quality weights.
  2478. \end_layout
  2479. \end_inset
  2480. \end_layout
  2481. \end_inset
  2482. \end_layout
  2483. \begin_layout Standard
  2484. \begin_inset Float figure
  2485. wide false
  2486. sideways false
  2487. status open
  2488. \begin_layout Plain Layout
  2489. \begin_inset Graphics
  2490. filename graphics/methylvoom/unadj.dupcor.sva.voomaw/meanvar-trends-PAGE1-RASTER.png
  2491. lyxscale 15
  2492. width 100col%
  2493. groupId raster-600ppi
  2494. \end_inset
  2495. \end_layout
  2496. \begin_layout Plain Layout
  2497. \begin_inset Caption Standard
  2498. \begin_layout Plain Layout
  2499. \series bold
  2500. \begin_inset CommandInset label
  2501. LatexCommand label
  2502. name "fig:voom-sva-voomaw"
  2503. \end_inset
  2504. Mean-variance trend modelled by voom, with SVA and sample weights.
  2505. \series default
  2506. The y-axis is the square root of the standard deviation for each probe,
  2507. because this is the scale on which voom fits its lowess curve.
  2508. \end_layout
  2509. \end_inset
  2510. \end_layout
  2511. \end_inset
  2512. \begin_inset Float figure
  2513. wide false
  2514. sideways false
  2515. status open
  2516. \begin_layout Plain Layout
  2517. \begin_inset Graphics
  2518. filename graphics/methylvoom/unadj.dupcor.sva.voomaw/meanvar-trends-PAGE2-RASTER.png
  2519. lyxscale 15
  2520. width 100col%
  2521. groupId raster-600ppi
  2522. \end_inset
  2523. \end_layout
  2524. \begin_layout Plain Layout
  2525. \begin_inset Caption Standard
  2526. \begin_layout Plain Layout
  2527. \series bold
  2528. \begin_inset CommandInset label
  2529. LatexCommand label
  2530. name "fig:meanvar-sva-voomaw"
  2531. \end_inset
  2532. Residual mean-variance trend after modeling with SVA, sample weights, and
  2533. voom.
  2534. \end_layout
  2535. \end_inset
  2536. \end_layout
  2537. \end_inset
  2538. \end_layout
  2539. \begin_layout Itemize
  2540. U-shaped mean-var trend visible in data, even after accounting for unobserved
  2541. confounders (SVA) and array quality (sample weights)
  2542. \end_layout
  2543. \begin_layout Itemize
  2544. \begin_inset Quotes eld
  2545. \end_inset
  2546. vooma
  2547. \begin_inset Quotes erd
  2548. \end_inset
  2549. models this trend, and after voom, the mean-variance trend is flat and
  2550. the median varaiance is approximately 1 (0 on log scale)
  2551. \end_layout
  2552. \begin_layout Itemize
  2553. M-value distribution is bimodal - expected if most CpG methylation states
  2554. are homogeneous among cell populations, either all methylated or all unmethylat
  2555. ed.
  2556. \end_layout
  2557. \begin_layout Standard
  2558. \begin_inset Float table
  2559. wide false
  2560. sideways false
  2561. status open
  2562. \begin_layout Plain Layout
  2563. \align center
  2564. \begin_inset Tabular
  2565. <lyxtabular version="3" rows="5" columns="2">
  2566. <features tabularvalignment="middle">
  2567. <column alignment="center" valignment="top">
  2568. <column alignment="center" valignment="top">
  2569. <row>
  2570. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2571. \begin_inset Text
  2572. \begin_layout Plain Layout
  2573. Covariate
  2574. \end_layout
  2575. \end_inset
  2576. </cell>
  2577. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2578. \begin_inset Text
  2579. \begin_layout Plain Layout
  2580. p-value
  2581. \end_layout
  2582. \end_inset
  2583. </cell>
  2584. </row>
  2585. <row>
  2586. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2587. \begin_inset Text
  2588. \begin_layout Plain Layout
  2589. Transplant Status
  2590. \end_layout
  2591. \end_inset
  2592. </cell>
  2593. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2594. \begin_inset Text
  2595. \begin_layout Plain Layout
  2596. 0.404
  2597. \end_layout
  2598. \end_inset
  2599. </cell>
  2600. </row>
  2601. <row>
  2602. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2603. \begin_inset Text
  2604. \begin_layout Plain Layout
  2605. Diabetes Diagnosis
  2606. \end_layout
  2607. \end_inset
  2608. </cell>
  2609. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2610. \begin_inset Text
  2611. \begin_layout Plain Layout
  2612. 0.00106
  2613. \end_layout
  2614. \end_inset
  2615. </cell>
  2616. </row>
  2617. <row>
  2618. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2619. \begin_inset Text
  2620. \begin_layout Plain Layout
  2621. Sex
  2622. \end_layout
  2623. \end_inset
  2624. </cell>
  2625. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2626. \begin_inset Text
  2627. \begin_layout Plain Layout
  2628. 0.148
  2629. \end_layout
  2630. \end_inset
  2631. </cell>
  2632. </row>
  2633. <row>
  2634. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2635. \begin_inset Text
  2636. \begin_layout Plain Layout
  2637. Age
  2638. \end_layout
  2639. \end_inset
  2640. </cell>
  2641. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2642. \begin_inset Text
  2643. \begin_layout Plain Layout
  2644. 0.212
  2645. \end_layout
  2646. \end_inset
  2647. </cell>
  2648. </row>
  2649. </lyxtabular>
  2650. \end_inset
  2651. \end_layout
  2652. \begin_layout Plain Layout
  2653. \begin_inset Caption Standard
  2654. \begin_layout Plain Layout
  2655. \begin_inset CommandInset label
  2656. LatexCommand label
  2657. name "tab:weight-covariate-tests"
  2658. \end_inset
  2659. Association of sample weights with clinical covariates.
  2660. \end_layout
  2661. \end_inset
  2662. \end_layout
  2663. \begin_layout Plain Layout
  2664. \end_layout
  2665. \end_inset
  2666. \end_layout
  2667. \begin_layout Standard
  2668. \begin_inset Flex TODO Note (inline)
  2669. status open
  2670. \begin_layout Plain Layout
  2671. Redo the sample weight boxplot with notches and without fill colors
  2672. \end_layout
  2673. \end_inset
  2674. \end_layout
  2675. \begin_layout Standard
  2676. \begin_inset Float figure
  2677. wide false
  2678. sideways false
  2679. status open
  2680. \begin_layout Plain Layout
  2681. \begin_inset Graphics
  2682. filename graphics/methylvoom/unadj.dupcor.sva.voomaw/sample-weights-PAGE3.pdf
  2683. \end_inset
  2684. \end_layout
  2685. \begin_layout Plain Layout
  2686. \begin_inset Caption Standard
  2687. \begin_layout Plain Layout
  2688. \begin_inset CommandInset label
  2689. LatexCommand label
  2690. name "fig:diabetes-sample-weights"
  2691. \end_inset
  2692. \series bold
  2693. Boxplot of sample quality weights grouped by diabetes diagnosis.
  2694. \end_layout
  2695. \end_inset
  2696. \end_layout
  2697. \begin_layout Plain Layout
  2698. \end_layout
  2699. \end_inset
  2700. \end_layout
  2701. \begin_layout Itemize
  2702. Based on estimated sample weights, T2D samples are significantly more variable
  2703. than T1D samples (t-test p = 1.06e-3)
  2704. \end_layout
  2705. \begin_layout Itemize
  2706. Should not affect further analysis
  2707. \end_layout
  2708. \begin_layout Standard
  2709. \begin_inset Float table
  2710. wide false
  2711. sideways false
  2712. status open
  2713. \begin_layout Plain Layout
  2714. \align center
  2715. \begin_inset Tabular
  2716. <lyxtabular version="3" rows="5" columns="4">
  2717. <features tabularvalignment="middle">
  2718. <column alignment="center" valignment="top">
  2719. <column alignment="center" valignment="top">
  2720. <column alignment="center" valignment="top">
  2721. <column alignment="center" valignment="top">
  2722. <row>
  2723. <cell alignment="center" valignment="top" usebox="none">
  2724. \begin_inset Text
  2725. \begin_layout Plain Layout
  2726. \end_layout
  2727. \end_inset
  2728. </cell>
  2729. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2730. \begin_inset Text
  2731. \begin_layout Plain Layout
  2732. Analysis
  2733. \end_layout
  2734. \end_inset
  2735. </cell>
  2736. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2737. \begin_inset Text
  2738. \begin_layout Plain Layout
  2739. \end_layout
  2740. \end_inset
  2741. </cell>
  2742. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2743. \begin_inset Text
  2744. \begin_layout Plain Layout
  2745. \end_layout
  2746. \end_inset
  2747. </cell>
  2748. </row>
  2749. <row>
  2750. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2751. \begin_inset Text
  2752. \begin_layout Plain Layout
  2753. Contrast
  2754. \end_layout
  2755. \end_inset
  2756. </cell>
  2757. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2758. \begin_inset Text
  2759. \begin_layout Plain Layout
  2760. A
  2761. \end_layout
  2762. \end_inset
  2763. </cell>
  2764. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2765. \begin_inset Text
  2766. \begin_layout Plain Layout
  2767. B
  2768. \end_layout
  2769. \end_inset
  2770. </cell>
  2771. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2772. \begin_inset Text
  2773. \begin_layout Plain Layout
  2774. C
  2775. \end_layout
  2776. \end_inset
  2777. </cell>
  2778. </row>
  2779. <row>
  2780. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2781. \begin_inset Text
  2782. \begin_layout Plain Layout
  2783. TX vs AR
  2784. \end_layout
  2785. \end_inset
  2786. </cell>
  2787. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2788. \begin_inset Text
  2789. \begin_layout Plain Layout
  2790. 0
  2791. \end_layout
  2792. \end_inset
  2793. </cell>
  2794. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2795. \begin_inset Text
  2796. \begin_layout Plain Layout
  2797. 25
  2798. \end_layout
  2799. \end_inset
  2800. </cell>
  2801. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2802. \begin_inset Text
  2803. \begin_layout Plain Layout
  2804. 22
  2805. \end_layout
  2806. \end_inset
  2807. </cell>
  2808. </row>
  2809. <row>
  2810. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2811. \begin_inset Text
  2812. \begin_layout Plain Layout
  2813. TX vs ADNR
  2814. \end_layout
  2815. \end_inset
  2816. </cell>
  2817. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2818. \begin_inset Text
  2819. \begin_layout Plain Layout
  2820. 7
  2821. \end_layout
  2822. \end_inset
  2823. </cell>
  2824. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2825. \begin_inset Text
  2826. \begin_layout Plain Layout
  2827. 338
  2828. \end_layout
  2829. \end_inset
  2830. </cell>
  2831. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2832. \begin_inset Text
  2833. \begin_layout Plain Layout
  2834. 369
  2835. \end_layout
  2836. \end_inset
  2837. </cell>
  2838. </row>
  2839. <row>
  2840. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2841. \begin_inset Text
  2842. \begin_layout Plain Layout
  2843. TX vs CAN
  2844. \end_layout
  2845. \end_inset
  2846. </cell>
  2847. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2848. \begin_inset Text
  2849. \begin_layout Plain Layout
  2850. 0
  2851. \end_layout
  2852. \end_inset
  2853. </cell>
  2854. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2855. \begin_inset Text
  2856. \begin_layout Plain Layout
  2857. 231
  2858. \end_layout
  2859. \end_inset
  2860. </cell>
  2861. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2862. \begin_inset Text
  2863. \begin_layout Plain Layout
  2864. 278
  2865. \end_layout
  2866. \end_inset
  2867. </cell>
  2868. </row>
  2869. </lyxtabular>
  2870. \end_inset
  2871. \end_layout
  2872. \begin_layout Plain Layout
  2873. \begin_inset Caption Standard
  2874. \begin_layout Plain Layout
  2875. \begin_inset CommandInset label
  2876. LatexCommand label
  2877. name "tab:methyl-num-signif"
