thesis.lyx 341 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452154531545415455154561545715458154591546015461154621546315464154651546615467154681546915470154711547215473154741547515476154771547815479154801548115482154831548415485154861548715488154891549015491154921549315494154951549615497154981549915500155011550215503155041550515506155071550815509155101551115512155131551415515155161551715518155191552015521
  1. #LyX 2.3 created this file. For more info see http://www.lyx.org/
  2. \lyxformat 544
  3. \begin_document
  4. \begin_header
  5. \save_transient_properties true
  6. \origin unavailable
  7. \textclass extbook
  8. \begin_preamble
  9. % List all used files in log output
  10. \listfiles
  11. % Add a DRAFT watermark
  12. \usepackage{draftwatermark}
  13. \usepackage{accsupp}
  14. \SetWatermarkLightness{0.97}
  15. \SetWatermarkScale{1}
  16. % Make watermark not copyable (in Adobe Reader)
  17. \SetWatermarkText{\BeginAccSupp{method=escape,ActualText={}}DRAFT\EndAccSupp{}}
  18. % Set up required header format
  19. \usepackage{fancyhdr}
  20. \pagestyle{fancy}
  21. \renewcommand{\headrulewidth}{0pt}
  22. \rhead{}
  23. \lhead{}
  24. \chead{}
  25. \rfoot{}
  26. \lfoot{}
  27. % Make page number not copyable (in Adobe Reader)
  28. \cfoot{\BeginAccSupp{method=escape,ActualText={}}\thepage\EndAccSupp{}} % Page number bottom center
  29. % Allow FloatBarrier command
  30. \usepackage{placeins}
  31. % Allow landscape pages
  32. \usepackage{pdflscape}
  33. % Allow doing things after the end of the current page
  34. % (to avoid landscape figures breaking up text)
  35. \usepackage{afterpage}
  36. % This one breaks subfigs so it's disabled
  37. % https://tex.stackexchange.com/questions/65680/automatically-bold-first-sentence-of-a-floats-caption
  38. \end_preamble
  39. \use_default_options true
  40. \begin_modules
  41. todonotes
  42. logicalmkup
  43. \end_modules
  44. \maintain_unincluded_children false
  45. \language english
  46. \language_package default
  47. \inputencoding utf8
  48. \fontencoding default
  49. \font_roman "default" "default"
  50. \font_sans "default" "default"
  51. \font_typewriter "default" "default"
  52. \font_math "auto" "auto"
  53. \font_default_family default
  54. \use_non_tex_fonts false
  55. \font_sc false
  56. \font_osf false
  57. \font_sf_scale 100 100
  58. \font_tt_scale 100 100
  59. \use_microtype false
  60. \use_dash_ligatures true
  61. \graphics default
  62. \default_output_format pdf4
  63. \output_sync 0
  64. \bibtex_command biber
  65. \index_command default
  66. \paperfontsize 12
  67. \spacing double
  68. \use_hyperref true
  69. \pdf_bookmarks true
  70. \pdf_bookmarksnumbered false
  71. \pdf_bookmarksopen false
  72. \pdf_bookmarksopenlevel 1
  73. \pdf_breaklinks false
  74. \pdf_pdfborder false
  75. \pdf_colorlinks false
  76. \pdf_backref false
  77. \pdf_pdfusetitle true
  78. \papersize letterpaper
  79. \use_geometry true
  80. \use_package amsmath 1
  81. \use_package amssymb 1
  82. \use_package cancel 1
  83. \use_package esint 1
  84. \use_package mathdots 1
  85. \use_package mathtools 1
  86. \use_package mhchem 1
  87. \use_package stackrel 1
  88. \use_package stmaryrd 1
  89. \use_package undertilde 1
  90. \cite_engine biblatex
  91. \cite_engine_type authoryear
  92. \biblio_style plain
  93. \biblatex_bibstyle authoryear
  94. \biblatex_citestyle numeric
  95. \use_bibtopic false
  96. \use_indices false
  97. \paperorientation portrait
  98. \suppress_date false
  99. \justification true
  100. \use_refstyle 1
  101. \use_minted 0
  102. \index Index
  103. \shortcut idx
  104. \color #008000
  105. \end_index
  106. \leftmargin 1.5in
  107. \topmargin 1in
  108. \rightmargin 1in
  109. \bottommargin 1in
  110. \secnumdepth 3
  111. \tocdepth 3
  112. \paragraph_separation indent
  113. \paragraph_indentation default
  114. \is_math_indent 0
  115. \math_numbering_side default
  116. \quotes_style english
  117. \dynamic_quotes 0
  118. \papercolumns 1
  119. \papersides 1
  120. \paperpagestyle default
  121. \tracking_changes false
  122. \output_changes false
  123. \html_math_output 0
  124. \html_css_as_file 0
  125. \html_be_strict false
  126. \end_header
  127. \begin_body
  128. \begin_layout Title
  129. Bioinformatic analysis of complex, high-throughput genomic and epigenomic
  130. data in the context of immunology and transplant rejection
  131. \end_layout
  132. \begin_layout Author
  133. A thesis presented
  134. \begin_inset Newline newline
  135. \end_inset
  136. by
  137. \begin_inset Newline newline
  138. \end_inset
  139. Ryan C.
  140. Thompson
  141. \begin_inset Newline newline
  142. \end_inset
  143. to
  144. \begin_inset Newline newline
  145. \end_inset
  146. The Scripps Research Institute Graduate Program
  147. \begin_inset Newline newline
  148. \end_inset
  149. in partial fulfillment of the requirements for the degree of
  150. \begin_inset Newline newline
  151. \end_inset
  152. Doctor of Philosophy in the subject of Biology
  153. \begin_inset Newline newline
  154. \end_inset
  155. for
  156. \begin_inset Newline newline
  157. \end_inset
  158. The Scripps Research Institute
  159. \begin_inset Newline newline
  160. \end_inset
  161. La Jolla, California
  162. \end_layout
  163. \begin_layout Date
  164. October 2019
  165. \end_layout
  166. \begin_layout Standard
  167. [Copyright notice]
  168. \end_layout
  169. \begin_layout Standard
  170. [Thesis acceptance form]
  171. \end_layout
  172. \begin_layout Standard
  173. [Dedication]
  174. \end_layout
  175. \begin_layout Standard
  176. [Acknowledgements]
  177. \end_layout
  178. \begin_layout Standard
  179. \begin_inset CommandInset toc
  180. LatexCommand tableofcontents
  181. \end_inset
  182. \end_layout
  183. \begin_layout Standard
  184. \begin_inset FloatList table
  185. \end_inset
  186. \end_layout
  187. \begin_layout Standard
  188. \begin_inset FloatList figure
  189. \end_inset
  190. \end_layout
  191. \begin_layout Standard
  192. [List of Abbreviations]
  193. \end_layout
  194. \begin_layout List of TODOs
  195. \end_layout
  196. \begin_layout Standard
  197. \begin_inset Flex TODO Note (inline)
  198. status open
  199. \begin_layout Plain Layout
  200. Check all figures to make sure they fit on the page with their legends.
  201. \end_layout
  202. \end_inset
  203. \end_layout
  204. \begin_layout Standard
  205. \begin_inset Flex TODO Note (inline)
  206. status open
  207. \begin_layout Plain Layout
  208. Search and replace: naive -> naïve
  209. \end_layout
  210. \end_inset
  211. \end_layout
  212. \begin_layout Standard
  213. \begin_inset Flex TODO Note (inline)
  214. status open
  215. \begin_layout Plain Layout
  216. Look into auto-generated nomenclature list:
  217. \begin_inset CommandInset href
  218. LatexCommand href
  219. target "https://wiki.lyx.org/Tips/Nomenclature"
  220. \end_inset
  221. .
  222. Otherwise, do a manual pass for all abbreviations at the end.
  223. Do nomenclature/abbreviations independently for each chapter.
  224. \end_layout
  225. \end_inset
  226. \end_layout
  227. \begin_layout Standard
  228. \begin_inset Flex TODO Note (inline)
  229. status open
  230. \begin_layout Plain Layout
  231. Make all descriptions consistent in terms of
  232. \begin_inset Quotes eld
  233. \end_inset
  234. we did X
  235. \begin_inset Quotes erd
  236. \end_inset
  237. vs
  238. \begin_inset Quotes eld
  239. \end_inset
  240. I did X
  241. \begin_inset Quotes erd
  242. \end_inset
  243. vs
  244. \begin_inset Quotes eld
  245. \end_inset
  246. X was done
  247. \begin_inset Quotes erd
  248. \end_inset
  249. .
  250. \end_layout
  251. \end_inset
  252. \end_layout
  253. \begin_layout Chapter*
  254. Abstract
  255. \end_layout
  256. \begin_layout Standard
  257. \begin_inset Note Note
  258. status open
  259. \begin_layout Plain Layout
  260. It is included as an integral part of the thesis and should immediately
  261. precede the introduction.
  262. \end_layout
  263. \begin_layout Plain Layout
  264. Preparing your Abstract.
  265. Your abstract (a succinct description of your work) is limited to 350 words.
  266. UMI will shorten it if they must; please do not exceed the limit.
  267. \end_layout
  268. \begin_layout Itemize
  269. Include pertinent place names, names of persons (in full), and other proper
  270. nouns.
  271. These are useful in automated retrieval.
  272. \end_layout
  273. \begin_layout Itemize
  274. Display symbols, as well as foreign words and phrases, clearly and accurately.
  275. Include transliterations for characters other than Roman and Greek letters
  276. and Arabic numerals.
  277. Include accents and diacritical marks.
  278. \end_layout
  279. \begin_layout Itemize
  280. Do not include graphs, charts, tables, or illustrations in your abstract.
  281. \end_layout
  282. \end_inset
  283. \end_layout
  284. \begin_layout Standard
  285. \begin_inset Flex TODO Note (inline)
  286. status open
  287. \begin_layout Plain Layout
  288. Obviously the abstract gets written last.
  289. \end_layout
  290. \end_inset
  291. \end_layout
  292. \begin_layout Chapter*
  293. Notes to draft readers
  294. \end_layout
  295. \begin_layout Standard
  296. Thank you so much for agreeing to read my thesis and give me feedback on
  297. it.
  298. What you are currently reading is a rough draft, in need of many revisions.
  299. You can always find the latest version at
  300. \begin_inset CommandInset href
  301. LatexCommand href
  302. target "https://mneme.dedyn.io/~ryan/Thesis/thesis.pdf"
  303. literal "false"
  304. \end_inset
  305. .
  306. the PDF at this link is updated periodically with my latest revisions,
  307. but you can just download the current version and give me feedback on that.
  308. Don't worry about keeping up with the updates.
  309. \end_layout
  310. \begin_layout Standard
  311. As for what feedback I'm looking for, first of all, don't waste your time
  312. marking spelling mistakes and such.
  313. I haven't run a spell checker on it yet, so let me worry about that.
  314. Also, I'm aware that many abbreviations are not properly introduced the
  315. first time they are used, so don't worry about that either.
  316. However, if you see any glaring formatting issues, such as a figure being
  317. too large and getting cut off at the edge of the page, please note them.
  318. In addition, if any of the text in the figures is too small, please note
  319. that as well.
  320. \end_layout
  321. \begin_layout Standard
  322. Beyond that, what I'm mainly interested in is feedback on the content.
  323. For example: does the introduction flow logically, and does it provide
  324. enough background to understand the other chapters? Does each chapter make
  325. it clear what work and analyses I have done? Do the figures clearly communicate
  326. the results I'm trying to show? Do you feel that the claims in the results
  327. and discussion sections are well-supported? There's no need to suggest
  328. improvements; just note areas that you feel need improvement.
  329. Additionally, while I am well aware that Chapter 1 (the introduction) contains
  330. many un-cited claims, all the other chapters (2,3, and 4)
  331. \emph on
  332. should
  333. \emph default
  334. be fully cited.
  335. So if you notice any un-cited claims in those chapters, please flag them
  336. for my attention.
  337. Similarly, if you discover any factual errors, please note them as well.
  338. \end_layout
  339. \begin_layout Standard
  340. You can provide your feedback in whatever way is most convenient to you.
  341. You could mark up this PDF with highlights and notes, then send it back
  342. to me.
  343. Or you could collect your comments in a separate text file and send that
  344. to me, or whatever else you like.
  345. However, if you send me your feedback in a separate document, please note
  346. a section/figure/table number for each comment, and
  347. \emph on
  348. also
  349. \emph default
  350. send me the exact PDF that you read so I can reference it while reading
  351. your comments, since as mentioned above, the current version I'm working
  352. on will have changed by that point (which might include shuffling sections
  353. and figures around, changing their numbers).
  354. One last thing: you'll see a bunch of text in orange boxes throughout the
  355. PDF.
  356. These are notes to myself about things that need to be fixed later, so
  357. if you see a problem noted in an orange box, that means I'm already aware
  358. of it, and there's no need to comment on it.
  359. \end_layout
  360. \begin_layout Standard
  361. My thesis is due Thursday, October 10th, so in order to be useful to me,
  362. I'll need your feedback at least a few days before that, ideally by Monday,
  363. October 7th.
  364. If you have limited time and are unable to get through the whole thesis,
  365. please focus your efforts on Chapters 1 and 2, since those are the roughest
  366. and most in need of revision.
  367. Chapter 3 is fairly short and straightforward, and Chapter 4 is an adaptation
  368. of a paper that's already been through a few rounds of revision, so they
  369. should be a lot tighter.
  370. If you can't spare any time between now and then, or if something unexpected
  371. comes up, I understand.
  372. Just let me know.
  373. \end_layout
  374. \begin_layout Standard
  375. Thanks again for your help, and happy reading!
  376. \end_layout
  377. \begin_layout Chapter
  378. Introduction
  379. \end_layout
  380. \begin_layout Section
  381. Background & Significance
  382. \end_layout
  383. \begin_layout Subsection
  384. Biological motivation
  385. \end_layout
  386. \begin_layout Standard
  387. \begin_inset Flex TODO Note (inline)
  388. status open
  389. \begin_layout Plain Layout
  390. Rethink the subsection organization after the intro is written.
  391. \end_layout
  392. \end_inset
  393. \end_layout
  394. \begin_layout Standard
  395. \begin_inset Flex TODO Note (inline)
  396. status open
  397. \begin_layout Plain Layout
  398. Citations are needed all over the place.
  399. A lot of this is knowledge I've just absorbed from years of conversation
  400. in the Salomon lab, without ever having seen a citation for it.
  401. \end_layout
  402. \end_inset
  403. \end_layout
  404. \begin_layout Subsubsection
  405. Rejection is the major long-term threat to organ and tissue allografts
  406. \end_layout
  407. \begin_layout Standard
  408. Organ and tissue transplants are a life-saving treatment for people who
  409. have lost the function of an important organ [CITE?].
  410. In some cases, it is possible to transplant a patient's own tissue from
  411. one area of their body to another, referred to as an autograft.
  412. This is common for tissues that are distributed throughout many areas of
  413. the body, such as skin and bone.
  414. However, in cases of organ failure, there is no functional self tissue
  415. remaining, and a transplant from another person – a donor – is required.
  416. This is referred to as an allograft.
  417. \end_layout
  418. \begin_layout Standard
  419. \begin_inset Flex TODO Note (inline)
  420. status open
  421. \begin_layout Plain Layout
  422. Possible citation for degree of generic variability:
  423. \begin_inset CommandInset href
  424. LatexCommand href
  425. target "https://www.ncbi.nlm.nih.gov/pubmed/22424236?dopt=Abstract"
  426. \end_inset
  427. \end_layout
  428. \end_inset
  429. \end_layout
  430. \begin_layout Standard
  431. \begin_inset Flex TODO Note (inline)
  432. status open
  433. \begin_layout Plain Layout
  434. How much mechanistic detail is needed here? My work doesn't really go into
  435. specific rejection mechanisms, so I think it's best to keep it basic.
  436. \end_layout
  437. \end_inset
  438. \end_layout
  439. \begin_layout Standard
  440. Because an allograft comes from a different person, it is genetically distinct
  441. from the rest of the recipient's body.
  442. Some genetic variants occur in protein coding regions, resulting in protein
  443. products that differ from the equivalent proteins in the graft recipient's
  444. own tissue.
  445. As a result, without intervention, the recipient's immune system will eventuall
  446. y identify the graft as foreign tissue and begin attacking it, eventually
  447. resulting in failure and death of the graft, a process referred to as transplan
  448. t rejection.
  449. Rejection is the most significant challenge to the long-term health and
  450. survival of an allograft [CITE?].
  451. Like any adaptive immune response, graft rejection generally occurs via
  452. two broad mechanisms: cellular immunity, in which CD8+ T-cells recognizing
  453. graft-specific antigens induce apoptosis in the graft cells; and humoral
  454. immunity, in which B-cells produce antibodies that bind to graft proteins
  455. and direct an immune response against the graft [CITE?].
  456. In either case, rejection shows most of the typical hallmarks of an adaptive
  457. immune response, in particular mediation by CD4+ T-cells and formation
  458. of immune memory.
  459. \end_layout
  460. \begin_layout Subsubsection
  461. Diagnosis and treatment of allograft rejection is a major challenge
  462. \end_layout
  463. \begin_layout Standard
  464. To prevent rejection, allograft recipients are treated with immune suppressive
  465. drugs [CITE?].
  466. The goal is to achieve sufficient suppression of the immune system to prevent
  467. rejection of the graft without compromising the ability of the immune system
  468. to raise a normal response against infection.
  469. As such, a delicate balance must be struck: insufficient immune suppression
  470. may lead to rejection and ultimately loss of the graft; excessive suppression
  471. leaves the patient vulnerable to life-threatening opportunistic infections.
  472. Because every patient is different, immune suppression must be tailored
  473. for each patient.
  474. Furthermore, immune suppression must be tuned over time, as the immune
  475. system's activity is not static, nor is it held in a steady state [CITE?].
  476. In order to properly adjust the dosage of immune suppression drugs, it
  477. is necessary to monitor the health of the transplant and increase the dosage
  478. if evidence of rejection is observed.
  479. \end_layout
  480. \begin_layout Standard
  481. However, diagnosis of rejection is a significant challenge.
  482. Early diagnosis is essential in order to step up immune suppression before
  483. the immune system damages the graft beyond recovery [CITE?].
  484. The current gold standard test for graft rejection is a tissue biopsy,
  485. examined for visible signs of rejection by a trained histologist [CITE?].
  486. When a patient shows symptoms of possible rejection, a
  487. \begin_inset Quotes eld
  488. \end_inset
  489. for cause
  490. \begin_inset Quotes erd
  491. \end_inset
  492. biopsy is performed to confirm the diagnosis, and immune suppression is
  493. adjusted as necessary.
  494. However, in many cases, the early stages of rejection are asymptomatic,
  495. known as
  496. \begin_inset Quotes eld
  497. \end_inset
  498. sub-clinical
  499. \begin_inset Quotes erd
  500. \end_inset
  501. rejection [CITE?].
  502. In light of this, is is now common to perform
  503. \begin_inset Quotes eld
  504. \end_inset
  505. protocol biopsies
  506. \begin_inset Quotes erd
  507. \end_inset
  508. at specific times after transplantation of a graft, even if no symptoms
  509. of rejection are apparent, in addition to
  510. \begin_inset Quotes eld
  511. \end_inset
  512. for cause
  513. \begin_inset Quotes erd
  514. \end_inset
  515. biopsies
  516. \begin_inset CommandInset citation
  517. LatexCommand cite
  518. key "Wilkinson2006"
  519. literal "false"
  520. \end_inset
  521. .
  522. \end_layout
  523. \begin_layout Standard
  524. However, biopsies have a number of downsides that limit their effectiveness
  525. as a diagnostic tool.
  526. First, the need for manual inspection by a histologist means that diagnosis
  527. is subject to the biases of the particular histologist examining the biopsy
  528. [CITE?].
  529. In marginal cases, two different histologists may give two different diagnoses
  530. to the same biopsy.
  531. Second, a biopsy can only evaluate if rejection is occurring in the section
  532. of the graft from which the tissue was extracted.
  533. If rejection is localized to one section of the graft and the tissue is
  534. extracted from a different section, a false negative diagnosis may result.
  535. Most importantly, extraction of tissue from a graft is invasive and is
  536. treated as an injury by the body, which results in inflammation that in
  537. turn promotes increased immune system activity [CITE?].
  538. Hence, the invasiveness of biopsies severely limits the frequency with
  539. which they can safely be performed.
  540. Typically, protocol biopsies are not scheduled more than about once per
  541. month
  542. \begin_inset CommandInset citation
  543. LatexCommand cite
  544. key "Wilkinson2006"
  545. literal "false"
  546. \end_inset
  547. .
  548. A less invasive diagnostic test for rejection would bring manifold benefits.
  549. Such a test would enable more frequent testing and therefore earlier detection
  550. of rejection events.
  551. In addition, having a larger pool of historical data for a given patient
  552. would make it easier to evaluate when a given test is outside the normal
  553. parameters for that specific patient, rather than relying on normal ranges
  554. for the population as a whole.
  555. Lastly, the accumulated data from more frequent tests would be a boon to
  556. the transplant research community.
  557. Beyond simply providing more data overall, the better time granularity
  558. of the tests will enable studying the progression of a rejection event
  559. on the scale of days to weeks, rather than months.
  560. \end_layout
  561. \begin_layout Subsubsection
  562. Memory cells are resistant to immune suppression
  563. \end_layout
  564. \begin_layout Standard
  565. One of the defining features of the adaptive immune system is immune memory:
  566. the ability of the immune system to recognize a previously encountered
  567. foreign antigen and respond more quickly and more strongly to that antigen
  568. in subsequent encounters.
  569. When the immune system first encounters a new antigen, the lymphocytes
  570. that respond are known as naive cells – T-cells and B-cells that have never
  571. detected their target antigens before.
  572. Once activated by their specific antigen presented by an antigen-presenting
  573. cell in the proper co-stimulatory context, naive cells differentiate into
  574. effector cells that carry out their respective functions in targeting and
  575. destroying the source of the foreign antigen.
  576. The requirement for co-stimulation is an important feature of naive cells
  577. that limits
  578. \begin_inset Quotes eld
  579. \end_inset
  580. false positive
  581. \begin_inset Quotes erd
  582. \end_inset
  583. immune responses, because antigen-presenting cells usually only express
  584. the proper co-stimulation after detecting evidence of an infection, such
  585. as the presence of common bacterial cell components or inflamed tissue.
  586. Most effector cells die after the foreign antigen is cleared, since they
  587. are no longer needed, but some remain and differentiate into memory cells.
  588. Like naive cells, memory cells respond to detection of their specific antigen
  589. by differentiating into effector cells, ready to fight an infection.
  590. However, unlike naive cells, memory cells do not require the same degree
  591. of co-stimulatory signaling for activation, and once activated, they proliferat
  592. e and differentiate into effector cells more quickly than naive cells do.
  593. \end_layout
  594. \begin_layout Standard
  595. In the context of a pathogenic infection, immune memory is a major advantage,
  596. allowing an organism to rapidly fight off a previously encountered pathogen
  597. much more quickly and effectively than the first time it was encountered.
  598. However, if effector cells that recognize an antigen from an allograft
  599. are allowed to differentiate into memory cells, preventing rejection of
  600. the graft becomes much more difficult.
  601. Many immune suppression drugs work by interfering with the co-stimulation
  602. that naive cells require in order to mount an immune response [CITE?].
  603. Since memory cells do not require this co-stimulation, these drugs are
  604. not effective at suppressing an immune response that is mediated by memory
  605. cells.
  606. Secondly, because memory cells are able to mount a stronger and faster
  607. response to an antigen, all else being equal they require stronger immune
  608. suppression than naive cells to prevent an immune response.
  609. However, immune suppression affects the entire immune system, not just
  610. cells recognizing a specific antigen, so increasing the dosage of immune
  611. suppression drugs also increases the risk of complications from a compromised
  612. immune system, such as opportunistic infections.
  613. While the differences in cell surface markers between naive and memory
  614. cells have been fairly well characterized, the internal regulatory mechanisms
  615. that allow memory cells to respond more quickly and without co-stimulation
  616. are still poorly understood.
  617. In order to develop methods of immune suppression that either prevent the
  618. formation of memory cells or work more effectively against memory cells,
  619. the mechanisms of immune memory formation and regulation must be better
  620. understood.
  621. \end_layout
  622. \begin_layout Subsection
  623. Overview of bioinformatic analysis methods
  624. \end_layout
  625. \begin_layout Standard
  626. \begin_inset Flex TODO Note (inline)
  627. status open
  628. \begin_layout Plain Layout
  629. Also cite: R, Bioconductor, snakemake, python, pandas, bedtools, bowtie2,
  630. hisat2, STAR, samtools, sra-toolkit, picard tools
  631. \end_layout
  632. \end_inset
  633. \end_layout
  634. \begin_layout Standard
  635. The studies presented in this work all involve the analysis of high-throughput
  636. genomic and epigenomic data.
  637. These data present many unique analysis challenges, and a wide array of
  638. software tools are available to analyze them.
  639. This section presents an overview of the methods used, including what problems
  640. they solve, what assumptions they make, and a basic description of how
  641. they work.
  642. \end_layout
  643. \begin_layout Subsubsection
  644. \begin_inset Flex Code
  645. status open
  646. \begin_layout Plain Layout
  647. Limma
  648. \end_layout
  649. \end_inset
  650. : The standard linear modeling framework for genomics
  651. \end_layout
  652. \begin_layout Standard
  653. Linear models are a generalization of the
  654. \begin_inset Formula $t$
  655. \end_inset
  656. -test and ANOVA to arbitrarily complex experimental designs
  657. \begin_inset CommandInset citation
  658. LatexCommand cite
  659. key "chambers:1992"
  660. literal "false"
  661. \end_inset
  662. .
  663. In a typical linear model, there is one dependent variable observation
  664. per sample and a large number of samples.
  665. For example, in a linear model of height as a function of age and sex,
  666. there is one height measurement per person.
  667. However, when analyzing genomic data, each sample consists of observations
  668. of thousands of dependent variables.
  669. For example, in an RNA-seq experiment, the dependent variables may be the
  670. count of RNA-seq reads for each annotated gene.
  671. In abstract terms, each dependent variable being measured is referred to
  672. as a feature.
  673. The simplest approach to analyzing such data would be to fit the same model
  674. independently to each feature.
  675. However, this is undesirable for most genomics data sets.
  676. Genomics assays like high-throughput sequencing are expensive, and often
  677. the process of generating the samples is also quite expensive and time-consumin
  678. g.
  679. This expense limits the sample sizes typically employed in genomics experiments
  680. , and as a result the statistical power of the linear model for each individual
  681. feature is likewise limited.
  682. However, because thousands of features from the same samples are analyzed
  683. together, there is an opportunity to improve the statistical power of the
  684. analysis by exploiting shared patterns of variation across features.
  685. This is the core feature of
  686. \begin_inset Flex Code
  687. status open
  688. \begin_layout Plain Layout
  689. limma
  690. \end_layout
  691. \end_inset
  692. , a linear modeling framework designed for genomic data.
  693. \begin_inset Flex Code
  694. status open
  695. \begin_layout Plain Layout
  696. Limma
  697. \end_layout
  698. \end_inset
  699. is typically used to analyze expression microarray data, and more recently
  700. RNA-seq data, but it can also be used to analyze any other data for which
  701. linear modeling is appropriate.
  702. \end_layout
  703. \begin_layout Standard
  704. The central challenge when fitting a linear model is to estimate the variance
  705. of the data accurately.
  706. Out of all parameters required to evaluate statistical significance of
  707. an effect, the variance is the most difficult to estimate when sample sizes
  708. are small.
  709. A single shared variance could be estimated for all of the features together,
  710. and this estimate would be very stable, in contrast to the individual feature
  711. variance estimates.
  712. However, this would require the assumption that every feature is equally
  713. variable, which is known to be false for most genomic data sets.
  714. \begin_inset Flex Code
  715. status open
  716. \begin_layout Plain Layout
  717. limma
  718. \end_layout
  719. \end_inset
  720. offers a compromise between these two extremes by using a method
  721. called empirical Bayes moderation to
  722. \begin_inset Quotes eld
  723. \end_inset
  724. squeeze
  725. \begin_inset Quotes erd
  726. \end_inset
  727. the distribution of estimated variances toward a single common value that
  728. represents the variance of an average feature in the data
  729. \begin_inset CommandInset citation
  730. LatexCommand cite
  731. key "Smyth2004"
  732. literal "false"
  733. \end_inset
  734. .
  735. While the individual feature variance estimates are not stable, the common
  736. variance estimate for the entire data set is quite stable, so using a combinati
  737. on of the two yields a variance estimate for each feature with greater precision
  738. than the individual feature variances.
  739. The trade-off for this improvement is that squeezing each estimated variance
  740. toward the common value introduces some bias – the variance will be underestima
  741. ted for features with high variance and overestimated for features with
  742. low variance.
  743. Essentially,
  744. \begin_inset Flex Code
  745. status open
  746. \begin_layout Plain Layout
  747. limma
  748. \end_layout
  749. \end_inset
  750. assumes that extreme variances are less common than
  751. variances close to the common value.
  752. The variance estimates from this empirical Bayes procedure are shown empiricall
  753. y to yield greater statistical power than either the individual feature
  754. variances or the single common value.
  755. \end_layout
  756. \begin_layout Standard
  757. On top of this core framework,
  758. \begin_inset Flex Code
  759. status open
  760. \begin_layout Plain Layout
  761. limma
  762. \end_layout
  763. \end_inset
  764. also implements many other enhancements
  765. that, further relax the assumptions of the model and extend the scope of
  766. what kinds of data it can analyze.
  767. Instead of squeezing toward a single common variance value,
  768. \begin_inset Flex Code
  769. status open
  770. \begin_layout Plain Layout
  771. limma
  772. \end_layout
  773. \end_inset
  774. can model
  775. the common variance as a function of a covariate, such as average expression
  776. \begin_inset CommandInset citation
  777. LatexCommand cite
  778. key "Law2013"
  779. literal "false"
  780. \end_inset
  781. .
  782. This is essential for RNA-seq data, where higher gene counts yield more
  783. precise expression measurements and therefore smaller variances than low-count
  784. genes.
  785. While linear models typically assume that all samples have equal variance,
  786. \begin_inset Flex Code
  787. status open
  788. \begin_layout Plain Layout
  789. limma
  790. \end_layout
  791. \end_inset
  792. is able to relax this assumption by identifying and down-weighting
  793. samples the diverge more strongly from the linear model across many features
  794. \begin_inset CommandInset citation
  795. LatexCommand cite
  796. key "Ritchie2006,Liu2015"
  797. literal "false"
  798. \end_inset
  799. .
  800. In addition,
  801. \begin_inset Flex Code
  802. status open
  803. \begin_layout Plain Layout
  804. limma
  805. \end_layout
  806. \end_inset
  807. is also able to fit simple mixed models incorporating
  808. one random effect in addition to the fixed effects represented by an ordinary
  809. linear model
  810. \begin_inset CommandInset citation
  811. LatexCommand cite
  812. key "Smyth2005a"
  813. literal "false"
  814. \end_inset
  815. .
  816. Once again,
  817. \begin_inset Flex Code
  818. status open
  819. \begin_layout Plain Layout
  820. limma
  821. \end_layout
  822. \end_inset
  823. shares information between features to obtain a robust
  824. estimate for the random effect correlation.
  825. \end_layout
  826. \begin_layout Subsubsection
  827. edgeR provides
  828. \begin_inset Flex Code
  829. status open
  830. \begin_layout Plain Layout
  831. limma
  832. \end_layout
  833. \end_inset
  834. -like analysis features for count data
  835. \end_layout
  836. \begin_layout Standard
  837. Although
  838. \begin_inset Flex Code
  839. status open
  840. \begin_layout Plain Layout
  841. limma
  842. \end_layout
  843. \end_inset
  844. can be applied to read counts from RNA-seq data, it is less
  845. suitable for counts from ChIP-seq data, which tend to be much smaller and
  846. therefore violate the assumption of a normal distribution more severely.
  847. For all count-based data, the
  848. \begin_inset Flex Code
  849. status open
  850. \begin_layout Plain Layout
  851. edgeR
  852. \end_layout
  853. \end_inset
  854. package works similarly to
  855. \begin_inset Flex Code
  856. status open
  857. \begin_layout Plain Layout
  858. limma
  859. \end_layout
  860. \end_inset
  861. , but
  862. uses a generalized linear model instead of a linear model.
  863. The most important difference is that the GLM in
  864. \begin_inset Flex Code
  865. status open
  866. \begin_layout Plain Layout
  867. edgeR
  868. \end_layout
  869. \end_inset
  870. models the counts
  871. directly using a negative binomial distribution rather than modeling the
  872. normalized log counts using a normal distribution
  873. \begin_inset CommandInset citation
  874. LatexCommand cite
  875. key "Chen2014,McCarthy2012,Robinson2010a"
  876. literal "false"
  877. \end_inset
  878. .
  879. The negative binomial is a good fit for count data because it can be derived
  880. as a gamma-distributed mixture of Poisson distributions.
  881. The Poisson distribution accurately represents the distribution of counts
  882. expected for a given gene abundance, and the gamma distribution is then
  883. used to represent the variation in gene abundance between biological replicates.
  884. For this reason, the square root of the dispersion parameter of the negative
  885. binomial is sometimes referred to as the biological coefficient of variation,
  886. since it represents the variability that was present in the samples prior
  887. to the Poisson
  888. \begin_inset Quotes eld
  889. \end_inset
  890. noise
  891. \begin_inset Quotes erd
  892. \end_inset
  893. that was generated by the random sampling of reads in proportion to feature
  894. abundances.
  895. The choice of a gamma distribution is arbitrary and motivated by mathematical
  896. convenience, since a gamma-Poisson mixture yields the numerically tractable
  897. negative binomial distribution.
  898. Thus,
  899. \begin_inset Flex Code
  900. status open
  901. \begin_layout Plain Layout
  902. edgeR
  903. \end_layout
  904. \end_inset
  905. assumes
  906. \emph on
  907. a prioi
  908. \emph default
  909. that the variation in abundances between replicates follows a gamma distribution.
  910. For differential abundance testing,
  911. \begin_inset Flex Code
  912. status open
  913. \begin_layout Plain Layout
  914. edgeR
  915. \end_layout
  916. \end_inset
  917. offers a likelihood ratio test,
  918. but more recently recommends a quasi-likelihood test that properly factors
  919. the uncertainty in variance estimation into the statistical significance
  920. for each feature
  921. \begin_inset CommandInset citation
  922. LatexCommand cite
  923. key "Lund2012"
  924. literal "false"
  925. \end_inset
  926. .
  927. \end_layout
  928. \begin_layout Subsubsection
  929. ChIP-seq Peak calling
  930. \end_layout
  931. \begin_layout Standard
  932. Unlike RNA-seq data, in which gene annotations provide a well-defined set
  933. of genomic regions in which to count reads, ChIP-seq data can potentially
  934. occur anywhere in the genome.
  935. However, most genome regions will not contain significant ChIP-seq read
  936. coverage, and analyzing every position in the entire genome is statistically
  937. and computationally infeasible, so it is necessary to identify regions
  938. of interest inside which ChIP-seq reads will be counted and analyzed.
  939. One option is to define a set of interesting regions
  940. \emph on
  941. a priori
  942. \emph default
  943. , for example by defining a promoter region for each annotated gene.
  944. However, it is also possible to use the ChIP-seq data itself to identify
  945. regions with ChIP-seq read coverage significantly above the background
  946. level, known as peaks.
  947. \end_layout
  948. \begin_layout Standard
  949. There are generally two kinds of peaks that can be identified: narrow peaks
  950. and broadly enriched regions.
  951. Proteins like transcription factors that bind specific sites in the genome
  952. typically show most of their read coverage at these specific sites and
  953. very little coverage anywhere else.
  954. Because the footprint of the protein is consistent wherever it binds, each
  955. peak has a consistent size, typically tens to hundreds of base pairs.
  956. Algorithms like MACS exploit this pattern to identify specific loci at
  957. which such
  958. \begin_inset Quotes eld
  959. \end_inset
  960. narrow peaks
  961. \begin_inset Quotes erd
  962. \end_inset
  963. occur by looking for the characteristic peak shape in the ChIP-seq coverage
  964. rising above the surrounding background coverage
  965. \begin_inset CommandInset citation
  966. LatexCommand cite
  967. key "Zhang2008"
  968. literal "false"
  969. \end_inset
  970. .
  971. In contrast, some proteins, chief among them histones, do not bind only
  972. at a small number of specific sites, but rather bind potentially almost
  973. everywhere in the entire genome.
  974. When looking at histone marks, adjacent histones tend to be similarly marked,
  975. and a given mark may be present on an arbitrary number of consecutive histones
  976. along the genome.
  977. Hence, there is no consistent
  978. \begin_inset Quotes eld
  979. \end_inset
  980. footprint size
  981. \begin_inset Quotes erd
  982. \end_inset
  983. for ChIP-seq peaks based on histone marks, and peaks typically span many
  984. histones.
  985. Hence, typical peaks span many hundreds or even thousands of base pairs.
  986. Instead of identifying specific loci of strong enrichment, algorithms like
  987. SICER assume that peaks are represented in the ChIP-seq data by modest
  988. enrichment above background occurring across broad regions, and they attempt
  989. to identify the extent of those regions
  990. \begin_inset CommandInset citation
  991. LatexCommand cite
  992. key "Zang2009"
  993. literal "false"
  994. \end_inset
  995. .
  996. In all cases, better results are obtained if the local background coverage
  997. level can be estimated from ChIP-seq input samples, since various biases
  998. can result in uneven background coverage.
  999. \end_layout
  1000. \begin_layout Standard
  1001. Regardless of the type of peak identified, it is important to identify peaks
  1002. that occur consistently across biological replicates.
  1003. The ENCODE project has developed a method called irreproducible discovery
  1004. rate for this purpose
  1005. \begin_inset CommandInset citation
  1006. LatexCommand cite
  1007. key "Li2006"
  1008. literal "false"
  1009. \end_inset
  1010. .
  1011. The IDR is defined as the probability that a peak identified in one biological
  1012. replicate will
  1013. \emph on
  1014. not
  1015. \emph default
  1016. also be identified in a second replicate.
  1017. Where the more familiar false discovery rate measures the degree of corresponde
  1018. nce between a data-derived ranked list and the true list of significant
  1019. features, IDR instead measures the degree of correspondence between two
  1020. ranked lists derived from different data.
  1021. IDR assumes that the highest-ranked features are
  1022. \begin_inset Quotes eld
  1023. \end_inset
  1024. signal
  1025. \begin_inset Quotes erd
  1026. \end_inset
  1027. peaks that tend to be listed in the same order in both lists, while the
  1028. lowest-ranked features are essentially noise peaks, listed in random order
  1029. with no correspondence between the lists.
  1030. IDR attempts to locate the
  1031. \begin_inset Quotes eld
  1032. \end_inset
  1033. crossover point
  1034. \begin_inset Quotes erd
  1035. \end_inset
  1036. between the signal and the noise by determining how for down the list the
  1037. correspondence between feature ranks breaks down.
  1038. \end_layout
  1039. \begin_layout Standard
  1040. In addition to other considerations, if called peaks are to be used as regions
  1041. of interest for differential abundance analysis, then care must be taken
  1042. to call peaks in a way that is blind to differential abundance between
  1043. experimental conditions, or else the statistical significance calculations
  1044. for differential abundance will overstate their confidence in the results.
  1045. The csaw package provides guidelines for calling peaks in this way: peaks
  1046. are called based on a combination of all ChIP-seq reads from all experimental
  1047. conditions, so that the identified peaks are based on the average abundance
  1048. across all conditions, which is independent of any differential abundance
  1049. between conditions
  1050. \begin_inset CommandInset citation
  1051. LatexCommand cite
  1052. key "Lun2015a"
  1053. literal "false"
  1054. \end_inset
  1055. .
  1056. \end_layout
  1057. \begin_layout Subsubsection
  1058. Normalization of high-throughput data is non-trivial and application-dependent
  1059. \end_layout
  1060. \begin_layout Standard
  1061. High-throughput data sets invariable require some kind of normalization
  1062. before further analysis can be conducted.
  1063. In general, the goal of normalization is to remove effects in the data
  1064. that are caused by technical factors that have nothing to do with the biology
  1065. being studied.
  1066. \end_layout
  1067. \begin_layout Standard
  1068. For Affymetrix expression arrays, the standard normalization algorithm used
  1069. in most analyses is Robust Multichip Average (RMA) [CITE].
  1070. RMA is designed with the assumption that some fraction of probes on each
  1071. array will be artifactual and takes advantage of the fact that each gene
  1072. is represented by multiple probes by implementing normalization and summarizati
  1073. on steps that are robust against outlier probes.
  1074. However, RMA uses the probe intensities of all arrays in the data set in
  1075. the normalization of each individual array, meaning that the normalized
  1076. expression values in each array depend on every array in the data set,
  1077. and will necessarily change each time an array is added or removed from
  1078. the data set.
  1079. If this is undesirable, frozen RMA implements a variant of RMA where the
  1080. relevant distributional parameters are learned from a large reference set
  1081. of diverse public array data sets and then
  1082. \begin_inset Quotes eld
  1083. \end_inset
  1084. frozen
  1085. \begin_inset Quotes erd
  1086. \end_inset
  1087. , so that each array is effectively normalized against this frozen reference
  1088. set rather than the other arrays in the data set under study [CITE].
  1089. Other array normalization methods considered include dChip, GRSN, and SCAN
  1090. [CITEx3].
  1091. \end_layout
  1092. \begin_layout Standard
  1093. In contrast, high-throughput sequencing data present very different normalizatio
  1094. n challenges.
  1095. The simplest case is RNA-seq in which read counts are obtained for a set
  1096. of gene annotations, yielding a matrix of counts with rows representing
  1097. genes and columns representing samples.
  1098. Because RNA-seq approximates a process of sampling from a population with
  1099. replacement, each gene's count is only interpretable as a fraction of the
  1100. total reads for that sample.
  1101. For that reason, RNA-seq abundances are often reported as counts per million
  1102. (CPM).
  1103. Furthermore, if the abundance of a single gene increases, then in order
  1104. for its fraction of the total reads to increase, all other genes' fractions
  1105. must decrease to accommodate it.
  1106. This effect is known as composition bias, and it is an artifact of the
  1107. read sampling process that has nothing to do with the biology of the samples
  1108. and must therefore be normalized out.
  1109. The most commonly used methods to normalize for composition bias in RNA-seq
  1110. data seek to equalize the average gene abundance across samples, under
  1111. the assumption that the average gene is likely not changing
  1112. \begin_inset CommandInset citation
  1113. LatexCommand cite
  1114. key "Robinson2010,Anders2010"
  1115. literal "false"
  1116. \end_inset
  1117. .
  1118. \end_layout
  1119. \begin_layout Standard
  1120. In ChIP-seq data, normalization is not as straightforward.
  1121. The csaw package implements several different normalization strategies
  1122. and provides guidance on when to use each one
  1123. \begin_inset CommandInset citation
  1124. LatexCommand cite
  1125. key "Lun2015a"
  1126. literal "false"
  1127. \end_inset
  1128. .
  1129. Briefly, a typical ChIP-seq sample has a bimodal distribution of read counts:
  1130. a low-abundance mode representing background regions and a high-abundance
  1131. mode representing signal regions.
  1132. This offers two potential normalization targets: equalizing background
  1133. coverage or equalizing signal coverage.
  1134. If the experiment is well controlled and ChIP efficiency is known to be
  1135. consistent across all samples, then normalizing the background coverage
  1136. to be equal across all samples is a reasonable strategy.
  1137. If this is not a safe assumption, then the preferred strategy is to normalize
  1138. the signal regions in a way similar to RNA-seq data by assuming that the
  1139. average signal region is not changing abundance between samples.
  1140. Beyond this, if a ChIP-seq experiment has a more complicated structure
  1141. that doesn't show the typical bimodal count distribution, it may be necessary
  1142. to implement a normalization as a smooth function of abundance.
  1143. However, this strategy makes a much stronger assumption about the data:
  1144. that the average log fold change is zero across all abundance levels.
  1145. Hence, the simpler scaling normalization based on background or signal
  1146. regions are generally preferred whenever possible.
  1147. \end_layout
  1148. \begin_layout Subsubsection
  1149. ComBat and SVA for correction of known and unknown batch effects
  1150. \end_layout
  1151. \begin_layout Standard
  1152. In addition to well-understood effects that can be easily normalized out,
  1153. a data set often contains confounding biological effects that must be accounted
  1154. for in the modeling step.
  1155. For instance, in an experiment with pre-treatment and post-treatment samples
  1156. of cells from several different donors, donor variability represents a
  1157. known batch effect.
  1158. The most straightforward correction for known batches is to estimate the
  1159. mean for each batch independently and subtract out the differences, so
  1160. that all batches have identical means for each feature.
  1161. However, as with variance estimation, estimating the differences in batch
  1162. means is not necessarily robust at the feature level, so the ComBat method
  1163. adds empirical Bayes squeezing of the batch mean differences toward a common
  1164. value, analogous to
  1165. \begin_inset Flex Code
  1166. status open
  1167. \begin_layout Plain Layout
  1168. limma
  1169. \end_layout
  1170. \end_inset
  1171. 's empirical Bayes squeezing of feature variance
  1172. estimates
  1173. \begin_inset CommandInset citation
  1174. LatexCommand cite
  1175. key "Johnson2007"
  1176. literal "false"
  1177. \end_inset
  1178. .
  1179. Effectively, ComBat assumes that modest differences between batch means
  1180. are real batch effects, but extreme differences between batch means are
  1181. more likely to be the result of outlier observations that happen to line
  1182. up with the batches rather than a genuine batch effect.
  1183. The result is a batch correction that is more robust against outliers than
  1184. simple subtraction of mean differences subtraction.
  1185. \end_layout
  1186. \begin_layout Standard
  1187. In some data sets, unknown batch effects may be present due to inherent
  1188. variability in in the data, either caused by technical or biological effects.
  1189. Examples of unknown batch effects include variations in enrichment efficiency
  1190. between ChIP-seq samples, variations in populations of different cell types,
  1191. and the effects of uncontrolled environmental factors on gene expression
  1192. in humans or live animals.
  1193. In an ordinary linear model context, unknown batch effects cannot be inferred
  1194. and must be treated as random noise.
  1195. However, in high-throughput experiments, once again information can be
  1196. shared across features to identify patterns of un-modeled variation that
  1197. are repeated in many features.
  1198. One attractive strategy would be to perform singular value decomposition
  1199. (SVD) on the matrix os linear model residuals (which contain all the un-modeled
  1200. variation in the data) and take the first few singular vectors as batch
  1201. effects.
  1202. While this can be effective, it makes the unreasonable assumption that
  1203. all batch effects are uncorrelated with any of the effects being modeled.
  1204. Surrogate variable analysis (SVA) starts with this approach, but takes
  1205. some additional steps to identify batch effects in the full data that are
  1206. both highly correlated with the singular vectors in the residuals and least
  1207. correlated with the effects of interest
  1208. \begin_inset CommandInset citation
  1209. LatexCommand cite
  1210. key "Leek2007"
  1211. literal "false"
  1212. \end_inset
  1213. .
  1214. Since the final batch effects are estimated from the full data, moderate
  1215. correlations between the batch effects and effects of interest are allowed,
  1216. which gives SVA much more freedom to estimate the true extent of the batch
  1217. effects compared to simple residual SVD.
  1218. Once the surrogate variables are estimated, they can be included as coefficient
  1219. s in the linear model in a similar fashion to known batch effects in order
  1220. to subtract out their effects on each feature's abundance.
  1221. \end_layout
  1222. \begin_layout Subsubsection
  1223. Factor analysis: PCA, MDS, MOFA
  1224. \end_layout
  1225. \begin_layout Standard
  1226. \begin_inset Flex TODO Note (inline)
  1227. status open
  1228. \begin_layout Plain Layout
  1229. Not sure if this merits a subsection here.
  1230. \end_layout
  1231. \end_inset
  1232. \end_layout
  1233. \begin_layout Itemize
  1234. Batch-corrected PCA is informative, but careful application is required
  1235. to avoid bias
  1236. \end_layout
  1237. \begin_layout Section
  1238. Innovation
  1239. \end_layout
  1240. \begin_layout Standard
  1241. \begin_inset Flex TODO Note (inline)
  1242. status open
  1243. \begin_layout Plain Layout
  1244. Is this entire section redundant with the Approach sections of each chapter?
  1245. I'm not really sure what to write here.
  1246. \end_layout
  1247. \end_inset
  1248. \end_layout
  1249. \begin_layout Subsection
  1250. MSC infusion to improve transplant outcomes (prevent/delay rejection)
  1251. \end_layout
  1252. \begin_layout Standard
  1253. \begin_inset Flex TODO Note (inline)
  1254. status open
  1255. \begin_layout Plain Layout
  1256. Do I still talk about this? It's the motivation for chapter 4, but I don't
  1257. actually present any work related to MSCs.
  1258. \end_layout
  1259. \end_inset
  1260. \end_layout
  1261. \begin_layout Itemize
  1262. Demonstrated in mice, but not yet in primates
  1263. \end_layout
  1264. \begin_layout Itemize
  1265. Mechanism currently unknown, but MSC are known to be immune modulatory
  1266. \end_layout
  1267. \begin_layout Itemize
  1268. Characterize MSC response to interferon gamma
  1269. \end_layout
  1270. \begin_layout Itemize
  1271. IFN-g is thought to stimulate their function
  1272. \end_layout
  1273. \begin_layout Itemize
  1274. Test IFN-g treated MSC infusion as a therapy to delay graft rejection in
  1275. cynomolgus monkeys
  1276. \end_layout
  1277. \begin_layout Itemize
  1278. Monitor animals post-transplant using blood RNA-seq at serial time points
  1279. \end_layout
  1280. \begin_layout Subsection
  1281. Investigate dynamics of histone marks in CD4 T-cell activation and memory
  1282. \end_layout
  1283. \begin_layout Itemize
  1284. Previous studies have looked at single snapshots of histone marks
  1285. \end_layout
  1286. \begin_layout Itemize
  1287. Instead, look at changes in histone marks across activation and memory
  1288. \end_layout
  1289. \begin_layout Subsection
  1290. High-throughput sequencing and microarray technologies
  1291. \end_layout
  1292. \begin_layout Itemize
  1293. Powerful methods for assaying gene expression and epigenetics across entire
  1294. genomes
  1295. \end_layout
  1296. \begin_layout Itemize
  1297. Proper analysis requires finding and exploiting systematic genome-wide trends
  1298. \end_layout
  1299. \begin_layout Chapter
  1300. Reproducible genome-wide epigenetic analysis of H3K4 and H3K27 methylation
  1301. in naive and memory CD4 T-cell activation
  1302. \end_layout
  1303. \begin_layout Standard
  1304. \begin_inset Flex TODO Note (inline)
  1305. status open
  1306. \begin_layout Plain Layout
  1307. Chapter author list: Me, Sarah, Dan
  1308. \end_layout
  1309. \end_inset
  1310. \end_layout
  1311. \begin_layout Standard
  1312. \begin_inset Flex TODO Note (inline)
  1313. status open
  1314. \begin_layout Plain Layout
  1315. Need better section titles throughout the entire chapter
  1316. \end_layout
  1317. \end_inset
  1318. \end_layout
  1319. \begin_layout Section
  1320. Approach
  1321. \end_layout
  1322. \begin_layout Standard
  1323. \begin_inset Flex TODO Note (inline)
  1324. status open
  1325. \begin_layout Plain Layout
  1326. Check on the exact correct way to write
  1327. \begin_inset Quotes eld
  1328. \end_inset
  1329. CD4 T-cell
  1330. \begin_inset Quotes erd
  1331. \end_inset
  1332. .
