thesis.lyx 144 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424
  1. #LyX 2.3 created this file. For more info see http://www.lyx.org/
  2. \lyxformat 544
  3. \begin_document
  4. \begin_header
  5. \save_transient_properties true
  6. \origin unavailable
  7. \textclass extbook
  8. \begin_preamble
  9. % List all used files in log output
  10. \listfiles
  11. % Add a DRAFT watermark
  12. \usepackage{draftwatermark}
  13. \SetWatermarkLightness{0.97}
  14. \SetWatermarkScale{1}
  15. % Set up required header format
  16. \usepackage{fancyhdr}
  17. \pagestyle{fancy}
  18. \renewcommand{\headrulewidth}{0pt}
  19. \rhead{}
  20. \lhead{}
  21. \rfoot{}
  22. \lfoot{}
  23. \cfoot{\thepage} % Page number bottom center
  24. % https://tex.stackexchange.com/questions/65680/automatically-bold-first-sentence-of-a-floats-caption
  25. \usepackage{xstring}
  26. \usepackage{etoolbox}
  27. \usepackage{caption}
  28. \captionsetup{labelfont=bf,tableposition=top}
  29. \makeatletter
  30. \newcommand\formatlabel[1]{%
  31. \noexpandarg
  32. \IfSubStr{#1}{.}{%
  33. \StrBefore{#1}{.}[\firstcaption]%
  34. \StrBehind{#1}{.}[\secondcaption]%
  35. \textbf{\firstcaption.} \secondcaption}{%
  36. #1}%
  37. }
  38. \patchcmd{\@caption}{#3}{\formatlabel{#3}}
  39. \makeatother
  40. \end_preamble
  41. \use_default_options true
  42. \begin_modules
  43. todonotes
  44. \end_modules
  45. \maintain_unincluded_children false
  46. \language english
  47. \language_package default
  48. \inputencoding utf8
  49. \fontencoding default
  50. \font_roman "default" "default"
  51. \font_sans "default" "default"
  52. \font_typewriter "default" "default"
  53. \font_math "auto" "auto"
  54. \font_default_family default
  55. \use_non_tex_fonts false
  56. \font_sc false
  57. \font_osf false
  58. \font_sf_scale 100 100
  59. \font_tt_scale 100 100
  60. \use_microtype false
  61. \use_dash_ligatures true
  62. \graphics default
  63. \default_output_format pdf4
  64. \output_sync 0
  65. \bibtex_command default
  66. \index_command default
  67. \paperfontsize 12
  68. \spacing double
  69. \use_hyperref true
  70. \pdf_bookmarks true
  71. \pdf_bookmarksnumbered false
  72. \pdf_bookmarksopen false
  73. \pdf_bookmarksopenlevel 1
  74. \pdf_breaklinks false
  75. \pdf_pdfborder false
  76. \pdf_colorlinks false
  77. \pdf_backref false
  78. \pdf_pdfusetitle true
  79. \papersize letterpaper
  80. \use_geometry true
  81. \use_package amsmath 1
  82. \use_package amssymb 1
  83. \use_package cancel 1
  84. \use_package esint 1
  85. \use_package mathdots 1
  86. \use_package mathtools 1
  87. \use_package mhchem 1
  88. \use_package stackrel 1
  89. \use_package stmaryrd 1
  90. \use_package undertilde 1
  91. \cite_engine basic
  92. \cite_engine_type default
  93. \biblio_style plain
  94. \use_bibtopic false
  95. \use_indices false
  96. \paperorientation portrait
  97. \suppress_date false
  98. \justification true
  99. \use_refstyle 1
  100. \use_minted 0
  101. \index Index
  102. \shortcut idx
  103. \color #008000
  104. \end_index
  105. \leftmargin 1.5in
  106. \topmargin 1in
  107. \rightmargin 1in
  108. \bottommargin 1in
  109. \secnumdepth 3
  110. \tocdepth 3
  111. \paragraph_separation indent
  112. \paragraph_indentation default
  113. \is_math_indent 0
  114. \math_numbering_side default
  115. \quotes_style english
  116. \dynamic_quotes 0
  117. \papercolumns 1
  118. \papersides 2
  119. \paperpagestyle default
  120. \tracking_changes false
  121. \output_changes false
  122. \html_math_output 0
  123. \html_css_as_file 0
  124. \html_be_strict false
  125. \end_header
  126. \begin_body
  127. \begin_layout Title
  128. Bioinformatic analysis of complex, high-throughput genomic and epigenomic
  129. data in the context of immunology and transplant rejection
  130. \end_layout
  131. \begin_layout Author
  132. A thesis presented
  133. \begin_inset Newline newline
  134. \end_inset
  135. by
  136. \begin_inset Newline newline
  137. \end_inset
  138. Ryan C.
  139. Thompson
  140. \begin_inset Newline newline
  141. \end_inset
  142. to
  143. \begin_inset Newline newline
  144. \end_inset
  145. The Scripps Research Institute Graduate Program
  146. \begin_inset Newline newline
  147. \end_inset
  148. in partial fulfillment of the requirements for the degree of
  149. \begin_inset Newline newline
  150. \end_inset
  151. Doctor of Philosophy in the subject of Biology
  152. \begin_inset Newline newline
  153. \end_inset
  154. for
  155. \begin_inset Newline newline
  156. \end_inset
  157. The Scripps Research Institute
  158. \begin_inset Newline newline
  159. \end_inset
  160. La Jolla, California
  161. \end_layout
  162. \begin_layout Date
  163. May 2019
  164. \end_layout
  165. \begin_layout Standard
  166. [Copyright notice]
  167. \end_layout
  168. \begin_layout Standard
  169. [Thesis acceptance form]
  170. \end_layout
  171. \begin_layout Standard
  172. [Dedication]
  173. \end_layout
  174. \begin_layout Standard
  175. [Acknowledgements]
  176. \end_layout
  177. \begin_layout Standard
  178. \begin_inset CommandInset toc
  179. LatexCommand tableofcontents
  180. \end_inset
  181. \end_layout
  182. \begin_layout Standard
  183. \begin_inset FloatList table
  184. \end_inset
  185. \end_layout
  186. \begin_layout Standard
  187. \begin_inset FloatList figure
  188. \end_inset
  189. \end_layout
  190. \begin_layout Standard
  191. [List of Abbreviations]
  192. \end_layout
  193. \begin_layout Standard
  194. \begin_inset Flex TODO Note (inline)
  195. status open
  196. \begin_layout Plain Layout
  197. Look into auto-generated nomenclature list: https://wiki.lyx.org/Tips/Nomenclature
  198. \end_layout
  199. \end_inset
  200. \end_layout
  201. \begin_layout List of TODOs
  202. \end_layout
  203. \begin_layout Standard
  204. [Abstract]
  205. \end_layout
  206. \begin_layout Chapter*
  207. Abstract
  208. \end_layout
  209. \begin_layout Chapter
  210. Introduction
  211. \end_layout
  212. \begin_layout Section
  213. Background & Significance
  214. \end_layout
  215. \begin_layout Subsection
  216. Biological motivation
  217. \end_layout
  218. \begin_layout Itemize
  219. Rejection is the major long-term threat to organ and tissue grafts
  220. \end_layout
  221. \begin_deeper
  222. \begin_layout Itemize
  223. Common mechanisms of rejection
  224. \end_layout
  225. \begin_layout Itemize
  226. Effective immune suppression requires monitoring for rejection and tuning
  227. \end_layout
  228. \begin_layout Itemize
  229. Current tests for rejection (tissue biopsy) are invasive and biased
  230. \end_layout
  231. \begin_layout Itemize
  232. A blood test based on microarrays would be less biased and invasive
  233. \end_layout
  234. \end_deeper
  235. \begin_layout Itemize
  236. Memory cells are resistant to immune suppression
  237. \end_layout
  238. \begin_deeper
  239. \begin_layout Itemize
  240. Mechanisms of resistance in memory cells are poorly understood
  241. \end_layout
  242. \begin_layout Itemize
  243. A better understanding of immune memory formation is needed
  244. \end_layout
  245. \end_deeper
  246. \begin_layout Itemize
  247. Mesenchymal stem cell infusion is a promising new treatment to prevent/delay
  248. rejection
  249. \end_layout
  250. \begin_deeper
  251. \begin_layout Itemize
  252. Demonstrated in mice, but not yet in primates
  253. \end_layout
  254. \begin_layout Itemize
  255. Mechanism currently unknown, but MSC are known to be immune modulatory
  256. \end_layout
  257. \end_deeper
  258. \begin_layout Subsection
  259. Overview of bioinformatic analysis methods
  260. \end_layout
  261. \begin_layout Standard
  262. An overview of all the methods used, including what problem they solve,
  263. what assumptions they make, and a basic description of how they work.
  264. \end_layout
  265. \begin_layout Itemize
  266. ChIP-seq Peak calling
  267. \end_layout
  268. \begin_deeper
  269. \begin_layout Itemize
  270. Cross-correlation analysis to determine fragment size
  271. \end_layout
  272. \begin_layout Itemize
  273. Broad vs narrow peaks
  274. \end_layout
  275. \begin_layout Itemize
  276. SICER for broad peaks
  277. \end_layout
  278. \begin_layout Itemize
  279. IDR for biologically reproducible peaks
  280. \end_layout
  281. \begin_layout Itemize
  282. csaw peak filtering guidelines for unbiased downstream analysis
  283. \end_layout
  284. \end_deeper
  285. \begin_layout Itemize
  286. Normalization is non-trivial and application-dependant
  287. \end_layout
  288. \begin_deeper
  289. \begin_layout Itemize
  290. Expression arrays: RMA & fRMA; why fRMA is needed
  291. \end_layout
  292. \begin_layout Itemize
  293. Methylation arrays: M-value transformation approximates normal data but
  294. induces heteroskedasticity
  295. \end_layout
  296. \begin_layout Itemize
  297. RNA-seq: normalize based on assumption that the average gene is not changing
  298. \end_layout
  299. \begin_layout Itemize
  300. ChIP-seq: complex with many considerations, dependent on experimental methods,
  301. biological system, and analysis goals
  302. \end_layout
  303. \end_deeper
  304. \begin_layout Itemize
  305. Limma: The standard linear modeling framework for genomics
  306. \end_layout
  307. \begin_deeper
  308. \begin_layout Itemize
  309. empirical Bayes variance modeling: limma's core feature
  310. \end_layout
  311. \begin_layout Itemize
  312. edgeR & DESeq2: Extend with negative bonomial GLM for RNA-seq and other
  313. count data
  314. \end_layout
  315. \begin_layout Itemize
  316. voom: Extend with precision weights to model mean-variance trend
  317. \end_layout
  318. \begin_layout Itemize
  319. arrayWeights and duplicateCorrelation to handle complex variance structures
  320. \end_layout
  321. \end_deeper
  322. \begin_layout Itemize
  323. sva and ComBat for batch correction
  324. \end_layout
  325. \begin_layout Itemize
  326. Factor analysis: PCA, MDS, MOFA
  327. \end_layout
  328. \begin_deeper
  329. \begin_layout Itemize
  330. Batch-corrected PCA is informative, but careful application is required
  331. to avoid bias
  332. \end_layout
  333. \end_deeper
  334. \begin_layout Itemize
  335. Gene set analysis: camera and SPIA
  336. \end_layout
  337. \begin_layout Section
  338. Innovation
  339. \end_layout
  340. \begin_layout Itemize
  341. MSC infusion to improve transplant outcomes (prevent/delay rejection)
  342. \end_layout
  343. \begin_deeper
  344. \begin_layout Itemize
  345. Characterize MSC response to interferon gamma
  346. \end_layout
  347. \begin_layout Itemize
  348. IFN-g is thought to stimulate their function
  349. \end_layout
  350. \begin_layout Itemize
  351. Test IFN-g treated MSC infusion as a therapy to delay graft rejection in
  352. cynomolgus monkeys
  353. \end_layout
  354. \begin_layout Itemize
  355. Monitor animals post-transplant using blood RNA-seq at serial time points
  356. \end_layout
  357. \end_deeper
  358. \begin_layout Itemize
  359. Investigate dynamics of histone marks in CD4 T-cell activation and memory
  360. \end_layout
  361. \begin_deeper
  362. \begin_layout Itemize
  363. Previous studies have looked at single snapshots of histone marks
  364. \end_layout
  365. \begin_layout Itemize
  366. Instead, look at changes in histone marks across activation and memory
  367. \end_layout
  368. \end_deeper
  369. \begin_layout Itemize
  370. High-throughput sequencing and microarray technologies
  371. \end_layout
  372. \begin_deeper
  373. \begin_layout Itemize
  374. Powerful methods for assaying gene expression and epigenetics across entire
  375. genomes
  376. \end_layout
  377. \begin_layout Itemize
  378. Proper analysis requires finding and exploiting systematic genome-wide trends
  379. \end_layout
  380. \end_deeper
  381. \begin_layout Chapter
  382. Reproducible genome-wide epigenetic analysis of H3K4 and H3K27 methylation
  383. in naive and memory CD4 T-cell activation
  384. \end_layout
  385. \begin_layout Standard
  386. \begin_inset Flex TODO Note (inline)
  387. status open
  388. \begin_layout Plain Layout
  389. Author list: Me, Sarah, Dan
  390. \end_layout
  391. \end_inset
  392. \end_layout
  393. \begin_layout Section
  394. Approach
  395. \end_layout
  396. \begin_layout Itemize
  397. CD4 T-cells are central to all adaptive immune responses and memory
  398. \end_layout
  399. \begin_layout Itemize
  400. H3K4 and H3K27 methylation are major epigenetic regulators of gene expression
  401. \end_layout
  402. \begin_layout Itemize
  403. Canonically, H3K4 is activating and H3K27 is inhibitory, but the reality
  404. is complex
  405. \end_layout
  406. \begin_layout Itemize
  407. Looking at these marks during CD4 activation and memory should reveal new
  408. mechanistic details
  409. \end_layout
  410. \begin_layout Itemize
  411. Test
  412. \begin_inset Quotes eld
  413. \end_inset
  414. poised promoter
  415. \begin_inset Quotes erd
  416. \end_inset
  417. hypothesis in which H3K4 and H3K27 are both methylated
  418. \end_layout
  419. \begin_layout Itemize
  420. Expand scope of analysis beyond simple promoter counts
  421. \end_layout
  422. \begin_deeper
  423. \begin_layout Itemize
  424. Analyze peaks genome-wide, including in intergenic regions
  425. \end_layout
  426. \begin_layout Itemize
  427. Analysis of coverage distribution shape within promoters, e.g.
  428. upstream vs downstream coverage
  429. \end_layout
  430. \end_deeper
  431. \begin_layout Section
  432. Methods
  433. \end_layout
  434. \begin_layout Standard
  435. \begin_inset Float figure
  436. wide false
  437. sideways true
  438. status open
  439. \begin_layout Plain Layout
  440. \align center
  441. \begin_inset Graphics
  442. filename graphics/CD4-csaw/rulegraphs/rulegraph-all.pdf
  443. width 100theight%
  444. \end_inset
  445. \end_layout
  446. \begin_layout Plain Layout
  447. \begin_inset Caption Standard
  448. \begin_layout Plain Layout
  449. \begin_inset CommandInset label
  450. LatexCommand label
  451. name "fig:rulegraph"
  452. \end_inset
  453. \series bold
  454. Dependency graph of steps in reproducible workflow
  455. \end_layout
  456. \end_inset
  457. \end_layout
  458. \end_inset
  459. \end_layout
  460. \begin_layout Standard
  461. A reproducible workflow was written to analyze the raw ChIP-seq and RNA-seq
  462. data from previous studies
  463. \begin_inset CommandInset citation
  464. LatexCommand cite
  465. key "LaMere2016,LaMere2017"
  466. literal "true"
  467. \end_inset
  468. .
  469. The workflow starts by retrieving the sequence reads from the Sequence
  470. Read Archive (SRA)
  471. \begin_inset CommandInset citation
  472. LatexCommand cite
  473. key "Leinonen2011"
  474. literal "false"
  475. \end_inset
  476. .
  477. \end_layout
  478. \begin_layout Itemize
  479. Re-analyze previously published CD4 ChIP-seq & RNA-seq data
  480. \end_layout
  481. \begin_deeper
  482. \begin_layout Itemize
  483. Completely reimplement analysis from scratch as a reproducible workflow
  484. \end_layout
  485. \begin_layout Itemize
  486. Use newly published methods & algorithms not available during the original
  487. analysis: SICER, csaw, MOFA, ComBat, sva, GREAT, and more
  488. \end_layout
  489. \end_deeper
  490. \begin_layout Itemize
  491. SICER, IDR, csaw, & GREAT to call ChIP-seq peaks genome-wide, perform differenti
  492. al abundance analysis, and relate those peaks to gene expression
  493. \end_layout
  494. \begin_layout Itemize
  495. Promoter counts in sliding windows around each gene's highest-expressed
  496. TSS to investigate coverage distribution within promoters
  497. \end_layout
  498. \begin_layout Section
  499. Results
  500. \end_layout
  501. \begin_layout Standard
  502. \begin_inset Note Note
  503. status open
  504. \begin_layout Plain Layout
  505. Focus on what hypotheses were tested, then select figures that show how
  506. those hypotheses were tested, even if the result is a negative.
  507. \end_layout
  508. \end_inset
  509. \end_layout
  510. \begin_layout Subsection
  511. H3K4 and H3K27 methylation occur in broad regions and are enriched near
  512. promoters
  513. \end_layout
  514. \begin_layout Itemize
  515. Figures comparing MACS (non-broad peak caller) to SICER/epic (broad peak
  516. caller)
  517. \end_layout
  518. \begin_deeper
  519. \begin_layout Itemize
  520. Compare peak sizes and number of called peaks
  521. \end_layout
  522. \begin_layout Itemize
  523. Show representative IDR consistency plots for both
  524. \end_layout
  525. \end_deeper
  526. \begin_layout Itemize
  527. IDR analysis shows that SICER-called peaks are much more reproducible between
  528. biological replicates
  529. \end_layout
  530. \begin_layout Itemize
  531. Each histone mark is enriched within a certain radius of gene TSS positions,
  532. but that radius is different for each mark (figure)
  533. \end_layout
  534. \begin_layout Subsection
  535. RNA-seq has a large confounding batch effect
  536. \end_layout
  537. \begin_layout Itemize
  538. RNA-seq batch effect can be partially corrected, but still induces uncorrectable
  539. biases in downstream analysis
  540. \end_layout
  541. \begin_deeper
  542. \begin_layout Itemize
  543. Figure showing MDS plot before & after ComBat
  544. \end_layout
  545. \begin_layout Itemize
  546. Figure relating sample weights to batches, cell types, time points, etc.,
  547. showing that one batch is significantly worse quality
  548. \end_layout
  549. \begin_layout Itemize
  550. Figures showing p-value histograms for within-batch and cross-batch contrasts,
  551. showing that cross-batch contrasts have attenuated signal, as do comparisons
  552. within the bad batch
  553. \end_layout
  554. \end_deeper
  555. \begin_layout Subsection
  556. ChIP-seq must be corrected for hidden confounding factors
  557. \end_layout
  558. \begin_layout Itemize
  559. Figures showing pre- and post-SVA MDS plots for each histone mark
  560. \end_layout
  561. \begin_layout Itemize
  562. Figures showing BCV plots with and without SVA for each histone mark
  563. \end_layout
  564. \begin_layout Subsection
  565. H3K4 and H3K27 promoter methylation has broadly the expected correlation
  566. with gene expression
  567. \end_layout
  568. \begin_layout Itemize
  569. H3K4 is correlated with higher expression, and H3K27 is correlated with
  570. lower expression genome-wide
  571. \end_layout
  572. \begin_layout Itemize
  573. Figures showing these correlations: box/violin plots of expression distributions
  574. with every combination of peak presence/absence in promoter
  575. \end_layout
  576. \begin_layout Itemize
  577. Appropriate statistical tests showing significant differences in expected
  578. directions
  579. \end_layout
  580. \begin_layout Subsection
  581. MOFA recovers biologically relevant variation from blind analysis by correlating
  582. across datasets
  583. \end_layout
  584. \begin_layout Itemize
  585. MOFA
  586. \begin_inset CommandInset citation
  587. LatexCommand cite
  588. key "Argelaguet2018"
  589. literal "false"
  590. \end_inset
  591. successfully separates biologically relevant patterns of variation from
  592. technical confounding factors without knowing the sample labels, by finding
  593. latent factors that explain variation across multiple data sets.
  594. \end_layout
  595. \begin_deeper
  596. \begin_layout Itemize
  597. Figure: show percent-variance-explained plot from MOFA and PCA-like plots
  598. for the relevant latent factors
  599. \end_layout
  600. \begin_layout Itemize
  601. MOFA analysis also shows that batch effect correction can't get much better
  602. than it already is (Figure comparing blind MOFA batch correction to ComBat
  603. correction)
  604. \end_layout
  605. \end_deeper
  606. \begin_layout Subsection
  607. Naive-to-memory convergence observed in H3K4 and RNA-seq data, not in H3K27me3
  608. \end_layout
  609. \begin_layout Itemize
  610. H3K4 and RNA-seq data show clear evidence of naive convergence with memory
  611. between days 1 and 5 (MDS plot figure, also compare with last figure from
  612. \begin_inset CommandInset citation
  613. LatexCommand cite
  614. key "LaMere2016"
  615. literal "false"
  616. \end_inset
  617. )
  618. \end_layout
  619. \begin_layout Standard
  620. \begin_inset Flex TODO Note (inline)
  621. status open
  622. \begin_layout Plain Layout
  623. Note that Sarah has granted permission to use her figures
  624. \end_layout
  625. \end_inset
  626. \end_layout
  627. \begin_layout Itemize
  628. Table of numbers of genes different between N & M at each time point, showing
  629. dwindling differences at later time points, consistent with convergence
  630. \end_layout
  631. \begin_layout Itemize
  632. Similar figure for H3K27me3 showing lack of convergence
  633. \end_layout
  634. \begin_layout Subsection
  635. Effect of promoter coverage upstream vs downstream of TSS
  636. \end_layout
  637. \begin_layout Itemize
  638. H3K4me peaks seem to correlate with increased expression as long as they
  639. are anywhere near the TSS
  640. \end_layout
  641. \begin_layout Itemize
  642. H3K27me3 peaks can have different correlations to gene expression depending
  643. on their position relative to TSS (e.g.