  2878. \end_inset
  2879. \series bold
  2880. Number of probes significant at 10% FDR for each contrast in each analysis.
  2881. \end_layout
  2882. \end_inset
  2883. \end_layout
  2884. \end_inset
  2885. \end_layout
  2886. \begin_layout Standard
  2887. \begin_inset Flex TODO Note (inline)
  2888. status open
  2889. \begin_layout Plain Layout
  2890. Cite the pi0 estimation method from propTrueNull
  2891. \end_layout
  2892. \end_inset
  2893. \end_layout
  2894. \begin_layout Standard
  2895. \begin_inset Float table
  2896. wide false
  2897. sideways false
  2898. status open
  2899. \begin_layout Plain Layout
  2900. \align center
  2901. \begin_inset Tabular
  2902. <lyxtabular version="3" rows="5" columns="4">
  2903. <features tabularvalignment="middle">
  2904. <column alignment="center" valignment="top">
  2905. <column alignment="center" valignment="top">
  2906. <column alignment="center" valignment="top">
  2907. <column alignment="center" valignment="top">
  2908. <row>
  2909. <cell alignment="center" valignment="top" usebox="none">
  2910. \begin_inset Text
  2911. \begin_layout Plain Layout
  2912. \end_layout
  2913. \end_inset
  2914. </cell>
  2915. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2916. \begin_inset Text
  2917. \begin_layout Plain Layout
  2918. Analysis
  2919. \end_layout
  2920. \end_inset
  2921. </cell>
  2922. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2923. \begin_inset Text
  2924. \begin_layout Plain Layout
  2925. \end_layout
  2926. \end_inset
  2927. </cell>
  2928. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2929. \begin_inset Text
  2930. \begin_layout Plain Layout
  2931. \end_layout
  2932. \end_inset
  2933. </cell>
  2934. </row>
  2935. <row>
  2936. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2937. \begin_inset Text
  2938. \begin_layout Plain Layout
  2939. Contrast
  2940. \end_layout
  2941. \end_inset
  2942. </cell>
  2943. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2944. \begin_inset Text
  2945. \begin_layout Plain Layout
  2946. A
  2947. \end_layout
  2948. \end_inset
  2949. </cell>
  2950. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2951. \begin_inset Text
  2952. \begin_layout Plain Layout
  2953. B
  2954. \end_layout
  2955. \end_inset
  2956. </cell>
  2957. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2958. \begin_inset Text
  2959. \begin_layout Plain Layout
  2960. C
  2961. \end_layout
  2962. \end_inset
  2963. </cell>
  2964. </row>
  2965. <row>
  2966. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2967. \begin_inset Text
  2968. \begin_layout Plain Layout
  2969. TX vs AR
  2970. \end_layout
  2971. \end_inset
  2972. </cell>
  2973. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2974. \begin_inset Text
  2975. \begin_layout Plain Layout
  2976. 0
  2977. \end_layout
  2978. \end_inset
  2979. </cell>
  2980. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2981. \begin_inset Text
  2982. \begin_layout Plain Layout
  2983. 10,063
  2984. \end_layout
  2985. \end_inset
  2986. </cell>
  2987. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2988. \begin_inset Text
  2989. \begin_layout Plain Layout
  2990. 11,225
  2991. \end_layout
  2992. \end_inset
  2993. </cell>
  2994. </row>
  2995. <row>
  2996. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2997. \begin_inset Text
  2998. \begin_layout Plain Layout
  2999. TX vs ADNR
  3000. \end_layout
  3001. \end_inset
  3002. </cell>
  3003. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3004. \begin_inset Text
  3005. \begin_layout Plain Layout
  3006. 27
  3007. \end_layout
  3008. \end_inset
  3009. </cell>
  3010. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3011. \begin_inset Text
  3012. \begin_layout Plain Layout
  3013. 12,674
  3014. \end_layout
  3015. \end_inset
  3016. </cell>
  3017. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3018. \begin_inset Text
  3019. \begin_layout Plain Layout
  3020. 13,086
  3021. \end_layout
  3022. \end_inset
  3023. </cell>
  3024. </row>
  3025. <row>
  3026. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3027. \begin_inset Text
  3028. \begin_layout Plain Layout
  3029. TX vs CAN
  3030. \end_layout
  3031. \end_inset
  3032. </cell>
  3033. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3034. \begin_inset Text
  3035. \begin_layout Plain Layout
  3036. 966
  3037. \end_layout
  3038. \end_inset
  3039. </cell>
  3040. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3041. \begin_inset Text
  3042. \begin_layout Plain Layout
  3043. 20,039
  3044. \end_layout
  3045. \end_inset
  3046. </cell>
  3047. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3048. \begin_inset Text
  3049. \begin_layout Plain Layout
  3050. 20,955
  3051. \end_layout
  3052. \end_inset
  3053. </cell>
  3054. </row>
  3055. </lyxtabular>
  3056. \end_inset
  3057. \end_layout
  3058. \begin_layout Plain Layout
  3059. \begin_inset Caption Standard
  3060. \begin_layout Plain Layout
  3061. \begin_inset CommandInset label
  3062. LatexCommand label
  3063. name "tab:methyl-est-nonnull"
  3064. \end_inset
  3065. \series bold
  3066. Estimated number of non-null tests for each contrast in each analysis.
  3067. \end_layout
  3068. \end_inset
  3069. \end_layout
  3070. \end_inset
  3071. \end_layout
  3072. \begin_layout Standard
  3073. \begin_inset Flex TODO Note (inline)
  3074. status open
  3075. \begin_layout Plain Layout
  3076. Re-generate p-value histograms for all relevant contrasts in a single figure.
  3077. \end_layout
  3078. \end_inset
  3079. \end_layout
  3080. \begin_layout Itemize
  3081. Better variance properties in analyses B and C give more significant probes
  3082. (10% FDR)
  3083. \begin_inset CommandInset ref
  3084. LatexCommand ref
  3085. reference "tab:methyl-num-signif"
  3086. plural "false"
  3087. caps "false"
  3088. noprefix "false"
  3089. \end_inset
  3090. , more probes estimated to be differentially methylated
  3091. \begin_inset CommandInset ref
  3092. LatexCommand ref
  3093. reference "tab:methyl-est-nonnull"
  3094. plural "false"
  3095. caps "false"
  3096. noprefix "false"
  3097. \end_inset
  3098. , and better looking p-value distributions [histogram figures].
  3099. \end_layout
  3100. \begin_layout Section
  3101. Discussion
  3102. \end_layout
  3103. \begin_layout Subsection
  3104. fRMA achieves clinically applicable normalization without sacrificing classifica
  3105. tion performance
  3106. \end_layout
  3107. \begin_layout Standard
  3108. As shown in Figure
  3109. \begin_inset CommandInset ref
  3110. LatexCommand ref
  3111. reference "fig:Classifier-probabilities-RMA"
  3112. plural "false"
  3113. caps "false"
  3114. noprefix "false"
  3115. \end_inset
  3116. , improper normalization, particularly separate normalization of training
  3117. and test samples, leads to unwanted biases in classification.
  3118. In a controlled experimental context, it is always possible to correct
  3119. this issue by normalizing all experimental samples together.
  3120. However, because it is not feasible to normalize all samples together in
  3121. a clinical context, a single-channel normalization is required is required.
  3122. \end_layout
  3123. \begin_layout Standard
  3124. The major concern in using a single-channel normalization is that non-single-cha
  3125. nnel methods can share information between arrays to improve the normalization,
  3126. and single-channel methods risk sacrificing the gains in normalization
  3127. accuracy that come from this information sharing.
  3128. In the case of RMA, this information sharing is accomplished through quantile
  3129. normalization and median polish steps.
  3130. The need for information sharing in quantile normalization can easily be
  3131. removed by learning a fixed set of quantiles from external data and normalizing
  3132. each array to these fixed quantiles, instead of the quantiles of the data
  3133. itself.
  3134. As long as the fixed quantiles are reasonable, the result will be similar
  3135. to standard RMA.
  3136. However, there is no analogous way to eliminate cross-array information
  3137. sharing in the median polish step, so fRMA replaces this with a weighted
  3138. average of probes on each array, with the weights learned from external
  3139. data.
  3140. This step of fRMA has the greatest potential to diverge from RMA un undesirable
  3141. ways.
  3142. \end_layout
  3143. \begin_layout Standard
  3144. However, when run on real data, fRMA performed at least as well as RMA in
  3145. both the internal validation and external validation tests.
  3146. This shows that fRMA can be used to normalize individual clinical samples
  3147. in a class prediction context without sacrificing the classifier performance
  3148. that would be obtained by using the more well-established RMA for normalization.
  3149. The other single-channel normalization method considered, SCAN, showed
  3150. some loss of AUC in the external validation test.
  3151. Based on these results, fRMA is the preferred normalization for clinical
  3152. samples in a class prediction context.
  3153. \end_layout
  3154. \begin_layout Subsection
  3155. Robust fRMA vectors can be generated for new array platforms
  3156. \end_layout
  3157. \begin_layout Standard
  3158. \begin_inset Flex TODO Note (inline)
  3159. status open
  3160. \begin_layout Plain Layout
  3161. Look up the exact numbers, do a find & replace for
  3162. \begin_inset Quotes eld
  3163. \end_inset
  3164. 850
  3165. \begin_inset Quotes erd
  3166. \end_inset
  3167. \end_layout
  3168. \end_inset
  3169. \end_layout
  3170. \begin_layout Standard
  3171. The published fRMA normalization vectors for the hgu133plus2 platform were
  3172. generated from a set of about 850 samples chosen from a wide range of tissues,
  3173. which the authors determined was sufficient to generate a robust set of
  3174. normalization vectors that could be applied across all tissues
  3175. \begin_inset CommandInset citation
  3176. LatexCommand cite
  3177. key "McCall2010"
  3178. literal "false"
  3179. \end_inset
  3180. .
  3181. Since we only had hthgu133pluspm for 2 tissues of interest, our needs were
  3182. more modest.
  3183. Even using only 130 samples in 26 batches of 5 samples each for kidney
  3184. biopsies, we were able to train a robust set of fRMA normalization vectors
  3185. that were not meaningfully affected by the random selection of 5 samples
  3186. from each batch.
  3187. As expected, the training process was just as robust for the blood samples
  3188. with 230 samples in 46 batches of 5 samples each.
  3189. Because these vectors were each generated using training samples from a
  3190. single tissue, they are not suitable for general use, unlike the vectors
  3191. provided with fRMA itself.
  3192. They are purpose-build for normalizing a specific type of sample on a specific
  3193. platform.
  3194. \end_layout
  3195. \begin_layout Subsection
  3196. voom
  3197. \end_layout
  3198. \begin_layout Itemize
  3199. Methods like voom designed for RNA-seq can also help with array analysis
  3200. \end_layout
  3201. \begin_layout Itemize
  3202. Extracting and modeling confounders common to many features improves model
  3203. correspondence to known biology
  3204. \end_layout
  3205. \begin_layout Chapter
  3206. Globin-blocking for more effective blood RNA-seq analysis in primate animal
  3207. model
  3208. \end_layout
  3209. \begin_layout Standard
  3210. \begin_inset Flex TODO Note (inline)
  3211. status open
  3212. \begin_layout Plain Layout
  3213. Choose between above and the paper title: Optimizing yield of deep RNA sequencin
  3214. g for gene expression profiling by globin reduction of peripheral blood
  3215. samples from cynomolgus monkeys (Macaca fascicularis).
  3216. \end_layout
  3217. \end_inset
  3218. \end_layout
  3219. \begin_layout Standard
  3220. \begin_inset Flex TODO Note (inline)
  3221. status open
  3222. \begin_layout Plain Layout
  3223. Chapter author list: https://tex.stackexchange.com/questions/156862/displaying-aut
  3224. hor-for-each-chapter-in-book Every chapter gets an author list, which may
  3225. or may not be part of a citation to a published/preprinted paper.