  1333. I think there might be a plus sign somewhere in there now? Also, maybe
  1334. figure out a reasonable way to abbreviate
  1335. \begin_inset Quotes eld
  1336. \end_inset
  1337. naive CD4 T-cells
  1338. \begin_inset Quotes erd
  1339. \end_inset
  1340. and
  1341. \begin_inset Quotes eld
  1342. \end_inset
  1343. memory CD4 T-cells
  1344. \begin_inset Quotes erd
  1345. \end_inset
  1346. .
  1347. \end_layout
  1348. \end_inset
  1349. \end_layout
  1350. \begin_layout Standard
  1351. \begin_inset Flex TODO Note (inline)
  1352. status open
  1353. \begin_layout Plain Layout
  1354. Is it ok to just copy a bunch of citations from the intros to Sarah's papers?
  1355. That feels like cheating somehow.
  1356. \end_layout
  1357. \end_inset
  1358. \end_layout
  1359. \begin_layout Standard
  1360. CD4 T-cells are central to all adaptive immune responses, as well as immune
  1361. memory [CITE?].
  1362. After an infection is cleared, a subset of the naive CD4 T-cells that responded
  1363. to that infection differentiate into memory CD4 T-cells, which are responsible
  1364. for responding to the same pathogen in the future.
  1365. Memory CD4 T-cells are functionally distinct, able to respond to an infection
  1366. more quickly and without the co-stimulation required by naive CD4 T-cells.
  1367. However, the molecular mechanisms underlying this functional distinction
  1368. are not well-understood.
  1369. Epigenetic regulation via histone modification is thought to play an important
  1370. role, but while many studies have looked at static snapshots of histone
  1371. methylation in T-cells, few studies have looked at the dynamics of histone
  1372. regulation after T-cell activation, nor the differences in histone methylation
  1373. between naive and memory T-cells.
  1374. H3K4me2, H3K4me3 and H3K27me3 are three histone marks thought to be major
  1375. epigenetic regulators of gene expression.
  1376. The goal of the present study is to investigate the role of these histone
  1377. marks in CD4 T-cell activation kinetics and memory differentiation.
  1378. In static snapshots, H3K4me2 and H3K4me3 are often observed in the promoters
  1379. of highly transcribed genes, while H3K27me3 is more often observed in promoters
  1380. of inactive genes with little to no transcription occurring.
  1381. As a result, the two H3K4 marks have been characterized as
  1382. \begin_inset Quotes eld
  1383. \end_inset
  1384. activating
  1385. \begin_inset Quotes erd
  1386. \end_inset
  1387. marks, while H3K27me3 has been characterized as
  1388. \begin_inset Quotes eld
  1389. \end_inset
  1390. deactivating
  1391. \begin_inset Quotes erd
  1392. \end_inset
  1393. .
  1394. Despite these characterizations, the actual causal relationship between
  1395. these histone modifications and gene transcription is complex and likely
  1396. involves positive and negative feedback loops between the two.
  1397. \end_layout
  1398. \begin_layout Standard
  1399. In order to investigate the relationship between gene expression and these
  1400. histone modifications in the context of naive and memory CD4 T-cell activation,
  1401. a previously published data set of combined RNA-seq and ChIP-seq data was
  1402. re-analyzed using up-to-date methods designed to address the specific analysis
  1403. challenges posed by this data set.
  1404. The data set contains naive and memory CD4 T-cell samples in a time course
  1405. before and after activation.
  1406. Like the original analysis, this analysis looks at the dynamics of these
  1407. marks histone marks and compare them to gene expression dynamics at the
  1408. same time points during activation, as well as compare them between naive
  1409. and memory cells, in hope of discovering evidence of new mechanistic details
  1410. in the interplay between them.
  1411. The original analysis of this data treated each gene promoter as a monolithic
  1412. unit and mostly assumed that ChIP-seq reads or peaks occurring anywhere
  1413. within a promoter were equivalent, regardless of where they occurred relative
  1414. to the gene structure.
  1415. For an initial analysis of the data, this was a necessary simplifying assumptio
  1416. n.
  1417. The current analysis aims to relax this assumption, first by directly analyzing
  1418. ChIP-seq peaks for differential modification, and second by taking a more
  1419. granular look at the ChIP-seq read coverage within promoter regions to
  1420. ask whether the location of histone modifications relative to the gene's
  1421. TSS is an important factor, as opposed to simple proximity.
  1422. \end_layout
  1423. \begin_layout Section
  1424. Methods
  1425. \end_layout
  1426. \begin_layout Standard
  1427. \begin_inset Flex TODO Note (inline)
  1428. status open
  1429. \begin_layout Plain Layout
  1430. Look up some more details from the papers (e.g.
  1431. activation method).
  1432. \end_layout
  1433. \end_inset
  1434. \end_layout
  1435. \begin_layout Standard
  1436. A reproducible workflow was written to analyze the raw ChIP-seq and RNA-seq
  1437. data from previous studies
  1438. \begin_inset CommandInset citation
  1439. LatexCommand cite
  1440. key "gh-cd4-csaw,LaMere2016,LaMere2017"
  1441. literal "true"
  1442. \end_inset
  1443. .
  1444. Briefly, this data consists of RNA-seq and ChIP-seq from CD4 T-cells cultured
  1445. from 4 donors.
  1446. From each donor, naive and memory CD4 T-cells were isolated separately.
  1447. Then cultures of both cells were activated [how?], and samples were taken
  1448. at 4 time points: Day 0 (pre-activation), Day 1 (early activation), Day
  1449. 5 (peak activation), and Day 14 (post-activation).
  1450. For each combination of cell type and time point, RNA was isolated and
  1451. sequenced, and ChIP-seq was performed for each of 3 histone marks: H3K4me2,
  1452. H3K4me3, and H3K27me3.
  1453. The ChIP-seq input DNA was also sequenced for each sample.
  1454. The result was 32 samples for each assay.
  1455. \end_layout
  1456. \begin_layout Subsection
  1457. RNA-seq differential expression analysis
  1458. \end_layout
  1459. \begin_layout Standard
  1460. \begin_inset Note Note
  1461. status collapsed
  1462. \begin_layout Plain Layout
  1463. \begin_inset Float figure
  1464. wide false
  1465. sideways false
  1466. status open
  1467. \begin_layout Plain Layout
  1468. \align center
  1469. \begin_inset Float figure
  1470. wide false
  1471. sideways false
  1472. status collapsed
  1473. \begin_layout Plain Layout
  1474. \align center
  1475. \begin_inset Graphics
  1476. filename graphics/CD4-csaw/rnaseq-compare/ensmebl-vs-entrez-star-CROP.png
  1477. lyxscale 25
  1478. width 35col%
  1479. groupId rna-comp-subfig
  1480. \end_inset
  1481. \end_layout
  1482. \begin_layout Plain Layout
  1483. \begin_inset Caption Standard
  1484. \begin_layout Plain Layout
  1485. STAR quantification, Entrez vs Ensembl gene annotation
  1486. \end_layout
  1487. \end_inset
  1488. \end_layout
  1489. \end_inset
  1490. \begin_inset space \qquad{}
  1491. \end_inset
  1492. \begin_inset Float figure
  1493. wide false
  1494. sideways false
  1495. status collapsed
  1496. \begin_layout Plain Layout
  1497. \align center
  1498. \begin_inset Graphics
  1499. filename graphics/CD4-csaw/rnaseq-compare/ensmebl-vs-entrez-shoal-CROP.png
  1500. lyxscale 25
  1501. width 35col%
  1502. groupId rna-comp-subfig
  1503. \end_inset
  1504. \end_layout
  1505. \begin_layout Plain Layout
  1506. \begin_inset Caption Standard
  1507. \begin_layout Plain Layout
  1508. Salmon+Shoal quantification, Entrez vs Ensembl gene annotation
  1509. \end_layout
  1510. \end_inset
  1511. \end_layout
  1512. \end_inset
  1513. \end_layout
  1514. \begin_layout Plain Layout
  1515. \align center
  1516. \begin_inset Float figure
  1517. wide false
  1518. sideways false
  1519. status collapsed
  1520. \begin_layout Plain Layout
  1521. \align center
  1522. \begin_inset Graphics
  1523. filename graphics/CD4-csaw/rnaseq-compare/star-vs-hisat2-CROP.png
  1524. lyxscale 25
  1525. width 35col%
  1526. groupId rna-comp-subfig
  1527. \end_inset
  1528. \end_layout
  1529. \begin_layout Plain Layout
  1530. \begin_inset Caption Standard
  1531. \begin_layout Plain Layout
  1532. STAR vs HISAT2 quantification, Ensembl gene annotation
  1533. \end_layout
  1534. \end_inset
  1535. \end_layout
  1536. \end_inset
  1537. \begin_inset space \qquad{}
  1538. \end_inset
  1539. \begin_inset Float figure
  1540. wide false
  1541. sideways false
  1542. status collapsed
  1543. \begin_layout Plain Layout
  1544. \align center
  1545. \begin_inset Graphics
  1546. filename graphics/CD4-csaw/rnaseq-compare/star-vs-salmon-CROP.png
  1547. lyxscale 25
  1548. width 35col%
  1549. groupId rna-comp-subfig
  1550. \end_inset
  1551. \end_layout
  1552. \begin_layout Plain Layout
  1553. \begin_inset Caption Standard
  1554. \begin_layout Plain Layout
  1555. Salmon vs STAR quantification, Ensembl gene annotation
  1556. \end_layout
  1557. \end_inset
  1558. \end_layout
  1559. \end_inset
  1560. \end_layout
  1561. \begin_layout Plain Layout
  1562. \align center
  1563. \begin_inset Float figure
  1564. wide false
  1565. sideways false
  1566. status collapsed
  1567. \begin_layout Plain Layout
  1568. \align center
  1569. \begin_inset Graphics
  1570. filename graphics/CD4-csaw/rnaseq-compare/salmon-vs-kallisto-CROP.png
  1571. lyxscale 25
  1572. width 35col%
  1573. groupId rna-comp-subfig
  1574. \end_inset
  1575. \end_layout
  1576. \begin_layout Plain Layout
  1577. \begin_inset Caption Standard
  1578. \begin_layout Plain Layout
  1579. Salmon vs Kallisto quantification, Ensembl gene annotation
  1580. \end_layout
  1581. \end_inset
  1582. \end_layout
  1583. \end_inset
  1584. \begin_inset space \qquad{}
  1585. \end_inset
  1586. \begin_inset Float figure
  1587. wide false
  1588. sideways false
  1589. status collapsed
  1590. \begin_layout Plain Layout
  1591. \align center
  1592. \begin_inset Graphics
  1593. filename graphics/CD4-csaw/rnaseq-compare/salmon-vs-shoal-CROP.png
  1594. lyxscale 25
  1595. width 35col%
  1596. groupId rna-comp-subfig
  1597. \end_inset
  1598. \end_layout
  1599. \begin_layout Plain Layout
  1600. \begin_inset Caption Standard
  1601. \begin_layout Plain Layout
  1602. Salmon+Shoal vs Salmon alone, Ensembl gene annotation
  1603. \end_layout
  1604. \end_inset
  1605. \end_layout
  1606. \end_inset
  1607. \end_layout
  1608. \begin_layout Plain Layout
  1609. \begin_inset Caption Standard
  1610. \begin_layout Plain Layout
  1611. \begin_inset CommandInset label
  1612. LatexCommand label
  1613. name "fig:RNA-norm-comp"
  1614. \end_inset
  1615. RNA-seq comparisons
  1616. \end_layout
  1617. \end_inset
  1618. \end_layout
  1619. \end_inset
  1620. \end_layout
  1621. \end_inset
  1622. \end_layout
  1623. \begin_layout Standard
  1624. Sequence reads were retrieved from the Sequence Read Archive (SRA)
  1625. \begin_inset CommandInset citation
  1626. LatexCommand cite
  1627. key "Leinonen2011"
  1628. literal "false"
  1629. \end_inset
  1630. .
  1631. Five different alignment and quantification methods were tested for the
  1632. RNA-seq data
  1633. \begin_inset CommandInset citation
  1634. LatexCommand cite
  1635. key "Dobin2012,Kim2019,Liao2014,Pimentel2016,Patro2017,gh-shoal,gh-hg38-ref"
  1636. literal "false"
  1637. \end_inset
  1638. .
  1639. Each quantification was tested with both Ensembl transcripts and UCSC known
  1640. gene annotations [CITE? Also which versions of each?].
  1641. Comparisons of downstream results from each combination of quantification
  1642. method and reference revealed that all quantifications gave broadly similar
  1643. results for most genes, so shoal with the Ensembl annotation was chosen
  1644. as the method theoretically most likely to partially mitigate some of the
  1645. batch effect in the data.
  1646. \end_layout
  1647. \begin_layout Standard
  1648. \begin_inset Float figure
  1649. wide false
  1650. sideways false
  1651. status collapsed
  1652. \begin_layout Plain Layout
  1653. \align center
  1654. \begin_inset Float figure
  1655. wide false
  1656. sideways false
  1657. status open
  1658. \begin_layout Plain Layout
  1659. \align center
  1660. \begin_inset Graphics
  1661. filename graphics/CD4-csaw/RNA-seq/PCA-no-batchsub-CROP.png
  1662. lyxscale 25
  1663. width 75col%
  1664. groupId rna-pca-subfig
  1665. \end_inset
  1666. \end_layout
  1667. \begin_layout Plain Layout
  1668. \begin_inset Caption Standard
  1669. \begin_layout Plain Layout
  1670. \series bold
  1671. \begin_inset CommandInset label
  1672. LatexCommand label
  1673. name "fig:RNA-PCA-no-batchsub"
  1674. \end_inset
  1675. Before batch correction
  1676. \end_layout
  1677. \end_inset
  1678. \end_layout
  1679. \end_inset
  1680. \end_layout
  1681. \begin_layout Plain Layout
  1682. \align center
  1683. \begin_inset Float figure
  1684. wide false
  1685. sideways false
  1686. status open
  1687. \begin_layout Plain Layout
  1688. \align center
  1689. \begin_inset Graphics
  1690. filename graphics/CD4-csaw/RNA-seq/PCA-combat-batchsub-CROP.png
  1691. lyxscale 25
  1692. width 75col%
  1693. groupId rna-pca-subfig
  1694. \end_inset
  1695. \end_layout
  1696. \begin_layout Plain Layout
  1697. \begin_inset Caption Standard
  1698. \begin_layout Plain Layout
  1699. \series bold
  1700. \begin_inset CommandInset label
  1701. LatexCommand label
  1702. name "fig:RNA-PCA-ComBat-batchsub"
  1703. \end_inset
  1704. After batch correction with ComBat
  1705. \end_layout
  1706. \end_inset
  1707. \end_layout
  1708. \end_inset
  1709. \end_layout
  1710. \begin_layout Plain Layout
  1711. \begin_inset Caption Standard
  1712. \begin_layout Plain Layout
  1713. \series bold
  1714. \begin_inset CommandInset label
  1715. LatexCommand label
  1716. name "fig:RNA-PCA"
  1717. \end_inset
  1718. PCoA plots of RNA-seq data showing effect of batch correction.
  1719. \end_layout
  1720. \end_inset
  1721. \end_layout
  1722. \end_inset
  1723. \end_layout
  1724. \begin_layout Standard
  1725. Due to an error in sample preparation, the RNA from the samples for days
  1726. 0 and 5 were sequenced using a different kit than those for days 1 and
  1727. 14.
  1728. This induced a substantial batch effect in the data due to differences
  1729. in sequencing biases between the two kits, and this batch effect is unfortunate
  1730. ly confounded with the time point variable (Figure
  1731. \begin_inset CommandInset ref
  1732. LatexCommand ref
  1733. reference "fig:RNA-PCA-no-batchsub"
  1734. plural "false"
  1735. caps "false"
  1736. noprefix "false"
  1737. \end_inset
  1738. ).
  1739. To do the best possible analysis with this data, this batch effect was
  1740. subtracted out from the data using ComBat
  1741. \begin_inset CommandInset citation
  1742. LatexCommand cite
  1743. key "Johnson2007"
  1744. literal "false"
  1745. \end_inset
  1746. , ignoring the time point variable due to the confounding with the batch
  1747. variable.
  1748. The result is a marked improvement, but the unavoidable confounding with
  1749. time point means that certain real patterns of gene expression will be
  1750. indistinguishable from the batch effect and subtracted out as a result.
  1751. Specifically, any
  1752. \begin_inset Quotes eld
  1753. \end_inset
  1754. zig-zag
  1755. \begin_inset Quotes erd
  1756. \end_inset
  1757. pattern, such as a gene whose expression goes up on day 1, down on day
  1758. 5, and back up again on day 14, will be attenuated or eliminated entirely.
  1759. In the context of a T-cell activation time course, it is unlikely that
  1760. many genes of interest will follow such an expression pattern, so this
  1761. loss was deemed an acceptable cost for correcting the batch effect.
  1762. \end_layout
  1763. \begin_layout Standard
  1764. \begin_inset Float figure
  1765. wide false
  1766. sideways false
  1767. status collapsed
  1768. \begin_layout Plain Layout
  1769. \begin_inset Flex TODO Note (inline)
  1770. status open
  1771. \begin_layout Plain Layout
  1772. Just take the top row
  1773. \end_layout
  1774. \end_inset
  1775. \end_layout
  1776. \begin_layout Plain Layout
  1777. \align center
  1778. \begin_inset Graphics
  1779. filename graphics/CD4-csaw/RNA-seq/weights-vs-covars-CROP.png
  1780. lyxscale 25
  1781. width 100col%
  1782. groupId colwidth-raster
  1783. \end_inset
  1784. \end_layout
  1785. \begin_layout Plain Layout
  1786. \begin_inset Caption Standard
  1787. \begin_layout Plain Layout
  1788. \series bold
  1789. \begin_inset CommandInset label
  1790. LatexCommand label
  1791. name "fig:RNA-seq-weights-vs-covars"
  1792. \end_inset
  1793. RNA-seq sample weights, grouped by experimental and technical covariates.
  1794. \end_layout
  1795. \end_inset
  1796. \end_layout
  1797. \end_inset
  1798. \end_layout
  1799. \begin_layout Standard
  1800. However, removing the systematic component of the batch effect still leaves
  1801. the noise component.
  1802. The gene quantifications from the first batch are substantially noisier
  1803. than those in the second batch.
  1804. This analysis corrected for this by using
  1805. \begin_inset Flex Code
  1806. status open
  1807. \begin_layout Plain Layout
  1808. limma
  1809. \end_layout
  1810. \end_inset
  1811. 's sample weighting method
  1812. to assign lower weights to the noisy samples of batch 1
  1813. \begin_inset CommandInset citation
  1814. LatexCommand cite
  1815. key "Ritchie2006,Liu2015"
  1816. literal "false"
  1817. \end_inset
  1818. .
  1819. The resulting analysis gives an accurate assessment of statistical significance
  1820. for all comparisons, which unfortunately means a loss of statistical power
  1821. for comparisons involving samples in batch 1.
  1822. \end_layout
  1823. \begin_layout Standard
  1824. In any case, the RNA-seq counts were first normalized using trimmed mean
  1825. of M-values
  1826. \begin_inset CommandInset citation
  1827. LatexCommand cite
  1828. key "Robinson2010"
  1829. literal "false"
  1830. \end_inset
  1831. , converted to normalized logCPM with quality weights using
  1832. \begin_inset Flex Code
  1833. status open
  1834. \begin_layout Plain Layout
  1835. voomWithQualityWeights
  1836. \end_layout
  1837. \end_inset
  1838. \begin_inset CommandInset citation
  1839. LatexCommand cite
  1840. key "Law2013,Liu2015"
  1841. literal "false"
  1842. \end_inset
  1843. , and batch-corrected at this point using ComBat.
  1844. A linear model was fit to the batch-corrected, quality-weighted data for
  1845. each gene using
  1846. \begin_inset Flex Code
  1847. status open
  1848. \begin_layout Plain Layout
  1849. limma
  1850. \end_layout
  1851. \end_inset
  1852. , and each gene was tested for differential expression
  1853. using
  1854. \begin_inset Flex Code
  1855. status open
  1856. \begin_layout Plain Layout
  1857. limma
  1858. \end_layout
  1859. \end_inset
  1860. 's empirical Bayes moderated
  1861. \begin_inset Formula $t$
  1862. \end_inset
  1863. -test
  1864. \begin_inset CommandInset citation
  1865. LatexCommand cite
  1866. key "Smyth2005,Law2013,Phipson2013"
  1867. literal "false"
  1868. \end_inset
  1869. .
  1870. \end_layout
  1871. \begin_layout Subsection
  1872. ChIP-seq differential modification analysis
  1873. \end_layout
  1874. \begin_layout Standard
  1875. \begin_inset Float figure
  1876. wide false
  1877. sideways false
  1878. status collapsed
  1879. \begin_layout Plain Layout
  1880. \align center
  1881. \begin_inset Float figure
  1882. wide false
  1883. sideways false
  1884. status open
  1885. \begin_layout Plain Layout
  1886. \align center
  1887. \begin_inset Graphics
  1888. filename graphics/CD4-csaw/csaw/CCF-plots-noBL-PAGE2-CROP.pdf
  1889. lyxscale 50
  1890. height 40theight%
  1891. groupId ccf-subfig
  1892. \end_inset
  1893. \end_layout
  1894. \begin_layout Plain Layout
  1895. \begin_inset Caption Standard
  1896. \begin_layout Plain Layout
  1897. \series bold
  1898. \begin_inset CommandInset label
  1899. LatexCommand label
  1900. name "fig:CCF-without-blacklist"
  1901. \end_inset
  1902. Cross-correlation plots without removing blacklisted reads.
  1903. \series default
  1904. Without blacklisting, many artifactual peaks are visible in the cross-correlatio
  1905. ns of the ChIP-seq samples, and the peak at the true fragment size (147
  1906. \begin_inset space ~
  1907. \end_inset
  1908. bp) is frequently overshadowed by the artifactual peak at the read length
  1909. (100
  1910. \begin_inset space ~
  1911. \end_inset
  1912. bp).
  1913. \end_layout
  1914. \end_inset
  1915. \end_layout
  1916. \end_inset
  1917. \end_layout
  1918. \begin_layout Plain Layout
  1919. \align center
  1920. \begin_inset Float figure
  1921. wide false
  1922. sideways false
  1923. status open
  1924. \begin_layout Plain Layout
  1925. \align center
  1926. \begin_inset Graphics
  1927. filename graphics/CD4-csaw/csaw/CCF-plots-PAGE2-CROP.pdf
  1928. lyxscale 50
  1929. height 40theight%
  1930. groupId ccf-subfig
  1931. \end_inset
  1932. \end_layout
  1933. \begin_layout Plain Layout
  1934. \begin_inset Caption Standard
  1935. \begin_layout Plain Layout
  1936. \series bold
  1937. \begin_inset CommandInset label
  1938. LatexCommand label
  1939. name "fig:CCF-with-blacklist"
  1940. \end_inset
  1941. Cross-correlation plots with blacklisted reads removed.
  1942. \series default
  1943. After blacklisting, most ChIP-seq samples have clean-looking periodic cross-cor
  1944. relation plots, with the largest peak around 147
  1945. \begin_inset space ~
  1946. \end_inset
  1947. bp, the expected size for a fragment of DNA from a single nucleosome, and
  1948. little to no peak at the read length, 100
  1949. \begin_inset space ~
  1950. \end_inset
  1951. bp.
  1952. \end_layout
  1953. \end_inset
  1954. \end_layout
  1955. \end_inset
  1956. \end_layout
  1957. \begin_layout Plain Layout
  1958. \begin_inset Caption Standard
  1959. \begin_layout Plain Layout
  1960. \series bold
  1961. \begin_inset CommandInset label
  1962. LatexCommand label
  1963. name "fig:CCF-master"
  1964. \end_inset
  1965. Strand cross-correlation plots for ChIP-seq data, before and after blacklisting.
  1966. \end_layout
  1967. \end_inset
  1968. \end_layout
  1969. \end_inset
  1970. \end_layout
  1971. \begin_layout Standard
  1972. \begin_inset Note Note
  1973. status open
  1974. \begin_layout Plain Layout
  1975. \begin_inset Float figure
  1976. wide false
  1977. sideways false
  1978. status collapsed
  1979. \begin_layout Plain Layout
  1980. \align center
  1981. \begin_inset Graphics
  1982. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-sample-MAplot-bins-CROP.png
  1983. lyxscale 25
  1984. width 100col%
  1985. groupId colwidth-raster
  1986. \end_inset
  1987. \end_layout
  1988. \begin_layout Plain Layout
  1989. \begin_inset Caption Standard
  1990. \begin_layout Plain Layout
  1991. \series bold
  1992. \begin_inset CommandInset label
  1993. LatexCommand label
  1994. name "fig:MA-plot-bigbins"
  1995. \end_inset
  1996. MA plot of H3K4me2 read counts in 10kb bins for two arbitrary samples.
  1997. \end_layout
  1998. \end_inset
  1999. \end_layout
  2000. \end_inset
  2001. \end_layout
  2002. \end_inset
  2003. \end_layout
  2004. \begin_layout Standard
  2005. \begin_inset Flex TODO Note (inline)
  2006. status open
  2007. \begin_layout Plain Layout
  2008. Be consistent about use of
  2009. \begin_inset Quotes eld
  2010. \end_inset
  2011. differential binding
  2012. \begin_inset Quotes erd
  2013. \end_inset
  2014. vs
  2015. \begin_inset Quotes eld
  2016. \end_inset
  2017. differential modification
  2018. \begin_inset Quotes erd
  2019. \end_inset
  2020. throughout this chapter.
  2021. The latter is usually preferred.
  2022. \end_layout
  2023. \end_inset
  2024. \end_layout
  2025. \begin_layout Standard
  2026. Sequence reads were retrieved from SRA
  2027. \begin_inset CommandInset citation
  2028. LatexCommand cite
  2029. key "Leinonen2011"
  2030. literal "false"
  2031. \end_inset
  2032. .
  2033. ChIP-seq (and input) reads were aligned to GRCh38 genome assembly using
  2034. Bowtie 2
  2035. \begin_inset CommandInset citation
  2036. LatexCommand cite
  2037. key "Langmead2012,Schneider2017,gh-hg38-ref"
  2038. literal "false"
  2039. \end_inset
  2040. .
  2041. Artifact regions were annotated using a custom implementation of the GreyListCh
  2042. IP algorithm, and these
  2043. \begin_inset Quotes eld
  2044. \end_inset
  2045. greylists
  2046. \begin_inset Quotes erd
  2047. \end_inset
  2048. were merged with the published ENCODE blacklists
  2049. \begin_inset CommandInset citation
  2050. LatexCommand cite
  2051. key "greylistchip,Amemiya2019,Dunham2012,gh-cd4-csaw"
  2052. literal "false"
  2053. \end_inset
  2054. .
  2055. Any read or called peak overlapping one of these regions was regarded as
  2056. artifactual and excluded from downstream analyses.
  2057. Figure
  2058. \begin_inset CommandInset ref
  2059. LatexCommand ref
  2060. reference "fig:CCF-master"
  2061. plural "false"
  2062. caps "false"
  2063. noprefix "false"
  2064. \end_inset
  2065. shows the improvement after blacklisting in the strand cross-correlation
  2066. plots, a common quality control plot for ChIP-seq data.
  2067. Peaks were called using epic, an implementation of the SICER algorithm
  2068. \begin_inset CommandInset citation
  2069. LatexCommand cite
  2070. key "Zang2009,gh-epic"
  2071. literal "false"
  2072. \end_inset
  2073. .
  2074. Peaks were also called separately using MACS, but MACS was determined to
  2075. be a poor fit for the data, and these peak calls are not used in any further
  2076. analyses
  2077. \begin_inset CommandInset citation
  2078. LatexCommand cite
  2079. key "Zhang2008"
  2080. literal "false"
  2081. \end_inset
  2082. .
  2083. Consensus peaks were determined by applying the irreproducible discovery
  2084. rate (IDR) framework
  2085. \begin_inset CommandInset citation
  2086. LatexCommand cite
  2087. key "Li2006,gh-idr"
  2088. literal "false"
  2089. \end_inset
  2090. to find peaks consistently called in the same locations across all 4 donors.
  2091. \end_layout
  2092. \begin_layout Standard
  2093. Promoters were defined by computing the distance from each annotated TSS
  2094. to the nearest called peak and examining the distribution of distances,
  2095. observing that peaks for each histone mark were enriched within a certain
  2096. distance of the TSS.
  2097. For H3K4me2 and H3K4me3, this distance was about 1
  2098. \begin_inset space ~
  2099. \end_inset
  2100. kb, while for H3K27me3 it was 2.5
  2101. \begin_inset space ~
  2102. \end_inset
  2103. kb.
  2104. These distances were used as an
  2105. \begin_inset Quotes eld
  2106. \end_inset
  2107. effective promoter radius
  2108. \begin_inset Quotes erd
  2109. \end_inset
  2110. for each mark.
  2111. The promoter region for each gene was defined as the region of the genome
  2112. within this distance upstream or downstream of the gene's annotated TSS.
  2113. For genes with multiple annotated TSSs, a promoter region was defined for
  2114. each TSS individually, and any promoters that overlapped (due to multiple
  2115. TSSs being closer than 2 times the radius) were merged into one large promoter.
  2116. Thus, some genes had multiple promoters defined, which were each analyzed
  2117. separately for differential modification.
  2118. \end_layout
  2119. \begin_layout Standard
  2120. \begin_inset Float figure
  2121. wide false
  2122. sideways false
  2123. status collapsed
  2124. \begin_layout Plain Layout
  2125. \begin_inset Float figure
  2126. wide false
  2127. sideways false
  2128. status collapsed
  2129. \begin_layout Plain Layout
  2130. \align center
  2131. \begin_inset Graphics
  2132. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-PCA-raw-CROP.png
  2133. lyxscale 25
  2134. width 45col%
  2135. groupId pcoa-subfig
  2136. \end_inset
  2137. \end_layout
  2138. \begin_layout Plain Layout
  2139. \begin_inset Caption Standard
  2140. \begin_layout Plain Layout
  2141. \series bold
  2142. \begin_inset CommandInset label
  2143. LatexCommand label
  2144. name "fig:PCoA-H3K4me2-bad"
  2145. \end_inset
  2146. H3K4me2, no correction
  2147. \end_layout
  2148. \end_inset
  2149. \end_layout
  2150. \end_inset
  2151. \begin_inset space \hfill{}
  2152. \end_inset
  2153. \begin_inset Float figure
  2154. wide false
  2155. sideways false
  2156. status collapsed
  2157. \begin_layout Plain Layout
  2158. \align center
  2159. \begin_inset Graphics
  2160. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-PCA-SVsub-CROP.png
  2161. lyxscale 25
  2162. width 45col%
  2163. groupId pcoa-subfig
  2164. \end_inset
  2165. \end_layout
  2166. \begin_layout Plain Layout
  2167. \begin_inset Caption Standard
  2168. \begin_layout Plain Layout
  2169. \series bold
  2170. \begin_inset CommandInset label
  2171. LatexCommand label
  2172. name "fig:PCoA-H3K4me2-good"
  2173. \end_inset
  2174. H3K4me2, SVs subtracted
  2175. \end_layout
  2176. \end_inset
  2177. \end_layout
  2178. \end_inset
  2179. \end_layout
  2180. \begin_layout Plain Layout
  2181. \begin_inset Float figure
  2182. wide false
  2183. sideways false
  2184. status collapsed
  2185. \begin_layout Plain Layout
  2186. \align center
  2187. \begin_inset Graphics
  2188. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-PCA-raw-CROP.png
  2189. lyxscale 25
  2190. width 45col%
  2191. groupId pcoa-subfig
  2192. \end_inset
  2193. \end_layout
  2194. \begin_layout Plain Layout
  2195. \begin_inset Caption Standard
  2196. \begin_layout Plain Layout
  2197. \series bold
  2198. \begin_inset CommandInset label
  2199. LatexCommand label
  2200. name "fig:PCoA-H3K4me3-bad"
  2201. \end_inset
  2202. H3K4me3, no correction
  2203. \end_layout
  2204. \end_inset
  2205. \end_layout
  2206. \end_inset
  2207. \begin_inset space \hfill{}
  2208. \end_inset
  2209. \begin_inset Float figure
  2210. wide false
  2211. sideways false
  2212. status collapsed
  2213. \begin_layout Plain Layout
  2214. \align center
  2215. \begin_inset Graphics
  2216. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-PCA-SVsub-CROP.png
  2217. lyxscale 25
  2218. width 45col%
  2219. groupId pcoa-subfig
  2220. \end_inset
  2221. \end_layout
  2222. \begin_layout Plain Layout
  2223. \begin_inset Caption Standard
  2224. \begin_layout Plain Layout
  2225. \series bold
  2226. \begin_inset CommandInset label
  2227. LatexCommand label
  2228. name "fig:PCoA-H3K4me3-good"
  2229. \end_inset
  2230. H3K4me3, SVs subtracted
  2231. \end_layout
  2232. \end_inset
  2233. \end_layout
  2234. \end_inset
  2235. \end_layout
  2236. \begin_layout Plain Layout
  2237. \begin_inset Float figure
  2238. wide false
  2239. sideways false
  2240. status collapsed
  2241. \begin_layout Plain Layout
  2242. \align center
  2243. \begin_inset Graphics
  2244. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-PCA-raw-CROP.png
  2245. lyxscale 25
  2246. width 45col%
  2247. groupId pcoa-subfig
  2248. \end_inset
  2249. \end_layout
  2250. \begin_layout Plain Layout
  2251. \begin_inset Caption Standard
  2252. \begin_layout Plain Layout
  2253. \series bold
  2254. \begin_inset CommandInset label
  2255. LatexCommand label
  2256. name "fig:PCoA-H3K27me3-bad"
  2257. \end_inset
  2258. H3K27me3, no correction
  2259. \end_layout
  2260. \end_inset
  2261. \end_layout
  2262. \end_inset
  2263. \begin_inset space \hfill{}
  2264. \end_inset
  2265. \begin_inset Float figure
  2266. wide false
  2267. sideways false
  2268. status collapsed
  2269. \begin_layout Plain Layout
  2270. \align center
  2271. \begin_inset Graphics
  2272. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-PCA-SVsub-CROP.png
  2273. lyxscale 25
  2274. width 45col%
  2275. groupId pcoa-subfig
  2276. \end_inset
  2277. \end_layout
  2278. \begin_layout Plain Layout
  2279. \begin_inset Caption Standard
  2280. \begin_layout Plain Layout
  2281. \series bold
  2282. \begin_inset CommandInset label
  2283. LatexCommand label
  2284. name "fig:PCoA-H3K27me3-good"
  2285. \end_inset
  2286. H3K27me3, SVs subtracted
  2287. \end_layout
  2288. \end_inset
  2289. \end_layout
  2290. \end_inset
  2291. \end_layout
  2292. \begin_layout Plain Layout
  2293. \begin_inset Caption Standard
  2294. \begin_layout Plain Layout
  2295. \series bold
  2296. \begin_inset CommandInset label
  2297. LatexCommand label
  2298. name "fig:PCoA-ChIP"
  2299. \end_inset
  2300. PCoA plots of ChIP-seq sliding window data, before and after subtracting
  2301. surrogate variables (SVs).
  2302. \end_layout
  2303. \end_inset
  2304. \end_layout
  2305. \end_inset
  2306. \end_layout
  2307. \begin_layout Standard
  2308. Reads in promoters, peaks, and sliding windows across the genome were counted
  2309. and normalized using csaw and analyzed for differential modification using
  2310. \begin_inset Flex Code
  2311. status open
  2312. \begin_layout Plain Layout
  2313. edgeR
  2314. \end_layout
  2315. \end_inset
  2316. \begin_inset CommandInset citation
  2317. LatexCommand cite
  2318. key "Lun2014,Lun2015a,Lund2012,Phipson2016"
  2319. literal "false"
  2320. \end_inset
  2321. .
  2322. Unobserved confounding factors in the ChIP-seq data were corrected using
  2323. SVA
  2324. \begin_inset CommandInset citation
  2325. LatexCommand cite
  2326. key "Leek2007,Leek2014"
  2327. literal "false"
  2328. \end_inset
  2329. .
  2330. Principal coordinate plots of the promoter count data for each histone
  2331. mark before and after subtracting surrogate variable effects are shown
  2332. in Figure
  2333. \begin_inset CommandInset ref
  2334. LatexCommand ref
  2335. reference "fig:PCoA-ChIP"
  2336. plural "false"
  2337. caps "false"
  2338. noprefix "false"
  2339. \end_inset
  2340. .
  2341. \end_layout
  2342. \begin_layout Standard
  2343. To investigate whether the location of a peak within the promoter region
  2344. was important,
  2345. \begin_inset Quotes eld
  2346. \end_inset
  2347. relative coverage profiles
  2348. \begin_inset Quotes erd
  2349. \end_inset
  2350. were generated.
  2351. First, 500-bp sliding windows were tiled around each annotated TSS: one
  2352. window centered on the TSS itself, and 10 windows each upstream and downstream,
  2353. thus covering a 10.5-kb region centered on the TSS with 21 windows.
  2354. Reads in each window for each TSS were counted in each sample, and the
  2355. counts were normalized and converted to log CPM as in the differential
  2356. modification analysis.
  2357. Then, the logCPM values within each promoter were normalized to an average
  2358. of zero, such that each window's normalized abundance now represents the
  2359. relative read depth of that window compared to all other windows in the
  2360. same promoter.
  2361. The normalized abundance values for each window in a promoter are collectively
  2362. referred to as that promoter's
  2363. \begin_inset Quotes eld
  2364. \end_inset
  2365. relative coverage profile
  2366. \begin_inset Quotes erd
  2367. \end_inset
  2368. .
  2369. \end_layout
  2370. \begin_layout Subsection
  2371. MOFA recovers biologically relevant variation from blind analysis by correlating
  2372. across datasets
  2373. \end_layout
  2374. \begin_layout Standard
  2375. \begin_inset ERT
  2376. status open
  2377. \begin_layout Plain Layout
  2378. \backslash
  2379. afterpage{
  2380. \end_layout
  2381. \begin_layout Plain Layout
  2382. \backslash
  2383. begin{landscape}
  2384. \end_layout
  2385. \end_inset
  2386. \end_layout
  2387. \begin_layout Standard
  2388. \begin_inset Float figure
  2389. wide false
  2390. sideways false
  2391. status open
  2392. \begin_layout Plain Layout
  2393. \begin_inset Float figure
  2394. wide false
  2395. sideways false
  2396. status open
  2397. \begin_layout Plain Layout
  2398. \align center
  2399. \begin_inset Graphics
  2400. filename graphics/CD4-csaw/MOFA-varExplaiend-matrix-CROP.png
  2401. lyxscale 25
  2402. width 45col%
  2403. groupId mofa-subfig
  2404. \end_inset
  2405. \end_layout
  2406. \begin_layout Plain Layout
  2407. \begin_inset Caption Standard
  2408. \begin_layout Plain Layout
  2409. \series bold
  2410. \begin_inset CommandInset label
  2411. LatexCommand label
  2412. name "fig:mofa-varexplained"
  2413. \end_inset
  2414. Variance explained in each data set by each latent factor estimated by MOFA.
  2415. \series default
  2416. For each latent factor (LF) learned by MOFA, the variance explained by
  2417. that factor in each data set (
  2418. \begin_inset Quotes eld
  2419. \end_inset
  2420. view
  2421. \begin_inset Quotes erd
  2422. \end_inset
  2423. ) is shown by the shading of the cells in the lower section.
  2424. The upper section shows the total fraction of each data set's variance
  2425. that is explained by all LFs combined.
  2426. \end_layout
  2427. \end_inset
  2428. \end_layout
  2429. \end_inset
  2430. \begin_inset space \hfill{}
  2431. \end_inset
  2432. \begin_inset Float figure
  2433. wide false
  2434. sideways false
  2435. status open
  2436. \begin_layout Plain Layout
  2437. \align center
  2438. \begin_inset Graphics
  2439. filename graphics/CD4-csaw/MOFA-LF-scatter-CROP.png
  2440. lyxscale 25
  2441. width 45col%
  2442. groupId mofa-subfig
  2443. \end_inset
  2444. \end_layout
  2445. \begin_layout Plain Layout
  2446. \begin_inset Caption Standard
  2447. \begin_layout Plain Layout
  2448. \series bold
  2449. \begin_inset CommandInset label
  2450. LatexCommand label
  2451. name "fig:mofa-lf-scatter"
  2452. \end_inset
  2453. Scatter plots of specific pairs of MOFA latent factors.
  2454. \series default
  2455. LFs 1, 4, and 5 explain substantial variation in all data sets, so they
  2456. are plotted against each other in order to reveal patterns of variation
  2457. that are shared across all data sets.
  2458. \end_layout
  2459. \end_inset
  2460. \end_layout
  2461. \end_inset
  2462. \end_layout
  2463. \begin_layout Plain Layout
  2464. \begin_inset Caption Standard
  2465. \begin_layout Plain Layout
  2466. \series bold
  2467. \begin_inset CommandInset label
  2468. LatexCommand label
  2469. name "fig:MOFA-master"
  2470. \end_inset
  2471. MOFA latent factors separate technical confounders from
  2472. \end_layout
  2473. \end_inset
  2474. \end_layout
  2475. \end_inset
  2476. \end_layout
  2477. \begin_layout Standard
  2478. \begin_inset ERT
  2479. status open
  2480. \begin_layout Plain Layout
  2481. \backslash
  2482. end{landscape}
  2483. \end_layout
  2484. \begin_layout Plain Layout
  2485. }
  2486. \end_layout
  2487. \end_inset
  2488. \end_layout
  2489. \begin_layout Standard
  2490. MOFA was run on all the ChIP-seq windows overlapping consensus peaks for
  2491. each histone mark, as well as the RNA-seq data, in order to identify patterns
  2492. of coordinated variation across all data sets
  2493. \begin_inset CommandInset citation
  2494. LatexCommand cite
  2495. key "Argelaguet2018"
  2496. literal "false"
  2497. \end_inset
  2498. .
  2499. The results are summarized in Figure
  2500. \begin_inset CommandInset ref
  2501. LatexCommand ref
  2502. reference "fig:MOFA-master"
  2503. plural "false"
  2504. caps "false"
  2505. noprefix "false"
  2506. \end_inset
  2507. .
  2508. Latent factors 1, 4, and 5 were determined to explain the most variation
  2509. consistently across all data sets (Figure
  2510. \begin_inset CommandInset ref
  2511. LatexCommand ref
  2512. reference "fig:mofa-varexplained"
  2513. plural "false"
  2514. caps "false"
  2515. noprefix "false"
  2516. \end_inset
  2517. ), and scatter plots of these factors show that they also correlate best
  2518. with the experimental factors (Figure
  2519. \begin_inset CommandInset ref
  2520. LatexCommand ref
  2521. reference "fig:mofa-lf-scatter"
  2522. plural "false"
  2523. caps "false"
  2524. noprefix "false"
  2525. \end_inset
  2526. ).
  2527. Latent factor 2 captures the batch effect in the RNA-seq data.
  2528. Removing the effect of LF2 using MOFA theoretically yields a batch correction
  2529. that does not depend on knowing the experimental factors.
  2530. When this was attempted, the resulting batch correction was comparable
  2531. to ComBat (see Figure
  2532. \begin_inset CommandInset ref
  2533. LatexCommand ref
  2534. reference "fig:RNA-PCA-ComBat-batchsub"
  2535. plural "false"
  2536. caps "false"
  2537. noprefix "false"
  2538. \end_inset
  2539. ), indicating that the ComBat-based batch correction has little room for
  2540. improvement given the problems with the data set.
  2541. \end_layout
  2542. \begin_layout Standard
  2543. \begin_inset Note Note
  2544. status collapsed
  2545. \begin_layout Plain Layout
  2546. \begin_inset Float figure
  2547. wide false
  2548. sideways false
  2549. status open
  2550. \begin_layout Plain Layout
  2551. \align center
  2552. \begin_inset Graphics
  2553. filename graphics/CD4-csaw/MOFA-batch-correct-CROP.png
  2554. lyxscale 25
  2555. width 100col%
  2556. groupId colwidth-raster
  2557. \end_inset
  2558. \end_layout
  2559. \begin_layout Plain Layout
  2560. \begin_inset Caption Standard
  2561. \begin_layout Plain Layout
  2562. \series bold
  2563. \begin_inset CommandInset label
  2564. LatexCommand label
  2565. name "fig:mofa-batchsub"
  2566. \end_inset
  2567. Result of RNA-seq batch-correction using MOFA latent factors
  2568. \end_layout
  2569. \end_inset
  2570. \end_layout
  2571. \end_inset
  2572. \end_layout
  2573. \end_inset
  2574. \end_layout
  2575. \begin_layout Section
  2576. Results
  2577. \end_layout
  2578. \begin_layout Standard
  2579. \begin_inset Flex TODO Note (inline)
  2580. status open
  2581. \begin_layout Plain Layout
  2582. Focus on what hypotheses were tested, then select figures that show how
  2583. those hypotheses were tested, even if the result is a negative.
  2584. Not every interesting result needs to be in here.
  2585. Chapter should tell a story.
  2586. \end_layout
  2587. \end_inset
  2588. \end_layout
  2589. \begin_layout Standard
  2590. \begin_inset Flex TODO Note (inline)
  2591. status open
  2592. \begin_layout Plain Layout
  2593. Maybe reorder these sections to do RNA-seq, then ChIP-seq, then combined
  2594. analyses?
  2595. \end_layout
  2596. \end_inset
  2597. \end_layout
  2598. \begin_layout Subsection
  2599. Interpretation of RNA-seq analysis is limited by a major confounding factor
  2600. \end_layout
  2601. \begin_layout Standard
  2602. \begin_inset Float table
  2603. wide false
  2604. sideways false
  2605. status collapsed
  2606. \begin_layout Plain Layout
  2607. \align center
  2608. \begin_inset Tabular
  2609. <lyxtabular version="3" rows="11" columns="3">
  2610. <features tabularvalignment="middle">
  2611. <column alignment="center" valignment="top">
  2612. <column alignment="center" valignment="top">
  2613. <column alignment="center" valignment="top">
  2614. <row>
  2615. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2616. \begin_inset Text
  2617. \begin_layout Plain Layout
  2618. Test
  2619. \end_layout
  2620. \end_inset
  2621. </cell>
  2622. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2623. \begin_inset Text
  2624. \begin_layout Plain Layout
  2625. Est.
  2626. non-null
  2627. \end_layout
  2628. \end_inset
  2629. </cell>
  2630. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2631. \begin_inset Text
  2632. \begin_layout Plain Layout
  2633. \begin_inset Formula $\mathrm{FDR}\le10\%$
  2634. \end_inset
  2635. \end_layout
  2636. \end_inset
  2637. </cell>
  2638. </row>
  2639. <row>
  2640. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2641. \begin_inset Text
  2642. \begin_layout Plain Layout
  2643. Naive Day 0 vs Day 1
  2644. \end_layout
  2645. \end_inset
  2646. </cell>
  2647. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2648. \begin_inset Text
  2649. \begin_layout Plain Layout
  2650. 5992
  2651. \end_layout
  2652. \end_inset
  2653. </cell>
  2654. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2655. \begin_inset Text
  2656. \begin_layout Plain Layout
  2657. 1613
  2658. \end_layout
  2659. \end_inset
  2660. </cell>
  2661. </row>
  2662. <row>
  2663. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2664. \begin_inset Text
  2665. \begin_layout Plain Layout
  2666. Naive Day 0 vs Day 5
  2667. \end_layout
  2668. \end_inset
  2669. </cell>
  2670. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2671. \begin_inset Text
  2672. \begin_layout Plain Layout
  2673. 3038
  2674. \end_layout
  2675. \end_inset
  2676. </cell>
  2677. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2678. \begin_inset Text
  2679. \begin_layout Plain Layout
  2680. 32
  2681. \end_layout
  2682. \end_inset
  2683. </cell>
  2684. </row>
  2685. <row>
  2686. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2687. \begin_inset Text
  2688. \begin_layout Plain Layout
  2689. Naive Day 0 vs Day 14
  2690. \end_layout
  2691. \end_inset
  2692. </cell>
  2693. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2694. \begin_inset Text
  2695. \begin_layout Plain Layout
  2696. 1870
  2697. \end_layout
  2698. \end_inset
  2699. </cell>
  2700. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2701. \begin_inset Text
  2702. \begin_layout Plain Layout
  2703. 190
  2704. \end_layout
  2705. \end_inset
  2706. </cell>
  2707. </row>
  2708. <row>
  2709. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2710. \begin_inset Text
  2711. \begin_layout Plain Layout
  2712. Memory Day 0 vs Day 1
  2713. \end_layout
  2714. \end_inset
  2715. </cell>
  2716. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2717. \begin_inset Text
  2718. \begin_layout Plain Layout
  2719. 3195
  2720. \end_layout
  2721. \end_inset
  2722. </cell>
  2723. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2724. \begin_inset Text
  2725. \begin_layout Plain Layout
  2726. 411
  2727. \end_layout
  2728. \end_inset
  2729. </cell>
  2730. </row>
  2731. <row>
  2732. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2733. \begin_inset Text
  2734. \begin_layout Plain Layout
  2735. Memory Day 0 vs Day 5
  2736. \end_layout
  2737. \end_inset
  2738. </cell>
  2739. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2740. \begin_inset Text
  2741. \begin_layout Plain Layout
  2742. 2688
  2743. \end_layout
  2744. \end_inset
  2745. </cell>
  2746. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2747. \begin_inset Text
  2748. \begin_layout Plain Layout
  2749. 18
  2750. \end_layout
  2751. \end_inset
  2752. </cell>
  2753. </row>
  2754. <row>
  2755. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2756. \begin_inset Text
  2757. \begin_layout Plain Layout
  2758. Memory Day 0 vs Day 14
  2759. \end_layout
  2760. \end_inset
  2761. </cell>
  2762. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2763. \begin_inset Text
  2764. \begin_layout Plain Layout
  2765. 1911
  2766. \end_layout
  2767. \end_inset
  2768. </cell>
  2769. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2770. \begin_inset Text
  2771. \begin_layout Plain Layout
  2772. 227
  2773. \end_layout
  2774. \end_inset
  2775. </cell>
  2776. </row>
  2777. <row>
  2778. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2779. \begin_inset Text
  2780. \begin_layout Plain Layout
  2781. Day 0 Naive vs Memory
  2782. \end_layout
  2783. \end_inset
  2784. </cell>
  2785. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2786. \begin_inset Text
  2787. \begin_layout Plain Layout
  2788. 0
  2789. \end_layout
  2790. \end_inset
  2791. </cell>
  2792. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2793. \begin_inset Text
  2794. \begin_layout Plain Layout
  2795. 2
  2796. \end_layout
  2797. \end_inset
  2798. </cell>
  2799. </row>
  2800. <row>
  2801. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2802. \begin_inset Text
  2803. \begin_layout Plain Layout
  2804. Day 1 Naive vs Memory
  2805. \end_layout
  2806. \end_inset
  2807. </cell>
  2808. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2809. \begin_inset Text
  2810. \begin_layout Plain Layout
  2811. 9167
  2812. \end_layout
  2813. \end_inset
  2814. </cell>
  2815. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2816. \begin_inset Text
  2817. \begin_layout Plain Layout
  2818. 5532
  2819. \end_layout
  2820. \end_inset
  2821. </cell>
  2822. </row>
  2823. <row>
  2824. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2825. \begin_inset Text
  2826. \begin_layout Plain Layout
  2827. Day 5 Naive vs Memory
  2828. \end_layout
  2829. \end_inset
  2830. </cell>
  2831. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2832. \begin_inset Text
  2833. \begin_layout Plain Layout
  2834. 0
  2835. \end_layout
  2836. \end_inset
  2837. </cell>
  2838. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2839. \begin_inset Text
  2840. \begin_layout Plain Layout
  2841. 0
  2842. \end_layout
  2843. \end_inset
  2844. </cell>
  2845. </row>
  2846. <row>
  2847. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2848. \begin_inset Text
  2849. \begin_layout Plain Layout
  2850. Day 14 Naive vs Memory
  2851. \end_layout
  2852. \end_inset
  2853. </cell>
  2854. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2855. \begin_inset Text
  2856. \begin_layout Plain Layout
  2857. 6446
  2858. \end_layout
  2859. \end_inset
  2860. </cell>
  2861. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2862. \begin_inset Text
  2863. \begin_layout Plain Layout
  2864. 2319
  2865. \end_layout
  2866. \end_inset
  2867. </cell>
  2868. </row>
  2869. </lyxtabular>
  2870. \end_inset
  2871. \end_layout
  2872. \begin_layout Plain Layout
  2873. \begin_inset Caption Standard
  2874. \begin_layout Plain Layout
  2875. \series bold
  2876. \begin_inset CommandInset label
  2877. LatexCommand label
  2878. name "tab:Estimated-and-detected-rnaseq"
  2879. \end_inset
  2880. Estimated and detected differentially expressed genes.
  2881. \series default
  2882. \begin_inset Quotes eld
  2883. \end_inset
  2884. Test
  2885. \begin_inset Quotes erd
  2886. \end_inset
  2887. : Which sample groups were compared;
  2888. \begin_inset Quotes eld
  2889. \end_inset
  2890. Est non-null
  2891. \begin_inset Quotes erd
  2892. \end_inset
  2893. : Estimated number of differentially expressed genes, using the method of
  2894. averaging local FDR values
  2895. \begin_inset CommandInset citation
  2896. LatexCommand cite
  2897. key "Phipson2013Thesis"
  2898. literal "false"
  2899. \end_inset
  2900. ;
  2901. \begin_inset Quotes eld
  2902. \end_inset
  2903. \begin_inset Formula $\mathrm{FDR}\le10\%$
  2904. \end_inset
  2905. \begin_inset Quotes erd
  2906. \end_inset
  2907. : Number of significantly differentially expressed genes at an FDR threshold
  2908. of 10%.