  644. upstream vs downstream) Results consistent with
  645. \begin_inset CommandInset citation
  646. LatexCommand cite
  647. key "Young2011"
  648. literal "false"
  649. \end_inset
  650. \end_layout
  651. \begin_layout Section
  652. Discussion
  653. \end_layout
  654. \begin_layout Itemize
  655. "Promoter radius" is not constant and must be defined empirically for a
  656. given data set
  657. \end_layout
  658. \begin_layout Itemize
  659. MOFA shows great promise for accelerating discovery of major biological
  660. effects in multi-omics datasets
  661. \end_layout
  662. \begin_deeper
  663. \begin_layout Itemize
  664. MOFA was added to this analysis late and played primarily a confirmatory
  665. role, but it was able to confirm earlier conclusions with much less prior
  666. information (no sample labels) and much less analyst effort
  667. \end_layout
  668. \begin_layout Itemize
  669. MOFA confirmed that the already-implemented batch correction in the RNA-seq
  670. data was already performing as well as possible given the limitations of
  671. the data
  672. \end_layout
  673. \end_deeper
  674. \begin_layout Itemize
  675. Naive-to-memory convergence implies that naive cells are differentiating
  676. into memory cells, and that gene expression and H3K4 methylation are involved
  677. in this differentiation while H3K27me3 is less involved
  678. \end_layout
  679. \begin_layout Itemize
  680. H3K27me3, canonically regarded as a deactivating mark, seems to have a more
  681. complex
  682. \end_layout
  683. \begin_layout Itemize
  684. Discuss advantages of developing using a reproducible workflow
  685. \end_layout
  686. \begin_layout Chapter
  687. Improving array-based analyses of transplant rejection by optimizing data
  688. preprocessing
  689. \end_layout
  690. \begin_layout Standard
  691. \begin_inset Note Note
  692. status open
  693. \begin_layout Plain Layout
  694. Author list: Me, Sunil, Tom, Padma, Dan
  695. \end_layout
  696. \end_inset
  697. \end_layout
  698. \begin_layout Section
  699. Approach
  700. \end_layout
  701. \begin_layout Subsection
  702. Proper pre-processing is essential for array data
  703. \end_layout
  704. \begin_layout Standard
  705. \begin_inset Flex TODO Note (inline)
  706. status open
  707. \begin_layout Plain Layout
  708. This section could probably use some citations
  709. \end_layout
  710. \end_inset
  711. \end_layout
  712. \begin_layout Standard
  713. Microarrays, bead ararys, and similar assays produce raw data in the form
  714. of fluorescence intensity measurements, with the each intensity measurement
  715. proportional to the abundance of some fluorescently-labelled target DNA
  716. or RNA sequence that base pairs to a specific probe sequence.
  717. However, these measurements for each probe are also affected my many technical
  718. confounding factors, such as the concentration of target material, strength
  719. of off-target binding, and the sensitivity of the imaging sensor.
  720. Some array designs also use multiple probe sequences for each target.
  721. Hence, extensive pre-processing of array data is necessary to normalize
  722. out the effects of these technical factors and summarize the information
  723. from multiple probes to arrive at a single usable estimate of abundance
  724. or other relevant quantity, such as a ratio of two abundances, for each
  725. target.
  726. \end_layout
  727. \begin_layout Standard
  728. The choice of pre-processing algorithms used in the analysis of an array
  729. data set can have a large effect on the results of that analysis.
  730. However, despite their importance, these steps are often neglected or rushed
  731. in order to get to the more scientifically interesting analysis steps involving
  732. the actual biology of the system under study.
  733. Hence, it is often possible to achieve substantial gains in statistical
  734. power, model goodness-of-fit, or other relevant performance measures, by
  735. checking the assumptions made by each preprocessing step and choosing specific
  736. normalization methods tailored to the specific goals of the current analysis.
  737. \end_layout
  738. \begin_layout Subsection
  739. Normalization for clinical microarray classifiers must be single-channel
  740. \end_layout
  741. \begin_layout Subsubsection
  742. Standard normalization methods are unsuitable for clinical application
  743. \end_layout
  744. \begin_layout Standard
  745. As the cost of performing microarray assays falls, there is increasing interest
  746. in using genomic assays for diagnostic purposes, such as distinguishing
  747. healthy transplants (TX) from transplants undergoing acute rejection (AR)
  748. or acute dysfunction with no rejection (ADNR).
  749. However, the the standard normalization algorithm used for microarray data,
  750. Robust Multi-chip Average (RMA)
  751. \begin_inset CommandInset citation
  752. LatexCommand cite
  753. key "Irizarry2003a"
  754. literal "false"
  755. \end_inset
  756. , is not applicable in a clinical setting.
  757. Two of the steps in RMA, quantile normalization and probe summarization
  758. by median polish, depend on every array in the data set being normalized.
  759. This means that adding or removing any arrays from a data set changes the
  760. normalized values for all arrays, and data sets that have been normalized
  761. separately cannot be compared to each other.
  762. Hence, when using RMA, any arrays to be analyzed together must also be
  763. normalized together, and the set of arrays included in the data set must
  764. be held constant throughout an analysis.
  765. \end_layout
  766. \begin_layout Standard
  767. These limitations present serious impediments to the use of arrays as a
  768. diagnostic tool.
  769. When training a classifier, the samples to be classified must not be involved
  770. in any step of the training process, lest their inclusion bias the training
  771. process.
  772. Once a classifier is deployed in a clinical setting, the samples to be
  773. classified will not even
  774. \emph on
  775. exist
  776. \emph default
  777. at the time of training, so including them would be impossible even if
  778. it were statistically justifiable.
  779. Therefore, any machine learning application for microarrays demands that
  780. the normalized expression values computed for an array must depend only
  781. on information contained within that array.
  782. This would ensure that each array's normalization is independent of every
  783. other array, and that arrays normalized separately can still be compared
  784. to each other without bias.
  785. Such a normalization is commonly referred to as
  786. \begin_inset Quotes eld
  787. \end_inset
  788. single-channel normalization
  789. \begin_inset Quotes erd
  790. \end_inset
  791. .
  792. \end_layout
  793. \begin_layout Subsubsection
  794. Several strategies are available to meet clinical normalization requirements
  795. \end_layout
  796. \begin_layout Standard
  797. Frozen RMA (fRMA) addresses these concerns by replacing the quantile normalizati
  798. on and median polish with alternatives that do not introduce inter-array
  799. dependence, allowing each array to be normalized independently of all others
  800. \begin_inset CommandInset citation
  801. LatexCommand cite
  802. key "McCall2010"
  803. literal "false"
  804. \end_inset
  805. .
  806. Quantile normalization is performed against a pre-generated set of quantiles
  807. learned from a collection of 850 publically available arrays sampled from
  808. a wide variety of tissues in the Gene Expression Omnibus (GEO).
  809. Each array's probe intensity distribution is normalized against these pre-gener
  810. ated quantiles.
  811. The median polish step is replaced with a robust weighted average of probe
  812. intensities, using inverse variance weights learned from the same public
  813. GEO data.
  814. The result is a normalization that satisfies the requirements mentioned
  815. above: each array is normalized independently of all others, and any two
  816. normalized arrays can be compared directly to each other.
  817. \end_layout
  818. \begin_layout Standard
  819. One important limitation of fRMA is that it requires a separate reference
  820. data set from which to learn the parameters (reference quantiles and probe
  821. weights) that will be used to normalize each array.
  822. These parameters are specific to a given array platform, and pre-generated
  823. parameters are only provided for the most common platforms, such as Affymetrix
  824. hgu133plus2.
  825. For a less common platform, such as hthgu133pluspm, is is necessary to
  826. learn custom parameters from in-house data before fRMA can be used to normalize
  827. samples on that platform
  828. \begin_inset CommandInset citation
  829. LatexCommand cite
  830. key "McCall2011"
  831. literal "false"
  832. \end_inset
  833. .
  834. \end_layout
  835. \begin_layout Standard
  836. One other option is the aptly-named Single Channel Array Normalization (SCAN),
  837. which adapts a normalization method originally designed for tiling arrays
  838. \begin_inset CommandInset citation
  839. LatexCommand cite
  840. key "Piccolo2012"
  841. literal "false"
  842. \end_inset
  843. .
  844. SCAN is truly single-channel in that it does not require a set of normalization
  845. paramters estimated from an external set of reference samples like fRMA
  846. does.
  847. \end_layout
  848. \begin_layout Subsection
  849. Heteroskedasticity must be accounted for in methylation array data
  850. \end_layout
  851. \begin_layout Subsubsection
  852. Methylation array preprocessing induces heteroskedasticity
  853. \end_layout
  854. \begin_layout Standard
  855. DNA methylation arrays are a relatively new kind of assay that uses microarrays
  856. to measure the degree of methylation on cytosines in specific regions arrayed
  857. across the genome.
  858. First, bisulfite treatment converts all unmethylated cytosines to uracil
  859. (which then become thymine after amplication) while leaving methylated
  860. cytosines unaffected.
  861. Then, each target region is interrogated with two probes: one binds to
  862. the original genomic sequence and interrogates the level of methylated
  863. DNA, and the other binds to the same sequence with all cytosines replaced
  864. by thymidines and interrogates the level of unmethylated DNA.
  865. \end_layout
  866. \begin_layout Standard
  867. \begin_inset Float figure
  868. wide false
  869. sideways false
  870. status collapsed
  871. \begin_layout Plain Layout
  872. \align center
  873. \begin_inset Graphics
  874. filename graphics/methylvoom/sigmoid.pdf
  875. \end_inset
  876. \end_layout
  877. \begin_layout Plain Layout
  878. \begin_inset Caption Standard
  879. \begin_layout Plain Layout
  880. \begin_inset CommandInset label
  881. LatexCommand label
  882. name "fig:Sigmoid-beta-m-mapping"
  883. \end_inset
  884. \series bold
  885. Sigmoid shape of the mapping between β and M values
  886. \end_layout
  887. \end_inset
  888. \end_layout
  889. \end_inset
  890. \end_layout
  891. \begin_layout Standard
  892. After normalization, these two probe intensities are summarized in one of
  893. two ways, each with advantages and disadvantages.
  894. β
  895. \series bold
  896. \series default
  897. values, interpreted as fraction of DNA copies methylated, range from 0 to
  898. 1.
  899. β
  900. \series bold
  901. \series default
  902. values are conceptually easy to interpret, but the constrained range makes
  903. them unsuitable for linear modeling, and their error distributions are
  904. highly non-normal, which also frustrates linear modeling.
  905. M-values, interpreted as the log ratio of methylated to unmethylated copies,
  906. are computed by mapping the beta values from
  907. \begin_inset Formula $[0,1]$
  908. \end_inset
  909. onto
  910. \begin_inset Formula $(-\infty,+\infty)$
  911. \end_inset
  912. using a sigmoid curve (Figure
  913. \begin_inset CommandInset ref
  914. LatexCommand ref
  915. reference "fig:Sigmoid-beta-m-mapping"
  916. plural "false"
  917. caps "false"
  918. noprefix "false"
  919. \end_inset
  920. ).
  921. This transformation results in values with better statistical perperties:
  922. the unconstrained range is suitable for linear modeling, and the error
  923. distributions are more normal.
  924. Hence, most linear modeling and other statistical testing on methylation
  925. arrays is performed using M-values.
  926. \end_layout
  927. \begin_layout Standard
  928. However, the steep slope of the sigmoid transformation near 0 and 1 tends
  929. to over-exaggerate small differences in β values near those extremes, which
  930. in turn amplifies the error in those values, leading to a U-shaped trend
  931. in the mean-variance curve: extreme values have higher variances than values
  932. near the middle.
  933. This mean-variance dependency must be accounted for when fitting the linear
  934. model for differential methylation, or else the variance will be systematically
  935. overestimated for probes with moderate M-values and underestimated for
  936. probes with extreme M-values.
  937. \end_layout
  938. \begin_layout Subsubsection
  939. The voom method for RNA-seq data can model M-value heteroskedasticity
  940. \end_layout
  941. \begin_layout Standard
  942. RNA-seq read count data are also known to show heteroskedasticity, and the
  943. voom method was developed for modeling this heteroskedasticity by estimating
  944. the mean-variance trend in the data and using this trend to assign precision
  945. weights to each observation
  946. \begin_inset CommandInset citation
  947. LatexCommand cite
  948. key "Law2013"
  949. literal "false"
  950. \end_inset
  951. .
  952. While methylation array data are not derived from counts and have a very
  953. different mean-variance relationship from that of typical RNA-seq data,
  954. the voom method makes no specific assumptions on the shape of the mean-variance
  955. relationship - it only assumes that the relationship is smooth enough to
  956. model using a lowess curve.
  957. Hence, the method is sufficiently general to model the mean-variance relationsh
  958. ip in methylation array data.
  959. However, the standard implementation of voom assumes that the input is
  960. given in raw read counts, and it must be adapted to run on methylation
  961. M-values.
  962. \end_layout
  963. \begin_layout Section
  964. Methods
  965. \end_layout
  966. \begin_layout Subsection
  967. Evaluation of classifier performance with different normalization methods
  968. \end_layout
  969. \begin_layout Standard
  970. For testing different expression microarray normalizations, a data set of
  971. 157 hgu133plus2 arrays was used, consisting of blood samples from kidney
  972. transplant patients whose grafts had been graded as TX, AR, or ADNR via
  973. biopsy and histology (46 TX, 69 AR, 42 ADNR)
  974. \begin_inset CommandInset citation
  975. LatexCommand cite
  976. key "Kurian2014"
  977. literal "true"
  978. \end_inset
  979. .
  980. Additionally, an external validation set of 75 samples was gathered from
  981. public GEO data (37 TX, 38 AR, no ADNR).
  982. \end_layout
  983. \begin_layout Standard
  984. \begin_inset Flex TODO Note (inline)
  985. status collapsed
  986. \begin_layout Plain Layout
  987. Find appropriate GEO identifiers if possible.
  988. Kurian 2014 says GSE15296, but this seems to be different data.
  989. I also need to look up the GEO accession for the external validation set.
  990. \end_layout
  991. \end_inset
  992. \end_layout
  993. \begin_layout Standard
  994. To evaluate the effect of each normalization on classifier performance,
  995. the same classifier training and validation procedure was used after each
  996. normalization method.
  997. The PAM package was used to train a nearest shrunken centroid classifier
  998. on the training set and select the appropriate threshold for centroid shrinking.
  999. Then the trained classifier was used to predict the class probabilities
  1000. of each validation sample.
  1001. From these class probabilities, ROC curves and area-under-curve (AUC) values
  1002. were generated
  1003. \begin_inset CommandInset citation
  1004. LatexCommand cite
  1005. key "Turck2011"
  1006. literal "false"
  1007. \end_inset
  1008. .
  1009. Each normalization was tested on two different sets of training and validation
  1010. samples.
  1011. For internal validation, the 115 TX and AR arrays in the internal set were
  1012. split at random into two equal sized sets, one for training and one for
  1013. validation, each containing the same numbers of TX and AR samples as the
  1014. other set.
  1015. For external validation, the full set of 115 TX and AR samples were used
  1016. as a training set, and the 75 external TX and AR samples were used as the
  1017. validation set.
  1018. Thus, 2 ROC curves and AUC values were generated for each normalization
  1019. method: one internal and one external.
  1020. Because the external validation set contains no ADNR samples, only classificati
  1021. on of TX and AR samples was considered.
  1022. The ADNR samples were included during normalization but excluded from all
  1023. classifier training and validation.
  1024. This ensures that the performance on internal and external validation sets
  1025. is directly comparable, since both are performing the same task: distinguising
  1026. TX from AR.
  1027. \end_layout
  1028. \begin_layout Standard
  1029. \begin_inset Flex TODO Note (inline)
  1030. status collapsed
  1031. \begin_layout Plain Layout
  1032. Summarize the get.best.threshold algorithm for PAM threshold selection
  1033. \end_layout
  1034. \end_inset
  1035. \end_layout
  1036. \begin_layout Standard
  1037. Six different normalization strategies were evaluated.
  1038. First, 2 well-known non-single-channel normalization methods were considered:
  1039. RMA and dChip
  1040. \begin_inset CommandInset citation
  1041. LatexCommand cite
  1042. key "Li2001,Irizarry2003a"
  1043. literal "false"
  1044. \end_inset
  1045. .
  1046. Since RMA produces expression values on a log2 scale and dChip does not,
  1047. the values from dChip were log2 transformed after normalization.
  1048. Next, RMA and dChip followed by Global Rank-invariant Set Normalization
  1049. (GRSN) were tested
  1050. \begin_inset CommandInset citation
  1051. LatexCommand cite
  1052. key "Pelz2008"
  1053. literal "false"
  1054. \end_inset
  1055. .
  1056. Post-processing with GRSN does not turn RMA or dChip into single-channel
  1057. methods, but it may help mitigate batch effects and is therefore useful
  1058. as a benchmark.
  1059. Lastly, the two single-channel normalization methods, fRMA and SCAN, were
  1060. tested
  1061. \begin_inset CommandInset citation
  1062. LatexCommand cite
  1063. key "McCall2010,Piccolo2012"
  1064. literal "false"
  1065. \end_inset
  1066. .
  1067. When evaluting internal validation performance, only the 157 internal samples
  1068. were normalized; when evaluating external validation performance, all 157
  1069. internal samples and 75 external samples were normalized together.
  1070. \end_layout
  1071. \begin_layout Standard
  1072. For demonstrating the problem with separate normalization of training and
  1073. validation data, one additional normalization was performed: the internal
  1074. and external sets were each normalized separately using RMA, and the normalized
  1075. data for each set were combined into a single set with no further attempts
  1076. at normalizing between the two sets.
  1077. The represents approximately how RMA would have to be used in a clinical
  1078. setting, where the samples to be classified are not available at the time
  1079. the classifier is trained.
  1080. \end_layout
  1081. \begin_layout Subsection
  1082. Generating custom fRMA vectors for hthgu133pluspm array platform
  1083. \end_layout
  1084. \begin_layout Standard
  1085. In order to enable fRMA normalization for the hthgu133pluspm array platform,
  1086. custom fRMA normalization vectors were trained using the frmaTools package
  1087. \begin_inset CommandInset citation
  1088. LatexCommand cite
  1089. key "McCall2011"
  1090. literal "false"
  1091. \end_inset
  1092. .
  1093. Separate vectors were created for two types of samples: kidney graft biopsy
  1094. samples and blood samples from graft recipients.
  1095. For training, a 341 kidney biopsy samples from 2 data sets and 965 blood
  1096. samples from 5 data sets were used as the reference set.
  1097. Arrays were groups into batches based on unique combinations of sample
  1098. type (blood or biopsy), diagnosis (TX, AR, etc.), data set, and scan date.
  1099. Thus, each batch represents arrays of the same kind that were run together
  1100. on the same day.
  1101. For estimating the probe inverse variance weights, frmaTools requires equal-siz
  1102. ed batches, which means a batch size must be chosen, and then batches smaller
  1103. than that size must be ignored, while batches larger than the chosen size
  1104. must be downsampled.
  1105. This downsampling is performed randomly, so the sampling process is repeated
  1106. 5 times and the resulting normalizations are compared to each other.
  1107. \end_layout
  1108. \begin_layout Standard
  1109. To evaluate the consistency of the generated normalization vectors, the
  1110. 5 fRMA vector sets generated from 5 random batch samplings were each used
  1111. to normalize the same 20 randomly selected samples from each tissue.
  1112. Then the normalized expression values for each probe on each array were
  1113. compared across all normalizations.
  1114. Each fRMA normalization was also compared against the normalized expression
  1115. values obtained by normalizing the same 20 samples with ordinary RMA.
  1116. \end_layout
  1117. \begin_layout Subsection
  1118. Modeling methylation array M-value heteroskedasticy in linear models with
  1119. modified voom implementation
  1120. \end_layout
  1121. \begin_layout Standard
  1122. \begin_inset Flex TODO Note (inline)
  1123. status open
  1124. \begin_layout Plain Layout
  1125. Put code on Github and reference it.
  1126. \end_layout
  1127. \end_inset
  1128. \end_layout
  1129. \begin_layout Standard
  1130. To investigate the whether DNA methylation could be used to distinguish
  1131. between healthy and dysfunctional transplants, a data set of 78 Illumina
  1132. 450k methylation arrays from human kidney graft biopsies was analyzed for
  1133. differential metylation between 4 transplant statuses: healthy transplant
  1134. (TX), transplants undergoing acute rejection (AR), acute dysfunction with
  1135. no rejection (ADNR), and chronic allograpft nephropathy (CAN).
  1136. The data consisted of 33 TX, 9 AR, 8 ADNR, and 28 CAN samples.
  1137. The uneven group sizes are a result of taking the biopsy samples before
  1138. the eventual fate of the transplant was known.
  1139. Each sample was additionally annotated with a donor ID (anonymized), Sex,
  1140. Age, Ethnicity, Creatinine Level, and Diabetes diagnosois (all samples
  1141. in this data set came from patients with either Type 1 or Type 2 diabetes).
  1142. \end_layout
  1143. \begin_layout Standard
  1144. The intensity data were first normalized using subset-quantile within array
  1145. normalization (SWAN)
  1146. \begin_inset CommandInset citation
  1147. LatexCommand cite
  1148. key "Maksimovic2012"
  1149. literal "false"
  1150. \end_inset
  1151. , then converted to intensity ratios (beta values)
  1152. \begin_inset CommandInset citation
  1153. LatexCommand cite
  1154. key "Aryee2014"
  1155. literal "false"
  1156. \end_inset
  1157. .
  1158. Any probes binding to loci that overlapped annotated SNPs were dropped,
  1159. and the annotated sex of each sample was verified against the sex inferred
  1160. from the ratio of median probe intensities for the X and Y chromosomes.
