thesis.lyx 341 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085150861508715088150891509015091150921509315094150951509615097150981509915100151011510215103151041510515106151071510815109151101511115112151131511415115151161511715118151191512015121151221512315124151251512615127151281512915130151311513215133151341513515136151371513815139151401514115142151431514415145151461514715148151491515015151151521515315154151551515615157151581515915160151611516215163151641516515166151671516815169151701517115172151731517415175151761517715178151791518015181151821518315184151851518615187151881518915190151911519215193151941519515196151971519815199152001520115202152031520415205152061520715208152091521015211152121521315214152151521615217152181521915220152211522215223152241522515226152271522815229152301523115232152331523415235152361523715238152391524015241152421524315244152451524615247152481524915250152511525215253152541525515256152571525815259152601526115262152631526415265152661526715268152691527015271152721527315274152751527615277152781527915280152811528215283152841528515286152871528815289152901529115292152931529415295152961529715298152991530015301153021530315304153051530615307153081530915310153111531215313153141531515316153171531815319153201532115322153231532415325153261532715328153291533015331153321533315334153351533615337153381533915340153411534215343153441534515346153471534815349153501535115352153531535415355153561535715358153591536015361153621536315364153651536615367153681536915370153711537215373153741537515376153771537815379153801538115382153831538415385153861538715388153891539015391153921539315394153951539615397153981539915400154011540215403154041540515406154071540815409154101541115412154131541415415154161541715418154191542015421154221542315424154251542615427154281542915430154311543215433154341543515436154371543815439154401544115442154431544415445154461544715448154491545015451154521545315454154551545615457154581545915460154611546215463154641546515466154671546815469154701547115472154731547415475154761547715478154791548015481154821548315484
  1. #LyX 2.3 created this file. For more info see http://www.lyx.org/
  2. \lyxformat 544
  3. \begin_document
  4. \begin_header
  5. \save_transient_properties true
  6. \origin unavailable
  7. \textclass extbook
  8. \begin_preamble
  9. % List all used files in log output
  10. \listfiles
  11. % Add a DRAFT watermark
  12. \usepackage{draftwatermark}
  13. \usepackage{accsupp}
  14. \SetWatermarkLightness{0.97}
  15. \SetWatermarkScale{1}
  16. % Make watermark not copyable (in Adobe Reader)
  17. \SetWatermarkText{\BeginAccSupp{method=escape,ActualText={}}DRAFT\EndAccSupp{}}
  18. % Set up required header format
  19. \usepackage{fancyhdr}
  20. \pagestyle{fancy}
  21. \renewcommand{\headrulewidth}{0pt}
  22. \rhead{}
  23. \lhead{}
  24. \chead{}
  25. \rfoot{}
  26. \lfoot{}
  27. % Make page number not copyable (in Adobe Reader)
  28. \cfoot{\BeginAccSupp{method=escape,ActualText={}}\thepage\EndAccSupp{}} % Page number bottom center
  29. % Allow FloatBarrier command
  30. \usepackage{placeins}
  31. % Allow landscape pages
  32. \usepackage{pdflscape}
  33. % Allow doing things after the end of the current page
  34. % (to avoid landscape figures breaking up text)
  35. \usepackage{afterpage}
  36. % This one breaks subfigs so it's disabled
  37. % https://tex.stackexchange.com/questions/65680/automatically-bold-first-sentence-of-a-floats-caption
  38. \end_preamble
  39. \use_default_options true
  40. \begin_modules
  41. todonotes
  42. logicalmkup
  43. \end_modules
  44. \maintain_unincluded_children false
  45. \language english
  46. \language_package default
  47. \inputencoding utf8
  48. \fontencoding default
  49. \font_roman "default" "default"
  50. \font_sans "default" "default"
  51. \font_typewriter "default" "default"
  52. \font_math "auto" "auto"
  53. \font_default_family default
  54. \use_non_tex_fonts false
  55. \font_sc false
  56. \font_osf false
  57. \font_sf_scale 100 100
  58. \font_tt_scale 100 100
  59. \use_microtype false
  60. \use_dash_ligatures true
  61. \graphics default
  62. \default_output_format pdf4
  63. \output_sync 0
  64. \bibtex_command biber
  65. \index_command default
  66. \paperfontsize 12
  67. \spacing double
  68. \use_hyperref true
  69. \pdf_bookmarks true
  70. \pdf_bookmarksnumbered false
  71. \pdf_bookmarksopen false
  72. \pdf_bookmarksopenlevel 1
  73. \pdf_breaklinks false
  74. \pdf_pdfborder false
  75. \pdf_colorlinks false
  76. \pdf_backref false
  77. \pdf_pdfusetitle true
  78. \papersize letterpaper
  79. \use_geometry true
  80. \use_package amsmath 1
  81. \use_package amssymb 1
  82. \use_package cancel 1
  83. \use_package esint 1
  84. \use_package mathdots 1
  85. \use_package mathtools 1
  86. \use_package mhchem 1
  87. \use_package stackrel 1
  88. \use_package stmaryrd 1
  89. \use_package undertilde 1
  90. \cite_engine biblatex
  91. \cite_engine_type authoryear
  92. \biblio_style plain
  93. \biblatex_bibstyle authoryear
  94. \biblatex_citestyle numeric
  95. \use_bibtopic false
  96. \use_indices false
  97. \paperorientation portrait
  98. \suppress_date false
  99. \justification true
  100. \use_refstyle 1
  101. \use_minted 0
  102. \index Index
  103. \shortcut idx
  104. \color #008000
  105. \end_index
  106. \leftmargin 1.5in
  107. \topmargin 1in
  108. \rightmargin 1in
  109. \bottommargin 1in
  110. \secnumdepth 3
  111. \tocdepth 3
  112. \paragraph_separation indent
  113. \paragraph_indentation default
  114. \is_math_indent 0
  115. \math_numbering_side default
  116. \quotes_style english
  117. \dynamic_quotes 0
  118. \papercolumns 1
  119. \papersides 1
  120. \paperpagestyle default
  121. \tracking_changes false
  122. \output_changes false
  123. \html_math_output 0
  124. \html_css_as_file 0
  125. \html_be_strict false
  126. \end_header
  127. \begin_body
  128. \begin_layout Title
  129. Bioinformatic analysis of complex, high-throughput genomic and epigenomic
  130. data in the context of immunology and transplant rejection
  131. \end_layout
  132. \begin_layout Author
  133. A thesis presented
  134. \begin_inset Newline newline
  135. \end_inset
  136. by
  137. \begin_inset Newline newline
  138. \end_inset
  139. Ryan C.
  140. Thompson
  141. \begin_inset Newline newline
  142. \end_inset
  143. to
  144. \begin_inset Newline newline
  145. \end_inset
  146. The Scripps Research Institute Graduate Program
  147. \begin_inset Newline newline
  148. \end_inset
  149. in partial fulfillment of the requirements for the degree of
  150. \begin_inset Newline newline
  151. \end_inset
  152. Doctor of Philosophy in the subject of Biology
  153. \begin_inset Newline newline
  154. \end_inset
  155. for
  156. \begin_inset Newline newline
  157. \end_inset
  158. The Scripps Research Institute
  159. \begin_inset Newline newline
  160. \end_inset
  161. La Jolla, California
  162. \end_layout
  163. \begin_layout Date
  164. October 2019
  165. \end_layout
  166. \begin_layout Standard
  167. [Copyright notice]
  168. \end_layout
  169. \begin_layout Standard
  170. [Thesis acceptance form]
  171. \end_layout
  172. \begin_layout Standard
  173. [Dedication]
  174. \end_layout
  175. \begin_layout Standard
  176. [Acknowledgements]
  177. \end_layout
  178. \begin_layout Standard
  179. \begin_inset CommandInset toc
  180. LatexCommand tableofcontents
  181. \end_inset
  182. \end_layout
  183. \begin_layout Standard
  184. \begin_inset FloatList table
  185. \end_inset
  186. \end_layout
  187. \begin_layout Standard
  188. \begin_inset FloatList figure
  189. \end_inset
  190. \end_layout
  191. \begin_layout Standard
  192. [List of Abbreviations]
  193. \end_layout
  194. \begin_layout List of TODOs
  195. \end_layout
  196. \begin_layout Standard
  197. \begin_inset Flex TODO Note (inline)
  198. status open
  199. \begin_layout Plain Layout
  200. Check all figures to make sure they fit on the page with their legends.
  201. \end_layout
  202. \end_inset
  203. \end_layout
  204. \begin_layout Standard
  205. \begin_inset Flex TODO Note (inline)
  206. status open
  207. \begin_layout Plain Layout
  208. Search and replace: naive -> naïve
  209. \end_layout
  210. \end_inset
  211. \end_layout
  212. \begin_layout Standard
  213. \begin_inset Flex TODO Note (inline)
  214. status open
  215. \begin_layout Plain Layout
  216. Look into auto-generated nomenclature list:
  217. \begin_inset CommandInset href
  218. LatexCommand href
  219. target "https://wiki.lyx.org/Tips/Nomenclature"
  220. \end_inset
  221. .
  222. Otherwise, do a manual pass for all abbreviations at the end.
  223. Do nomenclature/abbreviations independently for each chapter.
  224. \end_layout
  225. \end_inset
  226. \end_layout
  227. \begin_layout Standard
  228. \begin_inset Flex TODO Note (inline)
  229. status open
  230. \begin_layout Plain Layout
  231. Make all descriptions consistent in terms of
  232. \begin_inset Quotes eld
  233. \end_inset
  234. we did X
  235. \begin_inset Quotes erd
  236. \end_inset
  237. vs
  238. \begin_inset Quotes eld
  239. \end_inset
  240. I did X
  241. \begin_inset Quotes erd
  242. \end_inset
  243. vs
  244. \begin_inset Quotes eld
  245. \end_inset
  246. X was done
  247. \begin_inset Quotes erd
  248. \end_inset
  249. .
  250. \end_layout
  251. \end_inset
  252. \end_layout
  253. \begin_layout Chapter*
  254. Abstract
  255. \end_layout
  256. \begin_layout Standard
  257. \begin_inset Note Note
  258. status open
  259. \begin_layout Plain Layout
  260. It is included as an integral part of the thesis and should immediately
  261. precede the introduction.
  262. \end_layout
  263. \begin_layout Plain Layout
  264. Preparing your Abstract.
  265. Your abstract (a succinct description of your work) is limited to 350 words.
  266. UMI will shorten it if they must; please do not exceed the limit.
  267. \end_layout
  268. \begin_layout Itemize
  269. Include pertinent place names, names of persons (in full), and other proper
  270. nouns.
  271. These are useful in automated retrieval.
  272. \end_layout
  273. \begin_layout Itemize
  274. Display symbols, as well as foreign words and phrases, clearly and accurately.
  275. Include transliterations for characters other than Roman and Greek letters
  276. and Arabic numerals.
  277. Include accents and diacritical marks.
  278. \end_layout
  279. \begin_layout Itemize
  280. Do not include graphs, charts, tables, or illustrations in your abstract.
  281. \end_layout
  282. \end_inset
  283. \end_layout
  284. \begin_layout Standard
  285. \begin_inset Flex TODO Note (inline)
  286. status open
  287. \begin_layout Plain Layout
  288. Obviously the abstract gets written last.
  289. \end_layout
  290. \end_inset
  291. \end_layout
  292. \begin_layout Chapter*
  293. Notes to draft readers
  294. \end_layout
  295. \begin_layout Standard
  296. Thank you so much for agreeing to read my thesis and give me feedback on
  297. it.
  298. What you are currently reading is a rough draft, in need of many revisions.
  299. You can always find the latest version at
  300. \begin_inset CommandInset href
  301. LatexCommand href
  302. target "https://mneme.dedyn.io/~ryan/Thesis/thesis.pdf"
  303. literal "false"
  304. \end_inset
  305. .
  306. the PDF at this link is updated periodically with my latest revisions,
  307. but you can just download the current version and give me feedback on that.
  308. Don't worry about keeping up with the updates.
  309. \end_layout
  310. \begin_layout Standard
  311. As for what feedback I'm looking for, first of all, don't waste your time
  312. marking spelling mistakes and such.
  313. I haven't run a spell checker on it yet, so let me worry about that.
  314. Also, I'm aware that many abbreviations are not properly introduced the
  315. first time they are used, so don't worry about that either.
  316. However, if you see any glaring formatting issues, such as a figure being
  317. too large and getting cut off at the edge of the page, please note them.
  318. In addition, if any of the text in the figures is too small, please note
  319. that as well.
  320. \end_layout
  321. \begin_layout Standard
  322. Beyond that, what I'm mainly interested in is feedback on the content.
  323. For example: does the introduction flow logically, and does it provide
  324. enough background to understand the other chapters? Does each chapter make
  325. it clear what work and analyses I have done? Do the figures clearly communicate
  326. the results I'm trying to show? Do you feel that the claims in the results
  327. and discussion sections are well-supported? There's no need to suggest
  328. improvements; just note areas that you feel need improvement.
  329. Additionally, while I am well aware that Chapter 1 (the introduction) contains
  330. many un-cited claims, all the other chapters (2,3, and 4)
  331. \emph on
  332. should
  333. \emph default
  334. be fully cited.
  335. So if you notice any un-cited claims in those chapters, please flag them
  336. for my attention.
  337. Similarly, if you discover any factual errors, please note them as well.
  338. \end_layout
  339. \begin_layout Standard
  340. You can provide your feedback in whatever way is most convenient to you.
  341. You could mark up this PDF with highlights and notes, then send it back
  342. to me.
  343. Or you could collect your comments in a separate text file and send that
  344. to me, or whatever else you like.
  345. However, if you send me your feedback in a separate document, please note
  346. a section/figure/table number for each comment, and
  347. \emph on
  348. also
  349. \emph default
  350. send me the exact PDF that you read so I can reference it while reading
  351. your comments, since as mentioned above, the current version I'm working
  352. on will have changed by that point (which might include shuffling sections
  353. and figures around, changing their numbers).
  354. One last thing: you'll see a bunch of text in orange boxes throughout the
  355. PDF.
  356. These are notes to myself about things that need to be fixed later, so
  357. if you see a problem noted in an orange box, that means I'm already aware
  358. of it, and there's no need to comment on it.
  359. \end_layout
  360. \begin_layout Standard
  361. My thesis is due Thursday, October 10th, so in order to be useful to me,
  362. I'll need your feedback at least a few days before that, ideally by Monday,
  363. October 7th.
  364. If you have limited time and are unable to get through the whole thesis,
  365. please focus your efforts on Chapters 1 and 2, since those are the roughest
  366. and most in need of revision.
  367. Chapter 3 is fairly short and straightforward, and Chapter 4 is an adaptation
  368. of a paper that's already been through a few rounds of revision, so they
  369. should be a lot tighter.
  370. If you can't spare any time between now and then, or if something unexpected
  371. comes up, I understand.
  372. Just let me know.
  373. \end_layout
  374. \begin_layout Standard
  375. Thanks again for your help, and happy reading!
  376. \end_layout
  377. \begin_layout Chapter
  378. Introduction
  379. \end_layout
  380. \begin_layout Section
  381. Background & Significance
  382. \end_layout
  383. \begin_layout Subsection
  384. Biological motivation
  385. \end_layout
  386. \begin_layout Standard
  387. \begin_inset Flex TODO Note (inline)
  388. status open
  389. \begin_layout Plain Layout
  390. Rethink the subsection organization after the intro is written.
  391. \end_layout
  392. \end_inset
  393. \end_layout
  394. \begin_layout Standard
  395. \begin_inset Flex TODO Note (inline)
  396. status open
  397. \begin_layout Plain Layout
  398. Citations are needed all over the place.
  399. A lot of this is knowledge I've just absorbed from years of conversation
  400. in the Salomon lab, without ever having seen a citation for it.
  401. \end_layout
  402. \end_inset
  403. \end_layout
  404. \begin_layout Subsubsection
  405. Rejection is the major long-term threat to organ and tissue allografts
  406. \end_layout
  407. \begin_layout Standard
  408. Organ and tissue transplants are a life-saving treatment for people who
  409. have lost the function of an important organ [CITE?].
  410. In some cases, it is possible to transplant a patient's own tissue from
  411. one area of their body to another, referred to as an autograft.
  412. This is common for tissues that are distributed throughout many areas of
  413. the body, such as skin and bone.
  414. However, in cases of organ failure, there is no functional self tissue
  415. remaining, and a transplant from another person – a donor – is required.
  416. This is referred to as an allograft.
  417. \end_layout
  418. \begin_layout Standard
  419. \begin_inset Flex TODO Note (inline)
  420. status open
  421. \begin_layout Plain Layout
  422. Possible citation for degree of generic variability:
  423. \begin_inset CommandInset href
  424. LatexCommand href
  425. target "https://www.ncbi.nlm.nih.gov/pubmed/22424236?dopt=Abstract"
  426. \end_inset
  427. \end_layout
  428. \end_inset
  429. \end_layout
  430. \begin_layout Standard
  431. \begin_inset Flex TODO Note (inline)
  432. status open
  433. \begin_layout Plain Layout
  434. How much mechanistic detail is needed here? My work doesn't really go into
  435. specific rejection mechanisms, so I think it's best to keep it basic.
  436. \end_layout
  437. \end_inset
  438. \end_layout
  439. \begin_layout Standard
  440. Because an allograft comes from a different person, it is genetically distinct
  441. from the rest of the recipient's body.
  442. Some genetic variants occur in protein coding regions, resulting in protein
  443. products that differ from the equivalent proteins in the graft recipient's
  444. own tissue.
  445. As a result, without intervention, the recipient's immune system will eventuall
  446. y identify the graft as foreign tissue and begin attacking it, eventually
  447. resulting in failure and death of the graft, a process referred to as transplan
  448. t rejection.
  449. Rejection is the most significant challenge to the long-term health and
  450. survival of an allograft [CITE?].
  451. Like any adaptive immune response, graft rejection generally occurs via
  452. two broad mechanisms: cellular immunity, in which CD8+ T-cells recognizing
  453. graft-specific antigens induce apoptosis in the graft cells; and humoral
  454. immunity, in which B-cells produce antibodies that bind to graft proteins
  455. and direct an immune response against the graft [CITE?].
  456. In either case, rejection shows most of the typical hallmarks of an adaptive
  457. immune response, in particular mediation by CD4+ T-cells and formation
  458. of immune memory.
  459. \end_layout
  460. \begin_layout Subsubsection
  461. Diagnosis and treatment of allograft rejection is a major challenge
  462. \end_layout
  463. \begin_layout Standard
  464. To prevent rejection, allograft recipients are treated with immune suppressive
  465. drugs [CITE?].
  466. The goal is to achieve sufficient suppression of the immune system to prevent
  467. rejection of the graft without compromising the ability of the immune system
  468. to raise a normal response against infection.
  469. As such, a delicate balance must be struck: insufficient immune suppression
  470. may lead to rejection and ultimately loss of the graft; excessive suppression
  471. leaves the patient vulnerable to life-threatening opportunistic infections.
  472. Because every patient is different, immune suppression must be tailored
  473. for each patient.
  474. Furthermore, immune suppression must be tuned over time, as the immune
  475. system's activity is not static, nor is it held in a steady state [CITE?].
  476. In order to properly adjust the dosage of immune suppression drugs, it
  477. is necessary to monitor the health of the transplant and increase the dosage
  478. if evidence of rejection is observed.
  479. \end_layout
  480. \begin_layout Standard
  481. However, diagnosis of rejection is a significant challenge.
  482. Early diagnosis is essential in order to step up immune suppression before
  483. the immune system damages the graft beyond recovery [CITE?].
  484. The current gold standard test for graft rejection is a tissue biopsy,
  485. examined for visible signs of rejection by a trained histologist [CITE?].
  486. When a patient shows symptoms of possible rejection, a
  487. \begin_inset Quotes eld
  488. \end_inset
  489. for cause
  490. \begin_inset Quotes erd
  491. \end_inset
  492. biopsy is performed to confirm the diagnosis, and immune suppression is
  493. adjusted as necessary.
  494. However, in many cases, the early stages of rejection are asymptomatic,
  495. known as
  496. \begin_inset Quotes eld
  497. \end_inset
  498. sub-clinical
  499. \begin_inset Quotes erd
  500. \end_inset
  501. rejection [CITE?].
  502. In light of this, is is now common to perform
  503. \begin_inset Quotes eld
  504. \end_inset
  505. protocol biopsies
  506. \begin_inset Quotes erd
  507. \end_inset
  508. at specific times after transplantation of a graft, even if no symptoms
  509. of rejection are apparent, in addition to
  510. \begin_inset Quotes eld
  511. \end_inset
  512. for cause
  513. \begin_inset Quotes erd
  514. \end_inset
  515. biopsies
  516. \begin_inset CommandInset citation
  517. LatexCommand cite
  518. key "Wilkinson2006"
  519. literal "false"
  520. \end_inset
  521. .
  522. \end_layout
  523. \begin_layout Standard
  524. However, biopsies have a number of downsides that limit their effectiveness
  525. as a diagnostic tool.
  526. First, the need for manual inspection by a histologist means that diagnosis
  527. is subject to the biases of the particular histologist examining the biopsy
  528. [CITE?].
  529. In marginal cases, two different histologists may give two different diagnoses
  530. to the same biopsy.
  531. Second, a biopsy can only evaluate if rejection is occurring in the section
  532. of the graft from which the tissue was extracted.
  533. If rejection is localized to one section of the graft and the tissue is
  534. extracted from a different section, a false negative diagnosis may result.
  535. Most importantly, extraction of tissue from a graft is invasive and is
  536. treated as an injury by the body, which results in inflammation that in
  537. turn promotes increased immune system activity [CITE?].
  538. Hence, the invasiveness of biopsies severely limits the frequency with
  539. which they can safely be performed.
  540. Typically, protocol biopsies are not scheduled more than about once per
  541. month
  542. \begin_inset CommandInset citation
  543. LatexCommand cite
  544. key "Wilkinson2006"
  545. literal "false"
  546. \end_inset
  547. .
  548. A less invasive diagnostic test for rejection would bring manifold benefits.
  549. Such a test would enable more frequent testing and therefore earlier detection
  550. of rejection events.
  551. In addition, having a larger pool of historical data for a given patient
  552. would make it easier to evaluate when a given test is outside the normal
  553. parameters for that specific patient, rather than relying on normal ranges
  554. for the population as a whole.
  555. Lastly, the accumulated data from more frequent tests would be a boon to
  556. the transplant research community.
  557. Beyond simply providing more data overall, the better time granularity
  558. of the tests will enable studying the progression of a rejection event
  559. on the scale of days to weeks, rather than months.
  560. \end_layout
  561. \begin_layout Subsubsection
  562. Memory cells are resistant to immune suppression
  563. \end_layout
  564. \begin_layout Standard
  565. One of the defining features of the adaptive immune system is immune memory:
  566. the ability of the immune system to recognize a previously encountered
  567. foreign antigen and respond more quickly and more strongly to that antigen
  568. in subsequent encounters.
  569. When the immune system first encounters a new antigen, the lymphocytes
  570. that respond are known as naive cells – T-cells and B-cells that have never
  571. detected their target antigens before.
  572. Once activated by their specific antigen presented by an antigen-presenting
  573. cell in the proper co-stimulatory context, naive cells differentiate into
  574. effector cells that carry out their respective functions in targeting and
  575. destroying the source of the foreign antigen.
  576. The requirement for co-stimulation is an important feature of naive cells
  577. that limits
  578. \begin_inset Quotes eld
  579. \end_inset
  580. false positive
  581. \begin_inset Quotes erd
  582. \end_inset
  583. immune responses, because antigen-presenting cells usually only express
  584. the proper co-stimulation after detecting evidence of an infection, such
  585. as the presence of common bacterial cell components or inflamed tissue.
  586. Most effector cells die after the foreign antigen is cleared, since they
  587. are no longer needed, but some remain and differentiate into memory cells.
  588. Like naive cells, memory cells respond to detection of their specific antigen
  589. by differentiating into effector cells, ready to fight an infection.
  590. However, unlike naive cells, memory cells do not require the same degree
  591. of co-stimulatory signaling for activation, and once activated, they proliferat
  592. e and differentiate into effector cells more quickly than naive cells do.
  593. \end_layout
  594. \begin_layout Standard
  595. In the context of a pathogenic infection, immune memory is a major advantage,
  596. allowing an organism to rapidly fight off a previously encountered pathogen
  597. much more quickly and effectively than the first time it was encountered.
  598. However, if effector cells that recognize an antigen from an allograft
  599. are allowed to differentiate into memory cells, preventing rejection of
  600. the graft becomes much more difficult.
  601. Many immune suppression drugs work by interfering with the co-stimulation
  602. that naive cells require in order to mount an immune response [CITE?].
  603. Since memory cells do not require this co-stimulation, these drugs are
  604. not effective at suppressing an immune response that is mediated by memory
  605. cells.
  606. Secondly, because memory cells are able to mount a stronger and faster
  607. response to an antigen, all else being equal they require stronger immune
  608. suppression than naive cells to prevent an immune response.
  609. However, immune suppression affects the entire immune system, not just
  610. cells recognizing a specific antigen, so increasing the dosage of immune
  611. suppression drugs also increases the risk of complications from a compromised
  612. immune system, such as opportunistic infections.
  613. While the differences in cell surface markers between naive and memory
  614. cells have been fairly well characterized, the internal regulatory mechanisms
  615. that allow memory cells to respond more quickly and without co-stimulation
  616. are still poorly understood.
  617. In order to develop methods of immune suppression that either prevent the
  618. formation of memory cells or work more effectively against memory cells,
  619. the mechanisms of immune memory formation and regulation must be better
  620. understood.
  621. \end_layout
  622. \begin_layout Subsection
  623. Overview of bioinformatic analysis methods
  624. \end_layout
  625. \begin_layout Standard
  626. \begin_inset Flex TODO Note (inline)
  627. status open
  628. \begin_layout Plain Layout
  629. Also cite: R, Bioconductor, snakemake, python, pandas, bedtools, bowtie2,
  630. hisat2, STAR, samtools, sra-toolkit, picard tools
  631. \end_layout
  632. \end_inset
  633. \end_layout
  634. \begin_layout Standard
  635. The studies presented in this work all involve the analysis of high-throughput
  636. genomic and epigenomic data.
  637. These data present many unique analysis challenges, and a wide array of
  638. software tools are available to analyze them.
  639. This section presents an overview of the methods used, including what problems
  640. they solve, what assumptions they make, and a basic description of how
  641. they work.
  642. \end_layout
  643. \begin_layout Subsubsection
  644. \begin_inset Flex Code
  645. status open
  646. \begin_layout Plain Layout
  647. Limma
  648. \end_layout
  649. \end_inset
  650. : The standard linear modeling framework for genomics
  651. \end_layout
  652. \begin_layout Standard
  653. Linear models are a generalization of the
  654. \begin_inset Formula $t$
  655. \end_inset
  656. -test and ANOVA to arbitrarily complex experimental designs
  657. \begin_inset CommandInset citation
  658. LatexCommand cite
  659. key "chambers:1992"
  660. literal "false"
  661. \end_inset
  662. .
  663. In a typical linear model, there is one dependent variable observation
  664. per sample and a large number of samples.
  665. For example, in a linear model of height as a function of age and sex,
  666. there is one height measurement per person.
  667. However, when analyzing genomic data, each sample consists of observations
  668. of thousands of dependent variables.
  669. For example, in an RNA-seq experiment, the dependent variables may be the
  670. count of RNA-seq reads for each annotated gene.
  671. In abstract terms, each dependent variable being measured is referred to
  672. as a feature.
  673. The simplest approach to analyzing such data would be to fit the same model
  674. independently to each feature.
  675. However, this is undesirable for most genomics data sets.
  676. Genomics assays like high-throughput sequencing are expensive, and often
  677. the process of generating the samples is also quite expensive and time-consumin
  678. g.
  679. This expense limits the sample sizes typically employed in genomics experiments
  680. , and as a result the statistical power of the linear model for each individual
  681. feature is likewise limited.
  682. However, because thousands of features from the same samples are analyzed
  683. together, there is an opportunity to improve the statistical power of the
  684. analysis by exploiting shared patterns of variation across features.
  685. This is the core feature of
  686. \begin_inset Flex Code
  687. status open
  688. \begin_layout Plain Layout
  689. limma
  690. \end_layout
  691. \end_inset
  692. , a linear modeling framework designed for genomic data.
  693. \begin_inset Flex Code
  694. status open
  695. \begin_layout Plain Layout
  696. Limma
  697. \end_layout
  698. \end_inset
  699. is typically used to analyze expression microarray data, and more recently
  700. RNA-seq data, but it can also be used to analyze any other data for which
  701. linear modeling is appropriate.
  702. \end_layout
  703. \begin_layout Standard
  704. The central challenge when fitting a linear model is to estimate the variance
  705. of the data accurately.
  706. Out of all parameters required to evaluate statistical significance of
  707. an effect, the variance is the most difficult to estimate when sample sizes
  708. are small.
  709. A single shared variance could be estimated for all of the features together,
  710. and this estimate would be very stable, in contrast to the individual feature
  711. variance estimates.
  712. However, this would require the assumption that every feature is equally
  713. variable, which is known to be false for most genomic data sets.
  714. \begin_inset Flex Code
  715. status open
  716. \begin_layout Plain Layout
  717. limma
  718. \end_layout
  719. \end_inset
  720. offers a compromise between these two extremes by using a method called
  721. empirical Bayes moderation to
  722. \begin_inset Quotes eld
  723. \end_inset
  724. squeeze
  725. \begin_inset Quotes erd
  726. \end_inset
  727. the distribution of estimated variances toward a single common value that
  728. represents the variance of an average feature in the data
  729. \begin_inset CommandInset citation
  730. LatexCommand cite
  731. key "Smyth2004"
  732. literal "false"
  733. \end_inset
  734. .
  735. While the individual feature variance estimates are not stable, the common
  736. variance estimate for the entire data set is quite stable, so using a combinati
  737. on of the two yields a variance estimate for each feature with greater precision
  738. than the individual feature variances.
  739. The trade-off for this improvement is that squeezing each estimated variance
  740. toward the common value introduces some bias – the variance will be underestima
  741. ted for features with high variance and overestimated for features with
  742. low variance.
  743. Essentially,
  744. \begin_inset Flex Code
  745. status open
  746. \begin_layout Plain Layout
  747. limma
  748. \end_layout
  749. \end_inset
  750. assumes that extreme variances are less common than variances close to
  751. the common value.
  752. The variance estimates from this empirical Bayes procedure are shown empiricall
  753. y to yield greater statistical power than either the individual feature
  754. variances or the single common value.
