thesis.lyx 341 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452154531545415455154561545715458154591546015461154621546315464154651546615467154681546915470154711547215473154741547515476154771547815479154801548115482154831548415485154861548715488154891549015491154921549315494154951549615497154981549915500155011550215503155041550515506155071550815509155101551115512155131551415515155161551715518
  1. #LyX 2.3 created this file. For more info see http://www.lyx.org/
  2. \lyxformat 544
  3. \begin_document
  4. \begin_header
  5. \save_transient_properties true
  6. \origin unavailable
  7. \textclass extbook
  8. \begin_preamble
  9. % List all used files in log output
  10. \listfiles
  11. % Add a DRAFT watermark
  12. \usepackage{draftwatermark}
  13. \usepackage{accsupp}
  14. \SetWatermarkLightness{0.97}
  15. \SetWatermarkScale{1}
  16. % Make watermark not copyable (in Adobe Reader)
  17. \SetWatermarkText{\BeginAccSupp{method=escape,ActualText={}}DRAFT\EndAccSupp{}}
  18. % Set up required header format
  19. \usepackage{fancyhdr}
  20. \pagestyle{fancy}
  21. \renewcommand{\headrulewidth}{0pt}
  22. \rhead{}
  23. \lhead{}
  24. \chead{}
  25. \rfoot{}
  26. \lfoot{}
  27. % Make page number not copyable (in Adobe Reader)
  28. \cfoot{\BeginAccSupp{method=escape,ActualText={}}\thepage\EndAccSupp{}} % Page number bottom center
  29. % Allow FloatBarrier command
  30. \usepackage{placeins}
  31. % Allow landscape pages
  32. \usepackage{pdflscape}
  33. % Allow doing things after the end of the current page
  34. % (to avoid landscape figures breaking up text)
  35. \usepackage{afterpage}
  36. % This one breaks subfigs so it's disabled
  37. % https://tex.stackexchange.com/questions/65680/automatically-bold-first-sentence-of-a-floats-caption
  38. \end_preamble
  39. \use_default_options true
  40. \begin_modules
  41. todonotes
  42. logicalmkup
  43. \end_modules
  44. \maintain_unincluded_children false
  45. \language english
  46. \language_package default
  47. \inputencoding utf8
  48. \fontencoding default
  49. \font_roman "default" "default"
  50. \font_sans "default" "default"
  51. \font_typewriter "default" "default"
  52. \font_math "auto" "auto"
  53. \font_default_family default
  54. \use_non_tex_fonts false
  55. \font_sc false
  56. \font_osf false
  57. \font_sf_scale 100 100
  58. \font_tt_scale 100 100
  59. \use_microtype false
  60. \use_dash_ligatures true
  61. \graphics default
  62. \default_output_format pdf4
  63. \output_sync 0
  64. \bibtex_command biber
  65. \index_command default
  66. \paperfontsize 12
  67. \spacing double
  68. \use_hyperref true
  69. \pdf_bookmarks true
  70. \pdf_bookmarksnumbered false
  71. \pdf_bookmarksopen false
  72. \pdf_bookmarksopenlevel 1
  73. \pdf_breaklinks false
  74. \pdf_pdfborder false
  75. \pdf_colorlinks false
  76. \pdf_backref false
  77. \pdf_pdfusetitle true
  78. \papersize letterpaper
  79. \use_geometry true
  80. \use_package amsmath 1
  81. \use_package amssymb 1
  82. \use_package cancel 1
  83. \use_package esint 1
  84. \use_package mathdots 1
  85. \use_package mathtools 1
  86. \use_package mhchem 1
  87. \use_package stackrel 1
  88. \use_package stmaryrd 1
  89. \use_package undertilde 1
  90. \cite_engine biblatex
  91. \cite_engine_type authoryear
  92. \biblio_style plain
  93. \biblatex_bibstyle authoryear
  94. \biblatex_citestyle numeric
  95. \use_bibtopic false
  96. \use_indices false
  97. \paperorientation portrait
  98. \suppress_date false
  99. \justification true
  100. \use_refstyle 1
  101. \use_minted 0
  102. \index Index
  103. \shortcut idx
  104. \color #008000
  105. \end_index
  106. \leftmargin 1.5in
  107. \topmargin 1in
  108. \rightmargin 1in
  109. \bottommargin 1in
  110. \secnumdepth 3
  111. \tocdepth 3
  112. \paragraph_separation indent
  113. \paragraph_indentation default
  114. \is_math_indent 0
  115. \math_numbering_side default
  116. \quotes_style english
  117. \dynamic_quotes 0
  118. \papercolumns 1
  119. \papersides 1
  120. \paperpagestyle default
  121. \tracking_changes false
  122. \output_changes false
  123. \html_math_output 0
  124. \html_css_as_file 0
  125. \html_be_strict false
  126. \end_header
  127. \begin_body
  128. \begin_layout Title
  129. Bioinformatic analysis of complex, high-throughput genomic and epigenomic
  130. data in the context of immunology and transplant rejection
  131. \end_layout
  132. \begin_layout Author
  133. A thesis presented
  134. \begin_inset Newline newline
  135. \end_inset
  136. by
  137. \begin_inset Newline newline
  138. \end_inset
  139. Ryan C.
  140. Thompson
  141. \begin_inset Newline newline
  142. \end_inset
  143. to
  144. \begin_inset Newline newline
  145. \end_inset
  146. The Scripps Research Institute Graduate Program
  147. \begin_inset Newline newline
  148. \end_inset
  149. in partial fulfillment of the requirements for the degree of
  150. \begin_inset Newline newline
  151. \end_inset
  152. Doctor of Philosophy in the subject of Biology
  153. \begin_inset Newline newline
  154. \end_inset
  155. for
  156. \begin_inset Newline newline
  157. \end_inset
  158. The Scripps Research Institute
  159. \begin_inset Newline newline
  160. \end_inset
  161. La Jolla, California
  162. \end_layout
  163. \begin_layout Date
  164. October 2019
  165. \end_layout
  166. \begin_layout Standard
  167. [Copyright notice]
  168. \end_layout
  169. \begin_layout Standard
  170. [Thesis acceptance form]
  171. \end_layout
  172. \begin_layout Standard
  173. [Dedication]
  174. \end_layout
  175. \begin_layout Standard
  176. [Acknowledgements]
  177. \end_layout
  178. \begin_layout Standard
  179. \begin_inset CommandInset toc
  180. LatexCommand tableofcontents
  181. \end_inset
  182. \end_layout
  183. \begin_layout Standard
  184. \begin_inset FloatList table
  185. \end_inset
  186. \end_layout
  187. \begin_layout Standard
  188. \begin_inset FloatList figure
  189. \end_inset
  190. \end_layout
  191. \begin_layout Standard
  192. [List of Abbreviations]
  193. \end_layout
  194. \begin_layout List of TODOs
  195. \end_layout
  196. \begin_layout Standard
  197. \begin_inset Flex TODO Note (inline)
  198. status open
  199. \begin_layout Plain Layout
  200. Check all figures to make sure they fit on the page with their legends.
  201. \end_layout
  202. \end_inset
  203. \end_layout
  204. \begin_layout Standard
  205. \begin_inset Flex TODO Note (inline)
  206. status open
  207. \begin_layout Plain Layout
  208. Search and replace: naive -> naïve
  209. \end_layout
  210. \end_inset
  211. \end_layout
  212. \begin_layout Standard
  213. \begin_inset Flex TODO Note (inline)
  214. status open
  215. \begin_layout Plain Layout
  216. Look into auto-generated nomenclature list:
  217. \begin_inset CommandInset href
  218. LatexCommand href
  219. target "https://wiki.lyx.org/Tips/Nomenclature"
  220. \end_inset
  221. .
  222. Otherwise, do a manual pass for all abbreviations at the end.
  223. Do nomenclature/abbreviations independently for each chapter.
  224. \end_layout
  225. \end_inset
  226. \end_layout
  227. \begin_layout Standard
  228. \begin_inset Flex TODO Note (inline)
  229. status open
  230. \begin_layout Plain Layout
  231. Make all descriptions consistent in terms of
  232. \begin_inset Quotes eld
  233. \end_inset
  234. we did X
  235. \begin_inset Quotes erd
  236. \end_inset
  237. vs
  238. \begin_inset Quotes eld
  239. \end_inset
  240. I did X
  241. \begin_inset Quotes erd
  242. \end_inset
  243. vs
  244. \begin_inset Quotes eld
  245. \end_inset
  246. X was done
  247. \begin_inset Quotes erd
  248. \end_inset
  249. .
  250. \end_layout
  251. \end_inset
  252. \end_layout
  253. \begin_layout Chapter*
  254. Abstract
  255. \end_layout
  256. \begin_layout Standard
  257. \begin_inset Note Note
  258. status open
  259. \begin_layout Plain Layout
  260. It is included as an integral part of the thesis and should immediately
  261. precede the introduction.
  262. \end_layout
  263. \begin_layout Plain Layout
  264. Preparing your Abstract.
  265. Your abstract (a succinct description of your work) is limited to 350 words.
  266. UMI will shorten it if they must; please do not exceed the limit.
  267. \end_layout
  268. \begin_layout Itemize
  269. Include pertinent place names, names of persons (in full), and other proper
  270. nouns.
  271. These are useful in automated retrieval.
  272. \end_layout
  273. \begin_layout Itemize
  274. Display symbols, as well as foreign words and phrases, clearly and accurately.
  275. Include transliterations for characters other than Roman and Greek letters
  276. and Arabic numerals.
  277. Include accents and diacritical marks.
  278. \end_layout
  279. \begin_layout Itemize
  280. Do not include graphs, charts, tables, or illustrations in your abstract.
  281. \end_layout
  282. \end_inset
  283. \end_layout
  284. \begin_layout Standard
  285. \begin_inset Flex TODO Note (inline)
  286. status open
  287. \begin_layout Plain Layout
  288. Obviously the abstract gets written last.
  289. \end_layout
  290. \end_inset
  291. \end_layout
  292. \begin_layout Chapter*
  293. Notes to draft readers
  294. \end_layout
  295. \begin_layout Standard
  296. Thank you so much for agreeing to read my thesis and give me feedback on
  297. it.
  298. What you are currently reading is a rough draft, in need of many revisions.
  299. You can always find the latest version at
  300. \begin_inset CommandInset href
  301. LatexCommand href
  302. target "https://mneme.dedyn.io/~ryan/Thesis/thesis.pdf"
  303. literal "false"
  304. \end_inset
  305. .
  306. the PDF at this link is updated periodically with my latest revisions,
  307. but you can just download the current version and give me feedback on that.
  308. Don't worry about keeping up with the updates.
  309. \end_layout
  310. \begin_layout Standard
  311. As for what feedback I'm looking for, first of all, don't waste your time
  312. marking spelling mistakes and such.
  313. I haven't run a spell checker on it yet, so let me worry about that.
  314. Also, I'm aware that many abbreviations are not properly introduced the
  315. first time they are used, so don't worry about that either.
  316. However, if you see any glaring formatting issues, such as a figure being
  317. too large and getting cut off at the edge of the page, please note them.
  318. In addition, if any of the text in the figures is too small, please note
  319. that as well.
  320. \end_layout
  321. \begin_layout Standard
  322. Beyond that, what I'm mainly interested in is feedback on the content.
  323. For example: does the introduction flow logically, and does it provide
  324. enough background to understand the other chapters? Does each chapter make
  325. it clear what work and analyses I have done? Do the figures clearly communicate
  326. the results I'm trying to show? Do you feel that the claims in the results
  327. and discussion sections are well-supported? There's no need to suggest
  328. improvements; just note areas that you feel need improvement.
  329. Additionally, while I am well aware that Chapter 1 (the introduction) contains
  330. many un-cited claims, all the other chapters (2,3, and 4)
  331. \emph on
  332. should
  333. \emph default
  334. be fully cited.
  335. So if you notice any un-cited claims in those chapters, please flag them
  336. for my attention.
  337. Similarly, if you discover any factual errors, please note them as well.
  338. \end_layout
  339. \begin_layout Standard
  340. You can provide your feedback in whatever way is most convenient to you.
  341. You could mark up this PDF with highlights and notes, then send it back
  342. to me.
  343. Or you could collect your comments in a separate text file and send that
  344. to me, or whatever else you like.
  345. However, if you send me your feedback in a separate document, please note
  346. a section/figure/table number for each comment, and
  347. \emph on
  348. also
  349. \emph default
  350. send me the exact PDF that you read so I can reference it while reading
  351. your comments, since as mentioned above, the current version I'm working
  352. on will have changed by that point (which might include shuffling sections
  353. and figures around, changing their numbers).
  354. One last thing: you'll see a bunch of text in orange boxes throughout the
  355. PDF.
  356. These are notes to myself about things that need to be fixed later, so
  357. if you see a problem noted in an orange box, that means I'm already aware
  358. of it, and there's no need to comment on it.
  359. \end_layout
  360. \begin_layout Standard
  361. My thesis is due Thursday, October 10th, so in order to be useful to me,
  362. I'll need your feedback at least a few days before that, ideally by Monday,
  363. October 7th.
  364. If you have limited time and are unable to get through the whole thesis,
  365. please focus your efforts on Chapters 1 and 2, since those are the roughest
  366. and most in need of revision.
  367. Chapter 3 is fairly short and straightforward, and Chapter 4 is an adaptation
  368. of a paper that's already been through a few rounds of revision, so they
  369. should be a lot tighter.
  370. If you can't spare any time between now and then, or if something unexpected
  371. comes up, I understand.
  372. Just let me know.
  373. \end_layout
  374. \begin_layout Standard
  375. Thanks again for your help, and happy reading!
  376. \end_layout
  377. \begin_layout Chapter
  378. Introduction
  379. \end_layout
  380. \begin_layout Section
  381. Background & Significance
  382. \end_layout
  383. \begin_layout Subsection
  384. Biological motivation
  385. \end_layout
  386. \begin_layout Standard
  387. \begin_inset Flex TODO Note (inline)
  388. status open
  389. \begin_layout Plain Layout
  390. Rethink the subsection organization after the intro is written.
  391. \end_layout
  392. \end_inset
  393. \end_layout
  394. \begin_layout Standard
  395. \begin_inset Flex TODO Note (inline)
  396. status open
  397. \begin_layout Plain Layout
  398. Citations are needed all over the place.
  399. A lot of this is knowledge I've just absorbed from years of conversation
  400. in the Salomon lab, without ever having seen a citation for it.
  401. \end_layout
  402. \end_inset
  403. \end_layout
  404. \begin_layout Subsubsection
  405. Rejection is the major long-term threat to organ and tissue allografts
  406. \end_layout
  407. \begin_layout Standard
  408. Organ and tissue transplants are a life-saving treatment for people who
  409. have lost the function of an important organ [CITE?].
  410. In some cases, it is possible to transplant a patient's own tissue from
  411. one area of their body to another, referred to as an autograft.
  412. This is common for tissues that are distributed throughout many areas of
  413. the body, such as skin and bone.
  414. However, in cases of organ failure, there is no functional self tissue
  415. remaining, and a transplant from another person – a donor – is required.
  416. This is referred to as an allograft.
  417. \end_layout
  418. \begin_layout Standard
  419. \begin_inset Flex TODO Note (inline)
  420. status open
  421. \begin_layout Plain Layout
  422. Possible citation for degree of generic variability:
  423. \begin_inset CommandInset href
  424. LatexCommand href
  425. target "https://www.ncbi.nlm.nih.gov/pubmed/22424236?dopt=Abstract"
  426. \end_inset
  427. \end_layout
  428. \end_inset
  429. \end_layout
  430. \begin_layout Standard
  431. \begin_inset Flex TODO Note (inline)
  432. status open
  433. \begin_layout Plain Layout
  434. How much mechanistic detail is needed here? My work doesn't really go into
  435. specific rejection mechanisms, so I think it's best to keep it basic.
  436. \end_layout
  437. \end_inset
  438. \end_layout
  439. \begin_layout Standard
  440. Because an allograft comes from a different person, it is genetically distinct
  441. from the rest of the recipient's body.
  442. Some genetic variants occur in protein coding regions and affect the polypeptid
  443. e sequences encoded by the affected genes, resulting in protein products
  444. that differ from the equivalent proteins produced by the graft recipient's
  445. own tissue.
  446. As a result, without intervention, the recipient's immune system will eventuall
  447. y identify the graft as foreign tissue and begin attacking it, eventually
  448. resulting in failure and death of the graft, a process referred to as transplan
  449. t rejection.
  450. Rejection is the most significant challenge to the long-term health and
  451. survival of an allograft [CITE?].
  452. Like any adaptive immune response, graft rejection generally occurs via
  453. two broad mechanisms: cellular immunity, in which CD8+ T-cells recognizing
  454. graft-specific antigens induce apoptosis in the graft cells; and humoral
  455. immunity, in which B-cells produce antibodies that bind to graft proteins
  456. and direct an immune response against the graft [CITE?].
  457. In either case, rejection shows most of the typical hallmarks of an adaptive
  458. immune response, in particular mediation by CD4+ T-cells and formation
  459. of immune memory.
  460. \end_layout
  461. \begin_layout Subsubsection
  462. Diagnosis and treatment of allograft rejection is a major challenge
  463. \end_layout
  464. \begin_layout Standard
  465. To prevent rejection, allograft recipients are treated with immune suppressive
  466. drugs [CITE?].
  467. The goal is to achieve sufficient suppression of the immune system to prevent
  468. rejection of the graft without compromising the ability of the immune system
  469. to raise a normal response against infection.
  470. As such, a delicate balance must be struck: insufficient immune suppression
  471. may lead to rejection and ultimately loss of the graft; excessive suppression
  472. leaves the patient vulnerable to life-threatening opportunistic infections.
  473. Because every patient is different, immune suppression must be tailored
  474. for each patient.
  475. Furthermore, immune suppression must be tuned over time, as the immune
  476. system's activity is not static, nor is it held in a steady state [CITE?].
  477. In order to properly adjust the dosage of immune suppression drugs, it
  478. is necessary to monitor the health of the transplant and increase the dosage
  479. if evidence of rejection is observed.
  480. \end_layout
  481. \begin_layout Standard
  482. However, diagnosis of rejection is a significant challenge.
  483. Early diagnosis is essential in order to step up immune suppression before
  484. the immune system damages the graft beyond recovery [CITE?].
  485. The current gold standard test for graft rejection is a tissue biopsy,
  486. examined for visible signs of rejection by a trained histologist [CITE?].
  487. When a patient shows symptoms of possible rejection, a
  488. \begin_inset Quotes eld
  489. \end_inset
  490. for cause
  491. \begin_inset Quotes erd
  492. \end_inset
  493. biopsy is performed to confirm the diagnosis, and immune suppression is
  494. adjusted as necessary.
  495. However, in many cases, the early stages of rejection are asymptomatic,
  496. known as
  497. \begin_inset Quotes eld
  498. \end_inset
  499. sub-clinical
  500. \begin_inset Quotes erd
  501. \end_inset
  502. rejection [CITE?].
  503. In light of this, is is now common to perform
  504. \begin_inset Quotes eld
  505. \end_inset
  506. protocol biopsies
  507. \begin_inset Quotes erd
  508. \end_inset
  509. at specific times after transplantation of a graft, even if no symptoms
  510. of rejection are apparent, in addition to
  511. \begin_inset Quotes eld
  512. \end_inset
  513. for cause
  514. \begin_inset Quotes erd
  515. \end_inset
  516. biopsies
  517. \begin_inset CommandInset citation
  518. LatexCommand cite
  519. key "Wilkinson2006"
  520. literal "false"
  521. \end_inset
  522. .
  523. \end_layout
  524. \begin_layout Standard
  525. However, biopsies have a number of downsides that limit their effectiveness
  526. as a diagnostic tool.
  527. First, the need for manual inspection by a histologist means that diagnosis
  528. is subject to the biases of the particular histologist examining the biopsy
  529. [CITE?].
  530. In marginal cases, two different histologists may give two different diagnoses
  531. to the same biopsy.
  532. Second, a biopsy can only evaluate if rejection is occurring in the section
  533. of the graft from which the tissue was extracted.
  534. If rejection is localized to one section of the graft and the tissue is
  535. extracted from a different section, a false negative diagnosis may result.
  536. Most importantly, extraction of tissue from a graft is invasive and is
  537. treated as an injury by the body, which results in inflammation that in
  538. turn promotes increased immune system activity [CITE?].
  539. Hence, the invasiveness of biopsies severely limits the frequency with
  540. which they can safely be performed.
  541. Typically, protocol biopsies are not scheduled more than about once per
  542. month
  543. \begin_inset CommandInset citation
  544. LatexCommand cite
  545. key "Wilkinson2006"
  546. literal "false"
  547. \end_inset
  548. .
  549. A less invasive diagnostic test for rejection would bring manifold benefits.
  550. Such a test would enable more frequent testing and therefore earlier detection
  551. of rejection events.
  552. In addition, having a larger pool of historical data for a given patient
  553. would make it easier to evaluate when a given test is outside the normal
  554. parameters for that specific patient, rather than relying on normal ranges
  555. for the population as a whole.
  556. Lastly, the accumulated data from more frequent tests would be a boon to
  557. the transplant research community.
  558. Beyond simply providing more data overall, the better time granularity
  559. of the tests will enable studying the progression of a rejection event
  560. on the scale of days to weeks, rather than months.
  561. \end_layout
  562. \begin_layout Subsubsection
  563. Memory cells are resistant to immune suppression
  564. \end_layout
  565. \begin_layout Standard
  566. One of the defining features of the adaptive immune system is immune memory:
  567. the ability of the immune system to recognize a previously encountered
  568. foreign antigen and respond more quickly and more strongly to that antigen
  569. in subsequent encounters.
  570. When the immune system first encounters a new antigen, the lymphocytes
  571. that respond are known as naive cells – T-cells and B-cells that have never
  572. detected their target antigens before.
  573. Once activated by their specific antigen presented by an antigen-presenting
  574. cell in the proper co-stimulatory context, naive cells differentiate into
  575. effector cells that carry out their respective functions in targeting and
  576. destroying the source of the foreign antigen.
  577. The requirement for co-stimulation is an important feature of naive cells
  578. that limits
  579. \begin_inset Quotes eld
  580. \end_inset
  581. false positive
  582. \begin_inset Quotes erd
  583. \end_inset
  584. immune responses, because antigen-presenting cells usually only express
  585. the proper co-stimulation after detecting evidence of an infection, such
  586. as the presence of common bacterial cell components or inflamed tissue.
  587. Most effector cells die after the foreign antigen is cleared, since they
  588. are no longer needed, but some remain and differentiate into memory cells.
  589. Like naive cells, memory cells respond to detection of their specific antigen
  590. by differentiating into effector cells, ready to fight an infection.
  591. However, unlike naive cells, memory cells do not require the same degree
  592. of co-stimulatory signaling for activation, and once activated, they proliferat
  593. e and differentiate into effector cells more quickly than naive cells do.
  594. \end_layout
  595. \begin_layout Standard
  596. In the context of a pathogenic infection, immune memory is a major advantage,
  597. allowing an organism to rapidly fight off a previously encountered pathogen
  598. much more quickly and effectively than the first time it was encountered.
  599. However, if effector cells that recognize an antigen from an allograft
  600. are allowed to differentiate into memory cells, preventing rejection of
  601. the graft becomes much more difficult.
  602. Many immune suppression drugs work by interfering with the co-stimulation
  603. that naive cells require in order to mount an immune response [CITE?].
  604. Since memory cells do not require this co-stimulation, these drugs are
  605. not effective at suppressing an immune response that is mediated by memory
  606. cells.
  607. Secondly, because memory cells are able to mount a stronger and faster
  608. response to an antigen, all else being equal they require stronger immune
  609. suppression than naive cells to prevent an immune response.
  610. However, immune suppression affects the entire immune system, not just
  611. cells recognizing a specific antigen, so increasing the dosage of immune
  612. suppression drugs also increases the risk of complications from a compromised
  613. immune system, such as opportunistic infections.
  614. While the differences in cell surface markers between naive and memory
  615. cells have been fairly well characterized, the internal regulatory mechanisms
  616. that allow memory cells to respond more quickly and without co-stimulation
  617. are still poorly understood.
  618. In order to develop methods of immune suppression that either prevent the
  619. formation of memory cells or work more effectively against memory cells,
  620. the mechanisms of immune memory formation and regulation must be better
  621. understood.
  622. \end_layout
  623. \begin_layout Subsection
  624. Overview of bioinformatic analysis methods
  625. \end_layout
  626. \begin_layout Standard
  627. \begin_inset Flex TODO Note (inline)
  628. status open
  629. \begin_layout Plain Layout
  630. Also cite: R, Bioconductor, snakemake, python, pandas, bedtools, bowtie2,
  631. hisat2, STAR, samtools, sra-toolkit, picard tools
  632. \end_layout
  633. \end_inset
  634. \end_layout
  635. \begin_layout Standard
  636. The studies presented in this work all involve the analysis of high-throughput
  637. genomic and epigenomic data.
  638. These data present many unique analysis challenges, and a wide array of
  639. software tools are available to analyze them.
  640. This section presents an overview of the methods used, including what problems
  641. they solve, what assumptions they make, and a basic description of how
  642. they work.
  643. \end_layout
  644. \begin_layout Subsubsection
  645. \begin_inset Flex Code
  646. status open
  647. \begin_layout Plain Layout
  648. Limma
  649. \end_layout
  650. \end_inset
  651. : The standard linear modeling framework for genomics
  652. \end_layout
  653. \begin_layout Standard
  654. Linear models are a generalization of the
  655. \begin_inset Formula $t$
  656. \end_inset
  657. -test and ANOVA to arbitrarily complex experimental designs
  658. \begin_inset CommandInset citation
  659. LatexCommand cite
  660. key "chambers:1992"
  661. literal "false"
  662. \end_inset
  663. .
  664. In a typical linear model, there is one dependent variable observation
  665. per sample and a large number of samples.
  666. For example, in a linear model of height as a function of age and sex,
  667. there is one height measurement per person.
  668. However, when analyzing genomic data, each sample consists of observations
  669. of thousands of dependent variables.
  670. For example, in an RNA-seq experiment, the dependent variables may be the
  671. count of RNA-seq reads for each annotated gene.
  672. In abstract terms, each dependent variable being measured is referred to
  673. as a feature.
  674. The simplest approach to analyzing such data would be to fit the same model
  675. independently to each feature.
  676. However, this is undesirable for most genomics data sets.
  677. Genomics assays like high-throughput sequencing are expensive, and often
  678. the process of generating the samples is also quite expensive and time-consumin
  679. g.
  680. This expense limits the sample sizes typically employed in genomics experiments
  681. , and as a result the statistical power of the linear model for each individual
  682. feature is likewise limited.
  683. However, because thousands of features from the same samples are analyzed
  684. together, there is an opportunity to improve the statistical power of the
  685. analysis by exploiting shared patterns of variation across features.
  686. This is the core feature of
  687. \begin_inset Flex Code
  688. status open
  689. \begin_layout Plain Layout
  690. limma
  691. \end_layout
  692. \end_inset
  693. , a linear modeling framework designed for genomic data.
  694. \begin_inset Flex Code
  695. status open
  696. \begin_layout Plain Layout
  697. Limma
  698. \end_layout
  699. \end_inset
  700. is typically used to analyze expression microarray data, and more recently
  701. RNA-seq data, but it can also be used to analyze any other data for which
  702. linear modeling is appropriate.
  703. \end_layout
  704. \begin_layout Standard
  705. The central challenge when fitting a linear model is to estimate the variance
  706. of the data accurately.
  707. Out of all parameters required to evaluate statistical significance of
  708. an effect, the variance is the most difficult to estimate when sample sizes
  709. are small.
  710. A single shared variance could be estimated for all of the features together,
  711. and this estimate would be very stable, in contrast to the individual feature
  712. variance estimates.
  713. However, this would require the assumption that every feature is equally
  714. variable, which is known to be false for most genomic data sets.
  715. \begin_inset Flex Code
  716. status open
  717. \begin_layout Plain Layout
  718. limma
  719. \end_layout
  720. \end_inset
  721. offers a compromise between these two extremes by using a method called
  722. empirical Bayes moderation to
  723. \begin_inset Quotes eld
  724. \end_inset
  725. squeeze
  726. \begin_inset Quotes erd
  727. \end_inset
  728. the distribution of estimated variances toward a single common value that
  729. represents the variance of an average feature in the data
  730. \begin_inset CommandInset citation
  731. LatexCommand cite
  732. key "Smyth2004"
  733. literal "false"
  734. \end_inset
  735. .
  736. While the individual feature variance estimates are not stable, the common
  737. variance estimate for the entire data set is quite stable, so using a combinati
  738. on of the two yields a variance estimate for each feature with greater precision
  739. than the individual feature variances.
  740. The trade-off for this improvement is that squeezing each estimated variance
  741. toward the common value introduces some bias – the variance will be underestima
  742. ted for features with high variance and overestimated for features with
  743. low variance.
  744. Essentially,
  745. \begin_inset Flex Code
  746. status open
  747. \begin_layout Plain Layout
  748. limma
  749. \end_layout
  750. \end_inset
  751. assumes that extreme variances are less common than variances close to
  752. the common value.
  753. The variance estimates from this empirical Bayes procedure are shown empiricall
  754. y to yield greater statistical power than either the individual feature
  755. variances or the single common value.
  756. \end_layout
  757. \begin_layout Standard
  758. On top of this core framework,
  759. \begin_inset Flex Code
  760. status open
  761. \begin_layout Plain Layout
  762. limma
  763. \end_layout
  764. \end_inset
  765. also implements many other enhancements that, further relax the assumptions
  766. of the model and extend the scope of what kinds of data it can analyze.
  767. Instead of squeezing toward a single common variance value,
  768. \begin_inset Flex Code
  769. status open
  770. \begin_layout Plain Layout
  771. limma
  772. \end_layout
  773. \end_inset
  774. can model the common variance as a function of a covariate, such as average
  775. expression
  776. \begin_inset CommandInset citation
  777. LatexCommand cite
  778. key "Law2013"
  779. literal "false"
  780. \end_inset
  781. .
  782. This is essential for RNA-seq data, where higher gene counts yield more
  783. precise expression measurements and therefore smaller variances than low-count
  784. genes.
  785. While linear models typically assume that all samples have equal variance,
  786. \begin_inset Flex Code
  787. status open
  788. \begin_layout Plain Layout
  789. limma
  790. \end_layout
  791. \end_inset
  792. is able to relax this assumption by identifying and down-weighting samples
  793. that diverge more strongly from the linear model across many features
  794. \begin_inset CommandInset citation
  795. LatexCommand cite
  796. key "Ritchie2006,Liu2015"
  797. literal "false"
  798. \end_inset
  799. .
  800. In addition,
  801. \begin_inset Flex Code
  802. status open
  803. \begin_layout Plain Layout
  804. limma
  805. \end_layout
  806. \end_inset
  807. is also able to fit simple mixed models incorporating one random effect
  808. in addition to the fixed effects represented by an ordinary linear model
  809. \begin_inset CommandInset citation
  810. LatexCommand cite
  811. key "Smyth2005a"
  812. literal "false"
  813. \end_inset
  814. .
  815. Once again,
  816. \begin_inset Flex Code
  817. status open
  818. \begin_layout Plain Layout
  819. limma
  820. \end_layout
  821. \end_inset
  822. shares information between features to obtain a robust estimate for the
  823. random effect correlation.
  824. \end_layout
  825. \begin_layout Subsubsection
  826. edgeR provides
  827. \begin_inset Flex Code
  828. status open
  829. \begin_layout Plain Layout
  830. limma
  831. \end_layout
  832. \end_inset
  833. -like analysis features for count data
  834. \end_layout
  835. \begin_layout Standard
  836. Although
  837. \begin_inset Flex Code
  838. status open
  839. \begin_layout Plain Layout
  840. limma
  841. \end_layout
  842. \end_inset
  843. can be applied to read counts from RNA-seq data, it is less suitable for
  844. counts from ChIP-seq data, which tend to be much smaller and therefore
  845. violate the assumption of a normal distribution more severely.
  846. For all count-based data, the
  847. \begin_inset Flex Code
  848. status open
  849. \begin_layout Plain Layout
  850. edgeR
  851. \end_layout
  852. \end_inset
  853. package works similarly to
  854. \begin_inset Flex Code
  855. status open
  856. \begin_layout Plain Layout
  857. limma
  858. \end_layout
  859. \end_inset
  860. , but uses a generalized linear model instead of a linear model.
  861. The most important difference is that the GLM in
  862. \begin_inset Flex Code
  863. status open
  864. \begin_layout Plain Layout
  865. edgeR
  866. \end_layout
  867. \end_inset
  868. models the counts directly using a negative binomial distribution rather
  869. than modeling the normalized log counts using a normal distribution
  870. \begin_inset CommandInset citation
  871. LatexCommand cite
  872. key "Chen2014,McCarthy2012,Robinson2010a"
  873. literal "false"
  874. \end_inset
  875. .
  876. The negative binomial is a good fit for count data because it can be derived
  877. as a gamma-distributed mixture of Poisson distributions.
  878. The Poisson distribution accurately represents the distribution of counts
  879. expected for a given gene abundance, and the gamma distribution is then
  880. used to represent the variation in gene abundance between biological replicates.
  881. For this reason, the square root of the dispersion parameter of the negative
  882. binomial is sometimes referred to as the biological coefficient of variation,
  883. since it represents the variability that was present in the samples prior
  884. to the Poisson
  885. \begin_inset Quotes eld
  886. \end_inset
  887. noise
  888. \begin_inset Quotes erd
  889. \end_inset
  890. that was generated by the random sampling of reads in proportion to feature
  891. abundances.
  892. The choice of a gamma distribution is arbitrary and motivated by mathematical
  893. convenience, since a gamma-Poisson mixture yields the numerically tractable
  894. negative binomial distribution.
  895. Thus,
  896. \begin_inset Flex Code
  897. status open
  898. \begin_layout Plain Layout
  899. edgeR
  900. \end_layout
  901. \end_inset
  902. assumes
  903. \emph on
  904. a prioi
  905. \emph default
  906. that the variation in abundances between replicates follows a gamma distribution.
  907. For differential abundance testing,
  908. \begin_inset Flex Code
  909. status open
  910. \begin_layout Plain Layout
  911. edgeR
  912. \end_layout
  913. \end_inset
  914. offers a likelihood ratio test, but more recently recommends a quasi-likelihood
  915. test that properly factors the uncertainty in variance estimation into
  916. the statistical significance for each feature
  917. \begin_inset CommandInset citation
  918. LatexCommand cite
  919. key "Lund2012"
  920. literal "false"
  921. \end_inset
  922. .
  923. \end_layout
  924. \begin_layout Subsubsection
  925. ChIP-seq Peak calling
  926. \end_layout
  927. \begin_layout Standard
  928. Unlike RNA-seq data, in which gene annotations provide a well-defined set
  929. of discrete genomic regions in which to count reads, ChIP-seq reads can
  930. potentially occur anywhere in the genome.
  931. However, most genome regions will not contain significant ChIP-seq read
  932. coverage, and analyzing every position in the entire genome is statistically
  933. and computationally infeasible, so it is necessary to identify regions
  934. of interest inside which ChIP-seq reads will be counted and analyzed.
  935. One option is to define a set of interesting regions
  936. \emph on
  937. a priori
  938. \emph default
  939. , for example by defining a promoter region for each annotated gene.
  940. However, it is also possible to use the ChIP-seq data itself to identify
  941. regions with ChIP-seq read coverage significantly above the background
  942. level, known as peaks.
  943. \end_layout
  944. \begin_layout Standard
  945. There are generally two kinds of peaks that can be identified: narrow peaks
  946. and broadly enriched regions.
  947. Proteins like transcription factors that bind specific sites in the genome
  948. typically show most of their ChIP-seq read coverage at these specific sites
  949. and very little coverage anywhere else.
  950. Because the footprint of the protein is consistent wherever it binds, each
  951. peak has a consistent width, typically tens to hundreds of base pairs,
  952. representing the length of DNA that it binds to.
  953. Algorithms like MACS exploit this pattern to identify specific loci at
  954. which such
  955. \begin_inset Quotes eld
  956. \end_inset
  957. narrow peaks
  958. \begin_inset Quotes erd
  959. \end_inset
  960. occur by looking for the characteristic peak shape in the ChIP-seq coverage
  961. rising above the surrounding background coverage
  962. \begin_inset CommandInset citation
  963. LatexCommand cite
  964. key "Zhang2008"
  965. literal "false"
  966. \end_inset
  967. .
  968. In contrast, some proteins, chief among them histones, do not bind only
  969. at a small number of specific sites, but rather bind potentially almost
  970. everywhere in the entire genome.
  971. When looking at histone marks, adjacent histones tend to be similarly marked,
  972. and a given mark may be present on an arbitrary number of consecutive histones
  973. along the genome.
  974. Hence, there is no consistent
  975. \begin_inset Quotes eld
  976. \end_inset
  977. footprint size
  978. \begin_inset Quotes erd
  979. \end_inset
  980. for ChIP-seq peaks based on histone marks, and peaks typically span many
  981. histones.
  982. Hence, typical peaks span many hundreds or even thousands of base pairs.
  983. Instead of identifying specific loci of strong enrichment, algorithms like
  984. SICER assume that peaks are represented in the ChIP-seq data by modest
  985. enrichment above background occurring across broad regions, and they attempt
  986. to identify the extent of those regions
  987. \begin_inset CommandInset citation
  988. LatexCommand cite
  989. key "Zang2009"
  990. literal "false"
  991. \end_inset
  992. .
  993. In all cases, better results are obtained if the local background coverage
  994. level can be estimated from ChIP-seq input samples, since various biases
  995. can result in uneven background coverage.
  996. \end_layout
  997. \begin_layout Standard
  998. Regardless of the type of peak identified, it is important to identify peaks
  999. that occur consistently across biological replicates.
  1000. The ENCODE project has developed a method called irreproducible discovery
  1001. rate for this purpose
  1002. \begin_inset CommandInset citation
  1003. LatexCommand cite
  1004. key "Li2006"
  1005. literal "false"
  1006. \end_inset
  1007. .
  1008. The IDR is defined as the probability that a peak identified in one biological
  1009. replicate will
  1010. \emph on
  1011. not
  1012. \emph default
  1013. also be identified in a second replicate.
  1014. Where the more familiar false discovery rate measures the degree of corresponde
  1015. nce between a data-derived ranked list and the true list of significant
  1016. features, IDR instead measures the degree of correspondence between two
  1017. ranked lists derived from different data.
  1018. IDR assumes that the highest-ranked features are
  1019. \begin_inset Quotes eld
  1020. \end_inset
  1021. signal
  1022. \begin_inset Quotes erd
  1023. \end_inset
  1024. peaks that tend to be listed in the same order in both lists, while the
  1025. lowest-ranked features are essentially noise peaks, listed in random order
  1026. with no correspondence between the lists.
  1027. IDR attempts to locate the
  1028. \begin_inset Quotes eld
  1029. \end_inset
  1030. crossover point
  1031. \begin_inset Quotes erd
  1032. \end_inset
  1033. between the signal and the noise by determining how far down the list the
  1034. correspondence between feature ranks breaks down.
  1035. \end_layout
  1036. \begin_layout Standard
  1037. In addition to other considerations, if called peaks are to be used as regions
  1038. of interest for differential abundance analysis, then care must be taken
  1039. to call peaks in a way that is blind to differential abundance between
  1040. experimental conditions, or else the statistical significance calculations
  1041. for differential abundance will overstate their confidence in the results.
  1042. The
  1043. \begin_inset Flex Code
  1044. status open
  1045. \begin_layout Plain Layout
  1046. csaw
  1047. \end_layout
  1048. \end_inset
  1049. package provides guidelines for calling peaks in this way: peaks
  1050. are called based on a combination of all ChIP-seq reads from all experimental
  1051. conditions, so that the identified peaks are based on the average abundance
  1052. across all conditions, which is independent of any differential abundance
  1053. between conditions
  1054. \begin_inset CommandInset citation
  1055. LatexCommand cite
  1056. key "Lun2015a"
  1057. literal "false"
  1058. \end_inset
  1059. .
  1060. \end_layout
  1061. \begin_layout Subsubsection
  1062. Normalization of high-throughput data is non-trivial and application-dependent
  1063. \end_layout
  1064. \begin_layout Standard
  1065. High-throughput data sets invariably require some kind of normalization
  1066. before further analysis can be conducted.
  1067. In general, the goal of normalization is to remove effects in the data
  1068. that are caused by technical factors that have nothing to do with the biology
  1069. being studied.
  1070. \end_layout
  1071. \begin_layout Standard
  1072. For Affymetrix expression arrays, the standard normalization algorithm used
  1073. in most analyses is Robust Multichip Average (RMA) [CITE].
  1074. RMA is designed with the assumption that some fraction of probes on each
  1075. array will be artifactual and takes advantage of the fact that each gene
  1076. is represented by multiple probes by implementing normalization and summarizati
  1077. on steps that are robust against outlier probes.
  1078. However, RMA uses the probe intensities of all arrays in the data set in
  1079. the normalization of each individual array, meaning that the normalized
  1080. expression values in each array depend on every array in the data set,
  1081. and will necessarily change each time an array is added or removed from
  1082. the data set.
  1083. If this is undesirable, frozen RMA implements a variant of RMA where the
  1084. relevant distributional parameters are learned from a large reference set
  1085. of diverse public array data sets and then
  1086. \begin_inset Quotes eld
  1087. \end_inset
  1088. frozen
  1089. \begin_inset Quotes erd
  1090. \end_inset
  1091. , so that each array is effectively normalized against this frozen reference
  1092. set rather than the other arrays in the data set under study [CITE].
  1093. Other array normalization methods considered include dChip, GRSN, and SCAN
  1094. [CITEx3].
  1095. \end_layout
  1096. \begin_layout Standard
  1097. In contrast, high-throughput sequencing data present very different normalizatio
  1098. n challenges.
  1099. The simplest case is RNA-seq in which read counts are obtained for a set
  1100. of gene annotations, yielding a matrix of counts with rows representing
  1101. genes and columns representing samples.
  1102. Because RNA-seq approximates a process of sampling from a population with
  1103. replacement, each gene's count is only interpretable as a fraction of the
  1104. total reads for that sample.
  1105. For that reason, RNA-seq abundances are often reported as counts per million
  1106. (CPM).
  1107. Furthermore, if the abundance of a single gene increases, then in order
  1108. for its fraction of the total reads to increase, all other genes' fractions
  1109. must decrease to accommodate it.
  1110. This effect is known as composition bias, and it is an artifact of the
  1111. read sampling process that has nothing to do with the biology of the samples
  1112. and must therefore be normalized out.
  1113. The most commonly used methods to normalize for composition bias in RNA-seq
  1114. data seek to equalize the average gene abundance across samples, under
  1115. the assumption that the average gene is likely not changing
  1116. \begin_inset CommandInset citation
  1117. LatexCommand cite
  1118. key "Robinson2010,Anders2010"
  1119. literal "false"
  1120. \end_inset
  1121. .
  1122. \end_layout
  1123. \begin_layout Standard
  1124. In ChIP-seq data, normalization is not as straightforward.
  1125. The
  1126. \begin_inset Flex Code
  1127. status open
  1128. \begin_layout Plain Layout
  1129. csaw
  1130. \end_layout
  1131. \end_inset
  1132. package implements several different normalization strategies
  1133. and provides guidance on when to use each one
  1134. \begin_inset CommandInset citation
  1135. LatexCommand cite
  1136. key "Lun2015a"
  1137. literal "false"
  1138. \end_inset
  1139. .
  1140. Briefly, a typical ChIP-seq sample has a bimodal distribution of read counts:
  1141. a low-abundance mode representing background regions and a high-abundance
  1142. mode representing signal regions.
  1143. This offers two potential normalization targets: equalizing background
  1144. coverage or equalizing signal coverage.
  1145. If the experiment is well controlled and ChIP efficiency is known to be
  1146. consistent across all samples, then normalizing the background coverage
  1147. to be equal across all samples is a reasonable strategy.
  1148. If this is not a safe assumption, then the preferred strategy is to normalize
  1149. the signal regions in a way similar to RNA-seq data by assuming that the
  1150. average signal region is not changing abundance between samples.
  1151. Beyond this, if a ChIP-seq experiment has a more complicated structure
  1152. that doesn't show the typical bimodal count distribution, it may be necessary
  1153. to implement a normalization as a smooth function of abundance.
  1154. However, this strategy makes a much stronger assumption about the data:
  1155. that the average log fold change is zero across all abundance levels.
  1156. Hence, the simpler scaling normalization based on background or signal
  1157. regions are generally preferred whenever possible.
  1158. \end_layout
  1159. \begin_layout Subsubsection
  1160. ComBat and SVA for correction of known and unknown batch effects
  1161. \end_layout
  1162. \begin_layout Standard
  1163. In addition to well-understood effects that can be easily normalized out,
  1164. a data set often contains confounding biological effects that must be accounted
  1165. for in the modeling step.
  1166. For instance, in an experiment with pre-treatment and post-treatment samples
  1167. of cells from several different donors, donor variability represents a
  1168. known batch effect.
  1169. The most straightforward correction for known batches is to estimate the
  1170. mean for each batch independently and subtract out the differences, so
  1171. that all batches have identical means for each feature.
  1172. However, as with variance estimation, estimating the differences in batch
  1173. means is not necessarily robust at the feature level, so the ComBat method
  1174. adds empirical Bayes squeezing of the batch mean differences toward a common
  1175. value, analogous to
  1176. \begin_inset Flex Code
  1177. status open
  1178. \begin_layout Plain Layout
  1179. limma
  1180. \end_layout
  1181. \end_inset
  1182. 's empirical Bayes squeezing of feature variance estimates
  1183. \begin_inset CommandInset citation
  1184. LatexCommand cite
  1185. key "Johnson2007"
  1186. literal "false"
  1187. \end_inset
  1188. .
  1189. Effectively, ComBat assumes that modest differences between batch means
  1190. are real batch effects, but extreme differences between batch means are
  1191. more likely to be the result of outlier observations that happen to line
  1192. up with the batches rather than a genuine batch effect.
  1193. The result is a batch correction that is more robust against outliers than
  1194. simple subtraction of mean differences subtraction.
  1195. \end_layout
  1196. \begin_layout Standard
  1197. In some data sets, unknown batch effects may be present due to inherent
  1198. variability in in the data, either caused by technical or biological effects.
  1199. Examples of unknown batch effects include variations in enrichment efficiency
  1200. between ChIP-seq samples, variations in populations of different cell types,
  1201. and the effects of uncontrolled environmental factors on gene expression
  1202. in humans or live animals.
  1203. In an ordinary linear model context, unknown batch effects cannot be inferred
  1204. and must be treated as random noise.
  1205. However, in high-throughput experiments, once again information can be
  1206. shared across features to identify patterns of un-modeled variation that
  1207. are repeated in many features.
  1208. One attractive strategy would be to perform singular value decomposition
  1209. (SVD) on the matrix of linear model residuals (which contain all the un-modeled
  1210. variation in the data) and take the first few singular vectors as batch
  1211. effects.
  1212. While this can be effective, it makes the unreasonable assumption that
  1213. all batch effects are uncorrelated with any of the effects being modeled.
  1214. Surrogate variable analysis (SVA) starts with this approach, but takes
  1215. some additional steps to identify batch effects in the full data that are
  1216. both highly correlated with the singular vectors in the residuals and least
  1217. correlated with the effects of interest
  1218. \begin_inset CommandInset citation
  1219. LatexCommand cite
  1220. key "Leek2007"
  1221. literal "false"
  1222. \end_inset
  1223. .
  1224. Since the final batch effects are estimated from the full data, moderate
  1225. correlations between the batch effects and effects of interest are allowed,
  1226. which gives SVA much more freedom to estimate the true extent of the batch
  1227. effects compared to simple residual SVD.
  1228. Once the surrogate variables are estimated, they can be included as coefficient
  1229. s in the linear model in a similar fashion to known batch effects in order
  1230. to subtract out their effects on each feature's abundance.
  1231. \end_layout
  1232. \begin_layout Subsubsection
  1233. Factor analysis: PCA, MDS, MOFA
  1234. \end_layout
  1235. \begin_layout Standard
  1236. \begin_inset Flex TODO Note (inline)
  1237. status open
  1238. \begin_layout Plain Layout
  1239. Not sure if this merits a subsection here.
  1240. \end_layout
  1241. \end_inset
  1242. \end_layout
  1243. \begin_layout Itemize
  1244. Batch-corrected PCA is informative, but careful application is required
  1245. to avoid bias
  1246. \end_layout
  1247. \begin_layout Section
  1248. Innovation
  1249. \end_layout
  1250. \begin_layout Standard
  1251. \begin_inset Flex TODO Note (inline)
  1252. status open
  1253. \begin_layout Plain Layout
  1254. Is this entire section redundant with the Approach sections of each chapter?
  1255. I'm not really sure what to write here.
  1256. \end_layout
  1257. \end_inset
  1258. \end_layout
  1259. \begin_layout Subsection
  1260. MSC infusion to improve transplant outcomes (prevent/delay rejection)
  1261. \end_layout
  1262. \begin_layout Standard
  1263. \begin_inset Flex TODO Note (inline)
  1264. status open
  1265. \begin_layout Plain Layout
  1266. Do I still talk about this? It's the motivation for chapter 4, but I don't
  1267. actually present any work related to MSCs.
  1268. \end_layout
  1269. \end_inset
  1270. \end_layout
  1271. \begin_layout Itemize
  1272. Demonstrated in mice, but not yet in primates
  1273. \end_layout
  1274. \begin_layout Itemize
  1275. Mechanism currently unknown, but MSC are known to be immune modulatory
  1276. \end_layout
  1277. \begin_layout Itemize
  1278. Characterize MSC response to interferon gamma
  1279. \end_layout
  1280. \begin_layout Itemize
  1281. IFN-g is thought to stimulate their function
  1282. \end_layout
  1283. \begin_layout Itemize
  1284. Test IFN-g treated MSC infusion as a therapy to delay graft rejection in
  1285. cynomolgus monkeys
  1286. \end_layout
  1287. \begin_layout Itemize
  1288. Monitor animals post-transplant using blood RNA-seq at serial time points
  1289. \end_layout
  1290. \begin_layout Subsection
  1291. Investigate dynamics of histone marks in CD4 T-cell activation and memory
  1292. \end_layout
  1293. \begin_layout Itemize
  1294. Previous studies have looked at single snapshots of histone marks
  1295. \end_layout
  1296. \begin_layout Itemize
  1297. Instead, look at changes in histone marks across activation and memory
  1298. \end_layout
  1299. \begin_layout Subsection
  1300. High-throughput sequencing and microarray technologies
  1301. \end_layout
  1302. \begin_layout Itemize
  1303. Powerful methods for assaying gene expression and epigenetics across entire
  1304. genomes
  1305. \end_layout
  1306. \begin_layout Itemize
  1307. Proper analysis requires finding and exploiting systematic genome-wide trends
  1308. \end_layout
  1309. \begin_layout Chapter
  1310. Reproducible genome-wide epigenetic analysis of H3K4 and H3K27 methylation
  1311. in naive and memory CD4 T-cell activation
  1312. \end_layout
  1313. \begin_layout Standard
  1314. \begin_inset Flex TODO Note (inline)
  1315. status open
  1316. \begin_layout Plain Layout
  1317. Chapter author list: Me, Sarah, Dan
  1318. \end_layout
  1319. \end_inset
  1320. \end_layout
  1321. \begin_layout Standard
  1322. \begin_inset Flex TODO Note (inline)
  1323. status open
  1324. \begin_layout Plain Layout
  1325. Need better section titles throughout the entire chapter
  1326. \end_layout
  1327. \end_inset
  1328. \end_layout
  1329. \begin_layout Section
  1330. Approach
  1331. \end_layout
  1332. \begin_layout Standard
  1333. \begin_inset Flex TODO Note (inline)
  1334. status open
  1335. \begin_layout Plain Layout
  1336. Check on the exact correct way to write
  1337. \begin_inset Quotes eld
  1338. \end_inset
  1339. CD4 T-cell
  1340. \begin_inset Quotes erd
  1341. \end_inset
  1342. .