  1161. Then, the ratios were transformed to M-values.
  1162. \end_layout
  1163. \begin_layout Standard
  1164. From the M-values, a series of parallel analyses was performed, each adding
  1165. additional steps into the model fit to accomodate a feature of the data.
  1166. First, a
  1167. \begin_inset Quotes eld
  1168. \end_inset
  1169. basic
  1170. \begin_inset Quotes erd
  1171. \end_inset
  1172. linear modeling analysis was performed, compensating for known features
  1173. of the data using existing tools.
  1174. A design matrix was prepared including terms for the factor of interest
  1175. as well as the known biological confounders: sex, age, ethnicity, and diabetes.
  1176. Since some samples came from the same patients at differen times, the intra-pat
  1177. ient correlation was modeled as a random effect, estimating a shared correlation
  1178. value across all probes
  1179. \begin_inset CommandInset citation
  1180. LatexCommand cite
  1181. key "Smyth2005a"
  1182. literal "false"
  1183. \end_inset
  1184. .
  1185. Then the linear model was fit, and the variance was modeled using empirical
  1186. Bayes squeezing toward the mean-variance trend
  1187. \begin_inset CommandInset citation
  1188. LatexCommand cite
  1189. key "Ritchie2015"
  1190. literal "false"
  1191. \end_inset
  1192. .
  1193. Finally, t-tests or F-tests were performed a appropriate for each test:
  1194. t-tests for single contrasts, and F-tests for multiple contrasts.
  1195. \end_layout
  1196. \begin_layout Standard
  1197. For the second analysis, surrogate variable analysis (SVA) was used to infer
  1198. additional unobserved sources of heterogeneity in the data
  1199. \begin_inset CommandInset citation
  1200. LatexCommand cite
  1201. key "Leek2007"
  1202. literal "false"
  1203. \end_inset
  1204. .
  1205. These surrogate variables were added to the design matrix before fitting
  1206. the linear model.
  1207. In addition, sample quality weights were estimated from the data and used
  1208. during linear modeling to down-weight the contribution of highly variable
  1209. arrays while increasing the weight to arrays with lower variability
  1210. \begin_inset CommandInset citation
  1211. LatexCommand cite
  1212. key "Ritchie2006"
  1213. literal "false"
  1214. \end_inset
  1215. .
  1216. For the third analysis, the voom method was adapted to run on methylation
  1217. array data and used to model the mean-variance trend as individual observation
  1218. weights
  1219. \begin_inset CommandInset citation
  1220. LatexCommand cite
  1221. key "Law2013"
  1222. literal "false"
  1223. \end_inset
  1224. , which were combined with the sample weights
  1225. \begin_inset CommandInset citation
  1226. LatexCommand cite
  1227. key "Liu2015"
  1228. literal "false"
  1229. \end_inset
  1230. .
  1231. Each time weights were used, they were estimated once before estimating
  1232. the random effect correlation value, and then the weights were re-estimated
  1233. taking the random effect into account.
  1234. \end_layout
  1235. \begin_layout Section
  1236. Results
  1237. \end_layout
  1238. \begin_layout Standard
  1239. \begin_inset Flex TODO Note (inline)
  1240. status open
  1241. \begin_layout Plain Layout
  1242. Improve subsection titles in this section
  1243. \end_layout
  1244. \end_inset
  1245. \end_layout
  1246. \begin_layout Subsection
  1247. fRMA eliminates unwanted dependence of classifier training on normalization
  1248. strategy caused by RMA
  1249. \end_layout
  1250. \begin_layout Subsubsection
  1251. Separate normalization with RMA introduces unwanted biases in classification
  1252. \end_layout
  1253. \begin_layout Standard
  1254. \begin_inset Float figure
  1255. wide false
  1256. sideways false
  1257. status open
  1258. \begin_layout Plain Layout
  1259. \align center
  1260. \begin_inset Graphics
  1261. filename graphics/PAM/predplot.pdf
  1262. width 100col%
  1263. groupId colwidth
  1264. \end_inset
  1265. \end_layout
  1266. \begin_layout Plain Layout
  1267. \begin_inset Caption Standard
  1268. \begin_layout Plain Layout
  1269. \begin_inset CommandInset label
  1270. LatexCommand label
  1271. name "fig:Classifier-probabilities-RMA"
  1272. \end_inset
  1273. \series bold
  1274. Classifier probabilities on validation samples when normalized with RMA
  1275. together vs.
  1276. separately.
  1277. \end_layout
  1278. \end_inset
  1279. \end_layout
  1280. \end_inset
  1281. \end_layout
  1282. \begin_layout Standard
  1283. To demonstrate the problem with non-single-channel methods, we considered
  1284. the problem of training a classifier to distinguish TX from AR using the
  1285. samples from the internal set as training data, evaluating performance
  1286. on the external set.
  1287. First, training and evaluation were performed after normalizing all array
  1288. samples together as a single set using RMA, and second, the internal samples
  1289. were normalized separately from the external samples and the training and
  1290. evaluation were repeated.
  1291. For each sample in the validation set, the classifier probabilities from
  1292. both classifiers were plotted against each other (Fig.
  1293. \begin_inset CommandInset ref
  1294. LatexCommand ref
  1295. reference "fig:Classifier-probabilities-RMA"
  1296. plural "false"
  1297. caps "false"
  1298. noprefix "false"
  1299. \end_inset
  1300. ).
  1301. As expected, separate normalization biases the classifier probabilities,
  1302. resulting in several misclassifications.
  1303. In this case, the bias from separate normalization causes the classifier
  1304. to assign a lower probability of AR to every sample.
  1305. \end_layout
  1306. \begin_layout Subsubsection
  1307. fRMA and SCAN achieve maintain classification performance while eliminating
  1308. dependence on normalization strategy
  1309. \end_layout
  1310. \begin_layout Standard
  1311. \begin_inset Float figure
  1312. wide false
  1313. sideways false
  1314. status collapsed
  1315. \begin_layout Plain Layout
  1316. \align center
  1317. \begin_inset Graphics
  1318. filename graphics/PAM/ROC-TXvsAR-internal.pdf
  1319. width 100col%
  1320. groupId colwidth
  1321. \end_inset
  1322. \end_layout
  1323. \begin_layout Plain Layout
  1324. \begin_inset Caption Standard
  1325. \begin_layout Plain Layout
  1326. \begin_inset CommandInset label
  1327. LatexCommand label
  1328. name "fig:ROC-PAM-int"
  1329. \end_inset
  1330. ROC curves for PAM on internal validation data using different normalization
  1331. strategies
  1332. \end_layout
  1333. \end_inset
  1334. \end_layout
  1335. \end_inset
  1336. \end_layout
  1337. \begin_layout Standard
  1338. \begin_inset Float table
  1339. wide false
  1340. sideways false
  1341. status collapsed
  1342. \begin_layout Plain Layout
  1343. \align center
  1344. \begin_inset Tabular
  1345. <lyxtabular version="3" rows="7" columns="4">
  1346. <features tabularvalignment="middle">
  1347. <column alignment="center" valignment="top">
  1348. <column alignment="center" valignment="top">
  1349. <column alignment="center" valignment="top">
  1350. <column alignment="center" valignment="top">
  1351. <row>
  1352. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1353. \begin_inset Text
  1354. \begin_layout Plain Layout
  1355. \family roman
  1356. \series medium
  1357. \shape up
  1358. \size normal
  1359. \emph off
  1360. \bar no
  1361. \strikeout off
  1362. \xout off
  1363. \uuline off
  1364. \uwave off
  1365. \noun off
  1366. \color none
  1367. Normalization
  1368. \end_layout
  1369. \end_inset
  1370. </cell>
  1371. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1372. \begin_inset Text
  1373. \begin_layout Plain Layout
  1374. Single-channel?
  1375. \end_layout
  1376. \end_inset
  1377. </cell>
  1378. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1379. \begin_inset Text
  1380. \begin_layout Plain Layout
  1381. \family roman
  1382. \series medium
  1383. \shape up
  1384. \size normal
  1385. \emph off
  1386. \bar no
  1387. \strikeout off
  1388. \xout off
  1389. \uuline off
  1390. \uwave off
  1391. \noun off
  1392. \color none
  1393. Internal Val.
  1394. AUC
  1395. \end_layout
  1396. \end_inset
  1397. </cell>
  1398. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  1399. \begin_inset Text
  1400. \begin_layout Plain Layout
  1401. External Val.
  1402. AUC
  1403. \end_layout
  1404. \end_inset
  1405. </cell>
  1406. </row>
  1407. <row>
  1408. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1409. \begin_inset Text
  1410. \begin_layout Plain Layout
  1411. \family roman
  1412. \series medium
  1413. \shape up
  1414. \size normal
  1415. \emph off
  1416. \bar no
  1417. \strikeout off
  1418. \xout off
  1419. \uuline off
  1420. \uwave off
  1421. \noun off
  1422. \color none
  1423. RMA
  1424. \end_layout
  1425. \end_inset
  1426. </cell>
  1427. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1428. \begin_inset Text
  1429. \begin_layout Plain Layout
  1430. No
  1431. \end_layout
  1432. \end_inset
  1433. </cell>
  1434. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1435. \begin_inset Text
  1436. \begin_layout Plain Layout
  1437. \family roman
  1438. \series medium
  1439. \shape up
  1440. \size normal
  1441. \emph off
  1442. \bar no
  1443. \strikeout off
  1444. \xout off
  1445. \uuline off
  1446. \uwave off
  1447. \noun off
  1448. \color none
  1449. 0.852
  1450. \end_layout
  1451. \end_inset
  1452. </cell>
  1453. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  1454. \begin_inset Text
  1455. \begin_layout Plain Layout
  1456. \family roman
  1457. \series medium
  1458. \shape up
  1459. \size normal
  1460. \emph off
  1461. \bar no
  1462. \strikeout off
  1463. \xout off
  1464. \uuline off
  1465. \uwave off
  1466. \noun off
  1467. \color none
  1468. 0.713
  1469. \end_layout
  1470. \end_inset
  1471. </cell>
  1472. </row>
  1473. <row>
  1474. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1475. \begin_inset Text
  1476. \begin_layout Plain Layout
  1477. \family roman
  1478. \series medium
  1479. \shape up
  1480. \size normal
  1481. \emph off
  1482. \bar no
  1483. \strikeout off
  1484. \xout off
  1485. \uuline off
  1486. \uwave off
  1487. \noun off
  1488. \color none
  1489. dChip
  1490. \end_layout
  1491. \end_inset
  1492. </cell>
  1493. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1494. \begin_inset Text
  1495. \begin_layout Plain Layout
  1496. No
  1497. \end_layout
  1498. \end_inset
  1499. </cell>
  1500. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1501. \begin_inset Text
  1502. \begin_layout Plain Layout
  1503. \family roman
  1504. \series medium
  1505. \shape up
  1506. \size normal
  1507. \emph off
  1508. \bar no
  1509. \strikeout off
  1510. \xout off
  1511. \uuline off
  1512. \uwave off
  1513. \noun off
  1514. \color none
  1515. 0.891
  1516. \end_layout
  1517. \end_inset
  1518. </cell>
  1519. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  1520. \begin_inset Text
  1521. \begin_layout Plain Layout
  1522. \family roman
  1523. \series medium
  1524. \shape up
  1525. \size normal
  1526. \emph off
  1527. \bar no
  1528. \strikeout off
  1529. \xout off
  1530. \uuline off
  1531. \uwave off
  1532. \noun off
  1533. \color none
  1534. 0.657
  1535. \end_layout
  1536. \end_inset
  1537. </cell>
  1538. </row>
  1539. <row>
  1540. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1541. \begin_inset Text
  1542. \begin_layout Plain Layout
  1543. \family roman
  1544. \series medium
  1545. \shape up
  1546. \size normal
  1547. \emph off
  1548. \bar no
  1549. \strikeout off
  1550. \xout off
  1551. \uuline off
  1552. \uwave off
  1553. \noun off
  1554. \color none
  1555. RMA + GRSN
  1556. \end_layout
  1557. \end_inset
  1558. </cell>
  1559. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1560. \begin_inset Text
  1561. \begin_layout Plain Layout
  1562. No
  1563. \end_layout
  1564. \end_inset
  1565. </cell>
  1566. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1567. \begin_inset Text
  1568. \begin_layout Plain Layout
  1569. \family roman
  1570. \series medium
  1571. \shape up
  1572. \size normal
  1573. \emph off
  1574. \bar no
  1575. \strikeout off
  1576. \xout off
  1577. \uuline off
  1578. \uwave off
  1579. \noun off
  1580. \color none
  1581. 0.816
  1582. \end_layout
  1583. \end_inset
  1584. </cell>
  1585. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  1586. \begin_inset Text
  1587. \begin_layout Plain Layout
  1588. \family roman
  1589. \series medium
  1590. \shape up
  1591. \size normal
  1592. \emph off
  1593. \bar no
  1594. \strikeout off
  1595. \xout off
  1596. \uuline off
  1597. \uwave off
  1598. \noun off
  1599. \color none
  1600. 0.750
  1601. \end_layout
  1602. \end_inset
  1603. </cell>
  1604. </row>
  1605. <row>
  1606. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1607. \begin_inset Text
  1608. \begin_layout Plain Layout
  1609. \family roman
  1610. \series medium
  1611. \shape up
  1612. \size normal
  1613. \emph off
  1614. \bar no
  1615. \strikeout off
  1616. \xout off
  1617. \uuline off
  1618. \uwave off
  1619. \noun off
  1620. \color none
  1621. dChip + GRSN
  1622. \end_layout
  1623. \end_inset
  1624. </cell>
  1625. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1626. \begin_inset Text
  1627. \begin_layout Plain Layout
  1628. No
  1629. \end_layout
  1630. \end_inset
  1631. </cell>
  1632. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1633. \begin_inset Text
  1634. \begin_layout Plain Layout
  1635. \family roman
  1636. \series medium
  1637. \shape up
  1638. \size normal
  1639. \emph off
  1640. \bar no
  1641. \strikeout off
  1642. \xout off
  1643. \uuline off
  1644. \uwave off
  1645. \noun off
  1646. \color none
  1647. 0.875
  1648. \end_layout
  1649. \end_inset
  1650. </cell>
  1651. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  1652. \begin_inset Text
  1653. \begin_layout Plain Layout
  1654. \family roman
  1655. \series medium
  1656. \shape up
  1657. \size normal
  1658. \emph off
  1659. \bar no
  1660. \strikeout off
  1661. \xout off
  1662. \uuline off
  1663. \uwave off
  1664. \noun off
  1665. \color none
  1666. 0.642
  1667. \end_layout
  1668. \end_inset
  1669. </cell>
  1670. </row>
  1671. <row>
  1672. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1673. \begin_inset Text
  1674. \begin_layout Plain Layout
  1675. \family roman
  1676. \series medium
  1677. \shape up
  1678. \size normal
  1679. \emph off
  1680. \bar no
  1681. \strikeout off
  1682. \xout off
  1683. \uuline off
  1684. \uwave off
  1685. \noun off
  1686. \color none
  1687. fRMA
  1688. \end_layout
  1689. \end_inset
  1690. </cell>
  1691. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1692. \begin_inset Text
  1693. \begin_layout Plain Layout
  1694. Yes
  1695. \end_layout
  1696. \end_inset
  1697. </cell>
  1698. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1699. \begin_inset Text
  1700. \begin_layout Plain Layout
  1701. \family roman
  1702. \series medium
  1703. \shape up
  1704. \size normal
  1705. \emph off
  1706. \bar no
  1707. \strikeout off
  1708. \xout off
  1709. \uuline off
  1710. \uwave off
  1711. \noun off
  1712. \color none
  1713. 0.863
  1714. \end_layout
  1715. \end_inset
  1716. </cell>
  1717. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  1718. \begin_inset Text
  1719. \begin_layout Plain Layout
  1720. \family roman
  1721. \series medium
  1722. \shape up
  1723. \size normal
  1724. \emph off
  1725. \bar no
  1726. \strikeout off
  1727. \xout off
  1728. \uuline off
  1729. \uwave off
  1730. \noun off
  1731. \color none
  1732. 0.718
  1733. \end_layout
  1734. \end_inset
  1735. </cell>
  1736. </row>
  1737. <row>
  1738. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1739. \begin_inset Text
  1740. \begin_layout Plain Layout
  1741. \family roman
  1742. \series medium
  1743. \shape up
  1744. \size normal
  1745. \emph off
  1746. \bar no
  1747. \strikeout off
  1748. \xout off
  1749. \uuline off
  1750. \uwave off
  1751. \noun off
  1752. \color none
  1753. SCAN
  1754. \end_layout
  1755. \end_inset
  1756. </cell>
  1757. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1758. \begin_inset Text
  1759. \begin_layout Plain Layout
  1760. Yes
  1761. \end_layout
  1762. \end_inset
  1763. </cell>
  1764. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1765. \begin_inset Text
  1766. \begin_layout Plain Layout
  1767. \family roman
  1768. \series medium
  1769. \shape up
  1770. \size normal
  1771. \emph off
  1772. \bar no
  1773. \strikeout off
  1774. \xout off
  1775. \uuline off
  1776. \uwave off
  1777. \noun off
  1778. \color none
  1779. 0.853
  1780. \end_layout
  1781. \end_inset
  1782. </cell>
  1783. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  1784. \begin_inset Text
  1785. \begin_layout Plain Layout
  1786. \family roman
  1787. \series medium
  1788. \shape up
  1789. \size normal
  1790. \emph off
  1791. \bar no
  1792. \strikeout off
  1793. \xout off
  1794. \uuline off
  1795. \uwave off
  1796. \noun off
  1797. \color none
  1798. 0.689
  1799. \end_layout
  1800. \end_inset
  1801. </cell>
  1802. </row>
  1803. </lyxtabular>
  1804. \end_inset
  1805. \end_layout
  1806. \begin_layout Plain Layout
  1807. \begin_inset Caption Standard
  1808. \begin_layout Plain Layout
  1809. \begin_inset CommandInset label
  1810. LatexCommand label
  1811. name "tab:AUC-PAM"
  1812. \end_inset
  1813. \series bold
  1814. AUC values for internal and external validation with 6 different normalization
  1815. strategies.
  1816. \series default
  1817. Only fRMA and SCAN are single-channel normalizations.
  1818. The other 4 normalizations are for comparison.
  1819. \end_layout
  1820. \end_inset
  1821. \end_layout
  1822. \end_inset
  1823. \end_layout
  1824. \begin_layout Standard
  1825. For internal validation, the 6 methods' AUC values ranged from 0.816 to 0.891,
  1826. as shown in Table
  1827. \begin_inset CommandInset ref
  1828. LatexCommand ref
  1829. reference "tab:AUC-PAM"
  1830. plural "false"
  1831. caps "false"
  1832. noprefix "false"
  1833. \end_inset
  1834. .
  1835. Among the non-single-channel normalizations, dChip outperformed RMA, while
  1836. GRSN reduced the AUC values for both dChip and RMA.
  1837. Both single-channel methods, fRMA and SCAN, slightly outperformed RMA,
  1838. with fRMA ahead of SCAN.
  1839. However, the difference between RMA and fRMA is still quite small.
  1840. Figure
  1841. \begin_inset CommandInset ref
  1842. LatexCommand ref
  1843. reference "fig:ROC-PAM-int"
  1844. plural "false"
  1845. caps "false"
  1846. noprefix "false"
  1847. \end_inset
  1848. shows that the ROC curves for RMA, dChip, and fRMA look very similar and
  1849. relatively smooth, while both GRSN curves and the curve for SCAN have a
  1850. more jagged appearance.
  1851. \end_layout
  1852. \begin_layout Standard
  1853. \begin_inset Float figure
  1854. wide false
  1855. sideways false
  1856. status open
  1857. \begin_layout Plain Layout
  1858. \align center
  1859. \begin_inset Graphics
  1860. filename graphics/PAM/ROC-TXvsAR-external.pdf
  1861. width 100col%
  1862. groupId colwidth
  1863. \end_inset
  1864. \end_layout
  1865. \begin_layout Plain Layout
  1866. \begin_inset Caption Standard
  1867. \begin_layout Plain Layout
  1868. \begin_inset CommandInset label
  1869. LatexCommand label
  1870. name "fig:ROC-PAM-ext"
  1871. \end_inset
  1872. ROC curve for PAM on external validation data using different normalization
  1873. strategies
  1874. \end_layout
  1875. \end_inset
  1876. \end_layout
  1877. \end_inset
  1878. \end_layout
  1879. \begin_layout Standard
  1880. For external validation, as expected, all the AUC values are lower than
  1881. the internal validations, ranging from 0.642 to 0.750 (Table
  1882. \begin_inset CommandInset ref
  1883. LatexCommand ref
  1884. reference "tab:AUC-PAM"
  1885. plural "false"
  1886. caps "false"
  1887. noprefix "false"
  1888. \end_inset
  1889. ).
  1890. With or without GRSN, RMA shows its dominance over dChip in this more challengi
  1891. ng test.
  1892. Unlike in the internal validation, GRSN actually improves the classifier
  1893. performance for RMA, although it does not for dChip.
  1894. Once again, both single-channel methods perform about on par with RMA,
  1895. with fRMA performing slightly better and SCAN performing a bit worse.
  1896. Figure
  1897. \begin_inset CommandInset ref
  1898. LatexCommand ref
  1899. reference "fig:ROC-PAM-ext"
  1900. plural "false"
  1901. caps "false"
  1902. noprefix "false"
  1903. \end_inset
  1904. shows the ROC curves for the external validation test.
  1905. As expected, none of them are as clean-looking as the internal validation
  1906. ROC curves.
  1907. The curves for RMA, RMA+GRSN, and fRMA all look similar, while the other
  1908. curves look more divergent.