  3226. \end_layout
  3227. \end_inset
  3228. \end_layout
  3229. \begin_layout Standard
  3230. \begin_inset Flex TODO Note (inline)
  3231. status open
  3232. \begin_layout Plain Layout
  3233. Preprint then cite the paper
  3234. \end_layout
  3235. \end_inset
  3236. \end_layout
  3237. \begin_layout Section*
  3238. Abstract
  3239. \end_layout
  3240. \begin_layout Paragraph
  3241. Background
  3242. \end_layout
  3243. \begin_layout Standard
  3244. Primate blood contains high concentrations of globin messenger RNA.
  3245. Globin reduction is a standard technique used to improve the expression
  3246. results obtained by DNA microarrays on RNA from blood samples.
  3247. However, with whole transcriptome RNA-sequencing (RNA-seq) quickly replacing
  3248. microarrays for many applications, the impact of globin reduction for RNA-seq
  3249. has not been previously studied.
  3250. Moreover, no off-the-shelf kits are available for globin reduction in nonhuman
  3251. primates.
  3252. \end_layout
  3253. \begin_layout Paragraph
  3254. Results
  3255. \end_layout
  3256. \begin_layout Standard
  3257. Here we report a protocol for RNA-seq in primate blood samples that uses
  3258. complimentary oligonucleotides to block reverse transcription of the alpha
  3259. and beta globin genes.
  3260. In test samples from cynomolgus monkeys (Macaca fascicularis), this globin
  3261. blocking protocol approximately doubles the yield of informative (non-globin)
  3262. reads by greatly reducing the fraction of globin reads, while also improving
  3263. the consistency in sequencing depth between samples.
  3264. The increased yield enables detection of about 2000 more genes, significantly
  3265. increases the correlation in measured gene expression levels between samples,
  3266. and increases the sensitivity of differential gene expression tests.
  3267. \end_layout
  3268. \begin_layout Paragraph
  3269. Conclusions
  3270. \end_layout
  3271. \begin_layout Standard
  3272. These results show that globin blocking significantly improves the cost-effectiv
  3273. eness of mRNA sequencing in primate blood samples by doubling the yield
  3274. of useful reads, allowing detection of more genes, and improving the precision
  3275. of gene expression measurements.
  3276. Based on these results, a globin reducing or blocking protocol is recommended
  3277. for all RNA-seq studies of primate blood samples.
  3278. \end_layout
  3279. \begin_layout Section
  3280. Approach
  3281. \end_layout
  3282. \begin_layout Standard
  3283. \begin_inset Note Note
  3284. status open
  3285. \begin_layout Plain Layout
  3286. Consider putting some of this in the Intro chapter
  3287. \end_layout
  3288. \begin_layout Itemize
  3289. Cynomolgus monkeys as a model organism
  3290. \end_layout
  3291. \begin_deeper
  3292. \begin_layout Itemize
  3293. Highly related to humans
  3294. \end_layout
  3295. \begin_layout Itemize
  3296. Small size and short life cycle - good research animal
  3297. \end_layout
  3298. \begin_layout Itemize
  3299. Genomics resources still in development
  3300. \end_layout
  3301. \end_deeper
  3302. \begin_layout Itemize
  3303. Inadequacy of existing blood RNA-seq protocols
  3304. \end_layout
  3305. \begin_deeper
  3306. \begin_layout Itemize
  3307. Existing protocols use a separate globin pulldown step, slowing down processing
  3308. \end_layout
  3309. \end_deeper
  3310. \end_inset
  3311. \end_layout
  3312. \begin_layout Standard
  3313. Increasingly, researchers are turning to high-throughput mRNA sequencing
  3314. technologies (RNA-seq) in preference to expression microarrays for analysis
  3315. of gene expression
  3316. \begin_inset CommandInset citation
  3317. LatexCommand cite
  3318. key "Mutz2012"
  3319. literal "false"
  3320. \end_inset
  3321. .
  3322. The advantages are even greater for study of model organisms with no well-estab
  3323. lished array platforms available, such as the cynomolgus monkey (Macaca
  3324. fascicularis).
  3325. High fractions of globin mRNA are naturally present in mammalian peripheral
  3326. blood samples (up to 70% of total mRNA) and these are known to interfere
  3327. with the results of array-based expression profiling
  3328. \begin_inset CommandInset citation
  3329. LatexCommand cite
  3330. key "Winn2010"
  3331. literal "false"
  3332. \end_inset
  3333. .
  3334. The importance of globin reduction for RNA-seq of blood has only been evaluated
  3335. for a deepSAGE protocol on human samples
  3336. \begin_inset CommandInset citation
  3337. LatexCommand cite
  3338. key "Mastrokolias2012"
  3339. literal "false"
  3340. \end_inset
  3341. .
  3342. In the present report, we evaluated globin reduction using custom blocking
  3343. oligonucleotides for deep RNA-seq of peripheral blood samples from a nonhuman
  3344. primate, cynomolgus monkey, using the Illumina technology platform.
  3345. We demonstrate that globin reduction significantly improves the cost-effectiven
  3346. ess of RNA-seq in blood samples.
  3347. Thus, our protocol offers a significant advantage to any investigator planning
  3348. to use RNA-seq for gene expression profiling of nonhuman primate blood
  3349. samples.
  3350. Our method can be generally applied to any species by designing complementary
  3351. oligonucleotide blocking probes to the globin gene sequences of that species.
  3352. Indeed, any highly expressed but biologically uninformative transcripts
  3353. can also be blocked to further increase sequencing efficiency and value
  3354. \begin_inset CommandInset citation
  3355. LatexCommand cite
  3356. key "Arnaud2016"
  3357. literal "false"
  3358. \end_inset
  3359. .
  3360. \end_layout
  3361. \begin_layout Section
  3362. Methods
  3363. \end_layout
  3364. \begin_layout Subsection*
  3365. Sample collection
  3366. \end_layout
  3367. \begin_layout Standard
  3368. All research reported here was done under IACUC-approved protocols at the
  3369. University of Miami and complied with all applicable federal and state
  3370. regulations and ethical principles for nonhuman primate research.
  3371. Blood draws occurred between 16 April 2012 and 18 June 2015.
  3372. The experimental system involved intrahepatic pancreatic islet transplantation
  3373. into Cynomolgus monkeys with induced diabetes mellitus with or without
  3374. concomitant infusion of mesenchymal stem cells.
  3375. Blood was collected at serial time points before and after transplantation
  3376. into PAXgene Blood RNA tubes (PreAnalytiX/Qiagen, Valencia, CA) at the
  3377. precise volume:volume ratio of 2.5 ml whole blood into 6.9 ml of PAX gene
  3378. additive.
  3379. \end_layout
  3380. \begin_layout Subsection*
  3381. Globin Blocking
  3382. \end_layout
  3383. \begin_layout Standard
  3384. Four oligonucleotides were designed to hybridize to the 3’ end of the transcript
  3385. s for Cynomolgus HBA1, HBA2 and HBB, with two hybridization sites for HBB
  3386. and 2 sites for HBA (the chosen sites were identical in both HBA genes).
  3387. All oligos were purchased from Sigma and were entirely composed of 2’O-Me
  3388. bases with a C3 spacer positioned at the 3’ ends to prevent any polymerase
  3389. mediated primer extension.
  3390. \end_layout
  3391. \begin_layout Quote
  3392. HBA1/2 site 1: GCCCACUCAGACUUUAUUCAAAG-C3spacer
  3393. \end_layout
  3394. \begin_layout Quote
  3395. HBA1/2 site 2: GGUGCAAGGAGGGGAGGAG-C3spacer
  3396. \end_layout
  3397. \begin_layout Quote
  3398. HBB site 1: AAUGAAAAUAAAUGUUUUUUAUUAG-C3spacer
  3399. \end_layout
  3400. \begin_layout Quote
  3401. HBB site 2: CUCAAGGCCCUUCAUAAUAUCCC-C3spacer
  3402. \end_layout
  3403. \begin_layout Subsection*
  3404. RNA-seq Library Preparation
  3405. \end_layout
  3406. \begin_layout Standard
  3407. Sequencing libraries were prepared with 200ng total RNA from each sample.
  3408. Polyadenylated mRNA was selected from 200 ng aliquots of cynomologus blood-deri
  3409. ved total RNA using Ambion Dynabeads Oligo(dT)25 beads (Invitrogen) following
  3410. manufacturer’s recommended protocol.
  3411. PolyA selected RNA was then combined with 8 pmol of HBA1/2 (site 1), 8
  3412. pmol of HBA1/2 (site 2), 12 pmol of HBB (site 1) and 12 pmol of HBB (site
  3413. 2) oligonucleotides.
  3414. In addition, 20 pmol of RT primer containing a portion of the Illumina
  3415. adapter sequence (B-oligo-dTV: GAGTTCCTTGGCACCCGAGAATTCCATTTTTTTTTTTTTTTTTTTV)
  3416. and 4 µL of 5X First Strand buffer (250 mM Tris-HCl pH 8.3, 375 mM KCl,
  3417. 15mM MgCl2) were added in a total volume of 15 µL.
  3418. The RNA was fragmented by heating this cocktail for 3 minutes at 95°C and
  3419. then placed on ice.
  3420. This was followed by the addition of 2 µL 0.1 M DTT, 1 µL RNaseOUT, 1 µL
  3421. 10mM dNTPs 10% biotin-16 aminoallyl-2’- dUTP and 10% biotin-16 aminoallyl-2’-
  3422. dCTP (TriLink Biotech, San Diego, CA), 1 µL Superscript II (200U/ µL, Thermo-Fi
  3423. sher).
  3424. A second “unblocked” library was prepared in the same way for each sample
  3425. but replacing the blocking oligos with an equivalent volume of water.
  3426. The reaction was carried out at 25°C for 15 minutes and 42°C for 40 minutes,
  3427. followed by incubation at 75°C for 10 minutes to inactivate the reverse
  3428. transcriptase.
  3429. \end_layout
  3430. \begin_layout Standard
  3431. The cDNA/RNA hybrid molecules were purified using 1.8X Ampure XP beads (Agencourt
  3432. ) following supplier’s recommended protocol.
  3433. The cDNA/RNA hybrid was eluted in 25 µL of 10 mM Tris-HCl pH 8.0, and then
  3434. bound to 25 µL of M280 Magnetic Streptavidin beads washed per recommended
  3435. protocol (Thermo-Fisher).
  3436. After 30 minutes of binding, beads were washed one time in 100 µL 0.1N NaOH
  3437. to denature and remove the bound RNA, followed by two 100 µL washes with
  3438. 1X TE buffer.
  3439. \end_layout
  3440. \begin_layout Standard
  3441. Subsequent attachment of the 5-prime Illumina A adapter was performed by
  3442. on-bead random primer extension of the following sequence (A-N8 primer:
  3443. TTCAGAGTTCTACAGTCCGACGATCNNNNNNNN).
  3444. Briefly, beads were resuspended in a 20 µL reaction containing 5 µM A-N8
  3445. primer, 40mM Tris-HCl pH 7.5, 20mM MgCl2, 50mM NaCl, 0.325U/µL Sequenase
  3446. 2.0 (Affymetrix, Santa Clara, CA), 0.0025U/µL inorganic pyrophosphatase (Affymetr
  3447. ix) and 300 µM each dNTP.
  3448. Reaction was incubated at 22°C for 30 minutes, then beads were washed 2
  3449. times with 1X TE buffer (200µL).
  3450. \end_layout
  3451. \begin_layout Standard
  3452. The magnetic streptavidin beads were resuspended in 34 µL nuclease-free
  3453. water and added directly to a PCR tube.
  3454. The two Illumina protocol-specified PCR primers were added at 0.53 µM (Illumina
  3455. TruSeq Universal Primer 1 and Illumina TruSeq barcoded PCR primer 2), along
  3456. with 40 µL 2X KAPA HiFi Hotstart ReadyMix (KAPA, Willmington MA) and thermocycl
  3457. ed as follows: starting with 98°C (2 min-hold); 15 cycles of 98°C, 20sec;
  3458. 60°C, 30sec; 72°C, 30sec; and finished with a 72°C (2 min-hold).
