thesis.lyx 94 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002
  1. #LyX 2.3 created this file. For more info see http://www.lyx.org/
  2. \lyxformat 544
  3. \begin_document
  4. \begin_header
  5. \save_transient_properties true
  6. \origin unavailable
  7. \textclass extbook
  8. \begin_preamble
  9. % List all used files in log output
  10. \listfiles
  11. % Add a DRAFT watermark
  12. \usepackage{draftwatermark}
  13. \SetWatermarkLightness{0.97}
  14. \SetWatermarkScale{1}
  15. % Set up required header format
  16. \usepackage{fancyhdr}
  17. \pagestyle{fancy}
  18. \renewcommand{\headrulewidth}{0pt}
  19. \rhead{}
  20. \lhead{}
  21. \rfoot{}
  22. \lfoot{}
  23. \cfoot{\thepage} % Page number bottom center
  24. % https://tex.stackexchange.com/questions/65680/automatically-bold-first-sentence-of-a-floats-caption
  25. \usepackage{xstring}
  26. \usepackage{etoolbox}
  27. \usepackage{caption}
  28. \captionsetup{labelfont=bf,tableposition=top}
  29. \makeatletter
  30. \newcommand\formatlabel[1]{%
  31. \noexpandarg
  32. \IfSubStr{#1}{.}{%
  33. \StrBefore{#1}{.}[\firstcaption]%
  34. \StrBehind{#1}{.}[\secondcaption]%
  35. \textbf{\firstcaption.} \secondcaption}{%
  36. #1}%
  37. }
  38. \patchcmd{\@caption}{#3}{\formatlabel{#3}}
  39. \makeatother
  40. \end_preamble
  41. \use_default_options true
  42. \begin_modules
  43. todonotes
  44. \end_modules
  45. \maintain_unincluded_children false
  46. \language english
  47. \language_package default
  48. \inputencoding utf8
  49. \fontencoding default
  50. \font_roman "default" "default"
  51. \font_sans "default" "default"
  52. \font_typewriter "default" "default"
  53. \font_math "auto" "auto"
  54. \font_default_family default
  55. \use_non_tex_fonts false
  56. \font_sc false
  57. \font_osf false
  58. \font_sf_scale 100 100
  59. \font_tt_scale 100 100
  60. \use_microtype false
  61. \use_dash_ligatures true
  62. \graphics default
  63. \default_output_format pdf4
  64. \output_sync 0
  65. \bibtex_command default
  66. \index_command default
  67. \paperfontsize 12
  68. \spacing double
  69. \use_hyperref true
  70. \pdf_bookmarks true
  71. \pdf_bookmarksnumbered false
  72. \pdf_bookmarksopen false
  73. \pdf_bookmarksopenlevel 1
  74. \pdf_breaklinks false
  75. \pdf_pdfborder false
  76. \pdf_colorlinks false
  77. \pdf_backref false
  78. \pdf_pdfusetitle true
  79. \papersize letterpaper
  80. \use_geometry true
  81. \use_package amsmath 1
  82. \use_package amssymb 1
  83. \use_package cancel 1
  84. \use_package esint 1
  85. \use_package mathdots 1
  86. \use_package mathtools 1
  87. \use_package mhchem 1
  88. \use_package stackrel 1
  89. \use_package stmaryrd 1
  90. \use_package undertilde 1
  91. \cite_engine basic
  92. \cite_engine_type default
  93. \biblio_style plain
  94. \use_bibtopic false
  95. \use_indices false
  96. \paperorientation portrait
  97. \suppress_date false
  98. \justification true
  99. \use_refstyle 1
  100. \use_minted 0
  101. \index Index
  102. \shortcut idx
  103. \color #008000
  104. \end_index
  105. \leftmargin 1.5in
  106. \topmargin 1in
  107. \rightmargin 1in
  108. \bottommargin 1in
  109. \secnumdepth 3
  110. \tocdepth 3
  111. \paragraph_separation indent
  112. \paragraph_indentation default
  113. \is_math_indent 0
  114. \math_numbering_side default
  115. \quotes_style english
  116. \dynamic_quotes 0
  117. \papercolumns 1
  118. \papersides 2
  119. \paperpagestyle default
  120. \tracking_changes false
  121. \output_changes false
  122. \html_math_output 0
  123. \html_css_as_file 0
  124. \html_be_strict false
  125. \end_header
  126. \begin_body
  127. \begin_layout Title
  128. Bioinformatic analysis of complex, high-throughput genomic and epigenomic
  129. data in the context of immunology and transplant rejection
  130. \end_layout
  131. \begin_layout Author
  132. A thesis presented
  133. \begin_inset Newline newline
  134. \end_inset
  135. by
  136. \begin_inset Newline newline
  137. \end_inset
  138. Ryan C.
  139. Thompson
  140. \begin_inset Newline newline
  141. \end_inset
  142. to
  143. \begin_inset Newline newline
  144. \end_inset
  145. The Scripps Research Institute Graduate Program
  146. \begin_inset Newline newline
  147. \end_inset
  148. in partial fulfillment of the requirements for the degree of
  149. \begin_inset Newline newline
  150. \end_inset
  151. Doctor of Philosophy in the subject of Biology
  152. \begin_inset Newline newline
  153. \end_inset
  154. for
  155. \begin_inset Newline newline
  156. \end_inset
  157. The Scripps Research Institute
  158. \begin_inset Newline newline
  159. \end_inset
  160. La Jolla, California
  161. \end_layout
  162. \begin_layout Date
  163. May 2019
  164. \end_layout
  165. \begin_layout Standard
  166. [Copyright notice]
  167. \end_layout
  168. \begin_layout Standard
  169. [Thesis acceptance form]
  170. \end_layout
  171. \begin_layout Standard
  172. [Dedication]
  173. \end_layout
  174. \begin_layout Standard
  175. [Acknowledgements]
  176. \end_layout
  177. \begin_layout Standard
  178. \begin_inset CommandInset toc
  179. LatexCommand tableofcontents
  180. \end_inset
  181. \end_layout
  182. \begin_layout Standard
  183. \begin_inset FloatList table
  184. \end_inset
  185. \end_layout
  186. \begin_layout Standard
  187. \begin_inset FloatList figure
  188. \end_inset
  189. \end_layout
  190. \begin_layout Standard
  191. [List of Abbreviations]
  192. \end_layout
  193. \begin_layout Standard
  194. \begin_inset Flex TODO Note (inline)
  195. status open
  196. \begin_layout Plain Layout
  197. Look into auto-generated nomenclature list: https://wiki.lyx.org/Tips/Nomenclature
  198. \end_layout
  199. \end_inset
  200. \end_layout
  201. \begin_layout List of TODOs
  202. \end_layout
  203. \begin_layout Standard
  204. [Abstract]
  205. \end_layout
  206. \begin_layout Chapter*
  207. Abstract
  208. \end_layout
  209. \begin_layout Chapter
  210. Introduction
  211. \end_layout
  212. \begin_layout Section
  213. Background & Significance
  214. \end_layout
  215. \begin_layout Subsection
  216. Biological motivation
  217. \end_layout
  218. \begin_layout Itemize
  219. Rejection is the major long-term threat to organ and tissue grafts
  220. \end_layout
  221. \begin_deeper
  222. \begin_layout Itemize
  223. Common mechanisms of rejection
  224. \end_layout
  225. \begin_layout Itemize
  226. Effective immune suppression requires monitoring for rejection and tuning
  227. \end_layout
  228. \begin_layout Itemize
  229. Current tests for rejection (tissue biopsy) are invasive and biased
  230. \end_layout
  231. \begin_layout Itemize
  232. A blood test based on microarrays would be less biased and invasive
  233. \end_layout
  234. \end_deeper
  235. \begin_layout Itemize
  236. Memory cells are resistant to immune suppression
  237. \end_layout
  238. \begin_deeper
  239. \begin_layout Itemize
  240. Mechanisms of resistance in memory cells are poorly understood
  241. \end_layout
  242. \begin_layout Itemize
  243. A better understanding of immune memory formation is needed
  244. \end_layout
  245. \end_deeper
  246. \begin_layout Itemize
  247. Mesenchymal stem cell infusion is a promising new treatment to prevent/delay
  248. rejection
  249. \end_layout
  250. \begin_deeper
  251. \begin_layout Itemize
  252. Demonstrated in mice, but not yet in primates
  253. \end_layout
  254. \begin_layout Itemize
  255. Mechanism currently unknown, but MSC are known to be immune modulatory
  256. \end_layout
  257. \end_deeper
  258. \begin_layout Subsection
  259. Overview of bioinformatic analysis methods
  260. \end_layout
  261. \begin_layout Standard
  262. An overview of all the methods used, including what problem they solve,
  263. what assumptions they make, and a basic description of how they work.
  264. \end_layout
  265. \begin_layout Itemize
  266. ChIP-seq Peak calling
  267. \end_layout
  268. \begin_deeper
  269. \begin_layout Itemize
  270. Cross-correlation analysis to determine fragment size
  271. \end_layout
  272. \begin_layout Itemize
  273. Broad vs narrow peaks
  274. \end_layout
  275. \begin_layout Itemize
  276. SICER for broad peaks
  277. \end_layout
  278. \begin_layout Itemize
  279. IDR for biologically reproducible peaks
  280. \end_layout
  281. \begin_layout Itemize
  282. csaw peak filtering guidelines for unbiased downstream analysis
  283. \end_layout
  284. \end_deeper
  285. \begin_layout Itemize
  286. Normalization is non-trivial and application-dependant
  287. \end_layout
  288. \begin_deeper
  289. \begin_layout Itemize
  290. Expression arrays: RMA & fRMA; why fRMA is needed
  291. \end_layout
  292. \begin_layout Itemize
  293. Methylation arrays: M-value transformation approximates normal data but
  294. induces heteroskedasticity
  295. \end_layout
  296. \begin_layout Itemize
  297. RNA-seq: normalize based on assumption that the average gene is not changing
  298. \end_layout
  299. \begin_layout Itemize
  300. ChIP-seq: complex with many considerations, dependent on experimental methods,
  301. biological system, and analysis goals
  302. \end_layout
  303. \end_deeper
  304. \begin_layout Itemize
  305. Limma: The standard linear modeling framework for genomics
  306. \end_layout
  307. \begin_deeper
  308. \begin_layout Itemize
  309. empirical Bayes variance modeling: limma's core feature
  310. \end_layout
  311. \begin_layout Itemize
  312. edgeR & DESeq2: Extend with negative bonomial GLM for RNA-seq and other
  313. count data
  314. \end_layout
  315. \begin_layout Itemize
  316. voom: Extend with precision weights to model mean-variance trend
  317. \end_layout
  318. \begin_layout Itemize
  319. arrayWeights and duplicateCorrelation to handle complex variance structures
  320. \end_layout
  321. \end_deeper
  322. \begin_layout Itemize
  323. sva and ComBat for batch correction
  324. \end_layout
  325. \begin_layout Itemize
  326. Factor analysis: PCA, MDS, MOFA
  327. \end_layout
  328. \begin_deeper
  329. \begin_layout Itemize
  330. Batch-corrected PCA is informative, but careful application is required
  331. to avoid bias
  332. \end_layout
  333. \end_deeper
  334. \begin_layout Itemize
  335. Gene set analysis: camera and SPIA
  336. \end_layout
  337. \begin_layout Section
  338. Innovation
  339. \end_layout
  340. \begin_layout Itemize
  341. MSC infusion to improve transplant outcomes (prevent/delay rejection)
  342. \end_layout
  343. \begin_deeper
  344. \begin_layout Itemize
  345. Characterize MSC response to interferon gamma
  346. \end_layout
  347. \begin_layout Itemize
  348. IFN-g is thought to stimulate their function
  349. \end_layout
  350. \begin_layout Itemize
  351. Test IFN-g treated MSC infusion as a therapy to delay graft rejection in
  352. cynomolgus monkeys
  353. \end_layout
  354. \begin_layout Itemize
  355. Monitor animals post-transplant using blood RNA-seq at serial time points
  356. \end_layout
  357. \end_deeper
  358. \begin_layout Itemize
  359. Investigate dynamics of histone marks in CD4 T-cell activation and memory
  360. \end_layout
  361. \begin_deeper
  362. \begin_layout Itemize
  363. Previous studies have looked at single snapshots of histone marks
  364. \end_layout
  365. \begin_layout Itemize
  366. Instead, look at changes in histone marks across activation and memory
  367. \end_layout
  368. \end_deeper
  369. \begin_layout Itemize
  370. High-throughput sequencing and microarray technologies
  371. \end_layout
  372. \begin_deeper
  373. \begin_layout Itemize
  374. Powerful methods for assaying gene expression and epigenetics across entire
  375. genomes
  376. \end_layout
  377. \begin_layout Itemize
  378. Proper analysis requires finding and exploiting systematic genome-wide trends
  379. \end_layout
  380. \end_deeper
  381. \begin_layout Chapter
  382. Reproducible genome-wide epigenetic analysis of H3K4 and H3K27 methylation
  383. in naive and memory CD4 T-cell activation
  384. \end_layout
  385. \begin_layout Standard
  386. \begin_inset Flex TODO Note (inline)
  387. status open
  388. \begin_layout Plain Layout
  389. Author list: Me, Sarah, Dan
  390. \end_layout
  391. \end_inset
  392. \end_layout
  393. \begin_layout Section
  394. Approach
  395. \end_layout
  396. \begin_layout Itemize
  397. CD4 T-cells are central to all adaptive immune responses and memory
  398. \end_layout
  399. \begin_layout Itemize
  400. H3K4 and H3K27 methylation are major epigenetic regulators of gene expression
  401. \end_layout
  402. \begin_layout Itemize
  403. Canonically, H3K4 is activating and H3K27 is inhibitory, but the reality
  404. is complex
  405. \end_layout
  406. \begin_layout Itemize
  407. Looking at these marks during CD4 activation and memory should reveal new
  408. mechanistic details
  409. \end_layout
  410. \begin_layout Itemize
  411. Test
  412. \begin_inset Quotes eld
  413. \end_inset
  414. poised promoter
  415. \begin_inset Quotes erd
  416. \end_inset
  417. hypothesis in which H3K4 and H3K27 are both methylated
  418. \end_layout
  419. \begin_layout Itemize
  420. Expand scope of analysis beyond simple promoter counts
  421. \end_layout
  422. \begin_deeper
  423. \begin_layout Itemize
  424. Analyze peaks genome-wide, including in intergenic regions
  425. \end_layout
  426. \begin_layout Itemize
  427. Analysis of coverage distribution shape within promoters, e.g.
  428. upstream vs downstream coverage
  429. \end_layout
  430. \end_deeper
  431. \begin_layout Section
  432. Methods
  433. \end_layout
  434. \begin_layout Itemize
  435. Re-analyze previously published CD4 ChIP-seq & RNA-seq data
  436. \begin_inset CommandInset citation
  437. LatexCommand cite
  438. key "LaMere2016,Lamere2017"
  439. literal "true"
  440. \end_inset
  441. \end_layout
  442. \begin_deeper
  443. \begin_layout Itemize
  444. Completely reimplement analysis from scratch as a reproducible workflow
  445. \end_layout
  446. \begin_layout Itemize
  447. Use newly published methods & algorithms not available during the original
  448. analysis: SICER, csaw, MOFA, ComBat, sva, GREAT, and more
  449. \end_layout
  450. \end_deeper
  451. \begin_layout Itemize
  452. SICER, IDR, csaw, & GREAT to call ChIP-seq peaks genome-wide, perform differenti
  453. al abundance analysis, and relate those peaks to gene expression
  454. \end_layout
  455. \begin_layout Itemize
  456. Promoter counts in sliding windows around each gene's highest-expressed
  457. TSS to investigate coverage distribution within promoters
  458. \end_layout
  459. \begin_layout Section
  460. Results
  461. \end_layout
  462. \begin_layout Standard
  463. \begin_inset Note Note
  464. status open
  465. \begin_layout Plain Layout
  466. Focus on what hypotheses were tested, then select figures that show how
  467. those hypotheses were tested, even if the result is a negative.