  1909. \end_layout
  1910. \begin_layout Subsection
  1911. fRMA with custom-generated vectors enables normalization on hthgu133pluspm
  1912. \end_layout
  1913. \begin_layout Standard
  1914. \begin_inset Float figure
  1915. wide false
  1916. sideways false
  1917. status open
  1918. \begin_layout Plain Layout
  1919. \align center
  1920. \begin_inset Graphics
  1921. filename graphics/frma-pax-bx/batchsize_batches.pdf
  1922. \end_inset
  1923. \end_layout
  1924. \begin_layout Plain Layout
  1925. \begin_inset Caption Standard
  1926. \begin_layout Plain Layout
  1927. \begin_inset CommandInset label
  1928. LatexCommand label
  1929. name "fig:batch-size-batches"
  1930. \end_inset
  1931. \series bold
  1932. Effect of batch size selection on number of batches included in fRMA probe
  1933. weight learning.
  1934. \series default
  1935. For batch sizes ranging from 3 to 15, the number of batches with at least
  1936. that many samples was plotted for biopsy (BX) and blood (PAX) samples.
  1937. The selected batch size, 5, is marked with a dotted vertical line.
  1938. \end_layout
  1939. \end_inset
  1940. \end_layout
  1941. \end_inset
  1942. \end_layout
  1943. \begin_layout Standard
  1944. \begin_inset Float figure
  1945. wide false
  1946. sideways false
  1947. status open
  1948. \begin_layout Plain Layout
  1949. \align center
  1950. \begin_inset Graphics
  1951. filename graphics/frma-pax-bx/batchsize_samples.pdf
  1952. \end_inset
  1953. \end_layout
  1954. \begin_layout Plain Layout
  1955. \begin_inset Caption Standard
  1956. \begin_layout Plain Layout
  1957. \begin_inset CommandInset label
  1958. LatexCommand label
  1959. name "fig:batch-size-samples"
  1960. \end_inset
  1961. \series bold
  1962. Effect of batch size selection on number of samples included in fRMA probe
  1963. weight learning.
  1964. \series default
  1965. For batch sizes ranging from 3 to 15, the number of samples included in
  1966. probe weight training was plotted for biopsy (BX) and blood (PAX) samples.
  1967. The selected batch size, 5, is marked with a dotted vertical line.
  1968. \end_layout
  1969. \end_inset
  1970. \end_layout
  1971. \end_inset
  1972. \end_layout
  1973. \begin_layout Standard
  1974. In order to enable use of fRMA to normalize hthgu133pluspm, a custom set
  1975. of fRMA vectors was created.
  1976. First, an appropriate batch size was chosen by looking at the number of
  1977. batches and number of samples included as a function of batch size (Figures
  1978. \begin_inset CommandInset ref
  1979. LatexCommand ref
  1980. reference "fig:batch-size-batches"
  1981. plural "false"
  1982. caps "false"
  1983. noprefix "false"
  1984. \end_inset
  1985. and
  1986. \begin_inset CommandInset ref
  1987. LatexCommand ref
  1988. reference "fig:batch-size-samples"
  1989. plural "false"
  1990. caps "false"
  1991. noprefix "false"
  1992. \end_inset
  1993. , respectively).
  1994. For a given batch size, all batches with fewer samples that the chosen
  1995. size must be ignored during training, while larger batches must be randomly
  1996. downsampled to the chosen size.
  1997. Hence, the number of samples included for a given batch size equals the
  1998. batch size times the number of batches with at least that many samples.
  1999. From Figure
  2000. \begin_inset CommandInset ref
  2001. LatexCommand ref
  2002. reference "fig:batch-size-samples"
  2003. plural "false"
  2004. caps "false"
  2005. noprefix "false"
  2006. \end_inset
  2007. , it is apparent that that a batch size of 8 maximizes the number of samples
  2008. included in training.
  2009. Increasing the batch size beyond this causes too many smaller batches to
  2010. be excluded, reducing the total number of samples for both tissue types.
  2011. However, a batch size of 8 is not necessarily optimal.
  2012. The article introducing frmaTools concluded that it was highly advantageous
  2013. to use a smaller batch size in order to include more batches, even at the
  2014. expense of including fewer total samples in training
  2015. \begin_inset CommandInset citation
  2016. LatexCommand cite
  2017. key "McCall2011"
  2018. literal "false"
  2019. \end_inset
  2020. .
  2021. To strike an appropriate balance between more batches and more samples,
  2022. a batch size of 5 was chosen.
  2023. For both blood and biopsy samples, this increased the number of batches
  2024. included by 10, with only a modest reduction in the number of samples compared
  2025. to a batch size of 8.
  2026. With a batch size of 5, 26 batches of biopsy samples and 46 batches of
  2027. blood samples were available.
  2028. \end_layout
  2029. \begin_layout Standard
  2030. \begin_inset Float figure
  2031. wide false
  2032. sideways false
  2033. status open
  2034. \begin_layout Plain Layout
  2035. \align center
  2036. \begin_inset Graphics
  2037. filename graphics/frma-pax-bx/M-BX-violin.pdf
  2038. lyxscale 40
  2039. height 80theight%
  2040. groupId m-violin
  2041. \end_inset
  2042. \end_layout
  2043. \begin_layout Plain Layout
  2044. \begin_inset Caption Standard
  2045. \begin_layout Plain Layout
  2046. \begin_inset CommandInset label
  2047. LatexCommand label
  2048. name "fig:m-bx-violin"
  2049. \end_inset
  2050. \series bold
  2051. Violin plot of log ratios between normalizations for 20 biopsy samples.
  2052. \series default
  2053. Each of 20 randomly selected biopsy samples was normalized with RMA and
  2054. with 5 different sets of fRMA vectors.
  2055. This shows the distribution of log ratios between normalized expression
  2056. values, aggregated across all 20 arrays.
  2057. \end_layout
  2058. \end_inset
  2059. \end_layout
  2060. \end_inset
  2061. \end_layout
  2062. \begin_layout Standard
  2063. Since fRMA training requires equal-size batches, larger batches are downsampled
  2064. randomly.
  2065. This introduces a nondeterministic step in the generation of normalization
  2066. vectors.
  2067. To show that this randomness does not substantially change the outcome,
  2068. the random downsampling and subsequent vector learning was repeated 5 times,
  2069. with a different random seed each time.
  2070. 20 samples were selected at random as a test set and normalized with each
  2071. of the 5 sets of fRMA normalization vectors as well as ordinary RMA, and
  2072. the normalized expression values were compared across normalizations.
  2073. Figure
  2074. \begin_inset CommandInset ref
  2075. LatexCommand ref
  2076. reference "fig:m-bx-violin"
  2077. plural "false"
  2078. caps "false"
  2079. noprefix "false"
  2080. \end_inset
  2081. shows a summary of these comparisons for biopsy samples.
  2082. Comparing RMA to each of the 5 fRMA normalizations, the distribution of
  2083. log ratios is somewhat wide, indicating that the normalizations disagree
  2084. on the expression values of a fair number of probe sets.
  2085. In contrast, comparisons of fRMA against fRMA, the vast mojority of probe
  2086. sets have very small log ratios, indicating a very high agreement between
  2087. the normalized values generated by the two normalizations.
  2088. This shows that the fRMA normalization's behavior is not very sensitive
  2089. to the random downsampling of larger batches during training.
  2090. \end_layout
  2091. \begin_layout Standard
  2092. \begin_inset Float figure
  2093. wide false
  2094. sideways false
  2095. status open
  2096. \begin_layout Plain Layout
  2097. \align center
  2098. \begin_inset Graphics
  2099. filename graphics/frma-pax-bx/MA-BX-RMA.fRMA.pdf
  2100. lyxscale 50
  2101. groupId ma-frma
  2102. \end_inset
  2103. \end_layout
  2104. \begin_layout Plain Layout
  2105. \begin_inset Caption Standard
  2106. \begin_layout Plain Layout
  2107. \begin_inset CommandInset label
  2108. LatexCommand label
  2109. name "fig:ma-bx-rma-frma"
  2110. \end_inset
  2111. \series bold
  2112. Representative MA plot comparing RMA against fRMA for 20 biopsy samples.
  2113. \series default
  2114. Averages and log ratios were computed for every probe in each of 20 biopsy
  2115. samples between RMA normalization and fRMA.
  2116. Density of points is represented by darkness of shading, and individual
  2117. outlier points are plotted.
  2118. \end_layout
  2119. \end_inset
  2120. \end_layout
  2121. \end_inset
  2122. \end_layout
  2123. \begin_layout Standard
  2124. \begin_inset Float figure
  2125. wide false
  2126. sideways false
  2127. status open
  2128. \begin_layout Plain Layout
  2129. \align center
  2130. \begin_inset Graphics
  2131. filename graphics/frma-pax-bx/MA-BX-fRMA.fRMA.pdf
  2132. lyxscale 50
  2133. groupId ma-frma
  2134. \end_inset
  2135. \end_layout
  2136. \begin_layout Plain Layout
  2137. \begin_inset Caption Standard
  2138. \begin_layout Plain Layout
  2139. \begin_inset CommandInset label
  2140. LatexCommand label
  2141. name "fig:ma-bx-frma-frma"
  2142. \end_inset
  2143. \series bold
  2144. Representative MA plot comparing different fRMA vectors for 20 biopsy samples.
  2145. \series default
  2146. Averages and log ratios were computed for every probe in each of 20 biopsy
  2147. samples between fRMA normalizations using vectors from two different batch
  2148. samplings.
  2149. Density of points is represented by darkness of shading, and individual
  2150. outlier points are plotted.
  2151. \end_layout
  2152. \end_inset
  2153. \end_layout
  2154. \end_inset
  2155. \end_layout
  2156. \begin_layout Standard
  2157. Figure
  2158. \begin_inset CommandInset ref
  2159. LatexCommand ref
  2160. reference "fig:ma-bx-rma-frma"
  2161. plural "false"
  2162. caps "false"
  2163. noprefix "false"
  2164. \end_inset
  2165. shows an MA plot of the RMA-normalized values against the fRMA-normalized
  2166. values for the same probe sets and arrays, corresponding to the first row
  2167. of Figure
  2168. \begin_inset CommandInset ref
  2169. LatexCommand ref
  2170. reference "fig:m-bx-violin"
  2171. plural "false"
  2172. caps "false"
  2173. noprefix "false"
  2174. \end_inset
  2175. .
  2176. This MA plot shows that not only is there a wide distribution of M-values,
  2177. but the trend of M-values is dependent on the average normalized intensity.
  2178. This is expected, since the overall trend represents the differences in
  2179. the quantile normalization step.
  2180. When running RMA, only the quantiles for these specific 20 arrays are used,
  2181. while for fRMA the quantile distribution is taking from all arrays used
  2182. in training.
  2183. Figure
  2184. \begin_inset CommandInset ref
  2185. LatexCommand ref
  2186. reference "fig:ma-bx-frma-frma"
  2187. plural "false"
  2188. caps "false"
  2189. noprefix "false"
  2190. \end_inset
  2191. shows a similar MA plot comparing 2 different fRMA normalizations, correspondin
  2192. g to the 6th row of Figure
  2193. \begin_inset CommandInset ref
  2194. LatexCommand ref
  2195. reference "fig:m-bx-violin"
  2196. plural "false"
  2197. caps "false"
  2198. noprefix "false"
  2199. \end_inset
  2200. .
  2201. The MA plot is very tightly centered around zero with no visible trend.
  2202. Figures
  2203. \begin_inset CommandInset ref
  2204. LatexCommand ref
  2205. reference "fig:m-pax-violin"
  2206. plural "false"
  2207. caps "false"
  2208. noprefix "false"
  2209. \end_inset
  2210. ,
  2211. \begin_inset CommandInset ref
  2212. LatexCommand ref
  2213. reference "fig:MA-PAX-rma-frma"
  2214. plural "false"
  2215. caps "false"
  2216. noprefix "false"
  2217. \end_inset
  2218. , and
  2219. \begin_inset CommandInset ref
  2220. LatexCommand ref
  2221. reference "fig:ma-bx-frma-frma"
  2222. plural "false"
  2223. caps "false"
  2224. noprefix "false"
  2225. \end_inset
  2226. show exactly the same information for the blood samples, once again comparing
  2227. the normalized expression values between normalizations for all probe sets
  2228. across 20 randomly selected test arrays.
  2229. Once again, there is a wider distribution of log ratios between RMA-normalized
  2230. values and fRMA-normalized, and a much tighter distribution when comparing
  2231. different fRMA normalizations to each other, indicating that the fRMA training
  2232. process is robust to random batch downsampling for the blood samples as
  2233. well.
  2234. \end_layout
  2235. \begin_layout Standard
  2236. \begin_inset Float figure
  2237. wide false
  2238. sideways false
  2239. status open
  2240. \begin_layout Plain Layout
  2241. \align center
  2242. \begin_inset Graphics
  2243. filename graphics/frma-pax-bx/M-PAX-violin.pdf
  2244. lyxscale 40
  2245. height 80theight%
  2246. groupId m-violin
  2247. \end_inset
  2248. \end_layout
  2249. \begin_layout Plain Layout
  2250. \begin_inset Caption Standard
  2251. \begin_layout Plain Layout
  2252. \begin_inset CommandInset label
  2253. LatexCommand label
  2254. name "fig:m-pax-violin"
  2255. \end_inset
  2256. \series bold
  2257. Violin plot of log ratios between normalizations for 20 blood samples.
  2258. \series default
  2259. Each of 20 randomly selected blood samples was normalized with RMA and with
  2260. 5 different sets of fRMA vectors.
  2261. This shows the distribution of log ratios between normalized expression
  2262. values, aggregated across all 20 arrays.
  2263. \end_layout
  2264. \end_inset
  2265. \end_layout
  2266. \end_inset
  2267. \end_layout
  2268. \begin_layout Standard
  2269. \begin_inset Float figure
  2270. wide false
  2271. sideways false
  2272. status open
  2273. \begin_layout Plain Layout
  2274. \align center
  2275. \begin_inset Graphics
  2276. filename graphics/frma-pax-bx/MA-PAX-RMA.fRMA.pdf
  2277. lyxscale 50
  2278. groupId ma-frma
  2279. \end_inset
  2280. \end_layout
  2281. \begin_layout Plain Layout
  2282. \begin_inset Caption Standard
  2283. \begin_layout Plain Layout
  2284. \begin_inset CommandInset label
  2285. LatexCommand label
  2286. name "fig:MA-PAX-rma-frma"
  2287. \end_inset
  2288. \series bold
  2289. Representative MA plot comparing RMA against fRMA for 20 blood samples.
  2290. \series default
  2291. Averages and log ratios were computed for every probe in each of 20 blood
  2292. samples between RMA normalization and fRMA.
  2293. Density of points is represented by darkness of shading, and individual
  2294. outlier points are plotted.
  2295. \end_layout
  2296. \end_inset
  2297. \end_layout
  2298. \begin_layout Plain Layout
  2299. \end_layout
  2300. \end_inset
  2301. \end_layout
  2302. \begin_layout Standard
  2303. \begin_inset Float figure
  2304. wide false
  2305. sideways false
  2306. status open
  2307. \begin_layout Plain Layout
  2308. \align center
  2309. \begin_inset Graphics
  2310. filename graphics/frma-pax-bx/MA-PAX-fRMA.fRMA.pdf
  2311. lyxscale 50
  2312. groupId ma-frma
  2313. \end_inset
  2314. \end_layout
  2315. \begin_layout Plain Layout
  2316. \begin_inset Caption Standard
  2317. \begin_layout Plain Layout
  2318. \begin_inset CommandInset label
  2319. LatexCommand label
  2320. name "fig:MA-PAX-frma-frma"
  2321. \end_inset
  2322. \series bold
  2323. Representative MA plot comparing different fRMA vectors for 20 blood samples.
  2324. \series default
  2325. Averages and log ratios were computed for every probe in each of 20 blood
  2326. samples between fRMA normalizations using vectors from two different batch
  2327. samplings.
  2328. Density of points is represented by darkness of shading, and individual
  2329. outlier points are plotted.
  2330. \end_layout
  2331. \end_inset
  2332. \end_layout
  2333. \end_inset
  2334. \end_layout
  2335. \begin_layout Subsection
  2336. Adapting voom to methylation array data improves model fit
  2337. \end_layout
  2338. \begin_layout Itemize
  2339. voom, precision weights, and sva improved model fit
  2340. \end_layout
  2341. \begin_deeper
  2342. \begin_layout Itemize
  2343. Also increased sensitivity for detecting differential methylation
  2344. \end_layout
  2345. \end_deeper
  2346. \begin_layout Itemize
  2347. Figure showing (a) heteroskedasticy without voom, (b) voom-modeled mean-variance
  2348. trend, and (c) homoskedastic mean-variance trend after running voom
  2349. \end_layout
  2350. \begin_layout Standard
  2351. \begin_inset Flex TODO Note (inline)
  2352. status open
  2353. \begin_layout Plain Layout
  2354. Write figure legends
  2355. \end_layout
  2356. \end_inset
  2357. \end_layout
  2358. \begin_layout Standard
  2359. \begin_inset Float figure
  2360. wide false
  2361. sideways false
  2362. status open
  2363. \begin_layout Plain Layout
  2364. \begin_inset Graphics
  2365. filename graphics/methylvoom/unadj.dupCor/meanvar-trends-PAGE1-RASTER.png
  2366. lyxscale 15
  2367. groupId raster-600ppi
  2368. \end_inset
  2369. \end_layout
  2370. \begin_layout Plain Layout
  2371. \begin_inset Caption Standard
  2372. \begin_layout Plain Layout
  2373. \series bold
  2374. \begin_inset CommandInset label
  2375. LatexCommand label
  2376. name "fig:meanvar-basic"
  2377. \end_inset
  2378. Mean-variance trend with no SVA or weights
  2379. \end_layout
  2380. \end_inset
  2381. \end_layout
  2382. \end_inset
  2383. \end_layout
  2384. \begin_layout Standard
  2385. \begin_inset Float figure
  2386. wide false
  2387. sideways false
  2388. status open
  2389. \begin_layout Plain Layout
  2390. \begin_inset Graphics
  2391. filename graphics/methylvoom/unadj.dupcor.sva.aw/meanvar-trends-PAGE1-RASTER.png
  2392. lyxscale 15
  2393. groupId raster-600ppi
  2394. \end_inset
  2395. \end_layout
  2396. \begin_layout Plain Layout
  2397. \begin_inset Caption Standard
  2398. \begin_layout Plain Layout
  2399. \series bold
  2400. \begin_inset CommandInset label
  2401. LatexCommand label
  2402. name "fig:meanvar-sva-aw"
  2403. \end_inset
  2404. Mean-variance trend with no SVA and sample quality weights.
  2405. \end_layout
  2406. \end_inset
  2407. \end_layout
  2408. \end_inset
  2409. \end_layout
  2410. \begin_layout Standard
  2411. \begin_inset Float figure
  2412. wide false
  2413. sideways false
  2414. status open
  2415. \begin_layout Plain Layout
  2416. \begin_inset Graphics
  2417. filename graphics/methylvoom/unadj.dupCor.sva.voomaw/meanvar-trends-PAGE1-RASTER.png
  2418. lyxscale 15
  2419. groupId raster-600ppi
  2420. \end_inset
  2421. \end_layout
  2422. \begin_layout Plain Layout
  2423. \begin_inset Caption Standard
  2424. \begin_layout Plain Layout
  2425. \series bold
  2426. \begin_inset CommandInset label
  2427. LatexCommand label
  2428. name "fig:voom-sva-voomaw"
  2429. \end_inset
  2430. Mean-variance trend modelled by voom, with SVA and sample weights.
  2431. \series default
  2432. The y-axis is the square root of the standard deviation for each probe,
  2433. because this is the scale on which voom fits its lowess curve.
  2434. \end_layout
  2435. \end_inset
  2436. \end_layout
  2437. \end_inset
  2438. \begin_inset Float figure
  2439. wide false
  2440. sideways false
  2441. status open
  2442. \begin_layout Plain Layout
  2443. \begin_inset Graphics
  2444. filename graphics/methylvoom/unadj.dupCor.sva.voomaw/meanvar-trends-PAGE2-RASTER.png
  2445. lyxscale 15
  2446. groupId raster-600ppi
  2447. \end_inset
  2448. \end_layout
  2449. \begin_layout Plain Layout
  2450. \begin_inset Caption Standard
  2451. \begin_layout Plain Layout
  2452. \series bold
  2453. \begin_inset CommandInset label
  2454. LatexCommand label
  2455. name "fig:meanvar-sva-voomaw"
  2456. \end_inset
  2457. Residual mean-variance trend after modeling with SVA, sample weights, and
  2458. voom.