  755. \end_layout
  756. \begin_layout Standard
  757. On top of this core framework,
  758. \begin_inset Flex Code
  759. status open
  760. \begin_layout Plain Layout
  761. limma
  762. \end_layout
  763. \end_inset
  764. also implements many other enhancements that, further relax the assumptions
  765. of the model and extend the scope of what kinds of data it can analyze.
  766. Instead of squeezing toward a single common variance value,
  767. \begin_inset Flex Code
  768. status open
  769. \begin_layout Plain Layout
  770. limma
  771. \end_layout
  772. \end_inset
  773. can model the common variance as a function of a covariate, such as average
  774. expression
  775. \begin_inset CommandInset citation
  776. LatexCommand cite
  777. key "Law2013"
  778. literal "false"
  779. \end_inset
  780. .
  781. This is essential for RNA-seq data, where higher gene counts yield more
  782. precise expression measurements and therefore smaller variances than low-count
  783. genes.
  784. While linear models typically assume that all samples have equal variance,
  785. \begin_inset Flex Code
  786. status open
  787. \begin_layout Plain Layout
  788. limma
  789. \end_layout
  790. \end_inset
  791. is able to relax this assumption by identifying and down-weighting samples
  792. that diverge more strongly from the linear model across many features
  793. \begin_inset CommandInset citation
  794. LatexCommand cite
  795. key "Ritchie2006,Liu2015"
  796. literal "false"
  797. \end_inset
  798. .
  799. In addition,
  800. \begin_inset Flex Code
  801. status open
  802. \begin_layout Plain Layout
  803. limma
  804. \end_layout
  805. \end_inset
  806. is also able to fit simple mixed models incorporating one random effect
  807. in addition to the fixed effects represented by an ordinary linear model
  808. \begin_inset CommandInset citation
  809. LatexCommand cite
  810. key "Smyth2005a"
  811. literal "false"
  812. \end_inset
  813. .
  814. Once again,
  815. \begin_inset Flex Code
  816. status open
  817. \begin_layout Plain Layout
  818. limma
  819. \end_layout
  820. \end_inset
  821. shares information between features to obtain a robust estimate for the
  822. random effect correlation.
  823. \end_layout
  824. \begin_layout Subsubsection
  825. edgeR provides
  826. \begin_inset Flex Code
  827. status open
  828. \begin_layout Plain Layout
  829. limma
  830. \end_layout
  831. \end_inset
  832. -like analysis features for count data
  833. \end_layout
  834. \begin_layout Standard
  835. Although
  836. \begin_inset Flex Code
  837. status open
  838. \begin_layout Plain Layout
  839. limma
  840. \end_layout
  841. \end_inset
  842. can be applied to read counts from RNA-seq data, it is less suitable for
  843. counts from ChIP-seq data, which tend to be much smaller and therefore
  844. violate the assumption of a normal distribution more severely.
  845. For all count-based data, the
  846. \begin_inset Flex Code
  847. status open
  848. \begin_layout Plain Layout
  849. edgeR
  850. \end_layout
  851. \end_inset
  852. package works similarly to
  853. \begin_inset Flex Code
  854. status open
  855. \begin_layout Plain Layout
  856. limma
  857. \end_layout
  858. \end_inset
  859. , but uses a generalized linear model instead of a linear model.
  860. The most important difference is that the GLM in
  861. \begin_inset Flex Code
  862. status open
  863. \begin_layout Plain Layout
  864. edgeR
  865. \end_layout
  866. \end_inset
  867. models the counts directly using a negative binomial distribution rather
  868. than modeling the normalized log counts using a normal distribution
  869. \begin_inset CommandInset citation
  870. LatexCommand cite
  871. key "Chen2014,McCarthy2012,Robinson2010a"
  872. literal "false"
  873. \end_inset
  874. .
  875. The negative binomial is a good fit for count data because it can be derived
  876. as a gamma-distributed mixture of Poisson distributions.
  877. The Poisson distribution accurately represents the distribution of counts
  878. expected for a given gene abundance, and the gamma distribution is then
  879. used to represent the variation in gene abundance between biological replicates.
  880. For this reason, the square root of the dispersion parameter of the negative
  881. binomial is sometimes referred to as the biological coefficient of variation,
  882. since it represents the variability that was present in the samples prior
  883. to the Poisson
  884. \begin_inset Quotes eld
  885. \end_inset
  886. noise
  887. \begin_inset Quotes erd
  888. \end_inset
  889. that was generated by the random sampling of reads in proportion to feature
  890. abundances.
  891. The choice of a gamma distribution is arbitrary and motivated by mathematical
  892. convenience, since a gamma-Poisson mixture yields the numerically tractable
  893. negative binomial distribution.
  894. Thus,
  895. \begin_inset Flex Code
  896. status open
  897. \begin_layout Plain Layout
  898. edgeR
  899. \end_layout
  900. \end_inset
  901. assumes
  902. \emph on
  903. a prioi
  904. \emph default
  905. that the variation in abundances between replicates follows a gamma distribution.
  906. For differential abundance testing,
  907. \begin_inset Flex Code
  908. status open
  909. \begin_layout Plain Layout
  910. edgeR
  911. \end_layout
  912. \end_inset
  913. offers a likelihood ratio test, but more recently recommends a quasi-likelihood
  914. test that properly factors the uncertainty in variance estimation into
  915. the statistical significance for each feature
  916. \begin_inset CommandInset citation
  917. LatexCommand cite
  918. key "Lund2012"
  919. literal "false"
  920. \end_inset
  921. .
  922. \end_layout
  923. \begin_layout Subsubsection
  924. ChIP-seq Peak calling
  925. \end_layout
  926. \begin_layout Standard
  927. Unlike RNA-seq data, in which gene annotations provide a well-defined set
  928. of discrete genomic regions in which to count reads, ChIP-seq reads can
  929. potentially occur anywhere in the genome.
  930. However, most genome regions will not contain significant ChIP-seq read
  931. coverage, and analyzing every position in the entire genome is statistically
  932. and computationally infeasible, so it is necessary to identify regions
  933. of interest inside which ChIP-seq reads will be counted and analyzed.
  934. One option is to define a set of interesting regions
  935. \emph on
  936. a priori
  937. \emph default
  938. , for example by defining a promoter region for each annotated gene.
  939. However, it is also possible to use the ChIP-seq data itself to identify
  940. regions with ChIP-seq read coverage significantly above the background
  941. level, known as peaks.
  942. \end_layout
  943. \begin_layout Standard
  944. There are generally two kinds of peaks that can be identified: narrow peaks
  945. and broadly enriched regions.
  946. Proteins like transcription factors that bind specific sites in the genome
  947. typically show most of their ChIP-seq read coverage at these specific sites
  948. and very little coverage anywhere else.
  949. Because the footprint of the protein is consistent wherever it binds, each
  950. peak has a consistent width, typically tens to hundreds of base pairs,
  951. representing the length of DNA that it binds to.
  952. Algorithms like MACS exploit this pattern to identify specific loci at
  953. which such
  954. \begin_inset Quotes eld
  955. \end_inset
  956. narrow peaks
  957. \begin_inset Quotes erd
  958. \end_inset
  959. occur by looking for the characteristic peak shape in the ChIP-seq coverage
  960. rising above the surrounding background coverage
  961. \begin_inset CommandInset citation
  962. LatexCommand cite
  963. key "Zhang2008"
  964. literal "false"
  965. \end_inset
  966. .
  967. In contrast, some proteins, chief among them histones, do not bind only
  968. at a small number of specific sites, but rather bind potentially almost
  969. everywhere in the entire genome.
  970. When looking at histone marks, adjacent histones tend to be similarly marked,
  971. and a given mark may be present on an arbitrary number of consecutive histones
  972. along the genome.
  973. Hence, there is no consistent
  974. \begin_inset Quotes eld
  975. \end_inset
  976. footprint size
  977. \begin_inset Quotes erd
  978. \end_inset
  979. for ChIP-seq peaks based on histone marks, and peaks typically span many
  980. histones.
  981. Hence, typical peaks span many hundreds or even thousands of base pairs.
  982. Instead of identifying specific loci of strong enrichment, algorithms like
  983. SICER assume that peaks are represented in the ChIP-seq data by modest
  984. enrichment above background occurring across broad regions, and they attempt
  985. to identify the extent of those regions
  986. \begin_inset CommandInset citation
  987. LatexCommand cite
  988. key "Zang2009"
  989. literal "false"
  990. \end_inset
  991. .
  992. In all cases, better results are obtained if the local background coverage
  993. level can be estimated from ChIP-seq input samples, since various biases
  994. can result in uneven background coverage.
  995. \end_layout
  996. \begin_layout Standard
  997. Regardless of the type of peak identified, it is important to identify peaks
  998. that occur consistently across biological replicates.
  999. The ENCODE project has developed a method called irreproducible discovery
  1000. rate for this purpose
  1001. \begin_inset CommandInset citation
  1002. LatexCommand cite
  1003. key "Li2006"
  1004. literal "false"
  1005. \end_inset
  1006. .
  1007. The IDR is defined as the probability that a peak identified in one biological
  1008. replicate will
  1009. \emph on
  1010. not
  1011. \emph default
  1012. also be identified in a second replicate.
  1013. Where the more familiar false discovery rate measures the degree of corresponde
  1014. nce between a data-derived ranked list and the true list of significant
  1015. features, IDR instead measures the degree of correspondence between two
  1016. ranked lists derived from different data.
  1017. IDR assumes that the highest-ranked features are
  1018. \begin_inset Quotes eld
  1019. \end_inset
  1020. signal
  1021. \begin_inset Quotes erd
  1022. \end_inset
  1023. peaks that tend to be listed in the same order in both lists, while the
  1024. lowest-ranked features are essentially noise peaks, listed in random order
  1025. with no correspondence between the lists.
  1026. IDR attempts to locate the
  1027. \begin_inset Quotes eld
  1028. \end_inset
  1029. crossover point
  1030. \begin_inset Quotes erd
  1031. \end_inset
  1032. between the signal and the noise by determining how far down the list the
  1033. correspondence between feature ranks breaks down.
  1034. \end_layout
  1035. \begin_layout Standard
  1036. In addition to other considerations, if called peaks are to be used as regions
  1037. of interest for differential abundance analysis, then care must be taken
  1038. to call peaks in a way that is blind to differential abundance between
  1039. experimental conditions, or else the statistical significance calculations
  1040. for differential abundance will overstate their confidence in the results.
  1041. The csaw package provides guidelines for calling peaks in this way: peaks
  1042. are called based on a combination of all ChIP-seq reads from all experimental
  1043. conditions, so that the identified peaks are based on the average abundance
  1044. across all conditions, which is independent of any differential abundance
  1045. between conditions
  1046. \begin_inset CommandInset citation
  1047. LatexCommand cite
  1048. key "Lun2015a"
  1049. literal "false"
  1050. \end_inset
  1051. .
  1052. \end_layout
  1053. \begin_layout Subsubsection
  1054. Normalization of high-throughput data is non-trivial and application-dependent
  1055. \end_layout
  1056. \begin_layout Standard
  1057. High-throughput data sets invariably require some kind of normalization
  1058. before further analysis can be conducted.
  1059. In general, the goal of normalization is to remove effects in the data
  1060. that are caused by technical factors that have nothing to do with the biology
  1061. being studied.
  1062. \end_layout
  1063. \begin_layout Standard
  1064. For Affymetrix expression arrays, the standard normalization algorithm used
  1065. in most analyses is Robust Multichip Average (RMA) [CITE].
  1066. RMA is designed with the assumption that some fraction of probes on each
  1067. array will be artifactual and takes advantage of the fact that each gene
  1068. is represented by multiple probes by implementing normalization and summarizati
  1069. on steps that are robust against outlier probes.
  1070. However, RMA uses the probe intensities of all arrays in the data set in
  1071. the normalization of each individual array, meaning that the normalized
  1072. expression values in each array depend on every array in the data set,
  1073. and will necessarily change each time an array is added or removed from
  1074. the data set.
  1075. If this is undesirable, frozen RMA implements a variant of RMA where the
  1076. relevant distributional parameters are learned from a large reference set
  1077. of diverse public array data sets and then
  1078. \begin_inset Quotes eld
  1079. \end_inset
  1080. frozen
  1081. \begin_inset Quotes erd
  1082. \end_inset
  1083. , so that each array is effectively normalized against this frozen reference
  1084. set rather than the other arrays in the data set under study [CITE].
  1085. Other array normalization methods considered include dChip, GRSN, and SCAN
  1086. [CITEx3].
  1087. \end_layout
  1088. \begin_layout Standard
  1089. In contrast, high-throughput sequencing data present very different normalizatio
  1090. n challenges.
  1091. The simplest case is RNA-seq in which read counts are obtained for a set
  1092. of gene annotations, yielding a matrix of counts with rows representing
  1093. genes and columns representing samples.
  1094. Because RNA-seq approximates a process of sampling from a population with
  1095. replacement, each gene's count is only interpretable as a fraction of the
  1096. total reads for that sample.
  1097. For that reason, RNA-seq abundances are often reported as counts per million
  1098. (CPM).
  1099. Furthermore, if the abundance of a single gene increases, then in order
  1100. for its fraction of the total reads to increase, all other genes' fractions
  1101. must decrease to accommodate it.
  1102. This effect is known as composition bias, and it is an artifact of the
  1103. read sampling process that has nothing to do with the biology of the samples
  1104. and must therefore be normalized out.
  1105. The most commonly used methods to normalize for composition bias in RNA-seq
  1106. data seek to equalize the average gene abundance across samples, under
  1107. the assumption that the average gene is likely not changing
  1108. \begin_inset CommandInset citation
  1109. LatexCommand cite
  1110. key "Robinson2010,Anders2010"
  1111. literal "false"
  1112. \end_inset
  1113. .
  1114. \end_layout
  1115. \begin_layout Standard
  1116. In ChIP-seq data, normalization is not as straightforward.
  1117. The csaw package implements several different normalization strategies
  1118. and provides guidance on when to use each one
  1119. \begin_inset CommandInset citation
  1120. LatexCommand cite
  1121. key "Lun2015a"
  1122. literal "false"
  1123. \end_inset
  1124. .
  1125. Briefly, a typical ChIP-seq sample has a bimodal distribution of read counts:
  1126. a low-abundance mode representing background regions and a high-abundance
  1127. mode representing signal regions.
  1128. This offers two potential normalization targets: equalizing background
  1129. coverage or equalizing signal coverage.
  1130. If the experiment is well controlled and ChIP efficiency is known to be
  1131. consistent across all samples, then normalizing the background coverage
  1132. to be equal across all samples is a reasonable strategy.
  1133. If this is not a safe assumption, then the preferred strategy is to normalize
  1134. the signal regions in a way similar to RNA-seq data by assuming that the
  1135. average signal region is not changing abundance between samples.
  1136. Beyond this, if a ChIP-seq experiment has a more complicated structure
  1137. that doesn't show the typical bimodal count distribution, it may be necessary
  1138. to implement a normalization as a smooth function of abundance.
  1139. However, this strategy makes a much stronger assumption about the data:
  1140. that the average log fold change is zero across all abundance levels.
  1141. Hence, the simpler scaling normalization based on background or signal
  1142. regions are generally preferred whenever possible.
  1143. \end_layout
  1144. \begin_layout Subsubsection
  1145. ComBat and SVA for correction of known and unknown batch effects
  1146. \end_layout
  1147. \begin_layout Standard
  1148. In addition to well-understood effects that can be easily normalized out,
  1149. a data set often contains confounding biological effects that must be accounted
  1150. for in the modeling step.
  1151. For instance, in an experiment with pre-treatment and post-treatment samples
  1152. of cells from several different donors, donor variability represents a
  1153. known batch effect.
  1154. The most straightforward correction for known batches is to estimate the
  1155. mean for each batch independently and subtract out the differences, so
  1156. that all batches have identical means for each feature.
  1157. However, as with variance estimation, estimating the differences in batch
  1158. means is not necessarily robust at the feature level, so the ComBat method
  1159. adds empirical Bayes squeezing of the batch mean differences toward a common
  1160. value, analogous to
  1161. \begin_inset Flex Code
  1162. status open
  1163. \begin_layout Plain Layout
  1164. limma
  1165. \end_layout
  1166. \end_inset
  1167. 's empirical Bayes squeezing of feature variance estimates
  1168. \begin_inset CommandInset citation
  1169. LatexCommand cite
  1170. key "Johnson2007"
  1171. literal "false"
  1172. \end_inset
  1173. .
  1174. Effectively, ComBat assumes that modest differences between batch means
  1175. are real batch effects, but extreme differences between batch means are
  1176. more likely to be the result of outlier observations that happen to line
  1177. up with the batches rather than a genuine batch effect.
  1178. The result is a batch correction that is more robust against outliers than
  1179. simple subtraction of mean differences subtraction.
  1180. \end_layout
  1181. \begin_layout Standard
  1182. In some data sets, unknown batch effects may be present due to inherent
  1183. variability in in the data, either caused by technical or biological effects.
  1184. Examples of unknown batch effects include variations in enrichment efficiency
  1185. between ChIP-seq samples, variations in populations of different cell types,
  1186. and the effects of uncontrolled environmental factors on gene expression
  1187. in humans or live animals.
  1188. In an ordinary linear model context, unknown batch effects cannot be inferred
  1189. and must be treated as random noise.
  1190. However, in high-throughput experiments, once again information can be
  1191. shared across features to identify patterns of un-modeled variation that
  1192. are repeated in many features.
  1193. One attractive strategy would be to perform singular value decomposition
  1194. (SVD) on the matrix of linear model residuals (which contain all the un-modeled
  1195. variation in the data) and take the first few singular vectors as batch
  1196. effects.
  1197. While this can be effective, it makes the unreasonable assumption that
  1198. all batch effects are uncorrelated with any of the effects being modeled.
  1199. Surrogate variable analysis (SVA) starts with this approach, but takes
  1200. some additional steps to identify batch effects in the full data that are
  1201. both highly correlated with the singular vectors in the residuals and least
  1202. correlated with the effects of interest
  1203. \begin_inset CommandInset citation
  1204. LatexCommand cite
  1205. key "Leek2007"
  1206. literal "false"
  1207. \end_inset
  1208. .
  1209. Since the final batch effects are estimated from the full data, moderate
  1210. correlations between the batch effects and effects of interest are allowed,
  1211. which gives SVA much more freedom to estimate the true extent of the batch
  1212. effects compared to simple residual SVD.
  1213. Once the surrogate variables are estimated, they can be included as coefficient
  1214. s in the linear model in a similar fashion to known batch effects in order
  1215. to subtract out their effects on each feature's abundance.
  1216. \end_layout
  1217. \begin_layout Subsubsection
  1218. Factor analysis: PCA, MDS, MOFA
  1219. \end_layout
  1220. \begin_layout Standard
  1221. \begin_inset Flex TODO Note (inline)
  1222. status open
  1223. \begin_layout Plain Layout
  1224. Not sure if this merits a subsection here.
  1225. \end_layout
  1226. \end_inset
  1227. \end_layout
  1228. \begin_layout Itemize
  1229. Batch-corrected PCA is informative, but careful application is required
  1230. to avoid bias
  1231. \end_layout
  1232. \begin_layout Section
  1233. Innovation
  1234. \end_layout
  1235. \begin_layout Standard
  1236. \begin_inset Flex TODO Note (inline)
  1237. status open
  1238. \begin_layout Plain Layout
  1239. Is this entire section redundant with the Approach sections of each chapter?
  1240. I'm not really sure what to write here.
  1241. \end_layout
  1242. \end_inset
  1243. \end_layout
  1244. \begin_layout Subsection
  1245. MSC infusion to improve transplant outcomes (prevent/delay rejection)
  1246. \end_layout
  1247. \begin_layout Standard
  1248. \begin_inset Flex TODO Note (inline)
  1249. status open
  1250. \begin_layout Plain Layout
  1251. Do I still talk about this? It's the motivation for chapter 4, but I don't
  1252. actually present any work related to MSCs.
  1253. \end_layout
  1254. \end_inset
  1255. \end_layout
  1256. \begin_layout Itemize
  1257. Demonstrated in mice, but not yet in primates
  1258. \end_layout
  1259. \begin_layout Itemize
  1260. Mechanism currently unknown, but MSC are known to be immune modulatory
  1261. \end_layout
  1262. \begin_layout Itemize
  1263. Characterize MSC response to interferon gamma
  1264. \end_layout
  1265. \begin_layout Itemize
  1266. IFN-g is thought to stimulate their function
  1267. \end_layout
  1268. \begin_layout Itemize
  1269. Test IFN-g treated MSC infusion as a therapy to delay graft rejection in
  1270. cynomolgus monkeys
  1271. \end_layout
  1272. \begin_layout Itemize
  1273. Monitor animals post-transplant using blood RNA-seq at serial time points
  1274. \end_layout
  1275. \begin_layout Subsection
  1276. Investigate dynamics of histone marks in CD4 T-cell activation and memory
  1277. \end_layout
  1278. \begin_layout Itemize
  1279. Previous studies have looked at single snapshots of histone marks
  1280. \end_layout
  1281. \begin_layout Itemize
  1282. Instead, look at changes in histone marks across activation and memory
  1283. \end_layout
  1284. \begin_layout Subsection
  1285. High-throughput sequencing and microarray technologies
  1286. \end_layout
  1287. \begin_layout Itemize
  1288. Powerful methods for assaying gene expression and epigenetics across entire
  1289. genomes
  1290. \end_layout
  1291. \begin_layout Itemize
  1292. Proper analysis requires finding and exploiting systematic genome-wide trends
  1293. \end_layout
  1294. \begin_layout Chapter
  1295. Reproducible genome-wide epigenetic analysis of H3K4 and H3K27 methylation
  1296. in naive and memory CD4 T-cell activation
  1297. \end_layout
  1298. \begin_layout Standard
  1299. \begin_inset Flex TODO Note (inline)
  1300. status open
  1301. \begin_layout Plain Layout
  1302. Chapter author list: Me, Sarah, Dan
  1303. \end_layout
  1304. \end_inset
  1305. \end_layout
  1306. \begin_layout Standard
  1307. \begin_inset Flex TODO Note (inline)
  1308. status open
  1309. \begin_layout Plain Layout
  1310. Need better section titles throughout the entire chapter
  1311. \end_layout
  1312. \end_inset
  1313. \end_layout
  1314. \begin_layout Section
  1315. Approach
  1316. \end_layout
  1317. \begin_layout Standard
  1318. \begin_inset Flex TODO Note (inline)
  1319. status open
  1320. \begin_layout Plain Layout
  1321. Check on the exact correct way to write
  1322. \begin_inset Quotes eld
  1323. \end_inset
  1324. CD4 T-cell
  1325. \begin_inset Quotes erd
  1326. \end_inset
  1327. .
  1328. I think there might be a plus sign somewhere in there now? Also, maybe
  1329. figure out a reasonable way to abbreviate
  1330. \begin_inset Quotes eld
  1331. \end_inset
  1332. naive CD4 T-cells
  1333. \begin_inset Quotes erd
  1334. \end_inset
  1335. and
  1336. \begin_inset Quotes eld
  1337. \end_inset
  1338. memory CD4 T-cells
  1339. \begin_inset Quotes erd
  1340. \end_inset
  1341. .
  1342. \end_layout
  1343. \end_inset
  1344. \end_layout
  1345. \begin_layout Standard
  1346. \begin_inset Flex TODO Note (inline)
  1347. status open
  1348. \begin_layout Plain Layout
  1349. Is it ok to just copy a bunch of citations from the intros to Sarah's papers?
  1350. That feels like cheating somehow.
  1351. \end_layout
  1352. \end_inset
  1353. \end_layout
  1354. \begin_layout Standard
  1355. CD4 T-cells are central to all adaptive immune responses, as well as immune
  1356. memory [CITE?].
  1357. After an infection is cleared, a subset of the naive CD4 T-cells that responded
  1358. to that infection differentiate into memory CD4 T-cells, which are responsible
  1359. for responding to the same pathogen in the future.
  1360. Memory CD4 T-cells are functionally distinct, able to respond to an infection
  1361. more quickly and without the co-stimulation required by naive CD4 T-cells.
  1362. However, the molecular mechanisms underlying this functional distinction
  1363. are not well-understood.
  1364. Epigenetic regulation via histone modification is thought to play an important
  1365. role, but while many studies have looked at static snapshots of histone
  1366. methylation in T-cells, few studies have looked at the dynamics of histone
  1367. regulation after T-cell activation, nor the differences in histone methylation
  1368. between naive and memory T-cells.
  1369. H3K4me2, H3K4me3 and H3K27me3 are three histone marks thought to be major
  1370. epigenetic regulators of gene expression.
  1371. The goal of the present study is to investigate the role of these histone
  1372. marks in CD4 T-cell activation kinetics and memory differentiation.
  1373. In static snapshots, H3K4me2 and H3K4me3 are often observed in the promoters
  1374. of highly transcribed genes, while H3K27me3 is more often observed in promoters
  1375. of inactive genes with little to no transcription occurring.
  1376. As a result, the two H3K4 marks have been characterized as
  1377. \begin_inset Quotes eld
  1378. \end_inset
  1379. activating
  1380. \begin_inset Quotes erd
  1381. \end_inset
  1382. marks, while H3K27me3 has been characterized as
  1383. \begin_inset Quotes eld
  1384. \end_inset
  1385. deactivating
  1386. \begin_inset Quotes erd
  1387. \end_inset
  1388. .
  1389. Despite these characterizations, the actual causal relationship between
  1390. these histone modifications and gene transcription is complex and likely
  1391. involves positive and negative feedback loops between the two.
  1392. \end_layout
  1393. \begin_layout Standard
  1394. In order to investigate the relationship between gene expression and these
  1395. histone modifications in the context of naive and memory CD4 T-cell activation,
  1396. a previously published data set of combined RNA-seq and ChIP-seq data was
  1397. re-analyzed using up-to-date methods designed to address the specific analysis
  1398. challenges posed by this data set.
  1399. The data set contains naive and memory CD4 T-cell samples in a time course
  1400. before and after activation.
  1401. Like the original analysis, this analysis looks at the dynamics of these
  1402. marks histone marks and compare them to gene expression dynamics at the
  1403. same time points during activation, as well as compare them between naive
  1404. and memory cells, in hope of discovering evidence of new mechanistic details
  1405. in the interplay between them.
  1406. The original analysis of this data treated each gene promoter as a monolithic
  1407. unit and mostly assumed that ChIP-seq reads or peaks occurring anywhere
  1408. within a promoter were equivalent, regardless of where they occurred relative
  1409. to the gene structure.
  1410. For an initial analysis of the data, this was a necessary simplifying assumptio
  1411. n.
  1412. The current analysis aims to relax this assumption, first by directly analyzing
  1413. ChIP-seq peaks for differential modification, and second by taking a more
  1414. granular look at the ChIP-seq read coverage within promoter regions to
  1415. ask whether the location of histone modifications relative to the gene's
  1416. TSS is an important factor, as opposed to simple proximity.
  1417. \end_layout
  1418. \begin_layout Section
  1419. Methods
  1420. \end_layout
  1421. \begin_layout Standard
  1422. \begin_inset Flex TODO Note (inline)
  1423. status open
  1424. \begin_layout Plain Layout
  1425. Look up some more details from the papers (e.g.
  1426. activation method).
  1427. \end_layout
  1428. \end_inset
  1429. \end_layout
  1430. \begin_layout Standard
  1431. A reproducible workflow was written to analyze the raw ChIP-seq and RNA-seq
  1432. data from previous studies
  1433. \begin_inset CommandInset citation
  1434. LatexCommand cite
  1435. key "gh-cd4-csaw,LaMere2016,LaMere2017"
  1436. literal "true"
  1437. \end_inset
  1438. .
  1439. Briefly, this data consists of RNA-seq and ChIP-seq from CD4 T-cells cultured
  1440. from 4 donors.
  1441. From each donor, naive and memory CD4 T-cells were isolated separately.
  1442. Then cultures of both cells were activated [how?], and samples were taken
  1443. at 4 time points: Day 0 (pre-activation), Day 1 (early activation), Day
  1444. 5 (peak activation), and Day 14 (post-activation).
