thesis.lyx 339 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280142811428214283142841428514286142871428814289142901429114292142931429414295142961429714298142991430014301143021430314304143051430614307143081430914310143111431214313143141431514316143171431814319143201432114322143231432414325143261432714328143291433014331143321433314334143351433614337143381433914340143411434214343143441434514346143471434814349143501435114352143531435414355143561435714358143591436014361143621436314364143651436614367143681436914370143711437214373143741437514376143771437814379143801438114382143831438414385143861438714388143891439014391143921439314394143951439614397143981439914400144011440214403144041440514406144071440814409144101441114412144131441414415144161441714418144191442014421144221442314424144251442614427144281442914430144311443214433144341443514436144371443814439144401444114442144431444414445144461444714448144491445014451144521445314454144551445614457144581445914460144611446214463144641446514466144671446814469144701447114472144731447414475144761447714478144791448014481144821448314484144851448614487144881448914490144911449214493144941449514496144971449814499145001450114502145031450414505145061450714508145091451014511145121451314514145151451614517145181451914520145211452214523145241452514526145271452814529145301453114532145331453414535145361453714538145391454014541145421454314544145451454614547145481454914550145511455214553145541455514556145571455814559145601456114562145631456414565145661456714568145691457014571145721457314574145751457614577145781457914580145811458214583145841458514586145871458814589145901459114592145931459414595145961459714598145991460014601146021460314604146051460614607146081460914610146111461214613146141461514616146171461814619146201462114622146231462414625146261462714628146291463014631146321463314634146351463614637146381463914640146411464214643146441464514646146471464814649146501465114652146531465414655146561465714658146591466014661146621466314664146651466614667146681466914670146711467214673146741467514676146771467814679146801468114682146831468414685146861468714688146891469014691146921469314694146951469614697146981469914700147011470214703147041470514706147071470814709147101471114712147131471414715147161471714718147191472014721147221472314724147251472614727147281472914730147311473214733147341473514736147371473814739147401474114742147431474414745147461474714748147491475014751147521475314754147551475614757147581475914760147611476214763147641476514766147671476814769147701477114772147731477414775147761477714778147791478014781147821478314784147851478614787147881478914790147911479214793147941479514796147971479814799148001480114802148031480414805148061480714808148091481014811148121481314814148151481614817148181481914820148211482214823148241482514826148271482814829148301483114832148331483414835148361483714838148391484014841148421484314844148451484614847148481484914850148511485214853148541485514856148571485814859148601486114862148631486414865148661486714868148691487014871148721487314874148751487614877148781487914880148811488214883148841488514886148871488814889148901489114892148931489414895148961489714898148991490014901149021490314904149051490614907149081490914910149111491214913149141491514916149171491814919149201492114922149231492414925149261492714928149291493014931149321493314934149351493614937149381493914940149411494214943149441494514946149471494814949149501495114952149531495414955149561495714958149591496014961149621496314964149651496614967149681496914970149711497214973149741497514976149771497814979149801498114982149831498414985149861498714988149891499014991149921499314994149951499614997149981499915000150011500215003150041500515006150071500815009150101501115012150131501415015150161501715018150191502015021150221502315024150251502615027150281502915030150311503215033150341503515036150371503815039150401504115042150431504415045150461504715048150491505015051150521505315054150551505615057150581505915060150611506215063150641506515066150671506815069150701507115072150731507415075150761507715078150791508015081150821508315084150851508615087150881508915090150911509215093150941509515096150971509815099151001510115102151031510415105151061510715108151091511015111151121511315114151151511615117151181511915120151211512215123151241512515126151271512815129151301513115132151331513415135151361513715138151391514015141151421514315144151451514615147151481514915150151511515215153151541515515156151571515815159151601516115162151631516415165151661516715168151691517015171151721517315174151751517615177151781517915180151811518215183151841518515186151871518815189151901519115192151931519415195151961519715198151991520015201152021520315204152051520615207152081520915210152111521215213152141521515216152171521815219152201522115222152231522415225152261522715228152291523015231
  1. #LyX 2.3 created this file. For more info see http://www.lyx.org/
  2. \lyxformat 544
  3. \begin_document
  4. \begin_header
  5. \save_transient_properties true
  6. \origin unavailable
  7. \textclass extbook
  8. \begin_preamble
  9. % List all used files in log output
  10. \listfiles
  11. % Add a DRAFT watermark
  12. \usepackage{draftwatermark}
  13. \usepackage{accsupp}
  14. \SetWatermarkLightness{0.97}
  15. \SetWatermarkScale{1}
  16. % Make watermark not copyable (in Adobe Reader)
  17. \SetWatermarkText{\BeginAccSupp{method=escape,ActualText={}}DRAFT\EndAccSupp{}}
  18. % Set up required header format
  19. \usepackage{fancyhdr}
  20. \pagestyle{fancy}
  21. \renewcommand{\headrulewidth}{0pt}
  22. \rhead{}
  23. \lhead{}
  24. \chead{}
  25. \rfoot{}
  26. \lfoot{}
  27. % Make page number not copyable (in Adobe Reader)
  28. \cfoot{\BeginAccSupp{method=escape,ActualText={}}\thepage\EndAccSupp{}} % Page number bottom center
  29. % Allow FloatBarrier command
  30. \usepackage{placeins}
  31. % Allow landscape pages
  32. \usepackage{pdflscape}
  33. % Allow doing things after the end of the current page
  34. % (to avoid landscape figures breaking up text)
  35. \usepackage{afterpage}
  36. % This one breaks subfigs so it's disabled
  37. % https://tex.stackexchange.com/questions/65680/automatically-bold-first-sentence-of-a-floats-caption
  38. \end_preamble
  39. \use_default_options true
  40. \begin_modules
  41. todonotes
  42. logicalmkup
  43. \end_modules
  44. \maintain_unincluded_children false
  45. \language english
  46. \language_package default
  47. \inputencoding utf8
  48. \fontencoding default
  49. \font_roman "default" "default"
  50. \font_sans "default" "default"
  51. \font_typewriter "default" "default"
  52. \font_math "auto" "auto"
  53. \font_default_family default
  54. \use_non_tex_fonts false
  55. \font_sc false
  56. \font_osf false
  57. \font_sf_scale 100 100
  58. \font_tt_scale 100 100
  59. \use_microtype false
  60. \use_dash_ligatures true
  61. \graphics default
  62. \default_output_format pdf4
  63. \output_sync 0
  64. \bibtex_command biber
  65. \index_command default
  66. \paperfontsize 12
  67. \spacing double
  68. \use_hyperref true
  69. \pdf_bookmarks true
  70. \pdf_bookmarksnumbered false
  71. \pdf_bookmarksopen false
  72. \pdf_bookmarksopenlevel 1
  73. \pdf_breaklinks false
  74. \pdf_pdfborder false
  75. \pdf_colorlinks false
  76. \pdf_backref false
  77. \pdf_pdfusetitle true
  78. \papersize letterpaper
  79. \use_geometry true
  80. \use_package amsmath 1
  81. \use_package amssymb 1
  82. \use_package cancel 1
  83. \use_package esint 1
  84. \use_package mathdots 1
  85. \use_package mathtools 1
  86. \use_package mhchem 1
  87. \use_package stackrel 1
  88. \use_package stmaryrd 1
  89. \use_package undertilde 1
  90. \cite_engine biblatex
  91. \cite_engine_type authoryear
  92. \biblio_style plain
  93. \biblatex_bibstyle authoryear
  94. \biblatex_citestyle numeric
  95. \use_bibtopic false
  96. \use_indices false
  97. \paperorientation portrait
  98. \suppress_date false
  99. \justification true
  100. \use_refstyle 1
  101. \use_minted 0
  102. \index Index
  103. \shortcut idx
  104. \color #008000
  105. \end_index
  106. \leftmargin 1.5in
  107. \topmargin 1in
  108. \rightmargin 1in
  109. \bottommargin 1in
  110. \secnumdepth 3
  111. \tocdepth 3
  112. \paragraph_separation indent
  113. \paragraph_indentation default
  114. \is_math_indent 0
  115. \math_numbering_side default
  116. \quotes_style english
  117. \dynamic_quotes 0
  118. \papercolumns 1
  119. \papersides 1
  120. \paperpagestyle default
  121. \tracking_changes false
  122. \output_changes false
  123. \html_math_output 0
  124. \html_css_as_file 0
  125. \html_be_strict false
  126. \end_header
  127. \begin_body
  128. \begin_layout Title
  129. Bioinformatic analysis of complex, high-throughput genomic and epigenomic
  130. data in the context of immunology and transplant rejection
  131. \end_layout
  132. \begin_layout Author
  133. A thesis presented
  134. \begin_inset Newline newline
  135. \end_inset
  136. by
  137. \begin_inset Newline newline
  138. \end_inset
  139. Ryan C.
  140. Thompson
  141. \begin_inset Newline newline
  142. \end_inset
  143. to
  144. \begin_inset Newline newline
  145. \end_inset
  146. The Scripps Research Institute Graduate Program
  147. \begin_inset Newline newline
  148. \end_inset
  149. in partial fulfillment of the requirements for the degree of
  150. \begin_inset Newline newline
  151. \end_inset
  152. Doctor of Philosophy in the subject of Biology
  153. \begin_inset Newline newline
  154. \end_inset
  155. for
  156. \begin_inset Newline newline
  157. \end_inset
  158. The Scripps Research Institute
  159. \begin_inset Newline newline
  160. \end_inset
  161. La Jolla, California
  162. \end_layout
  163. \begin_layout Date
  164. October 2019
  165. \end_layout
  166. \begin_layout Standard
  167. [Copyright notice]
  168. \end_layout
  169. \begin_layout Standard
  170. [Thesis acceptance form]
  171. \end_layout
  172. \begin_layout Standard
  173. [Dedication]
  174. \end_layout
  175. \begin_layout Standard
  176. [Acknowledgements]
  177. \end_layout
  178. \begin_layout Standard
  179. \begin_inset CommandInset toc
  180. LatexCommand tableofcontents
  181. \end_inset
  182. \end_layout
  183. \begin_layout Standard
  184. \begin_inset FloatList table
  185. \end_inset
  186. \end_layout
  187. \begin_layout Standard
  188. \begin_inset FloatList figure
  189. \end_inset
  190. \end_layout
  191. \begin_layout Standard
  192. [List of Abbreviations]
  193. \end_layout
  194. \begin_layout List of TODOs
  195. \end_layout
  196. \begin_layout Standard
  197. \begin_inset Flex TODO Note (inline)
  198. status open
  199. \begin_layout Plain Layout
  200. Check all figures to make sure they fit on the page with their legends.
  201. \end_layout
  202. \end_inset
  203. \end_layout
  204. \begin_layout Standard
  205. \begin_inset Flex TODO Note (inline)
  206. status open
  207. \begin_layout Plain Layout
  208. Search and replace: naive -> naïve
  209. \end_layout
  210. \end_inset
  211. \end_layout
  212. \begin_layout Standard
  213. \begin_inset Flex TODO Note (inline)
  214. status open
  215. \begin_layout Plain Layout
  216. Look into auto-generated nomenclature list:
  217. \begin_inset CommandInset href
  218. LatexCommand href
  219. target "https://wiki.lyx.org/Tips/Nomenclature"
  220. \end_inset
  221. .
  222. Otherwise, do a manual pass for all abbreviations at the end.
  223. Do nomenclature/abbreviations independently for each chapter.
  224. \end_layout
  225. \end_inset
  226. \end_layout
  227. \begin_layout Standard
  228. \begin_inset Flex TODO Note (inline)
  229. status open
  230. \begin_layout Plain Layout
  231. Make all descriptions consistent in terms of
  232. \begin_inset Quotes eld
  233. \end_inset
  234. we did X
  235. \begin_inset Quotes erd
  236. \end_inset
  237. vs
  238. \begin_inset Quotes eld
  239. \end_inset
  240. I did X
  241. \begin_inset Quotes erd
  242. \end_inset
  243. vs
  244. \begin_inset Quotes eld
  245. \end_inset
  246. X was done
  247. \begin_inset Quotes erd
  248. \end_inset
  249. .
  250. \end_layout
  251. \end_inset
  252. \end_layout
  253. \begin_layout Chapter*
  254. Abstract
  255. \end_layout
  256. \begin_layout Standard
  257. \begin_inset Note Note
  258. status open
  259. \begin_layout Plain Layout
  260. It is included as an integral part of the thesis and should immediately
  261. precede the introduction.
  262. \end_layout
  263. \begin_layout Plain Layout
  264. Preparing your Abstract.
  265. Your abstract (a succinct description of your work) is limited to 350 words.
  266. UMI will shorten it if they must; please do not exceed the limit.
  267. \end_layout
  268. \begin_layout Itemize
  269. Include pertinent place names, names of persons (in full), and other proper
  270. nouns.
  271. These are useful in automated retrieval.
  272. \end_layout
  273. \begin_layout Itemize
  274. Display symbols, as well as foreign words and phrases, clearly and accurately.
  275. Include transliterations for characters other than Roman and Greek letters
  276. and Arabic numerals.
  277. Include accents and diacritical marks.
  278. \end_layout
  279. \begin_layout Itemize
  280. Do not include graphs, charts, tables, or illustrations in your abstract.
  281. \end_layout
  282. \end_inset
  283. \end_layout
  284. \begin_layout Standard
  285. \begin_inset Flex TODO Note (inline)
  286. status open
  287. \begin_layout Plain Layout
  288. Obviously the abstract gets written last.
  289. \end_layout
  290. \end_inset
  291. \end_layout
  292. \begin_layout Chapter*
  293. Notes to draft readers
  294. \end_layout
  295. \begin_layout Standard
  296. Thank you so much for agreeing to read my thesis and give me feedback on
  297. it.
  298. What you are currently reading is a rough draft, in need of many revisions.
  299. You can always find the latest version at
  300. \begin_inset CommandInset href
  301. LatexCommand href
  302. target "https://mneme.dedyn.io/~ryan/Thesis/thesis.pdf"
  303. literal "false"
  304. \end_inset
  305. .
  306. the PDF at this link is updated periodically with my latest revisions,
  307. but you can just download the current version and give me feedback on that.
  308. Don't worry about keeping up with the updates.
  309. \end_layout
  310. \begin_layout Standard
  311. As for what feedback I'm looking for, first of all, don't waste your time
  312. marking spelling mistakes and such.
  313. I haven't run a spell checker on it yet, so let me worry about that.
  314. Also, I'm aware that many abbreviations are not properly introduced the
  315. first time they are used, so don't worry about that either.
  316. However, if you see any glaring formatting issues, such as a figure being
  317. too large and getting cut off at the edge of the page, please note them.
  318. In addition, if any of the text in the figures is too small, please note
  319. that as well.
  320. \end_layout
  321. \begin_layout Standard
  322. Beyond that, what I'm mainly interested in is feedback on the content.
  323. For example: does the introduction flow logically, and does it provide
  324. enough background to understand the other chapters? Does each chapter make
  325. it clear what work and analyses I have done? Do the figures clearly communicate
  326. the results I'm trying to show? Do you feel that the claims in the results
  327. and discussion sections are well-supported? There's no need to suggest
  328. improvements; just note areas that you feel need improvement.
  329. Additionally, while I am well aware that Chapter 1 (the introduction) contains
  330. many un-cited claims, all the other chapters (2,3, and 4)
  331. \emph on
  332. should
  333. \emph default
  334. be fully cited.
  335. So if you notice any un-cited claims in those chapters, please flag them
  336. for my attention.
  337. Similarly, if you discover any factual errors, please note them as well.
  338. \end_layout
  339. \begin_layout Standard
  340. You can provide your feedback in whatever way is most convenient to you.
  341. You could mark up this PDF with highlights and notes, then send it back
  342. to me.
  343. Or you could collect your comments in a separate text file and send that
  344. to me, or whatever else you like.
  345. However, if you send me your feedback in a separate document, please note
  346. a section/figure/table number for each comment, and
  347. \emph on
  348. also
  349. \emph default
  350. send me the exact PDF that you read so I can reference it while reading
  351. your comments, since as mentioned above, the current version I'm working
  352. on will have changed by that point (which might include shuffling sections
  353. and figures around, changing their numbers).
  354. One last thing: you'll see a bunch of text in orange boxes throughout the
  355. PDF.
  356. These are notes to myself about things that need to be fixed later, so
  357. if you see a problem noted in an orange box, that means I'm already aware
  358. of it, and there's no need to comment on it.
  359. \end_layout
  360. \begin_layout Standard
  361. My thesis is due Thursday, October 10th, so in order to be useful to me,
  362. I'll need your feedback at least a few days before that, ideally by Monday,
  363. October 7th.
  364. If you have limited time and are unable to get through the whole thesis,
  365. please focus your efforts on Chapters 1 and 2, since those are the roughest
  366. and most in need of revision.
  367. Chapter 3 is fairly short and straightforward, and Chapter 4 is an adaptation
  368. of a paper that's already been through a few rounds of revision, so they
  369. should be a lot tighter.
  370. If you can't spare any time between now and then, or if something unexpected
  371. comes up, I understand.
  372. Just let me know.
  373. \end_layout
  374. \begin_layout Standard
  375. Thanks again for your help, and happy reading!
  376. \end_layout
  377. \begin_layout Chapter
  378. Introduction
  379. \end_layout
  380. \begin_layout Section
  381. Background & Significance
  382. \end_layout
  383. \begin_layout Subsection
  384. Biological motivation
  385. \end_layout
  386. \begin_layout Standard
  387. \begin_inset Flex TODO Note (inline)
  388. status open
  389. \begin_layout Plain Layout
  390. Rethink the subsection organization after the intro is written.
  391. \end_layout
  392. \end_inset
  393. \end_layout
  394. \begin_layout Standard
  395. \begin_inset Flex TODO Note (inline)
  396. status open
  397. \begin_layout Plain Layout
  398. Citations are needed all over the place.
  399. A lot of this is knowledge I've just absorbed from years of conversation
  400. in the Salomon lab, without ever having seen a citation for it.
  401. \end_layout
  402. \end_inset
  403. \end_layout
  404. \begin_layout Subsubsection
  405. Rejection is the major long-term threat to organ and tissue allografts
  406. \end_layout
  407. \begin_layout Standard
  408. Organ and tissue transplants are a life-saving treatment for people who
  409. have lost the function of an important organ [CITE?].
  410. In some cases, it is possible to transplant a patient's own tissue from
  411. one area of their body to another, referred to as an autograft.
  412. This is common for tissues that are distributed throughout many areas of
  413. the body, such as skin and bone.
  414. However, in cases of organ failure, there is no functional self tissue
  415. remaining, and a transplant from another person – a donor – is required.
  416. This is referred to as an allograft.
  417. \end_layout
  418. \begin_layout Standard
  419. \begin_inset Flex TODO Note (inline)
  420. status open
  421. \begin_layout Plain Layout
  422. Possible citation for degree of generic variability:
  423. \begin_inset CommandInset href
  424. LatexCommand href
  425. target "https://www.ncbi.nlm.nih.gov/pubmed/22424236?dopt=Abstract"
  426. \end_inset
  427. \end_layout
  428. \end_inset
  429. \end_layout
  430. \begin_layout Standard
  431. \begin_inset Flex TODO Note (inline)
  432. status open
  433. \begin_layout Plain Layout
  434. How much mechanistic detail is needed here? My work doesn't really go into
  435. specific rejection mechanisms, so I think it's best to keep it basic.
  436. \end_layout
  437. \end_inset
  438. \end_layout
  439. \begin_layout Standard
  440. Because an allograft comes from a different person, it is genetically distinct
  441. from the rest of the recipient's body.
  442. Some genetic variants occur in protein coding regions, resulting in protein
  443. products that differ from the equivalent proteins in the graft recipient's
  444. own tissue.
  445. As a result, without intervention, the recipient's immune system will eventuall
  446. y identify the graft as foreign tissue and begin attacking it, eventually
  447. resulting in failure and death of the graft, a process referred to as transplan
  448. t rejection.
  449. Rejection is the most significant challenge to the long-term health and
  450. survival of an allograft [CITE?].
  451. Like any adaptive immune response, graft rejection generally occurs via
  452. two broad mechanisms: cellular immunity, in which CD8+ T-cells recognizing
  453. graft-specific antigens induce apoptosis in the graft cells; and humoral
  454. immunity, in which B-cells produce antibodies that bind to graft proteins
  455. and direct an immune response against the graft [CITE?].
  456. In either case, rejection shows most of the typical hallmarks of an adaptive
  457. immune response, in particular mediation by CD4+ T-cells and formation
  458. of immune memory.
  459. \end_layout
  460. \begin_layout Subsubsection
  461. Diagnosis and treatment of allograft rejection is a major challenge
  462. \end_layout
  463. \begin_layout Standard
  464. To prevent rejection, allograft recipients are treated with immune suppressive
  465. drugs [CITE?].
  466. The goal is to achieve sufficient suppression of the immune system to prevent
  467. rejection of the graft without compromising the ability of the immune system
  468. to raise a normal response against infection.
  469. As such, a delicate balance must be struck: insufficient immune suppression
  470. may lead to rejection and ultimately loss of the graft; excessive suppression
  471. leaves the patient vulnerable to life-threatening opportunistic infections.
  472. Because every patient is different, immune suppression must be tailored
  473. for each patient.
  474. Furthermore, immune suppression must be tuned over time, as the immune
  475. system's activity is not static, nor is it held in a steady state [CITE?].
  476. In order to properly adjust the dosage of immune suppression drugs, it
  477. is necessary to monitor the health of the transplant and increase the dosage
  478. if evidence of rejection is observed.
  479. \end_layout
  480. \begin_layout Standard
  481. However, diagnosis of rejection is a significant challenge.
  482. Early diagnosis is essential in order to step up immune suppression before
  483. the immune system damages the graft beyond recovery [CITE?].
  484. The current gold standard test for graft rejection is a tissue biopsy,
  485. examined for visible signs of rejection by a trained histologist [CITE?].
  486. When a patient shows symptoms of possible rejection, a
  487. \begin_inset Quotes eld
  488. \end_inset
  489. for cause
  490. \begin_inset Quotes erd
  491. \end_inset
  492. biopsy is performed to confirm the diagnosis, and immune suppression is
  493. adjusted as necessary.
  494. However, in many cases, the early stages of rejection are asymptomatic,
  495. known as
  496. \begin_inset Quotes eld
  497. \end_inset
  498. sub-clinical
  499. \begin_inset Quotes erd
  500. \end_inset
  501. rejection [CITE?].
  502. In light of this, is is now common to perform
  503. \begin_inset Quotes eld
  504. \end_inset
  505. protocol biopsies
  506. \begin_inset Quotes erd
  507. \end_inset
  508. at specific times after transplantation of a graft, even if no symptoms
  509. of rejection are apparent, in addition to
  510. \begin_inset Quotes eld
  511. \end_inset
  512. for cause
  513. \begin_inset Quotes erd
  514. \end_inset
  515. biopsies
  516. \begin_inset CommandInset citation
  517. LatexCommand cite
  518. key "Wilkinson2006"
  519. literal "false"
  520. \end_inset
  521. .
  522. \end_layout
  523. \begin_layout Standard
  524. However, biopsies have a number of downsides that limit their effectiveness
  525. as a diagnostic tool.
  526. First, the need for manual inspection by a histologist means that diagnosis
  527. is subject to the biases of the particular histologist examining the biopsy
  528. [CITE?].
  529. In marginal cases, two different histologists may give two different diagnoses
  530. to the same biopsy.
  531. Second, a biopsy can only evaluate if rejection is occurring in the section
  532. of the graft from which the tissue was extracted.
  533. If rejection is localized to one section of the graft and the tissue is
  534. extracted from a different section, a false negative diagnosis may result.
  535. Most importantly, extraction of tissue from a graft is invasive and is
  536. treated as an injury by the body, which results in inflammation that in
  537. turn promotes increased immune system activity [CITE?].
  538. Hence, the invasiveness of biopsies severely limits the frequency with
  539. which they can safely be performed.
  540. Typically, protocol biopsies are not scheduled more than about once per
  541. month
  542. \begin_inset CommandInset citation
  543. LatexCommand cite
  544. key "Wilkinson2006"
  545. literal "false"
  546. \end_inset
  547. .
  548. A less invasive diagnostic test for rejection would bring manifold benefits.
  549. Such a test would enable more frequent testing and therefore earlier detection
  550. of rejection events.
  551. In addition, having a larger pool of historical data for a given patient
  552. would make it easier to evaluate when a given test is outside the normal
  553. parameters for that specific patient, rather than relying on normal ranges
  554. for the population as a whole.
  555. Lastly, the accumulated data from more frequent tests would be a boon to
  556. the transplant research community.
  557. Beyond simply providing more data overall, the better time granularity
  558. of the tests will enable studying the progression of a rejection event
  559. on the scale of days to weeks, rather than months.
  560. \end_layout
  561. \begin_layout Subsubsection
  562. Memory cells are resistant to immune suppression
  563. \end_layout
  564. \begin_layout Standard
  565. One of the defining features of the adaptive immune system is immune memory:
  566. the ability of the immune system to recognize a previously encountered
  567. foreign antigen and respond more quickly and more strongly to that antigen
  568. in subsequent encounters.
  569. When the immune system first encounters a new antigen, the lymphocytes
  570. that respond are known as naive cells – T-cells and B-cells that have never
  571. detected their target antigens before.
  572. Once activated by their specific antigen presented by an antigen-presenting
  573. cell in the proper co-stimulatory context, naive cells differentiate into
  574. effector cells that carry out their respective functions in targeting and
  575. destroying the source of the foreign antigen.
  576. The requirement for co-stimulation is an important feature of naive cells
  577. that limits
  578. \begin_inset Quotes eld
  579. \end_inset
  580. false positive
  581. \begin_inset Quotes erd
  582. \end_inset
  583. immune responses, because antigen-presenting cells usually only express
  584. the proper co-stimulation after detecting evidence of an infection, such
  585. as the presence of common bacterial cell components or inflamed tissue.
  586. Most effector cells die after the foreign antigen is cleared, since they
  587. are no longer needed, but some remain and differentiate into memory cells.
  588. Like naive cells, memory cells respond to detection of their specific antigen
  589. by differentiating into effector cells, ready to fight an infection.
  590. However, unlike naive cells, memory cells do not require the same degree
  591. of co-stimulatory signaling for activation, and once activated, they proliferat
  592. e and differentiate into effector cells more quickly than naive cells do.
  593. \end_layout
  594. \begin_layout Standard
  595. In the context of a pathogenic infection, immune memory is a major advantage,
  596. allowing an organism to rapidly fight off a previously encountered pathogen
  597. much more quickly and effectively than the first time it was encountered.
  598. However, if effector cells that recognize an antigen from an allograft
  599. are allowed to differentiate into memory cells, preventing rejection of
  600. the graft becomes much more difficult.
  601. Many immune suppression drugs work by interfering with the co-stimulation
  602. that naive cells require in order to mount an immune response [CITE?].
  603. Since memory cells do not require this co-stimulation, these drugs are
  604. not effective at suppressing an immune response that is mediated by memory
  605. cells.
  606. Secondly, because memory cells are able to mount a stronger and faster
  607. response to an antigen, all else being equal they require stronger immune
  608. suppression than naive cells to prevent an immune response.
  609. However, immune suppression affects the entire immune system, not just
  610. cells recognizing a specific antigen, so increasing the dosage of immune
  611. suppression drugs also increases the risk of complications from a compromised
  612. immune system, such as opportunistic infections.
  613. While the differences in cell surface markers between naive and memory
  614. cells have been fairly well characterized, the internal regulatory mechanisms
  615. that allow memory cells to respond more quickly and without co-stimulation
  616. are still poorly understood.
  617. In order to develop methods of immune suppression that either prevent the
  618. formation of memory cells or work more effectively against memory cells,
  619. the mechanisms of immune memory formation and regulation must be better
  620. understood.
  621. \end_layout
  622. \begin_layout Subsection
  623. Overview of bioinformatic analysis methods
  624. \end_layout
  625. \begin_layout Standard
  626. \begin_inset Flex TODO Note (inline)
  627. status open
  628. \begin_layout Plain Layout
  629. Also cite: R, Bioconductor, snakemake, python, pandas, bedtools, bowtie2,
  630. hisat2, STAR, samtools, sra-toolkit, picard tools
  631. \end_layout
  632. \end_inset
  633. \end_layout
  634. \begin_layout Standard
  635. The studies presented in this work all involve the analysis of high-throughput
  636. genomic and epigenomic data.
  637. These data present many unique analysis challenges, and a wide array of
  638. software tools are available to analyze them.
  639. This section presents an overview of the methods used, including what problems
  640. they solve, what assumptions they make, and a basic description of how
  641. they work.
  642. \end_layout
  643. \begin_layout Standard
  644. \begin_inset Flex TODO Note (inline)
  645. status open
  646. \begin_layout Plain Layout
  647. Many of these points may also be addressed in the approach/methods sections
  648. of the following chapters? Redundant?
  649. \end_layout
  650. \end_inset
  651. \end_layout
  652. \begin_layout Subsubsection
  653. Limma: The standard linear modeling framework for genomics
  654. \end_layout
  655. \begin_layout Standard
  656. Linear models are a generalization of the
  657. \begin_inset Formula $t$
  658. \end_inset
  659. -test and ANOVA to arbitrarily complex experimental designs
  660. \begin_inset CommandInset citation
  661. LatexCommand cite
  662. key "chambers:1992"
  663. literal "false"
  664. \end_inset
  665. .
  666. In a typical linear model, there is one dependent variable observation
  667. per sample.
  668. For example, in a linear model of height as a function of age and sex,
  669. there is one height measurement per person.
  670. However, when analyzing genomic data, each sample consists of observations
  671. of thousands of dependent variables.
  672. For example, in an RNA-seq experiment, the dependent variables may be the
  673. count of RNA-seq reads for each annotated gene.
  674. In abstract terms, each dependent variable being measured is referred to
  675. as a feature.
  676. The simplest approach to analyzing such data would be to fit the same model
  677. independently to each feature.
  678. However, this is undesirable for most genomics data sets.
  679. Genomics assays like high-throughput sequencing are expensive, and often
  680. generating the samples is also quite expensive and time-consuming.
  681. This expense limits the sample sizes typically employed in genomics experiments
  682. , and as a result the statistical power of each individual feature's linear
  683. model is likewise limited.
  684. However, because thousands of features from the same samples are analyzed
  685. together, there is an opportunity to improve the statistical power of the
  686. analysis by exploiting shared patterns of variation across features.
  687. This is the core feature of limma, a linear modeling framework designed
  688. for genomic data.
  689. Limma is typically used to analyze expression microarray data, and more
  690. recently RNA-seq data, but it can also be used to analyze any other data
  691. for which linear modeling is appropriate.
  692. \end_layout
  693. \begin_layout Standard
  694. The central challenge when fitting a linear model is to estimate the variance
  695. of the data accurately.
  696. Out of all parameters required to evaluate statistical significance of
  697. an effect, the variance is the most difficult to estimate when sample sizes
  698. are small.
  699. A single shared variance could be estimated for all of the features together,
  700. and this estimate would be very stable, in contrast to the individual feature
  701. variance estimates.
  702. However, this would require the assumption that every feature is equally
  703. variable, which is known to be false for most genomic data sets.
  704. Limma offers a compromise between these two extremes by using a method
  705. called empirical Bayes moderation to
  706. \begin_inset Quotes eld
  707. \end_inset
  708. squeeze
  709. \begin_inset Quotes erd
  710. \end_inset
  711. the distribution of estimated variances toward a single common value that
  712. represents the variance of an average feature in the data
  713. \begin_inset CommandInset citation
  714. LatexCommand cite
  715. key "Smyth2004"
  716. literal "false"
  717. \end_inset
  718. .
  719. While the individual feature variance estimates are not stable, the common
  720. variance estimate for the entire data set is quite stable, so using a combinati
  721. on of the two yields a variance estimate for each feature with greater precision
  722. than the individual feature variances.
  723. The trade-off for this improvement is that squeezing each estimated variance
  724. toward the common value introduces some bias – the variance will be underestima
  725. ted for features with high variance and overestimated for features with
  726. low variance.
  727. Essentially, limma assumes that extreme variances are less common than
  728. variances close to the common value.
  729. The variance estimates from this empirical Bayes procedure are shown empiricall
  730. y to yield greater statistical power than either the individual feature
  731. variances or the single common value.
  732. \end_layout
  733. \begin_layout Standard
  734. On top of this core framework, limma also implements many other enhancements
  735. that, further relax the assumptions of the model and extend the scope of
  736. what kinds of data it can analyze.
  737. Instead of squeezing toward a single common variance value, limma can model
  738. the common variance as a function of a covariate, such as average expression
  739. \begin_inset CommandInset citation
  740. LatexCommand cite
  741. key "Law2013"
  742. literal "false"
  743. \end_inset
  744. .
  745. This is essential for RNA-seq data, where higher gene counts yield more
  746. precise expression measurements and therefore smaller variances than low-count
  747. genes.
  748. While linear models typically assume that all samples have equal variance,
  749. limma is able to relax this assumption by identifying and down-weighting
  750. samples the diverge more strongly from the linear model across many features
  751. \begin_inset CommandInset citation
  752. LatexCommand cite
  753. key "Ritchie2006,Liu2015"
  754. literal "false"
  755. \end_inset
  756. .
  757. In addition, limma is also able to fit simple mixed models incorporating
  758. one random effect in addition to the fixed effects represented by an ordinary
  759. linear model
  760. \begin_inset CommandInset citation
  761. LatexCommand cite
  762. key "Smyth2005a"
  763. literal "false"
  764. \end_inset
  765. .
  766. Once again, limma shares information between features to obtain a robust
  767. estimate for the random effect correlation.
  768. \end_layout
  769. \begin_layout Subsubsection
  770. edgeR provides limma-like analysis features for count data
  771. \end_layout
  772. \begin_layout Standard
  773. Although limma can be applied to read counts from RNA-seq data, it is less
  774. suitable for counts from ChIP-seq data, which tend to be much smaller and
  775. therefore violate the assumption of a normal distribution more severely.
  776. For all count-based data, the edgeR package works similarly to limma, but
  777. uses a generalized linear model instead of a linear model.
  778. The most important difference is that the GLM in edgeR models the counts
  779. directly using a negative binomial distribution rather than modeling the
  780. normalized log counts using a normal distribution
  781. \begin_inset CommandInset citation
  782. LatexCommand cite
  783. key "Chen2014,McCarthy2012,Robinson2010a"
  784. literal "false"
  785. \end_inset
  786. .
  787. The negative binomial is a good fit for count data because it can be derived
  788. as a gamma-distributed mixture of Poisson distributions.
  789. The Poisson distribution accurately represents the distribution of counts
  790. expected for a given gene abundance, and the gamma distribution is then
  791. used to represent the variation in gene abundance between biological replicates.
  792. For this reason, the square root of the dispersion parameter of the negative
  793. binomial is sometimes referred to as the biological coefficient of variation,
  794. since it represents the variability that was present in the samples prior
  795. to the Poisson
  796. \begin_inset Quotes eld
  797. \end_inset
  798. noise
  799. \begin_inset Quotes erd
  800. \end_inset
  801. that was generated by the random sampling of reads in proportion to feature
  802. abundances.
  803. The choice of a gamma distribution is arbitrary and motivated by mathematical
  804. convenience, since a gamma-Poisson mixture yields the numerically tractable
  805. negative binomial distribution.
  806. Thus, edgeR assumes
  807. \emph on
  808. a prioi
  809. \emph default
  810. that the variation in abundances between replicates follows a gamma distribution.
  811. For differential abundance testing, edgeR offers a likelihood ratio test,
  812. but more recently recommends a quasi-likelihood test that properly factors
  813. the uncertainty in variance estimation into the statistical significance
  814. for each feature
  815. \begin_inset CommandInset citation
  816. LatexCommand cite
  817. key "Lund2012"
  818. literal "false"
  819. \end_inset
  820. .
  821. \end_layout
  822. \begin_layout Subsubsection
  823. ChIP-seq Peak calling
  824. \end_layout
  825. \begin_layout Standard
  826. Unlike RNA-seq data, in which gene annotations provide a well-defined set
  827. of genomic regions in which to count reads, ChIP-seq data can potentially
  828. occur anywhere in the genome.
  829. However, most genome regions will not contain significant ChIP-seq read
  830. coverage, and analyzing every position in the entire genome is statistically
  831. and computationally infeasible, so it is necessary to identify regions
  832. of interest inside which ChIP-seq reads will be counted and analyzed.
  833. One option is to define a set of interesting regions
  834. \emph on
  835. a priori
  836. \emph default
  837. , for example by defining a promoter region for each annotated gene.
  838. However, it is also possible to use the ChIP-seq data itself to identify
  839. regions with ChIP-seq read coverage significantly above the background
  840. level, known as peaks.
  841. \end_layout
  842. \begin_layout Standard
  843. There are generally two kinds of peaks that can be identified: narrow peaks
  844. and broadly enriched regions.
  845. Proteins like transcription factors that bind specific sites in the genome
  846. typically show most of their read coverage at these specific sites and
  847. very little coverage anywhere else.
  848. Because the footprint of the protein is consistent wherever it binds, each
  849. peak has a consistent size, typically tens to hundreds of base pairs.
  850. Algorithms like MACS exploit this pattern to identify specific loci at
  851. which such
  852. \begin_inset Quotes eld
  853. \end_inset
  854. narrow peaks
  855. \begin_inset Quotes erd
  856. \end_inset
  857. occur by looking for the characteristic peak shape in the ChIP-seq coverage
  858. rising above the surrounding background coverage
  859. \begin_inset CommandInset citation
  860. LatexCommand cite
  861. key "Zhang2008"
  862. literal "false"
  863. \end_inset
  864. .
  865. In contrast, some proteins, chief among them histones, do not bind only
  866. at a small number of specific sites, but rather bind potentially almost
  867. everywhere in the entire genome.
  868. When looking at histone marks, adjacent histones tend to be similarly marked,
  869. and a given mark may be present on an arbitrary number of consecutive histones
  870. along the genome.
  871. Hence, there is no consistent
  872. \begin_inset Quotes eld
  873. \end_inset
  874. footprint size
  875. \begin_inset Quotes erd
  876. \end_inset
  877. for ChIP-seq peaks based on histone marks, and peaks typically span many
  878. histones.
  879. Hence, typical peaks span many hundreds or even thousands of base pairs.
  880. Instead of identifying specific loci of strong enrichment, algorithms like
  881. SICER assume that peaks are represented in the ChIP-seq data by modest
  882. enrichment above background occurring across broad regions, and they attempt
  883. to identify the extent of those regions
  884. \begin_inset CommandInset citation
  885. LatexCommand cite
  886. key "Zang2009"
  887. literal "false"
  888. \end_inset
  889. .
  890. In all cases, better results are obtained if the local background coverage
  891. level can be estimated from ChIP-seq input samples, since various biases
  892. can result in uneven background coverage.
  893. \end_layout
  894. \begin_layout Standard
  895. Regardless of the type of peak identified, it is important to identify peaks
  896. that occur consistently across biological replicates.
  897. The ENCODE project has developed a method called irreproducible discovery
  898. rate for this purpose
  899. \begin_inset CommandInset citation
  900. LatexCommand cite
  901. key "Li2006"
  902. literal "false"
  903. \end_inset
  904. .
  905. The IDR is defined as the probability that a peak identified in one biological
  906. replicate will
  907. \emph on
  908. not
  909. \emph default
  910. also be identified in a second replicate.
  911. Where the more familiar false discovery rate measures the degree of corresponde
  912. nce between a data-derived ranked list and the true list of significant
  913. features, IDR instead measures the degree of correspondence between two
  914. ranked lists derived from different data.
  915. IDR assumes that the highest-ranked features are
  916. \begin_inset Quotes eld
  917. \end_inset
  918. signal
  919. \begin_inset Quotes erd
  920. \end_inset
  921. peaks that tend to be listed in the same order in both lists, while the
  922. lowest-ranked features are essentially noise peaks, listed in random order
  923. with no correspondence between the lists.
  924. IDR attempts to locate the
  925. \begin_inset Quotes eld
  926. \end_inset
  927. crossover point
  928. \begin_inset Quotes erd
  929. \end_inset
  930. between the signal and the noise by determining how for down the list the
  931. correspondence between feature ranks breaks down.
  932. \end_layout
  933. \begin_layout Standard
  934. In addition to other considerations, if called peaks are to be used as regions
  935. of interest for differential abundance analysis, then care must be taken
  936. to call peaks in a way that is blind to differential abundance between
  937. experimental conditions, or else the statistical significance calculations
  938. for differential abundance will overstate their confidence in the results.
  939. The csaw package provides guidelines for calling peaks in this way: peaks
  940. are called based on a combination of all ChIP-seq reads from all experimental
  941. conditions, so that the identified peaks are based on the average abundance
  942. across all conditions, which is independent of any differential abundance
  943. between conditions
  944. \begin_inset CommandInset citation
  945. LatexCommand cite
  946. key "Lun2015a"
  947. literal "false"
  948. \end_inset
  949. .
  950. \end_layout
  951. \begin_layout Subsubsection
  952. Normalization of high-throughput data is non-trivial and application-dependent
  953. \end_layout
  954. \begin_layout Standard
  955. High-throughput data sets invariable require some kind of normalization
  956. before further analysis can be conducted.
  957. In general, the goal of normalization is to remove effects in the data
  958. that are caused by technical factors that have nothing to do with the biology
  959. being studied.
  960. \end_layout
  961. \begin_layout Standard
  962. For Affymetrix expression arrays, the standard normalization algorithm used
  963. in most analyses is Robust Multichip Average (RMA) [CITE].
  964. RMA is designed with the assumption that some fraction of probes on each
  965. array will be artifactual and takes advantage of the fact that each gene
  966. is represented by multiple probes by implementing normalization and summarizati
  967. on steps that are robust against outlier probes.
  968. However, RMA uses the probe intensities of all arrays in the data set in
  969. the normalization of each individual array, meaning that the normalized
  970. expression values in each array depend on every array in the data set,
  971. and will necessarily change each time an array is added or removed from
  972. the data set.
  973. If this is undesirable, frozen RMA implements a variant of RMA where the
  974. relevant distributional parameters are learned from a large reference set
  975. of diverse public array data sets and then
  976. \begin_inset Quotes eld
  977. \end_inset
  978. frozen
  979. \begin_inset Quotes erd
  980. \end_inset
  981. , so that each array is effectively normalized against this frozen reference
  982. set rather than the other arrays in the data set under study [CITE].
  983. Other array normalization methods considered include dChip, GRSN, and SCAN
  984. [CITEx3].
  985. \end_layout
  986. \begin_layout Standard
  987. In contrast, high-throughput sequencing data present very different normalizatio
  988. n challenges.
  989. The simplest case is RNA-seq in which read counts are obtained for a set
  990. of gene annotations, yielding a matrix of counts with rows representing
  991. genes and columns representing samples.
  992. Because RNA-seq approximates a process of sampling from a population with
  993. replacement, each gene's count is only interpretable as a fraction of the
  994. total reads for that sample.
  995. For that reason, RNA-seq abundances are often reported as counts per million
  996. (CPM).
  997. Furthermore, if the abundance of a single gene increases, then in order
  998. for its fraction of the total reads to increase, all other genes' fractions
  999. must decrease to accommodate it.
  1000. This effect is known as composition bias, and it is an artifact of the
  1001. read sampling process that has nothing to do with the biology of the samples
  1002. and must therefore be normalized out.
  1003. The most commonly used methods to normalize for composition bias in RNA-seq
  1004. data seek to equalize the average gene abundance across samples, under
  1005. the assumption that the average gene is likely not changing
  1006. \begin_inset CommandInset citation
  1007. LatexCommand cite
  1008. key "Robinson2010,Anders2010"
  1009. literal "false"
  1010. \end_inset
  1011. .
  1012. \end_layout
  1013. \begin_layout Standard
  1014. In ChIP-seq data, normalization is not as straightforward.
  1015. The csaw package implements several different normalization strategies
  1016. and provides guidance on when to use each one
  1017. \begin_inset CommandInset citation
  1018. LatexCommand cite
  1019. key "Lun2015a"
  1020. literal "false"
  1021. \end_inset
  1022. .
  1023. Briefly, a typical ChIP-seq sample has a bimodal distribution of read counts:
  1024. a low-abundance mode representing background regions and a high-abundance
  1025. mode representing signal regions.
  1026. This offers two potential normalization targets: equalizing background
  1027. coverage or equalizing signal coverage.
  1028. If the experiment is well controlled and ChIP efficiency is known to be
  1029. consistent across all samples, then normalizing the background coverage
  1030. to be equal across all samples is a reasonable strategy.
  1031. If this is not a safe assumption, then the preferred strategy is to normalize
  1032. the signal regions in a way similar to RNA-seq data by assuming that the
  1033. average signal region is not changing abundance between samples.
  1034. Beyond this, if a ChIP-seq experiment has a more complicated structure
  1035. that doesn't show the typical bimodal count distribution, it may be necessary
  1036. to implement a normalization as a smooth function of abundance.
  1037. However, this strategy makes a much stronger assumption about the data:
  1038. that the average log fold change is zero across all abundance levels.
  1039. Hence, the simpler scaling normalization based on background or signal
  1040. regions are generally preferred whenever possible.
  1041. \end_layout
  1042. \begin_layout Subsubsection
  1043. ComBat and SVA for correction of known and unknown batch effects
  1044. \end_layout
  1045. \begin_layout Standard
  1046. In addition to well-understood effects that can be easily normalized out,
  1047. a data set often contains confounding biological effects that must be accounted
  1048. for in the modeling step.
  1049. For instance, in an experiment with pre-treatment and post-treatment samples
  1050. of cells from several different donors, donor variability represents a
  1051. known batch effect.
  1052. The most straightforward correction for known batches is to estimate the
  1053. mean for each batch independently and subtract out the differences, so
  1054. that all batches have identical means for each feature.
  1055. However, as with variance estimation, estimating the differences in batch
  1056. means is not necessarily robust at the feature level, so the ComBat method
  1057. adds empirical Bayes squeezing of the batch mean differences toward a common
  1058. value, analogous to limma's empirical Bayes squeezing of feature variance
  1059. estimates
  1060. \begin_inset CommandInset citation
  1061. LatexCommand cite
  1062. key "Johnson2007"
  1063. literal "false"
  1064. \end_inset
  1065. .
  1066. Effectively, ComBat assumes that modest differences between batch means
  1067. are real batch effects, but extreme differences between batch means are
  1068. more likely to be the result of outlier observations that happen to line
  1069. up with the batches rather than a genuine batch effect.
  1070. The result is a batch correction that is more robust against outliers than
  1071. simple subtraction of mean differences subtraction.
  1072. \end_layout
  1073. \begin_layout Standard
  1074. In some data sets, unknown batch effects may be present due to inherent
  1075. variability in in the data, either caused by technical or biological effects.
  1076. Examples of unknown batch effects include variations in enrichment efficiency
  1077. between ChIP-seq samples, variations in populations of different cell types,
  1078. and the effects of uncontrolled environmental factors on gene expression
  1079. in humans or live animals.
  1080. In an ordinary linear model context, unknown batch effects cannot be inferred
  1081. and must be treated as random noise.
  1082. However, in high-throughput experiments, once again information can be
  1083. shared across features to identify patterns of un-modeled variation that
  1084. are repeated in many features.
  1085. One attractive strategy would be to perform singular value decomposition
  1086. (SVD) on the matrix os linear model residuals (which contain all the un-modeled
  1087. variation in the data) and take the first few singular vectors as batch
  1088. effects.
  1089. While this can be effective, it makes the unreasonable assumption that
  1090. all batch effects are uncorrelated with any of the effects being modeled.
  1091. Surrogate variable analysis (SVA) starts with this approach, but takes
  1092. some additional steps to identify batch effects in the full data that are
  1093. both highly correlated with the singular vectors in the residuals and least
  1094. correlated with the effects of interest
  1095. \begin_inset CommandInset citation
  1096. LatexCommand cite
  1097. key "Leek2007"
  1098. literal "false"
  1099. \end_inset
  1100. .
  1101. Since the final batch effects are estimated from the full data, moderate
  1102. correlations between the batch effects and effects of interest are allowed,
  1103. which gives SVA much more freedom to estimate the true extent of the batch
  1104. effects compared to simple residual SVD.
  1105. Once the surrogate variables are estimated, they can be included as coefficient
  1106. s in the linear model in a similar fashion to known batch effects in order
  1107. to subtract out their effects on each feature's abundance.
  1108. \end_layout
  1109. \begin_layout Subsubsection
  1110. Factor analysis: PCA, MDS, MOFA
  1111. \end_layout
  1112. \begin_layout Standard
  1113. \begin_inset Flex TODO Note (inline)
  1114. status open
  1115. \begin_layout Plain Layout
  1116. Not sure if this merits a subsection here.
  1117. \end_layout
  1118. \end_inset
  1119. \end_layout
  1120. \begin_layout Itemize
  1121. Batch-corrected PCA is informative, but careful application is required
  1122. to avoid bias
  1123. \end_layout
  1124. \begin_layout Section
  1125. Innovation
  1126. \end_layout
  1127. \begin_layout Standard
  1128. \begin_inset Flex TODO Note (inline)
  1129. status open
  1130. \begin_layout Plain Layout
  1131. Is this entire section redundant with the Approach sections of each chapter?
  1132. I'm not really sure what to write here.
  1133. \end_layout
  1134. \end_inset
  1135. \end_layout
  1136. \begin_layout Subsection
  1137. MSC infusion to improve transplant outcomes (prevent/delay rejection)
  1138. \end_layout
  1139. \begin_layout Standard
  1140. \begin_inset Flex TODO Note (inline)
  1141. status open
  1142. \begin_layout Plain Layout
  1143. Do I still talk about this? It's the motivation for chapter 4, but I don't
  1144. actually present any work related to MSCs.
  1145. \end_layout
  1146. \end_inset
  1147. \end_layout
  1148. \begin_layout Itemize
  1149. Demonstrated in mice, but not yet in primates
  1150. \end_layout
  1151. \begin_layout Itemize
  1152. Mechanism currently unknown, but MSC are known to be immune modulatory
  1153. \end_layout
  1154. \begin_layout Itemize
  1155. Characterize MSC response to interferon gamma
  1156. \end_layout
  1157. \begin_layout Itemize
  1158. IFN-g is thought to stimulate their function
  1159. \end_layout
  1160. \begin_layout Itemize
  1161. Test IFN-g treated MSC infusion as a therapy to delay graft rejection in
  1162. cynomolgus monkeys
  1163. \end_layout
  1164. \begin_layout Itemize
  1165. Monitor animals post-transplant using blood RNA-seq at serial time points
  1166. \end_layout
  1167. \begin_layout Subsection
  1168. Investigate dynamics of histone marks in CD4 T-cell activation and memory
  1169. \end_layout
  1170. \begin_layout Itemize
  1171. Previous studies have looked at single snapshots of histone marks
  1172. \end_layout
  1173. \begin_layout Itemize
  1174. Instead, look at changes in histone marks across activation and memory
  1175. \end_layout
  1176. \begin_layout Subsection
  1177. High-throughput sequencing and microarray technologies
  1178. \end_layout
  1179. \begin_layout Itemize
  1180. Powerful methods for assaying gene expression and epigenetics across entire
  1181. genomes
  1182. \end_layout
  1183. \begin_layout Itemize
  1184. Proper analysis requires finding and exploiting systematic genome-wide trends
  1185. \end_layout
  1186. \begin_layout Chapter
  1187. Reproducible genome-wide epigenetic analysis of H3K4 and H3K27 methylation
  1188. in naive and memory CD4 T-cell activation
  1189. \end_layout
  1190. \begin_layout Standard
  1191. \begin_inset Flex TODO Note (inline)
  1192. status open
  1193. \begin_layout Plain Layout
  1194. Chapter author list: Me, Sarah, Dan
  1195. \end_layout
  1196. \end_inset
  1197. \end_layout
  1198. \begin_layout Standard
  1199. \begin_inset Flex TODO Note (inline)
  1200. status open
  1201. \begin_layout Plain Layout
  1202. Need better section titles throughout the entire chapter
  1203. \end_layout
  1204. \end_inset
  1205. \end_layout
  1206. \begin_layout Section
  1207. Approach
  1208. \end_layout
  1209. \begin_layout Standard
  1210. \begin_inset Flex TODO Note (inline)
  1211. status open
  1212. \begin_layout Plain Layout
  1213. Check on the exact correct way to write
  1214. \begin_inset Quotes eld
  1215. \end_inset
  1216. CD4 T-cell
  1217. \begin_inset Quotes erd
  1218. \end_inset
  1219. .