  2909. The total number of genes tested was 16707.
  2910. \end_layout
  2911. \end_inset
  2912. \end_layout
  2913. \end_inset
  2914. \end_layout
  2915. \begin_layout Standard
  2916. \begin_inset Float figure
  2917. wide false
  2918. sideways false
  2919. status collapsed
  2920. \begin_layout Plain Layout
  2921. \align center
  2922. \begin_inset Graphics
  2923. filename graphics/CD4-csaw/RNA-seq/PCA-final-12-CROP.png
  2924. lyxscale 25
  2925. width 100col%
  2926. groupId colwidth-raster
  2927. \end_inset
  2928. \end_layout
  2929. \begin_layout Plain Layout
  2930. \begin_inset Caption Standard
  2931. \begin_layout Plain Layout
  2932. \series bold
  2933. \begin_inset CommandInset label
  2934. LatexCommand label
  2935. name "fig:rna-pca-final"
  2936. \end_inset
  2937. PCoA plot of RNA-seq samples after ComBat batch correction.
  2938. \series default
  2939. Each point represents an individual sample.
  2940. Samples with the same combination of cell type and time point are encircled
  2941. with a shaded region to aid in visual identification of the sample groups.
  2942. Samples with of same cell type from the same donor are connected by lines
  2943. to indicate the
  2944. \begin_inset Quotes eld
  2945. \end_inset
  2946. trajectory
  2947. \begin_inset Quotes erd
  2948. \end_inset
  2949. of each donor's cells over time in PCoA space.
  2950. \end_layout
  2951. \end_inset
  2952. \end_layout
  2953. \begin_layout Plain Layout
  2954. \end_layout
  2955. \end_inset
  2956. \end_layout
  2957. \begin_layout Standard
  2958. Genes called present in the RNA-seq data were tested for differential expression
  2959. between all time points and cell types.
  2960. The counts of differentially expressed genes are shown in Table
  2961. \begin_inset CommandInset ref
  2962. LatexCommand ref
  2963. reference "tab:Estimated-and-detected-rnaseq"
  2964. plural "false"
  2965. caps "false"
  2966. noprefix "false"
  2967. \end_inset
  2968. .
  2969. Notably, all the results for Day 0 and Day 5 have substantially fewer genes
  2970. called differentially expressed than any of the results for other time
  2971. points.
  2972. This is an unfortunate result of the difference in sample quality between
  2973. the two batches of RNA-seq data.
  2974. All the samples in Batch 1, which includes all the samples from Days 0
  2975. and 5, have substantially more variability than the samples in Batch 2,
  2976. which includes the other time points.
  2977. This is reflected in the substantially higher weights assigned to Batch
  2978. 2 (Figure
  2979. \begin_inset CommandInset ref
  2980. LatexCommand ref
  2981. reference "fig:RNA-seq-weights-vs-covars"
  2982. plural "false"
  2983. caps "false"
  2984. noprefix "false"
  2985. \end_inset
  2986. ).
  2987. The batch effect has both a systematic component and a random noise component.
  2988. While the systematic component was subtracted out using ComBat (Figure
  2989. \begin_inset CommandInset ref
  2990. LatexCommand ref
  2991. reference "fig:RNA-PCA"
  2992. plural "false"
  2993. caps "false"
  2994. noprefix "false"
  2995. \end_inset
  2996. ), no such correction is possible for the noise component: Batch 1 simply
  2997. has substantially more random noise in it, which reduces the statistical
  2998. power for any differential expression tests involving samples in that batch.
  2999. \end_layout
  3000. \begin_layout Standard
  3001. Despite the difficulty in detecting specific differentially expressed genes,
  3002. there is still evidence that differential expression is present for these
  3003. time points.
  3004. In Figure
  3005. \begin_inset CommandInset ref
  3006. LatexCommand ref
  3007. reference "fig:rna-pca-final"
  3008. plural "false"
  3009. caps "false"
  3010. noprefix "false"
  3011. \end_inset
  3012. , there is a clear separation between naive and memory samples at Day 0,
  3013. despite the fact that only 2 genes were significantly differentially expressed
  3014. for this comparison.
  3015. Similarly, the small numbers of genes detected for the Day 0 vs Day 5 compariso
  3016. ns do not reflect the large separation between these time points in Figure
  3017. \begin_inset CommandInset ref
  3018. LatexCommand ref
  3019. reference "fig:rna-pca-final"
  3020. plural "false"
  3021. caps "false"
  3022. noprefix "false"
  3023. \end_inset
  3024. .
  3025. In addition, the MOFA latent factor plots in Figure
  3026. \begin_inset CommandInset ref
  3027. LatexCommand ref
  3028. reference "fig:mofa-lf-scatter"
  3029. plural "false"
  3030. caps "false"
  3031. noprefix "false"
  3032. \end_inset
  3033. .
  3034. This suggests that there is indeed a differential expression signal present
  3035. in the data for these comparisons, but the large variability in the Batch
  3036. 1 samples obfuscates this signal at the individual gene level.
  3037. As a result, it is impossible to make any meaningful statements about the
  3038. \begin_inset Quotes eld
  3039. \end_inset
  3040. size
  3041. \begin_inset Quotes erd
  3042. \end_inset
  3043. of the gene signature for any time point, since the number of significant
  3044. genes as well as the estimated number of differentially expressed genes
  3045. depends so strongly on the variations in sample quality in addition to
  3046. the size of the differential expression signal in the data.
  3047. Gene-set enrichment analyses are similarly impractical.
  3048. However, analyses looking at genome-wide patterns of expression are still
  3049. practical.
  3050. \end_layout
  3051. \begin_layout Subsection
  3052. H3K4 and H3K27 methylation occur in broad regions and are enriched near
  3053. promoters
  3054. \end_layout
  3055. \begin_layout Standard
  3056. \begin_inset Float table
  3057. wide false
  3058. sideways false
  3059. status collapsed
  3060. \begin_layout Plain Layout
  3061. \align center
  3062. \begin_inset Flex TODO Note (inline)
  3063. status open
  3064. \begin_layout Plain Layout
  3065. Also get
  3066. \emph on
  3067. median
  3068. \emph default
  3069. peak width and maybe other quantiles (25%, 75%)
  3070. \end_layout
  3071. \end_inset
  3072. \end_layout
  3073. \begin_layout Plain Layout
  3074. \align center
  3075. \begin_inset Tabular
  3076. <lyxtabular version="3" rows="4" columns="5">
  3077. <features tabularvalignment="middle">
  3078. <column alignment="center" valignment="top">
  3079. <column alignment="center" valignment="top">
  3080. <column alignment="center" valignment="top">
  3081. <column alignment="center" valignment="top">
  3082. <column alignment="center" valignment="top">
  3083. <row>
  3084. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3085. \begin_inset Text
  3086. \begin_layout Plain Layout
  3087. Histone Mark
  3088. \end_layout
  3089. \end_inset
  3090. </cell>
  3091. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3092. \begin_inset Text
  3093. \begin_layout Plain Layout
  3094. # Peaks
  3095. \end_layout
  3096. \end_inset
  3097. </cell>
  3098. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3099. \begin_inset Text
  3100. \begin_layout Plain Layout
  3101. Mean peak width
  3102. \end_layout
  3103. \end_inset
  3104. </cell>
  3105. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3106. \begin_inset Text
  3107. \begin_layout Plain Layout
  3108. genome coverage
  3109. \end_layout
  3110. \end_inset
  3111. </cell>
  3112. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3113. \begin_inset Text
  3114. \begin_layout Plain Layout
  3115. FRiP
  3116. \end_layout
  3117. \end_inset
  3118. </cell>
  3119. </row>
  3120. <row>
  3121. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3122. \begin_inset Text
  3123. \begin_layout Plain Layout
  3124. H3K4me2
  3125. \end_layout
  3126. \end_inset
  3127. </cell>
  3128. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3129. \begin_inset Text
  3130. \begin_layout Plain Layout
  3131. 14965
  3132. \end_layout
  3133. \end_inset
  3134. </cell>
  3135. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3136. \begin_inset Text
  3137. \begin_layout Plain Layout
  3138. 3970
  3139. \end_layout
  3140. \end_inset
  3141. </cell>
  3142. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3143. \begin_inset Text
  3144. \begin_layout Plain Layout
  3145. 1.92%
  3146. \end_layout
  3147. \end_inset
  3148. </cell>
  3149. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3150. \begin_inset Text
  3151. \begin_layout Plain Layout
  3152. 14.2%
  3153. \end_layout
  3154. \end_inset
  3155. </cell>
  3156. </row>
  3157. <row>
  3158. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3159. \begin_inset Text
  3160. \begin_layout Plain Layout
  3161. H3K4me3
  3162. \end_layout
  3163. \end_inset
  3164. </cell>
  3165. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3166. \begin_inset Text
  3167. \begin_layout Plain Layout
  3168. 6163
  3169. \end_layout
  3170. \end_inset
  3171. </cell>
  3172. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3173. \begin_inset Text
  3174. \begin_layout Plain Layout
  3175. 2946
  3176. \end_layout
  3177. \end_inset
  3178. </cell>
  3179. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3180. \begin_inset Text
  3181. \begin_layout Plain Layout
  3182. 0.588%
  3183. \end_layout
  3184. \end_inset
  3185. </cell>
  3186. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3187. \begin_inset Text
  3188. \begin_layout Plain Layout
  3189. 6.57%
  3190. \end_layout
  3191. \end_inset
  3192. </cell>
  3193. </row>
  3194. <row>
  3195. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3196. \begin_inset Text
  3197. \begin_layout Plain Layout
  3198. H3K27me3
  3199. \end_layout
  3200. \end_inset
  3201. </cell>
  3202. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3203. \begin_inset Text
  3204. \begin_layout Plain Layout
  3205. 18139
  3206. \end_layout
  3207. \end_inset
  3208. </cell>
  3209. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3210. \begin_inset Text
  3211. \begin_layout Plain Layout
  3212. 18967
  3213. \end_layout
  3214. \end_inset
  3215. </cell>
  3216. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3217. \begin_inset Text
  3218. \begin_layout Plain Layout
  3219. 11.1%
  3220. \end_layout
  3221. \end_inset
  3222. </cell>
  3223. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3224. \begin_inset Text
  3225. \begin_layout Plain Layout
  3226. 22.5%
  3227. \end_layout
  3228. \end_inset
  3229. </cell>
  3230. </row>
  3231. </lyxtabular>
  3232. \end_inset
  3233. \end_layout
  3234. \begin_layout Plain Layout
  3235. \begin_inset Caption Standard
  3236. \begin_layout Plain Layout
  3237. \series bold
  3238. \begin_inset CommandInset label
  3239. LatexCommand label
  3240. name "tab:peak-calling-summary"
  3241. \end_inset
  3242. Peak-calling summary.
  3243. \series default
  3244. For each histone mark, the number of peaks called using SICER at an IDR
  3245. threshold of ???, the mean width of those peaks, the fraction of the genome
  3246. covered by peaks, and the fraction of reads in peaks (FRiP).
  3247. \end_layout
  3248. \end_inset
  3249. \end_layout
  3250. \end_inset
  3251. \end_layout
  3252. \begin_layout Standard
  3253. Table
  3254. \begin_inset CommandInset ref
  3255. LatexCommand ref
  3256. reference "tab:peak-calling-summary"
  3257. plural "false"
  3258. caps "false"
  3259. noprefix "false"
  3260. \end_inset
  3261. gives a summary of the peak calling statistics for each histone mark.
  3262. Consistent with previous observations [CITATION NEEDED], all 3 histone
  3263. marks occur in broad regions spanning many consecutive nucleosomes, rather
  3264. than in sharp peaks as would be expected for a transcription factor or
  3265. other molecule that binds to specific sites.
  3266. This conclusion is further supported by Figure
  3267. \begin_inset CommandInset ref
  3268. LatexCommand ref
  3269. reference "fig:CCF-with-blacklist"
  3270. plural "false"
  3271. caps "false"
  3272. noprefix "false"
  3273. \end_inset
  3274. , in which a clear nucleosome-sized periodicity is visible in the cross-correlat
  3275. ion value for each sample, indicating that each time a given mark is present
  3276. on one histone, it is also likely to be found on adjacent histones as well.
  3277. H3K27me3 enrichment in particular is substantially more broad than either
  3278. H3K4 mark, with a mean peak width of almost 19,000 bp.
  3279. This is also reflected in the periodicity observed in Figure
  3280. \begin_inset CommandInset ref
  3281. LatexCommand ref
  3282. reference "fig:CCF-with-blacklist"
  3283. plural "false"
  3284. caps "false"
  3285. noprefix "false"
  3286. \end_inset
  3287. , which remains strong much farther out for H3K27me3 than the other marks,
  3288. showing H3K27me3 especially tends to be found on long runs of consecutive
  3289. histones.
  3290. \end_layout
  3291. \begin_layout Standard
  3292. \begin_inset Float figure
  3293. wide false
  3294. sideways false
  3295. status open
  3296. \begin_layout Plain Layout
  3297. \begin_inset Flex TODO Note (inline)
  3298. status open
  3299. \begin_layout Plain Layout
  3300. Ensure this figure uses the peak calls from the new analysis.
  3301. \end_layout
  3302. \end_inset
  3303. \end_layout
  3304. \begin_layout Plain Layout
  3305. \begin_inset Flex TODO Note (inline)
  3306. status open
  3307. \begin_layout Plain Layout
  3308. Need a control: shuffle all peaks and repeat, N times.
  3309. Do real vs shuffled control both in a top/bottom arrangement.
  3310. \end_layout
  3311. \end_inset
  3312. \end_layout
  3313. \begin_layout Plain Layout
  3314. \begin_inset Flex TODO Note (inline)
  3315. status open
  3316. \begin_layout Plain Layout
  3317. Consider counting TSS inside peaks as negative number indicating how far
  3318. \emph on
  3319. inside
  3320. \emph default
  3321. the peak the TSS is (i.e.
  3322. distance to nearest non-peak area).
  3323. \end_layout
  3324. \end_inset
  3325. \end_layout
  3326. \begin_layout Plain Layout
  3327. \begin_inset Flex TODO Note (inline)
  3328. status open
  3329. \begin_layout Plain Layout
  3330. The H3K4 part of this figure is included in
  3331. \begin_inset CommandInset citation
  3332. LatexCommand cite
  3333. key "LaMere2016"
  3334. literal "false"
  3335. \end_inset
  3336. as Fig.
  3337. S2.
  3338. Do I need to do anything about that?
  3339. \end_layout
  3340. \end_inset
  3341. \end_layout
  3342. \begin_layout Plain Layout
  3343. \align center
  3344. \begin_inset Graphics
  3345. filename graphics/CD4-csaw/Promoter Peak Distance Profile-PAGE1-CROP.pdf
  3346. lyxscale 50
  3347. width 80col%
  3348. \end_inset
  3349. \end_layout
  3350. \begin_layout Plain Layout
  3351. \begin_inset Caption Standard
  3352. \begin_layout Plain Layout
  3353. \series bold
  3354. \begin_inset CommandInset label
  3355. LatexCommand label
  3356. name "fig:near-promoter-peak-enrich"
  3357. \end_inset
  3358. Enrichment of peaks in promoter neighborhoods.
  3359. \series default
  3360. This plot shows the distribution of distances from each annotated transcription
  3361. start site in the genome to the nearest called peak.
  3362. Each line represents one combination of histone mark, cell type, and time
  3363. point.
  3364. Distributions are smoothed using kernel density estimation [CITE? see ggplot2
  3365. stat_density()].
  3366. Transcription start sites that occur
  3367. \emph on
  3368. within
  3369. \emph default
  3370. peaks were excluded from this plot to avoid a large spike at zero that
  3371. would overshadow the rest of the distribution.
  3372. \end_layout
  3373. \end_inset
  3374. \end_layout
  3375. \end_inset
  3376. \end_layout
  3377. \begin_layout Standard
  3378. \begin_inset Float table
  3379. wide false
  3380. sideways false
  3381. status collapsed
  3382. \begin_layout Plain Layout
  3383. \align center
  3384. \begin_inset Tabular
  3385. <lyxtabular version="3" rows="4" columns="2">
  3386. <features tabularvalignment="middle">
  3387. <column alignment="center" valignment="top">
  3388. <column alignment="center" valignment="top">
  3389. <row>
  3390. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3391. \begin_inset Text
  3392. \begin_layout Plain Layout
  3393. Histone mark
  3394. \end_layout
  3395. \end_inset
  3396. </cell>
  3397. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3398. \begin_inset Text
  3399. \begin_layout Plain Layout
  3400. Effective promoter radius
  3401. \end_layout
  3402. \end_inset
  3403. </cell>
  3404. </row>
  3405. <row>
  3406. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3407. \begin_inset Text
  3408. \begin_layout Plain Layout
  3409. H3K4me2
  3410. \end_layout
  3411. \end_inset
  3412. </cell>
  3413. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3414. \begin_inset Text
  3415. \begin_layout Plain Layout
  3416. 1 kb
  3417. \end_layout
  3418. \end_inset
  3419. </cell>
  3420. </row>
  3421. <row>
  3422. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3423. \begin_inset Text
  3424. \begin_layout Plain Layout
  3425. H3K4me3
  3426. \end_layout
  3427. \end_inset
  3428. </cell>
  3429. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3430. \begin_inset Text
  3431. \begin_layout Plain Layout
  3432. 1 kb
  3433. \end_layout
  3434. \end_inset
  3435. </cell>
  3436. </row>
  3437. <row>
  3438. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3439. \begin_inset Text
  3440. \begin_layout Plain Layout
  3441. H3K27me3
  3442. \end_layout
  3443. \end_inset
  3444. </cell>
  3445. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3446. \begin_inset Text
  3447. \begin_layout Plain Layout
  3448. 2.5 kb
  3449. \end_layout
  3450. \end_inset
  3451. </cell>
  3452. </row>
  3453. </lyxtabular>
  3454. \end_inset
  3455. \end_layout
  3456. \begin_layout Plain Layout
  3457. \begin_inset Caption Standard
  3458. \begin_layout Plain Layout
  3459. \series bold
  3460. \begin_inset CommandInset label
  3461. LatexCommand label
  3462. name "tab:effective-promoter-radius"
  3463. \end_inset
  3464. Effective promoter radius for each histone mark.
  3465. \series default
  3466. These values represent the approximate distance from transcription start
  3467. site positions within which an excess of peaks are found, as shown in Figure
  3468. \begin_inset CommandInset ref
  3469. LatexCommand ref
  3470. reference "fig:near-promoter-peak-enrich"
  3471. plural "false"
  3472. caps "false"
  3473. noprefix "false"
  3474. \end_inset
  3475. .
  3476. \end_layout
  3477. \end_inset
  3478. \end_layout
  3479. \begin_layout Plain Layout
  3480. \end_layout
  3481. \end_inset
  3482. \end_layout
  3483. \begin_layout Standard
  3484. All 3 histone marks tend to occur more often near promoter regions, as shown
  3485. in Figure
  3486. \begin_inset CommandInset ref
  3487. LatexCommand ref
  3488. reference "fig:near-promoter-peak-enrich"
  3489. plural "false"
  3490. caps "false"
  3491. noprefix "false"
  3492. \end_inset
  3493. .
  3494. The majority of each density distribution is flat, representing the background
  3495. density of peaks genome-wide.
  3496. Each distribution has a peak near zero, representing an enrichment of peaks
  3497. close transcription start site (TSS) positions relative to the remainder
  3498. of the genome.
  3499. Interestingly, the
  3500. \begin_inset Quotes eld
  3501. \end_inset
  3502. radius
  3503. \begin_inset Quotes erd
  3504. \end_inset
  3505. within which this enrichment occurs is not the same for every histone mark
  3506. (Table
  3507. \begin_inset CommandInset ref
  3508. LatexCommand ref
  3509. reference "tab:effective-promoter-radius"
  3510. plural "false"
  3511. caps "false"
  3512. noprefix "false"
  3513. \end_inset
  3514. ).
  3515. For H3K4me2 and H3K4me3, peaks are most enriched within 1
  3516. \begin_inset space ~
  3517. \end_inset
  3518. kbp of TSS positions, while for H3K27me3, enrichment is broader, extending
  3519. to 2.5
  3520. \begin_inset space ~
  3521. \end_inset
  3522. kbp.
  3523. These
  3524. \begin_inset Quotes eld
  3525. \end_inset
  3526. effective promoter radii
  3527. \begin_inset Quotes erd
  3528. \end_inset
  3529. remain approximately the same across all combinations of experimental condition
  3530. (cell type, time point, and donor), so they appear to be a property of
  3531. the histone mark itself.
  3532. Hence, these radii were used to define the promoter regions for each histone
  3533. mark in all further analyses.
  3534. \end_layout
  3535. \begin_layout Standard
  3536. \begin_inset Flex TODO Note (inline)
  3537. status open
  3538. \begin_layout Plain Layout
  3539. Consider also showing figure for distance to nearest peak center, and reference
  3540. median peak size once that is known.
  3541. \end_layout
  3542. \end_inset
  3543. \end_layout
  3544. \begin_layout Subsection
  3545. H3K4 and H3K27 promoter methylation has broadly the expected correlation
  3546. with gene expression
  3547. \end_layout
  3548. \begin_layout Standard
  3549. \begin_inset Float figure
  3550. wide false
  3551. sideways false
  3552. status collapsed
  3553. \begin_layout Plain Layout
  3554. \begin_inset Flex TODO Note (inline)
  3555. status open
  3556. \begin_layout Plain Layout
  3557. This figure is generated from the old analysis.
  3558. Either note that in some way or re-generate it from the new peak calls.
  3559. \end_layout
  3560. \end_inset
  3561. \end_layout
  3562. \begin_layout Plain Layout
  3563. \align center
  3564. \begin_inset Graphics
  3565. filename graphics/CD4-csaw/FPKM by Peak Violin Plots-CROP.pdf
  3566. lyxscale 50
  3567. width 100col%
  3568. \end_inset
  3569. \end_layout
  3570. \begin_layout Plain Layout
  3571. \begin_inset Caption Standard
  3572. \begin_layout Plain Layout
  3573. \series bold
  3574. \begin_inset CommandInset label
  3575. LatexCommand label
  3576. name "fig:fpkm-by-peak"
  3577. \end_inset
  3578. Expression distributions of genes with and without promoter peaks.
  3579. \end_layout
  3580. \end_inset
  3581. \end_layout
  3582. \end_inset
  3583. \end_layout
  3584. \begin_layout Standard
  3585. H3K4me2 and H3K4me2 have previously been reported as activating marks whose
  3586. presence in a gene's promoter is associated with higher gene expression,
  3587. while H3K27me3 has been reported as inactivating [CITE].
  3588. The data are consistent with this characterization: genes whose promoters
  3589. (as defined by the radii for each histone mark listed in
  3590. \begin_inset CommandInset ref
  3591. LatexCommand ref
  3592. reference "tab:effective-promoter-radius"
  3593. plural "false"
  3594. caps "false"
  3595. noprefix "false"
  3596. \end_inset
  3597. ) overlap with a H3K4me2 or H3K4me3 peak tend to have higher expression
  3598. than those that don't, while H3K27me3 is likewise associated with lower
  3599. gene expression, as shown in
  3600. \begin_inset CommandInset ref
  3601. LatexCommand ref
  3602. reference "fig:fpkm-by-peak"
  3603. plural "false"
  3604. caps "false"
  3605. noprefix "false"
  3606. \end_inset
  3607. .
  3608. This pattern holds across all combinations of cell type and time point
  3609. (Welch's
  3610. \emph on
  3611. t
  3612. \emph default
  3613. -test, all
  3614. \begin_inset Formula $p\mathrm{-values}\ll2.2\times10^{-16}$
  3615. \end_inset
  3616. ).
  3617. The difference in average log FPKM values when a peak overlaps the promoter
  3618. is about
  3619. \begin_inset Formula $+5.67$
  3620. \end_inset
  3621. for H3K4me2,
  3622. \begin_inset Formula $+5.76$
  3623. \end_inset
  3624. for H3K4me2, and
  3625. \begin_inset Formula $-4.00$
  3626. \end_inset
  3627. for H3K27me3.
  3628. \end_layout
  3629. \begin_layout Standard
  3630. \begin_inset Flex TODO Note (inline)
  3631. status open
  3632. \begin_layout Plain Layout
  3633. I also have some figures looking at interactions between marks (e.g.
  3634. what if a promoter has both H3K4me3 and H3K27me3), but I don't know if
  3635. that much detail is warranted here, since all the effects just seem approximate
  3636. ly additive anyway.
  3637. \end_layout
  3638. \end_inset
  3639. \end_layout
  3640. \begin_layout Subsection
  3641. Gene expression and promoter histone methylation patterns in naive and memory
  3642. show convergence at day 14
  3643. \end_layout
  3644. \begin_layout Standard
  3645. \begin_inset ERT
  3646. status open
  3647. \begin_layout Plain Layout
  3648. \backslash
  3649. afterpage{
  3650. \end_layout
  3651. \begin_layout Plain Layout
  3652. \backslash
  3653. begin{landscape}
  3654. \end_layout
  3655. \end_inset
  3656. \end_layout
  3657. \begin_layout Standard
  3658. \begin_inset Float table
  3659. wide false
  3660. sideways false
  3661. status open
  3662. \begin_layout Plain Layout
  3663. \align center
  3664. \begin_inset Tabular
  3665. <lyxtabular version="3" rows="6" columns="7">
  3666. <features tabularvalignment="middle">
  3667. <column alignment="center" valignment="top">
  3668. <column alignment="center" valignment="top">
  3669. <column alignment="center" valignment="top">
  3670. <column alignment="center" valignment="top">
  3671. <column alignment="center" valignment="top">
  3672. <column alignment="center" valignment="top">
  3673. <column alignment="center" valignment="top">
  3674. <row>
  3675. <cell alignment="center" valignment="top" usebox="none">
  3676. \begin_inset Text
  3677. \begin_layout Plain Layout
  3678. \end_layout
  3679. \end_inset
  3680. </cell>
  3681. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3682. \begin_inset Text
  3683. \begin_layout Plain Layout
  3684. Number of significant promoters
  3685. \end_layout
  3686. \end_inset
  3687. </cell>
  3688. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3689. \begin_inset Text
  3690. \begin_layout Plain Layout
  3691. \end_layout
  3692. \end_inset
  3693. </cell>
  3694. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3695. \begin_inset Text
  3696. \begin_layout Plain Layout
  3697. \end_layout
  3698. \end_inset
  3699. </cell>
  3700. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3701. \begin_inset Text
  3702. \begin_layout Plain Layout
  3703. Est.
  3704. differentially modified promoters
  3705. \end_layout
  3706. \end_inset
  3707. </cell>
  3708. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3709. \begin_inset Text
  3710. \begin_layout Plain Layout
  3711. \end_layout
  3712. \end_inset
  3713. </cell>
  3714. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3715. \begin_inset Text
  3716. \begin_layout Plain Layout
  3717. \end_layout
  3718. \end_inset
  3719. </cell>
  3720. </row>
  3721. <row>
  3722. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3723. \begin_inset Text
  3724. \begin_layout Plain Layout
  3725. Time Point
  3726. \end_layout
  3727. \end_inset
  3728. </cell>
  3729. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3730. \begin_inset Text
  3731. \begin_layout Plain Layout
  3732. H3K4me2
  3733. \end_layout
  3734. \end_inset
  3735. </cell>
  3736. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3737. \begin_inset Text
  3738. \begin_layout Plain Layout
  3739. H3K4me3
  3740. \end_layout
  3741. \end_inset
  3742. </cell>
  3743. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3744. \begin_inset Text
  3745. \begin_layout Plain Layout
  3746. H3K27me3
  3747. \end_layout
  3748. \end_inset
  3749. </cell>
  3750. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3751. \begin_inset Text
  3752. \begin_layout Plain Layout
  3753. H3K4me2
  3754. \end_layout
  3755. \end_inset
  3756. </cell>
  3757. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3758. \begin_inset Text
  3759. \begin_layout Plain Layout
  3760. H3K4me3
  3761. \end_layout
  3762. \end_inset
  3763. </cell>
  3764. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3765. \begin_inset Text
  3766. \begin_layout Plain Layout
  3767. H3K27me3
  3768. \end_layout
  3769. \end_inset
  3770. </cell>
  3771. </row>
  3772. <row>
  3773. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3774. \begin_inset Text
  3775. \begin_layout Plain Layout
  3776. Day 0
  3777. \end_layout
  3778. \end_inset
  3779. </cell>
  3780. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3781. \begin_inset Text
  3782. \begin_layout Plain Layout
  3783. 4553
  3784. \end_layout
  3785. \end_inset
  3786. </cell>
  3787. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3788. \begin_inset Text
  3789. \begin_layout Plain Layout
  3790. 927
  3791. \end_layout
  3792. \end_inset
  3793. </cell>
  3794. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3795. \begin_inset Text
  3796. \begin_layout Plain Layout
  3797. 6
  3798. \end_layout
  3799. \end_inset
  3800. </cell>
  3801. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3802. \begin_inset Text
  3803. \begin_layout Plain Layout
  3804. 9967
  3805. \end_layout
  3806. \end_inset
  3807. </cell>
  3808. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3809. \begin_inset Text
  3810. \begin_layout Plain Layout
  3811. 4149
  3812. \end_layout
  3813. \end_inset
  3814. </cell>
  3815. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3816. \begin_inset Text
  3817. \begin_layout Plain Layout
  3818. 2404
  3819. \end_layout
  3820. \end_inset
  3821. </cell>
  3822. </row>
  3823. <row>
  3824. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3825. \begin_inset Text
  3826. \begin_layout Plain Layout
  3827. Day 1
  3828. \end_layout
  3829. \end_inset
  3830. </cell>
  3831. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3832. \begin_inset Text
  3833. \begin_layout Plain Layout
  3834. 567
  3835. \end_layout
  3836. \end_inset
  3837. </cell>
  3838. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3839. \begin_inset Text
  3840. \begin_layout Plain Layout
  3841. 278
  3842. \end_layout
  3843. \end_inset
  3844. </cell>
  3845. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3846. \begin_inset Text
  3847. \begin_layout Plain Layout
  3848. 1570
  3849. \end_layout
  3850. \end_inset
  3851. </cell>
  3852. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3853. \begin_inset Text
  3854. \begin_layout Plain Layout
  3855. 4370
  3856. \end_layout
  3857. \end_inset
  3858. </cell>
  3859. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3860. \begin_inset Text
  3861. \begin_layout Plain Layout
  3862. 2145
  3863. \end_layout
  3864. \end_inset
  3865. </cell>
  3866. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3867. \begin_inset Text
  3868. \begin_layout Plain Layout
  3869. 6598
  3870. \end_layout
  3871. \end_inset
  3872. </cell>
  3873. </row>
  3874. <row>
  3875. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3876. \begin_inset Text
  3877. \begin_layout Plain Layout
  3878. Day 5
  3879. \end_layout
  3880. \end_inset
  3881. </cell>
  3882. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3883. \begin_inset Text
  3884. \begin_layout Plain Layout
  3885. 2313
  3886. \end_layout
  3887. \end_inset
  3888. </cell>
  3889. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3890. \begin_inset Text
  3891. \begin_layout Plain Layout
  3892. 139
  3893. \end_layout
  3894. \end_inset
  3895. </cell>
  3896. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3897. \begin_inset Text
  3898. \begin_layout Plain Layout
  3899. 490
  3900. \end_layout
  3901. \end_inset
  3902. </cell>
  3903. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3904. \begin_inset Text
  3905. \begin_layout Plain Layout
  3906. 9450
  3907. \end_layout
  3908. \end_inset
  3909. </cell>
  3910. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3911. \begin_inset Text
  3912. \begin_layout Plain Layout
  3913. 1148
  3914. \end_layout
  3915. \end_inset
  3916. </cell>
  3917. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3918. \begin_inset Text
  3919. \begin_layout Plain Layout
  3920. 4141
  3921. \end_layout
  3922. \end_inset
  3923. </cell>
  3924. </row>
  3925. <row>
  3926. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3927. \begin_inset Text
  3928. \begin_layout Plain Layout
  3929. Day 14
  3930. \end_layout
  3931. \end_inset
  3932. </cell>
  3933. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3934. \begin_inset Text
  3935. \begin_layout Plain Layout
  3936. 0
  3937. \end_layout
  3938. \end_inset
  3939. </cell>
  3940. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3941. \begin_inset Text
  3942. \begin_layout Plain Layout
  3943. 0
  3944. \end_layout
  3945. \end_inset
  3946. </cell>
  3947. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3948. \begin_inset Text
  3949. \begin_layout Plain Layout
  3950. 0
  3951. \end_layout
  3952. \end_inset
  3953. </cell>
  3954. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3955. \begin_inset Text
  3956. \begin_layout Plain Layout
  3957. 0
  3958. \end_layout
  3959. \end_inset
  3960. </cell>
  3961. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3962. \begin_inset Text
  3963. \begin_layout Plain Layout
  3964. 0
  3965. \end_layout
  3966. \end_inset
  3967. </cell>
  3968. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3969. \begin_inset Text
  3970. \begin_layout Plain Layout
  3971. 0
  3972. \end_layout
  3973. \end_inset
  3974. </cell>
  3975. </row>
  3976. </lyxtabular>
  3977. \end_inset
  3978. \end_layout
  3979. \begin_layout Plain Layout
  3980. \begin_inset Caption Standard
  3981. \begin_layout Plain Layout
  3982. \series bold
  3983. \begin_inset CommandInset label
  3984. LatexCommand label
  3985. name "tab:Number-signif-promoters"
  3986. \end_inset
  3987. Number of differentially modified promoters between naive and memory cells
  3988. at each time point after activation.
  3989. \series default
  3990. This table shows both the number of differentially modified promoters detected
  3991. at a 10% FDR threshold (left half), and the total number of differentially
  3992. modified promoters as estimated using the method of
  3993. \begin_inset CommandInset citation
  3994. LatexCommand cite
  3995. key "Phipson2013"
  3996. literal "false"
  3997. \end_inset
  3998. (right half).
  3999. \end_layout
  4000. \end_inset
  4001. \end_layout
  4002. \end_inset
  4003. \end_layout
  4004. \begin_layout Standard
  4005. \begin_inset ERT
  4006. status open
  4007. \begin_layout Plain Layout
  4008. \backslash
  4009. end{landscape}
  4010. \end_layout
  4011. \begin_layout Plain Layout
  4012. }
  4013. \end_layout
  4014. \end_inset
  4015. \end_layout
  4016. \begin_layout Standard
  4017. \begin_inset Float figure
  4018. placement p
  4019. wide false
  4020. sideways false
  4021. status open
  4022. \begin_layout Plain Layout
  4023. \align center
  4024. \begin_inset Float figure
  4025. wide false
  4026. sideways false
  4027. status open
  4028. \begin_layout Plain Layout
  4029. \align center
  4030. \begin_inset Graphics
  4031. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-promoter-PCA-group-CROP.png
  4032. lyxscale 25
  4033. width 45col%
  4034. groupId pcoa-prom-subfig
  4035. \end_inset
  4036. \end_layout
  4037. \begin_layout Plain Layout
  4038. \begin_inset Caption Standard
  4039. \begin_layout Plain Layout
  4040. \series bold
  4041. \begin_inset CommandInset label
  4042. LatexCommand label
  4043. name "fig:PCoA-H3K4me2-prom"
  4044. \end_inset
  4045. PCoA plot of H3K4me2 promoters, after subtracting surrogate variables
  4046. \end_layout
  4047. \end_inset
  4048. \end_layout
  4049. \end_inset
  4050. \begin_inset space \hfill{}
  4051. \end_inset
  4052. \begin_inset Float figure
  4053. wide false
  4054. sideways false
  4055. status open
  4056. \begin_layout Plain Layout
  4057. \align center
  4058. \begin_inset Graphics
  4059. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-promoter-PCA-group-CROP.png
  4060. lyxscale 25
  4061. width 45col%
  4062. groupId pcoa-prom-subfig
  4063. \end_inset
  4064. \end_layout
  4065. \begin_layout Plain Layout
  4066. \begin_inset Caption Standard
  4067. \begin_layout Plain Layout
  4068. \series bold
  4069. \begin_inset CommandInset label
  4070. LatexCommand label
  4071. name "fig:PCoA-H3K4me3-prom"
  4072. \end_inset
  4073. PCoA plot of H3K4me3 promoters, after subtracting surrogate variables
  4074. \end_layout
  4075. \end_inset
  4076. \end_layout
  4077. \end_inset
  4078. \end_layout
  4079. \begin_layout Plain Layout
  4080. \align center
  4081. \begin_inset Float figure
  4082. wide false
  4083. sideways false
  4084. status collapsed
  4085. \begin_layout Plain Layout
  4086. \align center
  4087. \begin_inset Graphics
  4088. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-promoter-PCA-group-CROP.png
  4089. lyxscale 25
  4090. width 45col%
  4091. groupId pcoa-prom-subfig
  4092. \end_inset
  4093. \end_layout
  4094. \begin_layout Plain Layout
  4095. \begin_inset Caption Standard
  4096. \begin_layout Plain Layout
  4097. \series bold
  4098. \begin_inset CommandInset label
  4099. LatexCommand label
  4100. name "fig:PCoA-H3K27me3-prom"
  4101. \end_inset
  4102. PCoA plot of H3K27me3 promoters, after subtracting surrogate variables
  4103. \end_layout
  4104. \end_inset
  4105. \end_layout
  4106. \end_inset
  4107. \begin_inset space \hfill{}
  4108. \end_inset
  4109. \begin_inset Float figure
  4110. wide false
  4111. sideways false
  4112. status open
  4113. \begin_layout Plain Layout
  4114. \align center
  4115. \begin_inset Graphics
  4116. filename graphics/CD4-csaw/RNA-seq/PCA-final-23-CROP.png
  4117. lyxscale 25
  4118. width 45col%
  4119. groupId pcoa-prom-subfig
  4120. \end_inset
  4121. \end_layout
  4122. \begin_layout Plain Layout
  4123. \begin_inset Caption Standard
  4124. \begin_layout Plain Layout
  4125. \series bold
  4126. \begin_inset CommandInset label
  4127. LatexCommand label
  4128. name "fig:RNA-PCA-group"
  4129. \end_inset
  4130. RNA-seq PCoA showing principal coordinates 2 and 3.
  4131. \end_layout
  4132. \end_inset
  4133. \end_layout
  4134. \end_inset
  4135. \end_layout
  4136. \begin_layout Plain Layout
  4137. \begin_inset Caption Standard
  4138. \begin_layout Plain Layout
  4139. \series bold
  4140. \begin_inset CommandInset label
  4141. LatexCommand label
  4142. name "fig:PCoA-promoters"
  4143. \end_inset
  4144. PCoA plots for promoter ChIP-seq and expression RNA-seq data
  4145. \end_layout
  4146. \end_inset
  4147. \end_layout
  4148. \end_inset
  4149. \end_layout
  4150. \begin_layout Standard
  4151. \begin_inset Flex TODO Note (inline)
  4152. status open
  4153. \begin_layout Plain Layout
  4154. Check up on figure refs in this paragraph
  4155. \end_layout
  4156. \end_inset
  4157. \end_layout
  4158. \begin_layout Standard
  4159. We hypothesized that if naive cells had differentiated into memory cells
  4160. by Day 14, then their patterns of expression and histone modification should
  4161. converge with those of memory cells at Day 14.
  4162. Figure
  4163. \begin_inset CommandInset ref
  4164. LatexCommand ref
  4165. reference "fig:PCoA-promoters"
  4166. plural "false"
  4167. caps "false"
  4168. noprefix "false"
  4169. \end_inset
  4170. shows the patterns of variation in all 3 histone marks in the promoter
  4171. regions of the genome using principal coordinate analysis.
  4172. All 3 marks show a noticeable convergence between the naive and memory
  4173. samples at day 14, visible as an overlapping of the day 14 groups on each
  4174. plot.
  4175. This is consistent with the counts of significantly differentially modified
  4176. promoters and estimates of the total numbers of differentially modified
  4177. promoters shown in Table
  4178. \begin_inset CommandInset ref
  4179. LatexCommand ref
  4180. reference "tab:Number-signif-promoters"
  4181. plural "false"
  4182. caps "false"
  4183. noprefix "false"
  4184. \end_inset
  4185. .
  4186. For all histone marks, evidence of differential modification between naive
  4187. and memory samples was detected at every time point except day 14.
  4188. The day 14 convergence pattern is also present in the RNA-seq data (Figure
  4189. \begin_inset CommandInset ref
  4190. LatexCommand ref
  4191. reference "fig:RNA-PCA-group"
  4192. plural "false"
  4193. caps "false"
  4194. noprefix "false"
  4195. \end_inset
  4196. ), albeit in the 2nd and 3rd principal coordinates, indicating that it is
  4197. not the most dominant pattern driving gene expression.
  4198. Taken together, the data show that promoter histone methylation for these
  4199. 3 histone marks and RNA expression for naive and memory cells are most
  4200. similar at day 14, the furthest time point after activation.
  4201. MOFA was also able to capture this day 14 convergence pattern in latent
  4202. factor 5 (Figure
  4203. \begin_inset CommandInset ref
  4204. LatexCommand ref
  4205. reference "fig:mofa-lf-scatter"
  4206. plural "false"
  4207. caps "false"
  4208. noprefix "false"
  4209. \end_inset
  4210. ), which accounts for shared variation across all 3 histone marks and the
  4211. RNA-seq data, confirming that this convergence is a coordinated pattern
  4212. across all 4 data sets.
  4213. While this observation does not prove that the naive cells have differentiated
  4214. into memory cells at Day 14, it is consistent with that hypothesis.
  4215. \end_layout
  4216. \begin_layout Subsection
  4217. Effect of H3K4me2 and H3K4me3 promoter coverage upstream vs downstream of
  4218. TSS
  4219. \end_layout
  4220. \begin_layout Standard
  4221. \begin_inset Flex TODO Note (inline)
  4222. status open
  4223. \begin_layout Plain Layout
  4224. Need a better section title, for this and the next one.
  4225. \end_layout
  4226. \end_inset
  4227. \end_layout
  4228. \begin_layout Standard
  4229. \begin_inset Flex TODO Note (inline)
  4230. status open
  4231. \begin_layout Plain Layout
  4232. Make sure use of coverage/abundance/whatever is consistent.
  4233. \end_layout
  4234. \end_inset
  4235. \end_layout
  4236. \begin_layout Standard
  4237. \begin_inset Flex TODO Note (inline)
  4238. status open
  4239. \begin_layout Plain Layout
  4240. For the figures in this section and the next, the group labels are arbitrary,
  4241. so if time allows, it would be good to manually reorder them in a logical
  4242. way, e.g.
  4243. most upstream to most downstream.
  4244. If this is done, make sure to update the text with the correct group labels.
  4245. \end_layout
  4246. \end_inset
  4247. \end_layout
  4248. \begin_layout Standard
  4249. \begin_inset ERT
  4250. status open
  4251. \begin_layout Plain Layout
  4252. \backslash
  4253. afterpage{
  4254. \end_layout
  4255. \begin_layout Plain Layout
  4256. \backslash
  4257. begin{landscape}
  4258. \end_layout
  4259. \end_inset
  4260. \end_layout
  4261. \begin_layout Standard
  4262. \begin_inset Float figure
  4263. wide false
  4264. sideways false
  4265. status open
  4266. \begin_layout Plain Layout
  4267. \align center
  4268. \begin_inset Float figure
  4269. wide false
  4270. sideways false
  4271. status open
  4272. \begin_layout Plain Layout
  4273. \align center
  4274. \begin_inset Graphics
  4275. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-neighborhood-clusters-CROP.png
  4276. lyxscale 25
  4277. width 30col%
  4278. groupId covprof-subfig
  4279. \end_inset
  4280. \end_layout
  4281. \begin_layout Plain Layout
  4282. \begin_inset Caption Standard
  4283. \begin_layout Plain Layout
  4284. \series bold
  4285. \begin_inset CommandInset label
  4286. LatexCommand label
  4287. name "fig:H3K4me2-neighborhood-clusters"
  4288. \end_inset
  4289. Average relative coverage for each bin in each cluster
  4290. \end_layout
  4291. \end_inset
  4292. \end_layout
  4293. \end_inset
  4294. \begin_inset space \hfill{}
  4295. \end_inset
  4296. \begin_inset Float figure
  4297. wide false
  4298. sideways false
  4299. status open
  4300. \begin_layout Plain Layout
  4301. \align center
  4302. \begin_inset Graphics
  4303. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-neighborhood-PCA-CROP.png
  4304. lyxscale 25
  4305. width 30col%
  4306. groupId covprof-subfig
  4307. \end_inset
  4308. \end_layout
  4309. \begin_layout Plain Layout
  4310. \begin_inset Caption Standard
  4311. \begin_layout Plain Layout
  4312. \series bold
  4313. \begin_inset CommandInset label
  4314. LatexCommand label
  4315. name "fig:H3K4me2-neighborhood-pca"
  4316. \end_inset
  4317. PCA of relative coverage depth, colored by K-means cluster membership.
  4318. \end_layout
  4319. \end_inset
  4320. \end_layout
  4321. \end_inset
  4322. \begin_inset space \hfill{}
  4323. \end_inset
  4324. \begin_inset Float figure
  4325. wide false
  4326. sideways false
  4327. status open
  4328. \begin_layout Plain Layout
  4329. \align center
  4330. \begin_inset Graphics
  4331. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-neighborhood-expression-CROP.png
  4332. lyxscale 25
  4333. width 30col%
  4334. groupId covprof-subfig
  4335. \end_inset
  4336. \end_layout
  4337. \begin_layout Plain Layout
  4338. \begin_inset Caption Standard
  4339. \begin_layout Plain Layout
  4340. \series bold
  4341. \begin_inset CommandInset label
  4342. LatexCommand label
  4343. name "fig:H3K4me2-neighborhood-expression"
  4344. \end_inset
  4345. Gene expression grouped by promoter coverage clusters.
  4346. \end_layout
  4347. \end_inset
  4348. \end_layout
  4349. \end_inset
  4350. \end_layout
  4351. \begin_layout Plain Layout
  4352. \begin_inset Caption Standard
  4353. \begin_layout Plain Layout
  4354. \series bold
  4355. \begin_inset CommandInset label
  4356. LatexCommand label
  4357. name "fig:H3K4me2-neighborhood"
  4358. \end_inset
  4359. K-means clustering of promoter H3K4me2 relative coverage depth in naive
  4360. day 0 samples.
  4361. \series default
  4362. H3K4me2 ChIP-seq reads were binned into 500-bp windows tiled across each
  4363. promoter from 5
  4364. \begin_inset space ~
  4365. \end_inset
  4366. kbp upstream to 5
  4367. \begin_inset space ~
  4368. \end_inset
  4369. kbp downstream, and the logCPM values were normalized within each promoter
  4370. to an average of 0, yielding relative coverage depths.
  4371. These were then grouped using K-means clustering with
  4372. \begin_inset Formula $K=6$
  4373. \end_inset
  4374. ,
  4375. \series bold
  4376. \series default
  4377. and the average bin values were plotted for each cluster (a).
  4378. The
  4379. \begin_inset Formula $x$
  4380. \end_inset
  4381. -axis is the genomic coordinate of each bin relative to the the transcription
  4382. start site, and the
  4383. \begin_inset Formula $y$
  4384. \end_inset
  4385. -axis is the mean relative coverage depth of that bin across all promoters
  4386. in the cluster.
  4387. Each line represents the average
  4388. \begin_inset Quotes eld
  4389. \end_inset
  4390. shape
  4391. \begin_inset Quotes erd
  4392. \end_inset
  4393. of the promoter coverage for promoters in that cluster.
  4394. PCA was performed on the same data, and the first two principal components
  4395. were plotted, coloring each point by its K-means cluster identity (b).
  4396. For each cluster, the distribution of gene expression values was plotted
  4397. (c).
  4398. \end_layout
  4399. \end_inset
  4400. \end_layout
  4401. \end_inset
  4402. \end_layout
  4403. \begin_layout Standard
  4404. \begin_inset ERT
  4405. status open
  4406. \begin_layout Plain Layout
  4407. \backslash
  4408. end{landscape}
  4409. \end_layout
  4410. \begin_layout Plain Layout
  4411. }
  4412. \end_layout
  4413. \end_inset
  4414. \end_layout
  4415. \begin_layout Standard
  4416. To test whether the position of a histone mark relative to a gene's transcriptio
  4417. n start site (TSS) was important, we looked at the
  4418. \begin_inset Quotes eld
  4419. \end_inset
  4420. landscape
  4421. \begin_inset Quotes erd
  4422. \end_inset
  4423. of ChIP-seq read coverage in naive Day 0 samples within 5 kb of each gene's
  4424. TSS by binning reads into 500-bp windows tiled across each promoter LogCPM
  4425. values were calculated for the bins in each promoter and then the average
  4426. logCPM for each promoter's bins was normalized to zero, such that the values
  4427. represent coverage relative to other regions of the same promoter rather
  4428. than being proportional to absolute read count.
  4429. The promoters were then clustered based on the normalized bin abundances
  4430. using
  4431. \begin_inset Formula $k$
  4432. \end_inset
  4433. -means clustering with
  4434. \begin_inset Formula $K=6$
  4435. \end_inset
  4436. .
  4437. Different values of
  4438. \begin_inset Formula $K$
  4439. \end_inset
  4440. were also tested, but did not substantially change the interpretation of
  4441. the data.
  4442. \end_layout
  4443. \begin_layout Standard
  4444. For H3K4me2, plotting the average bin abundances for each cluster reveals
  4445. a simple pattern (Figure
  4446. \begin_inset CommandInset ref
  4447. LatexCommand ref
  4448. reference "fig:H3K4me2-neighborhood-clusters"
  4449. plural "false"
  4450. caps "false"
  4451. noprefix "false"
  4452. \end_inset
  4453. ): Cluster 5 represents a completely flat promoter coverage profile, likely
  4454. consisting of genes with no H3K4me2 methylation in the promoter.
