thesis.lyx 329 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280142811428214283142841428514286142871428814289142901429114292142931429414295142961429714298142991430014301143021430314304143051430614307143081430914310143111431214313143141431514316143171431814319143201432114322143231432414325143261432714328143291433014331143321433314334143351433614337143381433914340143411434214343143441434514346143471434814349143501435114352143531435414355143561435714358143591436014361143621436314364143651436614367143681436914370143711437214373143741437514376143771437814379143801438114382143831438414385143861438714388143891439014391143921439314394143951439614397143981439914400144011440214403144041440514406144071440814409144101441114412144131441414415144161441714418144191442014421144221442314424144251442614427144281442914430144311443214433144341443514436144371443814439144401444114442144431444414445144461444714448144491445014451144521445314454144551445614457144581445914460144611446214463144641446514466144671446814469144701447114472144731447414475144761447714478144791448014481144821448314484144851448614487144881448914490144911449214493144941449514496144971449814499145001450114502145031450414505145061450714508145091451014511145121451314514145151451614517145181451914520145211452214523145241452514526145271452814529145301453114532145331453414535145361453714538145391454014541145421454314544145451454614547145481454914550145511455214553145541455514556145571455814559145601456114562145631456414565145661456714568145691457014571145721457314574145751457614577145781457914580145811458214583145841458514586145871458814589145901459114592145931459414595145961459714598145991460014601146021460314604146051460614607146081460914610146111461214613146141461514616146171461814619146201462114622146231462414625146261462714628146291463014631146321463314634146351463614637146381463914640146411464214643146441464514646146471464814649146501465114652146531465414655146561465714658146591466014661146621466314664146651466614667146681466914670146711467214673146741467514676146771467814679146801468114682146831468414685146861468714688146891469014691146921469314694146951469614697146981469914700147011470214703147041470514706147071470814709147101471114712147131471414715147161471714718147191472014721147221472314724147251472614727147281472914730147311473214733147341473514736147371473814739147401474114742147431474414745147461474714748147491475014751147521475314754147551475614757147581475914760147611476214763147641476514766147671476814769147701477114772147731477414775147761477714778147791478014781147821478314784147851478614787147881478914790147911479214793147941479514796147971479814799148001480114802148031480414805148061480714808148091481014811148121481314814148151481614817148181481914820148211482214823148241482514826148271482814829148301483114832148331483414835148361483714838148391484014841148421484314844148451484614847148481484914850148511485214853148541485514856148571485814859148601486114862148631486414865148661486714868148691487014871148721487314874148751487614877148781487914880148811488214883148841488514886148871488814889148901489114892148931489414895148961489714898148991490014901149021490314904149051490614907149081490914910149111491214913149141491514916149171491814919
  1. #LyX 2.3 created this file. For more info see http://www.lyx.org/
  2. \lyxformat 544
  3. \begin_document
  4. \begin_header
  5. \save_transient_properties true
  6. \origin unavailable
  7. \textclass extbook
  8. \begin_preamble
  9. % List all used files in log output
  10. \listfiles
  11. % Add a DRAFT watermark
  12. \usepackage{draftwatermark}
  13. \SetWatermarkLightness{0.97}
  14. \SetWatermarkScale{1}
  15. % Set up required header format
  16. \usepackage{fancyhdr}
  17. \pagestyle{fancy}
  18. \renewcommand{\headrulewidth}{0pt}
  19. \rhead{}
  20. \lhead{}
  21. \rfoot{}
  22. \lfoot{}
  23. \cfoot{\thepage} % Page number bottom center
  24. % Allow FloatBarrier command
  25. \usepackage{placeins}
  26. % Allow landscape pages
  27. \usepackage{pdflscape}
  28. % Allow doing things after the end of the current page
  29. % (to avoid landscape figures breaking up text)
  30. \usepackage{afterpage}
  31. % This one breaks subfigs so it's disabled
  32. % https://tex.stackexchange.com/questions/65680/automatically-bold-first-sentence-of-a-floats-caption
  33. \end_preamble
  34. \use_default_options true
  35. \begin_modules
  36. todonotes
  37. \end_modules
  38. \maintain_unincluded_children false
  39. \language english
  40. \language_package default
  41. \inputencoding utf8
  42. \fontencoding default
  43. \font_roman "default" "default"
  44. \font_sans "default" "default"
  45. \font_typewriter "default" "default"
  46. \font_math "auto" "auto"
  47. \font_default_family default
  48. \use_non_tex_fonts false
  49. \font_sc false
  50. \font_osf false
  51. \font_sf_scale 100 100
  52. \font_tt_scale 100 100
  53. \use_microtype false
  54. \use_dash_ligatures true
  55. \graphics default
  56. \default_output_format pdf4
  57. \output_sync 0
  58. \bibtex_command biber
  59. \index_command default
  60. \paperfontsize 12
  61. \spacing double
  62. \use_hyperref true
  63. \pdf_bookmarks true
  64. \pdf_bookmarksnumbered false
  65. \pdf_bookmarksopen false
  66. \pdf_bookmarksopenlevel 1
  67. \pdf_breaklinks false
  68. \pdf_pdfborder false
  69. \pdf_colorlinks false
  70. \pdf_backref false
  71. \pdf_pdfusetitle true
  72. \papersize letterpaper
  73. \use_geometry true
  74. \use_package amsmath 1
  75. \use_package amssymb 1
  76. \use_package cancel 1
  77. \use_package esint 1
  78. \use_package mathdots 1
  79. \use_package mathtools 1
  80. \use_package mhchem 1
  81. \use_package stackrel 1
  82. \use_package stmaryrd 1
  83. \use_package undertilde 1
  84. \cite_engine biblatex
  85. \cite_engine_type authoryear
  86. \biblio_style plain
  87. \biblatex_bibstyle authoryear
  88. \biblatex_citestyle numeric
  89. \use_bibtopic false
  90. \use_indices false
  91. \paperorientation portrait
  92. \suppress_date false
  93. \justification true
  94. \use_refstyle 1
  95. \use_minted 0
  96. \index Index
  97. \shortcut idx
  98. \color #008000
  99. \end_index
  100. \leftmargin 1.5in
  101. \topmargin 1in
  102. \rightmargin 1in
  103. \bottommargin 1in
  104. \secnumdepth 3
  105. \tocdepth 3
  106. \paragraph_separation indent
  107. \paragraph_indentation default
  108. \is_math_indent 0
  109. \math_numbering_side default
  110. \quotes_style english
  111. \dynamic_quotes 0
  112. \papercolumns 1
  113. \papersides 1
  114. \paperpagestyle default
  115. \tracking_changes false
  116. \output_changes false
  117. \html_math_output 0
  118. \html_css_as_file 0
  119. \html_be_strict false
  120. \end_header
  121. \begin_body
  122. \begin_layout Title
  123. Bioinformatic analysis of complex, high-throughput genomic and epigenomic
  124. data in the context of immunology and transplant rejection
  125. \end_layout
  126. \begin_layout Author
  127. A thesis presented
  128. \begin_inset Newline newline
  129. \end_inset
  130. by
  131. \begin_inset Newline newline
  132. \end_inset
  133. Ryan C.
  134. Thompson
  135. \begin_inset Newline newline
  136. \end_inset
  137. to
  138. \begin_inset Newline newline
  139. \end_inset
  140. The Scripps Research Institute Graduate Program
  141. \begin_inset Newline newline
  142. \end_inset
  143. in partial fulfillment of the requirements for the degree of
  144. \begin_inset Newline newline
  145. \end_inset
  146. Doctor of Philosophy in the subject of Biology
  147. \begin_inset Newline newline
  148. \end_inset
  149. for
  150. \begin_inset Newline newline
  151. \end_inset
  152. The Scripps Research Institute
  153. \begin_inset Newline newline
  154. \end_inset
  155. La Jolla, California
  156. \end_layout
  157. \begin_layout Date
  158. October 2019
  159. \end_layout
  160. \begin_layout Standard
  161. [Copyright notice]
  162. \end_layout
  163. \begin_layout Standard
  164. [Thesis acceptance form]
  165. \end_layout
  166. \begin_layout Standard
  167. [Dedication]
  168. \end_layout
  169. \begin_layout Standard
  170. [Acknowledgements]
  171. \end_layout
  172. \begin_layout Standard
  173. \begin_inset Flex TODO Note (inline)
  174. status open
  175. \begin_layout Plain Layout
  176. I'm looking for feedback on: Section titles; figure formatting; figure legends;
  177. typographical errors; ...
  178. \end_layout
  179. \end_inset
  180. \end_layout
  181. \begin_layout Standard
  182. \begin_inset CommandInset toc
  183. LatexCommand tableofcontents
  184. \end_inset
  185. \end_layout
  186. \begin_layout Standard
  187. \begin_inset FloatList table
  188. \end_inset
  189. \end_layout
  190. \begin_layout Standard
  191. \begin_inset FloatList figure
  192. \end_inset
  193. \end_layout
  194. \begin_layout Standard
  195. [List of Abbreviations]
  196. \end_layout
  197. \begin_layout List of TODOs
  198. \end_layout
  199. \begin_layout Standard
  200. \begin_inset Flex TODO Note (inline)
  201. status open
  202. \begin_layout Plain Layout
  203. Check all figures to make sure they fit on the page with their legends.
  204. \end_layout
  205. \end_inset
  206. \end_layout
  207. \begin_layout Standard
  208. \begin_inset Flex TODO Note (inline)
  209. status open
  210. \begin_layout Plain Layout
  211. Search and replace: naive -> naïve
  212. \end_layout
  213. \end_inset
  214. \end_layout
  215. \begin_layout Standard
  216. \begin_inset Flex TODO Note (inline)
  217. status open
  218. \begin_layout Plain Layout
  219. Look into auto-generated nomenclature list: https://wiki.lyx.org/Tips/Nomenclature.
  220. Otherwise, do a manual pass for all abbreviations at the end.
  221. Do nomenclature/abbreviations independently for each chapter.
  222. \end_layout
  223. \end_inset
  224. \end_layout
  225. \begin_layout Standard
  226. \begin_inset Flex TODO Note (inline)
  227. status open
  228. \begin_layout Plain Layout
  229. Make all descriptions consistent in terms of
  230. \begin_inset Quotes eld
  231. \end_inset
  232. we did X
  233. \begin_inset Quotes erd
  234. \end_inset
  235. vs
  236. \begin_inset Quotes eld
  237. \end_inset
  238. I did X
  239. \begin_inset Quotes erd
  240. \end_inset
  241. vs
  242. \begin_inset Quotes eld
  243. \end_inset
  244. X was done
  245. \begin_inset Quotes erd
  246. \end_inset
  247. .
  248. \end_layout
  249. \end_inset
  250. \end_layout
  251. \begin_layout Chapter*
  252. Abstract
  253. \end_layout
  254. \begin_layout Standard
  255. \begin_inset Note Note
  256. status open
  257. \begin_layout Plain Layout
  258. It is included as an integral part of the thesis and should immediately
  259. precede the introduction.
  260. \end_layout
  261. \begin_layout Plain Layout
  262. Preparing your Abstract.
  263. Your abstract (a succinct description of your work) is limited to 350 words.
  264. UMI will shorten it if they must; please do not exceed the limit.
  265. \end_layout
  266. \begin_layout Itemize
  267. Include pertinent place names, names of persons (in full), and other proper
  268. nouns.
  269. These are useful in automated retrieval.
  270. \end_layout
  271. \begin_layout Itemize
  272. Display symbols, as well as foreign words and phrases, clearly and accurately.
  273. Include transliterations for characters other than Roman and Greek letters
  274. and Arabic numerals.
  275. Include accents and diacritical marks.
  276. \end_layout
  277. \begin_layout Itemize
  278. Do not include graphs, charts, tables, or illustrations in your abstract.
  279. \end_layout
  280. \end_inset
  281. \end_layout
  282. \begin_layout Standard
  283. \begin_inset Flex TODO Note (inline)
  284. status open
  285. \begin_layout Plain Layout
  286. Obviously the abstract gets written last.
  287. \end_layout
  288. \end_inset
  289. \end_layout
  290. \begin_layout Chapter
  291. Introduction
  292. \end_layout
  293. \begin_layout Section
  294. Background & Significance
  295. \end_layout
  296. \begin_layout Subsection
  297. Biological motivation
  298. \end_layout
  299. \begin_layout Standard
  300. \begin_inset Flex TODO Note (inline)
  301. status open
  302. \begin_layout Plain Layout
  303. Rethink the subsection organization after the intro is written.
  304. \end_layout
  305. \end_inset
  306. \end_layout
  307. \begin_layout Standard
  308. \begin_inset Flex TODO Note (inline)
  309. status open
  310. \begin_layout Plain Layout
  311. Citations are needed all over the place.
  312. A lot of this is knowledge I've just absorbed from years of conversation
  313. in the Salomon lab, without ever having seen a citation for it.
  314. \end_layout
  315. \end_inset
  316. \end_layout
  317. \begin_layout Subsubsection
  318. Rejection is the major long-term threat to organ and tissue allografts
  319. \end_layout
  320. \begin_layout Standard
  321. Organ and tissue transplants are a life-saving treatment for people who
  322. have lost the function of an important organ.
  323. In some cases, it is possible to transplant a patient's own tissue from
  324. one area of their body to another, referred to as an autograft.
  325. This is common for tissues that are distributed throughout many areas of
  326. the body, such as skin and bone.
  327. However, in cases of organ failure, there is no functional self tissue
  328. remaining, and a transplant from another person – the donor – is required.
  329. This is referred to as an allograft.
  330. \end_layout
  331. \begin_layout Standard
  332. \begin_inset Flex TODO Note (inline)
  333. status open
  334. \begin_layout Plain Layout
  335. Possible citation for degree of generic variability: https://www.ncbi.nlm.nih.gov/pu
  336. bmed/22424236?dopt=Abstract
  337. \end_layout
  338. \end_inset
  339. \end_layout
  340. \begin_layout Standard
  341. \begin_inset Flex TODO Note (inline)
  342. status open
  343. \begin_layout Plain Layout
  344. How much mechanistic detail is needed here? My work doesn't really go into
  345. specific rejection mechanisms, so I think it's best to keep it basic.
  346. \end_layout
  347. \end_inset
  348. \end_layout
  349. \begin_layout Standard
  350. Because an allograft comes from a different person, it is genetically distinct
  351. from the rest of the recipient's body.
  352. Some genetic variants occur in protein coding regions, resulting in protein
  353. products that differ from the equivalent proteins in the graft recipient's
  354. own tissue.
  355. As a result, without intervention, the recipient's immune system will eventuall
  356. y identify the graft as foreign tissue and begin attacking it, eventually
  357. resulting in failure and death of the graft, a process referred to as transplan
  358. t rejection.
  359. Rejection is the most significant challenge to the long-term health of
  360. an allograft.
  361. Like any adaptive immune response, graft rejection generally occurs via
  362. two broad mechanisms: cellular immunity, in which CD8+ T-cells induce apoptosis
  363. in the graft cells; and humoral immunity, in which B-cells produce antibodies
  364. that bind to graft proteins and direct an immune response against the graft.
  365. In either case, rejection shows most of the typical hallmarks of an adaptive
  366. immune response, in particular mediation by CD4+ T-cells and formation
  367. of immune memory.
  368. \end_layout
  369. \begin_layout Subsubsection
  370. Diagnosis and treatment of allograft rejection is a major challenge
  371. \end_layout
  372. \begin_layout Standard
  373. To prevent rejection, allograft recipients are treated with immune suppression.
  374. The goal is to achieve sufficient suppression of the immune system to prevent
  375. rejection of the graft without compromising the ability of the immune system
  376. to raise a normal response against infection.
  377. As such, a delicate balance must be struck: insufficient immune suppression
  378. may lead to rejection and ultimately loss of the graft; exceissive suppression
  379. leaves the patient vulnerable to life-threatening opportunistic infections.
  380. Because every patient is different, immune suppression must be tailored
  381. for each patient.
  382. Furthermore, immune suppression must be tuned over time, as the immune
  383. system's activity is not static, nor is it held in a steady state.
  384. In order to properly adjust the dosage of immune suppression drugs, it
  385. is necessary to monitor the health of the transplant and increase the dosage
  386. if evidence of rejection is observed.
  387. \end_layout
  388. \begin_layout Standard
  389. However, diagnosis of rejection is a significant challenge.
  390. Early diagnosis is essential in order to step up immune suppression before
  391. the immune system damages the graft beyond recovery.
  392. The current gold standard test for graft rejection is a tissue biopsy,
  393. examained for visible signs of rejection by a trained histologist.
  394. When a patient shows symptoms of possible rejection, a
  395. \begin_inset Quotes eld
  396. \end_inset
  397. for cause
  398. \begin_inset Quotes erd
  399. \end_inset
  400. biopsy is performed to confirm the diagnosis, and immune suppression is
  401. adjusted as necessary.
  402. However, in many cases, the early stages of rejection are asymptomatic,
  403. known as
  404. \begin_inset Quotes eld
  405. \end_inset
  406. sub-clinical
  407. \begin_inset Quotes erd
  408. \end_inset
  409. rejection.
  410. In light of this, is is now common to perform
  411. \begin_inset Quotes eld
  412. \end_inset
  413. protocol biopsies
  414. \begin_inset Quotes erd
  415. \end_inset
  416. at specific times after transplantation of a graft, even if no symptoms
  417. of rejection are apparent, in addition to
  418. \begin_inset Quotes eld
  419. \end_inset
  420. for cause
  421. \begin_inset Quotes erd
  422. \end_inset
  423. biopsies
  424. \begin_inset CommandInset citation
  425. LatexCommand cite
  426. key "Wilkinson2006"
  427. literal "false"
  428. \end_inset
  429. .
  430. \end_layout
  431. \begin_layout Standard
  432. However, biopsies have a number of downsides that limit their effectiveness
  433. as a diagnostic tool.
  434. First, the need for manual inspection by a histologist means that diagnosis
  435. is subject to the biases of the particular histologist examining the biopsy.
  436. In marginal cases two different histologists may give two different diagnoses
  437. to the same biopsy.
  438. Second, a biopsy can only evaluate if rejection is occurring in the section
  439. of the graft from which the tissue was extracted.
  440. If rejection is only occurring in one section of the graft and the tissue
  441. is extracted from a different section, it may result in a false negative
  442. diagnosis.
  443. Most importantly, however, extraction of tissue from a graft is invasive
  444. and is treated as an injury by the body, which results in inflammation
  445. that in turn promotes increased immune system activity.
  446. Hence, the invasiveness of biopsies severely limits the frequency with
  447. which the can safely be performed.
  448. Typically protocol biopsies are not scheduled more than about once per
  449. month
  450. \begin_inset CommandInset citation
  451. LatexCommand cite
  452. key "Wilkinson2006"
  453. literal "false"
  454. \end_inset
  455. .
  456. A less invasive diagnostic test for rejection would bring manifold benefits.
  457. Such a test would enable more frequent testing and therefore earlier detection
  458. of rejection events.
  459. In addition, having a larger pool of historical data for a given patient
  460. would make it easier to evaluate when a given test is outside the normal
  461. parameters for that specific patient, rather than relying on normal ranges
  462. for the population as a whole.
  463. Lastly, more frequent tests would be a boon to the transplant research
  464. community.
  465. Beyond simply providing more data, the increased time granularity of the
  466. tests will enable studying the progression of a rejection event on the
  467. scale of days to weeks, rather than months.
  468. \end_layout
  469. \begin_layout Subsubsection
  470. Memory cells are resistant to immune suppression
  471. \end_layout
  472. \begin_layout Standard
  473. One of the defining features of the adaptive immune system is immune memory:
  474. the ability of the immune system to recognize a previously encountered
  475. foreign antigen and respond more quickly and more strongly to that antigen
  476. in subsequent encounters.
  477. When the immune system first encounters a new antigen, the lymphocytes
  478. that respond are known as naive cells – T-cells and B-cells that have never
  479. detected their target antigens before.
  480. Once activated by their specific antigen presented by an antigen-presenting
  481. cell in the proper co-stimulatory context, naive cells differentiate into
  482. effector cells that carry out their respective functions in targeting and
  483. destroying the source of the foreign antigen.
  484. The requirement for co-stimulation is an important feature of naive cells
  485. that limits
  486. \begin_inset Quotes eld
  487. \end_inset
  488. false positive
  489. \begin_inset Quotes erd
  490. \end_inset
  491. immune responses, because antigen-presenting cells usually only express
  492. the proper co-stimulation after detecting evidence of an infection, such
  493. as the presence of common bacterial cell components or inflamed tissue.
  494. Most effector cells die after the foreign antigen is cleared, but some
  495. remain and differentiate into memory cells.
  496. Like naive cells, memory cells respond to detection of their specific antigen
  497. by differentiating into effector cells, ready to fight an infection.
  498. However, unlike naive cells, memory cells do not require the same degree
  499. of co-stimulatory signaling for activation, and once activated, they proliferat
  500. e and differentiate into effector cells more quickly than naive cells do.
  501. \end_layout
  502. \begin_layout Standard
  503. In the context of a pathogenic infection, immune memory is a major advantage,
  504. allowing an organism to rapidly fight off a previously encountered pathogen
  505. much more quickly and effectively than the first time it was encountered.
  506. However, if effector cells that recognize an antigen from an allograft
  507. are allowed to differentiate into memory cells, suppressing rejection of
  508. the graft becomes much more difficult.
  509. Many immune suppression drugs work by interfering with the co-stimulation
  510. that naive cells require in order to mount an immune response.
  511. Since memory cells do not require this co-stimulation, these drugs are
  512. not effective at suppressing an immune response that is mediated by memory
  513. cells.
  514. Secondly, because memory cells are able to mount a stronger and faster
  515. response to an antigen, all else being equal they require stronger immune
  516. suppression than naive cells to prevent an immune response.
  517. However, immune suppression affects the entire immune system, not just
  518. cells recognizing a specific antigen, so increasing the dosage of immune
  519. suppression drugs also increases the risk of complications from a compromised
  520. immune system, such as opportunistic infections.
  521. While the differences in cell surface markers between naive and memory
  522. cells have been fairly well characterized, the internal regulatory mechanisms
  523. that allow memory cells to respond more quickly and without co-stimulation
  524. are still poorly understood.
  525. In order to develop immune suppression that either prevents the formation
  526. of memory cells or works more effectively against memory cells, the mechanisms
  527. of immune memory formation and regulation must be better understood.
  528. \end_layout
  529. \begin_layout Subsection
  530. Overview of bioinformatic analysis methods
  531. \end_layout
  532. \begin_layout Standard
  533. The studies presented in this work all involve the analysis of high-throughput
  534. genomic and epigenomic data.
  535. These data present many unique analysis challenges, and a wide array of
  536. software tools are available to analyze them.
  537. This section presents an overview of the methods used, including what problems
  538. they solve, what assumptions they make, and a basic description of how
  539. they work.
  540. \end_layout
  541. \begin_layout Standard
  542. \begin_inset Flex TODO Note (inline)
  543. status open
  544. \begin_layout Plain Layout
  545. Many of these points may also be addressed in the approach/methods sections
  546. of the following chapters? Redundant?
  547. \end_layout
  548. \end_inset
  549. \end_layout
  550. \begin_layout Subsubsection
  551. Limma: The standard linear modeling framework for genomics
  552. \end_layout
  553. \begin_layout Standard
  554. Linear models are a generalization of the
  555. \begin_inset Formula $t$
  556. \end_inset
  557. -test and ANOVA to arbitrarily complex experimental designs.
  558. In a typical linear model, there is one dependent variable observation
  559. per sample.
  560. For example, in a linear model of height as a function of age and sex,
  561. there is one height measurement per person.
  562. However, when analyzing genomic data, each sample consists of observations
  563. of thousands of dependent variables.
  564. For example, in an RNA-seq experiment, the dependent variables may be the
  565. count of RNA-seq reads for each annotated gene.
  566. In abstract terms, each dependent variable being measured is referred to
  567. as a feature.
  568. The simplest approach to analyzing such data would be to fit the same model
  569. independently to each feature.
  570. However, this is undesirable for most genomics data sets.
  571. Genomics assays like high-throughput sequencing are expensive, and often
  572. generating the samples is also quite expensive and time-consuming.
  573. This expense limits the sample sizes typically employed in genomics experiments
  574. , and as a result the statistical power of each individual feature's linear
  575. model is likewise limited.
  576. However, because thousands of features from the same samples are analyzed
  577. together, there is an opportunity to improve the statistical power of the
  578. analysis by exploiting shared patterns of variation across features.
  579. This is the core feature of limma, a linear modeling framework designed
  580. for genomic data.
  581. Limma is typically used to analyze expression microarray data, and more
  582. recently RNA-seq data, but it can also be used to analyze any other data
  583. for which linear modeling is appropriate.
  584. \end_layout
  585. \begin_layout Standard
  586. The central challenge when fitting a linear model is to estimate the variance
  587. of the data accurately.
  588. This quantity is the most difficult to estimate when sample sizes are small.
  589. A single shared variance could be estimated for all of the features together,
  590. and this estimate would be very stable, in contrast to the individual feature
  591. variance estimates.
  592. However, this would require the assumption that every feature is equally
  593. variable, which is known to be false for most genomic data sets.
  594. Limma offers a compromise between these two extremes by using a method
  595. called empirical Bayes moderation to
  596. \begin_inset Quotes eld
  597. \end_inset
  598. squeeze
  599. \begin_inset Quotes erd
  600. \end_inset
  601. the distribution of estimated variances toward a single common value that
  602. represents the variance of an average feature in the data
  603. \begin_inset CommandInset citation
  604. LatexCommand cite
  605. key "Smyth2004"
  606. literal "false"
  607. \end_inset
  608. .
  609. While the individual feature variance estimates are not stable, the common
  610. variance estiamate for the entire data set is quite stable, so using a
  611. combination of the two yields a variance estimate for each feature with
  612. greater precision than the individual feature varaiances.
  613. The trade-off for this improvement is that squeezing each estimated variance
  614. toward the common value introduces some bias – the variance will be underestima
  615. ted for features with high variance and overestimated for features with
  616. low variance.
  617. Essentially, limma assumes that extreme variances are less common than
  618. variances close to the common value.
  619. The variance estimates from this empirical Bayes procedure are shown empiricall
  620. y to yield greater statistical power than either the individual feature
  621. variances or the single common value.
  622. \end_layout
  623. \begin_layout Standard
  624. On top of this core framework, limma also implements many other enhancements
  625. that, further relax the assumptions of the model and extend the scope of
  626. what kinds of data it can analyze.
  627. Instead of squeezing toward a single common variance value, limma can model
  628. the common variance as a function of a covariate, such as average expression
  629. \begin_inset CommandInset citation
  630. LatexCommand cite
  631. key "Law2013"
  632. literal "false"
  633. \end_inset
  634. .
  635. This is essential for RNA-seq data, where higher gene counts yield more
  636. precise expression measurements and therefore smaller variances than low-count
  637. genes.
  638. While linear models typically assume that all samples have equal variance,
  639. limma is able to relax this assumption by identifying and down-weighting
  640. samples the diverge more strongly from the lienar model across many features
  641. \begin_inset CommandInset citation
  642. LatexCommand cite
  643. key "Ritchie2006,Liu2015"
  644. literal "false"
  645. \end_inset
  646. .
  647. In addition, limma is also able to fit simple mixed models incorporating
  648. one random effect in addition to the fixed effects represented by an ordinary
  649. linear model
  650. \begin_inset CommandInset citation
  651. LatexCommand cite
  652. key "Smyth2005a"
  653. literal "false"
  654. \end_inset
  655. .
  656. Once again, limma shares information between features to obtain a robust
  657. estimate for the random effect correlation.
  658. \end_layout
  659. \begin_layout Subsubsection
  660. edgeR provides limma-like analysis features for count data
  661. \end_layout
  662. \begin_layout Standard
  663. Although limma can be applied to read counts from RNA-seq data, it is less
  664. suitable for counts from ChIP-seq data, which tend to be much smaller and
  665. therefore violate the assumption of a normal distribution more severely.
  666. For all count-based data, the edgeR package works similarly to limma, but
  667. uses a generalized linear model instead of a linear model.
  668. The most important difference is that the GLM in edgeR models the counts
  669. directly using a negative binomial distribution rather than modeling the
  670. normalized log counts using a normal distribution
  671. \begin_inset CommandInset citation
  672. LatexCommand cite
  673. key "Chen2014,McCarthy2012,Robinson2010a"
  674. literal "false"
  675. \end_inset
  676. .
  677. The negative binomial is a good fit for count data because it can be derived
  678. as a gamma-distributed mixture of Poisson distributions.
  679. The Poisson distribution accurately represents the distribution of counts
  680. expected for a given gene abundance, and the gamma distribution is then
  681. used to represent the variation in gene abundance between biological replicates.
  682. For this reason, the square root of the dispersion paramter of the negative
  683. binomial is sometimes referred to as the biological coefficient of variation,
  684. since it represents the variability that was present in the samples prior
  685. to the Poisson
  686. \begin_inset Quotes eld
  687. \end_inset
  688. noise
  689. \begin_inset Quotes erd
  690. \end_inset
  691. that was generated by the random sampling of reads in proportion to feature
  692. abundances.
  693. The choice of a gamma distribution is arbitrary and motivated by mathematical
  694. convenience, since a gamma-Poisson mixture yields the numerically tractable
  695. negative binomial distribution.
  696. Thus, edgeR assumes
  697. \emph on
  698. a prioi
  699. \emph default
  700. that the variation in abundances between replicates follows a gamma distribution.
  701. For differential abundance testing, edgeR offers a likelihood ratio test,
  702. but more recently recommends a quasi-likelihood test that properly factors
  703. the uncertainty in variance estimation into the statistical significance
  704. for each feature
  705. \begin_inset CommandInset citation
  706. LatexCommand cite
  707. key "Lund2012"
  708. literal "false"
  709. \end_inset
  710. .
  711. \end_layout
  712. \begin_layout Subsubsection
  713. ChIP-seq Peak calling
  714. \end_layout
  715. \begin_layout Standard
  716. Unlike RNA-seq data, in which gene annotations provide a well-defined set
  717. of genomic regions in which to count reads, ChIP-seq data can potentially
  718. occur anywhere in the genome.
  719. However, most genome regions will not contain significant ChIP-seq read
  720. coverage, and analyzing every position in the entire genome is statistically
  721. and computationally infeasible, so it is necesary to identify regions of
  722. interest inside which ChIP-seq reads will be counted and analyzed.
  723. One option is to define a set of interesting regions
  724. \emph on
  725. a priori
  726. \emph default
  727. , for example by defining a promoter region for each annotated gene.
  728. However, it is also possible to use the ChIP-seq data itself to identify
  729. regions with ChIP-seq read coverage significantly above the background
  730. level, known as peaks.
  731. \end_layout
  732. \begin_layout Standard
  733. There are generally two kinds of peaks that can be identified: narrow peaks
  734. and broadly enriched regions.
  735. Proteins like transcription factors that bind specific sites in the genome
  736. typically show most of their read coverage at these specific sites and
  737. very little coverage anywhere else.
  738. Because the footprint of the protein is consistent wherever it binds, each
  739. peak has a consistent size, typically tens to hundreds of base pairs.
  740. Algorithms like MACS exploit this pattern to identify specific loci at
  741. which such
  742. \begin_inset Quotes eld
  743. \end_inset
  744. narrow peaks
  745. \begin_inset Quotes erd
  746. \end_inset
  747. occur by looking for the characteristic peak shape in the ChIP-seq coverage
  748. rising above the surrounding background coverage
  749. \begin_inset CommandInset citation
  750. LatexCommand cite
  751. key "Zhang2008"
  752. literal "false"
  753. \end_inset
  754. .
  755. In contrast, some proteins, chief among them histones, do not bind only
  756. at a small number of specific sites, but rather bind potentailly almost
  757. everywhere in the entire genome.
  758. When looking at histone marks, adjacent histones tend to be similarly marked,
  759. and a given mark may be present on an arbitrary number of consecutive histones
  760. along the genome.
  761. Hence, there is no consistent
  762. \begin_inset Quotes eld
  763. \end_inset
  764. footprint size
  765. \begin_inset Quotes erd
  766. \end_inset
  767. for ChIP-seq peaks based on histone marks, and peaks typically span many
  768. histones.
  769. Hence, typical peaks span many hundreds or even thousands of base pairs.
  770. Instead of identifying specific loci of strong enrichment, algorithms like
  771. SICER assume that peaks are represented in the ChIP-seq data by modest
  772. enrichment above background occurring across broad regions, and they attempt
  773. to identify the extent of those regions
  774. \begin_inset CommandInset citation
  775. LatexCommand cite
  776. key "Zang2009"
  777. literal "false"
  778. \end_inset
  779. .
  780. In all cases, better results are obtained if the local background coverage
  781. level can be estimated from ChIP-seq input samples, since various biases
  782. can result in uneven background coverage.
  783. \end_layout
  784. \begin_layout Standard
  785. Regardless of the type of peak identified, it is important to identify peaks
  786. that occur consistently across biological replicates.
  787. The ENCODE project has developed a method called irreproducible discovery
  788. rate for this purpose
  789. \begin_inset CommandInset citation
  790. LatexCommand cite
  791. key "Li2006"
  792. literal "false"
  793. \end_inset
  794. .
  795. The IDR is defined as the probability that a peak identified in one biological
  796. replicate will
  797. \emph on
  798. not
  799. \emph default
  800. also be identified in a second replicate.
  801. Where the more familiar false discovery rate measures the degree of corresponde
  802. nce between a data-derived ranked list and the true list of significant
  803. features, IDR instead measures the degree of correspondence between two
  804. ranked lists derived from different data.
  805. IDR assumes that the highest-ranked features are
  806. \begin_inset Quotes eld
  807. \end_inset
  808. signal
  809. \begin_inset Quotes erd
  810. \end_inset
  811. peaks that tend to be listed in the same order in both lists, while the
  812. lowest-ranked features are essentially noise peaks, listed in random order
  813. with no correspondence between the lists.
  814. IDR attempts to locate the
  815. \begin_inset Quotes eld
  816. \end_inset
  817. crossover point
  818. \begin_inset Quotes erd
  819. \end_inset
  820. between the signal and the noise by determining how for down the list the
  821. correspondence between feature ranks breaks down.
  822. \end_layout
  823. \begin_layout Standard
  824. In addition to other considerations, if called peaks are to be used as regions
  825. of interest for differential abundance analysis, then care must be taken
  826. to call peaks in a way that is blind to differential abundance between
  827. experimental conditions, or else the statistical significance calculations
  828. for differential abundance will overstate their confidence in the results.
  829. The csaw package provides guidelines for calling peaks in this way: peaks
  830. are called based on a combination of all ChIP-seq reads from all experimental
  831. conditions, so that the identified peaks are based on the average abundance
  832. across all conditions, which is independent of any differential abundance
  833. between condtions
  834. \begin_inset CommandInset citation
  835. LatexCommand cite
  836. key "Lun2015a"
  837. literal "false"
  838. \end_inset
  839. .
  840. \end_layout
  841. \begin_layout Subsubsection
  842. Normalization of high-throughput data is non-trivial and application-dependant
  843. \end_layout
  844. \begin_layout Standard
  845. High-throughput data sets invariable require some kind of normalization
  846. before further analysis can be conducted.
  847. In general, the goal of normalization is to remove effects in the data
  848. that are caused by technical factors that have nothing to do with the biology
  849. being studied.
  850. \end_layout
  851. \begin_layout Standard
  852. For Affymetrix expression arrays, the standard normalization algorithm used
  853. in most analyses is Robust Multichip Average (RMA).
  854. RMA is designed with the assumption that some fraction of probes on each
  855. array will be artifactual and takes advantage of the fact that each gene
  856. is represented by multiple probes by implementing normalization and summarizati
  857. on steps that are robust against outlier probes.
  858. However, RMA uses the probe intensities of all arrays in the data set in
  859. the normalization of each individual array, meaning that the normalized
  860. expression values in each array depend on every array in the data set,
  861. and will necessarily change each time an array is added or removed from
  862. the data set.
  863. If this is undesirable, frozen RMA implements a variant of RMA where the
  864. relevant distributional parameters are learned from a large reference set
  865. of diverse public array data sets and then
  866. \begin_inset Quotes eld
  867. \end_inset
  868. frozen
  869. \begin_inset Quotes erd
  870. \end_inset
  871. , so that each array is effectively normalized against this frozen reference
  872. set rather than the other arrays in the data set under study.
  873. \end_layout
  874. \begin_layout Standard
  875. In contrast, high-throughput sequencing data present very different normalizatio
  876. n challenges.
  877. The simplest case is RNA-seq in which read counts are obtained for a set
  878. of gene annotations, yielding a matrix of counts with rows representing
  879. genes and columns representing samples.
  880. Because RNA-seq approximates a process of sampling from a population with
  881. replacement, each gene's count is only interpretable as a fraction of the
  882. total reads for that sample.
  883. For that reason, RNA-seq abundances are often reported as counts per million
  884. (CPM).
  885. Furthermore, if the abundance of a single gene increases, then in order
  886. for its fraction of the total reads to increase, all other genes' fractions
  887. must decrease to accomodate it.
  888. This effect is known as composition bias, and it is an artifact of the
  889. read sampling process that has nothing to do with the biology of the samples
  890. and must therefore be normalized out.
  891. The most commonly used methods to normalize for composition bias in RNA-seq
  892. data seek to equalize the average gene abundance across samples, under
  893. the assumption that the average gene is likely not changing
  894. \begin_inset CommandInset citation
  895. LatexCommand cite
  896. key "Robinson2010,Anders2010"
  897. literal "false"
  898. \end_inset
  899. .
  900. \end_layout
  901. \begin_layout Standard
  902. In ChIP-seq data, normalization is not as straightforward.
  903. The csaw package implements several different normalization strategies
  904. and provides guidance on when to use each one
  905. \begin_inset CommandInset citation
  906. LatexCommand cite
  907. key "Lun2015a"
  908. literal "false"
  909. \end_inset
  910. .
  911. Briefly, a typical ChIP-seq sample has a bimodal distribution of read counts:
  912. a low-abundance mode representing background regions and a high-abundance
  913. mode representing signal regions.
  914. This offers two potential normalization targets: equalizing background
  915. coverage or equalizing signal coverage.
  916. If the experiment is well controlled and ChIP efficiency is known to be
  917. consistent across all samples, then normalizing the background coverage
  918. to be equal across all samples is a reasonable strategy.
  919. If this is not a safe assumption, then the preferred strategy is to normalize
  920. the signal regions in a way similar to RNA-seq data by assuming that the
  921. average signal region is not changing abundance between samples.
  922. Beyond this, if a ChIP-seq experiment has a more complicated structure
  923. that doesn't show the typical bimodal count distribution, it may be necessary
  924. to implement a normalization as a smooth function of abundance.
  925. However, this strategy makes a much stronger assumption about the data:
  926. that the average log fold change is zero across all abundance levels.
  927. Hence, the simpler scaling normalziations based on background or signal
  928. regions are generally preferred whenever possible.
  929. \end_layout
  930. \begin_layout Subsubsection
  931. sva and ComBat for batch correction
  932. \end_layout
  933. \begin_layout Subsubsection
  934. Factor analysis: PCA, MDS, MOFA
  935. \end_layout
  936. \begin_layout Itemize
  937. Batch-corrected PCA is informative, but careful application is required
  938. to avoid bias
  939. \end_layout
  940. \begin_layout Section
  941. Innovation
  942. \end_layout
  943. \begin_layout Standard
  944. \begin_inset Flex TODO Note (inline)
  945. status open
  946. \begin_layout Plain Layout
  947. Is this entire section redundant with the Approach sections of each chapter?
  948. I'm not really sure what to write here.
  949. \end_layout
  950. \end_inset
  951. \end_layout
  952. \begin_layout Subsection
  953. MSC infusion to improve transplant outcomes (prevent/delay rejection)
  954. \end_layout
  955. \begin_layout Standard
  956. \begin_inset Flex TODO Note (inline)
  957. status open
  958. \begin_layout Plain Layout
  959. Do I still talk about this? It's the motivation for chapter 4, but I don't
  960. actually present any work related to MSCs.
  961. \end_layout
  962. \end_inset
  963. \end_layout
  964. \begin_layout Itemize
  965. Demonstrated in mice, but not yet in primates
  966. \end_layout
  967. \begin_layout Itemize
  968. Mechanism currently unknown, but MSC are known to be immune modulatory
  969. \end_layout
  970. \begin_layout Itemize
  971. Characterize MSC response to interferon gamma
  972. \end_layout
  973. \begin_layout Itemize
  974. IFN-g is thought to stimulate their function
  975. \end_layout
  976. \begin_layout Itemize
  977. Test IFN-g treated MSC infusion as a therapy to delay graft rejection in
  978. cynomolgus monkeys
  979. \end_layout
  980. \begin_layout Itemize
  981. Monitor animals post-transplant using blood RNA-seq at serial time points
  982. \end_layout
  983. \begin_layout Subsection
  984. Investigate dynamics of histone marks in CD4 T-cell activation and memory
  985. \end_layout
  986. \begin_layout Itemize
  987. Previous studies have looked at single snapshots of histone marks
  988. \end_layout
  989. \begin_layout Itemize
  990. Instead, look at changes in histone marks across activation and memory
  991. \end_layout
  992. \begin_layout Subsection
  993. High-throughput sequencing and microarray technologies
  994. \end_layout
  995. \begin_layout Itemize
  996. Powerful methods for assaying gene expression and epigenetics across entire
  997. genomes
  998. \end_layout
  999. \begin_layout Itemize
  1000. Proper analysis requires finding and exploiting systematic genome-wide trends
  1001. \end_layout
  1002. \begin_layout Chapter
  1003. Reproducible genome-wide epigenetic analysis of H3K4 and H3K27 methylation
  1004. in naive and memory CD4 T-cell activation
  1005. \end_layout
  1006. \begin_layout Standard
  1007. \begin_inset Flex TODO Note (inline)
  1008. status open
  1009. \begin_layout Plain Layout
  1010. Chapter author list: Me, Sarah, Dan
  1011. \end_layout
  1012. \end_inset
  1013. \end_layout
  1014. \begin_layout Standard
  1015. \begin_inset Flex TODO Note (inline)
  1016. status open
  1017. \begin_layout Plain Layout
  1018. Need better section titles throughout the entire chapter
  1019. \end_layout
  1020. \end_inset
  1021. \end_layout
  1022. \begin_layout Section
  1023. Approach
  1024. \end_layout
  1025. \begin_layout Standard
  1026. \begin_inset Flex TODO Note (inline)
  1027. status open
  1028. \begin_layout Plain Layout
  1029. Check on the exact correct way to write
  1030. \begin_inset Quotes eld
  1031. \end_inset
  1032. CD4 T-cell
  1033. \begin_inset Quotes erd
  1034. \end_inset
  1035. .
  1036. I think there might be a plus sign somwehere in there now? Also, maybe
  1037. figure out a reasonable way to abbreviate
  1038. \begin_inset Quotes eld
  1039. \end_inset
  1040. naive CD4 T-cells
  1041. \begin_inset Quotes erd
  1042. \end_inset
  1043. and
  1044. \begin_inset Quotes eld
  1045. \end_inset
  1046. memory CD4 T-cells
  1047. \begin_inset Quotes erd
  1048. \end_inset
  1049. .
  1050. \end_layout
  1051. \end_inset
  1052. \end_layout
  1053. \begin_layout Standard
  1054. \begin_inset Flex TODO Note (inline)
  1055. status open
  1056. \begin_layout Plain Layout
  1057. Is it ok to just copy a bunch of citations from the intros to Sarah's papers?
  1058. That feels like cheating somehow.
  1059. \end_layout
  1060. \end_inset
  1061. \end_layout
  1062. \begin_layout Standard
  1063. CD4 T-cells are central to all adaptive immune responses, as well as immune
  1064. memory [CITE?].
  1065. After an infection is cleared, a subset of the naive CD4 T-cells that responded
  1066. to that infection differentiate into memory CD4 T-cells, which are responsible
  1067. for responding to the same pathogen in the future.
  1068. Memory CD4 T-cells are functionally distinct, able to respond to an infection
  1069. more quickly and without the co-stimulation requried by naive CD4 T-cells.
  1070. However, the molecular mechanisms underlying this functional distinction
  1071. are not well-understood.
  1072. Epigenetic regulation via histone modification is thought to play an important
  1073. role, but while many studies have looked at static snapshots of histone
  1074. methylation in T-cells, few studies have looked at the dynamics of histone
  1075. regulation after T-cell activation, nor the differences in histone methylation
  1076. between naive and memory T-cells.
  1077. H3K4me2, H3K4me3 and H3K27me3 are three histone marks thought to be major
  1078. epigenetic regulators of gene expression.
  1079. The goal of the present study is to investigate the role of these histone
  1080. marks in CD4 T-cell activation kinetics and memory differentiation.
  1081. In static snapshots, H3K4me2 and H3K4me3 are often observed in the promoters
  1082. of highly transcribed genes, while H3K27me3 is more often observed in promoters
  1083. of inactive genes with little to no transcription occurring.
  1084. As a result, the two H3K4 marks have been characterized as
  1085. \begin_inset Quotes eld
  1086. \end_inset
  1087. activating
  1088. \begin_inset Quotes erd
  1089. \end_inset
  1090. marks, while H3K27me3 has been characterized as
  1091. \begin_inset Quotes eld
  1092. \end_inset
  1093. deactivating
  1094. \begin_inset Quotes erd
  1095. \end_inset
  1096. .
  1097. Despite these characterizations, the actual causal relationship between
  1098. these histone modifications and gene transcription is complex and likely
  1099. involves positive and negative feedback loops between the two.
  1100. \end_layout
  1101. \begin_layout Standard
  1102. In order to investigate the relationship between gene expression and these
  1103. histone modifications in the context of naive and memory CD4 T-cell activation,
  1104. a previously published data set of combined RNA-seq and ChIP-seq data was
  1105. re-analyzed using up-to-date methods designed to address the specific analysis
  1106. challenges posed by this data set.
  1107. The data set contains naive and memory CD4 T-cell samples in a time course
  1108. before and after activation.
  1109. Like the original analysis, this analysis looks at the dynamics of these
  1110. marks histone marks and compare them to gene expression dynamics at the
  1111. same time points during activation, as well as comapre them between naive
  1112. and memory cells, in hope of discovering evidence of new mechanistic details
  1113. in the interplay between them.
  1114. The original analysis of this data treated each gene promoter as a monolithinc
  1115. unit and mostly assumed that ChIP-seq reads or peaks occuring anywhere
  1116. within a promoter were equivalent, regardless of where they occurred relative
  1117. to the gene structure.
  1118. For an initial analysis of the data, this was a necessary simplifying assumptio
  1119. n.
  1120. The current analysis aims to relax this assumption, first by directly analyzing
  1121. ChIP-seq peaks for differential modification, and second by taking a mor
  1122. granular look at the ChIP-seq read coverage within promoter regions to
  1123. ask whether the location of histone modifications relative to the gene's
  1124. TSS is an important factor, as opposed to simple proximity.
  1125. \end_layout
  1126. \begin_layout Section
  1127. Methods
  1128. \end_layout
  1129. \begin_layout Standard
  1130. \begin_inset Flex TODO Note (inline)
  1131. status open
  1132. \begin_layout Plain Layout
  1133. Look up some more details from the papers (e.g.
  1134. activation method).
  1135. \end_layout
  1136. \end_inset
  1137. \end_layout
  1138. \begin_layout Standard
  1139. A reproducible workflow was written to analyze the raw ChIP-seq and RNA-seq
  1140. data from previous studies
  1141. \begin_inset CommandInset citation
  1142. LatexCommand cite
  1143. key "gh-cd4-csaw,LaMere2016,LaMere2017"
  1144. literal "true"
  1145. \end_inset
  1146. .
  1147. Briefly, this data consists of RNA-seq and ChIP-seq from CD4 T-cells cultured
  1148. from 4 donors.
  1149. From each donor, naive and memory CD4 T-cells were isolated separately.
  1150. Then cultures of both cells were activated [how?], and samples were taken
  1151. at 4 time points: Day 0 (pre-activation), Day 1 (early activation), Day
  1152. 5 (peak activation), and Day 14 (post-activation).