  1445. For each combination of cell type and time point, RNA was isolated and
  1446. sequenced, and ChIP-seq was performed for each of 3 histone marks: H3K4me2,
  1447. H3K4me3, and H3K27me3.
  1448. The ChIP-seq input DNA was also sequenced for each sample.
  1449. The result was 32 samples for each assay.
  1450. \end_layout
  1451. \begin_layout Subsection
  1452. RNA-seq differential expression analysis
  1453. \end_layout
  1454. \begin_layout Standard
  1455. \begin_inset Note Note
  1456. status collapsed
  1457. \begin_layout Plain Layout
  1458. \begin_inset Float figure
  1459. wide false
  1460. sideways false
  1461. status open
  1462. \begin_layout Plain Layout
  1463. \align center
  1464. \begin_inset Float figure
  1465. wide false
  1466. sideways false
  1467. status collapsed
  1468. \begin_layout Plain Layout
  1469. \align center
  1470. \begin_inset Graphics
  1471. filename graphics/CD4-csaw/rnaseq-compare/ensmebl-vs-entrez-star-CROP.png
  1472. lyxscale 25
  1473. width 35col%
  1474. groupId rna-comp-subfig
  1475. \end_inset
  1476. \end_layout
  1477. \begin_layout Plain Layout
  1478. \begin_inset Caption Standard
  1479. \begin_layout Plain Layout
  1480. STAR quantification, Entrez vs Ensembl gene annotation
  1481. \end_layout
  1482. \end_inset
  1483. \end_layout
  1484. \end_inset
  1485. \begin_inset space \qquad{}
  1486. \end_inset
  1487. \begin_inset Float figure
  1488. wide false
  1489. sideways false
  1490. status collapsed
  1491. \begin_layout Plain Layout
  1492. \align center
  1493. \begin_inset Graphics
  1494. filename graphics/CD4-csaw/rnaseq-compare/ensmebl-vs-entrez-shoal-CROP.png
  1495. lyxscale 25
  1496. width 35col%
  1497. groupId rna-comp-subfig
  1498. \end_inset
  1499. \end_layout
  1500. \begin_layout Plain Layout
  1501. \begin_inset Caption Standard
  1502. \begin_layout Plain Layout
  1503. Salmon+Shoal quantification, Entrez vs Ensembl gene annotation
  1504. \end_layout
  1505. \end_inset
  1506. \end_layout
  1507. \end_inset
  1508. \end_layout
  1509. \begin_layout Plain Layout
  1510. \align center
  1511. \begin_inset Float figure
  1512. wide false
  1513. sideways false
  1514. status collapsed
  1515. \begin_layout Plain Layout
  1516. \align center
  1517. \begin_inset Graphics
  1518. filename graphics/CD4-csaw/rnaseq-compare/star-vs-hisat2-CROP.png
  1519. lyxscale 25
  1520. width 35col%
  1521. groupId rna-comp-subfig
  1522. \end_inset
  1523. \end_layout
  1524. \begin_layout Plain Layout
  1525. \begin_inset Caption Standard
  1526. \begin_layout Plain Layout
  1527. STAR vs HISAT2 quantification, Ensembl gene annotation
  1528. \end_layout
  1529. \end_inset
  1530. \end_layout
  1531. \end_inset
  1532. \begin_inset space \qquad{}
  1533. \end_inset
  1534. \begin_inset Float figure
  1535. wide false
  1536. sideways false
  1537. status collapsed
  1538. \begin_layout Plain Layout
  1539. \align center
  1540. \begin_inset Graphics
  1541. filename graphics/CD4-csaw/rnaseq-compare/star-vs-salmon-CROP.png
  1542. lyxscale 25
  1543. width 35col%
  1544. groupId rna-comp-subfig
  1545. \end_inset
  1546. \end_layout
  1547. \begin_layout Plain Layout
  1548. \begin_inset Caption Standard
  1549. \begin_layout Plain Layout
  1550. Salmon vs STAR quantification, Ensembl gene annotation
  1551. \end_layout
  1552. \end_inset
  1553. \end_layout
  1554. \end_inset
  1555. \end_layout
  1556. \begin_layout Plain Layout
  1557. \align center
  1558. \begin_inset Float figure
  1559. wide false
  1560. sideways false
  1561. status collapsed
  1562. \begin_layout Plain Layout
  1563. \align center
  1564. \begin_inset Graphics
  1565. filename graphics/CD4-csaw/rnaseq-compare/salmon-vs-kallisto-CROP.png
  1566. lyxscale 25
  1567. width 35col%
  1568. groupId rna-comp-subfig
  1569. \end_inset
  1570. \end_layout
  1571. \begin_layout Plain Layout
  1572. \begin_inset Caption Standard
  1573. \begin_layout Plain Layout
  1574. Salmon vs Kallisto quantification, Ensembl gene annotation
  1575. \end_layout
  1576. \end_inset
  1577. \end_layout
  1578. \end_inset
  1579. \begin_inset space \qquad{}
  1580. \end_inset
  1581. \begin_inset Float figure
  1582. wide false
  1583. sideways false
  1584. status collapsed
  1585. \begin_layout Plain Layout
  1586. \align center
  1587. \begin_inset Graphics
  1588. filename graphics/CD4-csaw/rnaseq-compare/salmon-vs-shoal-CROP.png
  1589. lyxscale 25
  1590. width 35col%
  1591. groupId rna-comp-subfig
  1592. \end_inset
  1593. \end_layout
  1594. \begin_layout Plain Layout
  1595. \begin_inset Caption Standard
  1596. \begin_layout Plain Layout
  1597. Salmon+Shoal vs Salmon alone, Ensembl gene annotation
  1598. \end_layout
  1599. \end_inset
  1600. \end_layout
  1601. \end_inset
  1602. \end_layout
  1603. \begin_layout Plain Layout
  1604. \begin_inset Caption Standard
  1605. \begin_layout Plain Layout
  1606. \begin_inset CommandInset label
  1607. LatexCommand label
  1608. name "fig:RNA-norm-comp"
  1609. \end_inset
  1610. RNA-seq comparisons
  1611. \end_layout
  1612. \end_inset
  1613. \end_layout
  1614. \end_inset
  1615. \end_layout
  1616. \end_inset
  1617. \end_layout
  1618. \begin_layout Standard
  1619. Sequence reads were retrieved from the Sequence Read Archive (SRA)
  1620. \begin_inset CommandInset citation
  1621. LatexCommand cite
  1622. key "Leinonen2011"
  1623. literal "false"
  1624. \end_inset
  1625. .
  1626. Five different alignment and quantification methods were tested for the
  1627. RNA-seq data
  1628. \begin_inset CommandInset citation
  1629. LatexCommand cite
  1630. key "Dobin2012,Kim2019,Liao2014,Pimentel2016,Patro2017,gh-shoal,gh-hg38-ref"
  1631. literal "false"
  1632. \end_inset
  1633. .
  1634. Each quantification was tested with both Ensembl transcripts and UCSC known
  1635. gene annotations [CITE? Also which versions of each?].
  1636. Comparisons of downstream results from each combination of quantification
  1637. method and reference revealed that all quantifications gave broadly similar
  1638. results for most genes, so shoal with the Ensembl annotation was chosen
  1639. as the method theoretically most likely to partially mitigate some of the
  1640. batch effect in the data.
  1641. \end_layout
  1642. \begin_layout Standard
  1643. \begin_inset Float figure
  1644. wide false
  1645. sideways false
  1646. status collapsed
  1647. \begin_layout Plain Layout
  1648. \align center
  1649. \begin_inset Float figure
  1650. wide false
  1651. sideways false
  1652. status open
  1653. \begin_layout Plain Layout
  1654. \align center
  1655. \begin_inset Graphics
  1656. filename graphics/CD4-csaw/RNA-seq/PCA-no-batchsub-CROP.png
  1657. lyxscale 25
  1658. width 75col%
  1659. groupId rna-pca-subfig
  1660. \end_inset
  1661. \end_layout
  1662. \begin_layout Plain Layout
  1663. \begin_inset Caption Standard
  1664. \begin_layout Plain Layout
  1665. \series bold
  1666. \begin_inset CommandInset label
  1667. LatexCommand label
  1668. name "fig:RNA-PCA-no-batchsub"
  1669. \end_inset
  1670. Before batch correction
  1671. \end_layout
  1672. \end_inset
  1673. \end_layout
  1674. \end_inset
  1675. \end_layout
  1676. \begin_layout Plain Layout
  1677. \align center
  1678. \begin_inset Float figure
  1679. wide false
  1680. sideways false
  1681. status open
  1682. \begin_layout Plain Layout
  1683. \align center
  1684. \begin_inset Graphics
  1685. filename graphics/CD4-csaw/RNA-seq/PCA-combat-batchsub-CROP.png
  1686. lyxscale 25
  1687. width 75col%
  1688. groupId rna-pca-subfig
  1689. \end_inset
  1690. \end_layout
  1691. \begin_layout Plain Layout
  1692. \begin_inset Caption Standard
  1693. \begin_layout Plain Layout
  1694. \series bold
  1695. \begin_inset CommandInset label
  1696. LatexCommand label
  1697. name "fig:RNA-PCA-ComBat-batchsub"
  1698. \end_inset
  1699. After batch correction with ComBat
  1700. \end_layout
  1701. \end_inset
  1702. \end_layout
  1703. \end_inset
  1704. \end_layout
  1705. \begin_layout Plain Layout
  1706. \begin_inset Caption Standard
  1707. \begin_layout Plain Layout
  1708. \series bold
  1709. \begin_inset CommandInset label
  1710. LatexCommand label
  1711. name "fig:RNA-PCA"
  1712. \end_inset
  1713. PCoA plots of RNA-seq data showing effect of batch correction.
  1714. \end_layout
  1715. \end_inset
  1716. \end_layout
  1717. \end_inset
  1718. \end_layout
  1719. \begin_layout Standard
  1720. Due to an error in sample preparation, the RNA from the samples for days
  1721. 0 and 5 were sequenced using a different kit than those for days 1 and
  1722. 14.
  1723. This induced a substantial batch effect in the data due to differences
  1724. in sequencing biases between the two kits, and this batch effect is unfortunate
  1725. ly confounded with the time point variable (Figure
  1726. \begin_inset CommandInset ref
  1727. LatexCommand ref
  1728. reference "fig:RNA-PCA-no-batchsub"
  1729. plural "false"
  1730. caps "false"
  1731. noprefix "false"
  1732. \end_inset
  1733. ).
  1734. To do the best possible analysis with this data, this batch effect was
  1735. subtracted out from the data using ComBat
  1736. \begin_inset CommandInset citation
  1737. LatexCommand cite
  1738. key "Johnson2007"
  1739. literal "false"
  1740. \end_inset
  1741. , ignoring the time point variable due to the confounding with the batch
  1742. variable.
  1743. The result is a marked improvement, but the unavoidable confounding with
  1744. time point means that certain real patterns of gene expression will be
  1745. indistinguishable from the batch effect and subtracted out as a result.
  1746. Specifically, any
  1747. \begin_inset Quotes eld
  1748. \end_inset
  1749. zig-zag
  1750. \begin_inset Quotes erd
  1751. \end_inset
  1752. pattern, such as a gene whose expression goes up on day 1, down on day
  1753. 5, and back up again on day 14, will be attenuated or eliminated entirely.
  1754. In the context of a T-cell activation time course, it is unlikely that
  1755. many genes of interest will follow such an expression pattern, so this
  1756. loss was deemed an acceptable cost for correcting the batch effect.
  1757. \end_layout
  1758. \begin_layout Standard
  1759. \begin_inset Float figure
  1760. wide false
  1761. sideways false
  1762. status collapsed
  1763. \begin_layout Plain Layout
  1764. \begin_inset Flex TODO Note (inline)
  1765. status open
  1766. \begin_layout Plain Layout
  1767. Just take the top row
  1768. \end_layout
  1769. \end_inset
  1770. \end_layout
  1771. \begin_layout Plain Layout
  1772. \align center
  1773. \begin_inset Graphics
  1774. filename graphics/CD4-csaw/RNA-seq/weights-vs-covars-CROP.png
  1775. lyxscale 25
  1776. width 100col%
  1777. groupId colwidth-raster
  1778. \end_inset
  1779. \end_layout
  1780. \begin_layout Plain Layout
  1781. \begin_inset Caption Standard
  1782. \begin_layout Plain Layout
  1783. \series bold
  1784. \begin_inset CommandInset label
  1785. LatexCommand label
  1786. name "fig:RNA-seq-weights-vs-covars"
  1787. \end_inset
  1788. RNA-seq sample weights, grouped by experimental and technical covariates.
  1789. \end_layout
  1790. \end_inset
  1791. \end_layout
  1792. \end_inset
  1793. \end_layout
  1794. \begin_layout Standard
  1795. However, removing the systematic component of the batch effect still leaves
  1796. the noise component.
  1797. The gene quantifications from the first batch are substantially noisier
  1798. than those in the second batch.
  1799. This analysis corrected for this by using
  1800. \begin_inset Flex Code
  1801. status open
  1802. \begin_layout Plain Layout
  1803. limma
  1804. \end_layout
  1805. \end_inset
  1806. 's sample weighting method to assign lower weights to the noisy samples
  1807. of batch 1
  1808. \begin_inset CommandInset citation
  1809. LatexCommand cite
  1810. key "Ritchie2006,Liu2015"
  1811. literal "false"
  1812. \end_inset
  1813. .
  1814. The resulting analysis gives an accurate assessment of statistical significance
  1815. for all comparisons, which unfortunately means a loss of statistical power
  1816. for comparisons involving samples in batch 1.
  1817. \end_layout
  1818. \begin_layout Standard
  1819. In any case, the RNA-seq counts were first normalized using trimmed mean
  1820. of M-values
  1821. \begin_inset CommandInset citation
  1822. LatexCommand cite
  1823. key "Robinson2010"
  1824. literal "false"
  1825. \end_inset
  1826. , converted to normalized logCPM with quality weights using
  1827. \begin_inset Flex Code
  1828. status open
  1829. \begin_layout Plain Layout
  1830. voomWithQualityWeights
  1831. \end_layout
  1832. \end_inset
  1833. \begin_inset CommandInset citation
  1834. LatexCommand cite
  1835. key "Law2013,Liu2015"
  1836. literal "false"
  1837. \end_inset
  1838. , and batch-corrected at this point using ComBat.
  1839. A linear model was fit to the batch-corrected, quality-weighted data for
  1840. each gene using
  1841. \begin_inset Flex Code
  1842. status open
  1843. \begin_layout Plain Layout
  1844. limma
  1845. \end_layout
  1846. \end_inset
  1847. , and each gene was tested for differential expression using
  1848. \begin_inset Flex Code
  1849. status open
  1850. \begin_layout Plain Layout
  1851. limma
  1852. \end_layout
  1853. \end_inset
  1854. 's empirical Bayes moderated
  1855. \begin_inset Formula $t$
  1856. \end_inset
  1857. -test
  1858. \begin_inset CommandInset citation
  1859. LatexCommand cite
  1860. key "Smyth2005,Law2013,Phipson2013"
  1861. literal "false"
  1862. \end_inset
  1863. .
  1864. \end_layout
  1865. \begin_layout Subsection
  1866. ChIP-seq differential modification analysis
  1867. \end_layout
  1868. \begin_layout Standard
  1869. \begin_inset Float figure
  1870. wide false
  1871. sideways false
  1872. status collapsed
  1873. \begin_layout Plain Layout
  1874. \align center
  1875. \begin_inset Float figure
  1876. wide false
  1877. sideways false
  1878. status open
  1879. \begin_layout Plain Layout
  1880. \align center
  1881. \begin_inset Graphics
  1882. filename graphics/CD4-csaw/csaw/CCF-plots-noBL-PAGE2-CROP.pdf
  1883. lyxscale 50
  1884. height 40theight%
  1885. groupId ccf-subfig
  1886. \end_inset
  1887. \end_layout
  1888. \begin_layout Plain Layout
  1889. \begin_inset Caption Standard
  1890. \begin_layout Plain Layout
  1891. \series bold
  1892. \begin_inset CommandInset label
  1893. LatexCommand label
  1894. name "fig:CCF-without-blacklist"
  1895. \end_inset
  1896. Cross-correlation plots without removing blacklisted reads.
  1897. \series default
  1898. Without blacklisting, many artifactual peaks are visible in the cross-correlatio
  1899. ns of the ChIP-seq samples, and the peak at the true fragment size (147
  1900. \begin_inset space ~
  1901. \end_inset
  1902. bp) is frequently overshadowed by the artifactual peak at the read length
  1903. (100
  1904. \begin_inset space ~
  1905. \end_inset
  1906. bp).
  1907. \end_layout
  1908. \end_inset
  1909. \end_layout
  1910. \end_inset
  1911. \end_layout
  1912. \begin_layout Plain Layout
  1913. \align center
  1914. \begin_inset Float figure
  1915. wide false
  1916. sideways false
  1917. status open
  1918. \begin_layout Plain Layout
  1919. \align center
  1920. \begin_inset Graphics
  1921. filename graphics/CD4-csaw/csaw/CCF-plots-PAGE2-CROP.pdf
  1922. lyxscale 50
  1923. height 40theight%
  1924. groupId ccf-subfig
  1925. \end_inset
  1926. \end_layout
  1927. \begin_layout Plain Layout
  1928. \begin_inset Caption Standard
  1929. \begin_layout Plain Layout
  1930. \series bold
  1931. \begin_inset CommandInset label
  1932. LatexCommand label
  1933. name "fig:CCF-with-blacklist"
  1934. \end_inset
  1935. Cross-correlation plots with blacklisted reads removed.
  1936. \series default
  1937. After blacklisting, most ChIP-seq samples have clean-looking periodic cross-cor
  1938. relation plots, with the largest peak around 147
  1939. \begin_inset space ~
  1940. \end_inset
  1941. bp, the expected size for a fragment of DNA from a single nucleosome, and
  1942. little to no peak at the read length, 100
  1943. \begin_inset space ~
  1944. \end_inset
  1945. bp.
  1946. \end_layout
  1947. \end_inset
  1948. \end_layout
  1949. \end_inset
  1950. \end_layout
  1951. \begin_layout Plain Layout
  1952. \begin_inset Caption Standard
  1953. \begin_layout Plain Layout
  1954. \series bold
  1955. \begin_inset CommandInset label
  1956. LatexCommand label
  1957. name "fig:CCF-master"
  1958. \end_inset
  1959. Strand cross-correlation plots for ChIP-seq data, before and after blacklisting.
  1960. \end_layout
  1961. \end_inset
  1962. \end_layout
  1963. \end_inset
  1964. \end_layout
  1965. \begin_layout Standard
  1966. \begin_inset Note Note
  1967. status open
  1968. \begin_layout Plain Layout
  1969. \begin_inset Float figure
  1970. wide false
  1971. sideways false
  1972. status collapsed
  1973. \begin_layout Plain Layout
  1974. \align center
  1975. \begin_inset Graphics
  1976. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-sample-MAplot-bins-CROP.png
  1977. lyxscale 25
  1978. width 100col%
  1979. groupId colwidth-raster
  1980. \end_inset
  1981. \end_layout
  1982. \begin_layout Plain Layout
  1983. \begin_inset Caption Standard
  1984. \begin_layout Plain Layout
  1985. \series bold
  1986. \begin_inset CommandInset label
  1987. LatexCommand label
  1988. name "fig:MA-plot-bigbins"
  1989. \end_inset
  1990. MA plot of H3K4me2 read counts in 10kb bins for two arbitrary samples.
  1991. \end_layout
  1992. \end_inset
  1993. \end_layout
  1994. \end_inset
  1995. \end_layout
  1996. \end_inset
  1997. \end_layout
  1998. \begin_layout Standard
  1999. \begin_inset Flex TODO Note (inline)
  2000. status open
  2001. \begin_layout Plain Layout
  2002. Be consistent about use of
  2003. \begin_inset Quotes eld
  2004. \end_inset
  2005. differential binding
  2006. \begin_inset Quotes erd
  2007. \end_inset
  2008. vs
  2009. \begin_inset Quotes eld
  2010. \end_inset
  2011. differential modification
  2012. \begin_inset Quotes erd
  2013. \end_inset
  2014. throughout this chapter.
  2015. The latter is usually preferred.
  2016. \end_layout
  2017. \end_inset
  2018. \end_layout
  2019. \begin_layout Standard
  2020. Sequence reads were retrieved from SRA
  2021. \begin_inset CommandInset citation
  2022. LatexCommand cite
  2023. key "Leinonen2011"
  2024. literal "false"
  2025. \end_inset
  2026. .
  2027. ChIP-seq (and input) reads were aligned to GRCh38 genome assembly using
  2028. Bowtie 2
  2029. \begin_inset CommandInset citation
  2030. LatexCommand cite
  2031. key "Langmead2012,Schneider2017,gh-hg38-ref"
  2032. literal "false"
  2033. \end_inset
  2034. .
  2035. Artifact regions were annotated using a custom implementation of the GreyListCh
  2036. IP algorithm, and these
  2037. \begin_inset Quotes eld
  2038. \end_inset
  2039. greylists
  2040. \begin_inset Quotes erd
  2041. \end_inset
  2042. were merged with the published ENCODE blacklists
  2043. \begin_inset CommandInset citation
  2044. LatexCommand cite
  2045. key "greylistchip,Amemiya2019,Dunham2012,gh-cd4-csaw"
  2046. literal "false"
  2047. \end_inset
  2048. .
  2049. Any read or called peak overlapping one of these regions was regarded as
  2050. artifactual and excluded from downstream analyses.
  2051. Figure
  2052. \begin_inset CommandInset ref
  2053. LatexCommand ref
  2054. reference "fig:CCF-master"
  2055. plural "false"
  2056. caps "false"
  2057. noprefix "false"
  2058. \end_inset
  2059. shows the improvement after blacklisting in the strand cross-correlation
  2060. plots, a common quality control plot for ChIP-seq data.
  2061. Peaks were called using epic, an implementation of the SICER algorithm
  2062. \begin_inset CommandInset citation
  2063. LatexCommand cite
  2064. key "Zang2009,gh-epic"
  2065. literal "false"
  2066. \end_inset
  2067. .
  2068. Peaks were also called separately using MACS, but MACS was determined to
  2069. be a poor fit for the data, and these peak calls are not used in any further
  2070. analyses
  2071. \begin_inset CommandInset citation
  2072. LatexCommand cite
  2073. key "Zhang2008"
  2074. literal "false"
  2075. \end_inset
  2076. .
  2077. Consensus peaks were determined by applying the irreproducible discovery
  2078. rate (IDR) framework
  2079. \begin_inset CommandInset citation
  2080. LatexCommand cite
  2081. key "Li2006,gh-idr"
  2082. literal "false"
  2083. \end_inset
  2084. to find peaks consistently called in the same locations across all 4 donors.
  2085. \end_layout
  2086. \begin_layout Standard
  2087. Promoters were defined by computing the distance from each annotated TSS
  2088. to the nearest called peak and examining the distribution of distances,
  2089. observing that peaks for each histone mark were enriched within a certain
  2090. distance of the TSS.
  2091. For H3K4me2 and H3K4me3, this distance was about 1
  2092. \begin_inset space ~
  2093. \end_inset
  2094. kb, while for H3K27me3 it was 2.5
  2095. \begin_inset space ~
  2096. \end_inset
  2097. kb.
  2098. These distances were used as an
  2099. \begin_inset Quotes eld
  2100. \end_inset
  2101. effective promoter radius
  2102. \begin_inset Quotes erd
  2103. \end_inset
  2104. for each mark.
  2105. The promoter region for each gene was defined as the region of the genome
  2106. within this distance upstream or downstream of the gene's annotated TSS.
  2107. For genes with multiple annotated TSSs, a promoter region was defined for
  2108. each TSS individually, and any promoters that overlapped (due to multiple
  2109. TSSs being closer than 2 times the radius) were merged into one large promoter.
  2110. Thus, some genes had multiple promoters defined, which were each analyzed
  2111. separately for differential modification.
  2112. \end_layout
  2113. \begin_layout Standard
  2114. \begin_inset Float figure
  2115. wide false
  2116. sideways false
  2117. status collapsed
  2118. \begin_layout Plain Layout
  2119. \begin_inset Float figure
  2120. wide false
  2121. sideways false
  2122. status collapsed
  2123. \begin_layout Plain Layout
  2124. \align center
  2125. \begin_inset Graphics
  2126. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-PCA-raw-CROP.png
  2127. lyxscale 25
  2128. width 45col%
  2129. groupId pcoa-subfig
  2130. \end_inset
  2131. \end_layout
  2132. \begin_layout Plain Layout
  2133. \begin_inset Caption Standard
  2134. \begin_layout Plain Layout
  2135. \series bold
  2136. \begin_inset CommandInset label
  2137. LatexCommand label
  2138. name "fig:PCoA-H3K4me2-bad"
  2139. \end_inset
  2140. H3K4me2, no correction
  2141. \end_layout
  2142. \end_inset
  2143. \end_layout
  2144. \end_inset
  2145. \begin_inset space \hfill{}
  2146. \end_inset
  2147. \begin_inset Float figure
  2148. wide false
  2149. sideways false
  2150. status collapsed
  2151. \begin_layout Plain Layout
  2152. \align center
  2153. \begin_inset Graphics
  2154. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-PCA-SVsub-CROP.png
  2155. lyxscale 25
  2156. width 45col%
  2157. groupId pcoa-subfig
  2158. \end_inset
  2159. \end_layout
  2160. \begin_layout Plain Layout
  2161. \begin_inset Caption Standard
  2162. \begin_layout Plain Layout
  2163. \series bold
  2164. \begin_inset CommandInset label
  2165. LatexCommand label
  2166. name "fig:PCoA-H3K4me2-good"
  2167. \end_inset
  2168. H3K4me2, SVs subtracted
  2169. \end_layout
  2170. \end_inset
  2171. \end_layout
  2172. \end_inset
  2173. \end_layout
  2174. \begin_layout Plain Layout
  2175. \begin_inset Float figure
  2176. wide false
  2177. sideways false
  2178. status collapsed
  2179. \begin_layout Plain Layout
  2180. \align center
  2181. \begin_inset Graphics
  2182. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-PCA-raw-CROP.png
  2183. lyxscale 25
  2184. width 45col%
  2185. groupId pcoa-subfig
  2186. \end_inset
  2187. \end_layout
  2188. \begin_layout Plain Layout
  2189. \begin_inset Caption Standard
  2190. \begin_layout Plain Layout
  2191. \series bold
  2192. \begin_inset CommandInset label
  2193. LatexCommand label
  2194. name "fig:PCoA-H3K4me3-bad"
  2195. \end_inset
  2196. H3K4me3, no correction
  2197. \end_layout
  2198. \end_inset
  2199. \end_layout
  2200. \end_inset
  2201. \begin_inset space \hfill{}
  2202. \end_inset
  2203. \begin_inset Float figure
  2204. wide false
  2205. sideways false
  2206. status collapsed
  2207. \begin_layout Plain Layout
  2208. \align center
  2209. \begin_inset Graphics
  2210. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-PCA-SVsub-CROP.png
  2211. lyxscale 25
  2212. width 45col%
  2213. groupId pcoa-subfig
  2214. \end_inset
  2215. \end_layout
  2216. \begin_layout Plain Layout
  2217. \begin_inset Caption Standard
  2218. \begin_layout Plain Layout
  2219. \series bold
  2220. \begin_inset CommandInset label
  2221. LatexCommand label
  2222. name "fig:PCoA-H3K4me3-good"
  2223. \end_inset
  2224. H3K4me3, SVs subtracted
  2225. \end_layout
  2226. \end_inset
  2227. \end_layout
  2228. \end_inset
  2229. \end_layout
  2230. \begin_layout Plain Layout
  2231. \begin_inset Float figure
  2232. wide false
  2233. sideways false
  2234. status collapsed
  2235. \begin_layout Plain Layout
  2236. \align center
  2237. \begin_inset Graphics
  2238. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-PCA-raw-CROP.png
  2239. lyxscale 25
  2240. width 45col%
  2241. groupId pcoa-subfig
  2242. \end_inset
  2243. \end_layout
  2244. \begin_layout Plain Layout
  2245. \begin_inset Caption Standard
  2246. \begin_layout Plain Layout
  2247. \series bold
  2248. \begin_inset CommandInset label
  2249. LatexCommand label
  2250. name "fig:PCoA-H3K27me3-bad"
  2251. \end_inset
  2252. H3K27me3, no correction
  2253. \end_layout
  2254. \end_inset
  2255. \end_layout
  2256. \end_inset
  2257. \begin_inset space \hfill{}
  2258. \end_inset
  2259. \begin_inset Float figure
  2260. wide false
  2261. sideways false
  2262. status collapsed
  2263. \begin_layout Plain Layout
  2264. \align center
  2265. \begin_inset Graphics
  2266. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-PCA-SVsub-CROP.png
  2267. lyxscale 25
  2268. width 45col%
  2269. groupId pcoa-subfig
  2270. \end_inset
  2271. \end_layout
  2272. \begin_layout Plain Layout
  2273. \begin_inset Caption Standard
  2274. \begin_layout Plain Layout
  2275. \series bold
  2276. \begin_inset CommandInset label
  2277. LatexCommand label
  2278. name "fig:PCoA-H3K27me3-good"
  2279. \end_inset
  2280. H3K27me3, SVs subtracted
  2281. \end_layout
  2282. \end_inset
  2283. \end_layout
  2284. \end_inset
  2285. \end_layout
  2286. \begin_layout Plain Layout
  2287. \begin_inset Caption Standard
  2288. \begin_layout Plain Layout
  2289. \series bold
  2290. \begin_inset CommandInset label
  2291. LatexCommand label
  2292. name "fig:PCoA-ChIP"
  2293. \end_inset
  2294. PCoA plots of ChIP-seq sliding window data, before and after subtracting
  2295. surrogate variables (SVs).
  2296. \end_layout
  2297. \end_inset
  2298. \end_layout
  2299. \end_inset
  2300. \end_layout
  2301. \begin_layout Standard
  2302. Reads in promoters, peaks, and sliding windows across the genome were counted
  2303. and normalized using csaw and analyzed for differential modification using
  2304. \begin_inset Flex Code
  2305. status open
  2306. \begin_layout Plain Layout
  2307. edgeR
  2308. \end_layout
  2309. \end_inset
  2310. \begin_inset CommandInset citation
  2311. LatexCommand cite
  2312. key "Lun2014,Lun2015a,Lund2012,Phipson2016"
  2313. literal "false"
  2314. \end_inset
  2315. .
  2316. Unobserved confounding factors in the ChIP-seq data were corrected using
  2317. SVA
  2318. \begin_inset CommandInset citation
  2319. LatexCommand cite
  2320. key "Leek2007,Leek2014"
  2321. literal "false"
  2322. \end_inset
  2323. .
  2324. Principal coordinate plots of the promoter count data for each histone
  2325. mark before and after subtracting surrogate variable effects are shown
  2326. in Figure
  2327. \begin_inset CommandInset ref
  2328. LatexCommand ref
  2329. reference "fig:PCoA-ChIP"
  2330. plural "false"
  2331. caps "false"
  2332. noprefix "false"
  2333. \end_inset
  2334. .
  2335. \end_layout
  2336. \begin_layout Standard
  2337. To investigate whether the location of a peak within the promoter region
  2338. was important,
  2339. \begin_inset Quotes eld
  2340. \end_inset
  2341. relative coverage profiles
  2342. \begin_inset Quotes erd
  2343. \end_inset
  2344. were generated.
  2345. First, 500-bp sliding windows were tiled around each annotated TSS: one
  2346. window centered on the TSS itself, and 10 windows each upstream and downstream,
  2347. thus covering a 10.5-kb region centered on the TSS with 21 windows.
  2348. Reads in each window for each TSS were counted in each sample, and the
  2349. counts were normalized and converted to log CPM as in the differential
  2350. modification analysis.
  2351. Then, the logCPM values within each promoter were normalized to an average
  2352. of zero, such that each window's normalized abundance now represents the
  2353. relative read depth of that window compared to all other windows in the
  2354. same promoter.
  2355. The normalized abundance values for each window in a promoter are collectively
  2356. referred to as that promoter's
  2357. \begin_inset Quotes eld
  2358. \end_inset
  2359. relative coverage profile
  2360. \begin_inset Quotes erd
  2361. \end_inset
  2362. .
  2363. \end_layout
  2364. \begin_layout Subsection
  2365. MOFA recovers biologically relevant variation from blind analysis by correlating
  2366. across datasets
  2367. \end_layout
  2368. \begin_layout Standard
  2369. \begin_inset ERT
  2370. status open
  2371. \begin_layout Plain Layout
  2372. \backslash
  2373. afterpage{
  2374. \end_layout
  2375. \begin_layout Plain Layout
  2376. \backslash
  2377. begin{landscape}
  2378. \end_layout
  2379. \end_inset
  2380. \end_layout
  2381. \begin_layout Standard
  2382. \begin_inset Float figure
  2383. wide false
  2384. sideways false
  2385. status open
  2386. \begin_layout Plain Layout
  2387. \begin_inset Float figure
  2388. wide false
  2389. sideways false
  2390. status open
  2391. \begin_layout Plain Layout
  2392. \align center
  2393. \begin_inset Graphics
  2394. filename graphics/CD4-csaw/MOFA-varExplaiend-matrix-CROP.png
  2395. lyxscale 25
  2396. width 45col%
  2397. groupId mofa-subfig
  2398. \end_inset
  2399. \end_layout
  2400. \begin_layout Plain Layout
  2401. \begin_inset Caption Standard
  2402. \begin_layout Plain Layout
  2403. \series bold
  2404. \begin_inset CommandInset label
  2405. LatexCommand label
  2406. name "fig:mofa-varexplained"
  2407. \end_inset
  2408. Variance explained in each data set by each latent factor estimated by MOFA.
  2409. \series default
  2410. For each latent factor (LF) learned by MOFA, the variance explained by
  2411. that factor in each data set (
  2412. \begin_inset Quotes eld
  2413. \end_inset
  2414. view
  2415. \begin_inset Quotes erd
  2416. \end_inset
  2417. ) is shown by the shading of the cells in the lower section.