  1343. I think there might be a plus sign somewhere in there now? Also, maybe
  1344. figure out a reasonable way to abbreviate
  1345. \begin_inset Quotes eld
  1346. \end_inset
  1347. naive CD4 T-cells
  1348. \begin_inset Quotes erd
  1349. \end_inset
  1350. and
  1351. \begin_inset Quotes eld
  1352. \end_inset
  1353. memory CD4 T-cells
  1354. \begin_inset Quotes erd
  1355. \end_inset
  1356. .
  1357. \end_layout
  1358. \end_inset
  1359. \end_layout
  1360. \begin_layout Standard
  1361. \begin_inset Flex TODO Note (inline)
  1362. status open
  1363. \begin_layout Plain Layout
  1364. Is it ok to just copy a bunch of citations from the intros to Sarah's papers?
  1365. That feels like cheating somehow.
  1366. \end_layout
  1367. \end_inset
  1368. \end_layout
  1369. \begin_layout Standard
  1370. CD4 T-cells are central to all adaptive immune responses, as well as immune
  1371. memory [CITE?].
  1372. After an infection is cleared, a subset of the naive CD4 T-cells that responded
  1373. to that infection differentiate into memory CD4 T-cells, which are responsible
  1374. for responding to the same pathogen in the future.
  1375. Memory CD4 T-cells are functionally distinct, able to respond to an infection
  1376. more quickly and without the co-stimulation required by naive CD4 T-cells.
  1377. However, the molecular mechanisms underlying this functional distinction
  1378. are not well-understood.
  1379. Epigenetic regulation via histone modification is thought to play an important
  1380. role, but while many studies have looked at static snapshots of histone
  1381. methylation in T-cells, few studies have looked at the dynamics of histone
  1382. regulation after T-cell activation, nor the differences in histone methylation
  1383. between naive and memory T-cells.
  1384. H3K4me2, H3K4me3 and H3K27me3 are three histone marks thought to be major
  1385. epigenetic regulators of gene expression.
  1386. The goal of the present study is to investigate the role of these histone
  1387. marks in CD4 T-cell activation kinetics and memory differentiation.
  1388. In static snapshots, H3K4me2 and H3K4me3 are often observed in the promoters
  1389. of highly transcribed genes, while H3K27me3 is more often observed in promoters
  1390. of inactive genes with little to no transcription occurring.
  1391. As a result, the two H3K4 marks have been characterized as
  1392. \begin_inset Quotes eld
  1393. \end_inset
  1394. activating
  1395. \begin_inset Quotes erd
  1396. \end_inset
  1397. marks, while H3K27me3 has been characterized as
  1398. \begin_inset Quotes eld
  1399. \end_inset
  1400. deactivating
  1401. \begin_inset Quotes erd
  1402. \end_inset
  1403. .
  1404. Despite these characterizations, the actual causal relationship between
  1405. these histone modifications and gene transcription is complex and likely
  1406. involves positive and negative feedback loops between the two.
  1407. \end_layout
  1408. \begin_layout Standard
  1409. In order to investigate the relationship between gene expression and these
  1410. histone modifications in the context of naive and memory CD4 T-cell activation,
  1411. a previously published data set of combined RNA-seq and ChIP-seq data was
  1412. re-analyzed using up-to-date methods designed to address the specific analysis
  1413. challenges posed by this data set.
  1414. The data set contains naive and memory CD4 T-cell samples in a time course
  1415. before and after activation.
  1416. Like the original analysis, this analysis looks at the dynamics of these
  1417. marks histone marks and compare them to gene expression dynamics at the
  1418. same time points during activation, as well as compare them between naive
  1419. and memory cells, in hope of discovering evidence of new mechanistic details
  1420. in the interplay between them.
  1421. The original analysis of this data treated each gene promoter as a monolithic
  1422. unit and mostly assumed that ChIP-seq reads or peaks occurring anywhere
  1423. within a promoter were equivalent, regardless of where they occurred relative
  1424. to the gene structure.
  1425. For an initial analysis of the data, this was a necessary simplifying assumptio
  1426. n.
  1427. The current analysis aims to relax this assumption, first by directly analyzing
  1428. ChIP-seq peaks for differential modification, and second by taking a more
  1429. granular look at the ChIP-seq read coverage within promoter regions to
  1430. ask whether the location of histone modifications relative to the gene's
  1431. TSS is an important factor, as opposed to simple proximity.
  1432. \end_layout
  1433. \begin_layout Section
  1434. Methods
  1435. \end_layout
  1436. \begin_layout Standard
  1437. \begin_inset Flex TODO Note (inline)
  1438. status open
  1439. \begin_layout Plain Layout
  1440. Look up some more details from the papers (e.g.
  1441. activation method).
  1442. \end_layout
  1443. \end_inset
  1444. \end_layout
  1445. \begin_layout Standard
  1446. A reproducible workflow was written to analyze the raw ChIP-seq and RNA-seq
  1447. data from previous studies
  1448. \begin_inset CommandInset citation
  1449. LatexCommand cite
  1450. key "gh-cd4-csaw,LaMere2016,LaMere2017"
  1451. literal "true"
  1452. \end_inset
  1453. .
  1454. Briefly, this data consists of RNA-seq and ChIP-seq from CD4 T-cells cultured
  1455. from 4 donors.
  1456. From each donor, naive and memory CD4 T-cells were isolated separately.
  1457. Then cultures of both cells were activated [how?], and samples were taken
  1458. at 4 time points: Day 0 (pre-activation), Day 1 (early activation), Day
  1459. 5 (peak activation), and Day 14 (post-activation).
  1460. For each combination of cell type and time point, RNA was isolated and
  1461. sequenced, and ChIP-seq was performed for each of 3 histone marks: H3K4me2,
  1462. H3K4me3, and H3K27me3.
  1463. The ChIP-seq input DNA was also sequenced for each sample.
  1464. The result was 32 samples for each assay.
  1465. \end_layout
  1466. \begin_layout Subsection
  1467. RNA-seq differential expression analysis
  1468. \end_layout
  1469. \begin_layout Standard
  1470. \begin_inset Note Note
  1471. status collapsed
  1472. \begin_layout Plain Layout
  1473. \begin_inset Float figure
  1474. wide false
  1475. sideways false
  1476. status open
  1477. \begin_layout Plain Layout
  1478. \align center
  1479. \begin_inset Float figure
  1480. wide false
  1481. sideways false
  1482. status collapsed
  1483. \begin_layout Plain Layout
  1484. \align center
  1485. \begin_inset Graphics
  1486. filename graphics/CD4-csaw/rnaseq-compare/ensmebl-vs-entrez-star-CROP.png
  1487. lyxscale 25
  1488. width 35col%
  1489. groupId rna-comp-subfig
  1490. \end_inset
  1491. \end_layout
  1492. \begin_layout Plain Layout
  1493. \begin_inset Caption Standard
  1494. \begin_layout Plain Layout
  1495. STAR quantification, Entrez vs Ensembl gene annotation
  1496. \end_layout
  1497. \end_inset
  1498. \end_layout
  1499. \end_inset
  1500. \begin_inset space \qquad{}
  1501. \end_inset
  1502. \begin_inset Float figure
  1503. wide false
  1504. sideways false
  1505. status collapsed
  1506. \begin_layout Plain Layout
  1507. \align center
  1508. \begin_inset Graphics
  1509. filename graphics/CD4-csaw/rnaseq-compare/ensmebl-vs-entrez-shoal-CROP.png
  1510. lyxscale 25
  1511. width 35col%
  1512. groupId rna-comp-subfig
  1513. \end_inset
  1514. \end_layout
  1515. \begin_layout Plain Layout
  1516. \begin_inset Caption Standard
  1517. \begin_layout Plain Layout
  1518. Salmon+Shoal quantification, Entrez vs Ensembl gene annotation
  1519. \end_layout
  1520. \end_inset
  1521. \end_layout
  1522. \end_inset
  1523. \end_layout
  1524. \begin_layout Plain Layout
  1525. \align center
  1526. \begin_inset Float figure
  1527. wide false
  1528. sideways false
  1529. status collapsed
  1530. \begin_layout Plain Layout
  1531. \align center
  1532. \begin_inset Graphics
  1533. filename graphics/CD4-csaw/rnaseq-compare/star-vs-hisat2-CROP.png
  1534. lyxscale 25
  1535. width 35col%
  1536. groupId rna-comp-subfig
  1537. \end_inset
  1538. \end_layout
  1539. \begin_layout Plain Layout
  1540. \begin_inset Caption Standard
  1541. \begin_layout Plain Layout
  1542. STAR vs HISAT2 quantification, Ensembl gene annotation
  1543. \end_layout
  1544. \end_inset
  1545. \end_layout
  1546. \end_inset
  1547. \begin_inset space \qquad{}
  1548. \end_inset
  1549. \begin_inset Float figure
  1550. wide false
  1551. sideways false
  1552. status collapsed
  1553. \begin_layout Plain Layout
  1554. \align center
  1555. \begin_inset Graphics
  1556. filename graphics/CD4-csaw/rnaseq-compare/star-vs-salmon-CROP.png
  1557. lyxscale 25
  1558. width 35col%
  1559. groupId rna-comp-subfig
  1560. \end_inset
  1561. \end_layout
  1562. \begin_layout Plain Layout
  1563. \begin_inset Caption Standard
  1564. \begin_layout Plain Layout
  1565. Salmon vs STAR quantification, Ensembl gene annotation
  1566. \end_layout
  1567. \end_inset
  1568. \end_layout
  1569. \end_inset
  1570. \end_layout
  1571. \begin_layout Plain Layout
  1572. \align center
  1573. \begin_inset Float figure
  1574. wide false
  1575. sideways false
  1576. status collapsed
  1577. \begin_layout Plain Layout
  1578. \align center
  1579. \begin_inset Graphics
  1580. filename graphics/CD4-csaw/rnaseq-compare/salmon-vs-kallisto-CROP.png
  1581. lyxscale 25
  1582. width 35col%
  1583. groupId rna-comp-subfig
  1584. \end_inset
  1585. \end_layout
  1586. \begin_layout Plain Layout
  1587. \begin_inset Caption Standard
  1588. \begin_layout Plain Layout
  1589. Salmon vs Kallisto quantification, Ensembl gene annotation
  1590. \end_layout
  1591. \end_inset
  1592. \end_layout
  1593. \end_inset
  1594. \begin_inset space \qquad{}
  1595. \end_inset
  1596. \begin_inset Float figure
  1597. wide false
  1598. sideways false
  1599. status collapsed
  1600. \begin_layout Plain Layout
  1601. \align center
  1602. \begin_inset Graphics
  1603. filename graphics/CD4-csaw/rnaseq-compare/salmon-vs-shoal-CROP.png
  1604. lyxscale 25
  1605. width 35col%
  1606. groupId rna-comp-subfig
  1607. \end_inset
  1608. \end_layout
  1609. \begin_layout Plain Layout
  1610. \begin_inset Caption Standard
  1611. \begin_layout Plain Layout
  1612. Salmon+Shoal vs Salmon alone, Ensembl gene annotation
  1613. \end_layout
  1614. \end_inset
  1615. \end_layout
  1616. \end_inset
  1617. \end_layout
  1618. \begin_layout Plain Layout
  1619. \begin_inset Caption Standard
  1620. \begin_layout Plain Layout
  1621. \begin_inset CommandInset label
  1622. LatexCommand label
  1623. name "fig:RNA-norm-comp"
  1624. \end_inset
  1625. RNA-seq comparisons
  1626. \end_layout
  1627. \end_inset
  1628. \end_layout
  1629. \end_inset
  1630. \end_layout
  1631. \end_inset
  1632. \end_layout
  1633. \begin_layout Standard
  1634. Sequence reads were retrieved from the Sequence Read Archive (SRA)
  1635. \begin_inset CommandInset citation
  1636. LatexCommand cite
  1637. key "Leinonen2011"
  1638. literal "false"
  1639. \end_inset
  1640. .
  1641. Five different alignment and quantification methods were tested for the
  1642. RNA-seq data
  1643. \begin_inset CommandInset citation
  1644. LatexCommand cite
  1645. key "Dobin2012,Kim2019,Liao2014,Pimentel2016,Patro2017,gh-shoal,gh-hg38-ref"
  1646. literal "false"
  1647. \end_inset
  1648. .
  1649. Each quantification was tested with both Ensembl transcripts and UCSC known
  1650. gene annotations [CITE? Also which versions of each?].
  1651. Comparisons of downstream results from each combination of quantification
  1652. method and reference revealed that all quantifications gave broadly similar
  1653. results for most genes, so shoal with the Ensembl annotation was chosen
  1654. as the method theoretically most likely to partially mitigate some of the
  1655. batch effect in the data.
  1656. \end_layout
  1657. \begin_layout Standard
  1658. \begin_inset Float figure
  1659. wide false
  1660. sideways false
  1661. status collapsed
  1662. \begin_layout Plain Layout
  1663. \align center
  1664. \begin_inset Float figure
  1665. wide false
  1666. sideways false
  1667. status open
  1668. \begin_layout Plain Layout
  1669. \align center
  1670. \begin_inset Graphics
  1671. filename graphics/CD4-csaw/RNA-seq/PCA-no-batchsub-CROP.png
  1672. lyxscale 25
  1673. width 75col%
  1674. groupId rna-pca-subfig
  1675. \end_inset
  1676. \end_layout
  1677. \begin_layout Plain Layout
  1678. \begin_inset Caption Standard
  1679. \begin_layout Plain Layout
  1680. \series bold
  1681. \begin_inset CommandInset label
  1682. LatexCommand label
  1683. name "fig:RNA-PCA-no-batchsub"
  1684. \end_inset
  1685. Before batch correction
  1686. \end_layout
  1687. \end_inset
  1688. \end_layout
  1689. \end_inset
  1690. \end_layout
  1691. \begin_layout Plain Layout
  1692. \align center
  1693. \begin_inset Float figure
  1694. wide false
  1695. sideways false
  1696. status open
  1697. \begin_layout Plain Layout
  1698. \align center
  1699. \begin_inset Graphics
  1700. filename graphics/CD4-csaw/RNA-seq/PCA-combat-batchsub-CROP.png
  1701. lyxscale 25
  1702. width 75col%
  1703. groupId rna-pca-subfig
  1704. \end_inset
  1705. \end_layout
  1706. \begin_layout Plain Layout
  1707. \begin_inset Caption Standard
  1708. \begin_layout Plain Layout
  1709. \series bold
  1710. \begin_inset CommandInset label
  1711. LatexCommand label
  1712. name "fig:RNA-PCA-ComBat-batchsub"
  1713. \end_inset
  1714. After batch correction with ComBat
  1715. \end_layout
  1716. \end_inset
  1717. \end_layout
  1718. \end_inset
  1719. \end_layout
  1720. \begin_layout Plain Layout
  1721. \begin_inset Caption Standard
  1722. \begin_layout Plain Layout
  1723. \series bold
  1724. \begin_inset CommandInset label
  1725. LatexCommand label
  1726. name "fig:RNA-PCA"
  1727. \end_inset
  1728. PCoA plots of RNA-seq data showing effect of batch correction.
  1729. \end_layout
  1730. \end_inset
  1731. \end_layout
  1732. \end_inset
  1733. \end_layout
  1734. \begin_layout Standard
  1735. Due to an error in sample preparation, the RNA from the samples for days
  1736. 0 and 5 were sequenced using a different kit than those for days 1 and
  1737. 14.
  1738. This induced a substantial batch effect in the data due to differences
  1739. in sequencing biases between the two kits, and this batch effect is unfortunate
  1740. ly confounded with the time point variable (Figure
  1741. \begin_inset CommandInset ref
  1742. LatexCommand ref
  1743. reference "fig:RNA-PCA-no-batchsub"
  1744. plural "false"
  1745. caps "false"
  1746. noprefix "false"
  1747. \end_inset
  1748. ).
  1749. To do the best possible analysis with this data, this batch effect was
  1750. subtracted out from the data using ComBat
  1751. \begin_inset CommandInset citation
  1752. LatexCommand cite
  1753. key "Johnson2007"
  1754. literal "false"
  1755. \end_inset
  1756. , ignoring the time point variable due to the confounding with the batch
  1757. variable.
  1758. The result is a marked improvement, but the unavoidable confounding with
  1759. time point means that certain real patterns of gene expression will be
  1760. indistinguishable from the batch effect and subtracted out as a result.
  1761. Specifically, any
  1762. \begin_inset Quotes eld
  1763. \end_inset
  1764. zig-zag
  1765. \begin_inset Quotes erd
  1766. \end_inset
  1767. pattern, such as a gene whose expression goes up on day 1, down on day
  1768. 5, and back up again on day 14, will be attenuated or eliminated entirely.
  1769. In the context of a T-cell activation time course, it is unlikely that
  1770. many genes of interest will follow such an expression pattern, so this
  1771. loss was deemed an acceptable cost for correcting the batch effect.
  1772. \end_layout
  1773. \begin_layout Standard
  1774. \begin_inset Float figure
  1775. wide false
  1776. sideways false
  1777. status collapsed
  1778. \begin_layout Plain Layout
  1779. \begin_inset Flex TODO Note (inline)
  1780. status open
  1781. \begin_layout Plain Layout
  1782. Just take the top row
  1783. \end_layout
  1784. \end_inset
  1785. \end_layout
  1786. \begin_layout Plain Layout
  1787. \align center
  1788. \begin_inset Graphics
  1789. filename graphics/CD4-csaw/RNA-seq/weights-vs-covars-CROP.png
  1790. lyxscale 25
  1791. width 100col%
  1792. groupId colwidth-raster
  1793. \end_inset
  1794. \end_layout
  1795. \begin_layout Plain Layout
  1796. \begin_inset Caption Standard
  1797. \begin_layout Plain Layout
  1798. \series bold
  1799. \begin_inset CommandInset label
  1800. LatexCommand label
  1801. name "fig:RNA-seq-weights-vs-covars"
  1802. \end_inset
  1803. RNA-seq sample weights, grouped by experimental and technical covariates.
  1804. \end_layout
  1805. \end_inset
  1806. \end_layout
  1807. \end_inset
  1808. \end_layout
  1809. \begin_layout Standard
  1810. However, removing the systematic component of the batch effect still leaves
  1811. the noise component.
  1812. The gene quantifications from the first batch are substantially noisier
  1813. than those in the second batch.
  1814. This analysis corrected for this by using
  1815. \begin_inset Flex Code
  1816. status open
  1817. \begin_layout Plain Layout
  1818. limma
  1819. \end_layout
  1820. \end_inset
  1821. 's sample weighting method to assign lower weights to the noisy samples
  1822. of batch 1
  1823. \begin_inset CommandInset citation
  1824. LatexCommand cite
  1825. key "Ritchie2006,Liu2015"
  1826. literal "false"
  1827. \end_inset
  1828. .
  1829. The resulting analysis gives an accurate assessment of statistical significance
  1830. for all comparisons, which unfortunately means a loss of statistical power
  1831. for comparisons involving samples in batch 1.
  1832. \end_layout
  1833. \begin_layout Standard
  1834. In any case, the RNA-seq counts were first normalized using trimmed mean
  1835. of M-values
  1836. \begin_inset CommandInset citation
  1837. LatexCommand cite
  1838. key "Robinson2010"
  1839. literal "false"
  1840. \end_inset
  1841. , converted to normalized logCPM with quality weights using
  1842. \begin_inset Flex Code
  1843. status open
  1844. \begin_layout Plain Layout
  1845. voomWithQualityWeights
  1846. \end_layout
  1847. \end_inset
  1848. \begin_inset CommandInset citation
  1849. LatexCommand cite
  1850. key "Law2013,Liu2015"
  1851. literal "false"
  1852. \end_inset
  1853. , and batch-corrected at this point using ComBat.
  1854. A linear model was fit to the batch-corrected, quality-weighted data for
  1855. each gene using
  1856. \begin_inset Flex Code
  1857. status open
  1858. \begin_layout Plain Layout
  1859. limma
  1860. \end_layout
  1861. \end_inset
  1862. , and each gene was tested for differential expression using
  1863. \begin_inset Flex Code
  1864. status open
  1865. \begin_layout Plain Layout
  1866. limma
  1867. \end_layout
  1868. \end_inset
  1869. 's empirical Bayes moderated
  1870. \begin_inset Formula $t$
  1871. \end_inset
  1872. -test
  1873. \begin_inset CommandInset citation
  1874. LatexCommand cite
  1875. key "Smyth2005,Law2013,Phipson2013"
  1876. literal "false"
  1877. \end_inset
  1878. .
  1879. \end_layout
  1880. \begin_layout Subsection
  1881. ChIP-seq differential modification analysis
  1882. \end_layout
  1883. \begin_layout Standard
  1884. \begin_inset Float figure
  1885. wide false
  1886. sideways false
  1887. status collapsed
  1888. \begin_layout Plain Layout
  1889. \align center
  1890. \begin_inset Float figure
  1891. wide false
  1892. sideways false
  1893. status open
  1894. \begin_layout Plain Layout
  1895. \align center
  1896. \begin_inset Graphics
  1897. filename graphics/CD4-csaw/csaw/CCF-plots-noBL-PAGE2-CROP.pdf
  1898. lyxscale 50
  1899. height 40theight%
  1900. groupId ccf-subfig
  1901. \end_inset
  1902. \end_layout
  1903. \begin_layout Plain Layout
  1904. \begin_inset Caption Standard
  1905. \begin_layout Plain Layout
  1906. \series bold
  1907. \begin_inset CommandInset label
  1908. LatexCommand label
  1909. name "fig:CCF-without-blacklist"
  1910. \end_inset
  1911. Cross-correlation plots without removing blacklisted reads.
  1912. \series default
  1913. Without blacklisting, many artifactual peaks are visible in the cross-correlatio
  1914. ns of the ChIP-seq samples, and the peak at the true fragment size (147
  1915. \begin_inset space ~
  1916. \end_inset
  1917. bp) is frequently overshadowed by the artifactual peak at the read length
  1918. (100
  1919. \begin_inset space ~
  1920. \end_inset
  1921. bp).
  1922. \end_layout
  1923. \end_inset
  1924. \end_layout
  1925. \end_inset
  1926. \end_layout
  1927. \begin_layout Plain Layout
  1928. \align center
  1929. \begin_inset Float figure
  1930. wide false
  1931. sideways false
  1932. status open
  1933. \begin_layout Plain Layout
  1934. \align center
  1935. \begin_inset Graphics
  1936. filename graphics/CD4-csaw/csaw/CCF-plots-PAGE2-CROP.pdf
  1937. lyxscale 50
  1938. height 40theight%
  1939. groupId ccf-subfig
  1940. \end_inset
  1941. \end_layout
  1942. \begin_layout Plain Layout
  1943. \begin_inset Caption Standard
  1944. \begin_layout Plain Layout
  1945. \series bold
  1946. \begin_inset CommandInset label
  1947. LatexCommand label
  1948. name "fig:CCF-with-blacklist"
  1949. \end_inset
  1950. Cross-correlation plots with blacklisted reads removed.
  1951. \series default
  1952. After blacklisting, most ChIP-seq samples have clean-looking periodic cross-cor
  1953. relation plots, with the largest peak around 147
  1954. \begin_inset space ~
  1955. \end_inset
  1956. bp, the expected size for a fragment of DNA from a single nucleosome, and
  1957. little to no peak at the read length, 100
  1958. \begin_inset space ~
  1959. \end_inset
  1960. bp.
  1961. \end_layout
  1962. \end_inset
  1963. \end_layout
  1964. \end_inset
  1965. \end_layout
  1966. \begin_layout Plain Layout
  1967. \begin_inset Caption Standard
  1968. \begin_layout Plain Layout
  1969. \series bold
  1970. \begin_inset CommandInset label
  1971. LatexCommand label
  1972. name "fig:CCF-master"
  1973. \end_inset
  1974. Strand cross-correlation plots for ChIP-seq data, before and after blacklisting.
  1975. \end_layout
  1976. \end_inset
  1977. \end_layout
  1978. \end_inset
  1979. \end_layout
  1980. \begin_layout Standard
  1981. \begin_inset Note Note
  1982. status open
  1983. \begin_layout Plain Layout
  1984. \begin_inset Float figure
  1985. wide false
  1986. sideways false
  1987. status collapsed
  1988. \begin_layout Plain Layout
  1989. \align center
  1990. \begin_inset Graphics
  1991. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-sample-MAplot-bins-CROP.png
  1992. lyxscale 25
  1993. width 100col%
  1994. groupId colwidth-raster
  1995. \end_inset
  1996. \end_layout
  1997. \begin_layout Plain Layout
  1998. \begin_inset Caption Standard
  1999. \begin_layout Plain Layout
  2000. \series bold
  2001. \begin_inset CommandInset label
  2002. LatexCommand label
  2003. name "fig:MA-plot-bigbins"
  2004. \end_inset
  2005. MA plot of H3K4me2 read counts in 10kb bins for two arbitrary samples.
  2006. \end_layout
  2007. \end_inset
  2008. \end_layout
  2009. \end_inset
  2010. \end_layout
  2011. \end_inset
  2012. \end_layout
  2013. \begin_layout Standard
  2014. \begin_inset Flex TODO Note (inline)
  2015. status open
  2016. \begin_layout Plain Layout
  2017. Be consistent about use of
  2018. \begin_inset Quotes eld
  2019. \end_inset
  2020. differential binding
  2021. \begin_inset Quotes erd
  2022. \end_inset
  2023. vs
  2024. \begin_inset Quotes eld
  2025. \end_inset
  2026. differential modification
  2027. \begin_inset Quotes erd
  2028. \end_inset
  2029. throughout this chapter.
  2030. The latter is usually preferred.
  2031. \end_layout
  2032. \end_inset
  2033. \end_layout
  2034. \begin_layout Standard
  2035. Sequence reads were retrieved from SRA
  2036. \begin_inset CommandInset citation
  2037. LatexCommand cite
  2038. key "Leinonen2011"
  2039. literal "false"
  2040. \end_inset
  2041. .
  2042. ChIP-seq (and input) reads were aligned to GRCh38 genome assembly using
  2043. Bowtie 2
  2044. \begin_inset CommandInset citation
  2045. LatexCommand cite
  2046. key "Langmead2012,Schneider2017,gh-hg38-ref"
  2047. literal "false"
  2048. \end_inset
  2049. .
  2050. Artifact regions were annotated using a custom implementation of the GreyListCh
  2051. IP algorithm, and these
  2052. \begin_inset Quotes eld
  2053. \end_inset
  2054. greylists
  2055. \begin_inset Quotes erd
  2056. \end_inset
  2057. were merged with the published ENCODE blacklists
  2058. \begin_inset CommandInset citation
  2059. LatexCommand cite
  2060. key "greylistchip,Amemiya2019,Dunham2012,gh-cd4-csaw"
  2061. literal "false"
  2062. \end_inset
  2063. .
  2064. Any read or called peak overlapping one of these regions was regarded as
  2065. artifactual and excluded from downstream analyses.
  2066. Figure
  2067. \begin_inset CommandInset ref
  2068. LatexCommand ref
  2069. reference "fig:CCF-master"
  2070. plural "false"
  2071. caps "false"
  2072. noprefix "false"
  2073. \end_inset
  2074. shows the improvement after blacklisting in the strand cross-correlation
  2075. plots, a common quality control plot for ChIP-seq data.
  2076. Peaks were called using epic, an implementation of the SICER algorithm
  2077. \begin_inset CommandInset citation
  2078. LatexCommand cite
  2079. key "Zang2009,gh-epic"
  2080. literal "false"
  2081. \end_inset
  2082. .
  2083. Peaks were also called separately using MACS, but MACS was determined to
  2084. be a poor fit for the data, and these peak calls are not used in any further
  2085. analyses
  2086. \begin_inset CommandInset citation
  2087. LatexCommand cite
  2088. key "Zhang2008"
  2089. literal "false"
  2090. \end_inset
  2091. .
  2092. Consensus peaks were determined by applying the irreproducible discovery
  2093. rate (IDR) framework
  2094. \begin_inset CommandInset citation
  2095. LatexCommand cite
  2096. key "Li2006,gh-idr"
  2097. literal "false"
  2098. \end_inset
  2099. to find peaks consistently called in the same locations across all 4 donors.
  2100. \end_layout
  2101. \begin_layout Standard
  2102. Promoters were defined by computing the distance from each annotated TSS
  2103. to the nearest called peak and examining the distribution of distances,
  2104. observing that peaks for each histone mark were enriched within a certain
  2105. distance of the TSS.
  2106. For H3K4me2 and H3K4me3, this distance was about 1
  2107. \begin_inset space ~
  2108. \end_inset
  2109. kb, while for H3K27me3 it was 2.5
  2110. \begin_inset space ~
  2111. \end_inset
  2112. kb.
  2113. These distances were used as an
  2114. \begin_inset Quotes eld
  2115. \end_inset
  2116. effective promoter radius
  2117. \begin_inset Quotes erd
  2118. \end_inset
  2119. for each mark.
  2120. The promoter region for each gene was defined as the region of the genome
  2121. within this distance upstream or downstream of the gene's annotated TSS.
  2122. For genes with multiple annotated TSSs, a promoter region was defined for
  2123. each TSS individually, and any promoters that overlapped (due to multiple
  2124. TSSs being closer than 2 times the radius) were merged into one large promoter.
  2125. Thus, some genes had multiple promoters defined, which were each analyzed
  2126. separately for differential modification.
  2127. \end_layout
  2128. \begin_layout Standard
  2129. \begin_inset Float figure
  2130. wide false
  2131. sideways false
  2132. status collapsed
  2133. \begin_layout Plain Layout
  2134. \begin_inset Float figure
  2135. wide false
  2136. sideways false
  2137. status collapsed
  2138. \begin_layout Plain Layout
  2139. \align center
  2140. \begin_inset Graphics
  2141. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-PCA-raw-CROP.png
  2142. lyxscale 25
  2143. width 45col%
  2144. groupId pcoa-subfig
  2145. \end_inset
  2146. \end_layout
  2147. \begin_layout Plain Layout
  2148. \begin_inset Caption Standard
  2149. \begin_layout Plain Layout
  2150. \series bold
  2151. \begin_inset CommandInset label
  2152. LatexCommand label
  2153. name "fig:PCoA-H3K4me2-bad"
  2154. \end_inset
  2155. H3K4me2, no correction
  2156. \end_layout
  2157. \end_inset
  2158. \end_layout
  2159. \end_inset
  2160. \begin_inset space \hfill{}
  2161. \end_inset
  2162. \begin_inset Float figure
  2163. wide false
  2164. sideways false
  2165. status collapsed
  2166. \begin_layout Plain Layout
  2167. \align center
  2168. \begin_inset Graphics
  2169. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-PCA-SVsub-CROP.png
  2170. lyxscale 25
  2171. width 45col%
  2172. groupId pcoa-subfig
  2173. \end_inset
  2174. \end_layout
  2175. \begin_layout Plain Layout
  2176. \begin_inset Caption Standard
  2177. \begin_layout Plain Layout
  2178. \series bold
  2179. \begin_inset CommandInset label
  2180. LatexCommand label
  2181. name "fig:PCoA-H3K4me2-good"
  2182. \end_inset
  2183. H3K4me2, SVs subtracted
  2184. \end_layout
  2185. \end_inset
  2186. \end_layout
  2187. \end_inset
  2188. \end_layout
  2189. \begin_layout Plain Layout
  2190. \begin_inset Float figure
  2191. wide false
  2192. sideways false
  2193. status collapsed
  2194. \begin_layout Plain Layout
  2195. \align center
  2196. \begin_inset Graphics
  2197. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-PCA-raw-CROP.png
  2198. lyxscale 25
  2199. width 45col%
  2200. groupId pcoa-subfig
  2201. \end_inset
  2202. \end_layout
  2203. \begin_layout Plain Layout
  2204. \begin_inset Caption Standard
  2205. \begin_layout Plain Layout
  2206. \series bold
  2207. \begin_inset CommandInset label
  2208. LatexCommand label
  2209. name "fig:PCoA-H3K4me3-bad"
  2210. \end_inset
  2211. H3K4me3, no correction
  2212. \end_layout
  2213. \end_inset
  2214. \end_layout
  2215. \end_inset
  2216. \begin_inset space \hfill{}
  2217. \end_inset
  2218. \begin_inset Float figure
  2219. wide false
  2220. sideways false
  2221. status collapsed
  2222. \begin_layout Plain Layout
  2223. \align center
  2224. \begin_inset Graphics
  2225. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-PCA-SVsub-CROP.png
  2226. lyxscale 25
  2227. width 45col%
  2228. groupId pcoa-subfig
  2229. \end_inset
  2230. \end_layout
  2231. \begin_layout Plain Layout
  2232. \begin_inset Caption Standard
  2233. \begin_layout Plain Layout
  2234. \series bold
  2235. \begin_inset CommandInset label
  2236. LatexCommand label
  2237. name "fig:PCoA-H3K4me3-good"
  2238. \end_inset
  2239. H3K4me3, SVs subtracted
  2240. \end_layout
  2241. \end_inset
  2242. \end_layout
  2243. \end_inset
  2244. \end_layout
  2245. \begin_layout Plain Layout
  2246. \begin_inset Float figure
  2247. wide false
  2248. sideways false
  2249. status collapsed
  2250. \begin_layout Plain Layout
  2251. \align center
  2252. \begin_inset Graphics
  2253. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-PCA-raw-CROP.png
  2254. lyxscale 25
  2255. width 45col%
  2256. groupId pcoa-subfig
  2257. \end_inset
  2258. \end_layout
  2259. \begin_layout Plain Layout
  2260. \begin_inset Caption Standard
  2261. \begin_layout Plain Layout
  2262. \series bold
  2263. \begin_inset CommandInset label
  2264. LatexCommand label
  2265. name "fig:PCoA-H3K27me3-bad"
  2266. \end_inset
  2267. H3K27me3, no correction
  2268. \end_layout
  2269. \end_inset
  2270. \end_layout
  2271. \end_inset
  2272. \begin_inset space \hfill{}
  2273. \end_inset
  2274. \begin_inset Float figure
  2275. wide false
  2276. sideways false
  2277. status collapsed
  2278. \begin_layout Plain Layout
  2279. \align center
  2280. \begin_inset Graphics
  2281. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-PCA-SVsub-CROP.png
  2282. lyxscale 25
  2283. width 45col%
  2284. groupId pcoa-subfig
  2285. \end_inset
  2286. \end_layout
  2287. \begin_layout Plain Layout
  2288. \begin_inset Caption Standard
  2289. \begin_layout Plain Layout
  2290. \series bold
  2291. \begin_inset CommandInset label
  2292. LatexCommand label
  2293. name "fig:PCoA-H3K27me3-good"
  2294. \end_inset
  2295. H3K27me3, SVs subtracted
  2296. \end_layout
  2297. \end_inset
  2298. \end_layout
  2299. \end_inset
  2300. \end_layout
  2301. \begin_layout Plain Layout
  2302. \begin_inset Caption Standard
  2303. \begin_layout Plain Layout
  2304. \series bold
  2305. \begin_inset CommandInset label
  2306. LatexCommand label
  2307. name "fig:PCoA-ChIP"
  2308. \end_inset
  2309. PCoA plots of ChIP-seq sliding window data, before and after subtracting
  2310. surrogate variables (SVs).
  2311. \end_layout
  2312. \end_inset
  2313. \end_layout
  2314. \end_inset
  2315. \end_layout
  2316. \begin_layout Standard
  2317. Reads in promoters, peaks, and sliding windows across the genome were counted
  2318. and normalized using
  2319. \begin_inset Flex Code
  2320. status open
  2321. \begin_layout Plain Layout
  2322. csaw
  2323. \end_layout
  2324. \end_inset
  2325. and analyzed for differential modification using
  2326. \begin_inset Flex Code
  2327. status open
  2328. \begin_layout Plain Layout
  2329. edgeR
  2330. \end_layout
  2331. \end_inset
  2332. \begin_inset CommandInset citation
  2333. LatexCommand cite
  2334. key "Lun2014,Lun2015a,Lund2012,Phipson2016"
  2335. literal "false"
  2336. \end_inset
  2337. .
  2338. Unobserved confounding factors in the ChIP-seq data were corrected using
  2339. SVA
  2340. \begin_inset CommandInset citation
  2341. LatexCommand cite
  2342. key "Leek2007,Leek2014"
  2343. literal "false"
  2344. \end_inset
  2345. .
  2346. Principal coordinate plots of the promoter count data for each histone
  2347. mark before and after subtracting surrogate variable effects are shown
  2348. in Figure
  2349. \begin_inset CommandInset ref
  2350. LatexCommand ref
  2351. reference "fig:PCoA-ChIP"
  2352. plural "false"
  2353. caps "false"
  2354. noprefix "false"
  2355. \end_inset
  2356. .
  2357. \end_layout
  2358. \begin_layout Standard
  2359. To investigate whether the location of a peak within the promoter region
  2360. was important,
  2361. \begin_inset Quotes eld
  2362. \end_inset
  2363. relative coverage profiles
  2364. \begin_inset Quotes erd
  2365. \end_inset
  2366. were generated.
  2367. First, 500-bp sliding windows were tiled around each annotated TSS: one
  2368. window centered on the TSS itself, and 10 windows each upstream and downstream,
  2369. thus covering a 10.5-kb region centered on the TSS with 21 windows.
  2370. Reads in each window for each TSS were counted in each sample, and the
  2371. counts were normalized and converted to log CPM as in the differential
  2372. modification analysis.
  2373. Then, the logCPM values within each promoter were normalized to an average
  2374. of zero, such that each window's normalized abundance now represents the
  2375. relative read depth of that window compared to all other windows in the
  2376. same promoter.
  2377. The normalized abundance values for each window in a promoter are collectively
  2378. referred to as that promoter's
  2379. \begin_inset Quotes eld
  2380. \end_inset
  2381. relative coverage profile
  2382. \begin_inset Quotes erd
  2383. \end_inset
  2384. .
  2385. \end_layout
  2386. \begin_layout Subsection
  2387. MOFA recovers biologically relevant variation from blind analysis by correlating
  2388. across datasets
  2389. \end_layout
  2390. \begin_layout Standard
  2391. \begin_inset ERT
  2392. status open
  2393. \begin_layout Plain Layout
  2394. \backslash
  2395. afterpage{
  2396. \end_layout
  2397. \begin_layout Plain Layout
  2398. \backslash
  2399. begin{landscape}
  2400. \end_layout
  2401. \end_inset
  2402. \end_layout
  2403. \begin_layout Standard
  2404. \begin_inset Float figure
  2405. wide false
  2406. sideways false
  2407. status open
  2408. \begin_layout Plain Layout
  2409. \begin_inset Float figure
  2410. wide false
  2411. sideways false
  2412. status open
  2413. \begin_layout Plain Layout
  2414. \align center
  2415. \begin_inset Graphics
  2416. filename graphics/CD4-csaw/MOFA-varExplaiend-matrix-CROP.png
  2417. lyxscale 25
  2418. width 45col%
  2419. groupId mofa-subfig
  2420. \end_inset
  2421. \end_layout
  2422. \begin_layout Plain Layout
  2423. \begin_inset Caption Standard
  2424. \begin_layout Plain Layout
  2425. \series bold
  2426. \begin_inset CommandInset label
  2427. LatexCommand label
  2428. name "fig:mofa-varexplained"
  2429. \end_inset
  2430. Variance explained in each data set by each latent factor estimated by MOFA.
  2431. \series default
  2432. For each latent factor (LF) learned by MOFA, the variance explained by
  2433. that factor in each data set (
  2434. \begin_inset Quotes eld
  2435. \end_inset
  2436. view
  2437. \begin_inset Quotes erd
  2438. \end_inset
  2439. ) is shown by the shading of the cells in the lower section.
  2440. The upper section shows the total fraction of each data set's variance
  2441. that is explained by all LFs combined.
  2442. \end_layout
  2443. \end_inset
  2444. \end_layout
  2445. \end_inset
  2446. \begin_inset space \hfill{}
  2447. \end_inset
  2448. \begin_inset Float figure
  2449. wide false
  2450. sideways false
  2451. status open
  2452. \begin_layout Plain Layout
  2453. \align center
  2454. \begin_inset Graphics
  2455. filename graphics/CD4-csaw/MOFA-LF-scatter-CROP.png
  2456. lyxscale 25
  2457. width 45col%
  2458. groupId mofa-subfig
  2459. \end_inset
  2460. \end_layout
  2461. \begin_layout Plain Layout
  2462. \begin_inset Caption Standard
  2463. \begin_layout Plain Layout
  2464. \series bold
  2465. \begin_inset CommandInset label
  2466. LatexCommand label
  2467. name "fig:mofa-lf-scatter"
  2468. \end_inset
  2469. Scatter plots of specific pairs of MOFA latent factors.
  2470. \series default
  2471. LFs 1, 4, and 5 explain substantial variation in all data sets, so they
  2472. are plotted against each other in order to reveal patterns of variation
  2473. that are shared across all data sets.
  2474. \end_layout
  2475. \end_inset
  2476. \end_layout
  2477. \end_inset
  2478. \end_layout
  2479. \begin_layout Plain Layout
  2480. \begin_inset Caption Standard
  2481. \begin_layout Plain Layout
  2482. \series bold
  2483. \begin_inset CommandInset label
  2484. LatexCommand label
  2485. name "fig:MOFA-master"
  2486. \end_inset
  2487. MOFA latent factors separate technical confounders from
  2488. \end_layout
  2489. \end_inset
  2490. \end_layout
  2491. \end_inset
  2492. \end_layout
  2493. \begin_layout Standard
  2494. \begin_inset ERT
  2495. status open
  2496. \begin_layout Plain Layout
  2497. \backslash
  2498. end{landscape}
  2499. \end_layout
  2500. \begin_layout Plain Layout
  2501. }
  2502. \end_layout
  2503. \end_inset
  2504. \end_layout
  2505. \begin_layout Standard
  2506. MOFA was run on all the ChIP-seq windows overlapping consensus peaks for
  2507. each histone mark, as well as the RNA-seq data, in order to identify patterns
  2508. of coordinated variation across all data sets
  2509. \begin_inset CommandInset citation
  2510. LatexCommand cite
  2511. key "Argelaguet2018"
  2512. literal "false"
  2513. \end_inset
  2514. .
  2515. The results are summarized in Figure
  2516. \begin_inset CommandInset ref
  2517. LatexCommand ref
  2518. reference "fig:MOFA-master"
  2519. plural "false"
  2520. caps "false"
  2521. noprefix "false"
  2522. \end_inset
  2523. .
  2524. Latent factors 1, 4, and 5 were determined to explain the most variation
  2525. consistently across all data sets (Figure
  2526. \begin_inset CommandInset ref
  2527. LatexCommand ref
  2528. reference "fig:mofa-varexplained"
  2529. plural "false"
  2530. caps "false"
  2531. noprefix "false"
  2532. \end_inset
  2533. ), and scatter plots of these factors show that they also correlate best
  2534. with the experimental factors (Figure
  2535. \begin_inset CommandInset ref
  2536. LatexCommand ref
  2537. reference "fig:mofa-lf-scatter"
  2538. plural "false"
  2539. caps "false"
  2540. noprefix "false"
  2541. \end_inset
  2542. ).
  2543. Latent factor 2 captures the batch effect in the RNA-seq data.
  2544. Removing the effect of LF2 using MOFA theoretically yields a batch correction
  2545. that does not depend on knowing the experimental factors.
  2546. When this was attempted, the resulting batch correction was comparable
  2547. to ComBat (see Figure
  2548. \begin_inset CommandInset ref
  2549. LatexCommand ref
  2550. reference "fig:RNA-PCA-ComBat-batchsub"
  2551. plural "false"
  2552. caps "false"
  2553. noprefix "false"
  2554. \end_inset
  2555. ), indicating that the ComBat-based batch correction has little room for
  2556. improvement given the problems with the data set.
  2557. \end_layout
  2558. \begin_layout Standard
  2559. \begin_inset Note Note
  2560. status collapsed
  2561. \begin_layout Plain Layout
  2562. \begin_inset Float figure
  2563. wide false
  2564. sideways false
  2565. status open
  2566. \begin_layout Plain Layout
  2567. \align center
  2568. \begin_inset Graphics
  2569. filename graphics/CD4-csaw/MOFA-batch-correct-CROP.png
  2570. lyxscale 25
  2571. width 100col%
  2572. groupId colwidth-raster
  2573. \end_inset
  2574. \end_layout
  2575. \begin_layout Plain Layout
  2576. \begin_inset Caption Standard
  2577. \begin_layout Plain Layout
  2578. \series bold
  2579. \begin_inset CommandInset label
  2580. LatexCommand label
  2581. name "fig:mofa-batchsub"
  2582. \end_inset
  2583. Result of RNA-seq batch-correction using MOFA latent factors
  2584. \end_layout
  2585. \end_inset
  2586. \end_layout
  2587. \end_inset
  2588. \end_layout
  2589. \end_inset
  2590. \end_layout
  2591. \begin_layout Section
  2592. Results
  2593. \end_layout
  2594. \begin_layout Standard
  2595. \begin_inset Flex TODO Note (inline)
  2596. status open
  2597. \begin_layout Plain Layout
  2598. Focus on what hypotheses were tested, then select figures that show how
  2599. those hypotheses were tested, even if the result is a negative.
  2600. Not every interesting result needs to be in here.
  2601. Chapter should tell a story.
  2602. \end_layout
  2603. \end_inset
  2604. \end_layout
  2605. \begin_layout Standard
  2606. \begin_inset Flex TODO Note (inline)
  2607. status open
  2608. \begin_layout Plain Layout
  2609. Maybe reorder these sections to do RNA-seq, then ChIP-seq, then combined
  2610. analyses?
  2611. \end_layout
  2612. \end_inset
  2613. \end_layout
  2614. \begin_layout Subsection
  2615. Interpretation of RNA-seq analysis is limited by a major confounding factor
  2616. \end_layout
  2617. \begin_layout Standard
  2618. \begin_inset Float table
  2619. wide false
  2620. sideways false
  2621. status collapsed
  2622. \begin_layout Plain Layout
  2623. \align center
  2624. \begin_inset Tabular
  2625. <lyxtabular version="3" rows="11" columns="3">
  2626. <features tabularvalignment="middle">
  2627. <column alignment="center" valignment="top">
  2628. <column alignment="center" valignment="top">
  2629. <column alignment="center" valignment="top">
  2630. <row>
  2631. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2632. \begin_inset Text
  2633. \begin_layout Plain Layout
  2634. Test
  2635. \end_layout
  2636. \end_inset
  2637. </cell>
  2638. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2639. \begin_inset Text
  2640. \begin_layout Plain Layout
  2641. Est.
  2642. non-null
  2643. \end_layout
  2644. \end_inset
  2645. </cell>
  2646. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2647. \begin_inset Text
  2648. \begin_layout Plain Layout
  2649. \begin_inset Formula $\mathrm{FDR}\le10\%$
  2650. \end_inset
  2651. \end_layout
  2652. \end_inset
  2653. </cell>
  2654. </row>
  2655. <row>
  2656. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2657. \begin_inset Text
  2658. \begin_layout Plain Layout
  2659. Naive Day 0 vs Day 1
  2660. \end_layout
  2661. \end_inset
  2662. </cell>
  2663. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2664. \begin_inset Text
  2665. \begin_layout Plain Layout
  2666. 5992
  2667. \end_layout
  2668. \end_inset
  2669. </cell>
  2670. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2671. \begin_inset Text
  2672. \begin_layout Plain Layout
  2673. 1613
  2674. \end_layout
  2675. \end_inset
  2676. </cell>
  2677. </row>
  2678. <row>
  2679. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2680. \begin_inset Text
  2681. \begin_layout Plain Layout
  2682. Naive Day 0 vs Day 5
  2683. \end_layout
  2684. \end_inset
  2685. </cell>
  2686. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2687. \begin_inset Text
  2688. \begin_layout Plain Layout
  2689. 3038
  2690. \end_layout
  2691. \end_inset
  2692. </cell>
  2693. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2694. \begin_inset Text
  2695. \begin_layout Plain Layout
  2696. 32
  2697. \end_layout
  2698. \end_inset
  2699. </cell>
  2700. </row>
  2701. <row>
  2702. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2703. \begin_inset Text
  2704. \begin_layout Plain Layout
  2705. Naive Day 0 vs Day 14
  2706. \end_layout
  2707. \end_inset
  2708. </cell>
  2709. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2710. \begin_inset Text
  2711. \begin_layout Plain Layout
  2712. 1870
  2713. \end_layout
  2714. \end_inset
  2715. </cell>
  2716. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2717. \begin_inset Text
  2718. \begin_layout Plain Layout
  2719. 190
  2720. \end_layout
  2721. \end_inset
  2722. </cell>
  2723. </row>
  2724. <row>
  2725. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2726. \begin_inset Text
  2727. \begin_layout Plain Layout
  2728. Memory Day 0 vs Day 1
  2729. \end_layout
  2730. \end_inset
  2731. </cell>
  2732. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2733. \begin_inset Text
  2734. \begin_layout Plain Layout
  2735. 3195
  2736. \end_layout
  2737. \end_inset
  2738. </cell>
  2739. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2740. \begin_inset Text
  2741. \begin_layout Plain Layout
  2742. 411
  2743. \end_layout
  2744. \end_inset
  2745. </cell>
  2746. </row>
  2747. <row>
  2748. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2749. \begin_inset Text
  2750. \begin_layout Plain Layout
  2751. Memory Day 0 vs Day 5
  2752. \end_layout
  2753. \end_inset
  2754. </cell>
  2755. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2756. \begin_inset Text
  2757. \begin_layout Plain Layout
  2758. 2688
  2759. \end_layout
  2760. \end_inset
  2761. </cell>
  2762. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2763. \begin_inset Text
  2764. \begin_layout Plain Layout
  2765. 18
  2766. \end_layout
  2767. \end_inset
  2768. </cell>
  2769. </row>
  2770. <row>
  2771. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2772. \begin_inset Text
  2773. \begin_layout Plain Layout
  2774. Memory Day 0 vs Day 14
  2775. \end_layout
  2776. \end_inset
  2777. </cell>
  2778. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2779. \begin_inset Text
  2780. \begin_layout Plain Layout
  2781. 1911
  2782. \end_layout
  2783. \end_inset
  2784. </cell>
  2785. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2786. \begin_inset Text
  2787. \begin_layout Plain Layout
  2788. 227
  2789. \end_layout
  2790. \end_inset
  2791. </cell>
  2792. </row>
  2793. <row>
  2794. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2795. \begin_inset Text
  2796. \begin_layout Plain Layout
  2797. Day 0 Naive vs Memory
  2798. \end_layout
  2799. \end_inset
  2800. </cell>
  2801. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2802. \begin_inset Text
  2803. \begin_layout Plain Layout
  2804. 0
  2805. \end_layout
  2806. \end_inset
  2807. </cell>
  2808. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2809. \begin_inset Text
  2810. \begin_layout Plain Layout
  2811. 2
  2812. \end_layout
  2813. \end_inset
  2814. </cell>
  2815. </row>
  2816. <row>
  2817. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2818. \begin_inset Text
  2819. \begin_layout Plain Layout
  2820. Day 1 Naive vs Memory
  2821. \end_layout
  2822. \end_inset
  2823. </cell>
  2824. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2825. \begin_inset Text
  2826. \begin_layout Plain Layout
  2827. 9167
  2828. \end_layout
  2829. \end_inset
  2830. </cell>
  2831. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2832. \begin_inset Text
  2833. \begin_layout Plain Layout
  2834. 5532
  2835. \end_layout
  2836. \end_inset
  2837. </cell>
  2838. </row>
  2839. <row>
  2840. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2841. \begin_inset Text
  2842. \begin_layout Plain Layout
  2843. Day 5 Naive vs Memory
  2844. \end_layout
  2845. \end_inset
  2846. </cell>
  2847. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2848. \begin_inset Text
  2849. \begin_layout Plain Layout
  2850. 0
  2851. \end_layout
  2852. \end_inset
  2853. </cell>
  2854. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2855. \begin_inset Text
  2856. \begin_layout Plain Layout
  2857. 0
  2858. \end_layout
  2859. \end_inset
  2860. </cell>
  2861. </row>
  2862. <row>
  2863. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2864. \begin_inset Text
  2865. \begin_layout Plain Layout
  2866. Day 14 Naive vs Memory
  2867. \end_layout
  2868. \end_inset
  2869. </cell>
  2870. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2871. \begin_inset Text
  2872. \begin_layout Plain Layout
  2873. 6446
  2874. \end_layout
  2875. \end_inset
  2876. </cell>
  2877. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2878. \begin_inset Text
  2879. \begin_layout Plain Layout
  2880. 2319
  2881. \end_layout
  2882. \end_inset
  2883. </cell>
  2884. </row>
  2885. </lyxtabular>
  2886. \end_inset
  2887. \end_layout
  2888. \begin_layout Plain Layout
  2889. \begin_inset Caption Standard
  2890. \begin_layout Plain Layout
  2891. \series bold
  2892. \begin_inset CommandInset label
  2893. LatexCommand label
  2894. name "tab:Estimated-and-detected-rnaseq"
  2895. \end_inset
  2896. Estimated and detected differentially expressed genes.
  2897. \series default
  2898. \begin_inset Quotes eld
  2899. \end_inset
  2900. Test
  2901. \begin_inset Quotes erd
  2902. \end_inset
  2903. : Which sample groups were compared;
  2904. \begin_inset Quotes eld
  2905. \end_inset
  2906. Est non-null
  2907. \begin_inset Quotes erd
  2908. \end_inset
  2909. : Estimated number of differentially expressed genes, using the method of
  2910. averaging local FDR values
  2911. \begin_inset CommandInset citation
  2912. LatexCommand cite
  2913. key "Phipson2013Thesis"
  2914. literal "false"
  2915. \end_inset
  2916. ;
  2917. \begin_inset Quotes eld
  2918. \end_inset
  2919. \begin_inset Formula $\mathrm{FDR}\le10\%$
  2920. \end_inset
  2921. \begin_inset Quotes erd
  2922. \end_inset
  2923. : Number of significantly differentially expressed genes at an FDR threshold
  2924. of 10%.