  468. \end_layout
  469. \end_inset
  470. \end_layout
  471. \begin_layout Subsection
  472. H3K4 and H3K27 methylation occur in broad regions and are enriched near
  473. promoters
  474. \end_layout
  475. \begin_layout Itemize
  476. Figures comparing MACS (non-broad peak caller) to SICER/epic (broad peak
  477. caller)
  478. \end_layout
  479. \begin_deeper
  480. \begin_layout Itemize
  481. Compare peak sizes and number of called peaks
  482. \end_layout
  483. \begin_layout Itemize
  484. Show representative IDR consistency plots for both
  485. \end_layout
  486. \end_deeper
  487. \begin_layout Itemize
  488. IDR analysis shows that SICER-called peaks are much more reproducible between
  489. biological replicates
  490. \end_layout
  491. \begin_layout Itemize
  492. Each histone mark is enriched within a certain radius of gene TSS positions,
  493. but that radius is different for each mark (figure)
  494. \end_layout
  495. \begin_layout Subsection
  496. RNA-seq has a large confounding batch effect
  497. \end_layout
  498. \begin_layout Itemize
  499. RNA-seq batch effect can be partially corrected, but still induces uncorrectable
  500. biases in downstream analysis
  501. \end_layout
  502. \begin_deeper
  503. \begin_layout Itemize
  504. Figure showing MDS plot before & after ComBat
  505. \end_layout
  506. \begin_layout Itemize
  507. Figure relating sample weights to batches, cell types, time points, etc.,
  508. showing that one batch is significantly worse quality
  509. \end_layout
  510. \begin_layout Itemize
  511. Figures showing p-value histograms for within-batch and cross-batch contrasts,
  512. showing that cross-batch contrasts have attenuated signal, as do comparisons
  513. within the bad batch
  514. \end_layout
  515. \end_deeper
  516. \begin_layout Subsection
  517. ChIP-seq must be corrected for hidden confounding factors
  518. \end_layout
  519. \begin_layout Itemize
  520. Figures showing pre- and post-SVA MDS plots for each histone mark
  521. \end_layout
  522. \begin_layout Itemize
  523. Figures showing BCV plots with and without SVA for each histone mark
  524. \end_layout
  525. \begin_layout Subsection
  526. H3K4 and H3K27 promoter methylation has broadly the expected correlation
  527. with gene expression
  528. \end_layout
  529. \begin_layout Itemize
  530. H3K4 is correlated with higher expression, and H3K27 is correlated with
  531. lower expression genome-wide
  532. \end_layout
  533. \begin_layout Itemize
  534. Figures showing these correlations: box/violin plots of expression distributions
  535. with every combination of peak presence/absence in promoter
  536. \end_layout
  537. \begin_layout Itemize
  538. Appropriate statistical tests showing significant differences in expected
  539. directions
  540. \end_layout
  541. \begin_layout Subsection
  542. MOFA recovers biologically relevant variation from blind analysis by correlating
  543. across datasets
  544. \end_layout
  545. \begin_layout Itemize
  546. MOFA
  547. \begin_inset CommandInset citation
  548. LatexCommand cite
  549. key "Argelaguet2018"
  550. literal "false"
  551. \end_inset
  552. successfully separates biologically relevant patterns of variation from
  553. technical confounding factors without knowing the sample labels, by finding
  554. latent factors that explain variation across multiple data sets.
  555. \end_layout
  556. \begin_deeper
  557. \begin_layout Itemize
  558. Figure: show percent-variance-explained plot from MOFA and PCA-like plots
  559. for the relevant latent factors
  560. \end_layout
  561. \begin_layout Itemize
  562. MOFA analysis also shows that batch effect correction can't get much better
  563. than it already is (Figure comparing blind MOFA batch correction to ComBat
  564. correction)
  565. \end_layout
  566. \end_deeper
  567. \begin_layout Subsection
  568. Naive-to-memory convergence observed in H3K4 and RNA-seq data, not in H3K27me3
  569. \end_layout
  570. \begin_layout Itemize
  571. H3K4 and RNA-seq data show clear evidence of naive convergence with memory
  572. between days 1 and 5 (MDS plot figure, also compare with last figure from
  573. \begin_inset CommandInset citation
  574. LatexCommand cite
  575. key "LaMere2016"
  576. literal "false"
  577. \end_inset
  578. )
  579. \end_layout
  580. \begin_layout Standard
  581. \begin_inset Flex TODO Note (inline)
  582. status open
  583. \begin_layout Plain Layout
  584. Get explicit permission from Sarah to include the figure
  585. \end_layout
  586. \end_inset
  587. \end_layout
  588. \begin_layout Itemize
  589. Table of numbers of genes different between N & M at each time point, showing
  590. dwindling differences at later time points, consistent with convergence
  591. \end_layout
  592. \begin_layout Itemize
  593. Similar figure for H3K27me3 showing lack of convergence
  594. \end_layout
  595. \begin_layout Subsection
  596. Effect of promoter coverage upstream vs downstream of TSS
  597. \end_layout
  598. \begin_layout Itemize
  599. H3K4me peaks seem to correlate with increased expression as long as they
  600. are anywhere near the TSS
  601. \end_layout
  602. \begin_layout Itemize
  603. H3K27me3 peaks can have different correlations to gene expression depending
  604. on their position relative to TSS (e.g.
  605. upstream vs downstream) Results consistent with
  606. \begin_inset CommandInset citation
  607. LatexCommand cite
  608. key "Young2011"
  609. literal "false"
  610. \end_inset
  611. \end_layout
  612. \begin_layout Section
  613. Discussion
  614. \end_layout
  615. \begin_layout Itemize
  616. "Promoter radius" is not constant and must be defined empirically for a
  617. given data set
  618. \end_layout
  619. \begin_layout Itemize
  620. MOFA shows great promise for accelerating discovery of major biological
  621. effects in multi-omics datasets
  622. \end_layout
  623. \begin_deeper
  624. \begin_layout Itemize
  625. MOFA was added to this analysis late and played primarily a confirmatory
  626. role, but it was able to confirm earlier conclusions with much less prior
  627. information (no sample labels) and much less analyst effort
  628. \end_layout
  629. \begin_layout Itemize
  630. MOFA confirmed that the already-implemented batch correction in the RNA-seq
  631. data was already performing as well as possible given the limitations of
  632. the data
  633. \end_layout
  634. \end_deeper
  635. \begin_layout Itemize
  636. Naive-to-memory convergence implies that naive cells are differentiating
  637. into memory cells, and that gene expression and H3K4 methylation are involved
  638. in this differentiation while H3K27me3 is less involved
  639. \end_layout
  640. \begin_layout Itemize
  641. H3K27me3, canonically regarded as a deactivating mark, seems to have a more
  642. complex
  643. \end_layout
  644. \begin_layout Itemize
  645. Discuss advantages of developing using a reproducible workflow
  646. \end_layout
  647. \begin_layout Chapter
  648. Improving array-based analyses of transplant rejection by optimizing data
  649. preprocessing
  650. \end_layout
  651. \begin_layout Standard
  652. \begin_inset Note Note
  653. status open
  654. \begin_layout Plain Layout
  655. Author list: Me, Sunil, Tom, Padma, Dan
  656. \end_layout
  657. \end_inset
  658. \end_layout
  659. \begin_layout Section
  660. Approach
  661. \end_layout
  662. \begin_layout Subsection
  663. Frozen RMA for clinical microarray classifiers
  664. \end_layout
  665. \begin_layout Subsubsection
  666. Standard normalization methods are unsuitable for clinical application
  667. \end_layout
  668. \begin_layout Standard
  669. As the cost of performing microarray assays falls, there is increasing interest
  670. in using genomic assays for diagnostic purposes, such as distinguishing
  671. healthy transplants (TX) from transplants undergoing acute rejection (AR)
  672. or acute dysfunction with no rejection (ADNR).
  673. However, the the standard normalization algorithm used for microarray data,
  674. Robust Multi-chip Average (RMA)
  675. \begin_inset CommandInset citation
  676. LatexCommand cite
  677. key "Irizarry2003a"
  678. literal "false"
  679. \end_inset
  680. , is not applicable in a clinical setting.
  681. Two of the steps in RMA, quantile normalization and probe summarization
  682. by median polish, depend on every array in the data set being normalized.
  683. This means that adding or removing any arrays from a data set changes the
  684. normalized values for all arrays, and data sets that have been normalized
  685. separately cannot be compared to each other.
  686. Hence, when using RMA, any arrays to be analyzed together must also be
  687. normalized together, and the set of arrays included in the data set must
  688. be held constant throughout an analysis.
  689. \end_layout
  690. \begin_layout Standard
  691. These limitations present serious impediments to the use of arrays as a
  692. diagnostic tool.
  693. When training a classifier, the samples to be classified must not be involved
  694. in any step of the training process, lest their inclusion bias the training
  695. process.
  696. Once a classifier is deployed in a clinical setting, the samples to be
  697. classified will not even
  698. \emph on
  699. exist
  700. \emph default
  701. at the time of training, so including them would be impossible even if
  702. it were statistically justifiable.
  703. Therefore, any machine learning application for microarrays demands that
  704. the normalized expression values computed for an array must depend only
  705. on information contained within that array.
  706. This would ensure that each array's normalization is independent of every
  707. other array, and that arrays normalized separately can still be compared
  708. to each other without bias.
  709. \end_layout
  710. \begin_layout Subsubsection
  711. Frozen RMA satisfies clinical normalization requirements
  712. \end_layout
  713. \begin_layout Standard
  714. Frozen RMA (fRMA) addresses these concerns by replacing the quantile normalizati
  715. on and median polish with alternatives that do not introduce inter-array
  716. dependence, allowing each array to be normalized independently of all others
  717. \begin_inset CommandInset citation
  718. LatexCommand cite
  719. key "McCall2010"
  720. literal "false"
  721. \end_inset
  722. .
  723. Quantile normalization is performed against a pre-generated set of quantiles
  724. learned from a collection of 850 publically available arrays sampled from
  725. a wide variety of tissues in the Gene Expression Omnibus (GEO).
  726. Each array's probe intensity distribution is normalized against these pre-gener
  727. ated quantiles.
  728. The median polish step is replaced with a robust weighted average of probe
  729. intensities, using inverse variance weights learned from the same public
  730. GEO data.
  731. The result is a normalization that satisfies the requirements mentioned
  732. above: each array is normalized independently of all others, and any two
  733. normalized arrays can be compared directly to each other.
  734. \end_layout
  735. \begin_layout Standard
  736. One important limitation of fRMA is that it requires a separate reference
  737. data set from which to learn the parameters (reference quantiles and probe
  738. weights) that will be used to normalize each array.
  739. These parameters are specific to a given array platform, and pre-generated
  740. parameters are only provided for the most common platforms, such as Affymetrix
  741. hgu133plus2.
  742. For a less common platform, is is necessary to learn custom parameters
  743. from in-house data before fRMA can be used to normalize samples on that
  744. platform
  745. \begin_inset CommandInset citation
  746. LatexCommand cite
  747. key "HudsonK.&RemediosC.2010"
  748. literal "false"
  749. \end_inset
  750. .
  751. \end_layout
  752. \begin_layout Subsection
  753. Adapting voom to model heteroskedasticity in methylation array data
  754. \end_layout
  755. \begin_layout Subsubsection
  756. Methylation array preprocessing induces heteroskedasticity
  757. \end_layout
  758. \begin_layout Standard
  759. DNA methylation arrays are a relatively new kind of assay that uses microarrays
  760. to measure the degree of methylation on cytosines in specific regions arrayed
  761. across the genome.
  762. First, bisulfite treatment converts all unmethylated cytosines to uracil
  763. (which then become thymine after amplication) while leaving methylated
  764. cytosines unaffected.
  765. Then, each target region is interrogated with two probes: one binds to
  766. the original genomic sequence and interrogates the level of methylated
  767. DNA, and the other binds to the sequence with all Cs replaced by Ts and
  768. interrogates the level of unmethylated DNA.
  769. \end_layout
  770. \begin_layout Standard
  771. \begin_inset Float figure
  772. wide false
  773. sideways false
  774. status collapsed
  775. \begin_layout Plain Layout
  776. \begin_inset Graphics
  777. filename graphics/methylvoom/sigmoid.pdf
  778. \end_inset
  779. \end_layout
  780. \begin_layout Plain Layout
  781. \begin_inset Caption Standard
  782. \begin_layout Plain Layout
  783. \begin_inset CommandInset label
  784. LatexCommand label
  785. name "fig:Sigmoid-beta-m-mapping"
  786. \end_inset
  787. \series bold
  788. Sigmoid shape of the mapping between β and M values
  789. \end_layout
  790. \end_inset
  791. \end_layout
  792. \end_inset
  793. \end_layout
  794. \begin_layout Standard
  795. After normalization, these two probe intensities are summarized in one of
  796. two ways, each with advantages and disadvantages.