  2459. \end_layout
  2460. \end_inset
  2461. \end_layout
  2462. \end_inset
  2463. \end_layout
  2464. \begin_layout Standard
  2465. \begin_inset Float table
  2466. wide false
  2467. sideways false
  2468. status open
  2469. \begin_layout Plain Layout
  2470. \align center
  2471. \begin_inset Tabular
  2472. <lyxtabular version="3" rows="5" columns="2">
  2473. <features tabularvalignment="middle">
  2474. <column alignment="center" valignment="top">
  2475. <column alignment="center" valignment="top">
  2476. <row>
  2477. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2478. \begin_inset Text
  2479. \begin_layout Plain Layout
  2480. Covariate
  2481. \end_layout
  2482. \end_inset
  2483. </cell>
  2484. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2485. \begin_inset Text
  2486. \begin_layout Plain Layout
  2487. p-value
  2488. \end_layout
  2489. \end_inset
  2490. </cell>
  2491. </row>
  2492. <row>
  2493. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2494. \begin_inset Text
  2495. \begin_layout Plain Layout
  2496. Transplant Status
  2497. \end_layout
  2498. \end_inset
  2499. </cell>
  2500. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2501. \begin_inset Text
  2502. \begin_layout Plain Layout
  2503. 0.404
  2504. \end_layout
  2505. \end_inset
  2506. </cell>
  2507. </row>
  2508. <row>
  2509. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2510. \begin_inset Text
  2511. \begin_layout Plain Layout
  2512. Diabetes Diagnosis
  2513. \end_layout
  2514. \end_inset
  2515. </cell>
  2516. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2517. \begin_inset Text
  2518. \begin_layout Plain Layout
  2519. 0.00106
  2520. \end_layout
  2521. \end_inset
  2522. </cell>
  2523. </row>
  2524. <row>
  2525. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2526. \begin_inset Text
  2527. \begin_layout Plain Layout
  2528. Sex
  2529. \end_layout
  2530. \end_inset
  2531. </cell>
  2532. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2533. \begin_inset Text
  2534. \begin_layout Plain Layout
  2535. 0.148
  2536. \end_layout
  2537. \end_inset
  2538. </cell>
  2539. </row>
  2540. <row>
  2541. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2542. \begin_inset Text
  2543. \begin_layout Plain Layout
  2544. Age
  2545. \end_layout
  2546. \end_inset
  2547. </cell>
  2548. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2549. \begin_inset Text
  2550. \begin_layout Plain Layout
  2551. 0.212
  2552. \end_layout
  2553. \end_inset
  2554. </cell>
  2555. </row>
  2556. </lyxtabular>
  2557. \end_inset
  2558. \end_layout
  2559. \begin_layout Plain Layout
  2560. \begin_inset Caption Standard
  2561. \begin_layout Plain Layout
  2562. \begin_inset CommandInset label
  2563. LatexCommand label
  2564. name "tab:weight-covariate-tests"
  2565. \end_inset
  2566. Association of sample weights with clinical covariates.
  2567. \end_layout
  2568. \end_inset
  2569. \end_layout
  2570. \begin_layout Plain Layout
  2571. \end_layout
  2572. \end_inset
  2573. \end_layout
  2574. \begin_layout Standard
  2575. \begin_inset Float table
  2576. wide false
  2577. sideways false
  2578. status open
  2579. \begin_layout Plain Layout
  2580. \begin_inset Tabular
  2581. <lyxtabular version="3" rows="5" columns="4">
  2582. <features tabularvalignment="middle">
  2583. <column alignment="center" valignment="top">
  2584. <column alignment="center" valignment="top">
  2585. <column alignment="center" valignment="top">
  2586. <column alignment="center" valignment="top">
  2587. <row>
  2588. <cell alignment="center" valignment="top" usebox="none">
  2589. \begin_inset Text
  2590. \begin_layout Plain Layout
  2591. \end_layout
  2592. \end_inset
  2593. </cell>
  2594. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2595. \begin_inset Text
  2596. \begin_layout Plain Layout
  2597. Analysis
  2598. \end_layout
  2599. \end_inset
  2600. </cell>
  2601. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2602. \begin_inset Text
  2603. \begin_layout Plain Layout
  2604. \end_layout
  2605. \end_inset
  2606. </cell>
  2607. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2608. \begin_inset Text
  2609. \begin_layout Plain Layout
  2610. \end_layout
  2611. \end_inset
  2612. </cell>
  2613. </row>
  2614. <row>
  2615. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2616. \begin_inset Text
  2617. \begin_layout Plain Layout
  2618. Contrast
  2619. \end_layout
  2620. \end_inset
  2621. </cell>
  2622. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2623. \begin_inset Text
  2624. \begin_layout Plain Layout
  2625. A
  2626. \end_layout
  2627. \end_inset
  2628. </cell>
  2629. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2630. \begin_inset Text
  2631. \begin_layout Plain Layout
  2632. B
  2633. \end_layout
  2634. \end_inset
  2635. </cell>
  2636. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2637. \begin_inset Text
  2638. \begin_layout Plain Layout
  2639. C
  2640. \end_layout
  2641. \end_inset
  2642. </cell>
  2643. </row>
  2644. <row>
  2645. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2646. \begin_inset Text
  2647. \begin_layout Plain Layout
  2648. TX vs AR
  2649. \end_layout
  2650. \end_inset
  2651. </cell>
  2652. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2653. \begin_inset Text
  2654. \begin_layout Plain Layout
  2655. 0
  2656. \end_layout
  2657. \end_inset
  2658. </cell>
  2659. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2660. \begin_inset Text
  2661. \begin_layout Plain Layout
  2662. 25
  2663. \end_layout
  2664. \end_inset
  2665. </cell>
  2666. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2667. \begin_inset Text
  2668. \begin_layout Plain Layout
  2669. 22
  2670. \end_layout
  2671. \end_inset
  2672. </cell>
  2673. </row>
  2674. <row>
  2675. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2676. \begin_inset Text
  2677. \begin_layout Plain Layout
  2678. TX vs ADNR
  2679. \end_layout
  2680. \end_inset
  2681. </cell>
  2682. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2683. \begin_inset Text
  2684. \begin_layout Plain Layout
  2685. 7
  2686. \end_layout
  2687. \end_inset
  2688. </cell>
  2689. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2690. \begin_inset Text
  2691. \begin_layout Plain Layout
  2692. 338
  2693. \end_layout
  2694. \end_inset
  2695. </cell>
  2696. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2697. \begin_inset Text
  2698. \begin_layout Plain Layout
  2699. 369
  2700. \end_layout
  2701. \end_inset
  2702. </cell>
  2703. </row>
  2704. <row>
  2705. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2706. \begin_inset Text
  2707. \begin_layout Plain Layout
  2708. TX vs CAN
  2709. \end_layout
  2710. \end_inset
  2711. </cell>
  2712. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2713. \begin_inset Text
  2714. \begin_layout Plain Layout
  2715. 0
  2716. \end_layout
  2717. \end_inset
  2718. </cell>
  2719. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2720. \begin_inset Text
  2721. \begin_layout Plain Layout
  2722. 231
  2723. \end_layout
  2724. \end_inset
  2725. </cell>
  2726. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2727. \begin_inset Text
  2728. \begin_layout Plain Layout
  2729. 278
  2730. \end_layout
  2731. \end_inset
  2732. </cell>
  2733. </row>
  2734. </lyxtabular>
  2735. \end_inset
  2736. \end_layout
  2737. \begin_layout Plain Layout
  2738. \begin_inset Caption Standard
  2739. \begin_layout Plain Layout
  2740. \begin_inset CommandInset label
  2741. LatexCommand label
  2742. name "tab:methyl-num-signif"
  2743. \end_inset
  2744. \series bold
  2745. Number of probes significant at 10% FDR for each contrast in each analysis.
  2746. \end_layout
  2747. \end_inset
  2748. \end_layout
  2749. \end_inset
  2750. \end_layout
  2751. \begin_layout Standard
  2752. \begin_inset Flex TODO Note (inline)
  2753. status open
  2754. \begin_layout Plain Layout
  2755. Cite the pi0 estimation method from propTrueNull
  2756. \end_layout
  2757. \end_inset
  2758. \end_layout
  2759. \begin_layout Standard
  2760. \begin_inset Float table
  2761. wide false
  2762. sideways false
  2763. status open
  2764. \begin_layout Plain Layout
  2765. \begin_inset Tabular
  2766. <lyxtabular version="3" rows="5" columns="4">
  2767. <features tabularvalignment="middle">
  2768. <column alignment="center" valignment="top">
  2769. <column alignment="center" valignment="top">
  2770. <column alignment="center" valignment="top">
  2771. <column alignment="center" valignment="top">
  2772. <row>
  2773. <cell alignment="center" valignment="top" usebox="none">
  2774. \begin_inset Text
  2775. \begin_layout Plain Layout
  2776. \end_layout
  2777. \end_inset
  2778. </cell>
  2779. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2780. \begin_inset Text
  2781. \begin_layout Plain Layout
  2782. Analysis
  2783. \end_layout
  2784. \end_inset
  2785. </cell>
  2786. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2787. \begin_inset Text
  2788. \begin_layout Plain Layout
  2789. \end_layout
  2790. \end_inset
  2791. </cell>
  2792. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2793. \begin_inset Text
  2794. \begin_layout Plain Layout
  2795. \end_layout
  2796. \end_inset
  2797. </cell>
  2798. </row>
  2799. <row>
  2800. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2801. \begin_inset Text
  2802. \begin_layout Plain Layout
  2803. Contrast
  2804. \end_layout
  2805. \end_inset
  2806. </cell>
  2807. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2808. \begin_inset Text
  2809. \begin_layout Plain Layout
  2810. A
  2811. \end_layout
  2812. \end_inset
  2813. </cell>
  2814. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2815. \begin_inset Text
  2816. \begin_layout Plain Layout
  2817. B
  2818. \end_layout
  2819. \end_inset
  2820. </cell>
  2821. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2822. \begin_inset Text
  2823. \begin_layout Plain Layout
  2824. C
  2825. \end_layout
  2826. \end_inset
  2827. </cell>
  2828. </row>
  2829. <row>
  2830. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2831. \begin_inset Text
  2832. \begin_layout Plain Layout
  2833. TX vs AR
  2834. \end_layout
  2835. \end_inset
  2836. </cell>
  2837. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2838. \begin_inset Text
  2839. \begin_layout Plain Layout
  2840. 0
  2841. \end_layout
  2842. \end_inset
  2843. </cell>
  2844. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2845. \begin_inset Text
  2846. \begin_layout Plain Layout
  2847. 10,063
  2848. \end_layout
  2849. \end_inset
  2850. </cell>
  2851. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2852. \begin_inset Text
  2853. \begin_layout Plain Layout
  2854. 11,225
  2855. \end_layout
  2856. \end_inset
  2857. </cell>
  2858. </row>
  2859. <row>
  2860. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2861. \begin_inset Text
  2862. \begin_layout Plain Layout
  2863. TX vs ADNR
  2864. \end_layout
  2865. \end_inset
  2866. </cell>
  2867. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2868. \begin_inset Text
  2869. \begin_layout Plain Layout
  2870. 27
  2871. \end_layout
  2872. \end_inset
  2873. </cell>
  2874. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2875. \begin_inset Text
  2876. \begin_layout Plain Layout
  2877. 12,674
  2878. \end_layout
  2879. \end_inset
  2880. </cell>
  2881. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2882. \begin_inset Text
  2883. \begin_layout Plain Layout
  2884. 13,086
  2885. \end_layout
  2886. \end_inset
  2887. </cell>
  2888. </row>
  2889. <row>
  2890. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2891. \begin_inset Text
  2892. \begin_layout Plain Layout
  2893. TX vs CAN
  2894. \end_layout
  2895. \end_inset
  2896. </cell>
  2897. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2898. \begin_inset Text
  2899. \begin_layout Plain Layout
  2900. 966
  2901. \end_layout
  2902. \end_inset
  2903. </cell>
  2904. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2905. \begin_inset Text
  2906. \begin_layout Plain Layout
  2907. 20,039
  2908. \end_layout
  2909. \end_inset
  2910. </cell>
  2911. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2912. \begin_inset Text
  2913. \begin_layout Plain Layout
  2914. 20,955
  2915. \end_layout
  2916. \end_inset
  2917. </cell>
  2918. </row>
  2919. </lyxtabular>
  2920. \end_inset
  2921. \end_layout
  2922. \begin_layout Plain Layout
  2923. \begin_inset Caption Standard
  2924. \begin_layout Plain Layout
  2925. \begin_inset CommandInset label
  2926. LatexCommand label
  2927. name "tab:methyl-est-nonnull"
  2928. \end_inset
  2929. \series bold
  2930. Estimated number of non-null tests for each contrast in each analysis.
  2931. \end_layout
  2932. \end_inset
  2933. \end_layout
  2934. \end_inset
  2935. \end_layout
  2936. \begin_layout Standard
  2937. \begin_inset Flex TODO Note (inline)
  2938. status open
  2939. \begin_layout Plain Layout
  2940. Re-generate p-value histograms for all relevant contrasts in a single figure.
  2941. \end_layout
  2942. \end_inset
  2943. \end_layout
  2944. \begin_layout Section
  2945. Discussion
  2946. \end_layout
  2947. \begin_layout Subsection
  2948. fRMA achieves clinically applicable normalization without sacrificing classifica
  2949. tion performance
  2950. \end_layout
  2951. \begin_layout Standard
  2952. As shown in Figure
  2953. \begin_inset CommandInset ref
  2954. LatexCommand ref
  2955. reference "fig:Classifier-probabilities-RMA"
  2956. plural "false"
  2957. caps "false"
  2958. noprefix "false"
  2959. \end_inset
  2960. , improper normalization, particularly separate normalization of training
  2961. and test samples, leads to unwanted biases in classification.
  2962. In a controlled experimental context, it is always possible to correct
  2963. this issue by normalizing all experimental samples together.
  2964. However, because it is not feasible to normalize all samples together in
  2965. a clinical context, a single-channel normalization is required is required.
  2966. \end_layout
  2967. \begin_layout Standard
  2968. The major concern in using a single-channel normalization is that non-single-cha
  2969. nnel methods can share information between arrays to improve the normalization,
  2970. and single-channel methods risk sacrificing the gains in normalization
  2971. accuracy that come from this information sharing.
  2972. In the case of RMA, this information sharing is accomplished through quantile
  2973. normalization and median polish steps.
  2974. The need for information sharing in quantile normalization can easily be
  2975. removed by learning a fixed set of quantiles from external data and normalizing
  2976. each array to these fixed quantiles, instead of the quantiles of the data
  2977. itself.
  2978. As long as the fixed quantiles are reasonable, the result will be similar
  2979. to standard RMA.
  2980. However, there is no analogous way to eliminate cross-array information
  2981. sharing in the median polish step, so fRMA replaces this with a weighted
  2982. average of probes on each array, with the weights learned from external
  2983. data.
  2984. This step of fRMA has the greatest potential to diverge from RMA un undesirable
  2985. ways.
  2986. \end_layout
  2987. \begin_layout Standard
  2988. However, when run on real data, fRMA performed at least as well as RMA in
  2989. both the internal validation and external validation tests.
  2990. This shows that fRMA can be used to normalize individual clinical samples
  2991. in a class prediction context without sacrificing the classifier performance
  2992. that would be obtained by using the more well-established RMA for normalization.
  2993. The other single-channel normalization method considered, SCAN, showed
  2994. some loss of AUC in the external validation test.
  2995. Based on these results, fRMA is the preferred normalization for clinical
  2996. samples in a class prediction context.
  2997. \end_layout
  2998. \begin_layout Subsection
  2999. Robust fRMA vectors can be generated for new array platforms
  3000. \end_layout
  3001. \begin_layout Standard
  3002. \begin_inset Flex TODO Note (inline)
  3003. status open
  3004. \begin_layout Plain Layout
  3005. Look up the exact numbers, do a find & replace for
  3006. \begin_inset Quotes eld
  3007. \end_inset
  3008. 850
  3009. \begin_inset Quotes erd
  3010. \end_inset
  3011. \end_layout
  3012. \end_inset
  3013. \end_layout
  3014. \begin_layout Standard
  3015. The published fRMA normalization vectors for the hgu133plus2 platform were
  3016. generated from a set of about 850 samples chosen from a wide range of tissues,
  3017. which the authors determined was sufficient to generate a robust set of
  3018. normalization vectors that could be applied across all tissues
  3019. \begin_inset CommandInset citation
  3020. LatexCommand cite
  3021. key "McCall2010"
  3022. literal "false"
  3023. \end_inset
  3024. .
  3025. Since we only had hthgu133pluspm for 2 tissues of interest, our needs were
  3026. more modest.
  3027. Even using only 130 samples in 26 batches of 5 samples each for kidney
  3028. biopsies, we were able to train a robust set of fRMA normalization vectors
  3029. that were not meaningfully affected by the random selection of 5 samples
  3030. from each batch.
  3031. As expected, the training process was just as robust for the blood samples
  3032. with 230 samples in 46 batches of 5 samples each.
  3033. Because these vectors were each generated using training samples from a
  3034. single tissue, they are not suitable for general use, unlike the vectors
  3035. provided with fRMA itself.
  3036. They are purpose-build for normalizing a specific type of sample on a specific
  3037. platform.
  3038. \end_layout
  3039. \begin_layout Subsection
  3040. voom
  3041. \end_layout
  3042. \begin_layout Itemize
  3043. Methods like voom designed for RNA-seq can also help with array analysis
  3044. \end_layout
  3045. \begin_layout Itemize
  3046. Extracting and modeling confounders common to many features improves model
  3047. correspondence to known biology
  3048. \end_layout
  3049. \begin_layout Chapter
  3050. Globin-blocking for more effective blood RNA-seq analysis in primate animal
  3051. model
  3052. \end_layout
  3053. \begin_layout Standard
  3054. \begin_inset Flex TODO Note (inline)
  3055. status open
  3056. \begin_layout Plain Layout
  3057. Choose between above and the paper title: Optimizing yield of deep RNA sequencin
  3058. g for gene expression profiling by globin reduction of peripheral blood
  3059. samples from cynomolgus monkeys (Macaca fascicularis).
  3060. \end_layout
  3061. \end_inset
  3062. \end_layout
  3063. \begin_layout Standard
  3064. \begin_inset Flex TODO Note (inline)
  3065. status open
  3066. \begin_layout Plain Layout
  3067. Chapter author list: https://tex.stackexchange.com/questions/156862/displaying-aut
  3068. hor-for-each-chapter-in-book Every chapter gets an author list, which may
  3069. or may not be part of a citation to a published/preprinted paper.
  3070. \end_layout
  3071. \end_inset
  3072. \end_layout
  3073. \begin_layout Standard
  3074. \begin_inset Flex TODO Note (inline)
  3075. status open
  3076. \begin_layout Plain Layout
  3077. Preprint then cite the paper
  3078. \end_layout
  3079. \end_inset
  3080. \end_layout
  3081. \begin_layout Section*
  3082. Abstract
  3083. \end_layout
  3084. \begin_layout Paragraph
  3085. Background
  3086. \end_layout
  3087. \begin_layout Standard
  3088. Primate blood contains high concentrations of globin messenger RNA.
  3089. Globin reduction is a standard technique used to improve the expression
  3090. results obtained by DNA microarrays on RNA from blood samples.
  3091. However, with whole transcriptome RNA-sequencing (RNA-seq) quickly replacing
  3092. microarrays for many applications, the impact of globin reduction for RNA-seq
  3093. has not been previously studied.
  3094. Moreover, no off-the-shelf kits are available for globin reduction in nonhuman
  3095. primates.
  3096. \end_layout
  3097. \begin_layout Paragraph
  3098. Results
  3099. \end_layout
  3100. \begin_layout Standard
  3101. Here we report a protocol for RNA-seq in primate blood samples that uses
  3102. complimentary oligonucleotides to block reverse transcription of the alpha
  3103. and beta globin genes.
  3104. In test samples from cynomolgus monkeys (Macaca fascicularis), this globin
  3105. blocking protocol approximately doubles the yield of informative (non-globin)
  3106. reads by greatly reducing the fraction of globin reads, while also improving
  3107. the consistency in sequencing depth between samples.
  3108. The increased yield enables detection of about 2000 more genes, significantly
  3109. increases the correlation in measured gene expression levels between samples,
  3110. and increases the sensitivity of differential gene expression tests.
  3111. \end_layout
  3112. \begin_layout Paragraph
  3113. Conclusions
  3114. \end_layout
  3115. \begin_layout Standard
  3116. These results show that globin blocking significantly improves the cost-effectiv
  3117. eness of mRNA sequencing in primate blood samples by doubling the yield
  3118. of useful reads, allowing detection of more genes, and improving the precision
  3119. of gene expression measurements.
  3120. Based on these results, a globin reducing or blocking protocol is recommended
  3121. for all RNA-seq studies of primate blood samples.
  3122. \end_layout
  3123. \begin_layout Section
  3124. Approach
  3125. \end_layout
  3126. \begin_layout Standard
  3127. \begin_inset Note Note
  3128. status open
  3129. \begin_layout Plain Layout
  3130. Consider putting some of this in the Intro chapter
  3131. \end_layout
  3132. \begin_layout Itemize
  3133. Cynomolgus monkeys as a model organism
  3134. \end_layout
  3135. \begin_deeper
  3136. \begin_layout Itemize
  3137. Highly related to humans
  3138. \end_layout
  3139. \begin_layout Itemize
  3140. Small size and short life cycle - good research animal
  3141. \end_layout
  3142. \begin_layout Itemize
  3143. Genomics resources still in development
  3144. \end_layout
  3145. \end_deeper
  3146. \begin_layout Itemize
  3147. Inadequacy of existing blood RNA-seq protocols
  3148. \end_layout
  3149. \begin_deeper
  3150. \begin_layout Itemize
  3151. Existing protocols use a separate globin pulldown step, slowing down processing
  3152. \end_layout
  3153. \end_deeper
  3154. \end_inset
  3155. \end_layout
  3156. \begin_layout Standard
  3157. Increasingly, researchers are turning to high-throughput mRNA sequencing
  3158. technologies (RNA-seq) in preference to expression microarrays for analysis
  3159. of gene expression
  3160. \begin_inset CommandInset citation
  3161. LatexCommand cite
  3162. key "Mutz2012"
  3163. literal "false"
  3164. \end_inset
  3165. .
  3166. The advantages are even greater for study of model organisms with no well-estab
  3167. lished array platforms available, such as the cynomolgus monkey (Macaca
  3168. fascicularis).
  3169. High fractions of globin mRNA are naturally present in mammalian peripheral
  3170. blood samples (up to 70% of total mRNA) and these are known to interfere
  3171. with the results of array-based expression profiling
  3172. \begin_inset CommandInset citation
  3173. LatexCommand cite
  3174. key "Winn2010"
  3175. literal "false"
  3176. \end_inset
  3177. .
  3178. The importance of globin reduction for RNA-seq of blood has only been evaluated
  3179. for a deepSAGE protocol on human samples
  3180. \begin_inset CommandInset citation
  3181. LatexCommand cite
  3182. key "Mastrokolias2012"
  3183. literal "false"
  3184. \end_inset
  3185. .
  3186. In the present report, we evaluated globin reduction using custom blocking
  3187. oligonucleotides for deep RNA-seq of peripheral blood samples from a nonhuman
  3188. primate, cynomolgus monkey, using the Illumina technology platform.
  3189. We demonstrate that globin reduction significantly improves the cost-effectiven
  3190. ess of RNA-seq in blood samples.
  3191. Thus, our protocol offers a significant advantage to any investigator planning
  3192. to use RNA-seq for gene expression profiling of nonhuman primate blood
  3193. samples.