  2925. The total number of genes tested was 16707.
  2926. \end_layout
  2927. \end_inset
  2928. \end_layout
  2929. \end_inset
  2930. \end_layout
  2931. \begin_layout Standard
  2932. \begin_inset Float figure
  2933. wide false
  2934. sideways false
  2935. status collapsed
  2936. \begin_layout Plain Layout
  2937. \align center
  2938. \begin_inset Graphics
  2939. filename graphics/CD4-csaw/RNA-seq/PCA-final-12-CROP.png
  2940. lyxscale 25
  2941. width 100col%
  2942. groupId colwidth-raster
  2943. \end_inset
  2944. \end_layout
  2945. \begin_layout Plain Layout
  2946. \begin_inset Caption Standard
  2947. \begin_layout Plain Layout
  2948. \series bold
  2949. \begin_inset CommandInset label
  2950. LatexCommand label
  2951. name "fig:rna-pca-final"
  2952. \end_inset
  2953. PCoA plot of RNA-seq samples after ComBat batch correction.
  2954. \series default
  2955. Each point represents an individual sample.
  2956. Samples with the same combination of cell type and time point are encircled
  2957. with a shaded region to aid in visual identification of the sample groups.
  2958. Samples with of same cell type from the same donor are connected by lines
  2959. to indicate the
  2960. \begin_inset Quotes eld
  2961. \end_inset
  2962. trajectory
  2963. \begin_inset Quotes erd
  2964. \end_inset
  2965. of each donor's cells over time in PCoA space.
  2966. \end_layout
  2967. \end_inset
  2968. \end_layout
  2969. \begin_layout Plain Layout
  2970. \end_layout
  2971. \end_inset
  2972. \end_layout
  2973. \begin_layout Standard
  2974. Genes called present in the RNA-seq data were tested for differential expression
  2975. between all time points and cell types.
  2976. The counts of differentially expressed genes are shown in Table
  2977. \begin_inset CommandInset ref
  2978. LatexCommand ref
  2979. reference "tab:Estimated-and-detected-rnaseq"
  2980. plural "false"
  2981. caps "false"
  2982. noprefix "false"
  2983. \end_inset
  2984. .
  2985. Notably, all the results for Day 0 and Day 5 have substantially fewer genes
  2986. called differentially expressed than any of the results for other time
  2987. points.
  2988. This is an unfortunate result of the difference in sample quality between
  2989. the two batches of RNA-seq data.
  2990. All the samples in Batch 1, which includes all the samples from Days 0
  2991. and 5, have substantially more variability than the samples in Batch 2,
  2992. which includes the other time points.
  2993. This is reflected in the substantially higher weights assigned to Batch
  2994. 2 (Figure
  2995. \begin_inset CommandInset ref
  2996. LatexCommand ref
  2997. reference "fig:RNA-seq-weights-vs-covars"
  2998. plural "false"
  2999. caps "false"
  3000. noprefix "false"
  3001. \end_inset
  3002. ).
  3003. The batch effect has both a systematic component and a random noise component.
  3004. While the systematic component was subtracted out using ComBat (Figure
  3005. \begin_inset CommandInset ref
  3006. LatexCommand ref
  3007. reference "fig:RNA-PCA"
  3008. plural "false"
  3009. caps "false"
  3010. noprefix "false"
  3011. \end_inset
  3012. ), no such correction is possible for the noise component: Batch 1 simply
  3013. has substantially more random noise in it, which reduces the statistical
  3014. power for any differential expression tests involving samples in that batch.
  3015. \end_layout
  3016. \begin_layout Standard
  3017. Despite the difficulty in detecting specific differentially expressed genes,
  3018. there is still evidence that differential expression is present for these
  3019. time points.
  3020. In Figure
  3021. \begin_inset CommandInset ref
  3022. LatexCommand ref
  3023. reference "fig:rna-pca-final"
  3024. plural "false"
  3025. caps "false"
  3026. noprefix "false"
  3027. \end_inset
  3028. , there is a clear separation between naive and memory samples at Day 0,
  3029. despite the fact that only 2 genes were significantly differentially expressed
  3030. for this comparison.
  3031. Similarly, the small numbers of genes detected for the Day 0 vs Day 5 compariso
  3032. ns do not reflect the large separation between these time points in Figure
  3033. \begin_inset CommandInset ref
  3034. LatexCommand ref
  3035. reference "fig:rna-pca-final"
  3036. plural "false"
  3037. caps "false"
  3038. noprefix "false"
  3039. \end_inset
  3040. .
  3041. In addition, the MOFA latent factor plots in Figure
  3042. \begin_inset CommandInset ref
  3043. LatexCommand ref
  3044. reference "fig:mofa-lf-scatter"
  3045. plural "false"
  3046. caps "false"
  3047. noprefix "false"
  3048. \end_inset
  3049. .
  3050. This suggests that there is indeed a differential expression signal present
  3051. in the data for these comparisons, but the large variability in the Batch
  3052. 1 samples obfuscates this signal at the individual gene level.
  3053. As a result, it is impossible to make any meaningful statements about the
  3054. \begin_inset Quotes eld
  3055. \end_inset
  3056. size
  3057. \begin_inset Quotes erd
  3058. \end_inset
  3059. of the gene signature for any time point, since the number of significant
  3060. genes as well as the estimated number of differentially expressed genes
  3061. depends so strongly on the variations in sample quality in addition to
  3062. the size of the differential expression signal in the data.
  3063. Gene-set enrichment analyses are similarly impractical.
  3064. However, analyses looking at genome-wide patterns of expression are still
  3065. practical.
  3066. \end_layout
  3067. \begin_layout Subsection
  3068. H3K4 and H3K27 methylation occur in broad regions and are enriched near
  3069. promoters
  3070. \end_layout
  3071. \begin_layout Standard
  3072. \begin_inset Float table
  3073. wide false
  3074. sideways false
  3075. status collapsed
  3076. \begin_layout Plain Layout
  3077. \align center
  3078. \begin_inset Flex TODO Note (inline)
  3079. status open
  3080. \begin_layout Plain Layout
  3081. Also get
  3082. \emph on
  3083. median
  3084. \emph default
  3085. peak width and maybe other quantiles (25%, 75%)
  3086. \end_layout
  3087. \end_inset
  3088. \end_layout
  3089. \begin_layout Plain Layout
  3090. \align center
  3091. \begin_inset Tabular
  3092. <lyxtabular version="3" rows="4" columns="5">
  3093. <features tabularvalignment="middle">
  3094. <column alignment="center" valignment="top">
  3095. <column alignment="center" valignment="top">
  3096. <column alignment="center" valignment="top">
  3097. <column alignment="center" valignment="top">
  3098. <column alignment="center" valignment="top">
  3099. <row>
  3100. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3101. \begin_inset Text
  3102. \begin_layout Plain Layout
  3103. Histone Mark
  3104. \end_layout
  3105. \end_inset
  3106. </cell>
  3107. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3108. \begin_inset Text
  3109. \begin_layout Plain Layout
  3110. # Peaks
  3111. \end_layout
  3112. \end_inset
  3113. </cell>
  3114. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3115. \begin_inset Text
  3116. \begin_layout Plain Layout
  3117. Mean peak width
  3118. \end_layout
  3119. \end_inset
  3120. </cell>
  3121. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3122. \begin_inset Text
  3123. \begin_layout Plain Layout
  3124. genome coverage
  3125. \end_layout
  3126. \end_inset
  3127. </cell>
  3128. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3129. \begin_inset Text
  3130. \begin_layout Plain Layout
  3131. FRiP
  3132. \end_layout
  3133. \end_inset
  3134. </cell>
  3135. </row>
  3136. <row>
  3137. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3138. \begin_inset Text
  3139. \begin_layout Plain Layout
  3140. H3K4me2
  3141. \end_layout
  3142. \end_inset
  3143. </cell>
  3144. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3145. \begin_inset Text
  3146. \begin_layout Plain Layout
  3147. 14965
  3148. \end_layout
  3149. \end_inset
  3150. </cell>
  3151. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3152. \begin_inset Text
  3153. \begin_layout Plain Layout
  3154. 3970
  3155. \end_layout
  3156. \end_inset
  3157. </cell>
  3158. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3159. \begin_inset Text
  3160. \begin_layout Plain Layout
  3161. 1.92%
  3162. \end_layout
  3163. \end_inset
  3164. </cell>
  3165. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3166. \begin_inset Text
  3167. \begin_layout Plain Layout
  3168. 14.2%
  3169. \end_layout
  3170. \end_inset
  3171. </cell>
  3172. </row>
  3173. <row>
  3174. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3175. \begin_inset Text
  3176. \begin_layout Plain Layout
  3177. H3K4me3
  3178. \end_layout
  3179. \end_inset
  3180. </cell>
  3181. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3182. \begin_inset Text
  3183. \begin_layout Plain Layout
  3184. 6163
  3185. \end_layout
  3186. \end_inset
  3187. </cell>
  3188. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3189. \begin_inset Text
  3190. \begin_layout Plain Layout
  3191. 2946
  3192. \end_layout
  3193. \end_inset
  3194. </cell>
  3195. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3196. \begin_inset Text
  3197. \begin_layout Plain Layout
  3198. 0.588%
  3199. \end_layout
  3200. \end_inset
  3201. </cell>
  3202. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3203. \begin_inset Text
  3204. \begin_layout Plain Layout
  3205. 6.57%
  3206. \end_layout
  3207. \end_inset
  3208. </cell>
  3209. </row>
  3210. <row>
  3211. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3212. \begin_inset Text
  3213. \begin_layout Plain Layout
  3214. H3K27me3
  3215. \end_layout
  3216. \end_inset
  3217. </cell>
  3218. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3219. \begin_inset Text
  3220. \begin_layout Plain Layout
  3221. 18139
  3222. \end_layout
  3223. \end_inset
  3224. </cell>
  3225. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3226. \begin_inset Text
  3227. \begin_layout Plain Layout
  3228. 18967
  3229. \end_layout
  3230. \end_inset
  3231. </cell>
  3232. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3233. \begin_inset Text
  3234. \begin_layout Plain Layout
  3235. 11.1%
  3236. \end_layout
  3237. \end_inset
  3238. </cell>
  3239. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3240. \begin_inset Text
  3241. \begin_layout Plain Layout
  3242. 22.5%
  3243. \end_layout
  3244. \end_inset
  3245. </cell>
  3246. </row>
  3247. </lyxtabular>
  3248. \end_inset
  3249. \end_layout
  3250. \begin_layout Plain Layout
  3251. \begin_inset Caption Standard
  3252. \begin_layout Plain Layout
  3253. \series bold
  3254. \begin_inset CommandInset label
  3255. LatexCommand label
  3256. name "tab:peak-calling-summary"
  3257. \end_inset
  3258. Peak-calling summary.
  3259. \series default
  3260. For each histone mark, the number of peaks called using SICER at an IDR
  3261. threshold of ???, the mean width of those peaks, the fraction of the genome
  3262. covered by peaks, and the fraction of reads in peaks (FRiP).
  3263. \end_layout
  3264. \end_inset
  3265. \end_layout
  3266. \end_inset
  3267. \end_layout
  3268. \begin_layout Standard
  3269. Table
  3270. \begin_inset CommandInset ref
  3271. LatexCommand ref
  3272. reference "tab:peak-calling-summary"
  3273. plural "false"
  3274. caps "false"
  3275. noprefix "false"
  3276. \end_inset
  3277. gives a summary of the peak calling statistics for each histone mark.
  3278. Consistent with previous observations [CITATION NEEDED], all 3 histone
  3279. marks occur in broad regions spanning many consecutive nucleosomes, rather
  3280. than in sharp peaks as would be expected for a transcription factor or
  3281. other molecule that binds to specific sites.
  3282. This conclusion is further supported by Figure
  3283. \begin_inset CommandInset ref
  3284. LatexCommand ref
  3285. reference "fig:CCF-with-blacklist"
  3286. plural "false"
  3287. caps "false"
  3288. noprefix "false"
  3289. \end_inset
  3290. , in which a clear nucleosome-sized periodicity is visible in the cross-correlat
  3291. ion value for each sample, indicating that each time a given mark is present
  3292. on one histone, it is also likely to be found on adjacent histones as well.
  3293. H3K27me3 enrichment in particular is substantially more broad than either
  3294. H3K4 mark, with a mean peak width of almost 19,000 bp.
  3295. This is also reflected in the periodicity observed in Figure
  3296. \begin_inset CommandInset ref
  3297. LatexCommand ref
  3298. reference "fig:CCF-with-blacklist"
  3299. plural "false"
  3300. caps "false"
  3301. noprefix "false"
  3302. \end_inset
  3303. , which remains strong much farther out for H3K27me3 than the other marks,
  3304. showing H3K27me3 especially tends to be found on long runs of consecutive
  3305. histones.
  3306. \end_layout
  3307. \begin_layout Standard
  3308. \begin_inset Float figure
  3309. wide false
  3310. sideways false
  3311. status open
  3312. \begin_layout Plain Layout
  3313. \begin_inset Flex TODO Note (inline)
  3314. status open
  3315. \begin_layout Plain Layout
  3316. Ensure this figure uses the peak calls from the new analysis.
  3317. \end_layout
  3318. \end_inset
  3319. \end_layout
  3320. \begin_layout Plain Layout
  3321. \begin_inset Flex TODO Note (inline)
  3322. status open
  3323. \begin_layout Plain Layout
  3324. Need a control: shuffle all peaks and repeat, N times.
  3325. Do real vs shuffled control both in a top/bottom arrangement.
  3326. \end_layout
  3327. \end_inset
  3328. \end_layout
  3329. \begin_layout Plain Layout
  3330. \begin_inset Flex TODO Note (inline)
  3331. status open
  3332. \begin_layout Plain Layout
  3333. Consider counting TSS inside peaks as negative number indicating how far
  3334. \emph on
  3335. inside
  3336. \emph default
  3337. the peak the TSS is (i.e.
  3338. distance to nearest non-peak area).
  3339. \end_layout
  3340. \end_inset
  3341. \end_layout
  3342. \begin_layout Plain Layout
  3343. \begin_inset Flex TODO Note (inline)
  3344. status open
  3345. \begin_layout Plain Layout
  3346. The H3K4 part of this figure is included in
  3347. \begin_inset CommandInset citation
  3348. LatexCommand cite
  3349. key "LaMere2016"
  3350. literal "false"
  3351. \end_inset
  3352. as Fig.
  3353. S2.
  3354. Do I need to do anything about that?
  3355. \end_layout
  3356. \end_inset
  3357. \end_layout
  3358. \begin_layout Plain Layout
  3359. \align center
  3360. \begin_inset Graphics
  3361. filename graphics/CD4-csaw/Promoter Peak Distance Profile-PAGE1-CROP.pdf
  3362. lyxscale 50
  3363. width 80col%
  3364. \end_inset
  3365. \end_layout
  3366. \begin_layout Plain Layout
  3367. \begin_inset Caption Standard
  3368. \begin_layout Plain Layout
  3369. \series bold
  3370. \begin_inset CommandInset label
  3371. LatexCommand label
  3372. name "fig:near-promoter-peak-enrich"
  3373. \end_inset
  3374. Enrichment of peaks in promoter neighborhoods.
  3375. \series default
  3376. This plot shows the distribution of distances from each annotated transcription
  3377. start site in the genome to the nearest called peak.
  3378. Each line represents one combination of histone mark, cell type, and time
  3379. point.
  3380. Distributions are smoothed using kernel density estimation [CITE? see ggplot2
  3381. stat_density()].
  3382. Transcription start sites that occur
  3383. \emph on
  3384. within
  3385. \emph default
  3386. peaks were excluded from this plot to avoid a large spike at zero that
  3387. would overshadow the rest of the distribution.
  3388. \end_layout
  3389. \end_inset
  3390. \end_layout
  3391. \end_inset
  3392. \end_layout
  3393. \begin_layout Standard
  3394. \begin_inset Float table
  3395. wide false
  3396. sideways false
  3397. status collapsed
  3398. \begin_layout Plain Layout
  3399. \align center
  3400. \begin_inset Tabular
  3401. <lyxtabular version="3" rows="4" columns="2">
  3402. <features tabularvalignment="middle">
  3403. <column alignment="center" valignment="top">
  3404. <column alignment="center" valignment="top">
  3405. <row>
  3406. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3407. \begin_inset Text
  3408. \begin_layout Plain Layout
  3409. Histone mark
  3410. \end_layout
  3411. \end_inset
  3412. </cell>
  3413. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3414. \begin_inset Text
  3415. \begin_layout Plain Layout
  3416. Effective promoter radius
  3417. \end_layout
  3418. \end_inset
  3419. </cell>
  3420. </row>
  3421. <row>
  3422. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3423. \begin_inset Text
  3424. \begin_layout Plain Layout
  3425. H3K4me2
  3426. \end_layout
  3427. \end_inset
  3428. </cell>
  3429. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3430. \begin_inset Text
  3431. \begin_layout Plain Layout
  3432. 1 kb
  3433. \end_layout
  3434. \end_inset
  3435. </cell>
  3436. </row>
  3437. <row>
  3438. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3439. \begin_inset Text
  3440. \begin_layout Plain Layout
  3441. H3K4me3
  3442. \end_layout
  3443. \end_inset
  3444. </cell>
  3445. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3446. \begin_inset Text
  3447. \begin_layout Plain Layout
  3448. 1 kb
  3449. \end_layout
  3450. \end_inset
  3451. </cell>
  3452. </row>
  3453. <row>
  3454. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3455. \begin_inset Text
  3456. \begin_layout Plain Layout
  3457. H3K27me3
  3458. \end_layout
  3459. \end_inset
  3460. </cell>
  3461. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3462. \begin_inset Text
  3463. \begin_layout Plain Layout
  3464. 2.5 kb
  3465. \end_layout
  3466. \end_inset
  3467. </cell>
  3468. </row>
  3469. </lyxtabular>
  3470. \end_inset
  3471. \end_layout
  3472. \begin_layout Plain Layout
  3473. \begin_inset Caption Standard
  3474. \begin_layout Plain Layout
  3475. \series bold
  3476. \begin_inset CommandInset label
  3477. LatexCommand label
  3478. name "tab:effective-promoter-radius"
  3479. \end_inset
  3480. Effective promoter radius for each histone mark.
  3481. \series default
  3482. These values represent the approximate distance from transcription start
  3483. site positions within which an excess of peaks are found, as shown in Figure
  3484. \begin_inset CommandInset ref
  3485. LatexCommand ref
  3486. reference "fig:near-promoter-peak-enrich"
  3487. plural "false"
  3488. caps "false"
  3489. noprefix "false"
  3490. \end_inset
  3491. .
  3492. \end_layout
  3493. \end_inset
  3494. \end_layout
  3495. \begin_layout Plain Layout
  3496. \end_layout
  3497. \end_inset
  3498. \end_layout
  3499. \begin_layout Standard
  3500. All 3 histone marks tend to occur more often near promoter regions, as shown
  3501. in Figure
  3502. \begin_inset CommandInset ref
  3503. LatexCommand ref
  3504. reference "fig:near-promoter-peak-enrich"
  3505. plural "false"
  3506. caps "false"
  3507. noprefix "false"
  3508. \end_inset
  3509. .
  3510. The majority of each density distribution is flat, representing the background
  3511. density of peaks genome-wide.
  3512. Each distribution has a peak near zero, representing an enrichment of peaks
  3513. close transcription start site (TSS) positions relative to the remainder
  3514. of the genome.
  3515. Interestingly, the
  3516. \begin_inset Quotes eld
  3517. \end_inset
  3518. radius
  3519. \begin_inset Quotes erd
  3520. \end_inset
  3521. within which this enrichment occurs is not the same for every histone mark
  3522. (Table
  3523. \begin_inset CommandInset ref
  3524. LatexCommand ref
  3525. reference "tab:effective-promoter-radius"
  3526. plural "false"
  3527. caps "false"
  3528. noprefix "false"
  3529. \end_inset
  3530. ).
  3531. For H3K4me2 and H3K4me3, peaks are most enriched within 1
  3532. \begin_inset space ~
  3533. \end_inset
  3534. kbp of TSS positions, while for H3K27me3, enrichment is broader, extending
  3535. to 2.5
  3536. \begin_inset space ~
  3537. \end_inset
  3538. kbp.
  3539. These
  3540. \begin_inset Quotes eld
  3541. \end_inset
  3542. effective promoter radii
  3543. \begin_inset Quotes erd
  3544. \end_inset
  3545. remain approximately the same across all combinations of experimental condition
  3546. (cell type, time point, and donor), so they appear to be a property of
  3547. the histone mark itself.
  3548. Hence, these radii were used to define the promoter regions for each histone
  3549. mark in all further analyses.
  3550. \end_layout
  3551. \begin_layout Standard
  3552. \begin_inset Flex TODO Note (inline)
  3553. status open
  3554. \begin_layout Plain Layout
  3555. Consider also showing figure for distance to nearest peak center, and reference
  3556. median peak size once that is known.
  3557. \end_layout
  3558. \end_inset
  3559. \end_layout
  3560. \begin_layout Subsection
  3561. H3K4 and H3K27 promoter methylation has broadly the expected correlation
  3562. with gene expression
  3563. \end_layout
  3564. \begin_layout Standard
  3565. \begin_inset Float figure
  3566. wide false
  3567. sideways false
  3568. status collapsed
  3569. \begin_layout Plain Layout
  3570. \begin_inset Flex TODO Note (inline)
  3571. status open
  3572. \begin_layout Plain Layout
  3573. This figure is generated from the old analysis.
  3574. Either note that in some way or re-generate it from the new peak calls.
  3575. \end_layout
  3576. \end_inset
  3577. \end_layout
  3578. \begin_layout Plain Layout
  3579. \align center
  3580. \begin_inset Graphics
  3581. filename graphics/CD4-csaw/FPKM by Peak Violin Plots-CROP.pdf
  3582. lyxscale 50
  3583. width 100col%
  3584. \end_inset
  3585. \end_layout
  3586. \begin_layout Plain Layout
  3587. \begin_inset Caption Standard
  3588. \begin_layout Plain Layout
  3589. \series bold
  3590. \begin_inset CommandInset label
  3591. LatexCommand label
  3592. name "fig:fpkm-by-peak"
  3593. \end_inset
  3594. Expression distributions of genes with and without promoter peaks.
  3595. \end_layout
  3596. \end_inset
  3597. \end_layout
  3598. \end_inset
  3599. \end_layout
  3600. \begin_layout Standard
  3601. H3K4me2 and H3K4me2 have previously been reported as activating marks whose
  3602. presence in a gene's promoter is associated with higher gene expression,
  3603. while H3K27me3 has been reported as inactivating [CITE].
  3604. The data are consistent with this characterization: genes whose promoters
  3605. (as defined by the radii for each histone mark listed in
  3606. \begin_inset CommandInset ref
  3607. LatexCommand ref
  3608. reference "tab:effective-promoter-radius"
  3609. plural "false"
  3610. caps "false"
  3611. noprefix "false"
  3612. \end_inset
  3613. ) overlap with a H3K4me2 or H3K4me3 peak tend to have higher expression
  3614. than those that don't, while H3K27me3 is likewise associated with lower
  3615. gene expression, as shown in
  3616. \begin_inset CommandInset ref
  3617. LatexCommand ref
  3618. reference "fig:fpkm-by-peak"
  3619. plural "false"
  3620. caps "false"
  3621. noprefix "false"
  3622. \end_inset
  3623. .
  3624. This pattern holds across all combinations of cell type and time point
  3625. (Welch's
  3626. \emph on
  3627. t
  3628. \emph default
  3629. -test, all
  3630. \begin_inset Formula $p\mathrm{-values}\ll2.2\times10^{-16}$
  3631. \end_inset
  3632. ).
  3633. The difference in average log FPKM values when a peak overlaps the promoter
  3634. is about
  3635. \begin_inset Formula $+5.67$
  3636. \end_inset
  3637. for H3K4me2,
  3638. \begin_inset Formula $+5.76$
  3639. \end_inset
  3640. for H3K4me2, and
  3641. \begin_inset Formula $-4.00$
  3642. \end_inset
  3643. for H3K27me3.
  3644. \end_layout
  3645. \begin_layout Standard
  3646. \begin_inset Flex TODO Note (inline)
  3647. status open
  3648. \begin_layout Plain Layout
  3649. I also have some figures looking at interactions between marks (e.g.
  3650. what if a promoter has both H3K4me3 and H3K27me3), but I don't know if
  3651. that much detail is warranted here, since all the effects just seem approximate
  3652. ly additive anyway.
  3653. \end_layout
  3654. \end_inset
  3655. \end_layout
  3656. \begin_layout Subsection
  3657. Gene expression and promoter histone methylation patterns in naive and memory
  3658. show convergence at day 14
  3659. \end_layout
  3660. \begin_layout Standard
  3661. \begin_inset ERT
  3662. status open
  3663. \begin_layout Plain Layout
  3664. \backslash
  3665. afterpage{
  3666. \end_layout
  3667. \begin_layout Plain Layout
  3668. \backslash
  3669. begin{landscape}
  3670. \end_layout
  3671. \end_inset
  3672. \end_layout
  3673. \begin_layout Standard
  3674. \begin_inset Float table
  3675. wide false
  3676. sideways false
  3677. status open
  3678. \begin_layout Plain Layout
  3679. \align center
  3680. \begin_inset Tabular
  3681. <lyxtabular version="3" rows="6" columns="7">
  3682. <features tabularvalignment="middle">
  3683. <column alignment="center" valignment="top">
  3684. <column alignment="center" valignment="top">
  3685. <column alignment="center" valignment="top">
  3686. <column alignment="center" valignment="top">
  3687. <column alignment="center" valignment="top">
  3688. <column alignment="center" valignment="top">
  3689. <column alignment="center" valignment="top">
  3690. <row>
  3691. <cell alignment="center" valignment="top" usebox="none">
  3692. \begin_inset Text
  3693. \begin_layout Plain Layout
  3694. \end_layout
  3695. \end_inset
  3696. </cell>
  3697. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3698. \begin_inset Text
  3699. \begin_layout Plain Layout
  3700. Number of significant promoters
  3701. \end_layout
  3702. \end_inset
  3703. </cell>
  3704. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3705. \begin_inset Text
  3706. \begin_layout Plain Layout
  3707. \end_layout
  3708. \end_inset
  3709. </cell>
  3710. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3711. \begin_inset Text
  3712. \begin_layout Plain Layout
  3713. \end_layout
  3714. \end_inset
  3715. </cell>
  3716. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3717. \begin_inset Text
  3718. \begin_layout Plain Layout
  3719. Est.
  3720. differentially modified promoters
  3721. \end_layout
  3722. \end_inset
  3723. </cell>
  3724. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3725. \begin_inset Text
  3726. \begin_layout Plain Layout
  3727. \end_layout
  3728. \end_inset
  3729. </cell>
  3730. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3731. \begin_inset Text
  3732. \begin_layout Plain Layout
  3733. \end_layout
  3734. \end_inset
  3735. </cell>
  3736. </row>
  3737. <row>
  3738. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3739. \begin_inset Text
  3740. \begin_layout Plain Layout
  3741. Time Point
  3742. \end_layout
  3743. \end_inset
  3744. </cell>
  3745. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3746. \begin_inset Text
  3747. \begin_layout Plain Layout
  3748. H3K4me2
  3749. \end_layout
  3750. \end_inset
  3751. </cell>
  3752. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3753. \begin_inset Text
  3754. \begin_layout Plain Layout
  3755. H3K4me3
  3756. \end_layout
  3757. \end_inset
  3758. </cell>
  3759. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3760. \begin_inset Text
  3761. \begin_layout Plain Layout
  3762. H3K27me3
  3763. \end_layout
  3764. \end_inset
  3765. </cell>
  3766. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3767. \begin_inset Text
  3768. \begin_layout Plain Layout
  3769. H3K4me2
  3770. \end_layout
  3771. \end_inset
  3772. </cell>
  3773. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3774. \begin_inset Text
  3775. \begin_layout Plain Layout
  3776. H3K4me3
  3777. \end_layout
  3778. \end_inset
  3779. </cell>
  3780. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3781. \begin_inset Text
  3782. \begin_layout Plain Layout
  3783. H3K27me3
  3784. \end_layout
  3785. \end_inset
  3786. </cell>
  3787. </row>
  3788. <row>
  3789. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3790. \begin_inset Text
  3791. \begin_layout Plain Layout
  3792. Day 0
  3793. \end_layout
  3794. \end_inset
  3795. </cell>
  3796. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3797. \begin_inset Text
  3798. \begin_layout Plain Layout
  3799. 4553
  3800. \end_layout
  3801. \end_inset
  3802. </cell>
  3803. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3804. \begin_inset Text
  3805. \begin_layout Plain Layout
  3806. 927
  3807. \end_layout
  3808. \end_inset
  3809. </cell>
  3810. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3811. \begin_inset Text
  3812. \begin_layout Plain Layout
  3813. 6
  3814. \end_layout
  3815. \end_inset
  3816. </cell>
  3817. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3818. \begin_inset Text
  3819. \begin_layout Plain Layout
  3820. 9967
  3821. \end_layout
  3822. \end_inset
  3823. </cell>
  3824. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3825. \begin_inset Text
  3826. \begin_layout Plain Layout
  3827. 4149
  3828. \end_layout
  3829. \end_inset
  3830. </cell>
  3831. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3832. \begin_inset Text
  3833. \begin_layout Plain Layout
  3834. 2404
  3835. \end_layout
  3836. \end_inset
  3837. </cell>
  3838. </row>
  3839. <row>
  3840. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3841. \begin_inset Text
  3842. \begin_layout Plain Layout
  3843. Day 1
  3844. \end_layout
  3845. \end_inset
  3846. </cell>
  3847. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3848. \begin_inset Text
  3849. \begin_layout Plain Layout
  3850. 567
  3851. \end_layout
  3852. \end_inset
  3853. </cell>
  3854. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3855. \begin_inset Text
  3856. \begin_layout Plain Layout
  3857. 278
  3858. \end_layout
  3859. \end_inset
  3860. </cell>
  3861. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3862. \begin_inset Text
  3863. \begin_layout Plain Layout
  3864. 1570
  3865. \end_layout
  3866. \end_inset
  3867. </cell>
  3868. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3869. \begin_inset Text
  3870. \begin_layout Plain Layout
  3871. 4370
  3872. \end_layout
  3873. \end_inset
  3874. </cell>
  3875. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3876. \begin_inset Text
  3877. \begin_layout Plain Layout
  3878. 2145
  3879. \end_layout
  3880. \end_inset
  3881. </cell>
  3882. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3883. \begin_inset Text
  3884. \begin_layout Plain Layout
  3885. 6598
  3886. \end_layout
  3887. \end_inset
  3888. </cell>
  3889. </row>
  3890. <row>
  3891. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3892. \begin_inset Text
  3893. \begin_layout Plain Layout
  3894. Day 5
  3895. \end_layout
  3896. \end_inset
  3897. </cell>
  3898. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3899. \begin_inset Text
  3900. \begin_layout Plain Layout
  3901. 2313
  3902. \end_layout
  3903. \end_inset
  3904. </cell>
  3905. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3906. \begin_inset Text
  3907. \begin_layout Plain Layout
  3908. 139
  3909. \end_layout
  3910. \end_inset
  3911. </cell>
  3912. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3913. \begin_inset Text
  3914. \begin_layout Plain Layout
  3915. 490
  3916. \end_layout
  3917. \end_inset
  3918. </cell>
  3919. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3920. \begin_inset Text
  3921. \begin_layout Plain Layout
  3922. 9450
  3923. \end_layout
  3924. \end_inset
  3925. </cell>
  3926. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3927. \begin_inset Text
  3928. \begin_layout Plain Layout
  3929. 1148
  3930. \end_layout
  3931. \end_inset
  3932. </cell>
  3933. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3934. \begin_inset Text
  3935. \begin_layout Plain Layout
  3936. 4141
  3937. \end_layout
  3938. \end_inset
  3939. </cell>
  3940. </row>
  3941. <row>
  3942. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3943. \begin_inset Text
  3944. \begin_layout Plain Layout
  3945. Day 14
  3946. \end_layout
  3947. \end_inset
  3948. </cell>
  3949. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3950. \begin_inset Text
  3951. \begin_layout Plain Layout
  3952. 0
  3953. \end_layout
  3954. \end_inset
  3955. </cell>
  3956. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3957. \begin_inset Text
  3958. \begin_layout Plain Layout
  3959. 0
  3960. \end_layout
  3961. \end_inset
  3962. </cell>
  3963. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3964. \begin_inset Text
  3965. \begin_layout Plain Layout
  3966. 0
  3967. \end_layout
  3968. \end_inset
  3969. </cell>
  3970. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3971. \begin_inset Text
  3972. \begin_layout Plain Layout
  3973. 0
  3974. \end_layout
  3975. \end_inset
  3976. </cell>
  3977. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3978. \begin_inset Text
  3979. \begin_layout Plain Layout
  3980. 0
  3981. \end_layout
  3982. \end_inset
  3983. </cell>
  3984. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3985. \begin_inset Text
  3986. \begin_layout Plain Layout
  3987. 0
  3988. \end_layout
  3989. \end_inset
  3990. </cell>
  3991. </row>
  3992. </lyxtabular>
  3993. \end_inset
  3994. \end_layout
  3995. \begin_layout Plain Layout
  3996. \begin_inset Caption Standard
  3997. \begin_layout Plain Layout
  3998. \series bold
  3999. \begin_inset CommandInset label
  4000. LatexCommand label
  4001. name "tab:Number-signif-promoters"
  4002. \end_inset
  4003. Number of differentially modified promoters between naive and memory cells
  4004. at each time point after activation.
  4005. \series default
  4006. This table shows both the number of differentially modified promoters detected
  4007. at a 10% FDR threshold (left half), and the total number of differentially
  4008. modified promoters as estimated using the method of
  4009. \begin_inset CommandInset citation
  4010. LatexCommand cite
  4011. key "Phipson2013"
  4012. literal "false"
  4013. \end_inset
  4014. (right half).
  4015. \end_layout
  4016. \end_inset
  4017. \end_layout
  4018. \end_inset
  4019. \end_layout
  4020. \begin_layout Standard
  4021. \begin_inset ERT
  4022. status open
  4023. \begin_layout Plain Layout
  4024. \backslash
  4025. end{landscape}
  4026. \end_layout
  4027. \begin_layout Plain Layout
  4028. }
  4029. \end_layout
  4030. \end_inset
  4031. \end_layout
  4032. \begin_layout Standard
  4033. \begin_inset Float figure
  4034. placement p
  4035. wide false
  4036. sideways false
  4037. status open
  4038. \begin_layout Plain Layout
  4039. \align center
  4040. \begin_inset Float figure
  4041. wide false
  4042. sideways false
  4043. status open
  4044. \begin_layout Plain Layout
  4045. \align center
  4046. \begin_inset Graphics
  4047. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-promoter-PCA-group-CROP.png
  4048. lyxscale 25
  4049. width 45col%
  4050. groupId pcoa-prom-subfig
  4051. \end_inset
  4052. \end_layout
  4053. \begin_layout Plain Layout
  4054. \begin_inset Caption Standard
  4055. \begin_layout Plain Layout
  4056. \series bold
  4057. \begin_inset CommandInset label
  4058. LatexCommand label
  4059. name "fig:PCoA-H3K4me2-prom"
  4060. \end_inset
  4061. PCoA plot of H3K4me2 promoters, after subtracting surrogate variables
  4062. \end_layout
  4063. \end_inset
  4064. \end_layout
  4065. \end_inset
  4066. \begin_inset space \hfill{}
  4067. \end_inset
  4068. \begin_inset Float figure
  4069. wide false
  4070. sideways false
  4071. status open
  4072. \begin_layout Plain Layout
  4073. \align center
  4074. \begin_inset Graphics
  4075. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-promoter-PCA-group-CROP.png
  4076. lyxscale 25
  4077. width 45col%
  4078. groupId pcoa-prom-subfig
  4079. \end_inset
  4080. \end_layout
  4081. \begin_layout Plain Layout
  4082. \begin_inset Caption Standard
  4083. \begin_layout Plain Layout
  4084. \series bold
  4085. \begin_inset CommandInset label
  4086. LatexCommand label
  4087. name "fig:PCoA-H3K4me3-prom"
  4088. \end_inset
  4089. PCoA plot of H3K4me3 promoters, after subtracting surrogate variables
  4090. \end_layout
  4091. \end_inset
  4092. \end_layout
  4093. \end_inset
  4094. \end_layout
  4095. \begin_layout Plain Layout
  4096. \align center
  4097. \begin_inset Float figure
  4098. wide false
  4099. sideways false
  4100. status collapsed
  4101. \begin_layout Plain Layout
  4102. \align center
  4103. \begin_inset Graphics
  4104. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-promoter-PCA-group-CROP.png
  4105. lyxscale 25
  4106. width 45col%
  4107. groupId pcoa-prom-subfig
  4108. \end_inset
  4109. \end_layout
  4110. \begin_layout Plain Layout
  4111. \begin_inset Caption Standard
  4112. \begin_layout Plain Layout
  4113. \series bold
  4114. \begin_inset CommandInset label
  4115. LatexCommand label
  4116. name "fig:PCoA-H3K27me3-prom"
  4117. \end_inset
  4118. PCoA plot of H3K27me3 promoters, after subtracting surrogate variables
  4119. \end_layout
  4120. \end_inset
  4121. \end_layout
  4122. \end_inset
  4123. \begin_inset space \hfill{}
  4124. \end_inset
  4125. \begin_inset Float figure
  4126. wide false
  4127. sideways false
  4128. status open
  4129. \begin_layout Plain Layout
  4130. \align center
  4131. \begin_inset Graphics
  4132. filename graphics/CD4-csaw/RNA-seq/PCA-final-23-CROP.png
  4133. lyxscale 25
  4134. width 45col%
  4135. groupId pcoa-prom-subfig
  4136. \end_inset
  4137. \end_layout
  4138. \begin_layout Plain Layout
  4139. \begin_inset Caption Standard
  4140. \begin_layout Plain Layout
  4141. \series bold
  4142. \begin_inset CommandInset label
  4143. LatexCommand label
  4144. name "fig:RNA-PCA-group"
  4145. \end_inset
  4146. RNA-seq PCoA showing principal coordinates 2 and 3.
  4147. \end_layout
  4148. \end_inset
  4149. \end_layout
  4150. \end_inset
  4151. \end_layout
  4152. \begin_layout Plain Layout
  4153. \begin_inset Caption Standard
  4154. \begin_layout Plain Layout
  4155. \series bold
  4156. \begin_inset CommandInset label
  4157. LatexCommand label
  4158. name "fig:PCoA-promoters"
  4159. \end_inset
  4160. PCoA plots for promoter ChIP-seq and expression RNA-seq data
  4161. \end_layout
  4162. \end_inset
  4163. \end_layout
  4164. \end_inset
  4165. \end_layout
  4166. \begin_layout Standard
  4167. \begin_inset Flex TODO Note (inline)
  4168. status open
  4169. \begin_layout Plain Layout
  4170. Check up on figure refs in this paragraph
  4171. \end_layout
  4172. \end_inset
  4173. \end_layout
  4174. \begin_layout Standard
  4175. We hypothesized that if naive cells had differentiated into memory cells
  4176. by Day 14, then their patterns of expression and histone modification should
  4177. converge with those of memory cells at Day 14.
  4178. Figure
  4179. \begin_inset CommandInset ref
  4180. LatexCommand ref
  4181. reference "fig:PCoA-promoters"
  4182. plural "false"
  4183. caps "false"
  4184. noprefix "false"
  4185. \end_inset
  4186. shows the patterns of variation in all 3 histone marks in the promoter
  4187. regions of the genome using principal coordinate analysis.
  4188. All 3 marks show a noticeable convergence between the naive and memory
  4189. samples at day 14, visible as an overlapping of the day 14 groups on each
  4190. plot.
  4191. This is consistent with the counts of significantly differentially modified
  4192. promoters and estimates of the total numbers of differentially modified
  4193. promoters shown in Table
  4194. \begin_inset CommandInset ref
  4195. LatexCommand ref
  4196. reference "tab:Number-signif-promoters"
  4197. plural "false"
  4198. caps "false"
  4199. noprefix "false"
  4200. \end_inset
  4201. .
  4202. For all histone marks, evidence of differential modification between naive
  4203. and memory samples was detected at every time point except day 14.
  4204. The day 14 convergence pattern is also present in the RNA-seq data (Figure
  4205. \begin_inset CommandInset ref
  4206. LatexCommand ref
  4207. reference "fig:RNA-PCA-group"
  4208. plural "false"
  4209. caps "false"
  4210. noprefix "false"
  4211. \end_inset
  4212. ), albeit in the 2nd and 3rd principal coordinates, indicating that it is
  4213. not the most dominant pattern driving gene expression.
  4214. Taken together, the data show that promoter histone methylation for these
  4215. 3 histone marks and RNA expression for naive and memory cells are most
  4216. similar at day 14, the furthest time point after activation.
  4217. MOFA was also able to capture this day 14 convergence pattern in latent
  4218. factor 5 (Figure
  4219. \begin_inset CommandInset ref
  4220. LatexCommand ref
  4221. reference "fig:mofa-lf-scatter"
  4222. plural "false"
  4223. caps "false"
  4224. noprefix "false"
  4225. \end_inset
  4226. ), which accounts for shared variation across all 3 histone marks and the
  4227. RNA-seq data, confirming that this convergence is a coordinated pattern
  4228. across all 4 data sets.
  4229. While this observation does not prove that the naive cells have differentiated
  4230. into memory cells at Day 14, it is consistent with that hypothesis.
  4231. \end_layout
  4232. \begin_layout Subsection
  4233. Effect of H3K4me2 and H3K4me3 promoter coverage upstream vs downstream of
  4234. TSS
  4235. \end_layout
  4236. \begin_layout Standard
  4237. \begin_inset Flex TODO Note (inline)
  4238. status open
  4239. \begin_layout Plain Layout
  4240. Need a better section title, for this and the next one.
  4241. \end_layout
  4242. \end_inset
  4243. \end_layout
  4244. \begin_layout Standard
  4245. \begin_inset Flex TODO Note (inline)
  4246. status open
  4247. \begin_layout Plain Layout
  4248. Make sure use of coverage/abundance/whatever is consistent.
  4249. \end_layout
  4250. \end_inset
  4251. \end_layout
  4252. \begin_layout Standard
  4253. \begin_inset Flex TODO Note (inline)
  4254. status open
  4255. \begin_layout Plain Layout
  4256. For the figures in this section and the next, the group labels are arbitrary,
  4257. so if time allows, it would be good to manually reorder them in a logical
  4258. way, e.g.
  4259. most upstream to most downstream.
  4260. If this is done, make sure to update the text with the correct group labels.
  4261. \end_layout
  4262. \end_inset
  4263. \end_layout
  4264. \begin_layout Standard
  4265. \begin_inset ERT
  4266. status open
  4267. \begin_layout Plain Layout
  4268. \backslash
  4269. afterpage{
  4270. \end_layout
  4271. \begin_layout Plain Layout
  4272. \backslash
  4273. begin{landscape}
  4274. \end_layout
  4275. \end_inset
  4276. \end_layout
  4277. \begin_layout Standard
  4278. \begin_inset Float figure
  4279. wide false
  4280. sideways false
  4281. status open
  4282. \begin_layout Plain Layout
  4283. \align center
  4284. \begin_inset Float figure
  4285. wide false
  4286. sideways false
  4287. status open
  4288. \begin_layout Plain Layout
  4289. \align center
  4290. \begin_inset Graphics
  4291. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-neighborhood-clusters-CROP.png
  4292. lyxscale 25
  4293. width 30col%
  4294. groupId covprof-subfig
  4295. \end_inset
  4296. \end_layout
  4297. \begin_layout Plain Layout
  4298. \begin_inset Caption Standard
  4299. \begin_layout Plain Layout
  4300. \series bold
  4301. \begin_inset CommandInset label
  4302. LatexCommand label
  4303. name "fig:H3K4me2-neighborhood-clusters"
  4304. \end_inset
  4305. Average relative coverage for each bin in each cluster
  4306. \end_layout
  4307. \end_inset
  4308. \end_layout
  4309. \end_inset
  4310. \begin_inset space \hfill{}
  4311. \end_inset
  4312. \begin_inset Float figure
  4313. wide false
  4314. sideways false
  4315. status open
  4316. \begin_layout Plain Layout
  4317. \align center
  4318. \begin_inset Graphics
  4319. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-neighborhood-PCA-CROP.png
  4320. lyxscale 25
  4321. width 30col%
  4322. groupId covprof-subfig
  4323. \end_inset
  4324. \end_layout
  4325. \begin_layout Plain Layout
  4326. \begin_inset Caption Standard
  4327. \begin_layout Plain Layout
  4328. \series bold
  4329. \begin_inset CommandInset label
  4330. LatexCommand label
  4331. name "fig:H3K4me2-neighborhood-pca"
  4332. \end_inset
  4333. PCA of relative coverage depth, colored by K-means cluster membership.
  4334. \end_layout
  4335. \end_inset
  4336. \end_layout
  4337. \end_inset
  4338. \begin_inset space \hfill{}
  4339. \end_inset
  4340. \begin_inset Float figure
  4341. wide false
  4342. sideways false
  4343. status open
  4344. \begin_layout Plain Layout
  4345. \align center
  4346. \begin_inset Graphics
  4347. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-neighborhood-expression-CROP.png
  4348. lyxscale 25
  4349. width 30col%
  4350. groupId covprof-subfig
  4351. \end_inset
  4352. \end_layout
  4353. \begin_layout Plain Layout
  4354. \begin_inset Caption Standard
  4355. \begin_layout Plain Layout
  4356. \series bold
  4357. \begin_inset CommandInset label
  4358. LatexCommand label
  4359. name "fig:H3K4me2-neighborhood-expression"
  4360. \end_inset
  4361. Gene expression grouped by promoter coverage clusters.
  4362. \end_layout
  4363. \end_inset
  4364. \end_layout
  4365. \end_inset
  4366. \end_layout
  4367. \begin_layout Plain Layout
  4368. \begin_inset Caption Standard
  4369. \begin_layout Plain Layout
  4370. \series bold
  4371. \begin_inset CommandInset label
  4372. LatexCommand label
  4373. name "fig:H3K4me2-neighborhood"
  4374. \end_inset
  4375. K-means clustering of promoter H3K4me2 relative coverage depth in naive
  4376. day 0 samples.
  4377. \series default
  4378. H3K4me2 ChIP-seq reads were binned into 500-bp windows tiled across each
  4379. promoter from 5
  4380. \begin_inset space ~
  4381. \end_inset
  4382. kbp upstream to 5
  4383. \begin_inset space ~
  4384. \end_inset
  4385. kbp downstream, and the logCPM values were normalized within each promoter
  4386. to an average of 0, yielding relative coverage depths.
  4387. These were then grouped using K-means clustering with
  4388. \begin_inset Formula $K=6$
  4389. \end_inset
  4390. ,
  4391. \series bold
  4392. \series default
  4393. and the average bin values were plotted for each cluster (a).
  4394. The
  4395. \begin_inset Formula $x$
  4396. \end_inset
  4397. -axis is the genomic coordinate of each bin relative to the the transcription
  4398. start site, and the
  4399. \begin_inset Formula $y$
  4400. \end_inset
  4401. -axis is the mean relative coverage depth of that bin across all promoters
  4402. in the cluster.
  4403. Each line represents the average
  4404. \begin_inset Quotes eld
  4405. \end_inset
  4406. shape
  4407. \begin_inset Quotes erd
  4408. \end_inset
  4409. of the promoter coverage for promoters in that cluster.
  4410. PCA was performed on the same data, and the first two principal components
  4411. were plotted, coloring each point by its K-means cluster identity (b).
  4412. For each cluster, the distribution of gene expression values was plotted
  4413. (c).
  4414. \end_layout
  4415. \end_inset
  4416. \end_layout
  4417. \end_inset
  4418. \end_layout
  4419. \begin_layout Standard
  4420. \begin_inset ERT
  4421. status open
  4422. \begin_layout Plain Layout
  4423. \backslash
  4424. end{landscape}
  4425. \end_layout
  4426. \begin_layout Plain Layout
  4427. }
  4428. \end_layout
  4429. \end_inset
  4430. \end_layout
  4431. \begin_layout Standard
  4432. To test whether the position of a histone mark relative to a gene's transcriptio
  4433. n start site (TSS) was important, we looked at the
  4434. \begin_inset Quotes eld
  4435. \end_inset
  4436. landscape
  4437. \begin_inset Quotes erd
  4438. \end_inset
  4439. of ChIP-seq read coverage in naive Day 0 samples within 5 kb of each gene's
  4440. TSS by binning reads into 500-bp windows tiled across each promoter LogCPM
  4441. values were calculated for the bins in each promoter and then the average
  4442. logCPM for each promoter's bins was normalized to zero, such that the values
  4443. represent coverage relative to other regions of the same promoter rather
  4444. than being proportional to absolute read count.
  4445. The promoters were then clustered based on the normalized bin abundances
  4446. using
  4447. \begin_inset Formula $k$
  4448. \end_inset
  4449. -means clustering with
  4450. \begin_inset Formula $K=6$
  4451. \end_inset
  4452. .
  4453. Different values of
  4454. \begin_inset Formula $K$
  4455. \end_inset
  4456. were also tested, but did not substantially change the interpretation of
  4457. the data.