  1153. For each combination of cell type and time point, RNA was isolated and
  1154. sequenced, and ChIP-seq was performed for each of 3 histone marks: H3K4me2,
  1155. H3K4me3, and H3K27me3.
  1156. The ChIP-seq input DNA was also sequenced for each sample.
  1157. The result was 32 samples for each assay.
  1158. \end_layout
  1159. \begin_layout Subsection
  1160. RNA-seq differential expression analysis
  1161. \end_layout
  1162. \begin_layout Standard
  1163. \begin_inset Note Note
  1164. status collapsed
  1165. \begin_layout Plain Layout
  1166. \begin_inset Float figure
  1167. wide false
  1168. sideways false
  1169. status open
  1170. \begin_layout Plain Layout
  1171. \align center
  1172. \begin_inset Float figure
  1173. wide false
  1174. sideways false
  1175. status collapsed
  1176. \begin_layout Plain Layout
  1177. \align center
  1178. \begin_inset Graphics
  1179. filename graphics/CD4-csaw/rnaseq-compare/ensmebl-vs-entrez-star-CROP.png
  1180. lyxscale 25
  1181. width 35col%
  1182. groupId rna-comp-subfig
  1183. \end_inset
  1184. \end_layout
  1185. \begin_layout Plain Layout
  1186. \begin_inset Caption Standard
  1187. \begin_layout Plain Layout
  1188. STAR quantification, Entrez vs Ensembl gene annotation
  1189. \end_layout
  1190. \end_inset
  1191. \end_layout
  1192. \end_inset
  1193. \begin_inset space \qquad{}
  1194. \end_inset
  1195. \begin_inset Float figure
  1196. wide false
  1197. sideways false
  1198. status collapsed
  1199. \begin_layout Plain Layout
  1200. \align center
  1201. \begin_inset Graphics
  1202. filename graphics/CD4-csaw/rnaseq-compare/ensmebl-vs-entrez-shoal-CROP.png
  1203. lyxscale 25
  1204. width 35col%
  1205. groupId rna-comp-subfig
  1206. \end_inset
  1207. \end_layout
  1208. \begin_layout Plain Layout
  1209. \begin_inset Caption Standard
  1210. \begin_layout Plain Layout
  1211. Salmon+Shoal quantification, Entrez vs Ensembl gene annotation
  1212. \end_layout
  1213. \end_inset
  1214. \end_layout
  1215. \end_inset
  1216. \end_layout
  1217. \begin_layout Plain Layout
  1218. \align center
  1219. \begin_inset Float figure
  1220. wide false
  1221. sideways false
  1222. status collapsed
  1223. \begin_layout Plain Layout
  1224. \align center
  1225. \begin_inset Graphics
  1226. filename graphics/CD4-csaw/rnaseq-compare/star-vs-hisat2-CROP.png
  1227. lyxscale 25
  1228. width 35col%
  1229. groupId rna-comp-subfig
  1230. \end_inset
  1231. \end_layout
  1232. \begin_layout Plain Layout
  1233. \begin_inset Caption Standard
  1234. \begin_layout Plain Layout
  1235. STAR vs HISAT2 quantification, Ensembl gene annotation
  1236. \end_layout
  1237. \end_inset
  1238. \end_layout
  1239. \end_inset
  1240. \begin_inset space \qquad{}
  1241. \end_inset
  1242. \begin_inset Float figure
  1243. wide false
  1244. sideways false
  1245. status collapsed
  1246. \begin_layout Plain Layout
  1247. \align center
  1248. \begin_inset Graphics
  1249. filename graphics/CD4-csaw/rnaseq-compare/star-vs-salmon-CROP.png
  1250. lyxscale 25
  1251. width 35col%
  1252. groupId rna-comp-subfig
  1253. \end_inset
  1254. \end_layout
  1255. \begin_layout Plain Layout
  1256. \begin_inset Caption Standard
  1257. \begin_layout Plain Layout
  1258. Salomn vs STAR quantification, Ensembl gene annotation
  1259. \end_layout
  1260. \end_inset
  1261. \end_layout
  1262. \end_inset
  1263. \end_layout
  1264. \begin_layout Plain Layout
  1265. \align center
  1266. \begin_inset Float figure
  1267. wide false
  1268. sideways false
  1269. status collapsed
  1270. \begin_layout Plain Layout
  1271. \align center
  1272. \begin_inset Graphics
  1273. filename graphics/CD4-csaw/rnaseq-compare/salmon-vs-kallisto-CROP.png
  1274. lyxscale 25
  1275. width 35col%
  1276. groupId rna-comp-subfig
  1277. \end_inset
  1278. \end_layout
  1279. \begin_layout Plain Layout
  1280. \begin_inset Caption Standard
  1281. \begin_layout Plain Layout
  1282. Salmon vs Kallisto quantification, Ensembl gene annotation
  1283. \end_layout
  1284. \end_inset
  1285. \end_layout
  1286. \end_inset
  1287. \begin_inset space \qquad{}
  1288. \end_inset
  1289. \begin_inset Float figure
  1290. wide false
  1291. sideways false
  1292. status collapsed
  1293. \begin_layout Plain Layout
  1294. \align center
  1295. \begin_inset Graphics
  1296. filename graphics/CD4-csaw/rnaseq-compare/salmon-vs-shoal-CROP.png
  1297. lyxscale 25
  1298. width 35col%
  1299. groupId rna-comp-subfig
  1300. \end_inset
  1301. \end_layout
  1302. \begin_layout Plain Layout
  1303. \begin_inset Caption Standard
  1304. \begin_layout Plain Layout
  1305. Salmon+Shoal vs Salmon alone, Ensembl gene annotation
  1306. \end_layout
  1307. \end_inset
  1308. \end_layout
  1309. \end_inset
  1310. \end_layout
  1311. \begin_layout Plain Layout
  1312. \begin_inset Caption Standard
  1313. \begin_layout Plain Layout
  1314. \begin_inset CommandInset label
  1315. LatexCommand label
  1316. name "fig:RNA-norm-comp"
  1317. \end_inset
  1318. RNA-seq comparisons
  1319. \end_layout
  1320. \end_inset
  1321. \end_layout
  1322. \end_inset
  1323. \end_layout
  1324. \end_inset
  1325. \end_layout
  1326. \begin_layout Standard
  1327. Sequence reads were retrieved from the Sequence Read Archive (SRA)
  1328. \begin_inset CommandInset citation
  1329. LatexCommand cite
  1330. key "Leinonen2011"
  1331. literal "false"
  1332. \end_inset
  1333. .
  1334. Five different alignment and quantification methods were tested for the
  1335. RNA-seq data
  1336. \begin_inset CommandInset citation
  1337. LatexCommand cite
  1338. key "Dobin2012,Kim2019,Liao2014,Pimentel2016,Patro2017,gh-shoal,gh-hg38-ref"
  1339. literal "false"
  1340. \end_inset
  1341. .
  1342. Each quantification was tested with both Ensembl transcripts and UCSC known
  1343. gene annotations [CITE? Also which versions of each?].
  1344. Comparisons of downstream results from each combination of quantification
  1345. method and reference revealed that all quantifications gave broadly similar
  1346. results for most genes, so shoal with the Ensembl annotation was chosen
  1347. as the method theoretically most likely to partially mitigate some of the
  1348. batch effect in the data.
  1349. \end_layout
  1350. \begin_layout Standard
  1351. \begin_inset Float figure
  1352. wide false
  1353. sideways false
  1354. status collapsed
  1355. \begin_layout Plain Layout
  1356. \align center
  1357. \begin_inset Float figure
  1358. wide false
  1359. sideways false
  1360. status open
  1361. \begin_layout Plain Layout
  1362. \align center
  1363. \begin_inset Graphics
  1364. filename graphics/CD4-csaw/RNA-seq/PCA-no-batchsub-CROP.png
  1365. lyxscale 25
  1366. width 75col%
  1367. groupId rna-pca-subfig
  1368. \end_inset
  1369. \end_layout
  1370. \begin_layout Plain Layout
  1371. \begin_inset Caption Standard
  1372. \begin_layout Plain Layout
  1373. \series bold
  1374. \begin_inset CommandInset label
  1375. LatexCommand label
  1376. name "fig:RNA-PCA-no-batchsub"
  1377. \end_inset
  1378. Before batch correction
  1379. \end_layout
  1380. \end_inset
  1381. \end_layout
  1382. \end_inset
  1383. \end_layout
  1384. \begin_layout Plain Layout
  1385. \align center
  1386. \begin_inset Float figure
  1387. wide false
  1388. sideways false
  1389. status open
  1390. \begin_layout Plain Layout
  1391. \align center
  1392. \begin_inset Graphics
  1393. filename graphics/CD4-csaw/RNA-seq/PCA-combat-batchsub-CROP.png
  1394. lyxscale 25
  1395. width 75col%
  1396. groupId rna-pca-subfig
  1397. \end_inset
  1398. \end_layout
  1399. \begin_layout Plain Layout
  1400. \begin_inset Caption Standard
  1401. \begin_layout Plain Layout
  1402. \series bold
  1403. \begin_inset CommandInset label
  1404. LatexCommand label
  1405. name "fig:RNA-PCA-ComBat-batchsub"
  1406. \end_inset
  1407. After batch correction with ComBat
  1408. \end_layout
  1409. \end_inset
  1410. \end_layout
  1411. \end_inset
  1412. \end_layout
  1413. \begin_layout Plain Layout
  1414. \begin_inset Caption Standard
  1415. \begin_layout Plain Layout
  1416. \series bold
  1417. \begin_inset CommandInset label
  1418. LatexCommand label
  1419. name "fig:RNA-PCA"
  1420. \end_inset
  1421. PCoA plots of RNA-seq data showing effect of batch correction.
  1422. \end_layout
  1423. \end_inset
  1424. \end_layout
  1425. \end_inset
  1426. \end_layout
  1427. \begin_layout Standard
  1428. Due to an error in sample preparation, the RNA from the samples for days
  1429. 0 and 5 were sequenced using a different kit than those for days 1 and
  1430. 14.
  1431. This induced a substantial batch effect in the data due to differences
  1432. in sequencing biases between the two kits, and this batch effect is unfortunate
  1433. ly confounded with the time point variable (Figure
  1434. \begin_inset CommandInset ref
  1435. LatexCommand ref
  1436. reference "fig:RNA-PCA-no-batchsub"
  1437. plural "false"
  1438. caps "false"
  1439. noprefix "false"
  1440. \end_inset
  1441. ).
  1442. To do the best possible analysis with this data, this batch effect was
  1443. subtracted out from the data using ComBat
  1444. \begin_inset CommandInset citation
  1445. LatexCommand cite
  1446. key "Johnson2007"
  1447. literal "false"
  1448. \end_inset
  1449. , ignoring the time point variable due to the confounding with the batch
  1450. variable.
  1451. The result is a marked improvement, but the unavoidable counfounding with
  1452. time point means that certain real patterns of gene expression will be
  1453. indistinguishable from the batch effect and subtracted out as a result.
  1454. Specifically, any
  1455. \begin_inset Quotes eld
  1456. \end_inset
  1457. zig-zag
  1458. \begin_inset Quotes erd
  1459. \end_inset
  1460. pattern, such as a gene whose expression goes up on day 1, down on day
  1461. 5, and back up again on day 14, will be attenuated or eliminated entirely.
  1462. In the context of a T-cell activation time course, it is unlikely that
  1463. many genes of interest will follow such an expression pattern, so this
  1464. loss was deemed an acceptable cost for correcting the batch effect.
  1465. \end_layout
  1466. \begin_layout Standard
  1467. \begin_inset Float figure
  1468. wide false
  1469. sideways false
  1470. status collapsed
  1471. \begin_layout Plain Layout
  1472. \begin_inset Flex TODO Note (inline)
  1473. status open
  1474. \begin_layout Plain Layout
  1475. Just take the top row
  1476. \end_layout
  1477. \end_inset
  1478. \end_layout
  1479. \begin_layout Plain Layout
  1480. \align center
  1481. \begin_inset Graphics
  1482. filename graphics/CD4-csaw/RNA-seq/weights-vs-covars-CROP.png
  1483. lyxscale 25
  1484. width 100col%
  1485. groupId colwidth-raster
  1486. \end_inset
  1487. \end_layout
  1488. \begin_layout Plain Layout
  1489. \begin_inset Caption Standard
  1490. \begin_layout Plain Layout
  1491. \series bold
  1492. \begin_inset CommandInset label
  1493. LatexCommand label
  1494. name "fig:RNA-seq-weights-vs-covars"
  1495. \end_inset
  1496. RNA-seq sample weights, grouped by experimental and technical covariates.
  1497. \end_layout
  1498. \end_inset
  1499. \end_layout
  1500. \end_inset
  1501. \end_layout
  1502. \begin_layout Standard
  1503. However, removing the systematic component of the batch effect still leaves
  1504. the noise component.
  1505. The gene quantifications from the first batch are substantially noisier
  1506. than those in the second batch.
  1507. This analysis corrected for this by using limma's sample weighting method
  1508. to assign lower weights to the noisy samples of batch 1
  1509. \begin_inset CommandInset citation
  1510. LatexCommand cite
  1511. key "Ritchie2006,Liu2015"
  1512. literal "false"
  1513. \end_inset
  1514. .
  1515. The resulting analysis gives an accurate assessment of statistical significance
  1516. for all comparisons, which unfortuantely means a loss of statistical power
  1517. for comparisons involving samples in batch 1.
  1518. \end_layout
  1519. \begin_layout Standard
  1520. In any case, the RNA-seq counts were first normalized using trimmed mean
  1521. of M-values
  1522. \begin_inset CommandInset citation
  1523. LatexCommand cite
  1524. key "Robinson2010"
  1525. literal "false"
  1526. \end_inset
  1527. , converted to normalized logCPM with quality weights using voomWithQualityWeigh
  1528. ts
  1529. \begin_inset CommandInset citation
  1530. LatexCommand cite
  1531. key "Law2013,Liu2015"
  1532. literal "false"
  1533. \end_inset
  1534. , and batch-corrected at this point using ComBat.
  1535. A linear model was fit to the batch-corrected, quality-weighted data for
  1536. each gene using limma, and each gene was tested for differential expression
  1537. using limma's empirical Bayes moderated
  1538. \begin_inset Formula $t$
  1539. \end_inset
  1540. -test
  1541. \begin_inset CommandInset citation
  1542. LatexCommand cite
  1543. key "Smyth2005,Law2013,Phipson2013"
  1544. literal "false"
  1545. \end_inset
  1546. .
  1547. \end_layout
  1548. \begin_layout Subsection
  1549. ChIP-seq differential modification analysis
  1550. \end_layout
  1551. \begin_layout Standard
  1552. \begin_inset Float figure
  1553. wide false
  1554. sideways false
  1555. status collapsed
  1556. \begin_layout Plain Layout
  1557. \align center
  1558. \begin_inset Float figure
  1559. wide false
  1560. sideways false
  1561. status open
  1562. \begin_layout Plain Layout
  1563. \align center
  1564. \begin_inset Graphics
  1565. filename graphics/CD4-csaw/csaw/CCF-plots-noBL-PAGE2-CROP.pdf
  1566. lyxscale 50
  1567. height 40theight%
  1568. groupId ccf-subfig
  1569. \end_inset
  1570. \end_layout
  1571. \begin_layout Plain Layout
  1572. \begin_inset Caption Standard
  1573. \begin_layout Plain Layout
  1574. \series bold
  1575. \begin_inset CommandInset label
  1576. LatexCommand label
  1577. name "fig:CCF-without-blacklist"
  1578. \end_inset
  1579. Cross-correlation plots without removing blacklisted reads.
  1580. \series default
  1581. Without blacklisting, many artifactual peaks are visible in the cross-correlatio
  1582. ns of the ChIP-seq samples, and the peak at the true fragment size (147
  1583. \begin_inset space ~
  1584. \end_inset
  1585. bp) is frequently overshadowed by the artifactual peak at the read length
  1586. (100
  1587. \begin_inset space ~
  1588. \end_inset
  1589. bp).
  1590. \end_layout
  1591. \end_inset
  1592. \end_layout
  1593. \end_inset
  1594. \end_layout
  1595. \begin_layout Plain Layout
  1596. \align center
  1597. \begin_inset Float figure
  1598. wide false
  1599. sideways false
  1600. status open
  1601. \begin_layout Plain Layout
  1602. \align center
  1603. \begin_inset Graphics
  1604. filename graphics/CD4-csaw/csaw/CCF-plots-PAGE2-CROP.pdf
  1605. lyxscale 50
  1606. height 40theight%
  1607. groupId ccf-subfig
  1608. \end_inset
  1609. \end_layout
  1610. \begin_layout Plain Layout
  1611. \begin_inset Caption Standard
  1612. \begin_layout Plain Layout
  1613. \series bold
  1614. \begin_inset CommandInset label
  1615. LatexCommand label
  1616. name "fig:CCF-with-blacklist"
  1617. \end_inset
  1618. Cross-correlation plots with blacklisted reads removed.
  1619. \series default
  1620. After blacklisting, most ChIP-seq samples have clean-looking periodic cross-cor
  1621. relation plots, with the largest peak around 147
  1622. \begin_inset space ~
  1623. \end_inset
  1624. bp, the expected size for a fragment of DNA from a single nucleosome, and
  1625. little to no peak at the read length, 100
  1626. \begin_inset space ~
  1627. \end_inset
  1628. bp.
  1629. \end_layout
  1630. \end_inset
  1631. \end_layout
  1632. \end_inset
  1633. \end_layout
  1634. \begin_layout Plain Layout
  1635. \begin_inset Caption Standard
  1636. \begin_layout Plain Layout
  1637. \series bold
  1638. \begin_inset CommandInset label
  1639. LatexCommand label
  1640. name "fig:CCF-master"
  1641. \end_inset
  1642. Strand cross-correlation plots for ChIP-seq data, before and after blacklisting.
  1643. \end_layout
  1644. \end_inset
  1645. \end_layout
  1646. \end_inset
  1647. \end_layout
  1648. \begin_layout Standard
  1649. \begin_inset Note Note
  1650. status open
  1651. \begin_layout Plain Layout
  1652. \begin_inset Float figure
  1653. wide false
  1654. sideways false
  1655. status collapsed
  1656. \begin_layout Plain Layout
  1657. \align center
  1658. \begin_inset Graphics
  1659. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-sample-MAplot-bins-CROP.png
  1660. lyxscale 25
  1661. width 100col%
  1662. groupId colwidth-raster
  1663. \end_inset
  1664. \end_layout
  1665. \begin_layout Plain Layout
  1666. \begin_inset Caption Standard
  1667. \begin_layout Plain Layout
  1668. \series bold
  1669. \begin_inset CommandInset label
  1670. LatexCommand label
  1671. name "fig:MA-plot-bigbins"
  1672. \end_inset
  1673. MA plot of H3K4me2 read counts in 10kb bins for two arbitrary samples.
  1674. \end_layout
  1675. \end_inset
  1676. \end_layout
  1677. \end_inset
  1678. \end_layout
  1679. \end_inset
  1680. \end_layout
  1681. \begin_layout Standard
  1682. \begin_inset Flex TODO Note (inline)
  1683. status open
  1684. \begin_layout Plain Layout
  1685. Be consistent about use of
  1686. \begin_inset Quotes eld
  1687. \end_inset
  1688. differential binding
  1689. \begin_inset Quotes erd
  1690. \end_inset
  1691. vs
  1692. \begin_inset Quotes eld
  1693. \end_inset
  1694. differential modification
  1695. \begin_inset Quotes erd
  1696. \end_inset
  1697. throughout this chapter.
  1698. The latter is usually preferred.
  1699. \end_layout
  1700. \end_inset
  1701. \end_layout
  1702. \begin_layout Standard
  1703. Sequence reads were retrieved from SRA
  1704. \begin_inset CommandInset citation
  1705. LatexCommand cite
  1706. key "Leinonen2011"
  1707. literal "false"
  1708. \end_inset
  1709. .
  1710. ChIP-seq (and input) reads were aligned to GRCh38 genome assembly using
  1711. Bowtie 2
  1712. \begin_inset CommandInset citation
  1713. LatexCommand cite
  1714. key "Langmead2012,Schneider2017,gh-hg38-ref"
  1715. literal "false"
  1716. \end_inset
  1717. .
  1718. Artifact regions were annotated using a custom implementation of the GreyListCh
  1719. IP algorithm, and these
  1720. \begin_inset Quotes eld
  1721. \end_inset
  1722. greylists
  1723. \begin_inset Quotes erd
  1724. \end_inset
  1725. were merged with the published ENCODE blacklists
  1726. \begin_inset CommandInset citation
  1727. LatexCommand cite
  1728. key "greylistchip,Amemiya2019,Dunham2012,gh-cd4-csaw"
  1729. literal "false"
  1730. \end_inset
  1731. .
  1732. Any read or called peak overlapping one of these regions was regarded as
  1733. artifactual and excluded from downstream analyses.
  1734. Figure
  1735. \begin_inset CommandInset ref
  1736. LatexCommand ref
  1737. reference "fig:CCF-master"
  1738. plural "false"
  1739. caps "false"
  1740. noprefix "false"
  1741. \end_inset
  1742. shows the improvement after blacklisting in the strand cross-correlation
  1743. plots, a common quality control plot for ChIP-seq data.
  1744. Peaks were called using epic, an implementation of the SICER algorithm
  1745. \begin_inset CommandInset citation
  1746. LatexCommand cite
  1747. key "Zang2009,gh-epic"
  1748. literal "false"
  1749. \end_inset
  1750. .
  1751. Peaks were also called separately using MACS, but MACS was determined to
  1752. be a poor fit for the data, and these peak calls are not used in any further
  1753. analyses
  1754. \begin_inset CommandInset citation
  1755. LatexCommand cite
  1756. key "Zhang2008"
  1757. literal "false"
  1758. \end_inset
  1759. .
  1760. Consensus peaks were determined by applying the irreproducible discovery
  1761. rate (IDR) framework
  1762. \begin_inset CommandInset citation
  1763. LatexCommand cite
  1764. key "Li2006,gh-idr"
  1765. literal "false"
  1766. \end_inset
  1767. to find peaks consistently called in the same locations across all 4 donors.
  1768. \end_layout
  1769. \begin_layout Standard
  1770. Promoters were defined by computing the distance from each annotated TSS
  1771. to the nearest called peak and examining the distribution of distances,
  1772. observing that peaks for each histone mark were enriched within a certain
  1773. distance of the TSS.
  1774. For H3K4me2 and H3K4me3, this distance was about 1
  1775. \begin_inset space ~
  1776. \end_inset
  1777. kb, while for H3K27me3 it was 2.5
  1778. \begin_inset space ~
  1779. \end_inset
  1780. kb.
  1781. These distances were used as an
  1782. \begin_inset Quotes eld
  1783. \end_inset
  1784. effective promoter radius
  1785. \begin_inset Quotes erd
  1786. \end_inset
  1787. for each mark.
  1788. The promoter region for each gene was defined as the region of the genome
  1789. within this distance upstream or downstream of the gene's annotated TSS.
  1790. For genes with multiple annotated TSSs, a promoter region was defined for
  1791. each TSS individually, and any promoters that overlapped (due to multiple
  1792. TSSs being closer than 2 times the radius) were merged into one large promoter.
  1793. Thus, some genes had multiple promoters defined, which were each analyzed
  1794. separately for differential modification.
  1795. \end_layout
  1796. \begin_layout Standard
  1797. \begin_inset Float figure
  1798. wide false
  1799. sideways false
  1800. status collapsed
  1801. \begin_layout Plain Layout
  1802. \begin_inset Float figure
  1803. wide false
  1804. sideways false
  1805. status collapsed
  1806. \begin_layout Plain Layout
  1807. \align center
  1808. \begin_inset Graphics
  1809. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-PCA-raw-CROP.png
  1810. lyxscale 25
  1811. width 45col%
  1812. groupId pcoa-subfig
  1813. \end_inset
  1814. \end_layout
  1815. \begin_layout Plain Layout
  1816. \begin_inset Caption Standard
  1817. \begin_layout Plain Layout
  1818. \series bold
  1819. \begin_inset CommandInset label
  1820. LatexCommand label
  1821. name "fig:PCoA-H3K4me2-bad"
  1822. \end_inset
  1823. H3K4me2, no correction
  1824. \end_layout
  1825. \end_inset
  1826. \end_layout
  1827. \end_inset
  1828. \begin_inset space \hfill{}
  1829. \end_inset
  1830. \begin_inset Float figure
  1831. wide false
  1832. sideways false
  1833. status collapsed
  1834. \begin_layout Plain Layout
  1835. \align center
  1836. \begin_inset Graphics
  1837. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-PCA-SVsub-CROP.png
  1838. lyxscale 25
  1839. width 45col%
  1840. groupId pcoa-subfig
  1841. \end_inset
  1842. \end_layout
  1843. \begin_layout Plain Layout
  1844. \begin_inset Caption Standard
  1845. \begin_layout Plain Layout
  1846. \series bold
  1847. \begin_inset CommandInset label
  1848. LatexCommand label
  1849. name "fig:PCoA-H3K4me2-good"
  1850. \end_inset
  1851. H3K4me2, SVs subtracted
  1852. \end_layout
  1853. \end_inset
  1854. \end_layout
  1855. \end_inset
  1856. \end_layout
  1857. \begin_layout Plain Layout
  1858. \begin_inset Float figure
  1859. wide false
  1860. sideways false
  1861. status collapsed
  1862. \begin_layout Plain Layout
  1863. \align center
  1864. \begin_inset Graphics
  1865. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-PCA-raw-CROP.png
  1866. lyxscale 25
  1867. width 45col%
  1868. groupId pcoa-subfig
  1869. \end_inset
  1870. \end_layout
  1871. \begin_layout Plain Layout
  1872. \begin_inset Caption Standard
  1873. \begin_layout Plain Layout
  1874. \series bold
  1875. \begin_inset CommandInset label
  1876. LatexCommand label
  1877. name "fig:PCoA-H3K4me3-bad"
  1878. \end_inset
  1879. H3K4me3, no correction
  1880. \end_layout
  1881. \end_inset
  1882. \end_layout
  1883. \end_inset
  1884. \begin_inset space \hfill{}
  1885. \end_inset
  1886. \begin_inset Float figure
  1887. wide false
  1888. sideways false
  1889. status collapsed
  1890. \begin_layout Plain Layout
  1891. \align center
  1892. \begin_inset Graphics
  1893. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-PCA-SVsub-CROP.png
  1894. lyxscale 25
  1895. width 45col%
  1896. groupId pcoa-subfig
  1897. \end_inset
  1898. \end_layout
  1899. \begin_layout Plain Layout
  1900. \begin_inset Caption Standard
  1901. \begin_layout Plain Layout
  1902. \series bold
  1903. \begin_inset CommandInset label
  1904. LatexCommand label
  1905. name "fig:PCoA-H3K4me3-good"
  1906. \end_inset
  1907. H3K4me3, SVs subtracted
  1908. \end_layout
  1909. \end_inset
  1910. \end_layout
  1911. \end_inset
  1912. \end_layout
  1913. \begin_layout Plain Layout
  1914. \begin_inset Float figure
  1915. wide false
  1916. sideways false
  1917. status collapsed
  1918. \begin_layout Plain Layout
  1919. \align center
  1920. \begin_inset Graphics
  1921. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-PCA-raw-CROP.png
  1922. lyxscale 25
  1923. width 45col%
  1924. groupId pcoa-subfig
  1925. \end_inset
  1926. \end_layout
  1927. \begin_layout Plain Layout
  1928. \begin_inset Caption Standard
  1929. \begin_layout Plain Layout
  1930. \series bold
  1931. \begin_inset CommandInset label
  1932. LatexCommand label
  1933. name "fig:PCoA-H3K27me3-bad"
  1934. \end_inset
  1935. H3K27me3, no correction
  1936. \end_layout
  1937. \end_inset
  1938. \end_layout
  1939. \end_inset
  1940. \begin_inset space \hfill{}
  1941. \end_inset
  1942. \begin_inset Float figure
  1943. wide false
  1944. sideways false
  1945. status collapsed
  1946. \begin_layout Plain Layout
  1947. \align center
  1948. \begin_inset Graphics
  1949. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-PCA-SVsub-CROP.png
  1950. lyxscale 25
  1951. width 45col%
  1952. groupId pcoa-subfig
  1953. \end_inset
  1954. \end_layout
  1955. \begin_layout Plain Layout
  1956. \begin_inset Caption Standard
  1957. \begin_layout Plain Layout
  1958. \series bold
  1959. \begin_inset CommandInset label
  1960. LatexCommand label
  1961. name "fig:PCoA-H3K27me3-good"
  1962. \end_inset
  1963. H3K27me3, SVs subtracted
  1964. \end_layout
  1965. \end_inset
  1966. \end_layout
  1967. \end_inset
  1968. \end_layout
  1969. \begin_layout Plain Layout
  1970. \begin_inset Caption Standard
  1971. \begin_layout Plain Layout
  1972. \series bold
  1973. \begin_inset CommandInset label
  1974. LatexCommand label
  1975. name "fig:PCoA-ChIP"
  1976. \end_inset
  1977. PCoA plots of ChIP-seq sliding window data, before and after subtracting
  1978. surrogate variables (SVs).
  1979. \end_layout
  1980. \end_inset
  1981. \end_layout
  1982. \end_inset
  1983. \end_layout
  1984. \begin_layout Standard
  1985. Reads in promoters, peaks, and sliding windows across the genome were counted
  1986. and normalized using csaw and analyzed for differential modification using
  1987. edgeR
  1988. \begin_inset CommandInset citation
  1989. LatexCommand cite
  1990. key "Lun2014,Lun2015a,Lund2012,Phipson2016"
  1991. literal "false"
  1992. \end_inset
  1993. .
  1994. Unobserved confounding factors in the ChIP-seq data were corrected using
  1995. SVA
  1996. \begin_inset CommandInset citation
  1997. LatexCommand cite
  1998. key "Leek2007,Leek2014"
  1999. literal "false"
  2000. \end_inset
  2001. .
  2002. Principal coordinate plots of the promoter count data for each histone
  2003. mark before and after subtracting surrogate variable effects are shown
  2004. in Figure
  2005. \begin_inset CommandInset ref
  2006. LatexCommand ref
  2007. reference "fig:PCoA-ChIP"
  2008. plural "false"
  2009. caps "false"
  2010. noprefix "false"
  2011. \end_inset
  2012. .
  2013. \end_layout
  2014. \begin_layout Standard
  2015. To investigate whether the location of a peak within the promoter region
  2016. was important,
  2017. \begin_inset Quotes eld
  2018. \end_inset
  2019. relative coverage profiles
  2020. \begin_inset Quotes erd
  2021. \end_inset
  2022. were generated.
  2023. First, 500-bp sliding windows were tiled around each annotated TSS: one
  2024. window centered on the TSS itself, and 10 windows each upstream and downstream,
  2025. thus covering a 10.5-kb region centered on the TSS with 21 windows.
  2026. Reads in each window for each TSS were counted in each sample, and the
  2027. counts were normalized and converted to log CPM as in the differential
  2028. modification analysis.
  2029. Then, the logCPM values within each promoter were normalized to an average
  2030. of zero, such that each window's normalized abundance now represents the
  2031. relative read depth of that window compared to all other windows in the
  2032. same promoter.
  2033. The normalized abundance values for each window in a promoter are collectively
  2034. referred to as that promoter's
  2035. \begin_inset Quotes eld
  2036. \end_inset
  2037. relative coverage profile
  2038. \begin_inset Quotes erd
  2039. \end_inset
  2040. .
  2041. \end_layout
  2042. \begin_layout Subsection
  2043. MOFA recovers biologically relevant variation from blind analysis by correlating
  2044. across datasets
  2045. \end_layout
  2046. \begin_layout Standard
  2047. \begin_inset ERT
  2048. status open
  2049. \begin_layout Plain Layout
  2050. \backslash
  2051. afterpage{
  2052. \end_layout
  2053. \begin_layout Plain Layout
  2054. \backslash
  2055. begin{landscape}
  2056. \end_layout
  2057. \end_inset
  2058. \end_layout
  2059. \begin_layout Standard
  2060. \begin_inset Float figure
  2061. wide false
  2062. sideways false
  2063. status open
  2064. \begin_layout Plain Layout
  2065. \begin_inset Float figure
  2066. wide false
  2067. sideways false
  2068. status open
  2069. \begin_layout Plain Layout
  2070. \align center
  2071. \begin_inset Graphics
  2072. filename graphics/CD4-csaw/MOFA-varExplaiend-matrix-CROP.png
  2073. lyxscale 25
  2074. width 45col%
  2075. groupId mofa-subfig
  2076. \end_inset
  2077. \end_layout
  2078. \begin_layout Plain Layout
  2079. \begin_inset Caption Standard
  2080. \begin_layout Plain Layout
  2081. \series bold
  2082. \begin_inset CommandInset label
  2083. LatexCommand label
  2084. name "fig:mofa-varexplained"
  2085. \end_inset
  2086. Variance explained in each data set by each latent factor estimated by MOFA.
  2087. \series default
  2088. For each latent factor (LF) learned by MOFA, the variance explained by
  2089. that factor in each data set (
  2090. \begin_inset Quotes eld
  2091. \end_inset
  2092. view
  2093. \begin_inset Quotes erd
  2094. \end_inset
  2095. ) is shown by the shading of the cells in the lower section.
  2096. The upper section shows the total fraction of each data set's variance
  2097. that is explained by all LFs combined.
  2098. \end_layout
  2099. \end_inset
  2100. \end_layout
  2101. \end_inset
  2102. \begin_inset space \hfill{}
  2103. \end_inset
  2104. \begin_inset Float figure
  2105. wide false
  2106. sideways false
  2107. status open
  2108. \begin_layout Plain Layout
  2109. \align center
  2110. \begin_inset Graphics
  2111. filename graphics/CD4-csaw/MOFA-LF-scatter-CROP.png
  2112. lyxscale 25
  2113. width 45col%
  2114. groupId mofa-subfig
  2115. \end_inset
  2116. \end_layout
  2117. \begin_layout Plain Layout
  2118. \begin_inset Caption Standard
  2119. \begin_layout Plain Layout
  2120. \series bold
  2121. \begin_inset CommandInset label
  2122. LatexCommand label
  2123. name "fig:mofa-lf-scatter"
  2124. \end_inset
  2125. Scatter plots of specific pairs of MOFA latent factors.
  2126. \series default
  2127. LFs 1, 4, and 5 explain substantial variation in all data sets, so they
  2128. are plotted against each other in order to reveal patterns of variation
  2129. that are shared across all data sets.
  2130. \end_layout
  2131. \end_inset
  2132. \end_layout
  2133. \end_inset
  2134. \end_layout
  2135. \begin_layout Plain Layout
  2136. \begin_inset Caption Standard
  2137. \begin_layout Plain Layout
  2138. \series bold
  2139. \begin_inset CommandInset label
  2140. LatexCommand label
  2141. name "fig:MOFA-master"
  2142. \end_inset
  2143. MOFA latent factors separate technical confounders from
  2144. \end_layout
  2145. \end_inset
  2146. \end_layout
  2147. \end_inset
  2148. \end_layout
  2149. \begin_layout Standard
  2150. \begin_inset ERT
  2151. status open
  2152. \begin_layout Plain Layout
  2153. \backslash
  2154. end{landscape}
  2155. \end_layout
  2156. \begin_layout Plain Layout
  2157. }
  2158. \end_layout
  2159. \end_inset
  2160. \end_layout
  2161. \begin_layout Standard
  2162. MOFA was run on all the ChIP-seq windows overlapping consensus peaks for
  2163. each histone mark, as well as the RNA-seq data, in order to identify patterns
  2164. of coordinated variation across all data sets
  2165. \begin_inset CommandInset citation
  2166. LatexCommand cite
  2167. key "Argelaguet2018"
  2168. literal "false"
  2169. \end_inset
  2170. .
  2171. The results are summarized in Figure
  2172. \begin_inset CommandInset ref
  2173. LatexCommand ref
  2174. reference "fig:MOFA-master"
  2175. plural "false"
  2176. caps "false"
  2177. noprefix "false"
  2178. \end_inset
  2179. .
  2180. Latent factors 1, 4, and 5 were determined to explain the most variation
  2181. consistently across all data sets (Fgure
  2182. \begin_inset CommandInset ref
  2183. LatexCommand ref
  2184. reference "fig:mofa-varexplained"
  2185. plural "false"
  2186. caps "false"
  2187. noprefix "false"
  2188. \end_inset
  2189. ), and scatter plots of these factors show that they also correlate best
  2190. with the experimental factors (Figure
  2191. \begin_inset CommandInset ref
  2192. LatexCommand ref
  2193. reference "fig:mofa-lf-scatter"
  2194. plural "false"
  2195. caps "false"
  2196. noprefix "false"
  2197. \end_inset
  2198. ).
  2199. Latent factor 2 captures the batch effect in the RNA-seq data.
  2200. Removing the effect of LF2 using MOFA theoretically yields a batch correction
  2201. that does not depend on knowing the experimental factors.
  2202. When this was attempted, the resulting batch correction was comparable
  2203. to ComBat (see Figure
  2204. \begin_inset CommandInset ref
  2205. LatexCommand ref
  2206. reference "fig:RNA-PCA-ComBat-batchsub"
  2207. plural "false"
  2208. caps "false"
  2209. noprefix "false"
  2210. \end_inset
  2211. ), indicating that the ComBat-based batch correction has little room for
  2212. improvement given the problems with the data set.
  2213. \end_layout
  2214. \begin_layout Standard
  2215. \begin_inset Note Note
  2216. status collapsed
  2217. \begin_layout Plain Layout
  2218. \begin_inset Float figure
  2219. wide false
  2220. sideways false
  2221. status open
  2222. \begin_layout Plain Layout
  2223. \align center
  2224. \begin_inset Graphics
  2225. filename graphics/CD4-csaw/MOFA-batch-correct-CROP.png
  2226. lyxscale 25
  2227. width 100col%
  2228. groupId colwidth-raster
  2229. \end_inset
  2230. \end_layout
  2231. \begin_layout Plain Layout
  2232. \begin_inset Caption Standard
  2233. \begin_layout Plain Layout
  2234. \series bold
  2235. \begin_inset CommandInset label
  2236. LatexCommand label
  2237. name "fig:mofa-batchsub"
  2238. \end_inset
  2239. Result of RNA-seq batch-correction using MOFA latent factors
  2240. \end_layout
  2241. \end_inset
  2242. \end_layout
  2243. \end_inset
  2244. \end_layout
  2245. \end_inset
  2246. \end_layout
  2247. \begin_layout Section
  2248. Results
  2249. \end_layout
  2250. \begin_layout Standard
  2251. \begin_inset Flex TODO Note (inline)
  2252. status open
  2253. \begin_layout Plain Layout
  2254. Focus on what hypotheses were tested, then select figures that show how
  2255. those hypotheses were tested, even if the result is a negative.
  2256. Not every interesting result needs to be in here.
  2257. Chapter should tell a story.
  2258. \end_layout
  2259. \end_inset
  2260. \end_layout
  2261. \begin_layout Standard
  2262. \begin_inset Flex TODO Note (inline)
  2263. status open
  2264. \begin_layout Plain Layout
  2265. Maybe reorder these sections to do RNA-seq, then ChIP-seq, then combined
  2266. analyses?
  2267. \end_layout
  2268. \end_inset
  2269. \end_layout
  2270. \begin_layout Subsection
  2271. Interpretation of RNA-seq analysis is limited by a major confounding factor
  2272. \end_layout
  2273. \begin_layout Standard
  2274. \begin_inset Float table
  2275. wide false
  2276. sideways false
  2277. status collapsed
  2278. \begin_layout Plain Layout
  2279. \align center
  2280. \begin_inset Tabular
  2281. <lyxtabular version="3" rows="11" columns="3">
  2282. <features tabularvalignment="middle">
  2283. <column alignment="center" valignment="top">
  2284. <column alignment="center" valignment="top">
  2285. <column alignment="center" valignment="top">
  2286. <row>
  2287. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2288. \begin_inset Text
  2289. \begin_layout Plain Layout
  2290. Test
  2291. \end_layout
  2292. \end_inset
  2293. </cell>
  2294. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2295. \begin_inset Text
  2296. \begin_layout Plain Layout
  2297. Est.
  2298. non-null
  2299. \end_layout
  2300. \end_inset
  2301. </cell>
  2302. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2303. \begin_inset Text
  2304. \begin_layout Plain Layout
  2305. \begin_inset Formula $\mathrm{FDR}\le10\%$
  2306. \end_inset
  2307. \end_layout
  2308. \end_inset
  2309. </cell>
  2310. </row>
  2311. <row>
  2312. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2313. \begin_inset Text
  2314. \begin_layout Plain Layout
  2315. Naive Day 0 vs Day 1
  2316. \end_layout
  2317. \end_inset
  2318. </cell>
  2319. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2320. \begin_inset Text
  2321. \begin_layout Plain Layout
  2322. 5992
  2323. \end_layout
  2324. \end_inset
  2325. </cell>
  2326. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2327. \begin_inset Text
  2328. \begin_layout Plain Layout
  2329. 1613
  2330. \end_layout
  2331. \end_inset
  2332. </cell>
  2333. </row>
  2334. <row>
  2335. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2336. \begin_inset Text
  2337. \begin_layout Plain Layout
  2338. Naive Day 0 vs Day 5
  2339. \end_layout
  2340. \end_inset
  2341. </cell>
  2342. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2343. \begin_inset Text
  2344. \begin_layout Plain Layout
  2345. 3038
  2346. \end_layout
  2347. \end_inset
  2348. </cell>
  2349. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2350. \begin_inset Text
  2351. \begin_layout Plain Layout
  2352. 32
  2353. \end_layout
  2354. \end_inset
  2355. </cell>
  2356. </row>
  2357. <row>
  2358. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2359. \begin_inset Text
  2360. \begin_layout Plain Layout
  2361. Naive Day 0 vs Day 14
  2362. \end_layout
  2363. \end_inset
  2364. </cell>
  2365. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2366. \begin_inset Text
  2367. \begin_layout Plain Layout
  2368. 1870
  2369. \end_layout
  2370. \end_inset
  2371. </cell>
  2372. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2373. \begin_inset Text
  2374. \begin_layout Plain Layout
  2375. 190
  2376. \end_layout
  2377. \end_inset
  2378. </cell>
  2379. </row>
  2380. <row>
  2381. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2382. \begin_inset Text
  2383. \begin_layout Plain Layout
  2384. Memory Day 0 vs Day 1
  2385. \end_layout
  2386. \end_inset
  2387. </cell>
  2388. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2389. \begin_inset Text
  2390. \begin_layout Plain Layout
  2391. 3195
  2392. \end_layout
  2393. \end_inset
  2394. </cell>
  2395. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2396. \begin_inset Text
  2397. \begin_layout Plain Layout
  2398. 411
  2399. \end_layout
  2400. \end_inset
  2401. </cell>
  2402. </row>
  2403. <row>
  2404. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2405. \begin_inset Text
  2406. \begin_layout Plain Layout
  2407. Memory Day 0 vs Day 5
  2408. \end_layout
  2409. \end_inset
  2410. </cell>
  2411. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2412. \begin_inset Text
  2413. \begin_layout Plain Layout
  2414. 2688
  2415. \end_layout
  2416. \end_inset
  2417. </cell>
  2418. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2419. \begin_inset Text
  2420. \begin_layout Plain Layout
  2421. 18
  2422. \end_layout
  2423. \end_inset
  2424. </cell>
  2425. </row>
  2426. <row>
  2427. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2428. \begin_inset Text
  2429. \begin_layout Plain Layout
  2430. Memory Day 0 vs Day 14
  2431. \end_layout
  2432. \end_inset
  2433. </cell>
  2434. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2435. \begin_inset Text
  2436. \begin_layout Plain Layout
  2437. 1911
  2438. \end_layout
  2439. \end_inset
  2440. </cell>
  2441. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2442. \begin_inset Text
  2443. \begin_layout Plain Layout
  2444. 227
  2445. \end_layout
  2446. \end_inset
  2447. </cell>
  2448. </row>
  2449. <row>
  2450. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2451. \begin_inset Text
  2452. \begin_layout Plain Layout
  2453. Day 0 Naive vs Memory
  2454. \end_layout
  2455. \end_inset
  2456. </cell>
  2457. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2458. \begin_inset Text
  2459. \begin_layout Plain Layout
  2460. 0
  2461. \end_layout
  2462. \end_inset
  2463. </cell>
  2464. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2465. \begin_inset Text
  2466. \begin_layout Plain Layout
  2467. 2
  2468. \end_layout
  2469. \end_inset
  2470. </cell>
  2471. </row>
  2472. <row>
  2473. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2474. \begin_inset Text
  2475. \begin_layout Plain Layout
  2476. Day 1 Naive vs Memory
  2477. \end_layout
  2478. \end_inset
  2479. </cell>
  2480. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2481. \begin_inset Text
  2482. \begin_layout Plain Layout
  2483. 9167
  2484. \end_layout
  2485. \end_inset
  2486. </cell>
  2487. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2488. \begin_inset Text
  2489. \begin_layout Plain Layout
  2490. 5532
  2491. \end_layout
  2492. \end_inset
  2493. </cell>
  2494. </row>
  2495. <row>
  2496. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2497. \begin_inset Text
  2498. \begin_layout Plain Layout
  2499. Day 5 Naive vs Memory
  2500. \end_layout
  2501. \end_inset
  2502. </cell>
  2503. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2504. \begin_inset Text
  2505. \begin_layout Plain Layout
  2506. 0
  2507. \end_layout
  2508. \end_inset
  2509. </cell>
  2510. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2511. \begin_inset Text
  2512. \begin_layout Plain Layout
  2513. 0
  2514. \end_layout
  2515. \end_inset
  2516. </cell>
  2517. </row>
  2518. <row>
  2519. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2520. \begin_inset Text
  2521. \begin_layout Plain Layout
  2522. Day 14 Naive vs Memory
  2523. \end_layout
  2524. \end_inset
  2525. </cell>
  2526. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2527. \begin_inset Text
  2528. \begin_layout Plain Layout
  2529. 6446
  2530. \end_layout
  2531. \end_inset
  2532. </cell>
  2533. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2534. \begin_inset Text
  2535. \begin_layout Plain Layout
  2536. 2319
  2537. \end_layout
  2538. \end_inset
  2539. </cell>
  2540. </row>
  2541. </lyxtabular>
  2542. \end_inset
  2543. \end_layout
  2544. \begin_layout Plain Layout
  2545. \begin_inset Caption Standard
  2546. \begin_layout Plain Layout
  2547. \series bold
  2548. \begin_inset CommandInset label
  2549. LatexCommand label
  2550. name "tab:Estimated-and-detected-rnaseq"
  2551. \end_inset
  2552. Estimated and detected differentially expressed genes.
  2553. \series default
  2554. \begin_inset Quotes eld
  2555. \end_inset
  2556. Test
  2557. \begin_inset Quotes erd
  2558. \end_inset
  2559. : Which sample groups were compared;
  2560. \begin_inset Quotes eld
  2561. \end_inset
  2562. Est non-null
  2563. \begin_inset Quotes erd
  2564. \end_inset
  2565. : Estimated number of differentially expressed genes, using the method of
  2566. averaging local FDR values
  2567. \begin_inset CommandInset citation
  2568. LatexCommand cite
  2569. key "Phipson2013Thesis"
  2570. literal "false"
  2571. \end_inset
  2572. ;
  2573. \begin_inset Quotes eld
  2574. \end_inset
  2575. \begin_inset Formula $\mathrm{FDR}\le10\%$
  2576. \end_inset
  2577. \begin_inset Quotes erd
  2578. \end_inset
  2579. : Number of significantly differentially expressed genes at an FDR threshold
  2580. of 10%.
  2581. The total number of genes tested was 16707.
  2582. \end_layout
  2583. \end_inset
  2584. \end_layout
  2585. \end_inset
  2586. \end_layout
  2587. \begin_layout Standard
  2588. \begin_inset Float figure
  2589. wide false
  2590. sideways false
  2591. status collapsed
  2592. \begin_layout Plain Layout
  2593. \align center
  2594. \begin_inset Graphics
  2595. filename graphics/CD4-csaw/RNA-seq/PCA-final-12-CROP.png
  2596. lyxscale 25
  2597. width 100col%
  2598. groupId colwidth-raster
  2599. \end_inset
  2600. \end_layout
  2601. \begin_layout Plain Layout
  2602. \begin_inset Caption Standard
  2603. \begin_layout Plain Layout
  2604. \series bold
  2605. \begin_inset CommandInset label
  2606. LatexCommand label
  2607. name "fig:rna-pca-final"
  2608. \end_inset
  2609. PCoA plot of RNA-seq samples after ComBat batch correction.
  2610. \series default
  2611. Each point represents an individual sample.
  2612. Samples with the same combination of cell type and time point are encircled
  2613. with a shaded region to aid in visual identification of the sample groups.
  2614. Samples with of same cell type from the same donor are connected by lines
  2615. to indicate the
  2616. \begin_inset Quotes eld
  2617. \end_inset
  2618. trajectory
  2619. \begin_inset Quotes erd
  2620. \end_inset
  2621. of each donor's cells over time in PCoA space.
  2622. \end_layout
  2623. \end_inset
  2624. \end_layout
  2625. \begin_layout Plain Layout
  2626. \end_layout
  2627. \end_inset
  2628. \end_layout
  2629. \begin_layout Standard
  2630. Genes called present in the RNA-seq data were tested for differential expression
  2631. between all time points and cell types.
  2632. The counts of differentially expressed genes are shown in Table
  2633. \begin_inset CommandInset ref
  2634. LatexCommand ref
  2635. reference "tab:Estimated-and-detected-rnaseq"
  2636. plural "false"
  2637. caps "false"
  2638. noprefix "false"
  2639. \end_inset
  2640. .
  2641. Notably, all the results for Day 0 and Day 5 have substantially fewer genes
  2642. called differentially expressed than any of the results for other time
  2643. points.
  2644. This is an unfortunate result of the difference in sample quality between
  2645. the two batches of RNA-seq data.
  2646. All the samples in Batch 1, which includes all the samples from Days 0
  2647. and 5, have substantially more variability than the samples in Batch 2,
  2648. which includes the other time points.
  2649. This is reflected in the substantially higher weights assigned to Batch
  2650. 2 (Figure
  2651. \begin_inset CommandInset ref
  2652. LatexCommand ref
  2653. reference "fig:RNA-seq-weights-vs-covars"
  2654. plural "false"
  2655. caps "false"
  2656. noprefix "false"
  2657. \end_inset
  2658. ).
  2659. The batch effect has both a systematic component and a random noise component.
  2660. While the systematic component was subtracted out using ComBat (Figure
  2661. \begin_inset CommandInset ref
  2662. LatexCommand ref
  2663. reference "fig:RNA-PCA"
  2664. plural "false"
  2665. caps "false"
  2666. noprefix "false"
  2667. \end_inset
  2668. ), no such correction is possible for the noise component: Batch 1 simply
  2669. has substantially more random noise in it, which reduces the statistical
  2670. power for any differential expression tests involving samples in that batch.
  2671. \end_layout
  2672. \begin_layout Standard
  2673. Despite the difficulty in detecting specific differentially expressed genes,
  2674. there is still evidence that differential expression is present for these
  2675. time points.
  2676. In Figure
  2677. \begin_inset CommandInset ref
  2678. LatexCommand ref
  2679. reference "fig:rna-pca-final"
  2680. plural "false"
  2681. caps "false"
  2682. noprefix "false"
  2683. \end_inset
  2684. , there is a clear separation between naive and memory samples at Day 0,
  2685. despite the fact that only 2 genes were significantly differentially expressed
  2686. for this comparison.
  2687. Similarly, the small numbers of genes detected for the Day 0 vs Day 5 compariso
  2688. ns do not reflect the large separation between these time points in Figure
  2689. \begin_inset CommandInset ref
  2690. LatexCommand ref
  2691. reference "fig:rna-pca-final"
  2692. plural "false"
  2693. caps "false"
  2694. noprefix "false"
  2695. \end_inset
  2696. .
  2697. In addition, the MOFA latent factor plots in Figure
  2698. \begin_inset CommandInset ref
  2699. LatexCommand ref
  2700. reference "fig:mofa-lf-scatter"
  2701. plural "false"
  2702. caps "false"
  2703. noprefix "false"
  2704. \end_inset
  2705. .