  797. β
  798. \series bold
  799. \series default
  800. values, interpreted as fraction of DNA copies methylated, range from 0 to
  801. 1.
  802. β
  803. \series bold
  804. \series default
  805. values are conceptually easy to interpret, but the constrained range makes
  806. them unsuitable for linear modeling, and their error distributions are
  807. highly non-normal, which also frustrates linear modeling.
  808. M-values, interpreted as the log ratio of methylated to unmethylated copies,
  809. are computed by mapping the beta values from
  810. \begin_inset Formula $[0,1]$
  811. \end_inset
  812. onto
  813. \begin_inset Formula $(-\infty,+\infty)$
  814. \end_inset
  815. using a sigmoid curve (Figure
  816. \begin_inset CommandInset ref
  817. LatexCommand ref
  818. reference "fig:Sigmoid-beta-m-mapping"
  819. plural "false"
  820. caps "false"
  821. noprefix "false"
  822. \end_inset
  823. ).
  824. This transformation results in values with better statistical perperties:
  825. the unconstrained range is suitable for linear modeling, and the error
  826. distributions are more normal.
  827. Hence, most linear modeling and other statistical testing on methylation
  828. arrays is performed using M-values.
  829. \end_layout
  830. \begin_layout Standard
  831. However, the steep slope of the sigmoid transformation near 0 and 1 tends
  832. to over-exaggerate small differences in β values near those extremes, which
  833. in turn amplifies the error in those values, leading to a U-shaped trend
  834. in the mean-variance curve.
  835. This mean-variance dependency must be accounted for when fitting the linear
  836. model for differential methylation, or else the variance will be systematically
  837. overestimated for probes with moderate M-values and underestimated for
  838. probes with extreme M-values.
  839. \end_layout
  840. \begin_layout Subsubsection
  841. The voom method for RNA-seq data can model this heteroskedasticity
  842. \end_layout
  843. \begin_layout Standard
  844. RNA-seq read count data are also known to show heteroskedasticity, and the
  845. voom method was developed for modeling this heteroskedasticity by estimating
  846. the mean-variance trend in the data and using this trend to assign precision
  847. weights to each observation
  848. \begin_inset CommandInset citation
  849. LatexCommand cite
  850. key "Law2013"
  851. literal "false"
  852. \end_inset
  853. .
  854. While methylation array data are not derived from counts and the mean-variance
  855. trend in M-values has a different shape than that of RNA-seq count data,
  856. the voom method is sufficiently general to model any smooth mean-variance
  857. trend, so is applicable to M-values from methylation array data.
  858. However, some implementation details of the method must be adapted to allow
  859. voom to accept M-values rather than read counts as input.
  860. \end_layout
  861. \begin_layout Standard
  862. \begin_inset Flex TODO Note (inline)
  863. status open
  864. \begin_layout Plain Layout
  865. Put code on Github and reference it
  866. \end_layout
  867. \end_inset
  868. \end_layout
  869. \begin_layout Section
  870. Methods
  871. \end_layout
  872. \begin_layout Subsection
  873. fRMA
  874. \end_layout
  875. \begin_layout Itemize
  876. Expression array normalization for detecting acute rejection
  877. \end_layout
  878. \begin_layout Itemize
  879. Use frozen RMA, a single-channel variant of RMA
  880. \end_layout
  881. \begin_layout Itemize
  882. Generate custom fRMA normalization vectors for each tissue (biopsy, blood)
  883. \end_layout
  884. \begin_layout Subsubsection
  885. Methylation arrays
  886. \end_layout
  887. \begin_layout Itemize
  888. Methylation arrays for differential methylation in rejection vs.
  889. healthy transplant
  890. \end_layout
  891. \begin_layout Itemize
  892. Adapt voom method originally designed for RNA-seq to model mean-variance
  893. dependence
  894. \end_layout
  895. \begin_layout Itemize
  896. Use sample precision weighting, duplicateCorrelation, and sva to adjust
  897. for other confounding factors
  898. \end_layout
  899. \begin_layout Section
  900. Results
  901. \end_layout
  902. \begin_layout Standard
  903. \begin_inset Flex TODO Note (inline)
  904. status open
  905. \begin_layout Plain Layout
  906. Improve subsection titles in this section
  907. \end_layout
  908. \end_inset
  909. \end_layout
  910. \begin_layout Subsection
  911. fRMA eliminates unwanted dependence of classifier training on normalization
  912. strategy caused by RMA
  913. \end_layout
  914. \begin_layout Subsubsection
  915. Separate normalization with RMA introduces unwanted biases in classification
  916. \end_layout
  917. \begin_layout Standard
  918. \begin_inset Float figure
  919. wide false
  920. sideways false
  921. status collapsed
  922. \begin_layout Plain Layout
  923. \begin_inset Graphics
  924. filename graphics/PAM/predplot.pdf
  925. \end_inset
  926. \end_layout
  927. \begin_layout Plain Layout
  928. \begin_inset Caption Standard
  929. \begin_layout Plain Layout
  930. \begin_inset CommandInset label
  931. LatexCommand label
  932. name "fig:Classifier-probabilities-RMA"
  933. \end_inset
  934. \series bold
  935. Classifier probabilities on validation samples when normalized with RMA
  936. together vs.
  937. separately.
  938. \end_layout
  939. \end_inset
  940. \end_layout
  941. \end_inset
  942. \end_layout
  943. \begin_layout Standard
  944. The initial data set for testing fRMA consisted of 157 hgu133plus2 arrays,
  945. split into a training set (23 TX, 35 AR, 21 ADNR) and a validation set
  946. (23 TX, 34 AR, 21 ADNR), along with an external validation set gathered
  947. from public GEO data (37 TX, 38 AR, no ADNR), all on standard hgu133plus2
  948. Affy arrays
  949. \begin_inset CommandInset citation
  950. LatexCommand cite
  951. key "Kurian2014"
  952. literal "true"
  953. \end_inset
  954. .
  955. \begin_inset Flex TODO Note (inline)
  956. status open
  957. \begin_layout Plain Layout
  958. Find out if PAX or BX
  959. \end_layout
  960. \end_inset
  961. To demonstrate the problem, we considered the problem of training a classifier
  962. to distinguish TX from AR using the TX and AR samples from the training
  963. set and validation set as training data, evaluating performance on the
  964. external validation set.
  965. First, training and evaluation were performed after normalizing all array
  966. samples together as a single set using RMA, and second, the internal samples
  967. were normalized separately from the external samples and the training and
  968. evaluation were repeated.
  969. For each sample in the validation set, the classifier probabilities from
  970. both classifiers were plotted against each other (Fig.
  971. \begin_inset CommandInset ref
  972. LatexCommand ref
  973. reference "fig:Classifier-probabilities-RMA"
  974. plural "false"
  975. caps "false"
  976. noprefix "false"
  977. \end_inset
  978. ).
  979. As expected, separate normalization biases the classifier probabilities,
  980. resulting in several misclassifications.
  981. In this case, the bias from separate normalization causes the classifier
  982. to assign a lower probability of AR to every sample.
  983. Because it is not feasible to normalize all samples together in a clinical
  984. context, this shows that an alternative to RMA is required.
  985. \end_layout
  986. \begin_layout Subsubsection
  987. fRMA achieves equal classification performance while eliminating dependence
  988. on normalization strategy
  989. \end_layout
  990. \begin_layout Standard
  991. \begin_inset Flex TODO Note (inline)
  992. status open
  993. \begin_layout Plain Layout
  994. Figure of ROC curves for each of RMA together, RMA separate, fRMA
  995. \end_layout
  996. \end_inset
  997. \end_layout
  998. \begin_layout Itemize
  999. fRMA eliminates this issue by normalizing each sample independently to the
  1000. same quantile distribution and summarizing probes using the same weights.
  1001. \end_layout
  1002. \begin_layout Itemize
  1003. Classifier performance on validation set is identical for
  1004. \begin_inset Quotes eld
  1005. \end_inset
  1006. RMA together
  1007. \begin_inset Quotes erd
  1008. \end_inset
  1009. and fRMA, so switching to clinically applicable normalization does not
  1010. sacrifice accuracy
  1011. \end_layout
  1012. \begin_layout Standard
  1013. \begin_inset Flex TODO Note (inline)
  1014. status open
  1015. \begin_layout Plain Layout
  1016. Check the published paper for any other possibly relevant figures to include
  1017. here.
  1018. \end_layout
  1019. \end_inset
  1020. \end_layout
  1021. \begin_layout Subsection
  1022. fRMA with custom-generated vectors
  1023. \end_layout
  1024. \begin_layout Itemize
  1025. Non-standard platform hthgu133pluspm - no pre-built fRMA vectors available,
  1026. so custom vectors must be learned from in-house data
  1027. \end_layout
  1028. \begin_layout Standard
  1029. \begin_inset Float figure
  1030. wide false
  1031. sideways false
  1032. status open
  1033. \begin_layout Plain Layout
  1034. \begin_inset Float figure
  1035. wide false
  1036. sideways false
  1037. status open
  1038. \begin_layout Plain Layout
  1039. \begin_inset Graphics
  1040. filename graphics/frma-pax-bx/batchsize_batches.pdf
  1041. \end_inset
  1042. \end_layout
  1043. \begin_layout Plain Layout
  1044. \begin_inset Caption Standard
  1045. \begin_layout Plain Layout
  1046. Number of batches included as a function of batch size
  1047. \end_layout
  1048. \end_inset
  1049. \end_layout
  1050. \begin_layout Plain Layout
  1051. \end_layout
  1052. \end_inset
  1053. \end_layout
  1054. \begin_layout Plain Layout
  1055. \begin_inset Float figure
  1056. wide false
  1057. sideways false
  1058. status open
  1059. \begin_layout Plain Layout
  1060. \begin_inset Graphics
  1061. filename graphics/frma-pax-bx/batchsize_samples.pdf
  1062. \end_inset
  1063. \end_layout
  1064. \begin_layout Plain Layout
  1065. \begin_inset Caption Standard
  1066. \begin_layout Plain Layout
  1067. Number of samples included as a function of batch size
  1068. \end_layout
  1069. \end_inset
  1070. \end_layout
  1071. \begin_layout Plain Layout
  1072. \end_layout
  1073. \end_inset
  1074. \end_layout
  1075. \begin_layout Plain Layout
  1076. \begin_inset Caption Standard
  1077. \begin_layout Plain Layout
  1078. Effect of batch size selection on number of batches and number of samples
  1079. included in fRMA probe weight learning
  1080. \end_layout
  1081. \end_inset
  1082. \end_layout
  1083. \begin_layout Plain Layout
  1084. \end_layout
  1085. \end_inset
  1086. \end_layout
  1087. \begin_layout Itemize
  1088. Large body of data available for training fRMA: 341 kidney graft biopsy
  1089. samples, 965 blood samples from graft recipients
  1090. \end_layout
  1091. \begin_deeper
  1092. \begin_layout Itemize
  1093. But not all samples can be used (see trade-off figure)
  1094. \end_layout
  1095. \begin_layout Itemize
  1096. Figure showing trade-off between more samples per group and fewer groups
  1097. with that may samples, to justify choice of number of samples per group
  1098. \end_layout
  1099. \begin_layout Itemize
  1100. pre-generated normalization vectors use ~850 samples
  1101. \begin_inset Flex TODO Note (Margin)
  1102. status collapsed
  1103. \begin_layout Plain Layout
  1104. Look up the exact numbers
  1105. \end_layout
  1106. \end_inset
  1107. \begin_inset CommandInset citation
  1108. LatexCommand cite
  1109. key "McCall2010"
  1110. literal "false"
  1111. \end_inset
  1112. , but are designed to be general across all tissues.
  1113. The samples we have are suitable for tissue-specific normalization vectors.
  1114. \end_layout
  1115. \end_deeper
  1116. \begin_layout Itemize
  1117. Figure: MA plot, RMA vs fRMA, to show that the normalization is appreciably
  1118. and non-linearly different
  1119. \end_layout
  1120. \begin_layout Itemize
  1121. Figure MA plot, fRMA vs fRMA with different randomly-chosen sample subsets
  1122. to show consistency
  1123. \end_layout
  1124. \begin_layout Itemize
  1125. custom fRMA normalization improved cross-validated classifier performance
  1126. \end_layout
  1127. \begin_layout Standard
  1128. \begin_inset Flex TODO Note (inline)
  1129. status open
  1130. \begin_layout Plain Layout
  1131. Get a figure from Tom showing classifier performance improvement (compared
  1132. to all-sample RMA, I guess?), if possible
  1133. \end_layout
  1134. \end_inset
  1135. \end_layout
  1136. \begin_layout Subsection
  1137. Adapting voom to methylation array data improves model fit
  1138. \end_layout
  1139. \begin_layout Itemize
  1140. voom, precision weights, and sva improved model fit
  1141. \end_layout
  1142. \begin_deeper
  1143. \begin_layout Itemize
  1144. Also increased sensitivity for detecting differential methylation
  1145. \end_layout
  1146. \end_deeper
  1147. \begin_layout Itemize
  1148. Figure showing (a) heteroskedasticy without voom, (b) voom-modeled mean-variance
  1149. trend, and (c) homoskedastic mean-variance trend after running voom
  1150. \end_layout
  1151. \begin_layout Itemize
  1152. Figure showing sample weights and their relations to
  1153. \end_layout
  1154. \begin_layout Itemize
  1155. Figure showing MDS plot with and without SVA correction
  1156. \end_layout
  1157. \begin_layout Itemize
  1158. Figure and/or table showing improved p-value historgrams/number of significant
  1159. genes (might need to get this from Padma)
  1160. \end_layout
  1161. \begin_layout Section
  1162. Discussion
  1163. \end_layout
  1164. \begin_layout Itemize
  1165. fRMA enables classifying new samples without re-normalizing the entire data
  1166. set
  1167. \end_layout
  1168. \begin_deeper
  1169. \begin_layout Itemize
  1170. Critical for translating a classifier into clinical practice
  1171. \end_layout
  1172. \end_deeper
  1173. \begin_layout Itemize
  1174. Methods like voom designed for RNA-seq can also help with array analysis
  1175. \end_layout
  1176. \begin_layout Itemize
  1177. Extracting and modeling confounders common to many features improves model
  1178. correspondence to known biology
  1179. \end_layout
  1180. \begin_layout Chapter
  1181. Globin-blocking for more effective blood RNA-seq analysis in primate animal
  1182. model
  1183. \end_layout
  1184. \begin_layout Standard
  1185. \begin_inset Flex TODO Note (inline)
  1186. status open
  1187. \begin_layout Plain Layout
  1188. Choose between above and the paper title: Optimizing yield of deep RNA sequencin
  1189. g for gene expression profiling by globin reduction of peripheral blood
  1190. samples from cynomolgus monkeys (Macaca fascicularis).