  4458. \end_layout
  4459. \begin_layout Standard
  4460. For H3K4me2, plotting the average bin abundances for each cluster reveals
  4461. a simple pattern (Figure
  4462. \begin_inset CommandInset ref
  4463. LatexCommand ref
  4464. reference "fig:H3K4me2-neighborhood-clusters"
  4465. plural "false"
  4466. caps "false"
  4467. noprefix "false"
  4468. \end_inset
  4469. ): Cluster 5 represents a completely flat promoter coverage profile, likely
  4470. consisting of genes with no H3K4me2 methylation in the promoter.
  4471. All the other clusters represent a continuum of peak positions relative
  4472. to the TSS.
  4473. In order from must upstream to most downstream, they are Clusters 6, 4,
  4474. 3, 1, and 2.
  4475. There do not appear to be any clusters representing coverage patterns other
  4476. than lone peaks, such as coverage troughs or double peaks.
  4477. Next, all promoters were plotted in a PCA plot based on the same relative
  4478. bin abundance data, and colored based on cluster membership (Figure
  4479. \begin_inset CommandInset ref
  4480. LatexCommand ref
  4481. reference "fig:H3K4me2-neighborhood-pca"
  4482. plural "false"
  4483. caps "false"
  4484. noprefix "false"
  4485. \end_inset
  4486. ).
  4487. The PCA plot shows Cluster 5 (the
  4488. \begin_inset Quotes eld
  4489. \end_inset
  4490. no peak
  4491. \begin_inset Quotes erd
  4492. \end_inset
  4493. cluster) at the center, with the other clusters arranged in a counter-clockwise
  4494. arc around it in the order noted above, from most upstream peak to most
  4495. downstream.
  4496. Notably, the
  4497. \begin_inset Quotes eld
  4498. \end_inset
  4499. clusters
  4500. \begin_inset Quotes erd
  4501. \end_inset
  4502. form a single large
  4503. \begin_inset Quotes eld
  4504. \end_inset
  4505. cloud
  4506. \begin_inset Quotes erd
  4507. \end_inset
  4508. with no apparent separation between them, further supporting the conclusion
  4509. that these clusters represent an arbitrary partitioning of a continuous
  4510. distribution of promoter coverage landscapes.
  4511. While the clusters are a useful abstraction that aids in visualization,
  4512. they are ultimately not an accurate representation of the data.
  4513. A better representation might be something like a polar coordinate system
  4514. with the origin at the center of Cluster 5, where the radius represents
  4515. the peak height above the background and the angle represents the peak's
  4516. position upstream or downstream of the TSS.
  4517. The continuous nature of the distribution also explains why different values
  4518. of
  4519. \begin_inset Formula $K$
  4520. \end_inset
  4521. led to similar conclusions.
  4522. \end_layout
  4523. \begin_layout Standard
  4524. \begin_inset Flex TODO Note (inline)
  4525. status open
  4526. \begin_layout Plain Layout
  4527. RNA-seq values in the plots use logCPM but should really use logFPKM or
  4528. logTPM.
  4529. Fix if time allows.
  4530. \end_layout
  4531. \end_inset
  4532. \end_layout
  4533. \begin_layout Standard
  4534. \begin_inset Flex TODO Note (inline)
  4535. status open
  4536. \begin_layout Plain Layout
  4537. Should have a table of p-values on difference of means between Cluster 5
  4538. and the others.
  4539. \end_layout
  4540. \end_inset
  4541. \end_layout
  4542. \begin_layout Standard
  4543. To investigate the association between relative peak position and gene expressio
  4544. n, we plotted the Naive Day 0 expression for the genes in each cluster (Figure
  4545. \begin_inset CommandInset ref
  4546. LatexCommand ref
  4547. reference "fig:H3K4me2-neighborhood-expression"
  4548. plural "false"
  4549. caps "false"
  4550. noprefix "false"
  4551. \end_inset
  4552. ).
  4553. Most genes in Cluster 5, the
  4554. \begin_inset Quotes eld
  4555. \end_inset
  4556. no peak
  4557. \begin_inset Quotes erd
  4558. \end_inset
  4559. cluster, have low expression values.
  4560. Taking this as the
  4561. \begin_inset Quotes eld
  4562. \end_inset
  4563. baseline
  4564. \begin_inset Quotes erd
  4565. \end_inset
  4566. distribution when no H3K4me2 methylation is present, we can compare the
  4567. other clusters' distributions to determine which peak positions are associated
  4568. with elevated expression.
  4569. As might be expected, the 3 clusters representing peaks closest to the
  4570. TSS, Clusters 1, 3, and 4, show the highest average expression distributions.
  4571. Specifically, these clusters all have their highest ChIP-seq abundance
  4572. within 1kb of the TSS, consistent with the previously determined promoter
  4573. radius.
  4574. In contrast, cluster 6, which represents peaks several kb upstream of the
  4575. TSS, shows a slightly higher average expression than baseline, while Cluster
  4576. 2, which represents peaks several kb downstream, doesn't appear to show
  4577. any appreciable difference.
  4578. Interestingly, the cluster with the highest average expression is Cluster
  4579. 1, which represents peaks about 1 kb downstream of the TSS, rather than
  4580. Cluster 3, which represents peaks centered directly at the TSS.
  4581. This suggests that conceptualizing the promoter as a region centered on
  4582. the TSS with a certain
  4583. \begin_inset Quotes eld
  4584. \end_inset
  4585. radius
  4586. \begin_inset Quotes erd
  4587. \end_inset
  4588. may be an oversimplification – a peak that is a specific distance from
  4589. the TSS may have a different degree of influence depending on whether it
  4590. is upstream or downstream of the TSS.
  4591. \end_layout
  4592. \begin_layout Standard
  4593. \begin_inset ERT
  4594. status open
  4595. \begin_layout Plain Layout
  4596. \backslash
  4597. afterpage{
  4598. \end_layout
  4599. \begin_layout Plain Layout
  4600. \backslash
  4601. begin{landscape}
  4602. \end_layout
  4603. \end_inset
  4604. \end_layout
  4605. \begin_layout Standard
  4606. \begin_inset Float figure
  4607. wide false
  4608. sideways false
  4609. status open
  4610. \begin_layout Plain Layout
  4611. \align center
  4612. \begin_inset Float figure
  4613. wide false
  4614. sideways false
  4615. status open
  4616. \begin_layout Plain Layout
  4617. \align center
  4618. \begin_inset Graphics
  4619. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-neighborhood-clusters-CROP.png
  4620. lyxscale 25
  4621. width 30col%
  4622. groupId covprof-subfig
  4623. \end_inset
  4624. \end_layout
  4625. \begin_layout Plain Layout
  4626. \begin_inset Caption Standard
  4627. \begin_layout Plain Layout
  4628. \series bold
  4629. \begin_inset CommandInset label
  4630. LatexCommand label
  4631. name "fig:H3K4me3-neighborhood-clusters"
  4632. \end_inset
  4633. Average relative coverage for each bin in each cluster
  4634. \end_layout
  4635. \end_inset
  4636. \end_layout
  4637. \end_inset
  4638. \begin_inset space \hfill{}
  4639. \end_inset
  4640. \begin_inset Float figure
  4641. wide false
  4642. sideways false
  4643. status open
  4644. \begin_layout Plain Layout
  4645. \align center
  4646. \begin_inset Graphics
  4647. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-neighborhood-PCA-CROP.png
  4648. lyxscale 25
  4649. width 30col%
  4650. groupId covprof-subfig
  4651. \end_inset
  4652. \end_layout
  4653. \begin_layout Plain Layout
  4654. \begin_inset Caption Standard
  4655. \begin_layout Plain Layout
  4656. \series bold
  4657. \begin_inset CommandInset label
  4658. LatexCommand label
  4659. name "fig:H3K4me3-neighborhood-pca"
  4660. \end_inset
  4661. PCA of relative coverage depth, colored by K-means cluster membership.
  4662. \end_layout
  4663. \end_inset
  4664. \end_layout
  4665. \end_inset
  4666. \begin_inset space \hfill{}
  4667. \end_inset
  4668. \begin_inset Float figure
  4669. wide false
  4670. sideways false
  4671. status open
  4672. \begin_layout Plain Layout
  4673. \align center
  4674. \begin_inset Graphics
  4675. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-neighborhood-expression-CROP.png
  4676. lyxscale 25
  4677. width 30col%
  4678. groupId covprof-subfig
  4679. \end_inset
  4680. \end_layout
  4681. \begin_layout Plain Layout
  4682. \begin_inset Caption Standard
  4683. \begin_layout Plain Layout
  4684. \series bold
  4685. \begin_inset CommandInset label
  4686. LatexCommand label
  4687. name "fig:H3K4me3-neighborhood-expression"
  4688. \end_inset
  4689. Gene expression grouped by promoter coverage clusters.
  4690. \end_layout
  4691. \end_inset
  4692. \end_layout
  4693. \end_inset
  4694. \end_layout
  4695. \begin_layout Plain Layout
  4696. \begin_inset Caption Standard
  4697. \begin_layout Plain Layout
  4698. \series bold
  4699. \begin_inset CommandInset label
  4700. LatexCommand label
  4701. name "fig:H3K4me3-neighborhood"
  4702. \end_inset
  4703. K-means clustering of promoter H3K4me3 relative coverage depth in naive
  4704. day 0 samples.
  4705. \series default
  4706. H3K4me2 ChIP-seq reads were binned into 500-bp windows tiled across each
  4707. promoter from 5
  4708. \begin_inset space ~
  4709. \end_inset
  4710. kbp upstream to 5
  4711. \begin_inset space ~
  4712. \end_inset
  4713. kbp downstream, and the logCPM values were normalized within each promoter
  4714. to an average of 0, yielding relative coverage depths.
  4715. These were then grouped using K-means clustering with
  4716. \begin_inset Formula $K=6$
  4717. \end_inset
  4718. ,
  4719. \series bold
  4720. \series default
  4721. and the average bin values were plotted for each cluster (a).
  4722. The
  4723. \begin_inset Formula $x$
  4724. \end_inset
  4725. -axis is the genomic coordinate of each bin relative to the the transcription
  4726. start site, and the
  4727. \begin_inset Formula $y$
  4728. \end_inset
  4729. -axis is the mean relative coverage depth of that bin across all promoters
  4730. in the cluster.
  4731. Each line represents the average
  4732. \begin_inset Quotes eld
  4733. \end_inset
  4734. shape
  4735. \begin_inset Quotes erd
  4736. \end_inset
  4737. of the promoter coverage for promoters in that cluster.
  4738. PCA was performed on the same data, and the first two principal components
  4739. were plotted, coloring each point by its K-means cluster identity (b).
  4740. For each cluster, the distribution of gene expression values was plotted
  4741. (c).
  4742. \end_layout
  4743. \end_inset
  4744. \end_layout
  4745. \end_inset
  4746. \end_layout
  4747. \begin_layout Standard
  4748. \begin_inset ERT
  4749. status open
  4750. \begin_layout Plain Layout
  4751. \backslash
  4752. end{landscape}
  4753. \end_layout
  4754. \begin_layout Plain Layout
  4755. }
  4756. \end_layout
  4757. \end_inset
  4758. \end_layout
  4759. \begin_layout Standard
  4760. \begin_inset Flex TODO Note (inline)
  4761. status open
  4762. \begin_layout Plain Layout
  4763. Is there more to say here?
  4764. \end_layout
  4765. \end_inset
  4766. \end_layout
  4767. \begin_layout Standard
  4768. All observations described above for H3K4me2 ChIP-seq also appear to hold
  4769. for H3K4me3 as well (Figure
  4770. \begin_inset CommandInset ref
  4771. LatexCommand ref
  4772. reference "fig:H3K4me3-neighborhood"
  4773. plural "false"
  4774. caps "false"
  4775. noprefix "false"
  4776. \end_inset
  4777. ).
  4778. This is expected, since there is a high correlation between the positions
  4779. where both histone marks occur.
  4780. \end_layout
  4781. \begin_layout Subsection
  4782. Promoter coverage H3K27me3
  4783. \end_layout
  4784. \begin_layout Standard
  4785. \begin_inset ERT
  4786. status open
  4787. \begin_layout Plain Layout
  4788. \backslash
  4789. afterpage{
  4790. \end_layout
  4791. \begin_layout Plain Layout
  4792. \backslash
  4793. begin{landscape}
  4794. \end_layout
  4795. \end_inset
  4796. \end_layout
  4797. \begin_layout Standard
  4798. \begin_inset Float figure
  4799. wide false
  4800. sideways false
  4801. status collapsed
  4802. \begin_layout Plain Layout
  4803. \align center
  4804. \begin_inset Float figure
  4805. wide false
  4806. sideways false
  4807. status open
  4808. \begin_layout Plain Layout
  4809. \align center
  4810. \begin_inset Graphics
  4811. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-neighborhood-clusters-CROP.png
  4812. lyxscale 25
  4813. width 30col%
  4814. groupId covprof-subfig
  4815. \end_inset
  4816. \end_layout
  4817. \begin_layout Plain Layout
  4818. \begin_inset Caption Standard
  4819. \begin_layout Plain Layout
  4820. \series bold
  4821. \begin_inset CommandInset label
  4822. LatexCommand label
  4823. name "fig:H3K27me3-neighborhood-clusters"
  4824. \end_inset
  4825. Average relative coverage for each bin in each cluster
  4826. \end_layout
  4827. \end_inset
  4828. \end_layout
  4829. \end_inset
  4830. \begin_inset space \hfill{}
  4831. \end_inset
  4832. \begin_inset Float figure
  4833. wide false
  4834. sideways false
  4835. status open
  4836. \begin_layout Plain Layout
  4837. \align center
  4838. \begin_inset Graphics
  4839. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-neighborhood-PCA-CROP.png
  4840. lyxscale 25
  4841. width 30col%
  4842. groupId covprof-subfig
  4843. \end_inset
  4844. \end_layout
  4845. \begin_layout Plain Layout
  4846. \begin_inset Caption Standard
  4847. \begin_layout Plain Layout
  4848. \series bold
  4849. \begin_inset CommandInset label
  4850. LatexCommand label
  4851. name "fig:H3K27me3-neighborhood-pca"
  4852. \end_inset
  4853. PCA of relative coverage depth, colored by K-means cluster membership.
  4854. \series default
  4855. Note that Cluster 6 is hidden behind all the other clusters.
  4856. \end_layout
  4857. \end_inset
  4858. \end_layout
  4859. \end_inset
  4860. \begin_inset space \hfill{}
  4861. \end_inset
  4862. \begin_inset Float figure
  4863. wide false
  4864. sideways false
  4865. status open
  4866. \begin_layout Plain Layout
  4867. \align center
  4868. \begin_inset Graphics
  4869. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-neighborhood-expression-CROP.png
  4870. lyxscale 25
  4871. width 30col%
  4872. groupId covprof-subfig
  4873. \end_inset
  4874. \end_layout
  4875. \begin_layout Plain Layout
  4876. \begin_inset Caption Standard
  4877. \begin_layout Plain Layout
  4878. \series bold
  4879. \begin_inset CommandInset label
  4880. LatexCommand label
  4881. name "fig:H3K27me3-neighborhood-expression"
  4882. \end_inset
  4883. Gene expression grouped by promoter coverage clusters.
  4884. \end_layout
  4885. \end_inset
  4886. \end_layout
  4887. \end_inset
  4888. \end_layout
  4889. \begin_layout Plain Layout
  4890. \begin_inset Flex TODO Note (inline)
  4891. status open
  4892. \begin_layout Plain Layout
  4893. Repeated figure legends are kind of an issue here.
  4894. What to do?
  4895. \end_layout
  4896. \end_inset
  4897. \end_layout
  4898. \begin_layout Plain Layout
  4899. \begin_inset Caption Standard
  4900. \begin_layout Plain Layout
  4901. \series bold
  4902. \begin_inset CommandInset label
  4903. LatexCommand label
  4904. name "fig:H3K27me3-neighborhood"
  4905. \end_inset
  4906. K-means clustering of promoter H3K27me3 relative coverage depth in naive
  4907. day 0 samples.
  4908. \series default
  4909. H3K27me3 ChIP-seq reads were binned into 500-bp windows tiled across each
  4910. promoter from 5
  4911. \begin_inset space ~
  4912. \end_inset
  4913. kbp upstream to 5
  4914. \begin_inset space ~
  4915. \end_inset
  4916. kbp downstream, and the logCPM values were normalized within each promoter
  4917. to an average of 0, yielding relative coverage depths.
  4918. These were then grouped using
  4919. \begin_inset Formula $k$
  4920. \end_inset
  4921. -means clustering with
  4922. \begin_inset Formula $K=6$
  4923. \end_inset
  4924. ,
  4925. \series bold
  4926. \series default
  4927. and the average bin values were plotted for each cluster (a).
  4928. The
  4929. \begin_inset Formula $x$
  4930. \end_inset
  4931. -axis is the genomic coordinate of each bin relative to the the transcription
  4932. start site, and the
  4933. \begin_inset Formula $y$
  4934. \end_inset
  4935. -axis is the mean relative coverage depth of that bin across all promoters
  4936. in the cluster.
  4937. Each line represents the average
  4938. \begin_inset Quotes eld
  4939. \end_inset
  4940. shape
  4941. \begin_inset Quotes erd
  4942. \end_inset
  4943. of the promoter coverage for promoters in that cluster.
  4944. PCA was performed on the same data, and the first two principal components
  4945. were plotted, coloring each point by its K-means cluster identity (b).
  4946. For each cluster, the distribution of gene expression values was plotted
  4947. (c).
  4948. \end_layout
  4949. \end_inset
  4950. \end_layout
  4951. \end_inset
  4952. \end_layout
  4953. \begin_layout Standard
  4954. \begin_inset ERT
  4955. status open
  4956. \begin_layout Plain Layout
  4957. \backslash
  4958. end{landscape}
  4959. \end_layout
  4960. \begin_layout Plain Layout
  4961. }
  4962. \end_layout
  4963. \end_inset
  4964. \end_layout
  4965. \begin_layout Standard
  4966. \begin_inset Flex TODO Note (inline)
  4967. status open
  4968. \begin_layout Plain Layout
  4969. Should maybe re-explain what was done or refer back to the previous section.
  4970. \end_layout
  4971. \end_inset
  4972. \end_layout
  4973. \begin_layout Standard
  4974. Unlike both H3K4 marks, whose main patterns of variation appear directly
  4975. related to the size and position of a single peak within the promoter,
  4976. the patterns of H3K27me3 methylation in promoters are more complex (Figure
  4977. \begin_inset CommandInset ref
  4978. LatexCommand ref
  4979. reference "fig:H3K27me3-neighborhood"
  4980. plural "false"
  4981. caps "false"
  4982. noprefix "false"
  4983. \end_inset
  4984. ).
  4985. Once again looking at the relative coverage in a 500-bp wide bins in a
  4986. 5kb radius around each TSS, promoters were clustered based on the normalized
  4987. relative coverage values in each bin using
  4988. \begin_inset Formula $k$
  4989. \end_inset
  4990. -means clustering with
  4991. \begin_inset Formula $K=6$
  4992. \end_inset
  4993. (Figure
  4994. \begin_inset CommandInset ref
  4995. LatexCommand ref
  4996. reference "fig:H3K27me3-neighborhood-clusters"
  4997. plural "false"
  4998. caps "false"
  4999. noprefix "false"
  5000. \end_inset
  5001. ).
  5002. This time, 3
  5003. \begin_inset Quotes eld
  5004. \end_inset
  5005. axes
  5006. \begin_inset Quotes erd
  5007. \end_inset
  5008. of variation can be observed, each represented by 2 clusters with opposing
  5009. patterns.
  5010. The first axis is greater upstream coverage (Cluster 1) vs.
  5011. greater downstream coverage (Cluster 3); the second axis is the coverage
  5012. at the TSS itself: peak (Cluster 4) or trough (Cluster 2); lastly, the
  5013. third axis represents a trough upstream of the TSS (Cluster 5) vs.
  5014. downstream of the TSS (Cluster 6).
  5015. Referring to these opposing pairs of clusters as axes of variation is justified
  5016. , because they correspond precisely to the first 3 principal components
  5017. in the PCA plot of the relative coverage values (Figure
  5018. \begin_inset CommandInset ref
  5019. LatexCommand ref
  5020. reference "fig:H3K27me3-neighborhood-pca"
  5021. plural "false"
  5022. caps "false"
  5023. noprefix "false"
  5024. \end_inset
  5025. ).
  5026. The PCA plot reveals that as in the case of H3K4me2, all the
  5027. \begin_inset Quotes eld
  5028. \end_inset
  5029. clusters
  5030. \begin_inset Quotes erd
  5031. \end_inset
  5032. are really just sections of a single connected cloud rather than discrete
  5033. clusters.
  5034. The cloud is approximately ellipsoid-shaped, with each PC being an axis
  5035. of the ellipse, and each cluster consisting of a pyramidal section of the
  5036. ellipsoid.
  5037. \end_layout
  5038. \begin_layout Standard
  5039. In Figure
  5040. \begin_inset CommandInset ref
  5041. LatexCommand ref
  5042. reference "fig:H3K27me3-neighborhood-expression"
  5043. plural "false"
  5044. caps "false"
  5045. noprefix "false"
  5046. \end_inset
  5047. , we can see that Clusters 1 and 2 are the only clusters with higher gene
  5048. expression than the others.
  5049. For Cluster 2, this is expected, since this cluster represents genes with
  5050. depletion of H3K27me3 near the promoter.
  5051. Hence, elevated expression in cluster 2 is consistent with the conventional
  5052. view of H3K27me3 as a deactivating mark.
  5053. However, Cluster 1, the cluster with the most elevated gene expression,
  5054. represents genes with elevated coverage upstream of the TSS, or equivalently,
  5055. decreased coverage downstream, inside the gene body.
  5056. The opposite pattern, in which H3K27me3 is more abundant within the gene
  5057. body and less abundance in the upstream promoter region, does not show
  5058. any elevation in gene expression.
  5059. As with H3K4me2, this shows that the location of H3K27 trimethylation relative
  5060. to the TSS is potentially an important factor beyond simple proximity.
  5061. \end_layout
  5062. \begin_layout Standard
  5063. \begin_inset Flex TODO Note (inline)
  5064. status open
  5065. \begin_layout Plain Layout
  5066. Show the figures where the negative result ended this line of inquiry.
  5067. I need to debug some errors resulting from an R upgrade to do this.
  5068. \end_layout
  5069. \end_inset
  5070. \end_layout
  5071. \begin_layout Subsection
  5072. Defined pattern analysis
  5073. \end_layout
  5074. \begin_layout Standard
  5075. \begin_inset Flex TODO Note (inline)
  5076. status open
  5077. \begin_layout Plain Layout
  5078. This was where I defined interesting expression patterns and then looked
  5079. at initial relative promoter coverage for each expression pattern.
  5080. Negative result.
  5081. I forgot about this until recently.
  5082. Worth including? Remember to also write methods.
  5083. \end_layout
  5084. \end_inset
  5085. \end_layout
  5086. \begin_layout Subsection
  5087. Promoter CpG islands?
  5088. \end_layout
  5089. \begin_layout Standard
  5090. \begin_inset Flex TODO Note (inline)
  5091. status collapsed
  5092. \begin_layout Plain Layout
  5093. I forgot until recently about the work I did on this.
  5094. Worth including? Remember to also write methods.
  5095. \end_layout
  5096. \end_inset
  5097. \end_layout
  5098. \begin_layout Section
  5099. Discussion
  5100. \end_layout
  5101. \begin_layout Standard
  5102. \begin_inset Flex TODO Note (inline)
  5103. status open
  5104. \begin_layout Plain Layout
  5105. Write better section headers
  5106. \end_layout
  5107. \end_inset
  5108. \end_layout
  5109. \begin_layout Subsection
  5110. Effective promoter radius
  5111. \end_layout
  5112. \begin_layout Standard
  5113. Figure
  5114. \begin_inset CommandInset ref
  5115. LatexCommand ref
  5116. reference "fig:near-promoter-peak-enrich"
  5117. plural "false"
  5118. caps "false"
  5119. noprefix "false"
  5120. \end_inset
  5121. shows that H3K4me2, H3K4me3, and H3K27me3 are all enriched near promoters,
  5122. relative to the rest of the genome, consistent with their conventionally
  5123. understood role in regulating gene transcription.
  5124. Interestingly, the radius within this enrichment occurs is not the same
  5125. for each histone mark.
  5126. H3K4me2 and H3K4me3 are enriched within a 1
  5127. \begin_inset space \thinspace{}
  5128. \end_inset
  5129. kb radius, while H3K27me3 is enriched within 2.5
  5130. \begin_inset space \thinspace{}
  5131. \end_inset
  5132. kb.
  5133. Notably, the determined promoter radius was consistent across all experimental
  5134. conditions, varying only between different histone marks.
  5135. This suggests that the conventional
  5136. \begin_inset Quotes eld
  5137. \end_inset
  5138. one size fits all
  5139. \begin_inset Quotes erd
  5140. \end_inset
  5141. approach of defining a single promoter region for each gene (or each TSS)
  5142. and using that same promoter region for analyzing all types of genomic
  5143. data within an experiment may not be appropriate, and a better approach
  5144. may be to use a separate promoter radius for each kind of data, with each
  5145. radius being derived from the data itself.
  5146. Furthermore, the apparent asymmetry of upstream and downstream promoter
  5147. histone modification with respect to gene expression, seen in Figures
  5148. \begin_inset CommandInset ref
  5149. LatexCommand ref
  5150. reference "fig:H3K4me2-neighborhood"
  5151. plural "false"
  5152. caps "false"
  5153. noprefix "false"
  5154. \end_inset
  5155. ,
  5156. \begin_inset CommandInset ref
  5157. LatexCommand ref
  5158. reference "fig:H3K4me3-neighborhood"
  5159. plural "false"
  5160. caps "false"
  5161. noprefix "false"
  5162. \end_inset
  5163. , and
  5164. \begin_inset CommandInset ref
  5165. LatexCommand ref
  5166. reference "fig:H3K27me3-neighborhood"
  5167. plural "false"
  5168. caps "false"
  5169. noprefix "false"
  5170. \end_inset
  5171. , shows that even the concept of a promoter
  5172. \begin_inset Quotes eld
  5173. \end_inset
  5174. radius
  5175. \begin_inset Quotes erd
  5176. \end_inset
  5177. is likely an oversimplification.
  5178. At a minimum, nearby enrichment of peaks should be evaluated separately
  5179. for both upstream and downstream peaks, and an appropriate
  5180. \begin_inset Quotes eld
  5181. \end_inset
  5182. radius
  5183. \begin_inset Quotes erd
  5184. \end_inset
  5185. should be selected for each direction.
  5186. \end_layout
  5187. \begin_layout Standard
  5188. Figures
  5189. \begin_inset CommandInset ref
  5190. LatexCommand ref
  5191. reference "fig:H3K4me2-neighborhood"
  5192. plural "false"
  5193. caps "false"
  5194. noprefix "false"
  5195. \end_inset
  5196. and
  5197. \begin_inset CommandInset ref
  5198. LatexCommand ref
  5199. reference "fig:H3K4me3-neighborhood"
  5200. plural "false"
  5201. caps "false"
  5202. noprefix "false"
  5203. \end_inset
  5204. show that the determined promoter radius of 1
  5205. \begin_inset space ~
  5206. \end_inset
  5207. kb is approximately consistent with the distance from the TSS at which enrichmen
  5208. t of H3K4 methylation correlates with increased expression, showing that
  5209. this radius, which was determined by a simple analysis of measuring the
  5210. distance from each TSS to the nearest peak, also has functional significance.
  5211. For H3K27me3, the correlation between histone modification near the promoter
  5212. and gene expression is more complex, involving non-peak variations such
  5213. as troughs in coverage at the TSS and asymmetric coverage upstream and
  5214. downstream, so it is difficult in this case to evaluate whether the 2.5
  5215. \begin_inset space ~
  5216. \end_inset
  5217. kb radius determined from TSS-to-peak distances is functionally significant.
  5218. However, the two patterns of coverage associated with elevated expression
  5219. levels both have interesting features within this radius.
  5220. \end_layout
  5221. \begin_layout Standard
  5222. \begin_inset Flex TODO Note (inline)
  5223. status open
  5224. \begin_layout Plain Layout
  5225. My instinct is to say
  5226. \begin_inset Quotes eld
  5227. \end_inset
  5228. further study is needed
  5229. \begin_inset Quotes erd
  5230. \end_inset
  5231. here, but that goes in Chapter 5, right?
  5232. \end_layout
  5233. \end_inset
  5234. \end_layout
  5235. \begin_layout Subsection
  5236. Convergence
  5237. \end_layout
  5238. \begin_layout Standard
  5239. \begin_inset Flex TODO Note (inline)
  5240. status open
  5241. \begin_layout Plain Layout
  5242. Look up some more references for these histone marks being involved in memory
  5243. differentiation.
  5244. (Ask Sarah)
  5245. \end_layout
  5246. \end_inset
  5247. \end_layout
  5248. \begin_layout Standard
  5249. We have observed that all 3 histone marks and the gene expression data all
  5250. exhibit evidence of convergence in abundance between naive and memory cells
  5251. by day 14 after activation (Figure
  5252. \begin_inset CommandInset ref
  5253. LatexCommand ref
  5254. reference "fig:PCoA-promoters"
  5255. plural "false"
  5256. caps "false"
  5257. noprefix "false"
  5258. \end_inset
  5259. , Table
  5260. \begin_inset CommandInset ref
  5261. LatexCommand ref
  5262. reference "tab:Number-signif-promoters"
  5263. plural "false"
  5264. caps "false"
  5265. noprefix "false"
  5266. \end_inset
  5267. ).
  5268. The MOFA latent factor scatter plots (Figure
  5269. \begin_inset CommandInset ref
  5270. LatexCommand ref
  5271. reference "fig:mofa-lf-scatter"
  5272. plural "false"
  5273. caps "false"
  5274. noprefix "false"
  5275. \end_inset
  5276. ) show that this pattern of convergence is captured in latent factor 5.
  5277. Like all the latent factors in this plot, this factor explains a substantial
  5278. portion of the variance in all 4 data sets, indicating a coordinated pattern
  5279. of variation shared across all histone marks and gene expression.
  5280. This, of course, is consistent with the expectation that any naive CD4
  5281. T-cells remaining at day 14 should have differentiated into memory cells
  5282. by that time, and should therefore have a genomic state similar to memory
  5283. cells.
  5284. This convergence is evidence that these histone marks all play an important
  5285. role in the naive-to-memory differentiation process.
  5286. A histone mark that was not involved in naive-to-memory differentiation
  5287. would not be expected to converge in this way after activation.
  5288. \end_layout
  5289. \begin_layout Standard
  5290. \begin_inset Float figure
  5291. wide false
  5292. sideways false
  5293. status collapsed
  5294. \begin_layout Plain Layout
  5295. \align center
  5296. \begin_inset Graphics
  5297. filename graphics/CD4-csaw/LaMere2016_fig8.pdf
  5298. lyxscale 50
  5299. width 60col%
  5300. groupId colwidth
  5301. \end_inset
  5302. \end_layout
  5303. \begin_layout Plain Layout
  5304. \begin_inset Caption Standard
  5305. \begin_layout Plain Layout
  5306. \series bold
  5307. \begin_inset CommandInset label
  5308. LatexCommand label
  5309. name "fig:Lamere2016-Fig8"
  5310. \end_inset
  5311. Lamere 2016 Figure 8
  5312. \begin_inset CommandInset citation
  5313. LatexCommand cite
  5314. key "LaMere2016"
  5315. literal "false"
  5316. \end_inset
  5317. ,
  5318. \begin_inset Quotes eld
  5319. \end_inset
  5320. Model for the role of H3K4 methylation during CD4 T-cell activation.
  5321. \begin_inset Quotes erd
  5322. \end_inset
  5323. \series default
  5324. Reproduced with permission.
  5325. \end_layout
  5326. \end_inset
  5327. \end_layout
  5328. \end_inset
  5329. \end_layout
  5330. \begin_layout Standard
  5331. In H3K4me2, H3K4me3, and RNA-seq, this convergence appears to be in progress
  5332. already by Day 5, shown by the smaller distance between naive and memory
  5333. cells at day 5 along the
  5334. \begin_inset Formula $y$
  5335. \end_inset
  5336. -axes in Figures
  5337. \begin_inset CommandInset ref
  5338. LatexCommand ref
  5339. reference "fig:PCoA-H3K4me2-prom"
  5340. plural "false"
  5341. caps "false"
  5342. noprefix "false"
  5343. \end_inset
  5344. ,
  5345. \begin_inset CommandInset ref
  5346. LatexCommand ref
  5347. reference "fig:PCoA-H3K4me3-prom"
  5348. plural "false"
  5349. caps "false"
  5350. noprefix "false"
  5351. \end_inset
  5352. , and
  5353. \begin_inset CommandInset ref
  5354. LatexCommand ref
  5355. reference "fig:RNA-PCA-group"
  5356. plural "false"
  5357. caps "false"
  5358. noprefix "false"
  5359. \end_inset
  5360. .
  5361. This agrees with the model proposed by Sarah Lamere based on an prior analysis
  5362. of the same data, shown in Figure
  5363. \begin_inset CommandInset ref
  5364. LatexCommand ref
  5365. reference "fig:Lamere2016-Fig8"
  5366. plural "false"
  5367. caps "false"
  5368. noprefix "false"
  5369. \end_inset
  5370. , which shows the pattern of H3K4 methylation and expression for naive cells
  5371. and memory cells converging at day 5.
  5372. This model was developed without the benefit of the PCoA plots in Figure
  5373. \begin_inset CommandInset ref
  5374. LatexCommand ref
  5375. reference "fig:PCoA-promoters"
  5376. plural "false"
  5377. caps "false"
  5378. noprefix "false"
  5379. \end_inset
  5380. , which have been corrected for confounding factors by ComBat and SVA.
  5381. This shows that proper batch correction assists in extracting meaningful
  5382. patterns in the data while eliminating systematic sources of irrelevant
  5383. variation in the data, allowing simple automated procedures like PCoA to
  5384. reveal interesting behaviors in the data that were previously only detectable
  5385. by a detailed manual analysis.
  5386. \end_layout
  5387. \begin_layout Standard
  5388. While the ideal comparison to demonstrate this convergence would be naive
  5389. cells at day 14 to memory cells at day 0, this is not feasible in this
  5390. experimental system, since neither naive nor memory cells are able to fully
  5391. return to their pre-activation state, as shown by the lack of overlap between
  5392. days 0 and 14 for either naive or memory cells in Figure
  5393. \begin_inset CommandInset ref
  5394. LatexCommand ref
  5395. reference "fig:PCoA-promoters"
  5396. plural "false"
  5397. caps "false"
  5398. noprefix "false"
  5399. \end_inset
  5400. .
  5401. \end_layout
  5402. \begin_layout Subsection
  5403. Positional
  5404. \end_layout
  5405. \begin_layout Standard
  5406. When looking at patterns in the relative coverage of each histone mark near
  5407. the TSS of each gene, several interesting patterns were apparent.
  5408. For H3K4me2 and H3K4me3, the pattern was straightforward: the consistent
  5409. pattern across all promoters was a single peak a few kb wide, with the
  5410. main axis of variation being the position of this peak relative to the
  5411. TSS (Figures
  5412. \begin_inset CommandInset ref
  5413. LatexCommand ref
  5414. reference "fig:H3K4me2-neighborhood"
  5415. plural "false"
  5416. caps "false"
  5417. noprefix "false"
  5418. \end_inset
  5419. &
  5420. \begin_inset CommandInset ref
  5421. LatexCommand ref
  5422. reference "fig:H3K4me3-neighborhood"
  5423. plural "false"
  5424. caps "false"
  5425. noprefix "false"
  5426. \end_inset
  5427. ).
  5428. There were no obvious
  5429. \begin_inset Quotes eld
  5430. \end_inset
  5431. preferred
  5432. \begin_inset Quotes erd
  5433. \end_inset
  5434. positions, but rather a continuous distribution of relative positions ranging
  5435. all across the promoter region.
  5436. The association with gene expression was also straightforward: peaks closer
  5437. to the TSS were more strongly associated with elevated gene expression.
  5438. Coverage downstream of the TSS appears to be more strongly associated with
  5439. elevated expression than coverage the same distance upstream, indicating
  5440. that the
  5441. \begin_inset Quotes eld
  5442. \end_inset
  5443. effective promoter region
  5444. \begin_inset Quotes erd
  5445. \end_inset
  5446. for H3K4me2 and H3K4me3 may be centered downstream of the TSS.
  5447. \end_layout
  5448. \begin_layout Standard
  5449. The relative promoter coverage for H3K27me3 had a more complex pattern,
  5450. with two specific patterns of promoter coverage associated with elevated
  5451. expression: a sharp depletion of H3K27me3 around the TSS relative to the
  5452. surrounding area, and a depletion of H3K27me3 downstream of the TSS relative
  5453. to upstream (Figure
  5454. \begin_inset CommandInset ref
  5455. LatexCommand ref
  5456. reference "fig:H3K27me3-neighborhood"
  5457. plural "false"
  5458. caps "false"
  5459. noprefix "false"
  5460. \end_inset
  5461. ).
  5462. A previous study found that H3K27me3 depletion within the gene body was
  5463. associated with elevated gene expression in 4 different cell types in mice
  5464. \begin_inset CommandInset citation
  5465. LatexCommand cite
  5466. key "Young2011"
  5467. literal "false"
  5468. \end_inset
  5469. .
  5470. This is consistent with the second pattern described here.
  5471. This study also reported that a spike in coverage at the TSS was associated
  5472. with
  5473. \emph on
  5474. lower
  5475. \emph default
  5476. expression, which is indirectly consistent with the first pattern described
  5477. here, in the sense that it associates lower H3K27me3 levels near the TSS
  5478. with higher expression.
  5479. \end_layout
  5480. \begin_layout Subsection
  5481. Workflow
  5482. \end_layout
  5483. \begin_layout Standard
  5484. \begin_inset ERT
  5485. status open
  5486. \begin_layout Plain Layout
  5487. \backslash
  5488. afterpage{
  5489. \end_layout
  5490. \begin_layout Plain Layout
  5491. \backslash
  5492. begin{landscape}
  5493. \end_layout
  5494. \end_inset
  5495. \end_layout
  5496. \begin_layout Standard
  5497. \begin_inset Float figure
  5498. wide false
  5499. sideways false
  5500. status open
  5501. \begin_layout Plain Layout
  5502. \align center
  5503. \begin_inset Graphics
  5504. filename graphics/CD4-csaw/rulegraphs/rulegraph-all.pdf
  5505. lyxscale 50
  5506. width 100col%
  5507. height 95theight%
  5508. \end_inset
  5509. \end_layout
  5510. \begin_layout Plain Layout
  5511. \begin_inset Caption Standard
  5512. \begin_layout Plain Layout
  5513. \begin_inset CommandInset label
  5514. LatexCommand label
  5515. name "fig:rulegraph"
  5516. \end_inset
  5517. \series bold
  5518. Dependency graph of steps in reproducible workflow.
  5519. \end_layout
  5520. \end_inset
  5521. \end_layout
  5522. \end_inset
  5523. \end_layout
  5524. \begin_layout Standard
  5525. \begin_inset ERT
  5526. status open
  5527. \begin_layout Plain Layout
  5528. \backslash
  5529. end{landscape}
  5530. \end_layout
  5531. \begin_layout Plain Layout
  5532. }
  5533. \end_layout
  5534. \end_inset
  5535. \end_layout
  5536. \begin_layout Standard
  5537. The analyses described in this chapter were organized into a reproducible
  5538. workflow using the Snakemake workflow management system.
  5539. As shown in Figure
  5540. \begin_inset CommandInset ref
  5541. LatexCommand ref
  5542. reference "fig:rulegraph"
  5543. plural "false"
  5544. caps "false"
  5545. noprefix "false"
  5546. \end_inset
  5547. , the workflow includes many steps with complex dependencies between them.
  5548. For example, the step that counts the number of ChIP-seq reads in 500
  5549. \begin_inset space ~
  5550. \end_inset
  5551. bp windows in each promoter (the starting point for Figures
  5552. \begin_inset CommandInset ref
  5553. LatexCommand ref
  5554. reference "fig:H3K4me2-neighborhood"
  5555. plural "false"
  5556. caps "false"
  5557. noprefix "false"
  5558. \end_inset
  5559. ,
  5560. \begin_inset CommandInset ref
  5561. LatexCommand ref
  5562. reference "fig:H3K4me3-neighborhood"
  5563. plural "false"
  5564. caps "false"
  5565. noprefix "false"
  5566. \end_inset
  5567. , and
  5568. \begin_inset CommandInset ref
  5569. LatexCommand ref
  5570. reference "fig:H3K27me3-neighborhood"
  5571. plural "false"
  5572. caps "false"
  5573. noprefix "false"
  5574. \end_inset
  5575. ), named
  5576. \begin_inset Formula $\texttt{chipseq\_count\_tss\_neighborhoods}$
  5577. \end_inset
  5578. , depends on the RNA-seq abundance estimates in order to select the most-used
  5579. TSS for each gene, the aligned ChIP-seq reads, the index for those reads,
  5580. and the blacklist of regions to be excluded from ChIP-seq analysis.
  5581. Each step declares its inputs and outputs, and Snakemake uses these to
  5582. determine the dependencies between steps.
  5583. Each step is marked as depending on all the steps whose outputs match its
  5584. inputs, generating the workflow graph in Figure
  5585. \begin_inset CommandInset ref
  5586. LatexCommand ref
  5587. reference "fig:rulegraph"
  5588. plural "false"
  5589. caps "false"
  5590. noprefix "false"
  5591. \end_inset
  5592. , which Snakemake uses to determine order in which to execute each step
  5593. so that each step is executed only after all of the steps it depends on
  5594. have completed, thereby automating the entire workflow from start to finish.
  5595. \end_layout
  5596. \begin_layout Standard
  5597. In addition to simply making it easier to organize the steps in the analysis,
  5598. structuring the analysis as a workflow allowed for some analysis strategies
  5599. that would not have been practical otherwise.
  5600. For example, 5 different RNA-seq quantification methods were tested against
  5601. two different reference transcriptome annotations for a total of 10 different
  5602. quantifications of the same RNA-seq data.
  5603. These were then compared against each other in the exploratory data analysis
  5604. step, to determine that the results were not very sensitive to either the
  5605. choice of quantification method or the choice of annotation.
  5606. This was possible with a single script for the exploratory data analysis,
  5607. because Snakemake was able to automate running this script for every combinatio
  5608. n of method and reference.
  5609. In a similar manner, two different peak calling methods were tested against
  5610. each other, and in this case it was determined that SICER was unambiguously
  5611. superior to MACS for all histone marks studied.
  5612. By enabling these types of comparisons, structuring the analysis as an
  5613. automated workflow allowed important analysis decisions to be made in a
  5614. data-driven way, by running every reasonable option through the downstream
  5615. steps, seeing the consequences of choosing each option, and deciding accordingl
  5616. y.
  5617. \end_layout
  5618. \begin_layout Subsection
  5619. Data quality issues limit conclusions
  5620. \end_layout
  5621. \begin_layout Standard
  5622. \begin_inset Flex TODO Note (inline)
  5623. status open
  5624. \begin_layout Plain Layout
  5625. Is this needed?
  5626. \end_layout
  5627. \end_inset
  5628. \end_layout
  5629. \begin_layout Section
  5630. Future Directions
  5631. \end_layout
  5632. \begin_layout Standard
  5633. The analysis of RNA-seq and ChIP-seq in CD4 T-cells in Chapter 2 is in many
  5634. ways a preliminary study that suggests a multitude of new avenues of investigat
  5635. ion.
  5636. Here we consider a selection of such avenues.
  5637. \end_layout
  5638. \begin_layout Subsection
  5639. Negative results
  5640. \end_layout
  5641. \begin_layout Standard
  5642. Two additional analyses were conducted beyond those reported in the results.
  5643. First, we searched for evidence that the presence or absence of a CpG island
  5644. in the promoter was correlated with increases or decreases in gene expression
  5645. or any histone mark in any of the tested contrasts.
  5646. Second, we searched for evidence that the relative ChIP-seq coverage profiles
  5647. prior to activations could predict the change in expression of a gene after
  5648. activation.
  5649. Neither analysis turned up any clear positive results.
  5650. \end_layout
  5651. \begin_layout Subsection
  5652. Improve on the idea of an effective promoter radius
  5653. \end_layout
  5654. \begin_layout Standard
  5655. This study introduced the concept of an
  5656. \begin_inset Quotes eld
  5657. \end_inset
  5658. effective promoter radius
  5659. \begin_inset Quotes erd
  5660. \end_inset
  5661. specific to each histone mark based on distance from the TSS within which
  5662. an excess of peaks was called for that mark.
  5663. This concept was then used to guide further analyses throughout the study.
  5664. However, while the effective promoter radius was useful in those analyses,
  5665. it is both limited in theory and shown in practice to be a possible oversimplif
  5666. ication.
  5667. First, the effective promoter radii used in this study were chosen based
  5668. on manual inspection of the TSS-to-peak distance distributions in Figure
  5669. \begin_inset CommandInset ref
  5670. LatexCommand ref
  5671. reference "fig:near-promoter-peak-enrich"
  5672. plural "false"
  5673. caps "false"
  5674. noprefix "false"
  5675. \end_inset
  5676. , selecting round numbers of analyst convenience (Table
  5677. \begin_inset CommandInset ref
  5678. LatexCommand ref
  5679. reference "tab:effective-promoter-radius"
  5680. plural "false"
  5681. caps "false"
  5682. noprefix "false"
  5683. \end_inset
  5684. ).
  5685. It would be better to define an algorithm that selects a more precise radius
  5686. based on the features of the graph.
  5687. One possible way to do this would be to randomly rearrange the called peaks
  5688. throughout the genome many (while preserving the distribution of peak widths)
  5689. and re-generate the same plot as in Figure
  5690. \begin_inset CommandInset ref
  5691. LatexCommand ref
  5692. reference "fig:near-promoter-peak-enrich"
  5693. plural "false"
  5694. caps "false"
  5695. noprefix "false"
  5696. \end_inset
  5697. .
  5698. This would yield a better
  5699. \begin_inset Quotes eld
  5700. \end_inset
  5701. background
  5702. \begin_inset Quotes erd
  5703. \end_inset
  5704. distribution that demonstrates the degree of near-TSS enrichment that would
  5705. be expected by random chance.
  5706. The effective promoter radius could be defined as the point where the true
  5707. distribution diverges from the randomized background distribution.
  5708. \end_layout
  5709. \begin_layout Standard
  5710. Furthermore, the above definition of effective promoter radius has the significa
  5711. nt limitation of being based on the peak calling method.
  5712. It is thus very sensitive to the choice of peak caller and significance
  5713. threshold for calling peaks, as well as the degree of saturation in the
  5714. sequencing.
  5715. Calling peaks from ChIP-seq samples with insufficient coverage depth, with
  5716. the wrong peak caller, or with a different significance threshold could
  5717. give a drastically different number of called peaks, and hence a drastically
  5718. different distribution of peak-to-TSS distances.
  5719. To address this, it is desirable to develop a better method of determining
  5720. the effective promoter radius that relies only on the distribution of read
  5721. coverage around the TSS, independent of the peak calling.
  5722. Furthermore, as demonstrated by the upstream-downstream asymmetries observed
  5723. in Figures
  5724. \begin_inset CommandInset ref
  5725. LatexCommand ref
  5726. reference "fig:H3K4me2-neighborhood"
  5727. plural "false"
  5728. caps "false"
  5729. noprefix "false"
  5730. \end_inset
  5731. ,
  5732. \begin_inset CommandInset ref
  5733. LatexCommand ref
  5734. reference "fig:H3K4me3-neighborhood"
  5735. plural "false"
  5736. caps "false"
  5737. noprefix "false"
  5738. \end_inset
  5739. , and
  5740. \begin_inset CommandInset ref
  5741. LatexCommand ref
  5742. reference "fig:H3K27me3-neighborhood"
  5743. plural "false"
  5744. caps "false"
  5745. noprefix "false"
  5746. \end_inset
  5747. , this definition should determine a different radius for the upstream and
  5748. downstream directions.
  5749. At this point, it may be better to rename this concept
  5750. \begin_inset Quotes eld
  5751. \end_inset
  5752. effective promoter extent
  5753. \begin_inset Quotes erd
  5754. \end_inset
  5755. and avoid the word
  5756. \begin_inset Quotes eld
  5757. \end_inset
  5758. radius
  5759. \begin_inset Quotes erd
  5760. \end_inset
  5761. , since a radius implies a symmetry about the TSS that is not supported
  5762. by the data.
  5763. \end_layout
  5764. \begin_layout Standard
  5765. Beyond improving the definition of effective promoter extent, functional
  5766. validation is necessary to show that this measure of near-TSS enrichment
  5767. has biological meaning.
  5768. Figures
  5769. \begin_inset CommandInset ref
  5770. LatexCommand ref
  5771. reference "fig:H3K4me2-neighborhood"
  5772. plural "false"
  5773. caps "false"
  5774. noprefix "false"
  5775. \end_inset
  5776. and
  5777. \begin_inset CommandInset ref
  5778. LatexCommand ref
  5779. reference "fig:H3K4me3-neighborhood"
  5780. plural "false"
  5781. caps "false"
  5782. noprefix "false"
  5783. \end_inset
  5784. already provide a very limited functional validation of the chosen promoter
  5785. extents for H3K4me2 and H3K4me3 by showing that spikes in coverage within
  5786. this region are most strongly correlated with elevated gene expression.
  5787. However, there are other ways to show functional relevance of the promoter
  5788. extent.
  5789. For example, correlations could be computed between read counts in peaks
  5790. nearby gene promoters and the expression level of those genes, and these
  5791. correlations could be plotted against the distance of the peak upstream
  5792. or downstream of the gene's TSS.
  5793. If the promoter extent truly defines a
  5794. \begin_inset Quotes eld
  5795. \end_inset
  5796. sphere of influence
  5797. \begin_inset Quotes erd
  5798. \end_inset
  5799. within which a histone mark is involved with the regulation of a gene,
  5800. then the correlations for peaks within this extent should be significantly
  5801. higher than those further upstream or downstream.
  5802. Peaks within these extents may also be more likely to show differential
  5803. modification than those outside genic regions of the genome.
  5804. \end_layout
  5805. \begin_layout Subsection
  5806. Design experiments to focus on post-activation convergence of naive & memory
  5807. cells
  5808. \end_layout
  5809. \begin_layout Standard
  5810. In this study, a convergence between naive and memory cells was observed
  5811. in both the pattern of gene expression and in epigenetic state of the 3
  5812. histone marks studied, consistent with the hypothesis that any naive cells
  5813. remaining 14 days after activation have differentiated into memory cells,
  5814. and that both gene expression and these histone marks are involved in this
  5815. differentiation.
  5816. However, the current study was not designed with this specific hypothesis
  5817. in mind, and it therefore has some deficiencies with regard to testing
  5818. it.
  5819. The memory CD4 samples at day 14 do not resemble the memory samples at
  5820. day 0, indicating that in the specific model of activation used for this
  5821. experiment, the cells are not guaranteed to return to their original pre-activa
  5822. tion state, or perhaps this process takes substantially longer than 14 days.
  5823. This is a challenge for the convergence hypothesis because the ideal comparison
  5824. to prove that naive cells are converging to a resting memory state would
  5825. be to compare the final naive time point to the Day 0 memory samples, but
  5826. this comparison is only meaningful if memory cells generally return to
  5827. the same
  5828. \begin_inset Quotes eld
  5829. \end_inset
  5830. resting
  5831. \begin_inset Quotes erd
  5832. \end_inset
  5833. state that they started at.
  5834. \end_layout
  5835. \begin_layout Standard
  5836. To better study the convergence hypothesis, a new experiment should be designed
  5837. using a model system for T-cell activation that is known to allow cells
  5838. to return as closely as possible to their pre-activation state.
  5839. Alternatively, if it is not possible to find or design such a model system,
  5840. the same cell cultures could be activated serially multiple times, and
  5841. sequenced after each activation cycle right before the next activation.