  2706. This suggests that there is indeed a differential expression signal present
  2707. in the data for these comparisons, but the large variability in the Batch
  2708. 1 samples obfuscates this signal at the individual gene level.
  2709. As a result, it is impossible to make any meaningful statements about the
  2710. \begin_inset Quotes eld
  2711. \end_inset
  2712. size
  2713. \begin_inset Quotes erd
  2714. \end_inset
  2715. of the gene signature for any time point, since the number of significant
  2716. genes as well as the estimated number of differentially expressed genes
  2717. depends so strongly on the variations in sample quality in addition to
  2718. the size of the differential expression signal in the data.
  2719. Gene-set enrichment analyses are similarly impractical.
  2720. However, analyses looking at genome-wide patterns of expression are still
  2721. practical.
  2722. \end_layout
  2723. \begin_layout Subsection
  2724. H3K4 and H3K27 methylation occur in broad regions and are enriched near
  2725. promoters
  2726. \end_layout
  2727. \begin_layout Standard
  2728. \begin_inset Float table
  2729. wide false
  2730. sideways false
  2731. status collapsed
  2732. \begin_layout Plain Layout
  2733. \align center
  2734. \begin_inset Flex TODO Note (inline)
  2735. status open
  2736. \begin_layout Plain Layout
  2737. Also get
  2738. \emph on
  2739. median
  2740. \emph default
  2741. peak width and maybe other quantiles (25%, 75%)
  2742. \end_layout
  2743. \end_inset
  2744. \end_layout
  2745. \begin_layout Plain Layout
  2746. \align center
  2747. \begin_inset Tabular
  2748. <lyxtabular version="3" rows="4" columns="5">
  2749. <features tabularvalignment="middle">
  2750. <column alignment="center" valignment="top">
  2751. <column alignment="center" valignment="top">
  2752. <column alignment="center" valignment="top">
  2753. <column alignment="center" valignment="top">
  2754. <column alignment="center" valignment="top">
  2755. <row>
  2756. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2757. \begin_inset Text
  2758. \begin_layout Plain Layout
  2759. Histone Mark
  2760. \end_layout
  2761. \end_inset
  2762. </cell>
  2763. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2764. \begin_inset Text
  2765. \begin_layout Plain Layout
  2766. # Peaks
  2767. \end_layout
  2768. \end_inset
  2769. </cell>
  2770. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2771. \begin_inset Text
  2772. \begin_layout Plain Layout
  2773. Mean peak width
  2774. \end_layout
  2775. \end_inset
  2776. </cell>
  2777. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2778. \begin_inset Text
  2779. \begin_layout Plain Layout
  2780. genome coverage
  2781. \end_layout
  2782. \end_inset
  2783. </cell>
  2784. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2785. \begin_inset Text
  2786. \begin_layout Plain Layout
  2787. FRiP
  2788. \end_layout
  2789. \end_inset
  2790. </cell>
  2791. </row>
  2792. <row>
  2793. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2794. \begin_inset Text
  2795. \begin_layout Plain Layout
  2796. H3K4me2
  2797. \end_layout
  2798. \end_inset
  2799. </cell>
  2800. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2801. \begin_inset Text
  2802. \begin_layout Plain Layout
  2803. 14965
  2804. \end_layout
  2805. \end_inset
  2806. </cell>
  2807. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2808. \begin_inset Text
  2809. \begin_layout Plain Layout
  2810. 3970
  2811. \end_layout
  2812. \end_inset
  2813. </cell>
  2814. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2815. \begin_inset Text
  2816. \begin_layout Plain Layout
  2817. 1.92%
  2818. \end_layout
  2819. \end_inset
  2820. </cell>
  2821. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2822. \begin_inset Text
  2823. \begin_layout Plain Layout
  2824. 14.2%
  2825. \end_layout
  2826. \end_inset
  2827. </cell>
  2828. </row>
  2829. <row>
  2830. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2831. \begin_inset Text
  2832. \begin_layout Plain Layout
  2833. H3K4me3
  2834. \end_layout
  2835. \end_inset
  2836. </cell>
  2837. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2838. \begin_inset Text
  2839. \begin_layout Plain Layout
  2840. 6163
  2841. \end_layout
  2842. \end_inset
  2843. </cell>
  2844. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2845. \begin_inset Text
  2846. \begin_layout Plain Layout
  2847. 2946
  2848. \end_layout
  2849. \end_inset
  2850. </cell>
  2851. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2852. \begin_inset Text
  2853. \begin_layout Plain Layout
  2854. 0.588%
  2855. \end_layout
  2856. \end_inset
  2857. </cell>
  2858. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2859. \begin_inset Text
  2860. \begin_layout Plain Layout
  2861. 6.57%
  2862. \end_layout
  2863. \end_inset
  2864. </cell>
  2865. </row>
  2866. <row>
  2867. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2868. \begin_inset Text
  2869. \begin_layout Plain Layout
  2870. H3K27me3
  2871. \end_layout
  2872. \end_inset
  2873. </cell>
  2874. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2875. \begin_inset Text
  2876. \begin_layout Plain Layout
  2877. 18139
  2878. \end_layout
  2879. \end_inset
  2880. </cell>
  2881. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2882. \begin_inset Text
  2883. \begin_layout Plain Layout
  2884. 18967
  2885. \end_layout
  2886. \end_inset
  2887. </cell>
  2888. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2889. \begin_inset Text
  2890. \begin_layout Plain Layout
  2891. 11.1%
  2892. \end_layout
  2893. \end_inset
  2894. </cell>
  2895. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2896. \begin_inset Text
  2897. \begin_layout Plain Layout
  2898. 22.5%
  2899. \end_layout
  2900. \end_inset
  2901. </cell>
  2902. </row>
  2903. </lyxtabular>
  2904. \end_inset
  2905. \end_layout
  2906. \begin_layout Plain Layout
  2907. \begin_inset Caption Standard
  2908. \begin_layout Plain Layout
  2909. \series bold
  2910. \begin_inset CommandInset label
  2911. LatexCommand label
  2912. name "tab:peak-calling-summary"
  2913. \end_inset
  2914. Peak-calling summary.
  2915. \series default
  2916. For each histone mark, the number of peaks called using SICER at an IDR
  2917. threshold of ???, the mean width of those peaks, the fraction of the genome
  2918. covered by peaks, and the fraction of reads in peaks (FRiP).
  2919. \end_layout
  2920. \end_inset
  2921. \end_layout
  2922. \end_inset
  2923. \end_layout
  2924. \begin_layout Standard
  2925. Table
  2926. \begin_inset CommandInset ref
  2927. LatexCommand ref
  2928. reference "tab:peak-calling-summary"
  2929. plural "false"
  2930. caps "false"
  2931. noprefix "false"
  2932. \end_inset
  2933. gives a summary of the peak calling statistics for each histone mark.
  2934. Consistent with previous observations [CITATION NEEDED], all 3 histone
  2935. marks occur in broad regions spanning many consecutive nucleosomes, rather
  2936. than in sharp peaks as would be expected for a transcription factor or
  2937. other molecule that binds to specific sites.
  2938. This conclusion is further supported by Figure
  2939. \begin_inset CommandInset ref
  2940. LatexCommand ref
  2941. reference "fig:CCF-with-blacklist"
  2942. plural "false"
  2943. caps "false"
  2944. noprefix "false"
  2945. \end_inset
  2946. , in which a clear nucleosome-sized periodicity is visible in the cross-correlat
  2947. ion value for each sample, indicating that each time a given mark is present
  2948. on one histone, it is also likely to be found on adjacent histones as well.
  2949. H3K27me3 enrichment in particular is substantially more broad than either
  2950. H3K4 mark, with a mean peak width of almost 19,000 bp.
  2951. This is also reflected in the periodicity observed in Figure
  2952. \begin_inset CommandInset ref
  2953. LatexCommand ref
  2954. reference "fig:CCF-with-blacklist"
  2955. plural "false"
  2956. caps "false"
  2957. noprefix "false"
  2958. \end_inset
  2959. , which remains strong much farther out for H3K27me3 than the other marks,
  2960. showing H3K27me3 especially tends to be found on long runs of consecutive
  2961. histones.
  2962. \end_layout
  2963. \begin_layout Standard
  2964. \begin_inset Float figure
  2965. wide false
  2966. sideways false
  2967. status open
  2968. \begin_layout Plain Layout
  2969. \begin_inset Flex TODO Note (inline)
  2970. status open
  2971. \begin_layout Plain Layout
  2972. Ensure this figure uses the peak calls from the new analysis.
  2973. \end_layout
  2974. \end_inset
  2975. \end_layout
  2976. \begin_layout Plain Layout
  2977. \begin_inset Flex TODO Note (inline)
  2978. status open
  2979. \begin_layout Plain Layout
  2980. Need a control: shuffle all peaks and repeat, N times.
  2981. Do real vs shuffled control both in a top/bottom arrangement.
  2982. \end_layout
  2983. \end_inset
  2984. \end_layout
  2985. \begin_layout Plain Layout
  2986. \begin_inset Flex TODO Note (inline)
  2987. status open
  2988. \begin_layout Plain Layout
  2989. Consider counting TSS inside peaks as negative number indicating how far
  2990. \emph on
  2991. inside
  2992. \emph default
  2993. the peak the TSS is (i.e.
  2994. distance to nearest non-peak area).
  2995. \end_layout
  2996. \end_inset
  2997. \end_layout
  2998. \begin_layout Plain Layout
  2999. \begin_inset Flex TODO Note (inline)
  3000. status open
  3001. \begin_layout Plain Layout
  3002. The H3K4 part of this figure is included in
  3003. \begin_inset CommandInset citation
  3004. LatexCommand cite
  3005. key "LaMere2016"
  3006. literal "false"
  3007. \end_inset
  3008. as Fig.
  3009. S2.
  3010. Do I need to do anything about that?
  3011. \end_layout
  3012. \end_inset
  3013. \end_layout
  3014. \begin_layout Plain Layout
  3015. \align center
  3016. \begin_inset Graphics
  3017. filename graphics/CD4-csaw/Promoter Peak Distance Profile-PAGE1-CROP.pdf
  3018. lyxscale 50
  3019. width 80col%
  3020. \end_inset
  3021. \end_layout
  3022. \begin_layout Plain Layout
  3023. \begin_inset Caption Standard
  3024. \begin_layout Plain Layout
  3025. \series bold
  3026. \begin_inset CommandInset label
  3027. LatexCommand label
  3028. name "fig:near-promoter-peak-enrich"
  3029. \end_inset
  3030. Enrichment of peaks in promoter neighborhoods.
  3031. \series default
  3032. This plot shows the distribution of distances from each annotated transcription
  3033. start site in the genome to the nearest called peak.
  3034. Each line represents one combination of histone mark, cell type, and time
  3035. point.
  3036. Distributions are smoothed using kernel density estimation [CITE? see ggplot2
  3037. stat_density()].
  3038. Transcription start sites that occur
  3039. \emph on
  3040. within
  3041. \emph default
  3042. peaks were excluded from this plot to avoid a large spike at zero that
  3043. would overshadow the rest of the distribution.
  3044. \end_layout
  3045. \end_inset
  3046. \end_layout
  3047. \end_inset
  3048. \end_layout
  3049. \begin_layout Standard
  3050. \begin_inset Float table
  3051. wide false
  3052. sideways false
  3053. status collapsed
  3054. \begin_layout Plain Layout
  3055. \align center
  3056. \begin_inset Tabular
  3057. <lyxtabular version="3" rows="4" columns="2">
  3058. <features tabularvalignment="middle">
  3059. <column alignment="center" valignment="top">
  3060. <column alignment="center" valignment="top">
  3061. <row>
  3062. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3063. \begin_inset Text
  3064. \begin_layout Plain Layout
  3065. Histone mark
  3066. \end_layout
  3067. \end_inset
  3068. </cell>
  3069. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3070. \begin_inset Text
  3071. \begin_layout Plain Layout
  3072. Effective promoter radius
  3073. \end_layout
  3074. \end_inset
  3075. </cell>
  3076. </row>
  3077. <row>
  3078. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3079. \begin_inset Text
  3080. \begin_layout Plain Layout
  3081. H3K4me2
  3082. \end_layout
  3083. \end_inset
  3084. </cell>
  3085. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3086. \begin_inset Text
  3087. \begin_layout Plain Layout
  3088. 1 kb
  3089. \end_layout
  3090. \end_inset
  3091. </cell>
  3092. </row>
  3093. <row>
  3094. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3095. \begin_inset Text
  3096. \begin_layout Plain Layout
  3097. H3K4me3
  3098. \end_layout
  3099. \end_inset
  3100. </cell>
  3101. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3102. \begin_inset Text
  3103. \begin_layout Plain Layout
  3104. 1 kb
  3105. \end_layout
  3106. \end_inset
  3107. </cell>
  3108. </row>
  3109. <row>
  3110. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3111. \begin_inset Text
  3112. \begin_layout Plain Layout
  3113. H3K27me3
  3114. \end_layout
  3115. \end_inset
  3116. </cell>
  3117. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3118. \begin_inset Text
  3119. \begin_layout Plain Layout
  3120. 2.5 kb
  3121. \end_layout
  3122. \end_inset
  3123. </cell>
  3124. </row>
  3125. </lyxtabular>
  3126. \end_inset
  3127. \end_layout
  3128. \begin_layout Plain Layout
  3129. \begin_inset Caption Standard
  3130. \begin_layout Plain Layout
  3131. \series bold
  3132. \begin_inset CommandInset label
  3133. LatexCommand label
  3134. name "tab:effective-promoter-radius"
  3135. \end_inset
  3136. Effective promoter radius for each histone mark.
  3137. \series default
  3138. These values represent the approximate distance from transcription start
  3139. site positions within which an excess of peaks are found, as shown in Figure
  3140. \begin_inset CommandInset ref
  3141. LatexCommand ref
  3142. reference "fig:near-promoter-peak-enrich"
  3143. plural "false"
  3144. caps "false"
  3145. noprefix "false"
  3146. \end_inset
  3147. .
  3148. \end_layout
  3149. \end_inset
  3150. \end_layout
  3151. \begin_layout Plain Layout
  3152. \end_layout
  3153. \end_inset
  3154. \end_layout
  3155. \begin_layout Standard
  3156. All 3 histone marks tend to occur more often near promoter regions, as shown
  3157. in Figure
  3158. \begin_inset CommandInset ref
  3159. LatexCommand ref
  3160. reference "fig:near-promoter-peak-enrich"
  3161. plural "false"
  3162. caps "false"
  3163. noprefix "false"
  3164. \end_inset
  3165. .
  3166. The majority of each density distribution is flat, representing the background
  3167. density of peaks genome-wide.
  3168. Each distribution has a peak near zero, representing an enrichment of peaks
  3169. close transcription start site (TSS) positions relative to the remainder
  3170. of the genome.
  3171. Interestingly, the
  3172. \begin_inset Quotes eld
  3173. \end_inset
  3174. radius
  3175. \begin_inset Quotes erd
  3176. \end_inset
  3177. within which this enrichment occurs is not the same for every histone mark
  3178. (Table
  3179. \begin_inset CommandInset ref
  3180. LatexCommand ref
  3181. reference "tab:effective-promoter-radius"
  3182. plural "false"
  3183. caps "false"
  3184. noprefix "false"
  3185. \end_inset
  3186. ).
  3187. For H3K4me2 and H3K4me3, peaks are most enriched within 1
  3188. \begin_inset space ~
  3189. \end_inset
  3190. kbp of TSS positions, while for H3K27me3, enrichment is broader, extending
  3191. to 2.5
  3192. \begin_inset space ~
  3193. \end_inset
  3194. kbp.
  3195. These
  3196. \begin_inset Quotes eld
  3197. \end_inset
  3198. effective promoter radii
  3199. \begin_inset Quotes erd
  3200. \end_inset
  3201. remain approximately the same across all combinations of experimental condition
  3202. (cell type, time point, and donor), so they appear to be a property of
  3203. the histone mark itself.
  3204. Hence, these radii were used to define the promoter regions for each histone
  3205. mark in all further analyses.
  3206. \end_layout
  3207. \begin_layout Standard
  3208. \begin_inset Flex TODO Note (inline)
  3209. status open
  3210. \begin_layout Plain Layout
  3211. Consider also showing figure for distance to nearest peak center, and reference
  3212. median peak size once that is known.
  3213. \end_layout
  3214. \end_inset
  3215. \end_layout
  3216. \begin_layout Subsection
  3217. H3K4 and H3K27 promoter methylation has broadly the expected correlation
  3218. with gene expression
  3219. \end_layout
  3220. \begin_layout Standard
  3221. \begin_inset Float figure
  3222. wide false
  3223. sideways false
  3224. status collapsed
  3225. \begin_layout Plain Layout
  3226. \begin_inset Flex TODO Note (inline)
  3227. status open
  3228. \begin_layout Plain Layout
  3229. This figure is generated from the old analysis.
  3230. Eiher note that in some way or re-generate it from the new peak calls.
  3231. \end_layout
  3232. \end_inset
  3233. \end_layout
  3234. \begin_layout Plain Layout
  3235. \align center
  3236. \begin_inset Graphics
  3237. filename graphics/CD4-csaw/FPKM by Peak Violin Plots-CROP.pdf
  3238. lyxscale 50
  3239. width 100col%
  3240. \end_inset
  3241. \end_layout
  3242. \begin_layout Plain Layout
  3243. \begin_inset Caption Standard
  3244. \begin_layout Plain Layout
  3245. \series bold
  3246. \begin_inset CommandInset label
  3247. LatexCommand label
  3248. name "fig:fpkm-by-peak"
  3249. \end_inset
  3250. Expression distributions of genes with and without promoter peaks.
  3251. \end_layout
  3252. \end_inset
  3253. \end_layout
  3254. \end_inset
  3255. \end_layout
  3256. \begin_layout Standard
  3257. H3K4me2 and H3K4me2 have previously been reported as activating marks whose
  3258. presence in a gene's promoter is associated with higher gene expression,
  3259. while H3K27me3 has been reported as inactivating [CITE].
  3260. The data are consistent with this characterization: genes whose promoters
  3261. (as defined by the radii for each histone mark listed in
  3262. \begin_inset CommandInset ref
  3263. LatexCommand ref
  3264. reference "tab:effective-promoter-radius"
  3265. plural "false"
  3266. caps "false"
  3267. noprefix "false"
  3268. \end_inset
  3269. ) overlap with a H3K4me2 or H3K4me3 peak tend to have higher expression
  3270. than those that don't, while H3K27me3 is likewise associated with lower
  3271. gene expression, as shown in
  3272. \begin_inset CommandInset ref
  3273. LatexCommand ref
  3274. reference "fig:fpkm-by-peak"
  3275. plural "false"
  3276. caps "false"
  3277. noprefix "false"
  3278. \end_inset
  3279. .
  3280. This pattern holds across all combinations of cell type and time point
  3281. (Welch's
  3282. \emph on
  3283. t
  3284. \emph default
  3285. -test, all
  3286. \begin_inset Formula $p\mathrm{-values}\ll2.2\times10^{-16}$
  3287. \end_inset
  3288. ).
  3289. The difference in average log FPKM values when a peak overlaps the promoter
  3290. is about
  3291. \begin_inset Formula $+5.67$
  3292. \end_inset
  3293. for H3K4me2,
  3294. \begin_inset Formula $+5.76$
  3295. \end_inset
  3296. for H3K4me2, and
  3297. \begin_inset Formula $-4.00$
  3298. \end_inset
  3299. for H3K27me3.
  3300. \end_layout
  3301. \begin_layout Standard
  3302. \begin_inset Flex TODO Note (inline)
  3303. status open
  3304. \begin_layout Plain Layout
  3305. I also have some figures looking at interactions between marks (e.g.
  3306. what if a promoter has both H3K4me3 and H3K27me3), but I don't know if
  3307. that much detail is warranted here, since all the effects just seem approximate
  3308. ly additive anyway.
  3309. \end_layout
  3310. \end_inset
  3311. \end_layout
  3312. \begin_layout Subsection
  3313. Gene expression and promoter histone methylation patterns in naive and memory
  3314. show convergence at day 14
  3315. \end_layout
  3316. \begin_layout Standard
  3317. \begin_inset ERT
  3318. status open
  3319. \begin_layout Plain Layout
  3320. \backslash
  3321. afterpage{
  3322. \end_layout
  3323. \begin_layout Plain Layout
  3324. \backslash
  3325. begin{landscape}
  3326. \end_layout
  3327. \end_inset
  3328. \end_layout
  3329. \begin_layout Standard
  3330. \begin_inset Float table
  3331. wide false
  3332. sideways false
  3333. status open
  3334. \begin_layout Plain Layout
  3335. \align center
  3336. \begin_inset Tabular
  3337. <lyxtabular version="3" rows="6" columns="7">
  3338. <features tabularvalignment="middle">
  3339. <column alignment="center" valignment="top">
  3340. <column alignment="center" valignment="top">
  3341. <column alignment="center" valignment="top">
  3342. <column alignment="center" valignment="top">
  3343. <column alignment="center" valignment="top">
  3344. <column alignment="center" valignment="top">
  3345. <column alignment="center" valignment="top">
  3346. <row>
  3347. <cell alignment="center" valignment="top" usebox="none">
  3348. \begin_inset Text
  3349. \begin_layout Plain Layout
  3350. \end_layout
  3351. \end_inset
  3352. </cell>
  3353. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3354. \begin_inset Text
  3355. \begin_layout Plain Layout
  3356. Number of significant promoters
  3357. \end_layout
  3358. \end_inset
  3359. </cell>
  3360. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3361. \begin_inset Text
  3362. \begin_layout Plain Layout
  3363. \end_layout
  3364. \end_inset
  3365. </cell>
  3366. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3367. \begin_inset Text
  3368. \begin_layout Plain Layout
  3369. \end_layout
  3370. \end_inset
  3371. </cell>
  3372. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3373. \begin_inset Text
  3374. \begin_layout Plain Layout
  3375. Est.
  3376. differentially modified promoters
  3377. \end_layout
  3378. \end_inset
  3379. </cell>
  3380. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3381. \begin_inset Text
  3382. \begin_layout Plain Layout
  3383. \end_layout
  3384. \end_inset
  3385. </cell>
  3386. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3387. \begin_inset Text
  3388. \begin_layout Plain Layout
  3389. \end_layout
  3390. \end_inset
  3391. </cell>
  3392. </row>
  3393. <row>
  3394. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3395. \begin_inset Text
  3396. \begin_layout Plain Layout
  3397. Time Point
  3398. \end_layout
  3399. \end_inset
  3400. </cell>
  3401. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3402. \begin_inset Text
  3403. \begin_layout Plain Layout
  3404. H3K4me2
  3405. \end_layout
  3406. \end_inset
  3407. </cell>
  3408. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3409. \begin_inset Text
  3410. \begin_layout Plain Layout
  3411. H3K4me3
  3412. \end_layout
  3413. \end_inset
  3414. </cell>
  3415. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3416. \begin_inset Text
  3417. \begin_layout Plain Layout
  3418. H3K27me3
  3419. \end_layout
  3420. \end_inset
  3421. </cell>
  3422. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3423. \begin_inset Text
  3424. \begin_layout Plain Layout
  3425. H3K4me2
  3426. \end_layout
  3427. \end_inset
  3428. </cell>
  3429. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3430. \begin_inset Text
  3431. \begin_layout Plain Layout
  3432. H3K4me3
  3433. \end_layout
  3434. \end_inset
  3435. </cell>
  3436. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3437. \begin_inset Text
  3438. \begin_layout Plain Layout
  3439. H3K27me3
  3440. \end_layout
  3441. \end_inset
  3442. </cell>
  3443. </row>
  3444. <row>
  3445. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3446. \begin_inset Text
  3447. \begin_layout Plain Layout
  3448. Day 0
  3449. \end_layout
  3450. \end_inset
  3451. </cell>
  3452. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3453. \begin_inset Text
  3454. \begin_layout Plain Layout
  3455. 4553
  3456. \end_layout
  3457. \end_inset
  3458. </cell>
  3459. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3460. \begin_inset Text
  3461. \begin_layout Plain Layout
  3462. 927
  3463. \end_layout
  3464. \end_inset
  3465. </cell>
  3466. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3467. \begin_inset Text
  3468. \begin_layout Plain Layout
  3469. 6
  3470. \end_layout
  3471. \end_inset
  3472. </cell>
  3473. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3474. \begin_inset Text
  3475. \begin_layout Plain Layout
  3476. 9967
  3477. \end_layout
  3478. \end_inset
  3479. </cell>
  3480. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3481. \begin_inset Text
  3482. \begin_layout Plain Layout
  3483. 4149
  3484. \end_layout
  3485. \end_inset
  3486. </cell>
  3487. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3488. \begin_inset Text
  3489. \begin_layout Plain Layout
  3490. 2404
  3491. \end_layout
  3492. \end_inset
  3493. </cell>
  3494. </row>
  3495. <row>
  3496. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3497. \begin_inset Text
  3498. \begin_layout Plain Layout
  3499. Day 1
  3500. \end_layout
  3501. \end_inset
  3502. </cell>
  3503. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3504. \begin_inset Text
  3505. \begin_layout Plain Layout
  3506. 567
  3507. \end_layout
  3508. \end_inset
  3509. </cell>
  3510. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3511. \begin_inset Text
  3512. \begin_layout Plain Layout
  3513. 278
  3514. \end_layout
  3515. \end_inset
  3516. </cell>
  3517. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3518. \begin_inset Text
  3519. \begin_layout Plain Layout
  3520. 1570
  3521. \end_layout
  3522. \end_inset
  3523. </cell>
  3524. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3525. \begin_inset Text
  3526. \begin_layout Plain Layout
  3527. 4370
  3528. \end_layout
  3529. \end_inset
  3530. </cell>
  3531. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3532. \begin_inset Text
  3533. \begin_layout Plain Layout
  3534. 2145
  3535. \end_layout
  3536. \end_inset
  3537. </cell>
  3538. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3539. \begin_inset Text
  3540. \begin_layout Plain Layout
  3541. 6598
  3542. \end_layout
  3543. \end_inset
  3544. </cell>
  3545. </row>
  3546. <row>
  3547. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3548. \begin_inset Text
  3549. \begin_layout Plain Layout
  3550. Day 5
  3551. \end_layout
  3552. \end_inset
  3553. </cell>
  3554. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3555. \begin_inset Text
  3556. \begin_layout Plain Layout
  3557. 2313
  3558. \end_layout
  3559. \end_inset
  3560. </cell>
  3561. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3562. \begin_inset Text
  3563. \begin_layout Plain Layout
  3564. 139
  3565. \end_layout
  3566. \end_inset
  3567. </cell>
  3568. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3569. \begin_inset Text
  3570. \begin_layout Plain Layout
  3571. 490
  3572. \end_layout
  3573. \end_inset
  3574. </cell>
  3575. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3576. \begin_inset Text
  3577. \begin_layout Plain Layout
  3578. 9450
  3579. \end_layout
  3580. \end_inset
  3581. </cell>
  3582. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3583. \begin_inset Text
  3584. \begin_layout Plain Layout
  3585. 1148
  3586. \end_layout
  3587. \end_inset
  3588. </cell>
  3589. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3590. \begin_inset Text
  3591. \begin_layout Plain Layout
  3592. 4141
  3593. \end_layout
  3594. \end_inset
  3595. </cell>
  3596. </row>
  3597. <row>
  3598. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3599. \begin_inset Text
  3600. \begin_layout Plain Layout
  3601. Day 14
  3602. \end_layout
  3603. \end_inset
  3604. </cell>
  3605. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3606. \begin_inset Text
  3607. \begin_layout Plain Layout
  3608. 0
  3609. \end_layout
  3610. \end_inset
  3611. </cell>
  3612. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3613. \begin_inset Text
  3614. \begin_layout Plain Layout
  3615. 0
  3616. \end_layout
  3617. \end_inset
  3618. </cell>
  3619. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3620. \begin_inset Text
  3621. \begin_layout Plain Layout
  3622. 0
  3623. \end_layout
  3624. \end_inset
  3625. </cell>
  3626. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3627. \begin_inset Text
  3628. \begin_layout Plain Layout
  3629. 0
  3630. \end_layout
  3631. \end_inset
  3632. </cell>
  3633. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3634. \begin_inset Text
  3635. \begin_layout Plain Layout
  3636. 0
  3637. \end_layout
  3638. \end_inset
  3639. </cell>
  3640. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3641. \begin_inset Text
  3642. \begin_layout Plain Layout
  3643. 0
  3644. \end_layout
  3645. \end_inset
  3646. </cell>
  3647. </row>
  3648. </lyxtabular>
  3649. \end_inset
  3650. \end_layout
  3651. \begin_layout Plain Layout
  3652. \begin_inset Caption Standard
  3653. \begin_layout Plain Layout
  3654. \series bold
  3655. \begin_inset CommandInset label
  3656. LatexCommand label
  3657. name "tab:Number-signif-promoters"
  3658. \end_inset
  3659. Number of differentially modified promoters between naive and memory cells
  3660. at each time point after activation.
  3661. \series default
  3662. This table shows both the number of differentially modified promoters detected
  3663. at a 10% FDR threshold (left half), and the total number of differentially
  3664. modified promoters as estimated using the method of
  3665. \begin_inset CommandInset citation
  3666. LatexCommand cite
  3667. key "Phipson2013"
  3668. literal "false"
  3669. \end_inset
  3670. (right half).
  3671. \end_layout
  3672. \end_inset
  3673. \end_layout
  3674. \end_inset
  3675. \end_layout
  3676. \begin_layout Standard
  3677. \begin_inset ERT
  3678. status open
  3679. \begin_layout Plain Layout
  3680. \backslash
  3681. end{landscape}
  3682. \end_layout
  3683. \begin_layout Plain Layout
  3684. }
  3685. \end_layout
  3686. \end_inset
  3687. \end_layout
  3688. \begin_layout Standard
  3689. \begin_inset Float figure
  3690. placement p
  3691. wide false
  3692. sideways false
  3693. status open
  3694. \begin_layout Plain Layout
  3695. \align center
  3696. \begin_inset Float figure
  3697. wide false
  3698. sideways false
  3699. status open
  3700. \begin_layout Plain Layout
  3701. \align center
  3702. \begin_inset Graphics
  3703. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-promoter-PCA-group-CROP.png
  3704. lyxscale 25
  3705. width 45col%
  3706. groupId pcoa-prom-subfig
  3707. \end_inset
  3708. \end_layout
  3709. \begin_layout Plain Layout
  3710. \begin_inset Caption Standard
  3711. \begin_layout Plain Layout
  3712. \series bold
  3713. \begin_inset CommandInset label
  3714. LatexCommand label
  3715. name "fig:PCoA-H3K4me2-prom"
  3716. \end_inset
  3717. PCoA plot of H3K4me2 promoters, after subtracting surrogate variables
  3718. \end_layout
  3719. \end_inset
  3720. \end_layout
  3721. \end_inset
  3722. \begin_inset space \hfill{}
  3723. \end_inset
  3724. \begin_inset Float figure
  3725. wide false
  3726. sideways false
  3727. status open
  3728. \begin_layout Plain Layout
  3729. \align center
  3730. \begin_inset Graphics
  3731. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-promoter-PCA-group-CROP.png
  3732. lyxscale 25
  3733. width 45col%
  3734. groupId pcoa-prom-subfig
  3735. \end_inset
  3736. \end_layout
  3737. \begin_layout Plain Layout
  3738. \begin_inset Caption Standard
  3739. \begin_layout Plain Layout
  3740. \series bold
  3741. \begin_inset CommandInset label
  3742. LatexCommand label
  3743. name "fig:PCoA-H3K4me3-prom"
  3744. \end_inset
  3745. PCoA plot of H3K4me3 promoters, after subtracting surrogate variables
  3746. \end_layout
  3747. \end_inset
  3748. \end_layout
  3749. \end_inset
  3750. \end_layout
  3751. \begin_layout Plain Layout
  3752. \align center
  3753. \begin_inset Float figure
  3754. wide false
  3755. sideways false
  3756. status collapsed
  3757. \begin_layout Plain Layout
  3758. \align center
  3759. \begin_inset Graphics
  3760. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-promoter-PCA-group-CROP.png
  3761. lyxscale 25
  3762. width 45col%
  3763. groupId pcoa-prom-subfig
  3764. \end_inset
  3765. \end_layout
  3766. \begin_layout Plain Layout
  3767. \begin_inset Caption Standard
  3768. \begin_layout Plain Layout
  3769. \series bold
  3770. \begin_inset CommandInset label
  3771. LatexCommand label
  3772. name "fig:PCoA-H3K27me3-prom"
  3773. \end_inset
  3774. PCoA plot of H3K27me3 promoters, after subtracting surrogate variables
  3775. \end_layout
  3776. \end_inset
  3777. \end_layout
  3778. \end_inset
  3779. \begin_inset space \hfill{}
  3780. \end_inset
  3781. \begin_inset Float figure
  3782. wide false
  3783. sideways false
  3784. status open
  3785. \begin_layout Plain Layout
  3786. \align center
  3787. \begin_inset Graphics
  3788. filename graphics/CD4-csaw/RNA-seq/PCA-final-23-CROP.png
  3789. lyxscale 25
  3790. width 45col%
  3791. groupId pcoa-prom-subfig
  3792. \end_inset
  3793. \end_layout
  3794. \begin_layout Plain Layout
  3795. \begin_inset Caption Standard
  3796. \begin_layout Plain Layout
  3797. \series bold
  3798. \begin_inset CommandInset label
  3799. LatexCommand label
  3800. name "fig:RNA-PCA-group"
  3801. \end_inset
  3802. RNA-seq PCoA showing principal coordiantes 2 and 3.
  3803. \end_layout
  3804. \end_inset
  3805. \end_layout
  3806. \end_inset
  3807. \end_layout
  3808. \begin_layout Plain Layout
  3809. \begin_inset Caption Standard
  3810. \begin_layout Plain Layout
  3811. \series bold
  3812. \begin_inset CommandInset label
  3813. LatexCommand label
  3814. name "fig:PCoA-promoters"
  3815. \end_inset
  3816. PCoA plots for promoter ChIP-seq and expression RNA-seq data
  3817. \end_layout
  3818. \end_inset
  3819. \end_layout
  3820. \end_inset
  3821. \end_layout
  3822. \begin_layout Standard
  3823. \begin_inset Flex TODO Note (inline)
  3824. status open
  3825. \begin_layout Plain Layout
  3826. Check up on figure refs in this paragraph
  3827. \end_layout
  3828. \end_inset
  3829. \end_layout
  3830. \begin_layout Standard
  3831. We hypothesized that if naive cells had differentiated into memory cells
  3832. by Day 14, then their patterns of expression and histone modification should
  3833. converge with those of memory cells at Day 14.
  3834. Figure
  3835. \begin_inset CommandInset ref
  3836. LatexCommand ref
  3837. reference "fig:PCoA-promoters"
  3838. plural "false"
  3839. caps "false"
  3840. noprefix "false"
  3841. \end_inset
  3842. shows the patterns of variation in all 3 histone marks in the promoter
  3843. regions of the genome using principal coordinate analysis.
  3844. All 3 marks show a noticeable convergence between the naive and memory
  3845. samples at day 14, visible as an overlapping of the day 14 groups on each
  3846. plot.
  3847. This is consistent with the counts of significantly differentially modified
  3848. promoters and estimates of the total numbers of differentially modified
  3849. promoters shown in Table
  3850. \begin_inset CommandInset ref
  3851. LatexCommand ref
  3852. reference "tab:Number-signif-promoters"
  3853. plural "false"
  3854. caps "false"
  3855. noprefix "false"
  3856. \end_inset
  3857. .
  3858. For all histone marks, evidence of differential modification between naive
  3859. and memory samples was detected at every time point except day 14.
  3860. The day 14 convergence pattern is also present in the RNA-seq data (Figure
  3861. \begin_inset CommandInset ref
  3862. LatexCommand ref
  3863. reference "fig:RNA-PCA-group"
  3864. plural "false"
  3865. caps "false"
  3866. noprefix "false"
  3867. \end_inset
  3868. ), albiet in the 2nd and 3rd principal coordinates, indicating that it is
  3869. not the most dominant pattern driving gene expression.
  3870. Taken together, the data show that promoter histone methylation for these
  3871. 3 histone marks and RNA expression for naive and memory cells are most
  3872. similar at day 14, the furthest time point after activation.
  3873. MOFA was also able to capture this day 14 convergence pattern in latent
  3874. factor 5 (Figure
  3875. \begin_inset CommandInset ref
  3876. LatexCommand ref
  3877. reference "fig:mofa-lf-scatter"
  3878. plural "false"
  3879. caps "false"
  3880. noprefix "false"
  3881. \end_inset
  3882. ), which accounts for shared variation across all 3 histone marks and the
  3883. RNA-seq data, confirming that this convergence is a coordinated pattern
  3884. across all 4 data sets.
  3885. While this observation does not prove that the naive cells have differentiated
  3886. into memory cells at Day 14, it is consistent with that hypothesis.
  3887. \end_layout
  3888. \begin_layout Subsection
  3889. Effect of H3K4me2 and H3K4me3 promoter coverage upstream vs downstream of
  3890. TSS
  3891. \end_layout
  3892. \begin_layout Standard
  3893. \begin_inset Flex TODO Note (inline)
  3894. status open
  3895. \begin_layout Plain Layout
  3896. Need a better section title, for this and the next one.
  3897. \end_layout
  3898. \end_inset
  3899. \end_layout
  3900. \begin_layout Standard
  3901. \begin_inset Flex TODO Note (inline)
  3902. status open
  3903. \begin_layout Plain Layout
  3904. Make sure use of coverage/abundance/whatever is consistent.
  3905. \end_layout
  3906. \end_inset
  3907. \end_layout
  3908. \begin_layout Standard
  3909. \begin_inset Flex TODO Note (inline)
  3910. status open
  3911. \begin_layout Plain Layout
  3912. For the figures in this section and the next, the group labels are arbitrary,
  3913. so if time allows, it would be good to manually reorder them in a logical
  3914. way, e.g.
  3915. most upstream to most downstream.
  3916. If this is done, make sure to update the text with the correct group labels.
  3917. \end_layout
  3918. \end_inset
  3919. \end_layout
  3920. \begin_layout Standard
  3921. \begin_inset ERT
  3922. status open
  3923. \begin_layout Plain Layout
  3924. \backslash
  3925. afterpage{
  3926. \end_layout
  3927. \begin_layout Plain Layout
  3928. \backslash
  3929. begin{landscape}
  3930. \end_layout
  3931. \end_inset
  3932. \end_layout
  3933. \begin_layout Standard
  3934. \begin_inset Float figure
  3935. wide false
  3936. sideways false
  3937. status open
  3938. \begin_layout Plain Layout
  3939. \align center
  3940. \begin_inset Float figure
  3941. wide false
  3942. sideways false
  3943. status open
  3944. \begin_layout Plain Layout
  3945. \align center
  3946. \begin_inset Graphics
  3947. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-neighborhood-clusters-CROP.png
  3948. lyxscale 25
  3949. width 30col%
  3950. groupId covprof-subfig
  3951. \end_inset
  3952. \end_layout
  3953. \begin_layout Plain Layout
  3954. \begin_inset Caption Standard
  3955. \begin_layout Plain Layout
  3956. \series bold
  3957. \begin_inset CommandInset label
  3958. LatexCommand label
  3959. name "fig:H3K4me2-neighborhood-clusters"
  3960. \end_inset
  3961. Average relative coverage for each bin in each cluster
  3962. \end_layout
  3963. \end_inset
  3964. \end_layout
  3965. \end_inset
  3966. \begin_inset space \hfill{}
  3967. \end_inset
  3968. \begin_inset Float figure
  3969. wide false
  3970. sideways false
  3971. status open
  3972. \begin_layout Plain Layout
  3973. \align center
  3974. \begin_inset Graphics
  3975. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-neighborhood-PCA-CROP.png
  3976. lyxscale 25
  3977. width 30col%
  3978. groupId covprof-subfig
  3979. \end_inset
  3980. \end_layout
  3981. \begin_layout Plain Layout
  3982. \begin_inset Caption Standard
  3983. \begin_layout Plain Layout
  3984. \series bold
  3985. \begin_inset CommandInset label
  3986. LatexCommand label
  3987. name "fig:H3K4me2-neighborhood-pca"
  3988. \end_inset
  3989. PCA of relative coverage depth, colored by K-means cluster membership.
  3990. \end_layout
  3991. \end_inset
  3992. \end_layout
  3993. \end_inset
  3994. \begin_inset space \hfill{}
  3995. \end_inset
  3996. \begin_inset Float figure
  3997. wide false
  3998. sideways false
  3999. status open
  4000. \begin_layout Plain Layout
  4001. \align center
  4002. \begin_inset Graphics
  4003. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-neighborhood-expression-CROP.png
  4004. lyxscale 25
  4005. width 30col%
  4006. groupId covprof-subfig
  4007. \end_inset
  4008. \end_layout
  4009. \begin_layout Plain Layout
  4010. \begin_inset Caption Standard
  4011. \begin_layout Plain Layout
  4012. \series bold
  4013. \begin_inset CommandInset label
  4014. LatexCommand label
  4015. name "fig:H3K4me2-neighborhood-expression"
  4016. \end_inset
  4017. Gene expression grouped by promoter coverage clusters.
  4018. \end_layout
  4019. \end_inset
  4020. \end_layout
  4021. \end_inset
  4022. \end_layout
  4023. \begin_layout Plain Layout
  4024. \begin_inset Caption Standard
  4025. \begin_layout Plain Layout
  4026. \series bold
  4027. \begin_inset CommandInset label
  4028. LatexCommand label
  4029. name "fig:H3K4me2-neighborhood"
  4030. \end_inset
  4031. K-means clustering of promoter H3K4me2 relative coverage depth in naive
  4032. day 0 samples.
  4033. \series default
  4034. H3K4me2 ChIP-seq reads were binned into 500-bp windows tiled across each
  4035. promoter from 5
  4036. \begin_inset space ~
  4037. \end_inset
  4038. kbp upstream to 5
  4039. \begin_inset space ~
  4040. \end_inset
  4041. kbp downstream, and the logCPM values were normalized within each promoter
  4042. to an average of 0, yielding relative coverage depths.
  4043. These were then grouped using K-means clustering with
  4044. \begin_inset Formula $K=6$
  4045. \end_inset
  4046. ,
  4047. \series bold
  4048. \series default
  4049. and the average bin values were plotted for each cluster (a).
  4050. The
  4051. \begin_inset Formula $x$
  4052. \end_inset
  4053. -axis is the genomic coordinate of each bin relative to the the transcription
  4054. start site, and the
  4055. \begin_inset Formula $y$
  4056. \end_inset
  4057. -axis is the mean relative coverage depth of that bin across all promoters
  4058. in the cluster.
  4059. Each line represents the average
  4060. \begin_inset Quotes eld
  4061. \end_inset
  4062. shape
  4063. \begin_inset Quotes erd
  4064. \end_inset
  4065. of the promoter coverage for promoters in that cluster.
  4066. PCA was performed on the same data, and the first two principal components
  4067. were plotted, coloring each point by its K-means cluster identity (b).
  4068. For each cluster, the distribution of gene expression values was plotted
  4069. (c).
  4070. \end_layout
  4071. \end_inset
  4072. \end_layout
  4073. \end_inset
  4074. \end_layout
  4075. \begin_layout Standard
  4076. \begin_inset ERT
  4077. status open
  4078. \begin_layout Plain Layout
  4079. \backslash
  4080. end{landscape}
  4081. \end_layout
  4082. \begin_layout Plain Layout
  4083. }
  4084. \end_layout
  4085. \end_inset
  4086. \end_layout
  4087. \begin_layout Standard
  4088. To test whether the position of a histone mark relative to a gene's transcriptio
  4089. n start site (TSS) was important, we looked at the
  4090. \begin_inset Quotes eld
  4091. \end_inset
  4092. landscape
  4093. \begin_inset Quotes erd
  4094. \end_inset
  4095. of ChIP-seq read coverage in naive Day 0 samples within 5 kb of each gene's
  4096. TSS by binning reads into 500-bp windows tiled across each promoter LogCPM
  4097. values were calculated for the bins in each promoter and then the average
  4098. logCPM for each promoter's bins was normalized to zero, such that the values
  4099. represent coverage relative to other regions of the same promoter rather
  4100. than being proportional to absolute read count.
  4101. The promoters were then clustered based on the normalized bin abundances
  4102. using
  4103. \begin_inset Formula $k$
  4104. \end_inset
  4105. -means clustering with
  4106. \begin_inset Formula $K=6$
  4107. \end_inset
  4108. .
  4109. Different values of
  4110. \begin_inset Formula $K$
  4111. \end_inset
  4112. were also tested, but did not substantially change the interpretation of
  4113. the data.
  4114. \end_layout
  4115. \begin_layout Standard
  4116. For H3K4me2, plotting the average bin abundances for each cluster reveals
  4117. a simple pattern (Figure
  4118. \begin_inset CommandInset ref
  4119. LatexCommand ref
  4120. reference "fig:H3K4me2-neighborhood-clusters"
  4121. plural "false"
  4122. caps "false"
  4123. noprefix "false"
  4124. \end_inset
  4125. ): Cluster 5 represents a completely flat promoter coverage profile, likely
  4126. consisting of genes with no H3K4me2 methylation in the promoter.
  4127. All the other clusters represent a continuum of peak positions relative
  4128. to the TSS.
  4129. In order from must upstream to most downstream, they are Clusters 6, 4,
  4130. 3, 1, and 2.
  4131. There do not appear to be any clusters representing coverage patterns other
  4132. than lone peaks, such as coverage troughs or double peaks.
  4133. Next, all promoters were plotted in a PCA plot based on the same relative
  4134. bin abundance data, and colored based on cluster membership (Figure
  4135. \begin_inset CommandInset ref
  4136. LatexCommand ref
  4137. reference "fig:H3K4me2-neighborhood-pca"
  4138. plural "false"
  4139. caps "false"
  4140. noprefix "false"
  4141. \end_inset
  4142. ).
  4143. The PCA plot shows Cluster 5 (the
  4144. \begin_inset Quotes eld
  4145. \end_inset
  4146. no peak
  4147. \begin_inset Quotes erd
  4148. \end_inset
  4149. cluster) at the center, with the other clusters arranged in a counter-clockwise
  4150. arc around it in the order noted above, from most upstream peak to most
  4151. downstream.
  4152. Notably, the
  4153. \begin_inset Quotes eld
  4154. \end_inset
  4155. clusters
  4156. \begin_inset Quotes erd
  4157. \end_inset
  4158. form a single large
  4159. \begin_inset Quotes eld
  4160. \end_inset
  4161. cloud
  4162. \begin_inset Quotes erd
  4163. \end_inset
  4164. with no apparent separation between them, further supporting the conclusion
  4165. that these clusters represent an arbitrary partitioning of a continuous
  4166. distribution of promoter coverage landscapes.
  4167. While the clusters are a useful abstraction that aids in visualization,
  4168. they are ultimately not an accurate representation of the data.
  4169. A better representation might be something like a polar coordinate system
  4170. with the origin at the center of Cluster 5, where the radius represents
  4171. the peak height above the background and the angle represents the peak's
  4172. position upstream or downstream of the TSS.
  4173. The continuous nature of the distribution also explains why different values
  4174. of
  4175. \begin_inset Formula $K$
  4176. \end_inset
  4177. led to similar conclusions.
  4178. \end_layout
  4179. \begin_layout Standard
  4180. \begin_inset Flex TODO Note (inline)
  4181. status open
  4182. \begin_layout Plain Layout
  4183. RNA-seq values in the plots use logCPM but should really use logFPKM or
  4184. logTPM.
  4185. Fix if time allows.
  4186. \end_layout
  4187. \end_inset
  4188. \end_layout
  4189. \begin_layout Standard
  4190. \begin_inset Flex TODO Note (inline)
  4191. status open
  4192. \begin_layout Plain Layout
  4193. Should have a table of p-values on difference of means between Cluster 5
  4194. and the others.
  4195. \end_layout
  4196. \end_inset
  4197. \end_layout
  4198. \begin_layout Standard
  4199. To investigate the association between relative peak position and gene expressio
  4200. n, we plotted the Naive Day 0 expression for the genes in each cluster (Figure
  4201. \begin_inset CommandInset ref
  4202. LatexCommand ref
  4203. reference "fig:H3K4me2-neighborhood-expression"
  4204. plural "false"
  4205. caps "false"
  4206. noprefix "false"
  4207. \end_inset
  4208. ).
  4209. Most genes in Cluster 5, the
  4210. \begin_inset Quotes eld
  4211. \end_inset
  4212. no peak
  4213. \begin_inset Quotes erd
  4214. \end_inset
  4215. cluster, have low expression values.
  4216. Taking this as the
  4217. \begin_inset Quotes eld
  4218. \end_inset
  4219. baseline
  4220. \begin_inset Quotes erd
  4221. \end_inset
  4222. distribution when no H3K4me2 methylation is present, we can compare the
  4223. other clusters' distributions to determine which peak positions are associated
  4224. with elevated expression.
  4225. As might be expected, the 3 clusters representing peaks closest to the
  4226. TSS, Clusters 1, 3, and 4, show the highest average expression distributions.
  4227. Specifically, these clusters all have their highest ChIP-seq abundance
  4228. within 1kb of the TSS, consistent with the previously determined promoter
  4229. radius.
  4230. In contrast, cluster 6, which represents peaks several kb upstream of the
  4231. TSS, shows a slightly higher average expression than baseline, while Cluster
  4232. 2, which represents peaks several kb downstream, doesn't appear to show
  4233. any appreciable difference.
  4234. Interestingly, the cluster with the highest average expression is Cluster
  4235. 1, which represents peaks about 1 kb downstream of the TSS, rather than
  4236. Cluster 3, which represents peaks centered directly at the TSS.
  4237. This suggests that conceptualizing the promoter as a region centered on
  4238. the TSS with a certain
  4239. \begin_inset Quotes eld
  4240. \end_inset
  4241. radius
  4242. \begin_inset Quotes erd
  4243. \end_inset
  4244. may be an oversimplification – a peak that is a specific distance from
  4245. the TSS may have a different degree of influence depending on whether it
  4246. is upstream or downstream of the TSS.