  2418. The upper section shows the total fraction of each data set's variance
  2419. that is explained by all LFs combined.
  2420. \end_layout
  2421. \end_inset
  2422. \end_layout
  2423. \end_inset
  2424. \begin_inset space \hfill{}
  2425. \end_inset
  2426. \begin_inset Float figure
  2427. wide false
  2428. sideways false
  2429. status open
  2430. \begin_layout Plain Layout
  2431. \align center
  2432. \begin_inset Graphics
  2433. filename graphics/CD4-csaw/MOFA-LF-scatter-CROP.png
  2434. lyxscale 25
  2435. width 45col%
  2436. groupId mofa-subfig
  2437. \end_inset
  2438. \end_layout
  2439. \begin_layout Plain Layout
  2440. \begin_inset Caption Standard
  2441. \begin_layout Plain Layout
  2442. \series bold
  2443. \begin_inset CommandInset label
  2444. LatexCommand label
  2445. name "fig:mofa-lf-scatter"
  2446. \end_inset
  2447. Scatter plots of specific pairs of MOFA latent factors.
  2448. \series default
  2449. LFs 1, 4, and 5 explain substantial variation in all data sets, so they
  2450. are plotted against each other in order to reveal patterns of variation
  2451. that are shared across all data sets.
  2452. \end_layout
  2453. \end_inset
  2454. \end_layout
  2455. \end_inset
  2456. \end_layout
  2457. \begin_layout Plain Layout
  2458. \begin_inset Caption Standard
  2459. \begin_layout Plain Layout
  2460. \series bold
  2461. \begin_inset CommandInset label
  2462. LatexCommand label
  2463. name "fig:MOFA-master"
  2464. \end_inset
  2465. MOFA latent factors separate technical confounders from
  2466. \end_layout
  2467. \end_inset
  2468. \end_layout
  2469. \end_inset
  2470. \end_layout
  2471. \begin_layout Standard
  2472. \begin_inset ERT
  2473. status open
  2474. \begin_layout Plain Layout
  2475. \backslash
  2476. end{landscape}
  2477. \end_layout
  2478. \begin_layout Plain Layout
  2479. }
  2480. \end_layout
  2481. \end_inset
  2482. \end_layout
  2483. \begin_layout Standard
  2484. MOFA was run on all the ChIP-seq windows overlapping consensus peaks for
  2485. each histone mark, as well as the RNA-seq data, in order to identify patterns
  2486. of coordinated variation across all data sets
  2487. \begin_inset CommandInset citation
  2488. LatexCommand cite
  2489. key "Argelaguet2018"
  2490. literal "false"
  2491. \end_inset
  2492. .
  2493. The results are summarized in Figure
  2494. \begin_inset CommandInset ref
  2495. LatexCommand ref
  2496. reference "fig:MOFA-master"
  2497. plural "false"
  2498. caps "false"
  2499. noprefix "false"
  2500. \end_inset
  2501. .
  2502. Latent factors 1, 4, and 5 were determined to explain the most variation
  2503. consistently across all data sets (Figure
  2504. \begin_inset CommandInset ref
  2505. LatexCommand ref
  2506. reference "fig:mofa-varexplained"
  2507. plural "false"
  2508. caps "false"
  2509. noprefix "false"
  2510. \end_inset
  2511. ), and scatter plots of these factors show that they also correlate best
  2512. with the experimental factors (Figure
  2513. \begin_inset CommandInset ref
  2514. LatexCommand ref
  2515. reference "fig:mofa-lf-scatter"
  2516. plural "false"
  2517. caps "false"
  2518. noprefix "false"
  2519. \end_inset
  2520. ).
  2521. Latent factor 2 captures the batch effect in the RNA-seq data.
  2522. Removing the effect of LF2 using MOFA theoretically yields a batch correction
  2523. that does not depend on knowing the experimental factors.
  2524. When this was attempted, the resulting batch correction was comparable
  2525. to ComBat (see Figure
  2526. \begin_inset CommandInset ref
  2527. LatexCommand ref
  2528. reference "fig:RNA-PCA-ComBat-batchsub"
  2529. plural "false"
  2530. caps "false"
  2531. noprefix "false"
  2532. \end_inset
  2533. ), indicating that the ComBat-based batch correction has little room for
  2534. improvement given the problems with the data set.
  2535. \end_layout
  2536. \begin_layout Standard
  2537. \begin_inset Note Note
  2538. status collapsed
  2539. \begin_layout Plain Layout
  2540. \begin_inset Float figure
  2541. wide false
  2542. sideways false
  2543. status open
  2544. \begin_layout Plain Layout
  2545. \align center
  2546. \begin_inset Graphics
  2547. filename graphics/CD4-csaw/MOFA-batch-correct-CROP.png
  2548. lyxscale 25
  2549. width 100col%
  2550. groupId colwidth-raster
  2551. \end_inset
  2552. \end_layout
  2553. \begin_layout Plain Layout
  2554. \begin_inset Caption Standard
  2555. \begin_layout Plain Layout
  2556. \series bold
  2557. \begin_inset CommandInset label
  2558. LatexCommand label
  2559. name "fig:mofa-batchsub"
  2560. \end_inset
  2561. Result of RNA-seq batch-correction using MOFA latent factors
  2562. \end_layout
  2563. \end_inset
  2564. \end_layout
  2565. \end_inset
  2566. \end_layout
  2567. \end_inset
  2568. \end_layout
  2569. \begin_layout Section
  2570. Results
  2571. \end_layout
  2572. \begin_layout Standard
  2573. \begin_inset Flex TODO Note (inline)
  2574. status open
  2575. \begin_layout Plain Layout
  2576. Focus on what hypotheses were tested, then select figures that show how
  2577. those hypotheses were tested, even if the result is a negative.
  2578. Not every interesting result needs to be in here.
  2579. Chapter should tell a story.
  2580. \end_layout
  2581. \end_inset
  2582. \end_layout
  2583. \begin_layout Standard
  2584. \begin_inset Flex TODO Note (inline)
  2585. status open
  2586. \begin_layout Plain Layout
  2587. Maybe reorder these sections to do RNA-seq, then ChIP-seq, then combined
  2588. analyses?
  2589. \end_layout
  2590. \end_inset
  2591. \end_layout
  2592. \begin_layout Subsection
  2593. Interpretation of RNA-seq analysis is limited by a major confounding factor
  2594. \end_layout
  2595. \begin_layout Standard
  2596. \begin_inset Float table
  2597. wide false
  2598. sideways false
  2599. status collapsed
  2600. \begin_layout Plain Layout
  2601. \align center
  2602. \begin_inset Tabular
  2603. <lyxtabular version="3" rows="11" columns="3">
  2604. <features tabularvalignment="middle">
  2605. <column alignment="center" valignment="top">
  2606. <column alignment="center" valignment="top">
  2607. <column alignment="center" valignment="top">
  2608. <row>
  2609. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2610. \begin_inset Text
  2611. \begin_layout Plain Layout
  2612. Test
  2613. \end_layout
  2614. \end_inset
  2615. </cell>
  2616. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2617. \begin_inset Text
  2618. \begin_layout Plain Layout
  2619. Est.
  2620. non-null
  2621. \end_layout
  2622. \end_inset
  2623. </cell>
  2624. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2625. \begin_inset Text
  2626. \begin_layout Plain Layout
  2627. \begin_inset Formula $\mathrm{FDR}\le10\%$
  2628. \end_inset
  2629. \end_layout
  2630. \end_inset
  2631. </cell>
  2632. </row>
  2633. <row>
  2634. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2635. \begin_inset Text
  2636. \begin_layout Plain Layout
  2637. Naive Day 0 vs Day 1
  2638. \end_layout
  2639. \end_inset
  2640. </cell>
  2641. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2642. \begin_inset Text
  2643. \begin_layout Plain Layout
  2644. 5992
  2645. \end_layout
  2646. \end_inset
  2647. </cell>
  2648. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2649. \begin_inset Text
  2650. \begin_layout Plain Layout
  2651. 1613
  2652. \end_layout
  2653. \end_inset
  2654. </cell>
  2655. </row>
  2656. <row>
  2657. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2658. \begin_inset Text
  2659. \begin_layout Plain Layout
  2660. Naive Day 0 vs Day 5
  2661. \end_layout
  2662. \end_inset
  2663. </cell>
  2664. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2665. \begin_inset Text
  2666. \begin_layout Plain Layout
  2667. 3038
  2668. \end_layout
  2669. \end_inset
  2670. </cell>
  2671. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2672. \begin_inset Text
  2673. \begin_layout Plain Layout
  2674. 32
  2675. \end_layout
  2676. \end_inset
  2677. </cell>
  2678. </row>
  2679. <row>
  2680. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2681. \begin_inset Text
  2682. \begin_layout Plain Layout
  2683. Naive Day 0 vs Day 14
  2684. \end_layout
  2685. \end_inset
  2686. </cell>
  2687. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2688. \begin_inset Text
  2689. \begin_layout Plain Layout
  2690. 1870
  2691. \end_layout
  2692. \end_inset
  2693. </cell>
  2694. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2695. \begin_inset Text
  2696. \begin_layout Plain Layout
  2697. 190
  2698. \end_layout
  2699. \end_inset
  2700. </cell>
  2701. </row>
  2702. <row>
  2703. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2704. \begin_inset Text
  2705. \begin_layout Plain Layout
  2706. Memory Day 0 vs Day 1
  2707. \end_layout
  2708. \end_inset
  2709. </cell>
  2710. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2711. \begin_inset Text
  2712. \begin_layout Plain Layout
  2713. 3195
  2714. \end_layout
  2715. \end_inset
  2716. </cell>
  2717. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2718. \begin_inset Text
  2719. \begin_layout Plain Layout
  2720. 411
  2721. \end_layout
  2722. \end_inset
  2723. </cell>
  2724. </row>
  2725. <row>
  2726. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2727. \begin_inset Text
  2728. \begin_layout Plain Layout
  2729. Memory Day 0 vs Day 5
  2730. \end_layout
  2731. \end_inset
  2732. </cell>
  2733. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2734. \begin_inset Text
  2735. \begin_layout Plain Layout
  2736. 2688
  2737. \end_layout
  2738. \end_inset
  2739. </cell>
  2740. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2741. \begin_inset Text
  2742. \begin_layout Plain Layout
  2743. 18
  2744. \end_layout
  2745. \end_inset
  2746. </cell>
  2747. </row>
  2748. <row>
  2749. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2750. \begin_inset Text
  2751. \begin_layout Plain Layout
  2752. Memory Day 0 vs Day 14
  2753. \end_layout
  2754. \end_inset
  2755. </cell>
  2756. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2757. \begin_inset Text
  2758. \begin_layout Plain Layout
  2759. 1911
  2760. \end_layout
  2761. \end_inset
  2762. </cell>
  2763. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2764. \begin_inset Text
  2765. \begin_layout Plain Layout
  2766. 227
  2767. \end_layout
  2768. \end_inset
  2769. </cell>
  2770. </row>
  2771. <row>
  2772. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2773. \begin_inset Text
  2774. \begin_layout Plain Layout
  2775. Day 0 Naive vs Memory
  2776. \end_layout
  2777. \end_inset
  2778. </cell>
  2779. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2780. \begin_inset Text
  2781. \begin_layout Plain Layout
  2782. 0
  2783. \end_layout
  2784. \end_inset
  2785. </cell>
  2786. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2787. \begin_inset Text
  2788. \begin_layout Plain Layout
  2789. 2
  2790. \end_layout
  2791. \end_inset
  2792. </cell>
  2793. </row>
  2794. <row>
  2795. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2796. \begin_inset Text
  2797. \begin_layout Plain Layout
  2798. Day 1 Naive vs Memory
  2799. \end_layout
  2800. \end_inset
  2801. </cell>
  2802. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2803. \begin_inset Text
  2804. \begin_layout Plain Layout
  2805. 9167
  2806. \end_layout
  2807. \end_inset
  2808. </cell>
  2809. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2810. \begin_inset Text
  2811. \begin_layout Plain Layout
  2812. 5532
  2813. \end_layout
  2814. \end_inset
  2815. </cell>
  2816. </row>
  2817. <row>
  2818. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2819. \begin_inset Text
  2820. \begin_layout Plain Layout
  2821. Day 5 Naive vs Memory
  2822. \end_layout
  2823. \end_inset
  2824. </cell>
  2825. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2826. \begin_inset Text
  2827. \begin_layout Plain Layout
  2828. 0
  2829. \end_layout
  2830. \end_inset
  2831. </cell>
  2832. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2833. \begin_inset Text
  2834. \begin_layout Plain Layout
  2835. 0
  2836. \end_layout
  2837. \end_inset
  2838. </cell>
  2839. </row>
  2840. <row>
  2841. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2842. \begin_inset Text
  2843. \begin_layout Plain Layout
  2844. Day 14 Naive vs Memory
  2845. \end_layout
  2846. \end_inset
  2847. </cell>
  2848. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2849. \begin_inset Text
  2850. \begin_layout Plain Layout
  2851. 6446
  2852. \end_layout
  2853. \end_inset
  2854. </cell>
  2855. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2856. \begin_inset Text
  2857. \begin_layout Plain Layout
  2858. 2319
  2859. \end_layout
  2860. \end_inset
  2861. </cell>
  2862. </row>
  2863. </lyxtabular>
  2864. \end_inset
  2865. \end_layout
  2866. \begin_layout Plain Layout
  2867. \begin_inset Caption Standard
  2868. \begin_layout Plain Layout
  2869. \series bold
  2870. \begin_inset CommandInset label
  2871. LatexCommand label
  2872. name "tab:Estimated-and-detected-rnaseq"
  2873. \end_inset
  2874. Estimated and detected differentially expressed genes.
  2875. \series default
  2876. \begin_inset Quotes eld
  2877. \end_inset
  2878. Test
  2879. \begin_inset Quotes erd
  2880. \end_inset
  2881. : Which sample groups were compared;
  2882. \begin_inset Quotes eld
  2883. \end_inset
  2884. Est non-null
  2885. \begin_inset Quotes erd
  2886. \end_inset
  2887. : Estimated number of differentially expressed genes, using the method of
  2888. averaging local FDR values
  2889. \begin_inset CommandInset citation
  2890. LatexCommand cite
  2891. key "Phipson2013Thesis"
  2892. literal "false"
  2893. \end_inset
  2894. ;
  2895. \begin_inset Quotes eld
  2896. \end_inset
  2897. \begin_inset Formula $\mathrm{FDR}\le10\%$
  2898. \end_inset
  2899. \begin_inset Quotes erd
  2900. \end_inset
  2901. : Number of significantly differentially expressed genes at an FDR threshold
  2902. of 10%.
  2903. The total number of genes tested was 16707.
  2904. \end_layout
  2905. \end_inset
  2906. \end_layout
  2907. \end_inset
  2908. \end_layout
  2909. \begin_layout Standard
  2910. \begin_inset Float figure
  2911. wide false
  2912. sideways false
  2913. status collapsed
  2914. \begin_layout Plain Layout
  2915. \align center
  2916. \begin_inset Graphics
  2917. filename graphics/CD4-csaw/RNA-seq/PCA-final-12-CROP.png
  2918. lyxscale 25
  2919. width 100col%
  2920. groupId colwidth-raster
  2921. \end_inset
  2922. \end_layout
  2923. \begin_layout Plain Layout
  2924. \begin_inset Caption Standard
  2925. \begin_layout Plain Layout
  2926. \series bold
  2927. \begin_inset CommandInset label
  2928. LatexCommand label
  2929. name "fig:rna-pca-final"
  2930. \end_inset
  2931. PCoA plot of RNA-seq samples after ComBat batch correction.
  2932. \series default
  2933. Each point represents an individual sample.
  2934. Samples with the same combination of cell type and time point are encircled
  2935. with a shaded region to aid in visual identification of the sample groups.
  2936. Samples with of same cell type from the same donor are connected by lines
  2937. to indicate the
  2938. \begin_inset Quotes eld
  2939. \end_inset
  2940. trajectory
  2941. \begin_inset Quotes erd
  2942. \end_inset
  2943. of each donor's cells over time in PCoA space.
  2944. \end_layout
  2945. \end_inset
  2946. \end_layout
  2947. \begin_layout Plain Layout
  2948. \end_layout
  2949. \end_inset
  2950. \end_layout
  2951. \begin_layout Standard
  2952. Genes called present in the RNA-seq data were tested for differential expression
  2953. between all time points and cell types.
  2954. The counts of differentially expressed genes are shown in Table
  2955. \begin_inset CommandInset ref
  2956. LatexCommand ref
  2957. reference "tab:Estimated-and-detected-rnaseq"
  2958. plural "false"
  2959. caps "false"
  2960. noprefix "false"
  2961. \end_inset
  2962. .
  2963. Notably, all the results for Day 0 and Day 5 have substantially fewer genes
  2964. called differentially expressed than any of the results for other time
  2965. points.
  2966. This is an unfortunate result of the difference in sample quality between
  2967. the two batches of RNA-seq data.
  2968. All the samples in Batch 1, which includes all the samples from Days 0
  2969. and 5, have substantially more variability than the samples in Batch 2,
  2970. which includes the other time points.
  2971. This is reflected in the substantially higher weights assigned to Batch
  2972. 2 (Figure
  2973. \begin_inset CommandInset ref
  2974. LatexCommand ref
  2975. reference "fig:RNA-seq-weights-vs-covars"
  2976. plural "false"
  2977. caps "false"
  2978. noprefix "false"
  2979. \end_inset
  2980. ).
  2981. The batch effect has both a systematic component and a random noise component.
  2982. While the systematic component was subtracted out using ComBat (Figure
  2983. \begin_inset CommandInset ref
  2984. LatexCommand ref
  2985. reference "fig:RNA-PCA"
  2986. plural "false"
  2987. caps "false"
  2988. noprefix "false"
  2989. \end_inset
  2990. ), no such correction is possible for the noise component: Batch 1 simply
  2991. has substantially more random noise in it, which reduces the statistical
  2992. power for any differential expression tests involving samples in that batch.
  2993. \end_layout
  2994. \begin_layout Standard
  2995. Despite the difficulty in detecting specific differentially expressed genes,
  2996. there is still evidence that differential expression is present for these
  2997. time points.
  2998. In Figure
  2999. \begin_inset CommandInset ref
  3000. LatexCommand ref
  3001. reference "fig:rna-pca-final"
  3002. plural "false"
  3003. caps "false"
  3004. noprefix "false"
  3005. \end_inset
  3006. , there is a clear separation between naive and memory samples at Day 0,
  3007. despite the fact that only 2 genes were significantly differentially expressed
  3008. for this comparison.
  3009. Similarly, the small numbers of genes detected for the Day 0 vs Day 5 compariso
  3010. ns do not reflect the large separation between these time points in Figure
  3011. \begin_inset CommandInset ref
  3012. LatexCommand ref
  3013. reference "fig:rna-pca-final"
  3014. plural "false"
  3015. caps "false"
  3016. noprefix "false"
  3017. \end_inset
  3018. .
  3019. In addition, the MOFA latent factor plots in Figure
  3020. \begin_inset CommandInset ref
  3021. LatexCommand ref
  3022. reference "fig:mofa-lf-scatter"
  3023. plural "false"
  3024. caps "false"
  3025. noprefix "false"
  3026. \end_inset
  3027. .
  3028. This suggests that there is indeed a differential expression signal present
  3029. in the data for these comparisons, but the large variability in the Batch
  3030. 1 samples obfuscates this signal at the individual gene level.
  3031. As a result, it is impossible to make any meaningful statements about the
  3032. \begin_inset Quotes eld
  3033. \end_inset
  3034. size
  3035. \begin_inset Quotes erd
  3036. \end_inset
  3037. of the gene signature for any time point, since the number of significant
  3038. genes as well as the estimated number of differentially expressed genes
  3039. depends so strongly on the variations in sample quality in addition to
  3040. the size of the differential expression signal in the data.
  3041. Gene-set enrichment analyses are similarly impractical.
  3042. However, analyses looking at genome-wide patterns of expression are still
  3043. practical.
  3044. \end_layout
  3045. \begin_layout Subsection
  3046. H3K4 and H3K27 methylation occur in broad regions and are enriched near
  3047. promoters
  3048. \end_layout
  3049. \begin_layout Standard
  3050. \begin_inset Float table
  3051. wide false
  3052. sideways false
  3053. status collapsed
  3054. \begin_layout Plain Layout
  3055. \align center
  3056. \begin_inset Flex TODO Note (inline)
  3057. status open
  3058. \begin_layout Plain Layout
  3059. Also get
  3060. \emph on
  3061. median
  3062. \emph default
  3063. peak width and maybe other quantiles (25%, 75%)
  3064. \end_layout
  3065. \end_inset
  3066. \end_layout
  3067. \begin_layout Plain Layout
  3068. \align center
  3069. \begin_inset Tabular
  3070. <lyxtabular version="3" rows="4" columns="5">
  3071. <features tabularvalignment="middle">
  3072. <column alignment="center" valignment="top">
  3073. <column alignment="center" valignment="top">
  3074. <column alignment="center" valignment="top">
  3075. <column alignment="center" valignment="top">
  3076. <column alignment="center" valignment="top">
  3077. <row>
  3078. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3079. \begin_inset Text
  3080. \begin_layout Plain Layout
  3081. Histone Mark
  3082. \end_layout
  3083. \end_inset
  3084. </cell>
  3085. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3086. \begin_inset Text
  3087. \begin_layout Plain Layout
  3088. # Peaks
  3089. \end_layout
  3090. \end_inset
  3091. </cell>
  3092. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3093. \begin_inset Text
  3094. \begin_layout Plain Layout
  3095. Mean peak width
  3096. \end_layout
  3097. \end_inset
  3098. </cell>
  3099. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3100. \begin_inset Text
  3101. \begin_layout Plain Layout
  3102. genome coverage
  3103. \end_layout
  3104. \end_inset
  3105. </cell>
  3106. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3107. \begin_inset Text
  3108. \begin_layout Plain Layout
  3109. FRiP
  3110. \end_layout
  3111. \end_inset
  3112. </cell>
  3113. </row>
  3114. <row>
  3115. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3116. \begin_inset Text
  3117. \begin_layout Plain Layout
  3118. H3K4me2
  3119. \end_layout
  3120. \end_inset
  3121. </cell>
  3122. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3123. \begin_inset Text
  3124. \begin_layout Plain Layout
  3125. 14965
  3126. \end_layout
  3127. \end_inset
  3128. </cell>
  3129. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3130. \begin_inset Text
  3131. \begin_layout Plain Layout
  3132. 3970
  3133. \end_layout
  3134. \end_inset
  3135. </cell>
  3136. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3137. \begin_inset Text
  3138. \begin_layout Plain Layout
  3139. 1.92%
  3140. \end_layout
  3141. \end_inset
  3142. </cell>
  3143. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3144. \begin_inset Text
  3145. \begin_layout Plain Layout
  3146. 14.2%
  3147. \end_layout
  3148. \end_inset
  3149. </cell>
  3150. </row>
  3151. <row>
  3152. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3153. \begin_inset Text
  3154. \begin_layout Plain Layout
  3155. H3K4me3
  3156. \end_layout
  3157. \end_inset
  3158. </cell>
  3159. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3160. \begin_inset Text
  3161. \begin_layout Plain Layout
  3162. 6163
  3163. \end_layout
  3164. \end_inset
  3165. </cell>
  3166. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3167. \begin_inset Text
  3168. \begin_layout Plain Layout
  3169. 2946
  3170. \end_layout
  3171. \end_inset
  3172. </cell>
  3173. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3174. \begin_inset Text
  3175. \begin_layout Plain Layout
  3176. 0.588%
  3177. \end_layout
  3178. \end_inset
  3179. </cell>
  3180. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3181. \begin_inset Text
  3182. \begin_layout Plain Layout
  3183. 6.57%
  3184. \end_layout
  3185. \end_inset
  3186. </cell>
  3187. </row>
  3188. <row>
  3189. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3190. \begin_inset Text
  3191. \begin_layout Plain Layout
  3192. H3K27me3
  3193. \end_layout
  3194. \end_inset
  3195. </cell>
  3196. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3197. \begin_inset Text
  3198. \begin_layout Plain Layout
  3199. 18139
  3200. \end_layout
  3201. \end_inset
  3202. </cell>
  3203. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3204. \begin_inset Text
  3205. \begin_layout Plain Layout
  3206. 18967
  3207. \end_layout
  3208. \end_inset
  3209. </cell>
  3210. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3211. \begin_inset Text
  3212. \begin_layout Plain Layout
  3213. 11.1%
  3214. \end_layout
  3215. \end_inset
  3216. </cell>
  3217. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3218. \begin_inset Text
  3219. \begin_layout Plain Layout
  3220. 22.5%
  3221. \end_layout
  3222. \end_inset
  3223. </cell>
  3224. </row>
  3225. </lyxtabular>
  3226. \end_inset
  3227. \end_layout
  3228. \begin_layout Plain Layout
  3229. \begin_inset Caption Standard
  3230. \begin_layout Plain Layout
  3231. \series bold
  3232. \begin_inset CommandInset label
  3233. LatexCommand label
  3234. name "tab:peak-calling-summary"
  3235. \end_inset
  3236. Peak-calling summary.
  3237. \series default
  3238. For each histone mark, the number of peaks called using SICER at an IDR
  3239. threshold of ???, the mean width of those peaks, the fraction of the genome
  3240. covered by peaks, and the fraction of reads in peaks (FRiP).
  3241. \end_layout
  3242. \end_inset
  3243. \end_layout
  3244. \end_inset
  3245. \end_layout
  3246. \begin_layout Standard
  3247. Table
  3248. \begin_inset CommandInset ref
  3249. LatexCommand ref
  3250. reference "tab:peak-calling-summary"
  3251. plural "false"
  3252. caps "false"
  3253. noprefix "false"
  3254. \end_inset
  3255. gives a summary of the peak calling statistics for each histone mark.
  3256. Consistent with previous observations [CITATION NEEDED], all 3 histone
  3257. marks occur in broad regions spanning many consecutive nucleosomes, rather
  3258. than in sharp peaks as would be expected for a transcription factor or
  3259. other molecule that binds to specific sites.
  3260. This conclusion is further supported by Figure
  3261. \begin_inset CommandInset ref
  3262. LatexCommand ref
  3263. reference "fig:CCF-with-blacklist"
  3264. plural "false"
  3265. caps "false"
  3266. noprefix "false"
  3267. \end_inset
  3268. , in which a clear nucleosome-sized periodicity is visible in the cross-correlat
  3269. ion value for each sample, indicating that each time a given mark is present
  3270. on one histone, it is also likely to be found on adjacent histones as well.
  3271. H3K27me3 enrichment in particular is substantially more broad than either
  3272. H3K4 mark, with a mean peak width of almost 19,000 bp.
  3273. This is also reflected in the periodicity observed in Figure
  3274. \begin_inset CommandInset ref
  3275. LatexCommand ref
  3276. reference "fig:CCF-with-blacklist"
  3277. plural "false"
  3278. caps "false"
  3279. noprefix "false"
  3280. \end_inset
  3281. , which remains strong much farther out for H3K27me3 than the other marks,
  3282. showing H3K27me3 especially tends to be found on long runs of consecutive
  3283. histones.
  3284. \end_layout
  3285. \begin_layout Standard
  3286. \begin_inset Float figure
  3287. wide false
  3288. sideways false
  3289. status open
  3290. \begin_layout Plain Layout
  3291. \begin_inset Flex TODO Note (inline)
  3292. status open
  3293. \begin_layout Plain Layout
  3294. Ensure this figure uses the peak calls from the new analysis.
  3295. \end_layout
  3296. \end_inset
  3297. \end_layout
  3298. \begin_layout Plain Layout
  3299. \begin_inset Flex TODO Note (inline)
  3300. status open
  3301. \begin_layout Plain Layout
  3302. Need a control: shuffle all peaks and repeat, N times.
  3303. Do real vs shuffled control both in a top/bottom arrangement.
  3304. \end_layout
  3305. \end_inset
  3306. \end_layout
  3307. \begin_layout Plain Layout
  3308. \begin_inset Flex TODO Note (inline)
  3309. status open
  3310. \begin_layout Plain Layout
  3311. Consider counting TSS inside peaks as negative number indicating how far
  3312. \emph on
  3313. inside
  3314. \emph default
  3315. the peak the TSS is (i.e.
  3316. distance to nearest non-peak area).
  3317. \end_layout
  3318. \end_inset
  3319. \end_layout
  3320. \begin_layout Plain Layout
  3321. \begin_inset Flex TODO Note (inline)
  3322. status open
  3323. \begin_layout Plain Layout
  3324. The H3K4 part of this figure is included in
  3325. \begin_inset CommandInset citation
  3326. LatexCommand cite
  3327. key "LaMere2016"
  3328. literal "false"
  3329. \end_inset
  3330. as Fig.
  3331. S2.
  3332. Do I need to do anything about that?
  3333. \end_layout
  3334. \end_inset
  3335. \end_layout
  3336. \begin_layout Plain Layout
  3337. \align center
  3338. \begin_inset Graphics
  3339. filename graphics/CD4-csaw/Promoter Peak Distance Profile-PAGE1-CROP.pdf
  3340. lyxscale 50
  3341. width 80col%
  3342. \end_inset
  3343. \end_layout
  3344. \begin_layout Plain Layout
  3345. \begin_inset Caption Standard
  3346. \begin_layout Plain Layout
  3347. \series bold
  3348. \begin_inset CommandInset label
  3349. LatexCommand label
  3350. name "fig:near-promoter-peak-enrich"
  3351. \end_inset
  3352. Enrichment of peaks in promoter neighborhoods.
  3353. \series default
  3354. This plot shows the distribution of distances from each annotated transcription
  3355. start site in the genome to the nearest called peak.
  3356. Each line represents one combination of histone mark, cell type, and time
  3357. point.
  3358. Distributions are smoothed using kernel density estimation [CITE? see ggplot2
  3359. stat_density()].