  1220. I think there might be a plus sign somewhere in there now? Also, maybe
  1221. figure out a reasonable way to abbreviate
  1222. \begin_inset Quotes eld
  1223. \end_inset
  1224. naive CD4 T-cells
  1225. \begin_inset Quotes erd
  1226. \end_inset
  1227. and
  1228. \begin_inset Quotes eld
  1229. \end_inset
  1230. memory CD4 T-cells
  1231. \begin_inset Quotes erd
  1232. \end_inset
  1233. .
  1234. \end_layout
  1235. \end_inset
  1236. \end_layout
  1237. \begin_layout Standard
  1238. \begin_inset Flex TODO Note (inline)
  1239. status open
  1240. \begin_layout Plain Layout
  1241. Is it ok to just copy a bunch of citations from the intros to Sarah's papers?
  1242. That feels like cheating somehow.
  1243. \end_layout
  1244. \end_inset
  1245. \end_layout
  1246. \begin_layout Standard
  1247. CD4 T-cells are central to all adaptive immune responses, as well as immune
  1248. memory [CITE?].
  1249. After an infection is cleared, a subset of the naive CD4 T-cells that responded
  1250. to that infection differentiate into memory CD4 T-cells, which are responsible
  1251. for responding to the same pathogen in the future.
  1252. Memory CD4 T-cells are functionally distinct, able to respond to an infection
  1253. more quickly and without the co-stimulation required by naive CD4 T-cells.
  1254. However, the molecular mechanisms underlying this functional distinction
  1255. are not well-understood.
  1256. Epigenetic regulation via histone modification is thought to play an important
  1257. role, but while many studies have looked at static snapshots of histone
  1258. methylation in T-cells, few studies have looked at the dynamics of histone
  1259. regulation after T-cell activation, nor the differences in histone methylation
  1260. between naive and memory T-cells.
  1261. H3K4me2, H3K4me3 and H3K27me3 are three histone marks thought to be major
  1262. epigenetic regulators of gene expression.
  1263. The goal of the present study is to investigate the role of these histone
  1264. marks in CD4 T-cell activation kinetics and memory differentiation.
  1265. In static snapshots, H3K4me2 and H3K4me3 are often observed in the promoters
  1266. of highly transcribed genes, while H3K27me3 is more often observed in promoters
  1267. of inactive genes with little to no transcription occurring.
  1268. As a result, the two H3K4 marks have been characterized as
  1269. \begin_inset Quotes eld
  1270. \end_inset
  1271. activating
  1272. \begin_inset Quotes erd
  1273. \end_inset
  1274. marks, while H3K27me3 has been characterized as
  1275. \begin_inset Quotes eld
  1276. \end_inset
  1277. deactivating
  1278. \begin_inset Quotes erd
  1279. \end_inset
  1280. .
  1281. Despite these characterizations, the actual causal relationship between
  1282. these histone modifications and gene transcription is complex and likely
  1283. involves positive and negative feedback loops between the two.
  1284. \end_layout
  1285. \begin_layout Standard
  1286. In order to investigate the relationship between gene expression and these
  1287. histone modifications in the context of naive and memory CD4 T-cell activation,
  1288. a previously published data set of combined RNA-seq and ChIP-seq data was
  1289. re-analyzed using up-to-date methods designed to address the specific analysis
  1290. challenges posed by this data set.
  1291. The data set contains naive and memory CD4 T-cell samples in a time course
  1292. before and after activation.
  1293. Like the original analysis, this analysis looks at the dynamics of these
  1294. marks histone marks and compare them to gene expression dynamics at the
  1295. same time points during activation, as well as compare them between naive
  1296. and memory cells, in hope of discovering evidence of new mechanistic details
  1297. in the interplay between them.
  1298. The original analysis of this data treated each gene promoter as a monolithic
  1299. unit and mostly assumed that ChIP-seq reads or peaks occurring anywhere
  1300. within a promoter were equivalent, regardless of where they occurred relative
  1301. to the gene structure.
  1302. For an initial analysis of the data, this was a necessary simplifying assumptio
  1303. n.
  1304. The current analysis aims to relax this assumption, first by directly analyzing
  1305. ChIP-seq peaks for differential modification, and second by taking a more
  1306. granular look at the ChIP-seq read coverage within promoter regions to
  1307. ask whether the location of histone modifications relative to the gene's
  1308. TSS is an important factor, as opposed to simple proximity.
  1309. \end_layout
  1310. \begin_layout Section
  1311. Methods
  1312. \end_layout
  1313. \begin_layout Standard
  1314. \begin_inset Flex TODO Note (inline)
  1315. status open
  1316. \begin_layout Plain Layout
  1317. Look up some more details from the papers (e.g.
  1318. activation method).
  1319. \end_layout
  1320. \end_inset
  1321. \end_layout
  1322. \begin_layout Standard
  1323. A reproducible workflow was written to analyze the raw ChIP-seq and RNA-seq
  1324. data from previous studies
  1325. \begin_inset CommandInset citation
  1326. LatexCommand cite
  1327. key "gh-cd4-csaw,LaMere2016,LaMere2017"
  1328. literal "true"
  1329. \end_inset
  1330. .
  1331. Briefly, this data consists of RNA-seq and ChIP-seq from CD4 T-cells cultured
  1332. from 4 donors.
  1333. From each donor, naive and memory CD4 T-cells were isolated separately.
  1334. Then cultures of both cells were activated [how?], and samples were taken
  1335. at 4 time points: Day 0 (pre-activation), Day 1 (early activation), Day
  1336. 5 (peak activation), and Day 14 (post-activation).
  1337. For each combination of cell type and time point, RNA was isolated and
  1338. sequenced, and ChIP-seq was performed for each of 3 histone marks: H3K4me2,
  1339. H3K4me3, and H3K27me3.
  1340. The ChIP-seq input DNA was also sequenced for each sample.
  1341. The result was 32 samples for each assay.
  1342. \end_layout
  1343. \begin_layout Subsection
  1344. RNA-seq differential expression analysis
  1345. \end_layout
  1346. \begin_layout Standard
  1347. \begin_inset Note Note
  1348. status collapsed
  1349. \begin_layout Plain Layout
  1350. \begin_inset Float figure
  1351. wide false
  1352. sideways false
  1353. status open
  1354. \begin_layout Plain Layout
  1355. \align center
  1356. \begin_inset Float figure
  1357. wide false
  1358. sideways false
  1359. status collapsed
  1360. \begin_layout Plain Layout
  1361. \align center
  1362. \begin_inset Graphics
  1363. filename graphics/CD4-csaw/rnaseq-compare/ensmebl-vs-entrez-star-CROP.png
  1364. lyxscale 25
  1365. width 35col%
  1366. groupId rna-comp-subfig
  1367. \end_inset
  1368. \end_layout
  1369. \begin_layout Plain Layout
  1370. \begin_inset Caption Standard
  1371. \begin_layout Plain Layout
  1372. STAR quantification, Entrez vs Ensembl gene annotation
  1373. \end_layout
  1374. \end_inset
  1375. \end_layout
  1376. \end_inset
  1377. \begin_inset space \qquad{}
  1378. \end_inset
  1379. \begin_inset Float figure
  1380. wide false
  1381. sideways false
  1382. status collapsed
  1383. \begin_layout Plain Layout
  1384. \align center
  1385. \begin_inset Graphics
  1386. filename graphics/CD4-csaw/rnaseq-compare/ensmebl-vs-entrez-shoal-CROP.png
  1387. lyxscale 25
  1388. width 35col%
  1389. groupId rna-comp-subfig
  1390. \end_inset
  1391. \end_layout
  1392. \begin_layout Plain Layout
  1393. \begin_inset Caption Standard
  1394. \begin_layout Plain Layout
  1395. Salmon+Shoal quantification, Entrez vs Ensembl gene annotation
  1396. \end_layout
  1397. \end_inset
  1398. \end_layout
  1399. \end_inset
  1400. \end_layout
  1401. \begin_layout Plain Layout
  1402. \align center
  1403. \begin_inset Float figure
  1404. wide false
  1405. sideways false
  1406. status collapsed
  1407. \begin_layout Plain Layout
  1408. \align center
  1409. \begin_inset Graphics
  1410. filename graphics/CD4-csaw/rnaseq-compare/star-vs-hisat2-CROP.png
  1411. lyxscale 25
  1412. width 35col%
  1413. groupId rna-comp-subfig
  1414. \end_inset
  1415. \end_layout
  1416. \begin_layout Plain Layout
  1417. \begin_inset Caption Standard
  1418. \begin_layout Plain Layout
  1419. STAR vs HISAT2 quantification, Ensembl gene annotation
  1420. \end_layout
  1421. \end_inset
  1422. \end_layout
  1423. \end_inset
  1424. \begin_inset space \qquad{}
  1425. \end_inset
  1426. \begin_inset Float figure
  1427. wide false
  1428. sideways false
  1429. status collapsed
  1430. \begin_layout Plain Layout
  1431. \align center
  1432. \begin_inset Graphics
  1433. filename graphics/CD4-csaw/rnaseq-compare/star-vs-salmon-CROP.png
  1434. lyxscale 25
  1435. width 35col%
  1436. groupId rna-comp-subfig
  1437. \end_inset
  1438. \end_layout
  1439. \begin_layout Plain Layout
  1440. \begin_inset Caption Standard
  1441. \begin_layout Plain Layout
  1442. Salmon vs STAR quantification, Ensembl gene annotation
  1443. \end_layout
  1444. \end_inset
  1445. \end_layout
  1446. \end_inset
  1447. \end_layout
  1448. \begin_layout Plain Layout
  1449. \align center
  1450. \begin_inset Float figure
  1451. wide false
  1452. sideways false
  1453. status collapsed
  1454. \begin_layout Plain Layout
  1455. \align center
  1456. \begin_inset Graphics
  1457. filename graphics/CD4-csaw/rnaseq-compare/salmon-vs-kallisto-CROP.png
  1458. lyxscale 25
  1459. width 35col%
  1460. groupId rna-comp-subfig
  1461. \end_inset
  1462. \end_layout
  1463. \begin_layout Plain Layout
  1464. \begin_inset Caption Standard
  1465. \begin_layout Plain Layout
  1466. Salmon vs Kallisto quantification, Ensembl gene annotation
  1467. \end_layout
  1468. \end_inset
  1469. \end_layout
  1470. \end_inset
  1471. \begin_inset space \qquad{}
  1472. \end_inset
  1473. \begin_inset Float figure
  1474. wide false
  1475. sideways false
  1476. status collapsed
  1477. \begin_layout Plain Layout
  1478. \align center
  1479. \begin_inset Graphics
  1480. filename graphics/CD4-csaw/rnaseq-compare/salmon-vs-shoal-CROP.png
  1481. lyxscale 25
  1482. width 35col%
  1483. groupId rna-comp-subfig
  1484. \end_inset
  1485. \end_layout
  1486. \begin_layout Plain Layout
  1487. \begin_inset Caption Standard
  1488. \begin_layout Plain Layout
  1489. Salmon+Shoal vs Salmon alone, Ensembl gene annotation
  1490. \end_layout
  1491. \end_inset
  1492. \end_layout
  1493. \end_inset
  1494. \end_layout
  1495. \begin_layout Plain Layout
  1496. \begin_inset Caption Standard
  1497. \begin_layout Plain Layout
  1498. \begin_inset CommandInset label
  1499. LatexCommand label
  1500. name "fig:RNA-norm-comp"
  1501. \end_inset
  1502. RNA-seq comparisons
  1503. \end_layout
  1504. \end_inset
  1505. \end_layout
  1506. \end_inset
  1507. \end_layout
  1508. \end_inset
  1509. \end_layout
  1510. \begin_layout Standard
  1511. Sequence reads were retrieved from the Sequence Read Archive (SRA)
  1512. \begin_inset CommandInset citation
  1513. LatexCommand cite
  1514. key "Leinonen2011"
  1515. literal "false"
  1516. \end_inset
  1517. .
  1518. Five different alignment and quantification methods were tested for the
  1519. RNA-seq data
  1520. \begin_inset CommandInset citation
  1521. LatexCommand cite
  1522. key "Dobin2012,Kim2019,Liao2014,Pimentel2016,Patro2017,gh-shoal,gh-hg38-ref"
  1523. literal "false"
  1524. \end_inset
  1525. .
  1526. Each quantification was tested with both Ensembl transcripts and UCSC known
  1527. gene annotations [CITE? Also which versions of each?].
  1528. Comparisons of downstream results from each combination of quantification
  1529. method and reference revealed that all quantifications gave broadly similar
  1530. results for most genes, so shoal with the Ensembl annotation was chosen
  1531. as the method theoretically most likely to partially mitigate some of the
  1532. batch effect in the data.
  1533. \end_layout
  1534. \begin_layout Standard
  1535. \begin_inset Float figure
  1536. wide false
  1537. sideways false
  1538. status collapsed
  1539. \begin_layout Plain Layout
  1540. \align center
  1541. \begin_inset Float figure
  1542. wide false
  1543. sideways false
  1544. status open
  1545. \begin_layout Plain Layout
  1546. \align center
  1547. \begin_inset Graphics
  1548. filename graphics/CD4-csaw/RNA-seq/PCA-no-batchsub-CROP.png
  1549. lyxscale 25
  1550. width 75col%
  1551. groupId rna-pca-subfig
  1552. \end_inset
  1553. \end_layout
  1554. \begin_layout Plain Layout
  1555. \begin_inset Caption Standard
  1556. \begin_layout Plain Layout
  1557. \series bold
  1558. \begin_inset CommandInset label
  1559. LatexCommand label
  1560. name "fig:RNA-PCA-no-batchsub"
  1561. \end_inset
  1562. Before batch correction
  1563. \end_layout
  1564. \end_inset
  1565. \end_layout
  1566. \end_inset
  1567. \end_layout
  1568. \begin_layout Plain Layout
  1569. \align center
  1570. \begin_inset Float figure
  1571. wide false
  1572. sideways false
  1573. status open
  1574. \begin_layout Plain Layout
  1575. \align center
  1576. \begin_inset Graphics
  1577. filename graphics/CD4-csaw/RNA-seq/PCA-combat-batchsub-CROP.png
  1578. lyxscale 25
  1579. width 75col%
  1580. groupId rna-pca-subfig
  1581. \end_inset
  1582. \end_layout
  1583. \begin_layout Plain Layout
  1584. \begin_inset Caption Standard
  1585. \begin_layout Plain Layout
  1586. \series bold
  1587. \begin_inset CommandInset label
  1588. LatexCommand label
  1589. name "fig:RNA-PCA-ComBat-batchsub"
  1590. \end_inset
  1591. After batch correction with ComBat
  1592. \end_layout
  1593. \end_inset
  1594. \end_layout
  1595. \end_inset
  1596. \end_layout
  1597. \begin_layout Plain Layout
  1598. \begin_inset Caption Standard
  1599. \begin_layout Plain Layout
  1600. \series bold
  1601. \begin_inset CommandInset label
  1602. LatexCommand label
  1603. name "fig:RNA-PCA"
  1604. \end_inset
  1605. PCoA plots of RNA-seq data showing effect of batch correction.
  1606. \end_layout
  1607. \end_inset
  1608. \end_layout
  1609. \end_inset
  1610. \end_layout
  1611. \begin_layout Standard
  1612. Due to an error in sample preparation, the RNA from the samples for days
  1613. 0 and 5 were sequenced using a different kit than those for days 1 and
  1614. 14.
  1615. This induced a substantial batch effect in the data due to differences
  1616. in sequencing biases between the two kits, and this batch effect is unfortunate
  1617. ly confounded with the time point variable (Figure
  1618. \begin_inset CommandInset ref
  1619. LatexCommand ref
  1620. reference "fig:RNA-PCA-no-batchsub"
  1621. plural "false"
  1622. caps "false"
  1623. noprefix "false"
  1624. \end_inset
  1625. ).
  1626. To do the best possible analysis with this data, this batch effect was
  1627. subtracted out from the data using ComBat
  1628. \begin_inset CommandInset citation
  1629. LatexCommand cite
  1630. key "Johnson2007"
  1631. literal "false"
  1632. \end_inset
  1633. , ignoring the time point variable due to the confounding with the batch
  1634. variable.
  1635. The result is a marked improvement, but the unavoidable confounding with
  1636. time point means that certain real patterns of gene expression will be
  1637. indistinguishable from the batch effect and subtracted out as a result.
  1638. Specifically, any
  1639. \begin_inset Quotes eld
  1640. \end_inset
  1641. zig-zag
  1642. \begin_inset Quotes erd
  1643. \end_inset
  1644. pattern, such as a gene whose expression goes up on day 1, down on day
  1645. 5, and back up again on day 14, will be attenuated or eliminated entirely.
  1646. In the context of a T-cell activation time course, it is unlikely that
  1647. many genes of interest will follow such an expression pattern, so this
  1648. loss was deemed an acceptable cost for correcting the batch effect.
  1649. \end_layout
  1650. \begin_layout Standard
  1651. \begin_inset Float figure
  1652. wide false
  1653. sideways false
  1654. status collapsed
  1655. \begin_layout Plain Layout
  1656. \begin_inset Flex TODO Note (inline)
  1657. status open
  1658. \begin_layout Plain Layout
  1659. Just take the top row
  1660. \end_layout
  1661. \end_inset
  1662. \end_layout
  1663. \begin_layout Plain Layout
  1664. \align center
  1665. \begin_inset Graphics
  1666. filename graphics/CD4-csaw/RNA-seq/weights-vs-covars-CROP.png
  1667. lyxscale 25
  1668. width 100col%
  1669. groupId colwidth-raster
  1670. \end_inset
  1671. \end_layout
  1672. \begin_layout Plain Layout
  1673. \begin_inset Caption Standard
  1674. \begin_layout Plain Layout
  1675. \series bold
  1676. \begin_inset CommandInset label
  1677. LatexCommand label
  1678. name "fig:RNA-seq-weights-vs-covars"
  1679. \end_inset
  1680. RNA-seq sample weights, grouped by experimental and technical covariates.
  1681. \end_layout
  1682. \end_inset
  1683. \end_layout
  1684. \end_inset
  1685. \end_layout
  1686. \begin_layout Standard
  1687. However, removing the systematic component of the batch effect still leaves
  1688. the noise component.
  1689. The gene quantifications from the first batch are substantially noisier
  1690. than those in the second batch.
  1691. This analysis corrected for this by using limma's sample weighting method
  1692. to assign lower weights to the noisy samples of batch 1
  1693. \begin_inset CommandInset citation
  1694. LatexCommand cite
  1695. key "Ritchie2006,Liu2015"
  1696. literal "false"
  1697. \end_inset
  1698. .
  1699. The resulting analysis gives an accurate assessment of statistical significance
  1700. for all comparisons, which unfortunately means a loss of statistical power
  1701. for comparisons involving samples in batch 1.
  1702. \end_layout
  1703. \begin_layout Standard
  1704. In any case, the RNA-seq counts were first normalized using trimmed mean
  1705. of M-values
  1706. \begin_inset CommandInset citation
  1707. LatexCommand cite
  1708. key "Robinson2010"
  1709. literal "false"
  1710. \end_inset
  1711. , converted to normalized logCPM with quality weights using
  1712. \begin_inset Flex Code
  1713. status open
  1714. \begin_layout Plain Layout
  1715. voomWithQualityWeights
  1716. \end_layout
  1717. \end_inset
  1718. \begin_inset CommandInset citation
  1719. LatexCommand cite
  1720. key "Law2013,Liu2015"
  1721. literal "false"
  1722. \end_inset
  1723. , and batch-corrected at this point using ComBat.
  1724. A linear model was fit to the batch-corrected, quality-weighted data for
  1725. each gene using limma, and each gene was tested for differential expression
  1726. using limma's empirical Bayes moderated
  1727. \begin_inset Formula $t$
  1728. \end_inset
  1729. -test
  1730. \begin_inset CommandInset citation
  1731. LatexCommand cite
  1732. key "Smyth2005,Law2013,Phipson2013"
  1733. literal "false"
  1734. \end_inset
  1735. .
  1736. \end_layout
  1737. \begin_layout Subsection
  1738. ChIP-seq differential modification analysis
  1739. \end_layout
  1740. \begin_layout Standard
  1741. \begin_inset Float figure
  1742. wide false
  1743. sideways false
  1744. status collapsed
  1745. \begin_layout Plain Layout
  1746. \align center
  1747. \begin_inset Float figure
  1748. wide false
  1749. sideways false
  1750. status open
  1751. \begin_layout Plain Layout
  1752. \align center
  1753. \begin_inset Graphics
  1754. filename graphics/CD4-csaw/csaw/CCF-plots-noBL-PAGE2-CROP.pdf
  1755. lyxscale 50
  1756. height 40theight%
  1757. groupId ccf-subfig
  1758. \end_inset
  1759. \end_layout
  1760. \begin_layout Plain Layout
  1761. \begin_inset Caption Standard
  1762. \begin_layout Plain Layout
  1763. \series bold
  1764. \begin_inset CommandInset label
  1765. LatexCommand label
  1766. name "fig:CCF-without-blacklist"
  1767. \end_inset
  1768. Cross-correlation plots without removing blacklisted reads.
  1769. \series default
  1770. Without blacklisting, many artifactual peaks are visible in the cross-correlatio
  1771. ns of the ChIP-seq samples, and the peak at the true fragment size (147
  1772. \begin_inset space ~
  1773. \end_inset
  1774. bp) is frequently overshadowed by the artifactual peak at the read length
  1775. (100
  1776. \begin_inset space ~
  1777. \end_inset
  1778. bp).
  1779. \end_layout
  1780. \end_inset
  1781. \end_layout
  1782. \end_inset
  1783. \end_layout
  1784. \begin_layout Plain Layout
  1785. \align center
  1786. \begin_inset Float figure
  1787. wide false
  1788. sideways false
  1789. status open
  1790. \begin_layout Plain Layout
  1791. \align center
  1792. \begin_inset Graphics
  1793. filename graphics/CD4-csaw/csaw/CCF-plots-PAGE2-CROP.pdf
  1794. lyxscale 50
  1795. height 40theight%
  1796. groupId ccf-subfig
  1797. \end_inset
  1798. \end_layout
  1799. \begin_layout Plain Layout
  1800. \begin_inset Caption Standard
  1801. \begin_layout Plain Layout
  1802. \series bold
  1803. \begin_inset CommandInset label
  1804. LatexCommand label
  1805. name "fig:CCF-with-blacklist"
  1806. \end_inset
  1807. Cross-correlation plots with blacklisted reads removed.
  1808. \series default
  1809. After blacklisting, most ChIP-seq samples have clean-looking periodic cross-cor
  1810. relation plots, with the largest peak around 147
  1811. \begin_inset space ~
  1812. \end_inset
  1813. bp, the expected size for a fragment of DNA from a single nucleosome, and
  1814. little to no peak at the read length, 100
  1815. \begin_inset space ~
  1816. \end_inset
  1817. bp.
  1818. \end_layout
  1819. \end_inset
  1820. \end_layout
  1821. \end_inset
  1822. \end_layout
  1823. \begin_layout Plain Layout
  1824. \begin_inset Caption Standard
  1825. \begin_layout Plain Layout
  1826. \series bold
  1827. \begin_inset CommandInset label
  1828. LatexCommand label
  1829. name "fig:CCF-master"
  1830. \end_inset
  1831. Strand cross-correlation plots for ChIP-seq data, before and after blacklisting.
  1832. \end_layout
  1833. \end_inset
  1834. \end_layout
  1835. \end_inset
  1836. \end_layout
  1837. \begin_layout Standard
  1838. \begin_inset Note Note
  1839. status open
  1840. \begin_layout Plain Layout
  1841. \begin_inset Float figure
  1842. wide false
  1843. sideways false
  1844. status collapsed
  1845. \begin_layout Plain Layout
  1846. \align center
  1847. \begin_inset Graphics
  1848. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-sample-MAplot-bins-CROP.png
  1849. lyxscale 25
  1850. width 100col%
  1851. groupId colwidth-raster
  1852. \end_inset
  1853. \end_layout
  1854. \begin_layout Plain Layout
  1855. \begin_inset Caption Standard
  1856. \begin_layout Plain Layout
  1857. \series bold
  1858. \begin_inset CommandInset label
  1859. LatexCommand label
  1860. name "fig:MA-plot-bigbins"
  1861. \end_inset
  1862. MA plot of H3K4me2 read counts in 10kb bins for two arbitrary samples.
  1863. \end_layout
  1864. \end_inset
  1865. \end_layout
  1866. \end_inset
  1867. \end_layout
  1868. \end_inset
  1869. \end_layout
  1870. \begin_layout Standard
  1871. \begin_inset Flex TODO Note (inline)
  1872. status open
  1873. \begin_layout Plain Layout
  1874. Be consistent about use of
  1875. \begin_inset Quotes eld
  1876. \end_inset
  1877. differential binding
  1878. \begin_inset Quotes erd
  1879. \end_inset
  1880. vs
  1881. \begin_inset Quotes eld
  1882. \end_inset
  1883. differential modification
  1884. \begin_inset Quotes erd
  1885. \end_inset
  1886. throughout this chapter.
  1887. The latter is usually preferred.
  1888. \end_layout
  1889. \end_inset
  1890. \end_layout
  1891. \begin_layout Standard
  1892. Sequence reads were retrieved from SRA
  1893. \begin_inset CommandInset citation
  1894. LatexCommand cite
  1895. key "Leinonen2011"
  1896. literal "false"
  1897. \end_inset
  1898. .
  1899. ChIP-seq (and input) reads were aligned to GRCh38 genome assembly using
  1900. Bowtie 2
  1901. \begin_inset CommandInset citation
  1902. LatexCommand cite
  1903. key "Langmead2012,Schneider2017,gh-hg38-ref"
  1904. literal "false"
  1905. \end_inset
  1906. .
  1907. Artifact regions were annotated using a custom implementation of the GreyListCh
  1908. IP algorithm, and these
  1909. \begin_inset Quotes eld
  1910. \end_inset
  1911. greylists
  1912. \begin_inset Quotes erd
  1913. \end_inset
  1914. were merged with the published ENCODE blacklists
  1915. \begin_inset CommandInset citation
  1916. LatexCommand cite
  1917. key "greylistchip,Amemiya2019,Dunham2012,gh-cd4-csaw"
  1918. literal "false"
  1919. \end_inset
  1920. .
  1921. Any read or called peak overlapping one of these regions was regarded as
  1922. artifactual and excluded from downstream analyses.
  1923. Figure
  1924. \begin_inset CommandInset ref
  1925. LatexCommand ref
  1926. reference "fig:CCF-master"
  1927. plural "false"
  1928. caps "false"
  1929. noprefix "false"
  1930. \end_inset
  1931. shows the improvement after blacklisting in the strand cross-correlation
  1932. plots, a common quality control plot for ChIP-seq data.
  1933. Peaks were called using epic, an implementation of the SICER algorithm
  1934. \begin_inset CommandInset citation
  1935. LatexCommand cite
  1936. key "Zang2009,gh-epic"
  1937. literal "false"
  1938. \end_inset
  1939. .
  1940. Peaks were also called separately using MACS, but MACS was determined to
  1941. be a poor fit for the data, and these peak calls are not used in any further
  1942. analyses
  1943. \begin_inset CommandInset citation
  1944. LatexCommand cite
  1945. key "Zhang2008"
  1946. literal "false"
  1947. \end_inset
  1948. .
  1949. Consensus peaks were determined by applying the irreproducible discovery
  1950. rate (IDR) framework
  1951. \begin_inset CommandInset citation
  1952. LatexCommand cite
  1953. key "Li2006,gh-idr"
  1954. literal "false"
  1955. \end_inset
  1956. to find peaks consistently called in the same locations across all 4 donors.
  1957. \end_layout
  1958. \begin_layout Standard
  1959. Promoters were defined by computing the distance from each annotated TSS
  1960. to the nearest called peak and examining the distribution of distances,
  1961. observing that peaks for each histone mark were enriched within a certain
  1962. distance of the TSS.
  1963. For H3K4me2 and H3K4me3, this distance was about 1
  1964. \begin_inset space ~
  1965. \end_inset
  1966. kb, while for H3K27me3 it was 2.5
  1967. \begin_inset space ~
  1968. \end_inset
  1969. kb.
  1970. These distances were used as an
  1971. \begin_inset Quotes eld
  1972. \end_inset
  1973. effective promoter radius
  1974. \begin_inset Quotes erd
  1975. \end_inset
  1976. for each mark.
  1977. The promoter region for each gene was defined as the region of the genome
  1978. within this distance upstream or downstream of the gene's annotated TSS.
  1979. For genes with multiple annotated TSSs, a promoter region was defined for
  1980. each TSS individually, and any promoters that overlapped (due to multiple
  1981. TSSs being closer than 2 times the radius) were merged into one large promoter.
  1982. Thus, some genes had multiple promoters defined, which were each analyzed
  1983. separately for differential modification.
  1984. \end_layout
  1985. \begin_layout Standard
  1986. \begin_inset Float figure
  1987. wide false
  1988. sideways false
  1989. status collapsed
  1990. \begin_layout Plain Layout
  1991. \begin_inset Float figure
  1992. wide false
  1993. sideways false
  1994. status collapsed
  1995. \begin_layout Plain Layout
  1996. \align center
  1997. \begin_inset Graphics
  1998. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-PCA-raw-CROP.png
  1999. lyxscale 25
  2000. width 45col%
  2001. groupId pcoa-subfig
  2002. \end_inset
  2003. \end_layout
  2004. \begin_layout Plain Layout
  2005. \begin_inset Caption Standard
  2006. \begin_layout Plain Layout
  2007. \series bold
  2008. \begin_inset CommandInset label
  2009. LatexCommand label
  2010. name "fig:PCoA-H3K4me2-bad"
  2011. \end_inset
  2012. H3K4me2, no correction
  2013. \end_layout
  2014. \end_inset
  2015. \end_layout
  2016. \end_inset
  2017. \begin_inset space \hfill{}
  2018. \end_inset
  2019. \begin_inset Float figure
  2020. wide false
  2021. sideways false
  2022. status collapsed
  2023. \begin_layout Plain Layout
  2024. \align center
  2025. \begin_inset Graphics
  2026. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-PCA-SVsub-CROP.png
  2027. lyxscale 25
  2028. width 45col%
  2029. groupId pcoa-subfig
  2030. \end_inset
  2031. \end_layout
  2032. \begin_layout Plain Layout
  2033. \begin_inset Caption Standard
  2034. \begin_layout Plain Layout
  2035. \series bold
  2036. \begin_inset CommandInset label
  2037. LatexCommand label
  2038. name "fig:PCoA-H3K4me2-good"
  2039. \end_inset
  2040. H3K4me2, SVs subtracted
  2041. \end_layout
  2042. \end_inset
  2043. \end_layout
  2044. \end_inset
  2045. \end_layout
  2046. \begin_layout Plain Layout
  2047. \begin_inset Float figure
  2048. wide false
  2049. sideways false
  2050. status collapsed
  2051. \begin_layout Plain Layout
  2052. \align center
  2053. \begin_inset Graphics
  2054. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-PCA-raw-CROP.png
  2055. lyxscale 25
  2056. width 45col%
  2057. groupId pcoa-subfig
  2058. \end_inset
  2059. \end_layout
  2060. \begin_layout Plain Layout
  2061. \begin_inset Caption Standard
  2062. \begin_layout Plain Layout
  2063. \series bold
  2064. \begin_inset CommandInset label
  2065. LatexCommand label
  2066. name "fig:PCoA-H3K4me3-bad"
  2067. \end_inset
  2068. H3K4me3, no correction
  2069. \end_layout
  2070. \end_inset
  2071. \end_layout
  2072. \end_inset
  2073. \begin_inset space \hfill{}
  2074. \end_inset
  2075. \begin_inset Float figure
  2076. wide false
  2077. sideways false
  2078. status collapsed
  2079. \begin_layout Plain Layout
  2080. \align center
  2081. \begin_inset Graphics
  2082. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-PCA-SVsub-CROP.png
  2083. lyxscale 25
  2084. width 45col%
  2085. groupId pcoa-subfig
  2086. \end_inset
  2087. \end_layout
  2088. \begin_layout Plain Layout
  2089. \begin_inset Caption Standard
  2090. \begin_layout Plain Layout
  2091. \series bold
  2092. \begin_inset CommandInset label
  2093. LatexCommand label
  2094. name "fig:PCoA-H3K4me3-good"
  2095. \end_inset
  2096. H3K4me3, SVs subtracted
  2097. \end_layout
  2098. \end_inset
  2099. \end_layout
  2100. \end_inset
  2101. \end_layout
  2102. \begin_layout Plain Layout
  2103. \begin_inset Float figure
  2104. wide false
  2105. sideways false
  2106. status collapsed
  2107. \begin_layout Plain Layout
  2108. \align center
  2109. \begin_inset Graphics
  2110. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-PCA-raw-CROP.png
  2111. lyxscale 25
  2112. width 45col%
  2113. groupId pcoa-subfig
  2114. \end_inset
  2115. \end_layout
  2116. \begin_layout Plain Layout
  2117. \begin_inset Caption Standard
  2118. \begin_layout Plain Layout
  2119. \series bold
  2120. \begin_inset CommandInset label
  2121. LatexCommand label
  2122. name "fig:PCoA-H3K27me3-bad"
  2123. \end_inset
  2124. H3K27me3, no correction
  2125. \end_layout
  2126. \end_inset
  2127. \end_layout
  2128. \end_inset
  2129. \begin_inset space \hfill{}
  2130. \end_inset
  2131. \begin_inset Float figure
  2132. wide false
  2133. sideways false
  2134. status collapsed
  2135. \begin_layout Plain Layout
  2136. \align center
  2137. \begin_inset Graphics
  2138. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-PCA-SVsub-CROP.png
  2139. lyxscale 25
  2140. width 45col%
  2141. groupId pcoa-subfig
  2142. \end_inset
  2143. \end_layout
  2144. \begin_layout Plain Layout
  2145. \begin_inset Caption Standard
  2146. \begin_layout Plain Layout
  2147. \series bold
  2148. \begin_inset CommandInset label
  2149. LatexCommand label
  2150. name "fig:PCoA-H3K27me3-good"
  2151. \end_inset
  2152. H3K27me3, SVs subtracted
  2153. \end_layout
  2154. \end_inset
  2155. \end_layout
  2156. \end_inset
  2157. \end_layout
  2158. \begin_layout Plain Layout
  2159. \begin_inset Caption Standard
  2160. \begin_layout Plain Layout
  2161. \series bold
  2162. \begin_inset CommandInset label
  2163. LatexCommand label
  2164. name "fig:PCoA-ChIP"
  2165. \end_inset
  2166. PCoA plots of ChIP-seq sliding window data, before and after subtracting
  2167. surrogate variables (SVs).
  2168. \end_layout
  2169. \end_inset
  2170. \end_layout
  2171. \end_inset
  2172. \end_layout
  2173. \begin_layout Standard
  2174. Reads in promoters, peaks, and sliding windows across the genome were counted
  2175. and normalized using csaw and analyzed for differential modification using
  2176. edgeR
  2177. \begin_inset CommandInset citation
  2178. LatexCommand cite
  2179. key "Lun2014,Lun2015a,Lund2012,Phipson2016"
  2180. literal "false"
  2181. \end_inset
  2182. .
  2183. Unobserved confounding factors in the ChIP-seq data were corrected using
  2184. SVA
  2185. \begin_inset CommandInset citation
  2186. LatexCommand cite
  2187. key "Leek2007,Leek2014"
  2188. literal "false"
  2189. \end_inset
  2190. .
  2191. Principal coordinate plots of the promoter count data for each histone
  2192. mark before and after subtracting surrogate variable effects are shown
  2193. in Figure
  2194. \begin_inset CommandInset ref
  2195. LatexCommand ref
  2196. reference "fig:PCoA-ChIP"
  2197. plural "false"
  2198. caps "false"
  2199. noprefix "false"
  2200. \end_inset
  2201. .
  2202. \end_layout
  2203. \begin_layout Standard
  2204. To investigate whether the location of a peak within the promoter region
  2205. was important,
  2206. \begin_inset Quotes eld
  2207. \end_inset
  2208. relative coverage profiles
  2209. \begin_inset Quotes erd
  2210. \end_inset
  2211. were generated.
  2212. First, 500-bp sliding windows were tiled around each annotated TSS: one
  2213. window centered on the TSS itself, and 10 windows each upstream and downstream,
  2214. thus covering a 10.5-kb region centered on the TSS with 21 windows.
  2215. Reads in each window for each TSS were counted in each sample, and the
  2216. counts were normalized and converted to log CPM as in the differential
  2217. modification analysis.
  2218. Then, the logCPM values within each promoter were normalized to an average
  2219. of zero, such that each window's normalized abundance now represents the
  2220. relative read depth of that window compared to all other windows in the
  2221. same promoter.
  2222. The normalized abundance values for each window in a promoter are collectively
  2223. referred to as that promoter's
  2224. \begin_inset Quotes eld
  2225. \end_inset
  2226. relative coverage profile
  2227. \begin_inset Quotes erd
  2228. \end_inset
  2229. .
  2230. \end_layout
  2231. \begin_layout Subsection
  2232. MOFA recovers biologically relevant variation from blind analysis by correlating
  2233. across datasets
  2234. \end_layout
  2235. \begin_layout Standard
  2236. \begin_inset ERT
  2237. status open
  2238. \begin_layout Plain Layout
  2239. \backslash
  2240. afterpage{
  2241. \end_layout
  2242. \begin_layout Plain Layout
  2243. \backslash
  2244. begin{landscape}
  2245. \end_layout
  2246. \end_inset
  2247. \end_layout
  2248. \begin_layout Standard
  2249. \begin_inset Float figure
  2250. wide false
  2251. sideways false
  2252. status open
  2253. \begin_layout Plain Layout
  2254. \begin_inset Float figure
  2255. wide false
  2256. sideways false
  2257. status open
  2258. \begin_layout Plain Layout
  2259. \align center
  2260. \begin_inset Graphics
  2261. filename graphics/CD4-csaw/MOFA-varExplaiend-matrix-CROP.png
  2262. lyxscale 25
  2263. width 45col%
  2264. groupId mofa-subfig
  2265. \end_inset
  2266. \end_layout
  2267. \begin_layout Plain Layout
  2268. \begin_inset Caption Standard
  2269. \begin_layout Plain Layout
  2270. \series bold
  2271. \begin_inset CommandInset label
  2272. LatexCommand label
  2273. name "fig:mofa-varexplained"
  2274. \end_inset
  2275. Variance explained in each data set by each latent factor estimated by MOFA.
  2276. \series default
  2277. For each latent factor (LF) learned by MOFA, the variance explained by
  2278. that factor in each data set (
  2279. \begin_inset Quotes eld
  2280. \end_inset
  2281. view
  2282. \begin_inset Quotes erd
  2283. \end_inset
  2284. ) is shown by the shading of the cells in the lower section.
  2285. The upper section shows the total fraction of each data set's variance
  2286. that is explained by all LFs combined.
  2287. \end_layout
  2288. \end_inset
  2289. \end_layout
  2290. \end_inset
  2291. \begin_inset space \hfill{}
  2292. \end_inset
  2293. \begin_inset Float figure
  2294. wide false
  2295. sideways false
  2296. status open
  2297. \begin_layout Plain Layout
  2298. \align center
  2299. \begin_inset Graphics
  2300. filename graphics/CD4-csaw/MOFA-LF-scatter-CROP.png
  2301. lyxscale 25
  2302. width 45col%
  2303. groupId mofa-subfig
  2304. \end_inset
  2305. \end_layout
  2306. \begin_layout Plain Layout
  2307. \begin_inset Caption Standard
  2308. \begin_layout Plain Layout
  2309. \series bold
  2310. \begin_inset CommandInset label
  2311. LatexCommand label
  2312. name "fig:mofa-lf-scatter"
  2313. \end_inset
  2314. Scatter plots of specific pairs of MOFA latent factors.
  2315. \series default
  2316. LFs 1, 4, and 5 explain substantial variation in all data sets, so they
  2317. are plotted against each other in order to reveal patterns of variation
  2318. that are shared across all data sets.
  2319. \end_layout
  2320. \end_inset
  2321. \end_layout
  2322. \end_inset
  2323. \end_layout
  2324. \begin_layout Plain Layout
  2325. \begin_inset Caption Standard
  2326. \begin_layout Plain Layout
  2327. \series bold
  2328. \begin_inset CommandInset label
  2329. LatexCommand label
  2330. name "fig:MOFA-master"
  2331. \end_inset
  2332. MOFA latent factors separate technical confounders from
  2333. \end_layout
  2334. \end_inset
  2335. \end_layout
  2336. \end_inset
  2337. \end_layout
  2338. \begin_layout Standard
  2339. \begin_inset ERT
  2340. status open
  2341. \begin_layout Plain Layout
  2342. \backslash
  2343. end{landscape}
  2344. \end_layout
  2345. \begin_layout Plain Layout
  2346. }
  2347. \end_layout
  2348. \end_inset
  2349. \end_layout
  2350. \begin_layout Standard
  2351. MOFA was run on all the ChIP-seq windows overlapping consensus peaks for
  2352. each histone mark, as well as the RNA-seq data, in order to identify patterns
  2353. of coordinated variation across all data sets
  2354. \begin_inset CommandInset citation
  2355. LatexCommand cite
  2356. key "Argelaguet2018"
  2357. literal "false"
  2358. \end_inset
  2359. .
  2360. The results are summarized in Figure
  2361. \begin_inset CommandInset ref
  2362. LatexCommand ref
  2363. reference "fig:MOFA-master"
  2364. plural "false"
  2365. caps "false"
  2366. noprefix "false"
  2367. \end_inset
  2368. .
  2369. Latent factors 1, 4, and 5 were determined to explain the most variation
  2370. consistently across all data sets (Figure
  2371. \begin_inset CommandInset ref
  2372. LatexCommand ref
  2373. reference "fig:mofa-varexplained"
  2374. plural "false"
  2375. caps "false"
  2376. noprefix "false"
  2377. \end_inset
  2378. ), and scatter plots of these factors show that they also correlate best
  2379. with the experimental factors (Figure
  2380. \begin_inset CommandInset ref
  2381. LatexCommand ref
  2382. reference "fig:mofa-lf-scatter"
  2383. plural "false"
  2384. caps "false"
  2385. noprefix "false"
  2386. \end_inset
  2387. ).
  2388. Latent factor 2 captures the batch effect in the RNA-seq data.
  2389. Removing the effect of LF2 using MOFA theoretically yields a batch correction
  2390. that does not depend on knowing the experimental factors.
  2391. When this was attempted, the resulting batch correction was comparable
  2392. to ComBat (see Figure
  2393. \begin_inset CommandInset ref
  2394. LatexCommand ref
  2395. reference "fig:RNA-PCA-ComBat-batchsub"
  2396. plural "false"
  2397. caps "false"
  2398. noprefix "false"
  2399. \end_inset
  2400. ), indicating that the ComBat-based batch correction has little room for
  2401. improvement given the problems with the data set.
  2402. \end_layout
  2403. \begin_layout Standard
  2404. \begin_inset Note Note
  2405. status collapsed
  2406. \begin_layout Plain Layout
  2407. \begin_inset Float figure
  2408. wide false
  2409. sideways false
  2410. status open
  2411. \begin_layout Plain Layout
  2412. \align center
  2413. \begin_inset Graphics
  2414. filename graphics/CD4-csaw/MOFA-batch-correct-CROP.png
  2415. lyxscale 25
  2416. width 100col%
  2417. groupId colwidth-raster
  2418. \end_inset
  2419. \end_layout
  2420. \begin_layout Plain Layout
  2421. \begin_inset Caption Standard
  2422. \begin_layout Plain Layout
  2423. \series bold
  2424. \begin_inset CommandInset label
  2425. LatexCommand label
  2426. name "fig:mofa-batchsub"
  2427. \end_inset
  2428. Result of RNA-seq batch-correction using MOFA latent factors
  2429. \end_layout
  2430. \end_inset
  2431. \end_layout
  2432. \end_inset
  2433. \end_layout
  2434. \end_inset
  2435. \end_layout
  2436. \begin_layout Section
  2437. Results
  2438. \end_layout
  2439. \begin_layout Standard
  2440. \begin_inset Flex TODO Note (inline)
  2441. status open
  2442. \begin_layout Plain Layout
  2443. Focus on what hypotheses were tested, then select figures that show how
  2444. those hypotheses were tested, even if the result is a negative.
  2445. Not every interesting result needs to be in here.
  2446. Chapter should tell a story.
  2447. \end_layout
  2448. \end_inset
  2449. \end_layout
  2450. \begin_layout Standard
  2451. \begin_inset Flex TODO Note (inline)
  2452. status open
  2453. \begin_layout Plain Layout
  2454. Maybe reorder these sections to do RNA-seq, then ChIP-seq, then combined
  2455. analyses?
  2456. \end_layout
  2457. \end_inset
  2458. \end_layout
  2459. \begin_layout Subsection
  2460. Interpretation of RNA-seq analysis is limited by a major confounding factor
  2461. \end_layout
  2462. \begin_layout Standard
  2463. \begin_inset Float table
  2464. wide false
  2465. sideways false
  2466. status collapsed
  2467. \begin_layout Plain Layout
  2468. \align center
  2469. \begin_inset Tabular
  2470. <lyxtabular version="3" rows="11" columns="3">
  2471. <features tabularvalignment="middle">
  2472. <column alignment="center" valignment="top">
  2473. <column alignment="center" valignment="top">
  2474. <column alignment="center" valignment="top">
  2475. <row>
  2476. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2477. \begin_inset Text
  2478. \begin_layout Plain Layout
  2479. Test
  2480. \end_layout
  2481. \end_inset
  2482. </cell>
  2483. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2484. \begin_inset Text
  2485. \begin_layout Plain Layout
  2486. Est.
  2487. non-null
  2488. \end_layout
  2489. \end_inset
  2490. </cell>
  2491. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2492. \begin_inset Text
  2493. \begin_layout Plain Layout
  2494. \begin_inset Formula $\mathrm{FDR}\le10\%$
  2495. \end_inset
  2496. \end_layout
  2497. \end_inset
  2498. </cell>
  2499. </row>
  2500. <row>
  2501. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2502. \begin_inset Text
  2503. \begin_layout Plain Layout
  2504. Naive Day 0 vs Day 1
  2505. \end_layout
  2506. \end_inset
  2507. </cell>
  2508. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2509. \begin_inset Text
  2510. \begin_layout Plain Layout
  2511. 5992
  2512. \end_layout
  2513. \end_inset
  2514. </cell>
  2515. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2516. \begin_inset Text
  2517. \begin_layout Plain Layout
  2518. 1613
  2519. \end_layout
  2520. \end_inset
  2521. </cell>
  2522. </row>
  2523. <row>
  2524. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2525. \begin_inset Text
  2526. \begin_layout Plain Layout
  2527. Naive Day 0 vs Day 5
  2528. \end_layout
  2529. \end_inset
  2530. </cell>
  2531. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2532. \begin_inset Text
  2533. \begin_layout Plain Layout
  2534. 3038
  2535. \end_layout
  2536. \end_inset
  2537. </cell>
  2538. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2539. \begin_inset Text
  2540. \begin_layout Plain Layout
  2541. 32
  2542. \end_layout
  2543. \end_inset
  2544. </cell>
  2545. </row>
  2546. <row>
  2547. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2548. \begin_inset Text
  2549. \begin_layout Plain Layout
  2550. Naive Day 0 vs Day 14
  2551. \end_layout
  2552. \end_inset
  2553. </cell>
  2554. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2555. \begin_inset Text
  2556. \begin_layout Plain Layout
  2557. 1870
  2558. \end_layout
  2559. \end_inset
  2560. </cell>
  2561. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2562. \begin_inset Text
  2563. \begin_layout Plain Layout
  2564. 190
  2565. \end_layout
  2566. \end_inset
  2567. </cell>
  2568. </row>
  2569. <row>
  2570. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2571. \begin_inset Text
  2572. \begin_layout Plain Layout
  2573. Memory Day 0 vs Day 1
  2574. \end_layout
  2575. \end_inset
  2576. </cell>
  2577. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2578. \begin_inset Text
  2579. \begin_layout Plain Layout
  2580. 3195
  2581. \end_layout
  2582. \end_inset
  2583. </cell>
  2584. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2585. \begin_inset Text
  2586. \begin_layout Plain Layout
  2587. 411
  2588. \end_layout
  2589. \end_inset
  2590. </cell>
  2591. </row>
  2592. <row>
  2593. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2594. \begin_inset Text
  2595. \begin_layout Plain Layout
  2596. Memory Day 0 vs Day 5
  2597. \end_layout
  2598. \end_inset
  2599. </cell>
  2600. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2601. \begin_inset Text
  2602. \begin_layout Plain Layout
  2603. 2688
  2604. \end_layout
  2605. \end_inset
  2606. </cell>
  2607. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2608. \begin_inset Text
  2609. \begin_layout Plain Layout
  2610. 18
  2611. \end_layout
  2612. \end_inset
  2613. </cell>
  2614. </row>
  2615. <row>
  2616. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2617. \begin_inset Text
  2618. \begin_layout Plain Layout
  2619. Memory Day 0 vs Day 14
  2620. \end_layout
  2621. \end_inset
  2622. </cell>
  2623. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2624. \begin_inset Text
  2625. \begin_layout Plain Layout
  2626. 1911
  2627. \end_layout
  2628. \end_inset
  2629. </cell>
  2630. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2631. \begin_inset Text
  2632. \begin_layout Plain Layout
  2633. 227
  2634. \end_layout
  2635. \end_inset
  2636. </cell>
  2637. </row>
  2638. <row>
  2639. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2640. \begin_inset Text
  2641. \begin_layout Plain Layout
  2642. Day 0 Naive vs Memory
  2643. \end_layout
  2644. \end_inset
  2645. </cell>
  2646. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2647. \begin_inset Text
  2648. \begin_layout Plain Layout
  2649. 0
  2650. \end_layout
  2651. \end_inset
  2652. </cell>
  2653. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2654. \begin_inset Text
  2655. \begin_layout Plain Layout
  2656. 2
  2657. \end_layout
  2658. \end_inset
  2659. </cell>
  2660. </row>
  2661. <row>
  2662. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2663. \begin_inset Text
  2664. \begin_layout Plain Layout
  2665. Day 1 Naive vs Memory
  2666. \end_layout
  2667. \end_inset
  2668. </cell>
  2669. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2670. \begin_inset Text
  2671. \begin_layout Plain Layout
  2672. 9167
  2673. \end_layout
  2674. \end_inset
  2675. </cell>
  2676. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2677. \begin_inset Text
  2678. \begin_layout Plain Layout
  2679. 5532
  2680. \end_layout
  2681. \end_inset
  2682. </cell>
  2683. </row>
  2684. <row>
  2685. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2686. \begin_inset Text
  2687. \begin_layout Plain Layout
  2688. Day 5 Naive vs Memory
  2689. \end_layout
  2690. \end_inset
  2691. </cell>
  2692. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2693. \begin_inset Text
  2694. \begin_layout Plain Layout
  2695. 0
  2696. \end_layout
  2697. \end_inset
  2698. </cell>
  2699. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2700. \begin_inset Text
  2701. \begin_layout Plain Layout
  2702. 0
  2703. \end_layout
  2704. \end_inset
  2705. </cell>
  2706. </row>
  2707. <row>
  2708. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2709. \begin_inset Text
  2710. \begin_layout Plain Layout
  2711. Day 14 Naive vs Memory
  2712. \end_layout
  2713. \end_inset
  2714. </cell>
  2715. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2716. \begin_inset Text
  2717. \begin_layout Plain Layout
  2718. 6446
  2719. \end_layout
  2720. \end_inset
  2721. </cell>
  2722. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2723. \begin_inset Text
  2724. \begin_layout Plain Layout
  2725. 2319
  2726. \end_layout
  2727. \end_inset
  2728. </cell>
  2729. </row>
  2730. </lyxtabular>
  2731. \end_inset
  2732. \end_layout
  2733. \begin_layout Plain Layout
  2734. \begin_inset Caption Standard
  2735. \begin_layout Plain Layout
  2736. \series bold
  2737. \begin_inset CommandInset label
  2738. LatexCommand label
  2739. name "tab:Estimated-and-detected-rnaseq"
  2740. \end_inset
  2741. Estimated and detected differentially expressed genes.
  2742. \series default
  2743. \begin_inset Quotes eld
  2744. \end_inset
  2745. Test
  2746. \begin_inset Quotes erd
  2747. \end_inset
  2748. : Which sample groups were compared;
  2749. \begin_inset Quotes eld
  2750. \end_inset
  2751. Est non-null
  2752. \begin_inset Quotes erd
  2753. \end_inset
  2754. : Estimated number of differentially expressed genes, using the method of
  2755. averaging local FDR values
  2756. \begin_inset CommandInset citation
  2757. LatexCommand cite
  2758. key "Phipson2013Thesis"
  2759. literal "false"
  2760. \end_inset
  2761. ;
  2762. \begin_inset Quotes eld
  2763. \end_inset
  2764. \begin_inset Formula $\mathrm{FDR}\le10\%$
  2765. \end_inset
  2766. \begin_inset Quotes erd
  2767. \end_inset
  2768. : Number of significantly differentially expressed genes at an FDR threshold
  2769. of 10%.