  5842. It is likely that several activations in the same model system will settle
  5843. into a cyclical pattern, converging to a consistent
  5844. \begin_inset Quotes eld
  5845. \end_inset
  5846. resting
  5847. \begin_inset Quotes erd
  5848. \end_inset
  5849. state after each activation, even if this state is different from the initial
  5850. resting state at Day 0.
  5851. If so, it will be possible to compare the final states of both naive and
  5852. memory cells to show that they converge despite different initial conditions.
  5853. \end_layout
  5854. \begin_layout Standard
  5855. In addition, if naive-to-memory convergence is a general pattern, it should
  5856. also be detectable in other epigenetic marks, including other histone marks
  5857. and DNA methylation.
  5858. An experiment should be designed studying a large number of epigenetic
  5859. marks known or suspected to be involved in regulation of gene expression,
  5860. assaying all of these at the same pre- and post-activation time points.
  5861. Multi-dataset factor analysis methods like MOFA can then be used to identify
  5862. coordinated patterns of regulation shared across many epigenetic marks.
  5863. If possible, some
  5864. \begin_inset Quotes eld
  5865. \end_inset
  5866. negative control
  5867. \begin_inset Quotes erd
  5868. \end_inset
  5869. marks should be included that are known
  5870. \emph on
  5871. not
  5872. \emph default
  5873. to be involved in T-cell activation or memory formation.
  5874. Of course, CD4 T-cells are not the only adaptive immune cells with memory.
  5875. A similar study could be designed for CD8 T-cells, B-cells, and even specific
  5876. subsets of CD4 T-cells.
  5877. \end_layout
  5878. \begin_layout Subsection
  5879. Follow up on hints of interesting patterns in promoter relative coverage
  5880. profiles
  5881. \end_layout
  5882. \begin_layout Standard
  5883. \begin_inset Flex TODO Note (inline)
  5884. status open
  5885. \begin_layout Plain Layout
  5886. I think I might need to write up the negative results for the Promoter CpG
  5887. and defined pattern analysis before writing this section.
  5888. \end_layout
  5889. \end_inset
  5890. \end_layout
  5891. \begin_layout Itemize
  5892. Also find better normalizations: maybe borrow from MACS/SICER background
  5893. correction methods?
  5894. \end_layout
  5895. \begin_layout Itemize
  5896. For H3K4, define polar coordinates based on PC1 & 2: R = peak size, Theta
  5897. = peak position.
  5898. Then correlate with expression.
  5899. \end_layout
  5900. \begin_layout Itemize
  5901. Current analysis only at Day 0.
  5902. Need to study across time points.
  5903. \end_layout
  5904. \begin_layout Itemize
  5905. Integrating data across so many dimensions is a significant analysis challenge
  5906. \end_layout
  5907. \begin_layout Subsection
  5908. Investigate causes of high correlation between mutually exclusive histone
  5909. marks
  5910. \end_layout
  5911. \begin_layout Standard
  5912. The high correlation between coverage depth observed between H3K4me2 and
  5913. H3K4me3 is both expected and unexpected.
  5914. Since both marks are associated with elevated gene transcription, a positive
  5915. correlation between them is not surprising.
  5916. However, these two marks represent different post-translational modifications
  5917. of the
  5918. \emph on
  5919. same
  5920. \emph default
  5921. lysine residue on the histone H3 polypeptide, which means that they cannot
  5922. both be present on the same H3 subunit.
  5923. Thus, the high correlation between them has several potential explanations.
  5924. One possible reason is cell population heterogeneity: perhaps some genomic
  5925. loci are frequently marked with H3K4me2 in some cells, while in other cells
  5926. the same loci are marked with H3K4me3.
  5927. Another possibility is allele-specific modifications: the loci are marked
  5928. in each diploid cell with H3K4me2 on one allele and H3K4me3 on the other
  5929. allele.
  5930. Lastly, since each histone octamer contains 2 H3 subunits, it is possible
  5931. that having one H3K4me2 mark and one H3K4me3 mark on a given histone octamer
  5932. represents a distinct epigenetic state with a different function than either
  5933. double H3K4me2 or double H3K4me3.
  5934. \end_layout
  5935. \begin_layout Standard
  5936. These three hypotheses could be disentangled by single-cell ChIP-seq.
  5937. If the correlation between these two histone marks persists even within
  5938. the reads for each individual cell, then cell population heterogeneity
  5939. cannot explain the correlation.
  5940. Allele-specific modification can be tested for by looking at the correlation
  5941. between read coverage of the two histone marks at heterozygous loci.
  5942. If the correlation between read counts for opposite loci is low, then this
  5943. is consistent with allele-specific modification.
  5944. Finally if the modifications do not separate by either cell or allele,
  5945. the colocation of these two marks is most likely occurring at the level
  5946. of individual histones, with the heterogeneously modified histone representing
  5947. a distinct state.
  5948. \end_layout
  5949. \begin_layout Standard
  5950. However, another experiment would be required to show direct evidence of
  5951. such a heterogeneously modified state.
  5952. Specifically a
  5953. \begin_inset Quotes eld
  5954. \end_inset
  5955. double ChIP
  5956. \begin_inset Quotes erd
  5957. \end_inset
  5958. experiment would need to be performed, where the input DNA is first subjected
  5959. to an immunoprecipitation pulldown from the anti-H3K4me2 antibody, and
  5960. then the enriched material is collected, with proteins still bound, and
  5961. immunoprecipitated
  5962. \emph on
  5963. again
  5964. \emph default
  5965. using the anti-H3K4me3 antibody.
  5966. If this yields significant numbers of non-artifactual reads in the same
  5967. regions as the individual pulldowns of the two marks, this is strong evidence
  5968. that the two marks are occurring on opposite H3 subunits of the same histones.
  5969. \end_layout
  5970. \begin_layout Standard
  5971. \begin_inset Flex TODO Note (inline)
  5972. status open
  5973. \begin_layout Plain Layout
  5974. Try to see if double ChIP-seq is actually feasible, and if not, come up
  5975. with some other idea for directly detecting the mixed mod state.
  5976. Oh! Actually ChIP-seq isn't required, only double ChIP followed by quantificati
  5977. on.
  5978. That's one possible angle.
  5979. \end_layout
  5980. \end_inset
  5981. \end_layout
  5982. \begin_layout Chapter
  5983. Improving array-based diagnostics for transplant rejection by optimizing
  5984. data preprocessing
  5985. \end_layout
  5986. \begin_layout Standard
  5987. \begin_inset Note Note
  5988. status open
  5989. \begin_layout Plain Layout
  5990. Chapter author list: Me, Sunil, Tom, Padma, Dan
  5991. \end_layout
  5992. \end_inset
  5993. \end_layout
  5994. \begin_layout Section
  5995. Approach
  5996. \end_layout
  5997. \begin_layout Subsection
  5998. Proper pre-processing is essential for array data
  5999. \end_layout
  6000. \begin_layout Standard
  6001. \begin_inset Flex TODO Note (inline)
  6002. status open
  6003. \begin_layout Plain Layout
  6004. This section could probably use some citations
  6005. \end_layout
  6006. \end_inset
  6007. \end_layout
  6008. \begin_layout Standard
  6009. Microarrays, bead arrays, and similar assays produce raw data in the form
  6010. of fluorescence intensity measurements, with the each intensity measurement
  6011. proportional to the abundance of some fluorescently labelled target DNA
  6012. or RNA sequence that base pairs to a specific probe sequence.
  6013. However, these measurements for each probe are also affected my many technical
  6014. confounding factors, such as the concentration of target material, strength
  6015. of off-target binding, and the sensitivity of the imaging sensor.
  6016. Some array designs also use multiple probe sequences for each target.
  6017. Hence, extensive pre-processing of array data is necessary to normalize
  6018. out the effects of these technical factors and summarize the information
  6019. from multiple probes to arrive at a single usable estimate of abundance
  6020. or other relevant quantity, such as a ratio of two abundances, for each
  6021. target.
  6022. \end_layout
  6023. \begin_layout Standard
  6024. The choice of pre-processing algorithms used in the analysis of an array
  6025. data set can have a large effect on the results of that analysis.
  6026. However, despite their importance, these steps are often neglected or rushed
  6027. in order to get to the more scientifically interesting analysis steps involving
  6028. the actual biology of the system under study.
  6029. Hence, it is often possible to achieve substantial gains in statistical
  6030. power, model goodness-of-fit, or other relevant performance measures, by
  6031. checking the assumptions made by each preprocessing step and choosing specific
  6032. normalization methods tailored to the specific goals of the current analysis.
  6033. \end_layout
  6034. \begin_layout Subsection
  6035. Clinical diagnostic applications for microarrays require single-channel
  6036. normalization
  6037. \end_layout
  6038. \begin_layout Standard
  6039. As the cost of performing microarray assays falls, there is increasing interest
  6040. in using genomic assays for diagnostic purposes, such as distinguishing
  6041. healthy transplants (TX) from transplants undergoing acute rejection (AR)
  6042. or acute dysfunction with no rejection (ADNR).
  6043. However, the the standard normalization algorithm used for microarray data,
  6044. Robust Multi-chip Average (RMA)
  6045. \begin_inset CommandInset citation
  6046. LatexCommand cite
  6047. key "Irizarry2003a"
  6048. literal "false"
  6049. \end_inset
  6050. , is not applicable in a clinical setting.
  6051. Two of the steps in RMA, quantile normalization and probe summarization
  6052. by median polish, depend on every array in the data set being normalized.
  6053. This means that adding or removing any arrays from a data set changes the
  6054. normalized values for all arrays, and data sets that have been normalized
  6055. separately cannot be compared to each other.
  6056. Hence, when using RMA, any arrays to be analyzed together must also be
  6057. normalized together, and the set of arrays included in the data set must
  6058. be held constant throughout an analysis.
  6059. \end_layout
  6060. \begin_layout Standard
  6061. These limitations present serious impediments to the use of arrays as a
  6062. diagnostic tool.
  6063. When training a classifier, the samples to be classified must not be involved
  6064. in any step of the training process, lest their inclusion bias the training
  6065. process.
  6066. Once a classifier is deployed in a clinical setting, the samples to be
  6067. classified will not even
  6068. \emph on
  6069. exist
  6070. \emph default
  6071. at the time of training, so including them would be impossible even if
  6072. it were statistically justifiable.
  6073. Therefore, any machine learning application for microarrays demands that
  6074. the normalized expression values computed for an array must depend only
  6075. on information contained within that array.
  6076. This would ensure that each array's normalization is independent of every
  6077. other array, and that arrays normalized separately can still be compared
  6078. to each other without bias.
  6079. Such a normalization is commonly referred to as
  6080. \begin_inset Quotes eld
  6081. \end_inset
  6082. single-channel normalization
  6083. \begin_inset Quotes erd
  6084. \end_inset
  6085. .
  6086. \end_layout
  6087. \begin_layout Standard
  6088. Frozen RMA (fRMA) addresses these concerns by replacing the quantile normalizati
  6089. on and median polish with alternatives that do not introduce inter-array
  6090. dependence, allowing each array to be normalized independently of all others
  6091. \begin_inset CommandInset citation
  6092. LatexCommand cite
  6093. key "McCall2010"
  6094. literal "false"
  6095. \end_inset
  6096. .
  6097. Quantile normalization is performed against a pre-generated set of quantiles
  6098. learned from a collection of 850 publicly available arrays sampled from
  6099. a wide variety of tissues in the Gene Expression Omnibus (GEO).
  6100. Each array's probe intensity distribution is normalized against these pre-gener
  6101. ated quantiles.
  6102. The median polish step is replaced with a robust weighted average of probe
  6103. intensities, using inverse variance weights learned from the same public
  6104. GEO data.
  6105. The result is a normalization that satisfies the requirements mentioned
  6106. above: each array is normalized independently of all others, and any two
  6107. normalized arrays can be compared directly to each other.
  6108. \end_layout
  6109. \begin_layout Standard
  6110. One important limitation of fRMA is that it requires a separate reference
  6111. data set from which to learn the parameters (reference quantiles and probe
  6112. weights) that will be used to normalize each array.
  6113. These parameters are specific to a given array platform, and pre-generated
  6114. parameters are only provided for the most common platforms, such as Affymetrix
  6115. hgu133plus2.
  6116. For a less common platform, such as hthgu133pluspm, is is necessary to
  6117. learn custom parameters from in-house data before fRMA can be used to normalize
  6118. samples on that platform
  6119. \begin_inset CommandInset citation
  6120. LatexCommand cite
  6121. key "McCall2011"
  6122. literal "false"
  6123. \end_inset
  6124. .
  6125. \end_layout
  6126. \begin_layout Standard
  6127. One other option is the aptly-named Single Channel Array Normalization (SCAN),
  6128. which adapts a normalization method originally designed for tiling arrays
  6129. \begin_inset CommandInset citation
  6130. LatexCommand cite
  6131. key "Piccolo2012"
  6132. literal "false"
  6133. \end_inset
  6134. .
  6135. SCAN is truly single-channel in that it does not require a set of normalization
  6136. parameters estimated from an external set of reference samples like fRMA
  6137. does.
  6138. \end_layout
  6139. \begin_layout Subsection
  6140. Heteroskedasticity must be accounted for in methylation array data
  6141. \end_layout
  6142. \begin_layout Standard
  6143. DNA methylation arrays are a relatively new kind of assay that uses microarrays
  6144. to measure the degree of methylation on cytosines in specific regions arrayed
  6145. across the genome.
  6146. First, bisulfite treatment converts all unmethylated cytosines to uracil
  6147. (which then become thymine after amplification) while leaving methylated
  6148. cytosines unaffected.
  6149. Then, each target region is interrogated with two probes: one binds to
  6150. the original genomic sequence and interrogates the level of methylated
  6151. DNA, and the other binds to the same sequence with all cytosines replaced
  6152. by thymidines and interrogates the level of unmethylated DNA.
  6153. \end_layout
  6154. \begin_layout Standard
  6155. \begin_inset Float figure
  6156. wide false
  6157. sideways false
  6158. status collapsed
  6159. \begin_layout Plain Layout
  6160. \align center
  6161. \begin_inset Graphics
  6162. filename graphics/methylvoom/sigmoid.pdf
  6163. lyxscale 50
  6164. width 60col%
  6165. groupId colwidth
  6166. \end_inset
  6167. \end_layout
  6168. \begin_layout Plain Layout
  6169. \begin_inset Caption Standard
  6170. \begin_layout Plain Layout
  6171. \begin_inset CommandInset label
  6172. LatexCommand label
  6173. name "fig:Sigmoid-beta-m-mapping"
  6174. \end_inset
  6175. \series bold
  6176. Sigmoid shape of the mapping between β and M values
  6177. \end_layout
  6178. \end_inset
  6179. \end_layout
  6180. \end_inset
  6181. \end_layout
  6182. \begin_layout Standard
  6183. After normalization, these two probe intensities are summarized in one of
  6184. two ways, each with advantages and disadvantages.
  6185. β
  6186. \series bold
  6187. \series default
  6188. values, interpreted as fraction of DNA copies methylated, range from 0 to
  6189. 1.
  6190. β
  6191. \series bold
  6192. \series default
  6193. values are conceptually easy to interpret, but the constrained range makes
  6194. them unsuitable for linear modeling, and their error distributions are
  6195. highly non-normal, which also frustrates linear modeling.
  6196. M-values, interpreted as the log ratio of methylated to unmethylated copies,
  6197. are computed by mapping the beta values from
  6198. \begin_inset Formula $[0,1]$
  6199. \end_inset
  6200. onto
  6201. \begin_inset Formula $(-\infty,+\infty)$
  6202. \end_inset
  6203. using a sigmoid curve (Figure
  6204. \begin_inset CommandInset ref
  6205. LatexCommand ref
  6206. reference "fig:Sigmoid-beta-m-mapping"
  6207. plural "false"
  6208. caps "false"
  6209. noprefix "false"
  6210. \end_inset
  6211. ).
  6212. This transformation results in values with better statistical properties:
  6213. the unconstrained range is suitable for linear modeling, and the error
  6214. distributions are more normal.
  6215. Hence, most linear modeling and other statistical testing on methylation
  6216. arrays is performed using M-values.
  6217. \end_layout
  6218. \begin_layout Standard
  6219. However, the steep slope of the sigmoid transformation near 0 and 1 tends
  6220. to over-exaggerate small differences in β values near those extremes, which
  6221. in turn amplifies the error in those values, leading to a U-shaped trend
  6222. in the mean-variance curve: extreme values have higher variances than values
  6223. near the middle.
  6224. This mean-variance dependency must be accounted for when fitting the linear
  6225. model for differential methylation, or else the variance will be systematically
  6226. overestimated for probes with moderate M-values and underestimated for
  6227. probes with extreme M-values.
  6228. This is particularly undesirable for methylation data because the intermediate
  6229. M-values are the ones of most interest, since they are more likely to represent
  6230. areas of varying methylation, whereas extreme M-values typically represent
  6231. complete methylation or complete lack of methylation.
  6232. \end_layout
  6233. \begin_layout Standard
  6234. RNA-seq read count data are also known to show heteroskedasticity, and the
  6235. voom method was introduced for modeling this heteroskedasticity by estimating
  6236. the mean-variance trend in the data and using this trend to assign precision
  6237. weights to each observation
  6238. \begin_inset CommandInset citation
  6239. LatexCommand cite
  6240. key "Law2013"
  6241. literal "false"
  6242. \end_inset
  6243. .
  6244. While methylation array data are not derived from counts and have a very
  6245. different mean-variance relationship from that of typical RNA-seq data,
  6246. the voom method makes no specific assumptions on the shape of the mean-variance
  6247. relationship – it only assumes that the relationship can be modeled as
  6248. a smooth curve.
  6249. Hence, the method is sufficiently general to model the mean-variance relationsh
  6250. ip in methylation array data.
  6251. However, the standard implementation of voom assumes that the input is
  6252. given in raw read counts, and it must be adapted to run on methylation
  6253. M-values.
  6254. \end_layout
  6255. \begin_layout Section
  6256. Methods
  6257. \end_layout
  6258. \begin_layout Subsection
  6259. Evaluation of classifier performance with different normalization methods
  6260. \end_layout
  6261. \begin_layout Standard
  6262. For testing different expression microarray normalizations, a data set of
  6263. 157 hgu133plus2 arrays was used, consisting of blood samples from kidney
  6264. transplant patients whose grafts had been graded as TX, AR, or ADNR via
  6265. biopsy and histology (46 TX, 69 AR, 42 ADNR)
  6266. \begin_inset CommandInset citation
  6267. LatexCommand cite
  6268. key "Kurian2014"
  6269. literal "true"
  6270. \end_inset
  6271. .
  6272. Additionally, an external validation set of 75 samples was gathered from
  6273. public GEO data (37 TX, 38 AR, no ADNR).
  6274. \end_layout
  6275. \begin_layout Standard
  6276. \begin_inset Flex TODO Note (inline)
  6277. status open
  6278. \begin_layout Plain Layout
  6279. Find appropriate GEO identifiers if possible.
  6280. Kurian 2014 says GSE15296, but this seems to be different data.
  6281. I also need to look up the GEO accession for the external validation set.
  6282. \end_layout
  6283. \end_inset
  6284. \end_layout
  6285. \begin_layout Standard
  6286. To evaluate the effect of each normalization on classifier performance,
  6287. the same classifier training and validation procedure was used after each
  6288. normalization method.
  6289. The PAM package was used to train a nearest shrunken centroid classifier
  6290. on the training set and select the appropriate threshold for centroid shrinking.
  6291. Then the trained classifier was used to predict the class probabilities
  6292. of each validation sample.
  6293. From these class probabilities, ROC curves and area-under-curve (AUC) values
  6294. were generated
  6295. \begin_inset CommandInset citation
  6296. LatexCommand cite
  6297. key "Turck2011"
  6298. literal "false"
  6299. \end_inset
  6300. .
  6301. Each normalization was tested on two different sets of training and validation
  6302. samples.
  6303. For internal validation, the 115 TX and AR arrays in the internal set were
  6304. split at random into two equal sized sets, one for training and one for
  6305. validation, each containing the same numbers of TX and AR samples as the
  6306. other set.
  6307. For external validation, the full set of 115 TX and AR samples were used
  6308. as a training set, and the 75 external TX and AR samples were used as the
  6309. validation set.
  6310. Thus, 2 ROC curves and AUC values were generated for each normalization
  6311. method: one internal and one external.
  6312. Because the external validation set contains no ADNR samples, only classificati
  6313. on of TX and AR samples was considered.
  6314. The ADNR samples were included during normalization but excluded from all
  6315. classifier training and validation.
  6316. This ensures that the performance on internal and external validation sets
  6317. is directly comparable, since both are performing the same task: distinguishing
  6318. TX from AR.
  6319. \end_layout
  6320. \begin_layout Standard
  6321. \begin_inset Flex TODO Note (inline)
  6322. status open
  6323. \begin_layout Plain Layout
  6324. Summarize the get.best.threshold algorithm for PAM threshold selection, or
  6325. just put the code online?
  6326. \end_layout
  6327. \end_inset
  6328. \end_layout
  6329. \begin_layout Standard
  6330. Six different normalization strategies were evaluated.
  6331. First, 2 well-known non-single-channel normalization methods were considered:
  6332. RMA and dChip
  6333. \begin_inset CommandInset citation
  6334. LatexCommand cite
  6335. key "Li2001,Irizarry2003a"
  6336. literal "false"
  6337. \end_inset
  6338. .
  6339. Since RMA produces expression values on a log2 scale and dChip does not,
  6340. the values from dChip were log2 transformed after normalization.
  6341. Next, RMA and dChip followed by Global Rank-invariant Set Normalization
  6342. (GRSN) were tested
  6343. \begin_inset CommandInset citation
  6344. LatexCommand cite
  6345. key "Pelz2008"
  6346. literal "false"
  6347. \end_inset
  6348. .
  6349. Post-processing with GRSN does not turn RMA or dChip into single-channel
  6350. methods, but it may help mitigate batch effects and is therefore useful
  6351. as a benchmark.
  6352. Lastly, the two single-channel normalization methods, fRMA and SCAN, were
  6353. tested
  6354. \begin_inset CommandInset citation
  6355. LatexCommand cite
  6356. key "McCall2010,Piccolo2012"
  6357. literal "false"
  6358. \end_inset
  6359. .
  6360. When evaluating internal validation performance, only the 157 internal
  6361. samples were normalized; when evaluating external validation performance,
  6362. all 157 internal samples and 75 external samples were normalized together.
  6363. \end_layout
  6364. \begin_layout Standard
  6365. For demonstrating the problem with separate normalization of training and
  6366. validation data, one additional normalization was performed: the internal
  6367. and external sets were each normalized separately using RMA, and the normalized
  6368. data for each set were combined into a single set with no further attempts
  6369. at normalizing between the two sets.
  6370. The represents approximately how RMA would have to be used in a clinical
  6371. setting, where the samples to be classified are not available at the time
  6372. the classifier is trained.
  6373. \end_layout
  6374. \begin_layout Subsection
  6375. Generating custom fRMA vectors for hthgu133pluspm array platform
  6376. \end_layout
  6377. \begin_layout Standard
  6378. In order to enable fRMA normalization for the hthgu133pluspm array platform,
  6379. custom fRMA normalization vectors were trained using the
  6380. \begin_inset Flex Code
  6381. status open
  6382. \begin_layout Plain Layout
  6383. frmaTools
  6384. \end_layout
  6385. \end_inset
  6386. package
  6387. \begin_inset CommandInset citation
  6388. LatexCommand cite
  6389. key "McCall2011"
  6390. literal "false"
  6391. \end_inset
  6392. .
  6393. Separate vectors were created for two types of samples: kidney graft biopsy
  6394. samples and blood samples from graft recipients.
  6395. For training, a 341 kidney biopsy samples from 2 data sets and 965 blood
  6396. samples from 5 data sets were used as the reference set.
  6397. Arrays were groups into batches based on unique combinations of sample
  6398. type (blood or biopsy), diagnosis (TX, AR, etc.), data set, and scan date.
  6399. Thus, each batch represents arrays of the same kind that were run together
  6400. on the same day.
  6401. For estimating the probe inverse variance weights, frmaTools requires equal-siz
  6402. ed batches, which means a batch size must be chosen, and then batches smaller
  6403. than that size must be ignored, while batches larger than the chosen size
  6404. must be downsampled.
  6405. This downsampling is performed randomly, so the sampling process is repeated
  6406. 5 times and the resulting normalizations are compared to each other.
  6407. \end_layout
  6408. \begin_layout Standard
  6409. To evaluate the consistency of the generated normalization vectors, the
  6410. 5 fRMA vector sets generated from 5 random batch samplings were each used
  6411. to normalize the same 20 randomly selected samples from each tissue.
  6412. Then the normalized expression values for each probe on each array were
  6413. compared across all normalizations.
  6414. Each fRMA normalization was also compared against the normalized expression
  6415. values obtained by normalizing the same 20 samples with ordinary RMA.
  6416. \end_layout
  6417. \begin_layout Subsection
  6418. Modeling methylation array M-value heteroskedasticy in linear models with
  6419. modified voom implementation
  6420. \end_layout
  6421. \begin_layout Standard
  6422. \begin_inset Flex TODO Note (inline)
  6423. status open
  6424. \begin_layout Plain Layout
  6425. Put code on Github and reference it.
  6426. \end_layout
  6427. \end_inset
  6428. \end_layout
  6429. \begin_layout Standard
  6430. To investigate the whether DNA methylation could be used to distinguish
  6431. between healthy and dysfunctional transplants, a data set of 78 Illumina
  6432. 450k methylation arrays from human kidney graft biopsies was analyzed for
  6433. differential methylation between 4 transplant statuses: healthy transplant
  6434. (TX), transplants undergoing acute rejection (AR), acute dysfunction with
  6435. no rejection (ADNR), and chronic allograft nephropathy (CAN).
  6436. The data consisted of 33 TX, 9 AR, 8 ADNR, and 28 CAN samples.
  6437. The uneven group sizes are a result of taking the biopsy samples before
  6438. the eventual fate of the transplant was known.
  6439. Each sample was additionally annotated with a donor ID (anonymized), Sex,
  6440. Age, Ethnicity, Creatinine Level, and Diabetes diagnosis (all samples in
  6441. this data set came from patients with either Type 1 or Type 2 diabetes).
  6442. \end_layout
  6443. \begin_layout Standard
  6444. The intensity data were first normalized using subset-quantile within array
  6445. normalization (SWAN)
  6446. \begin_inset CommandInset citation
  6447. LatexCommand cite
  6448. key "Maksimovic2012"
  6449. literal "false"
  6450. \end_inset
  6451. , then converted to intensity ratios (beta values)
  6452. \begin_inset CommandInset citation
  6453. LatexCommand cite
  6454. key "Aryee2014"
  6455. literal "false"
  6456. \end_inset
  6457. .
  6458. Any probes binding to loci that overlapped annotated SNPs were dropped,
  6459. and the annotated sex of each sample was verified against the sex inferred
  6460. from the ratio of median probe intensities for the X and Y chromosomes.
  6461. Then, the ratios were transformed to M-values.
  6462. \end_layout
  6463. \begin_layout Standard
  6464. \begin_inset Float table
  6465. wide false
  6466. sideways false
  6467. status open
  6468. \begin_layout Plain Layout
  6469. \align center
  6470. \begin_inset Tabular
  6471. <lyxtabular version="3" rows="4" columns="6">
  6472. <features tabularvalignment="middle">
  6473. <column alignment="center" valignment="top">
  6474. <column alignment="center" valignment="top">
  6475. <column alignment="center" valignment="top">
  6476. <column alignment="center" valignment="top">
  6477. <column alignment="center" valignment="top">
  6478. <column alignment="center" valignment="top">
  6479. <row>
  6480. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6481. \begin_inset Text
  6482. \begin_layout Plain Layout
  6483. Analysis
  6484. \end_layout
  6485. \end_inset
  6486. </cell>
  6487. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6488. \begin_inset Text
  6489. \begin_layout Plain Layout
  6490. random effect
  6491. \end_layout
  6492. \end_inset
  6493. </cell>
  6494. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6495. \begin_inset Text
  6496. \begin_layout Plain Layout
  6497. eBayes
  6498. \end_layout
  6499. \end_inset
  6500. </cell>
  6501. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6502. \begin_inset Text
  6503. \begin_layout Plain Layout
  6504. SVA
  6505. \end_layout
  6506. \end_inset
  6507. </cell>
  6508. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6509. \begin_inset Text
  6510. \begin_layout Plain Layout
  6511. weights
  6512. \end_layout
  6513. \end_inset
  6514. </cell>
  6515. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  6516. \begin_inset Text
  6517. \begin_layout Plain Layout
  6518. voom
  6519. \end_layout
  6520. \end_inset
  6521. </cell>
  6522. </row>
  6523. <row>
  6524. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6525. \begin_inset Text
  6526. \begin_layout Plain Layout
  6527. A
  6528. \end_layout
  6529. \end_inset
  6530. </cell>
  6531. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6532. \begin_inset Text
  6533. \begin_layout Plain Layout
  6534. Yes
  6535. \end_layout
  6536. \end_inset
  6537. </cell>
  6538. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6539. \begin_inset Text
  6540. \begin_layout Plain Layout
  6541. Yes
  6542. \end_layout
  6543. \end_inset
  6544. </cell>
  6545. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6546. \begin_inset Text
  6547. \begin_layout Plain Layout
  6548. No
  6549. \end_layout
  6550. \end_inset
  6551. </cell>
  6552. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6553. \begin_inset Text
  6554. \begin_layout Plain Layout
  6555. No
  6556. \end_layout
  6557. \end_inset
  6558. </cell>
  6559. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  6560. \begin_inset Text
  6561. \begin_layout Plain Layout
  6562. No
  6563. \end_layout
  6564. \end_inset
  6565. </cell>
  6566. </row>
  6567. <row>
  6568. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6569. \begin_inset Text
  6570. \begin_layout Plain Layout
  6571. B
  6572. \end_layout
  6573. \end_inset
  6574. </cell>
  6575. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6576. \begin_inset Text
  6577. \begin_layout Plain Layout
  6578. Yes
  6579. \end_layout
  6580. \end_inset
  6581. </cell>
  6582. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6583. \begin_inset Text
  6584. \begin_layout Plain Layout
  6585. Yes
  6586. \end_layout
  6587. \end_inset
  6588. </cell>
  6589. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6590. \begin_inset Text
  6591. \begin_layout Plain Layout
  6592. Yes
  6593. \end_layout
  6594. \end_inset
  6595. </cell>
  6596. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6597. \begin_inset Text
  6598. \begin_layout Plain Layout
  6599. Yes
  6600. \end_layout
  6601. \end_inset
  6602. </cell>
  6603. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  6604. \begin_inset Text
  6605. \begin_layout Plain Layout
  6606. No
  6607. \end_layout
  6608. \end_inset
  6609. </cell>
  6610. </row>
  6611. <row>
  6612. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6613. \begin_inset Text
  6614. \begin_layout Plain Layout
  6615. C
  6616. \end_layout
  6617. \end_inset
  6618. </cell>
  6619. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6620. \begin_inset Text
  6621. \begin_layout Plain Layout
  6622. Yes
  6623. \end_layout
  6624. \end_inset
  6625. </cell>
  6626. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6627. \begin_inset Text
  6628. \begin_layout Plain Layout
  6629. Yes
  6630. \end_layout
  6631. \end_inset
  6632. </cell>
  6633. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6634. \begin_inset Text
  6635. \begin_layout Plain Layout
  6636. Yes
  6637. \end_layout
  6638. \end_inset
  6639. </cell>
  6640. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6641. \begin_inset Text
  6642. \begin_layout Plain Layout
  6643. Yes
  6644. \end_layout
  6645. \end_inset
  6646. </cell>
  6647. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  6648. \begin_inset Text
  6649. \begin_layout Plain Layout
  6650. Yes
  6651. \end_layout
  6652. \end_inset
  6653. </cell>
  6654. </row>
  6655. </lyxtabular>
  6656. \end_inset
  6657. \end_layout
  6658. \begin_layout Plain Layout
  6659. \begin_inset Caption Standard
  6660. \begin_layout Plain Layout
  6661. \series bold
  6662. \begin_inset CommandInset label
  6663. LatexCommand label
  6664. name "tab:Summary-of-meth-analysis"
  6665. \end_inset
  6666. Summary of analysis variants for methylation array data.
  6667. \series default
  6668. Each analysis included a different set of steps to adjust or account for
  6669. various systematic features of the data.
  6670. Random effect: The model included a random effect accounting for correlation
  6671. between samples from the same patient
  6672. \begin_inset CommandInset citation
  6673. LatexCommand cite
  6674. key "Smyth2005a"
  6675. literal "false"
  6676. \end_inset
  6677. ; eBayes: Empirical bayes squeezing of per-probe variances toward the mean-varia
  6678. nce trend
  6679. \begin_inset CommandInset citation
  6680. LatexCommand cite
  6681. key "Ritchie2015"
  6682. literal "false"
  6683. \end_inset
  6684. ; SVA: Surrogate variable analysis to account for unobserved confounders
  6685. \begin_inset CommandInset citation
  6686. LatexCommand cite
  6687. key "Leek2007"
  6688. literal "false"
  6689. \end_inset
  6690. ; Weights: Estimate sample weights to account for differences in sample
  6691. quality
  6692. \begin_inset CommandInset citation
  6693. LatexCommand cite
  6694. key "Liu2015,Ritchie2006"
  6695. literal "false"
  6696. \end_inset
  6697. ; voom: Use mean-variance trend to assign individual sample weights
  6698. \begin_inset CommandInset citation
  6699. LatexCommand cite
  6700. key "Law2013"
  6701. literal "false"
  6702. \end_inset
  6703. .
  6704. See the text for a more detailed explanation of each step.
  6705. \end_layout
  6706. \end_inset
  6707. \end_layout
  6708. \end_inset
  6709. \end_layout
  6710. \begin_layout Standard
  6711. From the M-values, a series of parallel analyses was performed, each adding
  6712. additional steps into the model fit to accommodate a feature of the data
  6713. (see Table
  6714. \begin_inset CommandInset ref
  6715. LatexCommand ref
  6716. reference "tab:Summary-of-meth-analysis"
  6717. plural "false"
  6718. caps "false"
  6719. noprefix "false"
  6720. \end_inset
  6721. ).
  6722. For analysis A, a
  6723. \begin_inset Quotes eld
  6724. \end_inset
  6725. basic
  6726. \begin_inset Quotes erd
  6727. \end_inset
  6728. linear modeling analysis was performed, compensating for known confounders
  6729. by including terms for the factor of interest (transplant status) as well
  6730. as the known biological confounders: sex, age, ethnicity, and diabetes.
  6731. Since some samples came from the same patients at different times, the
  6732. intra-patient correlation was modeled as a random effect, estimating a
  6733. shared correlation value across all probes
  6734. \begin_inset CommandInset citation
  6735. LatexCommand cite
  6736. key "Smyth2005a"
  6737. literal "false"
  6738. \end_inset
  6739. .
  6740. Then the linear model was fit, and the variance was modeled using empirical
  6741. Bayes squeezing toward the mean-variance trend
  6742. \begin_inset CommandInset citation
  6743. LatexCommand cite
  6744. key "Ritchie2015"
  6745. literal "false"
  6746. \end_inset
  6747. .
  6748. Finally, t-tests or F-tests were performed as appropriate for each test:
  6749. t-tests for single contrasts, and F-tests for multiple contrasts.
  6750. P-values were corrected for multiple testing using the Benjamini-Hochberg
  6751. procedure for FDR control
  6752. \begin_inset CommandInset citation
  6753. LatexCommand cite
  6754. key "Benjamini1995"
  6755. literal "false"
  6756. \end_inset
  6757. .
  6758. \end_layout
  6759. \begin_layout Standard
  6760. For the analysis B, surrogate variable analysis (SVA) was used to infer
  6761. additional unobserved sources of heterogeneity in the data
  6762. \begin_inset CommandInset citation
  6763. LatexCommand cite
  6764. key "Leek2007"
  6765. literal "false"
  6766. \end_inset
  6767. .
  6768. These surrogate variables were added to the design matrix before fitting
  6769. the linear model.
  6770. In addition, sample quality weights were estimated from the data and used
  6771. during linear modeling to down-weight the contribution of highly variable
  6772. arrays while increasing the weight to arrays with lower variability
  6773. \begin_inset CommandInset citation
  6774. LatexCommand cite
  6775. key "Ritchie2006"
  6776. literal "false"
  6777. \end_inset
  6778. .
  6779. The remainder of the analysis proceeded as in analysis A.
  6780. For analysis C, the voom method was adapted to run on methylation array
  6781. data and used to model and correct for the mean-variance trend using individual
  6782. observation weights
  6783. \begin_inset CommandInset citation
  6784. LatexCommand cite
  6785. key "Law2013"
  6786. literal "false"
  6787. \end_inset
  6788. , which were combined with the sample weights
  6789. \begin_inset CommandInset citation
  6790. LatexCommand cite
  6791. key "Liu2015,Ritchie2006"
  6792. literal "false"
  6793. \end_inset
  6794. .
  6795. Each time weights were used, they were estimated once before estimating
  6796. the random effect correlation value, and then the weights were re-estimated
  6797. taking the random effect into account.
  6798. The remainder of the analysis proceeded as in analysis B.
  6799. \end_layout
  6800. \begin_layout Section
  6801. Results
  6802. \end_layout
  6803. \begin_layout Standard
  6804. \begin_inset Flex TODO Note (inline)
  6805. status open
  6806. \begin_layout Plain Layout
  6807. Improve subsection titles in this section.
  6808. \end_layout
  6809. \end_inset
  6810. \end_layout
  6811. \begin_layout Standard
  6812. \begin_inset Flex TODO Note (inline)
  6813. status open
  6814. \begin_layout Plain Layout
  6815. Reconsider subsection organization?
  6816. \end_layout
  6817. \end_inset
  6818. \end_layout
  6819. \begin_layout Subsection
  6820. Separate normalization with RMA introduces unwanted biases in classification
  6821. \end_layout
  6822. \begin_layout Standard
  6823. \begin_inset Float figure
  6824. wide false
  6825. sideways false
  6826. status open
  6827. \begin_layout Plain Layout
  6828. \align center
  6829. \begin_inset Graphics
  6830. filename graphics/PAM/predplot.pdf
  6831. lyxscale 50
  6832. width 60col%
  6833. groupId colwidth
  6834. \end_inset
  6835. \end_layout
  6836. \begin_layout Plain Layout
  6837. \begin_inset Caption Standard
  6838. \begin_layout Plain Layout
  6839. \begin_inset CommandInset label
  6840. LatexCommand label
  6841. name "fig:Classifier-probabilities-RMA"
  6842. \end_inset
  6843. \series bold
  6844. Classifier probabilities on validation samples when normalized with RMA
  6845. together vs.
  6846. separately.
  6847. \series default
  6848. The PAM classifier algorithm was trained on the training set of arrays to
  6849. distinguish AR from TX and then used to assign class probabilities to the
  6850. validation set.
  6851. The process was performed after normalizing all samples together and after
  6852. normalizing the training and test sets separately, and the class probabilities
  6853. assigned to each sample in the validation set were plotted against each
  6854. other (PP(AR), posterior probability of being AR).
  6855. The color of each point indicates the true classification of that sample.
  6856. \end_layout
  6857. \end_inset
  6858. \end_layout
  6859. \end_inset
  6860. \end_layout
  6861. \begin_layout Standard
  6862. To demonstrate the problem with non-single-channel normalization methods,
  6863. we considered the problem of training a classifier to distinguish TX from
  6864. AR using the samples from the internal set as training data, evaluating
  6865. performance on the external set.
  6866. First, training and evaluation were performed after normalizing all array
  6867. samples together as a single set using RMA, and second, the internal samples
  6868. were normalized separately from the external samples and the training and
  6869. evaluation were repeated.
  6870. For each sample in the validation set, the classifier probabilities from
  6871. both classifiers were plotted against each other (Fig.
  6872. \begin_inset CommandInset ref
  6873. LatexCommand ref
  6874. reference "fig:Classifier-probabilities-RMA"
  6875. plural "false"
  6876. caps "false"
  6877. noprefix "false"
  6878. \end_inset
  6879. ).
  6880. As expected, separate normalization biases the classifier probabilities,
  6881. resulting in several misclassifications.
  6882. In this case, the bias from separate normalization causes the classifier
  6883. to assign a lower probability of AR to every sample.
  6884. \end_layout
  6885. \begin_layout Subsection
  6886. fRMA and SCAN maintain classification performance while eliminating dependence
  6887. on normalization strategy
  6888. \end_layout
  6889. \begin_layout Standard
  6890. \begin_inset Float figure
  6891. wide false
  6892. sideways false
  6893. status open
  6894. \begin_layout Plain Layout
  6895. \align center
  6896. \begin_inset Float figure
  6897. placement tb
  6898. wide false
  6899. sideways false
  6900. status open
  6901. \begin_layout Plain Layout
  6902. \align center
  6903. \begin_inset Graphics
  6904. filename graphics/PAM/ROC-TXvsAR-internal.pdf
  6905. lyxscale 50
  6906. height 40theight%
  6907. groupId roc-pam
  6908. \end_inset
  6909. \end_layout
  6910. \begin_layout Plain Layout
  6911. \begin_inset Caption Standard
  6912. \begin_layout Plain Layout
  6913. \begin_inset CommandInset label
  6914. LatexCommand label
  6915. name "fig:ROC-PAM-int"
  6916. \end_inset
  6917. ROC curves for PAM on internal validation data
  6918. \end_layout
  6919. \end_inset
  6920. \end_layout
  6921. \end_inset
  6922. \end_layout
  6923. \begin_layout Plain Layout
  6924. \align center
  6925. \begin_inset Float figure
  6926. placement tb
  6927. wide false
  6928. sideways false
  6929. status open
  6930. \begin_layout Plain Layout
  6931. \align center
  6932. \begin_inset Graphics
  6933. filename graphics/PAM/ROC-TXvsAR-external.pdf
  6934. lyxscale 50
  6935. height 40theight%
  6936. groupId roc-pam
  6937. \end_inset
  6938. \end_layout
  6939. \begin_layout Plain Layout
  6940. \begin_inset Caption Standard
  6941. \begin_layout Plain Layout
  6942. \begin_inset CommandInset label
  6943. LatexCommand label
  6944. name "fig:ROC-PAM-ext"
  6945. \end_inset
  6946. ROC curves for PAM on external validation data
  6947. \end_layout
  6948. \end_inset
  6949. \end_layout
  6950. \end_inset
  6951. \end_layout
  6952. \begin_layout Plain Layout
  6953. \begin_inset Caption Standard
  6954. \begin_layout Plain Layout
  6955. \series bold
  6956. \begin_inset CommandInset label
  6957. LatexCommand label
  6958. name "fig:ROC-PAM-main"
  6959. \end_inset
  6960. ROC curves for PAM using different normalization strategies.
  6961. \series default
  6962. ROC curves were generated for PAM classification of AR vs TX after 6 different
  6963. normalization strategies applied to the same data sets.
  6964. Only fRMA and SCAN are single-channel normalizations.
  6965. The other normalizations are for comparison.
  6966. \end_layout
  6967. \end_inset
  6968. \end_layout
  6969. \end_inset
  6970. \end_layout
  6971. \begin_layout Standard
  6972. \begin_inset Float table
  6973. wide false
  6974. sideways false
  6975. status open
  6976. \begin_layout Plain Layout
  6977. \align center
  6978. \begin_inset Tabular
  6979. <lyxtabular version="3" rows="7" columns="4">
  6980. <features tabularvalignment="middle">
  6981. <column alignment="center" valignment="top">
  6982. <column alignment="center" valignment="top">
  6983. <column alignment="center" valignment="top">
  6984. <column alignment="center" valignment="top">
  6985. <row>
  6986. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6987. \begin_inset Text
  6988. \begin_layout Plain Layout
  6989. \family roman
  6990. \series medium
  6991. \shape up
  6992. \size normal
  6993. \emph off
  6994. \bar no
  6995. \strikeout off
  6996. \xout off
  6997. \uuline off
  6998. \uwave off
  6999. \noun off
  7000. \color none
  7001. Normalization
  7002. \end_layout
  7003. \end_inset
  7004. </cell>
  7005. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  7006. \begin_inset Text
  7007. \begin_layout Plain Layout
  7008. Single-channel?
  7009. \end_layout
  7010. \end_inset
  7011. </cell>
  7012. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  7013. \begin_inset Text
  7014. \begin_layout Plain Layout
  7015. \family roman
  7016. \series medium
  7017. \shape up
  7018. \size normal
  7019. \emph off
  7020. \bar no
  7021. \strikeout off
  7022. \xout off
  7023. \uuline off
  7024. \uwave off
  7025. \noun off
  7026. \color none
  7027. Internal Val.
  7028. AUC
  7029. \end_layout
  7030. \end_inset
  7031. </cell>
  7032. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  7033. \begin_inset Text
  7034. \begin_layout Plain Layout
  7035. External Val.
  7036. AUC
  7037. \end_layout
  7038. \end_inset
  7039. </cell>
  7040. </row>
  7041. <row>
  7042. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7043. \begin_inset Text
  7044. \begin_layout Plain Layout
  7045. \family roman
  7046. \series medium
  7047. \shape up
  7048. \size normal
  7049. \emph off
  7050. \bar no
  7051. \strikeout off
  7052. \xout off
  7053. \uuline off
  7054. \uwave off
  7055. \noun off
  7056. \color none
  7057. RMA
  7058. \end_layout
  7059. \end_inset
  7060. </cell>
  7061. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7062. \begin_inset Text
  7063. \begin_layout Plain Layout
  7064. No
  7065. \end_layout
  7066. \end_inset
  7067. </cell>
  7068. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7069. \begin_inset Text
  7070. \begin_layout Plain Layout
  7071. \family roman
  7072. \series medium
  7073. \shape up
  7074. \size normal
  7075. \emph off
  7076. \bar no
  7077. \strikeout off
  7078. \xout off
  7079. \uuline off
  7080. \uwave off
  7081. \noun off
  7082. \color none
  7083. 0.852
  7084. \end_layout
  7085. \end_inset
  7086. </cell>
  7087. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  7088. \begin_inset Text
  7089. \begin_layout Plain Layout
  7090. \family roman
  7091. \series medium
  7092. \shape up
  7093. \size normal
  7094. \emph off
  7095. \bar no
  7096. \strikeout off
  7097. \xout off
  7098. \uuline off
  7099. \uwave off
  7100. \noun off
  7101. \color none
  7102. 0.713
  7103. \end_layout
  7104. \end_inset
  7105. </cell>
  7106. </row>
  7107. <row>
  7108. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7109. \begin_inset Text
  7110. \begin_layout Plain Layout
  7111. \family roman
  7112. \series medium
  7113. \shape up
  7114. \size normal
  7115. \emph off
  7116. \bar no
  7117. \strikeout off
  7118. \xout off
  7119. \uuline off
  7120. \uwave off
  7121. \noun off
  7122. \color none
  7123. dChip
  7124. \end_layout
  7125. \end_inset
  7126. </cell>
  7127. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7128. \begin_inset Text
  7129. \begin_layout Plain Layout
  7130. No
  7131. \end_layout
  7132. \end_inset
  7133. </cell>
  7134. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7135. \begin_inset Text
  7136. \begin_layout Plain Layout
  7137. \family roman
  7138. \series medium
  7139. \shape up
  7140. \size normal
  7141. \emph off
  7142. \bar no
  7143. \strikeout off
  7144. \xout off
  7145. \uuline off
  7146. \uwave off
  7147. \noun off
  7148. \color none
  7149. 0.891
  7150. \end_layout
  7151. \end_inset
  7152. </cell>
  7153. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  7154. \begin_inset Text
  7155. \begin_layout Plain Layout
  7156. \family roman
  7157. \series medium
  7158. \shape up
  7159. \size normal
  7160. \emph off
  7161. \bar no
  7162. \strikeout off
  7163. \xout off
  7164. \uuline off
  7165. \uwave off
  7166. \noun off
  7167. \color none
  7168. 0.657
  7169. \end_layout
  7170. \end_inset
  7171. </cell>
  7172. </row>
  7173. <row>
  7174. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7175. \begin_inset Text
  7176. \begin_layout Plain Layout
  7177. \family roman
  7178. \series medium
  7179. \shape up
  7180. \size normal
  7181. \emph off
  7182. \bar no
  7183. \strikeout off
  7184. \xout off
  7185. \uuline off
  7186. \uwave off
  7187. \noun off
  7188. \color none
  7189. RMA + GRSN
  7190. \end_layout
  7191. \end_inset
  7192. </cell>
  7193. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7194. \begin_inset Text
  7195. \begin_layout Plain Layout
  7196. No
  7197. \end_layout
  7198. \end_inset
  7199. </cell>
  7200. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7201. \begin_inset Text
  7202. \begin_layout Plain Layout
  7203. \family roman
  7204. \series medium
  7205. \shape up
  7206. \size normal
  7207. \emph off
  7208. \bar no
  7209. \strikeout off
  7210. \xout off
  7211. \uuline off
  7212. \uwave off
  7213. \noun off
  7214. \color none
  7215. 0.816
  7216. \end_layout
  7217. \end_inset
  7218. </cell>
  7219. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  7220. \begin_inset Text
  7221. \begin_layout Plain Layout
  7222. \family roman
  7223. \series medium
  7224. \shape up
  7225. \size normal
  7226. \emph off
  7227. \bar no
  7228. \strikeout off
  7229. \xout off
  7230. \uuline off
  7231. \uwave off
  7232. \noun off
  7233. \color none
  7234. 0.750
  7235. \end_layout
  7236. \end_inset
  7237. </cell>
  7238. </row>
  7239. <row>
  7240. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7241. \begin_inset Text
  7242. \begin_layout Plain Layout
  7243. \family roman
  7244. \series medium
  7245. \shape up
  7246. \size normal
  7247. \emph off
  7248. \bar no
  7249. \strikeout off
  7250. \xout off
  7251. \uuline off
  7252. \uwave off
  7253. \noun off
  7254. \color none
  7255. dChip + GRSN
  7256. \end_layout
  7257. \end_inset
  7258. </cell>
  7259. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7260. \begin_inset Text
  7261. \begin_layout Plain Layout
  7262. No
  7263. \end_layout
  7264. \end_inset
  7265. </cell>
  7266. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7267. \begin_inset Text
  7268. \begin_layout Plain Layout
  7269. \family roman
  7270. \series medium
  7271. \shape up
  7272. \size normal
  7273. \emph off
  7274. \bar no
  7275. \strikeout off
  7276. \xout off
  7277. \uuline off
  7278. \uwave off
  7279. \noun off
  7280. \color none
  7281. 0.875
  7282. \end_layout
  7283. \end_inset
  7284. </cell>
  7285. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  7286. \begin_inset Text
  7287. \begin_layout Plain Layout
  7288. \family roman
  7289. \series medium
  7290. \shape up
  7291. \size normal
  7292. \emph off
  7293. \bar no
  7294. \strikeout off
  7295. \xout off
  7296. \uuline off
  7297. \uwave off
  7298. \noun off
  7299. \color none
  7300. 0.642
  7301. \end_layout
  7302. \end_inset
  7303. </cell>
  7304. </row>
  7305. <row>
  7306. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7307. \begin_inset Text
  7308. \begin_layout Plain Layout
  7309. \family roman
  7310. \series medium
  7311. \shape up
  7312. \size normal
  7313. \emph off
  7314. \bar no
  7315. \strikeout off
  7316. \xout off
  7317. \uuline off
  7318. \uwave off
  7319. \noun off
  7320. \color none
  7321. fRMA
  7322. \end_layout
  7323. \end_inset
  7324. </cell>
  7325. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7326. \begin_inset Text
  7327. \begin_layout Plain Layout
  7328. Yes
  7329. \end_layout
  7330. \end_inset
  7331. </cell>
  7332. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7333. \begin_inset Text
  7334. \begin_layout Plain Layout
  7335. \family roman
  7336. \series medium
  7337. \shape up
  7338. \size normal
  7339. \emph off
  7340. \bar no
  7341. \strikeout off
  7342. \xout off
  7343. \uuline off
  7344. \uwave off
  7345. \noun off
  7346. \color none
  7347. 0.863
  7348. \end_layout
  7349. \end_inset
  7350. </cell>
  7351. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  7352. \begin_inset Text
  7353. \begin_layout Plain Layout
  7354. \family roman
  7355. \series medium
  7356. \shape up
  7357. \size normal
  7358. \emph off
  7359. \bar no
  7360. \strikeout off
  7361. \xout off
  7362. \uuline off
  7363. \uwave off
  7364. \noun off
  7365. \color none
  7366. 0.718
  7367. \end_layout
  7368. \end_inset
  7369. </cell>
  7370. </row>
  7371. <row>
  7372. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  7373. \begin_inset Text
  7374. \begin_layout Plain Layout
  7375. \family roman
  7376. \series medium
  7377. \shape up
  7378. \size normal
  7379. \emph off
  7380. \bar no
  7381. \strikeout off
  7382. \xout off
  7383. \uuline off
  7384. \uwave off
  7385. \noun off
  7386. \color none
  7387. SCAN
  7388. \end_layout
  7389. \end_inset
  7390. </cell>
  7391. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  7392. \begin_inset Text
  7393. \begin_layout Plain Layout
  7394. Yes
  7395. \end_layout
  7396. \end_inset
  7397. </cell>
  7398. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  7399. \begin_inset Text
  7400. \begin_layout Plain Layout
  7401. \family roman
  7402. \series medium
  7403. \shape up
  7404. \size normal
  7405. \emph off
  7406. \bar no
  7407. \strikeout off
  7408. \xout off
  7409. \uuline off
  7410. \uwave off
  7411. \noun off
  7412. \color none
  7413. 0.853
  7414. \end_layout
  7415. \end_inset
  7416. </cell>
  7417. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  7418. \begin_inset Text
  7419. \begin_layout Plain Layout
  7420. \family roman
  7421. \series medium
  7422. \shape up
  7423. \size normal
  7424. \emph off
  7425. \bar no
  7426. \strikeout off
  7427. \xout off
  7428. \uuline off
  7429. \uwave off
  7430. \noun off
  7431. \color none
  7432. 0.689
  7433. \end_layout
  7434. \end_inset
  7435. </cell>
  7436. </row>
  7437. </lyxtabular>
  7438. \end_inset
  7439. \end_layout
  7440. \begin_layout Plain Layout
  7441. \begin_inset Caption Standard
  7442. \begin_layout Plain Layout
  7443. \begin_inset CommandInset label
  7444. LatexCommand label
  7445. name "tab:AUC-PAM"
  7446. \end_inset
  7447. \series bold
  7448. ROC curve AUC values for internal and external validation with 6 different
  7449. normalization strategies.