  4455. All the other clusters represent a continuum of peak positions relative
  4456. to the TSS.
  4457. In order from must upstream to most downstream, they are Clusters 6, 4,
  4458. 3, 1, and 2.
  4459. There do not appear to be any clusters representing coverage patterns other
  4460. than lone peaks, such as coverage troughs or double peaks.
  4461. Next, all promoters were plotted in a PCA plot based on the same relative
  4462. bin abundance data, and colored based on cluster membership (Figure
  4463. \begin_inset CommandInset ref
  4464. LatexCommand ref
  4465. reference "fig:H3K4me2-neighborhood-pca"
  4466. plural "false"
  4467. caps "false"
  4468. noprefix "false"
  4469. \end_inset
  4470. ).
  4471. The PCA plot shows Cluster 5 (the
  4472. \begin_inset Quotes eld
  4473. \end_inset
  4474. no peak
  4475. \begin_inset Quotes erd
  4476. \end_inset
  4477. cluster) at the center, with the other clusters arranged in a counter-clockwise
  4478. arc around it in the order noted above, from most upstream peak to most
  4479. downstream.
  4480. Notably, the
  4481. \begin_inset Quotes eld
  4482. \end_inset
  4483. clusters
  4484. \begin_inset Quotes erd
  4485. \end_inset
  4486. form a single large
  4487. \begin_inset Quotes eld
  4488. \end_inset
  4489. cloud
  4490. \begin_inset Quotes erd
  4491. \end_inset
  4492. with no apparent separation between them, further supporting the conclusion
  4493. that these clusters represent an arbitrary partitioning of a continuous
  4494. distribution of promoter coverage landscapes.
  4495. While the clusters are a useful abstraction that aids in visualization,
  4496. they are ultimately not an accurate representation of the data.
  4497. A better representation might be something like a polar coordinate system
  4498. with the origin at the center of Cluster 5, where the radius represents
  4499. the peak height above the background and the angle represents the peak's
  4500. position upstream or downstream of the TSS.
  4501. The continuous nature of the distribution also explains why different values
  4502. of
  4503. \begin_inset Formula $K$
  4504. \end_inset
  4505. led to similar conclusions.
  4506. \end_layout
  4507. \begin_layout Standard
  4508. \begin_inset Flex TODO Note (inline)
  4509. status open
  4510. \begin_layout Plain Layout
  4511. RNA-seq values in the plots use logCPM but should really use logFPKM or
  4512. logTPM.
  4513. Fix if time allows.
  4514. \end_layout
  4515. \end_inset
  4516. \end_layout
  4517. \begin_layout Standard
  4518. \begin_inset Flex TODO Note (inline)
  4519. status open
  4520. \begin_layout Plain Layout
  4521. Should have a table of p-values on difference of means between Cluster 5
  4522. and the others.
  4523. \end_layout
  4524. \end_inset
  4525. \end_layout
  4526. \begin_layout Standard
  4527. To investigate the association between relative peak position and gene expressio
  4528. n, we plotted the Naive Day 0 expression for the genes in each cluster (Figure
  4529. \begin_inset CommandInset ref
  4530. LatexCommand ref
  4531. reference "fig:H3K4me2-neighborhood-expression"
  4532. plural "false"
  4533. caps "false"
  4534. noprefix "false"
  4535. \end_inset
  4536. ).
  4537. Most genes in Cluster 5, the
  4538. \begin_inset Quotes eld
  4539. \end_inset
  4540. no peak
  4541. \begin_inset Quotes erd
  4542. \end_inset
  4543. cluster, have low expression values.
  4544. Taking this as the
  4545. \begin_inset Quotes eld
  4546. \end_inset
  4547. baseline
  4548. \begin_inset Quotes erd
  4549. \end_inset
  4550. distribution when no H3K4me2 methylation is present, we can compare the
  4551. other clusters' distributions to determine which peak positions are associated
  4552. with elevated expression.
  4553. As might be expected, the 3 clusters representing peaks closest to the
  4554. TSS, Clusters 1, 3, and 4, show the highest average expression distributions.
  4555. Specifically, these clusters all have their highest ChIP-seq abundance
  4556. within 1kb of the TSS, consistent with the previously determined promoter
  4557. radius.
  4558. In contrast, cluster 6, which represents peaks several kb upstream of the
  4559. TSS, shows a slightly higher average expression than baseline, while Cluster
  4560. 2, which represents peaks several kb downstream, doesn't appear to show
  4561. any appreciable difference.
  4562. Interestingly, the cluster with the highest average expression is Cluster
  4563. 1, which represents peaks about 1 kb downstream of the TSS, rather than
  4564. Cluster 3, which represents peaks centered directly at the TSS.
  4565. This suggests that conceptualizing the promoter as a region centered on
  4566. the TSS with a certain
  4567. \begin_inset Quotes eld
  4568. \end_inset
  4569. radius
  4570. \begin_inset Quotes erd
  4571. \end_inset
  4572. may be an oversimplification – a peak that is a specific distance from
  4573. the TSS may have a different degree of influence depending on whether it
  4574. is upstream or downstream of the TSS.
  4575. \end_layout
  4576. \begin_layout Standard
  4577. \begin_inset ERT
  4578. status open
  4579. \begin_layout Plain Layout
  4580. \backslash
  4581. afterpage{
  4582. \end_layout
  4583. \begin_layout Plain Layout
  4584. \backslash
  4585. begin{landscape}
  4586. \end_layout
  4587. \end_inset
  4588. \end_layout
  4589. \begin_layout Standard
  4590. \begin_inset Float figure
  4591. wide false
  4592. sideways false
  4593. status open
  4594. \begin_layout Plain Layout
  4595. \align center
  4596. \begin_inset Float figure
  4597. wide false
  4598. sideways false
  4599. status open
  4600. \begin_layout Plain Layout
  4601. \align center
  4602. \begin_inset Graphics
  4603. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-neighborhood-clusters-CROP.png
  4604. lyxscale 25
  4605. width 30col%
  4606. groupId covprof-subfig
  4607. \end_inset
  4608. \end_layout
  4609. \begin_layout Plain Layout
  4610. \begin_inset Caption Standard
  4611. \begin_layout Plain Layout
  4612. \series bold
  4613. \begin_inset CommandInset label
  4614. LatexCommand label
  4615. name "fig:H3K4me3-neighborhood-clusters"
  4616. \end_inset
  4617. Average relative coverage for each bin in each cluster
  4618. \end_layout
  4619. \end_inset
  4620. \end_layout
  4621. \end_inset
  4622. \begin_inset space \hfill{}
  4623. \end_inset
  4624. \begin_inset Float figure
  4625. wide false
  4626. sideways false
  4627. status open
  4628. \begin_layout Plain Layout
  4629. \align center
  4630. \begin_inset Graphics
  4631. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-neighborhood-PCA-CROP.png
  4632. lyxscale 25
  4633. width 30col%
  4634. groupId covprof-subfig
  4635. \end_inset
  4636. \end_layout
  4637. \begin_layout Plain Layout
  4638. \begin_inset Caption Standard
  4639. \begin_layout Plain Layout
  4640. \series bold
  4641. \begin_inset CommandInset label
  4642. LatexCommand label
  4643. name "fig:H3K4me3-neighborhood-pca"
  4644. \end_inset
  4645. PCA of relative coverage depth, colored by K-means cluster membership.
  4646. \end_layout
  4647. \end_inset
  4648. \end_layout
  4649. \end_inset
  4650. \begin_inset space \hfill{}
  4651. \end_inset
  4652. \begin_inset Float figure
  4653. wide false
  4654. sideways false
  4655. status open
  4656. \begin_layout Plain Layout
  4657. \align center
  4658. \begin_inset Graphics
  4659. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-neighborhood-expression-CROP.png
  4660. lyxscale 25
  4661. width 30col%
  4662. groupId covprof-subfig
  4663. \end_inset
  4664. \end_layout
  4665. \begin_layout Plain Layout
  4666. \begin_inset Caption Standard
  4667. \begin_layout Plain Layout
  4668. \series bold
  4669. \begin_inset CommandInset label
  4670. LatexCommand label
  4671. name "fig:H3K4me3-neighborhood-expression"
  4672. \end_inset
  4673. Gene expression grouped by promoter coverage clusters.
  4674. \end_layout
  4675. \end_inset
  4676. \end_layout
  4677. \end_inset
  4678. \end_layout
  4679. \begin_layout Plain Layout
  4680. \begin_inset Caption Standard
  4681. \begin_layout Plain Layout
  4682. \series bold
  4683. \begin_inset CommandInset label
  4684. LatexCommand label
  4685. name "fig:H3K4me3-neighborhood"
  4686. \end_inset
  4687. K-means clustering of promoter H3K4me3 relative coverage depth in naive
  4688. day 0 samples.
  4689. \series default
  4690. H3K4me2 ChIP-seq reads were binned into 500-bp windows tiled across each
  4691. promoter from 5
  4692. \begin_inset space ~
  4693. \end_inset
  4694. kbp upstream to 5
  4695. \begin_inset space ~
  4696. \end_inset
  4697. kbp downstream, and the logCPM values were normalized within each promoter
  4698. to an average of 0, yielding relative coverage depths.
  4699. These were then grouped using K-means clustering with
  4700. \begin_inset Formula $K=6$
  4701. \end_inset
  4702. ,
  4703. \series bold
  4704. \series default
  4705. and the average bin values were plotted for each cluster (a).
  4706. The
  4707. \begin_inset Formula $x$
  4708. \end_inset
  4709. -axis is the genomic coordinate of each bin relative to the the transcription
  4710. start site, and the
  4711. \begin_inset Formula $y$
  4712. \end_inset
  4713. -axis is the mean relative coverage depth of that bin across all promoters
  4714. in the cluster.
  4715. Each line represents the average
  4716. \begin_inset Quotes eld
  4717. \end_inset
  4718. shape
  4719. \begin_inset Quotes erd
  4720. \end_inset
  4721. of the promoter coverage for promoters in that cluster.
  4722. PCA was performed on the same data, and the first two principal components
  4723. were plotted, coloring each point by its K-means cluster identity (b).
  4724. For each cluster, the distribution of gene expression values was plotted
  4725. (c).
  4726. \end_layout
  4727. \end_inset
  4728. \end_layout
  4729. \end_inset
  4730. \end_layout
  4731. \begin_layout Standard
  4732. \begin_inset ERT
  4733. status open
  4734. \begin_layout Plain Layout
  4735. \backslash
  4736. end{landscape}
  4737. \end_layout
  4738. \begin_layout Plain Layout
  4739. }
  4740. \end_layout
  4741. \end_inset
  4742. \end_layout
  4743. \begin_layout Standard
  4744. \begin_inset Flex TODO Note (inline)
  4745. status open
  4746. \begin_layout Plain Layout
  4747. Is there more to say here?
  4748. \end_layout
  4749. \end_inset
  4750. \end_layout
  4751. \begin_layout Standard
  4752. All observations described above for H3K4me2 ChIP-seq also appear to hold
  4753. for H3K4me3 as well (Figure
  4754. \begin_inset CommandInset ref
  4755. LatexCommand ref
  4756. reference "fig:H3K4me3-neighborhood"
  4757. plural "false"
  4758. caps "false"
  4759. noprefix "false"
  4760. \end_inset
  4761. ).
  4762. This is expected, since there is a high correlation between the positions
  4763. where both histone marks occur.
  4764. \end_layout
  4765. \begin_layout Subsection
  4766. Promoter coverage H3K27me3
  4767. \end_layout
  4768. \begin_layout Standard
  4769. \begin_inset ERT
  4770. status open
  4771. \begin_layout Plain Layout
  4772. \backslash
  4773. afterpage{
  4774. \end_layout
  4775. \begin_layout Plain Layout
  4776. \backslash
  4777. begin{landscape}
  4778. \end_layout
  4779. \end_inset
  4780. \end_layout
  4781. \begin_layout Standard
  4782. \begin_inset Float figure
  4783. wide false
  4784. sideways false
  4785. status collapsed
  4786. \begin_layout Plain Layout
  4787. \align center
  4788. \begin_inset Float figure
  4789. wide false
  4790. sideways false
  4791. status open
  4792. \begin_layout Plain Layout
  4793. \align center
  4794. \begin_inset Graphics
  4795. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-neighborhood-clusters-CROP.png
  4796. lyxscale 25
  4797. width 30col%
  4798. groupId covprof-subfig
  4799. \end_inset
  4800. \end_layout
  4801. \begin_layout Plain Layout
  4802. \begin_inset Caption Standard
  4803. \begin_layout Plain Layout
  4804. \series bold
  4805. \begin_inset CommandInset label
  4806. LatexCommand label
  4807. name "fig:H3K27me3-neighborhood-clusters"
  4808. \end_inset
  4809. Average relative coverage for each bin in each cluster
  4810. \end_layout
  4811. \end_inset
  4812. \end_layout
  4813. \end_inset
  4814. \begin_inset space \hfill{}
  4815. \end_inset
  4816. \begin_inset Float figure
  4817. wide false
  4818. sideways false
  4819. status open
  4820. \begin_layout Plain Layout
  4821. \align center
  4822. \begin_inset Graphics
  4823. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-neighborhood-PCA-CROP.png
  4824. lyxscale 25
  4825. width 30col%
  4826. groupId covprof-subfig
  4827. \end_inset
  4828. \end_layout
  4829. \begin_layout Plain Layout
  4830. \begin_inset Caption Standard
  4831. \begin_layout Plain Layout
  4832. \series bold
  4833. \begin_inset CommandInset label
  4834. LatexCommand label
  4835. name "fig:H3K27me3-neighborhood-pca"
  4836. \end_inset
  4837. PCA of relative coverage depth, colored by K-means cluster membership.
  4838. \series default
  4839. Note that Cluster 6 is hidden behind all the other clusters.
  4840. \end_layout
  4841. \end_inset
  4842. \end_layout
  4843. \end_inset
  4844. \begin_inset space \hfill{}
  4845. \end_inset
  4846. \begin_inset Float figure
  4847. wide false
  4848. sideways false
  4849. status open
  4850. \begin_layout Plain Layout
  4851. \align center
  4852. \begin_inset Graphics
  4853. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-neighborhood-expression-CROP.png
  4854. lyxscale 25
  4855. width 30col%
  4856. groupId covprof-subfig
  4857. \end_inset
  4858. \end_layout
  4859. \begin_layout Plain Layout
  4860. \begin_inset Caption Standard
  4861. \begin_layout Plain Layout
  4862. \series bold
  4863. \begin_inset CommandInset label
  4864. LatexCommand label
  4865. name "fig:H3K27me3-neighborhood-expression"
  4866. \end_inset
  4867. Gene expression grouped by promoter coverage clusters.
  4868. \end_layout
  4869. \end_inset
  4870. \end_layout
  4871. \end_inset
  4872. \end_layout
  4873. \begin_layout Plain Layout
  4874. \begin_inset Flex TODO Note (inline)
  4875. status open
  4876. \begin_layout Plain Layout
  4877. Repeated figure legends are kind of an issue here.
  4878. What to do?
  4879. \end_layout
  4880. \end_inset
  4881. \end_layout
  4882. \begin_layout Plain Layout
  4883. \begin_inset Caption Standard
  4884. \begin_layout Plain Layout
  4885. \series bold
  4886. \begin_inset CommandInset label
  4887. LatexCommand label
  4888. name "fig:H3K27me3-neighborhood"
  4889. \end_inset
  4890. K-means clustering of promoter H3K27me3 relative coverage depth in naive
  4891. day 0 samples.
  4892. \series default
  4893. H3K27me3 ChIP-seq reads were binned into 500-bp windows tiled across each
  4894. promoter from 5
  4895. \begin_inset space ~
  4896. \end_inset
  4897. kbp upstream to 5
  4898. \begin_inset space ~
  4899. \end_inset
  4900. kbp downstream, and the logCPM values were normalized within each promoter
  4901. to an average of 0, yielding relative coverage depths.
  4902. These were then grouped using
  4903. \begin_inset Formula $k$
  4904. \end_inset
  4905. -means clustering with
  4906. \begin_inset Formula $K=6$
  4907. \end_inset
  4908. ,
  4909. \series bold
  4910. \series default
  4911. and the average bin values were plotted for each cluster (a).
  4912. The
  4913. \begin_inset Formula $x$
  4914. \end_inset
  4915. -axis is the genomic coordinate of each bin relative to the the transcription
  4916. start site, and the
  4917. \begin_inset Formula $y$
  4918. \end_inset
  4919. -axis is the mean relative coverage depth of that bin across all promoters
  4920. in the cluster.
  4921. Each line represents the average
  4922. \begin_inset Quotes eld
  4923. \end_inset
  4924. shape
  4925. \begin_inset Quotes erd
  4926. \end_inset
  4927. of the promoter coverage for promoters in that cluster.
  4928. PCA was performed on the same data, and the first two principal components
  4929. were plotted, coloring each point by its K-means cluster identity (b).
  4930. For each cluster, the distribution of gene expression values was plotted
  4931. (c).
  4932. \end_layout
  4933. \end_inset
  4934. \end_layout
  4935. \end_inset
  4936. \end_layout
  4937. \begin_layout Standard
  4938. \begin_inset ERT
  4939. status open
  4940. \begin_layout Plain Layout
  4941. \backslash
  4942. end{landscape}
  4943. \end_layout
  4944. \begin_layout Plain Layout
  4945. }
  4946. \end_layout
  4947. \end_inset
  4948. \end_layout
  4949. \begin_layout Standard
  4950. \begin_inset Flex TODO Note (inline)
  4951. status open
  4952. \begin_layout Plain Layout
  4953. Should maybe re-explain what was done or refer back to the previous section.
  4954. \end_layout
  4955. \end_inset
  4956. \end_layout
  4957. \begin_layout Standard
  4958. Unlike both H3K4 marks, whose main patterns of variation appear directly
  4959. related to the size and position of a single peak within the promoter,
  4960. the patterns of H3K27me3 methylation in promoters are more complex (Figure
  4961. \begin_inset CommandInset ref
  4962. LatexCommand ref
  4963. reference "fig:H3K27me3-neighborhood"
  4964. plural "false"
  4965. caps "false"
  4966. noprefix "false"
  4967. \end_inset
  4968. ).
  4969. Once again looking at the relative coverage in a 500-bp wide bins in a
  4970. 5kb radius around each TSS, promoters were clustered based on the normalized
  4971. relative coverage values in each bin using
  4972. \begin_inset Formula $k$
  4973. \end_inset
  4974. -means clustering with
  4975. \begin_inset Formula $K=6$
  4976. \end_inset
  4977. (Figure
  4978. \begin_inset CommandInset ref
  4979. LatexCommand ref
  4980. reference "fig:H3K27me3-neighborhood-clusters"
  4981. plural "false"
  4982. caps "false"
  4983. noprefix "false"
  4984. \end_inset
  4985. ).
  4986. This time, 3
  4987. \begin_inset Quotes eld
  4988. \end_inset
  4989. axes
  4990. \begin_inset Quotes erd
  4991. \end_inset
  4992. of variation can be observed, each represented by 2 clusters with opposing
  4993. patterns.
  4994. The first axis is greater upstream coverage (Cluster 1) vs.
  4995. greater downstream coverage (Cluster 3); the second axis is the coverage
  4996. at the TSS itself: peak (Cluster 4) or trough (Cluster 2); lastly, the
  4997. third axis represents a trough upstream of the TSS (Cluster 5) vs.
  4998. downstream of the TSS (Cluster 6).
  4999. Referring to these opposing pairs of clusters as axes of variation is justified
  5000. , because they correspond precisely to the first 3 principal components
  5001. in the PCA plot of the relative coverage values (Figure
  5002. \begin_inset CommandInset ref
  5003. LatexCommand ref
  5004. reference "fig:H3K27me3-neighborhood-pca"
  5005. plural "false"
  5006. caps "false"
  5007. noprefix "false"
  5008. \end_inset
  5009. ).
  5010. The PCA plot reveals that as in the case of H3K4me2, all the
  5011. \begin_inset Quotes eld
  5012. \end_inset
  5013. clusters
  5014. \begin_inset Quotes erd
  5015. \end_inset
  5016. are really just sections of a single connected cloud rather than discrete
  5017. clusters.
  5018. The cloud is approximately ellipsoid-shaped, with each PC being an axis
  5019. of the ellipse, and each cluster consisting of a pyramidal section of the
  5020. ellipsoid.
  5021. \end_layout
  5022. \begin_layout Standard
  5023. In Figure
  5024. \begin_inset CommandInset ref
  5025. LatexCommand ref
  5026. reference "fig:H3K27me3-neighborhood-expression"
  5027. plural "false"
  5028. caps "false"
  5029. noprefix "false"
  5030. \end_inset
  5031. , we can see that Clusters 1 and 2 are the only clusters with higher gene
  5032. expression than the others.
  5033. For Cluster 2, this is expected, since this cluster represents genes with
  5034. depletion of H3K27me3 near the promoter.
  5035. Hence, elevated expression in cluster 2 is consistent with the conventional
  5036. view of H3K27me3 as a deactivating mark.
  5037. However, Cluster 1, the cluster with the most elevated gene expression,
  5038. represents genes with elevated coverage upstream of the TSS, or equivalently,
  5039. decreased coverage downstream, inside the gene body.
  5040. The opposite pattern, in which H3K27me3 is more abundant within the gene
  5041. body and less abundance in the upstream promoter region, does not show
  5042. any elevation in gene expression.
  5043. As with H3K4me2, this shows that the location of H3K27 trimethylation relative
  5044. to the TSS is potentially an important factor beyond simple proximity.
  5045. \end_layout
  5046. \begin_layout Standard
  5047. \begin_inset Flex TODO Note (inline)
  5048. status open
  5049. \begin_layout Plain Layout
  5050. Show the figures where the negative result ended this line of inquiry.
  5051. I need to debug some errors resulting from an R upgrade to do this.
  5052. \end_layout
  5053. \end_inset
  5054. \end_layout
  5055. \begin_layout Subsection
  5056. Defined pattern analysis
  5057. \end_layout
  5058. \begin_layout Standard
  5059. \begin_inset Flex TODO Note (inline)
  5060. status open
  5061. \begin_layout Plain Layout
  5062. This was where I defined interesting expression patterns and then looked
  5063. at initial relative promoter coverage for each expression pattern.
  5064. Negative result.
  5065. I forgot about this until recently.
  5066. Worth including? Remember to also write methods.
  5067. \end_layout
  5068. \end_inset
  5069. \end_layout
  5070. \begin_layout Subsection
  5071. Promoter CpG islands?
  5072. \end_layout
  5073. \begin_layout Standard
  5074. \begin_inset Flex TODO Note (inline)
  5075. status collapsed
  5076. \begin_layout Plain Layout
  5077. I forgot until recently about the work I did on this.
  5078. Worth including? Remember to also write methods.
  5079. \end_layout
  5080. \end_inset
  5081. \end_layout
  5082. \begin_layout Section
  5083. Discussion
  5084. \end_layout
  5085. \begin_layout Standard
  5086. \begin_inset Flex TODO Note (inline)
  5087. status open
  5088. \begin_layout Plain Layout
  5089. Write better section headers
  5090. \end_layout
  5091. \end_inset
  5092. \end_layout
  5093. \begin_layout Subsection
  5094. Effective promoter radius
  5095. \end_layout
  5096. \begin_layout Standard
  5097. Figure
  5098. \begin_inset CommandInset ref
  5099. LatexCommand ref
  5100. reference "fig:near-promoter-peak-enrich"
  5101. plural "false"
  5102. caps "false"
  5103. noprefix "false"
  5104. \end_inset
  5105. shows that H3K4me2, H3K4me3, and H3K27me3 are all enriched near promoters,
  5106. relative to the rest of the genome, consistent with their conventionally
  5107. understood role in regulating gene transcription.
  5108. Interestingly, the radius within this enrichment occurs is not the same
  5109. for each histone mark.
  5110. H3K4me2 and H3K4me3 are enriched within a 1
  5111. \begin_inset space \thinspace{}
  5112. \end_inset
  5113. kb radius, while H3K27me3 is enriched within 2.5
  5114. \begin_inset space \thinspace{}
  5115. \end_inset
  5116. kb.
  5117. Notably, the determined promoter radius was consistent across all experimental
  5118. conditions, varying only between different histone marks.
  5119. This suggests that the conventional
  5120. \begin_inset Quotes eld
  5121. \end_inset
  5122. one size fits all
  5123. \begin_inset Quotes erd
  5124. \end_inset
  5125. approach of defining a single promoter region for each gene (or each TSS)
  5126. and using that same promoter region for analyzing all types of genomic
  5127. data within an experiment may not be appropriate, and a better approach
  5128. may be to use a separate promoter radius for each kind of data, with each
  5129. radius being derived from the data itself.
  5130. Furthermore, the apparent asymmetry of upstream and downstream promoter
  5131. histone modification with respect to gene expression, seen in Figures
  5132. \begin_inset CommandInset ref
  5133. LatexCommand ref
  5134. reference "fig:H3K4me2-neighborhood"
  5135. plural "false"
  5136. caps "false"
  5137. noprefix "false"
  5138. \end_inset
  5139. ,
  5140. \begin_inset CommandInset ref
  5141. LatexCommand ref
  5142. reference "fig:H3K4me3-neighborhood"
  5143. plural "false"
  5144. caps "false"
  5145. noprefix "false"
  5146. \end_inset
  5147. , and
  5148. \begin_inset CommandInset ref
  5149. LatexCommand ref
  5150. reference "fig:H3K27me3-neighborhood"
  5151. plural "false"
  5152. caps "false"
  5153. noprefix "false"
  5154. \end_inset
  5155. , shows that even the concept of a promoter
  5156. \begin_inset Quotes eld
  5157. \end_inset
  5158. radius
  5159. \begin_inset Quotes erd
  5160. \end_inset
  5161. is likely an oversimplification.
  5162. At a minimum, nearby enrichment of peaks should be evaluated separately
  5163. for both upstream and downstream peaks, and an appropriate
  5164. \begin_inset Quotes eld
  5165. \end_inset
  5166. radius
  5167. \begin_inset Quotes erd
  5168. \end_inset
  5169. should be selected for each direction.
  5170. \end_layout
  5171. \begin_layout Standard
  5172. Figures
  5173. \begin_inset CommandInset ref
  5174. LatexCommand ref
  5175. reference "fig:H3K4me2-neighborhood"
  5176. plural "false"
  5177. caps "false"
  5178. noprefix "false"
  5179. \end_inset
  5180. and
  5181. \begin_inset CommandInset ref
  5182. LatexCommand ref
  5183. reference "fig:H3K4me3-neighborhood"
  5184. plural "false"
  5185. caps "false"
  5186. noprefix "false"
  5187. \end_inset
  5188. show that the determined promoter radius of 1
  5189. \begin_inset space ~
  5190. \end_inset
  5191. kb is approximately consistent with the distance from the TSS at which enrichmen
  5192. t of H3K4 methylation correlates with increased expression, showing that
  5193. this radius, which was determined by a simple analysis of measuring the
  5194. distance from each TSS to the nearest peak, also has functional significance.
  5195. For H3K27me3, the correlation between histone modification near the promoter
  5196. and gene expression is more complex, involving non-peak variations such
  5197. as troughs in coverage at the TSS and asymmetric coverage upstream and
  5198. downstream, so it is difficult in this case to evaluate whether the 2.5
  5199. \begin_inset space ~
  5200. \end_inset
  5201. kb radius determined from TSS-to-peak distances is functionally significant.
  5202. However, the two patterns of coverage associated with elevated expression
  5203. levels both have interesting features within this radius.
  5204. \end_layout
  5205. \begin_layout Standard
  5206. \begin_inset Flex TODO Note (inline)
  5207. status open
  5208. \begin_layout Plain Layout
  5209. My instinct is to say
  5210. \begin_inset Quotes eld
  5211. \end_inset
  5212. further study is needed
  5213. \begin_inset Quotes erd
  5214. \end_inset
  5215. here, but that goes in Chapter 5, right?
  5216. \end_layout
  5217. \end_inset
  5218. \end_layout
  5219. \begin_layout Subsection
  5220. Convergence
  5221. \end_layout
  5222. \begin_layout Standard
  5223. \begin_inset Flex TODO Note (inline)
  5224. status open
  5225. \begin_layout Plain Layout
  5226. Look up some more references for these histone marks being involved in memory
  5227. differentiation.
  5228. (Ask Sarah)
  5229. \end_layout
  5230. \end_inset
  5231. \end_layout
  5232. \begin_layout Standard
  5233. We have observed that all 3 histone marks and the gene expression data all
  5234. exhibit evidence of convergence in abundance between naive and memory cells
  5235. by day 14 after activation (Figure
  5236. \begin_inset CommandInset ref
  5237. LatexCommand ref
  5238. reference "fig:PCoA-promoters"
  5239. plural "false"
  5240. caps "false"
  5241. noprefix "false"
  5242. \end_inset
  5243. , Table
  5244. \begin_inset CommandInset ref
  5245. LatexCommand ref
  5246. reference "tab:Number-signif-promoters"
  5247. plural "false"
  5248. caps "false"
  5249. noprefix "false"
  5250. \end_inset
  5251. ).
  5252. The MOFA latent factor scatter plots (Figure
  5253. \begin_inset CommandInset ref
  5254. LatexCommand ref
  5255. reference "fig:mofa-lf-scatter"
  5256. plural "false"
  5257. caps "false"
  5258. noprefix "false"
  5259. \end_inset
  5260. ) show that this pattern of convergence is captured in latent factor 5.
  5261. Like all the latent factors in this plot, this factor explains a substantial
  5262. portion of the variance in all 4 data sets, indicating a coordinated pattern
  5263. of variation shared across all histone marks and gene expression.
  5264. This, of course, is consistent with the expectation that any naive CD4
  5265. T-cells remaining at day 14 should have differentiated into memory cells
  5266. by that time, and should therefore have a genomic state similar to memory
  5267. cells.
  5268. This convergence is evidence that these histone marks all play an important
  5269. role in the naive-to-memory differentiation process.
  5270. A histone mark that was not involved in naive-to-memory differentiation
  5271. would not be expected to converge in this way after activation.
  5272. \end_layout
  5273. \begin_layout Standard
  5274. \begin_inset Float figure
  5275. wide false
  5276. sideways false
  5277. status collapsed
  5278. \begin_layout Plain Layout
  5279. \align center
  5280. \begin_inset Graphics
  5281. filename graphics/CD4-csaw/LaMere2016_fig8.pdf
  5282. lyxscale 50
  5283. width 60col%
  5284. groupId colwidth
  5285. \end_inset
  5286. \end_layout
  5287. \begin_layout Plain Layout
  5288. \begin_inset Caption Standard
  5289. \begin_layout Plain Layout
  5290. \series bold
  5291. \begin_inset CommandInset label
  5292. LatexCommand label
  5293. name "fig:Lamere2016-Fig8"
  5294. \end_inset
  5295. Lamere 2016 Figure 8
  5296. \begin_inset CommandInset citation
  5297. LatexCommand cite
  5298. key "LaMere2016"
  5299. literal "false"
  5300. \end_inset
  5301. ,
  5302. \begin_inset Quotes eld
  5303. \end_inset
  5304. Model for the role of H3K4 methylation during CD4 T-cell activation.
  5305. \begin_inset Quotes erd
  5306. \end_inset
  5307. \series default
  5308. Reproduced with permission.
  5309. \end_layout
  5310. \end_inset
  5311. \end_layout
  5312. \end_inset
  5313. \end_layout
  5314. \begin_layout Standard
  5315. In H3K4me2, H3K4me3, and RNA-seq, this convergence appears to be in progress
  5316. already by Day 5, shown by the smaller distance between naive and memory
  5317. cells at day 5 along the
  5318. \begin_inset Formula $y$
  5319. \end_inset
  5320. -axes in Figures
  5321. \begin_inset CommandInset ref
  5322. LatexCommand ref
  5323. reference "fig:PCoA-H3K4me2-prom"
  5324. plural "false"
  5325. caps "false"
  5326. noprefix "false"
  5327. \end_inset
  5328. ,
  5329. \begin_inset CommandInset ref
  5330. LatexCommand ref
  5331. reference "fig:PCoA-H3K4me3-prom"
  5332. plural "false"
  5333. caps "false"
  5334. noprefix "false"
  5335. \end_inset
  5336. , and
  5337. \begin_inset CommandInset ref
  5338. LatexCommand ref
  5339. reference "fig:RNA-PCA-group"
  5340. plural "false"
  5341. caps "false"
  5342. noprefix "false"
  5343. \end_inset
  5344. .
  5345. This agrees with the model proposed by Sarah Lamere based on an prior analysis
  5346. of the same data, shown in Figure
  5347. \begin_inset CommandInset ref
  5348. LatexCommand ref
  5349. reference "fig:Lamere2016-Fig8"
  5350. plural "false"
  5351. caps "false"
  5352. noprefix "false"
  5353. \end_inset
  5354. , which shows the pattern of H3K4 methylation and expression for naive cells
  5355. and memory cells converging at day 5.
  5356. This model was developed without the benefit of the PCoA plots in Figure
  5357. \begin_inset CommandInset ref
  5358. LatexCommand ref
  5359. reference "fig:PCoA-promoters"
  5360. plural "false"
  5361. caps "false"
  5362. noprefix "false"
  5363. \end_inset
  5364. , which have been corrected for confounding factors by ComBat and SVA.
  5365. This shows that proper batch correction assists in extracting meaningful
  5366. patterns in the data while eliminating systematic sources of irrelevant
  5367. variation in the data, allowing simple automated procedures like PCoA to
  5368. reveal interesting behaviors in the data that were previously only detectable
  5369. by a detailed manual analysis.
  5370. \end_layout
  5371. \begin_layout Standard
  5372. While the ideal comparison to demonstrate this convergence would be naive
  5373. cells at day 14 to memory cells at day 0, this is not feasible in this
  5374. experimental system, since neither naive nor memory cells are able to fully
  5375. return to their pre-activation state, as shown by the lack of overlap between
  5376. days 0 and 14 for either naive or memory cells in Figure
  5377. \begin_inset CommandInset ref
  5378. LatexCommand ref
  5379. reference "fig:PCoA-promoters"
  5380. plural "false"
  5381. caps "false"
  5382. noprefix "false"
  5383. \end_inset
  5384. .
  5385. \end_layout
  5386. \begin_layout Subsection
  5387. Positional
  5388. \end_layout
  5389. \begin_layout Standard
  5390. When looking at patterns in the relative coverage of each histone mark near
  5391. the TSS of each gene, several interesting patterns were apparent.
  5392. For H3K4me2 and H3K4me3, the pattern was straightforward: the consistent
  5393. pattern across all promoters was a single peak a few kb wide, with the
  5394. main axis of variation being the position of this peak relative to the
  5395. TSS (Figures
  5396. \begin_inset CommandInset ref
  5397. LatexCommand ref
  5398. reference "fig:H3K4me2-neighborhood"
  5399. plural "false"
  5400. caps "false"
  5401. noprefix "false"
  5402. \end_inset
  5403. &
  5404. \begin_inset CommandInset ref
  5405. LatexCommand ref
  5406. reference "fig:H3K4me3-neighborhood"
  5407. plural "false"
  5408. caps "false"
  5409. noprefix "false"
  5410. \end_inset
  5411. ).
  5412. There were no obvious
  5413. \begin_inset Quotes eld
  5414. \end_inset
  5415. preferred
  5416. \begin_inset Quotes erd
  5417. \end_inset
  5418. positions, but rather a continuous distribution of relative positions ranging
  5419. all across the promoter region.
  5420. The association with gene expression was also straightforward: peaks closer
  5421. to the TSS were more strongly associated with elevated gene expression.
  5422. Coverage downstream of the TSS appears to be more strongly associated with
  5423. elevated expression than coverage the same distance upstream, indicating
  5424. that the
  5425. \begin_inset Quotes eld
  5426. \end_inset
  5427. effective promoter region
  5428. \begin_inset Quotes erd
  5429. \end_inset
  5430. for H3K4me2 and H3K4me3 may be centered downstream of the TSS.
  5431. \end_layout
  5432. \begin_layout Standard
  5433. The relative promoter coverage for H3K27me3 had a more complex pattern,
  5434. with two specific patterns of promoter coverage associated with elevated
  5435. expression: a sharp depletion of H3K27me3 around the TSS relative to the
  5436. surrounding area, and a depletion of H3K27me3 downstream of the TSS relative
  5437. to upstream (Figure
  5438. \begin_inset CommandInset ref
  5439. LatexCommand ref
  5440. reference "fig:H3K27me3-neighborhood"
  5441. plural "false"
  5442. caps "false"
  5443. noprefix "false"
  5444. \end_inset
  5445. ).
  5446. A previous study found that H3K27me3 depletion within the gene body was
  5447. associated with elevated gene expression in 4 different cell types in mice
  5448. \begin_inset CommandInset citation
  5449. LatexCommand cite
  5450. key "Young2011"
  5451. literal "false"
  5452. \end_inset
  5453. .
  5454. This is consistent with the second pattern described here.
  5455. This study also reported that a spike in coverage at the TSS was associated
  5456. with
  5457. \emph on
  5458. lower
  5459. \emph default
  5460. expression, which is indirectly consistent with the first pattern described
  5461. here, in the sense that it associates lower H3K27me3 levels near the TSS
  5462. with higher expression.
  5463. \end_layout
  5464. \begin_layout Subsection
  5465. Workflow
  5466. \end_layout
  5467. \begin_layout Standard
  5468. \begin_inset ERT
  5469. status open
  5470. \begin_layout Plain Layout
  5471. \backslash
  5472. afterpage{
  5473. \end_layout
  5474. \begin_layout Plain Layout
  5475. \backslash
  5476. begin{landscape}
  5477. \end_layout
  5478. \end_inset
  5479. \end_layout
  5480. \begin_layout Standard
  5481. \begin_inset Float figure
  5482. wide false
  5483. sideways false
  5484. status open
  5485. \begin_layout Plain Layout
  5486. \align center
  5487. \begin_inset Graphics
  5488. filename graphics/CD4-csaw/rulegraphs/rulegraph-all.pdf
  5489. lyxscale 50
  5490. width 100col%
  5491. height 95theight%
  5492. \end_inset
  5493. \end_layout
  5494. \begin_layout Plain Layout
  5495. \begin_inset Caption Standard
  5496. \begin_layout Plain Layout
  5497. \begin_inset CommandInset label
  5498. LatexCommand label
  5499. name "fig:rulegraph"
  5500. \end_inset
  5501. \series bold
  5502. Dependency graph of steps in reproducible workflow.
  5503. \end_layout
  5504. \end_inset
  5505. \end_layout
  5506. \end_inset
  5507. \end_layout
  5508. \begin_layout Standard
  5509. \begin_inset ERT
  5510. status open
  5511. \begin_layout Plain Layout
  5512. \backslash
  5513. end{landscape}
  5514. \end_layout
  5515. \begin_layout Plain Layout
  5516. }
  5517. \end_layout
  5518. \end_inset
  5519. \end_layout
  5520. \begin_layout Standard
  5521. The analyses described in this chapter were organized into a reproducible
  5522. workflow using the Snakemake workflow management system.
  5523. As shown in Figure
  5524. \begin_inset CommandInset ref
  5525. LatexCommand ref
  5526. reference "fig:rulegraph"
  5527. plural "false"
  5528. caps "false"
  5529. noprefix "false"
  5530. \end_inset
  5531. , the workflow includes many steps with complex dependencies between them.
  5532. For example, the step that counts the number of ChIP-seq reads in 500
  5533. \begin_inset space ~
  5534. \end_inset
  5535. bp windows in each promoter (the starting point for Figures
  5536. \begin_inset CommandInset ref
  5537. LatexCommand ref
  5538. reference "fig:H3K4me2-neighborhood"
  5539. plural "false"
  5540. caps "false"
  5541. noprefix "false"
  5542. \end_inset
  5543. ,
  5544. \begin_inset CommandInset ref
  5545. LatexCommand ref
  5546. reference "fig:H3K4me3-neighborhood"
  5547. plural "false"
  5548. caps "false"
  5549. noprefix "false"
  5550. \end_inset
  5551. , and
  5552. \begin_inset CommandInset ref
  5553. LatexCommand ref
  5554. reference "fig:H3K27me3-neighborhood"
  5555. plural "false"
  5556. caps "false"
  5557. noprefix "false"
  5558. \end_inset
  5559. ), named
  5560. \begin_inset Formula $\texttt{chipseq\_count\_tss\_neighborhoods}$
  5561. \end_inset
  5562. , depends on the RNA-seq abundance estimates in order to select the most-used
  5563. TSS for each gene, the aligned ChIP-seq reads, the index for those reads,
  5564. and the blacklist of regions to be excluded from ChIP-seq analysis.
  5565. Each step declares its inputs and outputs, and Snakemake uses these to
  5566. determine the dependencies between steps.
  5567. Each step is marked as depending on all the steps whose outputs match its
  5568. inputs, generating the workflow graph in Figure
  5569. \begin_inset CommandInset ref
  5570. LatexCommand ref
  5571. reference "fig:rulegraph"
  5572. plural "false"
  5573. caps "false"
  5574. noprefix "false"
  5575. \end_inset
  5576. , which Snakemake uses to determine order in which to execute each step
  5577. so that each step is executed only after all of the steps it depends on
  5578. have completed, thereby automating the entire workflow from start to finish.
  5579. \end_layout
  5580. \begin_layout Standard
  5581. In addition to simply making it easier to organize the steps in the analysis,
  5582. structuring the analysis as a workflow allowed for some analysis strategies
  5583. that would not have been practical otherwise.
  5584. For example, 5 different RNA-seq quantification methods were tested against
  5585. two different reference transcriptome annotations for a total of 10 different
  5586. quantifications of the same RNA-seq data.
  5587. These were then compared against each other in the exploratory data analysis
  5588. step, to determine that the results were not very sensitive to either the
  5589. choice of quantification method or the choice of annotation.
  5590. This was possible with a single script for the exploratory data analysis,
  5591. because Snakemake was able to automate running this script for every combinatio
  5592. n of method and reference.
  5593. In a similar manner, two different peak calling methods were tested against
  5594. each other, and in this case it was determined that SICER was unambiguously
  5595. superior to MACS for all histone marks studied.
  5596. By enabling these types of comparisons, structuring the analysis as an
  5597. automated workflow allowed important analysis decisions to be made in a
  5598. data-driven way, by running every reasonable option through the downstream
  5599. steps, seeing the consequences of choosing each option, and deciding accordingl
  5600. y.
  5601. \end_layout
  5602. \begin_layout Subsection
  5603. Data quality issues limit conclusions
  5604. \end_layout
  5605. \begin_layout Standard
  5606. \begin_inset Flex TODO Note (inline)
  5607. status open
  5608. \begin_layout Plain Layout
  5609. Is this needed?
  5610. \end_layout
  5611. \end_inset
  5612. \end_layout
  5613. \begin_layout Section
  5614. Future Directions
  5615. \end_layout
  5616. \begin_layout Standard
  5617. The analysis of RNA-seq and ChIP-seq in CD4 T-cells in Chapter 2 is in many
  5618. ways a preliminary study that suggests a multitude of new avenues of investigat
  5619. ion.
  5620. Here we consider a selection of such avenues.
  5621. \end_layout
  5622. \begin_layout Subsection
  5623. Negative results
  5624. \end_layout
  5625. \begin_layout Standard
  5626. Two additional analyses were conducted beyond those reported in the results.
  5627. First, we searched for evidence that the presence or absence of a CpG island
  5628. in the promoter was correlated with increases or decreases in gene expression
  5629. or any histone mark in any of the tested contrasts.
  5630. Second, we searched for evidence that the relative ChIP-seq coverage profiles
  5631. prior to activations could predict the change in expression of a gene after
  5632. activation.
  5633. Neither analysis turned up any clear positive results.
  5634. \end_layout
  5635. \begin_layout Subsection
  5636. Improve on the idea of an effective promoter radius
  5637. \end_layout
  5638. \begin_layout Standard
  5639. This study introduced the concept of an
  5640. \begin_inset Quotes eld
  5641. \end_inset
  5642. effective promoter radius
  5643. \begin_inset Quotes erd
  5644. \end_inset
  5645. specific to each histone mark based on distance from the TSS within which
  5646. an excess of peaks was called for that mark.
  5647. This concept was then used to guide further analyses throughout the study.
  5648. However, while the effective promoter radius was useful in those analyses,
  5649. it is both limited in theory and shown in practice to be a possible oversimplif
  5650. ication.
  5651. First, the effective promoter radii used in this study were chosen based
  5652. on manual inspection of the TSS-to-peak distance distributions in Figure
  5653. \begin_inset CommandInset ref
  5654. LatexCommand ref
  5655. reference "fig:near-promoter-peak-enrich"
  5656. plural "false"
  5657. caps "false"
  5658. noprefix "false"
  5659. \end_inset
  5660. , selecting round numbers of analyst convenience (Table
  5661. \begin_inset CommandInset ref
  5662. LatexCommand ref
  5663. reference "tab:effective-promoter-radius"
  5664. plural "false"
  5665. caps "false"
  5666. noprefix "false"
  5667. \end_inset
  5668. ).
  5669. It would be better to define an algorithm that selects a more precise radius
  5670. based on the features of the graph.
  5671. One possible way to do this would be to randomly rearrange the called peaks
  5672. throughout the genome many (while preserving the distribution of peak widths)
  5673. and re-generate the same plot as in Figure
  5674. \begin_inset CommandInset ref
  5675. LatexCommand ref
  5676. reference "fig:near-promoter-peak-enrich"
  5677. plural "false"
  5678. caps "false"
  5679. noprefix "false"
  5680. \end_inset
  5681. .
  5682. This would yield a better
  5683. \begin_inset Quotes eld
  5684. \end_inset
  5685. background
  5686. \begin_inset Quotes erd
  5687. \end_inset
  5688. distribution that demonstrates the degree of near-TSS enrichment that would
  5689. be expected by random chance.
  5690. The effective promoter radius could be defined as the point where the true
  5691. distribution diverges from the randomized background distribution.
  5692. \end_layout
  5693. \begin_layout Standard
  5694. Furthermore, the above definition of effective promoter radius has the significa
  5695. nt limitation of being based on the peak calling method.
  5696. It is thus very sensitive to the choice of peak caller and significance
  5697. threshold for calling peaks, as well as the degree of saturation in the
  5698. sequencing.
  5699. Calling peaks from ChIP-seq samples with insufficient coverage depth, with
  5700. the wrong peak caller, or with a different significance threshold could
  5701. give a drastically different number of called peaks, and hence a drastically
  5702. different distribution of peak-to-TSS distances.
  5703. To address this, it is desirable to develop a better method of determining
  5704. the effective promoter radius that relies only on the distribution of read
  5705. coverage around the TSS, independent of the peak calling.
  5706. Furthermore, as demonstrated by the upstream-downstream asymmetries observed
  5707. in Figures
  5708. \begin_inset CommandInset ref
  5709. LatexCommand ref
  5710. reference "fig:H3K4me2-neighborhood"
  5711. plural "false"
  5712. caps "false"
  5713. noprefix "false"
  5714. \end_inset
  5715. ,
  5716. \begin_inset CommandInset ref
  5717. LatexCommand ref
  5718. reference "fig:H3K4me3-neighborhood"
  5719. plural "false"
  5720. caps "false"
  5721. noprefix "false"
  5722. \end_inset
  5723. , and
  5724. \begin_inset CommandInset ref
  5725. LatexCommand ref
  5726. reference "fig:H3K27me3-neighborhood"
  5727. plural "false"
  5728. caps "false"
  5729. noprefix "false"
  5730. \end_inset
  5731. , this definition should determine a different radius for the upstream and
  5732. downstream directions.
  5733. At this point, it may be better to rename this concept
  5734. \begin_inset Quotes eld
  5735. \end_inset
  5736. effective promoter extent
  5737. \begin_inset Quotes erd
  5738. \end_inset
  5739. and avoid the word
  5740. \begin_inset Quotes eld
  5741. \end_inset
  5742. radius
  5743. \begin_inset Quotes erd
  5744. \end_inset
  5745. , since a radius implies a symmetry about the TSS that is not supported
  5746. by the data.
  5747. \end_layout
  5748. \begin_layout Standard
  5749. Beyond improving the definition of effective promoter extent, functional
  5750. validation is necessary to show that this measure of near-TSS enrichment
  5751. has biological meaning.
  5752. Figures
  5753. \begin_inset CommandInset ref
  5754. LatexCommand ref
  5755. reference "fig:H3K4me2-neighborhood"
  5756. plural "false"
  5757. caps "false"
  5758. noprefix "false"
  5759. \end_inset
  5760. and
  5761. \begin_inset CommandInset ref
  5762. LatexCommand ref
  5763. reference "fig:H3K4me3-neighborhood"
  5764. plural "false"
  5765. caps "false"
  5766. noprefix "false"
  5767. \end_inset
  5768. already provide a very limited functional validation of the chosen promoter
  5769. extents for H3K4me2 and H3K4me3 by showing that spikes in coverage within
  5770. this region are most strongly correlated with elevated gene expression.
  5771. However, there are other ways to show functional relevance of the promoter
  5772. extent.
  5773. For example, correlations could be computed between read counts in peaks
  5774. nearby gene promoters and the expression level of those genes, and these
  5775. correlations could be plotted against the distance of the peak upstream
  5776. or downstream of the gene's TSS.
  5777. If the promoter extent truly defines a
  5778. \begin_inset Quotes eld
  5779. \end_inset
  5780. sphere of influence
  5781. \begin_inset Quotes erd
  5782. \end_inset
  5783. within which a histone mark is involved with the regulation of a gene,
  5784. then the correlations for peaks within this extent should be significantly
  5785. higher than those further upstream or downstream.
  5786. Peaks within these extents may also be more likely to show differential
  5787. modification than those outside genic regions of the genome.
  5788. \end_layout
  5789. \begin_layout Subsection
  5790. Design experiments to focus on post-activation convergence of naive & memory
  5791. cells
  5792. \end_layout
  5793. \begin_layout Standard
  5794. In this study, a convergence between naive and memory cells was observed
  5795. in both the pattern of gene expression and in epigenetic state of the 3
  5796. histone marks studied, consistent with the hypothesis that any naive cells
  5797. remaining 14 days after activation have differentiated into memory cells,
  5798. and that both gene expression and these histone marks are involved in this
  5799. differentiation.
  5800. However, the current study was not designed with this specific hypothesis
  5801. in mind, and it therefore has some deficiencies with regard to testing
  5802. it.
  5803. The memory CD4 samples at day 14 do not resemble the memory samples at
  5804. day 0, indicating that in the specific model of activation used for this
  5805. experiment, the cells are not guaranteed to return to their original pre-activa
  5806. tion state, or perhaps this process takes substantially longer than 14 days.
  5807. This is a challenge for the convergence hypothesis because the ideal comparison
  5808. to prove that naive cells are converging to a resting memory state would
  5809. be to compare the final naive time point to the Day 0 memory samples, but
  5810. this comparison is only meaningful if memory cells generally return to
  5811. the same
  5812. \begin_inset Quotes eld
  5813. \end_inset
  5814. resting
  5815. \begin_inset Quotes erd
  5816. \end_inset
  5817. state that they started at.
  5818. \end_layout
  5819. \begin_layout Standard
  5820. To better study the convergence hypothesis, a new experiment should be designed
  5821. using a model system for T-cell activation that is known to allow cells
  5822. to return as closely as possible to their pre-activation state.
  5823. Alternatively, if it is not possible to find or design such a model system,
  5824. the same cell cultures could be activated serially multiple times, and
  5825. sequenced after each activation cycle right before the next activation.
  5826. It is likely that several activations in the same model system will settle
  5827. into a cyclical pattern, converging to a consistent
  5828. \begin_inset Quotes eld
  5829. \end_inset
  5830. resting
  5831. \begin_inset Quotes erd
  5832. \end_inset
  5833. state after each activation, even if this state is different from the initial
  5834. resting state at Day 0.