  2770. The total number of genes tested was 16707.
  2771. \end_layout
  2772. \end_inset
  2773. \end_layout
  2774. \end_inset
  2775. \end_layout
  2776. \begin_layout Standard
  2777. \begin_inset Float figure
  2778. wide false
  2779. sideways false
  2780. status collapsed
  2781. \begin_layout Plain Layout
  2782. \align center
  2783. \begin_inset Graphics
  2784. filename graphics/CD4-csaw/RNA-seq/PCA-final-12-CROP.png
  2785. lyxscale 25
  2786. width 100col%
  2787. groupId colwidth-raster
  2788. \end_inset
  2789. \end_layout
  2790. \begin_layout Plain Layout
  2791. \begin_inset Caption Standard
  2792. \begin_layout Plain Layout
  2793. \series bold
  2794. \begin_inset CommandInset label
  2795. LatexCommand label
  2796. name "fig:rna-pca-final"
  2797. \end_inset
  2798. PCoA plot of RNA-seq samples after ComBat batch correction.
  2799. \series default
  2800. Each point represents an individual sample.
  2801. Samples with the same combination of cell type and time point are encircled
  2802. with a shaded region to aid in visual identification of the sample groups.
  2803. Samples with of same cell type from the same donor are connected by lines
  2804. to indicate the
  2805. \begin_inset Quotes eld
  2806. \end_inset
  2807. trajectory
  2808. \begin_inset Quotes erd
  2809. \end_inset
  2810. of each donor's cells over time in PCoA space.
  2811. \end_layout
  2812. \end_inset
  2813. \end_layout
  2814. \begin_layout Plain Layout
  2815. \end_layout
  2816. \end_inset
  2817. \end_layout
  2818. \begin_layout Standard
  2819. Genes called present in the RNA-seq data were tested for differential expression
  2820. between all time points and cell types.
  2821. The counts of differentially expressed genes are shown in Table
  2822. \begin_inset CommandInset ref
  2823. LatexCommand ref
  2824. reference "tab:Estimated-and-detected-rnaseq"
  2825. plural "false"
  2826. caps "false"
  2827. noprefix "false"
  2828. \end_inset
  2829. .
  2830. Notably, all the results for Day 0 and Day 5 have substantially fewer genes
  2831. called differentially expressed than any of the results for other time
  2832. points.
  2833. This is an unfortunate result of the difference in sample quality between
  2834. the two batches of RNA-seq data.
  2835. All the samples in Batch 1, which includes all the samples from Days 0
  2836. and 5, have substantially more variability than the samples in Batch 2,
  2837. which includes the other time points.
  2838. This is reflected in the substantially higher weights assigned to Batch
  2839. 2 (Figure
  2840. \begin_inset CommandInset ref
  2841. LatexCommand ref
  2842. reference "fig:RNA-seq-weights-vs-covars"
  2843. plural "false"
  2844. caps "false"
  2845. noprefix "false"
  2846. \end_inset
  2847. ).
  2848. The batch effect has both a systematic component and a random noise component.
  2849. While the systematic component was subtracted out using ComBat (Figure
  2850. \begin_inset CommandInset ref
  2851. LatexCommand ref
  2852. reference "fig:RNA-PCA"
  2853. plural "false"
  2854. caps "false"
  2855. noprefix "false"
  2856. \end_inset
  2857. ), no such correction is possible for the noise component: Batch 1 simply
  2858. has substantially more random noise in it, which reduces the statistical
  2859. power for any differential expression tests involving samples in that batch.
  2860. \end_layout
  2861. \begin_layout Standard
  2862. Despite the difficulty in detecting specific differentially expressed genes,
  2863. there is still evidence that differential expression is present for these
  2864. time points.
  2865. In Figure
  2866. \begin_inset CommandInset ref
  2867. LatexCommand ref
  2868. reference "fig:rna-pca-final"
  2869. plural "false"
  2870. caps "false"
  2871. noprefix "false"
  2872. \end_inset
  2873. , there is a clear separation between naive and memory samples at Day 0,
  2874. despite the fact that only 2 genes were significantly differentially expressed
  2875. for this comparison.
  2876. Similarly, the small numbers of genes detected for the Day 0 vs Day 5 compariso
  2877. ns do not reflect the large separation between these time points in Figure
  2878. \begin_inset CommandInset ref
  2879. LatexCommand ref
  2880. reference "fig:rna-pca-final"
  2881. plural "false"
  2882. caps "false"
  2883. noprefix "false"
  2884. \end_inset
  2885. .
  2886. In addition, the MOFA latent factor plots in Figure
  2887. \begin_inset CommandInset ref
  2888. LatexCommand ref
  2889. reference "fig:mofa-lf-scatter"
  2890. plural "false"
  2891. caps "false"
  2892. noprefix "false"
  2893. \end_inset
  2894. .
  2895. This suggests that there is indeed a differential expression signal present
  2896. in the data for these comparisons, but the large variability in the Batch
  2897. 1 samples obfuscates this signal at the individual gene level.
  2898. As a result, it is impossible to make any meaningful statements about the
  2899. \begin_inset Quotes eld
  2900. \end_inset
  2901. size
  2902. \begin_inset Quotes erd
  2903. \end_inset
  2904. of the gene signature for any time point, since the number of significant
  2905. genes as well as the estimated number of differentially expressed genes
  2906. depends so strongly on the variations in sample quality in addition to
  2907. the size of the differential expression signal in the data.
  2908. Gene-set enrichment analyses are similarly impractical.
  2909. However, analyses looking at genome-wide patterns of expression are still
  2910. practical.
  2911. \end_layout
  2912. \begin_layout Subsection
  2913. H3K4 and H3K27 methylation occur in broad regions and are enriched near
  2914. promoters
  2915. \end_layout
  2916. \begin_layout Standard
  2917. \begin_inset Float table
  2918. wide false
  2919. sideways false
  2920. status collapsed
  2921. \begin_layout Plain Layout
  2922. \align center
  2923. \begin_inset Flex TODO Note (inline)
  2924. status open
  2925. \begin_layout Plain Layout
  2926. Also get
  2927. \emph on
  2928. median
  2929. \emph default
  2930. peak width and maybe other quantiles (25%, 75%)
  2931. \end_layout
  2932. \end_inset
  2933. \end_layout
  2934. \begin_layout Plain Layout
  2935. \align center
  2936. \begin_inset Tabular
  2937. <lyxtabular version="3" rows="4" columns="5">
  2938. <features tabularvalignment="middle">
  2939. <column alignment="center" valignment="top">
  2940. <column alignment="center" valignment="top">
  2941. <column alignment="center" valignment="top">
  2942. <column alignment="center" valignment="top">
  2943. <column alignment="center" valignment="top">
  2944. <row>
  2945. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2946. \begin_inset Text
  2947. \begin_layout Plain Layout
  2948. Histone Mark
  2949. \end_layout
  2950. \end_inset
  2951. </cell>
  2952. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2953. \begin_inset Text
  2954. \begin_layout Plain Layout
  2955. # Peaks
  2956. \end_layout
  2957. \end_inset
  2958. </cell>
  2959. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2960. \begin_inset Text
  2961. \begin_layout Plain Layout
  2962. Mean peak width
  2963. \end_layout
  2964. \end_inset
  2965. </cell>
  2966. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2967. \begin_inset Text
  2968. \begin_layout Plain Layout
  2969. genome coverage
  2970. \end_layout
  2971. \end_inset
  2972. </cell>
  2973. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2974. \begin_inset Text
  2975. \begin_layout Plain Layout
  2976. FRiP
  2977. \end_layout
  2978. \end_inset
  2979. </cell>
  2980. </row>
  2981. <row>
  2982. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2983. \begin_inset Text
  2984. \begin_layout Plain Layout
  2985. H3K4me2
  2986. \end_layout
  2987. \end_inset
  2988. </cell>
  2989. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2990. \begin_inset Text
  2991. \begin_layout Plain Layout
  2992. 14965
  2993. \end_layout
  2994. \end_inset
  2995. </cell>
  2996. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2997. \begin_inset Text
  2998. \begin_layout Plain Layout
  2999. 3970
  3000. \end_layout
  3001. \end_inset
  3002. </cell>
  3003. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3004. \begin_inset Text
  3005. \begin_layout Plain Layout
  3006. 1.92%
  3007. \end_layout
  3008. \end_inset
  3009. </cell>
  3010. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3011. \begin_inset Text
  3012. \begin_layout Plain Layout
  3013. 14.2%
  3014. \end_layout
  3015. \end_inset
  3016. </cell>
  3017. </row>
  3018. <row>
  3019. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3020. \begin_inset Text
  3021. \begin_layout Plain Layout
  3022. H3K4me3
  3023. \end_layout
  3024. \end_inset
  3025. </cell>
  3026. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3027. \begin_inset Text
  3028. \begin_layout Plain Layout
  3029. 6163
  3030. \end_layout
  3031. \end_inset
  3032. </cell>
  3033. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3034. \begin_inset Text
  3035. \begin_layout Plain Layout
  3036. 2946
  3037. \end_layout
  3038. \end_inset
  3039. </cell>
  3040. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3041. \begin_inset Text
  3042. \begin_layout Plain Layout
  3043. 0.588%
  3044. \end_layout
  3045. \end_inset
  3046. </cell>
  3047. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3048. \begin_inset Text
  3049. \begin_layout Plain Layout
  3050. 6.57%
  3051. \end_layout
  3052. \end_inset
  3053. </cell>
  3054. </row>
  3055. <row>
  3056. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3057. \begin_inset Text
  3058. \begin_layout Plain Layout
  3059. H3K27me3
  3060. \end_layout
  3061. \end_inset
  3062. </cell>
  3063. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3064. \begin_inset Text
  3065. \begin_layout Plain Layout
  3066. 18139
  3067. \end_layout
  3068. \end_inset
  3069. </cell>
  3070. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3071. \begin_inset Text
  3072. \begin_layout Plain Layout
  3073. 18967
  3074. \end_layout
  3075. \end_inset
  3076. </cell>
  3077. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3078. \begin_inset Text
  3079. \begin_layout Plain Layout
  3080. 11.1%
  3081. \end_layout
  3082. \end_inset
  3083. </cell>
  3084. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3085. \begin_inset Text
  3086. \begin_layout Plain Layout
  3087. 22.5%
  3088. \end_layout
  3089. \end_inset
  3090. </cell>
  3091. </row>
  3092. </lyxtabular>
  3093. \end_inset
  3094. \end_layout
  3095. \begin_layout Plain Layout
  3096. \begin_inset Caption Standard
  3097. \begin_layout Plain Layout
  3098. \series bold
  3099. \begin_inset CommandInset label
  3100. LatexCommand label
  3101. name "tab:peak-calling-summary"
  3102. \end_inset
  3103. Peak-calling summary.
  3104. \series default
  3105. For each histone mark, the number of peaks called using SICER at an IDR
  3106. threshold of ???, the mean width of those peaks, the fraction of the genome
  3107. covered by peaks, and the fraction of reads in peaks (FRiP).
  3108. \end_layout
  3109. \end_inset
  3110. \end_layout
  3111. \end_inset
  3112. \end_layout
  3113. \begin_layout Standard
  3114. Table
  3115. \begin_inset CommandInset ref
  3116. LatexCommand ref
  3117. reference "tab:peak-calling-summary"
  3118. plural "false"
  3119. caps "false"
  3120. noprefix "false"
  3121. \end_inset
  3122. gives a summary of the peak calling statistics for each histone mark.
  3123. Consistent with previous observations [CITATION NEEDED], all 3 histone
  3124. marks occur in broad regions spanning many consecutive nucleosomes, rather
  3125. than in sharp peaks as would be expected for a transcription factor or
  3126. other molecule that binds to specific sites.
  3127. This conclusion is further supported by Figure
  3128. \begin_inset CommandInset ref
  3129. LatexCommand ref
  3130. reference "fig:CCF-with-blacklist"
  3131. plural "false"
  3132. caps "false"
  3133. noprefix "false"
  3134. \end_inset
  3135. , in which a clear nucleosome-sized periodicity is visible in the cross-correlat
  3136. ion value for each sample, indicating that each time a given mark is present
  3137. on one histone, it is also likely to be found on adjacent histones as well.
  3138. H3K27me3 enrichment in particular is substantially more broad than either
  3139. H3K4 mark, with a mean peak width of almost 19,000 bp.
  3140. This is also reflected in the periodicity observed in Figure
  3141. \begin_inset CommandInset ref
  3142. LatexCommand ref
  3143. reference "fig:CCF-with-blacklist"
  3144. plural "false"
  3145. caps "false"
  3146. noprefix "false"
  3147. \end_inset
  3148. , which remains strong much farther out for H3K27me3 than the other marks,
  3149. showing H3K27me3 especially tends to be found on long runs of consecutive
  3150. histones.
  3151. \end_layout
  3152. \begin_layout Standard
  3153. \begin_inset Float figure
  3154. wide false
  3155. sideways false
  3156. status open
  3157. \begin_layout Plain Layout
  3158. \begin_inset Flex TODO Note (inline)
  3159. status open
  3160. \begin_layout Plain Layout
  3161. Ensure this figure uses the peak calls from the new analysis.
  3162. \end_layout
  3163. \end_inset
  3164. \end_layout
  3165. \begin_layout Plain Layout
  3166. \begin_inset Flex TODO Note (inline)
  3167. status open
  3168. \begin_layout Plain Layout
  3169. Need a control: shuffle all peaks and repeat, N times.
  3170. Do real vs shuffled control both in a top/bottom arrangement.
  3171. \end_layout
  3172. \end_inset
  3173. \end_layout
  3174. \begin_layout Plain Layout
  3175. \begin_inset Flex TODO Note (inline)
  3176. status open
  3177. \begin_layout Plain Layout
  3178. Consider counting TSS inside peaks as negative number indicating how far
  3179. \emph on
  3180. inside
  3181. \emph default
  3182. the peak the TSS is (i.e.
  3183. distance to nearest non-peak area).
  3184. \end_layout
  3185. \end_inset
  3186. \end_layout
  3187. \begin_layout Plain Layout
  3188. \begin_inset Flex TODO Note (inline)
  3189. status open
  3190. \begin_layout Plain Layout
  3191. The H3K4 part of this figure is included in
  3192. \begin_inset CommandInset citation
  3193. LatexCommand cite
  3194. key "LaMere2016"
  3195. literal "false"
  3196. \end_inset
  3197. as Fig.
  3198. S2.
  3199. Do I need to do anything about that?
  3200. \end_layout
  3201. \end_inset
  3202. \end_layout
  3203. \begin_layout Plain Layout
  3204. \align center
  3205. \begin_inset Graphics
  3206. filename graphics/CD4-csaw/Promoter Peak Distance Profile-PAGE1-CROP.pdf
  3207. lyxscale 50
  3208. width 80col%
  3209. \end_inset
  3210. \end_layout
  3211. \begin_layout Plain Layout
  3212. \begin_inset Caption Standard
  3213. \begin_layout Plain Layout
  3214. \series bold
  3215. \begin_inset CommandInset label
  3216. LatexCommand label
  3217. name "fig:near-promoter-peak-enrich"
  3218. \end_inset
  3219. Enrichment of peaks in promoter neighborhoods.
  3220. \series default
  3221. This plot shows the distribution of distances from each annotated transcription
  3222. start site in the genome to the nearest called peak.
  3223. Each line represents one combination of histone mark, cell type, and time
  3224. point.
  3225. Distributions are smoothed using kernel density estimation [CITE? see ggplot2
  3226. stat_density()].
  3227. Transcription start sites that occur
  3228. \emph on
  3229. within
  3230. \emph default
  3231. peaks were excluded from this plot to avoid a large spike at zero that
  3232. would overshadow the rest of the distribution.
  3233. \end_layout
  3234. \end_inset
  3235. \end_layout
  3236. \end_inset
  3237. \end_layout
  3238. \begin_layout Standard
  3239. \begin_inset Float table
  3240. wide false
  3241. sideways false
  3242. status collapsed
  3243. \begin_layout Plain Layout
  3244. \align center
  3245. \begin_inset Tabular
  3246. <lyxtabular version="3" rows="4" columns="2">
  3247. <features tabularvalignment="middle">
  3248. <column alignment="center" valignment="top">
  3249. <column alignment="center" valignment="top">
  3250. <row>
  3251. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3252. \begin_inset Text
  3253. \begin_layout Plain Layout
  3254. Histone mark
  3255. \end_layout
  3256. \end_inset
  3257. </cell>
  3258. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3259. \begin_inset Text
  3260. \begin_layout Plain Layout
  3261. Effective promoter radius
  3262. \end_layout
  3263. \end_inset
  3264. </cell>
  3265. </row>
  3266. <row>
  3267. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3268. \begin_inset Text
  3269. \begin_layout Plain Layout
  3270. H3K4me2
  3271. \end_layout
  3272. \end_inset
  3273. </cell>
  3274. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3275. \begin_inset Text
  3276. \begin_layout Plain Layout
  3277. 1 kb
  3278. \end_layout
  3279. \end_inset
  3280. </cell>
  3281. </row>
  3282. <row>
  3283. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3284. \begin_inset Text
  3285. \begin_layout Plain Layout
  3286. H3K4me3
  3287. \end_layout
  3288. \end_inset
  3289. </cell>
  3290. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3291. \begin_inset Text
  3292. \begin_layout Plain Layout
  3293. 1 kb
  3294. \end_layout
  3295. \end_inset
  3296. </cell>
  3297. </row>
  3298. <row>
  3299. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3300. \begin_inset Text
  3301. \begin_layout Plain Layout
  3302. H3K27me3
  3303. \end_layout
  3304. \end_inset
  3305. </cell>
  3306. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3307. \begin_inset Text
  3308. \begin_layout Plain Layout
  3309. 2.5 kb
  3310. \end_layout
  3311. \end_inset
  3312. </cell>
  3313. </row>
  3314. </lyxtabular>
  3315. \end_inset
  3316. \end_layout
  3317. \begin_layout Plain Layout
  3318. \begin_inset Caption Standard
  3319. \begin_layout Plain Layout
  3320. \series bold
  3321. \begin_inset CommandInset label
  3322. LatexCommand label
  3323. name "tab:effective-promoter-radius"
  3324. \end_inset
  3325. Effective promoter radius for each histone mark.
  3326. \series default
  3327. These values represent the approximate distance from transcription start
  3328. site positions within which an excess of peaks are found, as shown in Figure
  3329. \begin_inset CommandInset ref
  3330. LatexCommand ref
  3331. reference "fig:near-promoter-peak-enrich"
  3332. plural "false"
  3333. caps "false"
  3334. noprefix "false"
  3335. \end_inset
  3336. .
  3337. \end_layout
  3338. \end_inset
  3339. \end_layout
  3340. \begin_layout Plain Layout
  3341. \end_layout
  3342. \end_inset
  3343. \end_layout
  3344. \begin_layout Standard
  3345. All 3 histone marks tend to occur more often near promoter regions, as shown
  3346. in Figure
  3347. \begin_inset CommandInset ref
  3348. LatexCommand ref
  3349. reference "fig:near-promoter-peak-enrich"
  3350. plural "false"
  3351. caps "false"
  3352. noprefix "false"
  3353. \end_inset
  3354. .
  3355. The majority of each density distribution is flat, representing the background
  3356. density of peaks genome-wide.
  3357. Each distribution has a peak near zero, representing an enrichment of peaks
  3358. close transcription start site (TSS) positions relative to the remainder
  3359. of the genome.
  3360. Interestingly, the
  3361. \begin_inset Quotes eld
  3362. \end_inset
  3363. radius
  3364. \begin_inset Quotes erd
  3365. \end_inset
  3366. within which this enrichment occurs is not the same for every histone mark
  3367. (Table
  3368. \begin_inset CommandInset ref
  3369. LatexCommand ref
  3370. reference "tab:effective-promoter-radius"
  3371. plural "false"
  3372. caps "false"
  3373. noprefix "false"
  3374. \end_inset
  3375. ).
  3376. For H3K4me2 and H3K4me3, peaks are most enriched within 1
  3377. \begin_inset space ~
  3378. \end_inset
  3379. kbp of TSS positions, while for H3K27me3, enrichment is broader, extending
  3380. to 2.5
  3381. \begin_inset space ~
  3382. \end_inset
  3383. kbp.
  3384. These
  3385. \begin_inset Quotes eld
  3386. \end_inset
  3387. effective promoter radii
  3388. \begin_inset Quotes erd
  3389. \end_inset
  3390. remain approximately the same across all combinations of experimental condition
  3391. (cell type, time point, and donor), so they appear to be a property of
  3392. the histone mark itself.
  3393. Hence, these radii were used to define the promoter regions for each histone
  3394. mark in all further analyses.
  3395. \end_layout
  3396. \begin_layout Standard
  3397. \begin_inset Flex TODO Note (inline)
  3398. status open
  3399. \begin_layout Plain Layout
  3400. Consider also showing figure for distance to nearest peak center, and reference
  3401. median peak size once that is known.
  3402. \end_layout
  3403. \end_inset
  3404. \end_layout
  3405. \begin_layout Subsection
  3406. H3K4 and H3K27 promoter methylation has broadly the expected correlation
  3407. with gene expression
  3408. \end_layout
  3409. \begin_layout Standard
  3410. \begin_inset Float figure
  3411. wide false
  3412. sideways false
  3413. status collapsed
  3414. \begin_layout Plain Layout
  3415. \begin_inset Flex TODO Note (inline)
  3416. status open
  3417. \begin_layout Plain Layout
  3418. This figure is generated from the old analysis.
  3419. Either note that in some way or re-generate it from the new peak calls.
  3420. \end_layout
  3421. \end_inset
  3422. \end_layout
  3423. \begin_layout Plain Layout
  3424. \align center
  3425. \begin_inset Graphics
  3426. filename graphics/CD4-csaw/FPKM by Peak Violin Plots-CROP.pdf
  3427. lyxscale 50
  3428. width 100col%
  3429. \end_inset
  3430. \end_layout
  3431. \begin_layout Plain Layout
  3432. \begin_inset Caption Standard
  3433. \begin_layout Plain Layout
  3434. \series bold
  3435. \begin_inset CommandInset label
  3436. LatexCommand label
  3437. name "fig:fpkm-by-peak"
  3438. \end_inset
  3439. Expression distributions of genes with and without promoter peaks.
  3440. \end_layout
  3441. \end_inset
  3442. \end_layout
  3443. \end_inset
  3444. \end_layout
  3445. \begin_layout Standard
  3446. H3K4me2 and H3K4me2 have previously been reported as activating marks whose
  3447. presence in a gene's promoter is associated with higher gene expression,
  3448. while H3K27me3 has been reported as inactivating [CITE].
  3449. The data are consistent with this characterization: genes whose promoters
  3450. (as defined by the radii for each histone mark listed in
  3451. \begin_inset CommandInset ref
  3452. LatexCommand ref
  3453. reference "tab:effective-promoter-radius"
  3454. plural "false"
  3455. caps "false"
  3456. noprefix "false"
  3457. \end_inset
  3458. ) overlap with a H3K4me2 or H3K4me3 peak tend to have higher expression
  3459. than those that don't, while H3K27me3 is likewise associated with lower
  3460. gene expression, as shown in
  3461. \begin_inset CommandInset ref
  3462. LatexCommand ref
  3463. reference "fig:fpkm-by-peak"
  3464. plural "false"
  3465. caps "false"
  3466. noprefix "false"
  3467. \end_inset
  3468. .
  3469. This pattern holds across all combinations of cell type and time point
  3470. (Welch's
  3471. \emph on
  3472. t
  3473. \emph default
  3474. -test, all
  3475. \begin_inset Formula $p\mathrm{-values}\ll2.2\times10^{-16}$
  3476. \end_inset
  3477. ).
  3478. The difference in average log FPKM values when a peak overlaps the promoter
  3479. is about
  3480. \begin_inset Formula $+5.67$
  3481. \end_inset
  3482. for H3K4me2,
  3483. \begin_inset Formula $+5.76$
  3484. \end_inset
  3485. for H3K4me2, and
  3486. \begin_inset Formula $-4.00$
  3487. \end_inset
  3488. for H3K27me3.
  3489. \end_layout
  3490. \begin_layout Standard
  3491. \begin_inset Flex TODO Note (inline)
  3492. status open
  3493. \begin_layout Plain Layout
  3494. I also have some figures looking at interactions between marks (e.g.
  3495. what if a promoter has both H3K4me3 and H3K27me3), but I don't know if
  3496. that much detail is warranted here, since all the effects just seem approximate
  3497. ly additive anyway.
  3498. \end_layout
  3499. \end_inset
  3500. \end_layout
  3501. \begin_layout Subsection
  3502. Gene expression and promoter histone methylation patterns in naive and memory
  3503. show convergence at day 14
  3504. \end_layout
  3505. \begin_layout Standard
  3506. \begin_inset ERT
  3507. status open
  3508. \begin_layout Plain Layout
  3509. \backslash
  3510. afterpage{
  3511. \end_layout
  3512. \begin_layout Plain Layout
  3513. \backslash
  3514. begin{landscape}
  3515. \end_layout
  3516. \end_inset
  3517. \end_layout
  3518. \begin_layout Standard
  3519. \begin_inset Float table
  3520. wide false
  3521. sideways false
  3522. status open
  3523. \begin_layout Plain Layout
  3524. \align center
  3525. \begin_inset Tabular
  3526. <lyxtabular version="3" rows="6" columns="7">
  3527. <features tabularvalignment="middle">
  3528. <column alignment="center" valignment="top">
  3529. <column alignment="center" valignment="top">
  3530. <column alignment="center" valignment="top">
  3531. <column alignment="center" valignment="top">
  3532. <column alignment="center" valignment="top">
  3533. <column alignment="center" valignment="top">
  3534. <column alignment="center" valignment="top">
  3535. <row>
  3536. <cell alignment="center" valignment="top" usebox="none">
  3537. \begin_inset Text
  3538. \begin_layout Plain Layout
  3539. \end_layout
  3540. \end_inset
  3541. </cell>
  3542. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3543. \begin_inset Text
  3544. \begin_layout Plain Layout
  3545. Number of significant promoters
  3546. \end_layout
  3547. \end_inset
  3548. </cell>
  3549. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3550. \begin_inset Text
  3551. \begin_layout Plain Layout
  3552. \end_layout
  3553. \end_inset
  3554. </cell>
  3555. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3556. \begin_inset Text
  3557. \begin_layout Plain Layout
  3558. \end_layout
  3559. \end_inset
  3560. </cell>
  3561. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3562. \begin_inset Text
  3563. \begin_layout Plain Layout
  3564. Est.
  3565. differentially modified promoters
  3566. \end_layout
  3567. \end_inset
  3568. </cell>
  3569. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3570. \begin_inset Text
  3571. \begin_layout Plain Layout
  3572. \end_layout
  3573. \end_inset
  3574. </cell>
  3575. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3576. \begin_inset Text
  3577. \begin_layout Plain Layout
  3578. \end_layout
  3579. \end_inset
  3580. </cell>
  3581. </row>
  3582. <row>
  3583. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3584. \begin_inset Text
  3585. \begin_layout Plain Layout
  3586. Time Point
  3587. \end_layout
  3588. \end_inset
  3589. </cell>
  3590. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3591. \begin_inset Text
  3592. \begin_layout Plain Layout
  3593. H3K4me2
  3594. \end_layout
  3595. \end_inset
  3596. </cell>
  3597. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3598. \begin_inset Text
  3599. \begin_layout Plain Layout
  3600. H3K4me3
  3601. \end_layout
  3602. \end_inset
  3603. </cell>
  3604. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3605. \begin_inset Text
  3606. \begin_layout Plain Layout
  3607. H3K27me3
  3608. \end_layout
  3609. \end_inset
  3610. </cell>
  3611. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3612. \begin_inset Text
  3613. \begin_layout Plain Layout
  3614. H3K4me2
  3615. \end_layout
  3616. \end_inset
  3617. </cell>
  3618. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3619. \begin_inset Text
  3620. \begin_layout Plain Layout
  3621. H3K4me3
  3622. \end_layout
  3623. \end_inset
  3624. </cell>
  3625. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3626. \begin_inset Text
  3627. \begin_layout Plain Layout
  3628. H3K27me3
  3629. \end_layout
  3630. \end_inset
  3631. </cell>
  3632. </row>
  3633. <row>
  3634. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3635. \begin_inset Text
  3636. \begin_layout Plain Layout
  3637. Day 0
  3638. \end_layout
  3639. \end_inset
  3640. </cell>
  3641. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3642. \begin_inset Text
  3643. \begin_layout Plain Layout
  3644. 4553
  3645. \end_layout
  3646. \end_inset
  3647. </cell>
  3648. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3649. \begin_inset Text
  3650. \begin_layout Plain Layout
  3651. 927
  3652. \end_layout
  3653. \end_inset
  3654. </cell>
  3655. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3656. \begin_inset Text
  3657. \begin_layout Plain Layout
  3658. 6
  3659. \end_layout
  3660. \end_inset
  3661. </cell>
  3662. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3663. \begin_inset Text
  3664. \begin_layout Plain Layout
  3665. 9967
  3666. \end_layout
  3667. \end_inset
  3668. </cell>
  3669. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3670. \begin_inset Text
  3671. \begin_layout Plain Layout
  3672. 4149
  3673. \end_layout
  3674. \end_inset
  3675. </cell>
  3676. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3677. \begin_inset Text
  3678. \begin_layout Plain Layout
  3679. 2404
  3680. \end_layout
  3681. \end_inset
  3682. </cell>
  3683. </row>
  3684. <row>
  3685. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3686. \begin_inset Text
  3687. \begin_layout Plain Layout
  3688. Day 1
  3689. \end_layout
  3690. \end_inset
  3691. </cell>
  3692. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3693. \begin_inset Text
  3694. \begin_layout Plain Layout
  3695. 567
  3696. \end_layout
  3697. \end_inset
  3698. </cell>
  3699. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3700. \begin_inset Text
  3701. \begin_layout Plain Layout
  3702. 278
  3703. \end_layout
  3704. \end_inset
  3705. </cell>
  3706. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3707. \begin_inset Text
  3708. \begin_layout Plain Layout
  3709. 1570
  3710. \end_layout
  3711. \end_inset
  3712. </cell>
  3713. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3714. \begin_inset Text
  3715. \begin_layout Plain Layout
  3716. 4370
  3717. \end_layout
  3718. \end_inset
  3719. </cell>
  3720. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3721. \begin_inset Text
  3722. \begin_layout Plain Layout
  3723. 2145
  3724. \end_layout
  3725. \end_inset
  3726. </cell>
  3727. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3728. \begin_inset Text
  3729. \begin_layout Plain Layout
  3730. 6598
  3731. \end_layout
  3732. \end_inset
  3733. </cell>
  3734. </row>
  3735. <row>
  3736. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3737. \begin_inset Text
  3738. \begin_layout Plain Layout
  3739. Day 5
  3740. \end_layout
  3741. \end_inset
  3742. </cell>
  3743. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3744. \begin_inset Text
  3745. \begin_layout Plain Layout
  3746. 2313
  3747. \end_layout
  3748. \end_inset
  3749. </cell>
  3750. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3751. \begin_inset Text
  3752. \begin_layout Plain Layout
  3753. 139
  3754. \end_layout
  3755. \end_inset
  3756. </cell>
  3757. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3758. \begin_inset Text
  3759. \begin_layout Plain Layout
  3760. 490
  3761. \end_layout
  3762. \end_inset
  3763. </cell>
  3764. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3765. \begin_inset Text
  3766. \begin_layout Plain Layout
  3767. 9450
  3768. \end_layout
  3769. \end_inset
  3770. </cell>
  3771. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3772. \begin_inset Text
  3773. \begin_layout Plain Layout
  3774. 1148
  3775. \end_layout
  3776. \end_inset
  3777. </cell>
  3778. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3779. \begin_inset Text
  3780. \begin_layout Plain Layout
  3781. 4141
  3782. \end_layout
  3783. \end_inset
  3784. </cell>
  3785. </row>
  3786. <row>
  3787. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3788. \begin_inset Text
  3789. \begin_layout Plain Layout
  3790. Day 14
  3791. \end_layout
  3792. \end_inset
  3793. </cell>
  3794. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3795. \begin_inset Text
  3796. \begin_layout Plain Layout
  3797. 0
  3798. \end_layout
  3799. \end_inset
  3800. </cell>
  3801. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3802. \begin_inset Text
  3803. \begin_layout Plain Layout
  3804. 0
  3805. \end_layout
  3806. \end_inset
  3807. </cell>
  3808. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3809. \begin_inset Text
  3810. \begin_layout Plain Layout
  3811. 0
  3812. \end_layout
  3813. \end_inset
  3814. </cell>
  3815. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3816. \begin_inset Text
  3817. \begin_layout Plain Layout
  3818. 0
  3819. \end_layout
  3820. \end_inset
  3821. </cell>
  3822. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3823. \begin_inset Text
  3824. \begin_layout Plain Layout
  3825. 0
  3826. \end_layout
  3827. \end_inset
  3828. </cell>
  3829. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3830. \begin_inset Text
  3831. \begin_layout Plain Layout
  3832. 0
  3833. \end_layout
  3834. \end_inset
  3835. </cell>
  3836. </row>
  3837. </lyxtabular>
  3838. \end_inset
  3839. \end_layout
  3840. \begin_layout Plain Layout
  3841. \begin_inset Caption Standard
  3842. \begin_layout Plain Layout
  3843. \series bold
  3844. \begin_inset CommandInset label
  3845. LatexCommand label
  3846. name "tab:Number-signif-promoters"
  3847. \end_inset
  3848. Number of differentially modified promoters between naive and memory cells
  3849. at each time point after activation.
  3850. \series default
  3851. This table shows both the number of differentially modified promoters detected
  3852. at a 10% FDR threshold (left half), and the total number of differentially
  3853. modified promoters as estimated using the method of
  3854. \begin_inset CommandInset citation
  3855. LatexCommand cite
  3856. key "Phipson2013"
  3857. literal "false"
  3858. \end_inset
  3859. (right half).
  3860. \end_layout
  3861. \end_inset
  3862. \end_layout
  3863. \end_inset
  3864. \end_layout
  3865. \begin_layout Standard
  3866. \begin_inset ERT
  3867. status open
  3868. \begin_layout Plain Layout
  3869. \backslash
  3870. end{landscape}
  3871. \end_layout
  3872. \begin_layout Plain Layout
  3873. }
  3874. \end_layout
  3875. \end_inset
  3876. \end_layout
  3877. \begin_layout Standard
  3878. \begin_inset Float figure
  3879. placement p
  3880. wide false
  3881. sideways false
  3882. status open
  3883. \begin_layout Plain Layout
  3884. \align center
  3885. \begin_inset Float figure
  3886. wide false
  3887. sideways false
  3888. status open
  3889. \begin_layout Plain Layout
  3890. \align center
  3891. \begin_inset Graphics
  3892. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-promoter-PCA-group-CROP.png
  3893. lyxscale 25
  3894. width 45col%
  3895. groupId pcoa-prom-subfig
  3896. \end_inset
  3897. \end_layout
  3898. \begin_layout Plain Layout
  3899. \begin_inset Caption Standard
  3900. \begin_layout Plain Layout
  3901. \series bold
  3902. \begin_inset CommandInset label
  3903. LatexCommand label
  3904. name "fig:PCoA-H3K4me2-prom"
  3905. \end_inset
  3906. PCoA plot of H3K4me2 promoters, after subtracting surrogate variables
  3907. \end_layout
  3908. \end_inset
  3909. \end_layout
  3910. \end_inset
  3911. \begin_inset space \hfill{}
  3912. \end_inset
  3913. \begin_inset Float figure
  3914. wide false
  3915. sideways false
  3916. status open
  3917. \begin_layout Plain Layout
  3918. \align center
  3919. \begin_inset Graphics
  3920. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-promoter-PCA-group-CROP.png
  3921. lyxscale 25
  3922. width 45col%
  3923. groupId pcoa-prom-subfig
  3924. \end_inset
  3925. \end_layout
  3926. \begin_layout Plain Layout
  3927. \begin_inset Caption Standard
  3928. \begin_layout Plain Layout
  3929. \series bold
  3930. \begin_inset CommandInset label
  3931. LatexCommand label
  3932. name "fig:PCoA-H3K4me3-prom"
  3933. \end_inset
  3934. PCoA plot of H3K4me3 promoters, after subtracting surrogate variables
  3935. \end_layout
  3936. \end_inset
  3937. \end_layout
  3938. \end_inset
  3939. \end_layout
  3940. \begin_layout Plain Layout
  3941. \align center
  3942. \begin_inset Float figure
  3943. wide false
  3944. sideways false
  3945. status collapsed
  3946. \begin_layout Plain Layout
  3947. \align center
  3948. \begin_inset Graphics
  3949. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-promoter-PCA-group-CROP.png
  3950. lyxscale 25
  3951. width 45col%
  3952. groupId pcoa-prom-subfig
  3953. \end_inset
  3954. \end_layout
  3955. \begin_layout Plain Layout
  3956. \begin_inset Caption Standard
  3957. \begin_layout Plain Layout
  3958. \series bold
  3959. \begin_inset CommandInset label
  3960. LatexCommand label
  3961. name "fig:PCoA-H3K27me3-prom"
  3962. \end_inset
  3963. PCoA plot of H3K27me3 promoters, after subtracting surrogate variables
  3964. \end_layout
  3965. \end_inset
  3966. \end_layout
  3967. \end_inset
  3968. \begin_inset space \hfill{}
  3969. \end_inset
  3970. \begin_inset Float figure
  3971. wide false
  3972. sideways false
  3973. status open
  3974. \begin_layout Plain Layout
  3975. \align center
  3976. \begin_inset Graphics
  3977. filename graphics/CD4-csaw/RNA-seq/PCA-final-23-CROP.png
  3978. lyxscale 25
  3979. width 45col%
  3980. groupId pcoa-prom-subfig
  3981. \end_inset
  3982. \end_layout
  3983. \begin_layout Plain Layout
  3984. \begin_inset Caption Standard
  3985. \begin_layout Plain Layout
  3986. \series bold
  3987. \begin_inset CommandInset label
  3988. LatexCommand label
  3989. name "fig:RNA-PCA-group"
  3990. \end_inset
  3991. RNA-seq PCoA showing principal coordinates 2 and 3.
  3992. \end_layout
  3993. \end_inset
  3994. \end_layout
  3995. \end_inset
  3996. \end_layout
  3997. \begin_layout Plain Layout
  3998. \begin_inset Caption Standard
  3999. \begin_layout Plain Layout
  4000. \series bold
  4001. \begin_inset CommandInset label
  4002. LatexCommand label
  4003. name "fig:PCoA-promoters"
  4004. \end_inset
  4005. PCoA plots for promoter ChIP-seq and expression RNA-seq data
  4006. \end_layout
  4007. \end_inset
  4008. \end_layout
  4009. \end_inset
  4010. \end_layout
  4011. \begin_layout Standard
  4012. \begin_inset Flex TODO Note (inline)
  4013. status open
  4014. \begin_layout Plain Layout
  4015. Check up on figure refs in this paragraph
  4016. \end_layout
  4017. \end_inset
  4018. \end_layout
  4019. \begin_layout Standard
  4020. We hypothesized that if naive cells had differentiated into memory cells
  4021. by Day 14, then their patterns of expression and histone modification should
  4022. converge with those of memory cells at Day 14.
  4023. Figure
  4024. \begin_inset CommandInset ref
  4025. LatexCommand ref
  4026. reference "fig:PCoA-promoters"
  4027. plural "false"
  4028. caps "false"
  4029. noprefix "false"
  4030. \end_inset
  4031. shows the patterns of variation in all 3 histone marks in the promoter
  4032. regions of the genome using principal coordinate analysis.
  4033. All 3 marks show a noticeable convergence between the naive and memory
  4034. samples at day 14, visible as an overlapping of the day 14 groups on each
  4035. plot.
  4036. This is consistent with the counts of significantly differentially modified
  4037. promoters and estimates of the total numbers of differentially modified
  4038. promoters shown in Table
  4039. \begin_inset CommandInset ref
  4040. LatexCommand ref
  4041. reference "tab:Number-signif-promoters"
  4042. plural "false"
  4043. caps "false"
  4044. noprefix "false"
  4045. \end_inset
  4046. .
  4047. For all histone marks, evidence of differential modification between naive
  4048. and memory samples was detected at every time point except day 14.
  4049. The day 14 convergence pattern is also present in the RNA-seq data (Figure
  4050. \begin_inset CommandInset ref
  4051. LatexCommand ref
  4052. reference "fig:RNA-PCA-group"
  4053. plural "false"
  4054. caps "false"
  4055. noprefix "false"
  4056. \end_inset
  4057. ), albeit in the 2nd and 3rd principal coordinates, indicating that it is
  4058. not the most dominant pattern driving gene expression.
  4059. Taken together, the data show that promoter histone methylation for these
  4060. 3 histone marks and RNA expression for naive and memory cells are most
  4061. similar at day 14, the furthest time point after activation.
  4062. MOFA was also able to capture this day 14 convergence pattern in latent
  4063. factor 5 (Figure
  4064. \begin_inset CommandInset ref
  4065. LatexCommand ref
  4066. reference "fig:mofa-lf-scatter"
  4067. plural "false"
  4068. caps "false"
  4069. noprefix "false"
  4070. \end_inset
  4071. ), which accounts for shared variation across all 3 histone marks and the
  4072. RNA-seq data, confirming that this convergence is a coordinated pattern
  4073. across all 4 data sets.
  4074. While this observation does not prove that the naive cells have differentiated
  4075. into memory cells at Day 14, it is consistent with that hypothesis.
  4076. \end_layout
  4077. \begin_layout Subsection
  4078. Effect of H3K4me2 and H3K4me3 promoter coverage upstream vs downstream of
  4079. TSS
  4080. \end_layout
  4081. \begin_layout Standard
  4082. \begin_inset Flex TODO Note (inline)
  4083. status open
  4084. \begin_layout Plain Layout
  4085. Need a better section title, for this and the next one.
  4086. \end_layout
  4087. \end_inset
  4088. \end_layout
  4089. \begin_layout Standard
  4090. \begin_inset Flex TODO Note (inline)
  4091. status open
  4092. \begin_layout Plain Layout
  4093. Make sure use of coverage/abundance/whatever is consistent.
  4094. \end_layout
  4095. \end_inset
  4096. \end_layout
  4097. \begin_layout Standard
  4098. \begin_inset Flex TODO Note (inline)
  4099. status open
  4100. \begin_layout Plain Layout
  4101. For the figures in this section and the next, the group labels are arbitrary,
  4102. so if time allows, it would be good to manually reorder them in a logical
  4103. way, e.g.
  4104. most upstream to most downstream.
  4105. If this is done, make sure to update the text with the correct group labels.
  4106. \end_layout
  4107. \end_inset
  4108. \end_layout
  4109. \begin_layout Standard
  4110. \begin_inset ERT
  4111. status open
  4112. \begin_layout Plain Layout
  4113. \backslash
  4114. afterpage{
  4115. \end_layout
  4116. \begin_layout Plain Layout
  4117. \backslash
  4118. begin{landscape}
  4119. \end_layout
  4120. \end_inset
  4121. \end_layout
  4122. \begin_layout Standard
  4123. \begin_inset Float figure
  4124. wide false
  4125. sideways false
  4126. status open
  4127. \begin_layout Plain Layout
  4128. \align center
  4129. \begin_inset Float figure
  4130. wide false
  4131. sideways false
  4132. status open
  4133. \begin_layout Plain Layout
  4134. \align center
  4135. \begin_inset Graphics
  4136. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-neighborhood-clusters-CROP.png
  4137. lyxscale 25
  4138. width 30col%
  4139. groupId covprof-subfig
  4140. \end_inset
  4141. \end_layout
  4142. \begin_layout Plain Layout
  4143. \begin_inset Caption Standard
  4144. \begin_layout Plain Layout
  4145. \series bold
  4146. \begin_inset CommandInset label
  4147. LatexCommand label
  4148. name "fig:H3K4me2-neighborhood-clusters"
  4149. \end_inset
  4150. Average relative coverage for each bin in each cluster
  4151. \end_layout
  4152. \end_inset
  4153. \end_layout
  4154. \end_inset
  4155. \begin_inset space \hfill{}
  4156. \end_inset
  4157. \begin_inset Float figure
  4158. wide false
  4159. sideways false
  4160. status open
  4161. \begin_layout Plain Layout
  4162. \align center
  4163. \begin_inset Graphics
  4164. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-neighborhood-PCA-CROP.png
  4165. lyxscale 25
  4166. width 30col%
  4167. groupId covprof-subfig
  4168. \end_inset
  4169. \end_layout
  4170. \begin_layout Plain Layout
  4171. \begin_inset Caption Standard
  4172. \begin_layout Plain Layout
  4173. \series bold
  4174. \begin_inset CommandInset label
  4175. LatexCommand label
  4176. name "fig:H3K4me2-neighborhood-pca"
  4177. \end_inset
  4178. PCA of relative coverage depth, colored by K-means cluster membership.
  4179. \end_layout
  4180. \end_inset
  4181. \end_layout
  4182. \end_inset
  4183. \begin_inset space \hfill{}
  4184. \end_inset
  4185. \begin_inset Float figure
  4186. wide false
  4187. sideways false
  4188. status open
  4189. \begin_layout Plain Layout
  4190. \align center
  4191. \begin_inset Graphics
  4192. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-neighborhood-expression-CROP.png
  4193. lyxscale 25
  4194. width 30col%
  4195. groupId covprof-subfig
  4196. \end_inset
  4197. \end_layout
  4198. \begin_layout Plain Layout
  4199. \begin_inset Caption Standard
  4200. \begin_layout Plain Layout
  4201. \series bold
  4202. \begin_inset CommandInset label
  4203. LatexCommand label
  4204. name "fig:H3K4me2-neighborhood-expression"
  4205. \end_inset
  4206. Gene expression grouped by promoter coverage clusters.
  4207. \end_layout
  4208. \end_inset
  4209. \end_layout
  4210. \end_inset
  4211. \end_layout
  4212. \begin_layout Plain Layout
  4213. \begin_inset Caption Standard
  4214. \begin_layout Plain Layout
  4215. \series bold
  4216. \begin_inset CommandInset label
  4217. LatexCommand label
  4218. name "fig:H3K4me2-neighborhood"
  4219. \end_inset
  4220. K-means clustering of promoter H3K4me2 relative coverage depth in naive
  4221. day 0 samples.
  4222. \series default
  4223. H3K4me2 ChIP-seq reads were binned into 500-bp windows tiled across each
  4224. promoter from 5
  4225. \begin_inset space ~
  4226. \end_inset
  4227. kbp upstream to 5
  4228. \begin_inset space ~
  4229. \end_inset
  4230. kbp downstream, and the logCPM values were normalized within each promoter
  4231. to an average of 0, yielding relative coverage depths.
  4232. These were then grouped using K-means clustering with
  4233. \begin_inset Formula $K=6$
  4234. \end_inset
  4235. ,
  4236. \series bold
  4237. \series default
  4238. and the average bin values were plotted for each cluster (a).
  4239. The
  4240. \begin_inset Formula $x$
  4241. \end_inset
  4242. -axis is the genomic coordinate of each bin relative to the the transcription
  4243. start site, and the
  4244. \begin_inset Formula $y$
  4245. \end_inset
  4246. -axis is the mean relative coverage depth of that bin across all promoters
  4247. in the cluster.
  4248. Each line represents the average
  4249. \begin_inset Quotes eld
  4250. \end_inset
  4251. shape
  4252. \begin_inset Quotes erd
  4253. \end_inset
  4254. of the promoter coverage for promoters in that cluster.
  4255. PCA was performed on the same data, and the first two principal components
  4256. were plotted, coloring each point by its K-means cluster identity (b).
  4257. For each cluster, the distribution of gene expression values was plotted
  4258. (c).
  4259. \end_layout
  4260. \end_inset
  4261. \end_layout
  4262. \end_inset
  4263. \end_layout
  4264. \begin_layout Standard
  4265. \begin_inset ERT
  4266. status open
  4267. \begin_layout Plain Layout
  4268. \backslash
  4269. end{landscape}
  4270. \end_layout
  4271. \begin_layout Plain Layout
  4272. }
  4273. \end_layout
  4274. \end_inset
  4275. \end_layout
  4276. \begin_layout Standard
  4277. To test whether the position of a histone mark relative to a gene's transcriptio
  4278. n start site (TSS) was important, we looked at the
  4279. \begin_inset Quotes eld
  4280. \end_inset
  4281. landscape
  4282. \begin_inset Quotes erd
  4283. \end_inset
  4284. of ChIP-seq read coverage in naive Day 0 samples within 5 kb of each gene's
  4285. TSS by binning reads into 500-bp windows tiled across each promoter LogCPM
  4286. values were calculated for the bins in each promoter and then the average
  4287. logCPM for each promoter's bins was normalized to zero, such that the values
  4288. represent coverage relative to other regions of the same promoter rather
  4289. than being proportional to absolute read count.
  4290. The promoters were then clustered based on the normalized bin abundances
  4291. using
  4292. \begin_inset Formula $k$
  4293. \end_inset
  4294. -means clustering with
  4295. \begin_inset Formula $K=6$
  4296. \end_inset
  4297. .
  4298. Different values of
  4299. \begin_inset Formula $K$
  4300. \end_inset
  4301. were also tested, but did not substantially change the interpretation of
  4302. the data.