  7450. \series default
  7451. These AUC values correspond to the ROC curves in Figure
  7452. \begin_inset CommandInset ref
  7453. LatexCommand ref
  7454. reference "fig:ROC-PAM-main"
  7455. plural "false"
  7456. caps "false"
  7457. noprefix "false"
  7458. \end_inset
  7459. .
  7460. \end_layout
  7461. \end_inset
  7462. \end_layout
  7463. \end_inset
  7464. \end_layout
  7465. \begin_layout Standard
  7466. For internal validation, the 6 methods' AUC values ranged from 0.816 to 0.891,
  7467. as shown in Table
  7468. \begin_inset CommandInset ref
  7469. LatexCommand ref
  7470. reference "tab:AUC-PAM"
  7471. plural "false"
  7472. caps "false"
  7473. noprefix "false"
  7474. \end_inset
  7475. .
  7476. Among the non-single-channel normalizations, dChip outperformed RMA, while
  7477. GRSN reduced the AUC values for both dChip and RMA.
  7478. Both single-channel methods, fRMA and SCAN, slightly outperformed RMA,
  7479. with fRMA ahead of SCAN.
  7480. However, the difference between RMA and fRMA is still quite small.
  7481. Figure
  7482. \begin_inset CommandInset ref
  7483. LatexCommand ref
  7484. reference "fig:ROC-PAM-int"
  7485. plural "false"
  7486. caps "false"
  7487. noprefix "false"
  7488. \end_inset
  7489. shows that the ROC curves for RMA, dChip, and fRMA look very similar and
  7490. relatively smooth, while both GRSN curves and the curve for SCAN have a
  7491. more jagged appearance.
  7492. \end_layout
  7493. \begin_layout Standard
  7494. For external validation, as expected, all the AUC values are lower than
  7495. the internal validations, ranging from 0.642 to 0.750 (Table
  7496. \begin_inset CommandInset ref
  7497. LatexCommand ref
  7498. reference "tab:AUC-PAM"
  7499. plural "false"
  7500. caps "false"
  7501. noprefix "false"
  7502. \end_inset
  7503. ).
  7504. With or without GRSN, RMA shows its dominance over dChip in this more challengi
  7505. ng test.
  7506. Unlike in the internal validation, GRSN actually improves the classifier
  7507. performance for RMA, although it does not for dChip.
  7508. Once again, both single-channel methods perform about on par with RMA,
  7509. with fRMA performing slightly better and SCAN performing a bit worse.
  7510. Figure
  7511. \begin_inset CommandInset ref
  7512. LatexCommand ref
  7513. reference "fig:ROC-PAM-ext"
  7514. plural "false"
  7515. caps "false"
  7516. noprefix "false"
  7517. \end_inset
  7518. shows the ROC curves for the external validation test.
  7519. As expected, none of them are as clean-looking as the internal validation
  7520. ROC curves.
  7521. The curves for RMA, RMA+GRSN, and fRMA all look similar, while the other
  7522. curves look more divergent.
  7523. \end_layout
  7524. \begin_layout Subsection
  7525. fRMA with custom-generated vectors enables single-channel normalization
  7526. on hthgu133pluspm platform
  7527. \end_layout
  7528. \begin_layout Standard
  7529. \begin_inset Float figure
  7530. wide false
  7531. sideways false
  7532. status open
  7533. \begin_layout Plain Layout
  7534. \align center
  7535. \begin_inset Float figure
  7536. placement tb
  7537. wide false
  7538. sideways false
  7539. status collapsed
  7540. \begin_layout Plain Layout
  7541. \align center
  7542. \begin_inset Graphics
  7543. filename graphics/frma-pax-bx/batchsize_batches.pdf
  7544. lyxscale 50
  7545. height 35theight%
  7546. groupId frmatools-subfig
  7547. \end_inset
  7548. \end_layout
  7549. \begin_layout Plain Layout
  7550. \begin_inset Caption Standard
  7551. \begin_layout Plain Layout
  7552. \begin_inset CommandInset label
  7553. LatexCommand label
  7554. name "fig:batch-size-batches"
  7555. \end_inset
  7556. \series bold
  7557. Number of batches usable in fRMA probe weight learning as a function of
  7558. batch size.
  7559. \end_layout
  7560. \end_inset
  7561. \end_layout
  7562. \end_inset
  7563. \end_layout
  7564. \begin_layout Plain Layout
  7565. \align center
  7566. \begin_inset Float figure
  7567. placement tb
  7568. wide false
  7569. sideways false
  7570. status collapsed
  7571. \begin_layout Plain Layout
  7572. \align center
  7573. \begin_inset Graphics
  7574. filename graphics/frma-pax-bx/batchsize_samples.pdf
  7575. lyxscale 50
  7576. height 35theight%
  7577. groupId frmatools-subfig
  7578. \end_inset
  7579. \end_layout
  7580. \begin_layout Plain Layout
  7581. \begin_inset Caption Standard
  7582. \begin_layout Plain Layout
  7583. \begin_inset CommandInset label
  7584. LatexCommand label
  7585. name "fig:batch-size-samples"
  7586. \end_inset
  7587. \series bold
  7588. Number of samples usable in fRMA probe weight learning as a function of
  7589. batch size.
  7590. \end_layout
  7591. \end_inset
  7592. \end_layout
  7593. \end_inset
  7594. \end_layout
  7595. \begin_layout Plain Layout
  7596. \begin_inset Caption Standard
  7597. \begin_layout Plain Layout
  7598. \series bold
  7599. \begin_inset CommandInset label
  7600. LatexCommand label
  7601. name "fig:frmatools-batch-size"
  7602. \end_inset
  7603. Effect of batch size selection on number of batches and number of samples
  7604. included in fRMA probe weight learning.
  7605. \series default
  7606. For batch sizes ranging from 3 to 15, the number of batches (a) and samples
  7607. (b) included in probe weight training were plotted for biopsy (BX) and
  7608. blood (PAX) samples.
  7609. The selected batch size, 5, is marked with a dotted vertical line.
  7610. \end_layout
  7611. \end_inset
  7612. \end_layout
  7613. \end_inset
  7614. \end_layout
  7615. \begin_layout Standard
  7616. In order to enable use of fRMA to normalize hthgu133pluspm, a custom set
  7617. of fRMA vectors was created.
  7618. First, an appropriate batch size was chosen by looking at the number of
  7619. batches and number of samples included as a function of batch size (Figure
  7620. \begin_inset CommandInset ref
  7621. LatexCommand ref
  7622. reference "fig:frmatools-batch-size"
  7623. plural "false"
  7624. caps "false"
  7625. noprefix "false"
  7626. \end_inset
  7627. ).
  7628. For a given batch size, all batches with fewer samples that the chosen
  7629. size must be ignored during training, while larger batches must be randomly
  7630. downsampled to the chosen size.
  7631. Hence, the number of samples included for a given batch size equals the
  7632. batch size times the number of batches with at least that many samples.
  7633. From Figure
  7634. \begin_inset CommandInset ref
  7635. LatexCommand ref
  7636. reference "fig:batch-size-samples"
  7637. plural "false"
  7638. caps "false"
  7639. noprefix "false"
  7640. \end_inset
  7641. , it is apparent that that a batch size of 8 maximizes the number of samples
  7642. included in training.
  7643. Increasing the batch size beyond this causes too many smaller batches to
  7644. be excluded, reducing the total number of samples for both tissue types.
  7645. However, a batch size of 8 is not necessarily optimal.
  7646. The article introducing frmaTools concluded that it was highly advantageous
  7647. to use a smaller batch size in order to include more batches, even at the
  7648. expense of including fewer total samples in training
  7649. \begin_inset CommandInset citation
  7650. LatexCommand cite
  7651. key "McCall2011"
  7652. literal "false"
  7653. \end_inset
  7654. .
  7655. To strike an appropriate balance between more batches and more samples,
  7656. a batch size of 5 was chosen.
  7657. For both blood and biopsy samples, this increased the number of batches
  7658. included by 10, with only a modest reduction in the number of samples compared
  7659. to a batch size of 8.
  7660. With a batch size of 5, 26 batches of biopsy samples and 46 batches of
  7661. blood samples were available.
  7662. \end_layout
  7663. \begin_layout Standard
  7664. \begin_inset Float figure
  7665. wide false
  7666. sideways false
  7667. status collapsed
  7668. \begin_layout Plain Layout
  7669. \begin_inset Float figure
  7670. wide false
  7671. sideways false
  7672. status open
  7673. \begin_layout Plain Layout
  7674. \align center
  7675. \begin_inset Graphics
  7676. filename graphics/frma-pax-bx/M-BX-violin.pdf
  7677. lyxscale 40
  7678. width 45col%
  7679. groupId m-violin
  7680. \end_inset
  7681. \end_layout
  7682. \begin_layout Plain Layout
  7683. \begin_inset Caption Standard
  7684. \begin_layout Plain Layout
  7685. \begin_inset CommandInset label
  7686. LatexCommand label
  7687. name "fig:m-bx-violin"
  7688. \end_inset
  7689. \series bold
  7690. Violin plot of inter-normalization log ratios for biopsy samples.
  7691. \end_layout
  7692. \end_inset
  7693. \end_layout
  7694. \end_inset
  7695. \begin_inset space \hfill{}
  7696. \end_inset
  7697. \begin_inset Float figure
  7698. wide false
  7699. sideways false
  7700. status collapsed
  7701. \begin_layout Plain Layout
  7702. \align center
  7703. \begin_inset Graphics
  7704. filename graphics/frma-pax-bx/M-PAX-violin.pdf
  7705. lyxscale 40
  7706. width 45col%
  7707. groupId m-violin
  7708. \end_inset
  7709. \end_layout
  7710. \begin_layout Plain Layout
  7711. \begin_inset Caption Standard
  7712. \begin_layout Plain Layout
  7713. \begin_inset CommandInset label
  7714. LatexCommand label
  7715. name "fig:m-pax-violin"
  7716. \end_inset
  7717. \series bold
  7718. Violin plot of inter-normalization log ratios for blood samples.
  7719. \end_layout
  7720. \end_inset
  7721. \end_layout
  7722. \end_inset
  7723. \end_layout
  7724. \begin_layout Plain Layout
  7725. \begin_inset Caption Standard
  7726. \begin_layout Plain Layout
  7727. \begin_inset CommandInset label
  7728. LatexCommand label
  7729. name "fig:frma-violin"
  7730. \end_inset
  7731. \series bold
  7732. Violin plot of log ratios between normalizations for 20 biopsy samples.
  7733. \series default
  7734. Each of 20 randomly selected samples was normalized with RMA and with 5
  7735. different sets of fRMA vectors.
  7736. The distribution of log ratios between normalized expression values, aggregated
  7737. across all 20 arrays, was plotted for each pair of normalizations.
  7738. \end_layout
  7739. \end_inset
  7740. \end_layout
  7741. \end_inset
  7742. \end_layout
  7743. \begin_layout Standard
  7744. Since fRMA training requires equal-size batches, larger batches are downsampled
  7745. randomly.
  7746. This introduces a nondeterministic step in the generation of normalization
  7747. vectors.
  7748. To show that this randomness does not substantially change the outcome,
  7749. the random downsampling and subsequent vector learning was repeated 5 times,
  7750. with a different random seed each time.
  7751. 20 samples were selected at random as a test set and normalized with each
  7752. of the 5 sets of fRMA normalization vectors as well as ordinary RMA, and
  7753. the normalized expression values were compared across normalizations.
  7754. Figure
  7755. \begin_inset CommandInset ref
  7756. LatexCommand ref
  7757. reference "fig:m-bx-violin"
  7758. plural "false"
  7759. caps "false"
  7760. noprefix "false"
  7761. \end_inset
  7762. shows a summary of these comparisons for biopsy samples.
  7763. Comparing RMA to each of the 5 fRMA normalizations, the distribution of
  7764. log ratios is somewhat wide, indicating that the normalizations disagree
  7765. on the expression values of a fair number of probe sets.
  7766. In contrast, comparisons of fRMA against fRMA, the vast majority of probe
  7767. sets have very small log ratios, indicating a very high agreement between
  7768. the normalized values generated by the two normalizations.
  7769. This shows that the fRMA normalization's behavior is not very sensitive
  7770. to the random downsampling of larger batches during training.
  7771. \end_layout
  7772. \begin_layout Standard
  7773. \begin_inset Float figure
  7774. wide false
  7775. sideways false
  7776. status open
  7777. \begin_layout Plain Layout
  7778. \align center
  7779. \begin_inset Float figure
  7780. wide false
  7781. sideways false
  7782. status collapsed
  7783. \begin_layout Plain Layout
  7784. \align center
  7785. \begin_inset Graphics
  7786. filename graphics/frma-pax-bx/MA-BX-RMA.fRMA-RASTER.png
  7787. lyxscale 10
  7788. width 45col%
  7789. groupId ma-frma
  7790. \end_inset
  7791. \end_layout
  7792. \begin_layout Plain Layout
  7793. \begin_inset Caption Standard
  7794. \begin_layout Plain Layout
  7795. \begin_inset CommandInset label
  7796. LatexCommand label
  7797. name "fig:ma-bx-rma-frma"
  7798. \end_inset
  7799. RMA vs.
  7800. fRMA for biopsy samples.
  7801. \end_layout
  7802. \end_inset
  7803. \end_layout
  7804. \end_inset
  7805. \begin_inset space \hfill{}
  7806. \end_inset
  7807. \begin_inset Float figure
  7808. wide false
  7809. sideways false
  7810. status collapsed
  7811. \begin_layout Plain Layout
  7812. \align center
  7813. \begin_inset Graphics
  7814. filename graphics/frma-pax-bx/MA-BX-fRMA.fRMA-RASTER.png
  7815. lyxscale 10
  7816. width 45col%
  7817. groupId ma-frma
  7818. \end_inset
  7819. \end_layout
  7820. \begin_layout Plain Layout
  7821. \begin_inset Caption Standard
  7822. \begin_layout Plain Layout
  7823. \begin_inset CommandInset label
  7824. LatexCommand label
  7825. name "fig:ma-bx-frma-frma"
  7826. \end_inset
  7827. fRMA vs fRMA for biopsy samples.
  7828. \end_layout
  7829. \end_inset
  7830. \end_layout
  7831. \end_inset
  7832. \end_layout
  7833. \begin_layout Plain Layout
  7834. \align center
  7835. \begin_inset Float figure
  7836. wide false
  7837. sideways false
  7838. status collapsed
  7839. \begin_layout Plain Layout
  7840. \align center
  7841. \begin_inset Graphics
  7842. filename graphics/frma-pax-bx/MA-PAX-RMA.fRMA-RASTER.png
  7843. lyxscale 10
  7844. width 45col%
  7845. groupId ma-frma
  7846. \end_inset
  7847. \end_layout
  7848. \begin_layout Plain Layout
  7849. \begin_inset Caption Standard
  7850. \begin_layout Plain Layout
  7851. \begin_inset CommandInset label
  7852. LatexCommand label
  7853. name "fig:MA-PAX-rma-frma"
  7854. \end_inset
  7855. RMA vs.
  7856. fRMA for blood samples.
  7857. \end_layout
  7858. \end_inset
  7859. \end_layout
  7860. \end_inset
  7861. \begin_inset space \hfill{}
  7862. \end_inset
  7863. \begin_inset Float figure
  7864. wide false
  7865. sideways false
  7866. status collapsed
  7867. \begin_layout Plain Layout
  7868. \align center
  7869. \begin_inset Graphics
  7870. filename graphics/frma-pax-bx/MA-PAX-fRMA.fRMA-RASTER.png
  7871. lyxscale 10
  7872. width 45col%
  7873. groupId ma-frma
  7874. \end_inset
  7875. \end_layout
  7876. \begin_layout Plain Layout
  7877. \begin_inset Caption Standard
  7878. \begin_layout Plain Layout
  7879. \begin_inset CommandInset label
  7880. LatexCommand label
  7881. name "fig:MA-PAX-frma-frma"
  7882. \end_inset
  7883. fRMA vs fRMA for blood samples.
  7884. \end_layout
  7885. \end_inset
  7886. \end_layout
  7887. \end_inset
  7888. \end_layout
  7889. \begin_layout Plain Layout
  7890. \begin_inset Caption Standard
  7891. \begin_layout Plain Layout
  7892. \series bold
  7893. \begin_inset CommandInset label
  7894. LatexCommand label
  7895. name "fig:Representative-MA-plots"
  7896. \end_inset
  7897. Representative MA plots comparing RMA and custom fRMA normalizations.
  7898. \series default
  7899. For each plot, 20 samples were normalized using 2 different normalizations,
  7900. and then averages (A) and log ratios (M) were plotted between the two different
  7901. normalizations for every probe.
  7902. For the
  7903. \begin_inset Quotes eld
  7904. \end_inset
  7905. fRMA vs fRMA
  7906. \begin_inset Quotes erd
  7907. \end_inset
  7908. plots (b & d), two different fRMA normalizations using vectors from two
  7909. independent batch samplings were compared.
  7910. Density of points is represented by blue shading, and individual outlier
  7911. points are plotted.
  7912. \end_layout
  7913. \end_inset
  7914. \end_layout
  7915. \end_inset
  7916. \end_layout
  7917. \begin_layout Standard
  7918. Figure
  7919. \begin_inset CommandInset ref
  7920. LatexCommand ref
  7921. reference "fig:ma-bx-rma-frma"
  7922. plural "false"
  7923. caps "false"
  7924. noprefix "false"
  7925. \end_inset
  7926. shows an MA plot of the RMA-normalized values against the fRMA-normalized
  7927. values for the same probe sets and arrays, corresponding to the first row
  7928. of Figure
  7929. \begin_inset CommandInset ref
  7930. LatexCommand ref
  7931. reference "fig:m-bx-violin"
  7932. plural "false"
  7933. caps "false"
  7934. noprefix "false"
  7935. \end_inset
  7936. .
  7937. This MA plot shows that not only is there a wide distribution of M-values,
  7938. but the trend of M-values is dependent on the average normalized intensity.
  7939. This is expected, since the overall trend represents the differences in
  7940. the quantile normalization step.
  7941. When running RMA, only the quantiles for these specific 20 arrays are used,
  7942. while for fRMA the quantile distribution is taking from all arrays used
  7943. in training.
  7944. Figure
  7945. \begin_inset CommandInset ref
  7946. LatexCommand ref
  7947. reference "fig:ma-bx-frma-frma"
  7948. plural "false"
  7949. caps "false"
  7950. noprefix "false"
  7951. \end_inset
  7952. shows a similar MA plot comparing 2 different fRMA normalizations, correspondin
  7953. g to the 6th row of Figure
  7954. \begin_inset CommandInset ref
  7955. LatexCommand ref
  7956. reference "fig:m-bx-violin"
  7957. plural "false"
  7958. caps "false"
  7959. noprefix "false"
  7960. \end_inset
  7961. .
  7962. The MA plot is very tightly centered around zero with no visible trend.
  7963. Figures
  7964. \begin_inset CommandInset ref
  7965. LatexCommand ref
  7966. reference "fig:m-pax-violin"
  7967. plural "false"
  7968. caps "false"
  7969. noprefix "false"
  7970. \end_inset
  7971. ,
  7972. \begin_inset CommandInset ref
  7973. LatexCommand ref
  7974. reference "fig:MA-PAX-rma-frma"
  7975. plural "false"
  7976. caps "false"
  7977. noprefix "false"
  7978. \end_inset
  7979. , and
  7980. \begin_inset CommandInset ref
  7981. LatexCommand ref
  7982. reference "fig:ma-bx-frma-frma"
  7983. plural "false"
  7984. caps "false"
  7985. noprefix "false"
  7986. \end_inset
  7987. show exactly the same information for the blood samples, once again comparing
  7988. the normalized expression values between normalizations for all probe sets
  7989. across 20 randomly selected test arrays.
  7990. Once again, there is a wider distribution of log ratios between RMA-normalized
  7991. values and fRMA-normalized, and a much tighter distribution when comparing
  7992. different fRMA normalizations to each other, indicating that the fRMA training
  7993. process is robust to random batch downsampling for the blood samples as
  7994. well.
  7995. \end_layout
  7996. \begin_layout Subsection
  7997. SVA, voom, and array weights improve model fit for methylation array data
  7998. \end_layout
  7999. \begin_layout Standard
  8000. \begin_inset ERT
  8001. status open
  8002. \begin_layout Plain Layout
  8003. \backslash
  8004. afterpage{
  8005. \end_layout
  8006. \begin_layout Plain Layout
  8007. \backslash
  8008. begin{landscape}
  8009. \end_layout
  8010. \end_inset
  8011. \end_layout
  8012. \begin_layout Standard
  8013. \begin_inset Float figure
  8014. wide false
  8015. sideways false
  8016. status open
  8017. \begin_layout Plain Layout
  8018. \begin_inset Flex TODO Note (inline)
  8019. status open
  8020. \begin_layout Plain Layout
  8021. Fix axis labels:
  8022. \begin_inset Quotes eld
  8023. \end_inset
  8024. log2 M-value
  8025. \begin_inset Quotes erd
  8026. \end_inset
  8027. is redundant because M-values are already log scale
  8028. \end_layout
  8029. \end_inset
  8030. \end_layout
  8031. \begin_layout Plain Layout
  8032. \begin_inset Float figure
  8033. wide false
  8034. sideways false
  8035. status collapsed
  8036. \begin_layout Plain Layout
  8037. \align center
  8038. \begin_inset Graphics
  8039. filename graphics/methylvoom/unadj.dupcor/meanvar-trends-PAGE1-CROP-RASTER.png
  8040. lyxscale 15
  8041. width 30col%
  8042. groupId voomaw-subfig
  8043. \end_inset
  8044. \end_layout
  8045. \begin_layout Plain Layout
  8046. \begin_inset Caption Standard
  8047. \begin_layout Plain Layout
  8048. \begin_inset CommandInset label
  8049. LatexCommand label
  8050. name "fig:meanvar-basic"
  8051. \end_inset
  8052. Mean-variance trend for analysis A.
  8053. \end_layout
  8054. \end_inset
  8055. \end_layout
  8056. \end_inset
  8057. \begin_inset space \hfill{}
  8058. \end_inset
  8059. \begin_inset Float figure
  8060. wide false
  8061. sideways false
  8062. status collapsed
  8063. \begin_layout Plain Layout
  8064. \align center
  8065. \begin_inset Graphics
  8066. filename graphics/methylvoom/unadj.dupcor.sva.aw/meanvar-trends-PAGE1-CROP-RASTER.png
  8067. lyxscale 15
  8068. width 30col%
  8069. groupId voomaw-subfig
  8070. \end_inset
  8071. \end_layout
  8072. \begin_layout Plain Layout
  8073. \begin_inset Caption Standard
  8074. \begin_layout Plain Layout
  8075. \begin_inset CommandInset label
  8076. LatexCommand label
  8077. name "fig:meanvar-sva-aw"
  8078. \end_inset
  8079. Mean-variance trend for analysis B.
  8080. \end_layout
  8081. \end_inset
  8082. \end_layout
  8083. \end_inset
  8084. \begin_inset space \hfill{}
  8085. \end_inset
  8086. \begin_inset Float figure
  8087. wide false
  8088. sideways false
  8089. status collapsed
  8090. \begin_layout Plain Layout
  8091. \align center
  8092. \begin_inset Graphics
  8093. filename graphics/methylvoom/unadj.dupcor.sva.voomaw/meanvar-trends-PAGE2-CROP-RASTER.png
  8094. lyxscale 15
  8095. width 30col%
  8096. groupId voomaw-subfig
  8097. \end_inset
  8098. \end_layout
  8099. \begin_layout Plain Layout
  8100. \begin_inset Caption Standard
  8101. \begin_layout Plain Layout
  8102. \begin_inset CommandInset label
  8103. LatexCommand label
  8104. name "fig:meanvar-sva-voomaw"
  8105. \end_inset
  8106. Mean-variance trend after voom modeling in analysis C.
  8107. \end_layout
  8108. \end_inset
  8109. \end_layout
  8110. \end_inset
  8111. \end_layout
  8112. \begin_layout Plain Layout
  8113. \begin_inset Caption Standard
  8114. \begin_layout Plain Layout
  8115. \series bold
  8116. Mean-variance trend modeling in methylation array data.
  8117. \series default
  8118. The estimated log2(standard deviation) for each probe is plotted against
  8119. the probe's average M-value across all samples as a black point, with some
  8120. transparency to make over-plotting more visible, since there are about
  8121. 450,000 points.
  8122. Density of points is also indicated by the dark blue contour lines.
  8123. The prior variance trend estimated by eBayes is shown in light blue, while
  8124. the lowess trend of the points is shown in red.
  8125. \end_layout
  8126. \end_inset
  8127. \end_layout
  8128. \end_inset
  8129. \end_layout
  8130. \begin_layout Standard
  8131. \begin_inset ERT
  8132. status open
  8133. \begin_layout Plain Layout
  8134. \backslash
  8135. end{landscape}
  8136. \end_layout
  8137. \begin_layout Plain Layout
  8138. }
  8139. \end_layout
  8140. \end_inset
  8141. \end_layout
  8142. \begin_layout Standard
  8143. Figure
  8144. \begin_inset CommandInset ref
  8145. LatexCommand ref
  8146. reference "fig:meanvar-basic"
  8147. plural "false"
  8148. caps "false"
  8149. noprefix "false"
  8150. \end_inset
  8151. shows the relationship between the mean M-value and the standard deviation
  8152. calculated for each probe in the methylation array data set.
  8153. A few features of the data are apparent.
  8154. First, the data are very strongly bimodal, with peaks in the density around
  8155. M-values of +4 and -4.
  8156. These modes correspond to methylation sites that are nearly 100% methylated
  8157. and nearly 100% unmethylated, respectively.
  8158. The strong bimodality indicates that a majority of probes interrogate sites
  8159. that fall into one of these two categories.
  8160. The points in between these modes represent sites that are either partially
  8161. methylated in many samples, or are fully methylated in some samples and
  8162. fully unmethylated in other samples, or some combination.
  8163. The next visible feature of the data is the W-shaped variance trend.
  8164. The upticks in the variance trend on either side are expected, based on
  8165. the sigmoid transformation exaggerating small differences at extreme M-values
  8166. (Figure
  8167. \begin_inset CommandInset ref
  8168. LatexCommand ref
  8169. reference "fig:Sigmoid-beta-m-mapping"
  8170. plural "false"
  8171. caps "false"
  8172. noprefix "false"
  8173. \end_inset
  8174. ).
  8175. However, the uptick in the center is interesting: it indicates that sites
  8176. that are not constitutively methylated or unmethylated have a higher variance.
  8177. This could be a genuine biological effect, or it could be spurious noise
  8178. that is only observable at sites with varying methylation.
  8179. \end_layout
  8180. \begin_layout Standard
  8181. In Figure
  8182. \begin_inset CommandInset ref
  8183. LatexCommand ref
  8184. reference "fig:meanvar-sva-aw"
  8185. plural "false"
  8186. caps "false"
  8187. noprefix "false"
  8188. \end_inset
  8189. , we see the mean-variance trend for the same methylation array data, this
  8190. time with surrogate variables and sample quality weights estimated from
  8191. the data and included in the model.
  8192. As expected, the overall average variance is smaller, since the surrogate
  8193. variables account for some of the variance.
  8194. In addition, the uptick in variance in the middle of the M-value range
  8195. has disappeared, turning the W shape into a wide U shape.
  8196. This indicates that the excess variance in the probes with intermediate
  8197. M-values was explained by systematic variations not correlated with known
  8198. covariates, and these variations were modeled by the surrogate variables.
  8199. The result is a nearly flat variance trend for the entire intermediate
  8200. M-value range from about -3 to +3.
  8201. Note that this corresponds closely to the range within which the M-value
  8202. transformation shown in Figure
  8203. \begin_inset CommandInset ref
  8204. LatexCommand ref
  8205. reference "fig:Sigmoid-beta-m-mapping"
  8206. plural "false"
  8207. caps "false"
  8208. noprefix "false"
  8209. \end_inset
  8210. is nearly linear.
  8211. In contrast, the excess variance at the extremes (greater than +3 and less
  8212. than -3) was not
  8213. \begin_inset Quotes eld
  8214. \end_inset
  8215. absorbed
  8216. \begin_inset Quotes erd
  8217. \end_inset
  8218. by the surrogate variables and remains in the plot, indicating that this
  8219. variation has no systematic component: probes with extreme M-values are
  8220. uniformly more variable across all samples, as expected.
  8221. \end_layout
  8222. \begin_layout Standard
  8223. Figure
  8224. \begin_inset CommandInset ref
  8225. LatexCommand ref
  8226. reference "fig:meanvar-sva-voomaw"
  8227. plural "false"
  8228. caps "false"
  8229. noprefix "false"
  8230. \end_inset
  8231. shows the mean-variance trend after fitting the model with the observation
  8232. weights assigned by voom based on the mean-variance trend shown in Figure
  8233. \begin_inset CommandInset ref
  8234. LatexCommand ref
  8235. reference "fig:meanvar-sva-aw"
  8236. plural "false"
  8237. caps "false"
  8238. noprefix "false"
  8239. \end_inset
  8240. .
  8241. As expected, the weights exactly counteract the trend in the data, resulting
  8242. in a nearly flat trend centered vertically at 1 (i.e.
  8243. 0 on the log scale).
  8244. This shows that the observations with extreme M-values have been appropriately
  8245. down-weighted to account for the fact that the noise in those observations
  8246. has been amplified by the non-linear M-value transformation.
  8247. In turn, this gives relatively more weight to observations in the middle
  8248. region, which are more likely to correspond to probes measuring interesting
  8249. biology (not constitutively methylated or unmethylated).
  8250. \end_layout
  8251. \begin_layout Standard
  8252. \begin_inset Float table
  8253. wide false
  8254. sideways false
  8255. status open
  8256. \begin_layout Plain Layout
  8257. \align center
  8258. \begin_inset Tabular
  8259. <lyxtabular version="3" rows="5" columns="3">
  8260. <features tabularvalignment="middle">
  8261. <column alignment="center" valignment="top">
  8262. <column alignment="center" valignment="top">
  8263. <column alignment="center" valignment="top">
  8264. <row>
  8265. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8266. \begin_inset Text
  8267. \begin_layout Plain Layout
  8268. Covariate
  8269. \end_layout
  8270. \end_inset
  8271. </cell>
  8272. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8273. \begin_inset Text
  8274. \begin_layout Plain Layout
  8275. Test used
  8276. \end_layout
  8277. \end_inset
  8278. </cell>
  8279. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  8280. \begin_inset Text
  8281. \begin_layout Plain Layout
  8282. p-value
  8283. \end_layout
  8284. \end_inset
  8285. </cell>
  8286. </row>
  8287. <row>
  8288. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8289. \begin_inset Text
  8290. \begin_layout Plain Layout
  8291. Transplant Status
  8292. \end_layout
  8293. \end_inset
  8294. </cell>
  8295. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8296. \begin_inset Text
  8297. \begin_layout Plain Layout
  8298. F-test
  8299. \end_layout
  8300. \end_inset
  8301. </cell>
  8302. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8303. \begin_inset Text
  8304. \begin_layout Plain Layout
  8305. 0.404
  8306. \end_layout
  8307. \end_inset
  8308. </cell>
  8309. </row>
  8310. <row>
  8311. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8312. \begin_inset Text
  8313. \begin_layout Plain Layout
  8314. Diabetes Diagnosis
  8315. \end_layout
  8316. \end_inset
  8317. </cell>
  8318. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8319. \begin_inset Text
  8320. \begin_layout Plain Layout
  8321. \emph on
  8322. t
  8323. \emph default
  8324. -test
  8325. \end_layout
  8326. \end_inset
  8327. </cell>
  8328. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8329. \begin_inset Text
  8330. \begin_layout Plain Layout
  8331. 0.00106
  8332. \end_layout
  8333. \end_inset
  8334. </cell>
  8335. </row>
  8336. <row>
  8337. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8338. \begin_inset Text
  8339. \begin_layout Plain Layout
  8340. Sex
  8341. \end_layout
  8342. \end_inset
  8343. </cell>
  8344. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8345. \begin_inset Text
  8346. \begin_layout Plain Layout
  8347. \emph on
  8348. t
  8349. \emph default
  8350. -test
  8351. \end_layout
  8352. \end_inset
  8353. </cell>
  8354. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8355. \begin_inset Text
  8356. \begin_layout Plain Layout
  8357. 0.148
  8358. \end_layout
  8359. \end_inset
  8360. </cell>
  8361. </row>
  8362. <row>
  8363. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8364. \begin_inset Text
  8365. \begin_layout Plain Layout
  8366. Age
  8367. \end_layout
  8368. \end_inset
  8369. </cell>
  8370. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8371. \begin_inset Text
  8372. \begin_layout Plain Layout
  8373. linear regression
  8374. \end_layout
  8375. \end_inset
  8376. </cell>
  8377. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  8378. \begin_inset Text
  8379. \begin_layout Plain Layout
  8380. 0.212
  8381. \end_layout
  8382. \end_inset
  8383. </cell>
  8384. </row>
  8385. </lyxtabular>
  8386. \end_inset
  8387. \end_layout
  8388. \begin_layout Plain Layout
  8389. \begin_inset Caption Standard
  8390. \begin_layout Plain Layout
  8391. \series bold
  8392. \begin_inset CommandInset label
  8393. LatexCommand label
  8394. name "tab:weight-covariate-tests"
  8395. \end_inset
  8396. Association of sample weights with clinical covariates in methylation array
  8397. data.
  8398. \series default
  8399. Computed sample quality log weights were tested for significant association
  8400. with each of the variables in the model (1st column).
  8401. An appropriate test was selected for each variable based on whether the
  8402. variable had 2 categories (
  8403. \emph on
  8404. t
  8405. \emph default
  8406. -test), had more than 2 categories (F-test), or was numeric (linear regression).
  8407. The test selected is shown in the 2nd column.
  8408. P-values for association with the log weights are shown in the 3rd column.
  8409. No multiple testing adjustment was performed for these p-values.
  8410. \end_layout
  8411. \end_inset
  8412. \end_layout
  8413. \end_inset
  8414. \end_layout
  8415. \begin_layout Standard
  8416. \begin_inset Float figure
  8417. wide false
  8418. sideways false
  8419. status open
  8420. \begin_layout Plain Layout
  8421. \begin_inset Flex TODO Note (inline)
  8422. status open
  8423. \begin_layout Plain Layout
  8424. Redo the sample weight boxplot with notches, and remove fill colors
  8425. \end_layout
  8426. \end_inset
  8427. \end_layout
  8428. \begin_layout Plain Layout
  8429. \align center
  8430. \begin_inset Graphics
  8431. filename graphics/methylvoom/unadj.dupcor.sva.voomaw/sample-weights-PAGE3-CROP.pdf
  8432. lyxscale 50
  8433. width 60col%
  8434. groupId colwidth
  8435. \end_inset
  8436. \end_layout
  8437. \begin_layout Plain Layout
  8438. \begin_inset Caption Standard
  8439. \begin_layout Plain Layout
  8440. \begin_inset CommandInset label
  8441. LatexCommand label
  8442. name "fig:diabetes-sample-weights"
  8443. \end_inset
  8444. \series bold
  8445. Box-and-whiskers plot of sample quality weights grouped by diabetes diagnosis.
  8446. \series default
  8447. Samples were grouped based on diabetes diagnosis, and the distribution of
  8448. sample quality weights for each diagnosis was plotted as a box-and-whiskers
  8449. plot
  8450. \begin_inset CommandInset citation
  8451. LatexCommand cite
  8452. key "McGill1978"
  8453. literal "false"
  8454. \end_inset
  8455. .
  8456. \end_layout
  8457. \end_inset
  8458. \end_layout
  8459. \begin_layout Plain Layout
  8460. \end_layout
  8461. \end_inset
  8462. \end_layout
  8463. \begin_layout Standard
  8464. To determine whether any of the known experimental factors had an impact
  8465. on data quality, the sample quality weights estimated from the data were
  8466. tested for association with each of the experimental factors (Table
  8467. \begin_inset CommandInset ref
  8468. LatexCommand ref
  8469. reference "tab:weight-covariate-tests"
  8470. plural "false"
  8471. caps "false"
  8472. noprefix "false"
  8473. \end_inset
  8474. ).
  8475. Diabetes diagnosis was found to have a potentially significant association
  8476. with the sample weights, with a t-test p-value of
  8477. \begin_inset Formula $1.06\times10^{-3}$
  8478. \end_inset
  8479. .
  8480. Figure
  8481. \begin_inset CommandInset ref
  8482. LatexCommand ref
  8483. reference "fig:diabetes-sample-weights"
  8484. plural "false"
  8485. caps "false"
  8486. noprefix "false"
  8487. \end_inset
  8488. shows the distribution of sample weights grouped by diabetes diagnosis.
  8489. The samples from patients with Type 2 diabetes were assigned significantly
  8490. lower weights than those from patients with Type 1 diabetes.
  8491. This indicates that the type 2 diabetes samples had an overall higher variance
  8492. on average across all probes.
  8493. \end_layout
  8494. \begin_layout Standard
  8495. \begin_inset Float table
  8496. wide false
  8497. sideways false
  8498. status open
  8499. \begin_layout Plain Layout
  8500. \align center
  8501. \begin_inset Flex TODO Note (inline)
  8502. status open
  8503. \begin_layout Plain Layout
  8504. Consider transposing these tables
  8505. \end_layout
  8506. \end_inset
  8507. \end_layout
  8508. \begin_layout Plain Layout
  8509. \begin_inset Float table
  8510. wide false
  8511. sideways false
  8512. status open
  8513. \begin_layout Plain Layout
  8514. \align center
  8515. \begin_inset Tabular
  8516. <lyxtabular version="3" rows="5" columns="4">
  8517. <features tabularvalignment="middle">
  8518. <column alignment="center" valignment="top">
  8519. <column alignment="center" valignment="top">
  8520. <column alignment="center" valignment="top">
  8521. <column alignment="center" valignment="top">
  8522. <row>
  8523. <cell alignment="center" valignment="top" usebox="none">
  8524. \begin_inset Text
  8525. \begin_layout Plain Layout
  8526. \end_layout
  8527. \end_inset
  8528. </cell>
  8529. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8530. \begin_inset Text
  8531. \begin_layout Plain Layout
  8532. Analysis
  8533. \end_layout
  8534. \end_inset
  8535. </cell>
  8536. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8537. \begin_inset Text
  8538. \begin_layout Plain Layout
  8539. \end_layout
  8540. \end_inset
  8541. </cell>
  8542. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8543. \begin_inset Text
  8544. \begin_layout Plain Layout
  8545. \end_layout
  8546. \end_inset
  8547. </cell>
  8548. </row>
  8549. <row>
  8550. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8551. \begin_inset Text
  8552. \begin_layout Plain Layout
  8553. Contrast
  8554. \end_layout
  8555. \end_inset
  8556. </cell>
  8557. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8558. \begin_inset Text
  8559. \begin_layout Plain Layout
  8560. A
  8561. \end_layout
  8562. \end_inset
  8563. </cell>
  8564. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8565. \begin_inset Text
  8566. \begin_layout Plain Layout
  8567. B
  8568. \end_layout
  8569. \end_inset
  8570. </cell>
  8571. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  8572. \begin_inset Text
  8573. \begin_layout Plain Layout
  8574. C
  8575. \end_layout
  8576. \end_inset
  8577. </cell>
  8578. </row>
  8579. <row>
  8580. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8581. \begin_inset Text
  8582. \begin_layout Plain Layout
  8583. TX vs AR
  8584. \end_layout
  8585. \end_inset
  8586. </cell>
  8587. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8588. \begin_inset Text
  8589. \begin_layout Plain Layout
  8590. 0
  8591. \end_layout
  8592. \end_inset
  8593. </cell>
  8594. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8595. \begin_inset Text
  8596. \begin_layout Plain Layout
  8597. 25
  8598. \end_layout
  8599. \end_inset
  8600. </cell>
  8601. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8602. \begin_inset Text
  8603. \begin_layout Plain Layout
  8604. 22
  8605. \end_layout
  8606. \end_inset
  8607. </cell>
  8608. </row>
  8609. <row>
  8610. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8611. \begin_inset Text
  8612. \begin_layout Plain Layout
  8613. TX vs ADNR
  8614. \end_layout
  8615. \end_inset
  8616. </cell>
  8617. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8618. \begin_inset Text
  8619. \begin_layout Plain Layout
  8620. 7
  8621. \end_layout
  8622. \end_inset
  8623. </cell>
  8624. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8625. \begin_inset Text
  8626. \begin_layout Plain Layout
  8627. 338
  8628. \end_layout
  8629. \end_inset
  8630. </cell>
  8631. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8632. \begin_inset Text
  8633. \begin_layout Plain Layout
  8634. 369
  8635. \end_layout
  8636. \end_inset
  8637. </cell>
  8638. </row>
  8639. <row>
  8640. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8641. \begin_inset Text
  8642. \begin_layout Plain Layout
  8643. TX vs CAN
  8644. \end_layout
  8645. \end_inset
  8646. </cell>
  8647. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8648. \begin_inset Text
  8649. \begin_layout Plain Layout
  8650. 0
  8651. \end_layout
  8652. \end_inset
  8653. </cell>
  8654. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8655. \begin_inset Text
  8656. \begin_layout Plain Layout
  8657. 231
  8658. \end_layout
  8659. \end_inset
  8660. </cell>
  8661. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  8662. \begin_inset Text
  8663. \begin_layout Plain Layout
  8664. 278
  8665. \end_layout
  8666. \end_inset
  8667. </cell>
  8668. </row>
  8669. </lyxtabular>
  8670. \end_inset
  8671. \end_layout
  8672. \begin_layout Plain Layout
  8673. \begin_inset Caption Standard
  8674. \begin_layout Plain Layout
  8675. \begin_inset CommandInset label
  8676. LatexCommand label
  8677. name "tab:methyl-num-signif"
  8678. \end_inset
  8679. Number of probes significant at 10% FDR.
  8680. \end_layout
  8681. \end_inset
  8682. \end_layout
  8683. \end_inset
  8684. \begin_inset space \hfill{}
  8685. \end_inset
  8686. \begin_inset Float table
  8687. wide false
  8688. sideways false
  8689. status open
  8690. \begin_layout Plain Layout
  8691. \align center
  8692. \begin_inset Tabular
  8693. <lyxtabular version="3" rows="5" columns="4">
  8694. <features tabularvalignment="middle">
  8695. <column alignment="center" valignment="top">
  8696. <column alignment="center" valignment="top">
  8697. <column alignment="center" valignment="top">
  8698. <column alignment="center" valignment="top">
  8699. <row>
  8700. <cell alignment="center" valignment="top" usebox="none">
  8701. \begin_inset Text
  8702. \begin_layout Plain Layout
  8703. \end_layout
  8704. \end_inset
  8705. </cell>
  8706. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8707. \begin_inset Text
  8708. \begin_layout Plain Layout
  8709. Analysis
  8710. \end_layout
  8711. \end_inset
  8712. </cell>
  8713. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8714. \begin_inset Text
  8715. \begin_layout Plain Layout
  8716. \end_layout
  8717. \end_inset
  8718. </cell>
  8719. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8720. \begin_inset Text
  8721. \begin_layout Plain Layout
  8722. \end_layout
  8723. \end_inset
  8724. </cell>
  8725. </row>
  8726. <row>
  8727. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8728. \begin_inset Text
  8729. \begin_layout Plain Layout
  8730. Contrast
  8731. \end_layout
  8732. \end_inset
  8733. </cell>
  8734. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8735. \begin_inset Text
  8736. \begin_layout Plain Layout
  8737. A
  8738. \end_layout
  8739. \end_inset
  8740. </cell>
  8741. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8742. \begin_inset Text
  8743. \begin_layout Plain Layout
  8744. B
  8745. \end_layout
  8746. \end_inset
  8747. </cell>
  8748. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  8749. \begin_inset Text
  8750. \begin_layout Plain Layout
  8751. C
  8752. \end_layout
  8753. \end_inset
  8754. </cell>
  8755. </row>
  8756. <row>
  8757. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8758. \begin_inset Text
  8759. \begin_layout Plain Layout
  8760. TX vs AR
  8761. \end_layout
  8762. \end_inset
  8763. </cell>
  8764. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8765. \begin_inset Text
  8766. \begin_layout Plain Layout
  8767. 0
  8768. \end_layout
  8769. \end_inset
  8770. </cell>
  8771. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8772. \begin_inset Text
  8773. \begin_layout Plain Layout
  8774. 10,063
  8775. \end_layout
  8776. \end_inset
  8777. </cell>
  8778. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8779. \begin_inset Text
  8780. \begin_layout Plain Layout
  8781. 11,225
  8782. \end_layout
  8783. \end_inset
  8784. </cell>
  8785. </row>
  8786. <row>
  8787. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8788. \begin_inset Text
  8789. \begin_layout Plain Layout
  8790. TX vs ADNR
  8791. \end_layout
  8792. \end_inset
  8793. </cell>
  8794. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8795. \begin_inset Text
  8796. \begin_layout Plain Layout
  8797. 27
  8798. \end_layout
  8799. \end_inset
  8800. </cell>
  8801. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8802. \begin_inset Text
  8803. \begin_layout Plain Layout
  8804. 12,674
  8805. \end_layout
  8806. \end_inset
  8807. </cell>
  8808. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8809. \begin_inset Text
  8810. \begin_layout Plain Layout
  8811. 13,086
  8812. \end_layout
  8813. \end_inset
  8814. </cell>
  8815. </row>
  8816. <row>
  8817. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8818. \begin_inset Text
  8819. \begin_layout Plain Layout
  8820. TX vs CAN
  8821. \end_layout
  8822. \end_inset
  8823. </cell>
  8824. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8825. \begin_inset Text
  8826. \begin_layout Plain Layout
  8827. 966
  8828. \end_layout
  8829. \end_inset
  8830. </cell>
  8831. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8832. \begin_inset Text
  8833. \begin_layout Plain Layout
  8834. 20,039
  8835. \end_layout
  8836. \end_inset
  8837. </cell>
  8838. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  8839. \begin_inset Text
  8840. \begin_layout Plain Layout
  8841. 20,955
  8842. \end_layout
  8843. \end_inset
  8844. </cell>
  8845. </row>
  8846. </lyxtabular>
  8847. \end_inset
  8848. \end_layout
  8849. \begin_layout Plain Layout
  8850. \begin_inset Caption Standard
  8851. \begin_layout Plain Layout
  8852. \begin_inset CommandInset label
  8853. LatexCommand label
  8854. name "tab:methyl-est-nonnull"
  8855. \end_inset
  8856. Estimated number of non-null tests, using the method of averaging local
  8857. FDR values
  8858. \begin_inset CommandInset citation
  8859. LatexCommand cite
  8860. key "Phipson2013Thesis"
  8861. literal "false"
  8862. \end_inset
  8863. .
  8864. \end_layout
  8865. \end_inset
  8866. \end_layout
  8867. \end_inset
  8868. \end_layout
  8869. \begin_layout Plain Layout
  8870. \begin_inset Caption Standard
  8871. \begin_layout Plain Layout
  8872. \series bold
  8873. Estimates of degree of differential methylation in for each contrast in
  8874. each analysis.
  8875. \series default
  8876. For each of the analyses in Table
  8877. \begin_inset CommandInset ref
  8878. LatexCommand ref
  8879. reference "tab:Summary-of-meth-analysis"
  8880. plural "false"
  8881. caps "false"
  8882. noprefix "false"
  8883. \end_inset
  8884. , these tables show the number of probes called significantly differentially
  8885. methylated at a threshold of 10% FDR for each comparison between TX and
  8886. the other 3 transplant statuses (a) and the estimated total number of probes
  8887. that are differentially methylated (b).