  5835. If so, it will be possible to compare the final states of both naive and
  5836. memory cells to show that they converge despite different initial conditions.
  5837. \end_layout
  5838. \begin_layout Standard
  5839. In addition, if naive-to-memory convergence is a general pattern, it should
  5840. also be detectable in other epigenetic marks, including other histone marks
  5841. and DNA methylation.
  5842. An experiment should be designed studying a large number of epigenetic
  5843. marks known or suspected to be involved in regulation of gene expression,
  5844. assaying all of these at the same pre- and post-activation time points.
  5845. Multi-dataset factor analysis methods like MOFA can then be used to identify
  5846. coordinated patterns of regulation shared across many epigenetic marks.
  5847. If possible, some
  5848. \begin_inset Quotes eld
  5849. \end_inset
  5850. negative control
  5851. \begin_inset Quotes erd
  5852. \end_inset
  5853. marks should be included that are known
  5854. \emph on
  5855. not
  5856. \emph default
  5857. to be involved in T-cell activation or memory formation.
  5858. Of course, CD4 T-cells are not the only adaptive immune cells with memory.
  5859. A similar study could be designed for CD8 T-cells, B-cells, and even specific
  5860. subsets of CD4 T-cells.
  5861. \end_layout
  5862. \begin_layout Subsection
  5863. Follow up on hints of interesting patterns in promoter relative coverage
  5864. profiles
  5865. \end_layout
  5866. \begin_layout Standard
  5867. \begin_inset Flex TODO Note (inline)
  5868. status open
  5869. \begin_layout Plain Layout
  5870. I think I might need to write up the negative results for the Promoter CpG
  5871. and defined pattern analysis before writing this section.
  5872. \end_layout
  5873. \end_inset
  5874. \end_layout
  5875. \begin_layout Itemize
  5876. Also find better normalizations: maybe borrow from MACS/SICER background
  5877. correction methods?
  5878. \end_layout
  5879. \begin_layout Itemize
  5880. For H3K4, define polar coordinates based on PC1 & 2: R = peak size, Theta
  5881. = peak position.
  5882. Then correlate with expression.
  5883. \end_layout
  5884. \begin_layout Itemize
  5885. Current analysis only at Day 0.
  5886. Need to study across time points.
  5887. \end_layout
  5888. \begin_layout Itemize
  5889. Integrating data across so many dimensions is a significant analysis challenge
  5890. \end_layout
  5891. \begin_layout Subsection
  5892. Investigate causes of high correlation between mutually exclusive histone
  5893. marks
  5894. \end_layout
  5895. \begin_layout Standard
  5896. The high correlation between coverage depth observed between H3K4me2 and
  5897. H3K4me3 is both expected and unexpected.
  5898. Since both marks are associated with elevated gene transcription, a positive
  5899. correlation between them is not surprising.
  5900. However, these two marks represent different post-translational modifications
  5901. of the
  5902. \emph on
  5903. same
  5904. \emph default
  5905. lysine residue on the histone H3 polypeptide, which means that they cannot
  5906. both be present on the same H3 subunit.
  5907. Thus, the high correlation between them has several potential explanations.
  5908. One possible reason is cell population heterogeneity: perhaps some genomic
  5909. loci are frequently marked with H3K4me2 in some cells, while in other cells
  5910. the same loci are marked with H3K4me3.
  5911. Another possibility is allele-specific modifications: the loci are marked
  5912. in each diploid cell with H3K4me2 on one allele and H3K4me3 on the other
  5913. allele.
  5914. Lastly, since each histone octamer contains 2 H3 subunits, it is possible
  5915. that having one H3K4me2 mark and one H3K4me3 mark on a given histone octamer
  5916. represents a distinct epigenetic state with a different function than either
  5917. double H3K4me2 or double H3K4me3.
  5918. \end_layout
  5919. \begin_layout Standard
  5920. These three hypotheses could be disentangled by single-cell ChIP-seq.
  5921. If the correlation between these two histone marks persists even within
  5922. the reads for each individual cell, then cell population heterogeneity
  5923. cannot explain the correlation.
  5924. Allele-specific modification can be tested for by looking at the correlation
  5925. between read coverage of the two histone marks at heterozygous loci.
  5926. If the correlation between read counts for opposite loci is low, then this
  5927. is consistent with allele-specific modification.
  5928. Finally if the modifications do not separate by either cell or allele,
  5929. the colocation of these two marks is most likely occurring at the level
  5930. of individual histones, with the heterogeneously modified histone representing
  5931. a distinct state.
  5932. \end_layout
  5933. \begin_layout Standard
  5934. However, another experiment would be required to show direct evidence of
  5935. such a heterogeneously modified state.
  5936. Specifically a
  5937. \begin_inset Quotes eld
  5938. \end_inset
  5939. double ChIP
  5940. \begin_inset Quotes erd
  5941. \end_inset
  5942. experiment would need to be performed, where the input DNA is first subjected
  5943. to an immunoprecipitation pulldown from the anti-H3K4me2 antibody, and
  5944. then the enriched material is collected, with proteins still bound, and
  5945. immunoprecipitated
  5946. \emph on
  5947. again
  5948. \emph default
  5949. using the anti-H3K4me3 antibody.
  5950. If this yields significant numbers of non-artifactual reads in the same
  5951. regions as the individual pulldowns of the two marks, this is strong evidence
  5952. that the two marks are occurring on opposite H3 subunits of the same histones.
  5953. \end_layout
  5954. \begin_layout Standard
  5955. \begin_inset Flex TODO Note (inline)
  5956. status open
  5957. \begin_layout Plain Layout
  5958. Try to see if double ChIP-seq is actually feasible, and if not, come up
  5959. with some other idea for directly detecting the mixed mod state.
  5960. Oh! Actually ChIP-seq isn't required, only double ChIP followed by quantificati
  5961. on.
  5962. That's one possible angle.
  5963. \end_layout
  5964. \end_inset
  5965. \end_layout
  5966. \begin_layout Chapter
  5967. Improving array-based diagnostics for transplant rejection by optimizing
  5968. data preprocessing
  5969. \end_layout
  5970. \begin_layout Standard
  5971. \begin_inset Note Note
  5972. status open
  5973. \begin_layout Plain Layout
  5974. Chapter author list: Me, Sunil, Tom, Padma, Dan
  5975. \end_layout
  5976. \end_inset
  5977. \end_layout
  5978. \begin_layout Section
  5979. Approach
  5980. \end_layout
  5981. \begin_layout Subsection
  5982. Proper pre-processing is essential for array data
  5983. \end_layout
  5984. \begin_layout Standard
  5985. \begin_inset Flex TODO Note (inline)
  5986. status open
  5987. \begin_layout Plain Layout
  5988. This section could probably use some citations
  5989. \end_layout
  5990. \end_inset
  5991. \end_layout
  5992. \begin_layout Standard
  5993. Microarrays, bead arrays, and similar assays produce raw data in the form
  5994. of fluorescence intensity measurements, with the each intensity measurement
  5995. proportional to the abundance of some fluorescently labelled target DNA
  5996. or RNA sequence that base pairs to a specific probe sequence.
  5997. However, these measurements for each probe are also affected my many technical
  5998. confounding factors, such as the concentration of target material, strength
  5999. of off-target binding, and the sensitivity of the imaging sensor.
  6000. Some array designs also use multiple probe sequences for each target.
  6001. Hence, extensive pre-processing of array data is necessary to normalize
  6002. out the effects of these technical factors and summarize the information
  6003. from multiple probes to arrive at a single usable estimate of abundance
  6004. or other relevant quantity, such as a ratio of two abundances, for each
  6005. target.
  6006. \end_layout
  6007. \begin_layout Standard
  6008. The choice of pre-processing algorithms used in the analysis of an array
  6009. data set can have a large effect on the results of that analysis.
  6010. However, despite their importance, these steps are often neglected or rushed
  6011. in order to get to the more scientifically interesting analysis steps involving
  6012. the actual biology of the system under study.
  6013. Hence, it is often possible to achieve substantial gains in statistical
  6014. power, model goodness-of-fit, or other relevant performance measures, by
  6015. checking the assumptions made by each preprocessing step and choosing specific
  6016. normalization methods tailored to the specific goals of the current analysis.
  6017. \end_layout
  6018. \begin_layout Subsection
  6019. Clinical diagnostic applications for microarrays require single-channel
  6020. normalization
  6021. \end_layout
  6022. \begin_layout Standard
  6023. As the cost of performing microarray assays falls, there is increasing interest
  6024. in using genomic assays for diagnostic purposes, such as distinguishing
  6025. healthy transplants (TX) from transplants undergoing acute rejection (AR)
  6026. or acute dysfunction with no rejection (ADNR).
  6027. However, the the standard normalization algorithm used for microarray data,
  6028. Robust Multi-chip Average (RMA)
  6029. \begin_inset CommandInset citation
  6030. LatexCommand cite
  6031. key "Irizarry2003a"
  6032. literal "false"
  6033. \end_inset
  6034. , is not applicable in a clinical setting.
  6035. Two of the steps in RMA, quantile normalization and probe summarization
  6036. by median polish, depend on every array in the data set being normalized.
  6037. This means that adding or removing any arrays from a data set changes the
  6038. normalized values for all arrays, and data sets that have been normalized
  6039. separately cannot be compared to each other.
  6040. Hence, when using RMA, any arrays to be analyzed together must also be
  6041. normalized together, and the set of arrays included in the data set must
  6042. be held constant throughout an analysis.
  6043. \end_layout
  6044. \begin_layout Standard
  6045. These limitations present serious impediments to the use of arrays as a
  6046. diagnostic tool.
  6047. When training a classifier, the samples to be classified must not be involved
  6048. in any step of the training process, lest their inclusion bias the training
  6049. process.
  6050. Once a classifier is deployed in a clinical setting, the samples to be
  6051. classified will not even
  6052. \emph on
  6053. exist
  6054. \emph default
  6055. at the time of training, so including them would be impossible even if
  6056. it were statistically justifiable.
  6057. Therefore, any machine learning application for microarrays demands that
  6058. the normalized expression values computed for an array must depend only
  6059. on information contained within that array.
  6060. This would ensure that each array's normalization is independent of every
  6061. other array, and that arrays normalized separately can still be compared
  6062. to each other without bias.
  6063. Such a normalization is commonly referred to as
  6064. \begin_inset Quotes eld
  6065. \end_inset
  6066. single-channel normalization
  6067. \begin_inset Quotes erd
  6068. \end_inset
  6069. .
  6070. \end_layout
  6071. \begin_layout Standard
  6072. Frozen RMA (fRMA) addresses these concerns by replacing the quantile normalizati
  6073. on and median polish with alternatives that do not introduce inter-array
  6074. dependence, allowing each array to be normalized independently of all others
  6075. \begin_inset CommandInset citation
  6076. LatexCommand cite
  6077. key "McCall2010"
  6078. literal "false"
  6079. \end_inset
  6080. .
  6081. Quantile normalization is performed against a pre-generated set of quantiles
  6082. learned from a collection of 850 publicly available arrays sampled from
  6083. a wide variety of tissues in the Gene Expression Omnibus (GEO).
  6084. Each array's probe intensity distribution is normalized against these pre-gener
  6085. ated quantiles.
  6086. The median polish step is replaced with a robust weighted average of probe
  6087. intensities, using inverse variance weights learned from the same public
  6088. GEO data.
  6089. The result is a normalization that satisfies the requirements mentioned
  6090. above: each array is normalized independently of all others, and any two
  6091. normalized arrays can be compared directly to each other.
  6092. \end_layout
  6093. \begin_layout Standard
  6094. One important limitation of fRMA is that it requires a separate reference
  6095. data set from which to learn the parameters (reference quantiles and probe
  6096. weights) that will be used to normalize each array.
  6097. These parameters are specific to a given array platform, and pre-generated
  6098. parameters are only provided for the most common platforms, such as Affymetrix
  6099. hgu133plus2.
  6100. For a less common platform, such as hthgu133pluspm, is is necessary to
  6101. learn custom parameters from in-house data before fRMA can be used to normalize
  6102. samples on that platform
  6103. \begin_inset CommandInset citation
  6104. LatexCommand cite
  6105. key "McCall2011"
  6106. literal "false"
  6107. \end_inset
  6108. .
  6109. \end_layout
  6110. \begin_layout Standard
  6111. One other option is the aptly-named Single Channel Array Normalization (SCAN),
  6112. which adapts a normalization method originally designed for tiling arrays
  6113. \begin_inset CommandInset citation
  6114. LatexCommand cite
  6115. key "Piccolo2012"
  6116. literal "false"
  6117. \end_inset
  6118. .
  6119. SCAN is truly single-channel in that it does not require a set of normalization
  6120. parameters estimated from an external set of reference samples like fRMA
  6121. does.
  6122. \end_layout
  6123. \begin_layout Subsection
  6124. Heteroskedasticity must be accounted for in methylation array data
  6125. \end_layout
  6126. \begin_layout Standard
  6127. DNA methylation arrays are a relatively new kind of assay that uses microarrays
  6128. to measure the degree of methylation on cytosines in specific regions arrayed
  6129. across the genome.
  6130. First, bisulfite treatment converts all unmethylated cytosines to uracil
  6131. (which then become thymine after amplification) while leaving methylated
  6132. cytosines unaffected.
  6133. Then, each target region is interrogated with two probes: one binds to
  6134. the original genomic sequence and interrogates the level of methylated
  6135. DNA, and the other binds to the same sequence with all cytosines replaced
  6136. by thymidines and interrogates the level of unmethylated DNA.
  6137. \end_layout
  6138. \begin_layout Standard
  6139. \begin_inset Float figure
  6140. wide false
  6141. sideways false
  6142. status collapsed
  6143. \begin_layout Plain Layout
  6144. \align center
  6145. \begin_inset Graphics
  6146. filename graphics/methylvoom/sigmoid.pdf
  6147. lyxscale 50
  6148. width 60col%
  6149. groupId colwidth
  6150. \end_inset
  6151. \end_layout
  6152. \begin_layout Plain Layout
  6153. \begin_inset Caption Standard
  6154. \begin_layout Plain Layout
  6155. \begin_inset CommandInset label
  6156. LatexCommand label
  6157. name "fig:Sigmoid-beta-m-mapping"
  6158. \end_inset
  6159. \series bold
  6160. Sigmoid shape of the mapping between β and M values
  6161. \end_layout
  6162. \end_inset
  6163. \end_layout
  6164. \end_inset
  6165. \end_layout
  6166. \begin_layout Standard
  6167. After normalization, these two probe intensities are summarized in one of
  6168. two ways, each with advantages and disadvantages.
  6169. β
  6170. \series bold
  6171. \series default
  6172. values, interpreted as fraction of DNA copies methylated, range from 0 to
  6173. 1.
  6174. β
  6175. \series bold
  6176. \series default
  6177. values are conceptually easy to interpret, but the constrained range makes
  6178. them unsuitable for linear modeling, and their error distributions are
  6179. highly non-normal, which also frustrates linear modeling.
  6180. M-values, interpreted as the log ratio of methylated to unmethylated copies,
  6181. are computed by mapping the beta values from
  6182. \begin_inset Formula $[0,1]$
  6183. \end_inset
  6184. onto
  6185. \begin_inset Formula $(-\infty,+\infty)$
  6186. \end_inset
  6187. using a sigmoid curve (Figure
  6188. \begin_inset CommandInset ref
  6189. LatexCommand ref
  6190. reference "fig:Sigmoid-beta-m-mapping"
  6191. plural "false"
  6192. caps "false"
  6193. noprefix "false"
  6194. \end_inset
  6195. ).
  6196. This transformation results in values with better statistical properties:
  6197. the unconstrained range is suitable for linear modeling, and the error
  6198. distributions are more normal.
  6199. Hence, most linear modeling and other statistical testing on methylation
  6200. arrays is performed using M-values.
  6201. \end_layout
  6202. \begin_layout Standard
  6203. However, the steep slope of the sigmoid transformation near 0 and 1 tends
  6204. to over-exaggerate small differences in β values near those extremes, which
  6205. in turn amplifies the error in those values, leading to a U-shaped trend
  6206. in the mean-variance curve: extreme values have higher variances than values
  6207. near the middle.
  6208. This mean-variance dependency must be accounted for when fitting the linear
  6209. model for differential methylation, or else the variance will be systematically
  6210. overestimated for probes with moderate M-values and underestimated for
  6211. probes with extreme M-values.
  6212. This is particularly undesirable for methylation data because the intermediate
  6213. M-values are the ones of most interest, since they are more likely to represent
  6214. areas of varying methylation, whereas extreme M-values typically represent
  6215. complete methylation or complete lack of methylation.
  6216. \end_layout
  6217. \begin_layout Standard
  6218. RNA-seq read count data are also known to show heteroskedasticity, and the
  6219. voom method was introduced for modeling this heteroskedasticity by estimating
  6220. the mean-variance trend in the data and using this trend to assign precision
  6221. weights to each observation
  6222. \begin_inset CommandInset citation
  6223. LatexCommand cite
  6224. key "Law2013"
  6225. literal "false"
  6226. \end_inset
  6227. .
  6228. While methylation array data are not derived from counts and have a very
  6229. different mean-variance relationship from that of typical RNA-seq data,
  6230. the voom method makes no specific assumptions on the shape of the mean-variance
  6231. relationship – it only assumes that the relationship can be modeled as
  6232. a smooth curve.
  6233. Hence, the method is sufficiently general to model the mean-variance relationsh
  6234. ip in methylation array data.
  6235. However, the standard implementation of voom assumes that the input is
  6236. given in raw read counts, and it must be adapted to run on methylation
  6237. M-values.
  6238. \end_layout
  6239. \begin_layout Section
  6240. Methods
  6241. \end_layout
  6242. \begin_layout Subsection
  6243. Evaluation of classifier performance with different normalization methods
  6244. \end_layout
  6245. \begin_layout Standard
  6246. For testing different expression microarray normalizations, a data set of
  6247. 157 hgu133plus2 arrays was used, consisting of blood samples from kidney
  6248. transplant patients whose grafts had been graded as TX, AR, or ADNR via
  6249. biopsy and histology (46 TX, 69 AR, 42 ADNR)
  6250. \begin_inset CommandInset citation
  6251. LatexCommand cite
  6252. key "Kurian2014"
  6253. literal "true"
  6254. \end_inset
  6255. .
  6256. Additionally, an external validation set of 75 samples was gathered from
  6257. public GEO data (37 TX, 38 AR, no ADNR).
  6258. \end_layout
  6259. \begin_layout Standard
  6260. \begin_inset Flex TODO Note (inline)
  6261. status open
  6262. \begin_layout Plain Layout
  6263. Find appropriate GEO identifiers if possible.
  6264. Kurian 2014 says GSE15296, but this seems to be different data.
  6265. I also need to look up the GEO accession for the external validation set.
  6266. \end_layout
  6267. \end_inset
  6268. \end_layout
  6269. \begin_layout Standard
  6270. To evaluate the effect of each normalization on classifier performance,
  6271. the same classifier training and validation procedure was used after each
  6272. normalization method.
  6273. The PAM package was used to train a nearest shrunken centroid classifier
  6274. on the training set and select the appropriate threshold for centroid shrinking.
  6275. Then the trained classifier was used to predict the class probabilities
  6276. of each validation sample.
  6277. From these class probabilities, ROC curves and area-under-curve (AUC) values
  6278. were generated
  6279. \begin_inset CommandInset citation
  6280. LatexCommand cite
  6281. key "Turck2011"
  6282. literal "false"
  6283. \end_inset
  6284. .
  6285. Each normalization was tested on two different sets of training and validation
  6286. samples.
  6287. For internal validation, the 115 TX and AR arrays in the internal set were
  6288. split at random into two equal sized sets, one for training and one for
  6289. validation, each containing the same numbers of TX and AR samples as the
  6290. other set.
  6291. For external validation, the full set of 115 TX and AR samples were used
  6292. as a training set, and the 75 external TX and AR samples were used as the
  6293. validation set.
  6294. Thus, 2 ROC curves and AUC values were generated for each normalization
  6295. method: one internal and one external.
  6296. Because the external validation set contains no ADNR samples, only classificati
  6297. on of TX and AR samples was considered.
  6298. The ADNR samples were included during normalization but excluded from all
  6299. classifier training and validation.
  6300. This ensures that the performance on internal and external validation sets
  6301. is directly comparable, since both are performing the same task: distinguishing
  6302. TX from AR.
  6303. \end_layout
  6304. \begin_layout Standard
  6305. \begin_inset Flex TODO Note (inline)
  6306. status open
  6307. \begin_layout Plain Layout
  6308. Summarize the get.best.threshold algorithm for PAM threshold selection, or
  6309. just put the code online?
  6310. \end_layout
  6311. \end_inset
  6312. \end_layout
  6313. \begin_layout Standard
  6314. Six different normalization strategies were evaluated.
  6315. First, 2 well-known non-single-channel normalization methods were considered:
  6316. RMA and dChip
  6317. \begin_inset CommandInset citation
  6318. LatexCommand cite
  6319. key "Li2001,Irizarry2003a"
  6320. literal "false"
  6321. \end_inset
  6322. .
  6323. Since RMA produces expression values on a log2 scale and dChip does not,
  6324. the values from dChip were log2 transformed after normalization.
  6325. Next, RMA and dChip followed by Global Rank-invariant Set Normalization
  6326. (GRSN) were tested
  6327. \begin_inset CommandInset citation
  6328. LatexCommand cite
  6329. key "Pelz2008"
  6330. literal "false"
  6331. \end_inset
  6332. .
  6333. Post-processing with GRSN does not turn RMA or dChip into single-channel
  6334. methods, but it may help mitigate batch effects and is therefore useful
  6335. as a benchmark.
  6336. Lastly, the two single-channel normalization methods, fRMA and SCAN, were
  6337. tested
  6338. \begin_inset CommandInset citation
  6339. LatexCommand cite
  6340. key "McCall2010,Piccolo2012"
  6341. literal "false"
  6342. \end_inset
  6343. .
  6344. When evaluating internal validation performance, only the 157 internal
  6345. samples were normalized; when evaluating external validation performance,
  6346. all 157 internal samples and 75 external samples were normalized together.
  6347. \end_layout
  6348. \begin_layout Standard
  6349. For demonstrating the problem with separate normalization of training and
  6350. validation data, one additional normalization was performed: the internal
  6351. and external sets were each normalized separately using RMA, and the normalized
  6352. data for each set were combined into a single set with no further attempts
  6353. at normalizing between the two sets.
  6354. The represents approximately how RMA would have to be used in a clinical
  6355. setting, where the samples to be classified are not available at the time
  6356. the classifier is trained.
  6357. \end_layout
  6358. \begin_layout Subsection
  6359. Generating custom fRMA vectors for hthgu133pluspm array platform
  6360. \end_layout
  6361. \begin_layout Standard
  6362. In order to enable fRMA normalization for the hthgu133pluspm array platform,
  6363. custom fRMA normalization vectors were trained using the
  6364. \begin_inset Flex Code
  6365. status open
  6366. \begin_layout Plain Layout
  6367. frmaTools
  6368. \end_layout
  6369. \end_inset
  6370. package
  6371. \begin_inset CommandInset citation
  6372. LatexCommand cite
  6373. key "McCall2011"
  6374. literal "false"
  6375. \end_inset
  6376. .
  6377. Separate vectors were created for two types of samples: kidney graft biopsy
  6378. samples and blood samples from graft recipients.
  6379. For training, a 341 kidney biopsy samples from 2 data sets and 965 blood
  6380. samples from 5 data sets were used as the reference set.
  6381. Arrays were groups into batches based on unique combinations of sample
  6382. type (blood or biopsy), diagnosis (TX, AR, etc.), data set, and scan date.
  6383. Thus, each batch represents arrays of the same kind that were run together
  6384. on the same day.
  6385. For estimating the probe inverse variance weights, frmaTools requires equal-siz
  6386. ed batches, which means a batch size must be chosen, and then batches smaller
  6387. than that size must be ignored, while batches larger than the chosen size
  6388. must be downsampled.
  6389. This downsampling is performed randomly, so the sampling process is repeated
  6390. 5 times and the resulting normalizations are compared to each other.
  6391. \end_layout
  6392. \begin_layout Standard
  6393. To evaluate the consistency of the generated normalization vectors, the
  6394. 5 fRMA vector sets generated from 5 random batch samplings were each used
  6395. to normalize the same 20 randomly selected samples from each tissue.
  6396. Then the normalized expression values for each probe on each array were
  6397. compared across all normalizations.
  6398. Each fRMA normalization was also compared against the normalized expression
  6399. values obtained by normalizing the same 20 samples with ordinary RMA.
  6400. \end_layout
  6401. \begin_layout Subsection
  6402. Modeling methylation array M-value heteroskedasticy in linear models with
  6403. modified voom implementation
  6404. \end_layout
  6405. \begin_layout Standard
  6406. \begin_inset Flex TODO Note (inline)
  6407. status open
  6408. \begin_layout Plain Layout
  6409. Put code on Github and reference it.
  6410. \end_layout
  6411. \end_inset
  6412. \end_layout
  6413. \begin_layout Standard
  6414. To investigate the whether DNA methylation could be used to distinguish
  6415. between healthy and dysfunctional transplants, a data set of 78 Illumina
  6416. 450k methylation arrays from human kidney graft biopsies was analyzed for
  6417. differential methylation between 4 transplant statuses: healthy transplant
  6418. (TX), transplants undergoing acute rejection (AR), acute dysfunction with
  6419. no rejection (ADNR), and chronic allograft nephropathy (CAN).
  6420. The data consisted of 33 TX, 9 AR, 8 ADNR, and 28 CAN samples.
  6421. The uneven group sizes are a result of taking the biopsy samples before
  6422. the eventual fate of the transplant was known.
  6423. Each sample was additionally annotated with a donor ID (anonymized), Sex,
  6424. Age, Ethnicity, Creatinine Level, and Diabetes diagnosis (all samples in
  6425. this data set came from patients with either Type 1 or Type 2 diabetes).
  6426. \end_layout
  6427. \begin_layout Standard
  6428. The intensity data were first normalized using subset-quantile within array
  6429. normalization (SWAN)
  6430. \begin_inset CommandInset citation
  6431. LatexCommand cite
  6432. key "Maksimovic2012"
  6433. literal "false"
  6434. \end_inset
  6435. , then converted to intensity ratios (beta values)
  6436. \begin_inset CommandInset citation
  6437. LatexCommand cite
  6438. key "Aryee2014"
  6439. literal "false"
  6440. \end_inset
  6441. .
  6442. Any probes binding to loci that overlapped annotated SNPs were dropped,
  6443. and the annotated sex of each sample was verified against the sex inferred
  6444. from the ratio of median probe intensities for the X and Y chromosomes.
  6445. Then, the ratios were transformed to M-values.
  6446. \end_layout
  6447. \begin_layout Standard
  6448. \begin_inset Float table
  6449. wide false
  6450. sideways false
  6451. status open
  6452. \begin_layout Plain Layout
  6453. \align center
  6454. \begin_inset Tabular
  6455. <lyxtabular version="3" rows="4" columns="6">
  6456. <features tabularvalignment="middle">
  6457. <column alignment="center" valignment="top">
  6458. <column alignment="center" valignment="top">
  6459. <column alignment="center" valignment="top">
  6460. <column alignment="center" valignment="top">
  6461. <column alignment="center" valignment="top">
  6462. <column alignment="center" valignment="top">
  6463. <row>
  6464. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6465. \begin_inset Text
  6466. \begin_layout Plain Layout
  6467. Analysis
  6468. \end_layout
  6469. \end_inset
  6470. </cell>
  6471. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6472. \begin_inset Text
  6473. \begin_layout Plain Layout
  6474. random effect
  6475. \end_layout
  6476. \end_inset
  6477. </cell>
  6478. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6479. \begin_inset Text
  6480. \begin_layout Plain Layout
  6481. eBayes
  6482. \end_layout
  6483. \end_inset
  6484. </cell>
  6485. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6486. \begin_inset Text
  6487. \begin_layout Plain Layout
  6488. SVA
  6489. \end_layout
  6490. \end_inset
  6491. </cell>
  6492. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6493. \begin_inset Text
  6494. \begin_layout Plain Layout
  6495. weights
  6496. \end_layout
  6497. \end_inset
  6498. </cell>
  6499. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  6500. \begin_inset Text
  6501. \begin_layout Plain Layout
  6502. voom
  6503. \end_layout
  6504. \end_inset
  6505. </cell>
  6506. </row>
  6507. <row>
  6508. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6509. \begin_inset Text
  6510. \begin_layout Plain Layout
  6511. A
  6512. \end_layout
  6513. \end_inset
  6514. </cell>
  6515. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6516. \begin_inset Text
  6517. \begin_layout Plain Layout
  6518. Yes
  6519. \end_layout
  6520. \end_inset
  6521. </cell>
  6522. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6523. \begin_inset Text
  6524. \begin_layout Plain Layout
  6525. Yes
  6526. \end_layout
  6527. \end_inset
  6528. </cell>
  6529. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6530. \begin_inset Text
  6531. \begin_layout Plain Layout
  6532. No
  6533. \end_layout
  6534. \end_inset
  6535. </cell>
  6536. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6537. \begin_inset Text
  6538. \begin_layout Plain Layout
  6539. No
  6540. \end_layout
  6541. \end_inset
  6542. </cell>
  6543. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  6544. \begin_inset Text
  6545. \begin_layout Plain Layout
  6546. No
  6547. \end_layout
  6548. \end_inset
  6549. </cell>
  6550. </row>
  6551. <row>
  6552. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6553. \begin_inset Text
  6554. \begin_layout Plain Layout
  6555. B
  6556. \end_layout
  6557. \end_inset
  6558. </cell>
  6559. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6560. \begin_inset Text
  6561. \begin_layout Plain Layout
  6562. Yes
  6563. \end_layout
  6564. \end_inset
  6565. </cell>
  6566. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6567. \begin_inset Text
  6568. \begin_layout Plain Layout
  6569. Yes
  6570. \end_layout
  6571. \end_inset
  6572. </cell>
  6573. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6574. \begin_inset Text
  6575. \begin_layout Plain Layout
  6576. Yes
  6577. \end_layout
  6578. \end_inset
  6579. </cell>
  6580. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6581. \begin_inset Text
  6582. \begin_layout Plain Layout
  6583. Yes
  6584. \end_layout
  6585. \end_inset
  6586. </cell>
  6587. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  6588. \begin_inset Text
  6589. \begin_layout Plain Layout
  6590. No
  6591. \end_layout
  6592. \end_inset
  6593. </cell>
  6594. </row>
  6595. <row>
  6596. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6597. \begin_inset Text
  6598. \begin_layout Plain Layout
  6599. C
  6600. \end_layout
  6601. \end_inset
  6602. </cell>
  6603. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6604. \begin_inset Text
  6605. \begin_layout Plain Layout
  6606. Yes
  6607. \end_layout
  6608. \end_inset
  6609. </cell>
  6610. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6611. \begin_inset Text
  6612. \begin_layout Plain Layout
  6613. Yes
  6614. \end_layout
  6615. \end_inset
  6616. </cell>
  6617. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6618. \begin_inset Text
  6619. \begin_layout Plain Layout
  6620. Yes
  6621. \end_layout
  6622. \end_inset
  6623. </cell>
  6624. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6625. \begin_inset Text
  6626. \begin_layout Plain Layout
  6627. Yes
  6628. \end_layout
  6629. \end_inset
  6630. </cell>
  6631. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  6632. \begin_inset Text
  6633. \begin_layout Plain Layout
  6634. Yes
  6635. \end_layout
  6636. \end_inset
  6637. </cell>
  6638. </row>
  6639. </lyxtabular>
  6640. \end_inset
  6641. \end_layout
  6642. \begin_layout Plain Layout
  6643. \begin_inset Caption Standard
  6644. \begin_layout Plain Layout
  6645. \series bold
  6646. \begin_inset CommandInset label
  6647. LatexCommand label
  6648. name "tab:Summary-of-meth-analysis"
  6649. \end_inset
  6650. Summary of analysis variants for methylation array data.
  6651. \series default
  6652. Each analysis included a different set of steps to adjust or account for
  6653. various systematic features of the data.
  6654. Random effect: The model included a random effect accounting for correlation
  6655. between samples from the same patient
  6656. \begin_inset CommandInset citation
  6657. LatexCommand cite
  6658. key "Smyth2005a"
  6659. literal "false"
  6660. \end_inset
  6661. ; eBayes: Empirical bayes squeezing of per-probe variances toward the mean-varia
  6662. nce trend
  6663. \begin_inset CommandInset citation
  6664. LatexCommand cite
  6665. key "Ritchie2015"
  6666. literal "false"
  6667. \end_inset
  6668. ; SVA: Surrogate variable analysis to account for unobserved confounders
  6669. \begin_inset CommandInset citation
  6670. LatexCommand cite
  6671. key "Leek2007"
  6672. literal "false"
  6673. \end_inset
  6674. ; Weights: Estimate sample weights to account for differences in sample
  6675. quality
  6676. \begin_inset CommandInset citation
  6677. LatexCommand cite
  6678. key "Liu2015,Ritchie2006"
  6679. literal "false"
  6680. \end_inset
  6681. ; voom: Use mean-variance trend to assign individual sample weights
  6682. \begin_inset CommandInset citation
  6683. LatexCommand cite
  6684. key "Law2013"
  6685. literal "false"
  6686. \end_inset
  6687. .
  6688. See the text for a more detailed explanation of each step.
  6689. \end_layout
  6690. \end_inset
  6691. \end_layout
  6692. \end_inset
  6693. \end_layout
  6694. \begin_layout Standard
  6695. From the M-values, a series of parallel analyses was performed, each adding
  6696. additional steps into the model fit to accommodate a feature of the data
  6697. (see Table
  6698. \begin_inset CommandInset ref
  6699. LatexCommand ref
  6700. reference "tab:Summary-of-meth-analysis"
  6701. plural "false"
  6702. caps "false"
  6703. noprefix "false"
  6704. \end_inset
  6705. ).
  6706. For analysis A, a
  6707. \begin_inset Quotes eld
  6708. \end_inset
  6709. basic
  6710. \begin_inset Quotes erd
  6711. \end_inset
  6712. linear modeling analysis was performed, compensating for known confounders
  6713. by including terms for the factor of interest (transplant status) as well
  6714. as the known biological confounders: sex, age, ethnicity, and diabetes.
  6715. Since some samples came from the same patients at different times, the
  6716. intra-patient correlation was modeled as a random effect, estimating a
  6717. shared correlation value across all probes
  6718. \begin_inset CommandInset citation
  6719. LatexCommand cite
  6720. key "Smyth2005a"
  6721. literal "false"
  6722. \end_inset
  6723. .
  6724. Then the linear model was fit, and the variance was modeled using empirical
  6725. Bayes squeezing toward the mean-variance trend
  6726. \begin_inset CommandInset citation
  6727. LatexCommand cite
  6728. key "Ritchie2015"
  6729. literal "false"
  6730. \end_inset
  6731. .
  6732. Finally, t-tests or F-tests were performed as appropriate for each test:
  6733. t-tests for single contrasts, and F-tests for multiple contrasts.
  6734. P-values were corrected for multiple testing using the Benjamini-Hochberg
  6735. procedure for FDR control
  6736. \begin_inset CommandInset citation
  6737. LatexCommand cite
  6738. key "Benjamini1995"
  6739. literal "false"
  6740. \end_inset
  6741. .
  6742. \end_layout
  6743. \begin_layout Standard
  6744. For the analysis B, surrogate variable analysis (SVA) was used to infer
  6745. additional unobserved sources of heterogeneity in the data
  6746. \begin_inset CommandInset citation
  6747. LatexCommand cite
  6748. key "Leek2007"
  6749. literal "false"
  6750. \end_inset
  6751. .
  6752. These surrogate variables were added to the design matrix before fitting
  6753. the linear model.
  6754. In addition, sample quality weights were estimated from the data and used
  6755. during linear modeling to down-weight the contribution of highly variable
  6756. arrays while increasing the weight to arrays with lower variability
  6757. \begin_inset CommandInset citation
  6758. LatexCommand cite
  6759. key "Ritchie2006"
  6760. literal "false"
  6761. \end_inset
  6762. .
  6763. The remainder of the analysis proceeded as in analysis A.
  6764. For analysis C, the voom method was adapted to run on methylation array
  6765. data and used to model and correct for the mean-variance trend using individual
  6766. observation weights
  6767. \begin_inset CommandInset citation
  6768. LatexCommand cite
  6769. key "Law2013"
  6770. literal "false"
  6771. \end_inset
  6772. , which were combined with the sample weights
  6773. \begin_inset CommandInset citation
  6774. LatexCommand cite
  6775. key "Liu2015,Ritchie2006"
  6776. literal "false"
  6777. \end_inset
  6778. .
  6779. Each time weights were used, they were estimated once before estimating
  6780. the random effect correlation value, and then the weights were re-estimated
  6781. taking the random effect into account.
  6782. The remainder of the analysis proceeded as in analysis B.
  6783. \end_layout
  6784. \begin_layout Section
  6785. Results
  6786. \end_layout
  6787. \begin_layout Standard
  6788. \begin_inset Flex TODO Note (inline)
  6789. status open
  6790. \begin_layout Plain Layout
  6791. Improve subsection titles in this section.
  6792. \end_layout
  6793. \end_inset
  6794. \end_layout
  6795. \begin_layout Standard
  6796. \begin_inset Flex TODO Note (inline)
  6797. status open
  6798. \begin_layout Plain Layout
  6799. Reconsider subsection organization?
  6800. \end_layout
  6801. \end_inset
  6802. \end_layout
  6803. \begin_layout Subsection
  6804. Separate normalization with RMA introduces unwanted biases in classification
  6805. \end_layout
  6806. \begin_layout Standard
  6807. \begin_inset Float figure
  6808. wide false
  6809. sideways false
  6810. status open
  6811. \begin_layout Plain Layout
  6812. \align center
  6813. \begin_inset Graphics
  6814. filename graphics/PAM/predplot.pdf
  6815. lyxscale 50
  6816. width 60col%
  6817. groupId colwidth
  6818. \end_inset
  6819. \end_layout
  6820. \begin_layout Plain Layout
  6821. \begin_inset Caption Standard
  6822. \begin_layout Plain Layout
  6823. \begin_inset CommandInset label
  6824. LatexCommand label
  6825. name "fig:Classifier-probabilities-RMA"
  6826. \end_inset
  6827. \series bold
  6828. Classifier probabilities on validation samples when normalized with RMA
  6829. together vs.
  6830. separately.
  6831. \series default
  6832. The PAM classifier algorithm was trained on the training set of arrays to
  6833. distinguish AR from TX and then used to assign class probabilities to the
  6834. validation set.
  6835. The process was performed after normalizing all samples together and after
  6836. normalizing the training and test sets separately, and the class probabilities
  6837. assigned to each sample in the validation set were plotted against each
  6838. other (PP(AR), posterior probability of being AR).
  6839. The color of each point indicates the true classification of that sample.
  6840. \end_layout
  6841. \end_inset
  6842. \end_layout
  6843. \end_inset
  6844. \end_layout
  6845. \begin_layout Standard
  6846. To demonstrate the problem with non-single-channel normalization methods,
  6847. we considered the problem of training a classifier to distinguish TX from
  6848. AR using the samples from the internal set as training data, evaluating
  6849. performance on the external set.
  6850. First, training and evaluation were performed after normalizing all array
  6851. samples together as a single set using RMA, and second, the internal samples
  6852. were normalized separately from the external samples and the training and
  6853. evaluation were repeated.
  6854. For each sample in the validation set, the classifier probabilities from
  6855. both classifiers were plotted against each other (Fig.
  6856. \begin_inset CommandInset ref
  6857. LatexCommand ref
  6858. reference "fig:Classifier-probabilities-RMA"
  6859. plural "false"
  6860. caps "false"
  6861. noprefix "false"
  6862. \end_inset
  6863. ).
  6864. As expected, separate normalization biases the classifier probabilities,
  6865. resulting in several misclassifications.
  6866. In this case, the bias from separate normalization causes the classifier
  6867. to assign a lower probability of AR to every sample.
  6868. \end_layout
  6869. \begin_layout Subsection
  6870. fRMA and SCAN maintain classification performance while eliminating dependence
  6871. on normalization strategy
  6872. \end_layout
  6873. \begin_layout Standard
  6874. \begin_inset Float figure
  6875. wide false
  6876. sideways false
  6877. status open
  6878. \begin_layout Plain Layout
  6879. \align center
  6880. \begin_inset Float figure
  6881. placement tb
  6882. wide false
  6883. sideways false
  6884. status open
  6885. \begin_layout Plain Layout
  6886. \align center
  6887. \begin_inset Graphics
  6888. filename graphics/PAM/ROC-TXvsAR-internal.pdf
  6889. lyxscale 50
  6890. height 40theight%
  6891. groupId roc-pam
  6892. \end_inset
  6893. \end_layout
  6894. \begin_layout Plain Layout
  6895. \begin_inset Caption Standard
  6896. \begin_layout Plain Layout
  6897. \begin_inset CommandInset label
  6898. LatexCommand label
  6899. name "fig:ROC-PAM-int"
  6900. \end_inset
  6901. ROC curves for PAM on internal validation data
  6902. \end_layout
  6903. \end_inset
  6904. \end_layout
  6905. \end_inset
  6906. \end_layout
  6907. \begin_layout Plain Layout
  6908. \align center
  6909. \begin_inset Float figure
  6910. placement tb
  6911. wide false
  6912. sideways false
  6913. status open
  6914. \begin_layout Plain Layout
  6915. \align center
  6916. \begin_inset Graphics
  6917. filename graphics/PAM/ROC-TXvsAR-external.pdf
  6918. lyxscale 50
  6919. height 40theight%
  6920. groupId roc-pam
  6921. \end_inset
  6922. \end_layout
  6923. \begin_layout Plain Layout
  6924. \begin_inset Caption Standard
  6925. \begin_layout Plain Layout
  6926. \begin_inset CommandInset label
  6927. LatexCommand label
  6928. name "fig:ROC-PAM-ext"
  6929. \end_inset
  6930. ROC curves for PAM on external validation data
  6931. \end_layout
  6932. \end_inset
  6933. \end_layout
  6934. \end_inset
  6935. \end_layout
  6936. \begin_layout Plain Layout
  6937. \begin_inset Caption Standard
  6938. \begin_layout Plain Layout
  6939. \series bold
  6940. \begin_inset CommandInset label
  6941. LatexCommand label
  6942. name "fig:ROC-PAM-main"
  6943. \end_inset
  6944. ROC curves for PAM using different normalization strategies.
  6945. \series default
  6946. ROC curves were generated for PAM classification of AR vs TX after 6 different
  6947. normalization strategies applied to the same data sets.
  6948. Only fRMA and SCAN are single-channel normalizations.
  6949. The other normalizations are for comparison.
  6950. \end_layout
  6951. \end_inset
  6952. \end_layout
  6953. \end_inset
  6954. \end_layout
  6955. \begin_layout Standard
  6956. \begin_inset Float table
  6957. wide false
  6958. sideways false
  6959. status open
  6960. \begin_layout Plain Layout
  6961. \align center
  6962. \begin_inset Tabular
  6963. <lyxtabular version="3" rows="7" columns="4">
  6964. <features tabularvalignment="middle">
  6965. <column alignment="center" valignment="top">
  6966. <column alignment="center" valignment="top">
  6967. <column alignment="center" valignment="top">
  6968. <column alignment="center" valignment="top">
  6969. <row>
  6970. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6971. \begin_inset Text
  6972. \begin_layout Plain Layout
  6973. \family roman
  6974. \series medium
  6975. \shape up
  6976. \size normal
  6977. \emph off
  6978. \bar no
  6979. \strikeout off
  6980. \xout off
  6981. \uuline off
  6982. \uwave off
  6983. \noun off
  6984. \color none
  6985. Normalization
  6986. \end_layout
  6987. \end_inset
  6988. </cell>
  6989. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6990. \begin_inset Text
  6991. \begin_layout Plain Layout
  6992. Single-channel?
  6993. \end_layout
  6994. \end_inset
  6995. </cell>
  6996. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6997. \begin_inset Text
  6998. \begin_layout Plain Layout
  6999. \family roman
  7000. \series medium
  7001. \shape up
  7002. \size normal
  7003. \emph off
  7004. \bar no
  7005. \strikeout off
  7006. \xout off
  7007. \uuline off
  7008. \uwave off
  7009. \noun off
  7010. \color none
  7011. Internal Val.
  7012. AUC
  7013. \end_layout
  7014. \end_inset
  7015. </cell>
  7016. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  7017. \begin_inset Text
  7018. \begin_layout Plain Layout
  7019. External Val.
  7020. AUC
  7021. \end_layout
  7022. \end_inset
  7023. </cell>
  7024. </row>
  7025. <row>
  7026. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7027. \begin_inset Text
  7028. \begin_layout Plain Layout
  7029. \family roman
  7030. \series medium
  7031. \shape up
  7032. \size normal
  7033. \emph off
  7034. \bar no
  7035. \strikeout off
  7036. \xout off
  7037. \uuline off
  7038. \uwave off
  7039. \noun off
  7040. \color none
  7041. RMA
  7042. \end_layout
  7043. \end_inset
  7044. </cell>
  7045. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7046. \begin_inset Text
  7047. \begin_layout Plain Layout
  7048. No
  7049. \end_layout
  7050. \end_inset
  7051. </cell>
  7052. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7053. \begin_inset Text
  7054. \begin_layout Plain Layout
  7055. \family roman
  7056. \series medium
  7057. \shape up
  7058. \size normal
  7059. \emph off
  7060. \bar no
  7061. \strikeout off
  7062. \xout off
  7063. \uuline off
  7064. \uwave off
  7065. \noun off
  7066. \color none
  7067. 0.852
  7068. \end_layout
  7069. \end_inset
  7070. </cell>
  7071. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  7072. \begin_inset Text
  7073. \begin_layout Plain Layout
  7074. \family roman
  7075. \series medium
  7076. \shape up
  7077. \size normal
  7078. \emph off
  7079. \bar no
  7080. \strikeout off
  7081. \xout off
  7082. \uuline off
  7083. \uwave off
  7084. \noun off
  7085. \color none
  7086. 0.713
  7087. \end_layout
  7088. \end_inset
  7089. </cell>
  7090. </row>
  7091. <row>
  7092. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7093. \begin_inset Text
  7094. \begin_layout Plain Layout
  7095. \family roman
  7096. \series medium
  7097. \shape up
  7098. \size normal
  7099. \emph off
  7100. \bar no
  7101. \strikeout off
  7102. \xout off
  7103. \uuline off
  7104. \uwave off
  7105. \noun off
  7106. \color none
  7107. dChip
  7108. \end_layout
  7109. \end_inset
  7110. </cell>
  7111. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7112. \begin_inset Text
  7113. \begin_layout Plain Layout
  7114. No
  7115. \end_layout
  7116. \end_inset
  7117. </cell>
  7118. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7119. \begin_inset Text
  7120. \begin_layout Plain Layout
  7121. \family roman
  7122. \series medium
  7123. \shape up
  7124. \size normal
  7125. \emph off
  7126. \bar no
  7127. \strikeout off
  7128. \xout off
  7129. \uuline off
  7130. \uwave off
  7131. \noun off
  7132. \color none
  7133. 0.891
  7134. \end_layout
  7135. \end_inset
  7136. </cell>
  7137. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  7138. \begin_inset Text
  7139. \begin_layout Plain Layout
  7140. \family roman
  7141. \series medium
  7142. \shape up
  7143. \size normal
  7144. \emph off
  7145. \bar no
  7146. \strikeout off
  7147. \xout off
  7148. \uuline off
  7149. \uwave off
  7150. \noun off
  7151. \color none
  7152. 0.657
  7153. \end_layout
  7154. \end_inset
  7155. </cell>
  7156. </row>
  7157. <row>
  7158. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7159. \begin_inset Text
  7160. \begin_layout Plain Layout
  7161. \family roman
  7162. \series medium
  7163. \shape up
  7164. \size normal
  7165. \emph off
  7166. \bar no
  7167. \strikeout off
  7168. \xout off
  7169. \uuline off
  7170. \uwave off
  7171. \noun off
  7172. \color none
  7173. RMA + GRSN
  7174. \end_layout
  7175. \end_inset
  7176. </cell>
  7177. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7178. \begin_inset Text
  7179. \begin_layout Plain Layout
  7180. No
  7181. \end_layout
  7182. \end_inset
  7183. </cell>
  7184. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7185. \begin_inset Text
  7186. \begin_layout Plain Layout
  7187. \family roman
  7188. \series medium
  7189. \shape up
  7190. \size normal
  7191. \emph off
  7192. \bar no
  7193. \strikeout off
  7194. \xout off
  7195. \uuline off
  7196. \uwave off
  7197. \noun off
  7198. \color none
  7199. 0.816
  7200. \end_layout
  7201. \end_inset
  7202. </cell>
  7203. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  7204. \begin_inset Text
  7205. \begin_layout Plain Layout
  7206. \family roman
  7207. \series medium
  7208. \shape up
  7209. \size normal
  7210. \emph off
  7211. \bar no
  7212. \strikeout off
  7213. \xout off
  7214. \uuline off
  7215. \uwave off
  7216. \noun off
  7217. \color none
  7218. 0.750
  7219. \end_layout
  7220. \end_inset
  7221. </cell>
  7222. </row>
  7223. <row>
  7224. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7225. \begin_inset Text
  7226. \begin_layout Plain Layout
  7227. \family roman
  7228. \series medium
  7229. \shape up
  7230. \size normal
  7231. \emph off
  7232. \bar no
  7233. \strikeout off
  7234. \xout off
  7235. \uuline off
  7236. \uwave off
  7237. \noun off
  7238. \color none
  7239. dChip + GRSN
  7240. \end_layout
  7241. \end_inset
  7242. </cell>
  7243. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7244. \begin_inset Text
  7245. \begin_layout Plain Layout
  7246. No
  7247. \end_layout
  7248. \end_inset
  7249. </cell>
  7250. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7251. \begin_inset Text
  7252. \begin_layout Plain Layout
  7253. \family roman
  7254. \series medium
  7255. \shape up
  7256. \size normal
  7257. \emph off
  7258. \bar no
  7259. \strikeout off
  7260. \xout off
  7261. \uuline off
  7262. \uwave off
  7263. \noun off
  7264. \color none
  7265. 0.875
  7266. \end_layout
  7267. \end_inset
  7268. </cell>
  7269. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  7270. \begin_inset Text
  7271. \begin_layout Plain Layout
  7272. \family roman
  7273. \series medium
  7274. \shape up
  7275. \size normal
  7276. \emph off
  7277. \bar no
  7278. \strikeout off
  7279. \xout off
  7280. \uuline off
  7281. \uwave off
  7282. \noun off
  7283. \color none
  7284. 0.642
  7285. \end_layout
  7286. \end_inset
  7287. </cell>
  7288. </row>
  7289. <row>
  7290. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7291. \begin_inset Text
  7292. \begin_layout Plain Layout
  7293. \family roman
  7294. \series medium
  7295. \shape up
  7296. \size normal
  7297. \emph off
  7298. \bar no
  7299. \strikeout off
  7300. \xout off
  7301. \uuline off
  7302. \uwave off
  7303. \noun off
  7304. \color none
  7305. fRMA
  7306. \end_layout
  7307. \end_inset
  7308. </cell>
  7309. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7310. \begin_inset Text
  7311. \begin_layout Plain Layout
  7312. Yes
  7313. \end_layout
  7314. \end_inset
  7315. </cell>
  7316. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7317. \begin_inset Text
  7318. \begin_layout Plain Layout
  7319. \family roman
  7320. \series medium
  7321. \shape up
  7322. \size normal
  7323. \emph off
  7324. \bar no
  7325. \strikeout off
  7326. \xout off
  7327. \uuline off
  7328. \uwave off
  7329. \noun off
  7330. \color none
  7331. 0.863
  7332. \end_layout
  7333. \end_inset
  7334. </cell>
  7335. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  7336. \begin_inset Text
  7337. \begin_layout Plain Layout
  7338. \family roman
  7339. \series medium
  7340. \shape up
  7341. \size normal
  7342. \emph off
  7343. \bar no
  7344. \strikeout off
  7345. \xout off
  7346. \uuline off
  7347. \uwave off
  7348. \noun off
  7349. \color none
  7350. 0.718
  7351. \end_layout
  7352. \end_inset
  7353. </cell>
  7354. </row>
  7355. <row>
  7356. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  7357. \begin_inset Text
  7358. \begin_layout Plain Layout
  7359. \family roman
  7360. \series medium
  7361. \shape up
  7362. \size normal
  7363. \emph off
  7364. \bar no
  7365. \strikeout off
  7366. \xout off
  7367. \uuline off
  7368. \uwave off
  7369. \noun off
  7370. \color none
  7371. SCAN
  7372. \end_layout
  7373. \end_inset
  7374. </cell>
  7375. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  7376. \begin_inset Text
  7377. \begin_layout Plain Layout
  7378. Yes
  7379. \end_layout
  7380. \end_inset
  7381. </cell>
  7382. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  7383. \begin_inset Text
  7384. \begin_layout Plain Layout
  7385. \family roman
  7386. \series medium
  7387. \shape up
  7388. \size normal
  7389. \emph off
  7390. \bar no
  7391. \strikeout off
  7392. \xout off
  7393. \uuline off
  7394. \uwave off
  7395. \noun off
  7396. \color none
  7397. 0.853
  7398. \end_layout
  7399. \end_inset
  7400. </cell>
  7401. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  7402. \begin_inset Text
  7403. \begin_layout Plain Layout
  7404. \family roman
  7405. \series medium
  7406. \shape up
  7407. \size normal
  7408. \emph off
  7409. \bar no
  7410. \strikeout off
  7411. \xout off
  7412. \uuline off
  7413. \uwave off
  7414. \noun off
  7415. \color none
  7416. 0.689
  7417. \end_layout
  7418. \end_inset
  7419. </cell>
  7420. </row>
  7421. </lyxtabular>
  7422. \end_inset
  7423. \end_layout
  7424. \begin_layout Plain Layout
  7425. \begin_inset Caption Standard
  7426. \begin_layout Plain Layout
  7427. \begin_inset CommandInset label
  7428. LatexCommand label
  7429. name "tab:AUC-PAM"
  7430. \end_inset
  7431. \series bold
  7432. ROC curve AUC values for internal and external validation with 6 different
  7433. normalization strategies.