  3194. Our method can be generally applied to any species by designing complementary
  3195. oligonucleotide blocking probes to the globin gene sequences of that species.
  3196. Indeed, any highly expressed but biologically uninformative transcripts
  3197. can also be blocked to further increase sequencing efficiency and value
  3198. \begin_inset CommandInset citation
  3199. LatexCommand cite
  3200. key "Arnaud2016"
  3201. literal "false"
  3202. \end_inset
  3203. .
  3204. \end_layout
  3205. \begin_layout Section
  3206. Methods
  3207. \end_layout
  3208. \begin_layout Subsection*
  3209. Sample collection
  3210. \end_layout
  3211. \begin_layout Standard
  3212. All research reported here was done under IACUC-approved protocols at the
  3213. University of Miami and complied with all applicable federal and state
  3214. regulations and ethical principles for nonhuman primate research.
  3215. Blood draws occurred between 16 April 2012 and 18 June 2015.
  3216. The experimental system involved intrahepatic pancreatic islet transplantation
  3217. into Cynomolgus monkeys with induced diabetes mellitus with or without
  3218. concomitant infusion of mesenchymal stem cells.
  3219. Blood was collected at serial time points before and after transplantation
  3220. into PAXgene Blood RNA tubes (PreAnalytiX/Qiagen, Valencia, CA) at the
  3221. precise volume:volume ratio of 2.5 ml whole blood into 6.9 ml of PAX gene
  3222. additive.
  3223. \end_layout
  3224. \begin_layout Subsection*
  3225. Globin Blocking
  3226. \end_layout
  3227. \begin_layout Standard
  3228. Four oligonucleotides were designed to hybridize to the 3’ end of the transcript
  3229. s for Cynomolgus HBA1, HBA2 and HBB, with two hybridization sites for HBB
  3230. and 2 sites for HBA (the chosen sites were identical in both HBA genes).
  3231. All oligos were purchased from Sigma and were entirely composed of 2’O-Me
  3232. bases with a C3 spacer positioned at the 3’ ends to prevent any polymerase
  3233. mediated primer extension.
  3234. \end_layout
  3235. \begin_layout Quote
  3236. HBA1/2 site 1: GCCCACUCAGACUUUAUUCAAAG-C3spacer
  3237. \end_layout
  3238. \begin_layout Quote
  3239. HBA1/2 site 2: GGUGCAAGGAGGGGAGGAG-C3spacer
  3240. \end_layout
  3241. \begin_layout Quote
  3242. HBB site 1: AAUGAAAAUAAAUGUUUUUUAUUAG-C3spacer
  3243. \end_layout
  3244. \begin_layout Quote
  3245. HBB site 2: CUCAAGGCCCUUCAUAAUAUCCC-C3spacer
  3246. \end_layout
  3247. \begin_layout Subsection*
  3248. RNA-seq Library Preparation
  3249. \end_layout
  3250. \begin_layout Standard
  3251. Sequencing libraries were prepared with 200ng total RNA from each sample.
  3252. Polyadenylated mRNA was selected from 200 ng aliquots of cynomologus blood-deri
  3253. ved total RNA using Ambion Dynabeads Oligo(dT)25 beads (Invitrogen) following
  3254. manufacturer’s recommended protocol.
  3255. PolyA selected RNA was then combined with 8 pmol of HBA1/2 (site 1), 8
  3256. pmol of HBA1/2 (site 2), 12 pmol of HBB (site 1) and 12 pmol of HBB (site
  3257. 2) oligonucleotides.
  3258. In addition, 20 pmol of RT primer containing a portion of the Illumina
  3259. adapter sequence (B-oligo-dTV: GAGTTCCTTGGCACCCGAGAATTCCATTTTTTTTTTTTTTTTTTTV)
  3260. and 4 µL of 5X First Strand buffer (250 mM Tris-HCl pH 8.3, 375 mM KCl,
  3261. 15mM MgCl2) were added in a total volume of 15 µL.
  3262. The RNA was fragmented by heating this cocktail for 3 minutes at 95°C and
  3263. then placed on ice.
  3264. This was followed by the addition of 2 µL 0.1 M DTT, 1 µL RNaseOUT, 1 µL
  3265. 10mM dNTPs 10% biotin-16 aminoallyl-2’- dUTP and 10% biotin-16 aminoallyl-2’-
  3266. dCTP (TriLink Biotech, San Diego, CA), 1 µL Superscript II (200U/ µL, Thermo-Fi
  3267. sher).
  3268. A second “unblocked” library was prepared in the same way for each sample
  3269. but replacing the blocking oligos with an equivalent volume of water.
  3270. The reaction was carried out at 25°C for 15 minutes and 42°C for 40 minutes,
  3271. followed by incubation at 75°C for 10 minutes to inactivate the reverse
  3272. transcriptase.
  3273. \end_layout
  3274. \begin_layout Standard
  3275. The cDNA/RNA hybrid molecules were purified using 1.8X Ampure XP beads (Agencourt
  3276. ) following supplier’s recommended protocol.
  3277. The cDNA/RNA hybrid was eluted in 25 µL of 10 mM Tris-HCl pH 8.0, and then
  3278. bound to 25 µL of M280 Magnetic Streptavidin beads washed per recommended
  3279. protocol (Thermo-Fisher).
  3280. After 30 minutes of binding, beads were washed one time in 100 µL 0.1N NaOH
  3281. to denature and remove the bound RNA, followed by two 100 µL washes with
  3282. 1X TE buffer.
  3283. \end_layout
  3284. \begin_layout Standard
  3285. Subsequent attachment of the 5-prime Illumina A adapter was performed by
  3286. on-bead random primer extension of the following sequence (A-N8 primer:
  3287. TTCAGAGTTCTACAGTCCGACGATCNNNNNNNN).
  3288. Briefly, beads were resuspended in a 20 µL reaction containing 5 µM A-N8
  3289. primer, 40mM Tris-HCl pH 7.5, 20mM MgCl2, 50mM NaCl, 0.325U/µL Sequenase
  3290. 2.0 (Affymetrix, Santa Clara, CA), 0.0025U/µL inorganic pyrophosphatase (Affymetr
  3291. ix) and 300 µM each dNTP.
  3292. Reaction was incubated at 22°C for 30 minutes, then beads were washed 2
  3293. times with 1X TE buffer (200µL).
  3294. \end_layout
  3295. \begin_layout Standard
  3296. The magnetic streptavidin beads were resuspended in 34 µL nuclease-free
  3297. water and added directly to a PCR tube.
  3298. The two Illumina protocol-specified PCR primers were added at 0.53 µM (Illumina
  3299. TruSeq Universal Primer 1 and Illumina TruSeq barcoded PCR primer 2), along
  3300. with 40 µL 2X KAPA HiFi Hotstart ReadyMix (KAPA, Willmington MA) and thermocycl
  3301. ed as follows: starting with 98°C (2 min-hold); 15 cycles of 98°C, 20sec;
  3302. 60°C, 30sec; 72°C, 30sec; and finished with a 72°C (2 min-hold).
  3303. \end_layout
  3304. \begin_layout Standard
  3305. PCR products were purified with 1X Ampure Beads following manufacturer’s
  3306. recommended protocol.
  3307. Libraries were then analyzed using the Agilent TapeStation and quantitation
  3308. of desired size range was performed by “smear analysis”.
  3309. Samples were pooled in equimolar batches of 16 samples.
  3310. Pooled libraries were size selected on 2% agarose gels (E-Gel EX Agarose
  3311. Gels; Thermo-Fisher).
  3312. Products were cut between 250 and 350 bp (corresponding to insert sizes
  3313. of 130 to 230 bps).
  3314. Finished library pools were then sequenced on the Illumina NextSeq500 instrumen
  3315. t with 75 base read lengths.
  3316. \end_layout
  3317. \begin_layout Subsection*
  3318. Read alignment and counting
  3319. \end_layout
  3320. \begin_layout Standard
  3321. Reads were aligned to the cynomolgus genome using STAR
  3322. \begin_inset CommandInset citation
  3323. LatexCommand cite
  3324. key "Dobin2013,Wilson2013"
  3325. literal "false"
  3326. \end_inset
  3327. .
  3328. Counts of uniquely mapped reads were obtained for every gene in each sample
  3329. with the “featureCounts” function from the Rsubread package, using each
  3330. of the three possibilities for the “strandSpecific” option: sense, antisense,
  3331. and unstranded
  3332. \begin_inset CommandInset citation
  3333. LatexCommand cite
  3334. key "Liao2014"
  3335. literal "false"
  3336. \end_inset
  3337. .
  3338. A few artifacts in the cynomolgus genome annotation complicated read counting.
  3339. First, no ortholog is annotated for alpha globin in the cynomolgus genome,
  3340. presumably because the human genome has two alpha globin genes with nearly
  3341. identical sequences, making the orthology relationship ambiguous.
  3342. However, two loci in the cynomolgus genome are as “hemoglobin subunit alpha-lik
  3343. e” (LOC102136192 and LOC102136846).
  3344. LOC102136192 is annotated as a pseudogene while LOC102136846 is annotated
  3345. as protein-coding.
  3346. Our globin reduction protocol was designed to include blocking of these
  3347. two genes.
  3348. Indeed, these two genes have almost the same read counts in each library
  3349. as the properly-annotated HBB gene and much larger counts than any other
  3350. gene in the unblocked libraries, giving confidence that reads derived from
  3351. the real alpha globin are mapping to both genes.
  3352. Thus, reads from both of these loci were counted as alpha globin reads
  3353. in all further analyses.
  3354. The second artifact is a small, uncharacterized non-coding RNA gene (LOC1021365
  3355. 91), which overlaps the HBA-like gene (LOC102136192) on the opposite strand.
  3356. If counting is not performed in stranded mode (or if a non-strand-specific
  3357. sequencing protocol is used), many reads mapping to the globin gene will
  3358. be discarded as ambiguous due to their overlap with this ncRNA gene, resulting
  3359. in significant undercounting of globin reads.
  3360. Therefore, stranded sense counts were used for all further analysis in
  3361. the present study to insure that we accurately accounted for globin transcript
  3362. reduction.
  3363. However, we note that stranded reads are not necessary for RNA-seq using
  3364. our protocol in standard practice.
  3365. \end_layout
  3366. \begin_layout Subsection*
  3367. Normalization and Exploratory Data Analysis
  3368. \end_layout
  3369. \begin_layout Standard
  3370. Libraries were normalized by computing scaling factors using the edgeR package’s
  3371. Trimmed Mean of M-values method
  3372. \begin_inset CommandInset citation
  3373. LatexCommand cite
  3374. key "Robinson2010"
  3375. literal "false"
  3376. \end_inset
  3377. .
  3378. Log2 counts per million values (logCPM) were calculated using the cpm function
  3379. in edgeR for individual samples and aveLogCPM function for averages across
  3380. groups of samples, using those functions’ default prior count values to
  3381. avoid taking the logarithm of 0.
  3382. Genes were considered “present” if their average normalized logCPM values
  3383. across all libraries were at least -1.
  3384. Normalizing for gene length was unnecessary because the sequencing protocol
  3385. is 3’-biased and hence the expected read count for each gene is related
  3386. to the transcript’s copy number but not its length.
  3387. \end_layout
  3388. \begin_layout Standard
  3389. In order to assess the effect of blocking on reproducibility, Pearson and
  3390. Spearman correlation coefficients were computed between the logCPM values
  3391. for every pair of libraries within the globin-blocked (GB) and unblocked
  3392. (non-GB) groups, and edgeR's “estimateDisp” function was used to compute
  3393. negative binomial dispersions separately for the two groups
  3394. \begin_inset CommandInset citation
  3395. LatexCommand cite
  3396. key "Chen2014"
  3397. literal "false"
  3398. \end_inset
  3399. .
  3400. \end_layout
  3401. \begin_layout Subsection*
  3402. Differential Expression Analysis
  3403. \end_layout
  3404. \begin_layout Standard
  3405. All tests for differential gene expression were performed using edgeR, by
  3406. first fitting a negative binomial generalized linear model to the counts
  3407. and normalization factors and then performing a quasi-likelihood F-test
  3408. with robust estimation of outlier gene dispersions
  3409. \begin_inset CommandInset citation
  3410. LatexCommand cite
  3411. key "Lund2012,Phipson2016"
  3412. literal "false"
  3413. \end_inset
  3414. .
  3415. To investigate the effects of globin blocking on each gene, an additive
  3416. model was fit to the full data with coefficients for globin blocking and
  3417. SampleID.
  3418. To test the effect of globin blocking on detection of differentially expressed
  3419. genes, the GB samples and non-GB samples were each analyzed independently
  3420. as follows: for each animal with both a pre-transplant and a post-transplant
  3421. time point in the data set, the pre-transplant sample and the earliest
  3422. post-transplant sample were selected, and all others were excluded, yielding
  3423. a pre-/post-transplant pair of samples for each animal (N=7 animals with
  3424. paired samples).
  3425. These samples were analyzed for pre-transplant vs.
  3426. post-transplant differential gene expression while controlling for inter-animal
  3427. variation using an additive model with coefficients for transplant and
  3428. animal ID.
  3429. In all analyses, p-values were adjusted using the Benjamini-Hochberg procedure
  3430. for FDR correction
  3431. \begin_inset CommandInset citation
  3432. LatexCommand cite
  3433. key "Benjamini1995"
  3434. literal "false"
  3435. \end_inset
  3436. .
  3437. \end_layout
  3438. \begin_layout Standard
  3439. \begin_inset Note Note
  3440. status open
  3441. \begin_layout Itemize
  3442. New blood RNA-seq protocol to block reverse transcription of globin genes
  3443. \end_layout
  3444. \begin_layout Itemize
  3445. Blood RNA-seq time course after transplants with/without MSC infusion
  3446. \end_layout
  3447. \end_inset
  3448. \end_layout
  3449. \begin_layout Section
  3450. Results
  3451. \end_layout
  3452. \begin_layout Subsection*
  3453. Globin blocking yields a larger and more consistent fraction of useful reads
  3454. \end_layout
  3455. \begin_layout Standard
  3456. The objective of the present study was to validate a new protocol for deep
  3457. RNA-seq of whole blood drawn into PaxGene tubes from cynomolgus monkeys
  3458. undergoing islet transplantation, with particular focus on minimizing the
  3459. loss of useful sequencing space to uninformative globin reads.
  3460. The details of the analysis with respect to transplant outcomes and the
  3461. impact of mesenchymal stem cell treatment will be reported in a separate
  3462. manuscript (in preparation).
  3463. To focus on the efficacy of our globin blocking protocol, 37 blood samples,
  3464. 16 from pre-transplant and 21 from post-transplant time points, were each
  3465. prepped once with and once without globin blocking oligos, and were then
  3466. sequenced on an Illumina NextSeq500 instrument.
  3467. The number of reads aligning to each gene in the cynomolgus genome was
  3468. counted.
  3469. Table 1 summarizes the distribution of read fractions among the GB and
  3470. non-GB libraries.
  3471. In the libraries with no globin blocking, globin reads made up an average
  3472. of 44.6% of total input reads, while reads assigned to all other genes made
  3473. up an average of 26.3%.
  3474. The remaining reads either aligned to intergenic regions (that include
  3475. long non-coding RNAs) or did not align with any annotated transcripts in
  3476. the current build of the cynomolgus genome.
  3477. In the GB libraries, globin reads made up only 3.48% and reads assigned
  3478. to all other genes increased to 50.4%.
  3479. Thus, globin blocking resulted in a 92.2% reduction in globin reads and
  3480. a 91.6% increase in yield of useful non-globin reads.
  3481. \end_layout
  3482. \begin_layout Standard
  3483. This reduction is not quite as efficient as the previous analysis showed
  3484. for human samples by DeepSAGE (<0.4% globin reads after globin reduction)
  3485. \begin_inset CommandInset citation
  3486. LatexCommand cite
  3487. key "Mastrokolias2012"
  3488. literal "false"
  3489. \end_inset
  3490. .
  3491. Nonetheless, this degree of globin reduction is sufficient to nearly double
  3492. the yield of useful reads.
  3493. Thus, globin blocking cuts the required sequencing effort (and costs) to
  3494. achieve a target coverage depth by almost 50%.
  3495. Consistent with this near doubling of yield, the average difference in
  3496. un-normalized logCPM across all genes between the GB libraries and non-GB
  3497. libraries is approximately 1 (mean = 1.01, median = 1.08), an overall 2-fold
  3498. increase.
  3499. Un-normalized values are used here because the TMM normalization correctly
  3500. identifies this 2-fold difference as biologically irrelevant and removes
  3501. it.
  3502. \end_layout
  3503. \begin_layout Standard
  3504. \begin_inset Float figure
  3505. wide false
  3506. sideways false
  3507. status open
  3508. \begin_layout Plain Layout
  3509. \align center
  3510. \begin_inset Graphics
  3511. filename graphics/Globin Paper/figure1 - globin-fractions.pdf
  3512. \end_inset
  3513. \end_layout
  3514. \begin_layout Plain Layout
  3515. \begin_inset Caption Standard
  3516. \begin_layout Plain Layout
  3517. \series bold
  3518. \begin_inset Argument 1
  3519. status collapsed
  3520. \begin_layout Plain Layout
  3521. Fraction of genic reads in each sample aligned to non-globin genes, with
  3522. and without globin blocking (GB).
  3523. \end_layout
  3524. \end_inset
  3525. \begin_inset CommandInset label
  3526. LatexCommand label
  3527. name "fig:Fraction-of-genic-reads"
  3528. \end_inset
  3529. Fraction of genic reads in each sample aligned to non-globin genes, with
  3530. and without globin blocking (GB).
  3531. \series default
  3532. All reads in each sequencing library were aligned to the cyno genome, and
  3533. the number of reads uniquely aligning to each gene was counted.
  3534. For each sample, counts were summed separately for all globin genes and
  3535. for the remainder of the genes (non-globin genes), and the fraction of
  3536. genic reads aligned to non-globin genes was computed.
  3537. Each point represents an individual sample.
  3538. Gray + signs indicate the means for globin-blocked libraries and unblocked
  3539. libraries.
  3540. The overall distribution for each group is represented as a notched box
  3541. plots.