  3459. \end_layout
  3460. \begin_layout Standard
  3461. PCR products were purified with 1X Ampure Beads following manufacturer’s
  3462. recommended protocol.
  3463. Libraries were then analyzed using the Agilent TapeStation and quantitation
  3464. of desired size range was performed by “smear analysis”.
  3465. Samples were pooled in equimolar batches of 16 samples.
  3466. Pooled libraries were size selected on 2% agarose gels (E-Gel EX Agarose
  3467. Gels; Thermo-Fisher).
  3468. Products were cut between 250 and 350 bp (corresponding to insert sizes
  3469. of 130 to 230 bps).
  3470. Finished library pools were then sequenced on the Illumina NextSeq500 instrumen
  3471. t with 75 base read lengths.
  3472. \end_layout
  3473. \begin_layout Subsection*
  3474. Read alignment and counting
  3475. \end_layout
  3476. \begin_layout Standard
  3477. Reads were aligned to the cynomolgus genome using STAR
  3478. \begin_inset CommandInset citation
  3479. LatexCommand cite
  3480. key "Dobin2013,Wilson2013"
  3481. literal "false"
  3482. \end_inset
  3483. .
  3484. Counts of uniquely mapped reads were obtained for every gene in each sample
  3485. with the “featureCounts” function from the Rsubread package, using each
  3486. of the three possibilities for the “strandSpecific” option: sense, antisense,
  3487. and unstranded
  3488. \begin_inset CommandInset citation
  3489. LatexCommand cite
  3490. key "Liao2014"
  3491. literal "false"
  3492. \end_inset
  3493. .
  3494. A few artifacts in the cynomolgus genome annotation complicated read counting.
  3495. First, no ortholog is annotated for alpha globin in the cynomolgus genome,
  3496. presumably because the human genome has two alpha globin genes with nearly
  3497. identical sequences, making the orthology relationship ambiguous.
  3498. However, two loci in the cynomolgus genome are as “hemoglobin subunit alpha-lik
  3499. e” (LOC102136192 and LOC102136846).
  3500. LOC102136192 is annotated as a pseudogene while LOC102136846 is annotated
  3501. as protein-coding.
  3502. Our globin reduction protocol was designed to include blocking of these
  3503. two genes.
  3504. Indeed, these two genes have almost the same read counts in each library
  3505. as the properly-annotated HBB gene and much larger counts than any other
  3506. gene in the unblocked libraries, giving confidence that reads derived from
  3507. the real alpha globin are mapping to both genes.
  3508. Thus, reads from both of these loci were counted as alpha globin reads
  3509. in all further analyses.
  3510. The second artifact is a small, uncharacterized non-coding RNA gene (LOC1021365
  3511. 91), which overlaps the HBA-like gene (LOC102136192) on the opposite strand.
  3512. If counting is not performed in stranded mode (or if a non-strand-specific
  3513. sequencing protocol is used), many reads mapping to the globin gene will
  3514. be discarded as ambiguous due to their overlap with this ncRNA gene, resulting
  3515. in significant undercounting of globin reads.
  3516. Therefore, stranded sense counts were used for all further analysis in
  3517. the present study to insure that we accurately accounted for globin transcript
  3518. reduction.
  3519. However, we note that stranded reads are not necessary for RNA-seq using
  3520. our protocol in standard practice.
  3521. \end_layout
  3522. \begin_layout Subsection*
  3523. Normalization and Exploratory Data Analysis
  3524. \end_layout
  3525. \begin_layout Standard
  3526. Libraries were normalized by computing scaling factors using the edgeR package’s
  3527. Trimmed Mean of M-values method
  3528. \begin_inset CommandInset citation
  3529. LatexCommand cite
  3530. key "Robinson2010"
  3531. literal "false"
  3532. \end_inset
  3533. .
  3534. Log2 counts per million values (logCPM) were calculated using the cpm function
  3535. in edgeR for individual samples and aveLogCPM function for averages across
  3536. groups of samples, using those functions’ default prior count values to
  3537. avoid taking the logarithm of 0.
  3538. Genes were considered “present” if their average normalized logCPM values
  3539. across all libraries were at least -1.
  3540. Normalizing for gene length was unnecessary because the sequencing protocol
  3541. is 3’-biased and hence the expected read count for each gene is related
  3542. to the transcript’s copy number but not its length.
  3543. \end_layout
  3544. \begin_layout Standard
  3545. In order to assess the effect of blocking on reproducibility, Pearson and
  3546. Spearman correlation coefficients were computed between the logCPM values
  3547. for every pair of libraries within the globin-blocked (GB) and unblocked
  3548. (non-GB) groups, and edgeR's “estimateDisp” function was used to compute
  3549. negative binomial dispersions separately for the two groups
  3550. \begin_inset CommandInset citation
  3551. LatexCommand cite
  3552. key "Chen2014"
  3553. literal "false"
  3554. \end_inset
  3555. .
  3556. \end_layout
  3557. \begin_layout Subsection*
  3558. Differential Expression Analysis
  3559. \end_layout
  3560. \begin_layout Standard
  3561. All tests for differential gene expression were performed using edgeR, by
  3562. first fitting a negative binomial generalized linear model to the counts
  3563. and normalization factors and then performing a quasi-likelihood F-test
  3564. with robust estimation of outlier gene dispersions
  3565. \begin_inset CommandInset citation
  3566. LatexCommand cite
  3567. key "Lund2012,Phipson2016"
  3568. literal "false"
  3569. \end_inset
  3570. .
  3571. To investigate the effects of globin blocking on each gene, an additive
  3572. model was fit to the full data with coefficients for globin blocking and
  3573. SampleID.
  3574. To test the effect of globin blocking on detection of differentially expressed
  3575. genes, the GB samples and non-GB samples were each analyzed independently
  3576. as follows: for each animal with both a pre-transplant and a post-transplant
  3577. time point in the data set, the pre-transplant sample and the earliest
  3578. post-transplant sample were selected, and all others were excluded, yielding
  3579. a pre-/post-transplant pair of samples for each animal (N=7 animals with
  3580. paired samples).
  3581. These samples were analyzed for pre-transplant vs.
  3582. post-transplant differential gene expression while controlling for inter-animal
  3583. variation using an additive model with coefficients for transplant and
  3584. animal ID.
  3585. In all analyses, p-values were adjusted using the Benjamini-Hochberg procedure
  3586. for FDR correction
  3587. \begin_inset CommandInset citation
  3588. LatexCommand cite
  3589. key "Benjamini1995"
  3590. literal "false"
  3591. \end_inset
  3592. .
  3593. \end_layout
  3594. \begin_layout Standard
  3595. \begin_inset Note Note
  3596. status open
  3597. \begin_layout Itemize
  3598. New blood RNA-seq protocol to block reverse transcription of globin genes
  3599. \end_layout
  3600. \begin_layout Itemize
  3601. Blood RNA-seq time course after transplants with/without MSC infusion
  3602. \end_layout
  3603. \end_inset
  3604. \end_layout
  3605. \begin_layout Section
  3606. Results
  3607. \end_layout
  3608. \begin_layout Subsection*
  3609. Globin blocking yields a larger and more consistent fraction of useful reads
  3610. \end_layout
  3611. \begin_layout Standard
  3612. The objective of the present study was to validate a new protocol for deep
  3613. RNA-seq of whole blood drawn into PaxGene tubes from cynomolgus monkeys
  3614. undergoing islet transplantation, with particular focus on minimizing the
  3615. loss of useful sequencing space to uninformative globin reads.
  3616. The details of the analysis with respect to transplant outcomes and the
  3617. impact of mesenchymal stem cell treatment will be reported in a separate
  3618. manuscript (in preparation).
  3619. To focus on the efficacy of our globin blocking protocol, 37 blood samples,
  3620. 16 from pre-transplant and 21 from post-transplant time points, were each
  3621. prepped once with and once without globin blocking oligos, and were then
  3622. sequenced on an Illumina NextSeq500 instrument.
  3623. The number of reads aligning to each gene in the cynomolgus genome was
  3624. counted.
  3625. Table 1 summarizes the distribution of read fractions among the GB and
  3626. non-GB libraries.
  3627. In the libraries with no globin blocking, globin reads made up an average
  3628. of 44.6% of total input reads, while reads assigned to all other genes made
  3629. up an average of 26.3%.
  3630. The remaining reads either aligned to intergenic regions (that include
  3631. long non-coding RNAs) or did not align with any annotated transcripts in
  3632. the current build of the cynomolgus genome.
  3633. In the GB libraries, globin reads made up only 3.48% and reads assigned
  3634. to all other genes increased to 50.4%.
  3635. Thus, globin blocking resulted in a 92.2% reduction in globin reads and
  3636. a 91.6% increase in yield of useful non-globin reads.
  3637. \end_layout
  3638. \begin_layout Standard
  3639. This reduction is not quite as efficient as the previous analysis showed
  3640. for human samples by DeepSAGE (<0.4% globin reads after globin reduction)
  3641. \begin_inset CommandInset citation
  3642. LatexCommand cite
  3643. key "Mastrokolias2012"
  3644. literal "false"
  3645. \end_inset
  3646. .
  3647. Nonetheless, this degree of globin reduction is sufficient to nearly double
  3648. the yield of useful reads.
  3649. Thus, globin blocking cuts the required sequencing effort (and costs) to
  3650. achieve a target coverage depth by almost 50%.
  3651. Consistent with this near doubling of yield, the average difference in
  3652. un-normalized logCPM across all genes between the GB libraries and non-GB
  3653. libraries is approximately 1 (mean = 1.01, median = 1.08), an overall 2-fold
  3654. increase.
  3655. Un-normalized values are used here because the TMM normalization correctly
  3656. identifies this 2-fold difference as biologically irrelevant and removes
  3657. it.
  3658. \end_layout
  3659. \begin_layout Standard
  3660. \begin_inset Float figure
  3661. wide false
  3662. sideways false
  3663. status open
  3664. \begin_layout Plain Layout
  3665. \align center
  3666. \begin_inset Graphics
  3667. filename graphics/Globin Paper/figure1 - globin-fractions.pdf
  3668. \end_inset
  3669. \end_layout
  3670. \begin_layout Plain Layout
  3671. \begin_inset Caption Standard
  3672. \begin_layout Plain Layout
  3673. \series bold
  3674. \begin_inset Argument 1
  3675. status collapsed
  3676. \begin_layout Plain Layout
  3677. Fraction of genic reads in each sample aligned to non-globin genes, with
  3678. and without globin blocking (GB).
  3679. \end_layout
  3680. \end_inset
  3681. \begin_inset CommandInset label
  3682. LatexCommand label
  3683. name "fig:Fraction-of-genic-reads"
  3684. \end_inset
  3685. Fraction of genic reads in each sample aligned to non-globin genes, with
  3686. and without globin blocking (GB).
  3687. \series default
  3688. All reads in each sequencing library were aligned to the cyno genome, and
  3689. the number of reads uniquely aligning to each gene was counted.
  3690. For each sample, counts were summed separately for all globin genes and
  3691. for the remainder of the genes (non-globin genes), and the fraction of
  3692. genic reads aligned to non-globin genes was computed.
  3693. Each point represents an individual sample.
  3694. Gray + signs indicate the means for globin-blocked libraries and unblocked
  3695. libraries.
  3696. The overall distribution for each group is represented as a notched box
  3697. plots.