  7434. \series default
  7435. These AUC values correspond to the ROC curves in Figure
  7436. \begin_inset CommandInset ref
  7437. LatexCommand ref
  7438. reference "fig:ROC-PAM-main"
  7439. plural "false"
  7440. caps "false"
  7441. noprefix "false"
  7442. \end_inset
  7443. .
  7444. \end_layout
  7445. \end_inset
  7446. \end_layout
  7447. \end_inset
  7448. \end_layout
  7449. \begin_layout Standard
  7450. For internal validation, the 6 methods' AUC values ranged from 0.816 to 0.891,
  7451. as shown in Table
  7452. \begin_inset CommandInset ref
  7453. LatexCommand ref
  7454. reference "tab:AUC-PAM"
  7455. plural "false"
  7456. caps "false"
  7457. noprefix "false"
  7458. \end_inset
  7459. .
  7460. Among the non-single-channel normalizations, dChip outperformed RMA, while
  7461. GRSN reduced the AUC values for both dChip and RMA.
  7462. Both single-channel methods, fRMA and SCAN, slightly outperformed RMA,
  7463. with fRMA ahead of SCAN.
  7464. However, the difference between RMA and fRMA is still quite small.
  7465. Figure
  7466. \begin_inset CommandInset ref
  7467. LatexCommand ref
  7468. reference "fig:ROC-PAM-int"
  7469. plural "false"
  7470. caps "false"
  7471. noprefix "false"
  7472. \end_inset
  7473. shows that the ROC curves for RMA, dChip, and fRMA look very similar and
  7474. relatively smooth, while both GRSN curves and the curve for SCAN have a
  7475. more jagged appearance.
  7476. \end_layout
  7477. \begin_layout Standard
  7478. For external validation, as expected, all the AUC values are lower than
  7479. the internal validations, ranging from 0.642 to 0.750 (Table
  7480. \begin_inset CommandInset ref
  7481. LatexCommand ref
  7482. reference "tab:AUC-PAM"
  7483. plural "false"
  7484. caps "false"
  7485. noprefix "false"
  7486. \end_inset
  7487. ).
  7488. With or without GRSN, RMA shows its dominance over dChip in this more challengi
  7489. ng test.
  7490. Unlike in the internal validation, GRSN actually improves the classifier
  7491. performance for RMA, although it does not for dChip.
  7492. Once again, both single-channel methods perform about on par with RMA,
  7493. with fRMA performing slightly better and SCAN performing a bit worse.
  7494. Figure
  7495. \begin_inset CommandInset ref
  7496. LatexCommand ref
  7497. reference "fig:ROC-PAM-ext"
  7498. plural "false"
  7499. caps "false"
  7500. noprefix "false"
  7501. \end_inset
  7502. shows the ROC curves for the external validation test.
  7503. As expected, none of them are as clean-looking as the internal validation
  7504. ROC curves.
  7505. The curves for RMA, RMA+GRSN, and fRMA all look similar, while the other
  7506. curves look more divergent.
  7507. \end_layout
  7508. \begin_layout Subsection
  7509. fRMA with custom-generated vectors enables single-channel normalization
  7510. on hthgu133pluspm platform
  7511. \end_layout
  7512. \begin_layout Standard
  7513. \begin_inset Float figure
  7514. wide false
  7515. sideways false
  7516. status open
  7517. \begin_layout Plain Layout
  7518. \align center
  7519. \begin_inset Float figure
  7520. placement tb
  7521. wide false
  7522. sideways false
  7523. status collapsed
  7524. \begin_layout Plain Layout
  7525. \align center
  7526. \begin_inset Graphics
  7527. filename graphics/frma-pax-bx/batchsize_batches.pdf
  7528. lyxscale 50
  7529. height 35theight%
  7530. groupId frmatools-subfig
  7531. \end_inset
  7532. \end_layout
  7533. \begin_layout Plain Layout
  7534. \begin_inset Caption Standard
  7535. \begin_layout Plain Layout
  7536. \begin_inset CommandInset label
  7537. LatexCommand label
  7538. name "fig:batch-size-batches"
  7539. \end_inset
  7540. \series bold
  7541. Number of batches usable in fRMA probe weight learning as a function of
  7542. batch size.
  7543. \end_layout
  7544. \end_inset
  7545. \end_layout
  7546. \end_inset
  7547. \end_layout
  7548. \begin_layout Plain Layout
  7549. \align center
  7550. \begin_inset Float figure
  7551. placement tb
  7552. wide false
  7553. sideways false
  7554. status collapsed
  7555. \begin_layout Plain Layout
  7556. \align center
  7557. \begin_inset Graphics
  7558. filename graphics/frma-pax-bx/batchsize_samples.pdf
  7559. lyxscale 50
  7560. height 35theight%
  7561. groupId frmatools-subfig
  7562. \end_inset
  7563. \end_layout
  7564. \begin_layout Plain Layout
  7565. \begin_inset Caption Standard
  7566. \begin_layout Plain Layout
  7567. \begin_inset CommandInset label
  7568. LatexCommand label
  7569. name "fig:batch-size-samples"
  7570. \end_inset
  7571. \series bold
  7572. Number of samples usable in fRMA probe weight learning as a function of
  7573. batch size.
  7574. \end_layout
  7575. \end_inset
  7576. \end_layout
  7577. \end_inset
  7578. \end_layout
  7579. \begin_layout Plain Layout
  7580. \begin_inset Caption Standard
  7581. \begin_layout Plain Layout
  7582. \series bold
  7583. \begin_inset CommandInset label
  7584. LatexCommand label
  7585. name "fig:frmatools-batch-size"
  7586. \end_inset
  7587. Effect of batch size selection on number of batches and number of samples
  7588. included in fRMA probe weight learning.
  7589. \series default
  7590. For batch sizes ranging from 3 to 15, the number of batches (a) and samples
  7591. (b) included in probe weight training were plotted for biopsy (BX) and
  7592. blood (PAX) samples.
  7593. The selected batch size, 5, is marked with a dotted vertical line.
  7594. \end_layout
  7595. \end_inset
  7596. \end_layout
  7597. \end_inset
  7598. \end_layout
  7599. \begin_layout Standard
  7600. In order to enable use of fRMA to normalize hthgu133pluspm, a custom set
  7601. of fRMA vectors was created.
  7602. First, an appropriate batch size was chosen by looking at the number of
  7603. batches and number of samples included as a function of batch size (Figure
  7604. \begin_inset CommandInset ref
  7605. LatexCommand ref
  7606. reference "fig:frmatools-batch-size"
  7607. plural "false"
  7608. caps "false"
  7609. noprefix "false"
  7610. \end_inset
  7611. ).
  7612. For a given batch size, all batches with fewer samples that the chosen
  7613. size must be ignored during training, while larger batches must be randomly
  7614. downsampled to the chosen size.
  7615. Hence, the number of samples included for a given batch size equals the
  7616. batch size times the number of batches with at least that many samples.
  7617. From Figure
  7618. \begin_inset CommandInset ref
  7619. LatexCommand ref
  7620. reference "fig:batch-size-samples"
  7621. plural "false"
  7622. caps "false"
  7623. noprefix "false"
  7624. \end_inset
  7625. , it is apparent that that a batch size of 8 maximizes the number of samples
  7626. included in training.
  7627. Increasing the batch size beyond this causes too many smaller batches to
  7628. be excluded, reducing the total number of samples for both tissue types.
  7629. However, a batch size of 8 is not necessarily optimal.
  7630. The article introducing frmaTools concluded that it was highly advantageous
  7631. to use a smaller batch size in order to include more batches, even at the
  7632. expense of including fewer total samples in training
  7633. \begin_inset CommandInset citation
  7634. LatexCommand cite
  7635. key "McCall2011"
  7636. literal "false"
  7637. \end_inset
  7638. .
  7639. To strike an appropriate balance between more batches and more samples,
  7640. a batch size of 5 was chosen.
  7641. For both blood and biopsy samples, this increased the number of batches
  7642. included by 10, with only a modest reduction in the number of samples compared
  7643. to a batch size of 8.
  7644. With a batch size of 5, 26 batches of biopsy samples and 46 batches of
  7645. blood samples were available.
  7646. \end_layout
  7647. \begin_layout Standard
  7648. \begin_inset Float figure
  7649. wide false
  7650. sideways false
  7651. status collapsed
  7652. \begin_layout Plain Layout
  7653. \begin_inset Float figure
  7654. wide false
  7655. sideways false
  7656. status open
  7657. \begin_layout Plain Layout
  7658. \align center
  7659. \begin_inset Graphics
  7660. filename graphics/frma-pax-bx/M-BX-violin.pdf
  7661. lyxscale 40
  7662. width 45col%
  7663. groupId m-violin
  7664. \end_inset
  7665. \end_layout
  7666. \begin_layout Plain Layout
  7667. \begin_inset Caption Standard
  7668. \begin_layout Plain Layout
  7669. \begin_inset CommandInset label
  7670. LatexCommand label
  7671. name "fig:m-bx-violin"
  7672. \end_inset
  7673. \series bold
  7674. Violin plot of inter-normalization log ratios for biopsy samples.
  7675. \end_layout
  7676. \end_inset
  7677. \end_layout
  7678. \end_inset
  7679. \begin_inset space \hfill{}
  7680. \end_inset
  7681. \begin_inset Float figure
  7682. wide false
  7683. sideways false
  7684. status collapsed
  7685. \begin_layout Plain Layout
  7686. \align center
  7687. \begin_inset Graphics
  7688. filename graphics/frma-pax-bx/M-PAX-violin.pdf
  7689. lyxscale 40
  7690. width 45col%
  7691. groupId m-violin
  7692. \end_inset
  7693. \end_layout
  7694. \begin_layout Plain Layout
  7695. \begin_inset Caption Standard
  7696. \begin_layout Plain Layout
  7697. \begin_inset CommandInset label
  7698. LatexCommand label
  7699. name "fig:m-pax-violin"
  7700. \end_inset
  7701. \series bold
  7702. Violin plot of inter-normalization log ratios for blood samples.
  7703. \end_layout
  7704. \end_inset
  7705. \end_layout
  7706. \end_inset
  7707. \end_layout
  7708. \begin_layout Plain Layout
  7709. \begin_inset Caption Standard
  7710. \begin_layout Plain Layout
  7711. \begin_inset CommandInset label
  7712. LatexCommand label
  7713. name "fig:frma-violin"
  7714. \end_inset
  7715. \series bold
  7716. Violin plot of log ratios between normalizations for 20 biopsy samples.
  7717. \series default
  7718. Each of 20 randomly selected samples was normalized with RMA and with 5
  7719. different sets of fRMA vectors.
  7720. The distribution of log ratios between normalized expression values, aggregated
  7721. across all 20 arrays, was plotted for each pair of normalizations.
  7722. \end_layout
  7723. \end_inset
  7724. \end_layout
  7725. \end_inset
  7726. \end_layout
  7727. \begin_layout Standard
  7728. Since fRMA training requires equal-size batches, larger batches are downsampled
  7729. randomly.
  7730. This introduces a nondeterministic step in the generation of normalization
  7731. vectors.
  7732. To show that this randomness does not substantially change the outcome,
  7733. the random downsampling and subsequent vector learning was repeated 5 times,
  7734. with a different random seed each time.
  7735. 20 samples were selected at random as a test set and normalized with each
  7736. of the 5 sets of fRMA normalization vectors as well as ordinary RMA, and
  7737. the normalized expression values were compared across normalizations.
  7738. Figure
  7739. \begin_inset CommandInset ref
  7740. LatexCommand ref
  7741. reference "fig:m-bx-violin"
  7742. plural "false"
  7743. caps "false"
  7744. noprefix "false"
  7745. \end_inset
  7746. shows a summary of these comparisons for biopsy samples.
  7747. Comparing RMA to each of the 5 fRMA normalizations, the distribution of
  7748. log ratios is somewhat wide, indicating that the normalizations disagree
  7749. on the expression values of a fair number of probe sets.
  7750. In contrast, comparisons of fRMA against fRMA, the vast majority of probe
  7751. sets have very small log ratios, indicating a very high agreement between
  7752. the normalized values generated by the two normalizations.
  7753. This shows that the fRMA normalization's behavior is not very sensitive
  7754. to the random downsampling of larger batches during training.
  7755. \end_layout
  7756. \begin_layout Standard
  7757. \begin_inset Float figure
  7758. wide false
  7759. sideways false
  7760. status open
  7761. \begin_layout Plain Layout
  7762. \align center
  7763. \begin_inset Float figure
  7764. wide false
  7765. sideways false
  7766. status collapsed
  7767. \begin_layout Plain Layout
  7768. \align center
  7769. \begin_inset Graphics
  7770. filename graphics/frma-pax-bx/MA-BX-RMA.fRMA-RASTER.png
  7771. lyxscale 10
  7772. width 45col%
  7773. groupId ma-frma
  7774. \end_inset
  7775. \end_layout
  7776. \begin_layout Plain Layout
  7777. \begin_inset Caption Standard
  7778. \begin_layout Plain Layout
  7779. \begin_inset CommandInset label
  7780. LatexCommand label
  7781. name "fig:ma-bx-rma-frma"
  7782. \end_inset
  7783. RMA vs.
  7784. fRMA for biopsy samples.
  7785. \end_layout
  7786. \end_inset
  7787. \end_layout
  7788. \end_inset
  7789. \begin_inset space \hfill{}
  7790. \end_inset
  7791. \begin_inset Float figure
  7792. wide false
  7793. sideways false
  7794. status collapsed
  7795. \begin_layout Plain Layout
  7796. \align center
  7797. \begin_inset Graphics
  7798. filename graphics/frma-pax-bx/MA-BX-fRMA.fRMA-RASTER.png
  7799. lyxscale 10
  7800. width 45col%
  7801. groupId ma-frma
  7802. \end_inset
  7803. \end_layout
  7804. \begin_layout Plain Layout
  7805. \begin_inset Caption Standard
  7806. \begin_layout Plain Layout
  7807. \begin_inset CommandInset label
  7808. LatexCommand label
  7809. name "fig:ma-bx-frma-frma"
  7810. \end_inset
  7811. fRMA vs fRMA for biopsy samples.
  7812. \end_layout
  7813. \end_inset
  7814. \end_layout
  7815. \end_inset
  7816. \end_layout
  7817. \begin_layout Plain Layout
  7818. \align center
  7819. \begin_inset Float figure
  7820. wide false
  7821. sideways false
  7822. status collapsed
  7823. \begin_layout Plain Layout
  7824. \align center
  7825. \begin_inset Graphics
  7826. filename graphics/frma-pax-bx/MA-PAX-RMA.fRMA-RASTER.png
  7827. lyxscale 10
  7828. width 45col%
  7829. groupId ma-frma
  7830. \end_inset
  7831. \end_layout
  7832. \begin_layout Plain Layout
  7833. \begin_inset Caption Standard
  7834. \begin_layout Plain Layout
  7835. \begin_inset CommandInset label
  7836. LatexCommand label
  7837. name "fig:MA-PAX-rma-frma"
  7838. \end_inset
  7839. RMA vs.
  7840. fRMA for blood samples.
  7841. \end_layout
  7842. \end_inset
  7843. \end_layout
  7844. \end_inset
  7845. \begin_inset space \hfill{}
  7846. \end_inset
  7847. \begin_inset Float figure
  7848. wide false
  7849. sideways false
  7850. status collapsed
  7851. \begin_layout Plain Layout
  7852. \align center
  7853. \begin_inset Graphics
  7854. filename graphics/frma-pax-bx/MA-PAX-fRMA.fRMA-RASTER.png
  7855. lyxscale 10
  7856. width 45col%
  7857. groupId ma-frma
  7858. \end_inset
  7859. \end_layout
  7860. \begin_layout Plain Layout
  7861. \begin_inset Caption Standard
  7862. \begin_layout Plain Layout
  7863. \begin_inset CommandInset label
  7864. LatexCommand label
  7865. name "fig:MA-PAX-frma-frma"
  7866. \end_inset
  7867. fRMA vs fRMA for blood samples.
  7868. \end_layout
  7869. \end_inset
  7870. \end_layout
  7871. \end_inset
  7872. \end_layout
  7873. \begin_layout Plain Layout
  7874. \begin_inset Caption Standard
  7875. \begin_layout Plain Layout
  7876. \series bold
  7877. \begin_inset CommandInset label
  7878. LatexCommand label
  7879. name "fig:Representative-MA-plots"
  7880. \end_inset
  7881. Representative MA plots comparing RMA and custom fRMA normalizations.
  7882. \series default
  7883. For each plot, 20 samples were normalized using 2 different normalizations,
  7884. and then averages (A) and log ratios (M) were plotted between the two different
  7885. normalizations for every probe.
  7886. For the
  7887. \begin_inset Quotes eld
  7888. \end_inset
  7889. fRMA vs fRMA
  7890. \begin_inset Quotes erd
  7891. \end_inset
  7892. plots (b & d), two different fRMA normalizations using vectors from two
  7893. independent batch samplings were compared.
  7894. Density of points is represented by blue shading, and individual outlier
  7895. points are plotted.
  7896. \end_layout
  7897. \end_inset
  7898. \end_layout
  7899. \end_inset
  7900. \end_layout
  7901. \begin_layout Standard
  7902. Figure
  7903. \begin_inset CommandInset ref
  7904. LatexCommand ref
  7905. reference "fig:ma-bx-rma-frma"
  7906. plural "false"
  7907. caps "false"
  7908. noprefix "false"
  7909. \end_inset
  7910. shows an MA plot of the RMA-normalized values against the fRMA-normalized
  7911. values for the same probe sets and arrays, corresponding to the first row
  7912. of Figure
  7913. \begin_inset CommandInset ref
  7914. LatexCommand ref
  7915. reference "fig:m-bx-violin"
  7916. plural "false"
  7917. caps "false"
  7918. noprefix "false"
  7919. \end_inset
  7920. .
  7921. This MA plot shows that not only is there a wide distribution of M-values,
  7922. but the trend of M-values is dependent on the average normalized intensity.
  7923. This is expected, since the overall trend represents the differences in
  7924. the quantile normalization step.
  7925. When running RMA, only the quantiles for these specific 20 arrays are used,
  7926. while for fRMA the quantile distribution is taking from all arrays used
  7927. in training.
  7928. Figure
  7929. \begin_inset CommandInset ref
  7930. LatexCommand ref
  7931. reference "fig:ma-bx-frma-frma"
  7932. plural "false"
  7933. caps "false"
  7934. noprefix "false"
  7935. \end_inset
  7936. shows a similar MA plot comparing 2 different fRMA normalizations, correspondin
  7937. g to the 6th row of Figure
  7938. \begin_inset CommandInset ref
  7939. LatexCommand ref
  7940. reference "fig:m-bx-violin"
  7941. plural "false"
  7942. caps "false"
  7943. noprefix "false"
  7944. \end_inset
  7945. .
  7946. The MA plot is very tightly centered around zero with no visible trend.
  7947. Figures
  7948. \begin_inset CommandInset ref
  7949. LatexCommand ref
  7950. reference "fig:m-pax-violin"
  7951. plural "false"
  7952. caps "false"
  7953. noprefix "false"
  7954. \end_inset
  7955. ,
  7956. \begin_inset CommandInset ref
  7957. LatexCommand ref
  7958. reference "fig:MA-PAX-rma-frma"
  7959. plural "false"
  7960. caps "false"
  7961. noprefix "false"
  7962. \end_inset
  7963. , and
  7964. \begin_inset CommandInset ref
  7965. LatexCommand ref
  7966. reference "fig:ma-bx-frma-frma"
  7967. plural "false"
  7968. caps "false"
  7969. noprefix "false"
  7970. \end_inset
  7971. show exactly the same information for the blood samples, once again comparing
  7972. the normalized expression values between normalizations for all probe sets
  7973. across 20 randomly selected test arrays.
  7974. Once again, there is a wider distribution of log ratios between RMA-normalized
  7975. values and fRMA-normalized, and a much tighter distribution when comparing
  7976. different fRMA normalizations to each other, indicating that the fRMA training
  7977. process is robust to random batch downsampling for the blood samples as
  7978. well.
  7979. \end_layout
  7980. \begin_layout Subsection
  7981. SVA, voom, and array weights improve model fit for methylation array data
  7982. \end_layout
  7983. \begin_layout Standard
  7984. \begin_inset ERT
  7985. status open
  7986. \begin_layout Plain Layout
  7987. \backslash
  7988. afterpage{
  7989. \end_layout
  7990. \begin_layout Plain Layout
  7991. \backslash
  7992. begin{landscape}
  7993. \end_layout
  7994. \end_inset
  7995. \end_layout
  7996. \begin_layout Standard
  7997. \begin_inset Float figure
  7998. wide false
  7999. sideways false
  8000. status open
  8001. \begin_layout Plain Layout
  8002. \begin_inset Flex TODO Note (inline)
  8003. status open
  8004. \begin_layout Plain Layout
  8005. Fix axis labels:
  8006. \begin_inset Quotes eld
  8007. \end_inset
  8008. log2 M-value
  8009. \begin_inset Quotes erd
  8010. \end_inset
  8011. is redundant because M-values are already log scale
  8012. \end_layout
  8013. \end_inset
  8014. \end_layout
  8015. \begin_layout Plain Layout
  8016. \begin_inset Float figure
  8017. wide false
  8018. sideways false
  8019. status collapsed
  8020. \begin_layout Plain Layout
  8021. \align center
  8022. \begin_inset Graphics
  8023. filename graphics/methylvoom/unadj.dupcor/meanvar-trends-PAGE1-CROP-RASTER.png
  8024. lyxscale 15
  8025. width 30col%
  8026. groupId voomaw-subfig
  8027. \end_inset
  8028. \end_layout
  8029. \begin_layout Plain Layout
  8030. \begin_inset Caption Standard
  8031. \begin_layout Plain Layout
  8032. \begin_inset CommandInset label
  8033. LatexCommand label
  8034. name "fig:meanvar-basic"
  8035. \end_inset
  8036. Mean-variance trend for analysis A.
  8037. \end_layout
  8038. \end_inset
  8039. \end_layout
  8040. \end_inset
  8041. \begin_inset space \hfill{}
  8042. \end_inset
  8043. \begin_inset Float figure
  8044. wide false
  8045. sideways false
  8046. status collapsed
  8047. \begin_layout Plain Layout
  8048. \align center
  8049. \begin_inset Graphics
  8050. filename graphics/methylvoom/unadj.dupcor.sva.aw/meanvar-trends-PAGE1-CROP-RASTER.png
  8051. lyxscale 15
  8052. width 30col%
  8053. groupId voomaw-subfig
  8054. \end_inset
  8055. \end_layout
  8056. \begin_layout Plain Layout
  8057. \begin_inset Caption Standard
  8058. \begin_layout Plain Layout
  8059. \begin_inset CommandInset label
  8060. LatexCommand label
  8061. name "fig:meanvar-sva-aw"
  8062. \end_inset
  8063. Mean-variance trend for analysis B.
  8064. \end_layout
  8065. \end_inset
  8066. \end_layout
  8067. \end_inset
  8068. \begin_inset space \hfill{}
  8069. \end_inset
  8070. \begin_inset Float figure
  8071. wide false
  8072. sideways false
  8073. status collapsed
  8074. \begin_layout Plain Layout
  8075. \align center
  8076. \begin_inset Graphics
  8077. filename graphics/methylvoom/unadj.dupcor.sva.voomaw/meanvar-trends-PAGE2-CROP-RASTER.png
  8078. lyxscale 15
  8079. width 30col%
  8080. groupId voomaw-subfig
  8081. \end_inset
  8082. \end_layout
  8083. \begin_layout Plain Layout
  8084. \begin_inset Caption Standard
  8085. \begin_layout Plain Layout
  8086. \begin_inset CommandInset label
  8087. LatexCommand label
  8088. name "fig:meanvar-sva-voomaw"
  8089. \end_inset
  8090. Mean-variance trend after voom modeling in analysis C.
  8091. \end_layout
  8092. \end_inset
  8093. \end_layout
  8094. \end_inset
  8095. \end_layout
  8096. \begin_layout Plain Layout
  8097. \begin_inset Caption Standard
  8098. \begin_layout Plain Layout
  8099. \series bold
  8100. Mean-variance trend modeling in methylation array data.
  8101. \series default
  8102. The estimated log2(standard deviation) for each probe is plotted against
  8103. the probe's average M-value across all samples as a black point, with some
  8104. transparency to make over-plotting more visible, since there are about
  8105. 450,000 points.
  8106. Density of points is also indicated by the dark blue contour lines.
  8107. The prior variance trend estimated by eBayes is shown in light blue, while
  8108. the lowess trend of the points is shown in red.
  8109. \end_layout
  8110. \end_inset
  8111. \end_layout
  8112. \end_inset
  8113. \end_layout
  8114. \begin_layout Standard
  8115. \begin_inset ERT
  8116. status open
  8117. \begin_layout Plain Layout
  8118. \backslash
  8119. end{landscape}
  8120. \end_layout
  8121. \begin_layout Plain Layout
  8122. }
  8123. \end_layout
  8124. \end_inset
  8125. \end_layout
  8126. \begin_layout Standard
  8127. Figure
  8128. \begin_inset CommandInset ref
  8129. LatexCommand ref
  8130. reference "fig:meanvar-basic"
  8131. plural "false"
  8132. caps "false"
  8133. noprefix "false"
  8134. \end_inset
  8135. shows the relationship between the mean M-value and the standard deviation
  8136. calculated for each probe in the methylation array data set.
  8137. A few features of the data are apparent.
  8138. First, the data are very strongly bimodal, with peaks in the density around
  8139. M-values of +4 and -4.
  8140. These modes correspond to methylation sites that are nearly 100% methylated
  8141. and nearly 100% unmethylated, respectively.
  8142. The strong bimodality indicates that a majority of probes interrogate sites
  8143. that fall into one of these two categories.
  8144. The points in between these modes represent sites that are either partially
  8145. methylated in many samples, or are fully methylated in some samples and
  8146. fully unmethylated in other samples, or some combination.
  8147. The next visible feature of the data is the W-shaped variance trend.
  8148. The upticks in the variance trend on either side are expected, based on
  8149. the sigmoid transformation exaggerating small differences at extreme M-values
  8150. (Figure
  8151. \begin_inset CommandInset ref
  8152. LatexCommand ref
  8153. reference "fig:Sigmoid-beta-m-mapping"
  8154. plural "false"
  8155. caps "false"
  8156. noprefix "false"
  8157. \end_inset
  8158. ).
  8159. However, the uptick in the center is interesting: it indicates that sites
  8160. that are not constitutively methylated or unmethylated have a higher variance.
  8161. This could be a genuine biological effect, or it could be spurious noise
  8162. that is only observable at sites with varying methylation.
  8163. \end_layout
  8164. \begin_layout Standard
  8165. In Figure
  8166. \begin_inset CommandInset ref
  8167. LatexCommand ref
  8168. reference "fig:meanvar-sva-aw"
  8169. plural "false"
  8170. caps "false"
  8171. noprefix "false"
  8172. \end_inset
  8173. , we see the mean-variance trend for the same methylation array data, this
  8174. time with surrogate variables and sample quality weights estimated from
  8175. the data and included in the model.
  8176. As expected, the overall average variance is smaller, since the surrogate
  8177. variables account for some of the variance.
  8178. In addition, the uptick in variance in the middle of the M-value range
  8179. has disappeared, turning the W shape into a wide U shape.
  8180. This indicates that the excess variance in the probes with intermediate
  8181. M-values was explained by systematic variations not correlated with known
  8182. covariates, and these variations were modeled by the surrogate variables.
  8183. The result is a nearly flat variance trend for the entire intermediate
  8184. M-value range from about -3 to +3.
  8185. Note that this corresponds closely to the range within which the M-value
  8186. transformation shown in Figure
  8187. \begin_inset CommandInset ref
  8188. LatexCommand ref
  8189. reference "fig:Sigmoid-beta-m-mapping"
  8190. plural "false"
  8191. caps "false"
  8192. noprefix "false"
  8193. \end_inset
  8194. is nearly linear.
  8195. In contrast, the excess variance at the extremes (greater than +3 and less
  8196. than -3) was not
  8197. \begin_inset Quotes eld
  8198. \end_inset
  8199. absorbed
  8200. \begin_inset Quotes erd
  8201. \end_inset
  8202. by the surrogate variables and remains in the plot, indicating that this
  8203. variation has no systematic component: probes with extreme M-values are
  8204. uniformly more variable across all samples, as expected.
  8205. \end_layout
  8206. \begin_layout Standard
  8207. Figure
  8208. \begin_inset CommandInset ref
  8209. LatexCommand ref
  8210. reference "fig:meanvar-sva-voomaw"
  8211. plural "false"
  8212. caps "false"
  8213. noprefix "false"
  8214. \end_inset
  8215. shows the mean-variance trend after fitting the model with the observation
  8216. weights assigned by voom based on the mean-variance trend shown in Figure
  8217. \begin_inset CommandInset ref
  8218. LatexCommand ref
  8219. reference "fig:meanvar-sva-aw"
  8220. plural "false"
  8221. caps "false"
  8222. noprefix "false"
  8223. \end_inset
  8224. .
  8225. As expected, the weights exactly counteract the trend in the data, resulting
  8226. in a nearly flat trend centered vertically at 1 (i.e.
  8227. 0 on the log scale).
  8228. This shows that the observations with extreme M-values have been appropriately
  8229. down-weighted to account for the fact that the noise in those observations
  8230. has been amplified by the non-linear M-value transformation.
  8231. In turn, this gives relatively more weight to observations in the middle
  8232. region, which are more likely to correspond to probes measuring interesting
  8233. biology (not constitutively methylated or unmethylated).
  8234. \end_layout
  8235. \begin_layout Standard
  8236. \begin_inset Float table
  8237. wide false
  8238. sideways false
  8239. status open
  8240. \begin_layout Plain Layout
  8241. \align center
  8242. \begin_inset Tabular
  8243. <lyxtabular version="3" rows="5" columns="3">
  8244. <features tabularvalignment="middle">
  8245. <column alignment="center" valignment="top">
  8246. <column alignment="center" valignment="top">
  8247. <column alignment="center" valignment="top">
  8248. <row>
  8249. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8250. \begin_inset Text
  8251. \begin_layout Plain Layout
  8252. Covariate
  8253. \end_layout
  8254. \end_inset
  8255. </cell>
  8256. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8257. \begin_inset Text
  8258. \begin_layout Plain Layout
  8259. Test used
  8260. \end_layout
  8261. \end_inset
  8262. </cell>
  8263. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  8264. \begin_inset Text
  8265. \begin_layout Plain Layout
  8266. p-value
  8267. \end_layout
  8268. \end_inset
  8269. </cell>
  8270. </row>
  8271. <row>
  8272. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8273. \begin_inset Text
  8274. \begin_layout Plain Layout
  8275. Transplant Status
  8276. \end_layout
  8277. \end_inset
  8278. </cell>
  8279. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8280. \begin_inset Text
  8281. \begin_layout Plain Layout
  8282. F-test
  8283. \end_layout
  8284. \end_inset
  8285. </cell>
  8286. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8287. \begin_inset Text
  8288. \begin_layout Plain Layout
  8289. 0.404
  8290. \end_layout
  8291. \end_inset
  8292. </cell>
  8293. </row>
  8294. <row>
  8295. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8296. \begin_inset Text
  8297. \begin_layout Plain Layout
  8298. Diabetes Diagnosis
  8299. \end_layout
  8300. \end_inset
  8301. </cell>
  8302. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8303. \begin_inset Text
  8304. \begin_layout Plain Layout
  8305. \emph on
  8306. t
  8307. \emph default
  8308. -test
  8309. \end_layout
  8310. \end_inset
  8311. </cell>
  8312. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8313. \begin_inset Text
  8314. \begin_layout Plain Layout
  8315. 0.00106
  8316. \end_layout
  8317. \end_inset
  8318. </cell>
  8319. </row>
  8320. <row>
  8321. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8322. \begin_inset Text
  8323. \begin_layout Plain Layout
  8324. Sex
  8325. \end_layout
  8326. \end_inset
  8327. </cell>
  8328. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8329. \begin_inset Text
  8330. \begin_layout Plain Layout
  8331. \emph on
  8332. t
  8333. \emph default
  8334. -test
  8335. \end_layout
  8336. \end_inset
  8337. </cell>
  8338. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8339. \begin_inset Text
  8340. \begin_layout Plain Layout
  8341. 0.148
  8342. \end_layout
  8343. \end_inset
  8344. </cell>
  8345. </row>
  8346. <row>
  8347. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8348. \begin_inset Text
  8349. \begin_layout Plain Layout
  8350. Age
  8351. \end_layout
  8352. \end_inset
  8353. </cell>
  8354. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8355. \begin_inset Text
  8356. \begin_layout Plain Layout
  8357. linear regression
  8358. \end_layout
  8359. \end_inset
  8360. </cell>
  8361. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  8362. \begin_inset Text
  8363. \begin_layout Plain Layout
  8364. 0.212
  8365. \end_layout
  8366. \end_inset
  8367. </cell>
  8368. </row>
  8369. </lyxtabular>
  8370. \end_inset
  8371. \end_layout
  8372. \begin_layout Plain Layout
  8373. \begin_inset Caption Standard
  8374. \begin_layout Plain Layout
  8375. \series bold
  8376. \begin_inset CommandInset label
  8377. LatexCommand label
  8378. name "tab:weight-covariate-tests"
  8379. \end_inset
  8380. Association of sample weights with clinical covariates in methylation array
  8381. data.
  8382. \series default
  8383. Computed sample quality log weights were tested for significant association
  8384. with each of the variables in the model (1st column).
  8385. An appropriate test was selected for each variable based on whether the
  8386. variable had 2 categories (
  8387. \emph on
  8388. t
  8389. \emph default
  8390. -test), had more than 2 categories (F-test), or was numeric (linear regression).
  8391. The test selected is shown in the 2nd column.
  8392. P-values for association with the log weights are shown in the 3rd column.
  8393. No multiple testing adjustment was performed for these p-values.
  8394. \end_layout
  8395. \end_inset
  8396. \end_layout
  8397. \end_inset
  8398. \end_layout
  8399. \begin_layout Standard
  8400. \begin_inset Float figure
  8401. wide false
  8402. sideways false
  8403. status open
  8404. \begin_layout Plain Layout
  8405. \begin_inset Flex TODO Note (inline)
  8406. status open
  8407. \begin_layout Plain Layout
  8408. Redo the sample weight boxplot with notches, and remove fill colors
  8409. \end_layout
  8410. \end_inset
  8411. \end_layout
  8412. \begin_layout Plain Layout
  8413. \align center
  8414. \begin_inset Graphics
  8415. filename graphics/methylvoom/unadj.dupcor.sva.voomaw/sample-weights-PAGE3-CROP.pdf
  8416. lyxscale 50
  8417. width 60col%
  8418. groupId colwidth
  8419. \end_inset
  8420. \end_layout
  8421. \begin_layout Plain Layout
  8422. \begin_inset Caption Standard
  8423. \begin_layout Plain Layout
  8424. \begin_inset CommandInset label
  8425. LatexCommand label
  8426. name "fig:diabetes-sample-weights"
  8427. \end_inset
  8428. \series bold
  8429. Box-and-whiskers plot of sample quality weights grouped by diabetes diagnosis.
  8430. \series default
  8431. Samples were grouped based on diabetes diagnosis, and the distribution of
  8432. sample quality weights for each diagnosis was plotted as a box-and-whiskers
  8433. plot
  8434. \begin_inset CommandInset citation
  8435. LatexCommand cite
  8436. key "McGill1978"
  8437. literal "false"
  8438. \end_inset
  8439. .
  8440. \end_layout
  8441. \end_inset
  8442. \end_layout
  8443. \begin_layout Plain Layout
  8444. \end_layout
  8445. \end_inset
  8446. \end_layout
  8447. \begin_layout Standard
  8448. To determine whether any of the known experimental factors had an impact
  8449. on data quality, the sample quality weights estimated from the data were
  8450. tested for association with each of the experimental factors (Table
  8451. \begin_inset CommandInset ref
  8452. LatexCommand ref
  8453. reference "tab:weight-covariate-tests"
  8454. plural "false"
  8455. caps "false"
  8456. noprefix "false"
  8457. \end_inset
  8458. ).
  8459. Diabetes diagnosis was found to have a potentially significant association
  8460. with the sample weights, with a t-test p-value of
  8461. \begin_inset Formula $1.06\times10^{-3}$
  8462. \end_inset
  8463. .
  8464. Figure
  8465. \begin_inset CommandInset ref
  8466. LatexCommand ref
  8467. reference "fig:diabetes-sample-weights"
  8468. plural "false"
  8469. caps "false"
  8470. noprefix "false"
  8471. \end_inset
  8472. shows the distribution of sample weights grouped by diabetes diagnosis.
  8473. The samples from patients with Type 2 diabetes were assigned significantly
  8474. lower weights than those from patients with Type 1 diabetes.
  8475. This indicates that the type 2 diabetes samples had an overall higher variance
  8476. on average across all probes.
  8477. \end_layout
  8478. \begin_layout Standard
  8479. \begin_inset Float table
  8480. wide false
  8481. sideways false
  8482. status open
  8483. \begin_layout Plain Layout
  8484. \align center
  8485. \begin_inset Flex TODO Note (inline)
  8486. status open
  8487. \begin_layout Plain Layout
  8488. Consider transposing these tables
  8489. \end_layout
  8490. \end_inset
  8491. \end_layout
  8492. \begin_layout Plain Layout
  8493. \begin_inset Float table
  8494. wide false
  8495. sideways false
  8496. status open
  8497. \begin_layout Plain Layout
  8498. \align center
  8499. \begin_inset Tabular
  8500. <lyxtabular version="3" rows="5" columns="4">
  8501. <features tabularvalignment="middle">
  8502. <column alignment="center" valignment="top">
  8503. <column alignment="center" valignment="top">
  8504. <column alignment="center" valignment="top">
  8505. <column alignment="center" valignment="top">
  8506. <row>
  8507. <cell alignment="center" valignment="top" usebox="none">
  8508. \begin_inset Text
  8509. \begin_layout Plain Layout
  8510. \end_layout
  8511. \end_inset
  8512. </cell>
  8513. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8514. \begin_inset Text
  8515. \begin_layout Plain Layout
  8516. Analysis
  8517. \end_layout
  8518. \end_inset
  8519. </cell>
  8520. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8521. \begin_inset Text
  8522. \begin_layout Plain Layout
  8523. \end_layout
  8524. \end_inset
  8525. </cell>
  8526. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8527. \begin_inset Text
  8528. \begin_layout Plain Layout
  8529. \end_layout
  8530. \end_inset
  8531. </cell>
  8532. </row>
  8533. <row>
  8534. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8535. \begin_inset Text
  8536. \begin_layout Plain Layout
  8537. Contrast
  8538. \end_layout
  8539. \end_inset
  8540. </cell>
  8541. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8542. \begin_inset Text
  8543. \begin_layout Plain Layout
  8544. A
  8545. \end_layout
  8546. \end_inset
  8547. </cell>
  8548. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8549. \begin_inset Text
  8550. \begin_layout Plain Layout
  8551. B
  8552. \end_layout
  8553. \end_inset
  8554. </cell>
  8555. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  8556. \begin_inset Text
  8557. \begin_layout Plain Layout
  8558. C
  8559. \end_layout
  8560. \end_inset
  8561. </cell>
  8562. </row>
  8563. <row>
  8564. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8565. \begin_inset Text
  8566. \begin_layout Plain Layout
  8567. TX vs AR
  8568. \end_layout
  8569. \end_inset
  8570. </cell>
  8571. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8572. \begin_inset Text
  8573. \begin_layout Plain Layout
  8574. 0
  8575. \end_layout
  8576. \end_inset
  8577. </cell>
  8578. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8579. \begin_inset Text
  8580. \begin_layout Plain Layout
  8581. 25
  8582. \end_layout
  8583. \end_inset
  8584. </cell>
  8585. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8586. \begin_inset Text
  8587. \begin_layout Plain Layout
  8588. 22
  8589. \end_layout
  8590. \end_inset
  8591. </cell>
  8592. </row>
  8593. <row>
  8594. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8595. \begin_inset Text
  8596. \begin_layout Plain Layout
  8597. TX vs ADNR
  8598. \end_layout
  8599. \end_inset
  8600. </cell>
  8601. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8602. \begin_inset Text
  8603. \begin_layout Plain Layout
  8604. 7
  8605. \end_layout
  8606. \end_inset
  8607. </cell>
  8608. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8609. \begin_inset Text
  8610. \begin_layout Plain Layout
  8611. 338
  8612. \end_layout
  8613. \end_inset
  8614. </cell>
  8615. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8616. \begin_inset Text
  8617. \begin_layout Plain Layout
  8618. 369
  8619. \end_layout
  8620. \end_inset
  8621. </cell>
  8622. </row>
  8623. <row>
  8624. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8625. \begin_inset Text
  8626. \begin_layout Plain Layout
  8627. TX vs CAN
  8628. \end_layout
  8629. \end_inset
  8630. </cell>
  8631. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8632. \begin_inset Text
  8633. \begin_layout Plain Layout
  8634. 0
  8635. \end_layout
  8636. \end_inset
  8637. </cell>
  8638. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8639. \begin_inset Text
  8640. \begin_layout Plain Layout
  8641. 231
  8642. \end_layout
  8643. \end_inset
  8644. </cell>
  8645. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  8646. \begin_inset Text
  8647. \begin_layout Plain Layout
  8648. 278
  8649. \end_layout
  8650. \end_inset
  8651. </cell>
  8652. </row>
  8653. </lyxtabular>
  8654. \end_inset
  8655. \end_layout
  8656. \begin_layout Plain Layout
  8657. \begin_inset Caption Standard
  8658. \begin_layout Plain Layout
  8659. \begin_inset CommandInset label
  8660. LatexCommand label
  8661. name "tab:methyl-num-signif"
  8662. \end_inset
  8663. Number of probes significant at 10% FDR.
  8664. \end_layout
  8665. \end_inset
  8666. \end_layout
  8667. \end_inset
  8668. \begin_inset space \hfill{}
  8669. \end_inset
  8670. \begin_inset Float table
  8671. wide false
  8672. sideways false
  8673. status open
  8674. \begin_layout Plain Layout
  8675. \align center
  8676. \begin_inset Tabular
  8677. <lyxtabular version="3" rows="5" columns="4">
  8678. <features tabularvalignment="middle">
  8679. <column alignment="center" valignment="top">
  8680. <column alignment="center" valignment="top">
  8681. <column alignment="center" valignment="top">
  8682. <column alignment="center" valignment="top">
  8683. <row>
  8684. <cell alignment="center" valignment="top" usebox="none">
  8685. \begin_inset Text
  8686. \begin_layout Plain Layout
  8687. \end_layout
  8688. \end_inset
  8689. </cell>
  8690. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8691. \begin_inset Text
  8692. \begin_layout Plain Layout
  8693. Analysis
  8694. \end_layout
  8695. \end_inset
  8696. </cell>
  8697. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8698. \begin_inset Text
  8699. \begin_layout Plain Layout
  8700. \end_layout
  8701. \end_inset
  8702. </cell>
  8703. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8704. \begin_inset Text
  8705. \begin_layout Plain Layout
  8706. \end_layout
  8707. \end_inset
  8708. </cell>
  8709. </row>
  8710. <row>
  8711. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8712. \begin_inset Text
  8713. \begin_layout Plain Layout
  8714. Contrast
  8715. \end_layout
  8716. \end_inset
  8717. </cell>
  8718. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8719. \begin_inset Text
  8720. \begin_layout Plain Layout
  8721. A
  8722. \end_layout
  8723. \end_inset
  8724. </cell>
  8725. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8726. \begin_inset Text
  8727. \begin_layout Plain Layout
  8728. B
  8729. \end_layout
  8730. \end_inset
  8731. </cell>
  8732. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  8733. \begin_inset Text
  8734. \begin_layout Plain Layout
  8735. C
  8736. \end_layout
  8737. \end_inset
  8738. </cell>
  8739. </row>
  8740. <row>
  8741. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8742. \begin_inset Text
  8743. \begin_layout Plain Layout
  8744. TX vs AR
  8745. \end_layout
  8746. \end_inset
  8747. </cell>
  8748. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8749. \begin_inset Text
  8750. \begin_layout Plain Layout
  8751. 0
  8752. \end_layout
  8753. \end_inset
  8754. </cell>
  8755. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8756. \begin_inset Text
  8757. \begin_layout Plain Layout
  8758. 10,063
  8759. \end_layout
  8760. \end_inset
  8761. </cell>
  8762. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8763. \begin_inset Text
  8764. \begin_layout Plain Layout
  8765. 11,225
  8766. \end_layout
  8767. \end_inset
  8768. </cell>
  8769. </row>
  8770. <row>
  8771. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8772. \begin_inset Text
  8773. \begin_layout Plain Layout
  8774. TX vs ADNR
  8775. \end_layout
  8776. \end_inset
  8777. </cell>
  8778. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8779. \begin_inset Text
  8780. \begin_layout Plain Layout
  8781. 27
  8782. \end_layout
  8783. \end_inset
  8784. </cell>
  8785. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8786. \begin_inset Text
  8787. \begin_layout Plain Layout
  8788. 12,674
  8789. \end_layout
  8790. \end_inset
  8791. </cell>
  8792. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8793. \begin_inset Text
  8794. \begin_layout Plain Layout
  8795. 13,086
  8796. \end_layout
  8797. \end_inset
  8798. </cell>
  8799. </row>
  8800. <row>
  8801. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8802. \begin_inset Text
  8803. \begin_layout Plain Layout
  8804. TX vs CAN
  8805. \end_layout
  8806. \end_inset
  8807. </cell>
  8808. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8809. \begin_inset Text
  8810. \begin_layout Plain Layout
  8811. 966
  8812. \end_layout
  8813. \end_inset
  8814. </cell>
  8815. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8816. \begin_inset Text
  8817. \begin_layout Plain Layout
  8818. 20,039
  8819. \end_layout
  8820. \end_inset
  8821. </cell>
  8822. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  8823. \begin_inset Text
  8824. \begin_layout Plain Layout
  8825. 20,955
  8826. \end_layout
  8827. \end_inset
  8828. </cell>
  8829. </row>
  8830. </lyxtabular>
  8831. \end_inset
  8832. \end_layout
  8833. \begin_layout Plain Layout
  8834. \begin_inset Caption Standard
  8835. \begin_layout Plain Layout
  8836. \begin_inset CommandInset label
  8837. LatexCommand label
  8838. name "tab:methyl-est-nonnull"
  8839. \end_inset
  8840. Estimated number of non-null tests, using the method of averaging local
  8841. FDR values
  8842. \begin_inset CommandInset citation
  8843. LatexCommand cite
  8844. key "Phipson2013Thesis"
  8845. literal "false"
  8846. \end_inset
  8847. .
  8848. \end_layout
  8849. \end_inset
  8850. \end_layout
  8851. \end_inset
  8852. \end_layout
  8853. \begin_layout Plain Layout
  8854. \begin_inset Caption Standard
  8855. \begin_layout Plain Layout
  8856. \series bold
  8857. Estimates of degree of differential methylation in for each contrast in
  8858. each analysis.
  8859. \series default
  8860. For each of the analyses in Table
  8861. \begin_inset CommandInset ref
  8862. LatexCommand ref
  8863. reference "tab:Summary-of-meth-analysis"
  8864. plural "false"
  8865. caps "false"
  8866. noprefix "false"
  8867. \end_inset
  8868. , these tables show the number of probes called significantly differentially
  8869. methylated at a threshold of 10% FDR for each comparison between TX and
  8870. the other 3 transplant statuses (a) and the estimated total number of probes
  8871. that are differentially methylated (b).