  4303. \end_layout
  4304. \begin_layout Standard
  4305. For H3K4me2, plotting the average bin abundances for each cluster reveals
  4306. a simple pattern (Figure
  4307. \begin_inset CommandInset ref
  4308. LatexCommand ref
  4309. reference "fig:H3K4me2-neighborhood-clusters"
  4310. plural "false"
  4311. caps "false"
  4312. noprefix "false"
  4313. \end_inset
  4314. ): Cluster 5 represents a completely flat promoter coverage profile, likely
  4315. consisting of genes with no H3K4me2 methylation in the promoter.
  4316. All the other clusters represent a continuum of peak positions relative
  4317. to the TSS.
  4318. In order from must upstream to most downstream, they are Clusters 6, 4,
  4319. 3, 1, and 2.
  4320. There do not appear to be any clusters representing coverage patterns other
  4321. than lone peaks, such as coverage troughs or double peaks.
  4322. Next, all promoters were plotted in a PCA plot based on the same relative
  4323. bin abundance data, and colored based on cluster membership (Figure
  4324. \begin_inset CommandInset ref
  4325. LatexCommand ref
  4326. reference "fig:H3K4me2-neighborhood-pca"
  4327. plural "false"
  4328. caps "false"
  4329. noprefix "false"
  4330. \end_inset
  4331. ).
  4332. The PCA plot shows Cluster 5 (the
  4333. \begin_inset Quotes eld
  4334. \end_inset
  4335. no peak
  4336. \begin_inset Quotes erd
  4337. \end_inset
  4338. cluster) at the center, with the other clusters arranged in a counter-clockwise
  4339. arc around it in the order noted above, from most upstream peak to most
  4340. downstream.
  4341. Notably, the
  4342. \begin_inset Quotes eld
  4343. \end_inset
  4344. clusters
  4345. \begin_inset Quotes erd
  4346. \end_inset
  4347. form a single large
  4348. \begin_inset Quotes eld
  4349. \end_inset
  4350. cloud
  4351. \begin_inset Quotes erd
  4352. \end_inset
  4353. with no apparent separation between them, further supporting the conclusion
  4354. that these clusters represent an arbitrary partitioning of a continuous
  4355. distribution of promoter coverage landscapes.
  4356. While the clusters are a useful abstraction that aids in visualization,
  4357. they are ultimately not an accurate representation of the data.
  4358. A better representation might be something like a polar coordinate system
  4359. with the origin at the center of Cluster 5, where the radius represents
  4360. the peak height above the background and the angle represents the peak's
  4361. position upstream or downstream of the TSS.
  4362. The continuous nature of the distribution also explains why different values
  4363. of
  4364. \begin_inset Formula $K$
  4365. \end_inset
  4366. led to similar conclusions.
  4367. \end_layout
  4368. \begin_layout Standard
  4369. \begin_inset Flex TODO Note (inline)
  4370. status open
  4371. \begin_layout Plain Layout
  4372. RNA-seq values in the plots use logCPM but should really use logFPKM or
  4373. logTPM.
  4374. Fix if time allows.
  4375. \end_layout
  4376. \end_inset
  4377. \end_layout
  4378. \begin_layout Standard
  4379. \begin_inset Flex TODO Note (inline)
  4380. status open
  4381. \begin_layout Plain Layout
  4382. Should have a table of p-values on difference of means between Cluster 5
  4383. and the others.
  4384. \end_layout
  4385. \end_inset
  4386. \end_layout
  4387. \begin_layout Standard
  4388. To investigate the association between relative peak position and gene expressio
  4389. n, we plotted the Naive Day 0 expression for the genes in each cluster (Figure
  4390. \begin_inset CommandInset ref
  4391. LatexCommand ref
  4392. reference "fig:H3K4me2-neighborhood-expression"
  4393. plural "false"
  4394. caps "false"
  4395. noprefix "false"
  4396. \end_inset
  4397. ).
  4398. Most genes in Cluster 5, the
  4399. \begin_inset Quotes eld
  4400. \end_inset
  4401. no peak
  4402. \begin_inset Quotes erd
  4403. \end_inset
  4404. cluster, have low expression values.
  4405. Taking this as the
  4406. \begin_inset Quotes eld
  4407. \end_inset
  4408. baseline
  4409. \begin_inset Quotes erd
  4410. \end_inset
  4411. distribution when no H3K4me2 methylation is present, we can compare the
  4412. other clusters' distributions to determine which peak positions are associated
  4413. with elevated expression.
  4414. As might be expected, the 3 clusters representing peaks closest to the
  4415. TSS, Clusters 1, 3, and 4, show the highest average expression distributions.
  4416. Specifically, these clusters all have their highest ChIP-seq abundance
  4417. within 1kb of the TSS, consistent with the previously determined promoter
  4418. radius.
  4419. In contrast, cluster 6, which represents peaks several kb upstream of the
  4420. TSS, shows a slightly higher average expression than baseline, while Cluster
  4421. 2, which represents peaks several kb downstream, doesn't appear to show
  4422. any appreciable difference.
  4423. Interestingly, the cluster with the highest average expression is Cluster
  4424. 1, which represents peaks about 1 kb downstream of the TSS, rather than
  4425. Cluster 3, which represents peaks centered directly at the TSS.
  4426. This suggests that conceptualizing the promoter as a region centered on
  4427. the TSS with a certain
  4428. \begin_inset Quotes eld
  4429. \end_inset
  4430. radius
  4431. \begin_inset Quotes erd
  4432. \end_inset
  4433. may be an oversimplification – a peak that is a specific distance from
  4434. the TSS may have a different degree of influence depending on whether it
  4435. is upstream or downstream of the TSS.
  4436. \end_layout
  4437. \begin_layout Standard
  4438. \begin_inset ERT
  4439. status open
  4440. \begin_layout Plain Layout
  4441. \backslash
  4442. afterpage{
  4443. \end_layout
  4444. \begin_layout Plain Layout
  4445. \backslash
  4446. begin{landscape}
  4447. \end_layout
  4448. \end_inset
  4449. \end_layout
  4450. \begin_layout Standard
  4451. \begin_inset Float figure
  4452. wide false
  4453. sideways false
  4454. status open
  4455. \begin_layout Plain Layout
  4456. \align center
  4457. \begin_inset Float figure
  4458. wide false
  4459. sideways false
  4460. status open
  4461. \begin_layout Plain Layout
  4462. \align center
  4463. \begin_inset Graphics
  4464. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-neighborhood-clusters-CROP.png
  4465. lyxscale 25
  4466. width 30col%
  4467. groupId covprof-subfig
  4468. \end_inset
  4469. \end_layout
  4470. \begin_layout Plain Layout
  4471. \begin_inset Caption Standard
  4472. \begin_layout Plain Layout
  4473. \series bold
  4474. \begin_inset CommandInset label
  4475. LatexCommand label
  4476. name "fig:H3K4me3-neighborhood-clusters"
  4477. \end_inset
  4478. Average relative coverage for each bin in each cluster
  4479. \end_layout
  4480. \end_inset
  4481. \end_layout
  4482. \end_inset
  4483. \begin_inset space \hfill{}
  4484. \end_inset
  4485. \begin_inset Float figure
  4486. wide false
  4487. sideways false
  4488. status open
  4489. \begin_layout Plain Layout
  4490. \align center
  4491. \begin_inset Graphics
  4492. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-neighborhood-PCA-CROP.png
  4493. lyxscale 25
  4494. width 30col%
  4495. groupId covprof-subfig
  4496. \end_inset
  4497. \end_layout
  4498. \begin_layout Plain Layout
  4499. \begin_inset Caption Standard
  4500. \begin_layout Plain Layout
  4501. \series bold
  4502. \begin_inset CommandInset label
  4503. LatexCommand label
  4504. name "fig:H3K4me3-neighborhood-pca"
  4505. \end_inset
  4506. PCA of relative coverage depth, colored by K-means cluster membership.
  4507. \end_layout
  4508. \end_inset
  4509. \end_layout
  4510. \end_inset
  4511. \begin_inset space \hfill{}
  4512. \end_inset
  4513. \begin_inset Float figure
  4514. wide false
  4515. sideways false
  4516. status open
  4517. \begin_layout Plain Layout
  4518. \align center
  4519. \begin_inset Graphics
  4520. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-neighborhood-expression-CROP.png
  4521. lyxscale 25
  4522. width 30col%
  4523. groupId covprof-subfig
  4524. \end_inset
  4525. \end_layout
  4526. \begin_layout Plain Layout
  4527. \begin_inset Caption Standard
  4528. \begin_layout Plain Layout
  4529. \series bold
  4530. \begin_inset CommandInset label
  4531. LatexCommand label
  4532. name "fig:H3K4me3-neighborhood-expression"
  4533. \end_inset
  4534. Gene expression grouped by promoter coverage clusters.
  4535. \end_layout
  4536. \end_inset
  4537. \end_layout
  4538. \end_inset
  4539. \end_layout
  4540. \begin_layout Plain Layout
  4541. \begin_inset Caption Standard
  4542. \begin_layout Plain Layout
  4543. \series bold
  4544. \begin_inset CommandInset label
  4545. LatexCommand label
  4546. name "fig:H3K4me3-neighborhood"
  4547. \end_inset
  4548. K-means clustering of promoter H3K4me3 relative coverage depth in naive
  4549. day 0 samples.
  4550. \series default
  4551. H3K4me2 ChIP-seq reads were binned into 500-bp windows tiled across each
  4552. promoter from 5
  4553. \begin_inset space ~
  4554. \end_inset
  4555. kbp upstream to 5
  4556. \begin_inset space ~
  4557. \end_inset
  4558. kbp downstream, and the logCPM values were normalized within each promoter
  4559. to an average of 0, yielding relative coverage depths.
  4560. These were then grouped using K-means clustering with
  4561. \begin_inset Formula $K=6$
  4562. \end_inset
  4563. ,
  4564. \series bold
  4565. \series default
  4566. and the average bin values were plotted for each cluster (a).
  4567. The
  4568. \begin_inset Formula $x$
  4569. \end_inset
  4570. -axis is the genomic coordinate of each bin relative to the the transcription
  4571. start site, and the
  4572. \begin_inset Formula $y$
  4573. \end_inset
  4574. -axis is the mean relative coverage depth of that bin across all promoters
  4575. in the cluster.
  4576. Each line represents the average
  4577. \begin_inset Quotes eld
  4578. \end_inset
  4579. shape
  4580. \begin_inset Quotes erd
  4581. \end_inset
  4582. of the promoter coverage for promoters in that cluster.
  4583. PCA was performed on the same data, and the first two principal components
  4584. were plotted, coloring each point by its K-means cluster identity (b).
  4585. For each cluster, the distribution of gene expression values was plotted
  4586. (c).
  4587. \end_layout
  4588. \end_inset
  4589. \end_layout
  4590. \end_inset
  4591. \end_layout
  4592. \begin_layout Standard
  4593. \begin_inset ERT
  4594. status open
  4595. \begin_layout Plain Layout
  4596. \backslash
  4597. end{landscape}
  4598. \end_layout
  4599. \begin_layout Plain Layout
  4600. }
  4601. \end_layout
  4602. \end_inset
  4603. \end_layout
  4604. \begin_layout Standard
  4605. \begin_inset Flex TODO Note (inline)
  4606. status open
  4607. \begin_layout Plain Layout
  4608. Is there more to say here?
  4609. \end_layout
  4610. \end_inset
  4611. \end_layout
  4612. \begin_layout Standard
  4613. All observations described above for H3K4me2 ChIP-seq also appear to hold
  4614. for H3K4me3 as well (Figure
  4615. \begin_inset CommandInset ref
  4616. LatexCommand ref
  4617. reference "fig:H3K4me3-neighborhood"
  4618. plural "false"
  4619. caps "false"
  4620. noprefix "false"
  4621. \end_inset
  4622. ).
  4623. This is expected, since there is a high correlation between the positions
  4624. where both histone marks occur.
  4625. \end_layout
  4626. \begin_layout Subsection
  4627. Promoter coverage H3K27me3
  4628. \end_layout
  4629. \begin_layout Standard
  4630. \begin_inset ERT
  4631. status open
  4632. \begin_layout Plain Layout
  4633. \backslash
  4634. afterpage{
  4635. \end_layout
  4636. \begin_layout Plain Layout
  4637. \backslash
  4638. begin{landscape}
  4639. \end_layout
  4640. \end_inset
  4641. \end_layout
  4642. \begin_layout Standard
  4643. \begin_inset Float figure
  4644. wide false
  4645. sideways false
  4646. status collapsed
  4647. \begin_layout Plain Layout
  4648. \align center
  4649. \begin_inset Float figure
  4650. wide false
  4651. sideways false
  4652. status open
  4653. \begin_layout Plain Layout
  4654. \align center
  4655. \begin_inset Graphics
  4656. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-neighborhood-clusters-CROP.png
  4657. lyxscale 25
  4658. width 30col%
  4659. groupId covprof-subfig
  4660. \end_inset
  4661. \end_layout
  4662. \begin_layout Plain Layout
  4663. \begin_inset Caption Standard
  4664. \begin_layout Plain Layout
  4665. \series bold
  4666. \begin_inset CommandInset label
  4667. LatexCommand label
  4668. name "fig:H3K27me3-neighborhood-clusters"
  4669. \end_inset
  4670. Average relative coverage for each bin in each cluster
  4671. \end_layout
  4672. \end_inset
  4673. \end_layout
  4674. \end_inset
  4675. \begin_inset space \hfill{}
  4676. \end_inset
  4677. \begin_inset Float figure
  4678. wide false
  4679. sideways false
  4680. status open
  4681. \begin_layout Plain Layout
  4682. \align center
  4683. \begin_inset Graphics
  4684. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-neighborhood-PCA-CROP.png
  4685. lyxscale 25
  4686. width 30col%
  4687. groupId covprof-subfig
  4688. \end_inset
  4689. \end_layout
  4690. \begin_layout Plain Layout
  4691. \begin_inset Caption Standard
  4692. \begin_layout Plain Layout
  4693. \series bold
  4694. \begin_inset CommandInset label
  4695. LatexCommand label
  4696. name "fig:H3K27me3-neighborhood-pca"
  4697. \end_inset
  4698. PCA of relative coverage depth, colored by K-means cluster membership.
  4699. \series default
  4700. Note that Cluster 6 is hidden behind all the other clusters.
  4701. \end_layout
  4702. \end_inset
  4703. \end_layout
  4704. \end_inset
  4705. \begin_inset space \hfill{}
  4706. \end_inset
  4707. \begin_inset Float figure
  4708. wide false
  4709. sideways false
  4710. status open
  4711. \begin_layout Plain Layout
  4712. \align center
  4713. \begin_inset Graphics
  4714. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-neighborhood-expression-CROP.png
  4715. lyxscale 25
  4716. width 30col%
  4717. groupId covprof-subfig
  4718. \end_inset
  4719. \end_layout
  4720. \begin_layout Plain Layout
  4721. \begin_inset Caption Standard
  4722. \begin_layout Plain Layout
  4723. \series bold
  4724. \begin_inset CommandInset label
  4725. LatexCommand label
  4726. name "fig:H3K27me3-neighborhood-expression"
  4727. \end_inset
  4728. Gene expression grouped by promoter coverage clusters.
  4729. \end_layout
  4730. \end_inset
  4731. \end_layout
  4732. \end_inset
  4733. \end_layout
  4734. \begin_layout Plain Layout
  4735. \begin_inset Flex TODO Note (inline)
  4736. status open
  4737. \begin_layout Plain Layout
  4738. Repeated figure legends are kind of an issue here.
  4739. What to do?
  4740. \end_layout
  4741. \end_inset
  4742. \end_layout
  4743. \begin_layout Plain Layout
  4744. \begin_inset Caption Standard
  4745. \begin_layout Plain Layout
  4746. \series bold
  4747. \begin_inset CommandInset label
  4748. LatexCommand label
  4749. name "fig:H3K27me3-neighborhood"
  4750. \end_inset
  4751. K-means clustering of promoter H3K27me3 relative coverage depth in naive
  4752. day 0 samples.
  4753. \series default
  4754. H3K27me3 ChIP-seq reads were binned into 500-bp windows tiled across each
  4755. promoter from 5
  4756. \begin_inset space ~
  4757. \end_inset
  4758. kbp upstream to 5
  4759. \begin_inset space ~
  4760. \end_inset
  4761. kbp downstream, and the logCPM values were normalized within each promoter
  4762. to an average of 0, yielding relative coverage depths.
  4763. These were then grouped using
  4764. \begin_inset Formula $k$
  4765. \end_inset
  4766. -means clustering with
  4767. \begin_inset Formula $K=6$
  4768. \end_inset
  4769. ,
  4770. \series bold
  4771. \series default
  4772. and the average bin values were plotted for each cluster (a).
  4773. The
  4774. \begin_inset Formula $x$
  4775. \end_inset
  4776. -axis is the genomic coordinate of each bin relative to the the transcription
  4777. start site, and the
  4778. \begin_inset Formula $y$
  4779. \end_inset
  4780. -axis is the mean relative coverage depth of that bin across all promoters
  4781. in the cluster.
  4782. Each line represents the average
  4783. \begin_inset Quotes eld
  4784. \end_inset
  4785. shape
  4786. \begin_inset Quotes erd
  4787. \end_inset
  4788. of the promoter coverage for promoters in that cluster.
  4789. PCA was performed on the same data, and the first two principal components
  4790. were plotted, coloring each point by its K-means cluster identity (b).
  4791. For each cluster, the distribution of gene expression values was plotted
  4792. (c).
  4793. \end_layout
  4794. \end_inset
  4795. \end_layout
  4796. \end_inset
  4797. \end_layout
  4798. \begin_layout Standard
  4799. \begin_inset ERT
  4800. status open
  4801. \begin_layout Plain Layout
  4802. \backslash
  4803. end{landscape}
  4804. \end_layout
  4805. \begin_layout Plain Layout
  4806. }
  4807. \end_layout
  4808. \end_inset
  4809. \end_layout
  4810. \begin_layout Standard
  4811. \begin_inset Flex TODO Note (inline)
  4812. status open
  4813. \begin_layout Plain Layout
  4814. Should maybe re-explain what was done or refer back to the previous section.
  4815. \end_layout
  4816. \end_inset
  4817. \end_layout
  4818. \begin_layout Standard
  4819. Unlike both H3K4 marks, whose main patterns of variation appear directly
  4820. related to the size and position of a single peak within the promoter,
  4821. the patterns of H3K27me3 methylation in promoters are more complex (Figure
  4822. \begin_inset CommandInset ref
  4823. LatexCommand ref
  4824. reference "fig:H3K27me3-neighborhood"
  4825. plural "false"
  4826. caps "false"
  4827. noprefix "false"
  4828. \end_inset
  4829. ).
  4830. Once again looking at the relative coverage in a 500-bp wide bins in a
  4831. 5kb radius around each TSS, promoters were clustered based on the normalized
  4832. relative coverage values in each bin using
  4833. \begin_inset Formula $k$
  4834. \end_inset
  4835. -means clustering with
  4836. \begin_inset Formula $K=6$
  4837. \end_inset
  4838. (Figure
  4839. \begin_inset CommandInset ref
  4840. LatexCommand ref
  4841. reference "fig:H3K27me3-neighborhood-clusters"
  4842. plural "false"
  4843. caps "false"
  4844. noprefix "false"
  4845. \end_inset
  4846. ).
  4847. This time, 3
  4848. \begin_inset Quotes eld
  4849. \end_inset
  4850. axes
  4851. \begin_inset Quotes erd
  4852. \end_inset
  4853. of variation can be observed, each represented by 2 clusters with opposing
  4854. patterns.
  4855. The first axis is greater upstream coverage (Cluster 1) vs.
  4856. greater downstream coverage (Cluster 3); the second axis is the coverage
  4857. at the TSS itself: peak (Cluster 4) or trough (Cluster 2); lastly, the
  4858. third axis represents a trough upstream of the TSS (Cluster 5) vs.
  4859. downstream of the TSS (Cluster 6).
  4860. Referring to these opposing pairs of clusters as axes of variation is justified
  4861. , because they correspond precisely to the first 3 principal components
  4862. in the PCA plot of the relative coverage values (Figure
  4863. \begin_inset CommandInset ref
  4864. LatexCommand ref
  4865. reference "fig:H3K27me3-neighborhood-pca"
  4866. plural "false"
  4867. caps "false"
  4868. noprefix "false"
  4869. \end_inset
  4870. ).
  4871. The PCA plot reveals that as in the case of H3K4me2, all the
  4872. \begin_inset Quotes eld
  4873. \end_inset
  4874. clusters
  4875. \begin_inset Quotes erd
  4876. \end_inset
  4877. are really just sections of a single connected cloud rather than discrete
  4878. clusters.
  4879. The cloud is approximately ellipsoid-shaped, with each PC being an axis
  4880. of the ellipse, and each cluster consisting of a pyramidal section of the
  4881. ellipsoid.
  4882. \end_layout
  4883. \begin_layout Standard
  4884. In Figure
  4885. \begin_inset CommandInset ref
  4886. LatexCommand ref
  4887. reference "fig:H3K27me3-neighborhood-expression"
  4888. plural "false"
  4889. caps "false"
  4890. noprefix "false"
  4891. \end_inset
  4892. , we can see that Clusters 1 and 2 are the only clusters with higher gene
  4893. expression than the others.
  4894. For Cluster 2, this is expected, since this cluster represents genes with
  4895. depletion of H3K27me3 near the promoter.
  4896. Hence, elevated expression in cluster 2 is consistent with the conventional
  4897. view of H3K27me3 as a deactivating mark.
  4898. However, Cluster 1, the cluster with the most elevated gene expression,
  4899. represents genes with elevated coverage upstream of the TSS, or equivalently,
  4900. decreased coverage downstream, inside the gene body.
  4901. The opposite pattern, in which H3K27me3 is more abundant within the gene
  4902. body and less abundance in the upstream promoter region, does not show
  4903. any elevation in gene expression.
  4904. As with H3K4me2, this shows that the location of H3K27 trimethylation relative
  4905. to the TSS is potentially an important factor beyond simple proximity.
  4906. \end_layout
  4907. \begin_layout Standard
  4908. \begin_inset Flex TODO Note (inline)
  4909. status open
  4910. \begin_layout Plain Layout
  4911. Show the figures where the negative result ended this line of inquiry.
  4912. I need to debug some errors resulting from an R upgrade to do this.
  4913. \end_layout
  4914. \end_inset
  4915. \end_layout
  4916. \begin_layout Subsection
  4917. Defined pattern analysis
  4918. \end_layout
  4919. \begin_layout Standard
  4920. \begin_inset Flex TODO Note (inline)
  4921. status open
  4922. \begin_layout Plain Layout
  4923. This was where I defined interesting expression patterns and then looked
  4924. at initial relative promoter coverage for each expression pattern.
  4925. Negative result.
  4926. I forgot about this until recently.
  4927. Worth including? Remember to also write methods.
  4928. \end_layout
  4929. \end_inset
  4930. \end_layout
  4931. \begin_layout Subsection
  4932. Promoter CpG islands?
  4933. \end_layout
  4934. \begin_layout Standard
  4935. \begin_inset Flex TODO Note (inline)
  4936. status collapsed
  4937. \begin_layout Plain Layout
  4938. I forgot until recently about the work I did on this.
  4939. Worth including? Remember to also write methods.
  4940. \end_layout
  4941. \end_inset
  4942. \end_layout
  4943. \begin_layout Section
  4944. Discussion
  4945. \end_layout
  4946. \begin_layout Standard
  4947. \begin_inset Flex TODO Note (inline)
  4948. status open
  4949. \begin_layout Plain Layout
  4950. Write better section headers
  4951. \end_layout
  4952. \end_inset
  4953. \end_layout
  4954. \begin_layout Subsection
  4955. Effective promoter radius
  4956. \end_layout
  4957. \begin_layout Standard
  4958. Figure
  4959. \begin_inset CommandInset ref
  4960. LatexCommand ref
  4961. reference "fig:near-promoter-peak-enrich"
  4962. plural "false"
  4963. caps "false"
  4964. noprefix "false"
  4965. \end_inset
  4966. shows that H3K4me2, H3K4me3, and H3K27me3 are all enriched near promoters,
  4967. relative to the rest of the genome, consistent with their conventionally
  4968. understood role in regulating gene transcription.
  4969. Interestingly, the radius within this enrichment occurs is not the same
  4970. for each histone mark.
  4971. H3K4me2 and H3K4me3 are enriched within a 1
  4972. \begin_inset space \thinspace{}
  4973. \end_inset
  4974. kb radius, while H3K27me3 is enriched within 2.5
  4975. \begin_inset space \thinspace{}
  4976. \end_inset
  4977. kb.
  4978. Notably, the determined promoter radius was consistent across all experimental
  4979. conditions, varying only between different histone marks.
  4980. This suggests that the conventional
  4981. \begin_inset Quotes eld
  4982. \end_inset
  4983. one size fits all
  4984. \begin_inset Quotes erd
  4985. \end_inset
  4986. approach of defining a single promoter region for each gene (or each TSS)
  4987. and using that same promoter region for analyzing all types of genomic
  4988. data within an experiment may not be appropriate, and a better approach
  4989. may be to use a separate promoter radius for each kind of data, with each
  4990. radius being derived from the data itself.
  4991. Furthermore, the apparent asymmetry of upstream and downstream promoter
  4992. histone modification with respect to gene expression, seen in Figures
  4993. \begin_inset CommandInset ref
  4994. LatexCommand ref
  4995. reference "fig:H3K4me2-neighborhood"
  4996. plural "false"
  4997. caps "false"
  4998. noprefix "false"
  4999. \end_inset
  5000. ,
  5001. \begin_inset CommandInset ref
  5002. LatexCommand ref
  5003. reference "fig:H3K4me3-neighborhood"
  5004. plural "false"
  5005. caps "false"
  5006. noprefix "false"
  5007. \end_inset
  5008. , and
  5009. \begin_inset CommandInset ref
  5010. LatexCommand ref
  5011. reference "fig:H3K27me3-neighborhood"
  5012. plural "false"
  5013. caps "false"
  5014. noprefix "false"
  5015. \end_inset
  5016. , shows that even the concept of a promoter
  5017. \begin_inset Quotes eld
  5018. \end_inset
  5019. radius
  5020. \begin_inset Quotes erd
  5021. \end_inset
  5022. is likely an oversimplification.
  5023. At a minimum, nearby enrichment of peaks should be evaluated separately
  5024. for both upstream and downstream peaks, and an appropriate
  5025. \begin_inset Quotes eld
  5026. \end_inset
  5027. radius
  5028. \begin_inset Quotes erd
  5029. \end_inset
  5030. should be selected for each direction.
  5031. \end_layout
  5032. \begin_layout Standard
  5033. Figures
  5034. \begin_inset CommandInset ref
  5035. LatexCommand ref
  5036. reference "fig:H3K4me2-neighborhood"
  5037. plural "false"
  5038. caps "false"
  5039. noprefix "false"
  5040. \end_inset
  5041. and
  5042. \begin_inset CommandInset ref
  5043. LatexCommand ref
  5044. reference "fig:H3K4me3-neighborhood"
  5045. plural "false"
  5046. caps "false"
  5047. noprefix "false"
  5048. \end_inset
  5049. show that the determined promoter radius of 1
  5050. \begin_inset space ~
  5051. \end_inset
  5052. kb is approximately consistent with the distance from the TSS at which enrichmen
  5053. t of H3K4 methylation correlates with increased expression, showing that
  5054. this radius, which was determined by a simple analysis of measuring the
  5055. distance from each TSS to the nearest peak, also has functional significance.
  5056. For H3K27me3, the correlation between histone modification near the promoter
  5057. and gene expression is more complex, involving non-peak variations such
  5058. as troughs in coverage at the TSS and asymmetric coverage upstream and
  5059. downstream, so it is difficult in this case to evaluate whether the 2.5
  5060. \begin_inset space ~
  5061. \end_inset
  5062. kb radius determined from TSS-to-peak distances is functionally significant.
  5063. However, the two patterns of coverage associated with elevated expression
  5064. levels both have interesting features within this radius.
  5065. \end_layout
  5066. \begin_layout Standard
  5067. \begin_inset Flex TODO Note (inline)
  5068. status open
  5069. \begin_layout Plain Layout
  5070. My instinct is to say
  5071. \begin_inset Quotes eld
  5072. \end_inset
  5073. further study is needed
  5074. \begin_inset Quotes erd
  5075. \end_inset
  5076. here, but that goes in Chapter 5, right?
  5077. \end_layout
  5078. \end_inset
  5079. \end_layout
  5080. \begin_layout Subsection
  5081. Convergence
  5082. \end_layout
  5083. \begin_layout Standard
  5084. \begin_inset Flex TODO Note (inline)
  5085. status open
  5086. \begin_layout Plain Layout
  5087. Look up some more references for these histone marks being involved in memory
  5088. differentiation.
  5089. (Ask Sarah)
  5090. \end_layout
  5091. \end_inset
  5092. \end_layout
  5093. \begin_layout Standard
  5094. We have observed that all 3 histone marks and the gene expression data all
  5095. exhibit evidence of convergence in abundance between naive and memory cells
  5096. by day 14 after activation (Figure
  5097. \begin_inset CommandInset ref
  5098. LatexCommand ref
  5099. reference "fig:PCoA-promoters"
  5100. plural "false"
  5101. caps "false"
  5102. noprefix "false"
  5103. \end_inset
  5104. , Table
  5105. \begin_inset CommandInset ref
  5106. LatexCommand ref
  5107. reference "tab:Number-signif-promoters"
  5108. plural "false"
  5109. caps "false"
  5110. noprefix "false"
  5111. \end_inset
  5112. ).
  5113. The MOFA latent factor scatter plots (Figure
  5114. \begin_inset CommandInset ref
  5115. LatexCommand ref
  5116. reference "fig:mofa-lf-scatter"
  5117. plural "false"
  5118. caps "false"
  5119. noprefix "false"
  5120. \end_inset
  5121. ) show that this pattern of convergence is captured in latent factor 5.
  5122. Like all the latent factors in this plot, this factor explains a substantial
  5123. portion of the variance in all 4 data sets, indicating a coordinated pattern
  5124. of variation shared across all histone marks and gene expression.
  5125. This, of course, is consistent with the expectation that any naive CD4
  5126. T-cells remaining at day 14 should have differentiated into memory cells
  5127. by that time, and should therefore have a genomic state similar to memory
  5128. cells.
  5129. This convergence is evidence that these histone marks all play an important
  5130. role in the naive-to-memory differentiation process.
  5131. A histone mark that was not involved in naive-to-memory differentiation
  5132. would not be expected to converge in this way after activation.
  5133. \end_layout
  5134. \begin_layout Standard
  5135. \begin_inset Float figure
  5136. wide false
  5137. sideways false
  5138. status collapsed
  5139. \begin_layout Plain Layout
  5140. \align center
  5141. \begin_inset Graphics
  5142. filename graphics/CD4-csaw/LaMere2016_fig8.pdf
  5143. lyxscale 50
  5144. width 60col%
  5145. groupId colwidth
  5146. \end_inset
  5147. \end_layout
  5148. \begin_layout Plain Layout
  5149. \begin_inset Caption Standard
  5150. \begin_layout Plain Layout
  5151. \series bold
  5152. \begin_inset CommandInset label
  5153. LatexCommand label
  5154. name "fig:Lamere2016-Fig8"
  5155. \end_inset
  5156. Lamere 2016 Figure 8
  5157. \begin_inset CommandInset citation
  5158. LatexCommand cite
  5159. key "LaMere2016"
  5160. literal "false"
  5161. \end_inset
  5162. ,
  5163. \begin_inset Quotes eld
  5164. \end_inset
  5165. Model for the role of H3K4 methylation during CD4 T-cell activation.
  5166. \begin_inset Quotes erd
  5167. \end_inset
  5168. \series default
  5169. Reproduced with permission.
  5170. \end_layout
  5171. \end_inset
  5172. \end_layout
  5173. \end_inset
  5174. \end_layout
  5175. \begin_layout Standard
  5176. In H3K4me2, H3K4me3, and RNA-seq, this convergence appears to be in progress
  5177. already by Day 5, shown by the smaller distance between naive and memory
  5178. cells at day 5 along the
  5179. \begin_inset Formula $y$
  5180. \end_inset
  5181. -axes in Figures
  5182. \begin_inset CommandInset ref
  5183. LatexCommand ref
  5184. reference "fig:PCoA-H3K4me2-prom"
  5185. plural "false"
  5186. caps "false"
  5187. noprefix "false"
  5188. \end_inset
  5189. ,
  5190. \begin_inset CommandInset ref
  5191. LatexCommand ref
  5192. reference "fig:PCoA-H3K4me3-prom"
  5193. plural "false"
  5194. caps "false"
  5195. noprefix "false"
  5196. \end_inset
  5197. , and
  5198. \begin_inset CommandInset ref
  5199. LatexCommand ref
  5200. reference "fig:RNA-PCA-group"
  5201. plural "false"
  5202. caps "false"
  5203. noprefix "false"
  5204. \end_inset
  5205. .
  5206. This agrees with the model proposed by Sarah Lamere based on an prior analysis
  5207. of the same data, shown in Figure
  5208. \begin_inset CommandInset ref
  5209. LatexCommand ref
  5210. reference "fig:Lamere2016-Fig8"
  5211. plural "false"
  5212. caps "false"
  5213. noprefix "false"
  5214. \end_inset
  5215. , which shows the pattern of H3K4 methylation and expression for naive cells
  5216. and memory cells converging at day 5.
  5217. This model was developed without the benefit of the PCoA plots in Figure
  5218. \begin_inset CommandInset ref
  5219. LatexCommand ref
  5220. reference "fig:PCoA-promoters"
  5221. plural "false"
  5222. caps "false"
  5223. noprefix "false"
  5224. \end_inset
  5225. , which have been corrected for confounding factors by ComBat and SVA.
  5226. This shows that proper batch correction assists in extracting meaningful
  5227. patterns in the data while eliminating systematic sources of irrelevant
  5228. variation in the data, allowing simple automated procedures like PCoA to
  5229. reveal interesting behaviors in the data that were previously only detectable
  5230. by a detailed manual analysis.
  5231. \end_layout
  5232. \begin_layout Standard
  5233. While the ideal comparison to demonstrate this convergence would be naive
  5234. cells at day 14 to memory cells at day 0, this is not feasible in this
  5235. experimental system, since neither naive nor memory cells are able to fully
  5236. return to their pre-activation state, as shown by the lack of overlap between
  5237. days 0 and 14 for either naive or memory cells in Figure
  5238. \begin_inset CommandInset ref
  5239. LatexCommand ref
  5240. reference "fig:PCoA-promoters"
  5241. plural "false"
  5242. caps "false"
  5243. noprefix "false"
  5244. \end_inset
  5245. .
  5246. \end_layout
  5247. \begin_layout Subsection
  5248. Positional
  5249. \end_layout
  5250. \begin_layout Standard
  5251. When looking at patterns in the relative coverage of each histone mark near
  5252. the TSS of each gene, several interesting patterns were apparent.
  5253. For H3K4me2 and H3K4me3, the pattern was straightforward: the consistent
  5254. pattern across all promoters was a single peak a few kb wide, with the
  5255. main axis of variation being the position of this peak relative to the
  5256. TSS (Figures
  5257. \begin_inset CommandInset ref
  5258. LatexCommand ref
  5259. reference "fig:H3K4me2-neighborhood"
  5260. plural "false"
  5261. caps "false"
  5262. noprefix "false"
  5263. \end_inset
  5264. &
  5265. \begin_inset CommandInset ref
  5266. LatexCommand ref
  5267. reference "fig:H3K4me3-neighborhood"
  5268. plural "false"
  5269. caps "false"
  5270. noprefix "false"
  5271. \end_inset
  5272. ).
  5273. There were no obvious
  5274. \begin_inset Quotes eld
  5275. \end_inset
  5276. preferred
  5277. \begin_inset Quotes erd
  5278. \end_inset
  5279. positions, but rather a continuous distribution of relative positions ranging
  5280. all across the promoter region.
  5281. The association with gene expression was also straightforward: peaks closer
  5282. to the TSS were more strongly associated with elevated gene expression.
  5283. Coverage downstream of the TSS appears to be more strongly associated with
  5284. elevated expression than coverage the same distance upstream, indicating
  5285. that the
  5286. \begin_inset Quotes eld
  5287. \end_inset
  5288. effective promoter region
  5289. \begin_inset Quotes erd
  5290. \end_inset
  5291. for H3K4me2 and H3K4me3 may be centered downstream of the TSS.
  5292. \end_layout
  5293. \begin_layout Standard
  5294. The relative promoter coverage for H3K27me3 had a more complex pattern,
  5295. with two specific patterns of promoter coverage associated with elevated
  5296. expression: a sharp depletion of H3K27me3 around the TSS relative to the
  5297. surrounding area, and a depletion of H3K27me3 downstream of the TSS relative
  5298. to upstream (Figure
  5299. \begin_inset CommandInset ref
  5300. LatexCommand ref
  5301. reference "fig:H3K27me3-neighborhood"
  5302. plural "false"
  5303. caps "false"
  5304. noprefix "false"
  5305. \end_inset
  5306. ).
  5307. A previous study found that H3K27me3 depletion within the gene body was
  5308. associated with elevated gene expression in 4 different cell types in mice
  5309. \begin_inset CommandInset citation
  5310. LatexCommand cite
  5311. key "Young2011"
  5312. literal "false"
  5313. \end_inset
  5314. .
  5315. This is consistent with the second pattern described here.
  5316. This study also reported that a spike in coverage at the TSS was associated
  5317. with
  5318. \emph on
  5319. lower
  5320. \emph default
  5321. expression, which is indirectly consistent with the first pattern described
  5322. here, in the sense that it associates lower H3K27me3 levels near the TSS
  5323. with higher expression.
  5324. \end_layout
  5325. \begin_layout Subsection
  5326. Workflow
  5327. \end_layout
  5328. \begin_layout Standard
  5329. \begin_inset ERT
  5330. status open
  5331. \begin_layout Plain Layout
  5332. \backslash
  5333. afterpage{
  5334. \end_layout
  5335. \begin_layout Plain Layout
  5336. \backslash
  5337. begin{landscape}
  5338. \end_layout
  5339. \end_inset
  5340. \end_layout
  5341. \begin_layout Standard
  5342. \begin_inset Float figure
  5343. wide false
  5344. sideways false
  5345. status open
  5346. \begin_layout Plain Layout
  5347. \align center
  5348. \begin_inset Graphics
  5349. filename graphics/CD4-csaw/rulegraphs/rulegraph-all.pdf
  5350. lyxscale 50
  5351. width 100col%
  5352. height 95theight%
  5353. \end_inset
  5354. \end_layout
  5355. \begin_layout Plain Layout
  5356. \begin_inset Caption Standard
  5357. \begin_layout Plain Layout
  5358. \begin_inset CommandInset label
  5359. LatexCommand label
  5360. name "fig:rulegraph"
  5361. \end_inset
  5362. \series bold
  5363. Dependency graph of steps in reproducible workflow.
  5364. \end_layout
  5365. \end_inset
  5366. \end_layout
  5367. \end_inset
  5368. \end_layout
  5369. \begin_layout Standard
  5370. \begin_inset ERT
  5371. status open
  5372. \begin_layout Plain Layout
  5373. \backslash
  5374. end{landscape}
  5375. \end_layout
  5376. \begin_layout Plain Layout
  5377. }
  5378. \end_layout
  5379. \end_inset
  5380. \end_layout
  5381. \begin_layout Standard
  5382. The analyses described in this chapter were organized into a reproducible
  5383. workflow using the Snakemake workflow management system.
  5384. As shown in Figure
  5385. \begin_inset CommandInset ref
  5386. LatexCommand ref
  5387. reference "fig:rulegraph"
  5388. plural "false"
  5389. caps "false"
  5390. noprefix "false"
  5391. \end_inset
  5392. , the workflow includes many steps with complex dependencies between them.
  5393. For example, the step that counts the number of ChIP-seq reads in 500
  5394. \begin_inset space ~
  5395. \end_inset
  5396. bp windows in each promoter (the starting point for Figures
  5397. \begin_inset CommandInset ref
  5398. LatexCommand ref
  5399. reference "fig:H3K4me2-neighborhood"
  5400. plural "false"
  5401. caps "false"
  5402. noprefix "false"
  5403. \end_inset
  5404. ,
  5405. \begin_inset CommandInset ref
  5406. LatexCommand ref
  5407. reference "fig:H3K4me3-neighborhood"
  5408. plural "false"
  5409. caps "false"
  5410. noprefix "false"
  5411. \end_inset
  5412. , and
  5413. \begin_inset CommandInset ref
  5414. LatexCommand ref
  5415. reference "fig:H3K27me3-neighborhood"
  5416. plural "false"
  5417. caps "false"
  5418. noprefix "false"
  5419. \end_inset
  5420. ), named
  5421. \begin_inset Formula $\texttt{chipseq\_count\_tss\_neighborhoods}$
  5422. \end_inset
  5423. , depends on the RNA-seq abundance estimates in order to select the most-used
  5424. TSS for each gene, the aligned ChIP-seq reads, the index for those reads,
  5425. and the blacklist of regions to be excluded from ChIP-seq analysis.
  5426. Each step declares its inputs and outputs, and Snakemake uses these to
  5427. determine the dependencies between steps.
  5428. Each step is marked as depending on all the steps whose outputs match its
  5429. inputs, generating the workflow graph in Figure
  5430. \begin_inset CommandInset ref
  5431. LatexCommand ref
  5432. reference "fig:rulegraph"
  5433. plural "false"
  5434. caps "false"
  5435. noprefix "false"
  5436. \end_inset
  5437. , which Snakemake uses to determine order in which to execute each step
  5438. so that each step is executed only after all of the steps it depends on
  5439. have completed, thereby automating the entire workflow from start to finish.
  5440. \end_layout
  5441. \begin_layout Standard
  5442. In addition to simply making it easier to organize the steps in the analysis,
  5443. structuring the analysis as a workflow allowed for some analysis strategies
  5444. that would not have been practical otherwise.
  5445. For example, 5 different RNA-seq quantification methods were tested against
  5446. two different reference transcriptome annotations for a total of 10 different
  5447. quantifications of the same RNA-seq data.
  5448. These were then compared against each other in the exploratory data analysis
  5449. step, to determine that the results were not very sensitive to either the
  5450. choice of quantification method or the choice of annotation.
  5451. This was possible with a single script for the exploratory data analysis,
  5452. because Snakemake was able to automate running this script for every combinatio
  5453. n of method and reference.
  5454. In a similar manner, two different peak calling methods were tested against
  5455. each other, and in this case it was determined that SICER was unambiguously
  5456. superior to MACS for all histone marks studied.
  5457. By enabling these types of comparisons, structuring the analysis as an
  5458. automated workflow allowed important analysis decisions to be made in a
  5459. data-driven way, by running every reasonable option through the downstream
  5460. steps, seeing the consequences of choosing each option, and deciding accordingl
  5461. y.
  5462. \end_layout
  5463. \begin_layout Subsection
  5464. Data quality issues limit conclusions
  5465. \end_layout
  5466. \begin_layout Standard
  5467. \begin_inset Flex TODO Note (inline)
  5468. status open
  5469. \begin_layout Plain Layout
  5470. Is this needed?
  5471. \end_layout
  5472. \end_inset
  5473. \end_layout
  5474. \begin_layout Section
  5475. Future Directions
  5476. \end_layout
  5477. \begin_layout Standard
  5478. The analysis of RNA-seq and ChIP-seq in CD4 T-cells in Chapter 2 is in many
  5479. ways a preliminary study that suggests a multitude of new avenues of investigat
  5480. ion.
  5481. Here we consider a selection of such avenues.
  5482. \end_layout
  5483. \begin_layout Subsection
  5484. Negative results
  5485. \end_layout
  5486. \begin_layout Standard
  5487. Two additional analyses were conducted beyond those reported in the results.
  5488. First, we searched for evidence that the presence or absence of a CpG island
  5489. in the promoter was correlated with increases or decreases in gene expression
  5490. or any histone mark in any of the tested contrasts.
  5491. Second, we searched for evidence that the relative ChIP-seq coverage profiles
  5492. prior to activations could predict the change in expression of a gene after
  5493. activation.
  5494. Neither analysis turned up any clear positive results.
  5495. \end_layout
  5496. \begin_layout Subsection
  5497. Improve on the idea of an effective promoter radius
  5498. \end_layout
  5499. \begin_layout Standard
  5500. This study introduced the concept of an
  5501. \begin_inset Quotes eld
  5502. \end_inset
  5503. effective promoter radius
  5504. \begin_inset Quotes erd
  5505. \end_inset
  5506. specific to each histone mark based on distance from the TSS within which
  5507. an excess of peaks was called for that mark.
  5508. This concept was then used to guide further analyses throughout the study.
  5509. However, while the effective promoter radius was useful in those analyses,
  5510. it is both limited in theory and shown in practice to be a possible oversimplif
  5511. ication.
  5512. First, the effective promoter radii used in this study were chosen based
  5513. on manual inspection of the TSS-to-peak distance distributions in Figure
  5514. \begin_inset CommandInset ref
  5515. LatexCommand ref
  5516. reference "fig:near-promoter-peak-enrich"
  5517. plural "false"
  5518. caps "false"
  5519. noprefix "false"
  5520. \end_inset
  5521. , selecting round numbers of analyst convenience (Table
  5522. \begin_inset CommandInset ref
  5523. LatexCommand ref
  5524. reference "tab:effective-promoter-radius"
  5525. plural "false"
  5526. caps "false"
  5527. noprefix "false"
  5528. \end_inset
  5529. ).
  5530. It would be better to define an algorithm that selects a more precise radius
  5531. based on the features of the graph.
  5532. One possible way to do this would be to randomly rearrange the called peaks
  5533. throughout the genome many (while preserving the distribution of peak widths)
  5534. and re-generate the same plot as in Figure
  5535. \begin_inset CommandInset ref
  5536. LatexCommand ref
  5537. reference "fig:near-promoter-peak-enrich"
  5538. plural "false"
  5539. caps "false"
  5540. noprefix "false"
  5541. \end_inset
  5542. .
  5543. This would yield a better
  5544. \begin_inset Quotes eld
  5545. \end_inset
  5546. background
  5547. \begin_inset Quotes erd
  5548. \end_inset
  5549. distribution that demonstrates the degree of near-TSS enrichment that would
  5550. be expected by random chance.
  5551. The effective promoter radius could be defined as the point where the true
  5552. distribution diverges from the randomized background distribution.
  5553. \end_layout
  5554. \begin_layout Standard
  5555. Furthermore, the above definition of effective promoter radius has the significa
  5556. nt limitation of being based on the peak calling method.
  5557. It is thus very sensitive to the choice of peak caller and significance
  5558. threshold for calling peaks, as well as the degree of saturation in the
  5559. sequencing.
  5560. Calling peaks from ChIP-seq samples with insufficient coverage depth, with
  5561. the wrong peak caller, or with a different significance threshold could
  5562. give a drastically different number of called peaks, and hence a drastically
  5563. different distribution of peak-to-TSS distances.
  5564. To address this, it is desirable to develop a better method of determining
  5565. the effective promoter radius that relies only on the distribution of read
  5566. coverage around the TSS, independent of the peak calling.
  5567. Furthermore, as demonstrated by the upstream-downstream asymmetries observed
  5568. in Figures
  5569. \begin_inset CommandInset ref
  5570. LatexCommand ref
  5571. reference "fig:H3K4me2-neighborhood"
  5572. plural "false"
  5573. caps "false"
  5574. noprefix "false"
  5575. \end_inset
  5576. ,
  5577. \begin_inset CommandInset ref
  5578. LatexCommand ref
  5579. reference "fig:H3K4me3-neighborhood"
  5580. plural "false"
  5581. caps "false"
  5582. noprefix "false"
  5583. \end_inset
  5584. , and
  5585. \begin_inset CommandInset ref
  5586. LatexCommand ref
  5587. reference "fig:H3K27me3-neighborhood"
  5588. plural "false"
  5589. caps "false"
  5590. noprefix "false"
  5591. \end_inset
  5592. , this definition should determine a different radius for the upstream and
  5593. downstream directions.
  5594. At this point, it may be better to rename this concept
  5595. \begin_inset Quotes eld
  5596. \end_inset
  5597. effective promoter extent
  5598. \begin_inset Quotes erd
  5599. \end_inset
  5600. and avoid the word
  5601. \begin_inset Quotes eld
  5602. \end_inset
  5603. radius
  5604. \begin_inset Quotes erd
  5605. \end_inset
  5606. , since a radius implies a symmetry about the TSS that is not supported
  5607. by the data.
  5608. \end_layout
  5609. \begin_layout Standard
  5610. Beyond improving the definition of effective promoter extent, functional
  5611. validation is necessary to show that this measure of near-TSS enrichment
  5612. has biological meaning.
  5613. Figures
  5614. \begin_inset CommandInset ref
  5615. LatexCommand ref
  5616. reference "fig:H3K4me2-neighborhood"
  5617. plural "false"
  5618. caps "false"
  5619. noprefix "false"
  5620. \end_inset
  5621. and
  5622. \begin_inset CommandInset ref
  5623. LatexCommand ref
  5624. reference "fig:H3K4me3-neighborhood"
  5625. plural "false"
  5626. caps "false"
  5627. noprefix "false"
  5628. \end_inset
  5629. already provide a very limited functional validation of the chosen promoter
  5630. extents for H3K4me2 and H3K4me3 by showing that spikes in coverage within
  5631. this region are most strongly correlated with elevated gene expression.
  5632. However, there are other ways to show functional relevance of the promoter
  5633. extent.
  5634. For example, correlations could be computed between read counts in peaks
  5635. nearby gene promoters and the expression level of those genes, and these
  5636. correlations could be plotted against the distance of the peak upstream
  5637. or downstream of the gene's TSS.
  5638. If the promoter extent truly defines a
  5639. \begin_inset Quotes eld
  5640. \end_inset
  5641. sphere of influence
  5642. \begin_inset Quotes erd
  5643. \end_inset
  5644. within which a histone mark is involved with the regulation of a gene,
  5645. then the correlations for peaks within this extent should be significantly
  5646. higher than those further upstream or downstream.
  5647. Peaks within these extents may also be more likely to show differential
  5648. modification than those outside genic regions of the genome.
  5649. \end_layout
  5650. \begin_layout Subsection
  5651. Design experiments to focus on post-activation convergence of naive & memory
  5652. cells
  5653. \end_layout
  5654. \begin_layout Standard
  5655. In this study, a convergence between naive and memory cells was observed
  5656. in both the pattern of gene expression and in epigenetic state of the 3
  5657. histone marks studied, consistent with the hypothesis that any naive cells
  5658. remaining 14 days after activation have differentiated into memory cells,
  5659. and that both gene expression and these histone marks are involved in this
  5660. differentiation.
  5661. However, the current study was not designed with this specific hypothesis
  5662. in mind, and it therefore has some deficiencies with regard to testing
  5663. it.
  5664. The memory CD4 samples at day 14 do not resemble the memory samples at
  5665. day 0, indicating that in the specific model of activation used for this
  5666. experiment, the cells are not guaranteed to return to their original pre-activa
  5667. tion state, or perhaps this process takes substantially longer than 14 days.
  5668. This is a challenge for the convergence hypothesis because the ideal comparison
  5669. to prove that naive cells are converging to a resting memory state would
  5670. be to compare the final naive time point to the Day 0 memory samples, but
  5671. this comparison is only meaningful if memory cells generally return to
  5672. the same
  5673. \begin_inset Quotes eld
  5674. \end_inset
  5675. resting
  5676. \begin_inset Quotes erd
  5677. \end_inset
  5678. state that they started at.
  5679. \end_layout
  5680. \begin_layout Standard
  5681. To better study the convergence hypothesis, a new experiment should be designed
  5682. using a model system for T-cell activation that is known to allow cells
  5683. to return as closely as possible to their pre-activation state.