  3698. Points are randomly spread vertically to avoid excessive overlapping.
  3699. \end_layout
  3700. \end_inset
  3701. \end_layout
  3702. \begin_layout Plain Layout
  3703. \end_layout
  3704. \end_inset
  3705. \end_layout
  3706. \begin_layout Standard
  3707. \begin_inset Float table
  3708. placement p
  3709. wide false
  3710. sideways true
  3711. status open
  3712. \begin_layout Plain Layout
  3713. \align center
  3714. \begin_inset Tabular
  3715. <lyxtabular version="3" rows="4" columns="7">
  3716. <features tabularvalignment="middle">
  3717. <column alignment="center" valignment="top">
  3718. <column alignment="center" valignment="top">
  3719. <column alignment="center" valignment="top">
  3720. <column alignment="center" valignment="top">
  3721. <column alignment="center" valignment="top">
  3722. <column alignment="center" valignment="top">
  3723. <column alignment="center" valignment="top">
  3724. <row>
  3725. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3726. \begin_inset Text
  3727. \begin_layout Plain Layout
  3728. \end_layout
  3729. \end_inset
  3730. </cell>
  3731. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3732. \begin_inset Text
  3733. \begin_layout Plain Layout
  3734. \family roman
  3735. \series medium
  3736. \shape up
  3737. \size normal
  3738. \emph off
  3739. \bar no
  3740. \strikeout off
  3741. \xout off
  3742. \uuline off
  3743. \uwave off
  3744. \noun off
  3745. \color none
  3746. Percent of Total Reads
  3747. \end_layout
  3748. \end_inset
  3749. </cell>
  3750. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3751. \begin_inset Text
  3752. \begin_layout Plain Layout
  3753. \end_layout
  3754. \end_inset
  3755. </cell>
  3756. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3757. \begin_inset Text
  3758. \begin_layout Plain Layout
  3759. \end_layout
  3760. \end_inset
  3761. </cell>
  3762. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3763. \begin_inset Text
  3764. \begin_layout Plain Layout
  3765. \end_layout
  3766. \end_inset
  3767. </cell>
  3768. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3769. \begin_inset Text
  3770. \begin_layout Plain Layout
  3771. \family roman
  3772. \series medium
  3773. \shape up
  3774. \size normal
  3775. \emph off
  3776. \bar no
  3777. \strikeout off
  3778. \xout off
  3779. \uuline off
  3780. \uwave off
  3781. \noun off
  3782. \color none
  3783. Percent of Genic Reads
  3784. \end_layout
  3785. \end_inset
  3786. </cell>
  3787. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3788. \begin_inset Text
  3789. \begin_layout Plain Layout
  3790. \end_layout
  3791. \end_inset
  3792. </cell>
  3793. </row>
  3794. <row>
  3795. <cell alignment="center" valignment="top" bottomline="true" leftline="true" usebox="none">
  3796. \begin_inset Text
  3797. \begin_layout Plain Layout
  3798. GB
  3799. \end_layout
  3800. \end_inset
  3801. </cell>
  3802. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3803. \begin_inset Text
  3804. \begin_layout Plain Layout
  3805. \family roman
  3806. \series medium
  3807. \shape up
  3808. \size normal
  3809. \emph off
  3810. \bar no
  3811. \strikeout off
  3812. \xout off
  3813. \uuline off
  3814. \uwave off
  3815. \noun off
  3816. \color none
  3817. Non-globin Reads
  3818. \end_layout
  3819. \end_inset
  3820. </cell>
  3821. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3822. \begin_inset Text
  3823. \begin_layout Plain Layout
  3824. \family roman
  3825. \series medium
  3826. \shape up
  3827. \size normal
  3828. \emph off
  3829. \bar no
  3830. \strikeout off
  3831. \xout off
  3832. \uuline off
  3833. \uwave off
  3834. \noun off
  3835. \color none
  3836. Globin Reads
  3837. \end_layout
  3838. \end_inset
  3839. </cell>
  3840. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3841. \begin_inset Text
  3842. \begin_layout Plain Layout
  3843. \family roman
  3844. \series medium
  3845. \shape up
  3846. \size normal
  3847. \emph off
  3848. \bar no
  3849. \strikeout off
  3850. \xout off
  3851. \uuline off
  3852. \uwave off
  3853. \noun off
  3854. \color none
  3855. All Genic Reads
  3856. \end_layout
  3857. \end_inset
  3858. </cell>
  3859. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3860. \begin_inset Text
  3861. \begin_layout Plain Layout
  3862. \family roman
  3863. \series medium
  3864. \shape up
  3865. \size normal
  3866. \emph off
  3867. \bar no
  3868. \strikeout off
  3869. \xout off
  3870. \uuline off
  3871. \uwave off
  3872. \noun off
  3873. \color none
  3874. All Aligned Reads
  3875. \end_layout
  3876. \end_inset
  3877. </cell>
  3878. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3879. \begin_inset Text
  3880. \begin_layout Plain Layout
  3881. \family roman
  3882. \series medium
  3883. \shape up
  3884. \size normal
  3885. \emph off
  3886. \bar no
  3887. \strikeout off
  3888. \xout off
  3889. \uuline off
  3890. \uwave off
  3891. \noun off
  3892. \color none
  3893. Non-globin Reads
  3894. \end_layout
  3895. \end_inset
  3896. </cell>
  3897. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3898. \begin_inset Text
  3899. \begin_layout Plain Layout
  3900. \family roman
  3901. \series medium
  3902. \shape up
  3903. \size normal
  3904. \emph off
  3905. \bar no
  3906. \strikeout off
  3907. \xout off
  3908. \uuline off
  3909. \uwave off
  3910. \noun off
  3911. \color none
  3912. Globin Reads
  3913. \end_layout
  3914. \end_inset
  3915. </cell>
  3916. </row>
  3917. <row>
  3918. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3919. \begin_inset Text
  3920. \begin_layout Plain Layout
  3921. \family roman
  3922. \series medium
  3923. \shape up
  3924. \size normal
  3925. \emph off
  3926. \bar no
  3927. \strikeout off
  3928. \xout off
  3929. \uuline off
  3930. \uwave off
  3931. \noun off
  3932. \color none
  3933. Yes
  3934. \end_layout
  3935. \end_inset
  3936. </cell>
  3937. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3938. \begin_inset Text
  3939. \begin_layout Plain Layout
  3940. \family roman
  3941. \series medium
  3942. \shape up
  3943. \size normal
  3944. \emph off
  3945. \bar no
  3946. \strikeout off
  3947. \xout off
  3948. \uuline off
  3949. \uwave off
  3950. \noun off
  3951. \color none
  3952. 50.4% ± 6.82
  3953. \end_layout
  3954. \end_inset
  3955. </cell>
  3956. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3957. \begin_inset Text
  3958. \begin_layout Plain Layout
  3959. \family roman
  3960. \series medium
  3961. \shape up
  3962. \size normal
  3963. \emph off
  3964. \bar no
  3965. \strikeout off
  3966. \xout off
  3967. \uuline off
  3968. \uwave off
  3969. \noun off
  3970. \color none
  3971. 3.48% ± 2.94
  3972. \end_layout
  3973. \end_inset
  3974. </cell>
  3975. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3976. \begin_inset Text
  3977. \begin_layout Plain Layout
  3978. \family roman
  3979. \series medium
  3980. \shape up
  3981. \size normal
  3982. \emph off
  3983. \bar no
  3984. \strikeout off
  3985. \xout off
  3986. \uuline off
  3987. \uwave off
  3988. \noun off
  3989. \color none
  3990. 53.9% ± 6.81
  3991. \end_layout
  3992. \end_inset
  3993. </cell>
  3994. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3995. \begin_inset Text
  3996. \begin_layout Plain Layout
  3997. \family roman
  3998. \series medium
  3999. \shape up
  4000. \size normal
  4001. \emph off
  4002. \bar no
  4003. \strikeout off
  4004. \xout off
  4005. \uuline off
  4006. \uwave off
  4007. \noun off
  4008. \color none
  4009. 89.7% ± 2.40
  4010. \end_layout
  4011. \end_inset
  4012. </cell>
  4013. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4014. \begin_inset Text
  4015. \begin_layout Plain Layout
  4016. \family roman
  4017. \series medium
  4018. \shape up
  4019. \size normal
  4020. \emph off
  4021. \bar no
  4022. \strikeout off
  4023. \xout off
  4024. \uuline off
  4025. \uwave off
  4026. \noun off
  4027. \color none
  4028. 93.5% ± 5.25
  4029. \end_layout
  4030. \end_inset
  4031. </cell>
  4032. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  4033. \begin_inset Text
  4034. \begin_layout Plain Layout
  4035. \family roman
  4036. \series medium
  4037. \shape up
  4038. \size normal
  4039. \emph off
  4040. \bar no
  4041. \strikeout off
  4042. \xout off
  4043. \uuline off
  4044. \uwave off
  4045. \noun off
  4046. \color none
  4047. 6.49% ± 5.25
  4048. \end_layout
  4049. \end_inset
  4050. </cell>
  4051. </row>
  4052. <row>
  4053. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  4054. \begin_inset Text
  4055. \begin_layout Plain Layout
  4056. \family roman
  4057. \series medium
  4058. \shape up
  4059. \size normal
  4060. \emph off
  4061. \bar no
  4062. \strikeout off
  4063. \xout off
  4064. \uuline off
  4065. \uwave off
  4066. \noun off
  4067. \color none
  4068. No
  4069. \end_layout
  4070. \end_inset
  4071. </cell>
  4072. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  4073. \begin_inset Text
  4074. \begin_layout Plain Layout
  4075. \family roman
  4076. \series medium
  4077. \shape up
  4078. \size normal
  4079. \emph off
  4080. \bar no
  4081. \strikeout off
  4082. \xout off
  4083. \uuline off
  4084. \uwave off
  4085. \noun off
  4086. \color none
  4087. 26.3% ± 8.95
  4088. \end_layout
  4089. \end_inset
  4090. </cell>
  4091. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  4092. \begin_inset Text
  4093. \begin_layout Plain Layout
  4094. \family roman
  4095. \series medium
  4096. \shape up
  4097. \size normal
  4098. \emph off
  4099. \bar no
  4100. \strikeout off
  4101. \xout off
  4102. \uuline off
  4103. \uwave off
  4104. \noun off
  4105. \color none
  4106. 44.6% ± 16.6
  4107. \end_layout
  4108. \end_inset
  4109. </cell>
  4110. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  4111. \begin_inset Text
  4112. \begin_layout Plain Layout
  4113. \family roman
  4114. \series medium
  4115. \shape up
  4116. \size normal
  4117. \emph off
  4118. \bar no
  4119. \strikeout off
  4120. \xout off
  4121. \uuline off
  4122. \uwave off
  4123. \noun off
  4124. \color none
  4125. 70.1% ± 9.38
  4126. \end_layout
  4127. \end_inset
  4128. </cell>
  4129. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  4130. \begin_inset Text
  4131. \begin_layout Plain Layout
  4132. \family roman
  4133. \series medium
  4134. \shape up
  4135. \size normal
  4136. \emph off
  4137. \bar no
  4138. \strikeout off
  4139. \xout off
  4140. \uuline off
  4141. \uwave off
  4142. \noun off
  4143. \color none
  4144. 90.7% ± 5.16
  4145. \end_layout
  4146. \end_inset
  4147. </cell>
  4148. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  4149. \begin_inset Text
  4150. \begin_layout Plain Layout
  4151. \family roman
  4152. \series medium
  4153. \shape up
  4154. \size normal
  4155. \emph off
  4156. \bar no
  4157. \strikeout off
  4158. \xout off
  4159. \uuline off
  4160. \uwave off
  4161. \noun off
  4162. \color none
  4163. 38.8% ± 17.1
  4164. \end_layout
  4165. \end_inset
  4166. </cell>
  4167. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  4168. \begin_inset Text
  4169. \begin_layout Plain Layout
  4170. \family roman
  4171. \series medium
  4172. \shape up
  4173. \size normal
  4174. \emph off
  4175. \bar no
  4176. \strikeout off
  4177. \xout off
  4178. \uuline off
  4179. \uwave off
  4180. \noun off
  4181. \color none
  4182. 61.2% ± 17.1
  4183. \end_layout
  4184. \end_inset
  4185. </cell>
  4186. </row>
  4187. </lyxtabular>
  4188. \end_inset
  4189. \end_layout
  4190. \begin_layout Plain Layout
  4191. \begin_inset Caption Standard
  4192. \begin_layout Plain Layout
  4193. \series bold
  4194. \begin_inset Argument 1
  4195. status collapsed
  4196. \begin_layout Plain Layout
  4197. Fractions of reads mapping to genomic features in GB and non-GB samples.
  4198. \end_layout
  4199. \end_inset
  4200. \begin_inset CommandInset label
  4201. LatexCommand label
  4202. name "tab:Fractions-of-reads"
  4203. \end_inset
  4204. Fractions of reads mapping to genomic features in GB and non-GB samples.
  4205. \series default
  4206. All values are given as mean ± standard deviation.
  4207. \end_layout
  4208. \end_inset
  4209. \end_layout
  4210. \begin_layout Plain Layout
  4211. \end_layout
  4212. \end_inset
  4213. \end_layout
  4214. \begin_layout Standard
  4215. Another important aspect is that the standard deviations in Table
  4216. \begin_inset CommandInset ref
  4217. LatexCommand ref
  4218. reference "tab:Fractions-of-reads"
  4219. plural "false"
  4220. caps "false"
  4221. noprefix "false"
  4222. \end_inset
  4223. are uniformly smaller in the GB samples than the non-GB ones, indicating
  4224. much greater consistency of yield.