  1191. \end_layout
  1192. \end_inset
  1193. \end_layout
  1194. \begin_layout Standard
  1195. \begin_inset Flex TODO Note (inline)
  1196. status open
  1197. \begin_layout Plain Layout
  1198. Chapter author list: https://tex.stackexchange.com/questions/156862/displaying-aut
  1199. hor-for-each-chapter-in-book Every chapter gets an author list, which may
  1200. or may not be part of a citation to a published/preprinted paper.
  1201. \end_layout
  1202. \end_inset
  1203. \end_layout
  1204. \begin_layout Standard
  1205. \begin_inset Flex TODO Note (inline)
  1206. status open
  1207. \begin_layout Plain Layout
  1208. Preprint then cite the paper
  1209. \end_layout
  1210. \end_inset
  1211. \end_layout
  1212. \begin_layout Section*
  1213. Abstract
  1214. \end_layout
  1215. \begin_layout Paragraph
  1216. Background
  1217. \end_layout
  1218. \begin_layout Standard
  1219. Primate blood contains high concentrations of globin messenger RNA.
  1220. Globin reduction is a standard technique used to improve the expression
  1221. results obtained by DNA microarrays on RNA from blood samples.
  1222. However, with whole transcriptome RNA-sequencing (RNA-seq) quickly replacing
  1223. microarrays for many applications, the impact of globin reduction for RNA-seq
  1224. has not been previously studied.
  1225. Moreover, no off-the-shelf kits are available for globin reduction in nonhuman
  1226. primates.
  1227. \end_layout
  1228. \begin_layout Paragraph
  1229. Results
  1230. \end_layout
  1231. \begin_layout Standard
  1232. Here we report a protocol for RNA-seq in primate blood samples that uses
  1233. complimentary oligonucleotides to block reverse transcription of the alpha
  1234. and beta globin genes.
  1235. In test samples from cynomolgus monkeys (Macaca fascicularis), this globin
  1236. blocking protocol approximately doubles the yield of informative (non-globin)
  1237. reads by greatly reducing the fraction of globin reads, while also improving
  1238. the consistency in sequencing depth between samples.
  1239. The increased yield enables detection of about 2000 more genes, significantly
  1240. increases the correlation in measured gene expression levels between samples,
  1241. and increases the sensitivity of differential gene expression tests.
  1242. \end_layout
  1243. \begin_layout Paragraph
  1244. Conclusions
  1245. \end_layout
  1246. \begin_layout Standard
  1247. These results show that globin blocking significantly improves the cost-effectiv
  1248. eness of mRNA sequencing in primate blood samples by doubling the yield
  1249. of useful reads, allowing detection of more genes, and improving the precision
  1250. of gene expression measurements.
  1251. Based on these results, a globin reducing or blocking protocol is recommended
  1252. for all RNA-seq studies of primate blood samples.
  1253. \end_layout
  1254. \begin_layout Section
  1255. Approach
  1256. \end_layout
  1257. \begin_layout Standard
  1258. \begin_inset Note Note
  1259. status open
  1260. \begin_layout Plain Layout
  1261. Consider putting some of this in the Intro chapter
  1262. \end_layout
  1263. \begin_layout Itemize
  1264. Cynomolgus monkeys as a model organism
  1265. \end_layout
  1266. \begin_deeper
  1267. \begin_layout Itemize
  1268. Highly related to humans
  1269. \end_layout
  1270. \begin_layout Itemize
  1271. Small size and short life cycle - good research animal
  1272. \end_layout
  1273. \begin_layout Itemize
  1274. Genomics resources still in development
  1275. \end_layout
  1276. \end_deeper
  1277. \begin_layout Itemize
  1278. Inadequacy of existing blood RNA-seq protocols
  1279. \end_layout
  1280. \begin_deeper
  1281. \begin_layout Itemize
  1282. Existing protocols use a separate globin pulldown step, slowing down processing
  1283. \end_layout
  1284. \end_deeper
  1285. \end_inset
  1286. \end_layout
  1287. \begin_layout Standard
  1288. Increasingly, researchers are turning to high-throughput mRNA sequencing
  1289. technologies (RNA-seq) in preference to expression microarrays for analysis
  1290. of gene expression
  1291. \begin_inset CommandInset citation
  1292. LatexCommand cite
  1293. key "Mutz2012"
  1294. literal "false"
  1295. \end_inset
  1296. .
  1297. The advantages are even greater for study of model organisms with no well-estab
  1298. lished array platforms available, such as the cynomolgus monkey (Macaca
  1299. fascicularis).
  1300. High fractions of globin mRNA are naturally present in mammalian peripheral
  1301. blood samples (up to 70% of total mRNA) and these are known to interfere
  1302. with the results of array-based expression profiling
  1303. \begin_inset CommandInset citation
  1304. LatexCommand cite
  1305. key "Winn2010"
  1306. literal "false"
  1307. \end_inset
  1308. .
  1309. The importance of globin reduction for RNA-seq of blood has only been evaluated
  1310. for a deepSAGE protocol on human samples
  1311. \begin_inset CommandInset citation
  1312. LatexCommand cite
  1313. key "Mastrokolias2012"
  1314. literal "false"
  1315. \end_inset
  1316. .
  1317. In the present report, we evaluated globin reduction using custom blocking
  1318. oligonucleotides for deep RNA-seq of peripheral blood samples from a nonhuman
  1319. primate, cynomolgus monkey, using the Illumina technology platform.
  1320. We demonstrate that globin reduction significantly improves the cost-effectiven
  1321. ess of RNA-seq in blood samples.
  1322. Thus, our protocol offers a significant advantage to any investigator planning
  1323. to use RNA-seq for gene expression profiling of nonhuman primate blood
  1324. samples.
  1325. Our method can be generally applied to any species by designing complementary
  1326. oligonucleotide blocking probes to the globin gene sequences of that species.
  1327. Indeed, any highly expressed but biologically uninformative transcripts
  1328. can also be blocked to further increase sequencing efficiency and value
  1329. \begin_inset CommandInset citation
  1330. LatexCommand cite
  1331. key "Arnaud2016"
  1332. literal "false"
  1333. \end_inset
  1334. .
  1335. \end_layout
  1336. \begin_layout Section
  1337. Methods
  1338. \end_layout
  1339. \begin_layout Subsection*
  1340. Sample collection
  1341. \end_layout
  1342. \begin_layout Standard
  1343. All research reported here was done under IACUC-approved protocols at the
  1344. University of Miami and complied with all applicable federal and state
  1345. regulations and ethical principles for nonhuman primate research.
  1346. Blood draws occurred between 16 April 2012 and 18 June 2015.
  1347. The experimental system involved intrahepatic pancreatic islet transplantation
  1348. into Cynomolgus monkeys with induced diabetes mellitus with or without
  1349. concomitant infusion of mesenchymal stem cells.
  1350. Blood was collected at serial time points before and after transplantation
  1351. into PAXgene Blood RNA tubes (PreAnalytiX/Qiagen, Valencia, CA) at the
  1352. precise volume:volume ratio of 2.5 ml whole blood into 6.9 ml of PAX gene
  1353. additive.
  1354. \end_layout
  1355. \begin_layout Subsection*
  1356. Globin Blocking
  1357. \end_layout
  1358. \begin_layout Standard
  1359. Four oligonucleotides were designed to hybridize to the 3’ end of the transcript
  1360. s for Cynomolgus HBA1, HBA2 and HBB, with two hybridization sites for HBB
  1361. and 2 sites for HBA (the chosen sites were identical in both HBA genes).
  1362. All oligos were purchased from Sigma and were entirely composed of 2’O-Me
  1363. bases with a C3 spacer positioned at the 3’ ends to prevent any polymerase
  1364. mediated primer extension.
  1365. \end_layout
  1366. \begin_layout Quote
  1367. HBA1/2 site 1: GCCCACUCAGACUUUAUUCAAAG-C3spacer
  1368. \end_layout
  1369. \begin_layout Quote
  1370. HBA1/2 site 2: GGUGCAAGGAGGGGAGGAG-C3spacer
  1371. \end_layout
  1372. \begin_layout Quote
  1373. HBB site 1: AAUGAAAAUAAAUGUUUUUUAUUAG-C3spacer
  1374. \end_layout
  1375. \begin_layout Quote
  1376. HBB site 2: CUCAAGGCCCUUCAUAAUAUCCC-C3spacer
  1377. \end_layout
  1378. \begin_layout Subsection*
  1379. RNA-seq Library Preparation
  1380. \end_layout
  1381. \begin_layout Standard
  1382. Sequencing libraries were prepared with 200ng total RNA from each sample.
  1383. Polyadenylated mRNA was selected from 200 ng aliquots of cynomologus blood-deri
  1384. ved total RNA using Ambion Dynabeads Oligo(dT)25 beads (Invitrogen) following
  1385. manufacturer’s recommended protocol.
  1386. PolyA selected RNA was then combined with 8 pmol of HBA1/2 (site 1), 8
  1387. pmol of HBA1/2 (site 2), 12 pmol of HBB (site 1) and 12 pmol of HBB (site
  1388. 2) oligonucleotides.
  1389. In addition, 20 pmol of RT primer containing a portion of the Illumina
  1390. adapter sequence (B-oligo-dTV: GAGTTCCTTGGCACCCGAGAATTCCATTTTTTTTTTTTTTTTTTTV)
  1391. and 4 µL of 5X First Strand buffer (250 mM Tris-HCl pH 8.3, 375 mM KCl,
  1392. 15mM MgCl2) were added in a total volume of 15 µL.
  1393. The RNA was fragmented by heating this cocktail for 3 minutes at 95°C and
  1394. then placed on ice.
  1395. This was followed by the addition of 2 µL 0.1 M DTT, 1 µL RNaseOUT, 1 µL
  1396. 10mM dNTPs 10% biotin-16 aminoallyl-2’- dUTP and 10% biotin-16 aminoallyl-2’-
  1397. dCTP (TriLink Biotech, San Diego, CA), 1 µL Superscript II (200U/ µL, Thermo-Fi
  1398. sher).
  1399. A second “unblocked” library was prepared in the same way for each sample
  1400. but replacing the blocking oligos with an equivalent volume of water.
  1401. The reaction was carried out at 25°C for 15 minutes and 42°C for 40 minutes,
  1402. followed by incubation at 75°C for 10 minutes to inactivate the reverse
  1403. transcriptase.
  1404. \end_layout
  1405. \begin_layout Standard
  1406. The cDNA/RNA hybrid molecules were purified using 1.8X Ampure XP beads (Agencourt
  1407. ) following supplier’s recommended protocol.
  1408. The cDNA/RNA hybrid was eluted in 25 µL of 10 mM Tris-HCl pH 8.0, and then
  1409. bound to 25 µL of M280 Magnetic Streptavidin beads washed per recommended
  1410. protocol (Thermo-Fisher).
  1411. After 30 minutes of binding, beads were washed one time in 100 µL 0.1N NaOH
  1412. to denature and remove the bound RNA, followed by two 100 µL washes with
  1413. 1X TE buffer.
  1414. \end_layout
  1415. \begin_layout Standard
  1416. Subsequent attachment of the 5-prime Illumina A adapter was performed by
  1417. on-bead random primer extension of the following sequence (A-N8 primer:
  1418. TTCAGAGTTCTACAGTCCGACGATCNNNNNNNN).
  1419. Briefly, beads were resuspended in a 20 µL reaction containing 5 µM A-N8
  1420. primer, 40mM Tris-HCl pH 7.5, 20mM MgCl2, 50mM NaCl, 0.325U/µL Sequenase
  1421. 2.0 (Affymetrix, Santa Clara, CA), 0.0025U/µL inorganic pyrophosphatase (Affymetr
  1422. ix) and 300 µM each dNTP.
  1423. Reaction was incubated at 22°C for 30 minutes, then beads were washed 2
  1424. times with 1X TE buffer (200µL).
  1425. \end_layout
  1426. \begin_layout Standard
  1427. The magnetic streptavidin beads were resuspended in 34 µL nuclease-free
  1428. water and added directly to a PCR tube.
  1429. The two Illumina protocol-specified PCR primers were added at 0.53 µM (Illumina
  1430. TruSeq Universal Primer 1 and Illumina TruSeq barcoded PCR primer 2), along
  1431. with 40 µL 2X KAPA HiFi Hotstart ReadyMix (KAPA, Willmington MA) and thermocycl
  1432. ed as follows: starting with 98°C (2 min-hold); 15 cycles of 98°C, 20sec;
  1433. 60°C, 30sec; 72°C, 30sec; and finished with a 72°C (2 min-hold).
  1434. \end_layout
  1435. \begin_layout Standard
  1436. PCR products were purified with 1X Ampure Beads following manufacturer’s
  1437. recommended protocol.
  1438. Libraries were then analyzed using the Agilent TapeStation and quantitation
  1439. of desired size range was performed by “smear analysis”.
  1440. Samples were pooled in equimolar batches of 16 samples.
  1441. Pooled libraries were size selected on 2% agarose gels (E-Gel EX Agarose
  1442. Gels; Thermo-Fisher).
  1443. Products were cut between 250 and 350 bp (corresponding to insert sizes
  1444. of 130 to 230 bps).
  1445. Finished library pools were then sequenced on the Illumina NextSeq500 instrumen
  1446. t with 75 base read lengths.
  1447. \end_layout
  1448. \begin_layout Subsection*
  1449. Read alignment and counting
  1450. \end_layout
  1451. \begin_layout Standard
  1452. Reads were aligned to the cynomolgus genome using STAR
  1453. \begin_inset CommandInset citation
  1454. LatexCommand cite
  1455. key "Dobin2013,Wilson2013"
  1456. literal "false"
  1457. \end_inset
  1458. .
  1459. Counts of uniquely mapped reads were obtained for every gene in each sample
  1460. with the “featureCounts” function from the Rsubread package, using each
  1461. of the three possibilities for the “strandSpecific” option: sense, antisense,
  1462. and unstranded
  1463. \begin_inset CommandInset citation
  1464. LatexCommand cite
  1465. key "Liao2014"
  1466. literal "false"
  1467. \end_inset
  1468. .