  3542. Points are randomly spread vertically to avoid excessive overlapping.
  3543. \end_layout
  3544. \end_inset
  3545. \end_layout
  3546. \begin_layout Plain Layout
  3547. \end_layout
  3548. \end_inset
  3549. \end_layout
  3550. \begin_layout Standard
  3551. \begin_inset Float table
  3552. placement p
  3553. wide false
  3554. sideways true
  3555. status open
  3556. \begin_layout Plain Layout
  3557. \align center
  3558. \begin_inset Tabular
  3559. <lyxtabular version="3" rows="4" columns="7">
  3560. <features tabularvalignment="middle">
  3561. <column alignment="center" valignment="top">
  3562. <column alignment="center" valignment="top">
  3563. <column alignment="center" valignment="top">
  3564. <column alignment="center" valignment="top">
  3565. <column alignment="center" valignment="top">
  3566. <column alignment="center" valignment="top">
  3567. <column alignment="center" valignment="top">
  3568. <row>
  3569. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3570. \begin_inset Text
  3571. \begin_layout Plain Layout
  3572. \end_layout
  3573. \end_inset
  3574. </cell>
  3575. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3576. \begin_inset Text
  3577. \begin_layout Plain Layout
  3578. \family roman
  3579. \series medium
  3580. \shape up
  3581. \size normal
  3582. \emph off
  3583. \bar no
  3584. \strikeout off
  3585. \xout off
  3586. \uuline off
  3587. \uwave off
  3588. \noun off
  3589. \color none
  3590. Percent of Total Reads
  3591. \end_layout
  3592. \end_inset
  3593. </cell>
  3594. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3595. \begin_inset Text
  3596. \begin_layout Plain Layout
  3597. \end_layout
  3598. \end_inset
  3599. </cell>
  3600. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3601. \begin_inset Text
  3602. \begin_layout Plain Layout
  3603. \end_layout
  3604. \end_inset
  3605. </cell>
  3606. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3607. \begin_inset Text
  3608. \begin_layout Plain Layout
  3609. \end_layout
  3610. \end_inset
  3611. </cell>
  3612. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3613. \begin_inset Text
  3614. \begin_layout Plain Layout
  3615. \family roman
  3616. \series medium
  3617. \shape up
  3618. \size normal
  3619. \emph off
  3620. \bar no
  3621. \strikeout off
  3622. \xout off
  3623. \uuline off
  3624. \uwave off
  3625. \noun off
  3626. \color none
  3627. Percent of Genic Reads
  3628. \end_layout
  3629. \end_inset
  3630. </cell>
  3631. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3632. \begin_inset Text
  3633. \begin_layout Plain Layout
  3634. \end_layout
  3635. \end_inset
  3636. </cell>
  3637. </row>
  3638. <row>
  3639. <cell alignment="center" valignment="top" bottomline="true" leftline="true" usebox="none">
  3640. \begin_inset Text
  3641. \begin_layout Plain Layout
  3642. GB
  3643. \end_layout
  3644. \end_inset
  3645. </cell>
  3646. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3647. \begin_inset Text
  3648. \begin_layout Plain Layout
  3649. \family roman
  3650. \series medium
  3651. \shape up
  3652. \size normal
  3653. \emph off
  3654. \bar no
  3655. \strikeout off
  3656. \xout off
  3657. \uuline off
  3658. \uwave off
  3659. \noun off
  3660. \color none
  3661. Non-globin Reads
  3662. \end_layout
  3663. \end_inset
  3664. </cell>
  3665. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3666. \begin_inset Text
  3667. \begin_layout Plain Layout
  3668. \family roman
  3669. \series medium
  3670. \shape up
  3671. \size normal
  3672. \emph off
  3673. \bar no
  3674. \strikeout off
  3675. \xout off
  3676. \uuline off
  3677. \uwave off
  3678. \noun off
  3679. \color none
  3680. Globin Reads
  3681. \end_layout
  3682. \end_inset
  3683. </cell>
  3684. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3685. \begin_inset Text
  3686. \begin_layout Plain Layout
  3687. \family roman
  3688. \series medium
  3689. \shape up
  3690. \size normal
  3691. \emph off
  3692. \bar no
  3693. \strikeout off
  3694. \xout off
  3695. \uuline off
  3696. \uwave off
  3697. \noun off
  3698. \color none
  3699. All Genic Reads
  3700. \end_layout
  3701. \end_inset
  3702. </cell>
  3703. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3704. \begin_inset Text
  3705. \begin_layout Plain Layout
  3706. \family roman
  3707. \series medium
  3708. \shape up
  3709. \size normal
  3710. \emph off
  3711. \bar no
  3712. \strikeout off
  3713. \xout off
  3714. \uuline off
  3715. \uwave off
  3716. \noun off
  3717. \color none
  3718. All Aligned Reads
  3719. \end_layout
  3720. \end_inset
  3721. </cell>
  3722. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3723. \begin_inset Text
  3724. \begin_layout Plain Layout
  3725. \family roman
  3726. \series medium
  3727. \shape up
  3728. \size normal
  3729. \emph off
  3730. \bar no
  3731. \strikeout off
  3732. \xout off
  3733. \uuline off
  3734. \uwave off
  3735. \noun off
  3736. \color none
  3737. Non-globin Reads
  3738. \end_layout
  3739. \end_inset
  3740. </cell>
  3741. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3742. \begin_inset Text
  3743. \begin_layout Plain Layout
  3744. \family roman
  3745. \series medium
  3746. \shape up
  3747. \size normal
  3748. \emph off
  3749. \bar no
  3750. \strikeout off
  3751. \xout off
  3752. \uuline off
  3753. \uwave off
  3754. \noun off
  3755. \color none
  3756. Globin Reads
  3757. \end_layout
  3758. \end_inset
  3759. </cell>
  3760. </row>
  3761. <row>
  3762. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3763. \begin_inset Text
  3764. \begin_layout Plain Layout
  3765. \family roman
  3766. \series medium
  3767. \shape up
  3768. \size normal
  3769. \emph off
  3770. \bar no
  3771. \strikeout off
  3772. \xout off
  3773. \uuline off
  3774. \uwave off
  3775. \noun off
  3776. \color none
  3777. Yes
  3778. \end_layout
  3779. \end_inset
  3780. </cell>
  3781. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3782. \begin_inset Text
  3783. \begin_layout Plain Layout
  3784. \family roman
  3785. \series medium
  3786. \shape up
  3787. \size normal
  3788. \emph off
  3789. \bar no
  3790. \strikeout off
  3791. \xout off
  3792. \uuline off
  3793. \uwave off
  3794. \noun off
  3795. \color none
  3796. 50.4% ± 6.82
  3797. \end_layout
  3798. \end_inset
  3799. </cell>
  3800. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3801. \begin_inset Text
  3802. \begin_layout Plain Layout
  3803. \family roman
  3804. \series medium
  3805. \shape up
  3806. \size normal
  3807. \emph off
  3808. \bar no
  3809. \strikeout off
  3810. \xout off
  3811. \uuline off
  3812. \uwave off
  3813. \noun off
  3814. \color none
  3815. 3.48% ± 2.94
  3816. \end_layout
  3817. \end_inset
  3818. </cell>
  3819. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3820. \begin_inset Text
  3821. \begin_layout Plain Layout
  3822. \family roman
  3823. \series medium
  3824. \shape up
  3825. \size normal
  3826. \emph off
  3827. \bar no
  3828. \strikeout off
  3829. \xout off
  3830. \uuline off
  3831. \uwave off
  3832. \noun off
  3833. \color none
  3834. 53.9% ± 6.81
  3835. \end_layout
  3836. \end_inset
  3837. </cell>
  3838. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3839. \begin_inset Text
  3840. \begin_layout Plain Layout
  3841. \family roman
  3842. \series medium
  3843. \shape up
  3844. \size normal
  3845. \emph off
  3846. \bar no
  3847. \strikeout off
  3848. \xout off
  3849. \uuline off
  3850. \uwave off
  3851. \noun off
  3852. \color none
  3853. 89.7% ± 2.40
  3854. \end_layout
  3855. \end_inset
  3856. </cell>
  3857. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3858. \begin_inset Text
  3859. \begin_layout Plain Layout
  3860. \family roman
  3861. \series medium
  3862. \shape up
  3863. \size normal
  3864. \emph off
  3865. \bar no
  3866. \strikeout off
  3867. \xout off
  3868. \uuline off
  3869. \uwave off
  3870. \noun off
  3871. \color none
  3872. 93.5% ± 5.25
  3873. \end_layout
  3874. \end_inset
  3875. </cell>
  3876. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3877. \begin_inset Text
  3878. \begin_layout Plain Layout
  3879. \family roman
  3880. \series medium
  3881. \shape up
  3882. \size normal
  3883. \emph off
  3884. \bar no
  3885. \strikeout off
  3886. \xout off
  3887. \uuline off
  3888. \uwave off
  3889. \noun off
  3890. \color none
  3891. 6.49% ± 5.25
  3892. \end_layout
  3893. \end_inset
  3894. </cell>
  3895. </row>
  3896. <row>
  3897. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3898. \begin_inset Text
  3899. \begin_layout Plain Layout
  3900. \family roman
  3901. \series medium
  3902. \shape up
  3903. \size normal
  3904. \emph off
  3905. \bar no
  3906. \strikeout off
  3907. \xout off
  3908. \uuline off
  3909. \uwave off
  3910. \noun off
  3911. \color none
  3912. No
  3913. \end_layout
  3914. \end_inset
  3915. </cell>
  3916. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3917. \begin_inset Text
  3918. \begin_layout Plain Layout
  3919. \family roman
  3920. \series medium
  3921. \shape up
  3922. \size normal
  3923. \emph off
  3924. \bar no
  3925. \strikeout off
  3926. \xout off
  3927. \uuline off
  3928. \uwave off
  3929. \noun off
  3930. \color none
  3931. 26.3% ± 8.95
  3932. \end_layout
  3933. \end_inset
  3934. </cell>
  3935. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3936. \begin_inset Text
  3937. \begin_layout Plain Layout
  3938. \family roman
  3939. \series medium
  3940. \shape up
  3941. \size normal
  3942. \emph off
  3943. \bar no
  3944. \strikeout off
  3945. \xout off
  3946. \uuline off
  3947. \uwave off
  3948. \noun off
  3949. \color none
  3950. 44.6% ± 16.6
  3951. \end_layout
  3952. \end_inset
  3953. </cell>
  3954. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3955. \begin_inset Text
  3956. \begin_layout Plain Layout
  3957. \family roman
  3958. \series medium
  3959. \shape up
  3960. \size normal
  3961. \emph off
  3962. \bar no
  3963. \strikeout off
  3964. \xout off
  3965. \uuline off
  3966. \uwave off
  3967. \noun off
  3968. \color none
  3969. 70.1% ± 9.38
  3970. \end_layout
  3971. \end_inset
  3972. </cell>
  3973. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3974. \begin_inset Text
  3975. \begin_layout Plain Layout
  3976. \family roman
  3977. \series medium
  3978. \shape up
  3979. \size normal
  3980. \emph off
  3981. \bar no
  3982. \strikeout off
  3983. \xout off
  3984. \uuline off
  3985. \uwave off
  3986. \noun off
  3987. \color none
  3988. 90.7% ± 5.16
  3989. \end_layout
  3990. \end_inset
  3991. </cell>
  3992. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3993. \begin_inset Text
  3994. \begin_layout Plain Layout
  3995. \family roman
  3996. \series medium
  3997. \shape up
  3998. \size normal
  3999. \emph off
  4000. \bar no
  4001. \strikeout off
  4002. \xout off
  4003. \uuline off
  4004. \uwave off
  4005. \noun off
  4006. \color none
  4007. 38.8% ± 17.1
  4008. \end_layout
  4009. \end_inset
  4010. </cell>
  4011. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  4012. \begin_inset Text
  4013. \begin_layout Plain Layout
  4014. \family roman
  4015. \series medium
  4016. \shape up
  4017. \size normal
  4018. \emph off
  4019. \bar no
  4020. \strikeout off
  4021. \xout off
  4022. \uuline off
  4023. \uwave off
  4024. \noun off
  4025. \color none
  4026. 61.2% ± 17.1
  4027. \end_layout
  4028. \end_inset
  4029. </cell>
  4030. </row>
  4031. </lyxtabular>
  4032. \end_inset
  4033. \end_layout
  4034. \begin_layout Plain Layout
  4035. \begin_inset Caption Standard
  4036. \begin_layout Plain Layout
  4037. \series bold
  4038. \begin_inset Argument 1
  4039. status collapsed
  4040. \begin_layout Plain Layout
  4041. Fractions of reads mapping to genomic features in GB and non-GB samples.
  4042. \end_layout
  4043. \end_inset
  4044. \begin_inset CommandInset label
  4045. LatexCommand label
  4046. name "tab:Fractions-of-reads"
  4047. \end_inset
  4048. Fractions of reads mapping to genomic features in GB and non-GB samples.
  4049. \series default
  4050. All values are given as mean ± standard deviation.
  4051. \end_layout
  4052. \end_inset
  4053. \end_layout
  4054. \begin_layout Plain Layout
  4055. \end_layout
  4056. \end_inset
  4057. \end_layout
  4058. \begin_layout Standard
  4059. Another important aspect is that the standard deviations in Table
  4060. \begin_inset CommandInset ref
  4061. LatexCommand ref
  4062. reference "tab:Fractions-of-reads"
  4063. plural "false"
  4064. caps "false"
  4065. noprefix "false"
  4066. \end_inset
  4067. are uniformly smaller in the GB samples than the non-GB ones, indicating
  4068. much greater consistency of yield.
  4069. This is best seen in the percentage of non-globin reads as a fraction of
  4070. total reads aligned to annotated genes (genic reads).
  4071. For the non-GB samples, this measure ranges from 10.9% to 80.9%, while for
  4072. the GB samples it ranges from 81.9% to 99.9% (Figure
  4073. \begin_inset CommandInset ref
  4074. LatexCommand ref
  4075. reference "fig:Fraction-of-genic-reads"
  4076. plural "false"
  4077. caps "false"
  4078. noprefix "false"
  4079. \end_inset
  4080. ).
  4081. This means that for applications where it is critical that each sample
  4082. achieve a specified minimum coverage in order to provide useful information,
  4083. it would be necessary to budget up to 10 times the sequencing depth per
  4084. sample without globin blocking, even though the average yield improvement
  4085. for globin blocking is only 2-fold, because every sample has a chance of
  4086. being 90% globin and 10% useful reads.
  4087. Hence, the more consistent behavior of GB samples makes planning an experiment
  4088. easier and more efficient because it eliminates the need to over-sequence
  4089. every sample in order to guard against the worst case of a high-globin
  4090. fraction.
  4091. \end_layout
  4092. \begin_layout Subsection*
  4093. Globin blocking lowers the noise floor and allows detection of about 2000
  4094. more genes
  4095. \end_layout
  4096. \begin_layout Standard
  4097. \begin_inset Flex TODO Note (inline)
  4098. status open
  4099. \begin_layout Plain Layout
  4100. Remove redundant titles from figures
  4101. \end_layout
  4102. \end_inset
  4103. \end_layout
  4104. \begin_layout Standard
  4105. \begin_inset Float figure
  4106. wide false
  4107. sideways false
  4108. status open
  4109. \begin_layout Plain Layout
  4110. \align center
  4111. \begin_inset Graphics
  4112. filename graphics/Globin Paper/figure2 - aveLogCPM-colored.pdf
  4113. \end_inset
  4114. \end_layout
  4115. \begin_layout Plain Layout
  4116. \begin_inset Caption Standard
  4117. \begin_layout Plain Layout
  4118. \series bold
  4119. \begin_inset Argument 1
  4120. status collapsed
  4121. \begin_layout Plain Layout
  4122. Distributions of average group gene abundances when normalized separately
  4123. or together.
  4124. \end_layout
  4125. \end_inset
  4126. \begin_inset CommandInset label
  4127. LatexCommand label
  4128. name "fig:logcpm-dists"
  4129. \end_inset
  4130. Distributions of average group gene abundances when normalized separately
  4131. or together.
  4132. \series default
  4133. All reads in each sequencing library were aligned to the cyno genome, and
  4134. the number of reads uniquely aligning to each gene was counted.
  4135. Genes with zero counts in all libraries were discarded.
  4136. Libraries were normalized using the TMM method.
  4137. Libraries were split into globin-blocked (GB) and non-GB groups and the
  4138. average abundance for each gene in both groups, measured in log2 counts
  4139. per million reads counted, was computed using the aveLogCPM function.
  4140. The distribution of average gene logCPM values was plotted for both groups
  4141. using a kernel density plot to approximate a continuous distribution.
  4142. The logCPM GB distributions are marked in red, non-GB in blue.
  4143. The black vertical line denotes the chosen detection threshold of -1.
  4144. Top panel: Libraries were split into GB and non-GB groups first and normalized
  4145. separately.
  4146. Bottom panel: Libraries were all normalized together first and then split
  4147. into groups.
  4148. \end_layout
  4149. \end_inset
  4150. \end_layout
  4151. \begin_layout Plain Layout
  4152. \end_layout
  4153. \end_inset
  4154. \end_layout
  4155. \begin_layout Standard
  4156. Since globin blocking yields more usable sequencing depth, it should also
  4157. allow detection of more genes at any given threshold.
  4158. When we looked at the distribution of average normalized logCPM values
  4159. across all libraries for genes with at least one read assigned to them,
  4160. we observed the expected bimodal distribution, with a high-abundance "signal"
  4161. peak representing detected genes and a low-abundance "noise" peak representing
  4162. genes whose read count did not rise above the noise floor (Figure
  4163. \begin_inset CommandInset ref
  4164. LatexCommand ref
  4165. reference "fig:logcpm-dists"
  4166. plural "false"
  4167. caps "false"
  4168. noprefix "false"
  4169. \end_inset
  4170. ).
  4171. Consistent with the 2-fold increase in raw counts assigned to non-globin
  4172. genes, the signal peak for GB samples is shifted to the right relative
  4173. to the non-GB signal peak.
  4174. When all the samples are normalized together, this difference is normalized
  4175. out, lining up the signal peaks, and this reveals that, as expected, the
  4176. noise floor for the GB samples is about 2-fold lower.
  4177. This greater separation between signal and noise peaks in the GB samples
  4178. means that low-expression genes should be more easily detected and more
  4179. precisely quantified than in the non-GB samples.
  4180. \end_layout
  4181. \begin_layout Standard
  4182. \begin_inset Float figure
  4183. wide false
  4184. sideways false
  4185. status open
  4186. \begin_layout Plain Layout
  4187. \align center
  4188. \begin_inset Graphics
  4189. filename graphics/Globin Paper/figure3 - detection.pdf
  4190. \end_inset
  4191. \end_layout
  4192. \begin_layout Plain Layout
  4193. \begin_inset Caption Standard
  4194. \begin_layout Plain Layout
  4195. \series bold
  4196. \begin_inset Argument 1
  4197. status collapsed
  4198. \begin_layout Plain Layout
  4199. Gene detections as a function of abundance thresholds in globin-blocked
  4200. (GB) and non-GB samples.
  4201. \end_layout
  4202. \end_inset
  4203. \begin_inset CommandInset label
  4204. LatexCommand label
  4205. name "fig:Gene-detections"
  4206. \end_inset
  4207. Gene detections as a function of abundance thresholds in globin-blocked
  4208. (GB) and non-GB samples.
  4209. \series default
  4210. Average abundance (logCPM,
  4211. \begin_inset Formula $\log_{2}$
  4212. \end_inset
  4213. counts per million reads counted) was computed by separate group normalization
  4214. as described in Figure
  4215. \begin_inset CommandInset ref
  4216. LatexCommand ref
  4217. reference "fig:logcpm-dists"
  4218. plural "false"
  4219. caps "false"
  4220. noprefix "false"
  4221. \end_inset
  4222. for both the GB and non-GB groups, as well as for all samples considered
  4223. as one large group.
  4224. For each every integer threshold from -2 to 3, the number of genes detected
  4225. at or above that logCPM threshold was plotted for each group.
  4226. \end_layout
  4227. \end_inset
  4228. \end_layout
  4229. \begin_layout Plain Layout
  4230. \end_layout
  4231. \end_inset
  4232. \end_layout
  4233. \begin_layout Standard
  4234. Based on these distributions, we selected a detection threshold of -1, which
  4235. is approximately the leftmost edge of the trough between the signal and
  4236. noise peaks.
  4237. This represents the most liberal possible detection threshold that doesn't
  4238. call substantial numbers of noise genes as detected.
  4239. Among the full dataset, 13429 genes were detected at this threshold, and
  4240. 22276 were not.
  4241. When considering the GB libraries and non-GB libraries separately and re-comput
  4242. ing normalization factors independently within each group, 14535 genes were
  4243. detected in the GB libraries while only 12460 were detected in the non-GB
  4244. libraries.
  4245. Thus, GB allowed the detection of 2000 extra genes that were buried under
  4246. the noise floor without GB.
  4247. This pattern of at least 2000 additional genes detected with GB was also
  4248. consistent across a wide range of possible detection thresholds, from -2
  4249. to 3 (see Figure
  4250. \begin_inset CommandInset ref
  4251. LatexCommand ref
  4252. reference "fig:Gene-detections"
  4253. plural "false"
  4254. caps "false"
  4255. noprefix "false"
  4256. \end_inset
  4257. ).
  4258. \end_layout
  4259. \begin_layout Subsection*
  4260. Globin blocking does not add significant additional noise or decrease sample
  4261. quality
  4262. \end_layout
  4263. \begin_layout Standard
  4264. One potential worry is that the globin blocking protocol could perturb the
  4265. levels of non-globin genes.
  4266. There are two kinds of possible perturbations: systematic and random.
  4267. The former is not a major concern for detection of differential expression,
  4268. since a 2-fold change in every sample has no effect on the relative fold
  4269. change between samples.
  4270. In contrast, random perturbations would increase the noise and obscure
  4271. the signal in the dataset, reducing the capacity to detect differential
  4272. expression.
  4273. \end_layout
  4274. \begin_layout Standard
  4275. \begin_inset Float figure
  4276. wide false
  4277. sideways false
  4278. status open
  4279. \begin_layout Plain Layout
  4280. \align center
  4281. \begin_inset Graphics
  4282. filename graphics/Globin Paper/figure4 - maplot-colored.pdf
  4283. \end_inset
  4284. \end_layout
  4285. \begin_layout Plain Layout
  4286. \begin_inset Caption Standard
  4287. \begin_layout Plain Layout
  4288. \begin_inset Argument 1
  4289. status collapsed
  4290. \begin_layout Plain Layout
  4291. MA plot showing effects of globin blocking on each gene's abundance.
  4292. \end_layout
  4293. \end_inset
  4294. \begin_inset CommandInset label
  4295. LatexCommand label
  4296. name "fig:MA-plot"
  4297. \end_inset
  4298. \series bold
  4299. MA plot showing effects of globin blocking on each gene's abundance.
  4300. \series default
  4301. All libraries were normalized together as described in Figure
  4302. \begin_inset CommandInset ref
  4303. LatexCommand ref
  4304. reference "fig:logcpm-dists"
  4305. plural "false"
  4306. caps "false"
  4307. noprefix "false"
  4308. \end_inset
  4309. , and genes with an average logCPM below -1 were filtered out.
  4310. Each remaining gene was tested for differential abundance with respect
  4311. to globin blocking (GB) using edgeR’s quasi-likelihod F-test, fitting a
  4312. negative binomial generalized linear model to table of read counts in each
  4313. library.
  4314. For each gene, edgeR reported average abundance (logCPM),
  4315. \begin_inset Formula $\log_{2}$
  4316. \end_inset
  4317. fold change (logFC), p-value, and Benjamini-Hochberg adjusted false discovery
  4318. rate (FDR).
  4319. Each gene's logFC was plotted against its logCPM, colored by FDR.
  4320. Red points are significant at ≤10% FDR, and blue are not significant at
  4321. that threshold.
  4322. The alpha and beta globin genes targeted for blocking are marked with large
  4323. triangles, while all other genes are represented as small points.
  4324. \end_layout
  4325. \end_inset
  4326. \end_layout
  4327. \begin_layout Plain Layout
  4328. \end_layout
  4329. \end_inset
  4330. \end_layout
  4331. \begin_layout Standard
  4332. \begin_inset Flex TODO Note (inline)
  4333. status open
  4334. \begin_layout Plain Layout
  4335. Standardize on
  4336. \begin_inset Quotes eld
  4337. \end_inset
  4338. log2
  4339. \begin_inset Quotes erd
  4340. \end_inset
  4341. notation
  4342. \end_layout
  4343. \end_inset
  4344. \end_layout
  4345. \begin_layout Standard
  4346. The data do indeed show small systematic perturbations in gene levels (Figure
  4347. \begin_inset CommandInset ref
  4348. LatexCommand ref
  4349. reference "fig:MA-plot"
  4350. plural "false"
  4351. caps "false"
  4352. noprefix "false"
  4353. \end_inset
  4354. ).
  4355. Other than the 3 designated alpha and beta globin genes, two other genes
  4356. stand out as having especially large negative log fold changes: HBD and
  4357. LOC1021365.
  4358. HBD, delta globin, is most likely targeted by the blocking oligos due to
  4359. high sequence homology with the other globin genes.
  4360. LOC1021365 is the aforementioned ncRNA that is reverse-complementary to
  4361. one of the alpha-like genes and that would be expected to be removed during
  4362. the globin blocking step.
  4363. All other genes appear in a cluster centered vertically at 0, and the vast
  4364. majority of genes in this cluster show an absolute log2(FC) of 0.5 or less.
  4365. Nevertheless, many of these small perturbations are still statistically
  4366. significant, indicating that the globin blocking oligos likely cause very
  4367. small but non-zero systematic perturbations in measured gene expression
  4368. levels.