  4225. This is best seen in the percentage of non-globin reads as a fraction of
  4226. total reads aligned to annotated genes (genic reads).
  4227. For the non-GB samples, this measure ranges from 10.9% to 80.9%, while for
  4228. the GB samples it ranges from 81.9% to 99.9% (Figure
  4229. \begin_inset CommandInset ref
  4230. LatexCommand ref
  4231. reference "fig:Fraction-of-genic-reads"
  4232. plural "false"
  4233. caps "false"
  4234. noprefix "false"
  4235. \end_inset
  4236. ).
  4237. This means that for applications where it is critical that each sample
  4238. achieve a specified minimum coverage in order to provide useful information,
  4239. it would be necessary to budget up to 10 times the sequencing depth per
  4240. sample without globin blocking, even though the average yield improvement
  4241. for globin blocking is only 2-fold, because every sample has a chance of
  4242. being 90% globin and 10% useful reads.
  4243. Hence, the more consistent behavior of GB samples makes planning an experiment
  4244. easier and more efficient because it eliminates the need to over-sequence
  4245. every sample in order to guard against the worst case of a high-globin
  4246. fraction.
  4247. \end_layout
  4248. \begin_layout Subsection*
  4249. Globin blocking lowers the noise floor and allows detection of about 2000
  4250. more genes
  4251. \end_layout
  4252. \begin_layout Standard
  4253. \begin_inset Flex TODO Note (inline)
  4254. status open
  4255. \begin_layout Plain Layout
  4256. Remove redundant titles from figures
  4257. \end_layout
  4258. \end_inset
  4259. \end_layout
  4260. \begin_layout Standard
  4261. \begin_inset Float figure
  4262. wide false
  4263. sideways false
  4264. status open
  4265. \begin_layout Plain Layout
  4266. \align center
  4267. \begin_inset Graphics
  4268. filename graphics/Globin Paper/figure2 - aveLogCPM-colored.pdf
  4269. \end_inset
  4270. \end_layout
  4271. \begin_layout Plain Layout
  4272. \begin_inset Caption Standard
  4273. \begin_layout Plain Layout
  4274. \series bold
  4275. \begin_inset Argument 1
  4276. status collapsed
  4277. \begin_layout Plain Layout
  4278. Distributions of average group gene abundances when normalized separately
  4279. or together.
  4280. \end_layout
  4281. \end_inset
  4282. \begin_inset CommandInset label
  4283. LatexCommand label
  4284. name "fig:logcpm-dists"
  4285. \end_inset
  4286. Distributions of average group gene abundances when normalized separately
  4287. or together.
  4288. \series default
  4289. All reads in each sequencing library were aligned to the cyno genome, and
  4290. the number of reads uniquely aligning to each gene was counted.
  4291. Genes with zero counts in all libraries were discarded.
  4292. Libraries were normalized using the TMM method.
  4293. Libraries were split into globin-blocked (GB) and non-GB groups and the
  4294. average abundance for each gene in both groups, measured in log2 counts
  4295. per million reads counted, was computed using the aveLogCPM function.
  4296. The distribution of average gene logCPM values was plotted for both groups
  4297. using a kernel density plot to approximate a continuous distribution.
  4298. The logCPM GB distributions are marked in red, non-GB in blue.
  4299. The black vertical line denotes the chosen detection threshold of -1.
  4300. Top panel: Libraries were split into GB and non-GB groups first and normalized
  4301. separately.
  4302. Bottom panel: Libraries were all normalized together first and then split
  4303. into groups.
  4304. \end_layout
  4305. \end_inset
  4306. \end_layout
  4307. \begin_layout Plain Layout
  4308. \end_layout
  4309. \end_inset
  4310. \end_layout
  4311. \begin_layout Standard
  4312. Since globin blocking yields more usable sequencing depth, it should also
  4313. allow detection of more genes at any given threshold.
  4314. When we looked at the distribution of average normalized logCPM values
  4315. across all libraries for genes with at least one read assigned to them,
  4316. we observed the expected bimodal distribution, with a high-abundance "signal"
  4317. peak representing detected genes and a low-abundance "noise" peak representing
  4318. genes whose read count did not rise above the noise floor (Figure
  4319. \begin_inset CommandInset ref
  4320. LatexCommand ref
  4321. reference "fig:logcpm-dists"
  4322. plural "false"
  4323. caps "false"
  4324. noprefix "false"
  4325. \end_inset
  4326. ).
  4327. Consistent with the 2-fold increase in raw counts assigned to non-globin
  4328. genes, the signal peak for GB samples is shifted to the right relative
  4329. to the non-GB signal peak.
  4330. When all the samples are normalized together, this difference is normalized
  4331. out, lining up the signal peaks, and this reveals that, as expected, the
  4332. noise floor for the GB samples is about 2-fold lower.
  4333. This greater separation between signal and noise peaks in the GB samples
  4334. means that low-expression genes should be more easily detected and more
  4335. precisely quantified than in the non-GB samples.
  4336. \end_layout
  4337. \begin_layout Standard
  4338. \begin_inset Float figure
  4339. wide false
  4340. sideways false
  4341. status open
  4342. \begin_layout Plain Layout
  4343. \align center
  4344. \begin_inset Graphics
  4345. filename graphics/Globin Paper/figure3 - detection.pdf
  4346. \end_inset
  4347. \end_layout
  4348. \begin_layout Plain Layout
  4349. \begin_inset Caption Standard
  4350. \begin_layout Plain Layout
  4351. \series bold
  4352. \begin_inset Argument 1
  4353. status collapsed
  4354. \begin_layout Plain Layout
  4355. Gene detections as a function of abundance thresholds in globin-blocked
  4356. (GB) and non-GB samples.
  4357. \end_layout
  4358. \end_inset
  4359. \begin_inset CommandInset label
  4360. LatexCommand label
  4361. name "fig:Gene-detections"
  4362. \end_inset
  4363. Gene detections as a function of abundance thresholds in globin-blocked
  4364. (GB) and non-GB samples.
  4365. \series default
  4366. Average abundance (logCPM,
  4367. \begin_inset Formula $\log_{2}$
  4368. \end_inset
  4369. counts per million reads counted) was computed by separate group normalization
  4370. as described in Figure
  4371. \begin_inset CommandInset ref
  4372. LatexCommand ref
  4373. reference "fig:logcpm-dists"
  4374. plural "false"
  4375. caps "false"
  4376. noprefix "false"
  4377. \end_inset
  4378. for both the GB and non-GB groups, as well as for all samples considered
  4379. as one large group.
  4380. For each every integer threshold from -2 to 3, the number of genes detected
  4381. at or above that logCPM threshold was plotted for each group.
  4382. \end_layout
  4383. \end_inset
  4384. \end_layout
  4385. \begin_layout Plain Layout
  4386. \end_layout
  4387. \end_inset
  4388. \end_layout
  4389. \begin_layout Standard
  4390. Based on these distributions, we selected a detection threshold of -1, which
  4391. is approximately the leftmost edge of the trough between the signal and
  4392. noise peaks.
  4393. This represents the most liberal possible detection threshold that doesn't
  4394. call substantial numbers of noise genes as detected.
  4395. Among the full dataset, 13429 genes were detected at this threshold, and
  4396. 22276 were not.
  4397. When considering the GB libraries and non-GB libraries separately and re-comput
  4398. ing normalization factors independently within each group, 14535 genes were
  4399. detected in the GB libraries while only 12460 were detected in the non-GB
  4400. libraries.
  4401. Thus, GB allowed the detection of 2000 extra genes that were buried under
  4402. the noise floor without GB.
  4403. This pattern of at least 2000 additional genes detected with GB was also
  4404. consistent across a wide range of possible detection thresholds, from -2
  4405. to 3 (see Figure
  4406. \begin_inset CommandInset ref
  4407. LatexCommand ref
  4408. reference "fig:Gene-detections"
  4409. plural "false"
  4410. caps "false"
  4411. noprefix "false"
  4412. \end_inset
  4413. ).
  4414. \end_layout
  4415. \begin_layout Subsection*
  4416. Globin blocking does not add significant additional noise or decrease sample
  4417. quality
  4418. \end_layout
  4419. \begin_layout Standard
  4420. One potential worry is that the globin blocking protocol could perturb the
  4421. levels of non-globin genes.
  4422. There are two kinds of possible perturbations: systematic and random.
  4423. The former is not a major concern for detection of differential expression,
  4424. since a 2-fold change in every sample has no effect on the relative fold
  4425. change between samples.
  4426. In contrast, random perturbations would increase the noise and obscure
  4427. the signal in the dataset, reducing the capacity to detect differential
  4428. expression.
  4429. \end_layout
  4430. \begin_layout Standard
  4431. \begin_inset Float figure
  4432. wide false
  4433. sideways false
  4434. status open
  4435. \begin_layout Plain Layout
  4436. \align center
  4437. \begin_inset Graphics
  4438. filename graphics/Globin Paper/figure4 - maplot-colored.pdf
  4439. \end_inset
  4440. \end_layout
  4441. \begin_layout Plain Layout
  4442. \begin_inset Caption Standard
  4443. \begin_layout Plain Layout
  4444. \begin_inset Argument 1
  4445. status collapsed
  4446. \begin_layout Plain Layout
  4447. MA plot showing effects of globin blocking on each gene's abundance.
  4448. \end_layout
  4449. \end_inset
  4450. \begin_inset CommandInset label
  4451. LatexCommand label
  4452. name "fig:MA-plot"
  4453. \end_inset
  4454. \series bold
  4455. MA plot showing effects of globin blocking on each gene's abundance.
  4456. \series default
  4457. All libraries were normalized together as described in Figure
  4458. \begin_inset CommandInset ref
  4459. LatexCommand ref
  4460. reference "fig:logcpm-dists"
  4461. plural "false"
  4462. caps "false"
  4463. noprefix "false"
  4464. \end_inset
  4465. , and genes with an average logCPM below -1 were filtered out.
  4466. Each remaining gene was tested for differential abundance with respect
  4467. to globin blocking (GB) using edgeR’s quasi-likelihod F-test, fitting a
  4468. negative binomial generalized linear model to table of read counts in each
  4469. library.
  4470. For each gene, edgeR reported average abundance (logCPM),
  4471. \begin_inset Formula $\log_{2}$
  4472. \end_inset
  4473. fold change (logFC), p-value, and Benjamini-Hochberg adjusted false discovery
  4474. rate (FDR).
  4475. Each gene's logFC was plotted against its logCPM, colored by FDR.
  4476. Red points are significant at ≤10% FDR, and blue are not significant at
  4477. that threshold.
  4478. The alpha and beta globin genes targeted for blocking are marked with large
  4479. triangles, while all other genes are represented as small points.