  4247. \end_layout
  4248. \begin_layout Standard
  4249. \begin_inset ERT
  4250. status open
  4251. \begin_layout Plain Layout
  4252. \backslash
  4253. afterpage{
  4254. \end_layout
  4255. \begin_layout Plain Layout
  4256. \backslash
  4257. begin{landscape}
  4258. \end_layout
  4259. \end_inset
  4260. \end_layout
  4261. \begin_layout Standard
  4262. \begin_inset Float figure
  4263. wide false
  4264. sideways false
  4265. status open
  4266. \begin_layout Plain Layout
  4267. \align center
  4268. \begin_inset Float figure
  4269. wide false
  4270. sideways false
  4271. status open
  4272. \begin_layout Plain Layout
  4273. \align center
  4274. \begin_inset Graphics
  4275. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-neighborhood-clusters-CROP.png
  4276. lyxscale 25
  4277. width 30col%
  4278. groupId covprof-subfig
  4279. \end_inset
  4280. \end_layout
  4281. \begin_layout Plain Layout
  4282. \begin_inset Caption Standard
  4283. \begin_layout Plain Layout
  4284. \series bold
  4285. \begin_inset CommandInset label
  4286. LatexCommand label
  4287. name "fig:H3K4me3-neighborhood-clusters"
  4288. \end_inset
  4289. Average relative coverage for each bin in each cluster
  4290. \end_layout
  4291. \end_inset
  4292. \end_layout
  4293. \end_inset
  4294. \begin_inset space \hfill{}
  4295. \end_inset
  4296. \begin_inset Float figure
  4297. wide false
  4298. sideways false
  4299. status open
  4300. \begin_layout Plain Layout
  4301. \align center
  4302. \begin_inset Graphics
  4303. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-neighborhood-PCA-CROP.png
  4304. lyxscale 25
  4305. width 30col%
  4306. groupId covprof-subfig
  4307. \end_inset
  4308. \end_layout
  4309. \begin_layout Plain Layout
  4310. \begin_inset Caption Standard
  4311. \begin_layout Plain Layout
  4312. \series bold
  4313. \begin_inset CommandInset label
  4314. LatexCommand label
  4315. name "fig:H3K4me3-neighborhood-pca"
  4316. \end_inset
  4317. PCA of relative coverage depth, colored by K-means cluster membership.
  4318. \end_layout
  4319. \end_inset
  4320. \end_layout
  4321. \end_inset
  4322. \begin_inset space \hfill{}
  4323. \end_inset
  4324. \begin_inset Float figure
  4325. wide false
  4326. sideways false
  4327. status open
  4328. \begin_layout Plain Layout
  4329. \align center
  4330. \begin_inset Graphics
  4331. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-neighborhood-expression-CROP.png
  4332. lyxscale 25
  4333. width 30col%
  4334. groupId covprof-subfig
  4335. \end_inset
  4336. \end_layout
  4337. \begin_layout Plain Layout
  4338. \begin_inset Caption Standard
  4339. \begin_layout Plain Layout
  4340. \series bold
  4341. \begin_inset CommandInset label
  4342. LatexCommand label
  4343. name "fig:H3K4me3-neighborhood-expression"
  4344. \end_inset
  4345. Gene expression grouped by promoter coverage clusters.
  4346. \end_layout
  4347. \end_inset
  4348. \end_layout
  4349. \end_inset
  4350. \end_layout
  4351. \begin_layout Plain Layout
  4352. \begin_inset Caption Standard
  4353. \begin_layout Plain Layout
  4354. \series bold
  4355. \begin_inset CommandInset label
  4356. LatexCommand label
  4357. name "fig:H3K4me3-neighborhood"
  4358. \end_inset
  4359. K-means clustering of promoter H3K4me3 relative coverage depth in naive
  4360. day 0 samples.
  4361. \series default
  4362. H3K4me2 ChIP-seq reads were binned into 500-bp windows tiled across each
  4363. promoter from 5
  4364. \begin_inset space ~
  4365. \end_inset
  4366. kbp upstream to 5
  4367. \begin_inset space ~
  4368. \end_inset
  4369. kbp downstream, and the logCPM values were normalized within each promoter
  4370. to an average of 0, yielding relative coverage depths.
  4371. These were then grouped using K-means clustering with
  4372. \begin_inset Formula $K=6$
  4373. \end_inset
  4374. ,
  4375. \series bold
  4376. \series default
  4377. and the average bin values were plotted for each cluster (a).
  4378. The
  4379. \begin_inset Formula $x$
  4380. \end_inset
  4381. -axis is the genomic coordinate of each bin relative to the the transcription
  4382. start site, and the
  4383. \begin_inset Formula $y$
  4384. \end_inset
  4385. -axis is the mean relative coverage depth of that bin across all promoters
  4386. in the cluster.
  4387. Each line represents the average
  4388. \begin_inset Quotes eld
  4389. \end_inset
  4390. shape
  4391. \begin_inset Quotes erd
  4392. \end_inset
  4393. of the promoter coverage for promoters in that cluster.
  4394. PCA was performed on the same data, and the first two principal components
  4395. were plotted, coloring each point by its K-means cluster identity (b).
  4396. For each cluster, the distribution of gene expression values was plotted
  4397. (c).
  4398. \end_layout
  4399. \end_inset
  4400. \end_layout
  4401. \end_inset
  4402. \end_layout
  4403. \begin_layout Standard
  4404. \begin_inset ERT
  4405. status open
  4406. \begin_layout Plain Layout
  4407. \backslash
  4408. end{landscape}
  4409. \end_layout
  4410. \begin_layout Plain Layout
  4411. }
  4412. \end_layout
  4413. \end_inset
  4414. \end_layout
  4415. \begin_layout Standard
  4416. \begin_inset Flex TODO Note (inline)
  4417. status open
  4418. \begin_layout Plain Layout
  4419. Is there more to say here?
  4420. \end_layout
  4421. \end_inset
  4422. \end_layout
  4423. \begin_layout Standard
  4424. All observations described above for H3K4me2 ChIP-seq also appear to hold
  4425. for H3K4me3 as well (Figure
  4426. \begin_inset CommandInset ref
  4427. LatexCommand ref
  4428. reference "fig:H3K4me3-neighborhood"
  4429. plural "false"
  4430. caps "false"
  4431. noprefix "false"
  4432. \end_inset
  4433. ).
  4434. This is expected, since there is a high correlation between the positions
  4435. where both histone marks occur.
  4436. \end_layout
  4437. \begin_layout Subsection
  4438. Promoter coverage H3K27me3
  4439. \end_layout
  4440. \begin_layout Standard
  4441. \begin_inset ERT
  4442. status open
  4443. \begin_layout Plain Layout
  4444. \backslash
  4445. afterpage{
  4446. \end_layout
  4447. \begin_layout Plain Layout
  4448. \backslash
  4449. begin{landscape}
  4450. \end_layout
  4451. \end_inset
  4452. \end_layout
  4453. \begin_layout Standard
  4454. \begin_inset Float figure
  4455. wide false
  4456. sideways false
  4457. status collapsed
  4458. \begin_layout Plain Layout
  4459. \align center
  4460. \begin_inset Float figure
  4461. wide false
  4462. sideways false
  4463. status open
  4464. \begin_layout Plain Layout
  4465. \align center
  4466. \begin_inset Graphics
  4467. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-neighborhood-clusters-CROP.png
  4468. lyxscale 25
  4469. width 30col%
  4470. groupId covprof-subfig
  4471. \end_inset
  4472. \end_layout
  4473. \begin_layout Plain Layout
  4474. \begin_inset Caption Standard
  4475. \begin_layout Plain Layout
  4476. \series bold
  4477. \begin_inset CommandInset label
  4478. LatexCommand label
  4479. name "fig:H3K27me3-neighborhood-clusters"
  4480. \end_inset
  4481. Average relative coverage for each bin in each cluster
  4482. \end_layout
  4483. \end_inset
  4484. \end_layout
  4485. \end_inset
  4486. \begin_inset space \hfill{}
  4487. \end_inset
  4488. \begin_inset Float figure
  4489. wide false
  4490. sideways false
  4491. status open
  4492. \begin_layout Plain Layout
  4493. \align center
  4494. \begin_inset Graphics
  4495. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-neighborhood-PCA-CROP.png
  4496. lyxscale 25
  4497. width 30col%
  4498. groupId covprof-subfig
  4499. \end_inset
  4500. \end_layout
  4501. \begin_layout Plain Layout
  4502. \begin_inset Caption Standard
  4503. \begin_layout Plain Layout
  4504. \series bold
  4505. \begin_inset CommandInset label
  4506. LatexCommand label
  4507. name "fig:H3K27me3-neighborhood-pca"
  4508. \end_inset
  4509. PCA of relative coverage depth, colored by K-means cluster membership.
  4510. \series default
  4511. Note that Cluster 6 is hidden behind all the other clusters.
  4512. \end_layout
  4513. \end_inset
  4514. \end_layout
  4515. \end_inset
  4516. \begin_inset space \hfill{}
  4517. \end_inset
  4518. \begin_inset Float figure
  4519. wide false
  4520. sideways false
  4521. status open
  4522. \begin_layout Plain Layout
  4523. \align center
  4524. \begin_inset Graphics
  4525. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-neighborhood-expression-CROP.png
  4526. lyxscale 25
  4527. width 30col%
  4528. groupId covprof-subfig
  4529. \end_inset
  4530. \end_layout
  4531. \begin_layout Plain Layout
  4532. \begin_inset Caption Standard
  4533. \begin_layout Plain Layout
  4534. \series bold
  4535. \begin_inset CommandInset label
  4536. LatexCommand label
  4537. name "fig:H3K27me3-neighborhood-expression"
  4538. \end_inset
  4539. Gene expression grouped by promoter coverage clusters.
  4540. \end_layout
  4541. \end_inset
  4542. \end_layout
  4543. \end_inset
  4544. \end_layout
  4545. \begin_layout Plain Layout
  4546. \begin_inset Flex TODO Note (inline)
  4547. status open
  4548. \begin_layout Plain Layout
  4549. Repeated figure legends are kind of an issue here.
  4550. What to do?
  4551. \end_layout
  4552. \end_inset
  4553. \end_layout
  4554. \begin_layout Plain Layout
  4555. \begin_inset Caption Standard
  4556. \begin_layout Plain Layout
  4557. \series bold
  4558. \begin_inset CommandInset label
  4559. LatexCommand label
  4560. name "fig:H3K27me3-neighborhood"
  4561. \end_inset
  4562. K-means clustering of promoter H3K27me3 relative coverage depth in naive
  4563. day 0 samples.
  4564. \series default
  4565. H3K27me3 ChIP-seq reads were binned into 500-bp windows tiled across each
  4566. promoter from 5
  4567. \begin_inset space ~
  4568. \end_inset
  4569. kbp upstream to 5
  4570. \begin_inset space ~
  4571. \end_inset
  4572. kbp downstream, and the logCPM values were normalized within each promoter
  4573. to an average of 0, yielding relative coverage depths.
  4574. These were then grouped using
  4575. \begin_inset Formula $k$
  4576. \end_inset
  4577. -means clustering with
  4578. \begin_inset Formula $K=6$
  4579. \end_inset
  4580. ,
  4581. \series bold
  4582. \series default
  4583. and the average bin values were plotted for each cluster (a).
  4584. The
  4585. \begin_inset Formula $x$
  4586. \end_inset
  4587. -axis is the genomic coordinate of each bin relative to the the transcription
  4588. start site, and the
  4589. \begin_inset Formula $y$
  4590. \end_inset
  4591. -axis is the mean relative coverage depth of that bin across all promoters
  4592. in the cluster.
  4593. Each line represents the average
  4594. \begin_inset Quotes eld
  4595. \end_inset
  4596. shape
  4597. \begin_inset Quotes erd
  4598. \end_inset
  4599. of the promoter coverage for promoters in that cluster.
  4600. PCA was performed on the same data, and the first two principal components
  4601. were plotted, coloring each point by its K-means cluster identity (b).
  4602. For each cluster, the distribution of gene expression values was plotted
  4603. (c).
  4604. \end_layout
  4605. \end_inset
  4606. \end_layout
  4607. \end_inset
  4608. \end_layout
  4609. \begin_layout Standard
  4610. \begin_inset ERT
  4611. status open
  4612. \begin_layout Plain Layout
  4613. \backslash
  4614. end{landscape}
  4615. \end_layout
  4616. \begin_layout Plain Layout
  4617. }
  4618. \end_layout
  4619. \end_inset
  4620. \end_layout
  4621. \begin_layout Standard
  4622. \begin_inset Flex TODO Note (inline)
  4623. status open
  4624. \begin_layout Plain Layout
  4625. Should maybe re-explain what was done or refer back to the previous section.
  4626. \end_layout
  4627. \end_inset
  4628. \end_layout
  4629. \begin_layout Standard
  4630. Unlike both H3K4 marks, whose main patterns of variation appear directly
  4631. related to the size and position of a single peak within the promoter,
  4632. the patterns of H3K27me3 methylation in promoters are more complex (Figure
  4633. \begin_inset CommandInset ref
  4634. LatexCommand ref
  4635. reference "fig:H3K27me3-neighborhood"
  4636. plural "false"
  4637. caps "false"
  4638. noprefix "false"
  4639. \end_inset
  4640. ).
  4641. Once again looking at the relative coverage in a 500-bp wide bins in a
  4642. 5kb radius around each TSS, promoters were clustered based on the normalized
  4643. relative coverage values in each bin using
  4644. \begin_inset Formula $k$
  4645. \end_inset
  4646. -means clustering with
  4647. \begin_inset Formula $K=6$
  4648. \end_inset
  4649. (Figure
  4650. \begin_inset CommandInset ref
  4651. LatexCommand ref
  4652. reference "fig:H3K27me3-neighborhood-clusters"
  4653. plural "false"
  4654. caps "false"
  4655. noprefix "false"
  4656. \end_inset
  4657. ).
  4658. This time, 3
  4659. \begin_inset Quotes eld
  4660. \end_inset
  4661. axes
  4662. \begin_inset Quotes erd
  4663. \end_inset
  4664. of variation can be observed, each represented by 2 clusters with opposing
  4665. patterns.
  4666. The first axis is greater upstream coverage (Cluster 1) vs.
  4667. greater downstream coverage (Cluster 3); the second axis is the coverage
  4668. at the TSS itself: peak (Cluster 4) or trough (Cluster 2); lastly, the
  4669. third axis represents a trough upstream of the TSS (Cluster 5) vs.
  4670. downstream of the TSS (Cluster 6).
  4671. Referring to these opposing pairs of clusters as axes of variation is justified
  4672. , because they correspond precisely to the first 3 principal components
  4673. in the PCA plot of the relative coverage values (Figure
  4674. \begin_inset CommandInset ref
  4675. LatexCommand ref
  4676. reference "fig:H3K27me3-neighborhood-pca"
  4677. plural "false"
  4678. caps "false"
  4679. noprefix "false"
  4680. \end_inset
  4681. ).
  4682. The PCA plot reveals that as in the case of H3K4me2, all the
  4683. \begin_inset Quotes eld
  4684. \end_inset
  4685. clusters
  4686. \begin_inset Quotes erd
  4687. \end_inset
  4688. are really just sections of a single connected cloud rather than discrete
  4689. clusters.
  4690. The cloud is approximately ellipsoid-shaped, with each PC being an axis
  4691. of the ellipse, and each cluster consisting of a pyrimidal section of the
  4692. ellipsoid.
  4693. \end_layout
  4694. \begin_layout Standard
  4695. In Figure
  4696. \begin_inset CommandInset ref
  4697. LatexCommand ref
  4698. reference "fig:H3K27me3-neighborhood-expression"
  4699. plural "false"
  4700. caps "false"
  4701. noprefix "false"
  4702. \end_inset
  4703. , we can see that Clusters 1 and 2 are the only clusters with higher gene
  4704. expression than the others.
  4705. For Cluster 2, this is expected, since this cluster represents genes with
  4706. depletion of H3K27me3 near the promoter.
  4707. Hence, elevated expression in cluster 2 is consistent with the conventional
  4708. view of H3K27me3 as a deactivating mark.
  4709. However, Cluster 1, the cluster with the most elevated gene expression,
  4710. represents genes with elevated coverage upstream of the TSS, or equivalently,
  4711. decreased coverage downstream, inside the gene body.
  4712. The opposite pattern, in which H3K27me3 is more abundant within the gene
  4713. body and less abundance in the upstream promoter region, does not show
  4714. any elevation in gene expression.
  4715. As with H3K4me2, this shows that the location of H3K27 trimethylation relative
  4716. to the TSS is potentially an important factor beyond simple proximity.
  4717. \end_layout
  4718. \begin_layout Standard
  4719. \begin_inset Flex TODO Note (inline)
  4720. status open
  4721. \begin_layout Plain Layout
  4722. Show the figures where the negative result ended this line of inquiry.
  4723. I need to debug some errors resulting from an R upgrade to do this.
  4724. \end_layout
  4725. \end_inset
  4726. \end_layout
  4727. \begin_layout Subsection
  4728. Defined pattern analysis
  4729. \end_layout
  4730. \begin_layout Standard
  4731. \begin_inset Flex TODO Note (inline)
  4732. status open
  4733. \begin_layout Plain Layout
  4734. This was where I defined interesting expression patterns and then looked
  4735. at initial relative promoter coverage for each expression pattern.
  4736. Negative result.
  4737. I forgot about this until recently.
  4738. Worth including? Remember to also write methods.
  4739. \end_layout
  4740. \end_inset
  4741. \end_layout
  4742. \begin_layout Subsection
  4743. Promoter CpG islands?
  4744. \end_layout
  4745. \begin_layout Standard
  4746. \begin_inset Flex TODO Note (inline)
  4747. status collapsed
  4748. \begin_layout Plain Layout
  4749. I forgot until recently about the work I did on this.
  4750. Worth including? Remember to also write methods.
  4751. \end_layout
  4752. \end_inset
  4753. \end_layout
  4754. \begin_layout Section
  4755. Discussion
  4756. \end_layout
  4757. \begin_layout Standard
  4758. \begin_inset Flex TODO Note (inline)
  4759. status open
  4760. \begin_layout Plain Layout
  4761. Write better section headers
  4762. \end_layout
  4763. \end_inset
  4764. \end_layout
  4765. \begin_layout Subsection
  4766. Effective promoter radius
  4767. \end_layout
  4768. \begin_layout Standard
  4769. Figure
  4770. \begin_inset CommandInset ref
  4771. LatexCommand ref
  4772. reference "fig:near-promoter-peak-enrich"
  4773. plural "false"
  4774. caps "false"
  4775. noprefix "false"
  4776. \end_inset
  4777. shows that H3K4me2, H3K4me3, and H3K27me3 are all enriched near promoters,
  4778. relative to the rest of the genome, consistent with their conventionally
  4779. understood role in regulating gene transcription.
  4780. Interestingly, the radius within this enrichment occurs is not the same
  4781. for each histone mark.
  4782. H3K4me2 and H3K4me3 are enriched within a 1
  4783. \begin_inset space \thinspace{}
  4784. \end_inset
  4785. kb radius, while H3K27me3 is enriched within 2.5
  4786. \begin_inset space \thinspace{}
  4787. \end_inset
  4788. kb.
  4789. Notably, the determined promoter radius was consistent across all experimental
  4790. conditions, varying only between different histone marks.
  4791. This suggests that the conventional
  4792. \begin_inset Quotes eld
  4793. \end_inset
  4794. one size fits all
  4795. \begin_inset Quotes erd
  4796. \end_inset
  4797. approach of defining a single promoter region for each gene (or each TSS)
  4798. and using that same promoter region for analyzing all types of genomic
  4799. data within an experiment may not be appropriate, and a better approach
  4800. may be to use a separate promoter radius for each kind of data, with each
  4801. radius being derived from the data itself.
  4802. Furthermore, the apparent assymetry of upstream and downstream promoter
  4803. histone modification with respect to gene expression, seen in Figures
  4804. \begin_inset CommandInset ref
  4805. LatexCommand ref
  4806. reference "fig:H3K4me2-neighborhood"
  4807. plural "false"
  4808. caps "false"
  4809. noprefix "false"
  4810. \end_inset
  4811. ,
  4812. \begin_inset CommandInset ref
  4813. LatexCommand ref
  4814. reference "fig:H3K4me3-neighborhood"
  4815. plural "false"
  4816. caps "false"
  4817. noprefix "false"
  4818. \end_inset
  4819. , and
  4820. \begin_inset CommandInset ref
  4821. LatexCommand ref
  4822. reference "fig:H3K27me3-neighborhood"
  4823. plural "false"
  4824. caps "false"
  4825. noprefix "false"
  4826. \end_inset
  4827. , shows that even the concept of a promoter
  4828. \begin_inset Quotes eld
  4829. \end_inset
  4830. radius
  4831. \begin_inset Quotes erd
  4832. \end_inset
  4833. is likely an oversimplification.
  4834. At a minimum, nearby enrichment of peaks should be evaluated separately
  4835. for both upstream and downstream peaks, and an appropriate
  4836. \begin_inset Quotes eld
  4837. \end_inset
  4838. radius
  4839. \begin_inset Quotes erd
  4840. \end_inset
  4841. should be selected for each direction.
  4842. \end_layout
  4843. \begin_layout Standard
  4844. Figures
  4845. \begin_inset CommandInset ref
  4846. LatexCommand ref
  4847. reference "fig:H3K4me2-neighborhood"
  4848. plural "false"
  4849. caps "false"
  4850. noprefix "false"
  4851. \end_inset
  4852. and
  4853. \begin_inset CommandInset ref
  4854. LatexCommand ref
  4855. reference "fig:H3K4me3-neighborhood"
  4856. plural "false"
  4857. caps "false"
  4858. noprefix "false"
  4859. \end_inset
  4860. show that the determined promoter radius of 1
  4861. \begin_inset space ~
  4862. \end_inset
  4863. kb is approximately consistent with the distance from the TSS at which enrichmen
  4864. t of H3K4 methylationis correlates with increased expression, showing that
  4865. this radius, which was determined by a simple analysis of measuring the
  4866. distance from each TSS to the nearest peak, also has functional significance.
  4867. For H3K27me3, the correlation between histone modification near the promoter
  4868. and gene expression is more complex, involving non-peak variations such
  4869. as troughs in coverage at the TSS and asymmetric coverage upstream and
  4870. downstream, so it is difficult in this case to evaluate whether the 2.5
  4871. \begin_inset space ~
  4872. \end_inset
  4873. kb radius determined from TSS-to-peak distances is functionally significant.
  4874. However, the two patterns of coverage associated with elevated expression
  4875. levels both have interesting features within this radius.
  4876. \end_layout
  4877. \begin_layout Standard
  4878. \begin_inset Flex TODO Note (inline)
  4879. status open
  4880. \begin_layout Plain Layout
  4881. My instinct is to say
  4882. \begin_inset Quotes eld
  4883. \end_inset
  4884. further study is needed
  4885. \begin_inset Quotes erd
  4886. \end_inset
  4887. here, but that goes in Chapter 5, right?
  4888. \end_layout
  4889. \end_inset
  4890. \end_layout
  4891. \begin_layout Subsection
  4892. Convergence
  4893. \end_layout
  4894. \begin_layout Standard
  4895. \begin_inset Flex TODO Note (inline)
  4896. status open
  4897. \begin_layout Plain Layout
  4898. Look up some more references for these histone marks being involved in memory
  4899. differentiation.
  4900. (Ask Sarah)
  4901. \end_layout
  4902. \end_inset
  4903. \end_layout
  4904. \begin_layout Standard
  4905. We have observed that all 3 histone marks and the gene expression data all
  4906. exhibit evidence of convergence in abundance between naive and memory cells
  4907. by day 14 after activation (Figure
  4908. \begin_inset CommandInset ref
  4909. LatexCommand ref
  4910. reference "fig:PCoA-promoters"
  4911. plural "false"
  4912. caps "false"
  4913. noprefix "false"
  4914. \end_inset
  4915. , Table
  4916. \begin_inset CommandInset ref
  4917. LatexCommand ref
  4918. reference "tab:Number-signif-promoters"
  4919. plural "false"
  4920. caps "false"
  4921. noprefix "false"
  4922. \end_inset
  4923. ).
  4924. The MOFA latent factor scatter plots (Figure
  4925. \begin_inset CommandInset ref
  4926. LatexCommand ref
  4927. reference "fig:mofa-lf-scatter"
  4928. plural "false"
  4929. caps "false"
  4930. noprefix "false"
  4931. \end_inset
  4932. ) show that this pattern of convergence is captured in latent factor 5.
  4933. Like all the latent factors in this plot, this factor explains a substantial
  4934. portion of the variance in all 4 data sets, indicating a coordinated pattern
  4935. of variation shared across all histone marks and gene expression.
  4936. This, of course, is consistent with the expectation that any naive CD4
  4937. T-cells remaining at day 14 should have differentiated into memory cells
  4938. by that time, and should therefore have a genomic state similar to memory
  4939. cells.
  4940. This convergence is evidence that these histone marks all play an important
  4941. role in the naive-to-memory differentiation process.
  4942. A histone mark that was not involved in naive-to-memory differentiation
  4943. would not be expected to converge in this way after activation.
  4944. \end_layout
  4945. \begin_layout Standard
  4946. \begin_inset Float figure
  4947. wide false
  4948. sideways false
  4949. status collapsed
  4950. \begin_layout Plain Layout
  4951. \align center
  4952. \begin_inset Graphics
  4953. filename graphics/CD4-csaw/LaMere2016_fig8.pdf
  4954. lyxscale 50
  4955. width 60col%
  4956. groupId colwidth
  4957. \end_inset
  4958. \end_layout
  4959. \begin_layout Plain Layout
  4960. \begin_inset Caption Standard
  4961. \begin_layout Plain Layout
  4962. \series bold
  4963. \begin_inset CommandInset label
  4964. LatexCommand label
  4965. name "fig:Lamere2016-Fig8"
  4966. \end_inset
  4967. Lamere 2016 Figure 8
  4968. \begin_inset CommandInset citation
  4969. LatexCommand cite
  4970. key "LaMere2016"
  4971. literal "false"
  4972. \end_inset
  4973. ,
  4974. \begin_inset Quotes eld
  4975. \end_inset
  4976. Model for the role of H3K4 methylation during CD4 T-cell activation.
  4977. \begin_inset Quotes erd
  4978. \end_inset
  4979. \series default
  4980. Reproduced with permission.
  4981. \end_layout
  4982. \end_inset
  4983. \end_layout
  4984. \end_inset
  4985. \end_layout
  4986. \begin_layout Standard
  4987. In H3K4me2, H3K4me3, and RNA-seq, this convergence appears to be in progress
  4988. already by Day 5, shown by the smaller distance between naive and memory
  4989. cells at day 5 along the
  4990. \begin_inset Formula $y$
  4991. \end_inset
  4992. -axes in Figures
  4993. \begin_inset CommandInset ref
  4994. LatexCommand ref
  4995. reference "fig:PCoA-H3K4me2-prom"
  4996. plural "false"
  4997. caps "false"
  4998. noprefix "false"
  4999. \end_inset
  5000. ,
  5001. \begin_inset CommandInset ref
  5002. LatexCommand ref
  5003. reference "fig:PCoA-H3K4me3-prom"
  5004. plural "false"
  5005. caps "false"
  5006. noprefix "false"
  5007. \end_inset
  5008. , and
  5009. \begin_inset CommandInset ref
  5010. LatexCommand ref
  5011. reference "fig:RNA-PCA-group"
  5012. plural "false"
  5013. caps "false"
  5014. noprefix "false"
  5015. \end_inset
  5016. .
  5017. This agrees with the model proposed by Sarah Lamere based on an prior analysis
  5018. of the same data, shown in Figure
  5019. \begin_inset CommandInset ref
  5020. LatexCommand ref
  5021. reference "fig:Lamere2016-Fig8"
  5022. plural "false"
  5023. caps "false"
  5024. noprefix "false"
  5025. \end_inset
  5026. , which shows the pattern of H3K4 methylation and expression for naive cells
  5027. and memory cells converging at day 5.
  5028. This model was developed without the benefit of the PCoA plots in Figure
  5029. \begin_inset CommandInset ref
  5030. LatexCommand ref
  5031. reference "fig:PCoA-promoters"
  5032. plural "false"
  5033. caps "false"
  5034. noprefix "false"
  5035. \end_inset
  5036. , which have been corrected for confounding factors by ComBat and SVA.
  5037. This shows that proper batch correction assists in extracting meaningful
  5038. patterns in the data while eliminating systematic sources of irrelevant
  5039. variation in the data, allowing simple automated procedures like PCoA to
  5040. reveal interesting behaviors in the data that were previously only detectable
  5041. by a detailed manual analysis.
  5042. \end_layout
  5043. \begin_layout Standard
  5044. While the ideal comparison to demonstrate this convergence would be naive
  5045. cells at day 14 to memory cells at day 0, this is not feasible in this
  5046. experimental system, since neither naive nor memory cells are able to fully
  5047. return to their pre-activation state, as shown by the lack of overlap between
  5048. days 0 and 14 for either naive or memory cells in Figure
  5049. \begin_inset CommandInset ref
  5050. LatexCommand ref
  5051. reference "fig:PCoA-promoters"
  5052. plural "false"
  5053. caps "false"
  5054. noprefix "false"
  5055. \end_inset
  5056. .
  5057. \end_layout
  5058. \begin_layout Subsection
  5059. Positional
  5060. \end_layout
  5061. \begin_layout Standard
  5062. When looking at patterns in the relative coverage of each histone mark near
  5063. the TSS of each gene, several interesting patterns were apparent.
  5064. For H3K4me2 and H3K4me3, the pattern was straightforward: the consistent
  5065. pattern across all promoters was a single peak a few kb wide, with the
  5066. main axis of variation being the position of this peak relative to the
  5067. TSS (Figures
  5068. \begin_inset CommandInset ref
  5069. LatexCommand ref
  5070. reference "fig:H3K4me2-neighborhood"
  5071. plural "false"
  5072. caps "false"
  5073. noprefix "false"
  5074. \end_inset
  5075. &
  5076. \begin_inset CommandInset ref
  5077. LatexCommand ref
  5078. reference "fig:H3K4me3-neighborhood"
  5079. plural "false"
  5080. caps "false"
  5081. noprefix "false"
  5082. \end_inset
  5083. ).
  5084. There were no obvious
  5085. \begin_inset Quotes eld
  5086. \end_inset
  5087. preferred
  5088. \begin_inset Quotes erd
  5089. \end_inset
  5090. positions, but rather a continuous distribution of relative positions ranging
  5091. all across the promoter region.
  5092. The association with gene expression was also straightforward: peaks closer
  5093. to the TSS were more strongly associated with elevated gene expression.
  5094. Coverage downstream of the TSS appears to be more strongly associated with
  5095. elevated expression than coverage the same distance upstream, indicating
  5096. that the
  5097. \begin_inset Quotes eld
  5098. \end_inset
  5099. effective promoter region
  5100. \begin_inset Quotes erd
  5101. \end_inset
  5102. for H3K4me2 and H3K4me3 may be centered downstream of the TSS.
  5103. \end_layout
  5104. \begin_layout Standard
  5105. The relative promoter coverage for H3K27me3 had a more complex pattern,
  5106. with two specific patterns of promoter coverage associated with elevated
  5107. expression: a sharp depletion of H3K27me3 around the TSS relative to the
  5108. surrounding area, and a depletion of H3K27me3 downstream of the TSS relative
  5109. to upstream (Figure
  5110. \begin_inset CommandInset ref
  5111. LatexCommand ref
  5112. reference "fig:H3K27me3-neighborhood"
  5113. plural "false"
  5114. caps "false"
  5115. noprefix "false"
  5116. \end_inset
  5117. ).
  5118. A previous study found that H3K27me3 depletion within the gene body was
  5119. associated with elevated gene expression in 4 different cell types in mice
  5120. \begin_inset CommandInset citation
  5121. LatexCommand cite
  5122. key "Young2011"
  5123. literal "false"
  5124. \end_inset
  5125. .
  5126. This is consistent with the second pattern described here.
  5127. This study also reported that a spike in coverage at the TSS was associated
  5128. with
  5129. \emph on
  5130. lower
  5131. \emph default
  5132. expression, which is indirectly consistent with the first pattern described
  5133. here, in the sense that it associates lower H3K27me3 levels near the TSS
  5134. with higher expression.
  5135. \end_layout
  5136. \begin_layout Subsection
  5137. Workflow
  5138. \end_layout
  5139. \begin_layout Standard
  5140. \begin_inset ERT
  5141. status open
  5142. \begin_layout Plain Layout
  5143. \backslash
  5144. afterpage{
  5145. \end_layout
  5146. \begin_layout Plain Layout
  5147. \backslash
  5148. begin{landscape}
  5149. \end_layout
  5150. \end_inset
  5151. \end_layout
  5152. \begin_layout Standard
  5153. \begin_inset Float figure
  5154. wide false
  5155. sideways false
  5156. status open
  5157. \begin_layout Plain Layout
  5158. \align center
  5159. \begin_inset Graphics
  5160. filename graphics/CD4-csaw/rulegraphs/rulegraph-all.pdf
  5161. lyxscale 50
  5162. width 100col%
  5163. height 95theight%
  5164. \end_inset
  5165. \end_layout
  5166. \begin_layout Plain Layout
  5167. \begin_inset Caption Standard
  5168. \begin_layout Plain Layout
  5169. \begin_inset CommandInset label
  5170. LatexCommand label
  5171. name "fig:rulegraph"
  5172. \end_inset
  5173. \series bold
  5174. Dependency graph of steps in reproducible workflow.
  5175. \end_layout
  5176. \end_inset
  5177. \end_layout
  5178. \end_inset
  5179. \end_layout
  5180. \begin_layout Standard
  5181. \begin_inset ERT
  5182. status open
  5183. \begin_layout Plain Layout
  5184. \backslash
  5185. end{landscape}
  5186. \end_layout
  5187. \begin_layout Plain Layout
  5188. }
  5189. \end_layout
  5190. \end_inset
  5191. \end_layout
  5192. \begin_layout Standard
  5193. The analyses described in this chapter were organized into a reproducible
  5194. workflow using the Snakemake workflow management system.
  5195. As shown in Figure
  5196. \begin_inset CommandInset ref
  5197. LatexCommand ref
  5198. reference "fig:rulegraph"
  5199. plural "false"
  5200. caps "false"
  5201. noprefix "false"
  5202. \end_inset
  5203. , the workflow includes many steps with complex dependencies between them.
  5204. For example, the step that counts the number of ChIP-seq reads in 500
  5205. \begin_inset space ~
  5206. \end_inset
  5207. bp windows in each promoter (the starting point for Figures
  5208. \begin_inset CommandInset ref
  5209. LatexCommand ref
  5210. reference "fig:H3K4me2-neighborhood"
  5211. plural "false"
  5212. caps "false"
  5213. noprefix "false"
  5214. \end_inset
  5215. ,
  5216. \begin_inset CommandInset ref
  5217. LatexCommand ref
  5218. reference "fig:H3K4me3-neighborhood"
  5219. plural "false"
  5220. caps "false"
  5221. noprefix "false"
  5222. \end_inset
  5223. , and
  5224. \begin_inset CommandInset ref
  5225. LatexCommand ref
  5226. reference "fig:H3K27me3-neighborhood"
  5227. plural "false"
  5228. caps "false"
  5229. noprefix "false"
  5230. \end_inset
  5231. ), named
  5232. \begin_inset Formula $\texttt{chipseq\_count\_tss\_neighborhoods}$
  5233. \end_inset
  5234. , depends on the RNA-seq abundance estimates in order to select the most-used
  5235. TSS for each gene, the aligned ChIP-seq reads, the index for those reads,
  5236. and the blacklist of regions to be excluded from ChIP-seq analysis.
  5237. Each step declares its inputs and outputs, and Snakemake uses these to
  5238. determine the dependencies between steps.
  5239. Each step is marked as depending on all the steps whose outputs match its
  5240. inputs, generating the workflow graph in Figure
  5241. \begin_inset CommandInset ref
  5242. LatexCommand ref
  5243. reference "fig:rulegraph"
  5244. plural "false"
  5245. caps "false"
  5246. noprefix "false"
  5247. \end_inset
  5248. , which Snakemake uses to determine order in which to execute each step
  5249. so that each step is executed only after all of the steps it depends on
  5250. have completed, thereby automating the entire workflow from start to finish.
  5251. \end_layout
  5252. \begin_layout Standard
  5253. In addition to simply making it easier to organize the steps in the analysis,
  5254. structuring the analysis as a workflow allowed for some analysis strategies
  5255. that would not have been practical otherwise.
  5256. For example, 5 different RNA-seq quantification methods were tested against
  5257. two different reference transcriptome annotations for a total of 10 different
  5258. quantifications of the same RNA-seq data.
  5259. These were then compared against each other in the exploratory data analysis
  5260. step, to determine that the results were not very sensitive to either the
  5261. choice of quantification method or the choice of annotation.
  5262. This was possible with a single script for the exploratory data analysis,
  5263. because Snakemake was able to automate running this script for every combinatio
  5264. n of method and reference.
  5265. In a similar manner, two different peak calling methods were tested against
  5266. each other, and in this case it was determined that SICER was unambiguously
  5267. superior to MACS for all histone marks studied.
  5268. By enabling these types of comparisons, structuring the analysis as an
  5269. automated workflow allowed important analysis decisions to be made in a
  5270. data-driven way, by running every reasonable option through the downstream
  5271. steps, seeing the consequences of choosing each option, and deciding accordingl
  5272. y.
  5273. \end_layout
  5274. \begin_layout Subsection
  5275. Data quality issues limit conclusions
  5276. \end_layout
  5277. \begin_layout Standard
  5278. \begin_inset Flex TODO Note (inline)
  5279. status open
  5280. \begin_layout Plain Layout
  5281. Is this needed?
  5282. \end_layout
  5283. \end_inset
  5284. \end_layout
  5285. \begin_layout Section
  5286. Future Directions
  5287. \end_layout
  5288. \begin_layout Standard
  5289. The analysis of RNA-seq and ChIP-seq in CD4 T-cells in Chapter 2 is in many
  5290. ways a preliminary study that suggests a multitude of new avenues of investigat
  5291. ion.
  5292. Here we consider a selection of such avenues.
  5293. \end_layout
  5294. \begin_layout Subsection
  5295. Negative results
  5296. \end_layout
  5297. \begin_layout Standard
  5298. Two additional analyses were conducted beyond those reported in the results.
  5299. First, we searched for evidence that the presence or absence of a CpG island
  5300. in the promoter was correlated with increases or decreases in gene expression
  5301. or any histone mark in any of the tested contrasts.
  5302. Second, we searched for evidence that the relative ChIP-seq coverage profiles
  5303. prior to activations could predict the change in expression of a gene after
  5304. activation.
  5305. Neither analysis turned up any clear positive results.
  5306. \end_layout
  5307. \begin_layout Subsection
  5308. Improve on the idea of an effective promoter radius
  5309. \end_layout
  5310. \begin_layout Standard
  5311. This study introduced the concept of an
  5312. \begin_inset Quotes eld
  5313. \end_inset
  5314. effective promoter radius
  5315. \begin_inset Quotes erd
  5316. \end_inset
  5317. specific to each histone mark based on distince from the TSS within which
  5318. an excess of peaks was called for that mark.
  5319. This concept was then used to guide further analyses throughout the study.
  5320. However, while the effective promoter radius was useful in those analyses,
  5321. it is both limited in theory and shown in practice to be a possible oversimplif
  5322. ication.
  5323. First, the effective promoter radii used in this study were chosen based
  5324. on manual inspection of the TSS-to-peak distance distributions in Figure
  5325. \begin_inset CommandInset ref
  5326. LatexCommand ref
  5327. reference "fig:near-promoter-peak-enrich"
  5328. plural "false"
  5329. caps "false"
  5330. noprefix "false"
  5331. \end_inset
  5332. , selecting round numbers of analyst convenience (Table
  5333. \begin_inset CommandInset ref
  5334. LatexCommand ref
  5335. reference "tab:effective-promoter-radius"
  5336. plural "false"
  5337. caps "false"
  5338. noprefix "false"
  5339. \end_inset
  5340. ).
  5341. It would be better to define an algorithm that selects a more precise radius
  5342. based on the features of the graph.
  5343. One possible way to do this would be to randomly rearrange the called peaks
  5344. throughout the genome many (while preserving the distribution of peak widths)
  5345. and re-generate the same plot as in Figure
  5346. \begin_inset CommandInset ref
  5347. LatexCommand ref
  5348. reference "fig:near-promoter-peak-enrich"
  5349. plural "false"
  5350. caps "false"
  5351. noprefix "false"
  5352. \end_inset
  5353. .
  5354. This would yield a better
  5355. \begin_inset Quotes eld
  5356. \end_inset
  5357. background
  5358. \begin_inset Quotes erd
  5359. \end_inset
  5360. distribution that demonstrates the degree of near-TSS enrichment that would
  5361. be expected by random chance.
  5362. The effective promoter radius could be defined as the point where the true
  5363. distribution diverges from the randomized background distribution.
  5364. \end_layout
  5365. \begin_layout Standard
  5366. Furthermore, the above definition of effective promoter radius has the significa
  5367. nt limitation of being based on the peak calling method.
  5368. It is thus very sensitive to the choice of peak caller and significance
  5369. threshold for calling peaks, as well as the degree of saturation in the
  5370. sequencing.
  5371. Calling peaks from ChIP-seq samples with insufficient coverage depth, with
  5372. the wrong peak caller, or with a different significance threshold could
  5373. give a drastically different number of called peaks, and hence a drastically
  5374. different distribution of peak-to-TSS distances.
  5375. To address this, it is desirable to develop a better method of determining
  5376. the effective promoter radius that relies only on the distribution of read
  5377. coverage around the TSS, independent of the peak calling.
  5378. Furthermore, as demonstrated by the upstream-downstream asymmetries observed
  5379. in Figures
  5380. \begin_inset CommandInset ref
  5381. LatexCommand ref
  5382. reference "fig:H3K4me2-neighborhood"
  5383. plural "false"
  5384. caps "false"
  5385. noprefix "false"
  5386. \end_inset
  5387. ,
  5388. \begin_inset CommandInset ref
  5389. LatexCommand ref
  5390. reference "fig:H3K4me3-neighborhood"
  5391. plural "false"
  5392. caps "false"
  5393. noprefix "false"
  5394. \end_inset
  5395. , and
  5396. \begin_inset CommandInset ref
  5397. LatexCommand ref
  5398. reference "fig:H3K27me3-neighborhood"
  5399. plural "false"
  5400. caps "false"
  5401. noprefix "false"
  5402. \end_inset
  5403. , this definition should determine a different radius for the upstream and
  5404. downstream directions.
  5405. At this point, it may be better to rename this concept
  5406. \begin_inset Quotes eld
  5407. \end_inset
  5408. effective promoter extent
  5409. \begin_inset Quotes erd
  5410. \end_inset
  5411. and avoid the word
  5412. \begin_inset Quotes eld
  5413. \end_inset
  5414. radius
  5415. \begin_inset Quotes erd
  5416. \end_inset
  5417. , since a radius implies a symmetry about the TSS that is not supported
  5418. by the data.
  5419. \end_layout
  5420. \begin_layout Standard
  5421. Beyond improving the definition of effective promoter extent, functional
  5422. validation is necessary to show that this measure of near-TSS enrichment
  5423. has biological meaning.
  5424. Figures
  5425. \begin_inset CommandInset ref
  5426. LatexCommand ref
  5427. reference "fig:H3K4me2-neighborhood"
  5428. plural "false"
  5429. caps "false"
  5430. noprefix "false"
  5431. \end_inset
  5432. and
  5433. \begin_inset CommandInset ref
  5434. LatexCommand ref
  5435. reference "fig:H3K4me3-neighborhood"
  5436. plural "false"
  5437. caps "false"
  5438. noprefix "false"
  5439. \end_inset
  5440. already provide a very limited functional validation of the chosen promoter
  5441. extents for H3K4me2 and H3K4me3 by showing that spikes in coverage within
  5442. this region are most strongly correlated with elevated gene expression.
  5443. However, there are other ways to show functional relevance of the promoter
  5444. extent.
  5445. For example, correlations could be computed between read counts in peaks
  5446. nearby gene promoters and the expression level of those genes, and these
  5447. correlations could be plotted against the distance of the peak upstream
  5448. or downstream of the gene's TSS.
  5449. If the promoter extent truly defines a
  5450. \begin_inset Quotes eld
  5451. \end_inset
  5452. sphere of influence
  5453. \begin_inset Quotes erd
  5454. \end_inset
  5455. within which a histone mark is involved with the regulation of a gene,
  5456. then the correlations for peaks within this extent should be significantly
  5457. higher than those further upstream or downstream.
  5458. Peaks within these extents may also be more likely to show differential
  5459. modification than those outside genic regions of the genome.
  5460. \end_layout
  5461. \begin_layout Subsection
  5462. Design experiments to focus on post-activation convergence of naive & memory
  5463. cells
  5464. \end_layout
  5465. \begin_layout Standard
  5466. In this study, a convergence between naive and memory cells was observed
  5467. in both the pattern of gene expression and in epigenetic state of the 3
  5468. histone marks studied, consistent with the hypothesis that any naive cells
  5469. remaining 14 days after activation have differentiated into memory cells,
  5470. and that both gene expression and these histone marks are involved in this
  5471. differentiation.
  5472. However, the current study was not designed with this specific hypothesis
  5473. in mind, and it therefore has some deficiencies with regard to testing
  5474. it.
  5475. The memory CD4 samples at day 14 do not resemble the memory samples at
  5476. day 0, indicating that in the specific model of activation used for this
  5477. experiment, the cells are not guaranteed to return to their original pre-activa
  5478. tion state, or perhaps this process takes substantially longer than 14 days.
  5479. This is a challenge for the convergence hypothesis because the ideal comparison
  5480. to prove that naive cells are converging to a resting memory state would
  5481. be to compare the final naive time point to the Day 0 memory samples, but
  5482. this comparison is only meaningful if memory cells generally return to
  5483. the same
  5484. \begin_inset Quotes eld
  5485. \end_inset
  5486. resting
  5487. \begin_inset Quotes erd
  5488. \end_inset
  5489. state that they started at.
  5490. \end_layout
  5491. \begin_layout Standard
  5492. To better study the convergence hypothesis, a new experiment should be designed
  5493. using a model system for T-cell activation that is known to allow cells
  5494. to return as closely as possible to their pre-activation state.
  5495. Alternatively, if it is not possible to find or design such a model system,
  5496. the same cell cultures could be activated serially multiple times, and
  5497. sequenced after each activation cycle right before the next activation.
  5498. It is likely that several activations in the same model system will settle
  5499. into a cylical pattern, converging to a consistent
  5500. \begin_inset Quotes eld
  5501. \end_inset
  5502. resting
  5503. \begin_inset Quotes erd
  5504. \end_inset
  5505. state after each activation, even if this state is different from the initial
  5506. resting state at Day 0.
  5507. If so, it will be possible to compare the final states of both naive and
  5508. memory cells to show that they converge despite different initial conditions.
  5509. \end_layout
  5510. \begin_layout Standard
  5511. In addition, if naive-to-memory convergence is a general pattern, it should
  5512. also be detectable in other epigenetic marks, including other histone marks
  5513. and DNA methylation.
  5514. An experiment should be designed studying a large number of epigenetic
  5515. marks known or suspected to be involved in regulation of gene expression,
  5516. assaying all of these at the same pre- and post-activation time points.
  5517. Multi-dataset factor analysis methods like MOFA can then be used to identify
  5518. coordinated patterns of regulation shared across many epigenetic marks.
  5519. If possible, some
  5520. \begin_inset Quotes eld
  5521. \end_inset
  5522. negative control
  5523. \begin_inset Quotes erd
  5524. \end_inset
  5525. marks should be included that are known
  5526. \emph on
  5527. not
  5528. \emph default
  5529. to be involved in T-cell activation or memory formation.
  5530. Of course, CD4 T-cells are not the only adaptive immune cells with memory.
  5531. A similar study could be designed for CD8 T-cells, B-cells, and even specific
  5532. subsets of CD4 T-cells.
  5533. \end_layout
  5534. \begin_layout Subsection
  5535. Follow up on hints of interesting patterns in promoter relative coverage
  5536. profiles
  5537. \end_layout
  5538. \begin_layout Standard
  5539. \begin_inset Flex TODO Note (inline)
  5540. status open
  5541. \begin_layout Plain Layout
  5542. I think I might need to write up the negative results for the Promoter CpG
  5543. and defined pattern analysis before writing this section.
  5544. \end_layout
  5545. \end_inset
  5546. \end_layout
  5547. \begin_layout Itemize
  5548. Also find better normalizations: maybe borrow from MACS/SICER background
  5549. correction methods?
  5550. \end_layout
  5551. \begin_layout Itemize
  5552. For H3K4, define polar coordinates based on PC1 & 2: R = peak size, Theta
  5553. = peak position.
  5554. Then correlate with expression.
  5555. \end_layout
  5556. \begin_layout Itemize
  5557. Current analysis only at Day 0.
  5558. Need to study across time points.
  5559. \end_layout
  5560. \begin_layout Itemize
  5561. Integrating data across so many dimensions is a significant analysis challenge
  5562. \end_layout
  5563. \begin_layout Subsection
  5564. Investigate causes of high correlation between mutually exclusive histone
  5565. marks
  5566. \end_layout
  5567. \begin_layout Standard
  5568. The high correlation between coverage depth observed between H3K4me2 and
  5569. H3K4me3 is both expected and unexpected.
  5570. Since both marks are associated with elevated gene transcription, a positive
  5571. correlation between them is not surprising.
  5572. However, these two marks represent different post-translational modifications
  5573. of the
  5574. \emph on
  5575. same
  5576. \emph default
  5577. lysine residue on the histone H3 polypeptide, which means that they cannot
  5578. both be present on the same H3 subunit.
  5579. Thus, the high correlation between them has several potential explanations.
  5580. One possible reason is cell population heterogeneity: perhaps some genomic
  5581. loci are frequently marked with H3K4me2 in some cells, while in other cells
  5582. the same loci are marked with H3K4me3.
  5583. Another possibility is allele-specific modifications: the loci are marked
  5584. in each diploid cell with H3K4me2 on one allele and H3K4me3 on the other
  5585. allele.
  5586. Lastly, since each histone octamer contains 2 H3 subunits, it is possible
  5587. that having one H3K4me2 mark and one H3K4me3 mark on a given histone octamer
  5588. represents a distinct epigenetic state with a different function than either
  5589. double H3K4me2 or double H3K4me3.