  3360. Transcription start sites that occur
  3361. \emph on
  3362. within
  3363. \emph default
  3364. peaks were excluded from this plot to avoid a large spike at zero that
  3365. would overshadow the rest of the distribution.
  3366. \end_layout
  3367. \end_inset
  3368. \end_layout
  3369. \end_inset
  3370. \end_layout
  3371. \begin_layout Standard
  3372. \begin_inset Float table
  3373. wide false
  3374. sideways false
  3375. status collapsed
  3376. \begin_layout Plain Layout
  3377. \align center
  3378. \begin_inset Tabular
  3379. <lyxtabular version="3" rows="4" columns="2">
  3380. <features tabularvalignment="middle">
  3381. <column alignment="center" valignment="top">
  3382. <column alignment="center" valignment="top">
  3383. <row>
  3384. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3385. \begin_inset Text
  3386. \begin_layout Plain Layout
  3387. Histone mark
  3388. \end_layout
  3389. \end_inset
  3390. </cell>
  3391. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3392. \begin_inset Text
  3393. \begin_layout Plain Layout
  3394. Effective promoter radius
  3395. \end_layout
  3396. \end_inset
  3397. </cell>
  3398. </row>
  3399. <row>
  3400. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3401. \begin_inset Text
  3402. \begin_layout Plain Layout
  3403. H3K4me2
  3404. \end_layout
  3405. \end_inset
  3406. </cell>
  3407. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3408. \begin_inset Text
  3409. \begin_layout Plain Layout
  3410. 1 kb
  3411. \end_layout
  3412. \end_inset
  3413. </cell>
  3414. </row>
  3415. <row>
  3416. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3417. \begin_inset Text
  3418. \begin_layout Plain Layout
  3419. H3K4me3
  3420. \end_layout
  3421. \end_inset
  3422. </cell>
  3423. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3424. \begin_inset Text
  3425. \begin_layout Plain Layout
  3426. 1 kb
  3427. \end_layout
  3428. \end_inset
  3429. </cell>
  3430. </row>
  3431. <row>
  3432. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3433. \begin_inset Text
  3434. \begin_layout Plain Layout
  3435. H3K27me3
  3436. \end_layout
  3437. \end_inset
  3438. </cell>
  3439. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3440. \begin_inset Text
  3441. \begin_layout Plain Layout
  3442. 2.5 kb
  3443. \end_layout
  3444. \end_inset
  3445. </cell>
  3446. </row>
  3447. </lyxtabular>
  3448. \end_inset
  3449. \end_layout
  3450. \begin_layout Plain Layout
  3451. \begin_inset Caption Standard
  3452. \begin_layout Plain Layout
  3453. \series bold
  3454. \begin_inset CommandInset label
  3455. LatexCommand label
  3456. name "tab:effective-promoter-radius"
  3457. \end_inset
  3458. Effective promoter radius for each histone mark.
  3459. \series default
  3460. These values represent the approximate distance from transcription start
  3461. site positions within which an excess of peaks are found, as shown in Figure
  3462. \begin_inset CommandInset ref
  3463. LatexCommand ref
  3464. reference "fig:near-promoter-peak-enrich"
  3465. plural "false"
  3466. caps "false"
  3467. noprefix "false"
  3468. \end_inset
  3469. .
  3470. \end_layout
  3471. \end_inset
  3472. \end_layout
  3473. \begin_layout Plain Layout
  3474. \end_layout
  3475. \end_inset
  3476. \end_layout
  3477. \begin_layout Standard
  3478. All 3 histone marks tend to occur more often near promoter regions, as shown
  3479. in Figure
  3480. \begin_inset CommandInset ref
  3481. LatexCommand ref
  3482. reference "fig:near-promoter-peak-enrich"
  3483. plural "false"
  3484. caps "false"
  3485. noprefix "false"
  3486. \end_inset
  3487. .
  3488. The majority of each density distribution is flat, representing the background
  3489. density of peaks genome-wide.
  3490. Each distribution has a peak near zero, representing an enrichment of peaks
  3491. close transcription start site (TSS) positions relative to the remainder
  3492. of the genome.
  3493. Interestingly, the
  3494. \begin_inset Quotes eld
  3495. \end_inset
  3496. radius
  3497. \begin_inset Quotes erd
  3498. \end_inset
  3499. within which this enrichment occurs is not the same for every histone mark
  3500. (Table
  3501. \begin_inset CommandInset ref
  3502. LatexCommand ref
  3503. reference "tab:effective-promoter-radius"
  3504. plural "false"
  3505. caps "false"
  3506. noprefix "false"
  3507. \end_inset
  3508. ).
  3509. For H3K4me2 and H3K4me3, peaks are most enriched within 1
  3510. \begin_inset space ~
  3511. \end_inset
  3512. kbp of TSS positions, while for H3K27me3, enrichment is broader, extending
  3513. to 2.5
  3514. \begin_inset space ~
  3515. \end_inset
  3516. kbp.
  3517. These
  3518. \begin_inset Quotes eld
  3519. \end_inset
  3520. effective promoter radii
  3521. \begin_inset Quotes erd
  3522. \end_inset
  3523. remain approximately the same across all combinations of experimental condition
  3524. (cell type, time point, and donor), so they appear to be a property of
  3525. the histone mark itself.
  3526. Hence, these radii were used to define the promoter regions for each histone
  3527. mark in all further analyses.
  3528. \end_layout
  3529. \begin_layout Standard
  3530. \begin_inset Flex TODO Note (inline)
  3531. status open
  3532. \begin_layout Plain Layout
  3533. Consider also showing figure for distance to nearest peak center, and reference
  3534. median peak size once that is known.
  3535. \end_layout
  3536. \end_inset
  3537. \end_layout
  3538. \begin_layout Subsection
  3539. H3K4 and H3K27 promoter methylation has broadly the expected correlation
  3540. with gene expression
  3541. \end_layout
  3542. \begin_layout Standard
  3543. \begin_inset Float figure
  3544. wide false
  3545. sideways false
  3546. status collapsed
  3547. \begin_layout Plain Layout
  3548. \begin_inset Flex TODO Note (inline)
  3549. status open
  3550. \begin_layout Plain Layout
  3551. This figure is generated from the old analysis.
  3552. Either note that in some way or re-generate it from the new peak calls.
  3553. \end_layout
  3554. \end_inset
  3555. \end_layout
  3556. \begin_layout Plain Layout
  3557. \align center
  3558. \begin_inset Graphics
  3559. filename graphics/CD4-csaw/FPKM by Peak Violin Plots-CROP.pdf
  3560. lyxscale 50
  3561. width 100col%
  3562. \end_inset
  3563. \end_layout
  3564. \begin_layout Plain Layout
  3565. \begin_inset Caption Standard
  3566. \begin_layout Plain Layout
  3567. \series bold
  3568. \begin_inset CommandInset label
  3569. LatexCommand label
  3570. name "fig:fpkm-by-peak"
  3571. \end_inset
  3572. Expression distributions of genes with and without promoter peaks.
  3573. \end_layout
  3574. \end_inset
  3575. \end_layout
  3576. \end_inset
  3577. \end_layout
  3578. \begin_layout Standard
  3579. H3K4me2 and H3K4me2 have previously been reported as activating marks whose
  3580. presence in a gene's promoter is associated with higher gene expression,
  3581. while H3K27me3 has been reported as inactivating [CITE].
  3582. The data are consistent with this characterization: genes whose promoters
  3583. (as defined by the radii for each histone mark listed in
  3584. \begin_inset CommandInset ref
  3585. LatexCommand ref
  3586. reference "tab:effective-promoter-radius"
  3587. plural "false"
  3588. caps "false"
  3589. noprefix "false"
  3590. \end_inset
  3591. ) overlap with a H3K4me2 or H3K4me3 peak tend to have higher expression
  3592. than those that don't, while H3K27me3 is likewise associated with lower
  3593. gene expression, as shown in
  3594. \begin_inset CommandInset ref
  3595. LatexCommand ref
  3596. reference "fig:fpkm-by-peak"
  3597. plural "false"
  3598. caps "false"
  3599. noprefix "false"
  3600. \end_inset
  3601. .
  3602. This pattern holds across all combinations of cell type and time point
  3603. (Welch's
  3604. \emph on
  3605. t
  3606. \emph default
  3607. -test, all
  3608. \begin_inset Formula $p\mathrm{-values}\ll2.2\times10^{-16}$
  3609. \end_inset
  3610. ).
  3611. The difference in average log FPKM values when a peak overlaps the promoter
  3612. is about
  3613. \begin_inset Formula $+5.67$
  3614. \end_inset
  3615. for H3K4me2,
  3616. \begin_inset Formula $+5.76$
  3617. \end_inset
  3618. for H3K4me2, and
  3619. \begin_inset Formula $-4.00$
  3620. \end_inset
  3621. for H3K27me3.
  3622. \end_layout
  3623. \begin_layout Standard
  3624. \begin_inset Flex TODO Note (inline)
  3625. status open
  3626. \begin_layout Plain Layout
  3627. I also have some figures looking at interactions between marks (e.g.
  3628. what if a promoter has both H3K4me3 and H3K27me3), but I don't know if
  3629. that much detail is warranted here, since all the effects just seem approximate
  3630. ly additive anyway.
  3631. \end_layout
  3632. \end_inset
  3633. \end_layout
  3634. \begin_layout Subsection
  3635. Gene expression and promoter histone methylation patterns in naive and memory
  3636. show convergence at day 14
  3637. \end_layout
  3638. \begin_layout Standard
  3639. \begin_inset ERT
  3640. status open
  3641. \begin_layout Plain Layout
  3642. \backslash
  3643. afterpage{
  3644. \end_layout
  3645. \begin_layout Plain Layout
  3646. \backslash
  3647. begin{landscape}
  3648. \end_layout
  3649. \end_inset
  3650. \end_layout
  3651. \begin_layout Standard
  3652. \begin_inset Float table
  3653. wide false
  3654. sideways false
  3655. status open
  3656. \begin_layout Plain Layout
  3657. \align center
  3658. \begin_inset Tabular
  3659. <lyxtabular version="3" rows="6" columns="7">
  3660. <features tabularvalignment="middle">
  3661. <column alignment="center" valignment="top">
  3662. <column alignment="center" valignment="top">
  3663. <column alignment="center" valignment="top">
  3664. <column alignment="center" valignment="top">
  3665. <column alignment="center" valignment="top">
  3666. <column alignment="center" valignment="top">
  3667. <column alignment="center" valignment="top">
  3668. <row>
  3669. <cell alignment="center" valignment="top" usebox="none">
  3670. \begin_inset Text
  3671. \begin_layout Plain Layout
  3672. \end_layout
  3673. \end_inset
  3674. </cell>
  3675. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3676. \begin_inset Text
  3677. \begin_layout Plain Layout
  3678. Number of significant promoters
  3679. \end_layout
  3680. \end_inset
  3681. </cell>
  3682. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3683. \begin_inset Text
  3684. \begin_layout Plain Layout
  3685. \end_layout
  3686. \end_inset
  3687. </cell>
  3688. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3689. \begin_inset Text
  3690. \begin_layout Plain Layout
  3691. \end_layout
  3692. \end_inset
  3693. </cell>
  3694. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3695. \begin_inset Text
  3696. \begin_layout Plain Layout
  3697. Est.
  3698. differentially modified promoters
  3699. \end_layout
  3700. \end_inset
  3701. </cell>
  3702. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3703. \begin_inset Text
  3704. \begin_layout Plain Layout
  3705. \end_layout
  3706. \end_inset
  3707. </cell>
  3708. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3709. \begin_inset Text
  3710. \begin_layout Plain Layout
  3711. \end_layout
  3712. \end_inset
  3713. </cell>
  3714. </row>
  3715. <row>
  3716. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3717. \begin_inset Text
  3718. \begin_layout Plain Layout
  3719. Time Point
  3720. \end_layout
  3721. \end_inset
  3722. </cell>
  3723. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3724. \begin_inset Text
  3725. \begin_layout Plain Layout
  3726. H3K4me2
  3727. \end_layout
  3728. \end_inset
  3729. </cell>
  3730. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3731. \begin_inset Text
  3732. \begin_layout Plain Layout
  3733. H3K4me3
  3734. \end_layout
  3735. \end_inset
  3736. </cell>
  3737. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3738. \begin_inset Text
  3739. \begin_layout Plain Layout
  3740. H3K27me3
  3741. \end_layout
  3742. \end_inset
  3743. </cell>
  3744. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3745. \begin_inset Text
  3746. \begin_layout Plain Layout
  3747. H3K4me2
  3748. \end_layout
  3749. \end_inset
  3750. </cell>
  3751. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3752. \begin_inset Text
  3753. \begin_layout Plain Layout
  3754. H3K4me3
  3755. \end_layout
  3756. \end_inset
  3757. </cell>
  3758. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3759. \begin_inset Text
  3760. \begin_layout Plain Layout
  3761. H3K27me3
  3762. \end_layout
  3763. \end_inset
  3764. </cell>
  3765. </row>
  3766. <row>
  3767. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3768. \begin_inset Text
  3769. \begin_layout Plain Layout
  3770. Day 0
  3771. \end_layout
  3772. \end_inset
  3773. </cell>
  3774. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3775. \begin_inset Text
  3776. \begin_layout Plain Layout
  3777. 4553
  3778. \end_layout
  3779. \end_inset
  3780. </cell>
  3781. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3782. \begin_inset Text
  3783. \begin_layout Plain Layout
  3784. 927
  3785. \end_layout
  3786. \end_inset
  3787. </cell>
  3788. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3789. \begin_inset Text
  3790. \begin_layout Plain Layout
  3791. 6
  3792. \end_layout
  3793. \end_inset
  3794. </cell>
  3795. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3796. \begin_inset Text
  3797. \begin_layout Plain Layout
  3798. 9967
  3799. \end_layout
  3800. \end_inset
  3801. </cell>
  3802. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3803. \begin_inset Text
  3804. \begin_layout Plain Layout
  3805. 4149
  3806. \end_layout
  3807. \end_inset
  3808. </cell>
  3809. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3810. \begin_inset Text
  3811. \begin_layout Plain Layout
  3812. 2404
  3813. \end_layout
  3814. \end_inset
  3815. </cell>
  3816. </row>
  3817. <row>
  3818. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3819. \begin_inset Text
  3820. \begin_layout Plain Layout
  3821. Day 1
  3822. \end_layout
  3823. \end_inset
  3824. </cell>
  3825. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3826. \begin_inset Text
  3827. \begin_layout Plain Layout
  3828. 567
  3829. \end_layout
  3830. \end_inset
  3831. </cell>
  3832. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3833. \begin_inset Text
  3834. \begin_layout Plain Layout
  3835. 278
  3836. \end_layout
  3837. \end_inset
  3838. </cell>
  3839. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3840. \begin_inset Text
  3841. \begin_layout Plain Layout
  3842. 1570
  3843. \end_layout
  3844. \end_inset
  3845. </cell>
  3846. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3847. \begin_inset Text
  3848. \begin_layout Plain Layout
  3849. 4370
  3850. \end_layout
  3851. \end_inset
  3852. </cell>
  3853. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3854. \begin_inset Text
  3855. \begin_layout Plain Layout
  3856. 2145
  3857. \end_layout
  3858. \end_inset
  3859. </cell>
  3860. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3861. \begin_inset Text
  3862. \begin_layout Plain Layout
  3863. 6598
  3864. \end_layout
  3865. \end_inset
  3866. </cell>
  3867. </row>
  3868. <row>
  3869. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3870. \begin_inset Text
  3871. \begin_layout Plain Layout
  3872. Day 5
  3873. \end_layout
  3874. \end_inset
  3875. </cell>
  3876. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3877. \begin_inset Text
  3878. \begin_layout Plain Layout
  3879. 2313
  3880. \end_layout
  3881. \end_inset
  3882. </cell>
  3883. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3884. \begin_inset Text
  3885. \begin_layout Plain Layout
  3886. 139
  3887. \end_layout
  3888. \end_inset
  3889. </cell>
  3890. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3891. \begin_inset Text
  3892. \begin_layout Plain Layout
  3893. 490
  3894. \end_layout
  3895. \end_inset
  3896. </cell>
  3897. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3898. \begin_inset Text
  3899. \begin_layout Plain Layout
  3900. 9450
  3901. \end_layout
  3902. \end_inset
  3903. </cell>
  3904. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3905. \begin_inset Text
  3906. \begin_layout Plain Layout
  3907. 1148
  3908. \end_layout
  3909. \end_inset
  3910. </cell>
  3911. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3912. \begin_inset Text
  3913. \begin_layout Plain Layout
  3914. 4141
  3915. \end_layout
  3916. \end_inset
  3917. </cell>
  3918. </row>
  3919. <row>
  3920. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3921. \begin_inset Text
  3922. \begin_layout Plain Layout
  3923. Day 14
  3924. \end_layout
  3925. \end_inset
  3926. </cell>
  3927. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3928. \begin_inset Text
  3929. \begin_layout Plain Layout
  3930. 0
  3931. \end_layout
  3932. \end_inset
  3933. </cell>
  3934. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3935. \begin_inset Text
  3936. \begin_layout Plain Layout
  3937. 0
  3938. \end_layout
  3939. \end_inset
  3940. </cell>
  3941. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3942. \begin_inset Text
  3943. \begin_layout Plain Layout
  3944. 0
  3945. \end_layout
  3946. \end_inset
  3947. </cell>
  3948. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3949. \begin_inset Text
  3950. \begin_layout Plain Layout
  3951. 0
  3952. \end_layout
  3953. \end_inset
  3954. </cell>
  3955. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3956. \begin_inset Text
  3957. \begin_layout Plain Layout
  3958. 0
  3959. \end_layout
  3960. \end_inset
  3961. </cell>
  3962. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3963. \begin_inset Text
  3964. \begin_layout Plain Layout
  3965. 0
  3966. \end_layout
  3967. \end_inset
  3968. </cell>
  3969. </row>
  3970. </lyxtabular>
  3971. \end_inset
  3972. \end_layout
  3973. \begin_layout Plain Layout
  3974. \begin_inset Caption Standard
  3975. \begin_layout Plain Layout
  3976. \series bold
  3977. \begin_inset CommandInset label
  3978. LatexCommand label
  3979. name "tab:Number-signif-promoters"
  3980. \end_inset
  3981. Number of differentially modified promoters between naive and memory cells
  3982. at each time point after activation.
  3983. \series default
  3984. This table shows both the number of differentially modified promoters detected
  3985. at a 10% FDR threshold (left half), and the total number of differentially
  3986. modified promoters as estimated using the method of
  3987. \begin_inset CommandInset citation
  3988. LatexCommand cite
  3989. key "Phipson2013"
  3990. literal "false"
  3991. \end_inset
  3992. (right half).
  3993. \end_layout
  3994. \end_inset
  3995. \end_layout
  3996. \end_inset
  3997. \end_layout
  3998. \begin_layout Standard
  3999. \begin_inset ERT
  4000. status open
  4001. \begin_layout Plain Layout
  4002. \backslash
  4003. end{landscape}
  4004. \end_layout
  4005. \begin_layout Plain Layout
  4006. }
  4007. \end_layout
  4008. \end_inset
  4009. \end_layout
  4010. \begin_layout Standard
  4011. \begin_inset Float figure
  4012. placement p
  4013. wide false
  4014. sideways false
  4015. status open
  4016. \begin_layout Plain Layout
  4017. \align center
  4018. \begin_inset Float figure
  4019. wide false
  4020. sideways false
  4021. status open
  4022. \begin_layout Plain Layout
  4023. \align center
  4024. \begin_inset Graphics
  4025. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-promoter-PCA-group-CROP.png
  4026. lyxscale 25
  4027. width 45col%
  4028. groupId pcoa-prom-subfig
  4029. \end_inset
  4030. \end_layout
  4031. \begin_layout Plain Layout
  4032. \begin_inset Caption Standard
  4033. \begin_layout Plain Layout
  4034. \series bold
  4035. \begin_inset CommandInset label
  4036. LatexCommand label
  4037. name "fig:PCoA-H3K4me2-prom"
  4038. \end_inset
  4039. PCoA plot of H3K4me2 promoters, after subtracting surrogate variables
  4040. \end_layout
  4041. \end_inset
  4042. \end_layout
  4043. \end_inset
  4044. \begin_inset space \hfill{}
  4045. \end_inset
  4046. \begin_inset Float figure
  4047. wide false
  4048. sideways false
  4049. status open
  4050. \begin_layout Plain Layout
  4051. \align center
  4052. \begin_inset Graphics
  4053. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-promoter-PCA-group-CROP.png
  4054. lyxscale 25
  4055. width 45col%
  4056. groupId pcoa-prom-subfig
  4057. \end_inset
  4058. \end_layout
  4059. \begin_layout Plain Layout
  4060. \begin_inset Caption Standard
  4061. \begin_layout Plain Layout
  4062. \series bold
  4063. \begin_inset CommandInset label
  4064. LatexCommand label
  4065. name "fig:PCoA-H3K4me3-prom"
  4066. \end_inset
  4067. PCoA plot of H3K4me3 promoters, after subtracting surrogate variables
  4068. \end_layout
  4069. \end_inset
  4070. \end_layout
  4071. \end_inset
  4072. \end_layout
  4073. \begin_layout Plain Layout
  4074. \align center
  4075. \begin_inset Float figure
  4076. wide false
  4077. sideways false
  4078. status collapsed
  4079. \begin_layout Plain Layout
  4080. \align center
  4081. \begin_inset Graphics
  4082. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-promoter-PCA-group-CROP.png
  4083. lyxscale 25
  4084. width 45col%
  4085. groupId pcoa-prom-subfig
  4086. \end_inset
  4087. \end_layout
  4088. \begin_layout Plain Layout
  4089. \begin_inset Caption Standard
  4090. \begin_layout Plain Layout
  4091. \series bold
  4092. \begin_inset CommandInset label
  4093. LatexCommand label
  4094. name "fig:PCoA-H3K27me3-prom"
  4095. \end_inset
  4096. PCoA plot of H3K27me3 promoters, after subtracting surrogate variables
  4097. \end_layout
  4098. \end_inset
  4099. \end_layout
  4100. \end_inset
  4101. \begin_inset space \hfill{}
  4102. \end_inset
  4103. \begin_inset Float figure
  4104. wide false
  4105. sideways false
  4106. status open
  4107. \begin_layout Plain Layout
  4108. \align center
  4109. \begin_inset Graphics
  4110. filename graphics/CD4-csaw/RNA-seq/PCA-final-23-CROP.png
  4111. lyxscale 25
  4112. width 45col%
  4113. groupId pcoa-prom-subfig
  4114. \end_inset
  4115. \end_layout
  4116. \begin_layout Plain Layout
  4117. \begin_inset Caption Standard
  4118. \begin_layout Plain Layout
  4119. \series bold
  4120. \begin_inset CommandInset label
  4121. LatexCommand label
  4122. name "fig:RNA-PCA-group"
  4123. \end_inset
  4124. RNA-seq PCoA showing principal coordinates 2 and 3.
  4125. \end_layout
  4126. \end_inset
  4127. \end_layout
  4128. \end_inset
  4129. \end_layout
  4130. \begin_layout Plain Layout
  4131. \begin_inset Caption Standard
  4132. \begin_layout Plain Layout
  4133. \series bold
  4134. \begin_inset CommandInset label
  4135. LatexCommand label
  4136. name "fig:PCoA-promoters"
  4137. \end_inset
  4138. PCoA plots for promoter ChIP-seq and expression RNA-seq data
  4139. \end_layout
  4140. \end_inset
  4141. \end_layout
  4142. \end_inset
  4143. \end_layout
  4144. \begin_layout Standard
  4145. \begin_inset Flex TODO Note (inline)
  4146. status open
  4147. \begin_layout Plain Layout
  4148. Check up on figure refs in this paragraph
  4149. \end_layout
  4150. \end_inset
  4151. \end_layout
  4152. \begin_layout Standard
  4153. We hypothesized that if naive cells had differentiated into memory cells
  4154. by Day 14, then their patterns of expression and histone modification should
  4155. converge with those of memory cells at Day 14.
  4156. Figure
  4157. \begin_inset CommandInset ref
  4158. LatexCommand ref
  4159. reference "fig:PCoA-promoters"
  4160. plural "false"
  4161. caps "false"
  4162. noprefix "false"
  4163. \end_inset
  4164. shows the patterns of variation in all 3 histone marks in the promoter
  4165. regions of the genome using principal coordinate analysis.
  4166. All 3 marks show a noticeable convergence between the naive and memory
  4167. samples at day 14, visible as an overlapping of the day 14 groups on each
  4168. plot.
  4169. This is consistent with the counts of significantly differentially modified
  4170. promoters and estimates of the total numbers of differentially modified
  4171. promoters shown in Table
  4172. \begin_inset CommandInset ref
  4173. LatexCommand ref
  4174. reference "tab:Number-signif-promoters"
  4175. plural "false"
  4176. caps "false"
  4177. noprefix "false"
  4178. \end_inset
  4179. .
  4180. For all histone marks, evidence of differential modification between naive
  4181. and memory samples was detected at every time point except day 14.
  4182. The day 14 convergence pattern is also present in the RNA-seq data (Figure
  4183. \begin_inset CommandInset ref
  4184. LatexCommand ref
  4185. reference "fig:RNA-PCA-group"
  4186. plural "false"
  4187. caps "false"
  4188. noprefix "false"
  4189. \end_inset
  4190. ), albeit in the 2nd and 3rd principal coordinates, indicating that it is
  4191. not the most dominant pattern driving gene expression.
  4192. Taken together, the data show that promoter histone methylation for these
  4193. 3 histone marks and RNA expression for naive and memory cells are most
  4194. similar at day 14, the furthest time point after activation.
  4195. MOFA was also able to capture this day 14 convergence pattern in latent
  4196. factor 5 (Figure
  4197. \begin_inset CommandInset ref
  4198. LatexCommand ref
  4199. reference "fig:mofa-lf-scatter"
  4200. plural "false"
  4201. caps "false"
  4202. noprefix "false"
  4203. \end_inset
  4204. ), which accounts for shared variation across all 3 histone marks and the
  4205. RNA-seq data, confirming that this convergence is a coordinated pattern
  4206. across all 4 data sets.
  4207. While this observation does not prove that the naive cells have differentiated
  4208. into memory cells at Day 14, it is consistent with that hypothesis.
  4209. \end_layout
  4210. \begin_layout Subsection
  4211. Effect of H3K4me2 and H3K4me3 promoter coverage upstream vs downstream of
  4212. TSS
  4213. \end_layout
  4214. \begin_layout Standard
  4215. \begin_inset Flex TODO Note (inline)
  4216. status open
  4217. \begin_layout Plain Layout
  4218. Need a better section title, for this and the next one.
  4219. \end_layout
  4220. \end_inset
  4221. \end_layout
  4222. \begin_layout Standard
  4223. \begin_inset Flex TODO Note (inline)
  4224. status open
  4225. \begin_layout Plain Layout
  4226. Make sure use of coverage/abundance/whatever is consistent.
  4227. \end_layout
  4228. \end_inset
  4229. \end_layout
  4230. \begin_layout Standard
  4231. \begin_inset Flex TODO Note (inline)
  4232. status open
  4233. \begin_layout Plain Layout
  4234. For the figures in this section and the next, the group labels are arbitrary,
  4235. so if time allows, it would be good to manually reorder them in a logical
  4236. way, e.g.
  4237. most upstream to most downstream.
  4238. If this is done, make sure to update the text with the correct group labels.
  4239. \end_layout
  4240. \end_inset
  4241. \end_layout
  4242. \begin_layout Standard
  4243. \begin_inset ERT
  4244. status open
  4245. \begin_layout Plain Layout
  4246. \backslash
  4247. afterpage{
  4248. \end_layout
  4249. \begin_layout Plain Layout
  4250. \backslash
  4251. begin{landscape}
  4252. \end_layout
  4253. \end_inset
  4254. \end_layout
  4255. \begin_layout Standard
  4256. \begin_inset Float figure
  4257. wide false
  4258. sideways false
  4259. status open
  4260. \begin_layout Plain Layout
  4261. \align center
  4262. \begin_inset Float figure
  4263. wide false
  4264. sideways false
  4265. status open
  4266. \begin_layout Plain Layout
  4267. \align center
  4268. \begin_inset Graphics
  4269. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-neighborhood-clusters-CROP.png
  4270. lyxscale 25
  4271. width 30col%
  4272. groupId covprof-subfig
  4273. \end_inset
  4274. \end_layout
  4275. \begin_layout Plain Layout
  4276. \begin_inset Caption Standard
  4277. \begin_layout Plain Layout
  4278. \series bold
  4279. \begin_inset CommandInset label
  4280. LatexCommand label
  4281. name "fig:H3K4me2-neighborhood-clusters"
  4282. \end_inset
  4283. Average relative coverage for each bin in each cluster
  4284. \end_layout
  4285. \end_inset
  4286. \end_layout
  4287. \end_inset
  4288. \begin_inset space \hfill{}
  4289. \end_inset
  4290. \begin_inset Float figure
  4291. wide false
  4292. sideways false
  4293. status open
  4294. \begin_layout Plain Layout
  4295. \align center
  4296. \begin_inset Graphics
  4297. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-neighborhood-PCA-CROP.png
  4298. lyxscale 25
  4299. width 30col%
  4300. groupId covprof-subfig
  4301. \end_inset
  4302. \end_layout
  4303. \begin_layout Plain Layout
  4304. \begin_inset Caption Standard
  4305. \begin_layout Plain Layout
  4306. \series bold
  4307. \begin_inset CommandInset label
  4308. LatexCommand label
  4309. name "fig:H3K4me2-neighborhood-pca"
  4310. \end_inset
  4311. PCA of relative coverage depth, colored by K-means cluster membership.
  4312. \end_layout
  4313. \end_inset
  4314. \end_layout
  4315. \end_inset
  4316. \begin_inset space \hfill{}
  4317. \end_inset
  4318. \begin_inset Float figure
  4319. wide false
  4320. sideways false
  4321. status open
  4322. \begin_layout Plain Layout
  4323. \align center
  4324. \begin_inset Graphics
  4325. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-neighborhood-expression-CROP.png
  4326. lyxscale 25
  4327. width 30col%
  4328. groupId covprof-subfig
  4329. \end_inset
  4330. \end_layout
  4331. \begin_layout Plain Layout
  4332. \begin_inset Caption Standard
  4333. \begin_layout Plain Layout
  4334. \series bold
  4335. \begin_inset CommandInset label
  4336. LatexCommand label
  4337. name "fig:H3K4me2-neighborhood-expression"
  4338. \end_inset
  4339. Gene expression grouped by promoter coverage clusters.
  4340. \end_layout
  4341. \end_inset
  4342. \end_layout
  4343. \end_inset
  4344. \end_layout
  4345. \begin_layout Plain Layout
  4346. \begin_inset Caption Standard
  4347. \begin_layout Plain Layout
  4348. \series bold
  4349. \begin_inset CommandInset label
  4350. LatexCommand label
  4351. name "fig:H3K4me2-neighborhood"
  4352. \end_inset
  4353. K-means clustering of promoter H3K4me2 relative coverage depth in naive
  4354. day 0 samples.