  4480. \end_layout
  4481. \end_inset
  4482. \end_layout
  4483. \begin_layout Plain Layout
  4484. \end_layout
  4485. \end_inset
  4486. \end_layout
  4487. \begin_layout Standard
  4488. \begin_inset Flex TODO Note (inline)
  4489. status open
  4490. \begin_layout Plain Layout
  4491. Standardize on
  4492. \begin_inset Quotes eld
  4493. \end_inset
  4494. log2
  4495. \begin_inset Quotes erd
  4496. \end_inset
  4497. notation
  4498. \end_layout
  4499. \end_inset
  4500. \end_layout
  4501. \begin_layout Standard
  4502. The data do indeed show small systematic perturbations in gene levels (Figure
  4503. \begin_inset CommandInset ref
  4504. LatexCommand ref
  4505. reference "fig:MA-plot"
  4506. plural "false"
  4507. caps "false"
  4508. noprefix "false"
  4509. \end_inset
  4510. ).
  4511. Other than the 3 designated alpha and beta globin genes, two other genes
  4512. stand out as having especially large negative log fold changes: HBD and
  4513. LOC1021365.
  4514. HBD, delta globin, is most likely targeted by the blocking oligos due to
  4515. high sequence homology with the other globin genes.
  4516. LOC1021365 is the aforementioned ncRNA that is reverse-complementary to
  4517. one of the alpha-like genes and that would be expected to be removed during
  4518. the globin blocking step.
  4519. All other genes appear in a cluster centered vertically at 0, and the vast
  4520. majority of genes in this cluster show an absolute log2(FC) of 0.5 or less.
  4521. Nevertheless, many of these small perturbations are still statistically
  4522. significant, indicating that the globin blocking oligos likely cause very
  4523. small but non-zero systematic perturbations in measured gene expression
  4524. levels.
  4525. \end_layout
  4526. \begin_layout Standard
  4527. \begin_inset Float figure
  4528. wide false
  4529. sideways false
  4530. status open
  4531. \begin_layout Plain Layout
  4532. \align center
  4533. \begin_inset Graphics
  4534. filename graphics/Globin Paper/figure5 - corrplot.pdf
  4535. \end_inset
  4536. \end_layout
  4537. \begin_layout Plain Layout
  4538. \begin_inset Caption Standard
  4539. \begin_layout Plain Layout
  4540. \series bold
  4541. \begin_inset Argument 1
  4542. status collapsed
  4543. \begin_layout Plain Layout
  4544. Comparison of inter-sample gene abundance correlations with and without
  4545. globin blocking.
  4546. \end_layout
  4547. \end_inset
  4548. \begin_inset CommandInset label
  4549. LatexCommand label
  4550. name "fig:gene-abundance-correlations"
  4551. \end_inset
  4552. Comparison of inter-sample gene abundance correlations with and without
  4553. globin blocking (GB).
  4554. \series default
  4555. All libraries were normalized together as described in Figure 2, and genes
  4556. with an average abundance (logCPM, log2 counts per million reads counted)
  4557. less than -1 were filtered out.
  4558. Each gene’s logCPM was computed in each library using the edgeR cpm function.
  4559. For each pair of biological samples, the Pearson correlation between those
  4560. samples' GB libraries was plotted against the correlation between the same
  4561. samples’ non-GB libraries.
  4562. Each point represents an unique pair of samples.
  4563. The solid gray line shows a quantile-quantile plot of distribution of GB
  4564. correlations vs.
  4565. that of non-GB correlations.
  4566. The thin dashed line is the identity line, provided for reference.
  4567. \end_layout
  4568. \end_inset
  4569. \end_layout
  4570. \begin_layout Plain Layout
  4571. \end_layout
  4572. \end_inset
  4573. \end_layout
  4574. \begin_layout Standard
  4575. To evaluate the possibility of globin blocking causing random perturbations
  4576. and reducing sample quality, we computed the Pearson correlation between
  4577. logCPM values for every pair of samples with and without GB and plotted
  4578. them against each other (Figure
  4579. \begin_inset CommandInset ref
  4580. LatexCommand ref
  4581. reference "fig:gene-abundance-correlations"
  4582. plural "false"
  4583. caps "false"
  4584. noprefix "false"
  4585. \end_inset
  4586. ).
  4587. The plot indicated that the GB libraries have higher sample-to-sample correlati
  4588. ons than the non-GB libraries.
  4589. Parametric and nonparametric tests for differences between the correlations
  4590. with and without GB both confirmed that this difference was highly significant
  4591. (2-sided paired t-test: t = 37.2, df = 665, P ≪ 2.2e-16; 2-sided Wilcoxon
  4592. sign-rank test: V = 2195, P ≪ 2.2e-16).
  4593. Performing the same tests on the Spearman correlations gave the same conclusion
  4594. (t-test: t = 26.8, df = 665, P ≪ 2.2e-16; sign-rank test: V = 8781, P ≪ 2.2e-16).
  4595. The edgeR package was used to compute the overall biological coefficient
  4596. of variation (BCV) for GB and non-GB libraries, and found that globin blocking
  4597. resulted in a negligible increase in the BCV (0.417 with GB vs.
  4598. 0.400 without).
  4599. The near equality of the BCVs for both sets indicates that the higher correlati
  4600. ons in the GB libraries are most likely a result of the increased yield
  4601. of useful reads, which reduces the contribution of Poisson counting uncertainty
  4602. to the overall variance of the logCPM values
  4603. \begin_inset CommandInset citation
  4604. LatexCommand cite
  4605. key "McCarthy2012"
  4606. literal "false"
  4607. \end_inset
  4608. .
  4609. This improves the precision of expression measurements and more than offsets
  4610. the negligible increase in BCV.
  4611. \end_layout
  4612. \begin_layout Subsection*
  4613. More differentially expressed genes are detected with globin blocking
  4614. \end_layout
  4615. \begin_layout Standard
  4616. \begin_inset Float table
  4617. wide false
  4618. sideways false
  4619. status open
  4620. \begin_layout Plain Layout
  4621. \align center
  4622. \begin_inset Tabular
  4623. <lyxtabular version="3" rows="5" columns="5">
  4624. <features tabularvalignment="middle">
  4625. <column alignment="center" valignment="top">
  4626. <column alignment="center" valignment="top">
  4627. <column alignment="center" valignment="top">
  4628. <column alignment="center" valignment="top">
  4629. <column alignment="center" valignment="top">
  4630. <row>
  4631. <cell alignment="center" valignment="top" usebox="none">
  4632. \begin_inset Text
  4633. \begin_layout Plain Layout
  4634. \end_layout
  4635. \end_inset
  4636. </cell>
  4637. <cell alignment="center" valignment="top" usebox="none">
  4638. \begin_inset Text
  4639. \begin_layout Plain Layout
  4640. \end_layout
  4641. \end_inset
  4642. </cell>
  4643. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  4644. \begin_inset Text
  4645. \begin_layout Plain Layout
  4646. \series bold
  4647. No Globin Blocking
  4648. \end_layout
  4649. \end_inset
  4650. </cell>
  4651. <cell multicolumn="2" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  4652. \begin_inset Text
  4653. \begin_layout Plain Layout
  4654. \end_layout
  4655. \end_inset
  4656. </cell>
  4657. <cell multicolumn="2" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  4658. \begin_inset Text
  4659. \begin_layout Plain Layout
  4660. \end_layout
  4661. \end_inset
  4662. </cell>
  4663. </row>
  4664. <row>
  4665. <cell alignment="center" valignment="top" usebox="none">
  4666. \begin_inset Text
  4667. \begin_layout Plain Layout
  4668. \end_layout
  4669. \end_inset
  4670. </cell>
  4671. <cell alignment="center" valignment="top" usebox="none">
  4672. \begin_inset Text
  4673. \begin_layout Plain Layout
  4674. \end_layout
  4675. \end_inset
  4676. </cell>
  4677. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4678. \begin_inset Text
  4679. \begin_layout Plain Layout
  4680. \series bold
  4681. Up
  4682. \end_layout
  4683. \end_inset
  4684. </cell>
  4685. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4686. \begin_inset Text
  4687. \begin_layout Plain Layout
  4688. \series bold
  4689. NS
  4690. \end_layout
  4691. \end_inset
  4692. </cell>
  4693. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  4694. \begin_inset Text
  4695. \begin_layout Plain Layout
  4696. \series bold
  4697. Down
  4698. \end_layout
  4699. \end_inset
  4700. </cell>
  4701. </row>
  4702. <row>
  4703. <cell multirow="3" alignment="center" valignment="middle" topline="true" bottomline="true" leftline="true" usebox="none">
  4704. \begin_inset Text
  4705. \begin_layout Plain Layout
  4706. \series bold
  4707. Globin-Blocking
  4708. \end_layout
  4709. \end_inset
  4710. </cell>
  4711. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4712. \begin_inset Text
  4713. \begin_layout Plain Layout
  4714. \series bold
  4715. Up
  4716. \end_layout
  4717. \end_inset
  4718. </cell>
  4719. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4720. \begin_inset Text
  4721. \begin_layout Plain Layout
  4722. \family roman
  4723. \series medium
  4724. \shape up
  4725. \size normal
  4726. \emph off
  4727. \bar no
  4728. \strikeout off
  4729. \xout off
  4730. \uuline off
  4731. \uwave off
  4732. \noun off
  4733. \color none
  4734. 231
  4735. \end_layout
  4736. \end_inset
  4737. </cell>
  4738. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4739. \begin_inset Text
  4740. \begin_layout Plain Layout
  4741. \family roman
  4742. \series medium
  4743. \shape up
  4744. \size normal
  4745. \emph off
  4746. \bar no
  4747. \strikeout off
  4748. \xout off
  4749. \uuline off
  4750. \uwave off
  4751. \noun off
  4752. \color none
  4753. 515
  4754. \end_layout
  4755. \end_inset
  4756. </cell>
  4757. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  4758. \begin_inset Text
  4759. \begin_layout Plain Layout
  4760. \family roman
  4761. \series medium
  4762. \shape up
  4763. \size normal
  4764. \emph off
  4765. \bar no
  4766. \strikeout off
  4767. \xout off
  4768. \uuline off
  4769. \uwave off
  4770. \noun off
  4771. \color none
  4772. 2
  4773. \end_layout
  4774. \end_inset
  4775. </cell>
  4776. </row>
  4777. <row>
  4778. <cell multirow="4" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4779. \begin_inset Text
  4780. \begin_layout Plain Layout
  4781. \end_layout
  4782. \end_inset
  4783. </cell>
  4784. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4785. \begin_inset Text
  4786. \begin_layout Plain Layout
  4787. \series bold
  4788. NS
  4789. \end_layout
  4790. \end_inset
  4791. </cell>
  4792. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4793. \begin_inset Text
  4794. \begin_layout Plain Layout
  4795. \family roman
  4796. \series medium
  4797. \shape up
  4798. \size normal
  4799. \emph off
  4800. \bar no
  4801. \strikeout off
  4802. \xout off
  4803. \uuline off
  4804. \uwave off
  4805. \noun off
  4806. \color none
  4807. 160
  4808. \end_layout
  4809. \end_inset
  4810. </cell>
  4811. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4812. \begin_inset Text
  4813. \begin_layout Plain Layout
  4814. \family roman
  4815. \series medium
  4816. \shape up
  4817. \size normal
  4818. \emph off
  4819. \bar no
  4820. \strikeout off
  4821. \xout off
  4822. \uuline off
  4823. \uwave off
  4824. \noun off
  4825. \color none
  4826. 11235
  4827. \end_layout
  4828. \end_inset
  4829. </cell>
  4830. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  4831. \begin_inset Text
  4832. \begin_layout Plain Layout
  4833. \family roman
  4834. \series medium
  4835. \shape up
  4836. \size normal
  4837. \emph off
  4838. \bar no
  4839. \strikeout off
  4840. \xout off
  4841. \uuline off
  4842. \uwave off
  4843. \noun off
  4844. \color none
  4845. 136
  4846. \end_layout
  4847. \end_inset
  4848. </cell>
  4849. </row>
  4850. <row>
  4851. <cell multirow="4" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  4852. \begin_inset Text
  4853. \begin_layout Plain Layout
  4854. \end_layout
  4855. \end_inset
  4856. </cell>
  4857. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  4858. \begin_inset Text
  4859. \begin_layout Plain Layout
  4860. \series bold
  4861. Down
  4862. \end_layout
  4863. \end_inset
  4864. </cell>
  4865. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  4866. \begin_inset Text
  4867. \begin_layout Plain Layout
  4868. \family roman
  4869. \series medium
  4870. \shape up
  4871. \size normal
  4872. \emph off
  4873. \bar no
  4874. \strikeout off
  4875. \xout off
  4876. \uuline off
  4877. \uwave off
  4878. \noun off
  4879. \color none
  4880. 0
  4881. \end_layout
  4882. \end_inset
  4883. </cell>
  4884. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  4885. \begin_inset Text
  4886. \begin_layout Plain Layout
  4887. \family roman
  4888. \series medium
  4889. \shape up
  4890. \size normal
  4891. \emph off
  4892. \bar no
  4893. \strikeout off
  4894. \xout off
  4895. \uuline off
  4896. \uwave off
  4897. \noun off
  4898. \color none
  4899. 548
  4900. \end_layout
  4901. \end_inset
  4902. </cell>
  4903. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  4904. \begin_inset Text
  4905. \begin_layout Plain Layout
  4906. \family roman
  4907. \series medium
  4908. \shape up
  4909. \size normal
  4910. \emph off
  4911. \bar no
  4912. \strikeout off
  4913. \xout off
  4914. \uuline off
  4915. \uwave off
  4916. \noun off
  4917. \color none
  4918. 127
  4919. \end_layout
  4920. \end_inset
  4921. </cell>
  4922. </row>
  4923. </lyxtabular>
  4924. \end_inset
  4925. \end_layout
  4926. \begin_layout Plain Layout
  4927. \begin_inset Caption Standard
  4928. \begin_layout Plain Layout
  4929. \series bold
  4930. \begin_inset Argument 1
  4931. status open
  4932. \begin_layout Plain Layout
  4933. Comparison of significantly differentially expressed genes with and without
  4934. globin blocking.