  5590. \end_layout
  5591. \begin_layout Standard
  5592. These three hypotheses could be disentangled by single-cell ChIP-seq.
  5593. If the correlation between these two histone marks persists even within
  5594. the reads for each individual cell, then cell population heterogeneity
  5595. cannot explain the correlation.
  5596. Allele-specific modification can be tested for by looking at the correlation
  5597. between read coverage of the two histone marks at heterozygous loci.
  5598. If the correlation between read counts for opposite loci is low, then this
  5599. is consistent with allele-specific modification.
  5600. Finally if the modifications do not separate by either cell or allele,
  5601. the colocation of these two marks is most likely occurring at the level
  5602. of individual histones, with the heterogenously modified histone representing
  5603. a distinct state.
  5604. \end_layout
  5605. \begin_layout Standard
  5606. However, another experiment would be required to show direct evidence of
  5607. such a heterogeneously modified state.
  5608. Specifically a
  5609. \begin_inset Quotes eld
  5610. \end_inset
  5611. double ChIP
  5612. \begin_inset Quotes erd
  5613. \end_inset
  5614. experiment would need to be performed, where the input DNA is first subjected
  5615. to an immunoprecipitation pulldown from the anti-H3K4me2 antibody, and
  5616. then the enriched material is collected, with proteins still bound, and
  5617. immunoprecipitated
  5618. \emph on
  5619. again
  5620. \emph default
  5621. using the anti-H3K4me3 antibody.
  5622. If this yields significant numbers of non-artifactual reads in the same
  5623. regions as the individual pulldowns of the two marks, this is strong evidence
  5624. that the two marks are occurring on opposite H3 subunits of the same histones.
  5625. \end_layout
  5626. \begin_layout Standard
  5627. \begin_inset Flex TODO Note (inline)
  5628. status open
  5629. \begin_layout Plain Layout
  5630. Try to see if double ChIP-seq is actually feasible, and if not, come up
  5631. with some other idea for directly detecting the mixed mod state.
  5632. Oh! Actually ChIP-seq isn't required, only double ChIP followed by quantificati
  5633. on.
  5634. That's one possible angle.
  5635. \end_layout
  5636. \end_inset
  5637. \end_layout
  5638. \begin_layout Chapter
  5639. Improving array-based diagnostics for transplant rejection by optimizing
  5640. data preprocessing
  5641. \end_layout
  5642. \begin_layout Standard
  5643. \begin_inset Note Note
  5644. status open
  5645. \begin_layout Plain Layout
  5646. Chapter author list: Me, Sunil, Tom, Padma, Dan
  5647. \end_layout
  5648. \end_inset
  5649. \end_layout
  5650. \begin_layout Section
  5651. Approach
  5652. \end_layout
  5653. \begin_layout Subsection
  5654. Proper pre-processing is essential for array data
  5655. \end_layout
  5656. \begin_layout Standard
  5657. \begin_inset Flex TODO Note (inline)
  5658. status open
  5659. \begin_layout Plain Layout
  5660. This section could probably use some citations
  5661. \end_layout
  5662. \end_inset
  5663. \end_layout
  5664. \begin_layout Standard
  5665. Microarrays, bead arrays, and similar assays produce raw data in the form
  5666. of fluorescence intensity measurements, with the each intensity measurement
  5667. proportional to the abundance of some fluorescently-labelled target DNA
  5668. or RNA sequence that base pairs to a specific probe sequence.
  5669. However, these measurements for each probe are also affected my many technical
  5670. confounding factors, such as the concentration of target material, strength
  5671. of off-target binding, and the sensitivity of the imaging sensor.
  5672. Some array designs also use multiple probe sequences for each target.
  5673. Hence, extensive pre-processing of array data is necessary to normalize
  5674. out the effects of these technical factors and summarize the information
  5675. from multiple probes to arrive at a single usable estimate of abundance
  5676. or other relevant quantity, such as a ratio of two abundances, for each
  5677. target.
  5678. \end_layout
  5679. \begin_layout Standard
  5680. The choice of pre-processing algorithms used in the analysis of an array
  5681. data set can have a large effect on the results of that analysis.
  5682. However, despite their importance, these steps are often neglected or rushed
  5683. in order to get to the more scientifically interesting analysis steps involving
  5684. the actual biology of the system under study.
  5685. Hence, it is often possible to achieve substantial gains in statistical
  5686. power, model goodness-of-fit, or other relevant performance measures, by
  5687. checking the assumptions made by each preprocessing step and choosing specific
  5688. normalization methods tailored to the specific goals of the current analysis.
  5689. \end_layout
  5690. \begin_layout Subsection
  5691. Clinical diagnostic applications for microarrays require single-channel
  5692. normalization
  5693. \end_layout
  5694. \begin_layout Standard
  5695. As the cost of performing microarray assays falls, there is increasing interest
  5696. in using genomic assays for diagnostic purposes, such as distinguishing
  5697. healthy transplants (TX) from transplants undergoing acute rejection (AR)
  5698. or acute dysfunction with no rejection (ADNR).
  5699. However, the the standard normalization algorithm used for microarray data,
  5700. Robust Multi-chip Average (RMA)
  5701. \begin_inset CommandInset citation
  5702. LatexCommand cite
  5703. key "Irizarry2003a"
  5704. literal "false"
  5705. \end_inset
  5706. , is not applicable in a clinical setting.
  5707. Two of the steps in RMA, quantile normalization and probe summarization
  5708. by median polish, depend on every array in the data set being normalized.
  5709. This means that adding or removing any arrays from a data set changes the
  5710. normalized values for all arrays, and data sets that have been normalized
  5711. separately cannot be compared to each other.
  5712. Hence, when using RMA, any arrays to be analyzed together must also be
  5713. normalized together, and the set of arrays included in the data set must
  5714. be held constant throughout an analysis.
  5715. \end_layout
  5716. \begin_layout Standard
  5717. These limitations present serious impediments to the use of arrays as a
  5718. diagnostic tool.
  5719. When training a classifier, the samples to be classified must not be involved
  5720. in any step of the training process, lest their inclusion bias the training
  5721. process.
  5722. Once a classifier is deployed in a clinical setting, the samples to be
  5723. classified will not even
  5724. \emph on
  5725. exist
  5726. \emph default
  5727. at the time of training, so including them would be impossible even if
  5728. it were statistically justifiable.
  5729. Therefore, any machine learning application for microarrays demands that
  5730. the normalized expression values computed for an array must depend only
  5731. on information contained within that array.
  5732. This would ensure that each array's normalization is independent of every
  5733. other array, and that arrays normalized separately can still be compared
  5734. to each other without bias.
  5735. Such a normalization is commonly referred to as
  5736. \begin_inset Quotes eld
  5737. \end_inset
  5738. single-channel normalization
  5739. \begin_inset Quotes erd
  5740. \end_inset
  5741. .
  5742. \end_layout
  5743. \begin_layout Standard
  5744. Frozen RMA (fRMA) addresses these concerns by replacing the quantile normalizati
  5745. on and median polish with alternatives that do not introduce inter-array
  5746. dependence, allowing each array to be normalized independently of all others
  5747. \begin_inset CommandInset citation
  5748. LatexCommand cite
  5749. key "McCall2010"
  5750. literal "false"
  5751. \end_inset
  5752. .
  5753. Quantile normalization is performed against a pre-generated set of quantiles
  5754. learned from a collection of 850 publically available arrays sampled from
  5755. a wide variety of tissues in the Gene Expression Omnibus (GEO).
  5756. Each array's probe intensity distribution is normalized against these pre-gener
  5757. ated quantiles.
  5758. The median polish step is replaced with a robust weighted average of probe
  5759. intensities, using inverse variance weights learned from the same public
  5760. GEO data.
  5761. The result is a normalization that satisfies the requirements mentioned
  5762. above: each array is normalized independently of all others, and any two
  5763. normalized arrays can be compared directly to each other.
  5764. \end_layout
  5765. \begin_layout Standard
  5766. One important limitation of fRMA is that it requires a separate reference
  5767. data set from which to learn the parameters (reference quantiles and probe
  5768. weights) that will be used to normalize each array.
  5769. These parameters are specific to a given array platform, and pre-generated
  5770. parameters are only provided for the most common platforms, such as Affymetrix
  5771. hgu133plus2.
  5772. For a less common platform, such as hthgu133pluspm, is is necessary to
  5773. learn custom parameters from in-house data before fRMA can be used to normalize
  5774. samples on that platform
  5775. \begin_inset CommandInset citation
  5776. LatexCommand cite
  5777. key "McCall2011"
  5778. literal "false"
  5779. \end_inset
  5780. .
  5781. \end_layout
  5782. \begin_layout Standard
  5783. One other option is the aptly-named Single Channel Array Normalization (SCAN),
  5784. which adapts a normalization method originally designed for tiling arrays
  5785. \begin_inset CommandInset citation
  5786. LatexCommand cite
  5787. key "Piccolo2012"
  5788. literal "false"
  5789. \end_inset
  5790. .
  5791. SCAN is truly single-channel in that it does not require a set of normalization
  5792. paramters estimated from an external set of reference samples like fRMA
  5793. does.
  5794. \end_layout
  5795. \begin_layout Subsection
  5796. Heteroskedasticity must be accounted for in methylation array data
  5797. \end_layout
  5798. \begin_layout Standard
  5799. DNA methylation arrays are a relatively new kind of assay that uses microarrays
  5800. to measure the degree of methylation on cytosines in specific regions arrayed
  5801. across the genome.
  5802. First, bisulfite treatment converts all unmethylated cytosines to uracil
  5803. (which then become thymine after amplication) while leaving methylated
  5804. cytosines unaffected.
  5805. Then, each target region is interrogated with two probes: one binds to
  5806. the original genomic sequence and interrogates the level of methylated
  5807. DNA, and the other binds to the same sequence with all cytosines replaced
  5808. by thymidines and interrogates the level of unmethylated DNA.
  5809. \end_layout
  5810. \begin_layout Standard
  5811. \begin_inset Float figure
  5812. wide false
  5813. sideways false
  5814. status collapsed
  5815. \begin_layout Plain Layout
  5816. \align center
  5817. \begin_inset Graphics
  5818. filename graphics/methylvoom/sigmoid.pdf
  5819. lyxscale 50
  5820. width 60col%
  5821. groupId colwidth
  5822. \end_inset
  5823. \end_layout
  5824. \begin_layout Plain Layout
  5825. \begin_inset Caption Standard
  5826. \begin_layout Plain Layout
  5827. \begin_inset CommandInset label
  5828. LatexCommand label
  5829. name "fig:Sigmoid-beta-m-mapping"
  5830. \end_inset
  5831. \series bold
  5832. Sigmoid shape of the mapping between β and M values
  5833. \end_layout
  5834. \end_inset
  5835. \end_layout
  5836. \end_inset
  5837. \end_layout
  5838. \begin_layout Standard
  5839. After normalization, these two probe intensities are summarized in one of
  5840. two ways, each with advantages and disadvantages.
  5841. β
  5842. \series bold
  5843. \series default
  5844. values, interpreted as fraction of DNA copies methylated, range from 0 to
  5845. 1.
  5846. β
  5847. \series bold
  5848. \series default
  5849. values are conceptually easy to interpret, but the constrained range makes
  5850. them unsuitable for linear modeling, and their error distributions are
  5851. highly non-normal, which also frustrates linear modeling.
  5852. M-values, interpreted as the log ratio of methylated to unmethylated copies,
  5853. are computed by mapping the beta values from
  5854. \begin_inset Formula $[0,1]$
  5855. \end_inset
  5856. onto
  5857. \begin_inset Formula $(-\infty,+\infty)$
  5858. \end_inset
  5859. using a sigmoid curve (Figure
  5860. \begin_inset CommandInset ref
  5861. LatexCommand ref
  5862. reference "fig:Sigmoid-beta-m-mapping"
  5863. plural "false"
  5864. caps "false"
  5865. noprefix "false"
  5866. \end_inset
  5867. ).
  5868. This transformation results in values with better statistical perperties:
  5869. the unconstrained range is suitable for linear modeling, and the error
  5870. distributions are more normal.
  5871. Hence, most linear modeling and other statistical testing on methylation
  5872. arrays is performed using M-values.
  5873. \end_layout
  5874. \begin_layout Standard
  5875. However, the steep slope of the sigmoid transformation near 0 and 1 tends
  5876. to over-exaggerate small differences in β values near those extremes, which
  5877. in turn amplifies the error in those values, leading to a U-shaped trend
  5878. in the mean-variance curve: extreme values have higher variances than values
  5879. near the middle.
  5880. This mean-variance dependency must be accounted for when fitting the linear
  5881. model for differential methylation, or else the variance will be systematically
  5882. overestimated for probes with moderate M-values and underestimated for
  5883. probes with extreme M-values.
  5884. This is particularly undesirable for methylation data because the intermediate
  5885. M-values are the ones of most interest, since they are more likely to represent
  5886. areas of varying methylation, whereas extreme M-values typically represent
  5887. complete methylation or complete lack of methylation.
  5888. \end_layout
  5889. \begin_layout Standard
  5890. RNA-seq read count data are also known to show heteroskedasticity, and the
  5891. voom method was introduced for modeling this heteroskedasticity by estimating
  5892. the mean-variance trend in the data and using this trend to assign precision
  5893. weights to each observation
  5894. \begin_inset CommandInset citation
  5895. LatexCommand cite
  5896. key "Law2013"
  5897. literal "false"
  5898. \end_inset
  5899. .
  5900. While methylation array data are not derived from counts and have a very
  5901. different mean-variance relationship from that of typical RNA-seq data,
  5902. the voom method makes no specific assumptions on the shape of the mean-variance
  5903. relationship – it only assumes that the relationship can be modeled as
  5904. a smooth curve.
  5905. Hence, the method is sufficiently general to model the mean-variance relationsh
  5906. ip in methylation array data.
  5907. However, the standard implementation of voom assumes that the input is
  5908. given in raw read counts, and it must be adapted to run on methylation
  5909. M-values.
  5910. \end_layout
  5911. \begin_layout Section
  5912. Methods
  5913. \end_layout
  5914. \begin_layout Subsection
  5915. Evaluation of classifier performance with different normalization methods
  5916. \end_layout
  5917. \begin_layout Standard
  5918. For testing different expression microarray normalizations, a data set of
  5919. 157 hgu133plus2 arrays was used, consisting of blood samples from kidney
  5920. transplant patients whose grafts had been graded as TX, AR, or ADNR via
  5921. biopsy and histology (46 TX, 69 AR, 42 ADNR)
  5922. \begin_inset CommandInset citation
  5923. LatexCommand cite
  5924. key "Kurian2014"
  5925. literal "true"
  5926. \end_inset
  5927. .
  5928. Additionally, an external validation set of 75 samples was gathered from
  5929. public GEO data (37 TX, 38 AR, no ADNR).
  5930. \end_layout
  5931. \begin_layout Standard
  5932. \begin_inset Flex TODO Note (inline)
  5933. status open
  5934. \begin_layout Plain Layout
  5935. Find appropriate GEO identifiers if possible.
  5936. Kurian 2014 says GSE15296, but this seems to be different data.
  5937. I also need to look up the GEO accession for the external validation set.
  5938. \end_layout
  5939. \end_inset
  5940. \end_layout
  5941. \begin_layout Standard
  5942. To evaluate the effect of each normalization on classifier performance,
  5943. the same classifier training and validation procedure was used after each
  5944. normalization method.
  5945. The PAM package was used to train a nearest shrunken centroid classifier
  5946. on the training set and select the appropriate threshold for centroid shrinking.
  5947. Then the trained classifier was used to predict the class probabilities
  5948. of each validation sample.
  5949. From these class probabilities, ROC curves and area-under-curve (AUC) values
  5950. were generated
  5951. \begin_inset CommandInset citation
  5952. LatexCommand cite
  5953. key "Turck2011"
  5954. literal "false"
  5955. \end_inset
  5956. .
  5957. Each normalization was tested on two different sets of training and validation
  5958. samples.
  5959. For internal validation, the 115 TX and AR arrays in the internal set were
  5960. split at random into two equal sized sets, one for training and one for
  5961. validation, each containing the same numbers of TX and AR samples as the
  5962. other set.
  5963. For external validation, the full set of 115 TX and AR samples were used
  5964. as a training set, and the 75 external TX and AR samples were used as the
  5965. validation set.
  5966. Thus, 2 ROC curves and AUC values were generated for each normalization
  5967. method: one internal and one external.
  5968. Because the external validation set contains no ADNR samples, only classificati
  5969. on of TX and AR samples was considered.
  5970. The ADNR samples were included during normalization but excluded from all
  5971. classifier training and validation.
  5972. This ensures that the performance on internal and external validation sets
  5973. is directly comparable, since both are performing the same task: distinguising
  5974. TX from AR.
  5975. \end_layout
  5976. \begin_layout Standard
  5977. \begin_inset Flex TODO Note (inline)
  5978. status open
  5979. \begin_layout Plain Layout
  5980. Summarize the get.best.threshold algorithm for PAM threshold selection, or
  5981. just put the code online?
  5982. \end_layout
  5983. \end_inset
  5984. \end_layout
  5985. \begin_layout Standard
  5986. Six different normalization strategies were evaluated.
  5987. First, 2 well-known non-single-channel normalization methods were considered:
  5988. RMA and dChip
  5989. \begin_inset CommandInset citation
  5990. LatexCommand cite
  5991. key "Li2001,Irizarry2003a"
  5992. literal "false"
  5993. \end_inset
  5994. .
  5995. Since RMA produces expression values on a log2 scale and dChip does not,
  5996. the values from dChip were log2 transformed after normalization.
  5997. Next, RMA and dChip followed by Global Rank-invariant Set Normalization
  5998. (GRSN) were tested
  5999. \begin_inset CommandInset citation
  6000. LatexCommand cite
  6001. key "Pelz2008"
  6002. literal "false"
  6003. \end_inset
  6004. .
  6005. Post-processing with GRSN does not turn RMA or dChip into single-channel
  6006. methods, but it may help mitigate batch effects and is therefore useful
  6007. as a benchmark.
  6008. Lastly, the two single-channel normalization methods, fRMA and SCAN, were
  6009. tested
  6010. \begin_inset CommandInset citation
  6011. LatexCommand cite
  6012. key "McCall2010,Piccolo2012"
  6013. literal "false"
  6014. \end_inset
  6015. .
  6016. When evaluting internal validation performance, only the 157 internal samples
  6017. were normalized; when evaluating external validation performance, all 157
  6018. internal samples and 75 external samples were normalized together.
  6019. \end_layout
  6020. \begin_layout Standard
  6021. For demonstrating the problem with separate normalization of training and
  6022. validation data, one additional normalization was performed: the internal
  6023. and external sets were each normalized separately using RMA, and the normalized
  6024. data for each set were combined into a single set with no further attempts
  6025. at normalizing between the two sets.
  6026. The represents approximately how RMA would have to be used in a clinical
  6027. setting, where the samples to be classified are not available at the time
  6028. the classifier is trained.
  6029. \end_layout
  6030. \begin_layout Subsection
  6031. Generating custom fRMA vectors for hthgu133pluspm array platform
  6032. \end_layout
  6033. \begin_layout Standard
  6034. In order to enable fRMA normalization for the hthgu133pluspm array platform,
  6035. custom fRMA normalization vectors were trained using the frmaTools package
  6036. \begin_inset CommandInset citation
  6037. LatexCommand cite
  6038. key "McCall2011"
  6039. literal "false"
  6040. \end_inset
  6041. .
  6042. Separate vectors were created for two types of samples: kidney graft biopsy
  6043. samples and blood samples from graft recipients.
  6044. For training, a 341 kidney biopsy samples from 2 data sets and 965 blood
  6045. samples from 5 data sets were used as the reference set.
  6046. Arrays were groups into batches based on unique combinations of sample
  6047. type (blood or biopsy), diagnosis (TX, AR, etc.), data set, and scan date.
  6048. Thus, each batch represents arrays of the same kind that were run together
  6049. on the same day.
  6050. For estimating the probe inverse variance weights, frmaTools requires equal-siz
  6051. ed batches, which means a batch size must be chosen, and then batches smaller
  6052. than that size must be ignored, while batches larger than the chosen size
  6053. must be downsampled.
  6054. This downsampling is performed randomly, so the sampling process is repeated
  6055. 5 times and the resulting normalizations are compared to each other.
  6056. \end_layout
  6057. \begin_layout Standard
  6058. To evaluate the consistency of the generated normalization vectors, the
  6059. 5 fRMA vector sets generated from 5 random batch samplings were each used
  6060. to normalize the same 20 randomly selected samples from each tissue.
  6061. Then the normalized expression values for each probe on each array were
  6062. compared across all normalizations.
  6063. Each fRMA normalization was also compared against the normalized expression
  6064. values obtained by normalizing the same 20 samples with ordinary RMA.
  6065. \end_layout
  6066. \begin_layout Subsection
  6067. Modeling methylation array M-value heteroskedasticy in linear models with
  6068. modified voom implementation
  6069. \end_layout
  6070. \begin_layout Standard
  6071. \begin_inset Flex TODO Note (inline)
  6072. status open
  6073. \begin_layout Plain Layout
  6074. Put code on Github and reference it.
  6075. \end_layout
  6076. \end_inset
  6077. \end_layout
  6078. \begin_layout Standard
  6079. To investigate the whether DNA methylation could be used to distinguish
  6080. between healthy and dysfunctional transplants, a data set of 78 Illumina
  6081. 450k methylation arrays from human kidney graft biopsies was analyzed for
  6082. differential metylation between 4 transplant statuses: healthy transplant
  6083. (TX), transplants undergoing acute rejection (AR), acute dysfunction with
  6084. no rejection (ADNR), and chronic allograpft nephropathy (CAN).
  6085. The data consisted of 33 TX, 9 AR, 8 ADNR, and 28 CAN samples.
  6086. The uneven group sizes are a result of taking the biopsy samples before
  6087. the eventual fate of the transplant was known.
  6088. Each sample was additionally annotated with a donor ID (anonymized), Sex,
  6089. Age, Ethnicity, Creatinine Level, and Diabetes diagnosois (all samples
  6090. in this data set came from patients with either Type 1 or Type 2 diabetes).
  6091. \end_layout
  6092. \begin_layout Standard
  6093. The intensity data were first normalized using subset-quantile within array
  6094. normalization (SWAN)
  6095. \begin_inset CommandInset citation
  6096. LatexCommand cite
  6097. key "Maksimovic2012"
  6098. literal "false"
  6099. \end_inset
  6100. , then converted to intensity ratios (beta values)
  6101. \begin_inset CommandInset citation
  6102. LatexCommand cite
  6103. key "Aryee2014"
  6104. literal "false"
  6105. \end_inset
  6106. .
  6107. Any probes binding to loci that overlapped annotated SNPs were dropped,
  6108. and the annotated sex of each sample was verified against the sex inferred
  6109. from the ratio of median probe intensities for the X and Y chromosomes.
  6110. Then, the ratios were transformed to M-values.
  6111. \end_layout
  6112. \begin_layout Standard
  6113. \begin_inset Float table
  6114. wide false
  6115. sideways false
  6116. status open
  6117. \begin_layout Plain Layout
  6118. \align center
  6119. \begin_inset Tabular
  6120. <lyxtabular version="3" rows="4" columns="6">
  6121. <features tabularvalignment="middle">
  6122. <column alignment="center" valignment="top">
  6123. <column alignment="center" valignment="top">
  6124. <column alignment="center" valignment="top">
  6125. <column alignment="center" valignment="top">
  6126. <column alignment="center" valignment="top">
  6127. <column alignment="center" valignment="top">
  6128. <row>
  6129. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6130. \begin_inset Text
  6131. \begin_layout Plain Layout
  6132. Analysis
  6133. \end_layout
  6134. \end_inset
  6135. </cell>
  6136. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6137. \begin_inset Text
  6138. \begin_layout Plain Layout
  6139. random effect
  6140. \end_layout
  6141. \end_inset
  6142. </cell>
  6143. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6144. \begin_inset Text
  6145. \begin_layout Plain Layout
  6146. eBayes
  6147. \end_layout
  6148. \end_inset
  6149. </cell>
  6150. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6151. \begin_inset Text
  6152. \begin_layout Plain Layout
  6153. SVA
  6154. \end_layout
  6155. \end_inset
  6156. </cell>
  6157. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6158. \begin_inset Text
  6159. \begin_layout Plain Layout
  6160. weights
  6161. \end_layout
  6162. \end_inset
  6163. </cell>
  6164. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  6165. \begin_inset Text
  6166. \begin_layout Plain Layout
  6167. voom
  6168. \end_layout
  6169. \end_inset
  6170. </cell>
  6171. </row>
  6172. <row>
  6173. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6174. \begin_inset Text
  6175. \begin_layout Plain Layout
  6176. A
  6177. \end_layout
  6178. \end_inset
  6179. </cell>
  6180. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6181. \begin_inset Text
  6182. \begin_layout Plain Layout
  6183. Yes
  6184. \end_layout
  6185. \end_inset
  6186. </cell>
  6187. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6188. \begin_inset Text
  6189. \begin_layout Plain Layout
  6190. Yes
  6191. \end_layout
  6192. \end_inset
  6193. </cell>
  6194. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6195. \begin_inset Text
  6196. \begin_layout Plain Layout
  6197. No
  6198. \end_layout
  6199. \end_inset
  6200. </cell>
  6201. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6202. \begin_inset Text
  6203. \begin_layout Plain Layout
  6204. No
  6205. \end_layout
  6206. \end_inset
  6207. </cell>
  6208. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  6209. \begin_inset Text
  6210. \begin_layout Plain Layout
  6211. No
  6212. \end_layout
  6213. \end_inset
  6214. </cell>
  6215. </row>
  6216. <row>
  6217. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6218. \begin_inset Text
  6219. \begin_layout Plain Layout
  6220. B
  6221. \end_layout
  6222. \end_inset
  6223. </cell>
  6224. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6225. \begin_inset Text
  6226. \begin_layout Plain Layout
  6227. Yes
  6228. \end_layout
  6229. \end_inset
  6230. </cell>
  6231. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6232. \begin_inset Text
  6233. \begin_layout Plain Layout
  6234. Yes
  6235. \end_layout
  6236. \end_inset
  6237. </cell>
  6238. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6239. \begin_inset Text
  6240. \begin_layout Plain Layout
  6241. Yes
  6242. \end_layout
  6243. \end_inset
  6244. </cell>
  6245. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6246. \begin_inset Text
  6247. \begin_layout Plain Layout
  6248. Yes
  6249. \end_layout
  6250. \end_inset
  6251. </cell>
  6252. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  6253. \begin_inset Text
  6254. \begin_layout Plain Layout
  6255. No
  6256. \end_layout
  6257. \end_inset
  6258. </cell>
  6259. </row>
  6260. <row>
  6261. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6262. \begin_inset Text
  6263. \begin_layout Plain Layout
  6264. C
  6265. \end_layout
  6266. \end_inset
  6267. </cell>
  6268. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6269. \begin_inset Text
  6270. \begin_layout Plain Layout
  6271. Yes
  6272. \end_layout
  6273. \end_inset
  6274. </cell>
  6275. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6276. \begin_inset Text
  6277. \begin_layout Plain Layout
  6278. Yes
  6279. \end_layout
  6280. \end_inset
  6281. </cell>
  6282. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6283. \begin_inset Text
  6284. \begin_layout Plain Layout
  6285. Yes
  6286. \end_layout
  6287. \end_inset
  6288. </cell>
  6289. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6290. \begin_inset Text
  6291. \begin_layout Plain Layout
  6292. Yes
  6293. \end_layout
  6294. \end_inset
  6295. </cell>
  6296. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  6297. \begin_inset Text
  6298. \begin_layout Plain Layout
  6299. Yes
  6300. \end_layout
  6301. \end_inset
  6302. </cell>
  6303. </row>
  6304. </lyxtabular>
  6305. \end_inset
  6306. \end_layout
  6307. \begin_layout Plain Layout
  6308. \begin_inset Caption Standard
  6309. \begin_layout Plain Layout
  6310. \series bold
  6311. \begin_inset CommandInset label
  6312. LatexCommand label
  6313. name "tab:Summary-of-meth-analysis"
  6314. \end_inset
  6315. Summary of analysis variants for methylation array data.
  6316. \series default
  6317. Each analysis included a different set of steps to adjust or account for
  6318. various systematic features of the data.
  6319. Random effect: The model included a random effect accounting for correlation
  6320. between samples from the same patient
  6321. \begin_inset CommandInset citation
  6322. LatexCommand cite
  6323. key "Smyth2005a"
  6324. literal "false"
  6325. \end_inset
  6326. ; eBayes: Empirical bayes squeezing of per-probe variances toward the mean-varia
  6327. nce trend
  6328. \begin_inset CommandInset citation
  6329. LatexCommand cite
  6330. key "Ritchie2015"
  6331. literal "false"
  6332. \end_inset
  6333. ; SVA: Surrogate variable analysis to account for unobserved confounders
  6334. \begin_inset CommandInset citation
  6335. LatexCommand cite
  6336. key "Leek2007"
  6337. literal "false"
  6338. \end_inset
  6339. ; Weights: Estimate sample weights to account for differences in sample
  6340. quality
  6341. \begin_inset CommandInset citation
  6342. LatexCommand cite
  6343. key "Liu2015,Ritchie2006"
  6344. literal "false"
  6345. \end_inset
  6346. ; voom: Use mean-variance trend to assign individual sample weights
  6347. \begin_inset CommandInset citation
  6348. LatexCommand cite
  6349. key "Law2013"
  6350. literal "false"
  6351. \end_inset
  6352. .
  6353. See the text for a more detailed explanation of each step.
  6354. \end_layout
  6355. \end_inset
  6356. \end_layout
  6357. \end_inset
  6358. \end_layout
  6359. \begin_layout Standard
  6360. From the M-values, a series of parallel analyses was performed, each adding
  6361. additional steps into the model fit to accomodate a feature of the data
  6362. (see Table
  6363. \begin_inset CommandInset ref
  6364. LatexCommand ref
  6365. reference "tab:Summary-of-meth-analysis"
  6366. plural "false"
  6367. caps "false"
  6368. noprefix "false"
  6369. \end_inset
  6370. ).
  6371. For analysis A, a
  6372. \begin_inset Quotes eld
  6373. \end_inset
  6374. basic
  6375. \begin_inset Quotes erd
  6376. \end_inset
  6377. linear modeling analysis was performed, compensating for known confounders
  6378. by including terms for the factor of interest (transplant status) as well
  6379. as the known biological confounders: sex, age, ethnicity, and diabetes.
  6380. Since some samples came from the same patients at different times, the
  6381. intra-patient correlation was modeled as a random effect, estimating a
  6382. shared correlation value across all probes
  6383. \begin_inset CommandInset citation
  6384. LatexCommand cite
  6385. key "Smyth2005a"
  6386. literal "false"
  6387. \end_inset
  6388. .
  6389. Then the linear model was fit, and the variance was modeled using empirical
  6390. Bayes squeezing toward the mean-variance trend
  6391. \begin_inset CommandInset citation
  6392. LatexCommand cite
  6393. key "Ritchie2015"
  6394. literal "false"
  6395. \end_inset
  6396. .
  6397. Finally, t-tests or F-tests were performed as appropriate for each test:
  6398. t-tests for single contrasts, and F-tests for multiple contrasts.
  6399. P-values were corrected for multiple testing using the Benjamini-Hochberg
  6400. procedure for FDR control
  6401. \begin_inset CommandInset citation
  6402. LatexCommand cite
  6403. key "Benjamini1995"
  6404. literal "false"
  6405. \end_inset
  6406. .
  6407. \end_layout
  6408. \begin_layout Standard
  6409. For the analysis B, surrogate variable analysis (SVA) was used to infer
  6410. additional unobserved sources of heterogeneity in the data
  6411. \begin_inset CommandInset citation
  6412. LatexCommand cite
  6413. key "Leek2007"
  6414. literal "false"
  6415. \end_inset
  6416. .
  6417. These surrogate variables were added to the design matrix before fitting
  6418. the linear model.
  6419. In addition, sample quality weights were estimated from the data and used
  6420. during linear modeling to down-weight the contribution of highly variable
  6421. arrays while increasing the weight to arrays with lower variability
  6422. \begin_inset CommandInset citation
  6423. LatexCommand cite
  6424. key "Ritchie2006"
  6425. literal "false"
  6426. \end_inset
  6427. .
  6428. The remainder of the analysis proceeded as in analysis A.
  6429. For analysis C, the voom method was adapted to run on methylation array
  6430. data and used to model and correct for the mean-variance trend using individual
  6431. observation weights
  6432. \begin_inset CommandInset citation
  6433. LatexCommand cite
  6434. key "Law2013"
  6435. literal "false"
  6436. \end_inset
  6437. , which were combined with the sample weights
  6438. \begin_inset CommandInset citation
  6439. LatexCommand cite
  6440. key "Liu2015,Ritchie2006"
  6441. literal "false"
  6442. \end_inset
  6443. .
  6444. Each time weights were used, they were estimated once before estimating
  6445. the random effect correlation value, and then the weights were re-estimated
  6446. taking the random effect into account.
  6447. The remainder of the analysis proceeded as in analysis B.
  6448. \end_layout
  6449. \begin_layout Section
  6450. Results
  6451. \end_layout
  6452. \begin_layout Standard
  6453. \begin_inset Flex TODO Note (inline)
  6454. status open
  6455. \begin_layout Plain Layout
  6456. Improve subsection titles in this section.
  6457. \end_layout
  6458. \end_inset
  6459. \end_layout
  6460. \begin_layout Standard
  6461. \begin_inset Flex TODO Note (inline)
  6462. status open
  6463. \begin_layout Plain Layout
  6464. Reconsider subsection organization?
  6465. \end_layout
  6466. \end_inset
  6467. \end_layout
  6468. \begin_layout Subsection
  6469. Separate normalization with RMA introduces unwanted biases in classification
  6470. \end_layout
  6471. \begin_layout Standard
  6472. \begin_inset Float figure
  6473. wide false
  6474. sideways false
  6475. status open
  6476. \begin_layout Plain Layout
  6477. \align center
  6478. \begin_inset Graphics
  6479. filename graphics/PAM/predplot.pdf
  6480. lyxscale 50
  6481. width 60col%
  6482. groupId colwidth
  6483. \end_inset
  6484. \end_layout
  6485. \begin_layout Plain Layout
  6486. \begin_inset Caption Standard
  6487. \begin_layout Plain Layout
  6488. \begin_inset CommandInset label
  6489. LatexCommand label
  6490. name "fig:Classifier-probabilities-RMA"
  6491. \end_inset
  6492. \series bold
  6493. Classifier probabilities on validation samples when normalized with RMA
  6494. together vs.
  6495. separately.
  6496. \series default
  6497. The PAM classifier algorithm was trained on the training set of arrays to
  6498. distinguish AR from TX and then used to assign class probabilities to the
  6499. validation set.
  6500. The process was performed after normalizing all samples together and after
  6501. normalizing the training and test sets separately, and the class probabilities
  6502. assigned to each sample in the validation set were plotted against each
  6503. other (PP(AR), posterior probability of being AR).
  6504. The color of each point indicates the true classification of that sample.
  6505. \end_layout
  6506. \end_inset
  6507. \end_layout
  6508. \end_inset
  6509. \end_layout
  6510. \begin_layout Standard
  6511. To demonstrate the problem with non-single-channel normalization methods,
  6512. we considered the problem of training a classifier to distinguish TX from
  6513. AR using the samples from the internal set as training data, evaluating
  6514. performance on the external set.
  6515. First, training and evaluation were performed after normalizing all array
  6516. samples together as a single set using RMA, and second, the internal samples
  6517. were normalized separately from the external samples and the training and
  6518. evaluation were repeated.
  6519. For each sample in the validation set, the classifier probabilities from
  6520. both classifiers were plotted against each other (Fig.
  6521. \begin_inset CommandInset ref
  6522. LatexCommand ref
  6523. reference "fig:Classifier-probabilities-RMA"
  6524. plural "false"
  6525. caps "false"
  6526. noprefix "false"
  6527. \end_inset
  6528. ).
  6529. As expected, separate normalization biases the classifier probabilities,
  6530. resulting in several misclassifications.
  6531. In this case, the bias from separate normalization causes the classifier
  6532. to assign a lower probability of AR to every sample.
  6533. \end_layout
  6534. \begin_layout Subsection
  6535. fRMA and SCAN maintain classification performance while eliminating dependence
  6536. on normalization strategy
  6537. \end_layout
  6538. \begin_layout Standard
  6539. \begin_inset Float figure
  6540. wide false
  6541. sideways false
  6542. status open
  6543. \begin_layout Plain Layout
  6544. \align center
  6545. \begin_inset Float figure
  6546. placement tb
  6547. wide false
  6548. sideways false
  6549. status open
  6550. \begin_layout Plain Layout
  6551. \align center
  6552. \begin_inset Graphics
  6553. filename graphics/PAM/ROC-TXvsAR-internal.pdf
  6554. lyxscale 50
  6555. height 40theight%
  6556. groupId roc-pam
  6557. \end_inset
  6558. \end_layout
  6559. \begin_layout Plain Layout
  6560. \begin_inset Caption Standard
  6561. \begin_layout Plain Layout
  6562. \begin_inset CommandInset label
  6563. LatexCommand label
  6564. name "fig:ROC-PAM-int"
  6565. \end_inset
  6566. ROC curves for PAM on internal validation data
  6567. \end_layout
  6568. \end_inset
  6569. \end_layout
  6570. \end_inset
  6571. \end_layout
  6572. \begin_layout Plain Layout
  6573. \align center
  6574. \begin_inset Float figure
  6575. placement tb
  6576. wide false
  6577. sideways false
  6578. status open
  6579. \begin_layout Plain Layout
  6580. \align center
  6581. \begin_inset Graphics
  6582. filename graphics/PAM/ROC-TXvsAR-external.pdf
  6583. lyxscale 50
  6584. height 40theight%
  6585. groupId roc-pam
  6586. \end_inset
  6587. \end_layout
  6588. \begin_layout Plain Layout
  6589. \begin_inset Caption Standard
  6590. \begin_layout Plain Layout
  6591. \begin_inset CommandInset label
  6592. LatexCommand label
  6593. name "fig:ROC-PAM-ext"
  6594. \end_inset
  6595. ROC curves for PAM on external validation data
  6596. \end_layout
  6597. \end_inset
  6598. \end_layout
  6599. \end_inset
  6600. \end_layout
  6601. \begin_layout Plain Layout
  6602. \begin_inset Caption Standard
  6603. \begin_layout Plain Layout
  6604. \series bold
  6605. \begin_inset CommandInset label
  6606. LatexCommand label
  6607. name "fig:ROC-PAM-main"
  6608. \end_inset
  6609. ROC curves for PAM using different normalization strategies.
  6610. \series default
  6611. ROC curves were generated for PAM classification of AR vs TX after 6 different
  6612. normalization strategies applied to the same data sets.
  6613. Only fRMA and SCAN are single-channel normalizations.
  6614. The other normalizations are for comparison.
  6615. \end_layout
  6616. \end_inset
  6617. \end_layout
  6618. \end_inset
  6619. \end_layout
  6620. \begin_layout Standard
  6621. \begin_inset Float table
  6622. wide false
  6623. sideways false
  6624. status open
  6625. \begin_layout Plain Layout
  6626. \align center
  6627. \begin_inset Tabular
  6628. <lyxtabular version="3" rows="7" columns="4">
  6629. <features tabularvalignment="middle">
  6630. <column alignment="center" valignment="top">
  6631. <column alignment="center" valignment="top">
  6632. <column alignment="center" valignment="top">
  6633. <column alignment="center" valignment="top">
  6634. <row>
  6635. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6636. \begin_inset Text
  6637. \begin_layout Plain Layout
  6638. \family roman
  6639. \series medium
  6640. \shape up
  6641. \size normal
  6642. \emph off
  6643. \bar no
  6644. \strikeout off
  6645. \xout off
  6646. \uuline off
  6647. \uwave off
  6648. \noun off
  6649. \color none
  6650. Normalization
  6651. \end_layout
  6652. \end_inset
  6653. </cell>
  6654. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6655. \begin_inset Text
  6656. \begin_layout Plain Layout
  6657. Single-channel?
  6658. \end_layout
  6659. \end_inset
  6660. </cell>
  6661. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6662. \begin_inset Text
  6663. \begin_layout Plain Layout
  6664. \family roman
  6665. \series medium
  6666. \shape up
  6667. \size normal
  6668. \emph off
  6669. \bar no
  6670. \strikeout off
  6671. \xout off
  6672. \uuline off
  6673. \uwave off
  6674. \noun off
  6675. \color none
  6676. Internal Val.
  6677. AUC
  6678. \end_layout
  6679. \end_inset
  6680. </cell>
  6681. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  6682. \begin_inset Text
  6683. \begin_layout Plain Layout
  6684. External Val.
  6685. AUC
  6686. \end_layout
  6687. \end_inset
  6688. </cell>
  6689. </row>
  6690. <row>
  6691. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6692. \begin_inset Text
  6693. \begin_layout Plain Layout
  6694. \family roman
  6695. \series medium
  6696. \shape up
  6697. \size normal
  6698. \emph off
  6699. \bar no
  6700. \strikeout off
  6701. \xout off
  6702. \uuline off
  6703. \uwave off
  6704. \noun off
  6705. \color none
  6706. RMA
  6707. \end_layout
  6708. \end_inset
  6709. </cell>
  6710. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6711. \begin_inset Text
  6712. \begin_layout Plain Layout
  6713. No
  6714. \end_layout
  6715. \end_inset
  6716. </cell>
  6717. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6718. \begin_inset Text
  6719. \begin_layout Plain Layout
  6720. \family roman
  6721. \series medium
  6722. \shape up
  6723. \size normal
  6724. \emph off
  6725. \bar no
  6726. \strikeout off
  6727. \xout off
  6728. \uuline off
  6729. \uwave off
  6730. \noun off
  6731. \color none
  6732. 0.852
  6733. \end_layout
  6734. \end_inset
  6735. </cell>
  6736. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  6737. \begin_inset Text
  6738. \begin_layout Plain Layout
  6739. \family roman
  6740. \series medium
  6741. \shape up
  6742. \size normal
  6743. \emph off
  6744. \bar no
  6745. \strikeout off
  6746. \xout off
  6747. \uuline off
  6748. \uwave off
  6749. \noun off
  6750. \color none
  6751. 0.713
  6752. \end_layout
  6753. \end_inset
  6754. </cell>
  6755. </row>
  6756. <row>
  6757. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6758. \begin_inset Text
  6759. \begin_layout Plain Layout
  6760. \family roman
  6761. \series medium
  6762. \shape up
  6763. \size normal
  6764. \emph off
  6765. \bar no
  6766. \strikeout off
  6767. \xout off
  6768. \uuline off
  6769. \uwave off
  6770. \noun off
  6771. \color none
  6772. dChip
  6773. \end_layout
  6774. \end_inset
  6775. </cell>
  6776. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6777. \begin_inset Text
  6778. \begin_layout Plain Layout
  6779. No
  6780. \end_layout
  6781. \end_inset
  6782. </cell>
  6783. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6784. \begin_inset Text
  6785. \begin_layout Plain Layout
  6786. \family roman
  6787. \series medium
  6788. \shape up
  6789. \size normal
  6790. \emph off
  6791. \bar no
  6792. \strikeout off
  6793. \xout off
  6794. \uuline off
  6795. \uwave off
  6796. \noun off
  6797. \color none
  6798. 0.891
  6799. \end_layout
  6800. \end_inset
  6801. </cell>
  6802. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  6803. \begin_inset Text
  6804. \begin_layout Plain Layout
  6805. \family roman
  6806. \series medium
  6807. \shape up
  6808. \size normal
  6809. \emph off
  6810. \bar no
  6811. \strikeout off
  6812. \xout off
  6813. \uuline off
  6814. \uwave off
  6815. \noun off
  6816. \color none
  6817. 0.657
  6818. \end_layout
  6819. \end_inset
  6820. </cell>
  6821. </row>
  6822. <row>
  6823. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6824. \begin_inset Text
  6825. \begin_layout Plain Layout
  6826. \family roman
  6827. \series medium
  6828. \shape up
  6829. \size normal
  6830. \emph off
  6831. \bar no
  6832. \strikeout off
  6833. \xout off
  6834. \uuline off
  6835. \uwave off
  6836. \noun off
  6837. \color none
  6838. RMA + GRSN
  6839. \end_layout
  6840. \end_inset
  6841. </cell>
  6842. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6843. \begin_inset Text
  6844. \begin_layout Plain Layout
  6845. No
  6846. \end_layout
  6847. \end_inset
  6848. </cell>
  6849. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6850. \begin_inset Text
  6851. \begin_layout Plain Layout
  6852. \family roman
  6853. \series medium
  6854. \shape up
  6855. \size normal
  6856. \emph off
  6857. \bar no
  6858. \strikeout off
  6859. \xout off
  6860. \uuline off
  6861. \uwave off
  6862. \noun off
  6863. \color none
  6864. 0.816
  6865. \end_layout
  6866. \end_inset
  6867. </cell>
  6868. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  6869. \begin_inset Text
  6870. \begin_layout Plain Layout
  6871. \family roman
  6872. \series medium
  6873. \shape up
  6874. \size normal
  6875. \emph off
  6876. \bar no
  6877. \strikeout off
  6878. \xout off
  6879. \uuline off
  6880. \uwave off
  6881. \noun off
  6882. \color none
  6883. 0.750
  6884. \end_layout
  6885. \end_inset
  6886. </cell>
  6887. </row>
  6888. <row>
  6889. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6890. \begin_inset Text
  6891. \begin_layout Plain Layout
  6892. \family roman
  6893. \series medium
  6894. \shape up
  6895. \size normal
  6896. \emph off
  6897. \bar no
  6898. \strikeout off
  6899. \xout off
  6900. \uuline off
  6901. \uwave off
  6902. \noun off
  6903. \color none
  6904. dChip + GRSN
  6905. \end_layout
  6906. \end_inset
  6907. </cell>
  6908. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6909. \begin_inset Text
  6910. \begin_layout Plain Layout
  6911. No
  6912. \end_layout
  6913. \end_inset
  6914. </cell>
  6915. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6916. \begin_inset Text
  6917. \begin_layout Plain Layout
  6918. \family roman
  6919. \series medium
  6920. \shape up
  6921. \size normal
  6922. \emph off
  6923. \bar no
  6924. \strikeout off
  6925. \xout off
  6926. \uuline off
  6927. \uwave off
  6928. \noun off
  6929. \color none
  6930. 0.875
  6931. \end_layout
  6932. \end_inset
  6933. </cell>
  6934. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  6935. \begin_inset Text
  6936. \begin_layout Plain Layout
  6937. \family roman
  6938. \series medium
  6939. \shape up
  6940. \size normal
  6941. \emph off
  6942. \bar no
  6943. \strikeout off
  6944. \xout off
  6945. \uuline off
  6946. \uwave off
  6947. \noun off
  6948. \color none
  6949. 0.642
  6950. \end_layout
  6951. \end_inset
  6952. </cell>
  6953. </row>
  6954. <row>
  6955. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6956. \begin_inset Text
  6957. \begin_layout Plain Layout
  6958. \family roman
  6959. \series medium
  6960. \shape up
  6961. \size normal
  6962. \emph off
  6963. \bar no
  6964. \strikeout off
  6965. \xout off
  6966. \uuline off
  6967. \uwave off
  6968. \noun off
  6969. \color none
  6970. fRMA
  6971. \end_layout
  6972. \end_inset
  6973. </cell>
  6974. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6975. \begin_inset Text
  6976. \begin_layout Plain Layout
  6977. Yes
  6978. \end_layout
  6979. \end_inset
  6980. </cell>
  6981. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6982. \begin_inset Text
  6983. \begin_layout Plain Layout
  6984. \family roman
  6985. \series medium
  6986. \shape up
  6987. \size normal
  6988. \emph off
  6989. \bar no
  6990. \strikeout off
  6991. \xout off
  6992. \uuline off
  6993. \uwave off
  6994. \noun off
  6995. \color none
  6996. 0.863
  6997. \end_layout
  6998. \end_inset
  6999. </cell>
  7000. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  7001. \begin_inset Text
  7002. \begin_layout Plain Layout
  7003. \family roman
  7004. \series medium
  7005. \shape up
  7006. \size normal
  7007. \emph off
  7008. \bar no
  7009. \strikeout off
  7010. \xout off
  7011. \uuline off
  7012. \uwave off
  7013. \noun off
  7014. \color none
  7015. 0.718
  7016. \end_layout
  7017. \end_inset
  7018. </cell>
  7019. </row>
  7020. <row>
  7021. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  7022. \begin_inset Text
  7023. \begin_layout Plain Layout
  7024. \family roman
  7025. \series medium
  7026. \shape up
  7027. \size normal
  7028. \emph off
  7029. \bar no
  7030. \strikeout off
  7031. \xout off
  7032. \uuline off
  7033. \uwave off
  7034. \noun off
  7035. \color none
  7036. SCAN
  7037. \end_layout
  7038. \end_inset
  7039. </cell>
  7040. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  7041. \begin_inset Text
  7042. \begin_layout Plain Layout
  7043. Yes
  7044. \end_layout
  7045. \end_inset
  7046. </cell>
  7047. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  7048. \begin_inset Text
  7049. \begin_layout Plain Layout
  7050. \family roman
  7051. \series medium
  7052. \shape up
  7053. \size normal
  7054. \emph off
  7055. \bar no
  7056. \strikeout off
  7057. \xout off
  7058. \uuline off
  7059. \uwave off
  7060. \noun off
  7061. \color none
  7062. 0.853
  7063. \end_layout
  7064. \end_inset
  7065. </cell>
  7066. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  7067. \begin_inset Text
  7068. \begin_layout Plain Layout
  7069. \family roman
  7070. \series medium
  7071. \shape up
  7072. \size normal
  7073. \emph off
  7074. \bar no
  7075. \strikeout off
  7076. \xout off
  7077. \uuline off
  7078. \uwave off
  7079. \noun off
  7080. \color none
  7081. 0.689
  7082. \end_layout
  7083. \end_inset
  7084. </cell>
  7085. </row>
  7086. </lyxtabular>
  7087. \end_inset
  7088. \end_layout
  7089. \begin_layout Plain Layout
  7090. \begin_inset Caption Standard
  7091. \begin_layout Plain Layout
  7092. \begin_inset CommandInset label
  7093. LatexCommand label
  7094. name "tab:AUC-PAM"
  7095. \end_inset
  7096. \series bold
  7097. ROC curve AUC values for internal and external validation with 6 different
  7098. normalization strategies.