  8872. \end_layout
  8873. \end_inset
  8874. \end_layout
  8875. \end_inset
  8876. \end_layout
  8877. \begin_layout Standard
  8878. \begin_inset Float figure
  8879. wide false
  8880. sideways false
  8881. status open
  8882. \begin_layout Plain Layout
  8883. \align center
  8884. \series bold
  8885. \begin_inset Float figure
  8886. wide false
  8887. sideways false
  8888. status collapsed
  8889. \begin_layout Plain Layout
  8890. \align center
  8891. \begin_inset Graphics
  8892. filename graphics/methylvoom/unadj.dupcor/pval-histograms-PAGE1.pdf
  8893. lyxscale 33
  8894. width 30col%
  8895. groupId meth-pval-hist
  8896. \end_inset
  8897. \end_layout
  8898. \begin_layout Plain Layout
  8899. \series bold
  8900. \begin_inset Caption Standard
  8901. \begin_layout Plain Layout
  8902. AR vs.
  8903. TX, Analysis A
  8904. \end_layout
  8905. \end_inset
  8906. \end_layout
  8907. \begin_layout Plain Layout
  8908. \end_layout
  8909. \end_inset
  8910. \begin_inset space \hfill{}
  8911. \end_inset
  8912. \begin_inset Float figure
  8913. wide false
  8914. sideways false
  8915. status collapsed
  8916. \begin_layout Plain Layout
  8917. \align center
  8918. \begin_inset Graphics
  8919. filename graphics/methylvoom/unadj.dupcor/pval-histograms-PAGE2.pdf
  8920. lyxscale 33
  8921. width 30col%
  8922. groupId meth-pval-hist
  8923. \end_inset
  8924. \end_layout
  8925. \begin_layout Plain Layout
  8926. \series bold
  8927. \begin_inset Caption Standard
  8928. \begin_layout Plain Layout
  8929. ADNR vs.
  8930. TX, Analysis A
  8931. \end_layout
  8932. \end_inset
  8933. \end_layout
  8934. \end_inset
  8935. \begin_inset space \hfill{}
  8936. \end_inset
  8937. \begin_inset Float figure
  8938. wide false
  8939. sideways false
  8940. status collapsed
  8941. \begin_layout Plain Layout
  8942. \align center
  8943. \begin_inset Graphics
  8944. filename graphics/methylvoom/unadj.dupcor/pval-histograms-PAGE3.pdf
  8945. lyxscale 33
  8946. width 30col%
  8947. groupId meth-pval-hist
  8948. \end_inset
  8949. \end_layout
  8950. \begin_layout Plain Layout
  8951. \series bold
  8952. \begin_inset Caption Standard
  8953. \begin_layout Plain Layout
  8954. CAN vs.
  8955. TX, Analysis A
  8956. \end_layout
  8957. \end_inset
  8958. \end_layout
  8959. \end_inset
  8960. \end_layout
  8961. \begin_layout Plain Layout
  8962. \align center
  8963. \series bold
  8964. \begin_inset Float figure
  8965. wide false
  8966. sideways false
  8967. status collapsed
  8968. \begin_layout Plain Layout
  8969. \align center
  8970. \begin_inset Graphics
  8971. filename graphics/methylvoom/unadj.dupcor.sva.aw/pval-histograms-PAGE1.pdf
  8972. lyxscale 33
  8973. width 30col%
  8974. groupId meth-pval-hist
  8975. \end_inset
  8976. \end_layout
  8977. \begin_layout Plain Layout
  8978. \series bold
  8979. \begin_inset Caption Standard
  8980. \begin_layout Plain Layout
  8981. AR vs.
  8982. TX, Analysis B
  8983. \end_layout
  8984. \end_inset
  8985. \end_layout
  8986. \end_inset
  8987. \begin_inset space \hfill{}
  8988. \end_inset
  8989. \begin_inset Float figure
  8990. wide false
  8991. sideways false
  8992. status collapsed
  8993. \begin_layout Plain Layout
  8994. \align center
  8995. \begin_inset Graphics
  8996. filename graphics/methylvoom/unadj.dupcor.sva.aw/pval-histograms-PAGE2.pdf
  8997. lyxscale 33
  8998. width 30col%
  8999. groupId meth-pval-hist
  9000. \end_inset
  9001. \end_layout
  9002. \begin_layout Plain Layout
  9003. \series bold
  9004. \begin_inset Caption Standard
  9005. \begin_layout Plain Layout
  9006. ADNR vs.
  9007. TX, Analysis B
  9008. \end_layout
  9009. \end_inset
  9010. \end_layout
  9011. \end_inset
  9012. \begin_inset space \hfill{}
  9013. \end_inset
  9014. \begin_inset Float figure
  9015. wide false
  9016. sideways false
  9017. status collapsed
  9018. \begin_layout Plain Layout
  9019. \align center
  9020. \begin_inset Graphics
  9021. filename graphics/methylvoom/unadj.dupcor.sva.aw/pval-histograms-PAGE3.pdf
  9022. lyxscale 33
  9023. width 30col%
  9024. groupId meth-pval-hist
  9025. \end_inset
  9026. \end_layout
  9027. \begin_layout Plain Layout
  9028. \series bold
  9029. \begin_inset Caption Standard
  9030. \begin_layout Plain Layout
  9031. CAN vs.
  9032. TX, Analysis B
  9033. \end_layout
  9034. \end_inset
  9035. \end_layout
  9036. \end_inset
  9037. \end_layout
  9038. \begin_layout Plain Layout
  9039. \align center
  9040. \series bold
  9041. \begin_inset Float figure
  9042. wide false
  9043. sideways false
  9044. status collapsed
  9045. \begin_layout Plain Layout
  9046. \align center
  9047. \begin_inset Graphics
  9048. filename graphics/methylvoom/unadj.dupcor.sva.voomaw/pval-histograms-PAGE1.pdf
  9049. lyxscale 33
  9050. width 30col%
  9051. groupId meth-pval-hist
  9052. \end_inset
  9053. \end_layout
  9054. \begin_layout Plain Layout
  9055. \series bold
  9056. \begin_inset Caption Standard
  9057. \begin_layout Plain Layout
  9058. AR vs.
  9059. TX, Analysis C
  9060. \end_layout
  9061. \end_inset
  9062. \end_layout
  9063. \end_inset
  9064. \begin_inset space \hfill{}
  9065. \end_inset
  9066. \begin_inset Float figure
  9067. wide false
  9068. sideways false
  9069. status collapsed
  9070. \begin_layout Plain Layout
  9071. \align center
  9072. \begin_inset Graphics
  9073. filename graphics/methylvoom/unadj.dupcor.sva.voomaw/pval-histograms-PAGE2.pdf
  9074. lyxscale 33
  9075. width 30col%
  9076. groupId meth-pval-hist
  9077. \end_inset
  9078. \end_layout
  9079. \begin_layout Plain Layout
  9080. \series bold
  9081. \begin_inset Caption Standard
  9082. \begin_layout Plain Layout
  9083. ADNR vs.
  9084. TX, Analysis C
  9085. \end_layout
  9086. \end_inset
  9087. \end_layout
  9088. \end_inset
  9089. \begin_inset space \hfill{}
  9090. \end_inset
  9091. \begin_inset Float figure
  9092. wide false
  9093. sideways false
  9094. status collapsed
  9095. \begin_layout Plain Layout
  9096. \align center
  9097. \begin_inset Graphics
  9098. filename graphics/methylvoom/unadj.dupcor.sva.voomaw/pval-histograms-PAGE3.pdf
  9099. lyxscale 33
  9100. width 30col%
  9101. groupId meth-pval-hist
  9102. \end_inset
  9103. \end_layout
  9104. \begin_layout Plain Layout
  9105. \series bold
  9106. \begin_inset Caption Standard
  9107. \begin_layout Plain Layout
  9108. CAN vs.
  9109. TX, Analysis C
  9110. \end_layout
  9111. \end_inset
  9112. \end_layout
  9113. \end_inset
  9114. \end_layout
  9115. \begin_layout Plain Layout
  9116. \begin_inset Caption Standard
  9117. \begin_layout Plain Layout
  9118. \series bold
  9119. \begin_inset CommandInset label
  9120. LatexCommand label
  9121. name "fig:meth-p-value-histograms"
  9122. \end_inset
  9123. Probe p-value histograms for each contrast in each analysis.
  9124. \series default
  9125. For each differential methylation test of interest, the distribution of
  9126. p-values across all probes is plotted as a histogram.
  9127. The red solid line indicates the density that would be expected under the
  9128. null hypothesis for all probes (a
  9129. \begin_inset Formula $\mathrm{Uniform}(0,1)$
  9130. \end_inset
  9131. distribution), while the blue dotted line indicates the fraction of p-values
  9132. that actually follow the null hypothesis (
  9133. \begin_inset Formula $\hat{\pi}_{0}$
  9134. \end_inset
  9135. ) estimated using the method of averaging local FDR values
  9136. \begin_inset CommandInset citation
  9137. LatexCommand cite
  9138. key "Phipson2013Thesis"
  9139. literal "false"
  9140. \end_inset
  9141. .
  9142. the blue line is only shown in each plot if the estimate of
  9143. \begin_inset Formula $\hat{\pi}_{0}$
  9144. \end_inset
  9145. for that p-value distribution is different from 1.
  9146. \end_layout
  9147. \end_inset
  9148. \end_layout
  9149. \end_inset
  9150. \end_layout
  9151. \begin_layout Standard
  9152. Table
  9153. \begin_inset CommandInset ref
  9154. LatexCommand ref
  9155. reference "tab:methyl-num-signif"
  9156. plural "false"
  9157. caps "false"
  9158. noprefix "false"
  9159. \end_inset
  9160. shows the number of significantly differentially methylated probes reported
  9161. by each analysis for each comparison of interest at an FDR of 10%.
  9162. As expected, the more elaborate analyses, B and C, report more significant
  9163. probes than the more basic analysis A, consistent with the conclusions
  9164. above that the data contain hidden systematic variations that must be modeled.
  9165. Table
  9166. \begin_inset CommandInset ref
  9167. LatexCommand ref
  9168. reference "tab:methyl-est-nonnull"
  9169. plural "false"
  9170. caps "false"
  9171. noprefix "false"
  9172. \end_inset
  9173. shows the estimated number differentially methylated probes for each test
  9174. from each analysis.
  9175. This was computed by estimating the proportion of null hypotheses that
  9176. were true using the method of
  9177. \begin_inset CommandInset citation
  9178. LatexCommand cite
  9179. key "Phipson2013Thesis"
  9180. literal "false"
  9181. \end_inset
  9182. and subtracting that fraction from the total number of probes, yielding
  9183. an estimate of the number of null hypotheses that are false based on the
  9184. distribution of p-values across the entire dataset.
  9185. Note that this does not identify which null hypotheses should be rejected
  9186. (i.e.
  9187. which probes are significant); it only estimates the true number of such
  9188. probes.
  9189. Once again, analyses B and C result it much larger estimates for the number
  9190. of differentially methylated probes.
  9191. In this case, analysis C, the only analysis that includes voom, estimates
  9192. the largest number of differentially methylated probes for all 3 contrasts.
  9193. If the assumptions of all the methods employed hold, then this represents
  9194. a gain in statistical power over the simpler analysis A.
  9195. Figure
  9196. \begin_inset CommandInset ref
  9197. LatexCommand ref
  9198. reference "fig:meth-p-value-histograms"
  9199. plural "false"
  9200. caps "false"
  9201. noprefix "false"
  9202. \end_inset
  9203. shows the p-value distributions for each test, from which the numbers in
  9204. Table
  9205. \begin_inset CommandInset ref
  9206. LatexCommand ref
  9207. reference "tab:methyl-est-nonnull"
  9208. plural "false"
  9209. caps "false"
  9210. noprefix "false"
  9211. \end_inset
  9212. were generated.
  9213. The distributions for analysis A all have a dip in density near zero, which
  9214. is a strong sign of a poor model fit.
  9215. The histograms for analyses B and C are more well-behaved, with a uniform
  9216. component stretching all the way from 0 to 1 representing the probes for
  9217. which the null hypotheses is true (no differential methylation), and a
  9218. zero-biased component representing the probes for which the null hypothesis
  9219. is false (differentially methylated).
  9220. These histograms do not indicate any major issues with the model fit.
  9221. \end_layout
  9222. \begin_layout Standard
  9223. \begin_inset Flex TODO Note (inline)
  9224. status open
  9225. \begin_layout Plain Layout
  9226. If time allows, maybe generate the PCA plots before/after SVA effect subtraction
  9227. ?
  9228. \end_layout
  9229. \end_inset
  9230. \end_layout
  9231. \begin_layout Section
  9232. Discussion
  9233. \end_layout
  9234. \begin_layout Subsection
  9235. fRMA achieves clinically applicable normalization without sacrificing classifica
  9236. tion performance
  9237. \end_layout
  9238. \begin_layout Standard
  9239. As shown in Figure
  9240. \begin_inset CommandInset ref
  9241. LatexCommand ref
  9242. reference "fig:Classifier-probabilities-RMA"
  9243. plural "false"
  9244. caps "false"
  9245. noprefix "false"
  9246. \end_inset
  9247. , improper normalization, particularly separate normalization of training
  9248. and test samples, leads to unwanted biases in classification.
  9249. In a controlled experimental context, it is always possible to correct
  9250. this issue by normalizing all experimental samples together.
  9251. However, because it is not feasible to normalize all samples together in
  9252. a clinical context, a single-channel normalization is required is required.
  9253. \end_layout
  9254. \begin_layout Standard
  9255. The major concern in using a single-channel normalization is that non-single-cha
  9256. nnel methods can share information between arrays to improve the normalization,
  9257. and single-channel methods risk sacrificing the gains in normalization
  9258. accuracy that come from this information sharing.
  9259. In the case of RMA, this information sharing is accomplished through quantile
  9260. normalization and median polish steps.
  9261. The need for information sharing in quantile normalization can easily be
  9262. removed by learning a fixed set of quantiles from external data and normalizing
  9263. each array to these fixed quantiles, instead of the quantiles of the data
  9264. itself.
  9265. As long as the fixed quantiles are reasonable, the result will be similar
  9266. to standard RMA.
  9267. However, there is no analogous way to eliminate cross-array information
  9268. sharing in the median polish step, so fRMA replaces this with a weighted
  9269. average of probes on each array, with the weights learned from external
  9270. data.
  9271. This step of fRMA has the greatest potential to diverge from RMA un undesirable
  9272. ways.
  9273. \end_layout
  9274. \begin_layout Standard
  9275. However, when run on real data, fRMA performed at least as well as RMA in
  9276. both the internal validation and external validation tests.
  9277. This shows that fRMA can be used to normalize individual clinical samples
  9278. in a class prediction context without sacrificing the classifier performance
  9279. that would be obtained by using the more well-established RMA for normalization.
  9280. The other single-channel normalization method considered, SCAN, showed
  9281. some loss of AUC in the external validation test.
  9282. Based on these results, fRMA is the preferred normalization for clinical
  9283. samples in a class prediction context.
  9284. \end_layout
  9285. \begin_layout Subsection
  9286. Robust fRMA vectors can be generated for new array platforms
  9287. \end_layout
  9288. \begin_layout Standard
  9289. \begin_inset Flex TODO Note (inline)
  9290. status open
  9291. \begin_layout Plain Layout
  9292. Look up the exact numbers, do a find & replace for
  9293. \begin_inset Quotes eld
  9294. \end_inset
  9295. 850
  9296. \begin_inset Quotes erd
  9297. \end_inset
  9298. \end_layout
  9299. \end_inset
  9300. \end_layout
  9301. \begin_layout Standard
  9302. The published fRMA normalization vectors for the hgu133plus2 platform were
  9303. generated from a set of about 850 samples chosen from a wide range of tissues,
  9304. which the authors determined was sufficient to generate a robust set of
  9305. normalization vectors that could be applied across all tissues
  9306. \begin_inset CommandInset citation
  9307. LatexCommand cite
  9308. key "McCall2010"
  9309. literal "false"
  9310. \end_inset
  9311. .
  9312. Since we only had hthgu133pluspm for 2 tissues of interest, our needs were
  9313. more modest.
  9314. Even using only 130 samples in 26 batches of 5 samples each for kidney
  9315. biopsies, we were able to train a robust set of fRMA normalization vectors
  9316. that were not meaningfully affected by the random selection of 5 samples
  9317. from each batch.
  9318. As expected, the training process was just as robust for the blood samples
  9319. with 230 samples in 46 batches of 5 samples each.
  9320. Because these vectors were each generated using training samples from a
  9321. single tissue, they are not suitable for general use, unlike the vectors
  9322. provided with fRMA itself.
  9323. They are purpose-built for normalizing a specific type of sample on a specific
  9324. platform.
  9325. This is a mostly acceptable limitation in the context of developing a machine
  9326. learning classifier for diagnosing a disease based on samples of a specific
  9327. tissue.
  9328. \end_layout
  9329. \begin_layout Standard
  9330. \begin_inset Flex TODO Note (inline)
  9331. status open
  9332. \begin_layout Plain Layout
  9333. Talk about how these vectors can be used for any data from these tissues
  9334. on this platform even though they were custom made for this data set.
  9335. \end_layout
  9336. \end_inset
  9337. \end_layout
  9338. \begin_layout Standard
  9339. \begin_inset Flex TODO Note (inline)
  9340. status open
  9341. \begin_layout Plain Layout
  9342. How to bring up that these custom vectors were used in another project by
  9343. someone else that was never published?
  9344. \end_layout
  9345. \end_inset
  9346. \end_layout
  9347. \begin_layout Subsection
  9348. Methylation array data can be successfully analyzed using existing techniques,
  9349. but machine learning poses additional challenges
  9350. \end_layout
  9351. \begin_layout Standard
  9352. Both analysis strategies B and C both yield a reasonable analysis, with
  9353. a mean-variance trend that matches the expected behavior for the non-linear
  9354. M-value transformation (Figure
  9355. \begin_inset CommandInset ref
  9356. LatexCommand ref
  9357. reference "fig:meanvar-sva-aw"
  9358. plural "false"
  9359. caps "false"
  9360. noprefix "false"
  9361. \end_inset
  9362. ) and well-behaved p-value distributions (Figure
  9363. \begin_inset CommandInset ref
  9364. LatexCommand ref
  9365. reference "fig:meth-p-value-histograms"
  9366. plural "false"
  9367. caps "false"
  9368. noprefix "false"
  9369. \end_inset
  9370. ).
  9371. These two analyses also yield similar numbers of significant probes (Table
  9372. \begin_inset CommandInset ref
  9373. LatexCommand ref
  9374. reference "tab:methyl-num-signif"
  9375. plural "false"
  9376. caps "false"
  9377. noprefix "false"
  9378. \end_inset
  9379. ) and similar estimates of the number of differentially methylated probes
  9380. (Table
  9381. \begin_inset CommandInset ref
  9382. LatexCommand ref
  9383. reference "tab:methyl-est-nonnull"
  9384. plural "false"
  9385. caps "false"
  9386. noprefix "false"
  9387. \end_inset
  9388. ).
  9389. The main difference between these two analyses is the method used to account
  9390. for the mean-variance trend.
  9391. In analysis B, the trend is estimated and applied at the probe level: each
  9392. probe's estimated variance is squeezed toward the trend using an empirical
  9393. Bayes procedure (Figure
  9394. \begin_inset CommandInset ref
  9395. LatexCommand ref
  9396. reference "fig:meanvar-sva-aw"
  9397. plural "false"
  9398. caps "false"
  9399. noprefix "false"
  9400. \end_inset
  9401. ).
  9402. In analysis C, the trend is still estimated at the probe level, but instead
  9403. of estimating a single variance value shared across all observations for
  9404. a given probe, the voom method computes an initial estimate of the variance
  9405. for each observation individually based on where its model-fitted M-value
  9406. falls on the trend line and then assigns inverse-variance weights to model
  9407. the difference in variance between observations.
  9408. An overall variance is still estimated for each probe using the same empirical
  9409. Bayes method, but now the residual trend is flat (Figure
  9410. \begin_inset CommandInset ref
  9411. LatexCommand ref
  9412. reference "fig:meanvar-sva-voomaw"
  9413. plural "false"
  9414. caps "false"
  9415. noprefix "false"
  9416. \end_inset
  9417. ), indicating that the mean-variance trend is adequately modeled by scaling
  9418. the estimated variance for each observation using the weights computed
  9419. by voom.
  9420. \end_layout
  9421. \begin_layout Standard
  9422. The difference between the standard empirical Bayes trended variance modeling
  9423. (analysis B) and voom (analysis C) is analogous to the difference between
  9424. a t-test with equal variance and a t-test with unequal variance, except
  9425. that the unequal group variances used in the latter test are estimated
  9426. based on the mean-variance trend from all the probes rather than the data
  9427. for the specific probe being tested, thus stabilizing the group variance
  9428. estimates by sharing information between probes.
  9429. Allowing voom to model the variance using observation weights in this manner
  9430. allows the linear model fit to concentrate statistical power where it will
  9431. do the most good.
  9432. For example, if a particular probe's M-values are always at the extreme
  9433. of the M-value range (e.g.
  9434. less than -4) for ADNR samples, but the M-values for that probe in TX and
  9435. CAN samples are within the flat region of the mean-variance trend (between
  9436. -3 and +3), voom is able to down-weight the contribution of the high-variance
  9437. M-values from the ADNR samples in order to gain more statistical power
  9438. while testing for differential methylation between TX and CAN.
  9439. In contrast, modeling the mean-variance trend only at the probe level would
  9440. combine the high-variance ADNR samples and lower-variance samples from
  9441. other conditions and estimate an intermediate variance for this probe.
  9442. In practice, analysis B shows that this approach is adequate, but the voom
  9443. approach in analysis C is at least as good on all model fit criteria and
  9444. yields a larger estimate for the number of differentially methylated genes,
  9445. \emph on
  9446. and
  9447. \emph default
  9448. it matches up better with the theoretical
  9449. \end_layout
  9450. \begin_layout Standard
  9451. The significant association of diabetes diagnosis with sample quality is
  9452. interesting.
  9453. The samples with Type 2 diabetes tended to have more variation, averaged
  9454. across all probes, than those with Type 1 diabetes.
  9455. This is consistent with the consensus that type 2 diabetes and the associated
  9456. metabolic syndrome represent a broad dysregulation of the body's endocrine
  9457. signaling related to metabolism [citation needed].
  9458. This dysregulation could easily manifest as a greater degree of variation
  9459. in the DNA methylation patterns of affected tissues.
  9460. In contrast, Type 1 diabetes has a more specific cause and effect, so a
  9461. less variable methylation signature is expected.
  9462. \end_layout
  9463. \begin_layout Standard
  9464. This preliminary analysis suggests that some degree of differential methylation
  9465. exists between TX and each of the three types of transplant disfunction
  9466. studied.
  9467. Hence, it may be feasible to train a classifier to diagnose transplant
  9468. disfunction from DNA methylation array data.
  9469. However, the major importance of both SVA and sample quality weighting
  9470. for proper modeling of this data poses significant challenges for any attempt
  9471. at a machine learning on data of similar quality.
  9472. While these are easily used in a modeling context with full sample information,
  9473. neither of these methods is directly applicable in a machine learning context,
  9474. where the diagnosis is not known ahead of time.
  9475. If a machine learning approach for methylation-based diagnosis is to be
  9476. pursued, it will either require machine-learning-friendly methods to address
  9477. the same systematic trends in the data that SVA and sample quality weighting
  9478. address, or it will require higher quality data with substantially less
  9479. systematic perturbation of the data.
  9480. \end_layout
  9481. \begin_layout Section
  9482. Future Directions
  9483. \end_layout
  9484. \begin_layout Standard
  9485. \begin_inset Flex TODO Note (inline)
  9486. status open
  9487. \begin_layout Plain Layout
  9488. Some work was already being done with the existing fRMA vectors.
  9489. Do I mention that here?
  9490. \end_layout
  9491. \end_inset
  9492. \end_layout
  9493. \begin_layout Subsection
  9494. Improving fRMA to allow training from batches of unequal size
  9495. \end_layout
  9496. \begin_layout Standard
  9497. Because the tools for building fRMA normalization vectors require equal-size
  9498. batches, many samples must be discarded from the training data.
  9499. This is undesirable for a few reasons.
  9500. First, more data is simply better, all other things being equal.
  9501. In this case,
  9502. \begin_inset Quotes eld
  9503. \end_inset
  9504. better
  9505. \begin_inset Quotes erd
  9506. \end_inset
  9507. means a more precise estimate of normalization parameters.
  9508. In addition, the samples to be discarded must be chosen arbitrarily, which
  9509. introduces an unnecessary element of randomness into the estimation process.
  9510. While the randomness can be made deterministic by setting a consistent
  9511. random seed, the need for equal size batches also introduces a need for
  9512. the analyst to decide on the appropriate trade-off between batch size and
  9513. the number of batches.
  9514. This introduces an unnecessary and undesirable
  9515. \begin_inset Quotes eld
  9516. \end_inset
  9517. researcher degree of freedom
  9518. \begin_inset Quotes erd
  9519. \end_inset
  9520. into the analysis, since the generated normalization vectors now depend
  9521. on the choice of batch size based on vague selection criteria and instinct,
  9522. which can unintentionally introduce bias if the researcher chooses a batch
  9523. size based on what seems to yield the most favorable downstream results
  9524. \begin_inset CommandInset citation
  9525. LatexCommand cite
  9526. key "Simmons2011"
  9527. literal "false"
  9528. \end_inset
  9529. .
  9530. \end_layout
  9531. \begin_layout Standard
  9532. Fortunately, the requirement for equal-size batches is not inherent to the
  9533. fRMA algorithm but rather a limitation of the implementation in the frmaTools
  9534. package.
  9535. In personal communication, the package's author, Matthew McCall, has indicated
  9536. that with some work, it should be possible to improve the implementation
  9537. to work with batches of unequal sizes.
  9538. The current implementation ignores the batch size when calculating with-batch
  9539. and between-batch residual variances, since the batch size constant cancels
  9540. out later in the calculations as long as all batches are of equal size.
  9541. Hence, the calculations of these parameters would need to be modified to
  9542. remove this optimization and properly calculate the variances using the
  9543. full formula.
  9544. Once this modification is made, a new strategy would need to be developed
  9545. for assessing the stability of parameter estimates, since the random subsamplin
  9546. g step is eliminated, meaning that different subsamplings can no longer
  9547. be compared as in Figures
  9548. \begin_inset CommandInset ref
  9549. LatexCommand ref
  9550. reference "fig:frma-violin"
  9551. plural "false"
  9552. caps "false"
  9553. noprefix "false"
  9554. \end_inset
  9555. and
  9556. \begin_inset CommandInset ref
  9557. LatexCommand ref
  9558. reference "fig:Representative-MA-plots"
  9559. plural "false"
  9560. caps "false"
  9561. noprefix "false"
  9562. \end_inset
  9563. .
  9564. Bootstrap resampling is likely a good candidate here: sample many training
  9565. sets of equal size from the existing training set with replacement, estimate
  9566. parameters from each resampled training set, and compare the estimated
  9567. parameters between bootstraps in order to quantify the variability in each
  9568. parameter's estimation.
  9569. \end_layout
  9570. \begin_layout Subsection
  9571. Developing methylation arrays as a diagnostic tool for kidney transplant
  9572. rejection
  9573. \end_layout
  9574. \begin_layout Standard
  9575. The current study has showed that DNA methylation, as assayed by Illumina
  9576. 450k methylation arrays, has some potential for diagnosing transplant dysfuncti
  9577. ons, including rejection.
  9578. However, very few probes could be confidently identified as differentially
  9579. methylated between healthy and dysfunctional transplants.
  9580. One likely explanation for this is the predominant influence of unobserved
  9581. confounding factors.
  9582. SVA can model and correct for such factors, but the correction can never
  9583. be perfect, so some degree of unwanted systematic variation will always
  9584. remain after SVA correction.
  9585. If the effect size of the confounding factors was similar to that of the
  9586. factor of interest (in this case, transplant status), this would be an
  9587. acceptable limitation, since removing most of the confounding factors'
  9588. effects would allow the main effect to stand out.
  9589. However, in this data set, the confounding factors have a much larger effect
  9590. size than transplant status, which means that the small degree of remaining
  9591. variation not removed by SVA can still swamp the effect of interest, making
  9592. it difficult to detect.
  9593. This is, of course, a major issue when the end goal is to develop a classifier
  9594. to diagnose transplant rejection from methylation data, since batch-correction
  9595. methods like SVA that work in a linear modeling context cannot be applied
  9596. in a machine learning context.
  9597. \end_layout
  9598. \begin_layout Standard
  9599. Currently, the source of these unwanted systematic variations in the data
  9600. is unknown.
  9601. The best solution would be to determine the cause of the variation and
  9602. eliminate it, thereby eliminating the need to model and remove that variation.
  9603. However, if this proves impractical, another option is to use SVA to identify
  9604. probes that are highly associated with the surrogate variables that describe
  9605. the unwanted variation in the data.
  9606. These probes could be discarded prior to classifier training, in order
  9607. to maximize the chance that the training algorithm will be able to identify
  9608. highly predictive probes from those remaining.
  9609. Lastly, it is possible that some of this unwanted variation is a result
  9610. of the array-based assay being used and would be eliminated by switching
  9611. to assaying DNA methylation using bisulphite sequencing.
  9612. However, this carries the risk that the sequencing assay will have its
  9613. own set of biases that must be corrected for in a different way.
  9614. \end_layout
  9615. \begin_layout Chapter
  9616. Globin-blocking for more effective blood RNA-seq analysis in primate animal
  9617. model
  9618. \end_layout
  9619. \begin_layout Standard
  9620. \begin_inset Flex TODO Note (inline)
  9621. status open
  9622. \begin_layout Plain Layout
  9623. Choose between above and the paper title: Optimizing yield of deep RNA sequencin
  9624. g for gene expression profiling by globin reduction of peripheral blood
  9625. samples from cynomolgus monkeys (Macaca fascicularis).
  9626. \end_layout
  9627. \end_inset
  9628. \end_layout
  9629. \begin_layout Standard
  9630. \begin_inset Flex TODO Note (inline)
  9631. status open
  9632. \begin_layout Plain Layout
  9633. Chapter author list:
  9634. \begin_inset CommandInset href
  9635. LatexCommand href
  9636. target "https://tex.stackexchange.com/questions/156862/displaying-author-for-each-chapter-in-book"
  9637. \end_inset
  9638. Every chapter gets an author list, which may or may not be part of a citation
  9639. to a published/preprinted paper.
  9640. \end_layout
  9641. \end_inset
  9642. \end_layout
  9643. \begin_layout Standard
  9644. \begin_inset Flex TODO Note (inline)
  9645. status open
  9646. \begin_layout Plain Layout
  9647. Preprint then cite the paper
  9648. \end_layout
  9649. \end_inset
  9650. \end_layout
  9651. \begin_layout Section*
  9652. Abstract
  9653. \end_layout
  9654. \begin_layout Paragraph
  9655. Background
  9656. \end_layout
  9657. \begin_layout Standard
  9658. Primate blood contains high concentrations of globin messenger RNA.
  9659. Globin reduction is a standard technique used to improve the expression
  9660. results obtained by DNA microarrays on RNA from blood samples.
  9661. However, with whole transcriptome RNA-sequencing (RNA-seq) quickly replacing
  9662. microarrays for many applications, the impact of globin reduction for RNA-seq
  9663. has not been previously studied.
  9664. Moreover, no off-the-shelf kits are available for globin reduction in nonhuman
  9665. primates.
  9666. \end_layout
  9667. \begin_layout Paragraph
  9668. Results
  9669. \end_layout
  9670. \begin_layout Standard
  9671. Here we report a protocol for RNA-seq in primate blood samples that uses
  9672. complimentary oligonucleotides to block reverse transcription of the alpha
  9673. and beta globin genes.
  9674. In test samples from cynomolgus monkeys (Macaca fascicularis), this globin
  9675. blocking protocol approximately doubles the yield of informative (non-globin)
  9676. reads by greatly reducing the fraction of globin reads, while also improving
  9677. the consistency in sequencing depth between samples.
  9678. The increased yield enables detection of about 2000 more genes, significantly
  9679. increases the correlation in measured gene expression levels between samples,
  9680. and increases the sensitivity of differential gene expression tests.
  9681. \end_layout
  9682. \begin_layout Paragraph
  9683. Conclusions
  9684. \end_layout
  9685. \begin_layout Standard
  9686. These results show that globin blocking significantly improves the cost-effectiv
  9687. eness of mRNA sequencing in primate blood samples by doubling the yield
  9688. of useful reads, allowing detection of more genes, and improving the precision
  9689. of gene expression measurements.
  9690. Based on these results, a globin reducing or blocking protocol is recommended
  9691. for all RNA-seq studies of primate blood samples.
  9692. \end_layout
  9693. \begin_layout Section
  9694. Approach
  9695. \end_layout
  9696. \begin_layout Standard
  9697. \begin_inset Note Note
  9698. status open
  9699. \begin_layout Plain Layout
  9700. Consider putting some of this in the Intro chapter
  9701. \end_layout
  9702. \begin_layout Itemize
  9703. Cynomolgus monkeys as a model organism
  9704. \end_layout
  9705. \begin_deeper
  9706. \begin_layout Itemize
  9707. Highly related to humans
  9708. \end_layout
  9709. \begin_layout Itemize
  9710. Small size and short life cycle - good research animal
  9711. \end_layout
  9712. \begin_layout Itemize
  9713. Genomics resources still in development
  9714. \end_layout
  9715. \end_deeper
  9716. \begin_layout Itemize
  9717. Inadequacy of existing blood RNA-seq protocols
  9718. \end_layout
  9719. \begin_deeper
  9720. \begin_layout Itemize
  9721. Existing protocols use a separate globin pulldown step, slowing down processing
  9722. \end_layout
  9723. \end_deeper
  9724. \end_inset
  9725. \end_layout
  9726. \begin_layout Standard
  9727. Increasingly, researchers are turning to high-throughput mRNA sequencing
  9728. technologies (RNA-seq) in preference to expression microarrays for analysis
  9729. of gene expression
  9730. \begin_inset CommandInset citation
  9731. LatexCommand cite
  9732. key "Mutz2012"
  9733. literal "false"
  9734. \end_inset
  9735. .
  9736. The advantages are even greater for study of model organisms with no well-estab
  9737. lished array platforms available, such as the cynomolgus monkey (Macaca
  9738. fascicularis).
  9739. High fractions of globin mRNA are naturally present in mammalian peripheral
  9740. blood samples (up to 70% of total mRNA) and these are known to interfere
  9741. with the results of array-based expression profiling
  9742. \begin_inset CommandInset citation
  9743. LatexCommand cite
  9744. key "Winn2010"
  9745. literal "false"
  9746. \end_inset
  9747. .
  9748. The importance of globin reduction for RNA-seq of blood has only been evaluated
  9749. for a deepSAGE protocol on human samples
  9750. \begin_inset CommandInset citation
  9751. LatexCommand cite
  9752. key "Mastrokolias2012"
  9753. literal "false"
  9754. \end_inset
  9755. .
  9756. In the present report, we evaluated globin reduction using custom blocking
  9757. oligonucleotides for deep RNA-seq of peripheral blood samples from a nonhuman
  9758. primate, cynomolgus monkey, using the Illumina technology platform.
  9759. We demonstrate that globin reduction significantly improves the cost-effectiven
  9760. ess of RNA-seq in blood samples.
  9761. Thus, our protocol offers a significant advantage to any investigator planning
  9762. to use RNA-seq for gene expression profiling of nonhuman primate blood
  9763. samples.
  9764. Our method can be generally applied to any species by designing complementary
  9765. oligonucleotide blocking probes to the globin gene sequences of that species.
  9766. Indeed, any highly expressed but biologically uninformative transcripts
  9767. can also be blocked to further increase sequencing efficiency and value
  9768. \begin_inset CommandInset citation
  9769. LatexCommand cite
  9770. key "Arnaud2016"
  9771. literal "false"
  9772. \end_inset
  9773. .
  9774. \end_layout
  9775. \begin_layout Section
  9776. Methods
  9777. \end_layout
  9778. \begin_layout Subsection
  9779. Sample collection
  9780. \end_layout
  9781. \begin_layout Standard
  9782. All research reported here was done under IACUC-approved protocols at the
  9783. University of Miami and complied with all applicable federal and state
  9784. regulations and ethical principles for nonhuman primate research.
  9785. Blood draws occurred between 16 April 2012 and 18 June 2015.
  9786. The experimental system involved intrahepatic pancreatic islet transplantation
  9787. into Cynomolgus monkeys with induced diabetes mellitus with or without
  9788. concomitant infusion of mesenchymal stem cells.
  9789. Blood was collected at serial time points before and after transplantation
  9790. into PAXgene Blood RNA tubes (PreAnalytiX/Qiagen, Valencia, CA) at the
  9791. precise volume:volume ratio of 2.5 ml whole blood into 6.9 ml of PAX gene
  9792. additive.
  9793. \end_layout
  9794. \begin_layout Subsection
  9795. Globin Blocking
  9796. \end_layout
  9797. \begin_layout Standard
  9798. Four oligonucleotides were designed to hybridize to the 3’ end of the transcript
  9799. s for Cynomolgus HBA1, HBA2 and HBB, with two hybridization sites for HBB
  9800. and 2 sites for HBA (the chosen sites were identical in both HBA genes).
  9801. All oligos were purchased from Sigma and were entirely composed of 2’O-Me
  9802. bases with a C3 spacer positioned at the 3’ ends to prevent any polymerase
  9803. mediated primer extension.
  9804. \end_layout
  9805. \begin_layout Quote
  9806. HBA1/2 site 1: GCCCACUCAGACUUUAUUCAAAG-C3spacer
  9807. \end_layout
  9808. \begin_layout Quote
  9809. HBA1/2 site 2: GGUGCAAGGAGGGGAGGAG-C3spacer
  9810. \end_layout
  9811. \begin_layout Quote
  9812. HBB site 1: AAUGAAAAUAAAUGUUUUUUAUUAG-C3spacer
  9813. \end_layout
  9814. \begin_layout Quote
  9815. HBB site 2: CUCAAGGCCCUUCAUAAUAUCCC-C3spacer
  9816. \end_layout
  9817. \begin_layout Subsection
  9818. RNA-seq Library Preparation
  9819. \end_layout
  9820. \begin_layout Standard
  9821. \begin_inset Flex TODO Note (inline)
  9822. status open
  9823. \begin_layout Plain Layout
  9824. Add protected spaces where appropriate to prevent unwanted line breaks.
  9825. \end_layout
  9826. \end_inset
  9827. \end_layout
  9828. \begin_layout Standard
  9829. Sequencing libraries were prepared with 200
  9830. \begin_inset space ~
  9831. \end_inset
  9832. ng total RNA from each sample.
  9833. Polyadenylated mRNA was selected from 200 ng aliquots of cynomolgus blood-deriv
  9834. ed total RNA using Ambion Dynabeads Oligo(dT)25 beads (Invitrogen) following
  9835. manufacturer’s recommended protocol.
  9836. PolyA selected RNA was then combined with 8 pmol of HBA1/2 (site 1), 8
  9837. pmol of HBA1/2 (site 2), 12 pmol of HBB (site 1) and 12 pmol of HBB (site
  9838. 2) oligonucleotides.
  9839. In addition, 20 pmol of RT primer containing a portion of the Illumina
  9840. adapter sequence (B-oligo-dTV: GAGTTCCTTGGCACCCGAGAATTCCATTTTTTTTTTTTTTTTTTTV)
  9841. and 4 µL of 5X First Strand buffer (250 mM Tris-HCl pH 8.3, 375 mM KCl,
  9842. 15mM MgCl2) were added in a total volume of 15 µL.
  9843. The RNA was fragmented by heating this cocktail for 3 minutes at 95°C and
  9844. then placed on ice.
  9845. This was followed by the addition of 2 µL 0.1 M DTT, 1 µL RNaseOUT, 1 µL
  9846. 10mM dNTPs 10% biotin-16 aminoallyl-2’- dUTP and 10% biotin-16 aminoallyl-2’-
  9847. dCTP (TriLink Biotech, San Diego, CA), 1 µL Superscript II (200U/ µL, Thermo-Fi
  9848. sher).
  9849. A second “unblocked” library was prepared in the same way for each sample
  9850. but replacing the blocking oligos with an equivalent volume of water.
  9851. The reaction was carried out at 25°C for 15 minutes and 42°C for 40 minutes,
  9852. followed by incubation at 75°C for 10 minutes to inactivate the reverse
  9853. transcriptase.
  9854. \end_layout
  9855. \begin_layout Standard
  9856. The cDNA/RNA hybrid molecules were purified using 1.8X Ampure XP beads (Agencourt
  9857. ) following supplier’s recommended protocol.
  9858. The cDNA/RNA hybrid was eluted in 25 µL of 10 mM Tris-HCl pH 8.0, and then
  9859. bound to 25 µL of M280 Magnetic Streptavidin beads washed per recommended
  9860. protocol (Thermo-Fisher).
  9861. After 30 minutes of binding, beads were washed one time in 100 µL 0.1N NaOH
  9862. to denature and remove the bound RNA, followed by two 100 µL washes with
  9863. 1X TE buffer.
  9864. \end_layout
  9865. \begin_layout Standard
  9866. Subsequent attachment of the 5-prime Illumina A adapter was performed by
  9867. on-bead random primer extension of the following sequence (A-N8 primer:
  9868. TTCAGAGTTCTACAGTCCGACGATCNNNNNNNN).
  9869. Briefly, beads were resuspended in a 20 µL reaction containing 5 µM A-N8
  9870. primer, 40mM Tris-HCl pH 7.5, 20mM MgCl2, 50mM NaCl, 0.325U/µL Sequenase
  9871. 2.0 (Affymetrix, Santa Clara, CA), 0.0025U/µL inorganic pyrophosphatase (Affymetr
  9872. ix) and 300 µM each dNTP.
  9873. Reaction was incubated at 22°C for 30 minutes, then beads were washed 2
  9874. times with 1X TE buffer (200µL).
  9875. \end_layout
  9876. \begin_layout Standard
  9877. The magnetic streptavidin beads were resuspended in 34 µL nuclease-free
  9878. water and added directly to a PCR tube.
  9879. The two Illumina protocol-specified PCR primers were added at 0.53 µM (Illumina
  9880. TruSeq Universal Primer 1 and Illumina TruSeq barcoded PCR primer 2), along
  9881. with 40 µL 2X KAPA HiFi Hotstart ReadyMix (KAPA, Willmington MA) and thermocycl
  9882. ed as follows: starting with 98°C (2 min-hold); 15 cycles of 98°C, 20sec;
  9883. 60°C, 30sec; 72°C, 30sec; and finished with a 72°C (2 min-hold).
  9884. \end_layout
  9885. \begin_layout Standard
  9886. PCR products were purified with 1X Ampure Beads following manufacturer’s
  9887. recommended protocol.
  9888. Libraries were then analyzed using the Agilent TapeStation and quantitation
  9889. of desired size range was performed by “smear analysis”.
  9890. Samples were pooled in equimolar batches of 16 samples.
  9891. Pooled libraries were size selected on 2% agarose gels (E-Gel EX Agarose
  9892. Gels; Thermo-Fisher).
  9893. Products were cut between 250 and 350 bp (corresponding to insert sizes
  9894. of 130 to 230 bps).
  9895. Finished library pools were then sequenced on the Illumina NextSeq500 instrumen
  9896. t with 75 base read lengths.
  9897. \end_layout
  9898. \begin_layout Subsection
  9899. Read alignment and counting
  9900. \end_layout
  9901. \begin_layout Standard
  9902. Reads were aligned to the cynomolgus genome using STAR
  9903. \begin_inset CommandInset citation
  9904. LatexCommand cite
  9905. key "Dobin2013,Wilson2013"
  9906. literal "false"
  9907. \end_inset
  9908. .
  9909. Counts of uniquely mapped reads were obtained for every gene in each sample
  9910. with the
  9911. \begin_inset Flex Code
  9912. status open
  9913. \begin_layout Plain Layout
  9914. featureCounts
  9915. \end_layout
  9916. \end_inset
  9917. function from the
  9918. \begin_inset Flex Code
  9919. status open
  9920. \begin_layout Plain Layout
  9921. Rsubread
  9922. \end_layout
  9923. \end_inset
  9924. package, using each of the three possibilities for the
  9925. \begin_inset Flex Code
  9926. status open
  9927. \begin_layout Plain Layout
  9928. strandSpecific
  9929. \end_layout
  9930. \end_inset
  9931. option: sense, antisense, and unstranded
  9932. \begin_inset CommandInset citation
  9933. LatexCommand cite
  9934. key "Liao2014"
  9935. literal "false"
  9936. \end_inset
  9937. .
  9938. A few artifacts in the cynomolgus genome annotation complicated read counting.
  9939. First, no ortholog is annotated for alpha globin in the cynomolgus genome,
  9940. presumably because the human genome has two alpha globin genes with nearly
  9941. identical sequences, making the orthology relationship ambiguous.
  9942. However, two loci in the cynomolgus genome are as “hemoglobin subunit alpha-lik
  9943. e” (LOC102136192 and LOC102136846).
  9944. LOC102136192 is annotated as a pseudogene while LOC102136846 is annotated
  9945. as protein-coding.
  9946. Our globin reduction protocol was designed to include blocking of these
  9947. two genes.
  9948. Indeed, these two genes have almost the same read counts in each library
  9949. as the properly-annotated HBB gene and much larger counts than any other
  9950. gene in the unblocked libraries, giving confidence that reads derived from
  9951. the real alpha globin are mapping to both genes.
  9952. Thus, reads from both of these loci were counted as alpha globin reads
  9953. in all further analyses.
  9954. The second artifact is a small, uncharacterized non-coding RNA gene (LOC1021365
  9955. 91), which overlaps the HBA-like gene (LOC102136192) on the opposite strand.
  9956. If counting is not performed in stranded mode (or if a non-strand-specific
  9957. sequencing protocol is used), many reads mapping to the globin gene will
  9958. be discarded as ambiguous due to their overlap with this ncRNA gene, resulting
  9959. in significant undercounting of globin reads.
  9960. Therefore, stranded sense counts were used for all further analysis in
  9961. the present study to insure that we accurately accounted for globin transcript
  9962. reduction.
  9963. However, we note that stranded reads are not necessary for RNA-seq using
  9964. our protocol in standard practice.
  9965. \end_layout
  9966. \begin_layout Subsection
  9967. Normalization and Exploratory Data Analysis
  9968. \end_layout
  9969. \begin_layout Standard
  9970. Libraries were normalized by computing scaling factors using the
  9971. \begin_inset Flex Code
  9972. status open
  9973. \begin_layout Plain Layout
  9974. edgeR
  9975. \end_layout
  9976. \end_inset
  9977. package’s Trimmed Mean of M-values method
  9978. \begin_inset CommandInset citation
  9979. LatexCommand cite
  9980. key "Robinson2010"
  9981. literal "false"
  9982. \end_inset
  9983. .
  9984. Log2 counts per million values (logCPM) were calculated using the cpm function
  9985. in
  9986. \begin_inset Flex Code
  9987. status open
  9988. \begin_layout Plain Layout
  9989. edgeR
  9990. \end_layout
  9991. \end_inset
  9992. for individual samples and aveLogCPM function for averages across
  9993. groups of samples, using those functions’ default prior count values to
  9994. avoid taking the logarithm of 0.
  9995. Genes were considered “present” if their average normalized logCPM values
  9996. across all libraries were at least -1.
  9997. Normalizing for gene length was unnecessary because the sequencing protocol
  9998. is 3’-biased and hence the expected read count for each gene is related
  9999. to the transcript’s copy number but not its length.
  10000. \end_layout
  10001. \begin_layout Standard
  10002. In order to assess the effect of blocking on reproducibility, Pearson and
  10003. Spearman correlation coefficients were computed between the logCPM values
  10004. for every pair of libraries within the globin-blocked (GB) and unblocked
  10005. (non-GB) groups, and
  10006. \begin_inset Flex Code
  10007. status open
  10008. \begin_layout Plain Layout
  10009. edgeR
  10010. \end_layout
  10011. \end_inset
  10012. 's
  10013. \begin_inset Flex Code
  10014. status open
  10015. \begin_layout Plain Layout
  10016. estimateDisp
  10017. \end_layout
  10018. \end_inset
  10019. function was used to compute negative binomial dispersions separately for
  10020. the two groups
  10021. \begin_inset CommandInset citation
  10022. LatexCommand cite
  10023. key "Chen2014"
  10024. literal "false"
  10025. \end_inset
  10026. .
  10027. \end_layout
  10028. \begin_layout Subsection
  10029. Differential Expression Analysis
  10030. \end_layout
  10031. \begin_layout Standard
  10032. All tests for differential gene expression were performed using
  10033. \begin_inset Flex Code
  10034. status open
  10035. \begin_layout Plain Layout
  10036. edgeR
  10037. \end_layout
  10038. \end_inset
  10039. , by
  10040. first fitting a negative binomial generalized linear model to the counts
  10041. and normalization factors and then performing a quasi-likelihood F-test
  10042. with robust estimation of outlier gene dispersions
  10043. \begin_inset CommandInset citation
  10044. LatexCommand cite
  10045. key "Lund2012,Phipson2016"
  10046. literal "false"
  10047. \end_inset
  10048. .
  10049. To investigate the effects of globin blocking on each gene, an additive
  10050. model was fit to the full data with coefficients for globin blocking and
  10051. SampleID.
  10052. To test the effect of globin blocking on detection of differentially expressed
  10053. genes, the GB samples and non-GB samples were each analyzed independently
  10054. as follows: for each animal with both a pre-transplant and a post-transplant
  10055. time point in the data set, the pre-transplant sample and the earliest
  10056. post-transplant sample were selected, and all others were excluded, yielding
  10057. a pre-/post-transplant pair of samples for each animal (N=7 animals with
  10058. paired samples).
  10059. These samples were analyzed for pre-transplant vs.
  10060. post-transplant differential gene expression while controlling for inter-animal
  10061. variation using an additive model with coefficients for transplant and
  10062. animal ID.
  10063. In all analyses, p-values were adjusted using the Benjamini-Hochberg procedure
  10064. for FDR control
  10065. \begin_inset CommandInset citation
  10066. LatexCommand cite
  10067. key "Benjamini1995"
  10068. literal "false"
  10069. \end_inset
  10070. .