  4935. \end_layout
  4936. \end_inset
  4937. \begin_inset CommandInset label
  4938. LatexCommand label
  4939. name "tab:Comparison-of-significant"
  4940. \end_inset
  4941. Comparison of significantly differentially expressed genes with and without
  4942. globin blocking.
  4943. \series default
  4944. Up, Down: Genes significantly up/down-regulated in post-transplant samples
  4945. relative to pre-transplant samples, with a false discovery rate of 10%
  4946. or less.
  4947. NS: Non-significant genes (false discovery rate greater than 10%).
  4948. \end_layout
  4949. \end_inset
  4950. \end_layout
  4951. \begin_layout Plain Layout
  4952. \end_layout
  4953. \end_inset
  4954. \end_layout
  4955. \begin_layout Standard
  4956. To compare performance on differential gene expression tests, we took subsets
  4957. of both the GB and non-GB libraries with exactly one pre-transplant and
  4958. one post-transplant sample for each animal that had paired samples available
  4959. for analysis (N=7 animals, N=14 samples in each subset).
  4960. The same test for pre- vs.
  4961. post-transplant differential gene expression was performed on the same
  4962. 7 pairs of samples from GB libraries and non-GB libraries, in each case
  4963. using an FDR of 10% as the threshold of significance.
  4964. Out of 12954 genes that passed the detection threshold in both subsets,
  4965. 358 were called significantly differentially expressed in the same direction
  4966. in both sets; 1063 were differentially expressed in the GB set only; 296
  4967. were differentially expressed in the non-GB set only; 2 genes were called
  4968. significantly up in the GB set but significantly down in the non-GB set;
  4969. and the remaining 11235 were not called differentially expressed in either
  4970. set.
  4971. These data are summarized in Table
  4972. \begin_inset CommandInset ref
  4973. LatexCommand ref
  4974. reference "tab:Comparison-of-significant"
  4975. plural "false"
  4976. caps "false"
  4977. noprefix "false"
  4978. \end_inset
  4979. .
  4980. The differences in BCV calculated by EdgeR for these subsets of samples
  4981. were negligible (BCV = 0.302 for GB and 0.297 for non-GB).
  4982. \end_layout
  4983. \begin_layout Standard
  4984. The key point is that the GB data results in substantially more differentially
  4985. expressed calls than the non-GB data.
  4986. Since there is no gold standard for this dataset, it is impossible to be
  4987. certain whether this is due to under-calling of differential expression
  4988. in the non-GB samples or over-calling in the GB samples.
  4989. However, given that both datasets are derived from the same biological
  4990. samples and have nearly equal BCVs, it is more likely that the larger number
  4991. of DE calls in the GB samples are genuine detections that were enabled
  4992. by the higher sequencing depth and measurement precision of the GB samples.
  4993. Note that the same set of genes was considered in both subsets, so the
  4994. larger number of differentially expressed gene calls in the GB data set
  4995. reflects a greater sensitivity to detect significant differential gene
  4996. expression and not simply the larger total number of detected genes in
  4997. GB samples described earlier.
  4998. \end_layout
  4999. \begin_layout Section
  5000. Discussion
  5001. \end_layout
  5002. \begin_layout Standard
  5003. The original experience with whole blood gene expression profiling on DNA
  5004. microarrays demonstrated that the high concentration of globin transcripts
  5005. reduced the sensitivity to detect genes with relatively low expression
  5006. levels, in effect, significantly reducing the sensitivity.
  5007. To address this limitation, commercial protocols for globin reduction were
  5008. developed based on strategies to block globin transcript amplification
  5009. during labeling or physically removing globin transcripts by affinity bead
  5010. methods
  5011. \begin_inset CommandInset citation
  5012. LatexCommand cite
  5013. key "Winn2010"
  5014. literal "false"
  5015. \end_inset
  5016. .
  5017. More recently, using the latest generation of labeling protocols and arrays,
  5018. it was determined that globin reduction was no longer necessary to obtain
  5019. sufficient sensitivity to detect differential transcript expression
  5020. \begin_inset CommandInset citation
  5021. LatexCommand cite
  5022. key "NuGEN2010"
  5023. literal "false"
  5024. \end_inset
  5025. .
  5026. However, we are not aware of any publications using these currently available
  5027. protocols the with latest generation of microarrays that actually compare
  5028. the detection sensitivity with and without globin reduction.
  5029. However, in practice this has now been adopted generally primarily driven
  5030. by concerns for cost control.
  5031. The main objective of our work was to directly test the impact of globin
  5032. gene transcripts and a new globin blocking protocol for application to
  5033. the newest generation of differential gene expression profiling determined
  5034. using next generation sequencing.
  5035. \end_layout
  5036. \begin_layout Standard
  5037. The challenge of doing global gene expression profiling in cynomolgus monkeys
  5038. is that the current available arrays were never designed to comprehensively
  5039. cover this genome and have not been updated since the first assemblies
  5040. of the cynomolgus genome were published.
  5041. Therefore, we determined that the best strategy for peripheral blood profiling
  5042. was to do deep RNA-seq and inform the workflow using the latest available
  5043. genome assembly and annotation
  5044. \begin_inset CommandInset citation
  5045. LatexCommand cite
  5046. key "Wilson2013"
  5047. literal "false"
  5048. \end_inset
  5049. .
  5050. However, it was not immediately clear whether globin reduction was necessary
  5051. for RNA-seq or how much improvement in efficiency or sensitivity to detect
  5052. differential gene expression would be achieved for the added cost and work.
  5053. \end_layout
  5054. \begin_layout Standard
  5055. We only found one report that demonstrated that globin reduction significantly
  5056. improved the effective read yields for sequencing of human peripheral blood
  5057. cell RNA using a DeepSAGE protocol
  5058. \begin_inset CommandInset citation
  5059. LatexCommand cite
  5060. key "Mastrokolias2012"
  5061. literal "false"
  5062. \end_inset
  5063. .
  5064. The approach to DeepSAGE involves two different restriction enzymes that
  5065. purify and then tag small fragments of transcripts at specific locations
  5066. and thus, significantly reduces the complexity of the transcriptome.
  5067. Therefore, we could not determine how DeepSAGE results would translate
  5068. to the common strategy in the field for assaying the entire transcript
  5069. population by whole-transcriptome 3’-end RNA-seq.
  5070. Furthermore, if globin reduction is necessary, we also needed a globin
  5071. reduction method specific to cynomolgus globin sequences that would work
  5072. an organism for which no kit is available off the shelf.
  5073. \end_layout
  5074. \begin_layout Standard
  5075. As mentioned above, the addition of globin blocking oligos has a very small
  5076. impact on measured expression levels of gene expression.
  5077. However, this is a non-issue for the purposes of differential expression
  5078. testing, since a systematic change in a gene in all samples does not affect
  5079. relative expression levels between samples.
  5080. However, we must acknowledge that simple comparisons of gene expression
  5081. data obtained by GB and non-GB protocols are not possible without additional
  5082. normalization.
  5083. \end_layout
  5084. \begin_layout Standard
  5085. More importantly, globin blocking not only nearly doubles the yield of usable
  5086. reads, it also increases inter-sample correlation and sensitivity to detect
  5087. differential gene expression relative to the same set of samples profiled
  5088. without blocking.
  5089. In addition, globin blocking does not add a significant amount of random
  5090. noise to the data.
  5091. Globin blocking thus represents a cost-effective way to squeeze more data
  5092. and statistical power out of the same blood samples and the same amount
  5093. of sequencing.
  5094. In conclusion, globin reduction greatly increases the yield of useful RNA-seq
  5095. reads mapping to the rest of the genome, with minimal perturbations in
  5096. the relative levels of non-globin genes.
  5097. Based on these results, globin transcript reduction using sequence-specific,
  5098. complementary blocking oligonucleotides is recommended for all deep RNA-seq
  5099. of cynomolgus and other nonhuman primate blood samples.
  5100. \end_layout
  5101. \begin_layout Chapter
  5102. Future Directions
  5103. \end_layout
  5104. \begin_layout Standard
  5105. \begin_inset Flex TODO Note (inline)
  5106. status open
  5107. \begin_layout Plain Layout
  5108. Consider per-chapter future directions.
  5109. Check instructions.
  5110. \end_layout
  5111. \end_inset
  5112. \end_layout
  5113. \begin_layout Itemize
  5114. Study other epigenetic marks in more contexts
  5115. \end_layout
  5116. \begin_deeper
  5117. \begin_layout Itemize
  5118. DNA methylation, histone marks, chromatin accessibility & conformation in
  5119. CD4 T-cells
  5120. \end_layout
  5121. \begin_layout Itemize
  5122. Also look at other types lymphocytes: CD8 T-cells, B-cells, NK cells
  5123. \end_layout
  5124. \end_deeper
  5125. \begin_layout Itemize
  5126. Use CV or bootstrap to better evaluate classifiers
  5127. \end_layout
  5128. \begin_layout Itemize
  5129. fRMAtools could be adapted to not require equal-sized groups
  5130. \end_layout
  5131. \begin_layout Standard
  5132. \begin_inset ERT
  5133. status open
  5134. \begin_layout Plain Layout
  5135. % Use "References" instead of "Bibliography"
  5136. \end_layout
  5137. \begin_layout Plain Layout
  5138. \backslash
  5139. renewcommand{
  5140. \backslash
  5141. bibname}{References}
  5142. \end_layout
  5143. \end_inset
  5144. \end_layout
  5145. \begin_layout Standard
  5146. \begin_inset Flex TODO Note (inline)
  5147. status open
  5148. \begin_layout Plain Layout
  5149. Check bib entry formatting & sort order
  5150. \end_layout
  5151. \end_inset
  5152. \end_layout
  5153. \begin_layout Standard
  5154. \begin_inset CommandInset bibtex
  5155. LatexCommand bibtex
  5156. btprint "btPrintCited"
  5157. bibfiles "refs,code-refs"
  5158. options "bibtotoc,unsrt"
  5159. \end_inset
  5160. \end_layout
  5161. \end_body
  5162. \end_document