  5684. Alternatively, if it is not possible to find or design such a model system,
  5685. the same cell cultures could be activated serially multiple times, and
  5686. sequenced after each activation cycle right before the next activation.
  5687. It is likely that several activations in the same model system will settle
  5688. into a cyclical pattern, converging to a consistent
  5689. \begin_inset Quotes eld
  5690. \end_inset
  5691. resting
  5692. \begin_inset Quotes erd
  5693. \end_inset
  5694. state after each activation, even if this state is different from the initial
  5695. resting state at Day 0.
  5696. If so, it will be possible to compare the final states of both naive and
  5697. memory cells to show that they converge despite different initial conditions.
  5698. \end_layout
  5699. \begin_layout Standard
  5700. In addition, if naive-to-memory convergence is a general pattern, it should
  5701. also be detectable in other epigenetic marks, including other histone marks
  5702. and DNA methylation.
  5703. An experiment should be designed studying a large number of epigenetic
  5704. marks known or suspected to be involved in regulation of gene expression,
  5705. assaying all of these at the same pre- and post-activation time points.
  5706. Multi-dataset factor analysis methods like MOFA can then be used to identify
  5707. coordinated patterns of regulation shared across many epigenetic marks.
  5708. If possible, some
  5709. \begin_inset Quotes eld
  5710. \end_inset
  5711. negative control
  5712. \begin_inset Quotes erd
  5713. \end_inset
  5714. marks should be included that are known
  5715. \emph on
  5716. not
  5717. \emph default
  5718. to be involved in T-cell activation or memory formation.
  5719. Of course, CD4 T-cells are not the only adaptive immune cells with memory.
  5720. A similar study could be designed for CD8 T-cells, B-cells, and even specific
  5721. subsets of CD4 T-cells.
  5722. \end_layout
  5723. \begin_layout Subsection
  5724. Follow up on hints of interesting patterns in promoter relative coverage
  5725. profiles
  5726. \end_layout
  5727. \begin_layout Standard
  5728. \begin_inset Flex TODO Note (inline)
  5729. status open
  5730. \begin_layout Plain Layout
  5731. I think I might need to write up the negative results for the Promoter CpG
  5732. and defined pattern analysis before writing this section.
  5733. \end_layout
  5734. \end_inset
  5735. \end_layout
  5736. \begin_layout Itemize
  5737. Also find better normalizations: maybe borrow from MACS/SICER background
  5738. correction methods?
  5739. \end_layout
  5740. \begin_layout Itemize
  5741. For H3K4, define polar coordinates based on PC1 & 2: R = peak size, Theta
  5742. = peak position.
  5743. Then correlate with expression.
  5744. \end_layout
  5745. \begin_layout Itemize
  5746. Current analysis only at Day 0.
  5747. Need to study across time points.
  5748. \end_layout
  5749. \begin_layout Itemize
  5750. Integrating data across so many dimensions is a significant analysis challenge
  5751. \end_layout
  5752. \begin_layout Subsection
  5753. Investigate causes of high correlation between mutually exclusive histone
  5754. marks
  5755. \end_layout
  5756. \begin_layout Standard
  5757. The high correlation between coverage depth observed between H3K4me2 and
  5758. H3K4me3 is both expected and unexpected.
  5759. Since both marks are associated with elevated gene transcription, a positive
  5760. correlation between them is not surprising.
  5761. However, these two marks represent different post-translational modifications
  5762. of the
  5763. \emph on
  5764. same
  5765. \emph default
  5766. lysine residue on the histone H3 polypeptide, which means that they cannot
  5767. both be present on the same H3 subunit.
  5768. Thus, the high correlation between them has several potential explanations.
  5769. One possible reason is cell population heterogeneity: perhaps some genomic
  5770. loci are frequently marked with H3K4me2 in some cells, while in other cells
  5771. the same loci are marked with H3K4me3.
  5772. Another possibility is allele-specific modifications: the loci are marked
  5773. in each diploid cell with H3K4me2 on one allele and H3K4me3 on the other
  5774. allele.
  5775. Lastly, since each histone octamer contains 2 H3 subunits, it is possible
  5776. that having one H3K4me2 mark and one H3K4me3 mark on a given histone octamer
  5777. represents a distinct epigenetic state with a different function than either
  5778. double H3K4me2 or double H3K4me3.
  5779. \end_layout
  5780. \begin_layout Standard
  5781. These three hypotheses could be disentangled by single-cell ChIP-seq.
  5782. If the correlation between these two histone marks persists even within
  5783. the reads for each individual cell, then cell population heterogeneity
  5784. cannot explain the correlation.
  5785. Allele-specific modification can be tested for by looking at the correlation
  5786. between read coverage of the two histone marks at heterozygous loci.
  5787. If the correlation between read counts for opposite loci is low, then this
  5788. is consistent with allele-specific modification.
  5789. Finally if the modifications do not separate by either cell or allele,
  5790. the colocation of these two marks is most likely occurring at the level
  5791. of individual histones, with the heterogeneously modified histone representing
  5792. a distinct state.
  5793. \end_layout
  5794. \begin_layout Standard
  5795. However, another experiment would be required to show direct evidence of
  5796. such a heterogeneously modified state.
  5797. Specifically a
  5798. \begin_inset Quotes eld
  5799. \end_inset
  5800. double ChIP
  5801. \begin_inset Quotes erd
  5802. \end_inset
  5803. experiment would need to be performed, where the input DNA is first subjected
  5804. to an immunoprecipitation pulldown from the anti-H3K4me2 antibody, and
  5805. then the enriched material is collected, with proteins still bound, and
  5806. immunoprecipitated
  5807. \emph on
  5808. again
  5809. \emph default
  5810. using the anti-H3K4me3 antibody.
  5811. If this yields significant numbers of non-artifactual reads in the same
  5812. regions as the individual pulldowns of the two marks, this is strong evidence
  5813. that the two marks are occurring on opposite H3 subunits of the same histones.
  5814. \end_layout
  5815. \begin_layout Standard
  5816. \begin_inset Flex TODO Note (inline)
  5817. status open
  5818. \begin_layout Plain Layout
  5819. Try to see if double ChIP-seq is actually feasible, and if not, come up
  5820. with some other idea for directly detecting the mixed mod state.
  5821. Oh! Actually ChIP-seq isn't required, only double ChIP followed by quantificati
  5822. on.
  5823. That's one possible angle.
  5824. \end_layout
  5825. \end_inset
  5826. \end_layout
  5827. \begin_layout Chapter
  5828. Improving array-based diagnostics for transplant rejection by optimizing
  5829. data preprocessing
  5830. \end_layout
  5831. \begin_layout Standard
  5832. \begin_inset Note Note
  5833. status open
  5834. \begin_layout Plain Layout
  5835. Chapter author list: Me, Sunil, Tom, Padma, Dan
  5836. \end_layout
  5837. \end_inset
  5838. \end_layout
  5839. \begin_layout Section
  5840. Approach
  5841. \end_layout
  5842. \begin_layout Subsection
  5843. Proper pre-processing is essential for array data
  5844. \end_layout
  5845. \begin_layout Standard
  5846. \begin_inset Flex TODO Note (inline)
  5847. status open
  5848. \begin_layout Plain Layout
  5849. This section could probably use some citations
  5850. \end_layout
  5851. \end_inset
  5852. \end_layout
  5853. \begin_layout Standard
  5854. Microarrays, bead arrays, and similar assays produce raw data in the form
  5855. of fluorescence intensity measurements, with the each intensity measurement
  5856. proportional to the abundance of some fluorescently labelled target DNA
  5857. or RNA sequence that base pairs to a specific probe sequence.
  5858. However, these measurements for each probe are also affected my many technical
  5859. confounding factors, such as the concentration of target material, strength
  5860. of off-target binding, and the sensitivity of the imaging sensor.
  5861. Some array designs also use multiple probe sequences for each target.
  5862. Hence, extensive pre-processing of array data is necessary to normalize
  5863. out the effects of these technical factors and summarize the information
  5864. from multiple probes to arrive at a single usable estimate of abundance
  5865. or other relevant quantity, such as a ratio of two abundances, for each
  5866. target.
  5867. \end_layout
  5868. \begin_layout Standard
  5869. The choice of pre-processing algorithms used in the analysis of an array
  5870. data set can have a large effect on the results of that analysis.
  5871. However, despite their importance, these steps are often neglected or rushed
  5872. in order to get to the more scientifically interesting analysis steps involving
  5873. the actual biology of the system under study.
  5874. Hence, it is often possible to achieve substantial gains in statistical
  5875. power, model goodness-of-fit, or other relevant performance measures, by
  5876. checking the assumptions made by each preprocessing step and choosing specific
  5877. normalization methods tailored to the specific goals of the current analysis.
  5878. \end_layout
  5879. \begin_layout Subsection
  5880. Clinical diagnostic applications for microarrays require single-channel
  5881. normalization
  5882. \end_layout
  5883. \begin_layout Standard
  5884. As the cost of performing microarray assays falls, there is increasing interest
  5885. in using genomic assays for diagnostic purposes, such as distinguishing
  5886. healthy transplants (TX) from transplants undergoing acute rejection (AR)
  5887. or acute dysfunction with no rejection (ADNR).
  5888. However, the the standard normalization algorithm used for microarray data,
  5889. Robust Multi-chip Average (RMA)
  5890. \begin_inset CommandInset citation
  5891. LatexCommand cite
  5892. key "Irizarry2003a"
  5893. literal "false"
  5894. \end_inset
  5895. , is not applicable in a clinical setting.
  5896. Two of the steps in RMA, quantile normalization and probe summarization
  5897. by median polish, depend on every array in the data set being normalized.
  5898. This means that adding or removing any arrays from a data set changes the
  5899. normalized values for all arrays, and data sets that have been normalized
  5900. separately cannot be compared to each other.
  5901. Hence, when using RMA, any arrays to be analyzed together must also be
  5902. normalized together, and the set of arrays included in the data set must
  5903. be held constant throughout an analysis.
  5904. \end_layout
  5905. \begin_layout Standard
  5906. These limitations present serious impediments to the use of arrays as a
  5907. diagnostic tool.
  5908. When training a classifier, the samples to be classified must not be involved
  5909. in any step of the training process, lest their inclusion bias the training
  5910. process.
  5911. Once a classifier is deployed in a clinical setting, the samples to be
  5912. classified will not even
  5913. \emph on
  5914. exist
  5915. \emph default
  5916. at the time of training, so including them would be impossible even if
  5917. it were statistically justifiable.
  5918. Therefore, any machine learning application for microarrays demands that
  5919. the normalized expression values computed for an array must depend only
  5920. on information contained within that array.
  5921. This would ensure that each array's normalization is independent of every
  5922. other array, and that arrays normalized separately can still be compared
  5923. to each other without bias.
  5924. Such a normalization is commonly referred to as
  5925. \begin_inset Quotes eld
  5926. \end_inset
  5927. single-channel normalization
  5928. \begin_inset Quotes erd
  5929. \end_inset
  5930. .
  5931. \end_layout
  5932. \begin_layout Standard
  5933. Frozen RMA (fRMA) addresses these concerns by replacing the quantile normalizati
  5934. on and median polish with alternatives that do not introduce inter-array
  5935. dependence, allowing each array to be normalized independently of all others
  5936. \begin_inset CommandInset citation
  5937. LatexCommand cite
  5938. key "McCall2010"
  5939. literal "false"
  5940. \end_inset
  5941. .
  5942. Quantile normalization is performed against a pre-generated set of quantiles
  5943. learned from a collection of 850 publicly available arrays sampled from
  5944. a wide variety of tissues in the Gene Expression Omnibus (GEO).
  5945. Each array's probe intensity distribution is normalized against these pre-gener
  5946. ated quantiles.
  5947. The median polish step is replaced with a robust weighted average of probe
  5948. intensities, using inverse variance weights learned from the same public
  5949. GEO data.
  5950. The result is a normalization that satisfies the requirements mentioned
  5951. above: each array is normalized independently of all others, and any two
  5952. normalized arrays can be compared directly to each other.
  5953. \end_layout
  5954. \begin_layout Standard
  5955. One important limitation of fRMA is that it requires a separate reference
  5956. data set from which to learn the parameters (reference quantiles and probe
  5957. weights) that will be used to normalize each array.
  5958. These parameters are specific to a given array platform, and pre-generated
  5959. parameters are only provided for the most common platforms, such as Affymetrix
  5960. hgu133plus2.
  5961. For a less common platform, such as hthgu133pluspm, is is necessary to
  5962. learn custom parameters from in-house data before fRMA can be used to normalize
  5963. samples on that platform
  5964. \begin_inset CommandInset citation
  5965. LatexCommand cite
  5966. key "McCall2011"
  5967. literal "false"
  5968. \end_inset
  5969. .
  5970. \end_layout
  5971. \begin_layout Standard
  5972. One other option is the aptly-named Single Channel Array Normalization (SCAN),
  5973. which adapts a normalization method originally designed for tiling arrays
  5974. \begin_inset CommandInset citation
  5975. LatexCommand cite
  5976. key "Piccolo2012"
  5977. literal "false"
  5978. \end_inset
  5979. .
  5980. SCAN is truly single-channel in that it does not require a set of normalization
  5981. parameters estimated from an external set of reference samples like fRMA
  5982. does.
  5983. \end_layout
  5984. \begin_layout Subsection
  5985. Heteroskedasticity must be accounted for in methylation array data
  5986. \end_layout
  5987. \begin_layout Standard
  5988. DNA methylation arrays are a relatively new kind of assay that uses microarrays
  5989. to measure the degree of methylation on cytosines in specific regions arrayed
  5990. across the genome.
  5991. First, bisulfite treatment converts all unmethylated cytosines to uracil
  5992. (which then become thymine after amplification) while leaving methylated
  5993. cytosines unaffected.
  5994. Then, each target region is interrogated with two probes: one binds to
  5995. the original genomic sequence and interrogates the level of methylated
  5996. DNA, and the other binds to the same sequence with all cytosines replaced
  5997. by thymidines and interrogates the level of unmethylated DNA.
  5998. \end_layout
  5999. \begin_layout Standard
  6000. \begin_inset Float figure
  6001. wide false
  6002. sideways false
  6003. status collapsed
  6004. \begin_layout Plain Layout
  6005. \align center
  6006. \begin_inset Graphics
  6007. filename graphics/methylvoom/sigmoid.pdf
  6008. lyxscale 50
  6009. width 60col%
  6010. groupId colwidth
  6011. \end_inset
  6012. \end_layout
  6013. \begin_layout Plain Layout
  6014. \begin_inset Caption Standard
  6015. \begin_layout Plain Layout
  6016. \begin_inset CommandInset label
  6017. LatexCommand label
  6018. name "fig:Sigmoid-beta-m-mapping"
  6019. \end_inset
  6020. \series bold
  6021. Sigmoid shape of the mapping between β and M values
  6022. \end_layout
  6023. \end_inset
  6024. \end_layout
  6025. \end_inset
  6026. \end_layout
  6027. \begin_layout Standard
  6028. After normalization, these two probe intensities are summarized in one of
  6029. two ways, each with advantages and disadvantages.
  6030. β
  6031. \series bold
  6032. \series default
  6033. values, interpreted as fraction of DNA copies methylated, range from 0 to
  6034. 1.
  6035. β
  6036. \series bold
  6037. \series default
  6038. values are conceptually easy to interpret, but the constrained range makes
  6039. them unsuitable for linear modeling, and their error distributions are
  6040. highly non-normal, which also frustrates linear modeling.
  6041. M-values, interpreted as the log ratio of methylated to unmethylated copies,
  6042. are computed by mapping the beta values from
  6043. \begin_inset Formula $[0,1]$
  6044. \end_inset
  6045. onto
  6046. \begin_inset Formula $(-\infty,+\infty)$
  6047. \end_inset
  6048. using a sigmoid curve (Figure
  6049. \begin_inset CommandInset ref
  6050. LatexCommand ref
  6051. reference "fig:Sigmoid-beta-m-mapping"
  6052. plural "false"
  6053. caps "false"
  6054. noprefix "false"
  6055. \end_inset
  6056. ).
  6057. This transformation results in values with better statistical properties:
  6058. the unconstrained range is suitable for linear modeling, and the error
  6059. distributions are more normal.
  6060. Hence, most linear modeling and other statistical testing on methylation
  6061. arrays is performed using M-values.
  6062. \end_layout
  6063. \begin_layout Standard
  6064. However, the steep slope of the sigmoid transformation near 0 and 1 tends
  6065. to over-exaggerate small differences in β values near those extremes, which
  6066. in turn amplifies the error in those values, leading to a U-shaped trend
  6067. in the mean-variance curve: extreme values have higher variances than values
  6068. near the middle.
  6069. This mean-variance dependency must be accounted for when fitting the linear
  6070. model for differential methylation, or else the variance will be systematically
  6071. overestimated for probes with moderate M-values and underestimated for
  6072. probes with extreme M-values.
  6073. This is particularly undesirable for methylation data because the intermediate
  6074. M-values are the ones of most interest, since they are more likely to represent
  6075. areas of varying methylation, whereas extreme M-values typically represent
  6076. complete methylation or complete lack of methylation.
  6077. \end_layout
  6078. \begin_layout Standard
  6079. RNA-seq read count data are also known to show heteroskedasticity, and the
  6080. voom method was introduced for modeling this heteroskedasticity by estimating
  6081. the mean-variance trend in the data and using this trend to assign precision
  6082. weights to each observation
  6083. \begin_inset CommandInset citation
  6084. LatexCommand cite
  6085. key "Law2013"
  6086. literal "false"
  6087. \end_inset
  6088. .
  6089. While methylation array data are not derived from counts and have a very
  6090. different mean-variance relationship from that of typical RNA-seq data,
  6091. the voom method makes no specific assumptions on the shape of the mean-variance
  6092. relationship – it only assumes that the relationship can be modeled as
  6093. a smooth curve.
  6094. Hence, the method is sufficiently general to model the mean-variance relationsh
  6095. ip in methylation array data.
  6096. However, the standard implementation of voom assumes that the input is
  6097. given in raw read counts, and it must be adapted to run on methylation
  6098. M-values.
  6099. \end_layout
  6100. \begin_layout Section
  6101. Methods
  6102. \end_layout
  6103. \begin_layout Subsection
  6104. Evaluation of classifier performance with different normalization methods
  6105. \end_layout
  6106. \begin_layout Standard
  6107. For testing different expression microarray normalizations, a data set of
  6108. 157 hgu133plus2 arrays was used, consisting of blood samples from kidney
  6109. transplant patients whose grafts had been graded as TX, AR, or ADNR via
  6110. biopsy and histology (46 TX, 69 AR, 42 ADNR)
  6111. \begin_inset CommandInset citation
  6112. LatexCommand cite
  6113. key "Kurian2014"
  6114. literal "true"
  6115. \end_inset
  6116. .
  6117. Additionally, an external validation set of 75 samples was gathered from
  6118. public GEO data (37 TX, 38 AR, no ADNR).
  6119. \end_layout
  6120. \begin_layout Standard
  6121. \begin_inset Flex TODO Note (inline)
  6122. status open
  6123. \begin_layout Plain Layout
  6124. Find appropriate GEO identifiers if possible.
  6125. Kurian 2014 says GSE15296, but this seems to be different data.
  6126. I also need to look up the GEO accession for the external validation set.
  6127. \end_layout
  6128. \end_inset
  6129. \end_layout
  6130. \begin_layout Standard
  6131. To evaluate the effect of each normalization on classifier performance,
  6132. the same classifier training and validation procedure was used after each
  6133. normalization method.
  6134. The PAM package was used to train a nearest shrunken centroid classifier
  6135. on the training set and select the appropriate threshold for centroid shrinking.
  6136. Then the trained classifier was used to predict the class probabilities
  6137. of each validation sample.
  6138. From these class probabilities, ROC curves and area-under-curve (AUC) values
  6139. were generated
  6140. \begin_inset CommandInset citation
  6141. LatexCommand cite
  6142. key "Turck2011"
  6143. literal "false"
  6144. \end_inset
  6145. .
  6146. Each normalization was tested on two different sets of training and validation
  6147. samples.
  6148. For internal validation, the 115 TX and AR arrays in the internal set were
  6149. split at random into two equal sized sets, one for training and one for
  6150. validation, each containing the same numbers of TX and AR samples as the
  6151. other set.
  6152. For external validation, the full set of 115 TX and AR samples were used
  6153. as a training set, and the 75 external TX and AR samples were used as the
  6154. validation set.
  6155. Thus, 2 ROC curves and AUC values were generated for each normalization
  6156. method: one internal and one external.
  6157. Because the external validation set contains no ADNR samples, only classificati
  6158. on of TX and AR samples was considered.
  6159. The ADNR samples were included during normalization but excluded from all
  6160. classifier training and validation.
  6161. This ensures that the performance on internal and external validation sets
  6162. is directly comparable, since both are performing the same task: distinguishing
  6163. TX from AR.
  6164. \end_layout
  6165. \begin_layout Standard
  6166. \begin_inset Flex TODO Note (inline)
  6167. status open
  6168. \begin_layout Plain Layout
  6169. Summarize the get.best.threshold algorithm for PAM threshold selection, or
  6170. just put the code online?
  6171. \end_layout
  6172. \end_inset
  6173. \end_layout
  6174. \begin_layout Standard
  6175. Six different normalization strategies were evaluated.
  6176. First, 2 well-known non-single-channel normalization methods were considered:
  6177. RMA and dChip
  6178. \begin_inset CommandInset citation
  6179. LatexCommand cite
  6180. key "Li2001,Irizarry2003a"
  6181. literal "false"
  6182. \end_inset
  6183. .
  6184. Since RMA produces expression values on a log2 scale and dChip does not,
  6185. the values from dChip were log2 transformed after normalization.
  6186. Next, RMA and dChip followed by Global Rank-invariant Set Normalization
  6187. (GRSN) were tested
  6188. \begin_inset CommandInset citation
  6189. LatexCommand cite
  6190. key "Pelz2008"
  6191. literal "false"
  6192. \end_inset
  6193. .
  6194. Post-processing with GRSN does not turn RMA or dChip into single-channel
  6195. methods, but it may help mitigate batch effects and is therefore useful
  6196. as a benchmark.
  6197. Lastly, the two single-channel normalization methods, fRMA and SCAN, were
  6198. tested
  6199. \begin_inset CommandInset citation
  6200. LatexCommand cite
  6201. key "McCall2010,Piccolo2012"
  6202. literal "false"
  6203. \end_inset
  6204. .
  6205. When evaluating internal validation performance, only the 157 internal
  6206. samples were normalized; when evaluating external validation performance,
  6207. all 157 internal samples and 75 external samples were normalized together.
  6208. \end_layout
  6209. \begin_layout Standard
  6210. For demonstrating the problem with separate normalization of training and
  6211. validation data, one additional normalization was performed: the internal
  6212. and external sets were each normalized separately using RMA, and the normalized
  6213. data for each set were combined into a single set with no further attempts
  6214. at normalizing between the two sets.
  6215. The represents approximately how RMA would have to be used in a clinical
  6216. setting, where the samples to be classified are not available at the time
  6217. the classifier is trained.
  6218. \end_layout
  6219. \begin_layout Subsection
  6220. Generating custom fRMA vectors for hthgu133pluspm array platform
  6221. \end_layout
  6222. \begin_layout Standard
  6223. In order to enable fRMA normalization for the hthgu133pluspm array platform,
  6224. custom fRMA normalization vectors were trained using the
  6225. \begin_inset Flex Code
  6226. status open
  6227. \begin_layout Plain Layout
  6228. frmaTools
  6229. \end_layout
  6230. \end_inset
  6231. package
  6232. \begin_inset CommandInset citation
  6233. LatexCommand cite
  6234. key "McCall2011"
  6235. literal "false"
  6236. \end_inset
  6237. .
  6238. Separate vectors were created for two types of samples: kidney graft biopsy
  6239. samples and blood samples from graft recipients.
  6240. For training, a 341 kidney biopsy samples from 2 data sets and 965 blood
  6241. samples from 5 data sets were used as the reference set.
  6242. Arrays were groups into batches based on unique combinations of sample
  6243. type (blood or biopsy), diagnosis (TX, AR, etc.), data set, and scan date.
  6244. Thus, each batch represents arrays of the same kind that were run together
  6245. on the same day.
  6246. For estimating the probe inverse variance weights, frmaTools requires equal-siz
  6247. ed batches, which means a batch size must be chosen, and then batches smaller
  6248. than that size must be ignored, while batches larger than the chosen size
  6249. must be downsampled.
  6250. This downsampling is performed randomly, so the sampling process is repeated
  6251. 5 times and the resulting normalizations are compared to each other.
  6252. \end_layout
  6253. \begin_layout Standard
  6254. To evaluate the consistency of the generated normalization vectors, the
  6255. 5 fRMA vector sets generated from 5 random batch samplings were each used
  6256. to normalize the same 20 randomly selected samples from each tissue.
  6257. Then the normalized expression values for each probe on each array were
  6258. compared across all normalizations.
  6259. Each fRMA normalization was also compared against the normalized expression
  6260. values obtained by normalizing the same 20 samples with ordinary RMA.
  6261. \end_layout
  6262. \begin_layout Subsection
  6263. Modeling methylation array M-value heteroskedasticy in linear models with
  6264. modified voom implementation
  6265. \end_layout
  6266. \begin_layout Standard
  6267. \begin_inset Flex TODO Note (inline)
  6268. status open
  6269. \begin_layout Plain Layout
  6270. Put code on Github and reference it.
  6271. \end_layout
  6272. \end_inset
  6273. \end_layout
  6274. \begin_layout Standard
  6275. To investigate the whether DNA methylation could be used to distinguish
  6276. between healthy and dysfunctional transplants, a data set of 78 Illumina
  6277. 450k methylation arrays from human kidney graft biopsies was analyzed for
  6278. differential methylation between 4 transplant statuses: healthy transplant
  6279. (TX), transplants undergoing acute rejection (AR), acute dysfunction with
  6280. no rejection (ADNR), and chronic allograft nephropathy (CAN).
  6281. The data consisted of 33 TX, 9 AR, 8 ADNR, and 28 CAN samples.
  6282. The uneven group sizes are a result of taking the biopsy samples before
  6283. the eventual fate of the transplant was known.
  6284. Each sample was additionally annotated with a donor ID (anonymized), Sex,
  6285. Age, Ethnicity, Creatinine Level, and Diabetes diagnosis (all samples in
  6286. this data set came from patients with either Type 1 or Type 2 diabetes).
  6287. \end_layout
  6288. \begin_layout Standard
  6289. The intensity data were first normalized using subset-quantile within array
  6290. normalization (SWAN)
  6291. \begin_inset CommandInset citation
  6292. LatexCommand cite
  6293. key "Maksimovic2012"
  6294. literal "false"
  6295. \end_inset
  6296. , then converted to intensity ratios (beta values)
  6297. \begin_inset CommandInset citation
  6298. LatexCommand cite
  6299. key "Aryee2014"
  6300. literal "false"
  6301. \end_inset
  6302. .
  6303. Any probes binding to loci that overlapped annotated SNPs were dropped,
  6304. and the annotated sex of each sample was verified against the sex inferred
  6305. from the ratio of median probe intensities for the X and Y chromosomes.
  6306. Then, the ratios were transformed to M-values.
  6307. \end_layout
  6308. \begin_layout Standard
  6309. \begin_inset Float table
  6310. wide false
  6311. sideways false
  6312. status open
  6313. \begin_layout Plain Layout
  6314. \align center
  6315. \begin_inset Tabular
  6316. <lyxtabular version="3" rows="4" columns="6">
  6317. <features tabularvalignment="middle">
  6318. <column alignment="center" valignment="top">
  6319. <column alignment="center" valignment="top">
  6320. <column alignment="center" valignment="top">
  6321. <column alignment="center" valignment="top">
  6322. <column alignment="center" valignment="top">
  6323. <column alignment="center" valignment="top">
  6324. <row>
  6325. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6326. \begin_inset Text
  6327. \begin_layout Plain Layout
  6328. Analysis
  6329. \end_layout
  6330. \end_inset
  6331. </cell>
  6332. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6333. \begin_inset Text
  6334. \begin_layout Plain Layout
  6335. random effect
  6336. \end_layout
  6337. \end_inset
  6338. </cell>
  6339. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6340. \begin_inset Text
  6341. \begin_layout Plain Layout
  6342. eBayes
  6343. \end_layout
  6344. \end_inset
  6345. </cell>
  6346. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6347. \begin_inset Text
  6348. \begin_layout Plain Layout
  6349. SVA
  6350. \end_layout
  6351. \end_inset
  6352. </cell>
  6353. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6354. \begin_inset Text
  6355. \begin_layout Plain Layout
  6356. weights
  6357. \end_layout
  6358. \end_inset
  6359. </cell>
  6360. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  6361. \begin_inset Text
  6362. \begin_layout Plain Layout
  6363. voom
  6364. \end_layout
  6365. \end_inset
  6366. </cell>
  6367. </row>
  6368. <row>
  6369. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6370. \begin_inset Text
  6371. \begin_layout Plain Layout
  6372. A
  6373. \end_layout
  6374. \end_inset
  6375. </cell>
  6376. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6377. \begin_inset Text
  6378. \begin_layout Plain Layout
  6379. Yes
  6380. \end_layout
  6381. \end_inset
  6382. </cell>
  6383. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6384. \begin_inset Text
  6385. \begin_layout Plain Layout
  6386. Yes
  6387. \end_layout
  6388. \end_inset
  6389. </cell>
  6390. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6391. \begin_inset Text
  6392. \begin_layout Plain Layout
  6393. No
  6394. \end_layout
  6395. \end_inset
  6396. </cell>
  6397. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6398. \begin_inset Text
  6399. \begin_layout Plain Layout
  6400. No
  6401. \end_layout
  6402. \end_inset
  6403. </cell>
  6404. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  6405. \begin_inset Text
  6406. \begin_layout Plain Layout
  6407. No
  6408. \end_layout
  6409. \end_inset
  6410. </cell>
  6411. </row>
  6412. <row>
  6413. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6414. \begin_inset Text
  6415. \begin_layout Plain Layout
  6416. B
  6417. \end_layout
  6418. \end_inset
  6419. </cell>
  6420. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6421. \begin_inset Text
  6422. \begin_layout Plain Layout
  6423. Yes
  6424. \end_layout
  6425. \end_inset
  6426. </cell>
  6427. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6428. \begin_inset Text
  6429. \begin_layout Plain Layout
  6430. Yes
  6431. \end_layout
  6432. \end_inset
  6433. </cell>
  6434. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6435. \begin_inset Text
  6436. \begin_layout Plain Layout
  6437. Yes
  6438. \end_layout
  6439. \end_inset
  6440. </cell>
  6441. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6442. \begin_inset Text
  6443. \begin_layout Plain Layout
  6444. Yes
  6445. \end_layout
  6446. \end_inset
  6447. </cell>
  6448. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  6449. \begin_inset Text
  6450. \begin_layout Plain Layout
  6451. No
  6452. \end_layout
  6453. \end_inset
  6454. </cell>
  6455. </row>
  6456. <row>
  6457. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6458. \begin_inset Text
  6459. \begin_layout Plain Layout
  6460. C
  6461. \end_layout
  6462. \end_inset
  6463. </cell>
  6464. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6465. \begin_inset Text
  6466. \begin_layout Plain Layout
  6467. Yes
  6468. \end_layout
  6469. \end_inset
  6470. </cell>
  6471. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6472. \begin_inset Text
  6473. \begin_layout Plain Layout
  6474. Yes
  6475. \end_layout
  6476. \end_inset
  6477. </cell>
  6478. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6479. \begin_inset Text
  6480. \begin_layout Plain Layout
  6481. Yes
  6482. \end_layout
  6483. \end_inset
  6484. </cell>
  6485. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6486. \begin_inset Text
  6487. \begin_layout Plain Layout
  6488. Yes
  6489. \end_layout
  6490. \end_inset
  6491. </cell>
  6492. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  6493. \begin_inset Text
  6494. \begin_layout Plain Layout
  6495. Yes
  6496. \end_layout
  6497. \end_inset
  6498. </cell>
  6499. </row>
  6500. </lyxtabular>
  6501. \end_inset
  6502. \end_layout
  6503. \begin_layout Plain Layout
  6504. \begin_inset Caption Standard
  6505. \begin_layout Plain Layout
  6506. \series bold
  6507. \begin_inset CommandInset label
  6508. LatexCommand label
  6509. name "tab:Summary-of-meth-analysis"
  6510. \end_inset
  6511. Summary of analysis variants for methylation array data.
  6512. \series default
  6513. Each analysis included a different set of steps to adjust or account for
  6514. various systematic features of the data.
  6515. Random effect: The model included a random effect accounting for correlation
  6516. between samples from the same patient
  6517. \begin_inset CommandInset citation
  6518. LatexCommand cite
  6519. key "Smyth2005a"
  6520. literal "false"
  6521. \end_inset
  6522. ; eBayes: Empirical bayes squeezing of per-probe variances toward the mean-varia
  6523. nce trend
  6524. \begin_inset CommandInset citation
  6525. LatexCommand cite
  6526. key "Ritchie2015"
  6527. literal "false"
  6528. \end_inset
  6529. ; SVA: Surrogate variable analysis to account for unobserved confounders
  6530. \begin_inset CommandInset citation
  6531. LatexCommand cite
  6532. key "Leek2007"
  6533. literal "false"
  6534. \end_inset
  6535. ; Weights: Estimate sample weights to account for differences in sample
  6536. quality
  6537. \begin_inset CommandInset citation
  6538. LatexCommand cite
  6539. key "Liu2015,Ritchie2006"
  6540. literal "false"
  6541. \end_inset
  6542. ; voom: Use mean-variance trend to assign individual sample weights
  6543. \begin_inset CommandInset citation
  6544. LatexCommand cite
  6545. key "Law2013"
  6546. literal "false"
  6547. \end_inset
  6548. .
  6549. See the text for a more detailed explanation of each step.
  6550. \end_layout
  6551. \end_inset
  6552. \end_layout
  6553. \end_inset
  6554. \end_layout
  6555. \begin_layout Standard
  6556. From the M-values, a series of parallel analyses was performed, each adding
  6557. additional steps into the model fit to accommodate a feature of the data
  6558. (see Table
  6559. \begin_inset CommandInset ref
  6560. LatexCommand ref
  6561. reference "tab:Summary-of-meth-analysis"
  6562. plural "false"
  6563. caps "false"
  6564. noprefix "false"
  6565. \end_inset
  6566. ).
  6567. For analysis A, a
  6568. \begin_inset Quotes eld
  6569. \end_inset
  6570. basic
  6571. \begin_inset Quotes erd
  6572. \end_inset
  6573. linear modeling analysis was performed, compensating for known confounders
  6574. by including terms for the factor of interest (transplant status) as well
  6575. as the known biological confounders: sex, age, ethnicity, and diabetes.
  6576. Since some samples came from the same patients at different times, the
  6577. intra-patient correlation was modeled as a random effect, estimating a
  6578. shared correlation value across all probes
  6579. \begin_inset CommandInset citation
  6580. LatexCommand cite
  6581. key "Smyth2005a"
  6582. literal "false"
  6583. \end_inset
  6584. .
  6585. Then the linear model was fit, and the variance was modeled using empirical
  6586. Bayes squeezing toward the mean-variance trend
  6587. \begin_inset CommandInset citation
  6588. LatexCommand cite
  6589. key "Ritchie2015"
  6590. literal "false"
  6591. \end_inset
  6592. .
  6593. Finally, t-tests or F-tests were performed as appropriate for each test:
  6594. t-tests for single contrasts, and F-tests for multiple contrasts.
  6595. P-values were corrected for multiple testing using the Benjamini-Hochberg
  6596. procedure for FDR control
  6597. \begin_inset CommandInset citation
  6598. LatexCommand cite
  6599. key "Benjamini1995"
  6600. literal "false"
  6601. \end_inset
  6602. .
  6603. \end_layout
  6604. \begin_layout Standard
  6605. For the analysis B, surrogate variable analysis (SVA) was used to infer
  6606. additional unobserved sources of heterogeneity in the data
  6607. \begin_inset CommandInset citation
  6608. LatexCommand cite
  6609. key "Leek2007"
  6610. literal "false"
  6611. \end_inset
  6612. .
  6613. These surrogate variables were added to the design matrix before fitting
  6614. the linear model.
  6615. In addition, sample quality weights were estimated from the data and used
  6616. during linear modeling to down-weight the contribution of highly variable
  6617. arrays while increasing the weight to arrays with lower variability
  6618. \begin_inset CommandInset citation
  6619. LatexCommand cite
  6620. key "Ritchie2006"
  6621. literal "false"
  6622. \end_inset
  6623. .
  6624. The remainder of the analysis proceeded as in analysis A.
  6625. For analysis C, the voom method was adapted to run on methylation array
  6626. data and used to model and correct for the mean-variance trend using individual
  6627. observation weights
  6628. \begin_inset CommandInset citation
  6629. LatexCommand cite
  6630. key "Law2013"
  6631. literal "false"
  6632. \end_inset
  6633. , which were combined with the sample weights
  6634. \begin_inset CommandInset citation
  6635. LatexCommand cite
  6636. key "Liu2015,Ritchie2006"
  6637. literal "false"
  6638. \end_inset
  6639. .
  6640. Each time weights were used, they were estimated once before estimating
  6641. the random effect correlation value, and then the weights were re-estimated
  6642. taking the random effect into account.
  6643. The remainder of the analysis proceeded as in analysis B.
  6644. \end_layout
  6645. \begin_layout Section
  6646. Results
  6647. \end_layout
  6648. \begin_layout Standard
  6649. \begin_inset Flex TODO Note (inline)
  6650. status open
  6651. \begin_layout Plain Layout
  6652. Improve subsection titles in this section.
  6653. \end_layout
  6654. \end_inset
  6655. \end_layout
  6656. \begin_layout Standard
  6657. \begin_inset Flex TODO Note (inline)
  6658. status open
  6659. \begin_layout Plain Layout
  6660. Reconsider subsection organization?
  6661. \end_layout
  6662. \end_inset
  6663. \end_layout
  6664. \begin_layout Subsection
  6665. Separate normalization with RMA introduces unwanted biases in classification
  6666. \end_layout
  6667. \begin_layout Standard
  6668. \begin_inset Float figure
  6669. wide false
  6670. sideways false
  6671. status open
  6672. \begin_layout Plain Layout
  6673. \align center
  6674. \begin_inset Graphics
  6675. filename graphics/PAM/predplot.pdf
  6676. lyxscale 50
  6677. width 60col%
  6678. groupId colwidth
  6679. \end_inset
  6680. \end_layout
  6681. \begin_layout Plain Layout
  6682. \begin_inset Caption Standard
  6683. \begin_layout Plain Layout
  6684. \begin_inset CommandInset label
  6685. LatexCommand label
  6686. name "fig:Classifier-probabilities-RMA"
  6687. \end_inset
  6688. \series bold
  6689. Classifier probabilities on validation samples when normalized with RMA
  6690. together vs.
  6691. separately.
  6692. \series default
  6693. The PAM classifier algorithm was trained on the training set of arrays to
  6694. distinguish AR from TX and then used to assign class probabilities to the
  6695. validation set.
  6696. The process was performed after normalizing all samples together and after
  6697. normalizing the training and test sets separately, and the class probabilities
  6698. assigned to each sample in the validation set were plotted against each
  6699. other (PP(AR), posterior probability of being AR).
  6700. The color of each point indicates the true classification of that sample.
  6701. \end_layout
  6702. \end_inset
  6703. \end_layout
  6704. \end_inset
  6705. \end_layout
  6706. \begin_layout Standard
  6707. To demonstrate the problem with non-single-channel normalization methods,
  6708. we considered the problem of training a classifier to distinguish TX from
  6709. AR using the samples from the internal set as training data, evaluating
  6710. performance on the external set.
  6711. First, training and evaluation were performed after normalizing all array
  6712. samples together as a single set using RMA, and second, the internal samples
  6713. were normalized separately from the external samples and the training and
  6714. evaluation were repeated.
  6715. For each sample in the validation set, the classifier probabilities from
  6716. both classifiers were plotted against each other (Fig.
  6717. \begin_inset CommandInset ref
  6718. LatexCommand ref
  6719. reference "fig:Classifier-probabilities-RMA"
  6720. plural "false"
  6721. caps "false"
  6722. noprefix "false"
  6723. \end_inset
  6724. ).
  6725. As expected, separate normalization biases the classifier probabilities,
  6726. resulting in several misclassifications.
  6727. In this case, the bias from separate normalization causes the classifier
  6728. to assign a lower probability of AR to every sample.
  6729. \end_layout
  6730. \begin_layout Subsection
  6731. fRMA and SCAN maintain classification performance while eliminating dependence
  6732. on normalization strategy
  6733. \end_layout
  6734. \begin_layout Standard
  6735. \begin_inset Float figure
  6736. wide false
  6737. sideways false
  6738. status open
  6739. \begin_layout Plain Layout
  6740. \align center
  6741. \begin_inset Float figure
  6742. placement tb
  6743. wide false
  6744. sideways false
  6745. status open
  6746. \begin_layout Plain Layout
  6747. \align center
  6748. \begin_inset Graphics
  6749. filename graphics/PAM/ROC-TXvsAR-internal.pdf
  6750. lyxscale 50
  6751. height 40theight%
  6752. groupId roc-pam
  6753. \end_inset
  6754. \end_layout
  6755. \begin_layout Plain Layout
  6756. \begin_inset Caption Standard
  6757. \begin_layout Plain Layout
  6758. \begin_inset CommandInset label
  6759. LatexCommand label
  6760. name "fig:ROC-PAM-int"
  6761. \end_inset
  6762. ROC curves for PAM on internal validation data
  6763. \end_layout
  6764. \end_inset
  6765. \end_layout
  6766. \end_inset
  6767. \end_layout
  6768. \begin_layout Plain Layout
  6769. \align center
  6770. \begin_inset Float figure
  6771. placement tb
  6772. wide false
  6773. sideways false
  6774. status open
  6775. \begin_layout Plain Layout
  6776. \align center
  6777. \begin_inset Graphics
  6778. filename graphics/PAM/ROC-TXvsAR-external.pdf
  6779. lyxscale 50
  6780. height 40theight%
  6781. groupId roc-pam
  6782. \end_inset
  6783. \end_layout
  6784. \begin_layout Plain Layout
  6785. \begin_inset Caption Standard
  6786. \begin_layout Plain Layout
  6787. \begin_inset CommandInset label
  6788. LatexCommand label
  6789. name "fig:ROC-PAM-ext"
  6790. \end_inset
  6791. ROC curves for PAM on external validation data
  6792. \end_layout
  6793. \end_inset
  6794. \end_layout
  6795. \end_inset
  6796. \end_layout
  6797. \begin_layout Plain Layout
  6798. \begin_inset Caption Standard
  6799. \begin_layout Plain Layout
  6800. \series bold
  6801. \begin_inset CommandInset label
  6802. LatexCommand label
  6803. name "fig:ROC-PAM-main"
  6804. \end_inset
  6805. ROC curves for PAM using different normalization strategies.
  6806. \series default
  6807. ROC curves were generated for PAM classification of AR vs TX after 6 different
  6808. normalization strategies applied to the same data sets.
  6809. Only fRMA and SCAN are single-channel normalizations.
  6810. The other normalizations are for comparison.
  6811. \end_layout
  6812. \end_inset
  6813. \end_layout
  6814. \end_inset
  6815. \end_layout
  6816. \begin_layout Standard
  6817. \begin_inset Float table
  6818. wide false
  6819. sideways false
  6820. status open
  6821. \begin_layout Plain Layout
  6822. \align center
  6823. \begin_inset Tabular
  6824. <lyxtabular version="3" rows="7" columns="4">
  6825. <features tabularvalignment="middle">
  6826. <column alignment="center" valignment="top">
  6827. <column alignment="center" valignment="top">
  6828. <column alignment="center" valignment="top">
  6829. <column alignment="center" valignment="top">
  6830. <row>
  6831. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6832. \begin_inset Text
  6833. \begin_layout Plain Layout
  6834. \family roman
  6835. \series medium
  6836. \shape up
  6837. \size normal
  6838. \emph off
  6839. \bar no
  6840. \strikeout off
  6841. \xout off
  6842. \uuline off
  6843. \uwave off
  6844. \noun off
  6845. \color none
  6846. Normalization
  6847. \end_layout
  6848. \end_inset
  6849. </cell>
  6850. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6851. \begin_inset Text
  6852. \begin_layout Plain Layout
  6853. Single-channel?
  6854. \end_layout
  6855. \end_inset
  6856. </cell>
  6857. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6858. \begin_inset Text
  6859. \begin_layout Plain Layout
  6860. \family roman
  6861. \series medium
  6862. \shape up
  6863. \size normal
  6864. \emph off
  6865. \bar no
  6866. \strikeout off
  6867. \xout off
  6868. \uuline off
  6869. \uwave off
  6870. \noun off
  6871. \color none
  6872. Internal Val.
  6873. AUC
  6874. \end_layout
  6875. \end_inset
  6876. </cell>
  6877. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  6878. \begin_inset Text
  6879. \begin_layout Plain Layout
  6880. External Val.
  6881. AUC
  6882. \end_layout
  6883. \end_inset
  6884. </cell>
  6885. </row>
  6886. <row>
  6887. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6888. \begin_inset Text
  6889. \begin_layout Plain Layout
  6890. \family roman
  6891. \series medium
  6892. \shape up
  6893. \size normal
  6894. \emph off
  6895. \bar no
  6896. \strikeout off
  6897. \xout off
  6898. \uuline off
  6899. \uwave off
  6900. \noun off
  6901. \color none
  6902. RMA
  6903. \end_layout
  6904. \end_inset
  6905. </cell>
  6906. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6907. \begin_inset Text
  6908. \begin_layout Plain Layout
  6909. No
  6910. \end_layout
  6911. \end_inset
  6912. </cell>
  6913. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6914. \begin_inset Text
  6915. \begin_layout Plain Layout
  6916. \family roman
  6917. \series medium
  6918. \shape up
  6919. \size normal
  6920. \emph off
  6921. \bar no
  6922. \strikeout off
  6923. \xout off
  6924. \uuline off
  6925. \uwave off
  6926. \noun off
  6927. \color none
  6928. 0.852
  6929. \end_layout
  6930. \end_inset
  6931. </cell>
  6932. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  6933. \begin_inset Text
  6934. \begin_layout Plain Layout
  6935. \family roman
  6936. \series medium
  6937. \shape up
  6938. \size normal
  6939. \emph off
  6940. \bar no
  6941. \strikeout off
  6942. \xout off
  6943. \uuline off
  6944. \uwave off
  6945. \noun off
  6946. \color none
  6947. 0.713
  6948. \end_layout
  6949. \end_inset
  6950. </cell>
  6951. </row>
  6952. <row>
  6953. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6954. \begin_inset Text
  6955. \begin_layout Plain Layout
  6956. \family roman
  6957. \series medium
  6958. \shape up
  6959. \size normal
  6960. \emph off
  6961. \bar no
  6962. \strikeout off
  6963. \xout off
  6964. \uuline off
  6965. \uwave off
  6966. \noun off
  6967. \color none
  6968. dChip
  6969. \end_layout
  6970. \end_inset
  6971. </cell>
  6972. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6973. \begin_inset Text
  6974. \begin_layout Plain Layout
  6975. No
  6976. \end_layout
  6977. \end_inset
  6978. </cell>
  6979. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6980. \begin_inset Text
  6981. \begin_layout Plain Layout
  6982. \family roman
  6983. \series medium
  6984. \shape up
  6985. \size normal
  6986. \emph off
  6987. \bar no
  6988. \strikeout off
  6989. \xout off
  6990. \uuline off
  6991. \uwave off
  6992. \noun off
  6993. \color none
  6994. 0.891
  6995. \end_layout
  6996. \end_inset
  6997. </cell>
  6998. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  6999. \begin_inset Text
  7000. \begin_layout Plain Layout
  7001. \family roman
  7002. \series medium
  7003. \shape up
  7004. \size normal
  7005. \emph off
  7006. \bar no
  7007. \strikeout off
  7008. \xout off
  7009. \uuline off
  7010. \uwave off
  7011. \noun off
  7012. \color none
  7013. 0.657
  7014. \end_layout
  7015. \end_inset
  7016. </cell>
  7017. </row>
  7018. <row>
  7019. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7020. \begin_inset Text
  7021. \begin_layout Plain Layout
  7022. \family roman
  7023. \series medium
  7024. \shape up
  7025. \size normal
  7026. \emph off
  7027. \bar no
  7028. \strikeout off
  7029. \xout off
  7030. \uuline off
  7031. \uwave off
  7032. \noun off
  7033. \color none
  7034. RMA + GRSN
  7035. \end_layout
  7036. \end_inset
  7037. </cell>
  7038. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7039. \begin_inset Text
  7040. \begin_layout Plain Layout
  7041. No
  7042. \end_layout
  7043. \end_inset
  7044. </cell>
  7045. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7046. \begin_inset Text
  7047. \begin_layout Plain Layout
  7048. \family roman
  7049. \series medium
  7050. \shape up
  7051. \size normal
  7052. \emph off
  7053. \bar no
  7054. \strikeout off
  7055. \xout off
  7056. \uuline off
  7057. \uwave off
  7058. \noun off
  7059. \color none
  7060. 0.816
  7061. \end_layout
  7062. \end_inset
  7063. </cell>
  7064. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  7065. \begin_inset Text
  7066. \begin_layout Plain Layout
  7067. \family roman
  7068. \series medium
  7069. \shape up
  7070. \size normal
  7071. \emph off
  7072. \bar no
  7073. \strikeout off
  7074. \xout off
  7075. \uuline off
  7076. \uwave off
  7077. \noun off
  7078. \color none
  7079. 0.750
  7080. \end_layout
  7081. \end_inset
  7082. </cell>
  7083. </row>
  7084. <row>
  7085. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7086. \begin_inset Text
  7087. \begin_layout Plain Layout
  7088. \family roman
  7089. \series medium
  7090. \shape up
  7091. \size normal
  7092. \emph off
  7093. \bar no
  7094. \strikeout off
  7095. \xout off
  7096. \uuline off
  7097. \uwave off
  7098. \noun off
  7099. \color none
  7100. dChip + GRSN
  7101. \end_layout
  7102. \end_inset
  7103. </cell>
  7104. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7105. \begin_inset Text
  7106. \begin_layout Plain Layout
  7107. No
  7108. \end_layout
  7109. \end_inset
  7110. </cell>
  7111. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7112. \begin_inset Text
  7113. \begin_layout Plain Layout
  7114. \family roman
  7115. \series medium
  7116. \shape up
  7117. \size normal
  7118. \emph off
  7119. \bar no
  7120. \strikeout off
  7121. \xout off
  7122. \uuline off
  7123. \uwave off
  7124. \noun off
  7125. \color none
  7126. 0.875
  7127. \end_layout
  7128. \end_inset
  7129. </cell>
  7130. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  7131. \begin_inset Text
  7132. \begin_layout Plain Layout
  7133. \family roman
  7134. \series medium
  7135. \shape up
  7136. \size normal
  7137. \emph off
  7138. \bar no
  7139. \strikeout off
  7140. \xout off
  7141. \uuline off
  7142. \uwave off
  7143. \noun off
  7144. \color none
  7145. 0.642
  7146. \end_layout
  7147. \end_inset
  7148. </cell>
  7149. </row>
  7150. <row>
  7151. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7152. \begin_inset Text
  7153. \begin_layout Plain Layout
  7154. \family roman
  7155. \series medium
  7156. \shape up
  7157. \size normal
  7158. \emph off
  7159. \bar no
  7160. \strikeout off
  7161. \xout off
  7162. \uuline off
  7163. \uwave off
  7164. \noun off
  7165. \color none
  7166. fRMA
  7167. \end_layout
  7168. \end_inset
  7169. </cell>
  7170. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7171. \begin_inset Text
  7172. \begin_layout Plain Layout
  7173. Yes
  7174. \end_layout
  7175. \end_inset
  7176. </cell>
  7177. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7178. \begin_inset Text
  7179. \begin_layout Plain Layout
  7180. \family roman
  7181. \series medium
  7182. \shape up
  7183. \size normal
  7184. \emph off
  7185. \bar no
  7186. \strikeout off
  7187. \xout off
  7188. \uuline off
  7189. \uwave off
  7190. \noun off
  7191. \color none
  7192. 0.863
  7193. \end_layout
  7194. \end_inset
  7195. </cell>
  7196. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  7197. \begin_inset Text
  7198. \begin_layout Plain Layout
  7199. \family roman
  7200. \series medium
  7201. \shape up
  7202. \size normal
  7203. \emph off
  7204. \bar no
  7205. \strikeout off
  7206. \xout off
  7207. \uuline off
  7208. \uwave off
  7209. \noun off
  7210. \color none
  7211. 0.718
  7212. \end_layout
  7213. \end_inset
  7214. </cell>
  7215. </row>
  7216. <row>
  7217. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  7218. \begin_inset Text
  7219. \begin_layout Plain Layout
  7220. \family roman
  7221. \series medium
  7222. \shape up
  7223. \size normal
  7224. \emph off
  7225. \bar no
  7226. \strikeout off
  7227. \xout off
  7228. \uuline off
  7229. \uwave off
  7230. \noun off
  7231. \color none
  7232. SCAN
  7233. \end_layout
  7234. \end_inset
  7235. </cell>
  7236. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  7237. \begin_inset Text
  7238. \begin_layout Plain Layout
  7239. Yes
  7240. \end_layout
  7241. \end_inset
  7242. </cell>
  7243. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  7244. \begin_inset Text
  7245. \begin_layout Plain Layout
  7246. \family roman
  7247. \series medium
  7248. \shape up
  7249. \size normal
  7250. \emph off
  7251. \bar no
  7252. \strikeout off
  7253. \xout off
  7254. \uuline off
  7255. \uwave off
  7256. \noun off
  7257. \color none
  7258. 0.853
  7259. \end_layout
  7260. \end_inset
  7261. </cell>
  7262. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  7263. \begin_inset Text
  7264. \begin_layout Plain Layout
  7265. \family roman
  7266. \series medium
  7267. \shape up
  7268. \size normal
  7269. \emph off
  7270. \bar no
  7271. \strikeout off
  7272. \xout off
  7273. \uuline off
  7274. \uwave off
  7275. \noun off
  7276. \color none
  7277. 0.689
  7278. \end_layout
  7279. \end_inset
  7280. </cell>
  7281. </row>
  7282. </lyxtabular>
  7283. \end_inset
  7284. \end_layout
  7285. \begin_layout Plain Layout
  7286. \begin_inset Caption Standard
  7287. \begin_layout Plain Layout
  7288. \begin_inset CommandInset label
  7289. LatexCommand label
  7290. name "tab:AUC-PAM"
  7291. \end_inset
  7292. \series bold
  7293. ROC curve AUC values for internal and external validation with 6 different
  7294. normalization strategies.