  1469. A few artifacts in the cynomolgus genome annotation complicated read counting.
  1470. First, no ortholog is annotated for alpha globin in the cynomolgus genome,
  1471. presumably because the human genome has two alpha globin genes with nearly
  1472. identical sequences, making the orthology relationship ambiguous.
  1473. However, two loci in the cynomolgus genome are as “hemoglobin subunit alpha-lik
  1474. e” (LOC102136192 and LOC102136846).
  1475. LOC102136192 is annotated as a pseudogene while LOC102136846 is annotated
  1476. as protein-coding.
  1477. Our globin reduction protocol was designed to include blocking of these
  1478. two genes.
  1479. Indeed, these two genes have almost the same read counts in each library
  1480. as the properly-annotated HBB gene and much larger counts than any other
  1481. gene in the unblocked libraries, giving confidence that reads derived from
  1482. the real alpha globin are mapping to both genes.
  1483. Thus, reads from both of these loci were counted as alpha globin reads
  1484. in all further analyses.
  1485. The second artifact is a small, uncharacterized non-coding RNA gene (LOC1021365
  1486. 91), which overlaps the HBA-like gene (LOC102136192) on the opposite strand.
  1487. If counting is not performed in stranded mode (or if a non-strand-specific
  1488. sequencing protocol is used), many reads mapping to the globin gene will
  1489. be discarded as ambiguous due to their overlap with this ncRNA gene, resulting
  1490. in significant undercounting of globin reads.
  1491. Therefore, stranded sense counts were used for all further analysis in
  1492. the present study to insure that we accurately accounted for globin transcript
  1493. reduction.
  1494. However, we note that stranded reads are not necessary for RNA-seq using
  1495. our protocol in standard practice.
  1496. \end_layout
  1497. \begin_layout Subsection*
  1498. Normalization and Exploratory Data Analysis
  1499. \end_layout
  1500. \begin_layout Standard
  1501. Libraries were normalized by computing scaling factors using the edgeR package’s
  1502. Trimmed Mean of M-values method
  1503. \begin_inset CommandInset citation
  1504. LatexCommand cite
  1505. key "Robinson2010"
  1506. literal "false"
  1507. \end_inset
  1508. .
  1509. Log2 counts per million values (logCPM) were calculated using the cpm function
  1510. in edgeR for individual samples and aveLogCPM function for averages across
  1511. groups of samples, using those functions’ default prior count values to
  1512. avoid taking the logarithm of 0.
  1513. Genes were considered “present” if their average normalized logCPM values
  1514. across all libraries were at least -1.
  1515. Normalizing for gene length was unnecessary because the sequencing protocol
  1516. is 3’-biased and hence the expected read count for each gene is related
  1517. to the transcript’s copy number but not its length.
  1518. \end_layout
  1519. \begin_layout Standard
  1520. In order to assess the effect of blocking on reproducibility, Pearson and
  1521. Spearman correlation coefficients were computed between the logCPM values
  1522. for every pair of libraries within the globin-blocked (GB) and unblocked
  1523. (non-GB) groups, and edgeR's “estimateDisp” function was used to compute
  1524. negative binomial dispersions separately for the two groups
  1525. \begin_inset CommandInset citation
  1526. LatexCommand cite
  1527. key "Chen2014"
  1528. literal "false"
  1529. \end_inset
  1530. .
  1531. \end_layout
  1532. \begin_layout Subsection*
  1533. Differential Expression Analysis
  1534. \end_layout
  1535. \begin_layout Standard
  1536. All tests for differential gene expression were performed using edgeR, by
  1537. first fitting a negative binomial generalized linear model to the counts
  1538. and normalization factors and then performing a quasi-likelihood F-test
  1539. with robust estimation of outlier gene dispersions
  1540. \begin_inset CommandInset citation
  1541. LatexCommand cite
  1542. key "Lund2012,Phipson2016"
  1543. literal "false"
  1544. \end_inset
  1545. .
  1546. To investigate the effects of globin blocking on each gene, an additive
  1547. model was fit to the full data with coefficients for globin blocking and
  1548. SampleID.
  1549. To test the effect of globin blocking on detection of differentially expressed
  1550. genes, the GB samples and non-GB samples were each analyzed independently
  1551. as follows: for each animal with both a pre-transplant and a post-transplant
  1552. time point in the data set, the pre-transplant sample and the earliest
  1553. post-transplant sample were selected, and all others were excluded, yielding
  1554. a pre-/post-transplant pair of samples for each animal (N=7 animals with
  1555. paired samples).
  1556. These samples were analyzed for pre-transplant vs.
  1557. post-transplant differential gene expression while controlling for inter-animal
  1558. variation using an additive model with coefficients for transplant and
  1559. animal ID.
  1560. In all analyses, p-values were adjusted using the Benjamini-Hochberg procedure
  1561. for FDR correction
  1562. \begin_inset CommandInset citation
  1563. LatexCommand cite
  1564. key "Benjamini1995"
  1565. literal "false"
  1566. \end_inset
  1567. .
  1568. \end_layout
  1569. \begin_layout Standard
  1570. \begin_inset Note Note
  1571. status open
  1572. \begin_layout Itemize
  1573. New blood RNA-seq protocol to block reverse transcription of globin genes
  1574. \end_layout
  1575. \begin_layout Itemize
  1576. Blood RNA-seq time course after transplants with/without MSC infusion
  1577. \end_layout
  1578. \end_inset
  1579. \end_layout
  1580. \begin_layout Section
  1581. Results
  1582. \end_layout
  1583. \begin_layout Subsection*
  1584. Globin blocking yields a larger and more consistent fraction of useful reads
  1585. \end_layout
  1586. \begin_layout Standard
  1587. The objective of the present study was to validate a new protocol for deep
  1588. RNA-seq of whole blood drawn into PaxGene tubes from cynomolgus monkeys
  1589. undergoing islet transplantation, with particular focus on minimizing the
  1590. loss of useful sequencing space to uninformative globin reads.
  1591. The details of the analysis with respect to transplant outcomes and the
  1592. impact of mesenchymal stem cell treatment will be reported in a separate
  1593. manuscript (in preparation).
  1594. To focus on the efficacy of our globin blocking protocol, 37 blood samples,
  1595. 16 from pre-transplant and 21 from post-transplant time points, were each
  1596. prepped once with and once without globin blocking oligos, and were then
  1597. sequenced on an Illumina NextSeq500 instrument.
  1598. The number of reads aligning to each gene in the cynomolgus genome was
  1599. counted.
  1600. Table 1 summarizes the distribution of read fractions among the GB and
  1601. non-GB libraries.
  1602. In the libraries with no globin blocking, globin reads made up an average
  1603. of 44.6% of total input reads, while reads assigned to all other genes made
  1604. up an average of 26.3%.
  1605. The remaining reads either aligned to intergenic regions (that include
  1606. long non-coding RNAs) or did not align with any annotated transcripts in
  1607. the current build of the cynomolgus genome.
  1608. In the GB libraries, globin reads made up only 3.48% and reads assigned
  1609. to all other genes increased to 50.4%.
  1610. Thus, globin blocking resulted in a 92.2% reduction in globin reads and
  1611. a 91.6% increase in yield of useful non-globin reads.
  1612. \end_layout
  1613. \begin_layout Standard
  1614. This reduction is not quite as efficient as the previous analysis showed
  1615. for human samples by DeepSAGE (<0.4% globin reads after globin reduction)
  1616. \begin_inset CommandInset citation
  1617. LatexCommand cite
  1618. key "Mastrokolias2012"
  1619. literal "false"
  1620. \end_inset
  1621. .
  1622. Nonetheless, this degree of globin reduction is sufficient to nearly double
  1623. the yield of useful reads.
  1624. Thus, globin blocking cuts the required sequencing effort (and costs) to
  1625. achieve a target coverage depth by almost 50%.
  1626. Consistent with this near doubling of yield, the average difference in
  1627. un-normalized logCPM across all genes between the GB libraries and non-GB
  1628. libraries is approximately 1 (mean = 1.01, median = 1.08), an overall 2-fold
  1629. increase.
  1630. Un-normalized values are used here because the TMM normalization correctly
  1631. identifies this 2-fold difference as biologically irrelevant and removes
  1632. it.
  1633. \end_layout
  1634. \begin_layout Standard
  1635. \begin_inset Float figure
  1636. wide false
  1637. sideways false
  1638. status open
  1639. \begin_layout Plain Layout
  1640. \align center
  1641. \begin_inset Graphics
  1642. filename graphics/Globin Paper/figure1 - globin-fractions.pdf
  1643. \end_inset
  1644. \end_layout
  1645. \begin_layout Plain Layout
  1646. \begin_inset Caption Standard
  1647. \begin_layout Plain Layout
  1648. \series bold
  1649. \begin_inset Argument 1
  1650. status collapsed
  1651. \begin_layout Plain Layout
  1652. Fraction of genic reads in each sample aligned to non-globin genes, with
  1653. and without globin blocking (GB).
  1654. \end_layout
  1655. \end_inset
  1656. \begin_inset CommandInset label
  1657. LatexCommand label
  1658. name "fig:Fraction-of-genic-reads"
  1659. \end_inset
  1660. Fraction of genic reads in each sample aligned to non-globin genes, with
  1661. and without globin blocking (GB).
  1662. \series default
  1663. All reads in each sequencing library were aligned to the cyno genome, and
  1664. the number of reads uniquely aligning to each gene was counted.
  1665. For each sample, counts were summed separately for all globin genes and
  1666. for the remainder of the genes (non-globin genes), and the fraction of
  1667. genic reads aligned to non-globin genes was computed.
  1668. Each point represents an individual sample.
  1669. Gray + signs indicate the means for globin-blocked libraries and unblocked
  1670. libraries.
  1671. The overall distribution for each group is represented as a notched box
  1672. plots.
  1673. Points are randomly spread vertically to avoid excessive overlapping.
  1674. \end_layout
  1675. \end_inset
  1676. \end_layout
  1677. \begin_layout Plain Layout
  1678. \end_layout
  1679. \end_inset
  1680. \end_layout
  1681. \begin_layout Standard
  1682. \begin_inset Float table
  1683. placement p
  1684. wide false
  1685. sideways true
  1686. status open
  1687. \begin_layout Plain Layout
  1688. \align center
  1689. \begin_inset Tabular
  1690. <lyxtabular version="3" rows="4" columns="7">
  1691. <features tabularvalignment="middle">
  1692. <column alignment="center" valignment="top">
  1693. <column alignment="center" valignment="top">
  1694. <column alignment="center" valignment="top">
  1695. <column alignment="center" valignment="top">
  1696. <column alignment="center" valignment="top">
  1697. <column alignment="center" valignment="top">
  1698. <column alignment="center" valignment="top">
  1699. <row>
  1700. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1701. \begin_inset Text
  1702. \begin_layout Plain Layout
  1703. \end_layout
  1704. \end_inset
  1705. </cell>
  1706. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1707. \begin_inset Text
  1708. \begin_layout Plain Layout
  1709. \family roman
  1710. \series medium
  1711. \shape up
  1712. \size normal
  1713. \emph off
  1714. \bar no
  1715. \strikeout off
  1716. \xout off
  1717. \uuline off
  1718. \uwave off
  1719. \noun off
  1720. \color none
  1721. Percent of Total Reads
  1722. \end_layout
  1723. \end_inset
  1724. </cell>
  1725. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1726. \begin_inset Text
  1727. \begin_layout Plain Layout
  1728. \end_layout
  1729. \end_inset
  1730. </cell>
  1731. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1732. \begin_inset Text
  1733. \begin_layout Plain Layout
  1734. \end_layout
  1735. \end_inset
  1736. </cell>
  1737. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1738. \begin_inset Text
  1739. \begin_layout Plain Layout
  1740. \end_layout
  1741. \end_inset
  1742. </cell>
  1743. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  1744. \begin_inset Text
  1745. \begin_layout Plain Layout
  1746. \family roman
  1747. \series medium
  1748. \shape up
  1749. \size normal
  1750. \emph off
  1751. \bar no
  1752. \strikeout off
  1753. \xout off
  1754. \uuline off
  1755. \uwave off
  1756. \noun off
  1757. \color none
  1758. Percent of Genic Reads
  1759. \end_layout
  1760. \end_inset
  1761. </cell>
  1762. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  1763. \begin_inset Text
  1764. \begin_layout Plain Layout
  1765. \end_layout
  1766. \end_inset
  1767. </cell>
  1768. </row>
  1769. <row>
  1770. <cell alignment="center" valignment="top" bottomline="true" leftline="true" usebox="none">
  1771. \begin_inset Text
  1772. \begin_layout Plain Layout
  1773. GB
  1774. \end_layout
  1775. \end_inset
  1776. </cell>
  1777. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1778. \begin_inset Text
  1779. \begin_layout Plain Layout
  1780. \family roman
  1781. \series medium
  1782. \shape up
  1783. \size normal
  1784. \emph off
  1785. \bar no
  1786. \strikeout off
  1787. \xout off
  1788. \uuline off
  1789. \uwave off
  1790. \noun off
  1791. \color none
  1792. Non-globin Reads
  1793. \end_layout
  1794. \end_inset
  1795. </cell>
  1796. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1797. \begin_inset Text
  1798. \begin_layout Plain Layout
  1799. \family roman
  1800. \series medium
  1801. \shape up
  1802. \size normal
  1803. \emph off
  1804. \bar no
  1805. \strikeout off
  1806. \xout off
  1807. \uuline off
  1808. \uwave off
  1809. \noun off
  1810. \color none
  1811. Globin Reads
  1812. \end_layout
  1813. \end_inset
  1814. </cell>
  1815. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1816. \begin_inset Text
  1817. \begin_layout Plain Layout
  1818. \family roman
  1819. \series medium
  1820. \shape up
  1821. \size normal
  1822. \emph off
  1823. \bar no
  1824. \strikeout off
  1825. \xout off
  1826. \uuline off
  1827. \uwave off
  1828. \noun off
  1829. \color none