  4355. \series default
  4356. H3K4me2 ChIP-seq reads were binned into 500-bp windows tiled across each
  4357. promoter from 5
  4358. \begin_inset space ~
  4359. \end_inset
  4360. kbp upstream to 5
  4361. \begin_inset space ~
  4362. \end_inset
  4363. kbp downstream, and the logCPM values were normalized within each promoter
  4364. to an average of 0, yielding relative coverage depths.
  4365. These were then grouped using K-means clustering with
  4366. \begin_inset Formula $K=6$
  4367. \end_inset
  4368. ,
  4369. \series bold
  4370. \series default
  4371. and the average bin values were plotted for each cluster (a).
  4372. The
  4373. \begin_inset Formula $x$
  4374. \end_inset
  4375. -axis is the genomic coordinate of each bin relative to the the transcription
  4376. start site, and the
  4377. \begin_inset Formula $y$
  4378. \end_inset
  4379. -axis is the mean relative coverage depth of that bin across all promoters
  4380. in the cluster.
  4381. Each line represents the average
  4382. \begin_inset Quotes eld
  4383. \end_inset
  4384. shape
  4385. \begin_inset Quotes erd
  4386. \end_inset
  4387. of the promoter coverage for promoters in that cluster.
  4388. PCA was performed on the same data, and the first two principal components
  4389. were plotted, coloring each point by its K-means cluster identity (b).
  4390. For each cluster, the distribution of gene expression values was plotted
  4391. (c).
  4392. \end_layout
  4393. \end_inset
  4394. \end_layout
  4395. \end_inset
  4396. \end_layout
  4397. \begin_layout Standard
  4398. \begin_inset ERT
  4399. status open
  4400. \begin_layout Plain Layout
  4401. \backslash
  4402. end{landscape}
  4403. \end_layout
  4404. \begin_layout Plain Layout
  4405. }
  4406. \end_layout
  4407. \end_inset
  4408. \end_layout
  4409. \begin_layout Standard
  4410. To test whether the position of a histone mark relative to a gene's transcriptio
  4411. n start site (TSS) was important, we looked at the
  4412. \begin_inset Quotes eld
  4413. \end_inset
  4414. landscape
  4415. \begin_inset Quotes erd
  4416. \end_inset
  4417. of ChIP-seq read coverage in naive Day 0 samples within 5 kb of each gene's
  4418. TSS by binning reads into 500-bp windows tiled across each promoter LogCPM
  4419. values were calculated for the bins in each promoter and then the average
  4420. logCPM for each promoter's bins was normalized to zero, such that the values
  4421. represent coverage relative to other regions of the same promoter rather
  4422. than being proportional to absolute read count.
  4423. The promoters were then clustered based on the normalized bin abundances
  4424. using
  4425. \begin_inset Formula $k$
  4426. \end_inset
  4427. -means clustering with
  4428. \begin_inset Formula $K=6$
  4429. \end_inset
  4430. .
  4431. Different values of
  4432. \begin_inset Formula $K$
  4433. \end_inset
  4434. were also tested, but did not substantially change the interpretation of
  4435. the data.
  4436. \end_layout
  4437. \begin_layout Standard
  4438. For H3K4me2, plotting the average bin abundances for each cluster reveals
  4439. a simple pattern (Figure
  4440. \begin_inset CommandInset ref
  4441. LatexCommand ref
  4442. reference "fig:H3K4me2-neighborhood-clusters"
  4443. plural "false"
  4444. caps "false"
  4445. noprefix "false"
  4446. \end_inset
  4447. ): Cluster 5 represents a completely flat promoter coverage profile, likely
  4448. consisting of genes with no H3K4me2 methylation in the promoter.
  4449. All the other clusters represent a continuum of peak positions relative
  4450. to the TSS.
  4451. In order from must upstream to most downstream, they are Clusters 6, 4,
  4452. 3, 1, and 2.
  4453. There do not appear to be any clusters representing coverage patterns other
  4454. than lone peaks, such as coverage troughs or double peaks.
  4455. Next, all promoters were plotted in a PCA plot based on the same relative
  4456. bin abundance data, and colored based on cluster membership (Figure
  4457. \begin_inset CommandInset ref
  4458. LatexCommand ref
  4459. reference "fig:H3K4me2-neighborhood-pca"
  4460. plural "false"
  4461. caps "false"
  4462. noprefix "false"
  4463. \end_inset
  4464. ).
  4465. The PCA plot shows Cluster 5 (the
  4466. \begin_inset Quotes eld
  4467. \end_inset
  4468. no peak
  4469. \begin_inset Quotes erd
  4470. \end_inset
  4471. cluster) at the center, with the other clusters arranged in a counter-clockwise
  4472. arc around it in the order noted above, from most upstream peak to most
  4473. downstream.
  4474. Notably, the
  4475. \begin_inset Quotes eld
  4476. \end_inset
  4477. clusters
  4478. \begin_inset Quotes erd
  4479. \end_inset
  4480. form a single large
  4481. \begin_inset Quotes eld
  4482. \end_inset
  4483. cloud
  4484. \begin_inset Quotes erd
  4485. \end_inset
  4486. with no apparent separation between them, further supporting the conclusion
  4487. that these clusters represent an arbitrary partitioning of a continuous
  4488. distribution of promoter coverage landscapes.
  4489. While the clusters are a useful abstraction that aids in visualization,
  4490. they are ultimately not an accurate representation of the data.
  4491. A better representation might be something like a polar coordinate system
  4492. with the origin at the center of Cluster 5, where the radius represents
  4493. the peak height above the background and the angle represents the peak's
  4494. position upstream or downstream of the TSS.
  4495. The continuous nature of the distribution also explains why different values
  4496. of
  4497. \begin_inset Formula $K$
  4498. \end_inset
  4499. led to similar conclusions.
  4500. \end_layout
  4501. \begin_layout Standard
  4502. \begin_inset Flex TODO Note (inline)
  4503. status open
  4504. \begin_layout Plain Layout
  4505. RNA-seq values in the plots use logCPM but should really use logFPKM or
  4506. logTPM.
  4507. Fix if time allows.
  4508. \end_layout
  4509. \end_inset
  4510. \end_layout
  4511. \begin_layout Standard
  4512. \begin_inset Flex TODO Note (inline)
  4513. status open
  4514. \begin_layout Plain Layout
  4515. Should have a table of p-values on difference of means between Cluster 5
  4516. and the others.
  4517. \end_layout
  4518. \end_inset
  4519. \end_layout
  4520. \begin_layout Standard
  4521. To investigate the association between relative peak position and gene expressio
  4522. n, we plotted the Naive Day 0 expression for the genes in each cluster (Figure
  4523. \begin_inset CommandInset ref
  4524. LatexCommand ref
  4525. reference "fig:H3K4me2-neighborhood-expression"
  4526. plural "false"
  4527. caps "false"
  4528. noprefix "false"
  4529. \end_inset
  4530. ).
  4531. Most genes in Cluster 5, the
  4532. \begin_inset Quotes eld
  4533. \end_inset
  4534. no peak
  4535. \begin_inset Quotes erd
  4536. \end_inset
  4537. cluster, have low expression values.
  4538. Taking this as the
  4539. \begin_inset Quotes eld
  4540. \end_inset
  4541. baseline
  4542. \begin_inset Quotes erd
  4543. \end_inset
  4544. distribution when no H3K4me2 methylation is present, we can compare the
  4545. other clusters' distributions to determine which peak positions are associated
  4546. with elevated expression.
  4547. As might be expected, the 3 clusters representing peaks closest to the
  4548. TSS, Clusters 1, 3, and 4, show the highest average expression distributions.
  4549. Specifically, these clusters all have their highest ChIP-seq abundance
  4550. within 1kb of the TSS, consistent with the previously determined promoter
  4551. radius.
  4552. In contrast, cluster 6, which represents peaks several kb upstream of the
  4553. TSS, shows a slightly higher average expression than baseline, while Cluster
  4554. 2, which represents peaks several kb downstream, doesn't appear to show
  4555. any appreciable difference.
  4556. Interestingly, the cluster with the highest average expression is Cluster
  4557. 1, which represents peaks about 1 kb downstream of the TSS, rather than
  4558. Cluster 3, which represents peaks centered directly at the TSS.
  4559. This suggests that conceptualizing the promoter as a region centered on
  4560. the TSS with a certain
  4561. \begin_inset Quotes eld
  4562. \end_inset
  4563. radius
  4564. \begin_inset Quotes erd
  4565. \end_inset
  4566. may be an oversimplification – a peak that is a specific distance from
  4567. the TSS may have a different degree of influence depending on whether it
  4568. is upstream or downstream of the TSS.
  4569. \end_layout
  4570. \begin_layout Standard
  4571. \begin_inset ERT
  4572. status open
  4573. \begin_layout Plain Layout
  4574. \backslash
  4575. afterpage{
  4576. \end_layout
  4577. \begin_layout Plain Layout
  4578. \backslash
  4579. begin{landscape}
  4580. \end_layout
  4581. \end_inset
  4582. \end_layout
  4583. \begin_layout Standard
  4584. \begin_inset Float figure
  4585. wide false
  4586. sideways false
  4587. status open
  4588. \begin_layout Plain Layout
  4589. \align center
  4590. \begin_inset Float figure
  4591. wide false
  4592. sideways false
  4593. status open
  4594. \begin_layout Plain Layout
  4595. \align center
  4596. \begin_inset Graphics
  4597. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-neighborhood-clusters-CROP.png
  4598. lyxscale 25
  4599. width 30col%
  4600. groupId covprof-subfig
  4601. \end_inset
  4602. \end_layout
  4603. \begin_layout Plain Layout
  4604. \begin_inset Caption Standard
  4605. \begin_layout Plain Layout
  4606. \series bold
  4607. \begin_inset CommandInset label
  4608. LatexCommand label
  4609. name "fig:H3K4me3-neighborhood-clusters"
  4610. \end_inset
  4611. Average relative coverage for each bin in each cluster
  4612. \end_layout
  4613. \end_inset
  4614. \end_layout
  4615. \end_inset
  4616. \begin_inset space \hfill{}
  4617. \end_inset
  4618. \begin_inset Float figure
  4619. wide false
  4620. sideways false
  4621. status open
  4622. \begin_layout Plain Layout
  4623. \align center
  4624. \begin_inset Graphics
  4625. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-neighborhood-PCA-CROP.png
  4626. lyxscale 25
  4627. width 30col%
  4628. groupId covprof-subfig
  4629. \end_inset
  4630. \end_layout
  4631. \begin_layout Plain Layout
  4632. \begin_inset Caption Standard
  4633. \begin_layout Plain Layout
  4634. \series bold
  4635. \begin_inset CommandInset label
  4636. LatexCommand label
  4637. name "fig:H3K4me3-neighborhood-pca"
  4638. \end_inset
  4639. PCA of relative coverage depth, colored by K-means cluster membership.
  4640. \end_layout
  4641. \end_inset
  4642. \end_layout
  4643. \end_inset
  4644. \begin_inset space \hfill{}
  4645. \end_inset
  4646. \begin_inset Float figure
  4647. wide false
  4648. sideways false
  4649. status open
  4650. \begin_layout Plain Layout
  4651. \align center
  4652. \begin_inset Graphics
  4653. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-neighborhood-expression-CROP.png
  4654. lyxscale 25
  4655. width 30col%
  4656. groupId covprof-subfig
  4657. \end_inset
  4658. \end_layout
  4659. \begin_layout Plain Layout
  4660. \begin_inset Caption Standard
  4661. \begin_layout Plain Layout
  4662. \series bold
  4663. \begin_inset CommandInset label
  4664. LatexCommand label
  4665. name "fig:H3K4me3-neighborhood-expression"
  4666. \end_inset
  4667. Gene expression grouped by promoter coverage clusters.
  4668. \end_layout
  4669. \end_inset
  4670. \end_layout
  4671. \end_inset
  4672. \end_layout
  4673. \begin_layout Plain Layout
  4674. \begin_inset Caption Standard
  4675. \begin_layout Plain Layout
  4676. \series bold
  4677. \begin_inset CommandInset label
  4678. LatexCommand label
  4679. name "fig:H3K4me3-neighborhood"
  4680. \end_inset
  4681. K-means clustering of promoter H3K4me3 relative coverage depth in naive
  4682. day 0 samples.
  4683. \series default
  4684. H3K4me2 ChIP-seq reads were binned into 500-bp windows tiled across each
  4685. promoter from 5
  4686. \begin_inset space ~
  4687. \end_inset
  4688. kbp upstream to 5
  4689. \begin_inset space ~
  4690. \end_inset
  4691. kbp downstream, and the logCPM values were normalized within each promoter
  4692. to an average of 0, yielding relative coverage depths.
  4693. These were then grouped using K-means clustering with
  4694. \begin_inset Formula $K=6$
  4695. \end_inset
  4696. ,
  4697. \series bold
  4698. \series default
  4699. and the average bin values were plotted for each cluster (a).
  4700. The
  4701. \begin_inset Formula $x$
  4702. \end_inset
  4703. -axis is the genomic coordinate of each bin relative to the the transcription
  4704. start site, and the
  4705. \begin_inset Formula $y$
  4706. \end_inset
  4707. -axis is the mean relative coverage depth of that bin across all promoters
  4708. in the cluster.
  4709. Each line represents the average
  4710. \begin_inset Quotes eld
  4711. \end_inset
  4712. shape
  4713. \begin_inset Quotes erd
  4714. \end_inset
  4715. of the promoter coverage for promoters in that cluster.
  4716. PCA was performed on the same data, and the first two principal components
  4717. were plotted, coloring each point by its K-means cluster identity (b).
  4718. For each cluster, the distribution of gene expression values was plotted
  4719. (c).
  4720. \end_layout
  4721. \end_inset
  4722. \end_layout
  4723. \end_inset
  4724. \end_layout
  4725. \begin_layout Standard
  4726. \begin_inset ERT
  4727. status open
  4728. \begin_layout Plain Layout
  4729. \backslash
  4730. end{landscape}
  4731. \end_layout
  4732. \begin_layout Plain Layout
  4733. }
  4734. \end_layout
  4735. \end_inset
  4736. \end_layout
  4737. \begin_layout Standard
  4738. \begin_inset Flex TODO Note (inline)
  4739. status open
  4740. \begin_layout Plain Layout
  4741. Is there more to say here?
  4742. \end_layout
  4743. \end_inset
  4744. \end_layout
  4745. \begin_layout Standard
  4746. All observations described above for H3K4me2 ChIP-seq also appear to hold
  4747. for H3K4me3 as well (Figure
  4748. \begin_inset CommandInset ref
  4749. LatexCommand ref
  4750. reference "fig:H3K4me3-neighborhood"
  4751. plural "false"
  4752. caps "false"
  4753. noprefix "false"
  4754. \end_inset
  4755. ).
  4756. This is expected, since there is a high correlation between the positions
  4757. where both histone marks occur.
  4758. \end_layout
  4759. \begin_layout Subsection
  4760. Promoter coverage H3K27me3
  4761. \end_layout
  4762. \begin_layout Standard
  4763. \begin_inset ERT
  4764. status open
  4765. \begin_layout Plain Layout
  4766. \backslash
  4767. afterpage{
  4768. \end_layout
  4769. \begin_layout Plain Layout
  4770. \backslash
  4771. begin{landscape}
  4772. \end_layout
  4773. \end_inset
  4774. \end_layout
  4775. \begin_layout Standard
  4776. \begin_inset Float figure
  4777. wide false
  4778. sideways false
  4779. status collapsed
  4780. \begin_layout Plain Layout
  4781. \align center
  4782. \begin_inset Float figure
  4783. wide false
  4784. sideways false
  4785. status open
  4786. \begin_layout Plain Layout
  4787. \align center
  4788. \begin_inset Graphics
  4789. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-neighborhood-clusters-CROP.png
  4790. lyxscale 25
  4791. width 30col%
  4792. groupId covprof-subfig
  4793. \end_inset
  4794. \end_layout
  4795. \begin_layout Plain Layout
  4796. \begin_inset Caption Standard
  4797. \begin_layout Plain Layout
  4798. \series bold
  4799. \begin_inset CommandInset label
  4800. LatexCommand label
  4801. name "fig:H3K27me3-neighborhood-clusters"
  4802. \end_inset
  4803. Average relative coverage for each bin in each cluster
  4804. \end_layout
  4805. \end_inset
  4806. \end_layout
  4807. \end_inset
  4808. \begin_inset space \hfill{}
  4809. \end_inset
  4810. \begin_inset Float figure
  4811. wide false
  4812. sideways false
  4813. status open
  4814. \begin_layout Plain Layout
  4815. \align center
  4816. \begin_inset Graphics
  4817. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-neighborhood-PCA-CROP.png
  4818. lyxscale 25
  4819. width 30col%
  4820. groupId covprof-subfig
  4821. \end_inset
  4822. \end_layout
  4823. \begin_layout Plain Layout
  4824. \begin_inset Caption Standard
  4825. \begin_layout Plain Layout
  4826. \series bold
  4827. \begin_inset CommandInset label
  4828. LatexCommand label
  4829. name "fig:H3K27me3-neighborhood-pca"
  4830. \end_inset
  4831. PCA of relative coverage depth, colored by K-means cluster membership.
  4832. \series default
  4833. Note that Cluster 6 is hidden behind all the other clusters.
  4834. \end_layout
  4835. \end_inset
  4836. \end_layout
  4837. \end_inset
  4838. \begin_inset space \hfill{}
  4839. \end_inset
  4840. \begin_inset Float figure
  4841. wide false
  4842. sideways false
  4843. status open
  4844. \begin_layout Plain Layout
  4845. \align center
  4846. \begin_inset Graphics
  4847. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-neighborhood-expression-CROP.png
  4848. lyxscale 25
  4849. width 30col%
  4850. groupId covprof-subfig
  4851. \end_inset
  4852. \end_layout
  4853. \begin_layout Plain Layout
  4854. \begin_inset Caption Standard
  4855. \begin_layout Plain Layout
  4856. \series bold
  4857. \begin_inset CommandInset label
  4858. LatexCommand label
  4859. name "fig:H3K27me3-neighborhood-expression"
  4860. \end_inset
  4861. Gene expression grouped by promoter coverage clusters.
  4862. \end_layout
  4863. \end_inset
  4864. \end_layout
  4865. \end_inset
  4866. \end_layout
  4867. \begin_layout Plain Layout
  4868. \begin_inset Flex TODO Note (inline)
  4869. status open
  4870. \begin_layout Plain Layout
  4871. Repeated figure legends are kind of an issue here.
  4872. What to do?
  4873. \end_layout
  4874. \end_inset
  4875. \end_layout
  4876. \begin_layout Plain Layout
  4877. \begin_inset Caption Standard
  4878. \begin_layout Plain Layout
  4879. \series bold
  4880. \begin_inset CommandInset label
  4881. LatexCommand label
  4882. name "fig:H3K27me3-neighborhood"
  4883. \end_inset
  4884. K-means clustering of promoter H3K27me3 relative coverage depth in naive
  4885. day 0 samples.
  4886. \series default
  4887. H3K27me3 ChIP-seq reads were binned into 500-bp windows tiled across each
  4888. promoter from 5
  4889. \begin_inset space ~
  4890. \end_inset
  4891. kbp upstream to 5
  4892. \begin_inset space ~
  4893. \end_inset
  4894. kbp downstream, and the logCPM values were normalized within each promoter
  4895. to an average of 0, yielding relative coverage depths.
  4896. These were then grouped using
  4897. \begin_inset Formula $k$
  4898. \end_inset
  4899. -means clustering with
  4900. \begin_inset Formula $K=6$
  4901. \end_inset
  4902. ,
  4903. \series bold
  4904. \series default
  4905. and the average bin values were plotted for each cluster (a).
  4906. The
  4907. \begin_inset Formula $x$
  4908. \end_inset
  4909. -axis is the genomic coordinate of each bin relative to the the transcription
  4910. start site, and the
  4911. \begin_inset Formula $y$
  4912. \end_inset
  4913. -axis is the mean relative coverage depth of that bin across all promoters
  4914. in the cluster.
  4915. Each line represents the average
  4916. \begin_inset Quotes eld
  4917. \end_inset
  4918. shape
  4919. \begin_inset Quotes erd
  4920. \end_inset
  4921. of the promoter coverage for promoters in that cluster.
  4922. PCA was performed on the same data, and the first two principal components
  4923. were plotted, coloring each point by its K-means cluster identity (b).
  4924. For each cluster, the distribution of gene expression values was plotted
  4925. (c).
  4926. \end_layout
  4927. \end_inset
  4928. \end_layout
  4929. \end_inset
  4930. \end_layout
  4931. \begin_layout Standard
  4932. \begin_inset ERT
  4933. status open
  4934. \begin_layout Plain Layout
  4935. \backslash
  4936. end{landscape}
  4937. \end_layout
  4938. \begin_layout Plain Layout
  4939. }
  4940. \end_layout
  4941. \end_inset
  4942. \end_layout
  4943. \begin_layout Standard
  4944. \begin_inset Flex TODO Note (inline)
  4945. status open
  4946. \begin_layout Plain Layout
  4947. Should maybe re-explain what was done or refer back to the previous section.
  4948. \end_layout
  4949. \end_inset
  4950. \end_layout
  4951. \begin_layout Standard
  4952. Unlike both H3K4 marks, whose main patterns of variation appear directly
  4953. related to the size and position of a single peak within the promoter,
  4954. the patterns of H3K27me3 methylation in promoters are more complex (Figure
  4955. \begin_inset CommandInset ref
  4956. LatexCommand ref
  4957. reference "fig:H3K27me3-neighborhood"
  4958. plural "false"
  4959. caps "false"
  4960. noprefix "false"
  4961. \end_inset
  4962. ).
  4963. Once again looking at the relative coverage in a 500-bp wide bins in a
  4964. 5kb radius around each TSS, promoters were clustered based on the normalized
  4965. relative coverage values in each bin using
  4966. \begin_inset Formula $k$
  4967. \end_inset
  4968. -means clustering with
  4969. \begin_inset Formula $K=6$
  4970. \end_inset
  4971. (Figure
  4972. \begin_inset CommandInset ref
  4973. LatexCommand ref
  4974. reference "fig:H3K27me3-neighborhood-clusters"
  4975. plural "false"
  4976. caps "false"
  4977. noprefix "false"
  4978. \end_inset
  4979. ).
  4980. This time, 3
  4981. \begin_inset Quotes eld
  4982. \end_inset
  4983. axes
  4984. \begin_inset Quotes erd
  4985. \end_inset
  4986. of variation can be observed, each represented by 2 clusters with opposing
  4987. patterns.
  4988. The first axis is greater upstream coverage (Cluster 1) vs.
  4989. greater downstream coverage (Cluster 3); the second axis is the coverage
  4990. at the TSS itself: peak (Cluster 4) or trough (Cluster 2); lastly, the
  4991. third axis represents a trough upstream of the TSS (Cluster 5) vs.
  4992. downstream of the TSS (Cluster 6).
  4993. Referring to these opposing pairs of clusters as axes of variation is justified
  4994. , because they correspond precisely to the first 3 principal components
  4995. in the PCA plot of the relative coverage values (Figure
  4996. \begin_inset CommandInset ref
  4997. LatexCommand ref
  4998. reference "fig:H3K27me3-neighborhood-pca"
  4999. plural "false"
  5000. caps "false"
  5001. noprefix "false"
  5002. \end_inset
  5003. ).
  5004. The PCA plot reveals that as in the case of H3K4me2, all the
  5005. \begin_inset Quotes eld
  5006. \end_inset
  5007. clusters
  5008. \begin_inset Quotes erd
  5009. \end_inset
  5010. are really just sections of a single connected cloud rather than discrete
  5011. clusters.
  5012. The cloud is approximately ellipsoid-shaped, with each PC being an axis
  5013. of the ellipse, and each cluster consisting of a pyramidal section of the
  5014. ellipsoid.
  5015. \end_layout
  5016. \begin_layout Standard
  5017. In Figure
  5018. \begin_inset CommandInset ref
  5019. LatexCommand ref
  5020. reference "fig:H3K27me3-neighborhood-expression"
  5021. plural "false"
  5022. caps "false"
  5023. noprefix "false"
  5024. \end_inset
  5025. , we can see that Clusters 1 and 2 are the only clusters with higher gene
  5026. expression than the others.
  5027. For Cluster 2, this is expected, since this cluster represents genes with
  5028. depletion of H3K27me3 near the promoter.
  5029. Hence, elevated expression in cluster 2 is consistent with the conventional
  5030. view of H3K27me3 as a deactivating mark.
  5031. However, Cluster 1, the cluster with the most elevated gene expression,
  5032. represents genes with elevated coverage upstream of the TSS, or equivalently,
  5033. decreased coverage downstream, inside the gene body.
  5034. The opposite pattern, in which H3K27me3 is more abundant within the gene
  5035. body and less abundance in the upstream promoter region, does not show
  5036. any elevation in gene expression.
  5037. As with H3K4me2, this shows that the location of H3K27 trimethylation relative
  5038. to the TSS is potentially an important factor beyond simple proximity.
  5039. \end_layout
  5040. \begin_layout Standard
  5041. \begin_inset Flex TODO Note (inline)
  5042. status open
  5043. \begin_layout Plain Layout
  5044. Show the figures where the negative result ended this line of inquiry.
  5045. I need to debug some errors resulting from an R upgrade to do this.
  5046. \end_layout
  5047. \end_inset
  5048. \end_layout
  5049. \begin_layout Subsection
  5050. Defined pattern analysis
  5051. \end_layout
  5052. \begin_layout Standard
  5053. \begin_inset Flex TODO Note (inline)
  5054. status open
  5055. \begin_layout Plain Layout
  5056. This was where I defined interesting expression patterns and then looked
  5057. at initial relative promoter coverage for each expression pattern.
  5058. Negative result.
  5059. I forgot about this until recently.
  5060. Worth including? Remember to also write methods.
  5061. \end_layout
  5062. \end_inset
  5063. \end_layout
  5064. \begin_layout Subsection
  5065. Promoter CpG islands?
  5066. \end_layout
  5067. \begin_layout Standard
  5068. \begin_inset Flex TODO Note (inline)
  5069. status collapsed
  5070. \begin_layout Plain Layout
  5071. I forgot until recently about the work I did on this.
  5072. Worth including? Remember to also write methods.
  5073. \end_layout
  5074. \end_inset
  5075. \end_layout
  5076. \begin_layout Section
  5077. Discussion
  5078. \end_layout
  5079. \begin_layout Standard
  5080. \begin_inset Flex TODO Note (inline)
  5081. status open
  5082. \begin_layout Plain Layout
  5083. Write better section headers
  5084. \end_layout
  5085. \end_inset
  5086. \end_layout
  5087. \begin_layout Subsection
  5088. Effective promoter radius
  5089. \end_layout
  5090. \begin_layout Standard
  5091. Figure
  5092. \begin_inset CommandInset ref
  5093. LatexCommand ref
  5094. reference "fig:near-promoter-peak-enrich"
  5095. plural "false"
  5096. caps "false"
  5097. noprefix "false"
  5098. \end_inset
  5099. shows that H3K4me2, H3K4me3, and H3K27me3 are all enriched near promoters,
  5100. relative to the rest of the genome, consistent with their conventionally
  5101. understood role in regulating gene transcription.
  5102. Interestingly, the radius within this enrichment occurs is not the same
  5103. for each histone mark.
  5104. H3K4me2 and H3K4me3 are enriched within a 1
  5105. \begin_inset space \thinspace{}
  5106. \end_inset
  5107. kb radius, while H3K27me3 is enriched within 2.5
  5108. \begin_inset space \thinspace{}
  5109. \end_inset
  5110. kb.
  5111. Notably, the determined promoter radius was consistent across all experimental
  5112. conditions, varying only between different histone marks.
  5113. This suggests that the conventional
  5114. \begin_inset Quotes eld
  5115. \end_inset
  5116. one size fits all
  5117. \begin_inset Quotes erd
  5118. \end_inset
  5119. approach of defining a single promoter region for each gene (or each TSS)
  5120. and using that same promoter region for analyzing all types of genomic
  5121. data within an experiment may not be appropriate, and a better approach
  5122. may be to use a separate promoter radius for each kind of data, with each
  5123. radius being derived from the data itself.
  5124. Furthermore, the apparent asymmetry of upstream and downstream promoter
  5125. histone modification with respect to gene expression, seen in Figures
  5126. \begin_inset CommandInset ref
  5127. LatexCommand ref
  5128. reference "fig:H3K4me2-neighborhood"
  5129. plural "false"
  5130. caps "false"
  5131. noprefix "false"
  5132. \end_inset
  5133. ,
  5134. \begin_inset CommandInset ref
  5135. LatexCommand ref
  5136. reference "fig:H3K4me3-neighborhood"
  5137. plural "false"
  5138. caps "false"
  5139. noprefix "false"
  5140. \end_inset
  5141. , and
  5142. \begin_inset CommandInset ref
  5143. LatexCommand ref
  5144. reference "fig:H3K27me3-neighborhood"
  5145. plural "false"
  5146. caps "false"
  5147. noprefix "false"
  5148. \end_inset
  5149. , shows that even the concept of a promoter
  5150. \begin_inset Quotes eld
  5151. \end_inset
  5152. radius
  5153. \begin_inset Quotes erd
  5154. \end_inset
  5155. is likely an oversimplification.
  5156. At a minimum, nearby enrichment of peaks should be evaluated separately
  5157. for both upstream and downstream peaks, and an appropriate
  5158. \begin_inset Quotes eld
  5159. \end_inset
  5160. radius
  5161. \begin_inset Quotes erd
  5162. \end_inset
  5163. should be selected for each direction.
  5164. \end_layout
  5165. \begin_layout Standard
  5166. Figures
  5167. \begin_inset CommandInset ref
  5168. LatexCommand ref
  5169. reference "fig:H3K4me2-neighborhood"
  5170. plural "false"
  5171. caps "false"
  5172. noprefix "false"
  5173. \end_inset
  5174. and
  5175. \begin_inset CommandInset ref
  5176. LatexCommand ref
  5177. reference "fig:H3K4me3-neighborhood"
  5178. plural "false"
  5179. caps "false"
  5180. noprefix "false"
  5181. \end_inset
  5182. show that the determined promoter radius of 1
  5183. \begin_inset space ~
  5184. \end_inset
  5185. kb is approximately consistent with the distance from the TSS at which enrichmen
  5186. t of H3K4 methylation correlates with increased expression, showing that
  5187. this radius, which was determined by a simple analysis of measuring the
  5188. distance from each TSS to the nearest peak, also has functional significance.