  7295. \series default
  7296. These AUC values correspond to the ROC curves in Figure
  7297. \begin_inset CommandInset ref
  7298. LatexCommand ref
  7299. reference "fig:ROC-PAM-main"
  7300. plural "false"
  7301. caps "false"
  7302. noprefix "false"
  7303. \end_inset
  7304. .
  7305. \end_layout
  7306. \end_inset
  7307. \end_layout
  7308. \end_inset
  7309. \end_layout
  7310. \begin_layout Standard
  7311. For internal validation, the 6 methods' AUC values ranged from 0.816 to 0.891,
  7312. as shown in Table
  7313. \begin_inset CommandInset ref
  7314. LatexCommand ref
  7315. reference "tab:AUC-PAM"
  7316. plural "false"
  7317. caps "false"
  7318. noprefix "false"
  7319. \end_inset
  7320. .
  7321. Among the non-single-channel normalizations, dChip outperformed RMA, while
  7322. GRSN reduced the AUC values for both dChip and RMA.
  7323. Both single-channel methods, fRMA and SCAN, slightly outperformed RMA,
  7324. with fRMA ahead of SCAN.
  7325. However, the difference between RMA and fRMA is still quite small.
  7326. Figure
  7327. \begin_inset CommandInset ref
  7328. LatexCommand ref
  7329. reference "fig:ROC-PAM-int"
  7330. plural "false"
  7331. caps "false"
  7332. noprefix "false"
  7333. \end_inset
  7334. shows that the ROC curves for RMA, dChip, and fRMA look very similar and
  7335. relatively smooth, while both GRSN curves and the curve for SCAN have a
  7336. more jagged appearance.
  7337. \end_layout
  7338. \begin_layout Standard
  7339. For external validation, as expected, all the AUC values are lower than
  7340. the internal validations, ranging from 0.642 to 0.750 (Table
  7341. \begin_inset CommandInset ref
  7342. LatexCommand ref
  7343. reference "tab:AUC-PAM"
  7344. plural "false"
  7345. caps "false"
  7346. noprefix "false"
  7347. \end_inset
  7348. ).
  7349. With or without GRSN, RMA shows its dominance over dChip in this more challengi
  7350. ng test.
  7351. Unlike in the internal validation, GRSN actually improves the classifier
  7352. performance for RMA, although it does not for dChip.
  7353. Once again, both single-channel methods perform about on par with RMA,
  7354. with fRMA performing slightly better and SCAN performing a bit worse.
  7355. Figure
  7356. \begin_inset CommandInset ref
  7357. LatexCommand ref
  7358. reference "fig:ROC-PAM-ext"
  7359. plural "false"
  7360. caps "false"
  7361. noprefix "false"
  7362. \end_inset
  7363. shows the ROC curves for the external validation test.
  7364. As expected, none of them are as clean-looking as the internal validation
  7365. ROC curves.
  7366. The curves for RMA, RMA+GRSN, and fRMA all look similar, while the other
  7367. curves look more divergent.
  7368. \end_layout
  7369. \begin_layout Subsection
  7370. fRMA with custom-generated vectors enables single-channel normalization
  7371. on hthgu133pluspm platform
  7372. \end_layout
  7373. \begin_layout Standard
  7374. \begin_inset Float figure
  7375. wide false
  7376. sideways false
  7377. status open
  7378. \begin_layout Plain Layout
  7379. \align center
  7380. \begin_inset Float figure
  7381. placement tb
  7382. wide false
  7383. sideways false
  7384. status collapsed
  7385. \begin_layout Plain Layout
  7386. \align center
  7387. \begin_inset Graphics
  7388. filename graphics/frma-pax-bx/batchsize_batches.pdf
  7389. lyxscale 50
  7390. height 35theight%
  7391. groupId frmatools-subfig
  7392. \end_inset
  7393. \end_layout
  7394. \begin_layout Plain Layout
  7395. \begin_inset Caption Standard
  7396. \begin_layout Plain Layout
  7397. \begin_inset CommandInset label
  7398. LatexCommand label
  7399. name "fig:batch-size-batches"
  7400. \end_inset
  7401. \series bold
  7402. Number of batches usable in fRMA probe weight learning as a function of
  7403. batch size.
  7404. \end_layout
  7405. \end_inset
  7406. \end_layout
  7407. \end_inset
  7408. \end_layout
  7409. \begin_layout Plain Layout
  7410. \align center
  7411. \begin_inset Float figure
  7412. placement tb
  7413. wide false
  7414. sideways false
  7415. status collapsed
  7416. \begin_layout Plain Layout
  7417. \align center
  7418. \begin_inset Graphics
  7419. filename graphics/frma-pax-bx/batchsize_samples.pdf
  7420. lyxscale 50
  7421. height 35theight%
  7422. groupId frmatools-subfig
  7423. \end_inset
  7424. \end_layout
  7425. \begin_layout Plain Layout
  7426. \begin_inset Caption Standard
  7427. \begin_layout Plain Layout
  7428. \begin_inset CommandInset label
  7429. LatexCommand label
  7430. name "fig:batch-size-samples"
  7431. \end_inset
  7432. \series bold
  7433. Number of samples usable in fRMA probe weight learning as a function of
  7434. batch size.
  7435. \end_layout
  7436. \end_inset
  7437. \end_layout
  7438. \end_inset
  7439. \end_layout
  7440. \begin_layout Plain Layout
  7441. \begin_inset Caption Standard
  7442. \begin_layout Plain Layout
  7443. \series bold
  7444. \begin_inset CommandInset label
  7445. LatexCommand label
  7446. name "fig:frmatools-batch-size"
  7447. \end_inset
  7448. Effect of batch size selection on number of batches and number of samples
  7449. included in fRMA probe weight learning.
  7450. \series default
  7451. For batch sizes ranging from 3 to 15, the number of batches (a) and samples
  7452. (b) included in probe weight training were plotted for biopsy (BX) and
  7453. blood (PAX) samples.
  7454. The selected batch size, 5, is marked with a dotted vertical line.
  7455. \end_layout
  7456. \end_inset
  7457. \end_layout
  7458. \end_inset
  7459. \end_layout
  7460. \begin_layout Standard
  7461. In order to enable use of fRMA to normalize hthgu133pluspm, a custom set
  7462. of fRMA vectors was created.
  7463. First, an appropriate batch size was chosen by looking at the number of
  7464. batches and number of samples included as a function of batch size (Figure
  7465. \begin_inset CommandInset ref
  7466. LatexCommand ref
  7467. reference "fig:frmatools-batch-size"
  7468. plural "false"
  7469. caps "false"
  7470. noprefix "false"
  7471. \end_inset
  7472. ).
  7473. For a given batch size, all batches with fewer samples that the chosen
  7474. size must be ignored during training, while larger batches must be randomly
  7475. downsampled to the chosen size.
  7476. Hence, the number of samples included for a given batch size equals the
  7477. batch size times the number of batches with at least that many samples.
  7478. From Figure
  7479. \begin_inset CommandInset ref
  7480. LatexCommand ref
  7481. reference "fig:batch-size-samples"
  7482. plural "false"
  7483. caps "false"
  7484. noprefix "false"
  7485. \end_inset
  7486. , it is apparent that that a batch size of 8 maximizes the number of samples
  7487. included in training.
  7488. Increasing the batch size beyond this causes too many smaller batches to
  7489. be excluded, reducing the total number of samples for both tissue types.
  7490. However, a batch size of 8 is not necessarily optimal.
  7491. The article introducing frmaTools concluded that it was highly advantageous
  7492. to use a smaller batch size in order to include more batches, even at the
  7493. expense of including fewer total samples in training
  7494. \begin_inset CommandInset citation
  7495. LatexCommand cite
  7496. key "McCall2011"
  7497. literal "false"
  7498. \end_inset
  7499. .
  7500. To strike an appropriate balance between more batches and more samples,
  7501. a batch size of 5 was chosen.
  7502. For both blood and biopsy samples, this increased the number of batches
  7503. included by 10, with only a modest reduction in the number of samples compared
  7504. to a batch size of 8.
  7505. With a batch size of 5, 26 batches of biopsy samples and 46 batches of
  7506. blood samples were available.
  7507. \end_layout
  7508. \begin_layout Standard
  7509. \begin_inset Float figure
  7510. wide false
  7511. sideways false
  7512. status collapsed
  7513. \begin_layout Plain Layout
  7514. \begin_inset Float figure
  7515. wide false
  7516. sideways false
  7517. status open
  7518. \begin_layout Plain Layout
  7519. \align center
  7520. \begin_inset Graphics
  7521. filename graphics/frma-pax-bx/M-BX-violin.pdf
  7522. lyxscale 40
  7523. width 45col%
  7524. groupId m-violin
  7525. \end_inset
  7526. \end_layout
  7527. \begin_layout Plain Layout
  7528. \begin_inset Caption Standard
  7529. \begin_layout Plain Layout
  7530. \begin_inset CommandInset label
  7531. LatexCommand label
  7532. name "fig:m-bx-violin"
  7533. \end_inset
  7534. \series bold
  7535. Violin plot of inter-normalization log ratios for biopsy samples.
  7536. \end_layout
  7537. \end_inset
  7538. \end_layout
  7539. \end_inset
  7540. \begin_inset space \hfill{}
  7541. \end_inset
  7542. \begin_inset Float figure
  7543. wide false
  7544. sideways false
  7545. status collapsed
  7546. \begin_layout Plain Layout
  7547. \align center
  7548. \begin_inset Graphics
  7549. filename graphics/frma-pax-bx/M-PAX-violin.pdf
  7550. lyxscale 40
  7551. width 45col%
  7552. groupId m-violin
  7553. \end_inset
  7554. \end_layout
  7555. \begin_layout Plain Layout
  7556. \begin_inset Caption Standard
  7557. \begin_layout Plain Layout
  7558. \begin_inset CommandInset label
  7559. LatexCommand label
  7560. name "fig:m-pax-violin"
  7561. \end_inset
  7562. \series bold
  7563. Violin plot of inter-normalization log ratios for blood samples.
  7564. \end_layout
  7565. \end_inset
  7566. \end_layout
  7567. \end_inset
  7568. \end_layout
  7569. \begin_layout Plain Layout
  7570. \begin_inset Caption Standard
  7571. \begin_layout Plain Layout
  7572. \begin_inset CommandInset label
  7573. LatexCommand label
  7574. name "fig:frma-violin"
  7575. \end_inset
  7576. \series bold
  7577. Violin plot of log ratios between normalizations for 20 biopsy samples.
  7578. \series default
  7579. Each of 20 randomly selected samples was normalized with RMA and with 5
  7580. different sets of fRMA vectors.
  7581. The distribution of log ratios between normalized expression values, aggregated
  7582. across all 20 arrays, was plotted for each pair of normalizations.
  7583. \end_layout
  7584. \end_inset
  7585. \end_layout
  7586. \end_inset
  7587. \end_layout
  7588. \begin_layout Standard
  7589. Since fRMA training requires equal-size batches, larger batches are downsampled
  7590. randomly.
  7591. This introduces a nondeterministic step in the generation of normalization
  7592. vectors.
  7593. To show that this randomness does not substantially change the outcome,
  7594. the random downsampling and subsequent vector learning was repeated 5 times,
  7595. with a different random seed each time.
  7596. 20 samples were selected at random as a test set and normalized with each
  7597. of the 5 sets of fRMA normalization vectors as well as ordinary RMA, and
  7598. the normalized expression values were compared across normalizations.
  7599. Figure
  7600. \begin_inset CommandInset ref
  7601. LatexCommand ref
  7602. reference "fig:m-bx-violin"
  7603. plural "false"
  7604. caps "false"
  7605. noprefix "false"
  7606. \end_inset
  7607. shows a summary of these comparisons for biopsy samples.
  7608. Comparing RMA to each of the 5 fRMA normalizations, the distribution of
  7609. log ratios is somewhat wide, indicating that the normalizations disagree
  7610. on the expression values of a fair number of probe sets.
  7611. In contrast, comparisons of fRMA against fRMA, the vast majority of probe
  7612. sets have very small log ratios, indicating a very high agreement between
  7613. the normalized values generated by the two normalizations.
  7614. This shows that the fRMA normalization's behavior is not very sensitive
  7615. to the random downsampling of larger batches during training.
  7616. \end_layout
  7617. \begin_layout Standard
  7618. \begin_inset Float figure
  7619. wide false
  7620. sideways false
  7621. status open
  7622. \begin_layout Plain Layout
  7623. \align center
  7624. \begin_inset Float figure
  7625. wide false
  7626. sideways false
  7627. status collapsed
  7628. \begin_layout Plain Layout
  7629. \align center
  7630. \begin_inset Graphics
  7631. filename graphics/frma-pax-bx/MA-BX-RMA.fRMA-RASTER.png
  7632. lyxscale 10
  7633. width 45col%
  7634. groupId ma-frma
  7635. \end_inset
  7636. \end_layout
  7637. \begin_layout Plain Layout
  7638. \begin_inset Caption Standard
  7639. \begin_layout Plain Layout
  7640. \begin_inset CommandInset label
  7641. LatexCommand label
  7642. name "fig:ma-bx-rma-frma"
  7643. \end_inset
  7644. RMA vs.
  7645. fRMA for biopsy samples.
  7646. \end_layout
  7647. \end_inset
  7648. \end_layout
  7649. \end_inset
  7650. \begin_inset space \hfill{}
  7651. \end_inset
  7652. \begin_inset Float figure
  7653. wide false
  7654. sideways false
  7655. status collapsed
  7656. \begin_layout Plain Layout
  7657. \align center
  7658. \begin_inset Graphics
  7659. filename graphics/frma-pax-bx/MA-BX-fRMA.fRMA-RASTER.png
  7660. lyxscale 10
  7661. width 45col%
  7662. groupId ma-frma
  7663. \end_inset
  7664. \end_layout
  7665. \begin_layout Plain Layout
  7666. \begin_inset Caption Standard
  7667. \begin_layout Plain Layout
  7668. \begin_inset CommandInset label
  7669. LatexCommand label
  7670. name "fig:ma-bx-frma-frma"
  7671. \end_inset
  7672. fRMA vs fRMA for biopsy samples.
  7673. \end_layout
  7674. \end_inset
  7675. \end_layout
  7676. \end_inset
  7677. \end_layout
  7678. \begin_layout Plain Layout
  7679. \align center
  7680. \begin_inset Float figure
  7681. wide false
  7682. sideways false
  7683. status collapsed
  7684. \begin_layout Plain Layout
  7685. \align center
  7686. \begin_inset Graphics
  7687. filename graphics/frma-pax-bx/MA-PAX-RMA.fRMA-RASTER.png
  7688. lyxscale 10
  7689. width 45col%
  7690. groupId ma-frma
  7691. \end_inset
  7692. \end_layout
  7693. \begin_layout Plain Layout
  7694. \begin_inset Caption Standard
  7695. \begin_layout Plain Layout
  7696. \begin_inset CommandInset label
  7697. LatexCommand label
  7698. name "fig:MA-PAX-rma-frma"
  7699. \end_inset
  7700. RMA vs.
  7701. fRMA for blood samples.
  7702. \end_layout
  7703. \end_inset
  7704. \end_layout
  7705. \end_inset
  7706. \begin_inset space \hfill{}
  7707. \end_inset
  7708. \begin_inset Float figure
  7709. wide false
  7710. sideways false
  7711. status collapsed
  7712. \begin_layout Plain Layout
  7713. \align center
  7714. \begin_inset Graphics
  7715. filename graphics/frma-pax-bx/MA-PAX-fRMA.fRMA-RASTER.png
  7716. lyxscale 10
  7717. width 45col%
  7718. groupId ma-frma
  7719. \end_inset
  7720. \end_layout
  7721. \begin_layout Plain Layout
  7722. \begin_inset Caption Standard
  7723. \begin_layout Plain Layout
  7724. \begin_inset CommandInset label
  7725. LatexCommand label
  7726. name "fig:MA-PAX-frma-frma"
  7727. \end_inset
  7728. fRMA vs fRMA for blood samples.
  7729. \end_layout
  7730. \end_inset
  7731. \end_layout
  7732. \end_inset
  7733. \end_layout
  7734. \begin_layout Plain Layout
  7735. \begin_inset Caption Standard
  7736. \begin_layout Plain Layout
  7737. \series bold
  7738. \begin_inset CommandInset label
  7739. LatexCommand label
  7740. name "fig:Representative-MA-plots"
  7741. \end_inset
  7742. Representative MA plots comparing RMA and custom fRMA normalizations.
  7743. \series default
  7744. For each plot, 20 samples were normalized using 2 different normalizations,
  7745. and then averages (A) and log ratios (M) were plotted between the two different
  7746. normalizations for every probe.
  7747. For the
  7748. \begin_inset Quotes eld
  7749. \end_inset
  7750. fRMA vs fRMA
  7751. \begin_inset Quotes erd
  7752. \end_inset
  7753. plots (b & d), two different fRMA normalizations using vectors from two
  7754. independent batch samplings were compared.
  7755. Density of points is represented by blue shading, and individual outlier
  7756. points are plotted.
  7757. \end_layout
  7758. \end_inset
  7759. \end_layout
  7760. \end_inset
  7761. \end_layout
  7762. \begin_layout Standard
  7763. Figure
  7764. \begin_inset CommandInset ref
  7765. LatexCommand ref
  7766. reference "fig:ma-bx-rma-frma"
  7767. plural "false"
  7768. caps "false"
  7769. noprefix "false"
  7770. \end_inset
  7771. shows an MA plot of the RMA-normalized values against the fRMA-normalized
  7772. values for the same probe sets and arrays, corresponding to the first row
  7773. of Figure
  7774. \begin_inset CommandInset ref
  7775. LatexCommand ref
  7776. reference "fig:m-bx-violin"
  7777. plural "false"
  7778. caps "false"
  7779. noprefix "false"
  7780. \end_inset
  7781. .
  7782. This MA plot shows that not only is there a wide distribution of M-values,
  7783. but the trend of M-values is dependent on the average normalized intensity.
  7784. This is expected, since the overall trend represents the differences in
  7785. the quantile normalization step.
  7786. When running RMA, only the quantiles for these specific 20 arrays are used,
  7787. while for fRMA the quantile distribution is taking from all arrays used
  7788. in training.
  7789. Figure
  7790. \begin_inset CommandInset ref
  7791. LatexCommand ref
  7792. reference "fig:ma-bx-frma-frma"
  7793. plural "false"
  7794. caps "false"
  7795. noprefix "false"
  7796. \end_inset
  7797. shows a similar MA plot comparing 2 different fRMA normalizations, correspondin
  7798. g to the 6th row of Figure
  7799. \begin_inset CommandInset ref
  7800. LatexCommand ref
  7801. reference "fig:m-bx-violin"
  7802. plural "false"
  7803. caps "false"
  7804. noprefix "false"
  7805. \end_inset
  7806. .
  7807. The MA plot is very tightly centered around zero with no visible trend.
  7808. Figures
  7809. \begin_inset CommandInset ref
  7810. LatexCommand ref
  7811. reference "fig:m-pax-violin"
  7812. plural "false"
  7813. caps "false"
  7814. noprefix "false"
  7815. \end_inset
  7816. ,
  7817. \begin_inset CommandInset ref
  7818. LatexCommand ref
  7819. reference "fig:MA-PAX-rma-frma"
  7820. plural "false"
  7821. caps "false"
  7822. noprefix "false"
  7823. \end_inset
  7824. , and
  7825. \begin_inset CommandInset ref
  7826. LatexCommand ref
  7827. reference "fig:ma-bx-frma-frma"
  7828. plural "false"
  7829. caps "false"
  7830. noprefix "false"
  7831. \end_inset
  7832. show exactly the same information for the blood samples, once again comparing
  7833. the normalized expression values between normalizations for all probe sets
  7834. across 20 randomly selected test arrays.
  7835. Once again, there is a wider distribution of log ratios between RMA-normalized
  7836. values and fRMA-normalized, and a much tighter distribution when comparing
  7837. different fRMA normalizations to each other, indicating that the fRMA training
  7838. process is robust to random batch downsampling for the blood samples as
  7839. well.
  7840. \end_layout
  7841. \begin_layout Subsection
  7842. SVA, voom, and array weights improve model fit for methylation array data
  7843. \end_layout
  7844. \begin_layout Standard
  7845. \begin_inset ERT
  7846. status open
  7847. \begin_layout Plain Layout
  7848. \backslash
  7849. afterpage{
  7850. \end_layout
  7851. \begin_layout Plain Layout
  7852. \backslash
  7853. begin{landscape}
  7854. \end_layout
  7855. \end_inset
  7856. \end_layout
  7857. \begin_layout Standard
  7858. \begin_inset Float figure
  7859. wide false
  7860. sideways false
  7861. status open
  7862. \begin_layout Plain Layout
  7863. \begin_inset Flex TODO Note (inline)
  7864. status open
  7865. \begin_layout Plain Layout
  7866. Fix axis labels:
  7867. \begin_inset Quotes eld
  7868. \end_inset
  7869. log2 M-value
  7870. \begin_inset Quotes erd
  7871. \end_inset
  7872. is redundant because M-values are already log scale
  7873. \end_layout
  7874. \end_inset
  7875. \end_layout
  7876. \begin_layout Plain Layout
  7877. \begin_inset Float figure
  7878. wide false
  7879. sideways false
  7880. status collapsed
  7881. \begin_layout Plain Layout
  7882. \align center
  7883. \begin_inset Graphics
  7884. filename graphics/methylvoom/unadj.dupcor/meanvar-trends-PAGE1-CROP-RASTER.png
  7885. lyxscale 15
  7886. width 30col%
  7887. groupId voomaw-subfig
  7888. \end_inset
  7889. \end_layout
  7890. \begin_layout Plain Layout
  7891. \begin_inset Caption Standard
  7892. \begin_layout Plain Layout
  7893. \begin_inset CommandInset label
  7894. LatexCommand label
  7895. name "fig:meanvar-basic"
  7896. \end_inset
  7897. Mean-variance trend for analysis A.
  7898. \end_layout
  7899. \end_inset
  7900. \end_layout
  7901. \end_inset
  7902. \begin_inset space \hfill{}
  7903. \end_inset
  7904. \begin_inset Float figure
  7905. wide false
  7906. sideways false
  7907. status collapsed
  7908. \begin_layout Plain Layout
  7909. \align center
  7910. \begin_inset Graphics
  7911. filename graphics/methylvoom/unadj.dupcor.sva.aw/meanvar-trends-PAGE1-CROP-RASTER.png
  7912. lyxscale 15
  7913. width 30col%
  7914. groupId voomaw-subfig
  7915. \end_inset
  7916. \end_layout
  7917. \begin_layout Plain Layout
  7918. \begin_inset Caption Standard
  7919. \begin_layout Plain Layout
  7920. \begin_inset CommandInset label
  7921. LatexCommand label
  7922. name "fig:meanvar-sva-aw"
  7923. \end_inset
  7924. Mean-variance trend for analysis B.
  7925. \end_layout
  7926. \end_inset
  7927. \end_layout
  7928. \end_inset
  7929. \begin_inset space \hfill{}
  7930. \end_inset
  7931. \begin_inset Float figure
  7932. wide false
  7933. sideways false
  7934. status collapsed
  7935. \begin_layout Plain Layout
  7936. \align center
  7937. \begin_inset Graphics
  7938. filename graphics/methylvoom/unadj.dupcor.sva.voomaw/meanvar-trends-PAGE2-CROP-RASTER.png
  7939. lyxscale 15
  7940. width 30col%
  7941. groupId voomaw-subfig
  7942. \end_inset
  7943. \end_layout
  7944. \begin_layout Plain Layout
  7945. \begin_inset Caption Standard
  7946. \begin_layout Plain Layout
  7947. \begin_inset CommandInset label
  7948. LatexCommand label
  7949. name "fig:meanvar-sva-voomaw"
  7950. \end_inset
  7951. Mean-variance trend after voom modeling in analysis C.
  7952. \end_layout
  7953. \end_inset
  7954. \end_layout
  7955. \end_inset
  7956. \end_layout
  7957. \begin_layout Plain Layout
  7958. \begin_inset Caption Standard
  7959. \begin_layout Plain Layout
  7960. \series bold
  7961. Mean-variance trend modeling in methylation array data.
  7962. \series default
  7963. The estimated log2(standard deviation) for each probe is plotted against
  7964. the probe's average M-value across all samples as a black point, with some
  7965. transparency to make over-plotting more visible, since there are about
  7966. 450,000 points.
  7967. Density of points is also indicated by the dark blue contour lines.
  7968. The prior variance trend estimated by eBayes is shown in light blue, while
  7969. the lowess trend of the points is shown in red.
  7970. \end_layout
  7971. \end_inset
  7972. \end_layout
  7973. \end_inset
  7974. \end_layout
  7975. \begin_layout Standard
  7976. \begin_inset ERT
  7977. status open
  7978. \begin_layout Plain Layout
  7979. \backslash
  7980. end{landscape}
  7981. \end_layout
  7982. \begin_layout Plain Layout
  7983. }
  7984. \end_layout
  7985. \end_inset
  7986. \end_layout
  7987. \begin_layout Standard
  7988. Figure
  7989. \begin_inset CommandInset ref
  7990. LatexCommand ref
  7991. reference "fig:meanvar-basic"
  7992. plural "false"
  7993. caps "false"
  7994. noprefix "false"
  7995. \end_inset
  7996. shows the relationship between the mean M-value and the standard deviation
  7997. calculated for each probe in the methylation array data set.
  7998. A few features of the data are apparent.
  7999. First, the data are very strongly bimodal, with peaks in the density around
  8000. M-values of +4 and -4.
  8001. These modes correspond to methylation sites that are nearly 100% methylated
  8002. and nearly 100% unmethylated, respectively.
  8003. The strong bimodality indicates that a majority of probes interrogate sites
  8004. that fall into one of these two categories.
  8005. The points in between these modes represent sites that are either partially
  8006. methylated in many samples, or are fully methylated in some samples and
  8007. fully unmethylated in other samples, or some combination.
  8008. The next visible feature of the data is the W-shaped variance trend.
  8009. The upticks in the variance trend on either side are expected, based on
  8010. the sigmoid transformation exaggerating small differences at extreme M-values
  8011. (Figure
  8012. \begin_inset CommandInset ref
  8013. LatexCommand ref
  8014. reference "fig:Sigmoid-beta-m-mapping"
  8015. plural "false"
  8016. caps "false"
  8017. noprefix "false"
  8018. \end_inset
  8019. ).
  8020. However, the uptick in the center is interesting: it indicates that sites
  8021. that are not constitutively methylated or unmethylated have a higher variance.
  8022. This could be a genuine biological effect, or it could be spurious noise
  8023. that is only observable at sites with varying methylation.
  8024. \end_layout
  8025. \begin_layout Standard
  8026. In Figure
  8027. \begin_inset CommandInset ref
  8028. LatexCommand ref
  8029. reference "fig:meanvar-sva-aw"
  8030. plural "false"
  8031. caps "false"
  8032. noprefix "false"
  8033. \end_inset
  8034. , we see the mean-variance trend for the same methylation array data, this
  8035. time with surrogate variables and sample quality weights estimated from
  8036. the data and included in the model.
  8037. As expected, the overall average variance is smaller, since the surrogate
  8038. variables account for some of the variance.
  8039. In addition, the uptick in variance in the middle of the M-value range
  8040. has disappeared, turning the W shape into a wide U shape.
  8041. This indicates that the excess variance in the probes with intermediate
  8042. M-values was explained by systematic variations not correlated with known
  8043. covariates, and these variations were modeled by the surrogate variables.
  8044. The result is a nearly flat variance trend for the entire intermediate
  8045. M-value range from about -3 to +3.
  8046. Note that this corresponds closely to the range within which the M-value
  8047. transformation shown in Figure
  8048. \begin_inset CommandInset ref
  8049. LatexCommand ref
  8050. reference "fig:Sigmoid-beta-m-mapping"
  8051. plural "false"
  8052. caps "false"
  8053. noprefix "false"
  8054. \end_inset
  8055. is nearly linear.
  8056. In contrast, the excess variance at the extremes (greater than +3 and less
  8057. than -3) was not
  8058. \begin_inset Quotes eld
  8059. \end_inset
  8060. absorbed
  8061. \begin_inset Quotes erd
  8062. \end_inset
  8063. by the surrogate variables and remains in the plot, indicating that this
  8064. variation has no systematic component: probes with extreme M-values are
  8065. uniformly more variable across all samples, as expected.
  8066. \end_layout
  8067. \begin_layout Standard
  8068. Figure
  8069. \begin_inset CommandInset ref
  8070. LatexCommand ref
  8071. reference "fig:meanvar-sva-voomaw"
  8072. plural "false"
  8073. caps "false"
  8074. noprefix "false"
  8075. \end_inset
  8076. shows the mean-variance trend after fitting the model with the observation
  8077. weights assigned by voom based on the mean-variance trend shown in Figure
  8078. \begin_inset CommandInset ref
  8079. LatexCommand ref
  8080. reference "fig:meanvar-sva-aw"
  8081. plural "false"
  8082. caps "false"
  8083. noprefix "false"
  8084. \end_inset
  8085. .
  8086. As expected, the weights exactly counteract the trend in the data, resulting
  8087. in a nearly flat trend centered vertically at 1 (i.e.
  8088. 0 on the log scale).
  8089. This shows that the observations with extreme M-values have been appropriately
  8090. down-weighted to account for the fact that the noise in those observations
  8091. has been amplified by the non-linear M-value transformation.
  8092. In turn, this gives relatively more weight to observations in the middle
  8093. region, which are more likely to correspond to probes measuring interesting
  8094. biology (not constitutively methylated or unmethylated).
  8095. \end_layout
  8096. \begin_layout Standard
  8097. \begin_inset Float table
  8098. wide false
  8099. sideways false
  8100. status open
  8101. \begin_layout Plain Layout
  8102. \align center
  8103. \begin_inset Tabular
  8104. <lyxtabular version="3" rows="5" columns="3">
  8105. <features tabularvalignment="middle">
  8106. <column alignment="center" valignment="top">
  8107. <column alignment="center" valignment="top">
  8108. <column alignment="center" valignment="top">
  8109. <row>
  8110. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8111. \begin_inset Text
  8112. \begin_layout Plain Layout
  8113. Covariate
  8114. \end_layout
  8115. \end_inset
  8116. </cell>
  8117. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8118. \begin_inset Text
  8119. \begin_layout Plain Layout
  8120. Test used
  8121. \end_layout
  8122. \end_inset
  8123. </cell>
  8124. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  8125. \begin_inset Text
  8126. \begin_layout Plain Layout
  8127. p-value
  8128. \end_layout
  8129. \end_inset
  8130. </cell>
  8131. </row>
  8132. <row>
  8133. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8134. \begin_inset Text
  8135. \begin_layout Plain Layout
  8136. Transplant Status
  8137. \end_layout
  8138. \end_inset
  8139. </cell>
  8140. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8141. \begin_inset Text
  8142. \begin_layout Plain Layout
  8143. F-test
  8144. \end_layout
  8145. \end_inset
  8146. </cell>
  8147. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8148. \begin_inset Text
  8149. \begin_layout Plain Layout
  8150. 0.404
  8151. \end_layout
  8152. \end_inset
  8153. </cell>
  8154. </row>
  8155. <row>
  8156. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8157. \begin_inset Text
  8158. \begin_layout Plain Layout
  8159. Diabetes Diagnosis
  8160. \end_layout
  8161. \end_inset
  8162. </cell>
  8163. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8164. \begin_inset Text
  8165. \begin_layout Plain Layout
  8166. \emph on
  8167. t
  8168. \emph default
  8169. -test
  8170. \end_layout
  8171. \end_inset
  8172. </cell>
  8173. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8174. \begin_inset Text
  8175. \begin_layout Plain Layout
  8176. 0.00106
  8177. \end_layout
  8178. \end_inset
  8179. </cell>
  8180. </row>
  8181. <row>
  8182. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8183. \begin_inset Text
  8184. \begin_layout Plain Layout
  8185. Sex
  8186. \end_layout
  8187. \end_inset
  8188. </cell>
  8189. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8190. \begin_inset Text
  8191. \begin_layout Plain Layout
  8192. \emph on
  8193. t
  8194. \emph default
  8195. -test
  8196. \end_layout
  8197. \end_inset
  8198. </cell>
  8199. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8200. \begin_inset Text
  8201. \begin_layout Plain Layout
  8202. 0.148
  8203. \end_layout
  8204. \end_inset
  8205. </cell>
  8206. </row>
  8207. <row>
  8208. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8209. \begin_inset Text
  8210. \begin_layout Plain Layout
  8211. Age
  8212. \end_layout
  8213. \end_inset
  8214. </cell>
  8215. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8216. \begin_inset Text
  8217. \begin_layout Plain Layout
  8218. linear regression
  8219. \end_layout
  8220. \end_inset
  8221. </cell>
  8222. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  8223. \begin_inset Text
  8224. \begin_layout Plain Layout
  8225. 0.212
  8226. \end_layout
  8227. \end_inset
  8228. </cell>
  8229. </row>
  8230. </lyxtabular>
  8231. \end_inset
  8232. \end_layout
  8233. \begin_layout Plain Layout
  8234. \begin_inset Caption Standard
  8235. \begin_layout Plain Layout
  8236. \series bold
  8237. \begin_inset CommandInset label
  8238. LatexCommand label
  8239. name "tab:weight-covariate-tests"
  8240. \end_inset
  8241. Association of sample weights with clinical covariates in methylation array
  8242. data.
  8243. \series default
  8244. Computed sample quality log weights were tested for significant association
  8245. with each of the variables in the model (1st column).
  8246. An appropriate test was selected for each variable based on whether the
  8247. variable had 2 categories (
  8248. \emph on
  8249. t
  8250. \emph default
  8251. -test), had more than 2 categories (F-test), or was numeric (linear regression).
  8252. The test selected is shown in the 2nd column.
  8253. P-values for association with the log weights are shown in the 3rd column.
  8254. No multiple testing adjustment was performed for these p-values.
  8255. \end_layout
  8256. \end_inset
  8257. \end_layout
  8258. \end_inset
  8259. \end_layout
  8260. \begin_layout Standard
  8261. \begin_inset Float figure
  8262. wide false
  8263. sideways false
  8264. status open
  8265. \begin_layout Plain Layout
  8266. \begin_inset Flex TODO Note (inline)
  8267. status open
  8268. \begin_layout Plain Layout
  8269. Redo the sample weight boxplot with notches, and remove fill colors
  8270. \end_layout
  8271. \end_inset
  8272. \end_layout
  8273. \begin_layout Plain Layout
  8274. \align center
  8275. \begin_inset Graphics
  8276. filename graphics/methylvoom/unadj.dupcor.sva.voomaw/sample-weights-PAGE3-CROP.pdf
  8277. lyxscale 50
  8278. width 60col%
  8279. groupId colwidth
  8280. \end_inset
  8281. \end_layout
  8282. \begin_layout Plain Layout
  8283. \begin_inset Caption Standard
  8284. \begin_layout Plain Layout
  8285. \begin_inset CommandInset label
  8286. LatexCommand label
  8287. name "fig:diabetes-sample-weights"
  8288. \end_inset
  8289. \series bold
  8290. Box-and-whiskers plot of sample quality weights grouped by diabetes diagnosis.
  8291. \series default
  8292. Samples were grouped based on diabetes diagnosis, and the distribution of
  8293. sample quality weights for each diagnosis was plotted as a box-and-whiskers
  8294. plot
  8295. \begin_inset CommandInset citation
  8296. LatexCommand cite
  8297. key "McGill1978"
  8298. literal "false"
  8299. \end_inset
  8300. .
  8301. \end_layout
  8302. \end_inset
  8303. \end_layout
  8304. \begin_layout Plain Layout
  8305. \end_layout
  8306. \end_inset
  8307. \end_layout
  8308. \begin_layout Standard
  8309. To determine whether any of the known experimental factors had an impact
  8310. on data quality, the sample quality weights estimated from the data were
  8311. tested for association with each of the experimental factors (Table
  8312. \begin_inset CommandInset ref
  8313. LatexCommand ref
  8314. reference "tab:weight-covariate-tests"
  8315. plural "false"
  8316. caps "false"
  8317. noprefix "false"
  8318. \end_inset
  8319. ).
  8320. Diabetes diagnosis was found to have a potentially significant association
  8321. with the sample weights, with a t-test p-value of
  8322. \begin_inset Formula $1.06\times10^{-3}$
  8323. \end_inset
  8324. .
  8325. Figure
  8326. \begin_inset CommandInset ref
  8327. LatexCommand ref
  8328. reference "fig:diabetes-sample-weights"
  8329. plural "false"
  8330. caps "false"
  8331. noprefix "false"
  8332. \end_inset
  8333. shows the distribution of sample weights grouped by diabetes diagnosis.
  8334. The samples from patients with Type 2 diabetes were assigned significantly
  8335. lower weights than those from patients with Type 1 diabetes.
  8336. This indicates that the type 2 diabetes samples had an overall higher variance
  8337. on average across all probes.
  8338. \end_layout
  8339. \begin_layout Standard
  8340. \begin_inset Float table
  8341. wide false
  8342. sideways false
  8343. status open
  8344. \begin_layout Plain Layout
  8345. \align center
  8346. \begin_inset Flex TODO Note (inline)
  8347. status open
  8348. \begin_layout Plain Layout
  8349. Consider transposing these tables
  8350. \end_layout
  8351. \end_inset
  8352. \end_layout
  8353. \begin_layout Plain Layout
  8354. \begin_inset Float table
  8355. wide false
  8356. sideways false
  8357. status open
  8358. \begin_layout Plain Layout
  8359. \align center
  8360. \begin_inset Tabular
  8361. <lyxtabular version="3" rows="5" columns="4">
  8362. <features tabularvalignment="middle">
  8363. <column alignment="center" valignment="top">
  8364. <column alignment="center" valignment="top">
  8365. <column alignment="center" valignment="top">
  8366. <column alignment="center" valignment="top">
  8367. <row>
  8368. <cell alignment="center" valignment="top" usebox="none">
  8369. \begin_inset Text
  8370. \begin_layout Plain Layout
  8371. \end_layout
  8372. \end_inset
  8373. </cell>
  8374. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8375. \begin_inset Text
  8376. \begin_layout Plain Layout
  8377. Analysis
  8378. \end_layout
  8379. \end_inset
  8380. </cell>
  8381. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8382. \begin_inset Text
  8383. \begin_layout Plain Layout
  8384. \end_layout
  8385. \end_inset
  8386. </cell>
  8387. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8388. \begin_inset Text
  8389. \begin_layout Plain Layout
  8390. \end_layout
  8391. \end_inset
  8392. </cell>
  8393. </row>
  8394. <row>
  8395. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8396. \begin_inset Text
  8397. \begin_layout Plain Layout
  8398. Contrast
  8399. \end_layout
  8400. \end_inset
  8401. </cell>
  8402. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8403. \begin_inset Text
  8404. \begin_layout Plain Layout
  8405. A
  8406. \end_layout
  8407. \end_inset
  8408. </cell>
  8409. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8410. \begin_inset Text
  8411. \begin_layout Plain Layout
  8412. B
  8413. \end_layout
  8414. \end_inset
  8415. </cell>
  8416. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  8417. \begin_inset Text
  8418. \begin_layout Plain Layout
  8419. C
  8420. \end_layout
  8421. \end_inset
  8422. </cell>
  8423. </row>
  8424. <row>
  8425. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8426. \begin_inset Text
  8427. \begin_layout Plain Layout
  8428. TX vs AR
  8429. \end_layout
  8430. \end_inset
  8431. </cell>
  8432. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8433. \begin_inset Text
  8434. \begin_layout Plain Layout
  8435. 0
  8436. \end_layout
  8437. \end_inset
  8438. </cell>
  8439. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8440. \begin_inset Text
  8441. \begin_layout Plain Layout
  8442. 25
  8443. \end_layout
  8444. \end_inset
  8445. </cell>
  8446. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8447. \begin_inset Text
  8448. \begin_layout Plain Layout
  8449. 22
  8450. \end_layout
  8451. \end_inset
  8452. </cell>
  8453. </row>
  8454. <row>
  8455. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8456. \begin_inset Text
  8457. \begin_layout Plain Layout
  8458. TX vs ADNR
  8459. \end_layout
  8460. \end_inset
  8461. </cell>
  8462. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8463. \begin_inset Text
  8464. \begin_layout Plain Layout
  8465. 7
  8466. \end_layout
  8467. \end_inset
  8468. </cell>
  8469. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8470. \begin_inset Text
  8471. \begin_layout Plain Layout
  8472. 338
  8473. \end_layout
  8474. \end_inset
  8475. </cell>
  8476. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8477. \begin_inset Text
  8478. \begin_layout Plain Layout
  8479. 369
  8480. \end_layout
  8481. \end_inset
  8482. </cell>
  8483. </row>
  8484. <row>
  8485. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8486. \begin_inset Text
  8487. \begin_layout Plain Layout
  8488. TX vs CAN
  8489. \end_layout
  8490. \end_inset
  8491. </cell>
  8492. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8493. \begin_inset Text
  8494. \begin_layout Plain Layout
  8495. 0
  8496. \end_layout
  8497. \end_inset
  8498. </cell>
  8499. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8500. \begin_inset Text
  8501. \begin_layout Plain Layout
  8502. 231
  8503. \end_layout
  8504. \end_inset
  8505. </cell>
  8506. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  8507. \begin_inset Text
  8508. \begin_layout Plain Layout
  8509. 278
  8510. \end_layout
  8511. \end_inset
  8512. </cell>
  8513. </row>
  8514. </lyxtabular>
  8515. \end_inset
  8516. \end_layout
  8517. \begin_layout Plain Layout
  8518. \begin_inset Caption Standard
  8519. \begin_layout Plain Layout
  8520. \begin_inset CommandInset label
  8521. LatexCommand label
  8522. name "tab:methyl-num-signif"
  8523. \end_inset
  8524. Number of probes significant at 10% FDR.
  8525. \end_layout
  8526. \end_inset
  8527. \end_layout
  8528. \end_inset
  8529. \begin_inset space \hfill{}
  8530. \end_inset
  8531. \begin_inset Float table
  8532. wide false
  8533. sideways false
  8534. status open
  8535. \begin_layout Plain Layout
  8536. \align center
  8537. \begin_inset Tabular
  8538. <lyxtabular version="3" rows="5" columns="4">
  8539. <features tabularvalignment="middle">
  8540. <column alignment="center" valignment="top">
  8541. <column alignment="center" valignment="top">
  8542. <column alignment="center" valignment="top">
  8543. <column alignment="center" valignment="top">
  8544. <row>
  8545. <cell alignment="center" valignment="top" usebox="none">
  8546. \begin_inset Text
  8547. \begin_layout Plain Layout
  8548. \end_layout
  8549. \end_inset
  8550. </cell>
  8551. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8552. \begin_inset Text
  8553. \begin_layout Plain Layout
  8554. Analysis
  8555. \end_layout
  8556. \end_inset
  8557. </cell>
  8558. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8559. \begin_inset Text
  8560. \begin_layout Plain Layout
  8561. \end_layout
  8562. \end_inset
  8563. </cell>
  8564. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8565. \begin_inset Text
  8566. \begin_layout Plain Layout
  8567. \end_layout
  8568. \end_inset
  8569. </cell>
  8570. </row>
  8571. <row>
  8572. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8573. \begin_inset Text
  8574. \begin_layout Plain Layout
  8575. Contrast
  8576. \end_layout
  8577. \end_inset
  8578. </cell>
  8579. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8580. \begin_inset Text
  8581. \begin_layout Plain Layout
  8582. A
  8583. \end_layout
  8584. \end_inset
  8585. </cell>
  8586. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8587. \begin_inset Text
  8588. \begin_layout Plain Layout
  8589. B
  8590. \end_layout
  8591. \end_inset
  8592. </cell>
  8593. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  8594. \begin_inset Text
  8595. \begin_layout Plain Layout
  8596. C
  8597. \end_layout
  8598. \end_inset
  8599. </cell>
  8600. </row>
  8601. <row>
  8602. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8603. \begin_inset Text
  8604. \begin_layout Plain Layout
  8605. TX vs AR
  8606. \end_layout
  8607. \end_inset
  8608. </cell>
  8609. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8610. \begin_inset Text
  8611. \begin_layout Plain Layout
  8612. 0
  8613. \end_layout
  8614. \end_inset
  8615. </cell>
  8616. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8617. \begin_inset Text
  8618. \begin_layout Plain Layout
  8619. 10,063
  8620. \end_layout
  8621. \end_inset
  8622. </cell>
  8623. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8624. \begin_inset Text
  8625. \begin_layout Plain Layout
  8626. 11,225
  8627. \end_layout
  8628. \end_inset
  8629. </cell>
  8630. </row>
  8631. <row>
  8632. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8633. \begin_inset Text
  8634. \begin_layout Plain Layout
  8635. TX vs ADNR
  8636. \end_layout
  8637. \end_inset
  8638. </cell>
  8639. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8640. \begin_inset Text
  8641. \begin_layout Plain Layout
  8642. 27
  8643. \end_layout
  8644. \end_inset
  8645. </cell>
  8646. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8647. \begin_inset Text
  8648. \begin_layout Plain Layout
  8649. 12,674
  8650. \end_layout
  8651. \end_inset
  8652. </cell>
  8653. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8654. \begin_inset Text
  8655. \begin_layout Plain Layout
  8656. 13,086
  8657. \end_layout
  8658. \end_inset
  8659. </cell>
  8660. </row>
  8661. <row>
  8662. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8663. \begin_inset Text
  8664. \begin_layout Plain Layout
  8665. TX vs CAN
  8666. \end_layout
  8667. \end_inset
  8668. </cell>
  8669. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8670. \begin_inset Text
  8671. \begin_layout Plain Layout
  8672. 966
  8673. \end_layout
  8674. \end_inset
  8675. </cell>
  8676. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8677. \begin_inset Text
  8678. \begin_layout Plain Layout
  8679. 20,039
  8680. \end_layout
  8681. \end_inset
  8682. </cell>
  8683. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  8684. \begin_inset Text
  8685. \begin_layout Plain Layout
  8686. 20,955
  8687. \end_layout
  8688. \end_inset
  8689. </cell>
  8690. </row>
  8691. </lyxtabular>
  8692. \end_inset
  8693. \end_layout
  8694. \begin_layout Plain Layout
  8695. \begin_inset Caption Standard
  8696. \begin_layout Plain Layout
  8697. \begin_inset CommandInset label
  8698. LatexCommand label
  8699. name "tab:methyl-est-nonnull"
  8700. \end_inset
  8701. Estimated number of non-null tests, using the method of averaging local
  8702. FDR values
  8703. \begin_inset CommandInset citation
  8704. LatexCommand cite
  8705. key "Phipson2013Thesis"
  8706. literal "false"
  8707. \end_inset
  8708. .
  8709. \end_layout
  8710. \end_inset
  8711. \end_layout
  8712. \end_inset
  8713. \end_layout
  8714. \begin_layout Plain Layout
  8715. \begin_inset Caption Standard
  8716. \begin_layout Plain Layout
  8717. \series bold
  8718. Estimates of degree of differential methylation in for each contrast in
  8719. each analysis.
  8720. \series default
  8721. For each of the analyses in Table
  8722. \begin_inset CommandInset ref
  8723. LatexCommand ref
  8724. reference "tab:Summary-of-meth-analysis"
  8725. plural "false"
  8726. caps "false"
  8727. noprefix "false"
  8728. \end_inset
  8729. , these tables show the number of probes called significantly differentially
  8730. methylated at a threshold of 10% FDR for each comparison between TX and
  8731. the other 3 transplant statuses (a) and the estimated total number of probes
  8732. that are differentially methylated (b).