  10071. \end_layout
  10072. \begin_layout Standard
  10073. \begin_inset Note Note
  10074. status open
  10075. \begin_layout Itemize
  10076. New blood RNA-seq protocol to block reverse transcription of globin genes
  10077. \end_layout
  10078. \begin_layout Itemize
  10079. Blood RNA-seq time course after transplants with/without MSC infusion
  10080. \end_layout
  10081. \end_inset
  10082. \end_layout
  10083. \begin_layout Section
  10084. Results
  10085. \end_layout
  10086. \begin_layout Subsection
  10087. Globin blocking yields a larger and more consistent fraction of useful reads
  10088. \end_layout
  10089. \begin_layout Standard
  10090. \begin_inset ERT
  10091. status open
  10092. \begin_layout Plain Layout
  10093. \backslash
  10094. afterpage{
  10095. \end_layout
  10096. \begin_layout Plain Layout
  10097. \backslash
  10098. begin{landscape}
  10099. \end_layout
  10100. \end_inset
  10101. \end_layout
  10102. \begin_layout Standard
  10103. \begin_inset Float table
  10104. placement p
  10105. wide false
  10106. sideways false
  10107. status open
  10108. \begin_layout Plain Layout
  10109. \align center
  10110. \begin_inset Tabular
  10111. <lyxtabular version="3" rows="4" columns="7">
  10112. <features tabularvalignment="middle">
  10113. <column alignment="center" valignment="top">
  10114. <column alignment="center" valignment="top">
  10115. <column alignment="center" valignment="top">
  10116. <column alignment="center" valignment="top">
  10117. <column alignment="center" valignment="top">
  10118. <column alignment="center" valignment="top">
  10119. <column alignment="center" valignment="top">
  10120. <row>
  10121. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10122. \begin_inset Text
  10123. \begin_layout Plain Layout
  10124. \end_layout
  10125. \end_inset
  10126. </cell>
  10127. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10128. \begin_inset Text
  10129. \begin_layout Plain Layout
  10130. \family roman
  10131. \series medium
  10132. \shape up
  10133. \size normal
  10134. \emph off
  10135. \bar no
  10136. \strikeout off
  10137. \xout off
  10138. \uuline off
  10139. \uwave off
  10140. \noun off
  10141. \color none
  10142. Percent of Total Reads
  10143. \end_layout
  10144. \end_inset
  10145. </cell>
  10146. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10147. \begin_inset Text
  10148. \begin_layout Plain Layout
  10149. \end_layout
  10150. \end_inset
  10151. </cell>
  10152. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10153. \begin_inset Text
  10154. \begin_layout Plain Layout
  10155. \end_layout
  10156. \end_inset
  10157. </cell>
  10158. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10159. \begin_inset Text
  10160. \begin_layout Plain Layout
  10161. \end_layout
  10162. \end_inset
  10163. </cell>
  10164. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  10165. \begin_inset Text
  10166. \begin_layout Plain Layout
  10167. \family roman
  10168. \series medium
  10169. \shape up
  10170. \size normal
  10171. \emph off
  10172. \bar no
  10173. \strikeout off
  10174. \xout off
  10175. \uuline off
  10176. \uwave off
  10177. \noun off
  10178. \color none
  10179. Percent of Genic Reads
  10180. \end_layout
  10181. \end_inset
  10182. </cell>
  10183. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  10184. \begin_inset Text
  10185. \begin_layout Plain Layout
  10186. \end_layout
  10187. \end_inset
  10188. </cell>
  10189. </row>
  10190. <row>
  10191. <cell alignment="center" valignment="top" bottomline="true" leftline="true" usebox="none">
  10192. \begin_inset Text
  10193. \begin_layout Plain Layout
  10194. GB
  10195. \end_layout
  10196. \end_inset
  10197. </cell>
  10198. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10199. \begin_inset Text
  10200. \begin_layout Plain Layout
  10201. \family roman
  10202. \series medium
  10203. \shape up
  10204. \size normal
  10205. \emph off
  10206. \bar no
  10207. \strikeout off
  10208. \xout off
  10209. \uuline off
  10210. \uwave off
  10211. \noun off
  10212. \color none
  10213. Non-globin Reads
  10214. \end_layout
  10215. \end_inset
  10216. </cell>
  10217. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10218. \begin_inset Text
  10219. \begin_layout Plain Layout
  10220. \family roman
  10221. \series medium
  10222. \shape up
  10223. \size normal
  10224. \emph off
  10225. \bar no
  10226. \strikeout off
  10227. \xout off
  10228. \uuline off
  10229. \uwave off
  10230. \noun off
  10231. \color none
  10232. Globin Reads
  10233. \end_layout
  10234. \end_inset
  10235. </cell>
  10236. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10237. \begin_inset Text
  10238. \begin_layout Plain Layout
  10239. \family roman
  10240. \series medium
  10241. \shape up
  10242. \size normal
  10243. \emph off
  10244. \bar no
  10245. \strikeout off
  10246. \xout off
  10247. \uuline off
  10248. \uwave off
  10249. \noun off
  10250. \color none
  10251. All Genic Reads
  10252. \end_layout
  10253. \end_inset
  10254. </cell>
  10255. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10256. \begin_inset Text
  10257. \begin_layout Plain Layout
  10258. \family roman
  10259. \series medium
  10260. \shape up
  10261. \size normal
  10262. \emph off
  10263. \bar no
  10264. \strikeout off
  10265. \xout off
  10266. \uuline off
  10267. \uwave off
  10268. \noun off
  10269. \color none
  10270. All Aligned Reads
  10271. \end_layout
  10272. \end_inset
  10273. </cell>
  10274. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10275. \begin_inset Text
  10276. \begin_layout Plain Layout
  10277. \family roman
  10278. \series medium
  10279. \shape up
  10280. \size normal
  10281. \emph off
  10282. \bar no
  10283. \strikeout off
  10284. \xout off
  10285. \uuline off
  10286. \uwave off
  10287. \noun off
  10288. \color none
  10289. Non-globin Reads
  10290. \end_layout
  10291. \end_inset
  10292. </cell>
  10293. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  10294. \begin_inset Text
  10295. \begin_layout Plain Layout
  10296. \family roman
  10297. \series medium
  10298. \shape up
  10299. \size normal
  10300. \emph off
  10301. \bar no
  10302. \strikeout off
  10303. \xout off
  10304. \uuline off
  10305. \uwave off
  10306. \noun off
  10307. \color none
  10308. Globin Reads
  10309. \end_layout
  10310. \end_inset
  10311. </cell>
  10312. </row>
  10313. <row>
  10314. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10315. \begin_inset Text
  10316. \begin_layout Plain Layout
  10317. \family roman
  10318. \series medium
  10319. \shape up
  10320. \size normal
  10321. \emph off
  10322. \bar no
  10323. \strikeout off
  10324. \xout off
  10325. \uuline off
  10326. \uwave off
  10327. \noun off
  10328. \color none
  10329. Yes
  10330. \end_layout
  10331. \end_inset
  10332. </cell>
  10333. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10334. \begin_inset Text
  10335. \begin_layout Plain Layout
  10336. \family roman
  10337. \series medium
  10338. \shape up
  10339. \size normal
  10340. \emph off
  10341. \bar no
  10342. \strikeout off
  10343. \xout off
  10344. \uuline off
  10345. \uwave off
  10346. \noun off
  10347. \color none
  10348. 50.4% ± 6.82
  10349. \end_layout
  10350. \end_inset
  10351. </cell>
  10352. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10353. \begin_inset Text
  10354. \begin_layout Plain Layout
  10355. \family roman
  10356. \series medium
  10357. \shape up
  10358. \size normal
  10359. \emph off
  10360. \bar no
  10361. \strikeout off
  10362. \xout off
  10363. \uuline off
  10364. \uwave off
  10365. \noun off
  10366. \color none
  10367. 3.48% ± 2.94
  10368. \end_layout
  10369. \end_inset
  10370. </cell>
  10371. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10372. \begin_inset Text
  10373. \begin_layout Plain Layout
  10374. \family roman
  10375. \series medium
  10376. \shape up
  10377. \size normal
  10378. \emph off
  10379. \bar no
  10380. \strikeout off
  10381. \xout off
  10382. \uuline off
  10383. \uwave off
  10384. \noun off
  10385. \color none
  10386. 53.9% ± 6.81
  10387. \end_layout
  10388. \end_inset
  10389. </cell>
  10390. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10391. \begin_inset Text
  10392. \begin_layout Plain Layout
  10393. \family roman
  10394. \series medium
  10395. \shape up
  10396. \size normal
  10397. \emph off
  10398. \bar no
  10399. \strikeout off
  10400. \xout off
  10401. \uuline off
  10402. \uwave off
  10403. \noun off
  10404. \color none
  10405. 89.7% ± 2.40
  10406. \end_layout
  10407. \end_inset
  10408. </cell>
  10409. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10410. \begin_inset Text
  10411. \begin_layout Plain Layout
  10412. \family roman
  10413. \series medium
  10414. \shape up
  10415. \size normal
  10416. \emph off
  10417. \bar no
  10418. \strikeout off
  10419. \xout off
  10420. \uuline off
  10421. \uwave off
  10422. \noun off
  10423. \color none
  10424. 93.5% ± 5.25
  10425. \end_layout
  10426. \end_inset
  10427. </cell>
  10428. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  10429. \begin_inset Text
  10430. \begin_layout Plain Layout
  10431. \family roman
  10432. \series medium
  10433. \shape up
  10434. \size normal
  10435. \emph off
  10436. \bar no
  10437. \strikeout off
  10438. \xout off
  10439. \uuline off
  10440. \uwave off
  10441. \noun off
  10442. \color none
  10443. 6.49% ± 5.25
  10444. \end_layout
  10445. \end_inset
  10446. </cell>
  10447. </row>
  10448. <row>
  10449. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10450. \begin_inset Text
  10451. \begin_layout Plain Layout
  10452. \family roman
  10453. \series medium
  10454. \shape up
  10455. \size normal
  10456. \emph off
  10457. \bar no
  10458. \strikeout off
  10459. \xout off
  10460. \uuline off
  10461. \uwave off
  10462. \noun off
  10463. \color none
  10464. No
  10465. \end_layout
  10466. \end_inset
  10467. </cell>
  10468. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10469. \begin_inset Text
  10470. \begin_layout Plain Layout
  10471. \family roman
  10472. \series medium
  10473. \shape up
  10474. \size normal
  10475. \emph off
  10476. \bar no
  10477. \strikeout off
  10478. \xout off
  10479. \uuline off
  10480. \uwave off
  10481. \noun off
  10482. \color none
  10483. 26.3% ± 8.95
  10484. \end_layout
  10485. \end_inset
  10486. </cell>
  10487. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10488. \begin_inset Text
  10489. \begin_layout Plain Layout
  10490. \family roman
  10491. \series medium
  10492. \shape up
  10493. \size normal
  10494. \emph off
  10495. \bar no
  10496. \strikeout off
  10497. \xout off
  10498. \uuline off
  10499. \uwave off
  10500. \noun off
  10501. \color none
  10502. 44.6% ± 16.6
  10503. \end_layout
  10504. \end_inset
  10505. </cell>
  10506. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10507. \begin_inset Text
  10508. \begin_layout Plain Layout
  10509. \family roman
  10510. \series medium
  10511. \shape up
  10512. \size normal
  10513. \emph off
  10514. \bar no
  10515. \strikeout off
  10516. \xout off
  10517. \uuline off
  10518. \uwave off
  10519. \noun off
  10520. \color none
  10521. 70.1% ± 9.38
  10522. \end_layout
  10523. \end_inset
  10524. </cell>
  10525. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10526. \begin_inset Text
  10527. \begin_layout Plain Layout
  10528. \family roman
  10529. \series medium
  10530. \shape up
  10531. \size normal
  10532. \emph off
  10533. \bar no
  10534. \strikeout off
  10535. \xout off
  10536. \uuline off
  10537. \uwave off
  10538. \noun off
  10539. \color none
  10540. 90.7% ± 5.16
  10541. \end_layout
  10542. \end_inset
  10543. </cell>
  10544. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10545. \begin_inset Text
  10546. \begin_layout Plain Layout
  10547. \family roman
  10548. \series medium
  10549. \shape up
  10550. \size normal
  10551. \emph off
  10552. \bar no
  10553. \strikeout off
  10554. \xout off
  10555. \uuline off
  10556. \uwave off
  10557. \noun off
  10558. \color none
  10559. 38.8% ± 17.1
  10560. \end_layout
  10561. \end_inset
  10562. </cell>
  10563. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  10564. \begin_inset Text
  10565. \begin_layout Plain Layout
  10566. \family roman
  10567. \series medium
  10568. \shape up
  10569. \size normal
  10570. \emph off
  10571. \bar no
  10572. \strikeout off
  10573. \xout off
  10574. \uuline off
  10575. \uwave off
  10576. \noun off
  10577. \color none
  10578. 61.2% ± 17.1
  10579. \end_layout
  10580. \end_inset
  10581. </cell>
  10582. </row>
  10583. </lyxtabular>
  10584. \end_inset
  10585. \end_layout
  10586. \begin_layout Plain Layout
  10587. \begin_inset Caption Standard
  10588. \begin_layout Plain Layout
  10589. \series bold
  10590. \begin_inset Argument 1
  10591. status collapsed
  10592. \begin_layout Plain Layout
  10593. Fractions of reads mapping to genomic features in GB and non-GB samples.
  10594. \end_layout
  10595. \end_inset
  10596. \begin_inset CommandInset label
  10597. LatexCommand label
  10598. name "tab:Fractions-of-reads"
  10599. \end_inset
  10600. Fractions of reads mapping to genomic features in GB and non-GB samples.
  10601. \series default
  10602. All values are given as mean ± standard deviation.
  10603. \end_layout
  10604. \end_inset
  10605. \end_layout
  10606. \end_inset
  10607. \end_layout
  10608. \begin_layout Standard
  10609. \begin_inset ERT
  10610. status open
  10611. \begin_layout Plain Layout
  10612. \backslash
  10613. end{landscape}
  10614. \end_layout
  10615. \begin_layout Plain Layout
  10616. }
  10617. \end_layout
  10618. \end_inset
  10619. \end_layout
  10620. \begin_layout Standard
  10621. The objective of the present study was to validate a new protocol for deep
  10622. RNA-seq of whole blood drawn into PaxGene tubes from cynomolgus monkeys
  10623. undergoing islet transplantation, with particular focus on minimizing the
  10624. loss of useful sequencing space to uninformative globin reads.
  10625. The details of the analysis with respect to transplant outcomes and the
  10626. impact of mesenchymal stem cell treatment will be reported in a separate
  10627. manuscript (in preparation).
  10628. To focus on the efficacy of our globin blocking protocol, 37 blood samples,
  10629. 16 from pre-transplant and 21 from post-transplant time points, were each
  10630. prepped once with and once without globin blocking oligos, and were then
  10631. sequenced on an Illumina NextSeq500 instrument.
  10632. The number of reads aligning to each gene in the cynomolgus genome was
  10633. counted.
  10634. Table 1 summarizes the distribution of read fractions among the GB and
  10635. non-GB libraries.
  10636. In the libraries with no globin blocking, globin reads made up an average
  10637. of 44.6% of total input reads, while reads assigned to all other genes made
  10638. up an average of 26.3%.
  10639. The remaining reads either aligned to intergenic regions (that include
  10640. long non-coding RNAs) or did not align with any annotated transcripts in
  10641. the current build of the cynomolgus genome.
  10642. In the GB libraries, globin reads made up only 3.48% and reads assigned
  10643. to all other genes increased to 50.4%.
  10644. Thus, globin blocking resulted in a 92.2% reduction in globin reads and
  10645. a 91.6% increase in yield of useful non-globin reads.
  10646. \end_layout
  10647. \begin_layout Standard
  10648. This reduction is not quite as efficient as the previous analysis showed
  10649. for human samples by DeepSAGE (<0.4% globin reads after globin reduction)
  10650. \begin_inset CommandInset citation
  10651. LatexCommand cite
  10652. key "Mastrokolias2012"
  10653. literal "false"
  10654. \end_inset
  10655. .
  10656. Nonetheless, this degree of globin reduction is sufficient to nearly double
  10657. the yield of useful reads.
  10658. Thus, globin blocking cuts the required sequencing effort (and costs) to
  10659. achieve a target coverage depth by almost 50%.
  10660. Consistent with this near doubling of yield, the average difference in
  10661. un-normalized logCPM across all genes between the GB libraries and non-GB
  10662. libraries is approximately 1 (mean = 1.01, median = 1.08), an overall 2-fold
  10663. increase.
  10664. Un-normalized values are used here because the TMM normalization correctly
  10665. identifies this 2-fold difference as biologically irrelevant and removes
  10666. it.
  10667. \end_layout
  10668. \begin_layout Standard
  10669. \begin_inset Float figure
  10670. wide false
  10671. sideways false
  10672. status collapsed
  10673. \begin_layout Plain Layout
  10674. \align center
  10675. \begin_inset Graphics
  10676. filename graphics/Globin Paper/figure1 - globin-fractions.pdf
  10677. lyxscale 50
  10678. width 75col%
  10679. \end_inset
  10680. \end_layout
  10681. \begin_layout Plain Layout
  10682. \begin_inset Caption Standard
  10683. \begin_layout Plain Layout
  10684. \series bold
  10685. \begin_inset Argument 1
  10686. status collapsed
  10687. \begin_layout Plain Layout
  10688. Fraction of genic reads in each sample aligned to non-globin genes, with
  10689. and without globin blocking (GB).
  10690. \end_layout
  10691. \end_inset
  10692. \begin_inset CommandInset label
  10693. LatexCommand label
  10694. name "fig:Fraction-of-genic-reads"
  10695. \end_inset
  10696. Fraction of genic reads in each sample aligned to non-globin genes, with
  10697. and without globin blocking (GB).
  10698. \series default
  10699. All reads in each sequencing library were aligned to the cyno genome, and
  10700. the number of reads uniquely aligning to each gene was counted.
  10701. For each sample, counts were summed separately for all globin genes and
  10702. for the remainder of the genes (non-globin genes), and the fraction of
  10703. genic reads aligned to non-globin genes was computed.
  10704. Each point represents an individual sample.
  10705. Gray + signs indicate the means for globin-blocked libraries and unblocked
  10706. libraries.
  10707. The overall distribution for each group is represented as a notched box
  10708. plots.
  10709. Points are randomly spread vertically to avoid excessive overlapping.
  10710. \end_layout
  10711. \end_inset
  10712. \end_layout
  10713. \end_inset
  10714. \end_layout
  10715. \begin_layout Standard
  10716. Another important aspect is that the standard deviations in Table
  10717. \begin_inset CommandInset ref
  10718. LatexCommand ref
  10719. reference "tab:Fractions-of-reads"
  10720. plural "false"
  10721. caps "false"
  10722. noprefix "false"
  10723. \end_inset
  10724. are uniformly smaller in the GB samples than the non-GB ones, indicating
  10725. much greater consistency of yield.
  10726. This is best seen in the percentage of non-globin reads as a fraction of
  10727. total reads aligned to annotated genes (genic reads).
  10728. For the non-GB samples, this measure ranges from 10.9% to 80.9%, while for
  10729. the GB samples it ranges from 81.9% to 99.9% (Figure
  10730. \begin_inset CommandInset ref
  10731. LatexCommand ref
  10732. reference "fig:Fraction-of-genic-reads"
  10733. plural "false"
  10734. caps "false"
  10735. noprefix "false"
  10736. \end_inset
  10737. ).
  10738. This means that for applications where it is critical that each sample
  10739. achieve a specified minimum coverage in order to provide useful information,
  10740. it would be necessary to budget up to 10 times the sequencing depth per
  10741. sample without globin blocking, even though the average yield improvement
  10742. for globin blocking is only 2-fold, because every sample has a chance of
  10743. being 90% globin and 10% useful reads.
  10744. Hence, the more consistent behavior of GB samples makes planning an experiment
  10745. easier and more efficient because it eliminates the need to over-sequence
  10746. every sample in order to guard against the worst case of a high-globin
  10747. fraction.
  10748. \end_layout
  10749. \begin_layout Subsection
  10750. Globin blocking lowers the noise floor and allows detection of about 2000
  10751. more low-expression genes
  10752. \end_layout
  10753. \begin_layout Standard
  10754. \begin_inset Flex TODO Note (inline)
  10755. status open
  10756. \begin_layout Plain Layout
  10757. Remove redundant titles from figures
  10758. \end_layout
  10759. \end_inset
  10760. \end_layout
  10761. \begin_layout Standard
  10762. \begin_inset Float figure
  10763. wide false
  10764. sideways false
  10765. status collapsed
  10766. \begin_layout Plain Layout
  10767. \align center
  10768. \begin_inset Graphics
  10769. filename graphics/Globin Paper/figure2 - aveLogCPM-colored.pdf
  10770. lyxscale 50
  10771. height 60theight%
  10772. \end_inset
  10773. \end_layout
  10774. \begin_layout Plain Layout
  10775. \begin_inset Caption Standard
  10776. \begin_layout Plain Layout
  10777. \series bold
  10778. \begin_inset Argument 1
  10779. status collapsed
  10780. \begin_layout Plain Layout
  10781. Distributions of average group gene abundances when normalized separately
  10782. or together.
  10783. \end_layout
  10784. \end_inset
  10785. \begin_inset CommandInset label
  10786. LatexCommand label
  10787. name "fig:logcpm-dists"
  10788. \end_inset
  10789. Distributions of average group gene abundances when normalized separately
  10790. or together.
  10791. \series default
  10792. All reads in each sequencing library were aligned to the cyno genome, and
  10793. the number of reads uniquely aligning to each gene was counted.
  10794. Genes with zero counts in all libraries were discarded.
  10795. Libraries were normalized using the TMM method.
  10796. Libraries were split into globin-blocked (GB) and non-GB groups and the
  10797. average abundance for each gene in both groups, measured in log2 counts
  10798. per million reads counted, was computed using the aveLogCPM function.
  10799. The distribution of average gene logCPM values was plotted for both groups
  10800. using a kernel density plot to approximate a continuous distribution.
  10801. The logCPM GB distributions are marked in red, non-GB in blue.
  10802. The black vertical line denotes the chosen detection threshold of -1.
  10803. Top panel: Libraries were split into GB and non-GB groups first and normalized
  10804. separately.
  10805. Bottom panel: Libraries were all normalized together first and then split
  10806. into groups.
  10807. \end_layout
  10808. \end_inset
  10809. \end_layout
  10810. \begin_layout Plain Layout
  10811. \end_layout
  10812. \end_inset
  10813. \end_layout
  10814. \begin_layout Standard
  10815. Since globin blocking yields more usable sequencing depth, it should also
  10816. allow detection of more genes at any given threshold.
  10817. When we looked at the distribution of average normalized logCPM values
  10818. across all libraries for genes with at least one read assigned to them,
  10819. we observed the expected bimodal distribution, with a high-abundance "signal"
  10820. peak representing detected genes and a low-abundance "noise" peak representing
  10821. genes whose read count did not rise above the noise floor (Figure
  10822. \begin_inset CommandInset ref
  10823. LatexCommand ref
  10824. reference "fig:logcpm-dists"
  10825. plural "false"
  10826. caps "false"
  10827. noprefix "false"
  10828. \end_inset
  10829. ).
  10830. Consistent with the 2-fold increase in raw counts assigned to non-globin
  10831. genes, the signal peak for GB samples is shifted to the right relative
  10832. to the non-GB signal peak.
  10833. When all the samples are normalized together, this difference is normalized
  10834. out, lining up the signal peaks, and this reveals that, as expected, the
  10835. noise floor for the GB samples is about 2-fold lower.
  10836. This greater separation between signal and noise peaks in the GB samples
  10837. means that low-expression genes should be more easily detected and more
  10838. precisely quantified than in the non-GB samples.
  10839. \end_layout
  10840. \begin_layout Standard
  10841. \begin_inset Float figure
  10842. wide false
  10843. sideways false
  10844. status collapsed
  10845. \begin_layout Plain Layout
  10846. \align center
  10847. \begin_inset Graphics
  10848. filename graphics/Globin Paper/figure3 - detection.pdf
  10849. lyxscale 50
  10850. width 70col%
  10851. \end_inset
  10852. \end_layout
  10853. \begin_layout Plain Layout
  10854. \begin_inset Caption Standard
  10855. \begin_layout Plain Layout
  10856. \series bold
  10857. \begin_inset Argument 1
  10858. status collapsed
  10859. \begin_layout Plain Layout
  10860. Gene detections as a function of abundance thresholds in globin-blocked
  10861. (GB) and non-GB samples.
  10862. \end_layout
  10863. \end_inset
  10864. \begin_inset CommandInset label
  10865. LatexCommand label
  10866. name "fig:Gene-detections"
  10867. \end_inset
  10868. Gene detections as a function of abundance thresholds in globin-blocked
  10869. (GB) and non-GB samples.
  10870. \series default
  10871. Average abundance (logCPM,
  10872. \begin_inset Formula $\log_{2}$
  10873. \end_inset
  10874. counts per million reads counted) was computed by separate group normalization
  10875. as described in Figure
  10876. \begin_inset CommandInset ref
  10877. LatexCommand ref
  10878. reference "fig:logcpm-dists"
  10879. plural "false"
  10880. caps "false"
  10881. noprefix "false"
  10882. \end_inset
  10883. for both the GB and non-GB groups, as well as for all samples considered
  10884. as one large group.
  10885. For each every integer threshold from -2 to 3, the number of genes detected
  10886. at or above that logCPM threshold was plotted for each group.
  10887. \end_layout
  10888. \end_inset
  10889. \end_layout
  10890. \begin_layout Plain Layout
  10891. \end_layout
  10892. \end_inset
  10893. \end_layout
  10894. \begin_layout Standard
  10895. Based on these distributions, we selected a detection threshold of -1, which
  10896. is approximately the leftmost edge of the trough between the signal and
  10897. noise peaks.
  10898. This represents the most liberal possible detection threshold that doesn't
  10899. call substantial numbers of noise genes as detected.
  10900. Among the full dataset, 13429 genes were detected at this threshold, and
  10901. 22276 were not.
  10902. When considering the GB libraries and non-GB libraries separately and re-comput
  10903. ing normalization factors independently within each group, 14535 genes were
  10904. detected in the GB libraries while only 12460 were detected in the non-GB
  10905. libraries.
  10906. Thus, GB allowed the detection of 2000 extra genes that were buried under
  10907. the noise floor without GB.
  10908. This pattern of at least 2000 additional genes detected with GB was also
  10909. consistent across a wide range of possible detection thresholds, from -2
  10910. to 3 (see Figure
  10911. \begin_inset CommandInset ref
  10912. LatexCommand ref
  10913. reference "fig:Gene-detections"
  10914. plural "false"
  10915. caps "false"
  10916. noprefix "false"
  10917. \end_inset
  10918. ).
  10919. \end_layout
  10920. \begin_layout Subsection
  10921. Globin blocking does not add significant additional noise or decrease sample
  10922. quality
  10923. \end_layout
  10924. \begin_layout Standard
  10925. One potential worry is that the globin blocking protocol could perturb the
  10926. levels of non-globin genes.
  10927. There are two kinds of possible perturbations: systematic and random.
  10928. The former is not a major concern for detection of differential expression,
  10929. since a 2-fold change in every sample has no effect on the relative fold
  10930. change between samples.
  10931. In contrast, random perturbations would increase the noise and obscure
  10932. the signal in the dataset, reducing the capacity to detect differential
  10933. expression.
  10934. \end_layout
  10935. \begin_layout Standard
  10936. \begin_inset Float figure
  10937. wide false
  10938. sideways false
  10939. status collapsed
  10940. \begin_layout Plain Layout
  10941. \align center
  10942. \begin_inset Graphics
  10943. filename graphics/Globin Paper/figure4 - maplot-colored.pdf
  10944. lyxscale 50
  10945. width 60col%
  10946. groupId colwidth
  10947. \end_inset
  10948. \end_layout
  10949. \begin_layout Plain Layout
  10950. \begin_inset Caption Standard
  10951. \begin_layout Plain Layout
  10952. \begin_inset Argument 1
  10953. status collapsed
  10954. \begin_layout Plain Layout
  10955. MA plot showing effects of globin blocking on each gene's abundance.
  10956. \end_layout
  10957. \end_inset
  10958. \begin_inset CommandInset label
  10959. LatexCommand label
  10960. name "fig:MA-plot"
  10961. \end_inset
  10962. \series bold
  10963. MA plot showing effects of globin blocking on each gene's abundance.
  10964. \series default
  10965. All libraries were normalized together as described in Figure
  10966. \begin_inset CommandInset ref
  10967. LatexCommand ref
  10968. reference "fig:logcpm-dists"
  10969. plural "false"
  10970. caps "false"
  10971. noprefix "false"
  10972. \end_inset
  10973. , and genes with an average logCPM below -1 were filtered out.
  10974. Each remaining gene was tested for differential abundance with respect
  10975. to globin blocking (GB) using
  10976. \begin_inset Flex Code
  10977. status open
  10978. \begin_layout Plain Layout
  10979. edgeR
  10980. \end_layout
  10981. \end_inset
  10982. ’s quasi-likelihood F-test, fitting
  10983. a negative binomial generalized linear model to table of read counts in
  10984. each library.
  10985. For each gene,
  10986. \begin_inset Flex Code
  10987. status open
  10988. \begin_layout Plain Layout
  10989. edgeR
  10990. \end_layout
  10991. \end_inset
  10992. reported average abundance (logCPM),
  10993. \begin_inset Formula $\log_{2}$
  10994. \end_inset
  10995. fold change (logFC), p-value, and Benjamini-Hochberg adjusted false discovery
  10996. rate (FDR).
  10997. Each gene's logFC was plotted against its logCPM, colored by FDR.
  10998. Red points are significant at ≤10% FDR, and blue are not significant at
  10999. that threshold.
  11000. The alpha and beta globin genes targeted for blocking are marked with large
  11001. triangles, while all other genes are represented as small points.
  11002. \end_layout
  11003. \end_inset
  11004. \end_layout
  11005. \begin_layout Plain Layout
  11006. \end_layout
  11007. \end_inset
  11008. \end_layout
  11009. \begin_layout Standard
  11010. \begin_inset Flex TODO Note (inline)
  11011. status open
  11012. \begin_layout Plain Layout
  11013. Standardize on
  11014. \begin_inset Quotes eld
  11015. \end_inset
  11016. log2
  11017. \begin_inset Quotes erd
  11018. \end_inset
  11019. notation
  11020. \end_layout
  11021. \end_inset
  11022. \end_layout
  11023. \begin_layout Standard
  11024. The data do indeed show small systematic perturbations in gene levels (Figure
  11025. \begin_inset CommandInset ref
  11026. LatexCommand ref
  11027. reference "fig:MA-plot"
  11028. plural "false"
  11029. caps "false"
  11030. noprefix "false"
  11031. \end_inset
  11032. ).
  11033. Other than the 3 designated alpha and beta globin genes, two other genes
  11034. stand out as having especially large negative log fold changes: HBD and
  11035. LOC1021365.
  11036. HBD, delta globin, is most likely targeted by the blocking oligos due to
  11037. high sequence homology with the other globin genes.
  11038. LOC1021365 is the aforementioned ncRNA that is reverse-complementary to
  11039. one of the alpha-like genes and that would be expected to be removed during
  11040. the globin blocking step.
  11041. All other genes appear in a cluster centered vertically at 0, and the vast
  11042. majority of genes in this cluster show an absolute log2(FC) of 0.5 or less.
  11043. Nevertheless, many of these small perturbations are still statistically
  11044. significant, indicating that the globin blocking oligos likely cause very
  11045. small but non-zero systematic perturbations in measured gene expression
  11046. levels.
  11047. \end_layout
  11048. \begin_layout Standard
  11049. \begin_inset Float figure
  11050. wide false
  11051. sideways false
  11052. status collapsed
  11053. \begin_layout Plain Layout
  11054. \align center
  11055. \begin_inset Graphics
  11056. filename graphics/Globin Paper/figure5 - corrplot.pdf
  11057. lyxscale 50
  11058. width 70col%
  11059. \end_inset
  11060. \end_layout
  11061. \begin_layout Plain Layout
  11062. \begin_inset Caption Standard
  11063. \begin_layout Plain Layout
  11064. \series bold
  11065. \begin_inset Argument 1
  11066. status collapsed
  11067. \begin_layout Plain Layout
  11068. Comparison of inter-sample gene abundance correlations with and without
  11069. globin blocking.
  11070. \end_layout
  11071. \end_inset
  11072. \begin_inset CommandInset label
  11073. LatexCommand label
  11074. name "fig:gene-abundance-correlations"
  11075. \end_inset
  11076. Comparison of inter-sample gene abundance correlations with and without
  11077. globin blocking (GB).
  11078. \series default
  11079. All libraries were normalized together as described in Figure 2, and genes
  11080. with an average abundance (logCPM, log2 counts per million reads counted)
  11081. less than -1 were filtered out.
  11082. Each gene’s logCPM was computed in each library using the
  11083. \begin_inset Flex Code
  11084. status open
  11085. \begin_layout Plain Layout
  11086. edgeR
  11087. \end_layout
  11088. \end_inset
  11089. cpm function.
  11090. For each pair of biological samples, the Pearson correlation between those
  11091. samples' GB libraries was plotted against the correlation between the same
  11092. samples’ non-GB libraries.
  11093. Each point represents an unique pair of samples.
  11094. The solid gray line shows a quantile-quantile plot of distribution of GB
  11095. correlations vs.
  11096. that of non-GB correlations.
  11097. The thin dashed line is the identity line, provided for reference.
  11098. \end_layout
  11099. \end_inset
  11100. \end_layout
  11101. \begin_layout Plain Layout
  11102. \end_layout
  11103. \end_inset
  11104. \end_layout
  11105. \begin_layout Standard
  11106. To evaluate the possibility of globin blocking causing random perturbations
  11107. and reducing sample quality, we computed the Pearson correlation between
  11108. logCPM values for every pair of samples with and without GB and plotted
  11109. them against each other (Figure
  11110. \begin_inset CommandInset ref
  11111. LatexCommand ref
  11112. reference "fig:gene-abundance-correlations"
  11113. plural "false"
  11114. caps "false"
  11115. noprefix "false"
  11116. \end_inset
  11117. ).
  11118. The plot indicated that the GB libraries have higher sample-to-sample correlati
  11119. ons than the non-GB libraries.
  11120. Parametric and nonparametric tests for differences between the correlations
  11121. with and without GB both confirmed that this difference was highly significant
  11122. (2-sided paired t-test: t = 37.2, df = 665, P ≪ 2.2e-16; 2-sided Wilcoxon
  11123. sign-rank test: V = 2195, P ≪ 2.2e-16).
  11124. Performing the same tests on the Spearman correlations gave the same conclusion
  11125. (t-test: t = 26.8, df = 665, P ≪ 2.2e-16; sign-rank test: V = 8781, P ≪ 2.2e-16).
  11126. The
  11127. \begin_inset Flex Code
  11128. status open
  11129. \begin_layout Plain Layout
  11130. edgeR
  11131. \end_layout
  11132. \end_inset
  11133. package was used to compute the overall biological coefficient
  11134. of variation (BCV) for GB and non-GB libraries, and found that globin blocking
  11135. resulted in a negligible increase in the BCV (0.417 with GB vs.
  11136. 0.400 without).
  11137. The near equality of the BCVs for both sets indicates that the higher correlati
  11138. ons in the GB libraries are most likely a result of the increased yield
  11139. of useful reads, which reduces the contribution of Poisson counting uncertainty
  11140. to the overall variance of the logCPM values
  11141. \begin_inset CommandInset citation
  11142. LatexCommand cite
  11143. key "McCarthy2012"
  11144. literal "false"
  11145. \end_inset
  11146. .
  11147. This improves the precision of expression measurements and more than offsets
  11148. the negligible increase in BCV.
  11149. \end_layout
  11150. \begin_layout Subsection
  11151. More differentially expressed genes are detected with globin blocking
  11152. \end_layout
  11153. \begin_layout Standard
  11154. \begin_inset Float table
  11155. wide false
  11156. sideways false
  11157. status collapsed
  11158. \begin_layout Plain Layout
  11159. \align center
  11160. \begin_inset Tabular
  11161. <lyxtabular version="3" rows="5" columns="5">
  11162. <features tabularvalignment="middle">
  11163. <column alignment="center" valignment="top">
  11164. <column alignment="center" valignment="top">
  11165. <column alignment="center" valignment="top">
  11166. <column alignment="center" valignment="top">
  11167. <column alignment="center" valignment="top">
  11168. <row>
  11169. <cell alignment="center" valignment="top" usebox="none">
  11170. \begin_inset Text
  11171. \begin_layout Plain Layout
  11172. \end_layout
  11173. \end_inset
  11174. </cell>
  11175. <cell alignment="center" valignment="top" usebox="none">
  11176. \begin_inset Text
  11177. \begin_layout Plain Layout
  11178. \end_layout
  11179. \end_inset
  11180. </cell>
  11181. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  11182. \begin_inset Text
  11183. \begin_layout Plain Layout
  11184. \series bold
  11185. No Globin Blocking
  11186. \end_layout
  11187. \end_inset
  11188. </cell>
  11189. <cell multicolumn="2" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  11190. \begin_inset Text
  11191. \begin_layout Plain Layout
  11192. \end_layout
  11193. \end_inset
  11194. </cell>
  11195. <cell multicolumn="2" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  11196. \begin_inset Text
  11197. \begin_layout Plain Layout
  11198. \end_layout
  11199. \end_inset
  11200. </cell>
  11201. </row>
  11202. <row>
  11203. <cell alignment="center" valignment="top" usebox="none">
  11204. \begin_inset Text
  11205. \begin_layout Plain Layout
  11206. \end_layout
  11207. \end_inset
  11208. </cell>
  11209. <cell alignment="center" valignment="top" usebox="none">
  11210. \begin_inset Text
  11211. \begin_layout Plain Layout
  11212. \end_layout
  11213. \end_inset
  11214. </cell>
  11215. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  11216. \begin_inset Text
  11217. \begin_layout Plain Layout
  11218. \series bold
  11219. Up
  11220. \end_layout
  11221. \end_inset
  11222. </cell>
  11223. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  11224. \begin_inset Text
  11225. \begin_layout Plain Layout
  11226. \series bold
  11227. NS
  11228. \end_layout
  11229. \end_inset
  11230. </cell>
  11231. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  11232. \begin_inset Text
  11233. \begin_layout Plain Layout
  11234. \series bold
  11235. Down
  11236. \end_layout
  11237. \end_inset
  11238. </cell>
  11239. </row>
  11240. <row>
  11241. <cell multirow="3" alignment="center" valignment="middle" topline="true" bottomline="true" leftline="true" usebox="none">
  11242. \begin_inset Text
  11243. \begin_layout Plain Layout
  11244. \series bold
  11245. Globin-Blocking
  11246. \end_layout
  11247. \end_inset
  11248. </cell>
  11249. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  11250. \begin_inset Text
  11251. \begin_layout Plain Layout
  11252. \series bold
  11253. Up
  11254. \end_layout
  11255. \end_inset
  11256. </cell>
  11257. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  11258. \begin_inset Text
  11259. \begin_layout Plain Layout
  11260. \family roman
  11261. \series medium
  11262. \shape up
  11263. \size normal
  11264. \emph off
  11265. \bar no
  11266. \strikeout off
  11267. \xout off
  11268. \uuline off
  11269. \uwave off
  11270. \noun off
  11271. \color none
  11272. 231
  11273. \end_layout
  11274. \end_inset
  11275. </cell>
  11276. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  11277. \begin_inset Text
  11278. \begin_layout Plain Layout
  11279. \family roman
  11280. \series medium
  11281. \shape up
  11282. \size normal
  11283. \emph off
  11284. \bar no
  11285. \strikeout off
  11286. \xout off
  11287. \uuline off
  11288. \uwave off
  11289. \noun off
  11290. \color none
  11291. 515
  11292. \end_layout
  11293. \end_inset
  11294. </cell>
  11295. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  11296. \begin_inset Text
  11297. \begin_layout Plain Layout
  11298. \family roman
  11299. \series medium
  11300. \shape up
  11301. \size normal
  11302. \emph off
  11303. \bar no
  11304. \strikeout off
  11305. \xout off
  11306. \uuline off
  11307. \uwave off
  11308. \noun off
  11309. \color none
  11310. 2
  11311. \end_layout
  11312. \end_inset
  11313. </cell>
  11314. </row>
  11315. <row>
  11316. <cell multirow="4" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  11317. \begin_inset Text
  11318. \begin_layout Plain Layout
  11319. \end_layout
  11320. \end_inset
  11321. </cell>
  11322. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  11323. \begin_inset Text
  11324. \begin_layout Plain Layout
  11325. \series bold
  11326. NS
  11327. \end_layout
  11328. \end_inset
  11329. </cell>
  11330. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  11331. \begin_inset Text
  11332. \begin_layout Plain Layout
  11333. \family roman
  11334. \series medium
  11335. \shape up
  11336. \size normal
  11337. \emph off
  11338. \bar no
  11339. \strikeout off
  11340. \xout off
  11341. \uuline off
  11342. \uwave off
  11343. \noun off
  11344. \color none
  11345. 160
  11346. \end_layout
  11347. \end_inset
  11348. </cell>
  11349. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  11350. \begin_inset Text
  11351. \begin_layout Plain Layout
  11352. \family roman
  11353. \series medium
  11354. \shape up
  11355. \size normal
  11356. \emph off
  11357. \bar no
  11358. \strikeout off
  11359. \xout off
  11360. \uuline off
  11361. \uwave off
  11362. \noun off
  11363. \color none
  11364. 11235
  11365. \end_layout
  11366. \end_inset
  11367. </cell>
  11368. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  11369. \begin_inset Text
  11370. \begin_layout Plain Layout
  11371. \family roman
  11372. \series medium
  11373. \shape up
  11374. \size normal
  11375. \emph off
  11376. \bar no
  11377. \strikeout off
  11378. \xout off
  11379. \uuline off
  11380. \uwave off
  11381. \noun off
  11382. \color none
  11383. 136
  11384. \end_layout
  11385. \end_inset
  11386. </cell>
  11387. </row>
  11388. <row>
  11389. <cell multirow="4" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  11390. \begin_inset Text
  11391. \begin_layout Plain Layout
  11392. \end_layout
  11393. \end_inset
  11394. </cell>
  11395. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  11396. \begin_inset Text
  11397. \begin_layout Plain Layout
  11398. \series bold
  11399. Down
  11400. \end_layout
  11401. \end_inset
  11402. </cell>
  11403. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  11404. \begin_inset Text
  11405. \begin_layout Plain Layout
  11406. \family roman
  11407. \series medium
  11408. \shape up
  11409. \size normal
  11410. \emph off
  11411. \bar no
  11412. \strikeout off
  11413. \xout off
  11414. \uuline off
  11415. \uwave off
  11416. \noun off
  11417. \color none
  11418. 0
  11419. \end_layout
  11420. \end_inset
  11421. </cell>
  11422. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  11423. \begin_inset Text
  11424. \begin_layout Plain Layout
  11425. \family roman
  11426. \series medium
  11427. \shape up
  11428. \size normal
  11429. \emph off
  11430. \bar no
  11431. \strikeout off
  11432. \xout off
  11433. \uuline off
  11434. \uwave off
  11435. \noun off
  11436. \color none
  11437. 548
  11438. \end_layout
  11439. \end_inset
  11440. </cell>
  11441. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  11442. \begin_inset Text
  11443. \begin_layout Plain Layout
  11444. \family roman
  11445. \series medium
  11446. \shape up
  11447. \size normal
  11448. \emph off
  11449. \bar no
  11450. \strikeout off
  11451. \xout off
  11452. \uuline off
  11453. \uwave off
  11454. \noun off
  11455. \color none
  11456. 127
  11457. \end_layout
  11458. \end_inset
  11459. </cell>
  11460. </row>
  11461. </lyxtabular>
  11462. \end_inset
  11463. \end_layout
  11464. \begin_layout Plain Layout
  11465. \begin_inset Caption Standard
  11466. \begin_layout Plain Layout
  11467. \series bold
  11468. \begin_inset Argument 1
  11469. status open
  11470. \begin_layout Plain Layout
  11471. Comparison of significantly differentially expressed genes with and without
  11472. globin blocking.
  11473. \end_layout
  11474. \end_inset
  11475. \begin_inset CommandInset label
  11476. LatexCommand label
  11477. name "tab:Comparison-of-significant"
  11478. \end_inset
  11479. Comparison of significantly differentially expressed genes with and without
  11480. globin blocking.
  11481. \series default
  11482. Up, Down: Genes significantly up/down-regulated in post-transplant samples
  11483. relative to pre-transplant samples, with a false discovery rate of 10%
  11484. or less.
  11485. NS: Non-significant genes (false discovery rate greater than 10%).
  11486. \end_layout
  11487. \end_inset
  11488. \end_layout
  11489. \begin_layout Plain Layout
  11490. \end_layout
  11491. \end_inset
  11492. \end_layout
  11493. \begin_layout Standard
  11494. To compare performance on differential gene expression tests, we took subsets
  11495. of both the GB and non-GB libraries with exactly one pre-transplant and
  11496. one post-transplant sample for each animal that had paired samples available
  11497. for analysis (N=7 animals, N=14 samples in each subset).
  11498. The same test for pre- vs.
  11499. post-transplant differential gene expression was performed on the same
  11500. 7 pairs of samples from GB libraries and non-GB libraries, in each case
  11501. using an FDR of 10% as the threshold of significance.
  11502. Out of 12954 genes that passed the detection threshold in both subsets,
  11503. 358 were called significantly differentially expressed in the same direction
  11504. in both sets; 1063 were differentially expressed in the GB set only; 296
  11505. were differentially expressed in the non-GB set only; 2 genes were called
  11506. significantly up in the GB set but significantly down in the non-GB set;
  11507. and the remaining 11235 were not called differentially expressed in either
  11508. set.
  11509. These data are summarized in Table
  11510. \begin_inset CommandInset ref
  11511. LatexCommand ref
  11512. reference "tab:Comparison-of-significant"
  11513. plural "false"
  11514. caps "false"
  11515. noprefix "false"
  11516. \end_inset
  11517. .
  11518. The differences in BCV calculated by EdgeR for these subsets of samples
  11519. were negligible (BCV = 0.302 for GB and 0.297 for non-GB).
  11520. \end_layout
  11521. \begin_layout Standard
  11522. The key point is that the GB data results in substantially more differentially
  11523. expressed calls than the non-GB data.
  11524. Since there is no gold standard for this dataset, it is impossible to be
  11525. certain whether this is due to under-calling of differential expression
  11526. in the non-GB samples or over-calling in the GB samples.
  11527. However, given that both datasets are derived from the same biological
  11528. samples and have nearly equal BCVs, it is more likely that the larger number
  11529. of DE calls in the GB samples are genuine detections that were enabled
  11530. by the higher sequencing depth and measurement precision of the GB samples.
  11531. Note that the same set of genes was considered in both subsets, so the
  11532. larger number of differentially expressed gene calls in the GB data set
  11533. reflects a greater sensitivity to detect significant differential gene
  11534. expression and not simply the larger total number of detected genes in
  11535. GB samples described earlier.
  11536. \end_layout
  11537. \begin_layout Section
  11538. Discussion
  11539. \end_layout
  11540. \begin_layout Standard
  11541. The original experience with whole blood gene expression profiling on DNA
  11542. microarrays demonstrated that the high concentration of globin transcripts
  11543. reduced the sensitivity to detect genes with relatively low expression
  11544. levels, in effect, significantly reducing the sensitivity.
  11545. To address this limitation, commercial protocols for globin reduction were
  11546. developed based on strategies to block globin transcript amplification
  11547. during labeling or physically removing globin transcripts by affinity bead
  11548. methods
  11549. \begin_inset CommandInset citation
  11550. LatexCommand cite
  11551. key "Winn2010"
  11552. literal "false"
  11553. \end_inset
  11554. .
  11555. More recently, using the latest generation of labeling protocols and arrays,
  11556. it was determined that globin reduction was no longer necessary to obtain
  11557. sufficient sensitivity to detect differential transcript expression
  11558. \begin_inset CommandInset citation
  11559. LatexCommand cite
  11560. key "NuGEN2010"
  11561. literal "false"
  11562. \end_inset
  11563. .
  11564. However, we are not aware of any publications using these currently available
  11565. protocols the with latest generation of microarrays that actually compare
  11566. the detection sensitivity with and without globin reduction.
  11567. However, in practice this has now been adopted generally primarily driven
  11568. by concerns for cost control.
  11569. The main objective of our work was to directly test the impact of globin
  11570. gene transcripts and a new globin blocking protocol for application to
  11571. the newest generation of differential gene expression profiling determined
  11572. using next generation sequencing.
  11573. \end_layout
  11574. \begin_layout Standard
  11575. The challenge of doing global gene expression profiling in cynomolgus monkeys
  11576. is that the current available arrays were never designed to comprehensively
  11577. cover this genome and have not been updated since the first assemblies
  11578. of the cynomolgus genome were published.
  11579. Therefore, we determined that the best strategy for peripheral blood profiling
  11580. was to do deep RNA-seq and inform the workflow using the latest available
  11581. genome assembly and annotation
  11582. \begin_inset CommandInset citation
  11583. LatexCommand cite
  11584. key "Wilson2013"
  11585. literal "false"
  11586. \end_inset
  11587. .
  11588. However, it was not immediately clear whether globin reduction was necessary
  11589. for RNA-seq or how much improvement in efficiency or sensitivity to detect
  11590. differential gene expression would be achieved for the added cost and work.
  11591. \end_layout
  11592. \begin_layout Standard
  11593. We only found one report that demonstrated that globin reduction significantly
  11594. improved the effective read yields for sequencing of human peripheral blood
  11595. cell RNA using a DeepSAGE protocol
  11596. \begin_inset CommandInset citation
  11597. LatexCommand cite
  11598. key "Mastrokolias2012"
  11599. literal "false"
  11600. \end_inset
  11601. .
  11602. The approach to DeepSAGE involves two different restriction enzymes that
  11603. purify and then tag small fragments of transcripts at specific locations
  11604. and thus, significantly reduces the complexity of the transcriptome.
  11605. Therefore, we could not determine how DeepSAGE results would translate
  11606. to the common strategy in the field for assaying the entire transcript
  11607. population by whole-transcriptome 3’-end RNA-seq.
  11608. Furthermore, if globin reduction is necessary, we also needed a globin
  11609. reduction method specific to cynomolgus globin sequences that would work
  11610. an organism for which no kit is available off the shelf.
  11611. \end_layout
  11612. \begin_layout Standard
  11613. As mentioned above, the addition of globin blocking oligos has a very small
  11614. impact on measured expression levels of gene expression.
  11615. However, this is a non-issue for the purposes of differential expression
  11616. testing, since a systematic change in a gene in all samples does not affect
  11617. relative expression levels between samples.
  11618. However, we must acknowledge that simple comparisons of gene expression
  11619. data obtained by GB and non-GB protocols are not possible without additional
  11620. normalization.
  11621. \end_layout
  11622. \begin_layout Standard
  11623. More importantly, globin blocking not only nearly doubles the yield of usable
  11624. reads, it also increases inter-sample correlation and sensitivity to detect
  11625. differential gene expression relative to the same set of samples profiled
  11626. without blocking.
  11627. In addition, globin blocking does not add a significant amount of random
  11628. noise to the data.
  11629. Globin blocking thus represents a cost-effective way to squeeze more data
  11630. and statistical power out of the same blood samples and the same amount
  11631. of sequencing.
  11632. In conclusion, globin reduction greatly increases the yield of useful RNA-seq
  11633. reads mapping to the rest of the genome, with minimal perturbations in
  11634. the relative levels of non-globin genes.
  11635. Based on these results, globin transcript reduction using sequence-specific,
  11636. complementary blocking oligonucleotides is recommended for all deep RNA-seq
  11637. of cynomolgus and other nonhuman primate blood samples.
  11638. \end_layout
  11639. \begin_layout Section
  11640. Future Directions
  11641. \end_layout
  11642. \begin_layout Standard
  11643. One drawback of the globin blocking method presented in this analysis is
  11644. a poor yield of genic reads, only around 50%.
  11645. In a separate experiment, the reagent mixture was modified so as to address
  11646. this drawback, resulting in a method that produces an even better reduction
  11647. in globin reads without reducing the overall fraction of genic reads.
  11648. However, the data showing this improvement consists of only a few test
  11649. samples, so the larger data set analyzed above was chosen in order to demonstra
  11650. te the effectiveness of the method in reducing globin reads while preserving
  11651. the biological signal.
  11652. \end_layout
  11653. \begin_layout Standard
  11654. The motivation for developing a fast practical way to enrich for non-globin
  11655. reads in cyno blood samples was to enable a large-scale RNA-seq experiment
  11656. investigating the effects of mesenchymal stem cell infusion on blood gene
  11657. expression in cynomologus transplant recipients in a time course after
  11658. transplantation.
  11659. With the globin blocking method in place, the way is now clear for this
  11660. experiment to proceed.
  11661. \end_layout
  11662. \begin_layout Chapter
  11663. Future Directions
  11664. \end_layout
  11665. \begin_layout Standard
  11666. \begin_inset Flex TODO Note (inline)
  11667. status open
  11668. \begin_layout Plain Layout
  11669. If there are any chapter-independent future directions, put them here.
  11670. Otherwise, delete this section.
  11671. Check in the directions if this is OK.
  11672. \end_layout
  11673. \end_inset
  11674. \end_layout
  11675. \begin_layout Chapter
  11676. Closing remarks
  11677. \end_layout
  11678. \begin_layout Standard
  11679. \begin_inset ERT
  11680. status collapsed
  11681. \begin_layout Plain Layout
  11682. % Use "References" as the title of the Bibliography
  11683. \end_layout
  11684. \begin_layout Plain Layout
  11685. \backslash
  11686. renewcommand{
  11687. \backslash
  11688. bibname}{References}
  11689. \end_layout
  11690. \end_inset
  11691. \end_layout
  11692. \begin_layout Standard
  11693. \begin_inset CommandInset bibtex
  11694. LatexCommand bibtex
  11695. btprint "btPrintCited"
  11696. bibfiles "code-refs,refs-PROCESSED"
  11697. options "bibtotoc,unsrt"
  11698. \end_inset
  11699. \end_layout
  11700. \begin_layout Standard
  11701. \begin_inset Flex TODO Note (inline)
  11702. status open
  11703. \begin_layout Plain Layout
  11704. Check bib entry formatting & sort order
  11705. \end_layout
  11706. \end_inset
  11707. \end_layout
  11708. \begin_layout Standard
  11709. \begin_inset Flex TODO Note (inline)
  11710. status open
  11711. \begin_layout Plain Layout
  11712. Check in-text citation format.
  11713. Probably don't just want [1], [2], etc.
  11714. \end_layout
  11715. \end_inset
  11716. \end_layout
  11717. \end_body
  11718. \end_document