  8888. \end_layout
  8889. \end_inset
  8890. \end_layout
  8891. \end_inset
  8892. \end_layout
  8893. \begin_layout Standard
  8894. \begin_inset Float figure
  8895. wide false
  8896. sideways false
  8897. status open
  8898. \begin_layout Plain Layout
  8899. \align center
  8900. \series bold
  8901. \begin_inset Float figure
  8902. wide false
  8903. sideways false
  8904. status collapsed
  8905. \begin_layout Plain Layout
  8906. \align center
  8907. \begin_inset Graphics
  8908. filename graphics/methylvoom/unadj.dupcor/pval-histograms-PAGE1.pdf
  8909. lyxscale 33
  8910. width 30col%
  8911. groupId meth-pval-hist
  8912. \end_inset
  8913. \end_layout
  8914. \begin_layout Plain Layout
  8915. \series bold
  8916. \begin_inset Caption Standard
  8917. \begin_layout Plain Layout
  8918. AR vs.
  8919. TX, Analysis A
  8920. \end_layout
  8921. \end_inset
  8922. \end_layout
  8923. \begin_layout Plain Layout
  8924. \end_layout
  8925. \end_inset
  8926. \begin_inset space \hfill{}
  8927. \end_inset
  8928. \begin_inset Float figure
  8929. wide false
  8930. sideways false
  8931. status collapsed
  8932. \begin_layout Plain Layout
  8933. \align center
  8934. \begin_inset Graphics
  8935. filename graphics/methylvoom/unadj.dupcor/pval-histograms-PAGE2.pdf
  8936. lyxscale 33
  8937. width 30col%
  8938. groupId meth-pval-hist
  8939. \end_inset
  8940. \end_layout
  8941. \begin_layout Plain Layout
  8942. \series bold
  8943. \begin_inset Caption Standard
  8944. \begin_layout Plain Layout
  8945. ADNR vs.
  8946. TX, Analysis A
  8947. \end_layout
  8948. \end_inset
  8949. \end_layout
  8950. \end_inset
  8951. \begin_inset space \hfill{}
  8952. \end_inset
  8953. \begin_inset Float figure
  8954. wide false
  8955. sideways false
  8956. status collapsed
  8957. \begin_layout Plain Layout
  8958. \align center
  8959. \begin_inset Graphics
  8960. filename graphics/methylvoom/unadj.dupcor/pval-histograms-PAGE3.pdf
  8961. lyxscale 33
  8962. width 30col%
  8963. groupId meth-pval-hist
  8964. \end_inset
  8965. \end_layout
  8966. \begin_layout Plain Layout
  8967. \series bold
  8968. \begin_inset Caption Standard
  8969. \begin_layout Plain Layout
  8970. CAN vs.
  8971. TX, Analysis A
  8972. \end_layout
  8973. \end_inset
  8974. \end_layout
  8975. \end_inset
  8976. \end_layout
  8977. \begin_layout Plain Layout
  8978. \align center
  8979. \series bold
  8980. \begin_inset Float figure
  8981. wide false
  8982. sideways false
  8983. status collapsed
  8984. \begin_layout Plain Layout
  8985. \align center
  8986. \begin_inset Graphics
  8987. filename graphics/methylvoom/unadj.dupcor.sva.aw/pval-histograms-PAGE1.pdf
  8988. lyxscale 33
  8989. width 30col%
  8990. groupId meth-pval-hist
  8991. \end_inset
  8992. \end_layout
  8993. \begin_layout Plain Layout
  8994. \series bold
  8995. \begin_inset Caption Standard
  8996. \begin_layout Plain Layout
  8997. AR vs.
  8998. TX, Analysis B
  8999. \end_layout
  9000. \end_inset
  9001. \end_layout
  9002. \end_inset
  9003. \begin_inset space \hfill{}
  9004. \end_inset
  9005. \begin_inset Float figure
  9006. wide false
  9007. sideways false
  9008. status collapsed
  9009. \begin_layout Plain Layout
  9010. \align center
  9011. \begin_inset Graphics
  9012. filename graphics/methylvoom/unadj.dupcor.sva.aw/pval-histograms-PAGE2.pdf
  9013. lyxscale 33
  9014. width 30col%
  9015. groupId meth-pval-hist
  9016. \end_inset
  9017. \end_layout
  9018. \begin_layout Plain Layout
  9019. \series bold
  9020. \begin_inset Caption Standard
  9021. \begin_layout Plain Layout
  9022. ADNR vs.
  9023. TX, Analysis B
  9024. \end_layout
  9025. \end_inset
  9026. \end_layout
  9027. \end_inset
  9028. \begin_inset space \hfill{}
  9029. \end_inset
  9030. \begin_inset Float figure
  9031. wide false
  9032. sideways false
  9033. status collapsed
  9034. \begin_layout Plain Layout
  9035. \align center
  9036. \begin_inset Graphics
  9037. filename graphics/methylvoom/unadj.dupcor.sva.aw/pval-histograms-PAGE3.pdf
  9038. lyxscale 33
  9039. width 30col%
  9040. groupId meth-pval-hist
  9041. \end_inset
  9042. \end_layout
  9043. \begin_layout Plain Layout
  9044. \series bold
  9045. \begin_inset Caption Standard
  9046. \begin_layout Plain Layout
  9047. CAN vs.
  9048. TX, Analysis B
  9049. \end_layout
  9050. \end_inset
  9051. \end_layout
  9052. \end_inset
  9053. \end_layout
  9054. \begin_layout Plain Layout
  9055. \align center
  9056. \series bold
  9057. \begin_inset Float figure
  9058. wide false
  9059. sideways false
  9060. status collapsed
  9061. \begin_layout Plain Layout
  9062. \align center
  9063. \begin_inset Graphics
  9064. filename graphics/methylvoom/unadj.dupcor.sva.voomaw/pval-histograms-PAGE1.pdf
  9065. lyxscale 33
  9066. width 30col%
  9067. groupId meth-pval-hist
  9068. \end_inset
  9069. \end_layout
  9070. \begin_layout Plain Layout
  9071. \series bold
  9072. \begin_inset Caption Standard
  9073. \begin_layout Plain Layout
  9074. AR vs.
  9075. TX, Analysis C
  9076. \end_layout
  9077. \end_inset
  9078. \end_layout
  9079. \end_inset
  9080. \begin_inset space \hfill{}
  9081. \end_inset
  9082. \begin_inset Float figure
  9083. wide false
  9084. sideways false
  9085. status collapsed
  9086. \begin_layout Plain Layout
  9087. \align center
  9088. \begin_inset Graphics
  9089. filename graphics/methylvoom/unadj.dupcor.sva.voomaw/pval-histograms-PAGE2.pdf
  9090. lyxscale 33
  9091. width 30col%
  9092. groupId meth-pval-hist
  9093. \end_inset
  9094. \end_layout
  9095. \begin_layout Plain Layout
  9096. \series bold
  9097. \begin_inset Caption Standard
  9098. \begin_layout Plain Layout
  9099. ADNR vs.
  9100. TX, Analysis C
  9101. \end_layout
  9102. \end_inset
  9103. \end_layout
  9104. \end_inset
  9105. \begin_inset space \hfill{}
  9106. \end_inset
  9107. \begin_inset Float figure
  9108. wide false
  9109. sideways false
  9110. status collapsed
  9111. \begin_layout Plain Layout
  9112. \align center
  9113. \begin_inset Graphics
  9114. filename graphics/methylvoom/unadj.dupcor.sva.voomaw/pval-histograms-PAGE3.pdf
  9115. lyxscale 33
  9116. width 30col%
  9117. groupId meth-pval-hist
  9118. \end_inset
  9119. \end_layout
  9120. \begin_layout Plain Layout
  9121. \series bold
  9122. \begin_inset Caption Standard
  9123. \begin_layout Plain Layout
  9124. CAN vs.
  9125. TX, Analysis C
  9126. \end_layout
  9127. \end_inset
  9128. \end_layout
  9129. \end_inset
  9130. \end_layout
  9131. \begin_layout Plain Layout
  9132. \begin_inset Caption Standard
  9133. \begin_layout Plain Layout
  9134. \series bold
  9135. \begin_inset CommandInset label
  9136. LatexCommand label
  9137. name "fig:meth-p-value-histograms"
  9138. \end_inset
  9139. Probe p-value histograms for each contrast in each analysis.
  9140. \series default
  9141. For each differential methylation test of interest, the distribution of
  9142. p-values across all probes is plotted as a histogram.
  9143. The red solid line indicates the density that would be expected under the
  9144. null hypothesis for all probes (a
  9145. \begin_inset Formula $\mathrm{Uniform}(0,1)$
  9146. \end_inset
  9147. distribution), while the blue dotted line indicates the fraction of p-values
  9148. that actually follow the null hypothesis (
  9149. \begin_inset Formula $\hat{\pi}_{0}$
  9150. \end_inset
  9151. ) estimated using the method of averaging local FDR values
  9152. \begin_inset CommandInset citation
  9153. LatexCommand cite
  9154. key "Phipson2013Thesis"
  9155. literal "false"
  9156. \end_inset
  9157. .
  9158. the blue line is only shown in each plot if the estimate of
  9159. \begin_inset Formula $\hat{\pi}_{0}$
  9160. \end_inset
  9161. for that p-value distribution is different from 1.
  9162. \end_layout
  9163. \end_inset
  9164. \end_layout
  9165. \end_inset
  9166. \end_layout
  9167. \begin_layout Standard
  9168. Table
  9169. \begin_inset CommandInset ref
  9170. LatexCommand ref
  9171. reference "tab:methyl-num-signif"
  9172. plural "false"
  9173. caps "false"
  9174. noprefix "false"
  9175. \end_inset
  9176. shows the number of significantly differentially methylated probes reported
  9177. by each analysis for each comparison of interest at an FDR of 10%.
  9178. As expected, the more elaborate analyses, B and C, report more significant
  9179. probes than the more basic analysis A, consistent with the conclusions
  9180. above that the data contain hidden systematic variations that must be modeled.
  9181. Table
  9182. \begin_inset CommandInset ref
  9183. LatexCommand ref
  9184. reference "tab:methyl-est-nonnull"
  9185. plural "false"
  9186. caps "false"
  9187. noprefix "false"
  9188. \end_inset
  9189. shows the estimated number differentially methylated probes for each test
  9190. from each analysis.
  9191. This was computed by estimating the proportion of null hypotheses that
  9192. were true using the method of
  9193. \begin_inset CommandInset citation
  9194. LatexCommand cite
  9195. key "Phipson2013Thesis"
  9196. literal "false"
  9197. \end_inset
  9198. and subtracting that fraction from the total number of probes, yielding
  9199. an estimate of the number of null hypotheses that are false based on the
  9200. distribution of p-values across the entire dataset.
  9201. Note that this does not identify which null hypotheses should be rejected
  9202. (i.e.
  9203. which probes are significant); it only estimates the true number of such
  9204. probes.
  9205. Once again, analyses B and C result it much larger estimates for the number
  9206. of differentially methylated probes.
  9207. In this case, analysis C, the only analysis that includes voom, estimates
  9208. the largest number of differentially methylated probes for all 3 contrasts.
  9209. If the assumptions of all the methods employed hold, then this represents
  9210. a gain in statistical power over the simpler analysis A.
  9211. Figure
  9212. \begin_inset CommandInset ref
  9213. LatexCommand ref
  9214. reference "fig:meth-p-value-histograms"
  9215. plural "false"
  9216. caps "false"
  9217. noprefix "false"
  9218. \end_inset
  9219. shows the p-value distributions for each test, from which the numbers in
  9220. Table
  9221. \begin_inset CommandInset ref
  9222. LatexCommand ref
  9223. reference "tab:methyl-est-nonnull"
  9224. plural "false"
  9225. caps "false"
  9226. noprefix "false"
  9227. \end_inset
  9228. were generated.
  9229. The distributions for analysis A all have a dip in density near zero, which
  9230. is a strong sign of a poor model fit.
  9231. The histograms for analyses B and C are more well-behaved, with a uniform
  9232. component stretching all the way from 0 to 1 representing the probes for
  9233. which the null hypotheses is true (no differential methylation), and a
  9234. zero-biased component representing the probes for which the null hypothesis
  9235. is false (differentially methylated).
  9236. These histograms do not indicate any major issues with the model fit.
  9237. \end_layout
  9238. \begin_layout Standard
  9239. \begin_inset Flex TODO Note (inline)
  9240. status open
  9241. \begin_layout Plain Layout
  9242. If time allows, maybe generate the PCA plots before/after SVA effect subtraction
  9243. ?
  9244. \end_layout
  9245. \end_inset
  9246. \end_layout
  9247. \begin_layout Section
  9248. Discussion
  9249. \end_layout
  9250. \begin_layout Subsection
  9251. fRMA achieves clinically applicable normalization without sacrificing classifica
  9252. tion performance
  9253. \end_layout
  9254. \begin_layout Standard
  9255. As shown in Figure
  9256. \begin_inset CommandInset ref
  9257. LatexCommand ref
  9258. reference "fig:Classifier-probabilities-RMA"
  9259. plural "false"
  9260. caps "false"
  9261. noprefix "false"
  9262. \end_inset
  9263. , improper normalization, particularly separate normalization of training
  9264. and test samples, leads to unwanted biases in classification.
  9265. In a controlled experimental context, it is always possible to correct
  9266. this issue by normalizing all experimental samples together.
  9267. However, because it is not feasible to normalize all samples together in
  9268. a clinical context, a single-channel normalization is required is required.
  9269. \end_layout
  9270. \begin_layout Standard
  9271. The major concern in using a single-channel normalization is that non-single-cha
  9272. nnel methods can share information between arrays to improve the normalization,
  9273. and single-channel methods risk sacrificing the gains in normalization
  9274. accuracy that come from this information sharing.
  9275. In the case of RMA, this information sharing is accomplished through quantile
  9276. normalization and median polish steps.
  9277. The need for information sharing in quantile normalization can easily be
  9278. removed by learning a fixed set of quantiles from external data and normalizing
  9279. each array to these fixed quantiles, instead of the quantiles of the data
  9280. itself.
  9281. As long as the fixed quantiles are reasonable, the result will be similar
  9282. to standard RMA.
  9283. However, there is no analogous way to eliminate cross-array information
  9284. sharing in the median polish step, so fRMA replaces this with a weighted
  9285. average of probes on each array, with the weights learned from external
  9286. data.
  9287. This step of fRMA has the greatest potential to diverge from RMA un undesirable
  9288. ways.
  9289. \end_layout
  9290. \begin_layout Standard
  9291. However, when run on real data, fRMA performed at least as well as RMA in
  9292. both the internal validation and external validation tests.
  9293. This shows that fRMA can be used to normalize individual clinical samples
  9294. in a class prediction context without sacrificing the classifier performance
  9295. that would be obtained by using the more well-established RMA for normalization.
  9296. The other single-channel normalization method considered, SCAN, showed
  9297. some loss of AUC in the external validation test.
  9298. Based on these results, fRMA is the preferred normalization for clinical
  9299. samples in a class prediction context.
  9300. \end_layout
  9301. \begin_layout Subsection
  9302. Robust fRMA vectors can be generated for new array platforms
  9303. \end_layout
  9304. \begin_layout Standard
  9305. \begin_inset Flex TODO Note (inline)
  9306. status open
  9307. \begin_layout Plain Layout
  9308. Look up the exact numbers, do a find & replace for
  9309. \begin_inset Quotes eld
  9310. \end_inset
  9311. 850
  9312. \begin_inset Quotes erd
  9313. \end_inset
  9314. \end_layout
  9315. \end_inset
  9316. \end_layout
  9317. \begin_layout Standard
  9318. The published fRMA normalization vectors for the hgu133plus2 platform were
  9319. generated from a set of about 850 samples chosen from a wide range of tissues,
  9320. which the authors determined was sufficient to generate a robust set of
  9321. normalization vectors that could be applied across all tissues
  9322. \begin_inset CommandInset citation
  9323. LatexCommand cite
  9324. key "McCall2010"
  9325. literal "false"
  9326. \end_inset
  9327. .
  9328. Since we only had hthgu133pluspm for 2 tissues of interest, our needs were
  9329. more modest.
  9330. Even using only 130 samples in 26 batches of 5 samples each for kidney
  9331. biopsies, we were able to train a robust set of fRMA normalization vectors
  9332. that were not meaningfully affected by the random selection of 5 samples
  9333. from each batch.
  9334. As expected, the training process was just as robust for the blood samples
  9335. with 230 samples in 46 batches of 5 samples each.
  9336. Because these vectors were each generated using training samples from a
  9337. single tissue, they are not suitable for general use, unlike the vectors
  9338. provided with fRMA itself.
  9339. They are purpose-built for normalizing a specific type of sample on a specific
  9340. platform.
  9341. This is a mostly acceptable limitation in the context of developing a machine
  9342. learning classifier for diagnosing a disease based on samples of a specific
  9343. tissue.
  9344. \end_layout
  9345. \begin_layout Standard
  9346. \begin_inset Flex TODO Note (inline)
  9347. status open
  9348. \begin_layout Plain Layout
  9349. Talk about how these vectors can be used for any data from these tissues
  9350. on this platform even though they were custom made for this data set.
  9351. \end_layout
  9352. \end_inset
  9353. \end_layout
  9354. \begin_layout Standard
  9355. \begin_inset Flex TODO Note (inline)
  9356. status open
  9357. \begin_layout Plain Layout
  9358. How to bring up that these custom vectors were used in another project by
  9359. someone else that was never published?
  9360. \end_layout
  9361. \end_inset
  9362. \end_layout
  9363. \begin_layout Subsection
  9364. Methylation array data can be successfully analyzed using existing techniques,
  9365. but machine learning poses additional challenges
  9366. \end_layout
  9367. \begin_layout Standard
  9368. Both analysis strategies B and C both yield a reasonable analysis, with
  9369. a mean-variance trend that matches the expected behavior for the non-linear
  9370. M-value transformation (Figure
  9371. \begin_inset CommandInset ref
  9372. LatexCommand ref
  9373. reference "fig:meanvar-sva-aw"
  9374. plural "false"
  9375. caps "false"
  9376. noprefix "false"
  9377. \end_inset
  9378. ) and well-behaved p-value distributions (Figure
  9379. \begin_inset CommandInset ref
  9380. LatexCommand ref
  9381. reference "fig:meth-p-value-histograms"
  9382. plural "false"
  9383. caps "false"
  9384. noprefix "false"
  9385. \end_inset
  9386. ).
  9387. These two analyses also yield similar numbers of significant probes (Table
  9388. \begin_inset CommandInset ref
  9389. LatexCommand ref
  9390. reference "tab:methyl-num-signif"
  9391. plural "false"
  9392. caps "false"
  9393. noprefix "false"
  9394. \end_inset
  9395. ) and similar estimates of the number of differentially methylated probes
  9396. (Table
  9397. \begin_inset CommandInset ref
  9398. LatexCommand ref
  9399. reference "tab:methyl-est-nonnull"
  9400. plural "false"
  9401. caps "false"
  9402. noprefix "false"
  9403. \end_inset
  9404. ).
  9405. The main difference between these two analyses is the method used to account
  9406. for the mean-variance trend.
  9407. In analysis B, the trend is estimated and applied at the probe level: each
  9408. probe's estimated variance is squeezed toward the trend using an empirical
  9409. Bayes procedure (Figure
  9410. \begin_inset CommandInset ref
  9411. LatexCommand ref
  9412. reference "fig:meanvar-sva-aw"
  9413. plural "false"
  9414. caps "false"
  9415. noprefix "false"
  9416. \end_inset
  9417. ).
  9418. In analysis C, the trend is still estimated at the probe level, but instead
  9419. of estimating a single variance value shared across all observations for
  9420. a given probe, the voom method computes an initial estimate of the variance
  9421. for each observation individually based on where its model-fitted M-value
  9422. falls on the trend line and then assigns inverse-variance weights to model
  9423. the difference in variance between observations.
  9424. An overall variance is still estimated for each probe using the same empirical
  9425. Bayes method, but now the residual trend is flat (Figure
  9426. \begin_inset CommandInset ref
  9427. LatexCommand ref
  9428. reference "fig:meanvar-sva-voomaw"
  9429. plural "false"
  9430. caps "false"
  9431. noprefix "false"
  9432. \end_inset
  9433. ), indicating that the mean-variance trend is adequately modeled by scaling
  9434. the estimated variance for each observation using the weights computed
  9435. by voom.
  9436. \end_layout
  9437. \begin_layout Standard
  9438. The difference between the standard empirical Bayes trended variance modeling
  9439. (analysis B) and voom (analysis C) is analogous to the difference between
  9440. a t-test with equal variance and a t-test with unequal variance, except
  9441. that the unequal group variances used in the latter test are estimated
  9442. based on the mean-variance trend from all the probes rather than the data
  9443. for the specific probe being tested, thus stabilizing the group variance
  9444. estimates by sharing information between probes.
  9445. Allowing voom to model the variance using observation weights in this manner
  9446. allows the linear model fit to concentrate statistical power where it will
  9447. do the most good.
  9448. For example, if a particular probe's M-values are always at the extreme
  9449. of the M-value range (e.g.
  9450. less than -4) for ADNR samples, but the M-values for that probe in TX and
  9451. CAN samples are within the flat region of the mean-variance trend (between
  9452. -3 and +3), voom is able to down-weight the contribution of the high-variance
  9453. M-values from the ADNR samples in order to gain more statistical power
  9454. while testing for differential methylation between TX and CAN.
  9455. In contrast, modeling the mean-variance trend only at the probe level would
  9456. combine the high-variance ADNR samples and lower-variance samples from
  9457. other conditions and estimate an intermediate variance for this probe.
  9458. In practice, analysis B shows that this approach is adequate, but the voom
  9459. approach in analysis C is at least as good on all model fit criteria and
  9460. yields a larger estimate for the number of differentially methylated genes,
  9461. \emph on
  9462. and
  9463. \emph default
  9464. it matches up better with the theoretical
  9465. \end_layout
  9466. \begin_layout Standard
  9467. The significant association of diabetes diagnosis with sample quality is
  9468. interesting.
  9469. The samples with Type 2 diabetes tended to have more variation, averaged
  9470. across all probes, than those with Type 1 diabetes.
  9471. This is consistent with the consensus that type 2 diabetes and the associated
  9472. metabolic syndrome represent a broad dysregulation of the body's endocrine
  9473. signaling related to metabolism [citation needed].
  9474. This dysregulation could easily manifest as a greater degree of variation
  9475. in the DNA methylation patterns of affected tissues.
  9476. In contrast, Type 1 diabetes has a more specific cause and effect, so a
  9477. less variable methylation signature is expected.
  9478. \end_layout
  9479. \begin_layout Standard
  9480. This preliminary analysis suggests that some degree of differential methylation
  9481. exists between TX and each of the three types of transplant disfunction
  9482. studied.
  9483. Hence, it may be feasible to train a classifier to diagnose transplant
  9484. disfunction from DNA methylation array data.
  9485. However, the major importance of both SVA and sample quality weighting
  9486. for proper modeling of this data poses significant challenges for any attempt
  9487. at a machine learning on data of similar quality.
  9488. While these are easily used in a modeling context with full sample information,
  9489. neither of these methods is directly applicable in a machine learning context,
  9490. where the diagnosis is not known ahead of time.
  9491. If a machine learning approach for methylation-based diagnosis is to be
  9492. pursued, it will either require machine-learning-friendly methods to address
  9493. the same systematic trends in the data that SVA and sample quality weighting
  9494. address, or it will require higher quality data with substantially less
  9495. systematic perturbation of the data.
  9496. \end_layout
  9497. \begin_layout Section
  9498. Future Directions
  9499. \end_layout
  9500. \begin_layout Standard
  9501. \begin_inset Flex TODO Note (inline)
  9502. status open
  9503. \begin_layout Plain Layout
  9504. Some work was already being done with the existing fRMA vectors.
  9505. Do I mention that here?
  9506. \end_layout
  9507. \end_inset
  9508. \end_layout
  9509. \begin_layout Subsection
  9510. Improving fRMA to allow training from batches of unequal size
  9511. \end_layout
  9512. \begin_layout Standard
  9513. Because the tools for building fRMA normalization vectors require equal-size
  9514. batches, many samples must be discarded from the training data.
  9515. This is undesirable for a few reasons.
  9516. First, more data is simply better, all other things being equal.
  9517. In this case,
  9518. \begin_inset Quotes eld
  9519. \end_inset
  9520. better
  9521. \begin_inset Quotes erd
  9522. \end_inset
  9523. means a more precise estimate of normalization parameters.
  9524. In addition, the samples to be discarded must be chosen arbitrarily, which
  9525. introduces an unnecessary element of randomness into the estimation process.
  9526. While the randomness can be made deterministic by setting a consistent
  9527. random seed, the need for equal size batches also introduces a need for
  9528. the analyst to decide on the appropriate trade-off between batch size and
  9529. the number of batches.
  9530. This introduces an unnecessary and undesirable
  9531. \begin_inset Quotes eld
  9532. \end_inset
  9533. researcher degree of freedom
  9534. \begin_inset Quotes erd
  9535. \end_inset
  9536. into the analysis, since the generated normalization vectors now depend
  9537. on the choice of batch size based on vague selection criteria and instinct,
  9538. which can unintentionally introduce bias if the researcher chooses a batch
  9539. size based on what seems to yield the most favorable downstream results
  9540. \begin_inset CommandInset citation
  9541. LatexCommand cite
  9542. key "Simmons2011"
  9543. literal "false"
  9544. \end_inset
  9545. .
  9546. \end_layout
  9547. \begin_layout Standard
  9548. Fortunately, the requirement for equal-size batches is not inherent to the
  9549. fRMA algorithm but rather a limitation of the implementation in the frmaTools
  9550. package.
  9551. In personal communication, the package's author, Matthew McCall, has indicated
  9552. that with some work, it should be possible to improve the implementation
  9553. to work with batches of unequal sizes.
  9554. The current implementation ignores the batch size when calculating with-batch
  9555. and between-batch residual variances, since the batch size constant cancels
  9556. out later in the calculations as long as all batches are of equal size.
  9557. Hence, the calculations of these parameters would need to be modified to
  9558. remove this optimization and properly calculate the variances using the
  9559. full formula.
  9560. Once this modification is made, a new strategy would need to be developed
  9561. for assessing the stability of parameter estimates, since the random subsamplin
  9562. g step is eliminated, meaning that different subsamplings can no longer
  9563. be compared as in Figures
  9564. \begin_inset CommandInset ref
  9565. LatexCommand ref
  9566. reference "fig:frma-violin"
  9567. plural "false"
  9568. caps "false"
  9569. noprefix "false"
  9570. \end_inset
  9571. and
  9572. \begin_inset CommandInset ref
  9573. LatexCommand ref
  9574. reference "fig:Representative-MA-plots"
  9575. plural "false"
  9576. caps "false"
  9577. noprefix "false"
  9578. \end_inset
  9579. .
  9580. Bootstrap resampling is likely a good candidate here: sample many training
  9581. sets of equal size from the existing training set with replacement, estimate
  9582. parameters from each resampled training set, and compare the estimated
  9583. parameters between bootstraps in order to quantify the variability in each
  9584. parameter's estimation.
  9585. \end_layout
  9586. \begin_layout Subsection
  9587. Developing methylation arrays as a diagnostic tool for kidney transplant
  9588. rejection
  9589. \end_layout
  9590. \begin_layout Standard
  9591. The current study has showed that DNA methylation, as assayed by Illumina
  9592. 450k methylation arrays, has some potential for diagnosing transplant dysfuncti
  9593. ons, including rejection.
  9594. However, very few probes could be confidently identified as differentially
  9595. methylated between healthy and dysfunctional transplants.
  9596. One likely explanation for this is the predominant influence of unobserved
  9597. confounding factors.
  9598. SVA can model and correct for such factors, but the correction can never
  9599. be perfect, so some degree of unwanted systematic variation will always
  9600. remain after SVA correction.
  9601. If the effect size of the confounding factors was similar to that of the
  9602. factor of interest (in this case, transplant status), this would be an
  9603. acceptable limitation, since removing most of the confounding factors'
  9604. effects would allow the main effect to stand out.
  9605. However, in this data set, the confounding factors have a much larger effect
  9606. size than transplant status, which means that the small degree of remaining
  9607. variation not removed by SVA can still swamp the effect of interest, making
  9608. it difficult to detect.
  9609. This is, of course, a major issue when the end goal is to develop a classifier
  9610. to diagnose transplant rejection from methylation data, since batch-correction
  9611. methods like SVA that work in a linear modeling context cannot be applied
  9612. in a machine learning context.
  9613. \end_layout
  9614. \begin_layout Standard
  9615. Currently, the source of these unwanted systematic variations in the data
  9616. is unknown.
  9617. The best solution would be to determine the cause of the variation and
  9618. eliminate it, thereby eliminating the need to model and remove that variation.
  9619. However, if this proves impractical, another option is to use SVA to identify
  9620. probes that are highly associated with the surrogate variables that describe
  9621. the unwanted variation in the data.
  9622. These probes could be discarded prior to classifier training, in order
  9623. to maximize the chance that the training algorithm will be able to identify
  9624. highly predictive probes from those remaining.
  9625. Lastly, it is possible that some of this unwanted variation is a result
  9626. of the array-based assay being used and would be eliminated by switching
  9627. to assaying DNA methylation using bisulphite sequencing.
  9628. However, this carries the risk that the sequencing assay will have its
  9629. own set of biases that must be corrected for in a different way.
  9630. \end_layout
  9631. \begin_layout Chapter
  9632. Globin-blocking for more effective blood RNA-seq analysis in primate animal
  9633. model
  9634. \end_layout
  9635. \begin_layout Standard
  9636. \begin_inset Flex TODO Note (inline)
  9637. status open
  9638. \begin_layout Plain Layout
  9639. Choose between above and the paper title: Optimizing yield of deep RNA sequencin
  9640. g for gene expression profiling by globin reduction of peripheral blood
  9641. samples from cynomolgus monkeys (Macaca fascicularis).
  9642. \end_layout
  9643. \end_inset
  9644. \end_layout
  9645. \begin_layout Standard
  9646. \begin_inset Flex TODO Note (inline)
  9647. status open
  9648. \begin_layout Plain Layout
  9649. Chapter author list:
  9650. \begin_inset CommandInset href
  9651. LatexCommand href
  9652. target "https://tex.stackexchange.com/questions/156862/displaying-author-for-each-chapter-in-book"
  9653. \end_inset
  9654. Every chapter gets an author list, which may or may not be part of a citation
  9655. to a published/preprinted paper.
  9656. \end_layout
  9657. \end_inset
  9658. \end_layout
  9659. \begin_layout Standard
  9660. \begin_inset Flex TODO Note (inline)
  9661. status open
  9662. \begin_layout Plain Layout
  9663. Preprint then cite the paper
  9664. \end_layout
  9665. \end_inset
  9666. \end_layout
  9667. \begin_layout Section*
  9668. Abstract
  9669. \end_layout
  9670. \begin_layout Paragraph
  9671. Background
  9672. \end_layout
  9673. \begin_layout Standard
  9674. Primate blood contains high concentrations of globin messenger RNA.
  9675. Globin reduction is a standard technique used to improve the expression
  9676. results obtained by DNA microarrays on RNA from blood samples.
  9677. However, with whole transcriptome RNA-sequencing (RNA-seq) quickly replacing
  9678. microarrays for many applications, the impact of globin reduction for RNA-seq
  9679. has not been previously studied.
  9680. Moreover, no off-the-shelf kits are available for globin reduction in nonhuman
  9681. primates.
  9682. \end_layout
  9683. \begin_layout Paragraph
  9684. Results
  9685. \end_layout
  9686. \begin_layout Standard
  9687. Here we report a protocol for RNA-seq in primate blood samples that uses
  9688. complimentary oligonucleotides to block reverse transcription of the alpha
  9689. and beta globin genes.
  9690. In test samples from cynomolgus monkeys (Macaca fascicularis), this globin
  9691. blocking protocol approximately doubles the yield of informative (non-globin)
  9692. reads by greatly reducing the fraction of globin reads, while also improving
  9693. the consistency in sequencing depth between samples.
  9694. The increased yield enables detection of about 2000 more genes, significantly
  9695. increases the correlation in measured gene expression levels between samples,
  9696. and increases the sensitivity of differential gene expression tests.
  9697. \end_layout
  9698. \begin_layout Paragraph
  9699. Conclusions
  9700. \end_layout
  9701. \begin_layout Standard
  9702. These results show that globin blocking significantly improves the cost-effectiv
  9703. eness of mRNA sequencing in primate blood samples by doubling the yield
  9704. of useful reads, allowing detection of more genes, and improving the precision
  9705. of gene expression measurements.
  9706. Based on these results, a globin reducing or blocking protocol is recommended
  9707. for all RNA-seq studies of primate blood samples.
  9708. \end_layout
  9709. \begin_layout Section
  9710. Approach
  9711. \end_layout
  9712. \begin_layout Standard
  9713. \begin_inset Note Note
  9714. status open
  9715. \begin_layout Plain Layout
  9716. Consider putting some of this in the Intro chapter
  9717. \end_layout
  9718. \begin_layout Itemize
  9719. Cynomolgus monkeys as a model organism
  9720. \end_layout
  9721. \begin_deeper
  9722. \begin_layout Itemize
  9723. Highly related to humans
  9724. \end_layout
  9725. \begin_layout Itemize
  9726. Small size and short life cycle - good research animal
  9727. \end_layout
  9728. \begin_layout Itemize
  9729. Genomics resources still in development
  9730. \end_layout
  9731. \end_deeper
  9732. \begin_layout Itemize
  9733. Inadequacy of existing blood RNA-seq protocols
  9734. \end_layout
  9735. \begin_deeper
  9736. \begin_layout Itemize
  9737. Existing protocols use a separate globin pulldown step, slowing down processing
  9738. \end_layout
  9739. \end_deeper
  9740. \end_inset
  9741. \end_layout
  9742. \begin_layout Standard
  9743. Increasingly, researchers are turning to high-throughput mRNA sequencing
  9744. technologies (RNA-seq) in preference to expression microarrays for analysis
  9745. of gene expression
  9746. \begin_inset CommandInset citation
  9747. LatexCommand cite
  9748. key "Mutz2012"
  9749. literal "false"
  9750. \end_inset
  9751. .
  9752. The advantages are even greater for study of model organisms with no well-estab
  9753. lished array platforms available, such as the cynomolgus monkey (Macaca
  9754. fascicularis).
  9755. High fractions of globin mRNA are naturally present in mammalian peripheral
  9756. blood samples (up to 70% of total mRNA) and these are known to interfere
  9757. with the results of array-based expression profiling
  9758. \begin_inset CommandInset citation
  9759. LatexCommand cite
  9760. key "Winn2010"
  9761. literal "false"
  9762. \end_inset
  9763. .
  9764. The importance of globin reduction for RNA-seq of blood has only been evaluated
  9765. for a deepSAGE protocol on human samples
  9766. \begin_inset CommandInset citation
  9767. LatexCommand cite
  9768. key "Mastrokolias2012"
  9769. literal "false"
  9770. \end_inset
  9771. .
  9772. In the present report, we evaluated globin reduction using custom blocking
  9773. oligonucleotides for deep RNA-seq of peripheral blood samples from a nonhuman
  9774. primate, cynomolgus monkey, using the Illumina technology platform.
  9775. We demonstrate that globin reduction significantly improves the cost-effectiven
  9776. ess of RNA-seq in blood samples.
  9777. Thus, our protocol offers a significant advantage to any investigator planning
  9778. to use RNA-seq for gene expression profiling of nonhuman primate blood
  9779. samples.
  9780. Our method can be generally applied to any species by designing complementary
  9781. oligonucleotide blocking probes to the globin gene sequences of that species.
  9782. Indeed, any highly expressed but biologically uninformative transcripts
  9783. can also be blocked to further increase sequencing efficiency and value
  9784. \begin_inset CommandInset citation
  9785. LatexCommand cite
  9786. key "Arnaud2016"
  9787. literal "false"
  9788. \end_inset
  9789. .
  9790. \end_layout
  9791. \begin_layout Section
  9792. Methods
  9793. \end_layout
  9794. \begin_layout Subsection
  9795. Sample collection
  9796. \end_layout
  9797. \begin_layout Standard
  9798. All research reported here was done under IACUC-approved protocols at the
  9799. University of Miami and complied with all applicable federal and state
  9800. regulations and ethical principles for nonhuman primate research.
  9801. Blood draws occurred between 16 April 2012 and 18 June 2015.
  9802. The experimental system involved intrahepatic pancreatic islet transplantation
  9803. into Cynomolgus monkeys with induced diabetes mellitus with or without
  9804. concomitant infusion of mesenchymal stem cells.
  9805. Blood was collected at serial time points before and after transplantation
  9806. into PAXgene Blood RNA tubes (PreAnalytiX/Qiagen, Valencia, CA) at the
  9807. precise volume:volume ratio of 2.5 ml whole blood into 6.9 ml of PAX gene
  9808. additive.
  9809. \end_layout
  9810. \begin_layout Subsection
  9811. Globin Blocking
  9812. \end_layout
  9813. \begin_layout Standard
  9814. Four oligonucleotides were designed to hybridize to the 3’ end of the transcript
  9815. s for Cynomolgus HBA1, HBA2 and HBB, with two hybridization sites for HBB
  9816. and 2 sites for HBA (the chosen sites were identical in both HBA genes).
  9817. All oligos were purchased from Sigma and were entirely composed of 2’O-Me
  9818. bases with a C3 spacer positioned at the 3’ ends to prevent any polymerase
  9819. mediated primer extension.
  9820. \end_layout
  9821. \begin_layout Quote
  9822. HBA1/2 site 1: GCCCACUCAGACUUUAUUCAAAG-C3spacer
  9823. \end_layout
  9824. \begin_layout Quote
  9825. HBA1/2 site 2: GGUGCAAGGAGGGGAGGAG-C3spacer
  9826. \end_layout
  9827. \begin_layout Quote
  9828. HBB site 1: AAUGAAAAUAAAUGUUUUUUAUUAG-C3spacer
  9829. \end_layout
  9830. \begin_layout Quote
  9831. HBB site 2: CUCAAGGCCCUUCAUAAUAUCCC-C3spacer
  9832. \end_layout
  9833. \begin_layout Subsection
  9834. RNA-seq Library Preparation
  9835. \end_layout
  9836. \begin_layout Standard
  9837. \begin_inset Flex TODO Note (inline)
  9838. status open
  9839. \begin_layout Plain Layout
  9840. Add protected spaces where appropriate to prevent unwanted line breaks.
  9841. \end_layout
  9842. \end_inset
  9843. \end_layout
  9844. \begin_layout Standard
  9845. Sequencing libraries were prepared with 200
  9846. \begin_inset space ~
  9847. \end_inset
  9848. ng total RNA from each sample.
  9849. Polyadenylated mRNA was selected from 200 ng aliquots of cynomolgus blood-deriv
  9850. ed total RNA using Ambion Dynabeads Oligo(dT)25 beads (Invitrogen) following
  9851. manufacturer’s recommended protocol.
  9852. PolyA selected RNA was then combined with 8 pmol of HBA1/2 (site 1), 8
  9853. pmol of HBA1/2 (site 2), 12 pmol of HBB (site 1) and 12 pmol of HBB (site
  9854. 2) oligonucleotides.
  9855. In addition, 20 pmol of RT primer containing a portion of the Illumina
  9856. adapter sequence (B-oligo-dTV: GAGTTCCTTGGCACCCGAGAATTCCATTTTTTTTTTTTTTTTTTTV)
  9857. and 4 µL of 5X First Strand buffer (250 mM Tris-HCl pH 8.3, 375 mM KCl,
  9858. 15mM MgCl2) were added in a total volume of 15 µL.
  9859. The RNA was fragmented by heating this cocktail for 3 minutes at 95°C and
  9860. then placed on ice.
  9861. This was followed by the addition of 2 µL 0.1 M DTT, 1 µL RNaseOUT, 1 µL
  9862. 10mM dNTPs 10% biotin-16 aminoallyl-2’- dUTP and 10% biotin-16 aminoallyl-2’-
  9863. dCTP (TriLink Biotech, San Diego, CA), 1 µL Superscript II (200U/ µL, Thermo-Fi
  9864. sher).
  9865. A second “unblocked” library was prepared in the same way for each sample
  9866. but replacing the blocking oligos with an equivalent volume of water.
  9867. The reaction was carried out at 25°C for 15 minutes and 42°C for 40 minutes,
  9868. followed by incubation at 75°C for 10 minutes to inactivate the reverse
  9869. transcriptase.
  9870. \end_layout
  9871. \begin_layout Standard
  9872. The cDNA/RNA hybrid molecules were purified using 1.8X Ampure XP beads (Agencourt
  9873. ) following supplier’s recommended protocol.
  9874. The cDNA/RNA hybrid was eluted in 25 µL of 10 mM Tris-HCl pH 8.0, and then
  9875. bound to 25 µL of M280 Magnetic Streptavidin beads washed per recommended
  9876. protocol (Thermo-Fisher).
  9877. After 30 minutes of binding, beads were washed one time in 100 µL 0.1N NaOH
  9878. to denature and remove the bound RNA, followed by two 100 µL washes with
  9879. 1X TE buffer.
  9880. \end_layout
  9881. \begin_layout Standard
  9882. Subsequent attachment of the 5-prime Illumina A adapter was performed by
  9883. on-bead random primer extension of the following sequence (A-N8 primer:
  9884. TTCAGAGTTCTACAGTCCGACGATCNNNNNNNN).
  9885. Briefly, beads were resuspended in a 20 µL reaction containing 5 µM A-N8
  9886. primer, 40mM Tris-HCl pH 7.5, 20mM MgCl2, 50mM NaCl, 0.325U/µL Sequenase
  9887. 2.0 (Affymetrix, Santa Clara, CA), 0.0025U/µL inorganic pyrophosphatase (Affymetr
  9888. ix) and 300 µM each dNTP.
  9889. Reaction was incubated at 22°C for 30 minutes, then beads were washed 2
  9890. times with 1X TE buffer (200µL).
  9891. \end_layout
  9892. \begin_layout Standard
  9893. The magnetic streptavidin beads were resuspended in 34 µL nuclease-free
  9894. water and added directly to a PCR tube.
  9895. The two Illumina protocol-specified PCR primers were added at 0.53 µM (Illumina
  9896. TruSeq Universal Primer 1 and Illumina TruSeq barcoded PCR primer 2), along
  9897. with 40 µL 2X KAPA HiFi Hotstart ReadyMix (KAPA, Willmington MA) and thermocycl
  9898. ed as follows: starting with 98°C (2 min-hold); 15 cycles of 98°C, 20sec;
  9899. 60°C, 30sec; 72°C, 30sec; and finished with a 72°C (2 min-hold).
  9900. \end_layout
  9901. \begin_layout Standard
  9902. PCR products were purified with 1X Ampure Beads following manufacturer’s
  9903. recommended protocol.
  9904. Libraries were then analyzed using the Agilent TapeStation and quantitation
  9905. of desired size range was performed by “smear analysis”.
  9906. Samples were pooled in equimolar batches of 16 samples.
  9907. Pooled libraries were size selected on 2% agarose gels (E-Gel EX Agarose
  9908. Gels; Thermo-Fisher).
  9909. Products were cut between 250 and 350 bp (corresponding to insert sizes
  9910. of 130 to 230 bps).
  9911. Finished library pools were then sequenced on the Illumina NextSeq500 instrumen
  9912. t with 75 base read lengths.
  9913. \end_layout
  9914. \begin_layout Subsection
  9915. Read alignment and counting
  9916. \end_layout
  9917. \begin_layout Standard
  9918. Reads were aligned to the cynomolgus genome using STAR
  9919. \begin_inset CommandInset citation
  9920. LatexCommand cite
  9921. key "Dobin2013,Wilson2013"
  9922. literal "false"
  9923. \end_inset
  9924. .
  9925. Counts of uniquely mapped reads were obtained for every gene in each sample
  9926. with the
  9927. \begin_inset Flex Code
  9928. status open
  9929. \begin_layout Plain Layout
  9930. featureCounts
  9931. \end_layout
  9932. \end_inset
  9933. function from the
  9934. \begin_inset Flex Code
  9935. status open
  9936. \begin_layout Plain Layout
  9937. Rsubread
  9938. \end_layout
  9939. \end_inset
  9940. package, using each of the three possibilities for the
  9941. \begin_inset Flex Code
  9942. status open
  9943. \begin_layout Plain Layout
  9944. strandSpecific
  9945. \end_layout
  9946. \end_inset
  9947. option: sense, antisense, and unstranded
  9948. \begin_inset CommandInset citation
  9949. LatexCommand cite
  9950. key "Liao2014"
  9951. literal "false"
  9952. \end_inset
  9953. .
  9954. A few artifacts in the cynomolgus genome annotation complicated read counting.
  9955. First, no ortholog is annotated for alpha globin in the cynomolgus genome,
  9956. presumably because the human genome has two alpha globin genes with nearly
  9957. identical sequences, making the orthology relationship ambiguous.
  9958. However, two loci in the cynomolgus genome are as “hemoglobin subunit alpha-lik
  9959. e” (LOC102136192 and LOC102136846).
  9960. LOC102136192 is annotated as a pseudogene while LOC102136846 is annotated
  9961. as protein-coding.
  9962. Our globin reduction protocol was designed to include blocking of these
  9963. two genes.
  9964. Indeed, these two genes have almost the same read counts in each library
  9965. as the properly-annotated HBB gene and much larger counts than any other
  9966. gene in the unblocked libraries, giving confidence that reads derived from
  9967. the real alpha globin are mapping to both genes.
  9968. Thus, reads from both of these loci were counted as alpha globin reads
  9969. in all further analyses.
  9970. The second artifact is a small, uncharacterized non-coding RNA gene (LOC1021365
  9971. 91), which overlaps the HBA-like gene (LOC102136192) on the opposite strand.
  9972. If counting is not performed in stranded mode (or if a non-strand-specific
  9973. sequencing protocol is used), many reads mapping to the globin gene will
  9974. be discarded as ambiguous due to their overlap with this ncRNA gene, resulting
  9975. in significant undercounting of globin reads.
  9976. Therefore, stranded sense counts were used for all further analysis in
  9977. the present study to insure that we accurately accounted for globin transcript
  9978. reduction.
  9979. However, we note that stranded reads are not necessary for RNA-seq using
  9980. our protocol in standard practice.
  9981. \end_layout
  9982. \begin_layout Subsection
  9983. Normalization and Exploratory Data Analysis
  9984. \end_layout
  9985. \begin_layout Standard
  9986. Libraries were normalized by computing scaling factors using the
  9987. \begin_inset Flex Code
  9988. status open
  9989. \begin_layout Plain Layout
  9990. edgeR
  9991. \end_layout
  9992. \end_inset
  9993. package’s Trimmed Mean of M-values method
  9994. \begin_inset CommandInset citation
  9995. LatexCommand cite
  9996. key "Robinson2010"
  9997. literal "false"
  9998. \end_inset
  9999. .
  10000. Log2 counts per million values (logCPM) were calculated using the cpm function
  10001. in
  10002. \begin_inset Flex Code
  10003. status open
  10004. \begin_layout Plain Layout
  10005. edgeR
  10006. \end_layout
  10007. \end_inset
  10008. for individual samples and aveLogCPM function for averages across groups
  10009. of samples, using those functions’ default prior count values to avoid
  10010. taking the logarithm of 0.
  10011. Genes were considered “present” if their average normalized logCPM values
  10012. across all libraries were at least -1.
  10013. Normalizing for gene length was unnecessary because the sequencing protocol
  10014. is 3’-biased and hence the expected read count for each gene is related
  10015. to the transcript’s copy number but not its length.
  10016. \end_layout
  10017. \begin_layout Standard
  10018. In order to assess the effect of blocking on reproducibility, Pearson and
  10019. Spearman correlation coefficients were computed between the logCPM values
  10020. for every pair of libraries within the globin-blocked (GB) and unblocked
  10021. (non-GB) groups, and
  10022. \begin_inset Flex Code
  10023. status open
  10024. \begin_layout Plain Layout
  10025. edgeR
  10026. \end_layout
  10027. \end_inset
  10028. 's
  10029. \begin_inset Flex Code
  10030. status open
  10031. \begin_layout Plain Layout
  10032. estimateDisp
  10033. \end_layout
  10034. \end_inset
  10035. function was used to compute negative binomial dispersions separately for
  10036. the two groups
  10037. \begin_inset CommandInset citation
  10038. LatexCommand cite
  10039. key "Chen2014"
  10040. literal "false"
  10041. \end_inset
  10042. .
  10043. \end_layout
  10044. \begin_layout Subsection
  10045. Differential Expression Analysis
  10046. \end_layout
  10047. \begin_layout Standard
  10048. All tests for differential gene expression were performed using
  10049. \begin_inset Flex Code
  10050. status open
  10051. \begin_layout Plain Layout
  10052. edgeR
  10053. \end_layout
  10054. \end_inset
  10055. , by first fitting a negative binomial generalized linear model to the counts
  10056. and normalization factors and then performing a quasi-likelihood F-test
  10057. with robust estimation of outlier gene dispersions
  10058. \begin_inset CommandInset citation
  10059. LatexCommand cite
  10060. key "Lund2012,Phipson2016"
  10061. literal "false"
  10062. \end_inset
  10063. .
  10064. To investigate the effects of globin blocking on each gene, an additive
  10065. model was fit to the full data with coefficients for globin blocking and
  10066. SampleID.
  10067. To test the effect of globin blocking on detection of differentially expressed
  10068. genes, the GB samples and non-GB samples were each analyzed independently
  10069. as follows: for each animal with both a pre-transplant and a post-transplant
  10070. time point in the data set, the pre-transplant sample and the earliest
  10071. post-transplant sample were selected, and all others were excluded, yielding
  10072. a pre-/post-transplant pair of samples for each animal (N=7 animals with
  10073. paired samples).
  10074. These samples were analyzed for pre-transplant vs.
  10075. post-transplant differential gene expression while controlling for inter-animal
  10076. variation using an additive model with coefficients for transplant and
  10077. animal ID.
  10078. In all analyses, p-values were adjusted using the Benjamini-Hochberg procedure
  10079. for FDR control
  10080. \begin_inset CommandInset citation
  10081. LatexCommand cite
  10082. key "Benjamini1995"
  10083. literal "false"
  10084. \end_inset
  10085. .