  8733. \end_layout
  8734. \end_inset
  8735. \end_layout
  8736. \end_inset
  8737. \end_layout
  8738. \begin_layout Standard
  8739. \begin_inset Float figure
  8740. wide false
  8741. sideways false
  8742. status open
  8743. \begin_layout Plain Layout
  8744. \align center
  8745. \series bold
  8746. \begin_inset Float figure
  8747. wide false
  8748. sideways false
  8749. status collapsed
  8750. \begin_layout Plain Layout
  8751. \align center
  8752. \begin_inset Graphics
  8753. filename graphics/methylvoom/unadj.dupcor/pval-histograms-PAGE1.pdf
  8754. lyxscale 33
  8755. width 30col%
  8756. groupId meth-pval-hist
  8757. \end_inset
  8758. \end_layout
  8759. \begin_layout Plain Layout
  8760. \series bold
  8761. \begin_inset Caption Standard
  8762. \begin_layout Plain Layout
  8763. AR vs.
  8764. TX, Analysis A
  8765. \end_layout
  8766. \end_inset
  8767. \end_layout
  8768. \begin_layout Plain Layout
  8769. \end_layout
  8770. \end_inset
  8771. \begin_inset space \hfill{}
  8772. \end_inset
  8773. \begin_inset Float figure
  8774. wide false
  8775. sideways false
  8776. status collapsed
  8777. \begin_layout Plain Layout
  8778. \align center
  8779. \begin_inset Graphics
  8780. filename graphics/methylvoom/unadj.dupcor/pval-histograms-PAGE2.pdf
  8781. lyxscale 33
  8782. width 30col%
  8783. groupId meth-pval-hist
  8784. \end_inset
  8785. \end_layout
  8786. \begin_layout Plain Layout
  8787. \series bold
  8788. \begin_inset Caption Standard
  8789. \begin_layout Plain Layout
  8790. ADNR vs.
  8791. TX, Analysis A
  8792. \end_layout
  8793. \end_inset
  8794. \end_layout
  8795. \end_inset
  8796. \begin_inset space \hfill{}
  8797. \end_inset
  8798. \begin_inset Float figure
  8799. wide false
  8800. sideways false
  8801. status collapsed
  8802. \begin_layout Plain Layout
  8803. \align center
  8804. \begin_inset Graphics
  8805. filename graphics/methylvoom/unadj.dupcor/pval-histograms-PAGE3.pdf
  8806. lyxscale 33
  8807. width 30col%
  8808. groupId meth-pval-hist
  8809. \end_inset
  8810. \end_layout
  8811. \begin_layout Plain Layout
  8812. \series bold
  8813. \begin_inset Caption Standard
  8814. \begin_layout Plain Layout
  8815. CAN vs.
  8816. TX, Analysis A
  8817. \end_layout
  8818. \end_inset
  8819. \end_layout
  8820. \end_inset
  8821. \end_layout
  8822. \begin_layout Plain Layout
  8823. \align center
  8824. \series bold
  8825. \begin_inset Float figure
  8826. wide false
  8827. sideways false
  8828. status collapsed
  8829. \begin_layout Plain Layout
  8830. \align center
  8831. \begin_inset Graphics
  8832. filename graphics/methylvoom/unadj.dupcor.sva.aw/pval-histograms-PAGE1.pdf
  8833. lyxscale 33
  8834. width 30col%
  8835. groupId meth-pval-hist
  8836. \end_inset
  8837. \end_layout
  8838. \begin_layout Plain Layout
  8839. \series bold
  8840. \begin_inset Caption Standard
  8841. \begin_layout Plain Layout
  8842. AR vs.
  8843. TX, Analysis B
  8844. \end_layout
  8845. \end_inset
  8846. \end_layout
  8847. \end_inset
  8848. \begin_inset space \hfill{}
  8849. \end_inset
  8850. \begin_inset Float figure
  8851. wide false
  8852. sideways false
  8853. status collapsed
  8854. \begin_layout Plain Layout
  8855. \align center
  8856. \begin_inset Graphics
  8857. filename graphics/methylvoom/unadj.dupcor.sva.aw/pval-histograms-PAGE2.pdf
  8858. lyxscale 33
  8859. width 30col%
  8860. groupId meth-pval-hist
  8861. \end_inset
  8862. \end_layout
  8863. \begin_layout Plain Layout
  8864. \series bold
  8865. \begin_inset Caption Standard
  8866. \begin_layout Plain Layout
  8867. ADNR vs.
  8868. TX, Analysis B
  8869. \end_layout
  8870. \end_inset
  8871. \end_layout
  8872. \end_inset
  8873. \begin_inset space \hfill{}
  8874. \end_inset
  8875. \begin_inset Float figure
  8876. wide false
  8877. sideways false
  8878. status collapsed
  8879. \begin_layout Plain Layout
  8880. \align center
  8881. \begin_inset Graphics
  8882. filename graphics/methylvoom/unadj.dupcor.sva.aw/pval-histograms-PAGE3.pdf
  8883. lyxscale 33
  8884. width 30col%
  8885. groupId meth-pval-hist
  8886. \end_inset
  8887. \end_layout
  8888. \begin_layout Plain Layout
  8889. \series bold
  8890. \begin_inset Caption Standard
  8891. \begin_layout Plain Layout
  8892. CAN vs.
  8893. TX, Analysis B
  8894. \end_layout
  8895. \end_inset
  8896. \end_layout
  8897. \end_inset
  8898. \end_layout
  8899. \begin_layout Plain Layout
  8900. \align center
  8901. \series bold
  8902. \begin_inset Float figure
  8903. wide false
  8904. sideways false
  8905. status collapsed
  8906. \begin_layout Plain Layout
  8907. \align center
  8908. \begin_inset Graphics
  8909. filename graphics/methylvoom/unadj.dupcor.sva.voomaw/pval-histograms-PAGE1.pdf
  8910. lyxscale 33
  8911. width 30col%
  8912. groupId meth-pval-hist
  8913. \end_inset
  8914. \end_layout
  8915. \begin_layout Plain Layout
  8916. \series bold
  8917. \begin_inset Caption Standard
  8918. \begin_layout Plain Layout
  8919. AR vs.
  8920. TX, Analysis C
  8921. \end_layout
  8922. \end_inset
  8923. \end_layout
  8924. \end_inset
  8925. \begin_inset space \hfill{}
  8926. \end_inset
  8927. \begin_inset Float figure
  8928. wide false
  8929. sideways false
  8930. status collapsed
  8931. \begin_layout Plain Layout
  8932. \align center
  8933. \begin_inset Graphics
  8934. filename graphics/methylvoom/unadj.dupcor.sva.voomaw/pval-histograms-PAGE2.pdf
  8935. lyxscale 33
  8936. width 30col%
  8937. groupId meth-pval-hist
  8938. \end_inset
  8939. \end_layout
  8940. \begin_layout Plain Layout
  8941. \series bold
  8942. \begin_inset Caption Standard
  8943. \begin_layout Plain Layout
  8944. ADNR vs.
  8945. TX, Analysis C
  8946. \end_layout
  8947. \end_inset
  8948. \end_layout
  8949. \end_inset
  8950. \begin_inset space \hfill{}
  8951. \end_inset
  8952. \begin_inset Float figure
  8953. wide false
  8954. sideways false
  8955. status collapsed
  8956. \begin_layout Plain Layout
  8957. \align center
  8958. \begin_inset Graphics
  8959. filename graphics/methylvoom/unadj.dupcor.sva.voomaw/pval-histograms-PAGE3.pdf
  8960. lyxscale 33
  8961. width 30col%
  8962. groupId meth-pval-hist
  8963. \end_inset
  8964. \end_layout
  8965. \begin_layout Plain Layout
  8966. \series bold
  8967. \begin_inset Caption Standard
  8968. \begin_layout Plain Layout
  8969. CAN vs.
  8970. TX, Analysis C
  8971. \end_layout
  8972. \end_inset
  8973. \end_layout
  8974. \end_inset
  8975. \end_layout
  8976. \begin_layout Plain Layout
  8977. \begin_inset Caption Standard
  8978. \begin_layout Plain Layout
  8979. \series bold
  8980. \begin_inset CommandInset label
  8981. LatexCommand label
  8982. name "fig:meth-p-value-histograms"
  8983. \end_inset
  8984. Probe p-value histograms for each contrast in each analysis.
  8985. \series default
  8986. For each differential methylation test of interest, the distribution of
  8987. p-values across all probes is plotted as a histogram.
  8988. The red solid line indicates the density that would be expected under the
  8989. null hypothesis for all probes (a
  8990. \begin_inset Formula $\mathrm{Uniform}(0,1)$
  8991. \end_inset
  8992. distribution), while the blue dotted line indicates the fraction of p-values
  8993. that actually follow the null hypothesis (
  8994. \begin_inset Formula $\hat{\pi}_{0}$
  8995. \end_inset
  8996. ) estimated using the method of averaging local FDR values
  8997. \begin_inset CommandInset citation
  8998. LatexCommand cite
  8999. key "Phipson2013Thesis"
  9000. literal "false"
  9001. \end_inset
  9002. .
  9003. the blue line is only shown in each plot if the estimate of
  9004. \begin_inset Formula $\hat{\pi}_{0}$
  9005. \end_inset
  9006. for that p-value distribution is different from 1.
  9007. \end_layout
  9008. \end_inset
  9009. \end_layout
  9010. \end_inset
  9011. \end_layout
  9012. \begin_layout Standard
  9013. Table
  9014. \begin_inset CommandInset ref
  9015. LatexCommand ref
  9016. reference "tab:methyl-num-signif"
  9017. plural "false"
  9018. caps "false"
  9019. noprefix "false"
  9020. \end_inset
  9021. shows the number of significantly differentially methylated probes reported
  9022. by each analysis for each comparison of interest at an FDR of 10%.
  9023. As expected, the more elaborate analyses, B and C, report more significant
  9024. probes than the more basic analysis A, consistent with the conclusions
  9025. above that the data contain hidden systematic variations that must be modeled.
  9026. Table
  9027. \begin_inset CommandInset ref
  9028. LatexCommand ref
  9029. reference "tab:methyl-est-nonnull"
  9030. plural "false"
  9031. caps "false"
  9032. noprefix "false"
  9033. \end_inset
  9034. shows the estimated number differentially methylated probes for each test
  9035. from each analysis.
  9036. This was computed by estimating the proportion of null hypotheses that
  9037. were true using the method of
  9038. \begin_inset CommandInset citation
  9039. LatexCommand cite
  9040. key "Phipson2013Thesis"
  9041. literal "false"
  9042. \end_inset
  9043. and subtracting that fraction from the total number of probes, yielding
  9044. an estimate of the number of null hypotheses that are false based on the
  9045. distribution of p-values across the entire dataset.
  9046. Note that this does not identify which null hypotheses should be rejected
  9047. (i.e.
  9048. which probes are significant); it only estimates the true number of such
  9049. probes.
  9050. Once again, analyses B and C result it much larger estimates for the number
  9051. of differentially methylated probes.
  9052. In this case, analysis C, the only analysis that includes voom, estimates
  9053. the largest number of differentially methylated probes for all 3 contrasts.
  9054. If the assumptions of all the methods employed hold, then this represents
  9055. a gain in statistical power over the simpler analysis A.
  9056. Figure
  9057. \begin_inset CommandInset ref
  9058. LatexCommand ref
  9059. reference "fig:meth-p-value-histograms"
  9060. plural "false"
  9061. caps "false"
  9062. noprefix "false"
  9063. \end_inset
  9064. shows the p-value distributions for each test, from which the numbers in
  9065. Table
  9066. \begin_inset CommandInset ref
  9067. LatexCommand ref
  9068. reference "tab:methyl-est-nonnull"
  9069. plural "false"
  9070. caps "false"
  9071. noprefix "false"
  9072. \end_inset
  9073. were generated.
  9074. The distributions for analysis A all have a dip in density near zero, which
  9075. is a strong sign of a poor model fit.
  9076. The histograms for analyses B and C are more well-behaved, with a uniform
  9077. component stretching all the way from 0 to 1 representing the probes for
  9078. which the null hypotheses is true (no differential methylation), and a
  9079. zero-biased component representing the probes for which the null hypothesis
  9080. is false (differentially methylated).
  9081. These histograms do not indicate any major issues with the model fit.
  9082. \end_layout
  9083. \begin_layout Standard
  9084. \begin_inset Flex TODO Note (inline)
  9085. status open
  9086. \begin_layout Plain Layout
  9087. If time allows, maybe generate the PCA plots before/after SVA effect subtraction
  9088. ?
  9089. \end_layout
  9090. \end_inset
  9091. \end_layout
  9092. \begin_layout Section
  9093. Discussion
  9094. \end_layout
  9095. \begin_layout Subsection
  9096. fRMA achieves clinically applicable normalization without sacrificing classifica
  9097. tion performance
  9098. \end_layout
  9099. \begin_layout Standard
  9100. As shown in Figure
  9101. \begin_inset CommandInset ref
  9102. LatexCommand ref
  9103. reference "fig:Classifier-probabilities-RMA"
  9104. plural "false"
  9105. caps "false"
  9106. noprefix "false"
  9107. \end_inset
  9108. , improper normalization, particularly separate normalization of training
  9109. and test samples, leads to unwanted biases in classification.
  9110. In a controlled experimental context, it is always possible to correct
  9111. this issue by normalizing all experimental samples together.
  9112. However, because it is not feasible to normalize all samples together in
  9113. a clinical context, a single-channel normalization is required is required.
  9114. \end_layout
  9115. \begin_layout Standard
  9116. The major concern in using a single-channel normalization is that non-single-cha
  9117. nnel methods can share information between arrays to improve the normalization,
  9118. and single-channel methods risk sacrificing the gains in normalization
  9119. accuracy that come from this information sharing.
  9120. In the case of RMA, this information sharing is accomplished through quantile
  9121. normalization and median polish steps.
  9122. The need for information sharing in quantile normalization can easily be
  9123. removed by learning a fixed set of quantiles from external data and normalizing
  9124. each array to these fixed quantiles, instead of the quantiles of the data
  9125. itself.
  9126. As long as the fixed quantiles are reasonable, the result will be similar
  9127. to standard RMA.
  9128. However, there is no analogous way to eliminate cross-array information
  9129. sharing in the median polish step, so fRMA replaces this with a weighted
  9130. average of probes on each array, with the weights learned from external
  9131. data.
  9132. This step of fRMA has the greatest potential to diverge from RMA un undesirable
  9133. ways.
  9134. \end_layout
  9135. \begin_layout Standard
  9136. However, when run on real data, fRMA performed at least as well as RMA in
  9137. both the internal validation and external validation tests.
  9138. This shows that fRMA can be used to normalize individual clinical samples
  9139. in a class prediction context without sacrificing the classifier performance
  9140. that would be obtained by using the more well-established RMA for normalization.
  9141. The other single-channel normalization method considered, SCAN, showed
  9142. some loss of AUC in the external validation test.
  9143. Based on these results, fRMA is the preferred normalization for clinical
  9144. samples in a class prediction context.
  9145. \end_layout
  9146. \begin_layout Subsection
  9147. Robust fRMA vectors can be generated for new array platforms
  9148. \end_layout
  9149. \begin_layout Standard
  9150. \begin_inset Flex TODO Note (inline)
  9151. status open
  9152. \begin_layout Plain Layout
  9153. Look up the exact numbers, do a find & replace for
  9154. \begin_inset Quotes eld
  9155. \end_inset
  9156. 850
  9157. \begin_inset Quotes erd
  9158. \end_inset
  9159. \end_layout
  9160. \end_inset
  9161. \end_layout
  9162. \begin_layout Standard
  9163. The published fRMA normalization vectors for the hgu133plus2 platform were
  9164. generated from a set of about 850 samples chosen from a wide range of tissues,
  9165. which the authors determined was sufficient to generate a robust set of
  9166. normalization vectors that could be applied across all tissues
  9167. \begin_inset CommandInset citation
  9168. LatexCommand cite
  9169. key "McCall2010"
  9170. literal "false"
  9171. \end_inset
  9172. .
  9173. Since we only had hthgu133pluspm for 2 tissues of interest, our needs were
  9174. more modest.
  9175. Even using only 130 samples in 26 batches of 5 samples each for kidney
  9176. biopsies, we were able to train a robust set of fRMA normalization vectors
  9177. that were not meaningfully affected by the random selection of 5 samples
  9178. from each batch.
  9179. As expected, the training process was just as robust for the blood samples
  9180. with 230 samples in 46 batches of 5 samples each.
  9181. Because these vectors were each generated using training samples from a
  9182. single tissue, they are not suitable for general use, unlike the vectors
  9183. provided with fRMA itself.
  9184. They are purpose-built for normalizing a specific type of sample on a specific
  9185. platform.
  9186. This is a mostly acceptable limitation in the context of developing a machine
  9187. learning classifier for diagnosing a disease based on samples of a specific
  9188. tissue.
  9189. \end_layout
  9190. \begin_layout Standard
  9191. \begin_inset Flex TODO Note (inline)
  9192. status open
  9193. \begin_layout Plain Layout
  9194. Talk about how these vectors can be used for any data from these tissues
  9195. on this platform even though they were custom made for this data set.
  9196. \end_layout
  9197. \end_inset
  9198. \end_layout
  9199. \begin_layout Standard
  9200. \begin_inset Flex TODO Note (inline)
  9201. status open
  9202. \begin_layout Plain Layout
  9203. How to bring up that these custom vectors were used in another project by
  9204. someone else that was never published?
  9205. \end_layout
  9206. \end_inset
  9207. \end_layout
  9208. \begin_layout Subsection
  9209. Methylation array data can be successfully analyzed using existing techniques,
  9210. but machine learning poses additional challenges
  9211. \end_layout
  9212. \begin_layout Standard
  9213. Both analysis strategies B and C both yield a reasonable analysis, with
  9214. a mean-variance trend that matches the expected behavior for the non-linear
  9215. M-value transformation (Figure
  9216. \begin_inset CommandInset ref
  9217. LatexCommand ref
  9218. reference "fig:meanvar-sva-aw"
  9219. plural "false"
  9220. caps "false"
  9221. noprefix "false"
  9222. \end_inset
  9223. ) and well-behaved p-value distributions (Figure
  9224. \begin_inset CommandInset ref
  9225. LatexCommand ref
  9226. reference "fig:meth-p-value-histograms"
  9227. plural "false"
  9228. caps "false"
  9229. noprefix "false"
  9230. \end_inset
  9231. ).
  9232. These two analyses also yield similar numbers of significant probes (Table
  9233. \begin_inset CommandInset ref
  9234. LatexCommand ref
  9235. reference "tab:methyl-num-signif"
  9236. plural "false"
  9237. caps "false"
  9238. noprefix "false"
  9239. \end_inset
  9240. ) and similar estimates of the number of differentially methylated probes
  9241. (Table
  9242. \begin_inset CommandInset ref
  9243. LatexCommand ref
  9244. reference "tab:methyl-est-nonnull"
  9245. plural "false"
  9246. caps "false"
  9247. noprefix "false"
  9248. \end_inset
  9249. ).
  9250. The main difference between these two analyses is the method used to account
  9251. for the mean-variance trend.
  9252. In analysis B, the trend is estimated and applied at the probe level: each
  9253. probe's estimated variance is squeezed toward the trend using an empirical
  9254. Bayes procedure (Figure
  9255. \begin_inset CommandInset ref
  9256. LatexCommand ref
  9257. reference "fig:meanvar-sva-aw"
  9258. plural "false"
  9259. caps "false"
  9260. noprefix "false"
  9261. \end_inset
  9262. ).
  9263. In analysis C, the trend is still estimated at the probe level, but instead
  9264. of estimating a single variance value shared across all observations for
  9265. a given probe, the voom method computes an initial estimate of the variance
  9266. for each observation individually based on where its model-fitted M-value
  9267. falls on the trend line and then assigns inverse-variance weights to model
  9268. the difference in variance between observations.
  9269. An overall variance is still estimated for each probe using the same empirical
  9270. Bayes method, but now the residual trend is flat (Figure
  9271. \begin_inset CommandInset ref
  9272. LatexCommand ref
  9273. reference "fig:meanvar-sva-voomaw"
  9274. plural "false"
  9275. caps "false"
  9276. noprefix "false"
  9277. \end_inset
  9278. ), indicating that the mean-variance trend is adequately modeled by scaling
  9279. the estimated variance for each observation using the weights computed
  9280. by voom.
  9281. \end_layout
  9282. \begin_layout Standard
  9283. The difference between the standard empirical Bayes trended variance modeling
  9284. (analysis B) and voom (analysis C) is analogous to the difference between
  9285. a t-test with equal variance and a t-test with unequal variance, except
  9286. that the unequal group variances used in the latter test are estimated
  9287. based on the mean-variance trend from all the probes rather than the data
  9288. for the specific probe being tested, thus stabilizing the group variance
  9289. estimates by sharing information between probes.
  9290. Allowing voom to model the variance using observation weights in this manner
  9291. allows the linear model fit to concentrate statistical power where it will
  9292. do the most good.
  9293. For example, if a particular probe's M-values are always at the extreme
  9294. of the M-value range (e.g.
  9295. less than -4) for ADNR samples, but the M-values for that probe in TX and
  9296. CAN samples are within the flat region of the mean-variance trend (between
  9297. -3 and +3), voom is able to down-weight the contribution of the high-variance
  9298. M-values from the ADNR samples in order to gain more statistical power
  9299. while testing for differential methylation between TX and CAN.
  9300. In contrast, modeling the mean-variance trend only at the probe level would
  9301. combine the high-variance ADNR samples and lower-variance samples from
  9302. other conditions and estimate an intermediate variance for this probe.
  9303. In practice, analysis B shows that this approach is adequate, but the voom
  9304. approach in analysis C is at least as good on all model fit criteria and
  9305. yields a larger estimate for the number of differentially methylated genes,
  9306. \emph on
  9307. and
  9308. \emph default
  9309. it matches up better with the theoretical
  9310. \end_layout
  9311. \begin_layout Standard
  9312. The significant association of diabetes diagnosis with sample quality is
  9313. interesting.
  9314. The samples with Type 2 diabetes tended to have more variation, averaged
  9315. across all probes, than those with Type 1 diabetes.
  9316. This is consistent with the consensus that type 2 diabetes and the associated
  9317. metabolic syndrome represent a broad dysregulation of the body's endocrine
  9318. signaling related to metabolism [citation needed].
  9319. This dysregulation could easily manifest as a greater degree of variation
  9320. in the DNA methylation patterns of affected tissues.
  9321. In contrast, Type 1 diabetes has a more specific cause and effect, so a
  9322. less variable methylation signature is expected.
  9323. \end_layout
  9324. \begin_layout Standard
  9325. This preliminary analysis suggests that some degree of differential methylation
  9326. exists between TX and each of the three types of transplant disfunction
  9327. studied.
  9328. Hence, it may be feasible to train a classifier to diagnose transplant
  9329. disfunction from DNA methylation array data.
  9330. However, the major importance of both SVA and sample quality weighting
  9331. for proper modeling of this data poses significant challenges for any attempt
  9332. at a machine learning on data of similar quality.
  9333. While these are easily used in a modeling context with full sample information,
  9334. neither of these methods is directly applicable in a machine learning context,
  9335. where the diagnosis is not known ahead of time.
  9336. If a machine learning approach for methylation-based diagnosis is to be
  9337. pursued, it will either require machine-learning-friendly methods to address
  9338. the same systematic trends in the data that SVA and sample quality weighting
  9339. address, or it will require higher quality data with substantially less
  9340. systematic perturbation of the data.
  9341. \end_layout
  9342. \begin_layout Section
  9343. Future Directions
  9344. \end_layout
  9345. \begin_layout Standard
  9346. \begin_inset Flex TODO Note (inline)
  9347. status open
  9348. \begin_layout Plain Layout
  9349. Some work was already being done with the existing fRMA vectors.
  9350. Do I mention that here?
  9351. \end_layout
  9352. \end_inset
  9353. \end_layout
  9354. \begin_layout Subsection
  9355. Improving fRMA to allow training from batches of unequal size
  9356. \end_layout
  9357. \begin_layout Standard
  9358. Because the tools for building fRMA normalization vectors require equal-size
  9359. batches, many samples must be discarded from the training data.
  9360. This is undesirable for a few reasons.
  9361. First, more data is simply better, all other things being equal.
  9362. In this case,
  9363. \begin_inset Quotes eld
  9364. \end_inset
  9365. better
  9366. \begin_inset Quotes erd
  9367. \end_inset
  9368. means a more precise estimate of normalization parameters.
  9369. In addition, the samples to be discarded must be chosen arbitrarily, which
  9370. introduces an unnecessary element of randomness into the estimation process.
  9371. While the randomness can be made deterministic by setting a consistent
  9372. random seed, the need for equal size batches also introduces a need for
  9373. the analyst to decide on the appropriate trade-off between batch size and
  9374. the number of batches.
  9375. This introduces an unnecessary and undesirable
  9376. \begin_inset Quotes eld
  9377. \end_inset
  9378. researcher degree of freedom
  9379. \begin_inset Quotes erd
  9380. \end_inset
  9381. into the analysis, since the generated normalization vectors now depend
  9382. on the choice of batch size based on vague selection criteria and instinct,
  9383. which can unintentionally introduce bias if the researcher chooses a batch
  9384. size based on what seems to yield the most favorable downstream results
  9385. \begin_inset CommandInset citation
  9386. LatexCommand cite
  9387. key "Simmons2011"
  9388. literal "false"
  9389. \end_inset
  9390. .
  9391. \end_layout
  9392. \begin_layout Standard
  9393. Fortunately, the requirement for equal-size batches is not inherent to the
  9394. fRMA algorithm but rather a limitation of the implementation in the frmaTools
  9395. package.
  9396. In personal communication, the package's author, Matthew McCall, has indicated
  9397. that with some work, it should be possible to improve the implementation
  9398. to work with batches of unequal sizes.
  9399. The current implementation ignores the batch size when calculating with-batch
  9400. and between-batch residual variances, since the batch size constant cancels
  9401. out later in the calculations as long as all batches are of equal size.
  9402. Hence, the calculations of these parameters would need to be modified to
  9403. remove this optimization and properly calculate the variances using the
  9404. full formula.
  9405. Once this modification is made, a new strategy would need to be developed
  9406. for assessing the stability of parameter estimates, since the random subsamplin
  9407. g step is eliminated, meaning that different subsamplings can no longer
  9408. be compared as in Figures
  9409. \begin_inset CommandInset ref
  9410. LatexCommand ref
  9411. reference "fig:frma-violin"
  9412. plural "false"
  9413. caps "false"
  9414. noprefix "false"
  9415. \end_inset
  9416. and
  9417. \begin_inset CommandInset ref
  9418. LatexCommand ref
  9419. reference "fig:Representative-MA-plots"
  9420. plural "false"
  9421. caps "false"
  9422. noprefix "false"
  9423. \end_inset
  9424. .
  9425. Bootstrap resampling is likely a good candidate here: sample many training
  9426. sets of equal size from the existing training set with replacement, estimate
  9427. parameters from each resampled training set, and compare the estimated
  9428. parameters between bootstraps in order to quantify the variability in each
  9429. parameter's estimation.
  9430. \end_layout
  9431. \begin_layout Subsection
  9432. Developing methylation arrays as a diagnostic tool for kidney transplant
  9433. rejection
  9434. \end_layout
  9435. \begin_layout Standard
  9436. The current study has showed that DNA methylation, as assayed by Illumina
  9437. 450k methylation arrays, has some potential for diagnosing transplant dysfuncti
  9438. ons, including rejection.
  9439. However, very few probes could be confidently identified as differentially
  9440. methylated between healthy and dysfunctional transplants.
  9441. One likely explanation for this is the predominant influence of unobserved
  9442. confounding factors.
  9443. SVA can model and correct for such factors, but the correction can never
  9444. be perfect, so some degree of unwanted systematic variation will always
  9445. remain after SVA correction.
  9446. If the effect size of the confounding factors was similar to that of the
  9447. factor of interest (in this case, transplant status), this would be an
  9448. acceptable limitation, since removing most of the confounding factors'
  9449. effects would allow the main effect to stand out.
  9450. However, in this data set, the confounding factors have a much larger effect
  9451. size than transplant status, which means that the small degree of remaining
  9452. variation not removed by SVA can still swamp the effect of interest, making
  9453. it difficult to detect.
  9454. This is, of course, a major issue when the end goal is to develop a classifier
  9455. to diagnose transplant rejection from methylation data, since batch-correction
  9456. methods like SVA that work in a linear modeling context cannot be applied
  9457. in a machine learning context.
  9458. \end_layout
  9459. \begin_layout Standard
  9460. Currently, the source of these unwanted systematic variations in the data
  9461. is unknown.
  9462. The best solution would be to determine the cause of the variation and
  9463. eliminate it, thereby eliminating the need to model and remove that variation.
  9464. However, if this proves impractical, another option is to use SVA to identify
  9465. probes that are highly associated with the surrogate variables that describe
  9466. the unwanted variation in the data.
  9467. These probes could be discarded prior to classifier training, in order
  9468. to maximize the chance that the training algorithm will be able to identify
  9469. highly predictive probes from those remaining.
  9470. Lastly, it is possible that some of this unwanted variation is a result
  9471. of the array-based assay being used and would be eliminated by switching
  9472. to assaying DNA methylation using bisulphite sequencing.
  9473. However, this carries the risk that the sequencing assay will have its
  9474. own set of biases that must be corrected for in a different way.
  9475. \end_layout
  9476. \begin_layout Chapter
  9477. Globin-blocking for more effective blood RNA-seq analysis in primate animal
  9478. model
  9479. \end_layout
  9480. \begin_layout Standard
  9481. \begin_inset Flex TODO Note (inline)
  9482. status open
  9483. \begin_layout Plain Layout
  9484. Choose between above and the paper title: Optimizing yield of deep RNA sequencin
  9485. g for gene expression profiling by globin reduction of peripheral blood
  9486. samples from cynomolgus monkeys (Macaca fascicularis).
  9487. \end_layout
  9488. \end_inset
  9489. \end_layout
  9490. \begin_layout Standard
  9491. \begin_inset Flex TODO Note (inline)
  9492. status open
  9493. \begin_layout Plain Layout
  9494. Chapter author list:
  9495. \begin_inset CommandInset href
  9496. LatexCommand href
  9497. target "https://tex.stackexchange.com/questions/156862/displaying-author-for-each-chapter-in-book"
  9498. \end_inset
  9499. Every chapter gets an author list, which may or may not be part of a citation
  9500. to a published/preprinted paper.
  9501. \end_layout
  9502. \end_inset
  9503. \end_layout
  9504. \begin_layout Standard
  9505. \begin_inset Flex TODO Note (inline)
  9506. status open
  9507. \begin_layout Plain Layout
  9508. Preprint then cite the paper
  9509. \end_layout
  9510. \end_inset
  9511. \end_layout
  9512. \begin_layout Section*
  9513. Abstract
  9514. \end_layout
  9515. \begin_layout Paragraph
  9516. Background
  9517. \end_layout
  9518. \begin_layout Standard
  9519. Primate blood contains high concentrations of globin messenger RNA.
  9520. Globin reduction is a standard technique used to improve the expression
  9521. results obtained by DNA microarrays on RNA from blood samples.
  9522. However, with whole transcriptome RNA-sequencing (RNA-seq) quickly replacing
  9523. microarrays for many applications, the impact of globin reduction for RNA-seq
  9524. has not been previously studied.
  9525. Moreover, no off-the-shelf kits are available for globin reduction in nonhuman
  9526. primates.
  9527. \end_layout
  9528. \begin_layout Paragraph
  9529. Results
  9530. \end_layout
  9531. \begin_layout Standard
  9532. Here we report a protocol for RNA-seq in primate blood samples that uses
  9533. complimentary oligonucleotides to block reverse transcription of the alpha
  9534. and beta globin genes.
  9535. In test samples from cynomolgus monkeys (Macaca fascicularis), this globin
  9536. blocking protocol approximately doubles the yield of informative (non-globin)
  9537. reads by greatly reducing the fraction of globin reads, while also improving
  9538. the consistency in sequencing depth between samples.
  9539. The increased yield enables detection of about 2000 more genes, significantly
  9540. increases the correlation in measured gene expression levels between samples,
  9541. and increases the sensitivity of differential gene expression tests.
  9542. \end_layout
  9543. \begin_layout Paragraph
  9544. Conclusions
  9545. \end_layout
  9546. \begin_layout Standard
  9547. These results show that globin blocking significantly improves the cost-effectiv
  9548. eness of mRNA sequencing in primate blood samples by doubling the yield
  9549. of useful reads, allowing detection of more genes, and improving the precision
  9550. of gene expression measurements.
  9551. Based on these results, a globin reducing or blocking protocol is recommended
  9552. for all RNA-seq studies of primate blood samples.
  9553. \end_layout
  9554. \begin_layout Section
  9555. Approach
  9556. \end_layout
  9557. \begin_layout Standard
  9558. \begin_inset Note Note
  9559. status open
  9560. \begin_layout Plain Layout
  9561. Consider putting some of this in the Intro chapter
  9562. \end_layout
  9563. \begin_layout Itemize
  9564. Cynomolgus monkeys as a model organism
  9565. \end_layout
  9566. \begin_deeper
  9567. \begin_layout Itemize
  9568. Highly related to humans
  9569. \end_layout
  9570. \begin_layout Itemize
  9571. Small size and short life cycle - good research animal
  9572. \end_layout
  9573. \begin_layout Itemize
  9574. Genomics resources still in development
  9575. \end_layout
  9576. \end_deeper
  9577. \begin_layout Itemize
  9578. Inadequacy of existing blood RNA-seq protocols
  9579. \end_layout
  9580. \begin_deeper
  9581. \begin_layout Itemize
  9582. Existing protocols use a separate globin pulldown step, slowing down processing
  9583. \end_layout
  9584. \end_deeper
  9585. \end_inset
  9586. \end_layout
  9587. \begin_layout Standard
  9588. Increasingly, researchers are turning to high-throughput mRNA sequencing
  9589. technologies (RNA-seq) in preference to expression microarrays for analysis
  9590. of gene expression
  9591. \begin_inset CommandInset citation
  9592. LatexCommand cite
  9593. key "Mutz2012"
  9594. literal "false"
  9595. \end_inset
  9596. .
  9597. The advantages are even greater for study of model organisms with no well-estab
  9598. lished array platforms available, such as the cynomolgus monkey (Macaca
  9599. fascicularis).
  9600. High fractions of globin mRNA are naturally present in mammalian peripheral
  9601. blood samples (up to 70% of total mRNA) and these are known to interfere
  9602. with the results of array-based expression profiling
  9603. \begin_inset CommandInset citation
  9604. LatexCommand cite
  9605. key "Winn2010"
  9606. literal "false"
  9607. \end_inset
  9608. .
  9609. The importance of globin reduction for RNA-seq of blood has only been evaluated
  9610. for a deepSAGE protocol on human samples
  9611. \begin_inset CommandInset citation
  9612. LatexCommand cite
  9613. key "Mastrokolias2012"
  9614. literal "false"
  9615. \end_inset
  9616. .
  9617. In the present report, we evaluated globin reduction using custom blocking
  9618. oligonucleotides for deep RNA-seq of peripheral blood samples from a nonhuman
  9619. primate, cynomolgus monkey, using the Illumina technology platform.
  9620. We demonstrate that globin reduction significantly improves the cost-effectiven
  9621. ess of RNA-seq in blood samples.
  9622. Thus, our protocol offers a significant advantage to any investigator planning
  9623. to use RNA-seq for gene expression profiling of nonhuman primate blood
  9624. samples.
  9625. Our method can be generally applied to any species by designing complementary
  9626. oligonucleotide blocking probes to the globin gene sequences of that species.
  9627. Indeed, any highly expressed but biologically uninformative transcripts
  9628. can also be blocked to further increase sequencing efficiency and value
  9629. \begin_inset CommandInset citation
  9630. LatexCommand cite
  9631. key "Arnaud2016"
  9632. literal "false"
  9633. \end_inset
  9634. .
  9635. \end_layout
  9636. \begin_layout Section
  9637. Methods
  9638. \end_layout
  9639. \begin_layout Subsection
  9640. Sample collection
  9641. \end_layout
  9642. \begin_layout Standard
  9643. All research reported here was done under IACUC-approved protocols at the
  9644. University of Miami and complied with all applicable federal and state
  9645. regulations and ethical principles for nonhuman primate research.
  9646. Blood draws occurred between 16 April 2012 and 18 June 2015.
  9647. The experimental system involved intrahepatic pancreatic islet transplantation
  9648. into Cynomolgus monkeys with induced diabetes mellitus with or without
  9649. concomitant infusion of mesenchymal stem cells.
  9650. Blood was collected at serial time points before and after transplantation
  9651. into PAXgene Blood RNA tubes (PreAnalytiX/Qiagen, Valencia, CA) at the
  9652. precise volume:volume ratio of 2.5 ml whole blood into 6.9 ml of PAX gene
  9653. additive.
  9654. \end_layout
  9655. \begin_layout Subsection
  9656. Globin Blocking
  9657. \end_layout
  9658. \begin_layout Standard
  9659. Four oligonucleotides were designed to hybridize to the 3’ end of the transcript
  9660. s for Cynomolgus HBA1, HBA2 and HBB, with two hybridization sites for HBB
  9661. and 2 sites for HBA (the chosen sites were identical in both HBA genes).
  9662. All oligos were purchased from Sigma and were entirely composed of 2’O-Me
  9663. bases with a C3 spacer positioned at the 3’ ends to prevent any polymerase
  9664. mediated primer extension.
  9665. \end_layout
  9666. \begin_layout Quote
  9667. HBA1/2 site 1: GCCCACUCAGACUUUAUUCAAAG-C3spacer
  9668. \end_layout
  9669. \begin_layout Quote
  9670. HBA1/2 site 2: GGUGCAAGGAGGGGAGGAG-C3spacer
  9671. \end_layout
  9672. \begin_layout Quote
  9673. HBB site 1: AAUGAAAAUAAAUGUUUUUUAUUAG-C3spacer
  9674. \end_layout
  9675. \begin_layout Quote
  9676. HBB site 2: CUCAAGGCCCUUCAUAAUAUCCC-C3spacer
  9677. \end_layout
  9678. \begin_layout Subsection
  9679. RNA-seq Library Preparation
  9680. \end_layout
  9681. \begin_layout Standard
  9682. \begin_inset Flex TODO Note (inline)
  9683. status open
  9684. \begin_layout Plain Layout
  9685. Add protected spaces where appropriate to prevent unwanted line breaks.
  9686. \end_layout
  9687. \end_inset
  9688. \end_layout
  9689. \begin_layout Standard
  9690. Sequencing libraries were prepared with 200
  9691. \begin_inset space ~
  9692. \end_inset
  9693. ng total RNA from each sample.
  9694. Polyadenylated mRNA was selected from 200 ng aliquots of cynomolgus blood-deriv
  9695. ed total RNA using Ambion Dynabeads Oligo(dT)25 beads (Invitrogen) following
  9696. manufacturer’s recommended protocol.
  9697. PolyA selected RNA was then combined with 8 pmol of HBA1/2 (site 1), 8
  9698. pmol of HBA1/2 (site 2), 12 pmol of HBB (site 1) and 12 pmol of HBB (site
  9699. 2) oligonucleotides.
  9700. In addition, 20 pmol of RT primer containing a portion of the Illumina
  9701. adapter sequence (B-oligo-dTV: GAGTTCCTTGGCACCCGAGAATTCCATTTTTTTTTTTTTTTTTTTV)
  9702. and 4 µL of 5X First Strand buffer (250 mM Tris-HCl pH 8.3, 375 mM KCl,
  9703. 15mM MgCl2) were added in a total volume of 15 µL.
  9704. The RNA was fragmented by heating this cocktail for 3 minutes at 95°C and
  9705. then placed on ice.
  9706. This was followed by the addition of 2 µL 0.1 M DTT, 1 µL RNaseOUT, 1 µL
  9707. 10mM dNTPs 10% biotin-16 aminoallyl-2’- dUTP and 10% biotin-16 aminoallyl-2’-
  9708. dCTP (TriLink Biotech, San Diego, CA), 1 µL Superscript II (200U/ µL, Thermo-Fi
  9709. sher).
  9710. A second “unblocked” library was prepared in the same way for each sample
  9711. but replacing the blocking oligos with an equivalent volume of water.
  9712. The reaction was carried out at 25°C for 15 minutes and 42°C for 40 minutes,
  9713. followed by incubation at 75°C for 10 minutes to inactivate the reverse
  9714. transcriptase.
  9715. \end_layout
  9716. \begin_layout Standard
  9717. The cDNA/RNA hybrid molecules were purified using 1.8X Ampure XP beads (Agencourt
  9718. ) following supplier’s recommended protocol.
  9719. The cDNA/RNA hybrid was eluted in 25 µL of 10 mM Tris-HCl pH 8.0, and then
  9720. bound to 25 µL of M280 Magnetic Streptavidin beads washed per recommended
  9721. protocol (Thermo-Fisher).
  9722. After 30 minutes of binding, beads were washed one time in 100 µL 0.1N NaOH
  9723. to denature and remove the bound RNA, followed by two 100 µL washes with
  9724. 1X TE buffer.
  9725. \end_layout
  9726. \begin_layout Standard
  9727. Subsequent attachment of the 5-prime Illumina A adapter was performed by
  9728. on-bead random primer extension of the following sequence (A-N8 primer:
  9729. TTCAGAGTTCTACAGTCCGACGATCNNNNNNNN).
  9730. Briefly, beads were resuspended in a 20 µL reaction containing 5 µM A-N8
  9731. primer, 40mM Tris-HCl pH 7.5, 20mM MgCl2, 50mM NaCl, 0.325U/µL Sequenase
  9732. 2.0 (Affymetrix, Santa Clara, CA), 0.0025U/µL inorganic pyrophosphatase (Affymetr
  9733. ix) and 300 µM each dNTP.
  9734. Reaction was incubated at 22°C for 30 minutes, then beads were washed 2
  9735. times with 1X TE buffer (200µL).
  9736. \end_layout
  9737. \begin_layout Standard
  9738. The magnetic streptavidin beads were resuspended in 34 µL nuclease-free
  9739. water and added directly to a PCR tube.
  9740. The two Illumina protocol-specified PCR primers were added at 0.53 µM (Illumina
  9741. TruSeq Universal Primer 1 and Illumina TruSeq barcoded PCR primer 2), along
  9742. with 40 µL 2X KAPA HiFi Hotstart ReadyMix (KAPA, Willmington MA) and thermocycl
  9743. ed as follows: starting with 98°C (2 min-hold); 15 cycles of 98°C, 20sec;
  9744. 60°C, 30sec; 72°C, 30sec; and finished with a 72°C (2 min-hold).
  9745. \end_layout
  9746. \begin_layout Standard
  9747. PCR products were purified with 1X Ampure Beads following manufacturer’s
  9748. recommended protocol.
  9749. Libraries were then analyzed using the Agilent TapeStation and quantitation
  9750. of desired size range was performed by “smear analysis”.
  9751. Samples were pooled in equimolar batches of 16 samples.
  9752. Pooled libraries were size selected on 2% agarose gels (E-Gel EX Agarose
  9753. Gels; Thermo-Fisher).
  9754. Products were cut between 250 and 350 bp (corresponding to insert sizes
  9755. of 130 to 230 bps).
  9756. Finished library pools were then sequenced on the Illumina NextSeq500 instrumen
  9757. t with 75 base read lengths.
  9758. \end_layout
  9759. \begin_layout Subsection
  9760. Read alignment and counting
  9761. \end_layout
  9762. \begin_layout Standard
  9763. Reads were aligned to the cynomolgus genome using STAR
  9764. \begin_inset CommandInset citation
  9765. LatexCommand cite
  9766. key "Dobin2013,Wilson2013"
  9767. literal "false"
  9768. \end_inset
  9769. .
  9770. Counts of uniquely mapped reads were obtained for every gene in each sample
  9771. with the
  9772. \begin_inset Flex Code
  9773. status open
  9774. \begin_layout Plain Layout
  9775. featureCounts
  9776. \end_layout
  9777. \end_inset
  9778. function from the
  9779. \begin_inset Flex Code
  9780. status open
  9781. \begin_layout Plain Layout
  9782. Rsubread
  9783. \end_layout
  9784. \end_inset
  9785. package, using each of the three possibilities for the
  9786. \begin_inset Flex Code
  9787. status open
  9788. \begin_layout Plain Layout
  9789. strandSpecific
  9790. \end_layout
  9791. \end_inset
  9792. option: sense, antisense, and unstranded
  9793. \begin_inset CommandInset citation
  9794. LatexCommand cite
  9795. key "Liao2014"
  9796. literal "false"
  9797. \end_inset
  9798. .
  9799. A few artifacts in the cynomolgus genome annotation complicated read counting.
  9800. First, no ortholog is annotated for alpha globin in the cynomolgus genome,
  9801. presumably because the human genome has two alpha globin genes with nearly
  9802. identical sequences, making the orthology relationship ambiguous.
  9803. However, two loci in the cynomolgus genome are as “hemoglobin subunit alpha-lik
  9804. e” (LOC102136192 and LOC102136846).
  9805. LOC102136192 is annotated as a pseudogene while LOC102136846 is annotated
  9806. as protein-coding.
  9807. Our globin reduction protocol was designed to include blocking of these
  9808. two genes.
  9809. Indeed, these two genes have almost the same read counts in each library
  9810. as the properly-annotated HBB gene and much larger counts than any other
  9811. gene in the unblocked libraries, giving confidence that reads derived from
  9812. the real alpha globin are mapping to both genes.
  9813. Thus, reads from both of these loci were counted as alpha globin reads
  9814. in all further analyses.
  9815. The second artifact is a small, uncharacterized non-coding RNA gene (LOC1021365
  9816. 91), which overlaps the HBA-like gene (LOC102136192) on the opposite strand.
  9817. If counting is not performed in stranded mode (or if a non-strand-specific
  9818. sequencing protocol is used), many reads mapping to the globin gene will
  9819. be discarded as ambiguous due to their overlap with this ncRNA gene, resulting
  9820. in significant undercounting of globin reads.
  9821. Therefore, stranded sense counts were used for all further analysis in
  9822. the present study to insure that we accurately accounted for globin transcript
  9823. reduction.
  9824. However, we note that stranded reads are not necessary for RNA-seq using
  9825. our protocol in standard practice.
  9826. \end_layout
  9827. \begin_layout Subsection
  9828. Normalization and Exploratory Data Analysis
  9829. \end_layout
  9830. \begin_layout Standard
  9831. Libraries were normalized by computing scaling factors using the
  9832. \begin_inset Flex Code
  9833. status open
  9834. \begin_layout Plain Layout
  9835. edgeR
  9836. \end_layout
  9837. \end_inset
  9838. package’s Trimmed Mean of M-values method
  9839. \begin_inset CommandInset citation
  9840. LatexCommand cite
  9841. key "Robinson2010"
  9842. literal "false"
  9843. \end_inset
  9844. .
  9845. Log2 counts per million values (logCPM) were calculated using the cpm function
  9846. in edgeR for individual samples and aveLogCPM function for averages across
  9847. groups of samples, using those functions’ default prior count values to
  9848. avoid taking the logarithm of 0.
  9849. Genes were considered “present” if their average normalized logCPM values
  9850. across all libraries were at least -1.
  9851. Normalizing for gene length was unnecessary because the sequencing protocol
  9852. is 3’-biased and hence the expected read count for each gene is related
  9853. to the transcript’s copy number but not its length.
  9854. \end_layout
  9855. \begin_layout Standard
  9856. In order to assess the effect of blocking on reproducibility, Pearson and
  9857. Spearman correlation coefficients were computed between the logCPM values
  9858. for every pair of libraries within the globin-blocked (GB) and unblocked
  9859. (non-GB) groups, and
  9860. \begin_inset Flex Code
  9861. status open
  9862. \begin_layout Plain Layout
  9863. edgeR
  9864. \end_layout
  9865. \end_inset
  9866. 's
  9867. \begin_inset Flex Code
  9868. status open
  9869. \begin_layout Plain Layout
  9870. estimateDisp
  9871. \end_layout
  9872. \end_inset
  9873. function was used to compute negative binomial dispersions separately for
  9874. the two groups
  9875. \begin_inset CommandInset citation
  9876. LatexCommand cite
  9877. key "Chen2014"
  9878. literal "false"
  9879. \end_inset
  9880. .
  9881. \end_layout
  9882. \begin_layout Subsection
  9883. Differential Expression Analysis
  9884. \end_layout
  9885. \begin_layout Standard
  9886. All tests for differential gene expression were performed using edgeR, by
  9887. first fitting a negative binomial generalized linear model to the counts
  9888. and normalization factors and then performing a quasi-likelihood F-test
  9889. with robust estimation of outlier gene dispersions
  9890. \begin_inset CommandInset citation
  9891. LatexCommand cite
  9892. key "Lund2012,Phipson2016"
  9893. literal "false"
  9894. \end_inset
  9895. .
  9896. To investigate the effects of globin blocking on each gene, an additive
  9897. model was fit to the full data with coefficients for globin blocking and
  9898. SampleID.
  9899. To test the effect of globin blocking on detection of differentially expressed
  9900. genes, the GB samples and non-GB samples were each analyzed independently
  9901. as follows: for each animal with both a pre-transplant and a post-transplant
  9902. time point in the data set, the pre-transplant sample and the earliest
  9903. post-transplant sample were selected, and all others were excluded, yielding
  9904. a pre-/post-transplant pair of samples for each animal (N=7 animals with
  9905. paired samples).
  9906. These samples were analyzed for pre-transplant vs.
  9907. post-transplant differential gene expression while controlling for inter-animal
  9908. variation using an additive model with coefficients for transplant and
  9909. animal ID.
  9910. In all analyses, p-values were adjusted using the Benjamini-Hochberg procedure
  9911. for FDR control
  9912. \begin_inset CommandInset citation
  9913. LatexCommand cite
  9914. key "Benjamini1995"
  9915. literal "false"
  9916. \end_inset
  9917. .