  1830. All Genic Reads
  1831. \end_layout
  1832. \end_inset
  1833. </cell>
  1834. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1835. \begin_inset Text
  1836. \begin_layout Plain Layout
  1837. \family roman
  1838. \series medium
  1839. \shape up
  1840. \size normal
  1841. \emph off
  1842. \bar no
  1843. \strikeout off
  1844. \xout off
  1845. \uuline off
  1846. \uwave off
  1847. \noun off
  1848. \color none
  1849. All Aligned Reads
  1850. \end_layout
  1851. \end_inset
  1852. </cell>
  1853. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1854. \begin_inset Text
  1855. \begin_layout Plain Layout
  1856. \family roman
  1857. \series medium
  1858. \shape up
  1859. \size normal
  1860. \emph off
  1861. \bar no
  1862. \strikeout off
  1863. \xout off
  1864. \uuline off
  1865. \uwave off
  1866. \noun off
  1867. \color none
  1868. Non-globin Reads
  1869. \end_layout
  1870. \end_inset
  1871. </cell>
  1872. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  1873. \begin_inset Text
  1874. \begin_layout Plain Layout
  1875. \family roman
  1876. \series medium
  1877. \shape up
  1878. \size normal
  1879. \emph off
  1880. \bar no
  1881. \strikeout off
  1882. \xout off
  1883. \uuline off
  1884. \uwave off
  1885. \noun off
  1886. \color none
  1887. Globin Reads
  1888. \end_layout
  1889. \end_inset
  1890. </cell>
  1891. </row>
  1892. <row>
  1893. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1894. \begin_inset Text
  1895. \begin_layout Plain Layout
  1896. \family roman
  1897. \series medium
  1898. \shape up
  1899. \size normal
  1900. \emph off
  1901. \bar no
  1902. \strikeout off
  1903. \xout off
  1904. \uuline off
  1905. \uwave off
  1906. \noun off
  1907. \color none
  1908. Yes
  1909. \end_layout
  1910. \end_inset
  1911. </cell>
  1912. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1913. \begin_inset Text
  1914. \begin_layout Plain Layout
  1915. \family roman
  1916. \series medium
  1917. \shape up
  1918. \size normal
  1919. \emph off
  1920. \bar no
  1921. \strikeout off
  1922. \xout off
  1923. \uuline off
  1924. \uwave off
  1925. \noun off
  1926. \color none
  1927. 50.4% ± 6.82
  1928. \end_layout
  1929. \end_inset
  1930. </cell>
  1931. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1932. \begin_inset Text
  1933. \begin_layout Plain Layout
  1934. \family roman
  1935. \series medium
  1936. \shape up
  1937. \size normal
  1938. \emph off
  1939. \bar no
  1940. \strikeout off
  1941. \xout off
  1942. \uuline off
  1943. \uwave off
  1944. \noun off
  1945. \color none
  1946. 3.48% ± 2.94
  1947. \end_layout
  1948. \end_inset
  1949. </cell>
  1950. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1951. \begin_inset Text
  1952. \begin_layout Plain Layout
  1953. \family roman
  1954. \series medium
  1955. \shape up
  1956. \size normal
  1957. \emph off
  1958. \bar no
  1959. \strikeout off
  1960. \xout off
  1961. \uuline off
  1962. \uwave off
  1963. \noun off
  1964. \color none
  1965. 53.9% ± 6.81
  1966. \end_layout
  1967. \end_inset
  1968. </cell>
  1969. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1970. \begin_inset Text
  1971. \begin_layout Plain Layout
  1972. \family roman
  1973. \series medium
  1974. \shape up
  1975. \size normal
  1976. \emph off
  1977. \bar no
  1978. \strikeout off
  1979. \xout off
  1980. \uuline off
  1981. \uwave off
  1982. \noun off
  1983. \color none
  1984. 89.7% ± 2.40
  1985. \end_layout
  1986. \end_inset
  1987. </cell>
  1988. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1989. \begin_inset Text
  1990. \begin_layout Plain Layout
  1991. \family roman
  1992. \series medium
  1993. \shape up
  1994. \size normal
  1995. \emph off
  1996. \bar no
  1997. \strikeout off
  1998. \xout off
  1999. \uuline off
  2000. \uwave off
  2001. \noun off
  2002. \color none
  2003. 93.5% ± 5.25
  2004. \end_layout
  2005. \end_inset
  2006. </cell>
  2007. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2008. \begin_inset Text
  2009. \begin_layout Plain Layout
  2010. \family roman
  2011. \series medium
  2012. \shape up
  2013. \size normal
  2014. \emph off
  2015. \bar no
  2016. \strikeout off
  2017. \xout off
  2018. \uuline off
  2019. \uwave off
  2020. \noun off
  2021. \color none
  2022. 6.49% ± 5.25
  2023. \end_layout
  2024. \end_inset
  2025. </cell>
  2026. </row>
  2027. <row>
  2028. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2029. \begin_inset Text
  2030. \begin_layout Plain Layout
  2031. \family roman
  2032. \series medium
  2033. \shape up
  2034. \size normal
  2035. \emph off
  2036. \bar no
  2037. \strikeout off
  2038. \xout off
  2039. \uuline off
  2040. \uwave off
  2041. \noun off
  2042. \color none
  2043. No
  2044. \end_layout
  2045. \end_inset
  2046. </cell>
  2047. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2048. \begin_inset Text
  2049. \begin_layout Plain Layout
  2050. \family roman
  2051. \series medium
  2052. \shape up
  2053. \size normal
  2054. \emph off
  2055. \bar no
  2056. \strikeout off
  2057. \xout off
  2058. \uuline off
  2059. \uwave off
  2060. \noun off
  2061. \color none
  2062. 26.3% ± 8.95
  2063. \end_layout
  2064. \end_inset
  2065. </cell>
  2066. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2067. \begin_inset Text
  2068. \begin_layout Plain Layout
  2069. \family roman
  2070. \series medium
  2071. \shape up
  2072. \size normal
  2073. \emph off
  2074. \bar no
  2075. \strikeout off
  2076. \xout off
  2077. \uuline off
  2078. \uwave off
  2079. \noun off
  2080. \color none
  2081. 44.6% ± 16.6
  2082. \end_layout
  2083. \end_inset
  2084. </cell>
  2085. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2086. \begin_inset Text
  2087. \begin_layout Plain Layout
  2088. \family roman
  2089. \series medium
  2090. \shape up
  2091. \size normal
  2092. \emph off
  2093. \bar no
  2094. \strikeout off
  2095. \xout off
  2096. \uuline off
  2097. \uwave off
  2098. \noun off
  2099. \color none
  2100. 70.1% ± 9.38
  2101. \end_layout
  2102. \end_inset
  2103. </cell>
  2104. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2105. \begin_inset Text
  2106. \begin_layout Plain Layout
  2107. \family roman
  2108. \series medium
  2109. \shape up
  2110. \size normal
  2111. \emph off
  2112. \bar no
  2113. \strikeout off
  2114. \xout off
  2115. \uuline off
  2116. \uwave off
  2117. \noun off
  2118. \color none
  2119. 90.7% ± 5.16
  2120. \end_layout
  2121. \end_inset
  2122. </cell>
  2123. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2124. \begin_inset Text
  2125. \begin_layout Plain Layout
  2126. \family roman
  2127. \series medium
  2128. \shape up
  2129. \size normal
  2130. \emph off
  2131. \bar no
  2132. \strikeout off
  2133. \xout off
  2134. \uuline off
  2135. \uwave off
  2136. \noun off
  2137. \color none
  2138. 38.8% ± 17.1
  2139. \end_layout
  2140. \end_inset
  2141. </cell>
  2142. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2143. \begin_inset Text
  2144. \begin_layout Plain Layout
  2145. \family roman
  2146. \series medium
  2147. \shape up
  2148. \size normal
  2149. \emph off
  2150. \bar no
  2151. \strikeout off
  2152. \xout off
  2153. \uuline off
  2154. \uwave off
  2155. \noun off
  2156. \color none
  2157. 61.2% ± 17.1
  2158. \end_layout
  2159. \end_inset
  2160. </cell>
  2161. </row>
  2162. </lyxtabular>
  2163. \end_inset
  2164. \end_layout
  2165. \begin_layout Plain Layout
  2166. \begin_inset Caption Standard
  2167. \begin_layout Plain Layout
  2168. \series bold
  2169. \begin_inset Argument 1
  2170. status collapsed
  2171. \begin_layout Plain Layout
  2172. Fractions of reads mapping to genomic features in GB and non-GB samples.
  2173. \end_layout
  2174. \end_inset
  2175. \begin_inset CommandInset label
  2176. LatexCommand label
  2177. name "tab:Fractions-of-reads"
  2178. \end_inset
  2179. Fractions of reads mapping to genomic features in GB and non-GB samples.
  2180. \series default
  2181. All values are given as mean ± standard deviation.
  2182. \end_layout
  2183. \end_inset
  2184. \end_layout
  2185. \begin_layout Plain Layout
  2186. \end_layout
  2187. \end_inset
  2188. \end_layout
  2189. \begin_layout Standard
  2190. Another important aspect is that the standard deviations in Table
  2191. \begin_inset CommandInset ref
  2192. LatexCommand ref
  2193. reference "tab:Fractions-of-reads"
  2194. plural "false"
  2195. caps "false"
  2196. noprefix "false"
  2197. \end_inset
  2198. are uniformly smaller in the GB samples than the non-GB ones, indicating
  2199. much greater consistency of yield.
  2200. This is best seen in the percentage of non-globin reads as a fraction of
  2201. total reads aligned to annotated genes (genic reads).
  2202. For the non-GB samples, this measure ranges from 10.9% to 80.9%, while for
  2203. the GB samples it ranges from 81.9% to 99.9% (Figure
  2204. \begin_inset CommandInset ref
  2205. LatexCommand ref
  2206. reference "fig:Fraction-of-genic-reads"
  2207. plural "false"
  2208. caps "false"
  2209. noprefix "false"
  2210. \end_inset
  2211. ).
  2212. This means that for applications where it is critical that each sample
  2213. achieve a specified minimum coverage in order to provide useful information,
  2214. it would be necessary to budget up to 10 times the sequencing depth per
  2215. sample without globin blocking, even though the average yield improvement
  2216. for globin blocking is only 2-fold, because every sample has a chance of
  2217. being 90% globin and 10% useful reads.
  2218. Hence, the more consistent behavior of GB samples makes planning an experiment
  2219. easier and more efficient because it eliminates the need to over-sequence
  2220. every sample in order to guard against the worst case of a high-globin
  2221. fraction.
  2222. \end_layout
  2223. \begin_layout Subsection*
  2224. Globin blocking lowers the noise floor and allows detection of about 2000
  2225. more genes
  2226. \end_layout
  2227. \begin_layout Standard
  2228. \begin_inset Flex TODO Note (inline)
  2229. status open
  2230. \begin_layout Plain Layout
  2231. Remove redundant titles from figures
  2232. \end_layout
  2233. \end_inset
  2234. \end_layout
  2235. \begin_layout Standard
  2236. \begin_inset Float figure
  2237. wide false
  2238. sideways false
  2239. status open
  2240. \begin_layout Plain Layout
  2241. \align center
  2242. \begin_inset Graphics
  2243. filename graphics/Globin Paper/figure2 - aveLogCPM-colored.pdf
  2244. \end_inset
  2245. \end_layout
  2246. \begin_layout Plain Layout
  2247. \begin_inset Caption Standard
  2248. \begin_layout Plain Layout
  2249. \series bold
  2250. \begin_inset Argument 1
  2251. status collapsed
  2252. \begin_layout Plain Layout
  2253. Distributions of average group gene abundances when normalized separately
  2254. or together.
  2255. \end_layout
  2256. \end_inset
  2257. \begin_inset CommandInset label
  2258. LatexCommand label
  2259. name "fig:logcpm-dists"
  2260. \end_inset
  2261. Distributions of average group gene abundances when normalized separately
  2262. or together.
  2263. \series default
  2264. All reads in each sequencing library were aligned to the cyno genome, and
  2265. the number of reads uniquely aligning to each gene was counted.
  2266. Genes with zero counts in all libraries were discarded.
  2267. Libraries were normalized using the TMM method.
  2268. Libraries were split into globin-blocked (GB) and non-GB groups and the
  2269. average abundance for each gene in both groups, measured in log2 counts
  2270. per million reads counted, was computed using the aveLogCPM function.
  2271. The distribution of average gene logCPM values was plotted for both groups
  2272. using a kernel density plot to approximate a continuous distribution.
  2273. The logCPM GB distributions are marked in red, non-GB in blue.
  2274. The black vertical line denotes the chosen detection threshold of -1.
  2275. Top panel: Libraries were split into GB and non-GB groups first and normalized
  2276. separately.
  2277. Bottom panel: Libraries were all normalized together first and then split
  2278. into groups.
  2279. \end_layout
  2280. \end_inset
  2281. \end_layout
  2282. \begin_layout Plain Layout
  2283. \end_layout
  2284. \end_inset
  2285. \end_layout
  2286. \begin_layout Standard
  2287. Since globin blocking yields more usable sequencing depth, it should also
  2288. allow detection of more genes at any given threshold.
  2289. When we looked at the distribution of average normalized logCPM values
  2290. across all libraries for genes with at least one read assigned to them,
  2291. we observed the expected bimodal distribution, with a high-abundance "signal"
  2292. peak representing detected genes and a low-abundance "noise" peak representing
  2293. genes whose read count did not rise above the noise floor (Figure
  2294. \begin_inset CommandInset ref
  2295. LatexCommand ref
  2296. reference "fig:logcpm-dists"
  2297. plural "false"
  2298. caps "false"
  2299. noprefix "false"
  2300. \end_inset
  2301. ).
  2302. Consistent with the 2-fold increase in raw counts assigned to non-globin
  2303. genes, the signal peak for GB samples is shifted to the right relative
  2304. to the non-GB signal peak.
  2305. When all the samples are normalized together, this difference is normalized
  2306. out, lining up the signal peaks, and this reveals that, as expected, the
  2307. noise floor for the GB samples is about 2-fold lower.
  2308. This greater separation between signal and noise peaks in the GB samples
  2309. means that low-expression genes should be more easily detected and more
  2310. precisely quantified than in the non-GB samples.
  2311. \end_layout
  2312. \begin_layout Standard
  2313. \begin_inset Float figure
  2314. wide false
  2315. sideways false
  2316. status open
  2317. \begin_layout Plain Layout
  2318. \align center
  2319. \begin_inset Graphics
  2320. filename graphics/Globin Paper/figure3 - detection.pdf
  2321. \end_inset
  2322. \end_layout
  2323. \begin_layout Plain Layout
  2324. \begin_inset Caption Standard
  2325. \begin_layout Plain Layout
  2326. \series bold
  2327. \begin_inset Argument 1
  2328. status collapsed
  2329. \begin_layout Plain Layout
  2330. Gene detections as a function of abundance thresholds in globin-blocked
  2331. (GB) and non-GB samples.