  7099. \series default
  7100. These AUC values correspond to the ROC curves in Figure
  7101. \begin_inset CommandInset ref
  7102. LatexCommand ref
  7103. reference "fig:ROC-PAM-main"
  7104. plural "false"
  7105. caps "false"
  7106. noprefix "false"
  7107. \end_inset
  7108. .
  7109. \end_layout
  7110. \end_inset
  7111. \end_layout
  7112. \end_inset
  7113. \end_layout
  7114. \begin_layout Standard
  7115. For internal validation, the 6 methods' AUC values ranged from 0.816 to 0.891,
  7116. as shown in Table
  7117. \begin_inset CommandInset ref
  7118. LatexCommand ref
  7119. reference "tab:AUC-PAM"
  7120. plural "false"
  7121. caps "false"
  7122. noprefix "false"
  7123. \end_inset
  7124. .
  7125. Among the non-single-channel normalizations, dChip outperformed RMA, while
  7126. GRSN reduced the AUC values for both dChip and RMA.
  7127. Both single-channel methods, fRMA and SCAN, slightly outperformed RMA,
  7128. with fRMA ahead of SCAN.
  7129. However, the difference between RMA and fRMA is still quite small.
  7130. Figure
  7131. \begin_inset CommandInset ref
  7132. LatexCommand ref
  7133. reference "fig:ROC-PAM-int"
  7134. plural "false"
  7135. caps "false"
  7136. noprefix "false"
  7137. \end_inset
  7138. shows that the ROC curves for RMA, dChip, and fRMA look very similar and
  7139. relatively smooth, while both GRSN curves and the curve for SCAN have a
  7140. more jagged appearance.
  7141. \end_layout
  7142. \begin_layout Standard
  7143. For external validation, as expected, all the AUC values are lower than
  7144. the internal validations, ranging from 0.642 to 0.750 (Table
  7145. \begin_inset CommandInset ref
  7146. LatexCommand ref
  7147. reference "tab:AUC-PAM"
  7148. plural "false"
  7149. caps "false"
  7150. noprefix "false"
  7151. \end_inset
  7152. ).
  7153. With or without GRSN, RMA shows its dominance over dChip in this more challengi
  7154. ng test.
  7155. Unlike in the internal validation, GRSN actually improves the classifier
  7156. performance for RMA, although it does not for dChip.
  7157. Once again, both single-channel methods perform about on par with RMA,
  7158. with fRMA performing slightly better and SCAN performing a bit worse.
  7159. Figure
  7160. \begin_inset CommandInset ref
  7161. LatexCommand ref
  7162. reference "fig:ROC-PAM-ext"
  7163. plural "false"
  7164. caps "false"
  7165. noprefix "false"
  7166. \end_inset
  7167. shows the ROC curves for the external validation test.
  7168. As expected, none of them are as clean-looking as the internal validation
  7169. ROC curves.
  7170. The curves for RMA, RMA+GRSN, and fRMA all look similar, while the other
  7171. curves look more divergent.
  7172. \end_layout
  7173. \begin_layout Subsection
  7174. fRMA with custom-generated vectors enables single-channel normalization
  7175. on hthgu133pluspm platform
  7176. \end_layout
  7177. \begin_layout Standard
  7178. \begin_inset Float figure
  7179. wide false
  7180. sideways false
  7181. status open
  7182. \begin_layout Plain Layout
  7183. \align center
  7184. \begin_inset Float figure
  7185. placement tb
  7186. wide false
  7187. sideways false
  7188. status collapsed
  7189. \begin_layout Plain Layout
  7190. \align center
  7191. \begin_inset Graphics
  7192. filename graphics/frma-pax-bx/batchsize_batches.pdf
  7193. lyxscale 50
  7194. height 35theight%
  7195. groupId frmatools-subfig
  7196. \end_inset
  7197. \end_layout
  7198. \begin_layout Plain Layout
  7199. \begin_inset Caption Standard
  7200. \begin_layout Plain Layout
  7201. \begin_inset CommandInset label
  7202. LatexCommand label
  7203. name "fig:batch-size-batches"
  7204. \end_inset
  7205. \series bold
  7206. Number of batches usable in fRMA probe weight learning as a function of
  7207. batch size.
  7208. \end_layout
  7209. \end_inset
  7210. \end_layout
  7211. \end_inset
  7212. \end_layout
  7213. \begin_layout Plain Layout
  7214. \align center
  7215. \begin_inset Float figure
  7216. placement tb
  7217. wide false
  7218. sideways false
  7219. status collapsed
  7220. \begin_layout Plain Layout
  7221. \align center
  7222. \begin_inset Graphics
  7223. filename graphics/frma-pax-bx/batchsize_samples.pdf
  7224. lyxscale 50
  7225. height 35theight%
  7226. groupId frmatools-subfig
  7227. \end_inset
  7228. \end_layout
  7229. \begin_layout Plain Layout
  7230. \begin_inset Caption Standard
  7231. \begin_layout Plain Layout
  7232. \begin_inset CommandInset label
  7233. LatexCommand label
  7234. name "fig:batch-size-samples"
  7235. \end_inset
  7236. \series bold
  7237. Number of samples usable in fRMA probe weight learning as a function of
  7238. batch size.
  7239. \end_layout
  7240. \end_inset
  7241. \end_layout
  7242. \end_inset
  7243. \end_layout
  7244. \begin_layout Plain Layout
  7245. \begin_inset Caption Standard
  7246. \begin_layout Plain Layout
  7247. \series bold
  7248. \begin_inset CommandInset label
  7249. LatexCommand label
  7250. name "fig:frmatools-batch-size"
  7251. \end_inset
  7252. Effect of batch size selection on number of batches and number of samples
  7253. included in fRMA probe weight learning.
  7254. \series default
  7255. For batch sizes ranging from 3 to 15, the number of batches (a) and samples
  7256. (b) included in probe weight training were plotted for biopsy (BX) and
  7257. blood (PAX) samples.
  7258. The selected batch size, 5, is marked with a dotted vertical line.
  7259. \end_layout
  7260. \end_inset
  7261. \end_layout
  7262. \end_inset
  7263. \end_layout
  7264. \begin_layout Standard
  7265. In order to enable use of fRMA to normalize hthgu133pluspm, a custom set
  7266. of fRMA vectors was created.
  7267. First, an appropriate batch size was chosen by looking at the number of
  7268. batches and number of samples included as a function of batch size (Figure
  7269. \begin_inset CommandInset ref
  7270. LatexCommand ref
  7271. reference "fig:frmatools-batch-size"
  7272. plural "false"
  7273. caps "false"
  7274. noprefix "false"
  7275. \end_inset
  7276. ).
  7277. For a given batch size, all batches with fewer samples that the chosen
  7278. size must be ignored during training, while larger batches must be randomly
  7279. downsampled to the chosen size.
  7280. Hence, the number of samples included for a given batch size equals the
  7281. batch size times the number of batches with at least that many samples.
  7282. From Figure
  7283. \begin_inset CommandInset ref
  7284. LatexCommand ref
  7285. reference "fig:batch-size-samples"
  7286. plural "false"
  7287. caps "false"
  7288. noprefix "false"
  7289. \end_inset
  7290. , it is apparent that that a batch size of 8 maximizes the number of samples
  7291. included in training.
  7292. Increasing the batch size beyond this causes too many smaller batches to
  7293. be excluded, reducing the total number of samples for both tissue types.
  7294. However, a batch size of 8 is not necessarily optimal.
  7295. The article introducing frmaTools concluded that it was highly advantageous
  7296. to use a smaller batch size in order to include more batches, even at the
  7297. expense of including fewer total samples in training
  7298. \begin_inset CommandInset citation
  7299. LatexCommand cite
  7300. key "McCall2011"
  7301. literal "false"
  7302. \end_inset
  7303. .
  7304. To strike an appropriate balance between more batches and more samples,
  7305. a batch size of 5 was chosen.
  7306. For both blood and biopsy samples, this increased the number of batches
  7307. included by 10, with only a modest reduction in the number of samples compared
  7308. to a batch size of 8.
  7309. With a batch size of 5, 26 batches of biopsy samples and 46 batches of
  7310. blood samples were available.
  7311. \end_layout
  7312. \begin_layout Standard
  7313. \begin_inset Float figure
  7314. wide false
  7315. sideways false
  7316. status collapsed
  7317. \begin_layout Plain Layout
  7318. \begin_inset Float figure
  7319. wide false
  7320. sideways false
  7321. status open
  7322. \begin_layout Plain Layout
  7323. \align center
  7324. \begin_inset Graphics
  7325. filename graphics/frma-pax-bx/M-BX-violin.pdf
  7326. lyxscale 40
  7327. width 45col%
  7328. groupId m-violin
  7329. \end_inset
  7330. \end_layout
  7331. \begin_layout Plain Layout
  7332. \begin_inset Caption Standard
  7333. \begin_layout Plain Layout
  7334. \begin_inset CommandInset label
  7335. LatexCommand label
  7336. name "fig:m-bx-violin"
  7337. \end_inset
  7338. \series bold
  7339. Violin plot of inter-normalization log ratios for biopsy samples.
  7340. \end_layout
  7341. \end_inset
  7342. \end_layout
  7343. \end_inset
  7344. \begin_inset space \hfill{}
  7345. \end_inset
  7346. \begin_inset Float figure
  7347. wide false
  7348. sideways false
  7349. status collapsed
  7350. \begin_layout Plain Layout
  7351. \align center
  7352. \begin_inset Graphics
  7353. filename graphics/frma-pax-bx/M-PAX-violin.pdf
  7354. lyxscale 40
  7355. width 45col%
  7356. groupId m-violin
  7357. \end_inset
  7358. \end_layout
  7359. \begin_layout Plain Layout
  7360. \begin_inset Caption Standard
  7361. \begin_layout Plain Layout
  7362. \begin_inset CommandInset label
  7363. LatexCommand label
  7364. name "fig:m-pax-violin"
  7365. \end_inset
  7366. \series bold
  7367. Violin plot of inter-normalization log ratios for blood samples.
  7368. \end_layout
  7369. \end_inset
  7370. \end_layout
  7371. \end_inset
  7372. \end_layout
  7373. \begin_layout Plain Layout
  7374. \begin_inset Caption Standard
  7375. \begin_layout Plain Layout
  7376. \begin_inset CommandInset label
  7377. LatexCommand label
  7378. name "fig:frma-violin"
  7379. \end_inset
  7380. \series bold
  7381. Violin plot of log ratios between normalizations for 20 biopsy samples.
  7382. \series default
  7383. Each of 20 randomly selected samples was normalized with RMA and with 5
  7384. different sets of fRMA vectors.
  7385. The distribution of log ratios between normalized expression values, aggregated
  7386. across all 20 arrays, was plotted for each pair of normalizations.
  7387. \end_layout
  7388. \end_inset
  7389. \end_layout
  7390. \end_inset
  7391. \end_layout
  7392. \begin_layout Standard
  7393. Since fRMA training requires equal-size batches, larger batches are downsampled
  7394. randomly.
  7395. This introduces a nondeterministic step in the generation of normalization
  7396. vectors.
  7397. To show that this randomness does not substantially change the outcome,
  7398. the random downsampling and subsequent vector learning was repeated 5 times,
  7399. with a different random seed each time.
  7400. 20 samples were selected at random as a test set and normalized with each
  7401. of the 5 sets of fRMA normalization vectors as well as ordinary RMA, and
  7402. the normalized expression values were compared across normalizations.
  7403. Figure
  7404. \begin_inset CommandInset ref
  7405. LatexCommand ref
  7406. reference "fig:m-bx-violin"
  7407. plural "false"
  7408. caps "false"
  7409. noprefix "false"
  7410. \end_inset
  7411. shows a summary of these comparisons for biopsy samples.
  7412. Comparing RMA to each of the 5 fRMA normalizations, the distribution of
  7413. log ratios is somewhat wide, indicating that the normalizations disagree
  7414. on the expression values of a fair number of probe sets.
  7415. In contrast, comparisons of fRMA against fRMA, the vast mojority of probe
  7416. sets have very small log ratios, indicating a very high agreement between
  7417. the normalized values generated by the two normalizations.
  7418. This shows that the fRMA normalization's behavior is not very sensitive
  7419. to the random downsampling of larger batches during training.
  7420. \end_layout
  7421. \begin_layout Standard
  7422. \begin_inset Float figure
  7423. wide false
  7424. sideways false
  7425. status open
  7426. \begin_layout Plain Layout
  7427. \align center
  7428. \begin_inset Float figure
  7429. wide false
  7430. sideways false
  7431. status collapsed
  7432. \begin_layout Plain Layout
  7433. \align center
  7434. \begin_inset Graphics
  7435. filename graphics/frma-pax-bx/MA-BX-RMA.fRMA-RASTER.png
  7436. lyxscale 10
  7437. width 45col%
  7438. groupId ma-frma
  7439. \end_inset
  7440. \end_layout
  7441. \begin_layout Plain Layout
  7442. \begin_inset Caption Standard
  7443. \begin_layout Plain Layout
  7444. \begin_inset CommandInset label
  7445. LatexCommand label
  7446. name "fig:ma-bx-rma-frma"
  7447. \end_inset
  7448. RMA vs.
  7449. fRMA for biopsy samples.
  7450. \end_layout
  7451. \end_inset
  7452. \end_layout
  7453. \end_inset
  7454. \begin_inset space \hfill{}
  7455. \end_inset
  7456. \begin_inset Float figure
  7457. wide false
  7458. sideways false
  7459. status collapsed
  7460. \begin_layout Plain Layout
  7461. \align center
  7462. \begin_inset Graphics
  7463. filename graphics/frma-pax-bx/MA-BX-fRMA.fRMA-RASTER.png
  7464. lyxscale 10
  7465. width 45col%
  7466. groupId ma-frma
  7467. \end_inset
  7468. \end_layout
  7469. \begin_layout Plain Layout
  7470. \begin_inset Caption Standard
  7471. \begin_layout Plain Layout
  7472. \begin_inset CommandInset label
  7473. LatexCommand label
  7474. name "fig:ma-bx-frma-frma"
  7475. \end_inset
  7476. fRMA vs fRMA for biopsy samples.
  7477. \end_layout
  7478. \end_inset
  7479. \end_layout
  7480. \end_inset
  7481. \end_layout
  7482. \begin_layout Plain Layout
  7483. \align center
  7484. \begin_inset Float figure
  7485. wide false
  7486. sideways false
  7487. status collapsed
  7488. \begin_layout Plain Layout
  7489. \align center
  7490. \begin_inset Graphics
  7491. filename graphics/frma-pax-bx/MA-PAX-RMA.fRMA-RASTER.png
  7492. lyxscale 10
  7493. width 45col%
  7494. groupId ma-frma
  7495. \end_inset
  7496. \end_layout
  7497. \begin_layout Plain Layout
  7498. \begin_inset Caption Standard
  7499. \begin_layout Plain Layout
  7500. \begin_inset CommandInset label
  7501. LatexCommand label
  7502. name "fig:MA-PAX-rma-frma"
  7503. \end_inset
  7504. RMA vs.
  7505. fRMA for blood samples.
  7506. \end_layout
  7507. \end_inset
  7508. \end_layout
  7509. \end_inset
  7510. \begin_inset space \hfill{}
  7511. \end_inset
  7512. \begin_inset Float figure
  7513. wide false
  7514. sideways false
  7515. status collapsed
  7516. \begin_layout Plain Layout
  7517. \align center
  7518. \begin_inset Graphics
  7519. filename graphics/frma-pax-bx/MA-PAX-fRMA.fRMA-RASTER.png
  7520. lyxscale 10
  7521. width 45col%
  7522. groupId ma-frma
  7523. \end_inset
  7524. \end_layout
  7525. \begin_layout Plain Layout
  7526. \begin_inset Caption Standard
  7527. \begin_layout Plain Layout
  7528. \begin_inset CommandInset label
  7529. LatexCommand label
  7530. name "fig:MA-PAX-frma-frma"
  7531. \end_inset
  7532. fRMA vs fRMA for blood samples.
  7533. \end_layout
  7534. \end_inset
  7535. \end_layout
  7536. \end_inset
  7537. \end_layout
  7538. \begin_layout Plain Layout
  7539. \begin_inset Caption Standard
  7540. \begin_layout Plain Layout
  7541. \series bold
  7542. \begin_inset CommandInset label
  7543. LatexCommand label
  7544. name "fig:Representative-MA-plots"
  7545. \end_inset
  7546. Representative MA plots comparing RMA and custom fRMA normalizations.
  7547. \series default
  7548. For each plot, 20 samples were normalized using 2 different normalizations,
  7549. and then averages (A) and log ratios (M) were plotted between the two different
  7550. normalizations for every probe.
  7551. For the
  7552. \begin_inset Quotes eld
  7553. \end_inset
  7554. fRMA vs fRMA
  7555. \begin_inset Quotes erd
  7556. \end_inset
  7557. plots (b & d), two different fRMA normalizations using vectors from two
  7558. independent batch samplings were compared.
  7559. Density of points is represented by blue shading, and individual outlier
  7560. points are plotted.
  7561. \end_layout
  7562. \end_inset
  7563. \end_layout
  7564. \end_inset
  7565. \end_layout
  7566. \begin_layout Standard
  7567. Figure
  7568. \begin_inset CommandInset ref
  7569. LatexCommand ref
  7570. reference "fig:ma-bx-rma-frma"
  7571. plural "false"
  7572. caps "false"
  7573. noprefix "false"
  7574. \end_inset
  7575. shows an MA plot of the RMA-normalized values against the fRMA-normalized
  7576. values for the same probe sets and arrays, corresponding to the first row
  7577. of Figure
  7578. \begin_inset CommandInset ref
  7579. LatexCommand ref
  7580. reference "fig:m-bx-violin"
  7581. plural "false"
  7582. caps "false"
  7583. noprefix "false"
  7584. \end_inset
  7585. .
  7586. This MA plot shows that not only is there a wide distribution of M-values,
  7587. but the trend of M-values is dependent on the average normalized intensity.
  7588. This is expected, since the overall trend represents the differences in
  7589. the quantile normalization step.
  7590. When running RMA, only the quantiles for these specific 20 arrays are used,
  7591. while for fRMA the quantile distribution is taking from all arrays used
  7592. in training.
  7593. Figure
  7594. \begin_inset CommandInset ref
  7595. LatexCommand ref
  7596. reference "fig:ma-bx-frma-frma"
  7597. plural "false"
  7598. caps "false"
  7599. noprefix "false"
  7600. \end_inset
  7601. shows a similar MA plot comparing 2 different fRMA normalizations, correspondin
  7602. g to the 6th row of Figure
  7603. \begin_inset CommandInset ref
  7604. LatexCommand ref
  7605. reference "fig:m-bx-violin"
  7606. plural "false"
  7607. caps "false"
  7608. noprefix "false"
  7609. \end_inset
  7610. .
  7611. The MA plot is very tightly centered around zero with no visible trend.
  7612. Figures
  7613. \begin_inset CommandInset ref
  7614. LatexCommand ref
  7615. reference "fig:m-pax-violin"
  7616. plural "false"
  7617. caps "false"
  7618. noprefix "false"
  7619. \end_inset
  7620. ,
  7621. \begin_inset CommandInset ref
  7622. LatexCommand ref
  7623. reference "fig:MA-PAX-rma-frma"
  7624. plural "false"
  7625. caps "false"
  7626. noprefix "false"
  7627. \end_inset
  7628. , and
  7629. \begin_inset CommandInset ref
  7630. LatexCommand ref
  7631. reference "fig:ma-bx-frma-frma"
  7632. plural "false"
  7633. caps "false"
  7634. noprefix "false"
  7635. \end_inset
  7636. show exactly the same information for the blood samples, once again comparing
  7637. the normalized expression values between normalizations for all probe sets
  7638. across 20 randomly selected test arrays.
  7639. Once again, there is a wider distribution of log ratios between RMA-normalized
  7640. values and fRMA-normalized, and a much tighter distribution when comparing
  7641. different fRMA normalizations to each other, indicating that the fRMA training
  7642. process is robust to random batch downsampling for the blood samples as
  7643. well.
  7644. \end_layout
  7645. \begin_layout Subsection
  7646. SVA, voom, and array weights improve model fit for methylation array data
  7647. \end_layout
  7648. \begin_layout Standard
  7649. \begin_inset ERT
  7650. status open
  7651. \begin_layout Plain Layout
  7652. \backslash
  7653. afterpage{
  7654. \end_layout
  7655. \begin_layout Plain Layout
  7656. \backslash
  7657. begin{landscape}
  7658. \end_layout
  7659. \end_inset
  7660. \end_layout
  7661. \begin_layout Standard
  7662. \begin_inset Float figure
  7663. wide false
  7664. sideways false
  7665. status open
  7666. \begin_layout Plain Layout
  7667. \begin_inset Flex TODO Note (inline)
  7668. status open
  7669. \begin_layout Plain Layout
  7670. Fix axis labels:
  7671. \begin_inset Quotes eld
  7672. \end_inset
  7673. log2 M-value
  7674. \begin_inset Quotes erd
  7675. \end_inset
  7676. is redundant because M-values are already log scale
  7677. \end_layout
  7678. \end_inset
  7679. \end_layout
  7680. \begin_layout Plain Layout
  7681. \begin_inset Float figure
  7682. wide false
  7683. sideways false
  7684. status collapsed
  7685. \begin_layout Plain Layout
  7686. \align center
  7687. \begin_inset Graphics
  7688. filename graphics/methylvoom/unadj.dupcor/meanvar-trends-PAGE1-CROP-RASTER.png
  7689. lyxscale 15
  7690. width 30col%
  7691. groupId voomaw-subfig
  7692. \end_inset
  7693. \end_layout
  7694. \begin_layout Plain Layout
  7695. \begin_inset Caption Standard
  7696. \begin_layout Plain Layout
  7697. \begin_inset CommandInset label
  7698. LatexCommand label
  7699. name "fig:meanvar-basic"
  7700. \end_inset
  7701. Mean-variance trend for analysis A.
  7702. \end_layout
  7703. \end_inset
  7704. \end_layout
  7705. \end_inset
  7706. \begin_inset space \hfill{}
  7707. \end_inset
  7708. \begin_inset Float figure
  7709. wide false
  7710. sideways false
  7711. status collapsed
  7712. \begin_layout Plain Layout
  7713. \align center
  7714. \begin_inset Graphics
  7715. filename graphics/methylvoom/unadj.dupcor.sva.aw/meanvar-trends-PAGE1-CROP-RASTER.png
  7716. lyxscale 15
  7717. width 30col%
  7718. groupId voomaw-subfig
  7719. \end_inset
  7720. \end_layout
  7721. \begin_layout Plain Layout
  7722. \begin_inset Caption Standard
  7723. \begin_layout Plain Layout
  7724. \begin_inset CommandInset label
  7725. LatexCommand label
  7726. name "fig:meanvar-sva-aw"
  7727. \end_inset
  7728. Mean-variance trend for analysis B.
  7729. \end_layout
  7730. \end_inset
  7731. \end_layout
  7732. \end_inset
  7733. \begin_inset space \hfill{}
  7734. \end_inset
  7735. \begin_inset Float figure
  7736. wide false
  7737. sideways false
  7738. status collapsed
  7739. \begin_layout Plain Layout
  7740. \align center
  7741. \begin_inset Graphics
  7742. filename graphics/methylvoom/unadj.dupcor.sva.voomaw/meanvar-trends-PAGE2-CROP-RASTER.png
  7743. lyxscale 15
  7744. width 30col%
  7745. groupId voomaw-subfig
  7746. \end_inset
  7747. \end_layout
  7748. \begin_layout Plain Layout
  7749. \begin_inset Caption Standard
  7750. \begin_layout Plain Layout
  7751. \begin_inset CommandInset label
  7752. LatexCommand label
  7753. name "fig:meanvar-sva-voomaw"
  7754. \end_inset
  7755. Mean-variance trend after voom modeling in analysis C.
  7756. \end_layout
  7757. \end_inset
  7758. \end_layout
  7759. \end_inset
  7760. \end_layout
  7761. \begin_layout Plain Layout
  7762. \begin_inset Caption Standard
  7763. \begin_layout Plain Layout
  7764. \series bold
  7765. Mean-variance trend modeling in methylation array data.
  7766. \series default
  7767. The estimated log2(standard deviation) for each probe is plotted against
  7768. the probe's average M-value across all samples as a black point, with some
  7769. transparency to make overplotting more visible, since there are about 450,000
  7770. points.
  7771. Density of points is also indicated by the dark blue contour lines.
  7772. The prior variance trend estimated by eBayes is shown in light blue, while
  7773. the lowess trend of the points is shown in red.
  7774. \end_layout
  7775. \end_inset
  7776. \end_layout
  7777. \end_inset
  7778. \end_layout
  7779. \begin_layout Standard
  7780. \begin_inset ERT
  7781. status open
  7782. \begin_layout Plain Layout
  7783. \backslash
  7784. end{landscape}
  7785. \end_layout
  7786. \begin_layout Plain Layout
  7787. }
  7788. \end_layout
  7789. \end_inset
  7790. \end_layout
  7791. \begin_layout Standard
  7792. Figure
  7793. \begin_inset CommandInset ref
  7794. LatexCommand ref
  7795. reference "fig:meanvar-basic"
  7796. plural "false"
  7797. caps "false"
  7798. noprefix "false"
  7799. \end_inset
  7800. shows the relationship between the mean M-value and the standard deviation
  7801. calculated for each probe in the methylation array data set.
  7802. A few features of the data are apparent.
  7803. First, the data are very strongly bimodal, with peaks in the density around
  7804. M-values of +4 and -4.
  7805. These modes correspond to methylation sites that are nearly 100% methylated
  7806. and nearly 100% unmethylated, respectively.
  7807. The strong bomodality indicates that a majority of probes interrogate sites
  7808. that fall into one of these two categories.
  7809. The points in between these modes represent sites that are either partially
  7810. methylated in many samples, or are fully methylated in some samples and
  7811. fully unmethylated in other samples, or some combination.
  7812. The next visible feature of the data is the W-shaped variance trend.
  7813. The upticks in the variance trend on either side are expected, based on
  7814. the sigmoid transformation exaggerating small differences at extreme M-values
  7815. (Figure
  7816. \begin_inset CommandInset ref
  7817. LatexCommand ref
  7818. reference "fig:Sigmoid-beta-m-mapping"
  7819. plural "false"
  7820. caps "false"
  7821. noprefix "false"
  7822. \end_inset
  7823. ).
  7824. However, the uptick in the center is interesting: it indicates that sites
  7825. that are not constitutitively methylated or unmethylated have a higher
  7826. variance.
  7827. This could be a genuine biological effect, or it could be spurious noise
  7828. that is only observable at sites with varying methylation.
  7829. \end_layout
  7830. \begin_layout Standard
  7831. In Figure
  7832. \begin_inset CommandInset ref
  7833. LatexCommand ref
  7834. reference "fig:meanvar-sva-aw"
  7835. plural "false"
  7836. caps "false"
  7837. noprefix "false"
  7838. \end_inset
  7839. , we see the mean-variance trend for the same methylation array data, this
  7840. time with surrogate variables and sample quality weights estimated from
  7841. the data and included in the model.
  7842. As expected, the overall average variance is smaller, since the surrogate
  7843. variables account for some of the variance.
  7844. In addition, the uptick in variance in the middle of the M-value range
  7845. has disappeared, turning the W shape into a wide U shape.
  7846. This indicates that the excess variance in the probes with intermediate
  7847. M-values was explained by systematic variations not correlated with known
  7848. covariates, and these variations were modeled by the surrogate variables.
  7849. The result is a nearly flat variance trend for the entire intermediate
  7850. M-value range from about -3 to +3.
  7851. Note that this corresponds closely to the range within which the M-value
  7852. transformation shown in Figure
  7853. \begin_inset CommandInset ref
  7854. LatexCommand ref
  7855. reference "fig:Sigmoid-beta-m-mapping"
  7856. plural "false"
  7857. caps "false"
  7858. noprefix "false"
  7859. \end_inset
  7860. is nearly linear.
  7861. In contrast, the excess variance at the extremes (greater than +3 and less
  7862. than -3) was not
  7863. \begin_inset Quotes eld
  7864. \end_inset
  7865. absorbed
  7866. \begin_inset Quotes erd
  7867. \end_inset
  7868. by the surrogate variables and remains in the plot, indicating that this
  7869. variation has no systematic component: probes with extreme M-values are
  7870. uniformly more variable across all samples, as expected.
  7871. \end_layout
  7872. \begin_layout Standard
  7873. Figure
  7874. \begin_inset CommandInset ref
  7875. LatexCommand ref
  7876. reference "fig:meanvar-sva-voomaw"
  7877. plural "false"
  7878. caps "false"
  7879. noprefix "false"
  7880. \end_inset
  7881. shows the mean-variance trend after fitting the model with the observation
  7882. weights assigned by voom based on the mean-variance trend shown in Figure
  7883. \begin_inset CommandInset ref
  7884. LatexCommand ref
  7885. reference "fig:meanvar-sva-aw"
  7886. plural "false"
  7887. caps "false"
  7888. noprefix "false"
  7889. \end_inset
  7890. .
  7891. As expected, the weights exactly counteract the trend in the data, resulting
  7892. in a nearly flat trend centered vertically at 1 (i.e.
  7893. 0 on the log scale).
  7894. This shows that the observations with extreme M-values have been appropriately
  7895. down-weighted to account for the fact that the noise in those observations
  7896. has been amplified by the non-linear M-value transformation.
  7897. In turn, this gives relatively more weight to observervations in the middle
  7898. region, which are more likely to correspond to probes measuring interesting
  7899. biology (not constitutively methylated or unmethylated).
  7900. \end_layout
  7901. \begin_layout Standard
  7902. \begin_inset Float table
  7903. wide false
  7904. sideways false
  7905. status open
  7906. \begin_layout Plain Layout
  7907. \align center
  7908. \begin_inset Tabular
  7909. <lyxtabular version="3" rows="5" columns="3">
  7910. <features tabularvalignment="middle">
  7911. <column alignment="center" valignment="top">
  7912. <column alignment="center" valignment="top">
  7913. <column alignment="center" valignment="top">
  7914. <row>
  7915. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  7916. \begin_inset Text
  7917. \begin_layout Plain Layout
  7918. Covariate
  7919. \end_layout
  7920. \end_inset
  7921. </cell>
  7922. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  7923. \begin_inset Text
  7924. \begin_layout Plain Layout
  7925. Test used
  7926. \end_layout
  7927. \end_inset
  7928. </cell>
  7929. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  7930. \begin_inset Text
  7931. \begin_layout Plain Layout
  7932. p-value
  7933. \end_layout
  7934. \end_inset
  7935. </cell>
  7936. </row>
  7937. <row>
  7938. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7939. \begin_inset Text
  7940. \begin_layout Plain Layout
  7941. Transplant Status
  7942. \end_layout
  7943. \end_inset
  7944. </cell>
  7945. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7946. \begin_inset Text
  7947. \begin_layout Plain Layout
  7948. F-test
  7949. \end_layout
  7950. \end_inset
  7951. </cell>
  7952. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  7953. \begin_inset Text
  7954. \begin_layout Plain Layout
  7955. 0.404
  7956. \end_layout
  7957. \end_inset
  7958. </cell>
  7959. </row>
  7960. <row>
  7961. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7962. \begin_inset Text
  7963. \begin_layout Plain Layout
  7964. Diabetes Diagnosis
  7965. \end_layout
  7966. \end_inset
  7967. </cell>
  7968. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7969. \begin_inset Text
  7970. \begin_layout Plain Layout
  7971. \emph on
  7972. t
  7973. \emph default
  7974. -test
  7975. \end_layout
  7976. \end_inset
  7977. </cell>
  7978. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  7979. \begin_inset Text
  7980. \begin_layout Plain Layout
  7981. 0.00106
  7982. \end_layout
  7983. \end_inset
  7984. </cell>
  7985. </row>
  7986. <row>
  7987. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7988. \begin_inset Text
  7989. \begin_layout Plain Layout
  7990. Sex
  7991. \end_layout
  7992. \end_inset
  7993. </cell>
  7994. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7995. \begin_inset Text
  7996. \begin_layout Plain Layout
  7997. \emph on
  7998. t
  7999. \emph default
  8000. -test
  8001. \end_layout
  8002. \end_inset
  8003. </cell>
  8004. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8005. \begin_inset Text
  8006. \begin_layout Plain Layout
  8007. 0.148
  8008. \end_layout
  8009. \end_inset
  8010. </cell>
  8011. </row>
  8012. <row>
  8013. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8014. \begin_inset Text
  8015. \begin_layout Plain Layout
  8016. Age
  8017. \end_layout
  8018. \end_inset
  8019. </cell>
  8020. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8021. \begin_inset Text
  8022. \begin_layout Plain Layout
  8023. linear regression
  8024. \end_layout
  8025. \end_inset
  8026. </cell>
  8027. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  8028. \begin_inset Text
  8029. \begin_layout Plain Layout
  8030. 0.212
  8031. \end_layout
  8032. \end_inset
  8033. </cell>
  8034. </row>
  8035. </lyxtabular>
  8036. \end_inset
  8037. \end_layout
  8038. \begin_layout Plain Layout
  8039. \begin_inset Caption Standard
  8040. \begin_layout Plain Layout
  8041. \series bold
  8042. \begin_inset CommandInset label
  8043. LatexCommand label
  8044. name "tab:weight-covariate-tests"
  8045. \end_inset
  8046. Association of sample weights with clinical covariates in methylation array
  8047. data.
  8048. \series default
  8049. Computed sample quality log weights were tested for significant association
  8050. with each of the variables in the model (1st column).
  8051. An appropriate test was selected for each variable based on whether the
  8052. variable had 2 categories (
  8053. \emph on
  8054. t
  8055. \emph default
  8056. -test), had more than 2 categories (F-test), or was numeric (linear regression).
  8057. The test selected is shown in the 2nd column.
  8058. P-values for association with the log weights are shown in the 3rd column.
  8059. No multiple testing adjustment was performed for these p-values.
  8060. \end_layout
  8061. \end_inset
  8062. \end_layout
  8063. \end_inset
  8064. \end_layout
  8065. \begin_layout Standard
  8066. \begin_inset Float figure
  8067. wide false
  8068. sideways false
  8069. status open
  8070. \begin_layout Plain Layout
  8071. \begin_inset Flex TODO Note (inline)
  8072. status open
  8073. \begin_layout Plain Layout
  8074. Redo the sample weight boxplot with notches, and remove fill colors
  8075. \end_layout
  8076. \end_inset
  8077. \end_layout
  8078. \begin_layout Plain Layout
  8079. \align center
  8080. \begin_inset Graphics
  8081. filename graphics/methylvoom/unadj.dupcor.sva.voomaw/sample-weights-PAGE3-CROP.pdf
  8082. lyxscale 50
  8083. width 60col%
  8084. groupId colwidth
  8085. \end_inset
  8086. \end_layout
  8087. \begin_layout Plain Layout
  8088. \begin_inset Caption Standard
  8089. \begin_layout Plain Layout
  8090. \begin_inset CommandInset label
  8091. LatexCommand label
  8092. name "fig:diabetes-sample-weights"
  8093. \end_inset
  8094. \series bold
  8095. Box-and-whiskers plot of sample quality weights grouped by diabetes diagnosis.
  8096. \series default
  8097. Samples were grouped based on diabetes diagnosis, and the distribution of
  8098. sample quality weights for each diagnosis was plotted as a box-and-whiskers
  8099. plot
  8100. \begin_inset CommandInset citation
  8101. LatexCommand cite
  8102. key "McGill1978"
  8103. literal "false"
  8104. \end_inset
  8105. .
  8106. \end_layout
  8107. \end_inset
  8108. \end_layout
  8109. \begin_layout Plain Layout
  8110. \end_layout
  8111. \end_inset
  8112. \end_layout
  8113. \begin_layout Standard
  8114. To determine whether any of the known experimental factors had an impact
  8115. on data quality, the sample quality weights estimated from the data were
  8116. tested for association with each of the experimental factors (Table
  8117. \begin_inset CommandInset ref
  8118. LatexCommand ref
  8119. reference "tab:weight-covariate-tests"
  8120. plural "false"
  8121. caps "false"
  8122. noprefix "false"
  8123. \end_inset
  8124. ).
  8125. Diabetes diagnosis was found to have a potentially significant association
  8126. with the sample weights, with a t-test p-value of
  8127. \begin_inset Formula $1.06\times10^{-3}$
  8128. \end_inset
  8129. .
  8130. Figure
  8131. \begin_inset CommandInset ref
  8132. LatexCommand ref
  8133. reference "fig:diabetes-sample-weights"
  8134. plural "false"
  8135. caps "false"
  8136. noprefix "false"
  8137. \end_inset
  8138. shows the distribution of sample weights grouped by diabetes diagnosis.
  8139. The samples from patients with Type 2 diabetes were assigned significantly
  8140. lower weights than those from patients with Type 1 diabetes.
  8141. This indicates that the type 2 diabetes samples had an overall higher variance
  8142. on average across all probes.
  8143. \end_layout
  8144. \begin_layout Standard
  8145. \begin_inset Float table
  8146. wide false
  8147. sideways false
  8148. status open
  8149. \begin_layout Plain Layout
  8150. \align center
  8151. \begin_inset Flex TODO Note (inline)
  8152. status open
  8153. \begin_layout Plain Layout
  8154. Consider transposing these tables
  8155. \end_layout
  8156. \end_inset
  8157. \end_layout
  8158. \begin_layout Plain Layout
  8159. \begin_inset Float table
  8160. wide false
  8161. sideways false
  8162. status open
  8163. \begin_layout Plain Layout
  8164. \align center
  8165. \begin_inset Tabular
  8166. <lyxtabular version="3" rows="5" columns="4">
  8167. <features tabularvalignment="middle">
  8168. <column alignment="center" valignment="top">
  8169. <column alignment="center" valignment="top">
  8170. <column alignment="center" valignment="top">
  8171. <column alignment="center" valignment="top">
  8172. <row>
  8173. <cell alignment="center" valignment="top" usebox="none">
  8174. \begin_inset Text
  8175. \begin_layout Plain Layout
  8176. \end_layout
  8177. \end_inset
  8178. </cell>
  8179. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8180. \begin_inset Text
  8181. \begin_layout Plain Layout
  8182. Analysis
  8183. \end_layout
  8184. \end_inset
  8185. </cell>
  8186. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8187. \begin_inset Text
  8188. \begin_layout Plain Layout
  8189. \end_layout
  8190. \end_inset
  8191. </cell>
  8192. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8193. \begin_inset Text
  8194. \begin_layout Plain Layout
  8195. \end_layout
  8196. \end_inset
  8197. </cell>
  8198. </row>
  8199. <row>
  8200. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8201. \begin_inset Text
  8202. \begin_layout Plain Layout
  8203. Contrast
  8204. \end_layout
  8205. \end_inset
  8206. </cell>
  8207. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8208. \begin_inset Text
  8209. \begin_layout Plain Layout
  8210. A
  8211. \end_layout
  8212. \end_inset
  8213. </cell>
  8214. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8215. \begin_inset Text
  8216. \begin_layout Plain Layout
  8217. B
  8218. \end_layout
  8219. \end_inset
  8220. </cell>
  8221. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  8222. \begin_inset Text
  8223. \begin_layout Plain Layout
  8224. C
  8225. \end_layout
  8226. \end_inset
  8227. </cell>
  8228. </row>
  8229. <row>
  8230. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8231. \begin_inset Text
  8232. \begin_layout Plain Layout
  8233. TX vs AR
  8234. \end_layout
  8235. \end_inset
  8236. </cell>
  8237. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8238. \begin_inset Text
  8239. \begin_layout Plain Layout
  8240. 0
  8241. \end_layout
  8242. \end_inset
  8243. </cell>
  8244. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8245. \begin_inset Text
  8246. \begin_layout Plain Layout
  8247. 25
  8248. \end_layout
  8249. \end_inset
  8250. </cell>
  8251. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8252. \begin_inset Text
  8253. \begin_layout Plain Layout
  8254. 22
  8255. \end_layout
  8256. \end_inset
  8257. </cell>
  8258. </row>
  8259. <row>
  8260. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8261. \begin_inset Text
  8262. \begin_layout Plain Layout
  8263. TX vs ADNR
  8264. \end_layout
  8265. \end_inset
  8266. </cell>
  8267. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8268. \begin_inset Text
  8269. \begin_layout Plain Layout
  8270. 7
  8271. \end_layout
  8272. \end_inset
  8273. </cell>
  8274. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8275. \begin_inset Text
  8276. \begin_layout Plain Layout
  8277. 338
  8278. \end_layout
  8279. \end_inset
  8280. </cell>
  8281. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8282. \begin_inset Text
  8283. \begin_layout Plain Layout
  8284. 369
  8285. \end_layout
  8286. \end_inset
  8287. </cell>
  8288. </row>
  8289. <row>
  8290. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8291. \begin_inset Text
  8292. \begin_layout Plain Layout
  8293. TX vs CAN
  8294. \end_layout
  8295. \end_inset
  8296. </cell>
  8297. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8298. \begin_inset Text
  8299. \begin_layout Plain Layout
  8300. 0
  8301. \end_layout
  8302. \end_inset
  8303. </cell>
  8304. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8305. \begin_inset Text
  8306. \begin_layout Plain Layout
  8307. 231
  8308. \end_layout
  8309. \end_inset
  8310. </cell>
  8311. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  8312. \begin_inset Text
  8313. \begin_layout Plain Layout
  8314. 278
  8315. \end_layout
  8316. \end_inset
  8317. </cell>
  8318. </row>
  8319. </lyxtabular>
  8320. \end_inset
  8321. \end_layout
  8322. \begin_layout Plain Layout
  8323. \begin_inset Caption Standard
  8324. \begin_layout Plain Layout
  8325. \begin_inset CommandInset label
  8326. LatexCommand label
  8327. name "tab:methyl-num-signif"
  8328. \end_inset
  8329. Number of probes significant at 10% FDR.
  8330. \end_layout
  8331. \end_inset
  8332. \end_layout
  8333. \end_inset
  8334. \begin_inset space \hfill{}
  8335. \end_inset
  8336. \begin_inset Float table
  8337. wide false
  8338. sideways false
  8339. status open
  8340. \begin_layout Plain Layout
  8341. \align center
  8342. \begin_inset Tabular
  8343. <lyxtabular version="3" rows="5" columns="4">
  8344. <features tabularvalignment="middle">
  8345. <column alignment="center" valignment="top">
  8346. <column alignment="center" valignment="top">
  8347. <column alignment="center" valignment="top">
  8348. <column alignment="center" valignment="top">
  8349. <row>
  8350. <cell alignment="center" valignment="top" usebox="none">
  8351. \begin_inset Text
  8352. \begin_layout Plain Layout
  8353. \end_layout
  8354. \end_inset
  8355. </cell>
  8356. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8357. \begin_inset Text
  8358. \begin_layout Plain Layout
  8359. Analysis
  8360. \end_layout
  8361. \end_inset
  8362. </cell>
  8363. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8364. \begin_inset Text
  8365. \begin_layout Plain Layout
  8366. \end_layout
  8367. \end_inset
  8368. </cell>
  8369. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8370. \begin_inset Text
  8371. \begin_layout Plain Layout
  8372. \end_layout
  8373. \end_inset
  8374. </cell>
  8375. </row>
  8376. <row>
  8377. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8378. \begin_inset Text
  8379. \begin_layout Plain Layout
  8380. Contrast
  8381. \end_layout
  8382. \end_inset
  8383. </cell>
  8384. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8385. \begin_inset Text
  8386. \begin_layout Plain Layout
  8387. A
  8388. \end_layout
  8389. \end_inset
  8390. </cell>
  8391. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8392. \begin_inset Text
  8393. \begin_layout Plain Layout
  8394. B
  8395. \end_layout
  8396. \end_inset
  8397. </cell>
  8398. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  8399. \begin_inset Text
  8400. \begin_layout Plain Layout
  8401. C
  8402. \end_layout
  8403. \end_inset
  8404. </cell>
  8405. </row>
  8406. <row>
  8407. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8408. \begin_inset Text
  8409. \begin_layout Plain Layout
  8410. TX vs AR
  8411. \end_layout
  8412. \end_inset
  8413. </cell>
  8414. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8415. \begin_inset Text
  8416. \begin_layout Plain Layout
  8417. 0
  8418. \end_layout
  8419. \end_inset
  8420. </cell>
  8421. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8422. \begin_inset Text
  8423. \begin_layout Plain Layout
  8424. 10,063
  8425. \end_layout
  8426. \end_inset
  8427. </cell>
  8428. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8429. \begin_inset Text
  8430. \begin_layout Plain Layout
  8431. 11,225
  8432. \end_layout
  8433. \end_inset
  8434. </cell>
  8435. </row>
  8436. <row>
  8437. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8438. \begin_inset Text
  8439. \begin_layout Plain Layout
  8440. TX vs ADNR
  8441. \end_layout
  8442. \end_inset
  8443. </cell>
  8444. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8445. \begin_inset Text
  8446. \begin_layout Plain Layout
  8447. 27
  8448. \end_layout
  8449. \end_inset
  8450. </cell>
  8451. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8452. \begin_inset Text
  8453. \begin_layout Plain Layout
  8454. 12,674
  8455. \end_layout
  8456. \end_inset
  8457. </cell>
  8458. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8459. \begin_inset Text
  8460. \begin_layout Plain Layout
  8461. 13,086
  8462. \end_layout
  8463. \end_inset
  8464. </cell>
  8465. </row>
  8466. <row>
  8467. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8468. \begin_inset Text
  8469. \begin_layout Plain Layout
  8470. TX vs CAN
  8471. \end_layout
  8472. \end_inset
  8473. </cell>
  8474. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8475. \begin_inset Text
  8476. \begin_layout Plain Layout
  8477. 966
  8478. \end_layout
  8479. \end_inset
  8480. </cell>
  8481. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8482. \begin_inset Text
  8483. \begin_layout Plain Layout
  8484. 20,039
  8485. \end_layout
  8486. \end_inset
  8487. </cell>
  8488. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  8489. \begin_inset Text
  8490. \begin_layout Plain Layout
  8491. 20,955
  8492. \end_layout
  8493. \end_inset
  8494. </cell>
  8495. </row>
  8496. </lyxtabular>
  8497. \end_inset
  8498. \end_layout
  8499. \begin_layout Plain Layout
  8500. \begin_inset Caption Standard
  8501. \begin_layout Plain Layout
  8502. \begin_inset CommandInset label
  8503. LatexCommand label
  8504. name "tab:methyl-est-nonnull"
  8505. \end_inset
  8506. Estimated number of non-null tests, using the method of averaging local
  8507. FDR values
  8508. \begin_inset CommandInset citation
  8509. LatexCommand cite
  8510. key "Phipson2013Thesis"
  8511. literal "false"
  8512. \end_inset
  8513. .
  8514. \end_layout
  8515. \end_inset
  8516. \end_layout
  8517. \end_inset
  8518. \end_layout
  8519. \begin_layout Plain Layout
  8520. \begin_inset Caption Standard
  8521. \begin_layout Plain Layout
  8522. \series bold
  8523. Estimates of degree of differential methylation in for each contrast in
  8524. each analysis.
  8525. \series default
  8526. For each of the analyses in Table
  8527. \begin_inset CommandInset ref
  8528. LatexCommand ref
  8529. reference "tab:Summary-of-meth-analysis"
  8530. plural "false"
  8531. caps "false"
  8532. noprefix "false"
  8533. \end_inset
  8534. , these tables show the number of probes called significantly differentially
  8535. methylated at a threshold of 10% FDR for each comparison between TX and
  8536. the other 3 transplant statuses (a) and the estimated total number of probes
  8537. that are differentially methylated (b).