  5189. For H3K27me3, the correlation between histone modification near the promoter
  5190. and gene expression is more complex, involving non-peak variations such
  5191. as troughs in coverage at the TSS and asymmetric coverage upstream and
  5192. downstream, so it is difficult in this case to evaluate whether the 2.5
  5193. \begin_inset space ~
  5194. \end_inset
  5195. kb radius determined from TSS-to-peak distances is functionally significant.
  5196. However, the two patterns of coverage associated with elevated expression
  5197. levels both have interesting features within this radius.
  5198. \end_layout
  5199. \begin_layout Standard
  5200. \begin_inset Flex TODO Note (inline)
  5201. status open
  5202. \begin_layout Plain Layout
  5203. My instinct is to say
  5204. \begin_inset Quotes eld
  5205. \end_inset
  5206. further study is needed
  5207. \begin_inset Quotes erd
  5208. \end_inset
  5209. here, but that goes in Chapter 5, right?
  5210. \end_layout
  5211. \end_inset
  5212. \end_layout
  5213. \begin_layout Subsection
  5214. Convergence
  5215. \end_layout
  5216. \begin_layout Standard
  5217. \begin_inset Flex TODO Note (inline)
  5218. status open
  5219. \begin_layout Plain Layout
  5220. Look up some more references for these histone marks being involved in memory
  5221. differentiation.
  5222. (Ask Sarah)
  5223. \end_layout
  5224. \end_inset
  5225. \end_layout
  5226. \begin_layout Standard
  5227. We have observed that all 3 histone marks and the gene expression data all
  5228. exhibit evidence of convergence in abundance between naive and memory cells
  5229. by day 14 after activation (Figure
  5230. \begin_inset CommandInset ref
  5231. LatexCommand ref
  5232. reference "fig:PCoA-promoters"
  5233. plural "false"
  5234. caps "false"
  5235. noprefix "false"
  5236. \end_inset
  5237. , Table
  5238. \begin_inset CommandInset ref
  5239. LatexCommand ref
  5240. reference "tab:Number-signif-promoters"
  5241. plural "false"
  5242. caps "false"
  5243. noprefix "false"
  5244. \end_inset
  5245. ).
  5246. The MOFA latent factor scatter plots (Figure
  5247. \begin_inset CommandInset ref
  5248. LatexCommand ref
  5249. reference "fig:mofa-lf-scatter"
  5250. plural "false"
  5251. caps "false"
  5252. noprefix "false"
  5253. \end_inset
  5254. ) show that this pattern of convergence is captured in latent factor 5.
  5255. Like all the latent factors in this plot, this factor explains a substantial
  5256. portion of the variance in all 4 data sets, indicating a coordinated pattern
  5257. of variation shared across all histone marks and gene expression.
  5258. This, of course, is consistent with the expectation that any naive CD4
  5259. T-cells remaining at day 14 should have differentiated into memory cells
  5260. by that time, and should therefore have a genomic state similar to memory
  5261. cells.
  5262. This convergence is evidence that these histone marks all play an important
  5263. role in the naive-to-memory differentiation process.
  5264. A histone mark that was not involved in naive-to-memory differentiation
  5265. would not be expected to converge in this way after activation.
  5266. \end_layout
  5267. \begin_layout Standard
  5268. \begin_inset Float figure
  5269. wide false
  5270. sideways false
  5271. status collapsed
  5272. \begin_layout Plain Layout
  5273. \align center
  5274. \begin_inset Graphics
  5275. filename graphics/CD4-csaw/LaMere2016_fig8.pdf
  5276. lyxscale 50
  5277. width 60col%
  5278. groupId colwidth
  5279. \end_inset
  5280. \end_layout
  5281. \begin_layout Plain Layout
  5282. \begin_inset Caption Standard
  5283. \begin_layout Plain Layout
  5284. \series bold
  5285. \begin_inset CommandInset label
  5286. LatexCommand label
  5287. name "fig:Lamere2016-Fig8"
  5288. \end_inset
  5289. Lamere 2016 Figure 8
  5290. \begin_inset CommandInset citation
  5291. LatexCommand cite
  5292. key "LaMere2016"
  5293. literal "false"
  5294. \end_inset
  5295. ,
  5296. \begin_inset Quotes eld
  5297. \end_inset
  5298. Model for the role of H3K4 methylation during CD4 T-cell activation.
  5299. \begin_inset Quotes erd
  5300. \end_inset
  5301. \series default
  5302. Reproduced with permission.
  5303. \end_layout
  5304. \end_inset
  5305. \end_layout
  5306. \end_inset
  5307. \end_layout
  5308. \begin_layout Standard
  5309. In H3K4me2, H3K4me3, and RNA-seq, this convergence appears to be in progress
  5310. already by Day 5, shown by the smaller distance between naive and memory
  5311. cells at day 5 along the
  5312. \begin_inset Formula $y$
  5313. \end_inset
  5314. -axes in Figures
  5315. \begin_inset CommandInset ref
  5316. LatexCommand ref
  5317. reference "fig:PCoA-H3K4me2-prom"
  5318. plural "false"
  5319. caps "false"
  5320. noprefix "false"
  5321. \end_inset
  5322. ,
  5323. \begin_inset CommandInset ref
  5324. LatexCommand ref
  5325. reference "fig:PCoA-H3K4me3-prom"
  5326. plural "false"
  5327. caps "false"
  5328. noprefix "false"
  5329. \end_inset
  5330. , and
  5331. \begin_inset CommandInset ref
  5332. LatexCommand ref
  5333. reference "fig:RNA-PCA-group"
  5334. plural "false"
  5335. caps "false"
  5336. noprefix "false"
  5337. \end_inset
  5338. .
  5339. This agrees with the model proposed by Sarah Lamere based on an prior analysis
  5340. of the same data, shown in Figure
  5341. \begin_inset CommandInset ref
  5342. LatexCommand ref
  5343. reference "fig:Lamere2016-Fig8"
  5344. plural "false"
  5345. caps "false"
  5346. noprefix "false"
  5347. \end_inset
  5348. , which shows the pattern of H3K4 methylation and expression for naive cells
  5349. and memory cells converging at day 5.
  5350. This model was developed without the benefit of the PCoA plots in Figure
  5351. \begin_inset CommandInset ref
  5352. LatexCommand ref
  5353. reference "fig:PCoA-promoters"
  5354. plural "false"
  5355. caps "false"
  5356. noprefix "false"
  5357. \end_inset
  5358. , which have been corrected for confounding factors by ComBat and SVA.
  5359. This shows that proper batch correction assists in extracting meaningful
  5360. patterns in the data while eliminating systematic sources of irrelevant
  5361. variation in the data, allowing simple automated procedures like PCoA to
  5362. reveal interesting behaviors in the data that were previously only detectable
  5363. by a detailed manual analysis.
  5364. \end_layout
  5365. \begin_layout Standard
  5366. While the ideal comparison to demonstrate this convergence would be naive
  5367. cells at day 14 to memory cells at day 0, this is not feasible in this
  5368. experimental system, since neither naive nor memory cells are able to fully
  5369. return to their pre-activation state, as shown by the lack of overlap between
  5370. days 0 and 14 for either naive or memory cells in Figure
  5371. \begin_inset CommandInset ref
  5372. LatexCommand ref
  5373. reference "fig:PCoA-promoters"
  5374. plural "false"
  5375. caps "false"
  5376. noprefix "false"
  5377. \end_inset
  5378. .
  5379. \end_layout
  5380. \begin_layout Subsection
  5381. Positional
  5382. \end_layout
  5383. \begin_layout Standard
  5384. When looking at patterns in the relative coverage of each histone mark near
  5385. the TSS of each gene, several interesting patterns were apparent.
  5386. For H3K4me2 and H3K4me3, the pattern was straightforward: the consistent
  5387. pattern across all promoters was a single peak a few kb wide, with the
  5388. main axis of variation being the position of this peak relative to the
  5389. TSS (Figures
  5390. \begin_inset CommandInset ref
  5391. LatexCommand ref
  5392. reference "fig:H3K4me2-neighborhood"
  5393. plural "false"
  5394. caps "false"
  5395. noprefix "false"
  5396. \end_inset
  5397. &
  5398. \begin_inset CommandInset ref
  5399. LatexCommand ref
  5400. reference "fig:H3K4me3-neighborhood"
  5401. plural "false"
  5402. caps "false"
  5403. noprefix "false"
  5404. \end_inset
  5405. ).
  5406. There were no obvious
  5407. \begin_inset Quotes eld
  5408. \end_inset
  5409. preferred
  5410. \begin_inset Quotes erd
  5411. \end_inset
  5412. positions, but rather a continuous distribution of relative positions ranging
  5413. all across the promoter region.
  5414. The association with gene expression was also straightforward: peaks closer
  5415. to the TSS were more strongly associated with elevated gene expression.
  5416. Coverage downstream of the TSS appears to be more strongly associated with
  5417. elevated expression than coverage the same distance upstream, indicating
  5418. that the
  5419. \begin_inset Quotes eld
  5420. \end_inset
  5421. effective promoter region
  5422. \begin_inset Quotes erd
  5423. \end_inset
  5424. for H3K4me2 and H3K4me3 may be centered downstream of the TSS.
  5425. \end_layout
  5426. \begin_layout Standard
  5427. The relative promoter coverage for H3K27me3 had a more complex pattern,
  5428. with two specific patterns of promoter coverage associated with elevated
  5429. expression: a sharp depletion of H3K27me3 around the TSS relative to the
  5430. surrounding area, and a depletion of H3K27me3 downstream of the TSS relative
  5431. to upstream (Figure
  5432. \begin_inset CommandInset ref
  5433. LatexCommand ref
  5434. reference "fig:H3K27me3-neighborhood"
  5435. plural "false"
  5436. caps "false"
  5437. noprefix "false"
  5438. \end_inset
  5439. ).
  5440. A previous study found that H3K27me3 depletion within the gene body was
  5441. associated with elevated gene expression in 4 different cell types in mice
  5442. \begin_inset CommandInset citation
  5443. LatexCommand cite
  5444. key "Young2011"
  5445. literal "false"
  5446. \end_inset
  5447. .
  5448. This is consistent with the second pattern described here.
  5449. This study also reported that a spike in coverage at the TSS was associated
  5450. with
  5451. \emph on
  5452. lower
  5453. \emph default
  5454. expression, which is indirectly consistent with the first pattern described
  5455. here, in the sense that it associates lower H3K27me3 levels near the TSS
  5456. with higher expression.
  5457. \end_layout
  5458. \begin_layout Subsection
  5459. Workflow
  5460. \end_layout
  5461. \begin_layout Standard
  5462. \begin_inset ERT
  5463. status open
  5464. \begin_layout Plain Layout
  5465. \backslash
  5466. afterpage{
  5467. \end_layout
  5468. \begin_layout Plain Layout
  5469. \backslash
  5470. begin{landscape}
  5471. \end_layout
  5472. \end_inset
  5473. \end_layout
  5474. \begin_layout Standard
  5475. \begin_inset Float figure
  5476. wide false
  5477. sideways false
  5478. status open
  5479. \begin_layout Plain Layout
  5480. \align center
  5481. \begin_inset Graphics
  5482. filename graphics/CD4-csaw/rulegraphs/rulegraph-all.pdf
  5483. lyxscale 50
  5484. width 100col%
  5485. height 95theight%
  5486. \end_inset
  5487. \end_layout
  5488. \begin_layout Plain Layout
  5489. \begin_inset Caption Standard
  5490. \begin_layout Plain Layout
  5491. \begin_inset CommandInset label
  5492. LatexCommand label
  5493. name "fig:rulegraph"
  5494. \end_inset
  5495. \series bold
  5496. Dependency graph of steps in reproducible workflow.
  5497. \end_layout
  5498. \end_inset
  5499. \end_layout
  5500. \end_inset
  5501. \end_layout
  5502. \begin_layout Standard
  5503. \begin_inset ERT
  5504. status open
  5505. \begin_layout Plain Layout
  5506. \backslash
  5507. end{landscape}
  5508. \end_layout
  5509. \begin_layout Plain Layout
  5510. }
  5511. \end_layout
  5512. \end_inset
  5513. \end_layout
  5514. \begin_layout Standard
  5515. The analyses described in this chapter were organized into a reproducible
  5516. workflow using the Snakemake workflow management system.
  5517. As shown in Figure
  5518. \begin_inset CommandInset ref
  5519. LatexCommand ref
  5520. reference "fig:rulegraph"
  5521. plural "false"
  5522. caps "false"
  5523. noprefix "false"
  5524. \end_inset
  5525. , the workflow includes many steps with complex dependencies between them.
  5526. For example, the step that counts the number of ChIP-seq reads in 500
  5527. \begin_inset space ~
  5528. \end_inset
  5529. bp windows in each promoter (the starting point for Figures
  5530. \begin_inset CommandInset ref
  5531. LatexCommand ref
  5532. reference "fig:H3K4me2-neighborhood"
  5533. plural "false"
  5534. caps "false"
  5535. noprefix "false"
  5536. \end_inset
  5537. ,
  5538. \begin_inset CommandInset ref
  5539. LatexCommand ref
  5540. reference "fig:H3K4me3-neighborhood"
  5541. plural "false"
  5542. caps "false"
  5543. noprefix "false"
  5544. \end_inset
  5545. , and
  5546. \begin_inset CommandInset ref
  5547. LatexCommand ref
  5548. reference "fig:H3K27me3-neighborhood"
  5549. plural "false"
  5550. caps "false"
  5551. noprefix "false"
  5552. \end_inset
  5553. ), named
  5554. \begin_inset Formula $\texttt{chipseq\_count\_tss\_neighborhoods}$
  5555. \end_inset
  5556. , depends on the RNA-seq abundance estimates in order to select the most-used
  5557. TSS for each gene, the aligned ChIP-seq reads, the index for those reads,
  5558. and the blacklist of regions to be excluded from ChIP-seq analysis.
  5559. Each step declares its inputs and outputs, and Snakemake uses these to
  5560. determine the dependencies between steps.
  5561. Each step is marked as depending on all the steps whose outputs match its
  5562. inputs, generating the workflow graph in Figure
  5563. \begin_inset CommandInset ref
  5564. LatexCommand ref
  5565. reference "fig:rulegraph"
  5566. plural "false"
  5567. caps "false"
  5568. noprefix "false"
  5569. \end_inset
  5570. , which Snakemake uses to determine order in which to execute each step
  5571. so that each step is executed only after all of the steps it depends on
  5572. have completed, thereby automating the entire workflow from start to finish.
  5573. \end_layout
  5574. \begin_layout Standard
  5575. In addition to simply making it easier to organize the steps in the analysis,
  5576. structuring the analysis as a workflow allowed for some analysis strategies
  5577. that would not have been practical otherwise.
  5578. For example, 5 different RNA-seq quantification methods were tested against
  5579. two different reference transcriptome annotations for a total of 10 different
  5580. quantifications of the same RNA-seq data.
  5581. These were then compared against each other in the exploratory data analysis
  5582. step, to determine that the results were not very sensitive to either the
  5583. choice of quantification method or the choice of annotation.
  5584. This was possible with a single script for the exploratory data analysis,
  5585. because Snakemake was able to automate running this script for every combinatio
  5586. n of method and reference.
  5587. In a similar manner, two different peak calling methods were tested against
  5588. each other, and in this case it was determined that SICER was unambiguously
  5589. superior to MACS for all histone marks studied.
  5590. By enabling these types of comparisons, structuring the analysis as an
  5591. automated workflow allowed important analysis decisions to be made in a
  5592. data-driven way, by running every reasonable option through the downstream
  5593. steps, seeing the consequences of choosing each option, and deciding accordingl
  5594. y.
  5595. \end_layout
  5596. \begin_layout Subsection
  5597. Data quality issues limit conclusions
  5598. \end_layout
  5599. \begin_layout Standard
  5600. \begin_inset Flex TODO Note (inline)
  5601. status open
  5602. \begin_layout Plain Layout
  5603. Is this needed?
  5604. \end_layout
  5605. \end_inset
  5606. \end_layout
  5607. \begin_layout Section
  5608. Future Directions
  5609. \end_layout
  5610. \begin_layout Standard
  5611. The analysis of RNA-seq and ChIP-seq in CD4 T-cells in Chapter 2 is in many
  5612. ways a preliminary study that suggests a multitude of new avenues of investigat
  5613. ion.
  5614. Here we consider a selection of such avenues.
  5615. \end_layout
  5616. \begin_layout Subsection
  5617. Negative results
  5618. \end_layout
  5619. \begin_layout Standard
  5620. Two additional analyses were conducted beyond those reported in the results.
  5621. First, we searched for evidence that the presence or absence of a CpG island
  5622. in the promoter was correlated with increases or decreases in gene expression
  5623. or any histone mark in any of the tested contrasts.
  5624. Second, we searched for evidence that the relative ChIP-seq coverage profiles
  5625. prior to activations could predict the change in expression of a gene after
  5626. activation.
  5627. Neither analysis turned up any clear positive results.
  5628. \end_layout
  5629. \begin_layout Subsection
  5630. Improve on the idea of an effective promoter radius
  5631. \end_layout
  5632. \begin_layout Standard
  5633. This study introduced the concept of an
  5634. \begin_inset Quotes eld
  5635. \end_inset
  5636. effective promoter radius
  5637. \begin_inset Quotes erd
  5638. \end_inset
  5639. specific to each histone mark based on distance from the TSS within which
  5640. an excess of peaks was called for that mark.
  5641. This concept was then used to guide further analyses throughout the study.
  5642. However, while the effective promoter radius was useful in those analyses,
  5643. it is both limited in theory and shown in practice to be a possible oversimplif
  5644. ication.
  5645. First, the effective promoter radii used in this study were chosen based
  5646. on manual inspection of the TSS-to-peak distance distributions in Figure
  5647. \begin_inset CommandInset ref
  5648. LatexCommand ref
  5649. reference "fig:near-promoter-peak-enrich"
  5650. plural "false"
  5651. caps "false"
  5652. noprefix "false"
  5653. \end_inset
  5654. , selecting round numbers of analyst convenience (Table
  5655. \begin_inset CommandInset ref
  5656. LatexCommand ref
  5657. reference "tab:effective-promoter-radius"
  5658. plural "false"
  5659. caps "false"
  5660. noprefix "false"
  5661. \end_inset
  5662. ).
  5663. It would be better to define an algorithm that selects a more precise radius
  5664. based on the features of the graph.
  5665. One possible way to do this would be to randomly rearrange the called peaks
  5666. throughout the genome many (while preserving the distribution of peak widths)
  5667. and re-generate the same plot as in Figure
  5668. \begin_inset CommandInset ref
  5669. LatexCommand ref
  5670. reference "fig:near-promoter-peak-enrich"
  5671. plural "false"
  5672. caps "false"
  5673. noprefix "false"
  5674. \end_inset
  5675. .
  5676. This would yield a better
  5677. \begin_inset Quotes eld
  5678. \end_inset
  5679. background
  5680. \begin_inset Quotes erd
  5681. \end_inset
  5682. distribution that demonstrates the degree of near-TSS enrichment that would
  5683. be expected by random chance.
  5684. The effective promoter radius could be defined as the point where the true
  5685. distribution diverges from the randomized background distribution.
  5686. \end_layout
  5687. \begin_layout Standard
  5688. Furthermore, the above definition of effective promoter radius has the significa
  5689. nt limitation of being based on the peak calling method.
  5690. It is thus very sensitive to the choice of peak caller and significance
  5691. threshold for calling peaks, as well as the degree of saturation in the
  5692. sequencing.
  5693. Calling peaks from ChIP-seq samples with insufficient coverage depth, with
  5694. the wrong peak caller, or with a different significance threshold could
  5695. give a drastically different number of called peaks, and hence a drastically
  5696. different distribution of peak-to-TSS distances.
  5697. To address this, it is desirable to develop a better method of determining
  5698. the effective promoter radius that relies only on the distribution of read
  5699. coverage around the TSS, independent of the peak calling.
  5700. Furthermore, as demonstrated by the upstream-downstream asymmetries observed
  5701. in Figures
  5702. \begin_inset CommandInset ref
  5703. LatexCommand ref
  5704. reference "fig:H3K4me2-neighborhood"
  5705. plural "false"
  5706. caps "false"
  5707. noprefix "false"
  5708. \end_inset
  5709. ,
  5710. \begin_inset CommandInset ref
  5711. LatexCommand ref
  5712. reference "fig:H3K4me3-neighborhood"
  5713. plural "false"
  5714. caps "false"
  5715. noprefix "false"
  5716. \end_inset
  5717. , and
  5718. \begin_inset CommandInset ref
  5719. LatexCommand ref
  5720. reference "fig:H3K27me3-neighborhood"
  5721. plural "false"
  5722. caps "false"
  5723. noprefix "false"
  5724. \end_inset
  5725. , this definition should determine a different radius for the upstream and
  5726. downstream directions.
  5727. At this point, it may be better to rename this concept
  5728. \begin_inset Quotes eld
  5729. \end_inset
  5730. effective promoter extent
  5731. \begin_inset Quotes erd
  5732. \end_inset
  5733. and avoid the word
  5734. \begin_inset Quotes eld
  5735. \end_inset
  5736. radius
  5737. \begin_inset Quotes erd
  5738. \end_inset
  5739. , since a radius implies a symmetry about the TSS that is not supported
  5740. by the data.
  5741. \end_layout
  5742. \begin_layout Standard
  5743. Beyond improving the definition of effective promoter extent, functional
  5744. validation is necessary to show that this measure of near-TSS enrichment
  5745. has biological meaning.
  5746. Figures
  5747. \begin_inset CommandInset ref
  5748. LatexCommand ref
  5749. reference "fig:H3K4me2-neighborhood"
  5750. plural "false"
  5751. caps "false"
  5752. noprefix "false"
  5753. \end_inset
  5754. and
  5755. \begin_inset CommandInset ref
  5756. LatexCommand ref
  5757. reference "fig:H3K4me3-neighborhood"
  5758. plural "false"
  5759. caps "false"
  5760. noprefix "false"
  5761. \end_inset
  5762. already provide a very limited functional validation of the chosen promoter
  5763. extents for H3K4me2 and H3K4me3 by showing that spikes in coverage within
  5764. this region are most strongly correlated with elevated gene expression.
  5765. However, there are other ways to show functional relevance of the promoter
  5766. extent.
  5767. For example, correlations could be computed between read counts in peaks
  5768. nearby gene promoters and the expression level of those genes, and these
  5769. correlations could be plotted against the distance of the peak upstream
  5770. or downstream of the gene's TSS.
  5771. If the promoter extent truly defines a
  5772. \begin_inset Quotes eld
  5773. \end_inset
  5774. sphere of influence
  5775. \begin_inset Quotes erd
  5776. \end_inset
  5777. within which a histone mark is involved with the regulation of a gene,
  5778. then the correlations for peaks within this extent should be significantly
  5779. higher than those further upstream or downstream.
  5780. Peaks within these extents may also be more likely to show differential
  5781. modification than those outside genic regions of the genome.
  5782. \end_layout
  5783. \begin_layout Subsection
  5784. Design experiments to focus on post-activation convergence of naive & memory
  5785. cells
  5786. \end_layout
  5787. \begin_layout Standard
  5788. In this study, a convergence between naive and memory cells was observed
  5789. in both the pattern of gene expression and in epigenetic state of the 3
  5790. histone marks studied, consistent with the hypothesis that any naive cells
  5791. remaining 14 days after activation have differentiated into memory cells,
  5792. and that both gene expression and these histone marks are involved in this
  5793. differentiation.
  5794. However, the current study was not designed with this specific hypothesis
  5795. in mind, and it therefore has some deficiencies with regard to testing
  5796. it.
  5797. The memory CD4 samples at day 14 do not resemble the memory samples at
  5798. day 0, indicating that in the specific model of activation used for this
  5799. experiment, the cells are not guaranteed to return to their original pre-activa
  5800. tion state, or perhaps this process takes substantially longer than 14 days.
  5801. This is a challenge for the convergence hypothesis because the ideal comparison
  5802. to prove that naive cells are converging to a resting memory state would
  5803. be to compare the final naive time point to the Day 0 memory samples, but
  5804. this comparison is only meaningful if memory cells generally return to
  5805. the same
  5806. \begin_inset Quotes eld
  5807. \end_inset
  5808. resting
  5809. \begin_inset Quotes erd
  5810. \end_inset
  5811. state that they started at.
  5812. \end_layout
  5813. \begin_layout Standard
  5814. To better study the convergence hypothesis, a new experiment should be designed
  5815. using a model system for T-cell activation that is known to allow cells
  5816. to return as closely as possible to their pre-activation state.
  5817. Alternatively, if it is not possible to find or design such a model system,
  5818. the same cell cultures could be activated serially multiple times, and
  5819. sequenced after each activation cycle right before the next activation.
  5820. It is likely that several activations in the same model system will settle
  5821. into a cyclical pattern, converging to a consistent
  5822. \begin_inset Quotes eld
  5823. \end_inset
  5824. resting
  5825. \begin_inset Quotes erd
  5826. \end_inset
  5827. state after each activation, even if this state is different from the initial
  5828. resting state at Day 0.
  5829. If so, it will be possible to compare the final states of both naive and
  5830. memory cells to show that they converge despite different initial conditions.
  5831. \end_layout
  5832. \begin_layout Standard
  5833. In addition, if naive-to-memory convergence is a general pattern, it should
  5834. also be detectable in other epigenetic marks, including other histone marks
  5835. and DNA methylation.
  5836. An experiment should be designed studying a large number of epigenetic
  5837. marks known or suspected to be involved in regulation of gene expression,
  5838. assaying all of these at the same pre- and post-activation time points.
  5839. Multi-dataset factor analysis methods like MOFA can then be used to identify
  5840. coordinated patterns of regulation shared across many epigenetic marks.
  5841. If possible, some
  5842. \begin_inset Quotes eld
  5843. \end_inset
  5844. negative control
  5845. \begin_inset Quotes erd
  5846. \end_inset
  5847. marks should be included that are known
  5848. \emph on
  5849. not
  5850. \emph default
  5851. to be involved in T-cell activation or memory formation.
  5852. Of course, CD4 T-cells are not the only adaptive immune cells with memory.
  5853. A similar study could be designed for CD8 T-cells, B-cells, and even specific
  5854. subsets of CD4 T-cells.
  5855. \end_layout
  5856. \begin_layout Subsection
  5857. Follow up on hints of interesting patterns in promoter relative coverage
  5858. profiles
  5859. \end_layout
  5860. \begin_layout Standard
  5861. \begin_inset Flex TODO Note (inline)
  5862. status open
  5863. \begin_layout Plain Layout
  5864. I think I might need to write up the negative results for the Promoter CpG
  5865. and defined pattern analysis before writing this section.
  5866. \end_layout
  5867. \end_inset
  5868. \end_layout
  5869. \begin_layout Itemize
  5870. Also find better normalizations: maybe borrow from MACS/SICER background
  5871. correction methods?
  5872. \end_layout
  5873. \begin_layout Itemize
  5874. For H3K4, define polar coordinates based on PC1 & 2: R = peak size, Theta
  5875. = peak position.
  5876. Then correlate with expression.
  5877. \end_layout
  5878. \begin_layout Itemize
  5879. Current analysis only at Day 0.
  5880. Need to study across time points.
  5881. \end_layout
  5882. \begin_layout Itemize
  5883. Integrating data across so many dimensions is a significant analysis challenge
  5884. \end_layout
  5885. \begin_layout Subsection
  5886. Investigate causes of high correlation between mutually exclusive histone
  5887. marks
  5888. \end_layout
  5889. \begin_layout Standard
  5890. The high correlation between coverage depth observed between H3K4me2 and
  5891. H3K4me3 is both expected and unexpected.
  5892. Since both marks are associated with elevated gene transcription, a positive
  5893. correlation between them is not surprising.
  5894. However, these two marks represent different post-translational modifications
  5895. of the
  5896. \emph on
  5897. same
  5898. \emph default
  5899. lysine residue on the histone H3 polypeptide, which means that they cannot
  5900. both be present on the same H3 subunit.
  5901. Thus, the high correlation between them has several potential explanations.
  5902. One possible reason is cell population heterogeneity: perhaps some genomic
  5903. loci are frequently marked with H3K4me2 in some cells, while in other cells
  5904. the same loci are marked with H3K4me3.
  5905. Another possibility is allele-specific modifications: the loci are marked
  5906. in each diploid cell with H3K4me2 on one allele and H3K4me3 on the other
  5907. allele.
  5908. Lastly, since each histone octamer contains 2 H3 subunits, it is possible
  5909. that having one H3K4me2 mark and one H3K4me3 mark on a given histone octamer
  5910. represents a distinct epigenetic state with a different function than either
  5911. double H3K4me2 or double H3K4me3.
  5912. \end_layout
  5913. \begin_layout Standard
  5914. These three hypotheses could be disentangled by single-cell ChIP-seq.
  5915. If the correlation between these two histone marks persists even within
  5916. the reads for each individual cell, then cell population heterogeneity
  5917. cannot explain the correlation.
  5918. Allele-specific modification can be tested for by looking at the correlation
  5919. between read coverage of the two histone marks at heterozygous loci.
  5920. If the correlation between read counts for opposite loci is low, then this
  5921. is consistent with allele-specific modification.
  5922. Finally if the modifications do not separate by either cell or allele,
  5923. the colocation of these two marks is most likely occurring at the level
  5924. of individual histones, with the heterogeneously modified histone representing
  5925. a distinct state.
  5926. \end_layout
  5927. \begin_layout Standard
  5928. However, another experiment would be required to show direct evidence of
  5929. such a heterogeneously modified state.
  5930. Specifically a
  5931. \begin_inset Quotes eld
  5932. \end_inset
  5933. double ChIP
  5934. \begin_inset Quotes erd
  5935. \end_inset
  5936. experiment would need to be performed, where the input DNA is first subjected
  5937. to an immunoprecipitation pulldown from the anti-H3K4me2 antibody, and
  5938. then the enriched material is collected, with proteins still bound, and
  5939. immunoprecipitated
  5940. \emph on
  5941. again
  5942. \emph default
  5943. using the anti-H3K4me3 antibody.
  5944. If this yields significant numbers of non-artifactual reads in the same
  5945. regions as the individual pulldowns of the two marks, this is strong evidence
  5946. that the two marks are occurring on opposite H3 subunits of the same histones.