  2332. \end_layout
  2333. \end_inset
  2334. \begin_inset CommandInset label
  2335. LatexCommand label
  2336. name "fig:Gene-detections"
  2337. \end_inset
  2338. Gene detections as a function of abundance thresholds in globin-blocked
  2339. (GB) and non-GB samples.
  2340. \series default
  2341. Average abundance (logCPM,
  2342. \begin_inset Formula $\log_{2}$
  2343. \end_inset
  2344. counts per million reads counted) was computed by separate group normalization
  2345. as described in Figure
  2346. \begin_inset CommandInset ref
  2347. LatexCommand ref
  2348. reference "fig:logcpm-dists"
  2349. plural "false"
  2350. caps "false"
  2351. noprefix "false"
  2352. \end_inset
  2353. for both the GB and non-GB groups, as well as for all samples considered
  2354. as one large group.
  2355. For each every integer threshold from -2 to 3, the number of genes detected
  2356. at or above that logCPM threshold was plotted for each group.
  2357. \end_layout
  2358. \end_inset
  2359. \end_layout
  2360. \begin_layout Plain Layout
  2361. \end_layout
  2362. \end_inset
  2363. \end_layout
  2364. \begin_layout Standard
  2365. Based on these distributions, we selected a detection threshold of -1, which
  2366. is approximately the leftmost edge of the trough between the signal and
  2367. noise peaks.
  2368. This represents the most liberal possible detection threshold that doesn't
  2369. call substantial numbers of noise genes as detected.
  2370. Among the full dataset, 13429 genes were detected at this threshold, and
  2371. 22276 were not.
  2372. When considering the GB libraries and non-GB libraries separately and re-comput
  2373. ing normalization factors independently within each group, 14535 genes were
  2374. detected in the GB libraries while only 12460 were detected in the non-GB
  2375. libraries.
  2376. Thus, GB allowed the detection of 2000 extra genes that were buried under
  2377. the noise floor without GB.
  2378. This pattern of at least 2000 additional genes detected with GB was also
  2379. consistent across a wide range of possible detection thresholds, from -2
  2380. to 3 (see Figure
  2381. \begin_inset CommandInset ref
  2382. LatexCommand ref
  2383. reference "fig:Gene-detections"
  2384. plural "false"
  2385. caps "false"
  2386. noprefix "false"
  2387. \end_inset
  2388. ).
  2389. \end_layout
  2390. \begin_layout Subsection*
  2391. Globin blocking does not add significant additional noise or decrease sample
  2392. quality
  2393. \end_layout
  2394. \begin_layout Standard
  2395. One potential worry is that the globin blocking protocol could perturb the
  2396. levels of non-globin genes.
  2397. There are two kinds of possible perturbations: systematic and random.
  2398. The former is not a major concern for detection of differential expression,
  2399. since a 2-fold change in every sample has no effect on the relative fold
  2400. change between samples.
  2401. In contrast, random perturbations would increase the noise and obscure
  2402. the signal in the dataset, reducing the capacity to detect differential
  2403. expression.
  2404. \end_layout
  2405. \begin_layout Standard
  2406. \begin_inset Float figure
  2407. wide false
  2408. sideways false
  2409. status open
  2410. \begin_layout Plain Layout
  2411. \align center
  2412. \begin_inset Graphics
  2413. filename graphics/Globin Paper/figure4 - maplot-colored.pdf
  2414. \end_inset
  2415. \end_layout
  2416. \begin_layout Plain Layout
  2417. \begin_inset Caption Standard
  2418. \begin_layout Plain Layout
  2419. \begin_inset Argument 1
  2420. status collapsed
  2421. \begin_layout Plain Layout
  2422. MA plot showing effects of globin blocking on each gene's abundance.
  2423. \end_layout
  2424. \end_inset
  2425. \begin_inset CommandInset label
  2426. LatexCommand label
  2427. name "fig:MA-plot"
  2428. \end_inset
  2429. \series bold
  2430. MA plot showing effects of globin blocking on each gene's abundance.
  2431. \series default
  2432. All libraries were normalized together as described in Figure
  2433. \begin_inset CommandInset ref
  2434. LatexCommand ref
  2435. reference "fig:logcpm-dists"
  2436. plural "false"
  2437. caps "false"
  2438. noprefix "false"
  2439. \end_inset
  2440. , and genes with an average logCPM below -1 were filtered out.
  2441. Each remaining gene was tested for differential abundance with respect
  2442. to globin blocking (GB) using edgeR’s quasi-likelihod F-test, fitting a
  2443. negative binomial generalized linear model to table of read counts in each
  2444. library.
  2445. For each gene, edgeR reported average abundance (logCPM),
  2446. \begin_inset Formula $\log_{2}$
  2447. \end_inset
  2448. fold change (logFC), p-value, and Benjamini-Hochberg adjusted false discovery
  2449. rate (FDR).
  2450. Each gene's logFC was plotted against its logCPM, colored by FDR.
  2451. Red points are significant at ≤10% FDR, and blue are not significant at
  2452. that threshold.
  2453. The alpha and beta globin genes targeted for blocking are marked with large
  2454. triangles, while all other genes are represented as small points.
  2455. \end_layout
  2456. \end_inset
  2457. \end_layout
  2458. \begin_layout Plain Layout
  2459. \end_layout
  2460. \end_inset
  2461. \end_layout
  2462. \begin_layout Standard
  2463. \begin_inset Flex TODO Note (inline)
  2464. status open
  2465. \begin_layout Plain Layout
  2466. Standardize on
  2467. \begin_inset Quotes eld
  2468. \end_inset
  2469. log2
  2470. \begin_inset Quotes erd
  2471. \end_inset
  2472. notation
  2473. \end_layout
  2474. \end_inset
  2475. \end_layout
  2476. \begin_layout Standard
  2477. The data do indeed show small systematic perturbations in gene levels (Figure
  2478. \begin_inset CommandInset ref
  2479. LatexCommand ref
  2480. reference "fig:MA-plot"
  2481. plural "false"
  2482. caps "false"
  2483. noprefix "false"
  2484. \end_inset
  2485. ).
  2486. Other than the 3 designated alpha and beta globin genes, two other genes
  2487. stand out as having especially large negative log fold changes: HBD and
  2488. LOC1021365.
  2489. HBD, delta globin, is most likely targeted by the blocking oligos due to
  2490. high sequence homology with the other globin genes.
  2491. LOC1021365 is the aforementioned ncRNA that is reverse-complementary to
  2492. one of the alpha-like genes and that would be expected to be removed during
  2493. the globin blocking step.
  2494. All other genes appear in a cluster centered vertically at 0, and the vast
  2495. majority of genes in this cluster show an absolute log2(FC) of 0.5 or less.
  2496. Nevertheless, many of these small perturbations are still statistically
  2497. significant, indicating that the globin blocking oligos likely cause very
  2498. small but non-zero systematic perturbations in measured gene expression
  2499. levels.
  2500. \end_layout
  2501. \begin_layout Standard
  2502. \begin_inset Float figure
  2503. wide false
  2504. sideways false
  2505. status open
  2506. \begin_layout Plain Layout
  2507. \align center
  2508. \begin_inset Graphics
  2509. filename graphics/Globin Paper/figure5 - corrplot.pdf
  2510. \end_inset
  2511. \end_layout
  2512. \begin_layout Plain Layout
  2513. \begin_inset Caption Standard
  2514. \begin_layout Plain Layout
  2515. \series bold
  2516. \begin_inset Argument 1
  2517. status collapsed
  2518. \begin_layout Plain Layout
  2519. Comparison of inter-sample gene abundance correlations with and without
  2520. globin blocking.
  2521. \end_layout
  2522. \end_inset
  2523. \begin_inset CommandInset label
  2524. LatexCommand label
  2525. name "fig:gene-abundance-correlations"
  2526. \end_inset
  2527. Comparison of inter-sample gene abundance correlations with and without
  2528. globin blocking (GB).
  2529. \series default
  2530. All libraries were normalized together as described in Figure 2, and genes
  2531. with an average abundance (logCPM, log2 counts per million reads counted)
  2532. less than -1 were filtered out.
  2533. Each gene’s logCPM was computed in each library using the edgeR cpm function.
  2534. For each pair of biological samples, the Pearson correlation between those
  2535. samples' GB libraries was plotted against the correlation between the same
  2536. samples’ non-GB libraries.
  2537. Each point represents an unique pair of samples.
  2538. The solid gray line shows a quantile-quantile plot of distribution of GB
  2539. correlations vs.
  2540. that of non-GB correlations.
  2541. The thin dashed line is the identity line, provided for reference.
  2542. \end_layout
  2543. \end_inset
  2544. \end_layout
  2545. \begin_layout Plain Layout
  2546. \end_layout
  2547. \end_inset
  2548. \end_layout
  2549. \begin_layout Standard
  2550. To evaluate the possibility of globin blocking causing random perturbations
  2551. and reducing sample quality, we computed the Pearson correlation between
  2552. logCPM values for every pair of samples with and without GB and plotted
  2553. them against each other (Figure
  2554. \begin_inset CommandInset ref
  2555. LatexCommand ref
  2556. reference "fig:gene-abundance-correlations"
  2557. plural "false"
  2558. caps "false"
  2559. noprefix "false"
  2560. \end_inset
  2561. ).
  2562. The plot indicated that the GB libraries have higher sample-to-sample correlati
  2563. ons than the non-GB libraries.
  2564. Parametric and nonparametric tests for differences between the correlations
  2565. with and without GB both confirmed that this difference was highly significant
  2566. (2-sided paired t-test: t = 37.2, df = 665, P ≪ 2.2e-16; 2-sided Wilcoxon
  2567. sign-rank test: V = 2195, P ≪ 2.2e-16).
  2568. Performing the same tests on the Spearman correlations gave the same conclusion
  2569. (t-test: t = 26.8, df = 665, P ≪ 2.2e-16; sign-rank test: V = 8781, P ≪ 2.2e-16).
  2570. The edgeR package was used to compute the overall biological coefficient
  2571. of variation (BCV) for GB and non-GB libraries, and found that globin blocking
  2572. resulted in a negligible increase in the BCV (0.417 with GB vs.
  2573. 0.400 without).
  2574. The near equality of the BCVs for both sets indicates that the higher correlati
  2575. ons in the GB libraries are most likely a result of the increased yield
  2576. of useful reads, which reduces the contribution of Poisson counting uncertainty
  2577. to the overall variance of the logCPM values
  2578. \begin_inset CommandInset citation
  2579. LatexCommand cite
  2580. key "McCarthy2012"
  2581. literal "false"
  2582. \end_inset
  2583. .
  2584. This improves the precision of expression measurements and more than offsets
  2585. the negligible increase in BCV.