  8538. \end_layout
  8539. \end_inset
  8540. \end_layout
  8541. \end_inset
  8542. \end_layout
  8543. \begin_layout Standard
  8544. \begin_inset Float figure
  8545. wide false
  8546. sideways false
  8547. status open
  8548. \begin_layout Plain Layout
  8549. \align center
  8550. \series bold
  8551. \begin_inset Float figure
  8552. wide false
  8553. sideways false
  8554. status collapsed
  8555. \begin_layout Plain Layout
  8556. \align center
  8557. \begin_inset Graphics
  8558. filename graphics/methylvoom/unadj.dupcor/pval-histograms-PAGE1.pdf
  8559. lyxscale 33
  8560. width 30col%
  8561. groupId meth-pval-hist
  8562. \end_inset
  8563. \end_layout
  8564. \begin_layout Plain Layout
  8565. \series bold
  8566. \begin_inset Caption Standard
  8567. \begin_layout Plain Layout
  8568. AR vs.
  8569. TX, Analysis A
  8570. \end_layout
  8571. \end_inset
  8572. \end_layout
  8573. \begin_layout Plain Layout
  8574. \end_layout
  8575. \end_inset
  8576. \begin_inset space \hfill{}
  8577. \end_inset
  8578. \begin_inset Float figure
  8579. wide false
  8580. sideways false
  8581. status collapsed
  8582. \begin_layout Plain Layout
  8583. \align center
  8584. \begin_inset Graphics
  8585. filename graphics/methylvoom/unadj.dupcor/pval-histograms-PAGE2.pdf
  8586. lyxscale 33
  8587. width 30col%
  8588. groupId meth-pval-hist
  8589. \end_inset
  8590. \end_layout
  8591. \begin_layout Plain Layout
  8592. \series bold
  8593. \begin_inset Caption Standard
  8594. \begin_layout Plain Layout
  8595. ADNR vs.
  8596. TX, Analysis A
  8597. \end_layout
  8598. \end_inset
  8599. \end_layout
  8600. \end_inset
  8601. \begin_inset space \hfill{}
  8602. \end_inset
  8603. \begin_inset Float figure
  8604. wide false
  8605. sideways false
  8606. status collapsed
  8607. \begin_layout Plain Layout
  8608. \align center
  8609. \begin_inset Graphics
  8610. filename graphics/methylvoom/unadj.dupcor/pval-histograms-PAGE3.pdf
  8611. lyxscale 33
  8612. width 30col%
  8613. groupId meth-pval-hist
  8614. \end_inset
  8615. \end_layout
  8616. \begin_layout Plain Layout
  8617. \series bold
  8618. \begin_inset Caption Standard
  8619. \begin_layout Plain Layout
  8620. CAN vs.
  8621. TX, Analysis A
  8622. \end_layout
  8623. \end_inset
  8624. \end_layout
  8625. \end_inset
  8626. \end_layout
  8627. \begin_layout Plain Layout
  8628. \align center
  8629. \series bold
  8630. \begin_inset Float figure
  8631. wide false
  8632. sideways false
  8633. status collapsed
  8634. \begin_layout Plain Layout
  8635. \align center
  8636. \begin_inset Graphics
  8637. filename graphics/methylvoom/unadj.dupcor.sva.aw/pval-histograms-PAGE1.pdf
  8638. lyxscale 33
  8639. width 30col%
  8640. groupId meth-pval-hist
  8641. \end_inset
  8642. \end_layout
  8643. \begin_layout Plain Layout
  8644. \series bold
  8645. \begin_inset Caption Standard
  8646. \begin_layout Plain Layout
  8647. AR vs.
  8648. TX, Analysis B
  8649. \end_layout
  8650. \end_inset
  8651. \end_layout
  8652. \end_inset
  8653. \begin_inset space \hfill{}
  8654. \end_inset
  8655. \begin_inset Float figure
  8656. wide false
  8657. sideways false
  8658. status collapsed
  8659. \begin_layout Plain Layout
  8660. \align center
  8661. \begin_inset Graphics
  8662. filename graphics/methylvoom/unadj.dupcor.sva.aw/pval-histograms-PAGE2.pdf
  8663. lyxscale 33
  8664. width 30col%
  8665. groupId meth-pval-hist
  8666. \end_inset
  8667. \end_layout
  8668. \begin_layout Plain Layout
  8669. \series bold
  8670. \begin_inset Caption Standard
  8671. \begin_layout Plain Layout
  8672. ADNR vs.
  8673. TX, Analysis B
  8674. \end_layout
  8675. \end_inset
  8676. \end_layout
  8677. \end_inset
  8678. \begin_inset space \hfill{}
  8679. \end_inset
  8680. \begin_inset Float figure
  8681. wide false
  8682. sideways false
  8683. status collapsed
  8684. \begin_layout Plain Layout
  8685. \align center
  8686. \begin_inset Graphics
  8687. filename graphics/methylvoom/unadj.dupcor.sva.aw/pval-histograms-PAGE3.pdf
  8688. lyxscale 33
  8689. width 30col%
  8690. groupId meth-pval-hist
  8691. \end_inset
  8692. \end_layout
  8693. \begin_layout Plain Layout
  8694. \series bold
  8695. \begin_inset Caption Standard
  8696. \begin_layout Plain Layout
  8697. CAN vs.
  8698. TX, Analysis B
  8699. \end_layout
  8700. \end_inset
  8701. \end_layout
  8702. \end_inset
  8703. \end_layout
  8704. \begin_layout Plain Layout
  8705. \align center
  8706. \series bold
  8707. \begin_inset Float figure
  8708. wide false
  8709. sideways false
  8710. status collapsed
  8711. \begin_layout Plain Layout
  8712. \align center
  8713. \begin_inset Graphics
  8714. filename graphics/methylvoom/unadj.dupcor.sva.voomaw/pval-histograms-PAGE1.pdf
  8715. lyxscale 33
  8716. width 30col%
  8717. groupId meth-pval-hist
  8718. \end_inset
  8719. \end_layout
  8720. \begin_layout Plain Layout
  8721. \series bold
  8722. \begin_inset Caption Standard
  8723. \begin_layout Plain Layout
  8724. AR vs.
  8725. TX, Analysis C
  8726. \end_layout
  8727. \end_inset
  8728. \end_layout
  8729. \end_inset
  8730. \begin_inset space \hfill{}
  8731. \end_inset
  8732. \begin_inset Float figure
  8733. wide false
  8734. sideways false
  8735. status collapsed
  8736. \begin_layout Plain Layout
  8737. \align center
  8738. \begin_inset Graphics
  8739. filename graphics/methylvoom/unadj.dupcor.sva.voomaw/pval-histograms-PAGE2.pdf
  8740. lyxscale 33
  8741. width 30col%
  8742. groupId meth-pval-hist
  8743. \end_inset
  8744. \end_layout
  8745. \begin_layout Plain Layout
  8746. \series bold
  8747. \begin_inset Caption Standard
  8748. \begin_layout Plain Layout
  8749. ADNR vs.
  8750. TX, Analysis C
  8751. \end_layout
  8752. \end_inset
  8753. \end_layout
  8754. \end_inset
  8755. \begin_inset space \hfill{}
  8756. \end_inset
  8757. \begin_inset Float figure
  8758. wide false
  8759. sideways false
  8760. status collapsed
  8761. \begin_layout Plain Layout
  8762. \align center
  8763. \begin_inset Graphics
  8764. filename graphics/methylvoom/unadj.dupcor.sva.voomaw/pval-histograms-PAGE3.pdf
  8765. lyxscale 33
  8766. width 30col%
  8767. groupId meth-pval-hist
  8768. \end_inset
  8769. \end_layout
  8770. \begin_layout Plain Layout
  8771. \series bold
  8772. \begin_inset Caption Standard
  8773. \begin_layout Plain Layout
  8774. CAN vs.
  8775. TX, Analysis C
  8776. \end_layout
  8777. \end_inset
  8778. \end_layout
  8779. \end_inset
  8780. \end_layout
  8781. \begin_layout Plain Layout
  8782. \begin_inset Caption Standard
  8783. \begin_layout Plain Layout
  8784. \series bold
  8785. \begin_inset CommandInset label
  8786. LatexCommand label
  8787. name "fig:meth-p-value-histograms"
  8788. \end_inset
  8789. Probe p-value histograms for each contrast in each analysis.
  8790. \series default
  8791. For each differential methylation test of interest, the distribution of
  8792. p-values across all probes is plotted as a histogram.
  8793. The red solid line indicates the density that would be expected under the
  8794. null hypothesis for all probes (a
  8795. \begin_inset Formula $\mathrm{Uniform}(0,1)$
  8796. \end_inset
  8797. distribution), while the blue dotted line indicates the fraction of p-values
  8798. that actually follow the null hypothesis (
  8799. \begin_inset Formula $\hat{\pi}_{0}$
  8800. \end_inset
  8801. ) estimated using the method of averaging local FDR values
  8802. \begin_inset CommandInset citation
  8803. LatexCommand cite
  8804. key "Phipson2013Thesis"
  8805. literal "false"
  8806. \end_inset
  8807. .
  8808. the blue line is only shown in each plot if the estimate of
  8809. \begin_inset Formula $\hat{\pi}_{0}$
  8810. \end_inset
  8811. for that p-value distribution is different from 1.
  8812. \end_layout
  8813. \end_inset
  8814. \end_layout
  8815. \end_inset
  8816. \end_layout
  8817. \begin_layout Standard
  8818. Table
  8819. \begin_inset CommandInset ref
  8820. LatexCommand ref
  8821. reference "tab:methyl-num-signif"
  8822. plural "false"
  8823. caps "false"
  8824. noprefix "false"
  8825. \end_inset
  8826. shows the number of significantly differentially methylated probes reported
  8827. by each analysis for each comparison of interest at an FDR of 10%.
  8828. As expected, the more elaborate analyses, B and C, report more significant
  8829. probes than the more basic analysis A, consistent with the conclusions
  8830. above that the data contain hidden systematic variations that must be modeled.
  8831. Table
  8832. \begin_inset CommandInset ref
  8833. LatexCommand ref
  8834. reference "tab:methyl-est-nonnull"
  8835. plural "false"
  8836. caps "false"
  8837. noprefix "false"
  8838. \end_inset
  8839. shows the estimated number differentially methylated probes for each test
  8840. from each analysis.
  8841. This was computed by estimating the proportion of null hypotheses that
  8842. were true using the method of
  8843. \begin_inset CommandInset citation
  8844. LatexCommand cite
  8845. key "Phipson2013Thesis"
  8846. literal "false"
  8847. \end_inset
  8848. and subtracting that fraction from the total number of probes, yielding
  8849. an estimate of the number of null hypotheses that are false based on the
  8850. distribution of p-values across the entire dataset.
  8851. Note that this does not identify which null hypotheses should be rejected
  8852. (i.e.
  8853. which probes are significant); it only estimates the true number of such
  8854. probes.
  8855. Once again, analyses B and C result it much larger estimates for the number
  8856. of differentially methylated probes.
  8857. In this case, analysis C, the only analysis that includes voom, estimates
  8858. the largest number of differentially methylated probes for all 3 contrasts.
  8859. If the assumptions of all the methods employed hold, then this represents
  8860. a gain in statistical power over the simpler analysis A.
  8861. Figure
  8862. \begin_inset CommandInset ref
  8863. LatexCommand ref
  8864. reference "fig:meth-p-value-histograms"
  8865. plural "false"
  8866. caps "false"
  8867. noprefix "false"
  8868. \end_inset
  8869. shows the p-value distributions for each test, from which the numbers in
  8870. Table
  8871. \begin_inset CommandInset ref
  8872. LatexCommand ref
  8873. reference "tab:methyl-est-nonnull"
  8874. plural "false"
  8875. caps "false"
  8876. noprefix "false"
  8877. \end_inset
  8878. were generated.
  8879. The distributions for analysis A all have a dip in density near zero, which
  8880. is a strong sign of a poor model fit.
  8881. The histograms for analyses B and C are more well-behaved, with a uniform
  8882. component stretching all the way from 0 to 1 representing the probes for
  8883. which the null hypotheses is true (no differential methylation), and a
  8884. zero-biased component representing the probes for which the null hypothesis
  8885. is false (differentially methylated).
  8886. These histograms do not indicate any major issues with the model fit.
  8887. \end_layout
  8888. \begin_layout Standard
  8889. \begin_inset Flex TODO Note (inline)
  8890. status open
  8891. \begin_layout Plain Layout
  8892. If time allows, maybe generate the PCA plots before/after SVA effect subtraction
  8893. ?
  8894. \end_layout
  8895. \end_inset
  8896. \end_layout
  8897. \begin_layout Section
  8898. Discussion
  8899. \end_layout
  8900. \begin_layout Subsection
  8901. fRMA achieves clinically applicable normalization without sacrificing classifica
  8902. tion performance
  8903. \end_layout
  8904. \begin_layout Standard
  8905. As shown in Figure
  8906. \begin_inset CommandInset ref
  8907. LatexCommand ref
  8908. reference "fig:Classifier-probabilities-RMA"
  8909. plural "false"
  8910. caps "false"
  8911. noprefix "false"
  8912. \end_inset
  8913. , improper normalization, particularly separate normalization of training
  8914. and test samples, leads to unwanted biases in classification.
  8915. In a controlled experimental context, it is always possible to correct
  8916. this issue by normalizing all experimental samples together.
  8917. However, because it is not feasible to normalize all samples together in
  8918. a clinical context, a single-channel normalization is required is required.
  8919. \end_layout
  8920. \begin_layout Standard
  8921. The major concern in using a single-channel normalization is that non-single-cha
  8922. nnel methods can share information between arrays to improve the normalization,
  8923. and single-channel methods risk sacrificing the gains in normalization
  8924. accuracy that come from this information sharing.
  8925. In the case of RMA, this information sharing is accomplished through quantile
  8926. normalization and median polish steps.
  8927. The need for information sharing in quantile normalization can easily be
  8928. removed by learning a fixed set of quantiles from external data and normalizing
  8929. each array to these fixed quantiles, instead of the quantiles of the data
  8930. itself.
  8931. As long as the fixed quantiles are reasonable, the result will be similar
  8932. to standard RMA.
  8933. However, there is no analogous way to eliminate cross-array information
  8934. sharing in the median polish step, so fRMA replaces this with a weighted
  8935. average of probes on each array, with the weights learned from external
  8936. data.
  8937. This step of fRMA has the greatest potential to diverge from RMA un undesirable
  8938. ways.
  8939. \end_layout
  8940. \begin_layout Standard
  8941. However, when run on real data, fRMA performed at least as well as RMA in
  8942. both the internal validation and external validation tests.
  8943. This shows that fRMA can be used to normalize individual clinical samples
  8944. in a class prediction context without sacrificing the classifier performance
  8945. that would be obtained by using the more well-established RMA for normalization.
  8946. The other single-channel normalization method considered, SCAN, showed
  8947. some loss of AUC in the external validation test.
  8948. Based on these results, fRMA is the preferred normalization for clinical
  8949. samples in a class prediction context.
  8950. \end_layout
  8951. \begin_layout Subsection
  8952. Robust fRMA vectors can be generated for new array platforms
  8953. \end_layout
  8954. \begin_layout Standard
  8955. \begin_inset Flex TODO Note (inline)
  8956. status open
  8957. \begin_layout Plain Layout
  8958. Look up the exact numbers, do a find & replace for
  8959. \begin_inset Quotes eld
  8960. \end_inset
  8961. 850
  8962. \begin_inset Quotes erd
  8963. \end_inset
  8964. \end_layout
  8965. \end_inset
  8966. \end_layout
  8967. \begin_layout Standard
  8968. The published fRMA normalization vectors for the hgu133plus2 platform were
  8969. generated from a set of about 850 samples chosen from a wide range of tissues,
  8970. which the authors determined was sufficient to generate a robust set of
  8971. normalization vectors that could be applied across all tissues
  8972. \begin_inset CommandInset citation
  8973. LatexCommand cite
  8974. key "McCall2010"
  8975. literal "false"
  8976. \end_inset
  8977. .
  8978. Since we only had hthgu133pluspm for 2 tissues of interest, our needs were
  8979. more modest.
  8980. Even using only 130 samples in 26 batches of 5 samples each for kidney
  8981. biopsies, we were able to train a robust set of fRMA normalization vectors
  8982. that were not meaningfully affected by the random selection of 5 samples
  8983. from each batch.
  8984. As expected, the training process was just as robust for the blood samples
  8985. with 230 samples in 46 batches of 5 samples each.
  8986. Because these vectors were each generated using training samples from a
  8987. single tissue, they are not suitable for general use, unlike the vectors
  8988. provided with fRMA itself.
  8989. They are purpose-built for normalizing a specific type of sample on a specific
  8990. platform.
  8991. This is a mostly acceptable limitation in the context of developing a machine
  8992. learning classifier for diagnosing a disease based on samples of a specific
  8993. tissue.
  8994. \end_layout
  8995. \begin_layout Standard
  8996. \begin_inset Flex TODO Note (inline)
  8997. status open
  8998. \begin_layout Plain Layout
  8999. Talk about how these vectors can be used for any data from these tissues
  9000. on this platform even though they were custom made for this data set.
  9001. \end_layout
  9002. \end_inset
  9003. \end_layout
  9004. \begin_layout Standard
  9005. \begin_inset Flex TODO Note (inline)
  9006. status open
  9007. \begin_layout Plain Layout
  9008. How to bring up that these custom vectors were used in another project by
  9009. someone else that was never published?
  9010. \end_layout
  9011. \end_inset
  9012. \end_layout
  9013. \begin_layout Subsection
  9014. Methylation array data can be successfully analyzed using existing techniques,
  9015. but machine learning poses additional challenges
  9016. \end_layout
  9017. \begin_layout Standard
  9018. Both analysis strategies B and C both yield a reasonable analysis, with
  9019. a mean-variance trend that matches the expected behavior for the non-linear
  9020. M-value transformation (Figure
  9021. \begin_inset CommandInset ref
  9022. LatexCommand ref
  9023. reference "fig:meanvar-sva-aw"
  9024. plural "false"
  9025. caps "false"
  9026. noprefix "false"
  9027. \end_inset
  9028. ) and well-behaved p-value distributions (Figure
  9029. \begin_inset CommandInset ref
  9030. LatexCommand ref
  9031. reference "fig:meth-p-value-histograms"
  9032. plural "false"
  9033. caps "false"
  9034. noprefix "false"
  9035. \end_inset
  9036. ).
  9037. These two analyses also yield similar numbers of significant probes (Table
  9038. \begin_inset CommandInset ref
  9039. LatexCommand ref
  9040. reference "tab:methyl-num-signif"
  9041. plural "false"
  9042. caps "false"
  9043. noprefix "false"
  9044. \end_inset
  9045. ) and similar estimates of the number of differentially methylated probes
  9046. (Table
  9047. \begin_inset CommandInset ref
  9048. LatexCommand ref
  9049. reference "tab:methyl-est-nonnull"
  9050. plural "false"
  9051. caps "false"
  9052. noprefix "false"
  9053. \end_inset
  9054. ).
  9055. The main difference between these two analyses is the method used to account
  9056. for the mean-variance trend.
  9057. In analysis B, the trend is estimated and applied at the probe level: each
  9058. probe's estimated variance is squeezed toward the trend using an empirical
  9059. Bayes procedure (Figure
  9060. \begin_inset CommandInset ref
  9061. LatexCommand ref
  9062. reference "fig:meanvar-sva-aw"
  9063. plural "false"
  9064. caps "false"
  9065. noprefix "false"
  9066. \end_inset
  9067. ).
  9068. In analysis C, the trend is still estimated at the probe level, but instead
  9069. of estimating a single variance value shared across all observations for
  9070. a given probe, the voom method computes an initial estiamte of the variance
  9071. for each observation individually based on where its model-fitted M-value
  9072. falls on the trend line and then assigns inverse-variance weights to model
  9073. the difference in variance between observations.
  9074. An overall variance is still estimated for each probe using the same empirical
  9075. Bayes method, but now the residual trend is flat (Figure
  9076. \begin_inset CommandInset ref
  9077. LatexCommand ref
  9078. reference "fig:meanvar-sva-voomaw"
  9079. plural "false"
  9080. caps "false"
  9081. noprefix "false"
  9082. \end_inset
  9083. ), indicating that the mean-variance trend is adequately modeled by scaling
  9084. the estimated variance for each observation using the weights computed
  9085. by voom.
  9086. \end_layout
  9087. \begin_layout Standard
  9088. The difference between the standard empirical Bayes trended variance modeling
  9089. (analysis B) and voom (analysis C) is analogous to the difference between
  9090. a t-test with equal variance and a t-test with unequal variance, except
  9091. that the unequal group variances used in the latter test are estimated
  9092. based on the mean-variance trend from all the probes rather than the data
  9093. for the specific probe being tested, thus stabilizing the group variance
  9094. estimates by sharing information between probes.
  9095. Allowing voom to model the variance using observation weights in this manner
  9096. allows the linear model fit to concentrate statistical power where it will
  9097. do the most good.
  9098. For example, if a particular probe's M-values are always at the extreme
  9099. of the M-value range (e.g.
  9100. less than -4) for ADNR samples, but the M-values for that probe in TX and
  9101. CAN samples are within the flat region of the mean-variance trend (between
  9102. -3 and +3), voom is able to down-weight the contribution of the high-variance
  9103. M-values from the ADNR samples in order to gain more statistical power
  9104. while testing for differential methylation between TX and CAN.
  9105. In contrast, modeling the mean-variance trend only at the probe level would
  9106. combine the high-variance ADNR samples and lower-variance samples from
  9107. other conditions and estimate an intermediate variance for this probe.
  9108. In practice, analysis B shows that this approach is adequate, but the voom
  9109. approach in analysis C is at least as good on all model fit criteria and
  9110. yields a larger estimate for the number of differentially methylated genes,
  9111. \emph on
  9112. and
  9113. \emph default
  9114. it matches up better with the theoretical
  9115. \end_layout
  9116. \begin_layout Standard
  9117. The significant association of diebetes diagnosis with sample quality is
  9118. interesting.
  9119. The samples with Type 2 diabetes tended to have more variation, averaged
  9120. across all probes, than those with Type 1 diabetes.
  9121. This is consistent with the consensus that type 2 disbetes and the associated
  9122. metabolic syndrome represent a broad dysregulation of the body's endocrine
  9123. signalling related to metabolism [citation needed].
  9124. This dysregulation could easily manifest as a greater degree of variation
  9125. in the DNA methylation patterns of affected tissues.
  9126. In contrast, Type 1 disbetes has a more specific cause and effect, so a
  9127. less variable methylation signature is expected.
  9128. \end_layout
  9129. \begin_layout Standard
  9130. This preliminary anlaysis suggests that some degree of differential methylation
  9131. exists between TX and each of the three types of transplant disfunction
  9132. studied.
  9133. Hence, it may be feasible to train a classifier to diagnose transplant
  9134. disfunction from DNA methylation array data.
  9135. However, the major importance of both SVA and sample quality weighting
  9136. for proper modeling of this data poses significant challenges for any attempt
  9137. at a machine learning on data of similar quality.
  9138. While these are easily used in a modeling context with full sample information,
  9139. neither of these methods is directly applicable in a machine learning context,
  9140. where the diagnosis is not known ahead of time.
  9141. If a machine learning approach for methylation-based diagnosis is to be
  9142. pursued, it will either require machine-learning-friendly methods to address
  9143. the same systematic trends in the data that SVA and sample quality weighting
  9144. address, or it will require higher quality data with substantially less
  9145. systematic perturbation of the data.
  9146. \end_layout
  9147. \begin_layout Section
  9148. Future Directions
  9149. \end_layout
  9150. \begin_layout Standard
  9151. \begin_inset Flex TODO Note (inline)
  9152. status open
  9153. \begin_layout Plain Layout
  9154. Some work was already being done with the existing fRMA vectors.
  9155. Do I mention that here?
  9156. \end_layout
  9157. \end_inset
  9158. \end_layout
  9159. \begin_layout Subsection
  9160. Improving fRMA to allow training from batches of unequal size
  9161. \end_layout
  9162. \begin_layout Standard
  9163. Because the tools for building fRMA normalization vectors require equal-size
  9164. batches, many samples must be discarded from the training data.
  9165. This is undesirable for a few reasons.
  9166. First, more data is simply better, all other things being equal.
  9167. In this case,
  9168. \begin_inset Quotes eld
  9169. \end_inset
  9170. better
  9171. \begin_inset Quotes erd
  9172. \end_inset
  9173. means a more precise estimate of normalization parameters.
  9174. In addition, the samples to be discarded must be chosen arbitrarily, which
  9175. introduces an unnecessary element of randomness into the estimation process.
  9176. While the randomness can be made deterministic by setting a consistent
  9177. random seed, the need for equal size batches also introduces a need for
  9178. the analyst to decide on the appropriate trade-off between batch size and
  9179. the number of batches.
  9180. This introduces an unnecessary and undesirable
  9181. \begin_inset Quotes eld
  9182. \end_inset
  9183. researcher degree of freedom
  9184. \begin_inset Quotes erd
  9185. \end_inset
  9186. into the analysis, since the generated normalization vectors now depend
  9187. on the choice of batch size based on vague selection criteria and instinct,
  9188. which can unintentionally inproduce bias if the researcher chooses a batch
  9189. size based on what seems to yield the most favorable downstream results
  9190. \begin_inset CommandInset citation
  9191. LatexCommand cite
  9192. key "Simmons2011"
  9193. literal "false"
  9194. \end_inset
  9195. .
  9196. \end_layout
  9197. \begin_layout Standard
  9198. Fortunately, the requirement for equal-size batches is not inherent to the
  9199. fRMA algorithm but rather a limitation of the implementation in the frmaTools
  9200. package.
  9201. In personal communication, the package's author, Matthew McCall, has indicated
  9202. that with some work, it should be possible to improve the implementation
  9203. to work with batches of unequal sizes.
  9204. The current implementation ignores the batch size when calculating with-batch
  9205. and between-batch residual variances, since the batch size constant cancels
  9206. out later in the calculations as long as all batches are of equal size.
  9207. Hence, the calculations of these parameters would need to be modified to
  9208. remove this optimization and properly calculate the variances using the
  9209. full formula.
  9210. Once this modification is made, a new strategy would need to be developed
  9211. for assessing the stability of parameter estimates, since the random subsamplin
  9212. g step is eliminated, meaning that different subsamplings can no longer
  9213. be compared as in Figures
  9214. \begin_inset CommandInset ref
  9215. LatexCommand ref
  9216. reference "fig:frma-violin"
  9217. plural "false"
  9218. caps "false"
  9219. noprefix "false"
  9220. \end_inset
  9221. and
  9222. \begin_inset CommandInset ref
  9223. LatexCommand ref
  9224. reference "fig:Representative-MA-plots"
  9225. plural "false"
  9226. caps "false"
  9227. noprefix "false"
  9228. \end_inset
  9229. .
  9230. Bootstrap resampling is likely a good candidate here: sample many training
  9231. sets of equal size from the existing training set with replacement, estimate
  9232. parameters from each resampled training set, and compare the estimated
  9233. parameters between bootstraps in order to quantify the variability in each
  9234. parameter's estimation.
  9235. \end_layout
  9236. \begin_layout Subsection
  9237. Developing methylation arrays as a diagnostic tool for kidney transplant
  9238. rejection
  9239. \end_layout
  9240. \begin_layout Standard
  9241. The current study has showed that DNA methylation, as assayed by Illumina
  9242. 450k methylation arrays, has some potential for diagnosing transplant dysfuncti
  9243. ons, including rejection.
  9244. However, very few probes could be confidently identified as differentially
  9245. methylated between healthy and dysfunctional transplants.
  9246. One likely explanation for this is the predominant influence of unobserved
  9247. confounding factors.
  9248. SVA can model and correct for such factors, but the correction can never
  9249. be perfect, so some degree of unwanted systematic variation will always
  9250. remain after SVA correction.
  9251. If the effect size of the confounding factors was similar to that of the
  9252. factor of interest (in this case, transplant status), this would be an
  9253. acceptable limitation, since removing most of the confounding factors'
  9254. effects would allow the main effect to stand out.
  9255. However, in this data set, the confounding factors have a much larger effect
  9256. size than transplant status, which means that the small degree of remaining
  9257. variation not removed by SVA can still swamp the effect of interest, making
  9258. it difficult to detect.
  9259. This is, of course, a major issue when the end goal is to develop a classifier
  9260. to diagnose transplant rejection from methylation data, since batch-correction
  9261. methods like SVA that work in a linear modeling context cannot be applied
  9262. in a machine learning context.
  9263. \end_layout
  9264. \begin_layout Standard
  9265. Currently, the source of these unwanted systematic variations in the data
  9266. is unknown.
  9267. The best solution would be to determine the cause of the variation and
  9268. eliminate it, thereby eliminating the need to model and remove that variation.
  9269. However, if this proves impractical, another option is to use SVA to identify
  9270. probes that are highly associated with the surrogate variables that describe
  9271. the unwanted variation in the data.
  9272. These probes could be discarded prior to classifier training, in order
  9273. to maximize the chance that the training algorithm will be able to identify
  9274. highly predictive probes from those remaining.
  9275. Lastly, it is possible that some of this unwanted variation is a result
  9276. of the array-based assay being used and would be eliminated by switching
  9277. to assaying DNA methylation using bisulphite sequencing.
  9278. However, this carries the risk that the sequencing assay will have its
  9279. own set of biases that must be corrected for in a different way.
  9280. \end_layout
  9281. \begin_layout Chapter
  9282. Globin-blocking for more effective blood RNA-seq analysis in primate animal
  9283. model
  9284. \end_layout
  9285. \begin_layout Standard
  9286. \begin_inset Flex TODO Note (inline)
  9287. status open
  9288. \begin_layout Plain Layout
  9289. Choose between above and the paper title: Optimizing yield of deep RNA sequencin
  9290. g for gene expression profiling by globin reduction of peripheral blood
  9291. samples from cynomolgus monkeys (Macaca fascicularis).
  9292. \end_layout
  9293. \end_inset
  9294. \end_layout
  9295. \begin_layout Standard
  9296. \begin_inset Flex TODO Note (inline)
  9297. status open
  9298. \begin_layout Plain Layout
  9299. Chapter author list: https://tex.stackexchange.com/questions/156862/displaying-aut
  9300. hor-for-each-chapter-in-book Every chapter gets an author list, which may
  9301. or may not be part of a citation to a published/preprinted paper.
  9302. \end_layout
  9303. \end_inset
  9304. \end_layout
  9305. \begin_layout Standard
  9306. \begin_inset Flex TODO Note (inline)
  9307. status open
  9308. \begin_layout Plain Layout
  9309. Preprint then cite the paper
  9310. \end_layout
  9311. \end_inset
  9312. \end_layout
  9313. \begin_layout Section*
  9314. Abstract
  9315. \end_layout
  9316. \begin_layout Paragraph
  9317. Background
  9318. \end_layout
  9319. \begin_layout Standard
  9320. Primate blood contains high concentrations of globin messenger RNA.
  9321. Globin reduction is a standard technique used to improve the expression
  9322. results obtained by DNA microarrays on RNA from blood samples.
  9323. However, with whole transcriptome RNA-sequencing (RNA-seq) quickly replacing
  9324. microarrays for many applications, the impact of globin reduction for RNA-seq
  9325. has not been previously studied.
  9326. Moreover, no off-the-shelf kits are available for globin reduction in nonhuman
  9327. primates.
  9328. \end_layout
  9329. \begin_layout Paragraph
  9330. Results
  9331. \end_layout
  9332. \begin_layout Standard
  9333. Here we report a protocol for RNA-seq in primate blood samples that uses
  9334. complimentary oligonucleotides to block reverse transcription of the alpha
  9335. and beta globin genes.
  9336. In test samples from cynomolgus monkeys (Macaca fascicularis), this globin
  9337. blocking protocol approximately doubles the yield of informative (non-globin)
  9338. reads by greatly reducing the fraction of globin reads, while also improving
  9339. the consistency in sequencing depth between samples.
  9340. The increased yield enables detection of about 2000 more genes, significantly
  9341. increases the correlation in measured gene expression levels between samples,
  9342. and increases the sensitivity of differential gene expression tests.
  9343. \end_layout
  9344. \begin_layout Paragraph
  9345. Conclusions
  9346. \end_layout
  9347. \begin_layout Standard
  9348. These results show that globin blocking significantly improves the cost-effectiv
  9349. eness of mRNA sequencing in primate blood samples by doubling the yield
  9350. of useful reads, allowing detection of more genes, and improving the precision
  9351. of gene expression measurements.
  9352. Based on these results, a globin reducing or blocking protocol is recommended
  9353. for all RNA-seq studies of primate blood samples.
  9354. \end_layout
  9355. \begin_layout Section
  9356. Approach
  9357. \end_layout
  9358. \begin_layout Standard
  9359. \begin_inset Note Note
  9360. status open
  9361. \begin_layout Plain Layout
  9362. Consider putting some of this in the Intro chapter
  9363. \end_layout
  9364. \begin_layout Itemize
  9365. Cynomolgus monkeys as a model organism
  9366. \end_layout
  9367. \begin_deeper
  9368. \begin_layout Itemize
  9369. Highly related to humans
  9370. \end_layout
  9371. \begin_layout Itemize
  9372. Small size and short life cycle - good research animal
  9373. \end_layout
  9374. \begin_layout Itemize
  9375. Genomics resources still in development
  9376. \end_layout
  9377. \end_deeper
  9378. \begin_layout Itemize
  9379. Inadequacy of existing blood RNA-seq protocols
  9380. \end_layout
  9381. \begin_deeper
  9382. \begin_layout Itemize
  9383. Existing protocols use a separate globin pulldown step, slowing down processing
  9384. \end_layout
  9385. \end_deeper
  9386. \end_inset
  9387. \end_layout
  9388. \begin_layout Standard
  9389. Increasingly, researchers are turning to high-throughput mRNA sequencing
  9390. technologies (RNA-seq) in preference to expression microarrays for analysis
  9391. of gene expression
  9392. \begin_inset CommandInset citation
  9393. LatexCommand cite
  9394. key "Mutz2012"
  9395. literal "false"
  9396. \end_inset
  9397. .
  9398. The advantages are even greater for study of model organisms with no well-estab
  9399. lished array platforms available, such as the cynomolgus monkey (Macaca
  9400. fascicularis).
  9401. High fractions of globin mRNA are naturally present in mammalian peripheral
  9402. blood samples (up to 70% of total mRNA) and these are known to interfere
  9403. with the results of array-based expression profiling
  9404. \begin_inset CommandInset citation
  9405. LatexCommand cite
  9406. key "Winn2010"
  9407. literal "false"
  9408. \end_inset
  9409. .
  9410. The importance of globin reduction for RNA-seq of blood has only been evaluated
  9411. for a deepSAGE protocol on human samples
  9412. \begin_inset CommandInset citation
  9413. LatexCommand cite
  9414. key "Mastrokolias2012"
  9415. literal "false"
  9416. \end_inset
  9417. .
  9418. In the present report, we evaluated globin reduction using custom blocking
  9419. oligonucleotides for deep RNA-seq of peripheral blood samples from a nonhuman
  9420. primate, cynomolgus monkey, using the Illumina technology platform.
  9421. We demonstrate that globin reduction significantly improves the cost-effectiven
  9422. ess of RNA-seq in blood samples.
  9423. Thus, our protocol offers a significant advantage to any investigator planning
  9424. to use RNA-seq for gene expression profiling of nonhuman primate blood
  9425. samples.
  9426. Our method can be generally applied to any species by designing complementary
  9427. oligonucleotide blocking probes to the globin gene sequences of that species.
  9428. Indeed, any highly expressed but biologically uninformative transcripts
  9429. can also be blocked to further increase sequencing efficiency and value
  9430. \begin_inset CommandInset citation
  9431. LatexCommand cite
  9432. key "Arnaud2016"
  9433. literal "false"
  9434. \end_inset
  9435. .
  9436. \end_layout
  9437. \begin_layout Section
  9438. Methods
  9439. \end_layout
  9440. \begin_layout Subsection
  9441. Sample collection
  9442. \end_layout
  9443. \begin_layout Standard
  9444. All research reported here was done under IACUC-approved protocols at the
  9445. University of Miami and complied with all applicable federal and state
  9446. regulations and ethical principles for nonhuman primate research.
  9447. Blood draws occurred between 16 April 2012 and 18 June 2015.
  9448. The experimental system involved intrahepatic pancreatic islet transplantation
  9449. into Cynomolgus monkeys with induced diabetes mellitus with or without
  9450. concomitant infusion of mesenchymal stem cells.
  9451. Blood was collected at serial time points before and after transplantation
  9452. into PAXgene Blood RNA tubes (PreAnalytiX/Qiagen, Valencia, CA) at the
  9453. precise volume:volume ratio of 2.5 ml whole blood into 6.9 ml of PAX gene
  9454. additive.
  9455. \end_layout
  9456. \begin_layout Subsection
  9457. Globin Blocking
  9458. \end_layout
  9459. \begin_layout Standard
  9460. Four oligonucleotides were designed to hybridize to the 3’ end of the transcript
  9461. s for Cynomolgus HBA1, HBA2 and HBB, with two hybridization sites for HBB
  9462. and 2 sites for HBA (the chosen sites were identical in both HBA genes).
  9463. All oligos were purchased from Sigma and were entirely composed of 2’O-Me
  9464. bases with a C3 spacer positioned at the 3’ ends to prevent any polymerase
  9465. mediated primer extension.
  9466. \end_layout
  9467. \begin_layout Quote
  9468. HBA1/2 site 1: GCCCACUCAGACUUUAUUCAAAG-C3spacer
  9469. \end_layout
  9470. \begin_layout Quote
  9471. HBA1/2 site 2: GGUGCAAGGAGGGGAGGAG-C3spacer
  9472. \end_layout
  9473. \begin_layout Quote
  9474. HBB site 1: AAUGAAAAUAAAUGUUUUUUAUUAG-C3spacer
  9475. \end_layout
  9476. \begin_layout Quote
  9477. HBB site 2: CUCAAGGCCCUUCAUAAUAUCCC-C3spacer
  9478. \end_layout
  9479. \begin_layout Subsection
  9480. RNA-seq Library Preparation
  9481. \end_layout
  9482. \begin_layout Standard
  9483. Sequencing libraries were prepared with 200ng total RNA from each sample.
  9484. Polyadenylated mRNA was selected from 200 ng aliquots of cynomologus blood-deri
  9485. ved total RNA using Ambion Dynabeads Oligo(dT)25 beads (Invitrogen) following
  9486. manufacturer’s recommended protocol.
  9487. PolyA selected RNA was then combined with 8 pmol of HBA1/2 (site 1), 8
  9488. pmol of HBA1/2 (site 2), 12 pmol of HBB (site 1) and 12 pmol of HBB (site
  9489. 2) oligonucleotides.
  9490. In addition, 20 pmol of RT primer containing a portion of the Illumina
  9491. adapter sequence (B-oligo-dTV: GAGTTCCTTGGCACCCGAGAATTCCATTTTTTTTTTTTTTTTTTTV)
  9492. and 4 µL of 5X First Strand buffer (250 mM Tris-HCl pH 8.3, 375 mM KCl,
  9493. 15mM MgCl2) were added in a total volume of 15 µL.
  9494. The RNA was fragmented by heating this cocktail for 3 minutes at 95°C and
  9495. then placed on ice.
  9496. This was followed by the addition of 2 µL 0.1 M DTT, 1 µL RNaseOUT, 1 µL
  9497. 10mM dNTPs 10% biotin-16 aminoallyl-2’- dUTP and 10% biotin-16 aminoallyl-2’-
  9498. dCTP (TriLink Biotech, San Diego, CA), 1 µL Superscript II (200U/ µL, Thermo-Fi
  9499. sher).
  9500. A second “unblocked” library was prepared in the same way for each sample
  9501. but replacing the blocking oligos with an equivalent volume of water.
  9502. The reaction was carried out at 25°C for 15 minutes and 42°C for 40 minutes,
  9503. followed by incubation at 75°C for 10 minutes to inactivate the reverse
  9504. transcriptase.
  9505. \end_layout
  9506. \begin_layout Standard
  9507. The cDNA/RNA hybrid molecules were purified using 1.8X Ampure XP beads (Agencourt
  9508. ) following supplier’s recommended protocol.
  9509. The cDNA/RNA hybrid was eluted in 25 µL of 10 mM Tris-HCl pH 8.0, and then
  9510. bound to 25 µL of M280 Magnetic Streptavidin beads washed per recommended
  9511. protocol (Thermo-Fisher).
  9512. After 30 minutes of binding, beads were washed one time in 100 µL 0.1N NaOH
  9513. to denature and remove the bound RNA, followed by two 100 µL washes with
  9514. 1X TE buffer.
  9515. \end_layout
  9516. \begin_layout Standard
  9517. Subsequent attachment of the 5-prime Illumina A adapter was performed by
  9518. on-bead random primer extension of the following sequence (A-N8 primer:
  9519. TTCAGAGTTCTACAGTCCGACGATCNNNNNNNN).
  9520. Briefly, beads were resuspended in a 20 µL reaction containing 5 µM A-N8
  9521. primer, 40mM Tris-HCl pH 7.5, 20mM MgCl2, 50mM NaCl, 0.325U/µL Sequenase
  9522. 2.0 (Affymetrix, Santa Clara, CA), 0.0025U/µL inorganic pyrophosphatase (Affymetr
  9523. ix) and 300 µM each dNTP.
  9524. Reaction was incubated at 22°C for 30 minutes, then beads were washed 2
  9525. times with 1X TE buffer (200µL).
  9526. \end_layout
  9527. \begin_layout Standard
  9528. The magnetic streptavidin beads were resuspended in 34 µL nuclease-free
  9529. water and added directly to a PCR tube.
  9530. The two Illumina protocol-specified PCR primers were added at 0.53 µM (Illumina
  9531. TruSeq Universal Primer 1 and Illumina TruSeq barcoded PCR primer 2), along
  9532. with 40 µL 2X KAPA HiFi Hotstart ReadyMix (KAPA, Willmington MA) and thermocycl
  9533. ed as follows: starting with 98°C (2 min-hold); 15 cycles of 98°C, 20sec;
  9534. 60°C, 30sec; 72°C, 30sec; and finished with a 72°C (2 min-hold).
  9535. \end_layout
  9536. \begin_layout Standard
  9537. PCR products were purified with 1X Ampure Beads following manufacturer’s
  9538. recommended protocol.
  9539. Libraries were then analyzed using the Agilent TapeStation and quantitation
  9540. of desired size range was performed by “smear analysis”.
  9541. Samples were pooled in equimolar batches of 16 samples.
  9542. Pooled libraries were size selected on 2% agarose gels (E-Gel EX Agarose
  9543. Gels; Thermo-Fisher).
  9544. Products were cut between 250 and 350 bp (corresponding to insert sizes
  9545. of 130 to 230 bps).
  9546. Finished library pools were then sequenced on the Illumina NextSeq500 instrumen
  9547. t with 75 base read lengths.
  9548. \end_layout
  9549. \begin_layout Subsection
  9550. Read alignment and counting
  9551. \end_layout
  9552. \begin_layout Standard
  9553. Reads were aligned to the cynomolgus genome using STAR
  9554. \begin_inset CommandInset citation
  9555. LatexCommand cite
  9556. key "Dobin2013,Wilson2013"
  9557. literal "false"
  9558. \end_inset
  9559. .
  9560. Counts of uniquely mapped reads were obtained for every gene in each sample
  9561. with the “featureCounts” function from the Rsubread package, using each
  9562. of the three possibilities for the “strandSpecific” option: sense, antisense,
  9563. and unstranded
  9564. \begin_inset CommandInset citation
  9565. LatexCommand cite
  9566. key "Liao2014"
  9567. literal "false"
  9568. \end_inset
  9569. .
  9570. A few artifacts in the cynomolgus genome annotation complicated read counting.
  9571. First, no ortholog is annotated for alpha globin in the cynomolgus genome,
  9572. presumably because the human genome has two alpha globin genes with nearly
  9573. identical sequences, making the orthology relationship ambiguous.
  9574. However, two loci in the cynomolgus genome are as “hemoglobin subunit alpha-lik
  9575. e” (LOC102136192 and LOC102136846).
  9576. LOC102136192 is annotated as a pseudogene while LOC102136846 is annotated
  9577. as protein-coding.
  9578. Our globin reduction protocol was designed to include blocking of these
  9579. two genes.
  9580. Indeed, these two genes have almost the same read counts in each library
  9581. as the properly-annotated HBB gene and much larger counts than any other
  9582. gene in the unblocked libraries, giving confidence that reads derived from
  9583. the real alpha globin are mapping to both genes.
  9584. Thus, reads from both of these loci were counted as alpha globin reads
  9585. in all further analyses.
  9586. The second artifact is a small, uncharacterized non-coding RNA gene (LOC1021365
  9587. 91), which overlaps the HBA-like gene (LOC102136192) on the opposite strand.
  9588. If counting is not performed in stranded mode (or if a non-strand-specific
  9589. sequencing protocol is used), many reads mapping to the globin gene will
  9590. be discarded as ambiguous due to their overlap with this ncRNA gene, resulting
  9591. in significant undercounting of globin reads.
  9592. Therefore, stranded sense counts were used for all further analysis in
  9593. the present study to insure that we accurately accounted for globin transcript
  9594. reduction.
  9595. However, we note that stranded reads are not necessary for RNA-seq using
  9596. our protocol in standard practice.
  9597. \end_layout
  9598. \begin_layout Subsection
  9599. Normalization and Exploratory Data Analysis
  9600. \end_layout
  9601. \begin_layout Standard
  9602. Libraries were normalized by computing scaling factors using the edgeR package’s
  9603. Trimmed Mean of M-values method
  9604. \begin_inset CommandInset citation
  9605. LatexCommand cite
  9606. key "Robinson2010"
  9607. literal "false"
  9608. \end_inset
  9609. .
  9610. Log2 counts per million values (logCPM) were calculated using the cpm function
  9611. in edgeR for individual samples and aveLogCPM function for averages across
  9612. groups of samples, using those functions’ default prior count values to
  9613. avoid taking the logarithm of 0.
  9614. Genes were considered “present” if their average normalized logCPM values
  9615. across all libraries were at least -1.
  9616. Normalizing for gene length was unnecessary because the sequencing protocol
  9617. is 3’-biased and hence the expected read count for each gene is related
  9618. to the transcript’s copy number but not its length.
  9619. \end_layout
  9620. \begin_layout Standard
  9621. In order to assess the effect of blocking on reproducibility, Pearson and
  9622. Spearman correlation coefficients were computed between the logCPM values
  9623. for every pair of libraries within the globin-blocked (GB) and unblocked
  9624. (non-GB) groups, and edgeR's “estimateDisp” function was used to compute
  9625. negative binomial dispersions separately for the two groups
  9626. \begin_inset CommandInset citation
  9627. LatexCommand cite
  9628. key "Chen2014"
  9629. literal "false"
  9630. \end_inset
  9631. .
  9632. \end_layout
  9633. \begin_layout Subsection
  9634. Differential Expression Analysis
  9635. \end_layout
  9636. \begin_layout Standard
  9637. All tests for differential gene expression were performed using edgeR, by
  9638. first fitting a negative binomial generalized linear model to the counts
  9639. and normalization factors and then performing a quasi-likelihood F-test
  9640. with robust estimation of outlier gene dispersions
  9641. \begin_inset CommandInset citation
  9642. LatexCommand cite
  9643. key "Lund2012,Phipson2016"
  9644. literal "false"
  9645. \end_inset
  9646. .
  9647. To investigate the effects of globin blocking on each gene, an additive
  9648. model was fit to the full data with coefficients for globin blocking and
  9649. SampleID.
  9650. To test the effect of globin blocking on detection of differentially expressed
  9651. genes, the GB samples and non-GB samples were each analyzed independently
  9652. as follows: for each animal with both a pre-transplant and a post-transplant
  9653. time point in the data set, the pre-transplant sample and the earliest
  9654. post-transplant sample were selected, and all others were excluded, yielding
  9655. a pre-/post-transplant pair of samples for each animal (N=7 animals with
  9656. paired samples).
  9657. These samples were analyzed for pre-transplant vs.
  9658. post-transplant differential gene expression while controlling for inter-animal
  9659. variation using an additive model with coefficients for transplant and
  9660. animal ID.
  9661. In all analyses, p-values were adjusted using the Benjamini-Hochberg procedure
  9662. for FDR control
  9663. \begin_inset CommandInset citation
  9664. LatexCommand cite
  9665. key "Benjamini1995"
  9666. literal "false"
  9667. \end_inset
  9668. .