  10086. \end_layout
  10087. \begin_layout Standard
  10088. \begin_inset Note Note
  10089. status open
  10090. \begin_layout Itemize
  10091. New blood RNA-seq protocol to block reverse transcription of globin genes
  10092. \end_layout
  10093. \begin_layout Itemize
  10094. Blood RNA-seq time course after transplants with/without MSC infusion
  10095. \end_layout
  10096. \end_inset
  10097. \end_layout
  10098. \begin_layout Section
  10099. Results
  10100. \end_layout
  10101. \begin_layout Subsection
  10102. Globin blocking yields a larger and more consistent fraction of useful reads
  10103. \end_layout
  10104. \begin_layout Standard
  10105. \begin_inset ERT
  10106. status open
  10107. \begin_layout Plain Layout
  10108. \backslash
  10109. afterpage{
  10110. \end_layout
  10111. \begin_layout Plain Layout
  10112. \backslash
  10113. begin{landscape}
  10114. \end_layout
  10115. \end_inset
  10116. \end_layout
  10117. \begin_layout Standard
  10118. \begin_inset Float table
  10119. placement p
  10120. wide false
  10121. sideways false
  10122. status open
  10123. \begin_layout Plain Layout
  10124. \align center
  10125. \begin_inset Tabular
  10126. <lyxtabular version="3" rows="4" columns="7">
  10127. <features tabularvalignment="middle">
  10128. <column alignment="center" valignment="top">
  10129. <column alignment="center" valignment="top">
  10130. <column alignment="center" valignment="top">
  10131. <column alignment="center" valignment="top">
  10132. <column alignment="center" valignment="top">
  10133. <column alignment="center" valignment="top">
  10134. <column alignment="center" valignment="top">
  10135. <row>
  10136. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10137. \begin_inset Text
  10138. \begin_layout Plain Layout
  10139. \end_layout
  10140. \end_inset
  10141. </cell>
  10142. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10143. \begin_inset Text
  10144. \begin_layout Plain Layout
  10145. \family roman
  10146. \series medium
  10147. \shape up
  10148. \size normal
  10149. \emph off
  10150. \bar no
  10151. \strikeout off
  10152. \xout off
  10153. \uuline off
  10154. \uwave off
  10155. \noun off
  10156. \color none
  10157. Percent of Total Reads
  10158. \end_layout
  10159. \end_inset
  10160. </cell>
  10161. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10162. \begin_inset Text
  10163. \begin_layout Plain Layout
  10164. \end_layout
  10165. \end_inset
  10166. </cell>
  10167. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10168. \begin_inset Text
  10169. \begin_layout Plain Layout
  10170. \end_layout
  10171. \end_inset
  10172. </cell>
  10173. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10174. \begin_inset Text
  10175. \begin_layout Plain Layout
  10176. \end_layout
  10177. \end_inset
  10178. </cell>
  10179. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  10180. \begin_inset Text
  10181. \begin_layout Plain Layout
  10182. \family roman
  10183. \series medium
  10184. \shape up
  10185. \size normal
  10186. \emph off
  10187. \bar no
  10188. \strikeout off
  10189. \xout off
  10190. \uuline off
  10191. \uwave off
  10192. \noun off
  10193. \color none
  10194. Percent of Genic Reads
  10195. \end_layout
  10196. \end_inset
  10197. </cell>
  10198. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  10199. \begin_inset Text
  10200. \begin_layout Plain Layout
  10201. \end_layout
  10202. \end_inset
  10203. </cell>
  10204. </row>
  10205. <row>
  10206. <cell alignment="center" valignment="top" bottomline="true" leftline="true" usebox="none">
  10207. \begin_inset Text
  10208. \begin_layout Plain Layout
  10209. GB
  10210. \end_layout
  10211. \end_inset
  10212. </cell>
  10213. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10214. \begin_inset Text
  10215. \begin_layout Plain Layout
  10216. \family roman
  10217. \series medium
  10218. \shape up
  10219. \size normal
  10220. \emph off
  10221. \bar no
  10222. \strikeout off
  10223. \xout off
  10224. \uuline off
  10225. \uwave off
  10226. \noun off
  10227. \color none
  10228. Non-globin Reads
  10229. \end_layout
  10230. \end_inset
  10231. </cell>
  10232. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10233. \begin_inset Text
  10234. \begin_layout Plain Layout
  10235. \family roman
  10236. \series medium
  10237. \shape up
  10238. \size normal
  10239. \emph off
  10240. \bar no
  10241. \strikeout off
  10242. \xout off
  10243. \uuline off
  10244. \uwave off
  10245. \noun off
  10246. \color none
  10247. Globin Reads
  10248. \end_layout
  10249. \end_inset
  10250. </cell>
  10251. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10252. \begin_inset Text
  10253. \begin_layout Plain Layout
  10254. \family roman
  10255. \series medium
  10256. \shape up
  10257. \size normal
  10258. \emph off
  10259. \bar no
  10260. \strikeout off
  10261. \xout off
  10262. \uuline off
  10263. \uwave off
  10264. \noun off
  10265. \color none
  10266. All Genic Reads
  10267. \end_layout
  10268. \end_inset
  10269. </cell>
  10270. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10271. \begin_inset Text
  10272. \begin_layout Plain Layout
  10273. \family roman
  10274. \series medium
  10275. \shape up
  10276. \size normal
  10277. \emph off
  10278. \bar no
  10279. \strikeout off
  10280. \xout off
  10281. \uuline off
  10282. \uwave off
  10283. \noun off
  10284. \color none
  10285. All Aligned Reads
  10286. \end_layout
  10287. \end_inset
  10288. </cell>
  10289. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10290. \begin_inset Text
  10291. \begin_layout Plain Layout
  10292. \family roman
  10293. \series medium
  10294. \shape up
  10295. \size normal
  10296. \emph off
  10297. \bar no
  10298. \strikeout off
  10299. \xout off
  10300. \uuline off
  10301. \uwave off
  10302. \noun off
  10303. \color none
  10304. Non-globin Reads
  10305. \end_layout
  10306. \end_inset
  10307. </cell>
  10308. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  10309. \begin_inset Text
  10310. \begin_layout Plain Layout
  10311. \family roman
  10312. \series medium
  10313. \shape up
  10314. \size normal
  10315. \emph off
  10316. \bar no
  10317. \strikeout off
  10318. \xout off
  10319. \uuline off
  10320. \uwave off
  10321. \noun off
  10322. \color none
  10323. Globin Reads
  10324. \end_layout
  10325. \end_inset
  10326. </cell>
  10327. </row>
  10328. <row>
  10329. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10330. \begin_inset Text
  10331. \begin_layout Plain Layout
  10332. \family roman
  10333. \series medium
  10334. \shape up
  10335. \size normal
  10336. \emph off
  10337. \bar no
  10338. \strikeout off
  10339. \xout off
  10340. \uuline off
  10341. \uwave off
  10342. \noun off
  10343. \color none
  10344. Yes
  10345. \end_layout
  10346. \end_inset
  10347. </cell>
  10348. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10349. \begin_inset Text
  10350. \begin_layout Plain Layout
  10351. \family roman
  10352. \series medium
  10353. \shape up
  10354. \size normal
  10355. \emph off
  10356. \bar no
  10357. \strikeout off
  10358. \xout off
  10359. \uuline off
  10360. \uwave off
  10361. \noun off
  10362. \color none
  10363. 50.4% ± 6.82
  10364. \end_layout
  10365. \end_inset
  10366. </cell>
  10367. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10368. \begin_inset Text
  10369. \begin_layout Plain Layout
  10370. \family roman
  10371. \series medium
  10372. \shape up
  10373. \size normal
  10374. \emph off
  10375. \bar no
  10376. \strikeout off
  10377. \xout off
  10378. \uuline off
  10379. \uwave off
  10380. \noun off
  10381. \color none
  10382. 3.48% ± 2.94
  10383. \end_layout
  10384. \end_inset
  10385. </cell>
  10386. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10387. \begin_inset Text
  10388. \begin_layout Plain Layout
  10389. \family roman
  10390. \series medium
  10391. \shape up
  10392. \size normal
  10393. \emph off
  10394. \bar no
  10395. \strikeout off
  10396. \xout off
  10397. \uuline off
  10398. \uwave off
  10399. \noun off
  10400. \color none
  10401. 53.9% ± 6.81
  10402. \end_layout
  10403. \end_inset
  10404. </cell>
  10405. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10406. \begin_inset Text
  10407. \begin_layout Plain Layout
  10408. \family roman
  10409. \series medium
  10410. \shape up
  10411. \size normal
  10412. \emph off
  10413. \bar no
  10414. \strikeout off
  10415. \xout off
  10416. \uuline off
  10417. \uwave off
  10418. \noun off
  10419. \color none
  10420. 89.7% ± 2.40
  10421. \end_layout
  10422. \end_inset
  10423. </cell>
  10424. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10425. \begin_inset Text
  10426. \begin_layout Plain Layout
  10427. \family roman
  10428. \series medium
  10429. \shape up
  10430. \size normal
  10431. \emph off
  10432. \bar no
  10433. \strikeout off
  10434. \xout off
  10435. \uuline off
  10436. \uwave off
  10437. \noun off
  10438. \color none
  10439. 93.5% ± 5.25
  10440. \end_layout
  10441. \end_inset
  10442. </cell>
  10443. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  10444. \begin_inset Text
  10445. \begin_layout Plain Layout
  10446. \family roman
  10447. \series medium
  10448. \shape up
  10449. \size normal
  10450. \emph off
  10451. \bar no
  10452. \strikeout off
  10453. \xout off
  10454. \uuline off
  10455. \uwave off
  10456. \noun off
  10457. \color none
  10458. 6.49% ± 5.25
  10459. \end_layout
  10460. \end_inset
  10461. </cell>
  10462. </row>
  10463. <row>
  10464. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10465. \begin_inset Text
  10466. \begin_layout Plain Layout
  10467. \family roman
  10468. \series medium
  10469. \shape up
  10470. \size normal
  10471. \emph off
  10472. \bar no
  10473. \strikeout off
  10474. \xout off
  10475. \uuline off
  10476. \uwave off
  10477. \noun off
  10478. \color none
  10479. No
  10480. \end_layout
  10481. \end_inset
  10482. </cell>
  10483. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10484. \begin_inset Text
  10485. \begin_layout Plain Layout
  10486. \family roman
  10487. \series medium
  10488. \shape up
  10489. \size normal
  10490. \emph off
  10491. \bar no
  10492. \strikeout off
  10493. \xout off
  10494. \uuline off
  10495. \uwave off
  10496. \noun off
  10497. \color none
  10498. 26.3% ± 8.95
  10499. \end_layout
  10500. \end_inset
  10501. </cell>
  10502. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10503. \begin_inset Text
  10504. \begin_layout Plain Layout
  10505. \family roman
  10506. \series medium
  10507. \shape up
  10508. \size normal
  10509. \emph off
  10510. \bar no
  10511. \strikeout off
  10512. \xout off
  10513. \uuline off
  10514. \uwave off
  10515. \noun off
  10516. \color none
  10517. 44.6% ± 16.6
  10518. \end_layout
  10519. \end_inset
  10520. </cell>
  10521. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10522. \begin_inset Text
  10523. \begin_layout Plain Layout
  10524. \family roman
  10525. \series medium
  10526. \shape up
  10527. \size normal
  10528. \emph off
  10529. \bar no
  10530. \strikeout off
  10531. \xout off
  10532. \uuline off
  10533. \uwave off
  10534. \noun off
  10535. \color none
  10536. 70.1% ± 9.38
  10537. \end_layout
  10538. \end_inset
  10539. </cell>
  10540. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10541. \begin_inset Text
  10542. \begin_layout Plain Layout
  10543. \family roman
  10544. \series medium
  10545. \shape up
  10546. \size normal
  10547. \emph off
  10548. \bar no
  10549. \strikeout off
  10550. \xout off
  10551. \uuline off
  10552. \uwave off
  10553. \noun off
  10554. \color none
  10555. 90.7% ± 5.16
  10556. \end_layout
  10557. \end_inset
  10558. </cell>
  10559. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10560. \begin_inset Text
  10561. \begin_layout Plain Layout
  10562. \family roman
  10563. \series medium
  10564. \shape up
  10565. \size normal
  10566. \emph off
  10567. \bar no
  10568. \strikeout off
  10569. \xout off
  10570. \uuline off
  10571. \uwave off
  10572. \noun off
  10573. \color none
  10574. 38.8% ± 17.1
  10575. \end_layout
  10576. \end_inset
  10577. </cell>
  10578. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  10579. \begin_inset Text
  10580. \begin_layout Plain Layout
  10581. \family roman
  10582. \series medium
  10583. \shape up
  10584. \size normal
  10585. \emph off
  10586. \bar no
  10587. \strikeout off
  10588. \xout off
  10589. \uuline off
  10590. \uwave off
  10591. \noun off
  10592. \color none
  10593. 61.2% ± 17.1
  10594. \end_layout
  10595. \end_inset
  10596. </cell>
  10597. </row>
  10598. </lyxtabular>
  10599. \end_inset
  10600. \end_layout
  10601. \begin_layout Plain Layout
  10602. \begin_inset Caption Standard
  10603. \begin_layout Plain Layout
  10604. \series bold
  10605. \begin_inset Argument 1
  10606. status collapsed
  10607. \begin_layout Plain Layout
  10608. Fractions of reads mapping to genomic features in GB and non-GB samples.
  10609. \end_layout
  10610. \end_inset
  10611. \begin_inset CommandInset label
  10612. LatexCommand label
  10613. name "tab:Fractions-of-reads"
  10614. \end_inset
  10615. Fractions of reads mapping to genomic features in GB and non-GB samples.
  10616. \series default
  10617. All values are given as mean ± standard deviation.
  10618. \end_layout
  10619. \end_inset
  10620. \end_layout
  10621. \end_inset
  10622. \end_layout
  10623. \begin_layout Standard
  10624. \begin_inset ERT
  10625. status open
  10626. \begin_layout Plain Layout
  10627. \backslash
  10628. end{landscape}
  10629. \end_layout
  10630. \begin_layout Plain Layout
  10631. }
  10632. \end_layout
  10633. \end_inset
  10634. \end_layout
  10635. \begin_layout Standard
  10636. The objective of the present study was to validate a new protocol for deep
  10637. RNA-seq of whole blood drawn into PaxGene tubes from cynomolgus monkeys
  10638. undergoing islet transplantation, with particular focus on minimizing the
  10639. loss of useful sequencing space to uninformative globin reads.
  10640. The details of the analysis with respect to transplant outcomes and the
  10641. impact of mesenchymal stem cell treatment will be reported in a separate
  10642. manuscript (in preparation).
  10643. To focus on the efficacy of our globin blocking protocol, 37 blood samples,
  10644. 16 from pre-transplant and 21 from post-transplant time points, were each
  10645. prepped once with and once without globin blocking oligos, and were then
  10646. sequenced on an Illumina NextSeq500 instrument.
  10647. The number of reads aligning to each gene in the cynomolgus genome was
  10648. counted.
  10649. Table 1 summarizes the distribution of read fractions among the GB and
  10650. non-GB libraries.
  10651. In the libraries with no globin blocking, globin reads made up an average
  10652. of 44.6% of total input reads, while reads assigned to all other genes made
  10653. up an average of 26.3%.
  10654. The remaining reads either aligned to intergenic regions (that include
  10655. long non-coding RNAs) or did not align with any annotated transcripts in
  10656. the current build of the cynomolgus genome.
  10657. In the GB libraries, globin reads made up only 3.48% and reads assigned
  10658. to all other genes increased to 50.4%.
  10659. Thus, globin blocking resulted in a 92.2% reduction in globin reads and
  10660. a 91.6% increase in yield of useful non-globin reads.
  10661. \end_layout
  10662. \begin_layout Standard
  10663. This reduction is not quite as efficient as the previous analysis showed
  10664. for human samples by DeepSAGE (<0.4% globin reads after globin reduction)
  10665. \begin_inset CommandInset citation
  10666. LatexCommand cite
  10667. key "Mastrokolias2012"
  10668. literal "false"
  10669. \end_inset
  10670. .
  10671. Nonetheless, this degree of globin reduction is sufficient to nearly double
  10672. the yield of useful reads.
  10673. Thus, globin blocking cuts the required sequencing effort (and costs) to
  10674. achieve a target coverage depth by almost 50%.
  10675. Consistent with this near doubling of yield, the average difference in
  10676. un-normalized logCPM across all genes between the GB libraries and non-GB
  10677. libraries is approximately 1 (mean = 1.01, median = 1.08), an overall 2-fold
  10678. increase.
  10679. Un-normalized values are used here because the TMM normalization correctly
  10680. identifies this 2-fold difference as biologically irrelevant and removes
  10681. it.
  10682. \end_layout
  10683. \begin_layout Standard
  10684. \begin_inset Float figure
  10685. wide false
  10686. sideways false
  10687. status collapsed
  10688. \begin_layout Plain Layout
  10689. \align center
  10690. \begin_inset Graphics
  10691. filename graphics/Globin Paper/figure1 - globin-fractions.pdf
  10692. lyxscale 50
  10693. width 75col%
  10694. \end_inset
  10695. \end_layout
  10696. \begin_layout Plain Layout
  10697. \begin_inset Caption Standard
  10698. \begin_layout Plain Layout
  10699. \series bold
  10700. \begin_inset Argument 1
  10701. status collapsed
  10702. \begin_layout Plain Layout
  10703. Fraction of genic reads in each sample aligned to non-globin genes, with
  10704. and without globin blocking (GB).
  10705. \end_layout
  10706. \end_inset
  10707. \begin_inset CommandInset label
  10708. LatexCommand label
  10709. name "fig:Fraction-of-genic-reads"
  10710. \end_inset
  10711. Fraction of genic reads in each sample aligned to non-globin genes, with
  10712. and without globin blocking (GB).
  10713. \series default
  10714. All reads in each sequencing library were aligned to the cyno genome, and
  10715. the number of reads uniquely aligning to each gene was counted.
  10716. For each sample, counts were summed separately for all globin genes and
  10717. for the remainder of the genes (non-globin genes), and the fraction of
  10718. genic reads aligned to non-globin genes was computed.
  10719. Each point represents an individual sample.
  10720. Gray + signs indicate the means for globin-blocked libraries and unblocked
  10721. libraries.
  10722. The overall distribution for each group is represented as a notched box
  10723. plots.
  10724. Points are randomly spread vertically to avoid excessive overlapping.
  10725. \end_layout
  10726. \end_inset
  10727. \end_layout
  10728. \end_inset
  10729. \end_layout
  10730. \begin_layout Standard
  10731. Another important aspect is that the standard deviations in Table
  10732. \begin_inset CommandInset ref
  10733. LatexCommand ref
  10734. reference "tab:Fractions-of-reads"
  10735. plural "false"
  10736. caps "false"
  10737. noprefix "false"
  10738. \end_inset
  10739. are uniformly smaller in the GB samples than the non-GB ones, indicating
  10740. much greater consistency of yield.
  10741. This is best seen in the percentage of non-globin reads as a fraction of
  10742. total reads aligned to annotated genes (genic reads).
  10743. For the non-GB samples, this measure ranges from 10.9% to 80.9%, while for
  10744. the GB samples it ranges from 81.9% to 99.9% (Figure
  10745. \begin_inset CommandInset ref
  10746. LatexCommand ref
  10747. reference "fig:Fraction-of-genic-reads"
  10748. plural "false"
  10749. caps "false"
  10750. noprefix "false"
  10751. \end_inset
  10752. ).
  10753. This means that for applications where it is critical that each sample
  10754. achieve a specified minimum coverage in order to provide useful information,
  10755. it would be necessary to budget up to 10 times the sequencing depth per
  10756. sample without globin blocking, even though the average yield improvement
  10757. for globin blocking is only 2-fold, because every sample has a chance of
  10758. being 90% globin and 10% useful reads.
  10759. Hence, the more consistent behavior of GB samples makes planning an experiment
  10760. easier and more efficient because it eliminates the need to over-sequence
  10761. every sample in order to guard against the worst case of a high-globin
  10762. fraction.
  10763. \end_layout
  10764. \begin_layout Subsection
  10765. Globin blocking lowers the noise floor and allows detection of about 2000
  10766. more low-expression genes
  10767. \end_layout
  10768. \begin_layout Standard
  10769. \begin_inset Flex TODO Note (inline)
  10770. status open
  10771. \begin_layout Plain Layout
  10772. Remove redundant titles from figures
  10773. \end_layout
  10774. \end_inset
  10775. \end_layout
  10776. \begin_layout Standard
  10777. \begin_inset Float figure
  10778. wide false
  10779. sideways false
  10780. status collapsed
  10781. \begin_layout Plain Layout
  10782. \align center
  10783. \begin_inset Graphics
  10784. filename graphics/Globin Paper/figure2 - aveLogCPM-colored.pdf
  10785. lyxscale 50
  10786. height 60theight%
  10787. \end_inset
  10788. \end_layout
  10789. \begin_layout Plain Layout
  10790. \begin_inset Caption Standard
  10791. \begin_layout Plain Layout
  10792. \series bold
  10793. \begin_inset Argument 1
  10794. status collapsed
  10795. \begin_layout Plain Layout
  10796. Distributions of average group gene abundances when normalized separately
  10797. or together.
  10798. \end_layout
  10799. \end_inset
  10800. \begin_inset CommandInset label
  10801. LatexCommand label
  10802. name "fig:logcpm-dists"
  10803. \end_inset
  10804. Distributions of average group gene abundances when normalized separately
  10805. or together.
  10806. \series default
  10807. All reads in each sequencing library were aligned to the cyno genome, and
  10808. the number of reads uniquely aligning to each gene was counted.
  10809. Genes with zero counts in all libraries were discarded.
  10810. Libraries were normalized using the TMM method.
  10811. Libraries were split into globin-blocked (GB) and non-GB groups and the
  10812. average abundance for each gene in both groups, measured in log2 counts
  10813. per million reads counted, was computed using the aveLogCPM function.
  10814. The distribution of average gene logCPM values was plotted for both groups
  10815. using a kernel density plot to approximate a continuous distribution.
  10816. The logCPM GB distributions are marked in red, non-GB in blue.
  10817. The black vertical line denotes the chosen detection threshold of -1.
  10818. Top panel: Libraries were split into GB and non-GB groups first and normalized
  10819. separately.
  10820. Bottom panel: Libraries were all normalized together first and then split
  10821. into groups.
  10822. \end_layout
  10823. \end_inset
  10824. \end_layout
  10825. \begin_layout Plain Layout
  10826. \end_layout
  10827. \end_inset
  10828. \end_layout
  10829. \begin_layout Standard
  10830. Since globin blocking yields more usable sequencing depth, it should also
  10831. allow detection of more genes at any given threshold.
  10832. When we looked at the distribution of average normalized logCPM values
  10833. across all libraries for genes with at least one read assigned to them,
  10834. we observed the expected bimodal distribution, with a high-abundance "signal"
  10835. peak representing detected genes and a low-abundance "noise" peak representing
  10836. genes whose read count did not rise above the noise floor (Figure
  10837. \begin_inset CommandInset ref
  10838. LatexCommand ref
  10839. reference "fig:logcpm-dists"
  10840. plural "false"
  10841. caps "false"
  10842. noprefix "false"
  10843. \end_inset
  10844. ).
  10845. Consistent with the 2-fold increase in raw counts assigned to non-globin
  10846. genes, the signal peak for GB samples is shifted to the right relative
  10847. to the non-GB signal peak.
  10848. When all the samples are normalized together, this difference is normalized
  10849. out, lining up the signal peaks, and this reveals that, as expected, the
  10850. noise floor for the GB samples is about 2-fold lower.
  10851. This greater separation between signal and noise peaks in the GB samples
  10852. means that low-expression genes should be more easily detected and more
  10853. precisely quantified than in the non-GB samples.
  10854. \end_layout
  10855. \begin_layout Standard
  10856. \begin_inset Float figure
  10857. wide false
  10858. sideways false
  10859. status collapsed
  10860. \begin_layout Plain Layout
  10861. \align center
  10862. \begin_inset Graphics
  10863. filename graphics/Globin Paper/figure3 - detection.pdf
  10864. lyxscale 50
  10865. width 70col%
  10866. \end_inset
  10867. \end_layout
  10868. \begin_layout Plain Layout
  10869. \begin_inset Caption Standard
  10870. \begin_layout Plain Layout
  10871. \series bold
  10872. \begin_inset Argument 1
  10873. status collapsed
  10874. \begin_layout Plain Layout
  10875. Gene detections as a function of abundance thresholds in globin-blocked
  10876. (GB) and non-GB samples.
  10877. \end_layout
  10878. \end_inset
  10879. \begin_inset CommandInset label
  10880. LatexCommand label
  10881. name "fig:Gene-detections"
  10882. \end_inset
  10883. Gene detections as a function of abundance thresholds in globin-blocked
  10884. (GB) and non-GB samples.
  10885. \series default
  10886. Average abundance (logCPM,
  10887. \begin_inset Formula $\log_{2}$
  10888. \end_inset
  10889. counts per million reads counted) was computed by separate group normalization
  10890. as described in Figure
  10891. \begin_inset CommandInset ref
  10892. LatexCommand ref
  10893. reference "fig:logcpm-dists"
  10894. plural "false"
  10895. caps "false"
  10896. noprefix "false"
  10897. \end_inset
  10898. for both the GB and non-GB groups, as well as for all samples considered
  10899. as one large group.
  10900. For each every integer threshold from -2 to 3, the number of genes detected
  10901. at or above that logCPM threshold was plotted for each group.
  10902. \end_layout
  10903. \end_inset
  10904. \end_layout
  10905. \begin_layout Plain Layout
  10906. \end_layout
  10907. \end_inset
  10908. \end_layout
  10909. \begin_layout Standard
  10910. Based on these distributions, we selected a detection threshold of -1, which
  10911. is approximately the leftmost edge of the trough between the signal and
  10912. noise peaks.
  10913. This represents the most liberal possible detection threshold that doesn't
  10914. call substantial numbers of noise genes as detected.
  10915. Among the full dataset, 13429 genes were detected at this threshold, and
  10916. 22276 were not.
  10917. When considering the GB libraries and non-GB libraries separately and re-comput
  10918. ing normalization factors independently within each group, 14535 genes were
  10919. detected in the GB libraries while only 12460 were detected in the non-GB
  10920. libraries.
  10921. Thus, GB allowed the detection of 2000 extra genes that were buried under
  10922. the noise floor without GB.
  10923. This pattern of at least 2000 additional genes detected with GB was also
  10924. consistent across a wide range of possible detection thresholds, from -2
  10925. to 3 (see Figure
  10926. \begin_inset CommandInset ref
  10927. LatexCommand ref
  10928. reference "fig:Gene-detections"
  10929. plural "false"
  10930. caps "false"
  10931. noprefix "false"
  10932. \end_inset
  10933. ).
  10934. \end_layout
  10935. \begin_layout Subsection
  10936. Globin blocking does not add significant additional noise or decrease sample
  10937. quality
  10938. \end_layout
  10939. \begin_layout Standard
  10940. One potential worry is that the globin blocking protocol could perturb the
  10941. levels of non-globin genes.
  10942. There are two kinds of possible perturbations: systematic and random.
  10943. The former is not a major concern for detection of differential expression,
  10944. since a 2-fold change in every sample has no effect on the relative fold
  10945. change between samples.
  10946. In contrast, random perturbations would increase the noise and obscure
  10947. the signal in the dataset, reducing the capacity to detect differential
  10948. expression.
  10949. \end_layout
  10950. \begin_layout Standard
  10951. \begin_inset Float figure
  10952. wide false
  10953. sideways false
  10954. status collapsed
  10955. \begin_layout Plain Layout
  10956. \align center
  10957. \begin_inset Graphics
  10958. filename graphics/Globin Paper/figure4 - maplot-colored.pdf
  10959. lyxscale 50
  10960. width 60col%
  10961. groupId colwidth
  10962. \end_inset
  10963. \end_layout
  10964. \begin_layout Plain Layout
  10965. \begin_inset Caption Standard
  10966. \begin_layout Plain Layout
  10967. \begin_inset Argument 1
  10968. status collapsed
  10969. \begin_layout Plain Layout
  10970. MA plot showing effects of globin blocking on each gene's abundance.
  10971. \end_layout
  10972. \end_inset
  10973. \begin_inset CommandInset label
  10974. LatexCommand label
  10975. name "fig:MA-plot"
  10976. \end_inset
  10977. \series bold
  10978. MA plot showing effects of globin blocking on each gene's abundance.
  10979. \series default
  10980. All libraries were normalized together as described in Figure
  10981. \begin_inset CommandInset ref
  10982. LatexCommand ref
  10983. reference "fig:logcpm-dists"
  10984. plural "false"
  10985. caps "false"
  10986. noprefix "false"
  10987. \end_inset
  10988. , and genes with an average logCPM below -1 were filtered out.
  10989. Each remaining gene was tested for differential abundance with respect
  10990. to globin blocking (GB) using
  10991. \begin_inset Flex Code
  10992. status open
  10993. \begin_layout Plain Layout
  10994. edgeR
  10995. \end_layout
  10996. \end_inset
  10997. ’s quasi-likelihood F-test, fitting a negative binomial generalized linear
  10998. model to table of read counts in each library.
  10999. For each gene,
  11000. \begin_inset Flex Code
  11001. status open
  11002. \begin_layout Plain Layout
  11003. edgeR
  11004. \end_layout
  11005. \end_inset
  11006. reported average abundance (logCPM),
  11007. \begin_inset Formula $\log_{2}$
  11008. \end_inset
  11009. fold change (logFC), p-value, and Benjamini-Hochberg adjusted false discovery
  11010. rate (FDR).
  11011. Each gene's logFC was plotted against its logCPM, colored by FDR.
  11012. Red points are significant at ≤10% FDR, and blue are not significant at
  11013. that threshold.
  11014. The alpha and beta globin genes targeted for blocking are marked with large
  11015. triangles, while all other genes are represented as small points.
  11016. \end_layout
  11017. \end_inset
  11018. \end_layout
  11019. \begin_layout Plain Layout
  11020. \end_layout
  11021. \end_inset
  11022. \end_layout
  11023. \begin_layout Standard
  11024. \begin_inset Flex TODO Note (inline)
  11025. status open
  11026. \begin_layout Plain Layout
  11027. Standardize on
  11028. \begin_inset Quotes eld
  11029. \end_inset
  11030. log2
  11031. \begin_inset Quotes erd
  11032. \end_inset
  11033. notation
  11034. \end_layout
  11035. \end_inset
  11036. \end_layout
  11037. \begin_layout Standard
  11038. The data do indeed show small systematic perturbations in gene levels (Figure
  11039. \begin_inset CommandInset ref
  11040. LatexCommand ref
  11041. reference "fig:MA-plot"
  11042. plural "false"
  11043. caps "false"
  11044. noprefix "false"
  11045. \end_inset
  11046. ).
  11047. Other than the 3 designated alpha and beta globin genes, two other genes
  11048. stand out as having especially large negative log fold changes: HBD and
  11049. LOC1021365.
  11050. HBD, delta globin, is most likely targeted by the blocking oligos due to
  11051. high sequence homology with the other globin genes.
  11052. LOC1021365 is the aforementioned ncRNA that is reverse-complementary to
  11053. one of the alpha-like genes and that would be expected to be removed during
  11054. the globin blocking step.
  11055. All other genes appear in a cluster centered vertically at 0, and the vast
  11056. majority of genes in this cluster show an absolute log2(FC) of 0.5 or less.
  11057. Nevertheless, many of these small perturbations are still statistically
  11058. significant, indicating that the globin blocking oligos likely cause very
  11059. small but non-zero systematic perturbations in measured gene expression
  11060. levels.
  11061. \end_layout
  11062. \begin_layout Standard
  11063. \begin_inset Float figure
  11064. wide false
  11065. sideways false
  11066. status collapsed
  11067. \begin_layout Plain Layout
  11068. \align center
  11069. \begin_inset Graphics
  11070. filename graphics/Globin Paper/figure5 - corrplot.pdf
  11071. lyxscale 50
  11072. width 70col%
  11073. \end_inset
  11074. \end_layout
  11075. \begin_layout Plain Layout
  11076. \begin_inset Caption Standard
  11077. \begin_layout Plain Layout
  11078. \series bold
  11079. \begin_inset Argument 1
  11080. status collapsed
  11081. \begin_layout Plain Layout
  11082. Comparison of inter-sample gene abundance correlations with and without
  11083. globin blocking.
  11084. \end_layout
  11085. \end_inset
  11086. \begin_inset CommandInset label
  11087. LatexCommand label
  11088. name "fig:gene-abundance-correlations"
  11089. \end_inset
  11090. Comparison of inter-sample gene abundance correlations with and without
  11091. globin blocking (GB).
  11092. \series default
  11093. All libraries were normalized together as described in Figure 2, and genes
  11094. with an average abundance (logCPM, log2 counts per million reads counted)
  11095. less than -1 were filtered out.
  11096. Each gene’s logCPM was computed in each library using the
  11097. \begin_inset Flex Code
  11098. status open
  11099. \begin_layout Plain Layout
  11100. edgeR
  11101. \end_layout
  11102. \end_inset
  11103. cpm function.
  11104. For each pair of biological samples, the Pearson correlation between those
  11105. samples' GB libraries was plotted against the correlation between the same
  11106. samples’ non-GB libraries.
  11107. Each point represents an unique pair of samples.
  11108. The solid gray line shows a quantile-quantile plot of distribution of GB
  11109. correlations vs.
  11110. that of non-GB correlations.
  11111. The thin dashed line is the identity line, provided for reference.
  11112. \end_layout
  11113. \end_inset
  11114. \end_layout
  11115. \begin_layout Plain Layout
  11116. \end_layout
  11117. \end_inset
  11118. \end_layout
  11119. \begin_layout Standard
  11120. To evaluate the possibility of globin blocking causing random perturbations
  11121. and reducing sample quality, we computed the Pearson correlation between
  11122. logCPM values for every pair of samples with and without GB and plotted
  11123. them against each other (Figure
  11124. \begin_inset CommandInset ref
  11125. LatexCommand ref
  11126. reference "fig:gene-abundance-correlations"
  11127. plural "false"
  11128. caps "false"
  11129. noprefix "false"
  11130. \end_inset
  11131. ).
  11132. The plot indicated that the GB libraries have higher sample-to-sample correlati
  11133. ons than the non-GB libraries.
  11134. Parametric and nonparametric tests for differences between the correlations
  11135. with and without GB both confirmed that this difference was highly significant
  11136. (2-sided paired t-test: t = 37.2, df = 665, P ≪ 2.2e-16; 2-sided Wilcoxon
  11137. sign-rank test: V = 2195, P ≪ 2.2e-16).
  11138. Performing the same tests on the Spearman correlations gave the same conclusion
  11139. (t-test: t = 26.8, df = 665, P ≪ 2.2e-16; sign-rank test: V = 8781, P ≪ 2.2e-16).
  11140. The
  11141. \begin_inset Flex Code
  11142. status open
  11143. \begin_layout Plain Layout
  11144. edgeR
  11145. \end_layout
  11146. \end_inset
  11147. package was used to compute the overall biological coefficient of variation
  11148. (BCV) for GB and non-GB libraries, and found that globin blocking resulted
  11149. in a negligible increase in the BCV (0.417 with GB vs.
  11150. 0.400 without).
  11151. The near equality of the BCVs for both sets indicates that the higher correlati
  11152. ons in the GB libraries are most likely a result of the increased yield
  11153. of useful reads, which reduces the contribution of Poisson counting uncertainty
  11154. to the overall variance of the logCPM values
  11155. \begin_inset CommandInset citation
  11156. LatexCommand cite
  11157. key "McCarthy2012"
  11158. literal "false"
  11159. \end_inset
  11160. .
  11161. This improves the precision of expression measurements and more than offsets
  11162. the negligible increase in BCV.
  11163. \end_layout
  11164. \begin_layout Subsection
  11165. More differentially expressed genes are detected with globin blocking
  11166. \end_layout
  11167. \begin_layout Standard
  11168. \begin_inset Float table
  11169. wide false
  11170. sideways false
  11171. status collapsed
  11172. \begin_layout Plain Layout
  11173. \align center
  11174. \begin_inset Tabular
  11175. <lyxtabular version="3" rows="5" columns="5">
  11176. <features tabularvalignment="middle">
  11177. <column alignment="center" valignment="top">
  11178. <column alignment="center" valignment="top">
  11179. <column alignment="center" valignment="top">
  11180. <column alignment="center" valignment="top">
  11181. <column alignment="center" valignment="top">
  11182. <row>
  11183. <cell alignment="center" valignment="top" usebox="none">
  11184. \begin_inset Text
  11185. \begin_layout Plain Layout
  11186. \end_layout
  11187. \end_inset
  11188. </cell>
  11189. <cell alignment="center" valignment="top" usebox="none">
  11190. \begin_inset Text
  11191. \begin_layout Plain Layout
  11192. \end_layout
  11193. \end_inset
  11194. </cell>
  11195. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  11196. \begin_inset Text
  11197. \begin_layout Plain Layout
  11198. \series bold
  11199. No Globin Blocking
  11200. \end_layout
  11201. \end_inset
  11202. </cell>
  11203. <cell multicolumn="2" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  11204. \begin_inset Text
  11205. \begin_layout Plain Layout
  11206. \end_layout
  11207. \end_inset
  11208. </cell>
  11209. <cell multicolumn="2" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  11210. \begin_inset Text
  11211. \begin_layout Plain Layout
  11212. \end_layout
  11213. \end_inset
  11214. </cell>
  11215. </row>
  11216. <row>
  11217. <cell alignment="center" valignment="top" usebox="none">
  11218. \begin_inset Text
  11219. \begin_layout Plain Layout
  11220. \end_layout
  11221. \end_inset
  11222. </cell>
  11223. <cell alignment="center" valignment="top" usebox="none">
  11224. \begin_inset Text
  11225. \begin_layout Plain Layout
  11226. \end_layout
  11227. \end_inset
  11228. </cell>
  11229. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  11230. \begin_inset Text
  11231. \begin_layout Plain Layout
  11232. \series bold
  11233. Up
  11234. \end_layout
  11235. \end_inset
  11236. </cell>
  11237. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  11238. \begin_inset Text
  11239. \begin_layout Plain Layout
  11240. \series bold
  11241. NS
  11242. \end_layout
  11243. \end_inset
  11244. </cell>
  11245. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  11246. \begin_inset Text
  11247. \begin_layout Plain Layout
  11248. \series bold
  11249. Down
  11250. \end_layout
  11251. \end_inset
  11252. </cell>
  11253. </row>
  11254. <row>
  11255. <cell multirow="3" alignment="center" valignment="middle" topline="true" bottomline="true" leftline="true" usebox="none">
  11256. \begin_inset Text
  11257. \begin_layout Plain Layout
  11258. \series bold
  11259. Globin-Blocking
  11260. \end_layout
  11261. \end_inset
  11262. </cell>
  11263. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  11264. \begin_inset Text
  11265. \begin_layout Plain Layout
  11266. \series bold
  11267. Up
  11268. \end_layout
  11269. \end_inset
  11270. </cell>
  11271. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  11272. \begin_inset Text
  11273. \begin_layout Plain Layout
  11274. \family roman
  11275. \series medium
  11276. \shape up
  11277. \size normal
  11278. \emph off
  11279. \bar no
  11280. \strikeout off
  11281. \xout off
  11282. \uuline off
  11283. \uwave off
  11284. \noun off
  11285. \color none
  11286. 231
  11287. \end_layout
  11288. \end_inset
  11289. </cell>
  11290. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  11291. \begin_inset Text
  11292. \begin_layout Plain Layout
  11293. \family roman
  11294. \series medium
  11295. \shape up
  11296. \size normal
  11297. \emph off
  11298. \bar no
  11299. \strikeout off
  11300. \xout off
  11301. \uuline off
  11302. \uwave off
  11303. \noun off
  11304. \color none
  11305. 515
  11306. \end_layout
  11307. \end_inset
  11308. </cell>
  11309. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  11310. \begin_inset Text
  11311. \begin_layout Plain Layout
  11312. \family roman
  11313. \series medium
  11314. \shape up
  11315. \size normal
  11316. \emph off
  11317. \bar no
  11318. \strikeout off
  11319. \xout off
  11320. \uuline off
  11321. \uwave off
  11322. \noun off
  11323. \color none
  11324. 2
  11325. \end_layout
  11326. \end_inset
  11327. </cell>
  11328. </row>
  11329. <row>
  11330. <cell multirow="4" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  11331. \begin_inset Text
  11332. \begin_layout Plain Layout
  11333. \end_layout
  11334. \end_inset
  11335. </cell>
  11336. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  11337. \begin_inset Text
  11338. \begin_layout Plain Layout
  11339. \series bold
  11340. NS
  11341. \end_layout
  11342. \end_inset
  11343. </cell>
  11344. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  11345. \begin_inset Text
  11346. \begin_layout Plain Layout
  11347. \family roman
  11348. \series medium
  11349. \shape up
  11350. \size normal
  11351. \emph off
  11352. \bar no
  11353. \strikeout off
  11354. \xout off
  11355. \uuline off
  11356. \uwave off
  11357. \noun off
  11358. \color none
  11359. 160
  11360. \end_layout
  11361. \end_inset
  11362. </cell>
  11363. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  11364. \begin_inset Text
  11365. \begin_layout Plain Layout
  11366. \family roman
  11367. \series medium
  11368. \shape up
  11369. \size normal
  11370. \emph off
  11371. \bar no
  11372. \strikeout off
  11373. \xout off
  11374. \uuline off
  11375. \uwave off
  11376. \noun off
  11377. \color none
  11378. 11235
  11379. \end_layout
  11380. \end_inset
  11381. </cell>
  11382. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  11383. \begin_inset Text
  11384. \begin_layout Plain Layout
  11385. \family roman
  11386. \series medium
  11387. \shape up
  11388. \size normal
  11389. \emph off
  11390. \bar no
  11391. \strikeout off
  11392. \xout off
  11393. \uuline off
  11394. \uwave off
  11395. \noun off
  11396. \color none
  11397. 136
  11398. \end_layout
  11399. \end_inset
  11400. </cell>
  11401. </row>
  11402. <row>
  11403. <cell multirow="4" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  11404. \begin_inset Text
  11405. \begin_layout Plain Layout
  11406. \end_layout
  11407. \end_inset
  11408. </cell>
  11409. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  11410. \begin_inset Text
  11411. \begin_layout Plain Layout
  11412. \series bold
  11413. Down
  11414. \end_layout
  11415. \end_inset
  11416. </cell>
  11417. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  11418. \begin_inset Text
  11419. \begin_layout Plain Layout
  11420. \family roman
  11421. \series medium
  11422. \shape up
  11423. \size normal
  11424. \emph off
  11425. \bar no
  11426. \strikeout off
  11427. \xout off
  11428. \uuline off
  11429. \uwave off
  11430. \noun off
  11431. \color none
  11432. 0
  11433. \end_layout
  11434. \end_inset
  11435. </cell>
  11436. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  11437. \begin_inset Text
  11438. \begin_layout Plain Layout
  11439. \family roman
  11440. \series medium
  11441. \shape up
  11442. \size normal
  11443. \emph off
  11444. \bar no
  11445. \strikeout off
  11446. \xout off
  11447. \uuline off
  11448. \uwave off
  11449. \noun off
  11450. \color none
  11451. 548
  11452. \end_layout
  11453. \end_inset
  11454. </cell>
  11455. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  11456. \begin_inset Text
  11457. \begin_layout Plain Layout
  11458. \family roman
  11459. \series medium
  11460. \shape up
  11461. \size normal
  11462. \emph off
  11463. \bar no
  11464. \strikeout off
  11465. \xout off
  11466. \uuline off
  11467. \uwave off
  11468. \noun off
  11469. \color none
  11470. 127
  11471. \end_layout
  11472. \end_inset
  11473. </cell>
  11474. </row>
  11475. </lyxtabular>
  11476. \end_inset
  11477. \end_layout
  11478. \begin_layout Plain Layout
  11479. \begin_inset Caption Standard
  11480. \begin_layout Plain Layout
  11481. \series bold
  11482. \begin_inset Argument 1
  11483. status open
  11484. \begin_layout Plain Layout
  11485. Comparison of significantly differentially expressed genes with and without
  11486. globin blocking.
  11487. \end_layout
  11488. \end_inset
  11489. \begin_inset CommandInset label
  11490. LatexCommand label
  11491. name "tab:Comparison-of-significant"
  11492. \end_inset
  11493. Comparison of significantly differentially expressed genes with and without
  11494. globin blocking.
  11495. \series default
  11496. Up, Down: Genes significantly up/down-regulated in post-transplant samples
  11497. relative to pre-transplant samples, with a false discovery rate of 10%
  11498. or less.
  11499. NS: Non-significant genes (false discovery rate greater than 10%).
  11500. \end_layout
  11501. \end_inset
  11502. \end_layout
  11503. \begin_layout Plain Layout
  11504. \end_layout
  11505. \end_inset
  11506. \end_layout
  11507. \begin_layout Standard
  11508. To compare performance on differential gene expression tests, we took subsets
  11509. of both the GB and non-GB libraries with exactly one pre-transplant and
  11510. one post-transplant sample for each animal that had paired samples available
  11511. for analysis (N=7 animals, N=14 samples in each subset).
  11512. The same test for pre- vs.
  11513. post-transplant differential gene expression was performed on the same
  11514. 7 pairs of samples from GB libraries and non-GB libraries, in each case
  11515. using an FDR of 10% as the threshold of significance.
  11516. Out of 12954 genes that passed the detection threshold in both subsets,
  11517. 358 were called significantly differentially expressed in the same direction
  11518. in both sets; 1063 were differentially expressed in the GB set only; 296
  11519. were differentially expressed in the non-GB set only; 2 genes were called
  11520. significantly up in the GB set but significantly down in the non-GB set;
  11521. and the remaining 11235 were not called differentially expressed in either
  11522. set.
  11523. These data are summarized in Table
  11524. \begin_inset CommandInset ref
  11525. LatexCommand ref
  11526. reference "tab:Comparison-of-significant"
  11527. plural "false"
  11528. caps "false"
  11529. noprefix "false"
  11530. \end_inset
  11531. .
  11532. The differences in BCV calculated by EdgeR for these subsets of samples
  11533. were negligible (BCV = 0.302 for GB and 0.297 for non-GB).
  11534. \end_layout
  11535. \begin_layout Standard
  11536. The key point is that the GB data results in substantially more differentially
  11537. expressed calls than the non-GB data.
  11538. Since there is no gold standard for this dataset, it is impossible to be
  11539. certain whether this is due to under-calling of differential expression
  11540. in the non-GB samples or over-calling in the GB samples.
  11541. However, given that both datasets are derived from the same biological
  11542. samples and have nearly equal BCVs, it is more likely that the larger number
  11543. of DE calls in the GB samples are genuine detections that were enabled
  11544. by the higher sequencing depth and measurement precision of the GB samples.
  11545. Note that the same set of genes was considered in both subsets, so the
  11546. larger number of differentially expressed gene calls in the GB data set
  11547. reflects a greater sensitivity to detect significant differential gene
  11548. expression and not simply the larger total number of detected genes in
  11549. GB samples described earlier.
  11550. \end_layout
  11551. \begin_layout Section
  11552. Discussion
  11553. \end_layout
  11554. \begin_layout Standard
  11555. The original experience with whole blood gene expression profiling on DNA
  11556. microarrays demonstrated that the high concentration of globin transcripts
  11557. reduced the sensitivity to detect genes with relatively low expression
  11558. levels, in effect, significantly reducing the sensitivity.
  11559. To address this limitation, commercial protocols for globin reduction were
  11560. developed based on strategies to block globin transcript amplification
  11561. during labeling or physically removing globin transcripts by affinity bead
  11562. methods
  11563. \begin_inset CommandInset citation
  11564. LatexCommand cite
  11565. key "Winn2010"
  11566. literal "false"
  11567. \end_inset
  11568. .
  11569. More recently, using the latest generation of labeling protocols and arrays,
  11570. it was determined that globin reduction was no longer necessary to obtain
  11571. sufficient sensitivity to detect differential transcript expression
  11572. \begin_inset CommandInset citation
  11573. LatexCommand cite
  11574. key "NuGEN2010"
  11575. literal "false"
  11576. \end_inset
  11577. .
  11578. However, we are not aware of any publications using these currently available
  11579. protocols the with latest generation of microarrays that actually compare
  11580. the detection sensitivity with and without globin reduction.
  11581. However, in practice this has now been adopted generally primarily driven
  11582. by concerns for cost control.
  11583. The main objective of our work was to directly test the impact of globin
  11584. gene transcripts and a new globin blocking protocol for application to
  11585. the newest generation of differential gene expression profiling determined
  11586. using next generation sequencing.
  11587. \end_layout
  11588. \begin_layout Standard
  11589. The challenge of doing global gene expression profiling in cynomolgus monkeys
  11590. is that the current available arrays were never designed to comprehensively
  11591. cover this genome and have not been updated since the first assemblies
  11592. of the cynomolgus genome were published.
  11593. Therefore, we determined that the best strategy for peripheral blood profiling
  11594. was to do deep RNA-seq and inform the workflow using the latest available
  11595. genome assembly and annotation
  11596. \begin_inset CommandInset citation
  11597. LatexCommand cite
  11598. key "Wilson2013"
  11599. literal "false"
  11600. \end_inset
  11601. .
  11602. However, it was not immediately clear whether globin reduction was necessary
  11603. for RNA-seq or how much improvement in efficiency or sensitivity to detect
  11604. differential gene expression would be achieved for the added cost and work.
  11605. \end_layout
  11606. \begin_layout Standard
  11607. We only found one report that demonstrated that globin reduction significantly
  11608. improved the effective read yields for sequencing of human peripheral blood
  11609. cell RNA using a DeepSAGE protocol
  11610. \begin_inset CommandInset citation
  11611. LatexCommand cite
  11612. key "Mastrokolias2012"
  11613. literal "false"
  11614. \end_inset
  11615. .
  11616. The approach to DeepSAGE involves two different restriction enzymes that
  11617. purify and then tag small fragments of transcripts at specific locations
  11618. and thus, significantly reduces the complexity of the transcriptome.
  11619. Therefore, we could not determine how DeepSAGE results would translate
  11620. to the common strategy in the field for assaying the entire transcript
  11621. population by whole-transcriptome 3’-end RNA-seq.
  11622. Furthermore, if globin reduction is necessary, we also needed a globin
  11623. reduction method specific to cynomolgus globin sequences that would work
  11624. an organism for which no kit is available off the shelf.
  11625. \end_layout
  11626. \begin_layout Standard
  11627. As mentioned above, the addition of globin blocking oligos has a very small
  11628. impact on measured expression levels of gene expression.
  11629. However, this is a non-issue for the purposes of differential expression
  11630. testing, since a systematic change in a gene in all samples does not affect
  11631. relative expression levels between samples.
  11632. However, we must acknowledge that simple comparisons of gene expression
  11633. data obtained by GB and non-GB protocols are not possible without additional
  11634. normalization.
  11635. \end_layout
  11636. \begin_layout Standard
  11637. More importantly, globin blocking not only nearly doubles the yield of usable
  11638. reads, it also increases inter-sample correlation and sensitivity to detect
  11639. differential gene expression relative to the same set of samples profiled
  11640. without blocking.
  11641. In addition, globin blocking does not add a significant amount of random
  11642. noise to the data.
  11643. Globin blocking thus represents a cost-effective way to squeeze more data
  11644. and statistical power out of the same blood samples and the same amount
  11645. of sequencing.
  11646. In conclusion, globin reduction greatly increases the yield of useful RNA-seq
  11647. reads mapping to the rest of the genome, with minimal perturbations in
  11648. the relative levels of non-globin genes.
  11649. Based on these results, globin transcript reduction using sequence-specific,
  11650. complementary blocking oligonucleotides is recommended for all deep RNA-seq
  11651. of cynomolgus and other nonhuman primate blood samples.
  11652. \end_layout
  11653. \begin_layout Section
  11654. Future Directions
  11655. \end_layout
  11656. \begin_layout Standard
  11657. One drawback of the globin blocking method presented in this analysis is
  11658. a poor yield of genic reads, only around 50%.
  11659. In a separate experiment, the reagent mixture was modified so as to address
  11660. this drawback, resulting in a method that produces an even better reduction
  11661. in globin reads without reducing the overall fraction of genic reads.
  11662. However, the data showing this improvement consists of only a few test
  11663. samples, so the larger data set analyzed above was chosen in order to demonstra
  11664. te the effectiveness of the method in reducing globin reads while preserving
  11665. the biological signal.
  11666. \end_layout
  11667. \begin_layout Standard
  11668. The motivation for developing a fast practical way to enrich for non-globin
  11669. reads in cyno blood samples was to enable a large-scale RNA-seq experiment
  11670. investigating the effects of mesenchymal stem cell infusion on blood gene
  11671. expression in cynomologus transplant recipients in a time course after
  11672. transplantation.
  11673. With the globin blocking method in place, the way is now clear for this
  11674. experiment to proceed.
  11675. \end_layout
  11676. \begin_layout Chapter
  11677. Future Directions
  11678. \end_layout
  11679. \begin_layout Standard
  11680. \begin_inset Flex TODO Note (inline)
  11681. status open
  11682. \begin_layout Plain Layout
  11683. If there are any chapter-independent future directions, put them here.
  11684. Otherwise, delete this section.
  11685. Check in the directions if this is OK.
  11686. \end_layout
  11687. \end_inset
  11688. \end_layout
  11689. \begin_layout Chapter
  11690. Closing remarks
  11691. \end_layout
  11692. \begin_layout Standard
  11693. \begin_inset ERT
  11694. status collapsed
  11695. \begin_layout Plain Layout
  11696. % Use "References" as the title of the Bibliography
  11697. \end_layout
  11698. \begin_layout Plain Layout
  11699. \backslash
  11700. renewcommand{
  11701. \backslash
  11702. bibname}{References}
  11703. \end_layout
  11704. \end_inset
  11705. \end_layout
  11706. \begin_layout Standard
  11707. \begin_inset CommandInset bibtex
  11708. LatexCommand bibtex
  11709. btprint "btPrintCited"
  11710. bibfiles "code-refs,refs-PROCESSED"
  11711. options "bibtotoc,unsrt"
  11712. \end_inset
  11713. \end_layout
  11714. \begin_layout Standard
  11715. \begin_inset Flex TODO Note (inline)
  11716. status open
  11717. \begin_layout Plain Layout
  11718. Check bib entry formatting & sort order
  11719. \end_layout
  11720. \end_inset
  11721. \end_layout
  11722. \begin_layout Standard
  11723. \begin_inset Flex TODO Note (inline)
  11724. status open
  11725. \begin_layout Plain Layout
  11726. Check in-text citation format.
  11727. Probably don't just want [1], [2], etc.
  11728. \end_layout
  11729. \end_inset
  11730. \end_layout
  11731. \end_body
  11732. \end_document