  2586. \end_layout
  2587. \begin_layout Subsection*
  2588. More differentially expressed genes are detected with globin blocking
  2589. \end_layout
  2590. \begin_layout Standard
  2591. \begin_inset Float table
  2592. wide false
  2593. sideways false
  2594. status open
  2595. \begin_layout Plain Layout
  2596. \align center
  2597. \begin_inset Tabular
  2598. <lyxtabular version="3" rows="5" columns="5">
  2599. <features tabularvalignment="middle">
  2600. <column alignment="center" valignment="top">
  2601. <column alignment="center" valignment="top">
  2602. <column alignment="center" valignment="top">
  2603. <column alignment="center" valignment="top">
  2604. <column alignment="center" valignment="top">
  2605. <row>
  2606. <cell alignment="center" valignment="top" usebox="none">
  2607. \begin_inset Text
  2608. \begin_layout Plain Layout
  2609. \end_layout
  2610. \end_inset
  2611. </cell>
  2612. <cell alignment="center" valignment="top" usebox="none">
  2613. \begin_inset Text
  2614. \begin_layout Plain Layout
  2615. \end_layout
  2616. \end_inset
  2617. </cell>
  2618. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2619. \begin_inset Text
  2620. \begin_layout Plain Layout
  2621. \series bold
  2622. No Globin Blocking
  2623. \end_layout
  2624. \end_inset
  2625. </cell>
  2626. <cell multicolumn="2" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2627. \begin_inset Text
  2628. \begin_layout Plain Layout
  2629. \end_layout
  2630. \end_inset
  2631. </cell>
  2632. <cell multicolumn="2" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2633. \begin_inset Text
  2634. \begin_layout Plain Layout
  2635. \end_layout
  2636. \end_inset
  2637. </cell>
  2638. </row>
  2639. <row>
  2640. <cell alignment="center" valignment="top" usebox="none">
  2641. \begin_inset Text
  2642. \begin_layout Plain Layout
  2643. \end_layout
  2644. \end_inset
  2645. </cell>
  2646. <cell alignment="center" valignment="top" usebox="none">
  2647. \begin_inset Text
  2648. \begin_layout Plain Layout
  2649. \end_layout
  2650. \end_inset
  2651. </cell>
  2652. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2653. \begin_inset Text
  2654. \begin_layout Plain Layout
  2655. \series bold
  2656. Up
  2657. \end_layout
  2658. \end_inset
  2659. </cell>
  2660. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2661. \begin_inset Text
  2662. \begin_layout Plain Layout
  2663. \series bold
  2664. NS
  2665. \end_layout
  2666. \end_inset
  2667. </cell>
  2668. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2669. \begin_inset Text
  2670. \begin_layout Plain Layout
  2671. \series bold
  2672. Down
  2673. \end_layout
  2674. \end_inset
  2675. </cell>
  2676. </row>
  2677. <row>
  2678. <cell multirow="3" alignment="center" valignment="middle" topline="true" bottomline="true" leftline="true" usebox="none">
  2679. \begin_inset Text
  2680. \begin_layout Plain Layout
  2681. \series bold
  2682. Globin-Blocking
  2683. \end_layout
  2684. \end_inset
  2685. </cell>
  2686. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2687. \begin_inset Text
  2688. \begin_layout Plain Layout
  2689. \series bold
  2690. Up
  2691. \end_layout
  2692. \end_inset
  2693. </cell>
  2694. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2695. \begin_inset Text
  2696. \begin_layout Plain Layout
  2697. \family roman
  2698. \series medium
  2699. \shape up
  2700. \size normal
  2701. \emph off
  2702. \bar no
  2703. \strikeout off
  2704. \xout off
  2705. \uuline off
  2706. \uwave off
  2707. \noun off
  2708. \color none
  2709. 231
  2710. \end_layout
  2711. \end_inset
  2712. </cell>
  2713. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2714. \begin_inset Text
  2715. \begin_layout Plain Layout
  2716. \family roman
  2717. \series medium
  2718. \shape up
  2719. \size normal
  2720. \emph off
  2721. \bar no
  2722. \strikeout off
  2723. \xout off
  2724. \uuline off
  2725. \uwave off
  2726. \noun off
  2727. \color none
  2728. 515
  2729. \end_layout
  2730. \end_inset
  2731. </cell>
  2732. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2733. \begin_inset Text
  2734. \begin_layout Plain Layout
  2735. \family roman
  2736. \series medium
  2737. \shape up
  2738. \size normal
  2739. \emph off
  2740. \bar no
  2741. \strikeout off
  2742. \xout off
  2743. \uuline off
  2744. \uwave off
  2745. \noun off
  2746. \color none
  2747. 2
  2748. \end_layout
  2749. \end_inset
  2750. </cell>
  2751. </row>
  2752. <row>
  2753. <cell multirow="4" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2754. \begin_inset Text
  2755. \begin_layout Plain Layout
  2756. \end_layout
  2757. \end_inset
  2758. </cell>
  2759. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2760. \begin_inset Text
  2761. \begin_layout Plain Layout
  2762. \series bold
  2763. NS
  2764. \end_layout
  2765. \end_inset
  2766. </cell>
  2767. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2768. \begin_inset Text
  2769. \begin_layout Plain Layout
  2770. \family roman
  2771. \series medium
  2772. \shape up
  2773. \size normal
  2774. \emph off
  2775. \bar no
  2776. \strikeout off
  2777. \xout off
  2778. \uuline off
  2779. \uwave off
  2780. \noun off
  2781. \color none
  2782. 160
  2783. \end_layout
  2784. \end_inset
  2785. </cell>
  2786. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2787. \begin_inset Text
  2788. \begin_layout Plain Layout
  2789. \family roman
  2790. \series medium
  2791. \shape up
  2792. \size normal
  2793. \emph off
  2794. \bar no
  2795. \strikeout off
  2796. \xout off
  2797. \uuline off
  2798. \uwave off
  2799. \noun off
  2800. \color none
  2801. 11235
  2802. \end_layout
  2803. \end_inset
  2804. </cell>
  2805. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2806. \begin_inset Text
  2807. \begin_layout Plain Layout
  2808. \family roman
  2809. \series medium
  2810. \shape up
  2811. \size normal
  2812. \emph off
  2813. \bar no
  2814. \strikeout off
  2815. \xout off
  2816. \uuline off
  2817. \uwave off
  2818. \noun off
  2819. \color none
  2820. 136
  2821. \end_layout
  2822. \end_inset
  2823. </cell>
  2824. </row>
  2825. <row>
  2826. <cell multirow="4" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2827. \begin_inset Text
  2828. \begin_layout Plain Layout
  2829. \end_layout
  2830. \end_inset
  2831. </cell>
  2832. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2833. \begin_inset Text
  2834. \begin_layout Plain Layout
  2835. \series bold
  2836. Down
  2837. \end_layout
  2838. \end_inset
  2839. </cell>
  2840. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2841. \begin_inset Text
  2842. \begin_layout Plain Layout
  2843. \family roman
  2844. \series medium
  2845. \shape up
  2846. \size normal
  2847. \emph off
  2848. \bar no
  2849. \strikeout off
  2850. \xout off
  2851. \uuline off
  2852. \uwave off
  2853. \noun off
  2854. \color none
  2855. 0
  2856. \end_layout
  2857. \end_inset
  2858. </cell>
  2859. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2860. \begin_inset Text
  2861. \begin_layout Plain Layout
  2862. \family roman
  2863. \series medium
  2864. \shape up
  2865. \size normal
  2866. \emph off
  2867. \bar no
  2868. \strikeout off
  2869. \xout off
  2870. \uuline off
  2871. \uwave off
  2872. \noun off
  2873. \color none
  2874. 548
  2875. \end_layout
  2876. \end_inset
  2877. </cell>
  2878. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2879. \begin_inset Text
  2880. \begin_layout Plain Layout
  2881. \family roman
  2882. \series medium
  2883. \shape up
  2884. \size normal
  2885. \emph off
  2886. \bar no
  2887. \strikeout off
  2888. \xout off
  2889. \uuline off
  2890. \uwave off
  2891. \noun off
  2892. \color none
  2893. 127
  2894. \end_layout
  2895. \end_inset
  2896. </cell>
  2897. </row>
  2898. </lyxtabular>
  2899. \end_inset
  2900. \end_layout
  2901. \begin_layout Plain Layout
  2902. \begin_inset Caption Standard
  2903. \begin_layout Plain Layout
  2904. \series bold
  2905. \begin_inset Argument 1
  2906. status open
  2907. \begin_layout Plain Layout
  2908. Comparison of significantly differentially expressed genes with and without
  2909. globin blocking.
  2910. \end_layout
  2911. \end_inset
  2912. \begin_inset CommandInset label
  2913. LatexCommand label
  2914. name "tab:Comparison-of-significant"
  2915. \end_inset
  2916. Comparison of significantly differentially expressed genes with and without
  2917. globin blocking.
  2918. \series default
  2919. Up, Down: Genes significantly up/down-regulated in post-transplant samples
  2920. relative to pre-transplant samples, with a false discovery rate of 10%
  2921. or less.
  2922. NS: Non-significant genes (false discovery rate greater than 10%).
  2923. \end_layout
  2924. \end_inset
  2925. \end_layout
  2926. \begin_layout Plain Layout
  2927. \end_layout
  2928. \end_inset
  2929. \end_layout
  2930. \begin_layout Standard
  2931. To compare performance on differential gene expression tests, we took subsets
  2932. of both the GB and non-GB libraries with exactly one pre-transplant and
  2933. one post-transplant sample for each animal that had paired samples available
  2934. for analysis (N=7 animals, N=14 samples in each subset).
  2935. The same test for pre- vs.
  2936. post-transplant differential gene expression was performed on the same
  2937. 7 pairs of samples from GB libraries and non-GB libraries, in each case
  2938. using an FDR of 10% as the threshold of significance.
  2939. Out of 12954 genes that passed the detection threshold in both subsets,
  2940. 358 were called significantly differentially expressed in the same direction
  2941. in both sets; 1063 were differentially expressed in the GB set only; 296
  2942. were differentially expressed in the non-GB set only; 2 genes were called
  2943. significantly up in the GB set but significantly down in the non-GB set;
  2944. and the remaining 11235 were not called differentially expressed in either
  2945. set.
  2946. These data are summarized in Table
  2947. \begin_inset CommandInset ref
  2948. LatexCommand ref
  2949. reference "tab:Comparison-of-significant"
  2950. plural "false"
  2951. caps "false"
  2952. noprefix "false"
  2953. \end_inset
  2954. .
  2955. The differences in BCV calculated by EdgeR for these subsets of samples
  2956. were negligible (BCV = 0.302 for GB and 0.297 for non-GB).
  2957. \end_layout
  2958. \begin_layout Standard
  2959. The key point is that the GB data results in substantially more differentially
  2960. expressed calls than the non-GB data.
  2961. Since there is no gold standard for this dataset, it is impossible to be
  2962. certain whether this is due to under-calling of differential expression
  2963. in the non-GB samples or over-calling in the GB samples.
  2964. However, given that both datasets are derived from the same biological
  2965. samples and have nearly equal BCVs, it is more likely that the larger number
  2966. of DE calls in the GB samples are genuine detections that were enabled
  2967. by the higher sequencing depth and measurement precision of the GB samples.
  2968. Note that the same set of genes was considered in both subsets, so the
  2969. larger number of differentially expressed gene calls in the GB data set
  2970. reflects a greater sensitivity to detect significant differential gene
  2971. expression and not simply the larger total number of detected genes in
  2972. GB samples described earlier.
  2973. \end_layout
  2974. \begin_layout Section
  2975. Discussion
  2976. \end_layout
  2977. \begin_layout Standard
  2978. The original experience with whole blood gene expression profiling on DNA
  2979. microarrays demonstrated that the high concentration of globin transcripts
  2980. reduced the sensitivity to detect genes with relatively low expression
  2981. levels, in effect, significantly reducing the sensitivity.
  2982. To address this limitation, commercial protocols for globin reduction were
  2983. developed based on strategies to block globin transcript amplification
  2984. during labeling or physically removing globin transcripts by affinity bead
  2985. methods
  2986. \begin_inset CommandInset citation
  2987. LatexCommand cite
  2988. key "Winn2010"
  2989. literal "false"
  2990. \end_inset
  2991. .
  2992. More recently, using the latest generation of labeling protocols and arrays,
  2993. it was determined that globin reduction was no longer necessary to obtain
  2994. sufficient sensitivity to detect differential transcript expression
  2995. \begin_inset CommandInset citation
  2996. LatexCommand cite
  2997. key "NuGEN2010"
  2998. literal "false"
  2999. \end_inset
  3000. .
  3001. However, we are not aware of any publications using these currently available
  3002. protocols the with latest generation of microarrays that actually compare
  3003. the detection sensitivity with and without globin reduction.
  3004. However, in practice this has now been adopted generally primarily driven
  3005. by concerns for cost control.
  3006. The main objective of our work was to directly test the impact of globin
  3007. gene transcripts and a new globin blocking protocol for application to
  3008. the newest generation of differential gene expression profiling determined
  3009. using next generation sequencing.
  3010. \end_layout
  3011. \begin_layout Standard
  3012. The challenge of doing global gene expression profiling in cynomolgus monkeys
  3013. is that the current available arrays were never designed to comprehensively
  3014. cover this genome and have not been updated since the first assemblies
  3015. of the cynomolgus genome were published.
  3016. Therefore, we determined that the best strategy for peripheral blood profiling
  3017. was to do deep RNA-seq and inform the workflow using the latest available
  3018. genome assembly and annotation
  3019. \begin_inset CommandInset citation
  3020. LatexCommand cite
  3021. key "Wilson2013"
  3022. literal "false"
  3023. \end_inset
  3024. .
  3025. However, it was not immediately clear whether globin reduction was necessary
  3026. for RNA-seq or how much improvement in efficiency or sensitivity to detect
  3027. differential gene expression would be achieved for the added cost and work.
  3028. \end_layout
  3029. \begin_layout Standard
  3030. We only found one report that demonstrated that globin reduction significantly
  3031. improved the effective read yields for sequencing of human peripheral blood
  3032. cell RNA using a DeepSAGE protocol
  3033. \begin_inset CommandInset citation
  3034. LatexCommand cite
  3035. key "Mastrokolias2012"
  3036. literal "false"
  3037. \end_inset
  3038. .
  3039. The approach to DeepSAGE involves two different restriction enzymes that
  3040. purify and then tag small fragments of transcripts at specific locations
  3041. and thus, significantly reduces the complexity of the transcriptome.
  3042. Therefore, we could not determine how DeepSAGE results would translate
  3043. to the common strategy in the field for assaying the entire transcript
  3044. population by whole-transcriptome 3’-end RNA-seq.
  3045. Furthermore, if globin reduction is necessary, we also needed a globin
  3046. reduction method specific to cynomolgus globin sequences that would work
  3047. an organism for which no kit is available off the shelf.
  3048. \end_layout
  3049. \begin_layout Standard
  3050. As mentioned above, the addition of globin blocking oligos has a very small
  3051. impact on measured expression levels of gene expression.
  3052. However, this is a non-issue for the purposes of differential expression
  3053. testing, since a systematic change in a gene in all samples does not affect
  3054. relative expression levels between samples.
  3055. However, we must acknowledge that simple comparisons of gene expression
  3056. data obtained by GB and non-GB protocols are not possible without additional
  3057. normalization.
  3058. \end_layout
  3059. \begin_layout Standard
  3060. More importantly, globin blocking not only nearly doubles the yield of usable
  3061. reads, it also increases inter-sample correlation and sensitivity to detect
  3062. differential gene expression relative to the same set of samples profiled
  3063. without blocking.
  3064. In addition, globin blocking does not add a significant amount of random
  3065. noise to the data.
  3066. Globin blocking thus represents a cost-effective way to squeeze more data
  3067. and statistical power out of the same blood samples and the same amount
  3068. of sequencing.
  3069. In conclusion, globin reduction greatly increases the yield of useful RNA-seq
  3070. reads mapping to the rest of the genome, with minimal perturbations in
  3071. the relative levels of non-globin genes.
  3072. Based on these results, globin transcript reduction using sequence-specific,
  3073. complementary blocking oligonucleotides is recommended for all deep RNA-seq
  3074. of cynomolgus and other nonhuman primate blood samples.
  3075. \end_layout
  3076. \begin_layout Chapter
  3077. Future Directions
  3078. \end_layout
  3079. \begin_layout Itemize
  3080. Study other epigenetic marks in more contexts
  3081. \end_layout
  3082. \begin_deeper
  3083. \begin_layout Itemize
  3084. DNA methylation, histone marks, chromatin accessibility & conformation in
  3085. CD4 T-cells
  3086. \end_layout
  3087. \begin_layout Itemize
  3088. Also look at other types lymphocytes: CD8 T-cells, B-cells, NK cells
  3089. \end_layout
  3090. \end_deeper
  3091. \begin_layout Itemize
  3092. Investigate epigenetic regulation of lifespan extension in
  3093. \emph on
  3094. C.
  3095. elegans
  3096. \end_layout
  3097. \begin_deeper
  3098. \begin_layout Itemize
  3099. ChIP-seq of important transcriptional regulators to see how transcriptional
  3100. drift is prevented
  3101. \end_layout
  3102. \end_deeper
  3103. \begin_layout Standard
  3104. \begin_inset ERT
  3105. status open
  3106. \begin_layout Plain Layout
  3107. % Use "References" instead of "Bibliography"
  3108. \end_layout
  3109. \begin_layout Plain Layout
  3110. \backslash
  3111. renewcommand{
  3112. \backslash
  3113. bibname}{References}
  3114. \end_layout
  3115. \end_inset
  3116. \end_layout
  3117. \begin_layout Standard
  3118. \begin_inset Flex TODO Note (inline)
  3119. status open
  3120. \begin_layout Plain Layout
  3121. Check bib entry formatting & sort order
  3122. \end_layout
  3123. \end_inset
  3124. \end_layout
  3125. \begin_layout Standard
  3126. \begin_inset CommandInset bibtex
  3127. LatexCommand bibtex
  3128. btprint "btPrintCited"
  3129. bibfiles "refs"
  3130. options "bibtotoc,unsrt"
  3131. \end_inset
  3132. \end_layout
  3133. \end_body
  3134. \end_document