  9669. \end_layout
  9670. \begin_layout Standard
  9671. \begin_inset Note Note
  9672. status open
  9673. \begin_layout Itemize
  9674. New blood RNA-seq protocol to block reverse transcription of globin genes
  9675. \end_layout
  9676. \begin_layout Itemize
  9677. Blood RNA-seq time course after transplants with/without MSC infusion
  9678. \end_layout
  9679. \end_inset
  9680. \end_layout
  9681. \begin_layout Section
  9682. Results
  9683. \end_layout
  9684. \begin_layout Subsection
  9685. Globin blocking yields a larger and more consistent fraction of useful reads
  9686. \end_layout
  9687. \begin_layout Standard
  9688. \begin_inset ERT
  9689. status open
  9690. \begin_layout Plain Layout
  9691. \backslash
  9692. afterpage{
  9693. \end_layout
  9694. \begin_layout Plain Layout
  9695. \backslash
  9696. begin{landscape}
  9697. \end_layout
  9698. \end_inset
  9699. \end_layout
  9700. \begin_layout Standard
  9701. \begin_inset Float table
  9702. placement p
  9703. wide false
  9704. sideways false
  9705. status open
  9706. \begin_layout Plain Layout
  9707. \align center
  9708. \begin_inset Tabular
  9709. <lyxtabular version="3" rows="4" columns="7">
  9710. <features tabularvalignment="middle">
  9711. <column alignment="center" valignment="top">
  9712. <column alignment="center" valignment="top">
  9713. <column alignment="center" valignment="top">
  9714. <column alignment="center" valignment="top">
  9715. <column alignment="center" valignment="top">
  9716. <column alignment="center" valignment="top">
  9717. <column alignment="center" valignment="top">
  9718. <row>
  9719. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  9720. \begin_inset Text
  9721. \begin_layout Plain Layout
  9722. \end_layout
  9723. \end_inset
  9724. </cell>
  9725. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  9726. \begin_inset Text
  9727. \begin_layout Plain Layout
  9728. \family roman
  9729. \series medium
  9730. \shape up
  9731. \size normal
  9732. \emph off
  9733. \bar no
  9734. \strikeout off
  9735. \xout off
  9736. \uuline off
  9737. \uwave off
  9738. \noun off
  9739. \color none
  9740. Percent of Total Reads
  9741. \end_layout
  9742. \end_inset
  9743. </cell>
  9744. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  9745. \begin_inset Text
  9746. \begin_layout Plain Layout
  9747. \end_layout
  9748. \end_inset
  9749. </cell>
  9750. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  9751. \begin_inset Text
  9752. \begin_layout Plain Layout
  9753. \end_layout
  9754. \end_inset
  9755. </cell>
  9756. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  9757. \begin_inset Text
  9758. \begin_layout Plain Layout
  9759. \end_layout
  9760. \end_inset
  9761. </cell>
  9762. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  9763. \begin_inset Text
  9764. \begin_layout Plain Layout
  9765. \family roman
  9766. \series medium
  9767. \shape up
  9768. \size normal
  9769. \emph off
  9770. \bar no
  9771. \strikeout off
  9772. \xout off
  9773. \uuline off
  9774. \uwave off
  9775. \noun off
  9776. \color none
  9777. Percent of Genic Reads
  9778. \end_layout
  9779. \end_inset
  9780. </cell>
  9781. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  9782. \begin_inset Text
  9783. \begin_layout Plain Layout
  9784. \end_layout
  9785. \end_inset
  9786. </cell>
  9787. </row>
  9788. <row>
  9789. <cell alignment="center" valignment="top" bottomline="true" leftline="true" usebox="none">
  9790. \begin_inset Text
  9791. \begin_layout Plain Layout
  9792. GB
  9793. \end_layout
  9794. \end_inset
  9795. </cell>
  9796. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  9797. \begin_inset Text
  9798. \begin_layout Plain Layout
  9799. \family roman
  9800. \series medium
  9801. \shape up
  9802. \size normal
  9803. \emph off
  9804. \bar no
  9805. \strikeout off
  9806. \xout off
  9807. \uuline off
  9808. \uwave off
  9809. \noun off
  9810. \color none
  9811. Non-globin Reads
  9812. \end_layout
  9813. \end_inset
  9814. </cell>
  9815. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  9816. \begin_inset Text
  9817. \begin_layout Plain Layout
  9818. \family roman
  9819. \series medium
  9820. \shape up
  9821. \size normal
  9822. \emph off
  9823. \bar no
  9824. \strikeout off
  9825. \xout off
  9826. \uuline off
  9827. \uwave off
  9828. \noun off
  9829. \color none
  9830. Globin Reads
  9831. \end_layout
  9832. \end_inset
  9833. </cell>
  9834. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  9835. \begin_inset Text
  9836. \begin_layout Plain Layout
  9837. \family roman
  9838. \series medium
  9839. \shape up
  9840. \size normal
  9841. \emph off
  9842. \bar no
  9843. \strikeout off
  9844. \xout off
  9845. \uuline off
  9846. \uwave off
  9847. \noun off
  9848. \color none
  9849. All Genic Reads
  9850. \end_layout
  9851. \end_inset
  9852. </cell>
  9853. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  9854. \begin_inset Text
  9855. \begin_layout Plain Layout
  9856. \family roman
  9857. \series medium
  9858. \shape up
  9859. \size normal
  9860. \emph off
  9861. \bar no
  9862. \strikeout off
  9863. \xout off
  9864. \uuline off
  9865. \uwave off
  9866. \noun off
  9867. \color none
  9868. All Aligned Reads
  9869. \end_layout
  9870. \end_inset
  9871. </cell>
  9872. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  9873. \begin_inset Text
  9874. \begin_layout Plain Layout
  9875. \family roman
  9876. \series medium
  9877. \shape up
  9878. \size normal
  9879. \emph off
  9880. \bar no
  9881. \strikeout off
  9882. \xout off
  9883. \uuline off
  9884. \uwave off
  9885. \noun off
  9886. \color none
  9887. Non-globin Reads
  9888. \end_layout
  9889. \end_inset
  9890. </cell>
  9891. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  9892. \begin_inset Text
  9893. \begin_layout Plain Layout
  9894. \family roman
  9895. \series medium
  9896. \shape up
  9897. \size normal
  9898. \emph off
  9899. \bar no
  9900. \strikeout off
  9901. \xout off
  9902. \uuline off
  9903. \uwave off
  9904. \noun off
  9905. \color none
  9906. Globin Reads
  9907. \end_layout
  9908. \end_inset
  9909. </cell>
  9910. </row>
  9911. <row>
  9912. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  9913. \begin_inset Text
  9914. \begin_layout Plain Layout
  9915. \family roman
  9916. \series medium
  9917. \shape up
  9918. \size normal
  9919. \emph off
  9920. \bar no
  9921. \strikeout off
  9922. \xout off
  9923. \uuline off
  9924. \uwave off
  9925. \noun off
  9926. \color none
  9927. Yes
  9928. \end_layout
  9929. \end_inset
  9930. </cell>
  9931. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  9932. \begin_inset Text
  9933. \begin_layout Plain Layout
  9934. \family roman
  9935. \series medium
  9936. \shape up
  9937. \size normal
  9938. \emph off
  9939. \bar no
  9940. \strikeout off
  9941. \xout off
  9942. \uuline off
  9943. \uwave off
  9944. \noun off
  9945. \color none
  9946. 50.4% ± 6.82
  9947. \end_layout
  9948. \end_inset
  9949. </cell>
  9950. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  9951. \begin_inset Text
  9952. \begin_layout Plain Layout
  9953. \family roman
  9954. \series medium
  9955. \shape up
  9956. \size normal
  9957. \emph off
  9958. \bar no
  9959. \strikeout off
  9960. \xout off
  9961. \uuline off
  9962. \uwave off
  9963. \noun off
  9964. \color none
  9965. 3.48% ± 2.94
  9966. \end_layout
  9967. \end_inset
  9968. </cell>
  9969. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  9970. \begin_inset Text
  9971. \begin_layout Plain Layout
  9972. \family roman
  9973. \series medium
  9974. \shape up
  9975. \size normal
  9976. \emph off
  9977. \bar no
  9978. \strikeout off
  9979. \xout off
  9980. \uuline off
  9981. \uwave off
  9982. \noun off
  9983. \color none
  9984. 53.9% ± 6.81
  9985. \end_layout
  9986. \end_inset
  9987. </cell>
  9988. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  9989. \begin_inset Text
  9990. \begin_layout Plain Layout
  9991. \family roman
  9992. \series medium
  9993. \shape up
  9994. \size normal
  9995. \emph off
  9996. \bar no
  9997. \strikeout off
  9998. \xout off
  9999. \uuline off
  10000. \uwave off
  10001. \noun off
  10002. \color none
  10003. 89.7% ± 2.40
  10004. \end_layout
  10005. \end_inset
  10006. </cell>
  10007. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10008. \begin_inset Text
  10009. \begin_layout Plain Layout
  10010. \family roman
  10011. \series medium
  10012. \shape up
  10013. \size normal
  10014. \emph off
  10015. \bar no
  10016. \strikeout off
  10017. \xout off
  10018. \uuline off
  10019. \uwave off
  10020. \noun off
  10021. \color none
  10022. 93.5% ± 5.25
  10023. \end_layout
  10024. \end_inset
  10025. </cell>
  10026. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  10027. \begin_inset Text
  10028. \begin_layout Plain Layout
  10029. \family roman
  10030. \series medium
  10031. \shape up
  10032. \size normal
  10033. \emph off
  10034. \bar no
  10035. \strikeout off
  10036. \xout off
  10037. \uuline off
  10038. \uwave off
  10039. \noun off
  10040. \color none
  10041. 6.49% ± 5.25
  10042. \end_layout
  10043. \end_inset
  10044. </cell>
  10045. </row>
  10046. <row>
  10047. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10048. \begin_inset Text
  10049. \begin_layout Plain Layout
  10050. \family roman
  10051. \series medium
  10052. \shape up
  10053. \size normal
  10054. \emph off
  10055. \bar no
  10056. \strikeout off
  10057. \xout off
  10058. \uuline off
  10059. \uwave off
  10060. \noun off
  10061. \color none
  10062. No
  10063. \end_layout
  10064. \end_inset
  10065. </cell>
  10066. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10067. \begin_inset Text
  10068. \begin_layout Plain Layout
  10069. \family roman
  10070. \series medium
  10071. \shape up
  10072. \size normal
  10073. \emph off
  10074. \bar no
  10075. \strikeout off
  10076. \xout off
  10077. \uuline off
  10078. \uwave off
  10079. \noun off
  10080. \color none
  10081. 26.3% ± 8.95
  10082. \end_layout
  10083. \end_inset
  10084. </cell>
  10085. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10086. \begin_inset Text
  10087. \begin_layout Plain Layout
  10088. \family roman
  10089. \series medium
  10090. \shape up
  10091. \size normal
  10092. \emph off
  10093. \bar no
  10094. \strikeout off
  10095. \xout off
  10096. \uuline off
  10097. \uwave off
  10098. \noun off
  10099. \color none
  10100. 44.6% ± 16.6
  10101. \end_layout
  10102. \end_inset
  10103. </cell>
  10104. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10105. \begin_inset Text
  10106. \begin_layout Plain Layout
  10107. \family roman
  10108. \series medium
  10109. \shape up
  10110. \size normal
  10111. \emph off
  10112. \bar no
  10113. \strikeout off
  10114. \xout off
  10115. \uuline off
  10116. \uwave off
  10117. \noun off
  10118. \color none
  10119. 70.1% ± 9.38
  10120. \end_layout
  10121. \end_inset
  10122. </cell>
  10123. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10124. \begin_inset Text
  10125. \begin_layout Plain Layout
  10126. \family roman
  10127. \series medium
  10128. \shape up
  10129. \size normal
  10130. \emph off
  10131. \bar no
  10132. \strikeout off
  10133. \xout off
  10134. \uuline off
  10135. \uwave off
  10136. \noun off
  10137. \color none
  10138. 90.7% ± 5.16
  10139. \end_layout
  10140. \end_inset
  10141. </cell>
  10142. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10143. \begin_inset Text
  10144. \begin_layout Plain Layout
  10145. \family roman
  10146. \series medium
  10147. \shape up
  10148. \size normal
  10149. \emph off
  10150. \bar no
  10151. \strikeout off
  10152. \xout off
  10153. \uuline off
  10154. \uwave off
  10155. \noun off
  10156. \color none
  10157. 38.8% ± 17.1
  10158. \end_layout
  10159. \end_inset
  10160. </cell>
  10161. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  10162. \begin_inset Text
  10163. \begin_layout Plain Layout
  10164. \family roman
  10165. \series medium
  10166. \shape up
  10167. \size normal
  10168. \emph off
  10169. \bar no
  10170. \strikeout off
  10171. \xout off
  10172. \uuline off
  10173. \uwave off
  10174. \noun off
  10175. \color none
  10176. 61.2% ± 17.1
  10177. \end_layout
  10178. \end_inset
  10179. </cell>
  10180. </row>
  10181. </lyxtabular>
  10182. \end_inset
  10183. \end_layout
  10184. \begin_layout Plain Layout
  10185. \begin_inset Caption Standard
  10186. \begin_layout Plain Layout
  10187. \series bold
  10188. \begin_inset Argument 1
  10189. status collapsed
  10190. \begin_layout Plain Layout
  10191. Fractions of reads mapping to genomic features in GB and non-GB samples.
  10192. \end_layout
  10193. \end_inset
  10194. \begin_inset CommandInset label
  10195. LatexCommand label
  10196. name "tab:Fractions-of-reads"
  10197. \end_inset
  10198. Fractions of reads mapping to genomic features in GB and non-GB samples.
  10199. \series default
  10200. All values are given as mean ± standard deviation.
  10201. \end_layout
  10202. \end_inset
  10203. \end_layout
  10204. \end_inset
  10205. \end_layout
  10206. \begin_layout Standard
  10207. \begin_inset ERT
  10208. status open
  10209. \begin_layout Plain Layout
  10210. \backslash
  10211. end{landscape}
  10212. \end_layout
  10213. \begin_layout Plain Layout
  10214. }
  10215. \end_layout
  10216. \end_inset
  10217. \end_layout
  10218. \begin_layout Standard
  10219. The objective of the present study was to validate a new protocol for deep
  10220. RNA-seq of whole blood drawn into PaxGene tubes from cynomolgus monkeys
  10221. undergoing islet transplantation, with particular focus on minimizing the
  10222. loss of useful sequencing space to uninformative globin reads.
  10223. The details of the analysis with respect to transplant outcomes and the
  10224. impact of mesenchymal stem cell treatment will be reported in a separate
  10225. manuscript (in preparation).
  10226. To focus on the efficacy of our globin blocking protocol, 37 blood samples,
  10227. 16 from pre-transplant and 21 from post-transplant time points, were each
  10228. prepped once with and once without globin blocking oligos, and were then
  10229. sequenced on an Illumina NextSeq500 instrument.
  10230. The number of reads aligning to each gene in the cynomolgus genome was
  10231. counted.
  10232. Table 1 summarizes the distribution of read fractions among the GB and
  10233. non-GB libraries.
  10234. In the libraries with no globin blocking, globin reads made up an average
  10235. of 44.6% of total input reads, while reads assigned to all other genes made
  10236. up an average of 26.3%.
  10237. The remaining reads either aligned to intergenic regions (that include
  10238. long non-coding RNAs) or did not align with any annotated transcripts in
  10239. the current build of the cynomolgus genome.
  10240. In the GB libraries, globin reads made up only 3.48% and reads assigned
  10241. to all other genes increased to 50.4%.
  10242. Thus, globin blocking resulted in a 92.2% reduction in globin reads and
  10243. a 91.6% increase in yield of useful non-globin reads.
  10244. \end_layout
  10245. \begin_layout Standard
  10246. This reduction is not quite as efficient as the previous analysis showed
  10247. for human samples by DeepSAGE (<0.4% globin reads after globin reduction)
  10248. \begin_inset CommandInset citation
  10249. LatexCommand cite
  10250. key "Mastrokolias2012"
  10251. literal "false"
  10252. \end_inset
  10253. .
  10254. Nonetheless, this degree of globin reduction is sufficient to nearly double
  10255. the yield of useful reads.
  10256. Thus, globin blocking cuts the required sequencing effort (and costs) to
  10257. achieve a target coverage depth by almost 50%.
  10258. Consistent with this near doubling of yield, the average difference in
  10259. un-normalized logCPM across all genes between the GB libraries and non-GB
  10260. libraries is approximately 1 (mean = 1.01, median = 1.08), an overall 2-fold
  10261. increase.
  10262. Un-normalized values are used here because the TMM normalization correctly
  10263. identifies this 2-fold difference as biologically irrelevant and removes
  10264. it.
  10265. \end_layout
  10266. \begin_layout Standard
  10267. \begin_inset Float figure
  10268. wide false
  10269. sideways false
  10270. status collapsed
  10271. \begin_layout Plain Layout
  10272. \align center
  10273. \begin_inset Graphics
  10274. filename graphics/Globin Paper/figure1 - globin-fractions.pdf
  10275. lyxscale 50
  10276. width 75col%
  10277. \end_inset
  10278. \end_layout
  10279. \begin_layout Plain Layout
  10280. \begin_inset Caption Standard
  10281. \begin_layout Plain Layout
  10282. \series bold
  10283. \begin_inset Argument 1
  10284. status collapsed
  10285. \begin_layout Plain Layout
  10286. Fraction of genic reads in each sample aligned to non-globin genes, with
  10287. and without globin blocking (GB).
  10288. \end_layout
  10289. \end_inset
  10290. \begin_inset CommandInset label
  10291. LatexCommand label
  10292. name "fig:Fraction-of-genic-reads"
  10293. \end_inset
  10294. Fraction of genic reads in each sample aligned to non-globin genes, with
  10295. and without globin blocking (GB).
  10296. \series default
  10297. All reads in each sequencing library were aligned to the cyno genome, and
  10298. the number of reads uniquely aligning to each gene was counted.
  10299. For each sample, counts were summed separately for all globin genes and
  10300. for the remainder of the genes (non-globin genes), and the fraction of
  10301. genic reads aligned to non-globin genes was computed.
  10302. Each point represents an individual sample.
  10303. Gray + signs indicate the means for globin-blocked libraries and unblocked
  10304. libraries.
  10305. The overall distribution for each group is represented as a notched box
  10306. plots.
  10307. Points are randomly spread vertically to avoid excessive overlapping.
  10308. \end_layout
  10309. \end_inset
  10310. \end_layout
  10311. \end_inset
  10312. \end_layout
  10313. \begin_layout Standard
  10314. Another important aspect is that the standard deviations in Table
  10315. \begin_inset CommandInset ref
  10316. LatexCommand ref
  10317. reference "tab:Fractions-of-reads"
  10318. plural "false"
  10319. caps "false"
  10320. noprefix "false"
  10321. \end_inset
  10322. are uniformly smaller in the GB samples than the non-GB ones, indicating
  10323. much greater consistency of yield.
  10324. This is best seen in the percentage of non-globin reads as a fraction of
  10325. total reads aligned to annotated genes (genic reads).
  10326. For the non-GB samples, this measure ranges from 10.9% to 80.9%, while for
  10327. the GB samples it ranges from 81.9% to 99.9% (Figure
  10328. \begin_inset CommandInset ref
  10329. LatexCommand ref
  10330. reference "fig:Fraction-of-genic-reads"
  10331. plural "false"
  10332. caps "false"
  10333. noprefix "false"
  10334. \end_inset
  10335. ).
  10336. This means that for applications where it is critical that each sample
  10337. achieve a specified minimum coverage in order to provide useful information,
  10338. it would be necessary to budget up to 10 times the sequencing depth per
  10339. sample without globin blocking, even though the average yield improvement
  10340. for globin blocking is only 2-fold, because every sample has a chance of
  10341. being 90% globin and 10% useful reads.
  10342. Hence, the more consistent behavior of GB samples makes planning an experiment
  10343. easier and more efficient because it eliminates the need to over-sequence
  10344. every sample in order to guard against the worst case of a high-globin
  10345. fraction.
  10346. \end_layout
  10347. \begin_layout Subsection
  10348. Globin blocking lowers the noise floor and allows detection of about 2000
  10349. more low-expression genes
  10350. \end_layout
  10351. \begin_layout Standard
  10352. \begin_inset Flex TODO Note (inline)
  10353. status open
  10354. \begin_layout Plain Layout
  10355. Remove redundant titles from figures
  10356. \end_layout
  10357. \end_inset
  10358. \end_layout
  10359. \begin_layout Standard
  10360. \begin_inset Float figure
  10361. wide false
  10362. sideways false
  10363. status collapsed
  10364. \begin_layout Plain Layout
  10365. \align center
  10366. \begin_inset Graphics
  10367. filename graphics/Globin Paper/figure2 - aveLogCPM-colored.pdf
  10368. lyxscale 50
  10369. height 60theight%
  10370. \end_inset
  10371. \end_layout
  10372. \begin_layout Plain Layout
  10373. \begin_inset Caption Standard
  10374. \begin_layout Plain Layout
  10375. \series bold
  10376. \begin_inset Argument 1
  10377. status collapsed
  10378. \begin_layout Plain Layout
  10379. Distributions of average group gene abundances when normalized separately
  10380. or together.
  10381. \end_layout
  10382. \end_inset
  10383. \begin_inset CommandInset label
  10384. LatexCommand label
  10385. name "fig:logcpm-dists"
  10386. \end_inset
  10387. Distributions of average group gene abundances when normalized separately
  10388. or together.
  10389. \series default
  10390. All reads in each sequencing library were aligned to the cyno genome, and
  10391. the number of reads uniquely aligning to each gene was counted.
  10392. Genes with zero counts in all libraries were discarded.
  10393. Libraries were normalized using the TMM method.
  10394. Libraries were split into globin-blocked (GB) and non-GB groups and the
  10395. average abundance for each gene in both groups, measured in log2 counts
  10396. per million reads counted, was computed using the aveLogCPM function.
  10397. The distribution of average gene logCPM values was plotted for both groups
  10398. using a kernel density plot to approximate a continuous distribution.
  10399. The logCPM GB distributions are marked in red, non-GB in blue.
  10400. The black vertical line denotes the chosen detection threshold of -1.
  10401. Top panel: Libraries were split into GB and non-GB groups first and normalized
  10402. separately.
  10403. Bottom panel: Libraries were all normalized together first and then split
  10404. into groups.
  10405. \end_layout
  10406. \end_inset
  10407. \end_layout
  10408. \begin_layout Plain Layout
  10409. \end_layout
  10410. \end_inset
  10411. \end_layout
  10412. \begin_layout Standard
  10413. Since globin blocking yields more usable sequencing depth, it should also
  10414. allow detection of more genes at any given threshold.
  10415. When we looked at the distribution of average normalized logCPM values
  10416. across all libraries for genes with at least one read assigned to them,
  10417. we observed the expected bimodal distribution, with a high-abundance "signal"
  10418. peak representing detected genes and a low-abundance "noise" peak representing
  10419. genes whose read count did not rise above the noise floor (Figure
  10420. \begin_inset CommandInset ref
  10421. LatexCommand ref
  10422. reference "fig:logcpm-dists"
  10423. plural "false"
  10424. caps "false"
  10425. noprefix "false"
  10426. \end_inset
  10427. ).
  10428. Consistent with the 2-fold increase in raw counts assigned to non-globin
  10429. genes, the signal peak for GB samples is shifted to the right relative
  10430. to the non-GB signal peak.
  10431. When all the samples are normalized together, this difference is normalized
  10432. out, lining up the signal peaks, and this reveals that, as expected, the
  10433. noise floor for the GB samples is about 2-fold lower.
  10434. This greater separation between signal and noise peaks in the GB samples
  10435. means that low-expression genes should be more easily detected and more
  10436. precisely quantified than in the non-GB samples.
  10437. \end_layout
  10438. \begin_layout Standard
  10439. \begin_inset Float figure
  10440. wide false
  10441. sideways false
  10442. status collapsed
  10443. \begin_layout Plain Layout
  10444. \align center
  10445. \begin_inset Graphics
  10446. filename graphics/Globin Paper/figure3 - detection.pdf
  10447. lyxscale 50
  10448. width 70col%
  10449. \end_inset
  10450. \end_layout
  10451. \begin_layout Plain Layout
  10452. \begin_inset Caption Standard
  10453. \begin_layout Plain Layout
  10454. \series bold
  10455. \begin_inset Argument 1
  10456. status collapsed
  10457. \begin_layout Plain Layout
  10458. Gene detections as a function of abundance thresholds in globin-blocked
  10459. (GB) and non-GB samples.
  10460. \end_layout
  10461. \end_inset
  10462. \begin_inset CommandInset label
  10463. LatexCommand label
  10464. name "fig:Gene-detections"
  10465. \end_inset
  10466. Gene detections as a function of abundance thresholds in globin-blocked
  10467. (GB) and non-GB samples.
  10468. \series default
  10469. Average abundance (logCPM,
  10470. \begin_inset Formula $\log_{2}$
  10471. \end_inset
  10472. counts per million reads counted) was computed by separate group normalization
  10473. as described in Figure
  10474. \begin_inset CommandInset ref
  10475. LatexCommand ref
  10476. reference "fig:logcpm-dists"
  10477. plural "false"
  10478. caps "false"
  10479. noprefix "false"
  10480. \end_inset
  10481. for both the GB and non-GB groups, as well as for all samples considered
  10482. as one large group.
  10483. For each every integer threshold from -2 to 3, the number of genes detected
  10484. at or above that logCPM threshold was plotted for each group.
  10485. \end_layout
  10486. \end_inset
  10487. \end_layout
  10488. \begin_layout Plain Layout
  10489. \end_layout
  10490. \end_inset
  10491. \end_layout
  10492. \begin_layout Standard
  10493. Based on these distributions, we selected a detection threshold of -1, which
  10494. is approximately the leftmost edge of the trough between the signal and
  10495. noise peaks.
  10496. This represents the most liberal possible detection threshold that doesn't
  10497. call substantial numbers of noise genes as detected.
  10498. Among the full dataset, 13429 genes were detected at this threshold, and
  10499. 22276 were not.
  10500. When considering the GB libraries and non-GB libraries separately and re-comput
  10501. ing normalization factors independently within each group, 14535 genes were
  10502. detected in the GB libraries while only 12460 were detected in the non-GB
  10503. libraries.
  10504. Thus, GB allowed the detection of 2000 extra genes that were buried under
  10505. the noise floor without GB.
  10506. This pattern of at least 2000 additional genes detected with GB was also
  10507. consistent across a wide range of possible detection thresholds, from -2
  10508. to 3 (see Figure
  10509. \begin_inset CommandInset ref
  10510. LatexCommand ref
  10511. reference "fig:Gene-detections"
  10512. plural "false"
  10513. caps "false"
  10514. noprefix "false"
  10515. \end_inset
  10516. ).
  10517. \end_layout
  10518. \begin_layout Subsection
  10519. Globin blocking does not add significant additional noise or decrease sample
  10520. quality
  10521. \end_layout
  10522. \begin_layout Standard
  10523. One potential worry is that the globin blocking protocol could perturb the
  10524. levels of non-globin genes.
  10525. There are two kinds of possible perturbations: systematic and random.
  10526. The former is not a major concern for detection of differential expression,
  10527. since a 2-fold change in every sample has no effect on the relative fold
  10528. change between samples.
  10529. In contrast, random perturbations would increase the noise and obscure
  10530. the signal in the dataset, reducing the capacity to detect differential
  10531. expression.
  10532. \end_layout
  10533. \begin_layout Standard
  10534. \begin_inset Float figure
  10535. wide false
  10536. sideways false
  10537. status collapsed
  10538. \begin_layout Plain Layout
  10539. \align center
  10540. \begin_inset Graphics
  10541. filename graphics/Globin Paper/figure4 - maplot-colored.pdf
  10542. lyxscale 50
  10543. width 60col%
  10544. groupId colwidth
  10545. \end_inset
  10546. \end_layout
  10547. \begin_layout Plain Layout
  10548. \begin_inset Caption Standard
  10549. \begin_layout Plain Layout
  10550. \begin_inset Argument 1
  10551. status collapsed
  10552. \begin_layout Plain Layout
  10553. MA plot showing effects of globin blocking on each gene's abundance.
  10554. \end_layout
  10555. \end_inset
  10556. \begin_inset CommandInset label
  10557. LatexCommand label
  10558. name "fig:MA-plot"
  10559. \end_inset
  10560. \series bold
  10561. MA plot showing effects of globin blocking on each gene's abundance.
  10562. \series default
  10563. All libraries were normalized together as described in Figure
  10564. \begin_inset CommandInset ref
  10565. LatexCommand ref
  10566. reference "fig:logcpm-dists"
  10567. plural "false"
  10568. caps "false"
  10569. noprefix "false"
  10570. \end_inset
  10571. , and genes with an average logCPM below -1 were filtered out.
  10572. Each remaining gene was tested for differential abundance with respect
  10573. to globin blocking (GB) using edgeR’s quasi-likelihood F-test, fitting
  10574. a negative binomial generalized linear model to table of read counts in
  10575. each library.
  10576. For each gene, edgeR reported average abundance (logCPM),
  10577. \begin_inset Formula $\log_{2}$
  10578. \end_inset
  10579. fold change (logFC), p-value, and Benjamini-Hochberg adjusted false discovery
  10580. rate (FDR).
  10581. Each gene's logFC was plotted against its logCPM, colored by FDR.
  10582. Red points are significant at ≤10% FDR, and blue are not significant at
  10583. that threshold.
  10584. The alpha and beta globin genes targeted for blocking are marked with large
  10585. triangles, while all other genes are represented as small points.
  10586. \end_layout
  10587. \end_inset
  10588. \end_layout
  10589. \begin_layout Plain Layout
  10590. \end_layout
  10591. \end_inset
  10592. \end_layout
  10593. \begin_layout Standard
  10594. \begin_inset Flex TODO Note (inline)
  10595. status open
  10596. \begin_layout Plain Layout
  10597. Standardize on
  10598. \begin_inset Quotes eld
  10599. \end_inset
  10600. log2
  10601. \begin_inset Quotes erd
  10602. \end_inset
  10603. notation
  10604. \end_layout
  10605. \end_inset
  10606. \end_layout
  10607. \begin_layout Standard
  10608. The data do indeed show small systematic perturbations in gene levels (Figure
  10609. \begin_inset CommandInset ref
  10610. LatexCommand ref
  10611. reference "fig:MA-plot"
  10612. plural "false"
  10613. caps "false"
  10614. noprefix "false"
  10615. \end_inset
  10616. ).
  10617. Other than the 3 designated alpha and beta globin genes, two other genes
  10618. stand out as having especially large negative log fold changes: HBD and
  10619. LOC1021365.
  10620. HBD, delta globin, is most likely targeted by the blocking oligos due to
  10621. high sequence homology with the other globin genes.
  10622. LOC1021365 is the aforementioned ncRNA that is reverse-complementary to
  10623. one of the alpha-like genes and that would be expected to be removed during
  10624. the globin blocking step.
  10625. All other genes appear in a cluster centered vertically at 0, and the vast
  10626. majority of genes in this cluster show an absolute log2(FC) of 0.5 or less.
  10627. Nevertheless, many of these small perturbations are still statistically
  10628. significant, indicating that the globin blocking oligos likely cause very
  10629. small but non-zero systematic perturbations in measured gene expression
  10630. levels.
  10631. \end_layout
  10632. \begin_layout Standard
  10633. \begin_inset Float figure
  10634. wide false
  10635. sideways false
  10636. status collapsed
  10637. \begin_layout Plain Layout
  10638. \align center
  10639. \begin_inset Graphics
  10640. filename graphics/Globin Paper/figure5 - corrplot.pdf
  10641. lyxscale 50
  10642. width 70col%
  10643. \end_inset
  10644. \end_layout
  10645. \begin_layout Plain Layout
  10646. \begin_inset Caption Standard
  10647. \begin_layout Plain Layout
  10648. \series bold
  10649. \begin_inset Argument 1
  10650. status collapsed
  10651. \begin_layout Plain Layout
  10652. Comparison of inter-sample gene abundance correlations with and without
  10653. globin blocking.
  10654. \end_layout
  10655. \end_inset
  10656. \begin_inset CommandInset label
  10657. LatexCommand label
  10658. name "fig:gene-abundance-correlations"
  10659. \end_inset
  10660. Comparison of inter-sample gene abundance correlations with and without
  10661. globin blocking (GB).
  10662. \series default
  10663. All libraries were normalized together as described in Figure 2, and genes
  10664. with an average abundance (logCPM, log2 counts per million reads counted)
  10665. less than -1 were filtered out.
  10666. Each gene’s logCPM was computed in each library using the edgeR cpm function.
  10667. For each pair of biological samples, the Pearson correlation between those
  10668. samples' GB libraries was plotted against the correlation between the same
  10669. samples’ non-GB libraries.
  10670. Each point represents an unique pair of samples.
  10671. The solid gray line shows a quantile-quantile plot of distribution of GB
  10672. correlations vs.
  10673. that of non-GB correlations.
  10674. The thin dashed line is the identity line, provided for reference.
  10675. \end_layout
  10676. \end_inset
  10677. \end_layout
  10678. \begin_layout Plain Layout
  10679. \end_layout
  10680. \end_inset
  10681. \end_layout
  10682. \begin_layout Standard
  10683. To evaluate the possibility of globin blocking causing random perturbations
  10684. and reducing sample quality, we computed the Pearson correlation between
  10685. logCPM values for every pair of samples with and without GB and plotted
  10686. them against each other (Figure
  10687. \begin_inset CommandInset ref
  10688. LatexCommand ref
  10689. reference "fig:gene-abundance-correlations"
  10690. plural "false"
  10691. caps "false"
  10692. noprefix "false"
  10693. \end_inset
  10694. ).
  10695. The plot indicated that the GB libraries have higher sample-to-sample correlati
  10696. ons than the non-GB libraries.
  10697. Parametric and nonparametric tests for differences between the correlations
  10698. with and without GB both confirmed that this difference was highly significant
  10699. (2-sided paired t-test: t = 37.2, df = 665, P ≪ 2.2e-16; 2-sided Wilcoxon
  10700. sign-rank test: V = 2195, P ≪ 2.2e-16).
  10701. Performing the same tests on the Spearman correlations gave the same conclusion
  10702. (t-test: t = 26.8, df = 665, P ≪ 2.2e-16; sign-rank test: V = 8781, P ≪ 2.2e-16).
  10703. The edgeR package was used to compute the overall biological coefficient
  10704. of variation (BCV) for GB and non-GB libraries, and found that globin blocking
  10705. resulted in a negligible increase in the BCV (0.417 with GB vs.
  10706. 0.400 without).
  10707. The near equality of the BCVs for both sets indicates that the higher correlati
  10708. ons in the GB libraries are most likely a result of the increased yield
  10709. of useful reads, which reduces the contribution of Poisson counting uncertainty
  10710. to the overall variance of the logCPM values
  10711. \begin_inset CommandInset citation
  10712. LatexCommand cite
  10713. key "McCarthy2012"
  10714. literal "false"
  10715. \end_inset
  10716. .
  10717. This improves the precision of expression measurements and more than offsets
  10718. the negligible increase in BCV.
  10719. \end_layout
  10720. \begin_layout Subsection
  10721. More differentially expressed genes are detected with globin blocking
  10722. \end_layout
  10723. \begin_layout Standard
  10724. \begin_inset Float table
  10725. wide false
  10726. sideways false
  10727. status collapsed
  10728. \begin_layout Plain Layout
  10729. \align center
  10730. \begin_inset Tabular
  10731. <lyxtabular version="3" rows="5" columns="5">
  10732. <features tabularvalignment="middle">
  10733. <column alignment="center" valignment="top">
  10734. <column alignment="center" valignment="top">
  10735. <column alignment="center" valignment="top">
  10736. <column alignment="center" valignment="top">
  10737. <column alignment="center" valignment="top">
  10738. <row>
  10739. <cell alignment="center" valignment="top" usebox="none">
  10740. \begin_inset Text
  10741. \begin_layout Plain Layout
  10742. \end_layout
  10743. \end_inset
  10744. </cell>
  10745. <cell alignment="center" valignment="top" usebox="none">
  10746. \begin_inset Text
  10747. \begin_layout Plain Layout
  10748. \end_layout
  10749. \end_inset
  10750. </cell>
  10751. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  10752. \begin_inset Text
  10753. \begin_layout Plain Layout
  10754. \series bold
  10755. No Globin Blocking
  10756. \end_layout
  10757. \end_inset
  10758. </cell>
  10759. <cell multicolumn="2" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10760. \begin_inset Text
  10761. \begin_layout Plain Layout
  10762. \end_layout
  10763. \end_inset
  10764. </cell>
  10765. <cell multicolumn="2" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  10766. \begin_inset Text
  10767. \begin_layout Plain Layout
  10768. \end_layout
  10769. \end_inset
  10770. </cell>
  10771. </row>
  10772. <row>
  10773. <cell alignment="center" valignment="top" usebox="none">
  10774. \begin_inset Text
  10775. \begin_layout Plain Layout
  10776. \end_layout
  10777. \end_inset
  10778. </cell>
  10779. <cell alignment="center" valignment="top" usebox="none">
  10780. \begin_inset Text
  10781. \begin_layout Plain Layout
  10782. \end_layout
  10783. \end_inset
  10784. </cell>
  10785. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10786. \begin_inset Text
  10787. \begin_layout Plain Layout
  10788. \series bold
  10789. Up
  10790. \end_layout
  10791. \end_inset
  10792. </cell>
  10793. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10794. \begin_inset Text
  10795. \begin_layout Plain Layout
  10796. \series bold
  10797. NS
  10798. \end_layout
  10799. \end_inset
  10800. </cell>
  10801. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  10802. \begin_inset Text
  10803. \begin_layout Plain Layout
  10804. \series bold
  10805. Down
  10806. \end_layout
  10807. \end_inset
  10808. </cell>
  10809. </row>
  10810. <row>
  10811. <cell multirow="3" alignment="center" valignment="middle" topline="true" bottomline="true" leftline="true" usebox="none">
  10812. \begin_inset Text
  10813. \begin_layout Plain Layout
  10814. \series bold
  10815. Globin-Blocking
  10816. \end_layout
  10817. \end_inset
  10818. </cell>
  10819. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10820. \begin_inset Text
  10821. \begin_layout Plain Layout
  10822. \series bold
  10823. Up
  10824. \end_layout
  10825. \end_inset
  10826. </cell>
  10827. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10828. \begin_inset Text
  10829. \begin_layout Plain Layout
  10830. \family roman
  10831. \series medium
  10832. \shape up
  10833. \size normal
  10834. \emph off
  10835. \bar no
  10836. \strikeout off
  10837. \xout off
  10838. \uuline off
  10839. \uwave off
  10840. \noun off
  10841. \color none
  10842. 231
  10843. \end_layout
  10844. \end_inset
  10845. </cell>
  10846. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10847. \begin_inset Text
  10848. \begin_layout Plain Layout
  10849. \family roman
  10850. \series medium
  10851. \shape up
  10852. \size normal
  10853. \emph off
  10854. \bar no
  10855. \strikeout off
  10856. \xout off
  10857. \uuline off
  10858. \uwave off
  10859. \noun off
  10860. \color none
  10861. 515
  10862. \end_layout
  10863. \end_inset
  10864. </cell>
  10865. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  10866. \begin_inset Text
  10867. \begin_layout Plain Layout
  10868. \family roman
  10869. \series medium
  10870. \shape up
  10871. \size normal
  10872. \emph off
  10873. \bar no
  10874. \strikeout off
  10875. \xout off
  10876. \uuline off
  10877. \uwave off
  10878. \noun off
  10879. \color none
  10880. 2
  10881. \end_layout
  10882. \end_inset
  10883. </cell>
  10884. </row>
  10885. <row>
  10886. <cell multirow="4" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10887. \begin_inset Text
  10888. \begin_layout Plain Layout
  10889. \end_layout
  10890. \end_inset
  10891. </cell>
  10892. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10893. \begin_inset Text
  10894. \begin_layout Plain Layout
  10895. \series bold
  10896. NS
  10897. \end_layout
  10898. \end_inset
  10899. </cell>
  10900. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10901. \begin_inset Text
  10902. \begin_layout Plain Layout
  10903. \family roman
  10904. \series medium
  10905. \shape up
  10906. \size normal
  10907. \emph off
  10908. \bar no
  10909. \strikeout off
  10910. \xout off
  10911. \uuline off
  10912. \uwave off
  10913. \noun off
  10914. \color none
  10915. 160
  10916. \end_layout
  10917. \end_inset
  10918. </cell>
  10919. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10920. \begin_inset Text
  10921. \begin_layout Plain Layout
  10922. \family roman
  10923. \series medium
  10924. \shape up
  10925. \size normal
  10926. \emph off
  10927. \bar no
  10928. \strikeout off
  10929. \xout off
  10930. \uuline off
  10931. \uwave off
  10932. \noun off
  10933. \color none
  10934. 11235
  10935. \end_layout
  10936. \end_inset
  10937. </cell>
  10938. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  10939. \begin_inset Text
  10940. \begin_layout Plain Layout
  10941. \family roman
  10942. \series medium
  10943. \shape up
  10944. \size normal
  10945. \emph off
  10946. \bar no
  10947. \strikeout off
  10948. \xout off
  10949. \uuline off
  10950. \uwave off
  10951. \noun off
  10952. \color none
  10953. 136
  10954. \end_layout
  10955. \end_inset
  10956. </cell>
  10957. </row>
  10958. <row>
  10959. <cell multirow="4" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10960. \begin_inset Text
  10961. \begin_layout Plain Layout
  10962. \end_layout
  10963. \end_inset
  10964. </cell>
  10965. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10966. \begin_inset Text
  10967. \begin_layout Plain Layout
  10968. \series bold
  10969. Down
  10970. \end_layout
  10971. \end_inset
  10972. </cell>
  10973. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10974. \begin_inset Text
  10975. \begin_layout Plain Layout
  10976. \family roman
  10977. \series medium
  10978. \shape up
  10979. \size normal
  10980. \emph off
  10981. \bar no
  10982. \strikeout off
  10983. \xout off
  10984. \uuline off
  10985. \uwave off
  10986. \noun off
  10987. \color none
  10988. 0
  10989. \end_layout
  10990. \end_inset
  10991. </cell>
  10992. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10993. \begin_inset Text
  10994. \begin_layout Plain Layout
  10995. \family roman
  10996. \series medium
  10997. \shape up
  10998. \size normal
  10999. \emph off
  11000. \bar no
  11001. \strikeout off
  11002. \xout off
  11003. \uuline off
  11004. \uwave off
  11005. \noun off
  11006. \color none
  11007. 548
  11008. \end_layout
  11009. \end_inset
  11010. </cell>
  11011. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  11012. \begin_inset Text
  11013. \begin_layout Plain Layout
  11014. \family roman
  11015. \series medium
  11016. \shape up
  11017. \size normal
  11018. \emph off
  11019. \bar no
  11020. \strikeout off
  11021. \xout off
  11022. \uuline off
  11023. \uwave off
  11024. \noun off
  11025. \color none
  11026. 127
  11027. \end_layout
  11028. \end_inset
  11029. </cell>
  11030. </row>
  11031. </lyxtabular>
  11032. \end_inset
  11033. \end_layout
  11034. \begin_layout Plain Layout
  11035. \begin_inset Caption Standard
  11036. \begin_layout Plain Layout
  11037. \series bold
  11038. \begin_inset Argument 1
  11039. status open
  11040. \begin_layout Plain Layout
  11041. Comparison of significantly differentially expressed genes with and without
  11042. globin blocking.
  11043. \end_layout
  11044. \end_inset
  11045. \begin_inset CommandInset label
  11046. LatexCommand label
  11047. name "tab:Comparison-of-significant"
  11048. \end_inset
  11049. Comparison of significantly differentially expressed genes with and without
  11050. globin blocking.
  11051. \series default
  11052. Up, Down: Genes significantly up/down-regulated in post-transplant samples
  11053. relative to pre-transplant samples, with a false discovery rate of 10%
  11054. or less.
  11055. NS: Non-significant genes (false discovery rate greater than 10%).
  11056. \end_layout
  11057. \end_inset
  11058. \end_layout
  11059. \begin_layout Plain Layout
  11060. \end_layout
  11061. \end_inset
  11062. \end_layout
  11063. \begin_layout Standard
  11064. To compare performance on differential gene expression tests, we took subsets
  11065. of both the GB and non-GB libraries with exactly one pre-transplant and
  11066. one post-transplant sample for each animal that had paired samples available
  11067. for analysis (N=7 animals, N=14 samples in each subset).
  11068. The same test for pre- vs.
  11069. post-transplant differential gene expression was performed on the same
  11070. 7 pairs of samples from GB libraries and non-GB libraries, in each case
  11071. using an FDR of 10% as the threshold of significance.
  11072. Out of 12954 genes that passed the detection threshold in both subsets,
  11073. 358 were called significantly differentially expressed in the same direction
  11074. in both sets; 1063 were differentially expressed in the GB set only; 296
  11075. were differentially expressed in the non-GB set only; 2 genes were called
  11076. significantly up in the GB set but significantly down in the non-GB set;
  11077. and the remaining 11235 were not called differentially expressed in either
  11078. set.
  11079. These data are summarized in Table
  11080. \begin_inset CommandInset ref
  11081. LatexCommand ref
  11082. reference "tab:Comparison-of-significant"
  11083. plural "false"
  11084. caps "false"
  11085. noprefix "false"
  11086. \end_inset
  11087. .
  11088. The differences in BCV calculated by EdgeR for these subsets of samples
  11089. were negligible (BCV = 0.302 for GB and 0.297 for non-GB).
  11090. \end_layout
  11091. \begin_layout Standard
  11092. The key point is that the GB data results in substantially more differentially
  11093. expressed calls than the non-GB data.
  11094. Since there is no gold standard for this dataset, it is impossible to be
  11095. certain whether this is due to under-calling of differential expression
  11096. in the non-GB samples or over-calling in the GB samples.
  11097. However, given that both datasets are derived from the same biological
  11098. samples and have nearly equal BCVs, it is more likely that the larger number
  11099. of DE calls in the GB samples are genuine detections that were enabled
  11100. by the higher sequencing depth and measurement precision of the GB samples.
  11101. Note that the same set of genes was considered in both subsets, so the
  11102. larger number of differentially expressed gene calls in the GB data set
  11103. reflects a greater sensitivity to detect significant differential gene
  11104. expression and not simply the larger total number of detected genes in
  11105. GB samples described earlier.
  11106. \end_layout
  11107. \begin_layout Section
  11108. Discussion
  11109. \end_layout
  11110. \begin_layout Standard
  11111. The original experience with whole blood gene expression profiling on DNA
  11112. microarrays demonstrated that the high concentration of globin transcripts
  11113. reduced the sensitivity to detect genes with relatively low expression
  11114. levels, in effect, significantly reducing the sensitivity.
  11115. To address this limitation, commercial protocols for globin reduction were
  11116. developed based on strategies to block globin transcript amplification
  11117. during labeling or physically removing globin transcripts by affinity bead
  11118. methods
  11119. \begin_inset CommandInset citation
  11120. LatexCommand cite
  11121. key "Winn2010"
  11122. literal "false"
  11123. \end_inset
  11124. .
  11125. More recently, using the latest generation of labeling protocols and arrays,
  11126. it was determined that globin reduction was no longer necessary to obtain
  11127. sufficient sensitivity to detect differential transcript expression
  11128. \begin_inset CommandInset citation
  11129. LatexCommand cite
  11130. key "NuGEN2010"
  11131. literal "false"
  11132. \end_inset
  11133. .
  11134. However, we are not aware of any publications using these currently available
  11135. protocols the with latest generation of microarrays that actually compare
  11136. the detection sensitivity with and without globin reduction.
  11137. However, in practice this has now been adopted generally primarily driven
  11138. by concerns for cost control.
  11139. The main objective of our work was to directly test the impact of globin
  11140. gene transcripts and a new globin blocking protocol for application to
  11141. the newest generation of differential gene expression profiling determined
  11142. using next generation sequencing.
  11143. \end_layout
  11144. \begin_layout Standard
  11145. The challenge of doing global gene expression profiling in cynomolgus monkeys
  11146. is that the current available arrays were never designed to comprehensively
  11147. cover this genome and have not been updated since the first assemblies
  11148. of the cynomolgus genome were published.
  11149. Therefore, we determined that the best strategy for peripheral blood profiling
  11150. was to do deep RNA-seq and inform the workflow using the latest available
  11151. genome assembly and annotation
  11152. \begin_inset CommandInset citation
  11153. LatexCommand cite
  11154. key "Wilson2013"
  11155. literal "false"
  11156. \end_inset
  11157. .
  11158. However, it was not immediately clear whether globin reduction was necessary
  11159. for RNA-seq or how much improvement in efficiency or sensitivity to detect
  11160. differential gene expression would be achieved for the added cost and work.
  11161. \end_layout
  11162. \begin_layout Standard
  11163. We only found one report that demonstrated that globin reduction significantly
  11164. improved the effective read yields for sequencing of human peripheral blood
  11165. cell RNA using a DeepSAGE protocol
  11166. \begin_inset CommandInset citation
  11167. LatexCommand cite
  11168. key "Mastrokolias2012"
  11169. literal "false"
  11170. \end_inset
  11171. .
  11172. The approach to DeepSAGE involves two different restriction enzymes that
  11173. purify and then tag small fragments of transcripts at specific locations
  11174. and thus, significantly reduces the complexity of the transcriptome.
  11175. Therefore, we could not determine how DeepSAGE results would translate
  11176. to the common strategy in the field for assaying the entire transcript
  11177. population by whole-transcriptome 3’-end RNA-seq.
  11178. Furthermore, if globin reduction is necessary, we also needed a globin
  11179. reduction method specific to cynomolgus globin sequences that would work
  11180. an organism for which no kit is available off the shelf.
  11181. \end_layout
  11182. \begin_layout Standard
  11183. As mentioned above, the addition of globin blocking oligos has a very small
  11184. impact on measured expression levels of gene expression.
  11185. However, this is a non-issue for the purposes of differential expression
  11186. testing, since a systematic change in a gene in all samples does not affect
  11187. relative expression levels between samples.
  11188. However, we must acknowledge that simple comparisons of gene expression
  11189. data obtained by GB and non-GB protocols are not possible without additional
  11190. normalization.
  11191. \end_layout
  11192. \begin_layout Standard
  11193. More importantly, globin blocking not only nearly doubles the yield of usable
  11194. reads, it also increases inter-sample correlation and sensitivity to detect
  11195. differential gene expression relative to the same set of samples profiled
  11196. without blocking.
  11197. In addition, globin blocking does not add a significant amount of random
  11198. noise to the data.
  11199. Globin blocking thus represents a cost-effective way to squeeze more data
  11200. and statistical power out of the same blood samples and the same amount
  11201. of sequencing.
  11202. In conclusion, globin reduction greatly increases the yield of useful RNA-seq
  11203. reads mapping to the rest of the genome, with minimal perturbations in
  11204. the relative levels of non-globin genes.
  11205. Based on these results, globin transcript reduction using sequence-specific,
  11206. complementary blocking oligonucleotides is recommended for all deep RNA-seq
  11207. of cynomolgus and other nonhuman primate blood samples.
  11208. \end_layout
  11209. \begin_layout Section
  11210. Future Directions
  11211. \end_layout
  11212. \begin_layout Standard
  11213. One drawback of the globin blocking method presented in this analysis is
  11214. a poor yield of genic reads, only around 50%.
  11215. In a separate experiment, the reagent mixture was modified so as to address
  11216. this drawback, resulting in a method that produces an even better reduction
  11217. in globin reads without reducing the overall fraction of genic reads.
  11218. However, the data showing this improvement consists of only a few test
  11219. samples, so the larger data set analyzed above was chosen in order to demonstra
  11220. te the effectiveness of the method in reducing globin reads while preserving
  11221. the biological signal.
  11222. \end_layout
  11223. \begin_layout Standard
  11224. The motivation for developing a fast practical way to enrich for non-globin
  11225. reads in cyno blood samples was to enable a large-scale RNA-seq experiment
  11226. investigating the effects of mesenchymal stem cell infusion on blood gene
  11227. expression in cynomologus transplant recipients in a time course after
  11228. transplantation.
  11229. With the globin blocking method in place, the way is now clear for this
  11230. experiment to proceed.
  11231. \end_layout
  11232. \begin_layout Chapter
  11233. Future Directions
  11234. \end_layout
  11235. \begin_layout Standard
  11236. \begin_inset Flex TODO Note (inline)
  11237. status open
  11238. \begin_layout Plain Layout
  11239. If there are any chapter-independent future directions, put them here.
  11240. Otherwise, delete this section.
  11241. Check in the directions if this is OK.
  11242. \end_layout
  11243. \end_inset
  11244. \end_layout
  11245. \begin_layout Standard
  11246. \begin_inset ERT
  11247. status collapsed
  11248. \begin_layout Plain Layout
  11249. % Use "References" as the title of the Bibliography
  11250. \end_layout
  11251. \begin_layout Plain Layout
  11252. \backslash
  11253. renewcommand{
  11254. \backslash
  11255. bibname}{References}
  11256. \end_layout
  11257. \end_inset
  11258. \end_layout
  11259. \begin_layout Standard
  11260. \begin_inset CommandInset bibtex
  11261. LatexCommand bibtex
  11262. btprint "btPrintCited"
  11263. bibfiles "code-refs,refs-PROCESSED"
  11264. options "bibtotoc,unsrt"
  11265. \end_inset
  11266. \end_layout
  11267. \begin_layout Standard
  11268. \begin_inset Flex TODO Note (inline)
  11269. status open
  11270. \begin_layout Plain Layout
  11271. Check bib entry formatting & sort order
  11272. \end_layout
  11273. \end_inset
  11274. \end_layout
  11275. \begin_layout Standard
  11276. \begin_inset Flex TODO Note (inline)
  11277. status open
  11278. \begin_layout Plain Layout
  11279. Check in-text citation format.
  11280. Probably don't just want [1], [2], etc.
  11281. \end_layout
  11282. \end_inset
  11283. \end_layout
  11284. \end_body
  11285. \end_document