  4369. \end_layout
  4370. \begin_layout Standard
  4371. \begin_inset Float figure
  4372. wide false
  4373. sideways false
  4374. status open
  4375. \begin_layout Plain Layout
  4376. \align center
  4377. \begin_inset Graphics
  4378. filename graphics/Globin Paper/figure5 - corrplot.pdf
  4379. \end_inset
  4380. \end_layout
  4381. \begin_layout Plain Layout
  4382. \begin_inset Caption Standard
  4383. \begin_layout Plain Layout
  4384. \series bold
  4385. \begin_inset Argument 1
  4386. status collapsed
  4387. \begin_layout Plain Layout
  4388. Comparison of inter-sample gene abundance correlations with and without
  4389. globin blocking.
  4390. \end_layout
  4391. \end_inset
  4392. \begin_inset CommandInset label
  4393. LatexCommand label
  4394. name "fig:gene-abundance-correlations"
  4395. \end_inset
  4396. Comparison of inter-sample gene abundance correlations with and without
  4397. globin blocking (GB).
  4398. \series default
  4399. All libraries were normalized together as described in Figure 2, and genes
  4400. with an average abundance (logCPM, log2 counts per million reads counted)
  4401. less than -1 were filtered out.
  4402. Each gene’s logCPM was computed in each library using the edgeR cpm function.
  4403. For each pair of biological samples, the Pearson correlation between those
  4404. samples' GB libraries was plotted against the correlation between the same
  4405. samples’ non-GB libraries.
  4406. Each point represents an unique pair of samples.
  4407. The solid gray line shows a quantile-quantile plot of distribution of GB
  4408. correlations vs.
  4409. that of non-GB correlations.
  4410. The thin dashed line is the identity line, provided for reference.
  4411. \end_layout
  4412. \end_inset
  4413. \end_layout
  4414. \begin_layout Plain Layout
  4415. \end_layout
  4416. \end_inset
  4417. \end_layout
  4418. \begin_layout Standard
  4419. To evaluate the possibility of globin blocking causing random perturbations
  4420. and reducing sample quality, we computed the Pearson correlation between
  4421. logCPM values for every pair of samples with and without GB and plotted
  4422. them against each other (Figure
  4423. \begin_inset CommandInset ref
  4424. LatexCommand ref
  4425. reference "fig:gene-abundance-correlations"
  4426. plural "false"
  4427. caps "false"
  4428. noprefix "false"
  4429. \end_inset
  4430. ).
  4431. The plot indicated that the GB libraries have higher sample-to-sample correlati
  4432. ons than the non-GB libraries.
  4433. Parametric and nonparametric tests for differences between the correlations
  4434. with and without GB both confirmed that this difference was highly significant
  4435. (2-sided paired t-test: t = 37.2, df = 665, P ≪ 2.2e-16; 2-sided Wilcoxon
  4436. sign-rank test: V = 2195, P ≪ 2.2e-16).
  4437. Performing the same tests on the Spearman correlations gave the same conclusion
  4438. (t-test: t = 26.8, df = 665, P ≪ 2.2e-16; sign-rank test: V = 8781, P ≪ 2.2e-16).
  4439. The edgeR package was used to compute the overall biological coefficient
  4440. of variation (BCV) for GB and non-GB libraries, and found that globin blocking
  4441. resulted in a negligible increase in the BCV (0.417 with GB vs.
  4442. 0.400 without).
  4443. The near equality of the BCVs for both sets indicates that the higher correlati
  4444. ons in the GB libraries are most likely a result of the increased yield
  4445. of useful reads, which reduces the contribution of Poisson counting uncertainty
  4446. to the overall variance of the logCPM values
  4447. \begin_inset CommandInset citation
  4448. LatexCommand cite
  4449. key "McCarthy2012"
  4450. literal "false"
  4451. \end_inset
  4452. .
  4453. This improves the precision of expression measurements and more than offsets
  4454. the negligible increase in BCV.
  4455. \end_layout
  4456. \begin_layout Subsection*
  4457. More differentially expressed genes are detected with globin blocking
  4458. \end_layout
  4459. \begin_layout Standard
  4460. \begin_inset Float table
  4461. wide false
  4462. sideways false
  4463. status open
  4464. \begin_layout Plain Layout
  4465. \align center
  4466. \begin_inset Tabular
  4467. <lyxtabular version="3" rows="5" columns="5">
  4468. <features tabularvalignment="middle">
  4469. <column alignment="center" valignment="top">
  4470. <column alignment="center" valignment="top">
  4471. <column alignment="center" valignment="top">
  4472. <column alignment="center" valignment="top">
  4473. <column alignment="center" valignment="top">
  4474. <row>
  4475. <cell alignment="center" valignment="top" usebox="none">
  4476. \begin_inset Text
  4477. \begin_layout Plain Layout
  4478. \end_layout
  4479. \end_inset
  4480. </cell>
  4481. <cell alignment="center" valignment="top" usebox="none">
  4482. \begin_inset Text
  4483. \begin_layout Plain Layout
  4484. \end_layout
  4485. \end_inset
  4486. </cell>
  4487. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  4488. \begin_inset Text
  4489. \begin_layout Plain Layout
  4490. \series bold
  4491. No Globin Blocking
  4492. \end_layout
  4493. \end_inset
  4494. </cell>
  4495. <cell multicolumn="2" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  4496. \begin_inset Text
  4497. \begin_layout Plain Layout
  4498. \end_layout
  4499. \end_inset
  4500. </cell>
  4501. <cell multicolumn="2" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  4502. \begin_inset Text
  4503. \begin_layout Plain Layout
  4504. \end_layout
  4505. \end_inset
  4506. </cell>
  4507. </row>
  4508. <row>
  4509. <cell alignment="center" valignment="top" usebox="none">
  4510. \begin_inset Text
  4511. \begin_layout Plain Layout
  4512. \end_layout
  4513. \end_inset
  4514. </cell>
  4515. <cell alignment="center" valignment="top" usebox="none">
  4516. \begin_inset Text
  4517. \begin_layout Plain Layout
  4518. \end_layout
  4519. \end_inset
  4520. </cell>
  4521. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4522. \begin_inset Text
  4523. \begin_layout Plain Layout
  4524. \series bold
  4525. Up
  4526. \end_layout
  4527. \end_inset
  4528. </cell>
  4529. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4530. \begin_inset Text
  4531. \begin_layout Plain Layout
  4532. \series bold
  4533. NS
  4534. \end_layout
  4535. \end_inset
  4536. </cell>
  4537. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  4538. \begin_inset Text
  4539. \begin_layout Plain Layout
  4540. \series bold
  4541. Down
  4542. \end_layout
  4543. \end_inset
  4544. </cell>
  4545. </row>
  4546. <row>
  4547. <cell multirow="3" alignment="center" valignment="middle" topline="true" bottomline="true" leftline="true" usebox="none">
  4548. \begin_inset Text
  4549. \begin_layout Plain Layout
  4550. \series bold
  4551. Globin-Blocking
  4552. \end_layout
  4553. \end_inset
  4554. </cell>
  4555. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4556. \begin_inset Text
  4557. \begin_layout Plain Layout
  4558. \series bold
  4559. Up
  4560. \end_layout
  4561. \end_inset
  4562. </cell>
  4563. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4564. \begin_inset Text
  4565. \begin_layout Plain Layout
  4566. \family roman
  4567. \series medium
  4568. \shape up
  4569. \size normal
  4570. \emph off
  4571. \bar no
  4572. \strikeout off
  4573. \xout off
  4574. \uuline off
  4575. \uwave off
  4576. \noun off
  4577. \color none
  4578. 231
  4579. \end_layout
  4580. \end_inset
  4581. </cell>
  4582. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4583. \begin_inset Text
  4584. \begin_layout Plain Layout
  4585. \family roman
  4586. \series medium
  4587. \shape up
  4588. \size normal
  4589. \emph off
  4590. \bar no
  4591. \strikeout off
  4592. \xout off
  4593. \uuline off
  4594. \uwave off
  4595. \noun off
  4596. \color none
  4597. 515
  4598. \end_layout
  4599. \end_inset
  4600. </cell>
  4601. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  4602. \begin_inset Text
  4603. \begin_layout Plain Layout
  4604. \family roman
  4605. \series medium
  4606. \shape up
  4607. \size normal
  4608. \emph off
  4609. \bar no
  4610. \strikeout off
  4611. \xout off
  4612. \uuline off
  4613. \uwave off
  4614. \noun off
  4615. \color none
  4616. 2
  4617. \end_layout
  4618. \end_inset
  4619. </cell>
  4620. </row>
  4621. <row>
  4622. <cell multirow="4" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4623. \begin_inset Text
  4624. \begin_layout Plain Layout
  4625. \end_layout
  4626. \end_inset
  4627. </cell>
  4628. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4629. \begin_inset Text
  4630. \begin_layout Plain Layout
  4631. \series bold
  4632. NS
  4633. \end_layout
  4634. \end_inset
  4635. </cell>
  4636. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4637. \begin_inset Text
  4638. \begin_layout Plain Layout
  4639. \family roman
  4640. \series medium
  4641. \shape up
  4642. \size normal
  4643. \emph off
  4644. \bar no
  4645. \strikeout off
  4646. \xout off
  4647. \uuline off
  4648. \uwave off
  4649. \noun off
  4650. \color none
  4651. 160
  4652. \end_layout
  4653. \end_inset
  4654. </cell>
  4655. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4656. \begin_inset Text
  4657. \begin_layout Plain Layout
  4658. \family roman
  4659. \series medium
  4660. \shape up
  4661. \size normal
  4662. \emph off
  4663. \bar no
  4664. \strikeout off
  4665. \xout off
  4666. \uuline off
  4667. \uwave off
  4668. \noun off
  4669. \color none
  4670. 11235
  4671. \end_layout
  4672. \end_inset
  4673. </cell>
  4674. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  4675. \begin_inset Text
  4676. \begin_layout Plain Layout
  4677. \family roman
  4678. \series medium
  4679. \shape up
  4680. \size normal
  4681. \emph off
  4682. \bar no
  4683. \strikeout off
  4684. \xout off
  4685. \uuline off
  4686. \uwave off
  4687. \noun off
  4688. \color none
  4689. 136
  4690. \end_layout
  4691. \end_inset
  4692. </cell>
  4693. </row>
  4694. <row>
  4695. <cell multirow="4" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  4696. \begin_inset Text
  4697. \begin_layout Plain Layout
  4698. \end_layout
  4699. \end_inset
  4700. </cell>
  4701. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  4702. \begin_inset Text
  4703. \begin_layout Plain Layout
  4704. \series bold
  4705. Down
  4706. \end_layout
  4707. \end_inset
  4708. </cell>
  4709. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  4710. \begin_inset Text
  4711. \begin_layout Plain Layout
  4712. \family roman
  4713. \series medium
  4714. \shape up
  4715. \size normal
  4716. \emph off
  4717. \bar no
  4718. \strikeout off
  4719. \xout off
  4720. \uuline off
  4721. \uwave off
  4722. \noun off
  4723. \color none
  4724. 0
  4725. \end_layout
  4726. \end_inset
  4727. </cell>
  4728. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  4729. \begin_inset Text
  4730. \begin_layout Plain Layout
  4731. \family roman
  4732. \series medium
  4733. \shape up
  4734. \size normal
  4735. \emph off
  4736. \bar no
  4737. \strikeout off
  4738. \xout off
  4739. \uuline off
  4740. \uwave off
  4741. \noun off
  4742. \color none
  4743. 548
  4744. \end_layout
  4745. \end_inset
  4746. </cell>
  4747. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  4748. \begin_inset Text
  4749. \begin_layout Plain Layout
  4750. \family roman
  4751. \series medium
  4752. \shape up
  4753. \size normal
  4754. \emph off
  4755. \bar no
  4756. \strikeout off
  4757. \xout off
  4758. \uuline off
  4759. \uwave off
  4760. \noun off
  4761. \color none
  4762. 127
  4763. \end_layout
  4764. \end_inset
  4765. </cell>
  4766. </row>
  4767. </lyxtabular>
  4768. \end_inset
  4769. \end_layout
  4770. \begin_layout Plain Layout
  4771. \begin_inset Caption Standard
  4772. \begin_layout Plain Layout
  4773. \series bold
  4774. \begin_inset Argument 1
  4775. status open
  4776. \begin_layout Plain Layout
  4777. Comparison of significantly differentially expressed genes with and without
  4778. globin blocking.
  4779. \end_layout
  4780. \end_inset
  4781. \begin_inset CommandInset label
  4782. LatexCommand label
  4783. name "tab:Comparison-of-significant"
  4784. \end_inset
  4785. Comparison of significantly differentially expressed genes with and without
  4786. globin blocking.
  4787. \series default
  4788. Up, Down: Genes significantly up/down-regulated in post-transplant samples
  4789. relative to pre-transplant samples, with a false discovery rate of 10%
  4790. or less.
  4791. NS: Non-significant genes (false discovery rate greater than 10%).
  4792. \end_layout
  4793. \end_inset
  4794. \end_layout
  4795. \begin_layout Plain Layout
  4796. \end_layout
  4797. \end_inset
  4798. \end_layout
  4799. \begin_layout Standard
  4800. To compare performance on differential gene expression tests, we took subsets
  4801. of both the GB and non-GB libraries with exactly one pre-transplant and
  4802. one post-transplant sample for each animal that had paired samples available
  4803. for analysis (N=7 animals, N=14 samples in each subset).
  4804. The same test for pre- vs.
  4805. post-transplant differential gene expression was performed on the same
  4806. 7 pairs of samples from GB libraries and non-GB libraries, in each case
  4807. using an FDR of 10% as the threshold of significance.
  4808. Out of 12954 genes that passed the detection threshold in both subsets,
  4809. 358 were called significantly differentially expressed in the same direction
  4810. in both sets; 1063 were differentially expressed in the GB set only; 296
  4811. were differentially expressed in the non-GB set only; 2 genes were called
  4812. significantly up in the GB set but significantly down in the non-GB set;
  4813. and the remaining 11235 were not called differentially expressed in either
  4814. set.
  4815. These data are summarized in Table
  4816. \begin_inset CommandInset ref
  4817. LatexCommand ref
  4818. reference "tab:Comparison-of-significant"
  4819. plural "false"
  4820. caps "false"
  4821. noprefix "false"
  4822. \end_inset
  4823. .
  4824. The differences in BCV calculated by EdgeR for these subsets of samples
  4825. were negligible (BCV = 0.302 for GB and 0.297 for non-GB).
  4826. \end_layout
  4827. \begin_layout Standard
  4828. The key point is that the GB data results in substantially more differentially
  4829. expressed calls than the non-GB data.
  4830. Since there is no gold standard for this dataset, it is impossible to be
  4831. certain whether this is due to under-calling of differential expression
  4832. in the non-GB samples or over-calling in the GB samples.
  4833. However, given that both datasets are derived from the same biological
  4834. samples and have nearly equal BCVs, it is more likely that the larger number
  4835. of DE calls in the GB samples are genuine detections that were enabled
  4836. by the higher sequencing depth and measurement precision of the GB samples.
  4837. Note that the same set of genes was considered in both subsets, so the
  4838. larger number of differentially expressed gene calls in the GB data set
  4839. reflects a greater sensitivity to detect significant differential gene
  4840. expression and not simply the larger total number of detected genes in
  4841. GB samples described earlier.
  4842. \end_layout
  4843. \begin_layout Section
  4844. Discussion
  4845. \end_layout
  4846. \begin_layout Standard
  4847. The original experience with whole blood gene expression profiling on DNA
  4848. microarrays demonstrated that the high concentration of globin transcripts
  4849. reduced the sensitivity to detect genes with relatively low expression
  4850. levels, in effect, significantly reducing the sensitivity.
  4851. To address this limitation, commercial protocols for globin reduction were
  4852. developed based on strategies to block globin transcript amplification
  4853. during labeling or physically removing globin transcripts by affinity bead
  4854. methods
  4855. \begin_inset CommandInset citation
  4856. LatexCommand cite
  4857. key "Winn2010"
  4858. literal "false"
  4859. \end_inset
  4860. .
  4861. More recently, using the latest generation of labeling protocols and arrays,
  4862. it was determined that globin reduction was no longer necessary to obtain
  4863. sufficient sensitivity to detect differential transcript expression
  4864. \begin_inset CommandInset citation
  4865. LatexCommand cite
  4866. key "NuGEN2010"
  4867. literal "false"
  4868. \end_inset
  4869. .
  4870. However, we are not aware of any publications using these currently available
  4871. protocols the with latest generation of microarrays that actually compare
  4872. the detection sensitivity with and without globin reduction.
  4873. However, in practice this has now been adopted generally primarily driven
  4874. by concerns for cost control.
  4875. The main objective of our work was to directly test the impact of globin
  4876. gene transcripts and a new globin blocking protocol for application to
  4877. the newest generation of differential gene expression profiling determined
  4878. using next generation sequencing.
  4879. \end_layout
  4880. \begin_layout Standard
  4881. The challenge of doing global gene expression profiling in cynomolgus monkeys
  4882. is that the current available arrays were never designed to comprehensively
  4883. cover this genome and have not been updated since the first assemblies
  4884. of the cynomolgus genome were published.
  4885. Therefore, we determined that the best strategy for peripheral blood profiling
  4886. was to do deep RNA-seq and inform the workflow using the latest available
  4887. genome assembly and annotation
  4888. \begin_inset CommandInset citation
  4889. LatexCommand cite
  4890. key "Wilson2013"
  4891. literal "false"
  4892. \end_inset
  4893. .
  4894. However, it was not immediately clear whether globin reduction was necessary
  4895. for RNA-seq or how much improvement in efficiency or sensitivity to detect
  4896. differential gene expression would be achieved for the added cost and work.
  4897. \end_layout
  4898. \begin_layout Standard
  4899. We only found one report that demonstrated that globin reduction significantly
  4900. improved the effective read yields for sequencing of human peripheral blood
  4901. cell RNA using a DeepSAGE protocol
  4902. \begin_inset CommandInset citation
  4903. LatexCommand cite
  4904. key "Mastrokolias2012"
  4905. literal "false"
  4906. \end_inset
  4907. .
  4908. The approach to DeepSAGE involves two different restriction enzymes that
  4909. purify and then tag small fragments of transcripts at specific locations
  4910. and thus, significantly reduces the complexity of the transcriptome.
  4911. Therefore, we could not determine how DeepSAGE results would translate
  4912. to the common strategy in the field for assaying the entire transcript
  4913. population by whole-transcriptome 3’-end RNA-seq.
  4914. Furthermore, if globin reduction is necessary, we also needed a globin
  4915. reduction method specific to cynomolgus globin sequences that would work
  4916. an organism for which no kit is available off the shelf.
  4917. \end_layout
  4918. \begin_layout Standard
  4919. As mentioned above, the addition of globin blocking oligos has a very small
  4920. impact on measured expression levels of gene expression.
  4921. However, this is a non-issue for the purposes of differential expression
  4922. testing, since a systematic change in a gene in all samples does not affect
  4923. relative expression levels between samples.
  4924. However, we must acknowledge that simple comparisons of gene expression
  4925. data obtained by GB and non-GB protocols are not possible without additional
  4926. normalization.
  4927. \end_layout
  4928. \begin_layout Standard
  4929. More importantly, globin blocking not only nearly doubles the yield of usable
  4930. reads, it also increases inter-sample correlation and sensitivity to detect
  4931. differential gene expression relative to the same set of samples profiled
  4932. without blocking.
  4933. In addition, globin blocking does not add a significant amount of random
  4934. noise to the data.
  4935. Globin blocking thus represents a cost-effective way to squeeze more data
  4936. and statistical power out of the same blood samples and the same amount
  4937. of sequencing.
  4938. In conclusion, globin reduction greatly increases the yield of useful RNA-seq
  4939. reads mapping to the rest of the genome, with minimal perturbations in
  4940. the relative levels of non-globin genes.
  4941. Based on these results, globin transcript reduction using sequence-specific,
  4942. complementary blocking oligonucleotides is recommended for all deep RNA-seq
  4943. of cynomolgus and other nonhuman primate blood samples.
  4944. \end_layout
  4945. \begin_layout Chapter
  4946. Future Directions
  4947. \end_layout
  4948. \begin_layout Standard
  4949. \begin_inset Flex TODO Note (inline)
  4950. status open
  4951. \begin_layout Plain Layout
  4952. Consider per-chapter future directions.
  4953. Check instructions.
  4954. \end_layout
  4955. \end_inset
  4956. \end_layout
  4957. \begin_layout Itemize
  4958. Study other epigenetic marks in more contexts
  4959. \end_layout
  4960. \begin_deeper
  4961. \begin_layout Itemize
  4962. DNA methylation, histone marks, chromatin accessibility & conformation in
  4963. CD4 T-cells
  4964. \end_layout
  4965. \begin_layout Itemize
  4966. Also look at other types lymphocytes: CD8 T-cells, B-cells, NK cells
  4967. \end_layout
  4968. \end_deeper
  4969. \begin_layout Itemize
  4970. Use CV or bootstrap to better evaluate classifiers
  4971. \end_layout
  4972. \begin_layout Standard
  4973. \begin_inset ERT
  4974. status open
  4975. \begin_layout Plain Layout
  4976. % Use "References" instead of "Bibliography"
  4977. \end_layout
  4978. \begin_layout Plain Layout
  4979. \backslash
  4980. renewcommand{
  4981. \backslash
  4982. bibname}{References}
  4983. \end_layout
  4984. \end_inset
  4985. \end_layout
  4986. \begin_layout Standard
  4987. \begin_inset Flex TODO Note (inline)
  4988. status open
  4989. \begin_layout Plain Layout
  4990. Check bib entry formatting & sort order
  4991. \end_layout
  4992. \end_inset
  4993. \end_layout
  4994. \begin_layout Standard
  4995. \begin_inset CommandInset bibtex
  4996. LatexCommand bibtex
  4997. btprint "btPrintCited"
  4998. bibfiles "refs"
  4999. options "bibtotoc,unsrt"
  5000. \end_inset
  5001. \end_layout
  5002. \end_body
  5003. \end_document