  9918. \end_layout
  9919. \begin_layout Standard
  9920. \begin_inset Note Note
  9921. status open
  9922. \begin_layout Itemize
  9923. New blood RNA-seq protocol to block reverse transcription of globin genes
  9924. \end_layout
  9925. \begin_layout Itemize
  9926. Blood RNA-seq time course after transplants with/without MSC infusion
  9927. \end_layout
  9928. \end_inset
  9929. \end_layout
  9930. \begin_layout Section
  9931. Results
  9932. \end_layout
  9933. \begin_layout Subsection
  9934. Globin blocking yields a larger and more consistent fraction of useful reads
  9935. \end_layout
  9936. \begin_layout Standard
  9937. \begin_inset ERT
  9938. status open
  9939. \begin_layout Plain Layout
  9940. \backslash
  9941. afterpage{
  9942. \end_layout
  9943. \begin_layout Plain Layout
  9944. \backslash
  9945. begin{landscape}
  9946. \end_layout
  9947. \end_inset
  9948. \end_layout
  9949. \begin_layout Standard
  9950. \begin_inset Float table
  9951. placement p
  9952. wide false
  9953. sideways false
  9954. status open
  9955. \begin_layout Plain Layout
  9956. \align center
  9957. \begin_inset Tabular
  9958. <lyxtabular version="3" rows="4" columns="7">
  9959. <features tabularvalignment="middle">
  9960. <column alignment="center" valignment="top">
  9961. <column alignment="center" valignment="top">
  9962. <column alignment="center" valignment="top">
  9963. <column alignment="center" valignment="top">
  9964. <column alignment="center" valignment="top">
  9965. <column alignment="center" valignment="top">
  9966. <column alignment="center" valignment="top">
  9967. <row>
  9968. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  9969. \begin_inset Text
  9970. \begin_layout Plain Layout
  9971. \end_layout
  9972. \end_inset
  9973. </cell>
  9974. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  9975. \begin_inset Text
  9976. \begin_layout Plain Layout
  9977. \family roman
  9978. \series medium
  9979. \shape up
  9980. \size normal
  9981. \emph off
  9982. \bar no
  9983. \strikeout off
  9984. \xout off
  9985. \uuline off
  9986. \uwave off
  9987. \noun off
  9988. \color none
  9989. Percent of Total Reads
  9990. \end_layout
  9991. \end_inset
  9992. </cell>
  9993. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  9994. \begin_inset Text
  9995. \begin_layout Plain Layout
  9996. \end_layout
  9997. \end_inset
  9998. </cell>
  9999. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10000. \begin_inset Text
  10001. \begin_layout Plain Layout
  10002. \end_layout
  10003. \end_inset
  10004. </cell>
  10005. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10006. \begin_inset Text
  10007. \begin_layout Plain Layout
  10008. \end_layout
  10009. \end_inset
  10010. </cell>
  10011. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  10012. \begin_inset Text
  10013. \begin_layout Plain Layout
  10014. \family roman
  10015. \series medium
  10016. \shape up
  10017. \size normal
  10018. \emph off
  10019. \bar no
  10020. \strikeout off
  10021. \xout off
  10022. \uuline off
  10023. \uwave off
  10024. \noun off
  10025. \color none
  10026. Percent of Genic Reads
  10027. \end_layout
  10028. \end_inset
  10029. </cell>
  10030. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  10031. \begin_inset Text
  10032. \begin_layout Plain Layout
  10033. \end_layout
  10034. \end_inset
  10035. </cell>
  10036. </row>
  10037. <row>
  10038. <cell alignment="center" valignment="top" bottomline="true" leftline="true" usebox="none">
  10039. \begin_inset Text
  10040. \begin_layout Plain Layout
  10041. GB
  10042. \end_layout
  10043. \end_inset
  10044. </cell>
  10045. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10046. \begin_inset Text
  10047. \begin_layout Plain Layout
  10048. \family roman
  10049. \series medium
  10050. \shape up
  10051. \size normal
  10052. \emph off
  10053. \bar no
  10054. \strikeout off
  10055. \xout off
  10056. \uuline off
  10057. \uwave off
  10058. \noun off
  10059. \color none
  10060. Non-globin Reads
  10061. \end_layout
  10062. \end_inset
  10063. </cell>
  10064. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10065. \begin_inset Text
  10066. \begin_layout Plain Layout
  10067. \family roman
  10068. \series medium
  10069. \shape up
  10070. \size normal
  10071. \emph off
  10072. \bar no
  10073. \strikeout off
  10074. \xout off
  10075. \uuline off
  10076. \uwave off
  10077. \noun off
  10078. \color none
  10079. Globin Reads
  10080. \end_layout
  10081. \end_inset
  10082. </cell>
  10083. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10084. \begin_inset Text
  10085. \begin_layout Plain Layout
  10086. \family roman
  10087. \series medium
  10088. \shape up
  10089. \size normal
  10090. \emph off
  10091. \bar no
  10092. \strikeout off
  10093. \xout off
  10094. \uuline off
  10095. \uwave off
  10096. \noun off
  10097. \color none
  10098. All Genic Reads
  10099. \end_layout
  10100. \end_inset
  10101. </cell>
  10102. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10103. \begin_inset Text
  10104. \begin_layout Plain Layout
  10105. \family roman
  10106. \series medium
  10107. \shape up
  10108. \size normal
  10109. \emph off
  10110. \bar no
  10111. \strikeout off
  10112. \xout off
  10113. \uuline off
  10114. \uwave off
  10115. \noun off
  10116. \color none
  10117. All Aligned Reads
  10118. \end_layout
  10119. \end_inset
  10120. </cell>
  10121. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10122. \begin_inset Text
  10123. \begin_layout Plain Layout
  10124. \family roman
  10125. \series medium
  10126. \shape up
  10127. \size normal
  10128. \emph off
  10129. \bar no
  10130. \strikeout off
  10131. \xout off
  10132. \uuline off
  10133. \uwave off
  10134. \noun off
  10135. \color none
  10136. Non-globin Reads
  10137. \end_layout
  10138. \end_inset
  10139. </cell>
  10140. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  10141. \begin_inset Text
  10142. \begin_layout Plain Layout
  10143. \family roman
  10144. \series medium
  10145. \shape up
  10146. \size normal
  10147. \emph off
  10148. \bar no
  10149. \strikeout off
  10150. \xout off
  10151. \uuline off
  10152. \uwave off
  10153. \noun off
  10154. \color none
  10155. Globin Reads
  10156. \end_layout
  10157. \end_inset
  10158. </cell>
  10159. </row>
  10160. <row>
  10161. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10162. \begin_inset Text
  10163. \begin_layout Plain Layout
  10164. \family roman
  10165. \series medium
  10166. \shape up
  10167. \size normal
  10168. \emph off
  10169. \bar no
  10170. \strikeout off
  10171. \xout off
  10172. \uuline off
  10173. \uwave off
  10174. \noun off
  10175. \color none
  10176. Yes
  10177. \end_layout
  10178. \end_inset
  10179. </cell>
  10180. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10181. \begin_inset Text
  10182. \begin_layout Plain Layout
  10183. \family roman
  10184. \series medium
  10185. \shape up
  10186. \size normal
  10187. \emph off
  10188. \bar no
  10189. \strikeout off
  10190. \xout off
  10191. \uuline off
  10192. \uwave off
  10193. \noun off
  10194. \color none
  10195. 50.4% ± 6.82
  10196. \end_layout
  10197. \end_inset
  10198. </cell>
  10199. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10200. \begin_inset Text
  10201. \begin_layout Plain Layout
  10202. \family roman
  10203. \series medium
  10204. \shape up
  10205. \size normal
  10206. \emph off
  10207. \bar no
  10208. \strikeout off
  10209. \xout off
  10210. \uuline off
  10211. \uwave off
  10212. \noun off
  10213. \color none
  10214. 3.48% ± 2.94
  10215. \end_layout
  10216. \end_inset
  10217. </cell>
  10218. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10219. \begin_inset Text
  10220. \begin_layout Plain Layout
  10221. \family roman
  10222. \series medium
  10223. \shape up
  10224. \size normal
  10225. \emph off
  10226. \bar no
  10227. \strikeout off
  10228. \xout off
  10229. \uuline off
  10230. \uwave off
  10231. \noun off
  10232. \color none
  10233. 53.9% ± 6.81
  10234. \end_layout
  10235. \end_inset
  10236. </cell>
  10237. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10238. \begin_inset Text
  10239. \begin_layout Plain Layout
  10240. \family roman
  10241. \series medium
  10242. \shape up
  10243. \size normal
  10244. \emph off
  10245. \bar no
  10246. \strikeout off
  10247. \xout off
  10248. \uuline off
  10249. \uwave off
  10250. \noun off
  10251. \color none
  10252. 89.7% ± 2.40
  10253. \end_layout
  10254. \end_inset
  10255. </cell>
  10256. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10257. \begin_inset Text
  10258. \begin_layout Plain Layout
  10259. \family roman
  10260. \series medium
  10261. \shape up
  10262. \size normal
  10263. \emph off
  10264. \bar no
  10265. \strikeout off
  10266. \xout off
  10267. \uuline off
  10268. \uwave off
  10269. \noun off
  10270. \color none
  10271. 93.5% ± 5.25
  10272. \end_layout
  10273. \end_inset
  10274. </cell>
  10275. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  10276. \begin_inset Text
  10277. \begin_layout Plain Layout
  10278. \family roman
  10279. \series medium
  10280. \shape up
  10281. \size normal
  10282. \emph off
  10283. \bar no
  10284. \strikeout off
  10285. \xout off
  10286. \uuline off
  10287. \uwave off
  10288. \noun off
  10289. \color none
  10290. 6.49% ± 5.25
  10291. \end_layout
  10292. \end_inset
  10293. </cell>
  10294. </row>
  10295. <row>
  10296. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10297. \begin_inset Text
  10298. \begin_layout Plain Layout
  10299. \family roman
  10300. \series medium
  10301. \shape up
  10302. \size normal
  10303. \emph off
  10304. \bar no
  10305. \strikeout off
  10306. \xout off
  10307. \uuline off
  10308. \uwave off
  10309. \noun off
  10310. \color none
  10311. No
  10312. \end_layout
  10313. \end_inset
  10314. </cell>
  10315. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10316. \begin_inset Text
  10317. \begin_layout Plain Layout
  10318. \family roman
  10319. \series medium
  10320. \shape up
  10321. \size normal
  10322. \emph off
  10323. \bar no
  10324. \strikeout off
  10325. \xout off
  10326. \uuline off
  10327. \uwave off
  10328. \noun off
  10329. \color none
  10330. 26.3% ± 8.95
  10331. \end_layout
  10332. \end_inset
  10333. </cell>
  10334. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10335. \begin_inset Text
  10336. \begin_layout Plain Layout
  10337. \family roman
  10338. \series medium
  10339. \shape up
  10340. \size normal
  10341. \emph off
  10342. \bar no
  10343. \strikeout off
  10344. \xout off
  10345. \uuline off
  10346. \uwave off
  10347. \noun off
  10348. \color none
  10349. 44.6% ± 16.6
  10350. \end_layout
  10351. \end_inset
  10352. </cell>
  10353. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10354. \begin_inset Text
  10355. \begin_layout Plain Layout
  10356. \family roman
  10357. \series medium
  10358. \shape up
  10359. \size normal
  10360. \emph off
  10361. \bar no
  10362. \strikeout off
  10363. \xout off
  10364. \uuline off
  10365. \uwave off
  10366. \noun off
  10367. \color none
  10368. 70.1% ± 9.38
  10369. \end_layout
  10370. \end_inset
  10371. </cell>
  10372. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10373. \begin_inset Text
  10374. \begin_layout Plain Layout
  10375. \family roman
  10376. \series medium
  10377. \shape up
  10378. \size normal
  10379. \emph off
  10380. \bar no
  10381. \strikeout off
  10382. \xout off
  10383. \uuline off
  10384. \uwave off
  10385. \noun off
  10386. \color none
  10387. 90.7% ± 5.16
  10388. \end_layout
  10389. \end_inset
  10390. </cell>
  10391. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10392. \begin_inset Text
  10393. \begin_layout Plain Layout
  10394. \family roman
  10395. \series medium
  10396. \shape up
  10397. \size normal
  10398. \emph off
  10399. \bar no
  10400. \strikeout off
  10401. \xout off
  10402. \uuline off
  10403. \uwave off
  10404. \noun off
  10405. \color none
  10406. 38.8% ± 17.1
  10407. \end_layout
  10408. \end_inset
  10409. </cell>
  10410. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  10411. \begin_inset Text
  10412. \begin_layout Plain Layout
  10413. \family roman
  10414. \series medium
  10415. \shape up
  10416. \size normal
  10417. \emph off
  10418. \bar no
  10419. \strikeout off
  10420. \xout off
  10421. \uuline off
  10422. \uwave off
  10423. \noun off
  10424. \color none
  10425. 61.2% ± 17.1
  10426. \end_layout
  10427. \end_inset
  10428. </cell>
  10429. </row>
  10430. </lyxtabular>
  10431. \end_inset
  10432. \end_layout
  10433. \begin_layout Plain Layout
  10434. \begin_inset Caption Standard
  10435. \begin_layout Plain Layout
  10436. \series bold
  10437. \begin_inset Argument 1
  10438. status collapsed
  10439. \begin_layout Plain Layout
  10440. Fractions of reads mapping to genomic features in GB and non-GB samples.
  10441. \end_layout
  10442. \end_inset
  10443. \begin_inset CommandInset label
  10444. LatexCommand label
  10445. name "tab:Fractions-of-reads"
  10446. \end_inset
  10447. Fractions of reads mapping to genomic features in GB and non-GB samples.
  10448. \series default
  10449. All values are given as mean ± standard deviation.
  10450. \end_layout
  10451. \end_inset
  10452. \end_layout
  10453. \end_inset
  10454. \end_layout
  10455. \begin_layout Standard
  10456. \begin_inset ERT
  10457. status open
  10458. \begin_layout Plain Layout
  10459. \backslash
  10460. end{landscape}
  10461. \end_layout
  10462. \begin_layout Plain Layout
  10463. }
  10464. \end_layout
  10465. \end_inset
  10466. \end_layout
  10467. \begin_layout Standard
  10468. The objective of the present study was to validate a new protocol for deep
  10469. RNA-seq of whole blood drawn into PaxGene tubes from cynomolgus monkeys
  10470. undergoing islet transplantation, with particular focus on minimizing the
  10471. loss of useful sequencing space to uninformative globin reads.
  10472. The details of the analysis with respect to transplant outcomes and the
  10473. impact of mesenchymal stem cell treatment will be reported in a separate
  10474. manuscript (in preparation).
  10475. To focus on the efficacy of our globin blocking protocol, 37 blood samples,
  10476. 16 from pre-transplant and 21 from post-transplant time points, were each
  10477. prepped once with and once without globin blocking oligos, and were then
  10478. sequenced on an Illumina NextSeq500 instrument.
  10479. The number of reads aligning to each gene in the cynomolgus genome was
  10480. counted.
  10481. Table 1 summarizes the distribution of read fractions among the GB and
  10482. non-GB libraries.
  10483. In the libraries with no globin blocking, globin reads made up an average
  10484. of 44.6% of total input reads, while reads assigned to all other genes made
  10485. up an average of 26.3%.
  10486. The remaining reads either aligned to intergenic regions (that include
  10487. long non-coding RNAs) or did not align with any annotated transcripts in
  10488. the current build of the cynomolgus genome.
  10489. In the GB libraries, globin reads made up only 3.48% and reads assigned
  10490. to all other genes increased to 50.4%.
  10491. Thus, globin blocking resulted in a 92.2% reduction in globin reads and
  10492. a 91.6% increase in yield of useful non-globin reads.
  10493. \end_layout
  10494. \begin_layout Standard
  10495. This reduction is not quite as efficient as the previous analysis showed
  10496. for human samples by DeepSAGE (<0.4% globin reads after globin reduction)
  10497. \begin_inset CommandInset citation
  10498. LatexCommand cite
  10499. key "Mastrokolias2012"
  10500. literal "false"
  10501. \end_inset
  10502. .
  10503. Nonetheless, this degree of globin reduction is sufficient to nearly double
  10504. the yield of useful reads.
  10505. Thus, globin blocking cuts the required sequencing effort (and costs) to
  10506. achieve a target coverage depth by almost 50%.
  10507. Consistent with this near doubling of yield, the average difference in
  10508. un-normalized logCPM across all genes between the GB libraries and non-GB
  10509. libraries is approximately 1 (mean = 1.01, median = 1.08), an overall 2-fold
  10510. increase.
  10511. Un-normalized values are used here because the TMM normalization correctly
  10512. identifies this 2-fold difference as biologically irrelevant and removes
  10513. it.
  10514. \end_layout
  10515. \begin_layout Standard
  10516. \begin_inset Float figure
  10517. wide false
  10518. sideways false
  10519. status collapsed
  10520. \begin_layout Plain Layout
  10521. \align center
  10522. \begin_inset Graphics
  10523. filename graphics/Globin Paper/figure1 - globin-fractions.pdf
  10524. lyxscale 50
  10525. width 75col%
  10526. \end_inset
  10527. \end_layout
  10528. \begin_layout Plain Layout
  10529. \begin_inset Caption Standard
  10530. \begin_layout Plain Layout
  10531. \series bold
  10532. \begin_inset Argument 1
  10533. status collapsed
  10534. \begin_layout Plain Layout
  10535. Fraction of genic reads in each sample aligned to non-globin genes, with
  10536. and without globin blocking (GB).
  10537. \end_layout
  10538. \end_inset
  10539. \begin_inset CommandInset label
  10540. LatexCommand label
  10541. name "fig:Fraction-of-genic-reads"
  10542. \end_inset
  10543. Fraction of genic reads in each sample aligned to non-globin genes, with
  10544. and without globin blocking (GB).
  10545. \series default
  10546. All reads in each sequencing library were aligned to the cyno genome, and
  10547. the number of reads uniquely aligning to each gene was counted.
  10548. For each sample, counts were summed separately for all globin genes and
  10549. for the remainder of the genes (non-globin genes), and the fraction of
  10550. genic reads aligned to non-globin genes was computed.
  10551. Each point represents an individual sample.
  10552. Gray + signs indicate the means for globin-blocked libraries and unblocked
  10553. libraries.
  10554. The overall distribution for each group is represented as a notched box
  10555. plots.
  10556. Points are randomly spread vertically to avoid excessive overlapping.
  10557. \end_layout
  10558. \end_inset
  10559. \end_layout
  10560. \end_inset
  10561. \end_layout
  10562. \begin_layout Standard
  10563. Another important aspect is that the standard deviations in Table
  10564. \begin_inset CommandInset ref
  10565. LatexCommand ref
  10566. reference "tab:Fractions-of-reads"
  10567. plural "false"
  10568. caps "false"
  10569. noprefix "false"
  10570. \end_inset
  10571. are uniformly smaller in the GB samples than the non-GB ones, indicating
  10572. much greater consistency of yield.
  10573. This is best seen in the percentage of non-globin reads as a fraction of
  10574. total reads aligned to annotated genes (genic reads).
  10575. For the non-GB samples, this measure ranges from 10.9% to 80.9%, while for
  10576. the GB samples it ranges from 81.9% to 99.9% (Figure
  10577. \begin_inset CommandInset ref
  10578. LatexCommand ref
  10579. reference "fig:Fraction-of-genic-reads"
  10580. plural "false"
  10581. caps "false"
  10582. noprefix "false"
  10583. \end_inset
  10584. ).
  10585. This means that for applications where it is critical that each sample
  10586. achieve a specified minimum coverage in order to provide useful information,
  10587. it would be necessary to budget up to 10 times the sequencing depth per
  10588. sample without globin blocking, even though the average yield improvement
  10589. for globin blocking is only 2-fold, because every sample has a chance of
  10590. being 90% globin and 10% useful reads.
  10591. Hence, the more consistent behavior of GB samples makes planning an experiment
  10592. easier and more efficient because it eliminates the need to over-sequence
  10593. every sample in order to guard against the worst case of a high-globin
  10594. fraction.
  10595. \end_layout
  10596. \begin_layout Subsection
  10597. Globin blocking lowers the noise floor and allows detection of about 2000
  10598. more low-expression genes
  10599. \end_layout
  10600. \begin_layout Standard
  10601. \begin_inset Flex TODO Note (inline)
  10602. status open
  10603. \begin_layout Plain Layout
  10604. Remove redundant titles from figures
  10605. \end_layout
  10606. \end_inset
  10607. \end_layout
  10608. \begin_layout Standard
  10609. \begin_inset Float figure
  10610. wide false
  10611. sideways false
  10612. status collapsed
  10613. \begin_layout Plain Layout
  10614. \align center
  10615. \begin_inset Graphics
  10616. filename graphics/Globin Paper/figure2 - aveLogCPM-colored.pdf
  10617. lyxscale 50
  10618. height 60theight%
  10619. \end_inset
  10620. \end_layout
  10621. \begin_layout Plain Layout
  10622. \begin_inset Caption Standard
  10623. \begin_layout Plain Layout
  10624. \series bold
  10625. \begin_inset Argument 1
  10626. status collapsed
  10627. \begin_layout Plain Layout
  10628. Distributions of average group gene abundances when normalized separately
  10629. or together.
  10630. \end_layout
  10631. \end_inset
  10632. \begin_inset CommandInset label
  10633. LatexCommand label
  10634. name "fig:logcpm-dists"
  10635. \end_inset
  10636. Distributions of average group gene abundances when normalized separately
  10637. or together.
  10638. \series default
  10639. All reads in each sequencing library were aligned to the cyno genome, and
  10640. the number of reads uniquely aligning to each gene was counted.
  10641. Genes with zero counts in all libraries were discarded.
  10642. Libraries were normalized using the TMM method.
  10643. Libraries were split into globin-blocked (GB) and non-GB groups and the
  10644. average abundance for each gene in both groups, measured in log2 counts
  10645. per million reads counted, was computed using the aveLogCPM function.
  10646. The distribution of average gene logCPM values was plotted for both groups
  10647. using a kernel density plot to approximate a continuous distribution.
  10648. The logCPM GB distributions are marked in red, non-GB in blue.
  10649. The black vertical line denotes the chosen detection threshold of -1.
  10650. Top panel: Libraries were split into GB and non-GB groups first and normalized
  10651. separately.
  10652. Bottom panel: Libraries were all normalized together first and then split
  10653. into groups.
  10654. \end_layout
  10655. \end_inset
  10656. \end_layout
  10657. \begin_layout Plain Layout
  10658. \end_layout
  10659. \end_inset
  10660. \end_layout
  10661. \begin_layout Standard
  10662. Since globin blocking yields more usable sequencing depth, it should also
  10663. allow detection of more genes at any given threshold.
  10664. When we looked at the distribution of average normalized logCPM values
  10665. across all libraries for genes with at least one read assigned to them,
  10666. we observed the expected bimodal distribution, with a high-abundance "signal"
  10667. peak representing detected genes and a low-abundance "noise" peak representing
  10668. genes whose read count did not rise above the noise floor (Figure
  10669. \begin_inset CommandInset ref
  10670. LatexCommand ref
  10671. reference "fig:logcpm-dists"
  10672. plural "false"
  10673. caps "false"
  10674. noprefix "false"
  10675. \end_inset
  10676. ).
  10677. Consistent with the 2-fold increase in raw counts assigned to non-globin
  10678. genes, the signal peak for GB samples is shifted to the right relative
  10679. to the non-GB signal peak.
  10680. When all the samples are normalized together, this difference is normalized
  10681. out, lining up the signal peaks, and this reveals that, as expected, the
  10682. noise floor for the GB samples is about 2-fold lower.
  10683. This greater separation between signal and noise peaks in the GB samples
  10684. means that low-expression genes should be more easily detected and more
  10685. precisely quantified than in the non-GB samples.
  10686. \end_layout
  10687. \begin_layout Standard
  10688. \begin_inset Float figure
  10689. wide false
  10690. sideways false
  10691. status collapsed
  10692. \begin_layout Plain Layout
  10693. \align center
  10694. \begin_inset Graphics
  10695. filename graphics/Globin Paper/figure3 - detection.pdf
  10696. lyxscale 50
  10697. width 70col%
  10698. \end_inset
  10699. \end_layout
  10700. \begin_layout Plain Layout
  10701. \begin_inset Caption Standard
  10702. \begin_layout Plain Layout
  10703. \series bold
  10704. \begin_inset Argument 1
  10705. status collapsed
  10706. \begin_layout Plain Layout
  10707. Gene detections as a function of abundance thresholds in globin-blocked
  10708. (GB) and non-GB samples.
  10709. \end_layout
  10710. \end_inset
  10711. \begin_inset CommandInset label
  10712. LatexCommand label
  10713. name "fig:Gene-detections"
  10714. \end_inset
  10715. Gene detections as a function of abundance thresholds in globin-blocked
  10716. (GB) and non-GB samples.
  10717. \series default
  10718. Average abundance (logCPM,
  10719. \begin_inset Formula $\log_{2}$
  10720. \end_inset
  10721. counts per million reads counted) was computed by separate group normalization
  10722. as described in Figure
  10723. \begin_inset CommandInset ref
  10724. LatexCommand ref
  10725. reference "fig:logcpm-dists"
  10726. plural "false"
  10727. caps "false"
  10728. noprefix "false"
  10729. \end_inset
  10730. for both the GB and non-GB groups, as well as for all samples considered
  10731. as one large group.
  10732. For each every integer threshold from -2 to 3, the number of genes detected
  10733. at or above that logCPM threshold was plotted for each group.
  10734. \end_layout
  10735. \end_inset
  10736. \end_layout
  10737. \begin_layout Plain Layout
  10738. \end_layout
  10739. \end_inset
  10740. \end_layout
  10741. \begin_layout Standard
  10742. Based on these distributions, we selected a detection threshold of -1, which
  10743. is approximately the leftmost edge of the trough between the signal and
  10744. noise peaks.
  10745. This represents the most liberal possible detection threshold that doesn't
  10746. call substantial numbers of noise genes as detected.
  10747. Among the full dataset, 13429 genes were detected at this threshold, and
  10748. 22276 were not.
  10749. When considering the GB libraries and non-GB libraries separately and re-comput
  10750. ing normalization factors independently within each group, 14535 genes were
  10751. detected in the GB libraries while only 12460 were detected in the non-GB
  10752. libraries.
  10753. Thus, GB allowed the detection of 2000 extra genes that were buried under
  10754. the noise floor without GB.
  10755. This pattern of at least 2000 additional genes detected with GB was also
  10756. consistent across a wide range of possible detection thresholds, from -2
  10757. to 3 (see Figure
  10758. \begin_inset CommandInset ref
  10759. LatexCommand ref
  10760. reference "fig:Gene-detections"
  10761. plural "false"
  10762. caps "false"
  10763. noprefix "false"
  10764. \end_inset
  10765. ).
  10766. \end_layout
  10767. \begin_layout Subsection
  10768. Globin blocking does not add significant additional noise or decrease sample
  10769. quality
  10770. \end_layout
  10771. \begin_layout Standard
  10772. One potential worry is that the globin blocking protocol could perturb the
  10773. levels of non-globin genes.
  10774. There are two kinds of possible perturbations: systematic and random.
  10775. The former is not a major concern for detection of differential expression,
  10776. since a 2-fold change in every sample has no effect on the relative fold
  10777. change between samples.
  10778. In contrast, random perturbations would increase the noise and obscure
  10779. the signal in the dataset, reducing the capacity to detect differential
  10780. expression.
  10781. \end_layout
  10782. \begin_layout Standard
  10783. \begin_inset Float figure
  10784. wide false
  10785. sideways false
  10786. status collapsed
  10787. \begin_layout Plain Layout
  10788. \align center
  10789. \begin_inset Graphics
  10790. filename graphics/Globin Paper/figure4 - maplot-colored.pdf
  10791. lyxscale 50
  10792. width 60col%
  10793. groupId colwidth
  10794. \end_inset
  10795. \end_layout
  10796. \begin_layout Plain Layout
  10797. \begin_inset Caption Standard
  10798. \begin_layout Plain Layout
  10799. \begin_inset Argument 1
  10800. status collapsed
  10801. \begin_layout Plain Layout
  10802. MA plot showing effects of globin blocking on each gene's abundance.
  10803. \end_layout
  10804. \end_inset
  10805. \begin_inset CommandInset label
  10806. LatexCommand label
  10807. name "fig:MA-plot"
  10808. \end_inset
  10809. \series bold
  10810. MA plot showing effects of globin blocking on each gene's abundance.
  10811. \series default
  10812. All libraries were normalized together as described in Figure
  10813. \begin_inset CommandInset ref
  10814. LatexCommand ref
  10815. reference "fig:logcpm-dists"
  10816. plural "false"
  10817. caps "false"
  10818. noprefix "false"
  10819. \end_inset
  10820. , and genes with an average logCPM below -1 were filtered out.
  10821. Each remaining gene was tested for differential abundance with respect
  10822. to globin blocking (GB) using edgeR’s quasi-likelihood F-test, fitting
  10823. a negative binomial generalized linear model to table of read counts in
  10824. each library.
  10825. For each gene, edgeR reported average abundance (logCPM),
  10826. \begin_inset Formula $\log_{2}$
  10827. \end_inset
  10828. fold change (logFC), p-value, and Benjamini-Hochberg adjusted false discovery
  10829. rate (FDR).
  10830. Each gene's logFC was plotted against its logCPM, colored by FDR.
  10831. Red points are significant at ≤10% FDR, and blue are not significant at
  10832. that threshold.
  10833. The alpha and beta globin genes targeted for blocking are marked with large
  10834. triangles, while all other genes are represented as small points.
  10835. \end_layout
  10836. \end_inset
  10837. \end_layout
  10838. \begin_layout Plain Layout
  10839. \end_layout
  10840. \end_inset
  10841. \end_layout
  10842. \begin_layout Standard
  10843. \begin_inset Flex TODO Note (inline)
  10844. status open
  10845. \begin_layout Plain Layout
  10846. Standardize on
  10847. \begin_inset Quotes eld
  10848. \end_inset
  10849. log2
  10850. \begin_inset Quotes erd
  10851. \end_inset
  10852. notation
  10853. \end_layout
  10854. \end_inset
  10855. \end_layout
  10856. \begin_layout Standard
  10857. The data do indeed show small systematic perturbations in gene levels (Figure
  10858. \begin_inset CommandInset ref
  10859. LatexCommand ref
  10860. reference "fig:MA-plot"
  10861. plural "false"
  10862. caps "false"
  10863. noprefix "false"
  10864. \end_inset
  10865. ).
  10866. Other than the 3 designated alpha and beta globin genes, two other genes
  10867. stand out as having especially large negative log fold changes: HBD and
  10868. LOC1021365.
  10869. HBD, delta globin, is most likely targeted by the blocking oligos due to
  10870. high sequence homology with the other globin genes.
  10871. LOC1021365 is the aforementioned ncRNA that is reverse-complementary to
  10872. one of the alpha-like genes and that would be expected to be removed during
  10873. the globin blocking step.
  10874. All other genes appear in a cluster centered vertically at 0, and the vast
  10875. majority of genes in this cluster show an absolute log2(FC) of 0.5 or less.
  10876. Nevertheless, many of these small perturbations are still statistically
  10877. significant, indicating that the globin blocking oligos likely cause very
  10878. small but non-zero systematic perturbations in measured gene expression
  10879. levels.
  10880. \end_layout
  10881. \begin_layout Standard
  10882. \begin_inset Float figure
  10883. wide false
  10884. sideways false
  10885. status collapsed
  10886. \begin_layout Plain Layout
  10887. \align center
  10888. \begin_inset Graphics
  10889. filename graphics/Globin Paper/figure5 - corrplot.pdf
  10890. lyxscale 50
  10891. width 70col%
  10892. \end_inset
  10893. \end_layout
  10894. \begin_layout Plain Layout
  10895. \begin_inset Caption Standard
  10896. \begin_layout Plain Layout
  10897. \series bold
  10898. \begin_inset Argument 1
  10899. status collapsed
  10900. \begin_layout Plain Layout
  10901. Comparison of inter-sample gene abundance correlations with and without
  10902. globin blocking.
  10903. \end_layout
  10904. \end_inset
  10905. \begin_inset CommandInset label
  10906. LatexCommand label
  10907. name "fig:gene-abundance-correlations"
  10908. \end_inset
  10909. Comparison of inter-sample gene abundance correlations with and without
  10910. globin blocking (GB).
  10911. \series default
  10912. All libraries were normalized together as described in Figure 2, and genes
  10913. with an average abundance (logCPM, log2 counts per million reads counted)
  10914. less than -1 were filtered out.
  10915. Each gene’s logCPM was computed in each library using the edgeR cpm function.
  10916. For each pair of biological samples, the Pearson correlation between those
  10917. samples' GB libraries was plotted against the correlation between the same
  10918. samples’ non-GB libraries.
  10919. Each point represents an unique pair of samples.
  10920. The solid gray line shows a quantile-quantile plot of distribution of GB
  10921. correlations vs.
  10922. that of non-GB correlations.
  10923. The thin dashed line is the identity line, provided for reference.
  10924. \end_layout
  10925. \end_inset
  10926. \end_layout
  10927. \begin_layout Plain Layout
  10928. \end_layout
  10929. \end_inset
  10930. \end_layout
  10931. \begin_layout Standard
  10932. To evaluate the possibility of globin blocking causing random perturbations
  10933. and reducing sample quality, we computed the Pearson correlation between
  10934. logCPM values for every pair of samples with and without GB and plotted
  10935. them against each other (Figure
  10936. \begin_inset CommandInset ref
  10937. LatexCommand ref
  10938. reference "fig:gene-abundance-correlations"
  10939. plural "false"
  10940. caps "false"
  10941. noprefix "false"
  10942. \end_inset
  10943. ).
  10944. The plot indicated that the GB libraries have higher sample-to-sample correlati
  10945. ons than the non-GB libraries.
  10946. Parametric and nonparametric tests for differences between the correlations
  10947. with and without GB both confirmed that this difference was highly significant
  10948. (2-sided paired t-test: t = 37.2, df = 665, P ≪ 2.2e-16; 2-sided Wilcoxon
  10949. sign-rank test: V = 2195, P ≪ 2.2e-16).
  10950. Performing the same tests on the Spearman correlations gave the same conclusion
  10951. (t-test: t = 26.8, df = 665, P ≪ 2.2e-16; sign-rank test: V = 8781, P ≪ 2.2e-16).
  10952. The edgeR package was used to compute the overall biological coefficient
  10953. of variation (BCV) for GB and non-GB libraries, and found that globin blocking
  10954. resulted in a negligible increase in the BCV (0.417 with GB vs.
  10955. 0.400 without).
  10956. The near equality of the BCVs for both sets indicates that the higher correlati
  10957. ons in the GB libraries are most likely a result of the increased yield
  10958. of useful reads, which reduces the contribution of Poisson counting uncertainty
  10959. to the overall variance of the logCPM values
  10960. \begin_inset CommandInset citation
  10961. LatexCommand cite
  10962. key "McCarthy2012"
  10963. literal "false"
  10964. \end_inset
  10965. .
  10966. This improves the precision of expression measurements and more than offsets
  10967. the negligible increase in BCV.
  10968. \end_layout
  10969. \begin_layout Subsection
  10970. More differentially expressed genes are detected with globin blocking
  10971. \end_layout
  10972. \begin_layout Standard
  10973. \begin_inset Float table
  10974. wide false
  10975. sideways false
  10976. status collapsed
  10977. \begin_layout Plain Layout
  10978. \align center
  10979. \begin_inset Tabular
  10980. <lyxtabular version="3" rows="5" columns="5">
  10981. <features tabularvalignment="middle">
  10982. <column alignment="center" valignment="top">
  10983. <column alignment="center" valignment="top">
  10984. <column alignment="center" valignment="top">
  10985. <column alignment="center" valignment="top">
  10986. <column alignment="center" valignment="top">
  10987. <row>
  10988. <cell alignment="center" valignment="top" usebox="none">
  10989. \begin_inset Text
  10990. \begin_layout Plain Layout
  10991. \end_layout
  10992. \end_inset
  10993. </cell>
  10994. <cell alignment="center" valignment="top" usebox="none">
  10995. \begin_inset Text
  10996. \begin_layout Plain Layout
  10997. \end_layout
  10998. \end_inset
  10999. </cell>
  11000. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  11001. \begin_inset Text
  11002. \begin_layout Plain Layout
  11003. \series bold
  11004. No Globin Blocking
  11005. \end_layout
  11006. \end_inset
  11007. </cell>
  11008. <cell multicolumn="2" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  11009. \begin_inset Text
  11010. \begin_layout Plain Layout
  11011. \end_layout
  11012. \end_inset
  11013. </cell>
  11014. <cell multicolumn="2" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  11015. \begin_inset Text
  11016. \begin_layout Plain Layout
  11017. \end_layout
  11018. \end_inset
  11019. </cell>
  11020. </row>
  11021. <row>
  11022. <cell alignment="center" valignment="top" usebox="none">
  11023. \begin_inset Text
  11024. \begin_layout Plain Layout
  11025. \end_layout
  11026. \end_inset
  11027. </cell>
  11028. <cell alignment="center" valignment="top" usebox="none">
  11029. \begin_inset Text
  11030. \begin_layout Plain Layout
  11031. \end_layout
  11032. \end_inset
  11033. </cell>
  11034. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  11035. \begin_inset Text
  11036. \begin_layout Plain Layout
  11037. \series bold
  11038. Up
  11039. \end_layout
  11040. \end_inset
  11041. </cell>
  11042. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  11043. \begin_inset Text
  11044. \begin_layout Plain Layout
  11045. \series bold
  11046. NS
  11047. \end_layout
  11048. \end_inset
  11049. </cell>
  11050. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  11051. \begin_inset Text
  11052. \begin_layout Plain Layout
  11053. \series bold
  11054. Down
  11055. \end_layout
  11056. \end_inset
  11057. </cell>
  11058. </row>
  11059. <row>
  11060. <cell multirow="3" alignment="center" valignment="middle" topline="true" bottomline="true" leftline="true" usebox="none">
  11061. \begin_inset Text
  11062. \begin_layout Plain Layout
  11063. \series bold
  11064. Globin-Blocking
  11065. \end_layout
  11066. \end_inset
  11067. </cell>
  11068. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  11069. \begin_inset Text
  11070. \begin_layout Plain Layout
  11071. \series bold
  11072. Up
  11073. \end_layout
  11074. \end_inset
  11075. </cell>
  11076. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  11077. \begin_inset Text
  11078. \begin_layout Plain Layout
  11079. \family roman
  11080. \series medium
  11081. \shape up
  11082. \size normal
  11083. \emph off
  11084. \bar no
  11085. \strikeout off
  11086. \xout off
  11087. \uuline off
  11088. \uwave off
  11089. \noun off
  11090. \color none
  11091. 231
  11092. \end_layout
  11093. \end_inset
  11094. </cell>
  11095. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  11096. \begin_inset Text
  11097. \begin_layout Plain Layout
  11098. \family roman
  11099. \series medium
  11100. \shape up
  11101. \size normal
  11102. \emph off
  11103. \bar no
  11104. \strikeout off
  11105. \xout off
  11106. \uuline off
  11107. \uwave off
  11108. \noun off
  11109. \color none
  11110. 515
  11111. \end_layout
  11112. \end_inset
  11113. </cell>
  11114. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  11115. \begin_inset Text
  11116. \begin_layout Plain Layout
  11117. \family roman
  11118. \series medium
  11119. \shape up
  11120. \size normal
  11121. \emph off
  11122. \bar no
  11123. \strikeout off
  11124. \xout off
  11125. \uuline off
  11126. \uwave off
  11127. \noun off
  11128. \color none
  11129. 2
  11130. \end_layout
  11131. \end_inset
  11132. </cell>
  11133. </row>
  11134. <row>
  11135. <cell multirow="4" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  11136. \begin_inset Text
  11137. \begin_layout Plain Layout
  11138. \end_layout
  11139. \end_inset
  11140. </cell>
  11141. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  11142. \begin_inset Text
  11143. \begin_layout Plain Layout
  11144. \series bold
  11145. NS
  11146. \end_layout
  11147. \end_inset
  11148. </cell>
  11149. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  11150. \begin_inset Text
  11151. \begin_layout Plain Layout
  11152. \family roman
  11153. \series medium
  11154. \shape up
  11155. \size normal
  11156. \emph off
  11157. \bar no
  11158. \strikeout off
  11159. \xout off
  11160. \uuline off
  11161. \uwave off
  11162. \noun off
  11163. \color none
  11164. 160
  11165. \end_layout
  11166. \end_inset
  11167. </cell>
  11168. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  11169. \begin_inset Text
  11170. \begin_layout Plain Layout
  11171. \family roman
  11172. \series medium
  11173. \shape up
  11174. \size normal
  11175. \emph off
  11176. \bar no
  11177. \strikeout off
  11178. \xout off
  11179. \uuline off
  11180. \uwave off
  11181. \noun off
  11182. \color none
  11183. 11235
  11184. \end_layout
  11185. \end_inset
  11186. </cell>
  11187. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  11188. \begin_inset Text
  11189. \begin_layout Plain Layout
  11190. \family roman
  11191. \series medium
  11192. \shape up
  11193. \size normal
  11194. \emph off
  11195. \bar no
  11196. \strikeout off
  11197. \xout off
  11198. \uuline off
  11199. \uwave off
  11200. \noun off
  11201. \color none
  11202. 136
  11203. \end_layout
  11204. \end_inset
  11205. </cell>
  11206. </row>
  11207. <row>
  11208. <cell multirow="4" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  11209. \begin_inset Text
  11210. \begin_layout Plain Layout
  11211. \end_layout
  11212. \end_inset
  11213. </cell>
  11214. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  11215. \begin_inset Text
  11216. \begin_layout Plain Layout
  11217. \series bold
  11218. Down
  11219. \end_layout
  11220. \end_inset
  11221. </cell>
  11222. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  11223. \begin_inset Text
  11224. \begin_layout Plain Layout
  11225. \family roman
  11226. \series medium
  11227. \shape up
  11228. \size normal
  11229. \emph off
  11230. \bar no
  11231. \strikeout off
  11232. \xout off
  11233. \uuline off
  11234. \uwave off
  11235. \noun off
  11236. \color none
  11237. 0
  11238. \end_layout
  11239. \end_inset
  11240. </cell>
  11241. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  11242. \begin_inset Text
  11243. \begin_layout Plain Layout
  11244. \family roman
  11245. \series medium
  11246. \shape up
  11247. \size normal
  11248. \emph off
  11249. \bar no
  11250. \strikeout off
  11251. \xout off
  11252. \uuline off
  11253. \uwave off
  11254. \noun off
  11255. \color none
  11256. 548
  11257. \end_layout
  11258. \end_inset
  11259. </cell>
  11260. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  11261. \begin_inset Text
  11262. \begin_layout Plain Layout
  11263. \family roman
  11264. \series medium
  11265. \shape up
  11266. \size normal
  11267. \emph off
  11268. \bar no
  11269. \strikeout off
  11270. \xout off
  11271. \uuline off
  11272. \uwave off
  11273. \noun off
  11274. \color none
  11275. 127
  11276. \end_layout
  11277. \end_inset
  11278. </cell>
  11279. </row>
  11280. </lyxtabular>
  11281. \end_inset
  11282. \end_layout
  11283. \begin_layout Plain Layout
  11284. \begin_inset Caption Standard
  11285. \begin_layout Plain Layout
  11286. \series bold
  11287. \begin_inset Argument 1
  11288. status open
  11289. \begin_layout Plain Layout
  11290. Comparison of significantly differentially expressed genes with and without
  11291. globin blocking.
  11292. \end_layout
  11293. \end_inset
  11294. \begin_inset CommandInset label
  11295. LatexCommand label
  11296. name "tab:Comparison-of-significant"
  11297. \end_inset
  11298. Comparison of significantly differentially expressed genes with and without
  11299. globin blocking.
  11300. \series default
  11301. Up, Down: Genes significantly up/down-regulated in post-transplant samples
  11302. relative to pre-transplant samples, with a false discovery rate of 10%
  11303. or less.
  11304. NS: Non-significant genes (false discovery rate greater than 10%).
  11305. \end_layout
  11306. \end_inset
  11307. \end_layout
  11308. \begin_layout Plain Layout
  11309. \end_layout
  11310. \end_inset
  11311. \end_layout
  11312. \begin_layout Standard
  11313. To compare performance on differential gene expression tests, we took subsets
  11314. of both the GB and non-GB libraries with exactly one pre-transplant and
  11315. one post-transplant sample for each animal that had paired samples available
  11316. for analysis (N=7 animals, N=14 samples in each subset).
  11317. The same test for pre- vs.
  11318. post-transplant differential gene expression was performed on the same
  11319. 7 pairs of samples from GB libraries and non-GB libraries, in each case
  11320. using an FDR of 10% as the threshold of significance.
  11321. Out of 12954 genes that passed the detection threshold in both subsets,
  11322. 358 were called significantly differentially expressed in the same direction
  11323. in both sets; 1063 were differentially expressed in the GB set only; 296
  11324. were differentially expressed in the non-GB set only; 2 genes were called
  11325. significantly up in the GB set but significantly down in the non-GB set;
  11326. and the remaining 11235 were not called differentially expressed in either
  11327. set.
  11328. These data are summarized in Table
  11329. \begin_inset CommandInset ref
  11330. LatexCommand ref
  11331. reference "tab:Comparison-of-significant"
  11332. plural "false"
  11333. caps "false"
  11334. noprefix "false"
  11335. \end_inset
  11336. .
  11337. The differences in BCV calculated by EdgeR for these subsets of samples
  11338. were negligible (BCV = 0.302 for GB and 0.297 for non-GB).
  11339. \end_layout
  11340. \begin_layout Standard
  11341. The key point is that the GB data results in substantially more differentially
  11342. expressed calls than the non-GB data.
  11343. Since there is no gold standard for this dataset, it is impossible to be
  11344. certain whether this is due to under-calling of differential expression
  11345. in the non-GB samples or over-calling in the GB samples.
  11346. However, given that both datasets are derived from the same biological
  11347. samples and have nearly equal BCVs, it is more likely that the larger number
  11348. of DE calls in the GB samples are genuine detections that were enabled
  11349. by the higher sequencing depth and measurement precision of the GB samples.
  11350. Note that the same set of genes was considered in both subsets, so the
  11351. larger number of differentially expressed gene calls in the GB data set
  11352. reflects a greater sensitivity to detect significant differential gene
  11353. expression and not simply the larger total number of detected genes in
  11354. GB samples described earlier.
  11355. \end_layout
  11356. \begin_layout Section
  11357. Discussion
  11358. \end_layout
  11359. \begin_layout Standard
  11360. The original experience with whole blood gene expression profiling on DNA
  11361. microarrays demonstrated that the high concentration of globin transcripts
  11362. reduced the sensitivity to detect genes with relatively low expression
  11363. levels, in effect, significantly reducing the sensitivity.
  11364. To address this limitation, commercial protocols for globin reduction were
  11365. developed based on strategies to block globin transcript amplification
  11366. during labeling or physically removing globin transcripts by affinity bead
  11367. methods
  11368. \begin_inset CommandInset citation
  11369. LatexCommand cite
  11370. key "Winn2010"
  11371. literal "false"
  11372. \end_inset
  11373. .
  11374. More recently, using the latest generation of labeling protocols and arrays,
  11375. it was determined that globin reduction was no longer necessary to obtain
  11376. sufficient sensitivity to detect differential transcript expression
  11377. \begin_inset CommandInset citation
  11378. LatexCommand cite
  11379. key "NuGEN2010"
  11380. literal "false"
  11381. \end_inset
  11382. .
  11383. However, we are not aware of any publications using these currently available
  11384. protocols the with latest generation of microarrays that actually compare
  11385. the detection sensitivity with and without globin reduction.
  11386. However, in practice this has now been adopted generally primarily driven
  11387. by concerns for cost control.
  11388. The main objective of our work was to directly test the impact of globin
  11389. gene transcripts and a new globin blocking protocol for application to
  11390. the newest generation of differential gene expression profiling determined
  11391. using next generation sequencing.
  11392. \end_layout
  11393. \begin_layout Standard
  11394. The challenge of doing global gene expression profiling in cynomolgus monkeys
  11395. is that the current available arrays were never designed to comprehensively
  11396. cover this genome and have not been updated since the first assemblies
  11397. of the cynomolgus genome were published.
  11398. Therefore, we determined that the best strategy for peripheral blood profiling
  11399. was to do deep RNA-seq and inform the workflow using the latest available
  11400. genome assembly and annotation
  11401. \begin_inset CommandInset citation
  11402. LatexCommand cite
  11403. key "Wilson2013"
  11404. literal "false"
  11405. \end_inset
  11406. .
  11407. However, it was not immediately clear whether globin reduction was necessary
  11408. for RNA-seq or how much improvement in efficiency or sensitivity to detect
  11409. differential gene expression would be achieved for the added cost and work.
  11410. \end_layout
  11411. \begin_layout Standard
  11412. We only found one report that demonstrated that globin reduction significantly
  11413. improved the effective read yields for sequencing of human peripheral blood
  11414. cell RNA using a DeepSAGE protocol
  11415. \begin_inset CommandInset citation
  11416. LatexCommand cite
  11417. key "Mastrokolias2012"
  11418. literal "false"
  11419. \end_inset
  11420. .
  11421. The approach to DeepSAGE involves two different restriction enzymes that
  11422. purify and then tag small fragments of transcripts at specific locations
  11423. and thus, significantly reduces the complexity of the transcriptome.
  11424. Therefore, we could not determine how DeepSAGE results would translate
  11425. to the common strategy in the field for assaying the entire transcript
  11426. population by whole-transcriptome 3’-end RNA-seq.
  11427. Furthermore, if globin reduction is necessary, we also needed a globin
  11428. reduction method specific to cynomolgus globin sequences that would work
  11429. an organism for which no kit is available off the shelf.
  11430. \end_layout
  11431. \begin_layout Standard
  11432. As mentioned above, the addition of globin blocking oligos has a very small
  11433. impact on measured expression levels of gene expression.
  11434. However, this is a non-issue for the purposes of differential expression
  11435. testing, since a systematic change in a gene in all samples does not affect
  11436. relative expression levels between samples.
  11437. However, we must acknowledge that simple comparisons of gene expression
  11438. data obtained by GB and non-GB protocols are not possible without additional
  11439. normalization.
  11440. \end_layout
  11441. \begin_layout Standard
  11442. More importantly, globin blocking not only nearly doubles the yield of usable
  11443. reads, it also increases inter-sample correlation and sensitivity to detect
  11444. differential gene expression relative to the same set of samples profiled
  11445. without blocking.
  11446. In addition, globin blocking does not add a significant amount of random
  11447. noise to the data.
  11448. Globin blocking thus represents a cost-effective way to squeeze more data
  11449. and statistical power out of the same blood samples and the same amount
  11450. of sequencing.
  11451. In conclusion, globin reduction greatly increases the yield of useful RNA-seq
  11452. reads mapping to the rest of the genome, with minimal perturbations in
  11453. the relative levels of non-globin genes.
  11454. Based on these results, globin transcript reduction using sequence-specific,
  11455. complementary blocking oligonucleotides is recommended for all deep RNA-seq
  11456. of cynomolgus and other nonhuman primate blood samples.
  11457. \end_layout
  11458. \begin_layout Section
  11459. Future Directions
  11460. \end_layout
  11461. \begin_layout Standard
  11462. One drawback of the globin blocking method presented in this analysis is
  11463. a poor yield of genic reads, only around 50%.
  11464. In a separate experiment, the reagent mixture was modified so as to address
  11465. this drawback, resulting in a method that produces an even better reduction
  11466. in globin reads without reducing the overall fraction of genic reads.
  11467. However, the data showing this improvement consists of only a few test
  11468. samples, so the larger data set analyzed above was chosen in order to demonstra
  11469. te the effectiveness of the method in reducing globin reads while preserving
  11470. the biological signal.
  11471. \end_layout
  11472. \begin_layout Standard
  11473. The motivation for developing a fast practical way to enrich for non-globin
  11474. reads in cyno blood samples was to enable a large-scale RNA-seq experiment
  11475. investigating the effects of mesenchymal stem cell infusion on blood gene
  11476. expression in cynomologus transplant recipients in a time course after
  11477. transplantation.
  11478. With the globin blocking method in place, the way is now clear for this
  11479. experiment to proceed.
  11480. \end_layout
  11481. \begin_layout Chapter
  11482. Future Directions
  11483. \end_layout
  11484. \begin_layout Standard
  11485. \begin_inset Flex TODO Note (inline)
  11486. status open
  11487. \begin_layout Plain Layout
  11488. If there are any chapter-independent future directions, put them here.
  11489. Otherwise, delete this section.
  11490. Check in the directions if this is OK.
  11491. \end_layout
  11492. \end_inset
  11493. \end_layout
  11494. \begin_layout Chapter
  11495. Closing remarks
  11496. \end_layout
  11497. \begin_layout Standard
  11498. \begin_inset ERT
  11499. status collapsed
  11500. \begin_layout Plain Layout
  11501. % Use "References" as the title of the Bibliography
  11502. \end_layout
  11503. \begin_layout Plain Layout
  11504. \backslash
  11505. renewcommand{
  11506. \backslash
  11507. bibname}{References}
  11508. \end_layout
  11509. \end_inset
  11510. \end_layout
  11511. \begin_layout Standard
  11512. \begin_inset CommandInset bibtex
  11513. LatexCommand bibtex
  11514. btprint "btPrintCited"
  11515. bibfiles "code-refs,refs-PROCESSED"
  11516. options "bibtotoc,unsrt"
  11517. \end_inset
  11518. \end_layout
  11519. \begin_layout Standard
  11520. \begin_inset Flex TODO Note (inline)
  11521. status open
  11522. \begin_layout Plain Layout
  11523. Check bib entry formatting & sort order
  11524. \end_layout
  11525. \end_inset
  11526. \end_layout
  11527. \begin_layout Standard
  11528. \begin_inset Flex TODO Note (inline)
  11529. status open
  11530. \begin_layout Plain Layout
  11531. Check in-text citation format.
  11532. Probably don't just want [1], [2], etc.
  11533. \end_layout
  11534. \end_inset
  11535. \end_layout
  11536. \end_body
  11537. \end_document