  5947. \end_layout
  5948. \begin_layout Standard
  5949. \begin_inset Flex TODO Note (inline)
  5950. status open
  5951. \begin_layout Plain Layout
  5952. Try to see if double ChIP-seq is actually feasible, and if not, come up
  5953. with some other idea for directly detecting the mixed mod state.
  5954. Oh! Actually ChIP-seq isn't required, only double ChIP followed by quantificati
  5955. on.
  5956. That's one possible angle.
  5957. \end_layout
  5958. \end_inset
  5959. \end_layout
  5960. \begin_layout Chapter
  5961. Improving array-based diagnostics for transplant rejection by optimizing
  5962. data preprocessing
  5963. \end_layout
  5964. \begin_layout Standard
  5965. \begin_inset Note Note
  5966. status open
  5967. \begin_layout Plain Layout
  5968. Chapter author list: Me, Sunil, Tom, Padma, Dan
  5969. \end_layout
  5970. \end_inset
  5971. \end_layout
  5972. \begin_layout Section
  5973. Approach
  5974. \end_layout
  5975. \begin_layout Subsection
  5976. Proper pre-processing is essential for array data
  5977. \end_layout
  5978. \begin_layout Standard
  5979. \begin_inset Flex TODO Note (inline)
  5980. status open
  5981. \begin_layout Plain Layout
  5982. This section could probably use some citations
  5983. \end_layout
  5984. \end_inset
  5985. \end_layout
  5986. \begin_layout Standard
  5987. Microarrays, bead arrays, and similar assays produce raw data in the form
  5988. of fluorescence intensity measurements, with the each intensity measurement
  5989. proportional to the abundance of some fluorescently labelled target DNA
  5990. or RNA sequence that base pairs to a specific probe sequence.
  5991. However, these measurements for each probe are also affected my many technical
  5992. confounding factors, such as the concentration of target material, strength
  5993. of off-target binding, and the sensitivity of the imaging sensor.
  5994. Some array designs also use multiple probe sequences for each target.
  5995. Hence, extensive pre-processing of array data is necessary to normalize
  5996. out the effects of these technical factors and summarize the information
  5997. from multiple probes to arrive at a single usable estimate of abundance
  5998. or other relevant quantity, such as a ratio of two abundances, for each
  5999. target.
  6000. \end_layout
  6001. \begin_layout Standard
  6002. The choice of pre-processing algorithms used in the analysis of an array
  6003. data set can have a large effect on the results of that analysis.
  6004. However, despite their importance, these steps are often neglected or rushed
  6005. in order to get to the more scientifically interesting analysis steps involving
  6006. the actual biology of the system under study.
  6007. Hence, it is often possible to achieve substantial gains in statistical
  6008. power, model goodness-of-fit, or other relevant performance measures, by
  6009. checking the assumptions made by each preprocessing step and choosing specific
  6010. normalization methods tailored to the specific goals of the current analysis.
  6011. \end_layout
  6012. \begin_layout Subsection
  6013. Clinical diagnostic applications for microarrays require single-channel
  6014. normalization
  6015. \end_layout
  6016. \begin_layout Standard
  6017. As the cost of performing microarray assays falls, there is increasing interest
  6018. in using genomic assays for diagnostic purposes, such as distinguishing
  6019. healthy transplants (TX) from transplants undergoing acute rejection (AR)
  6020. or acute dysfunction with no rejection (ADNR).
  6021. However, the the standard normalization algorithm used for microarray data,
  6022. Robust Multi-chip Average (RMA)
  6023. \begin_inset CommandInset citation
  6024. LatexCommand cite
  6025. key "Irizarry2003a"
  6026. literal "false"
  6027. \end_inset
  6028. , is not applicable in a clinical setting.
  6029. Two of the steps in RMA, quantile normalization and probe summarization
  6030. by median polish, depend on every array in the data set being normalized.
  6031. This means that adding or removing any arrays from a data set changes the
  6032. normalized values for all arrays, and data sets that have been normalized
  6033. separately cannot be compared to each other.
  6034. Hence, when using RMA, any arrays to be analyzed together must also be
  6035. normalized together, and the set of arrays included in the data set must
  6036. be held constant throughout an analysis.
  6037. \end_layout
  6038. \begin_layout Standard
  6039. These limitations present serious impediments to the use of arrays as a
  6040. diagnostic tool.
  6041. When training a classifier, the samples to be classified must not be involved
  6042. in any step of the training process, lest their inclusion bias the training
  6043. process.
  6044. Once a classifier is deployed in a clinical setting, the samples to be
  6045. classified will not even
  6046. \emph on
  6047. exist
  6048. \emph default
  6049. at the time of training, so including them would be impossible even if
  6050. it were statistically justifiable.
  6051. Therefore, any machine learning application for microarrays demands that
  6052. the normalized expression values computed for an array must depend only
  6053. on information contained within that array.
  6054. This would ensure that each array's normalization is independent of every
  6055. other array, and that arrays normalized separately can still be compared
  6056. to each other without bias.
  6057. Such a normalization is commonly referred to as
  6058. \begin_inset Quotes eld
  6059. \end_inset
  6060. single-channel normalization
  6061. \begin_inset Quotes erd
  6062. \end_inset
  6063. .
  6064. \end_layout
  6065. \begin_layout Standard
  6066. Frozen RMA (fRMA) addresses these concerns by replacing the quantile normalizati
  6067. on and median polish with alternatives that do not introduce inter-array
  6068. dependence, allowing each array to be normalized independently of all others
  6069. \begin_inset CommandInset citation
  6070. LatexCommand cite
  6071. key "McCall2010"
  6072. literal "false"
  6073. \end_inset
  6074. .
  6075. Quantile normalization is performed against a pre-generated set of quantiles
  6076. learned from a collection of 850 publicly available arrays sampled from
  6077. a wide variety of tissues in the Gene Expression Omnibus (GEO).
  6078. Each array's probe intensity distribution is normalized against these pre-gener
  6079. ated quantiles.
  6080. The median polish step is replaced with a robust weighted average of probe
  6081. intensities, using inverse variance weights learned from the same public
  6082. GEO data.
  6083. The result is a normalization that satisfies the requirements mentioned
  6084. above: each array is normalized independently of all others, and any two
  6085. normalized arrays can be compared directly to each other.
  6086. \end_layout
  6087. \begin_layout Standard
  6088. One important limitation of fRMA is that it requires a separate reference
  6089. data set from which to learn the parameters (reference quantiles and probe
  6090. weights) that will be used to normalize each array.
  6091. These parameters are specific to a given array platform, and pre-generated
  6092. parameters are only provided for the most common platforms, such as Affymetrix
  6093. hgu133plus2.
  6094. For a less common platform, such as hthgu133pluspm, is is necessary to
  6095. learn custom parameters from in-house data before fRMA can be used to normalize
  6096. samples on that platform
  6097. \begin_inset CommandInset citation
  6098. LatexCommand cite
  6099. key "McCall2011"
  6100. literal "false"
  6101. \end_inset
  6102. .
  6103. \end_layout
  6104. \begin_layout Standard
  6105. One other option is the aptly-named Single Channel Array Normalization (SCAN),
  6106. which adapts a normalization method originally designed for tiling arrays
  6107. \begin_inset CommandInset citation
  6108. LatexCommand cite
  6109. key "Piccolo2012"
  6110. literal "false"
  6111. \end_inset
  6112. .
  6113. SCAN is truly single-channel in that it does not require a set of normalization
  6114. parameters estimated from an external set of reference samples like fRMA
  6115. does.
  6116. \end_layout
  6117. \begin_layout Subsection
  6118. Heteroskedasticity must be accounted for in methylation array data
  6119. \end_layout
  6120. \begin_layout Standard
  6121. DNA methylation arrays are a relatively new kind of assay that uses microarrays
  6122. to measure the degree of methylation on cytosines in specific regions arrayed
  6123. across the genome.
  6124. First, bisulfite treatment converts all unmethylated cytosines to uracil
  6125. (which then become thymine after amplification) while leaving methylated
  6126. cytosines unaffected.
  6127. Then, each target region is interrogated with two probes: one binds to
  6128. the original genomic sequence and interrogates the level of methylated
  6129. DNA, and the other binds to the same sequence with all cytosines replaced
  6130. by thymidines and interrogates the level of unmethylated DNA.
  6131. \end_layout
  6132. \begin_layout Standard
  6133. \begin_inset Float figure
  6134. wide false
  6135. sideways false
  6136. status collapsed
  6137. \begin_layout Plain Layout
  6138. \align center
  6139. \begin_inset Graphics
  6140. filename graphics/methylvoom/sigmoid.pdf
  6141. lyxscale 50
  6142. width 60col%
  6143. groupId colwidth
  6144. \end_inset
  6145. \end_layout
  6146. \begin_layout Plain Layout
  6147. \begin_inset Caption Standard
  6148. \begin_layout Plain Layout
  6149. \begin_inset CommandInset label
  6150. LatexCommand label
  6151. name "fig:Sigmoid-beta-m-mapping"
  6152. \end_inset
  6153. \series bold
  6154. Sigmoid shape of the mapping between β and M values
  6155. \end_layout
  6156. \end_inset
  6157. \end_layout
  6158. \end_inset
  6159. \end_layout
  6160. \begin_layout Standard
  6161. After normalization, these two probe intensities are summarized in one of
  6162. two ways, each with advantages and disadvantages.
  6163. β
  6164. \series bold
  6165. \series default
  6166. values, interpreted as fraction of DNA copies methylated, range from 0 to
  6167. 1.
  6168. β
  6169. \series bold
  6170. \series default
  6171. values are conceptually easy to interpret, but the constrained range makes
  6172. them unsuitable for linear modeling, and their error distributions are
  6173. highly non-normal, which also frustrates linear modeling.
  6174. M-values, interpreted as the log ratio of methylated to unmethylated copies,
  6175. are computed by mapping the beta values from
  6176. \begin_inset Formula $[0,1]$
  6177. \end_inset
  6178. onto
  6179. \begin_inset Formula $(-\infty,+\infty)$
  6180. \end_inset
  6181. using a sigmoid curve (Figure
  6182. \begin_inset CommandInset ref
  6183. LatexCommand ref
  6184. reference "fig:Sigmoid-beta-m-mapping"
  6185. plural "false"
  6186. caps "false"
  6187. noprefix "false"
  6188. \end_inset
  6189. ).
  6190. This transformation results in values with better statistical properties:
  6191. the unconstrained range is suitable for linear modeling, and the error
  6192. distributions are more normal.
  6193. Hence, most linear modeling and other statistical testing on methylation
  6194. arrays is performed using M-values.
  6195. \end_layout
  6196. \begin_layout Standard
  6197. However, the steep slope of the sigmoid transformation near 0 and 1 tends
  6198. to over-exaggerate small differences in β values near those extremes, which
  6199. in turn amplifies the error in those values, leading to a U-shaped trend
  6200. in the mean-variance curve: extreme values have higher variances than values
  6201. near the middle.
  6202. This mean-variance dependency must be accounted for when fitting the linear
  6203. model for differential methylation, or else the variance will be systematically
  6204. overestimated for probes with moderate M-values and underestimated for
  6205. probes with extreme M-values.
  6206. This is particularly undesirable for methylation data because the intermediate
  6207. M-values are the ones of most interest, since they are more likely to represent
  6208. areas of varying methylation, whereas extreme M-values typically represent
  6209. complete methylation or complete lack of methylation.
  6210. \end_layout
  6211. \begin_layout Standard
  6212. RNA-seq read count data are also known to show heteroskedasticity, and the
  6213. voom method was introduced for modeling this heteroskedasticity by estimating
  6214. the mean-variance trend in the data and using this trend to assign precision
  6215. weights to each observation
  6216. \begin_inset CommandInset citation
  6217. LatexCommand cite
  6218. key "Law2013"
  6219. literal "false"
  6220. \end_inset
  6221. .
  6222. While methylation array data are not derived from counts and have a very
  6223. different mean-variance relationship from that of typical RNA-seq data,
  6224. the voom method makes no specific assumptions on the shape of the mean-variance
  6225. relationship – it only assumes that the relationship can be modeled as
  6226. a smooth curve.
  6227. Hence, the method is sufficiently general to model the mean-variance relationsh
  6228. ip in methylation array data.
  6229. However, the standard implementation of voom assumes that the input is
  6230. given in raw read counts, and it must be adapted to run on methylation
  6231. M-values.
  6232. \end_layout
  6233. \begin_layout Section
  6234. Methods
  6235. \end_layout
  6236. \begin_layout Subsection
  6237. Evaluation of classifier performance with different normalization methods
  6238. \end_layout
  6239. \begin_layout Standard
  6240. For testing different expression microarray normalizations, a data set of
  6241. 157 hgu133plus2 arrays was used, consisting of blood samples from kidney
  6242. transplant patients whose grafts had been graded as TX, AR, or ADNR via
  6243. biopsy and histology (46 TX, 69 AR, 42 ADNR)
  6244. \begin_inset CommandInset citation
  6245. LatexCommand cite
  6246. key "Kurian2014"
  6247. literal "true"
  6248. \end_inset
  6249. .
  6250. Additionally, an external validation set of 75 samples was gathered from
  6251. public GEO data (37 TX, 38 AR, no ADNR).
  6252. \end_layout
  6253. \begin_layout Standard
  6254. \begin_inset Flex TODO Note (inline)
  6255. status open
  6256. \begin_layout Plain Layout
  6257. Find appropriate GEO identifiers if possible.
  6258. Kurian 2014 says GSE15296, but this seems to be different data.
  6259. I also need to look up the GEO accession for the external validation set.
  6260. \end_layout
  6261. \end_inset
  6262. \end_layout
  6263. \begin_layout Standard
  6264. To evaluate the effect of each normalization on classifier performance,
  6265. the same classifier training and validation procedure was used after each
  6266. normalization method.
  6267. The PAM package was used to train a nearest shrunken centroid classifier
  6268. on the training set and select the appropriate threshold for centroid shrinking.
  6269. Then the trained classifier was used to predict the class probabilities
  6270. of each validation sample.
  6271. From these class probabilities, ROC curves and area-under-curve (AUC) values
  6272. were generated
  6273. \begin_inset CommandInset citation
  6274. LatexCommand cite
  6275. key "Turck2011"
  6276. literal "false"
  6277. \end_inset
  6278. .
  6279. Each normalization was tested on two different sets of training and validation
  6280. samples.
  6281. For internal validation, the 115 TX and AR arrays in the internal set were
  6282. split at random into two equal sized sets, one for training and one for
  6283. validation, each containing the same numbers of TX and AR samples as the
  6284. other set.
  6285. For external validation, the full set of 115 TX and AR samples were used
  6286. as a training set, and the 75 external TX and AR samples were used as the
  6287. validation set.
  6288. Thus, 2 ROC curves and AUC values were generated for each normalization
  6289. method: one internal and one external.
  6290. Because the external validation set contains no ADNR samples, only classificati
  6291. on of TX and AR samples was considered.
  6292. The ADNR samples were included during normalization but excluded from all
  6293. classifier training and validation.
  6294. This ensures that the performance on internal and external validation sets
  6295. is directly comparable, since both are performing the same task: distinguishing
  6296. TX from AR.
  6297. \end_layout
  6298. \begin_layout Standard
  6299. \begin_inset Flex TODO Note (inline)
  6300. status open
  6301. \begin_layout Plain Layout
  6302. Summarize the get.best.threshold algorithm for PAM threshold selection, or
  6303. just put the code online?
  6304. \end_layout
  6305. \end_inset
  6306. \end_layout
  6307. \begin_layout Standard
  6308. Six different normalization strategies were evaluated.
  6309. First, 2 well-known non-single-channel normalization methods were considered:
  6310. RMA and dChip
  6311. \begin_inset CommandInset citation
  6312. LatexCommand cite
  6313. key "Li2001,Irizarry2003a"
  6314. literal "false"
  6315. \end_inset
  6316. .
  6317. Since RMA produces expression values on a log2 scale and dChip does not,
  6318. the values from dChip were log2 transformed after normalization.
  6319. Next, RMA and dChip followed by Global Rank-invariant Set Normalization
  6320. (GRSN) were tested
  6321. \begin_inset CommandInset citation
  6322. LatexCommand cite
  6323. key "Pelz2008"
  6324. literal "false"
  6325. \end_inset
  6326. .
  6327. Post-processing with GRSN does not turn RMA or dChip into single-channel
  6328. methods, but it may help mitigate batch effects and is therefore useful
  6329. as a benchmark.
  6330. Lastly, the two single-channel normalization methods, fRMA and SCAN, were
  6331. tested
  6332. \begin_inset CommandInset citation
  6333. LatexCommand cite
  6334. key "McCall2010,Piccolo2012"
  6335. literal "false"
  6336. \end_inset
  6337. .
  6338. When evaluating internal validation performance, only the 157 internal
  6339. samples were normalized; when evaluating external validation performance,
  6340. all 157 internal samples and 75 external samples were normalized together.
  6341. \end_layout
  6342. \begin_layout Standard
  6343. For demonstrating the problem with separate normalization of training and
  6344. validation data, one additional normalization was performed: the internal
  6345. and external sets were each normalized separately using RMA, and the normalized
  6346. data for each set were combined into a single set with no further attempts
  6347. at normalizing between the two sets.
  6348. The represents approximately how RMA would have to be used in a clinical
  6349. setting, where the samples to be classified are not available at the time
  6350. the classifier is trained.
  6351. \end_layout
  6352. \begin_layout Subsection
  6353. Generating custom fRMA vectors for hthgu133pluspm array platform
  6354. \end_layout
  6355. \begin_layout Standard
  6356. In order to enable fRMA normalization for the hthgu133pluspm array platform,
  6357. custom fRMA normalization vectors were trained using the
  6358. \begin_inset Flex Code
  6359. status open
  6360. \begin_layout Plain Layout
  6361. frmaTools
  6362. \end_layout
  6363. \end_inset
  6364. package
  6365. \begin_inset CommandInset citation
  6366. LatexCommand cite
  6367. key "McCall2011"
  6368. literal "false"
  6369. \end_inset
  6370. .
  6371. Separate vectors were created for two types of samples: kidney graft biopsy
  6372. samples and blood samples from graft recipients.
  6373. For training, a 341 kidney biopsy samples from 2 data sets and 965 blood
  6374. samples from 5 data sets were used as the reference set.
  6375. Arrays were groups into batches based on unique combinations of sample
  6376. type (blood or biopsy), diagnosis (TX, AR, etc.), data set, and scan date.
  6377. Thus, each batch represents arrays of the same kind that were run together
  6378. on the same day.
  6379. For estimating the probe inverse variance weights, frmaTools requires equal-siz
  6380. ed batches, which means a batch size must be chosen, and then batches smaller
  6381. than that size must be ignored, while batches larger than the chosen size
  6382. must be downsampled.
  6383. This downsampling is performed randomly, so the sampling process is repeated
  6384. 5 times and the resulting normalizations are compared to each other.
  6385. \end_layout
  6386. \begin_layout Standard
  6387. To evaluate the consistency of the generated normalization vectors, the
  6388. 5 fRMA vector sets generated from 5 random batch samplings were each used
  6389. to normalize the same 20 randomly selected samples from each tissue.
  6390. Then the normalized expression values for each probe on each array were
  6391. compared across all normalizations.
  6392. Each fRMA normalization was also compared against the normalized expression
  6393. values obtained by normalizing the same 20 samples with ordinary RMA.
  6394. \end_layout
  6395. \begin_layout Subsection
  6396. Modeling methylation array M-value heteroskedasticy in linear models with
  6397. modified voom implementation
  6398. \end_layout
  6399. \begin_layout Standard
  6400. \begin_inset Flex TODO Note (inline)
  6401. status open
  6402. \begin_layout Plain Layout
  6403. Put code on Github and reference it.
  6404. \end_layout
  6405. \end_inset
  6406. \end_layout
  6407. \begin_layout Standard
  6408. To investigate the whether DNA methylation could be used to distinguish
  6409. between healthy and dysfunctional transplants, a data set of 78 Illumina
  6410. 450k methylation arrays from human kidney graft biopsies was analyzed for
  6411. differential methylation between 4 transplant statuses: healthy transplant
  6412. (TX), transplants undergoing acute rejection (AR), acute dysfunction with
  6413. no rejection (ADNR), and chronic allograft nephropathy (CAN).
  6414. The data consisted of 33 TX, 9 AR, 8 ADNR, and 28 CAN samples.
  6415. The uneven group sizes are a result of taking the biopsy samples before
  6416. the eventual fate of the transplant was known.
  6417. Each sample was additionally annotated with a donor ID (anonymized), Sex,
  6418. Age, Ethnicity, Creatinine Level, and Diabetes diagnosis (all samples in
  6419. this data set came from patients with either Type 1 or Type 2 diabetes).
  6420. \end_layout
  6421. \begin_layout Standard
  6422. The intensity data were first normalized using subset-quantile within array
  6423. normalization (SWAN)
  6424. \begin_inset CommandInset citation
  6425. LatexCommand cite
  6426. key "Maksimovic2012"
  6427. literal "false"
  6428. \end_inset
  6429. , then converted to intensity ratios (beta values)
  6430. \begin_inset CommandInset citation
  6431. LatexCommand cite
  6432. key "Aryee2014"
  6433. literal "false"
  6434. \end_inset
  6435. .
  6436. Any probes binding to loci that overlapped annotated SNPs were dropped,
  6437. and the annotated sex of each sample was verified against the sex inferred
  6438. from the ratio of median probe intensities for the X and Y chromosomes.
  6439. Then, the ratios were transformed to M-values.
  6440. \end_layout
  6441. \begin_layout Standard
  6442. \begin_inset Float table
  6443. wide false
  6444. sideways false
  6445. status open
  6446. \begin_layout Plain Layout
  6447. \align center
  6448. \begin_inset Tabular
  6449. <lyxtabular version="3" rows="4" columns="6">
  6450. <features tabularvalignment="middle">
  6451. <column alignment="center" valignment="top">
  6452. <column alignment="center" valignment="top">
  6453. <column alignment="center" valignment="top">
  6454. <column alignment="center" valignment="top">
  6455. <column alignment="center" valignment="top">
  6456. <column alignment="center" valignment="top">
  6457. <row>
  6458. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6459. \begin_inset Text
  6460. \begin_layout Plain Layout
  6461. Analysis
  6462. \end_layout
  6463. \end_inset
  6464. </cell>
  6465. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6466. \begin_inset Text
  6467. \begin_layout Plain Layout
  6468. random effect
  6469. \end_layout
  6470. \end_inset
  6471. </cell>
  6472. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6473. \begin_inset Text
  6474. \begin_layout Plain Layout
  6475. eBayes
  6476. \end_layout
  6477. \end_inset
  6478. </cell>
  6479. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6480. \begin_inset Text
  6481. \begin_layout Plain Layout
  6482. SVA
  6483. \end_layout
  6484. \end_inset
  6485. </cell>
  6486. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6487. \begin_inset Text
  6488. \begin_layout Plain Layout
  6489. weights
  6490. \end_layout
  6491. \end_inset
  6492. </cell>
  6493. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  6494. \begin_inset Text
  6495. \begin_layout Plain Layout
  6496. voom
  6497. \end_layout
  6498. \end_inset
  6499. </cell>
  6500. </row>
  6501. <row>
  6502. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6503. \begin_inset Text
  6504. \begin_layout Plain Layout
  6505. A
  6506. \end_layout
  6507. \end_inset
  6508. </cell>
  6509. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6510. \begin_inset Text
  6511. \begin_layout Plain Layout
  6512. Yes
  6513. \end_layout
  6514. \end_inset
  6515. </cell>
  6516. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6517. \begin_inset Text
  6518. \begin_layout Plain Layout
  6519. Yes
  6520. \end_layout
  6521. \end_inset
  6522. </cell>
  6523. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6524. \begin_inset Text
  6525. \begin_layout Plain Layout
  6526. No
  6527. \end_layout
  6528. \end_inset
  6529. </cell>
  6530. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6531. \begin_inset Text
  6532. \begin_layout Plain Layout
  6533. No
  6534. \end_layout
  6535. \end_inset
  6536. </cell>
  6537. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  6538. \begin_inset Text
  6539. \begin_layout Plain Layout
  6540. No
  6541. \end_layout
  6542. \end_inset
  6543. </cell>
  6544. </row>
  6545. <row>
  6546. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6547. \begin_inset Text
  6548. \begin_layout Plain Layout
  6549. B
  6550. \end_layout
  6551. \end_inset
  6552. </cell>
  6553. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6554. \begin_inset Text
  6555. \begin_layout Plain Layout
  6556. Yes
  6557. \end_layout
  6558. \end_inset
  6559. </cell>
  6560. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6561. \begin_inset Text
  6562. \begin_layout Plain Layout
  6563. Yes
  6564. \end_layout
  6565. \end_inset
  6566. </cell>
  6567. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6568. \begin_inset Text
  6569. \begin_layout Plain Layout
  6570. Yes
  6571. \end_layout
  6572. \end_inset
  6573. </cell>
  6574. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6575. \begin_inset Text
  6576. \begin_layout Plain Layout
  6577. Yes
  6578. \end_layout
  6579. \end_inset
  6580. </cell>
  6581. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  6582. \begin_inset Text
  6583. \begin_layout Plain Layout
  6584. No
  6585. \end_layout
  6586. \end_inset
  6587. </cell>
  6588. </row>
  6589. <row>
  6590. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6591. \begin_inset Text
  6592. \begin_layout Plain Layout
  6593. C
  6594. \end_layout
  6595. \end_inset
  6596. </cell>
  6597. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6598. \begin_inset Text
  6599. \begin_layout Plain Layout
  6600. Yes
  6601. \end_layout
  6602. \end_inset
  6603. </cell>
  6604. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6605. \begin_inset Text
  6606. \begin_layout Plain Layout
  6607. Yes
  6608. \end_layout
  6609. \end_inset
  6610. </cell>
  6611. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6612. \begin_inset Text
  6613. \begin_layout Plain Layout
  6614. Yes
  6615. \end_layout
  6616. \end_inset
  6617. </cell>
  6618. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6619. \begin_inset Text
  6620. \begin_layout Plain Layout
  6621. Yes
  6622. \end_layout
  6623. \end_inset
  6624. </cell>
  6625. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  6626. \begin_inset Text
  6627. \begin_layout Plain Layout
  6628. Yes
  6629. \end_layout
  6630. \end_inset
  6631. </cell>
  6632. </row>
  6633. </lyxtabular>
  6634. \end_inset
  6635. \end_layout
  6636. \begin_layout Plain Layout
  6637. \begin_inset Caption Standard
  6638. \begin_layout Plain Layout
  6639. \series bold
  6640. \begin_inset CommandInset label
  6641. LatexCommand label
  6642. name "tab:Summary-of-meth-analysis"
  6643. \end_inset
  6644. Summary of analysis variants for methylation array data.
  6645. \series default
  6646. Each analysis included a different set of steps to adjust or account for
  6647. various systematic features of the data.
  6648. Random effect: The model included a random effect accounting for correlation
  6649. between samples from the same patient
  6650. \begin_inset CommandInset citation
  6651. LatexCommand cite
  6652. key "Smyth2005a"
  6653. literal "false"
  6654. \end_inset
  6655. ; eBayes: Empirical bayes squeezing of per-probe variances toward the mean-varia
  6656. nce trend
  6657. \begin_inset CommandInset citation
  6658. LatexCommand cite
  6659. key "Ritchie2015"
  6660. literal "false"
  6661. \end_inset
  6662. ; SVA: Surrogate variable analysis to account for unobserved confounders
  6663. \begin_inset CommandInset citation
  6664. LatexCommand cite
  6665. key "Leek2007"
  6666. literal "false"
  6667. \end_inset
  6668. ; Weights: Estimate sample weights to account for differences in sample
  6669. quality
  6670. \begin_inset CommandInset citation
  6671. LatexCommand cite
  6672. key "Liu2015,Ritchie2006"
  6673. literal "false"
  6674. \end_inset
  6675. ; voom: Use mean-variance trend to assign individual sample weights
  6676. \begin_inset CommandInset citation
  6677. LatexCommand cite
  6678. key "Law2013"
  6679. literal "false"
  6680. \end_inset
  6681. .
  6682. See the text for a more detailed explanation of each step.
  6683. \end_layout
  6684. \end_inset
  6685. \end_layout
  6686. \end_inset
  6687. \end_layout
  6688. \begin_layout Standard
  6689. From the M-values, a series of parallel analyses was performed, each adding
  6690. additional steps into the model fit to accommodate a feature of the data
  6691. (see Table
  6692. \begin_inset CommandInset ref
  6693. LatexCommand ref
  6694. reference "tab:Summary-of-meth-analysis"
  6695. plural "false"
  6696. caps "false"
  6697. noprefix "false"
  6698. \end_inset
  6699. ).
  6700. For analysis A, a
  6701. \begin_inset Quotes eld
  6702. \end_inset
  6703. basic
  6704. \begin_inset Quotes erd
  6705. \end_inset
  6706. linear modeling analysis was performed, compensating for known confounders
  6707. by including terms for the factor of interest (transplant status) as well
  6708. as the known biological confounders: sex, age, ethnicity, and diabetes.
  6709. Since some samples came from the same patients at different times, the
  6710. intra-patient correlation was modeled as a random effect, estimating a
  6711. shared correlation value across all probes
  6712. \begin_inset CommandInset citation
  6713. LatexCommand cite
  6714. key "Smyth2005a"
  6715. literal "false"
  6716. \end_inset
  6717. .
  6718. Then the linear model was fit, and the variance was modeled using empirical
  6719. Bayes squeezing toward the mean-variance trend
  6720. \begin_inset CommandInset citation
  6721. LatexCommand cite
  6722. key "Ritchie2015"
  6723. literal "false"
  6724. \end_inset
  6725. .
  6726. Finally, t-tests or F-tests were performed as appropriate for each test:
  6727. t-tests for single contrasts, and F-tests for multiple contrasts.
  6728. P-values were corrected for multiple testing using the Benjamini-Hochberg
  6729. procedure for FDR control
  6730. \begin_inset CommandInset citation
  6731. LatexCommand cite
  6732. key "Benjamini1995"
  6733. literal "false"
  6734. \end_inset
  6735. .
  6736. \end_layout
  6737. \begin_layout Standard
  6738. For the analysis B, surrogate variable analysis (SVA) was used to infer
  6739. additional unobserved sources of heterogeneity in the data
  6740. \begin_inset CommandInset citation
  6741. LatexCommand cite
  6742. key "Leek2007"
  6743. literal "false"
  6744. \end_inset
  6745. .
  6746. These surrogate variables were added to the design matrix before fitting
  6747. the linear model.
  6748. In addition, sample quality weights were estimated from the data and used
  6749. during linear modeling to down-weight the contribution of highly variable
  6750. arrays while increasing the weight to arrays with lower variability
  6751. \begin_inset CommandInset citation
  6752. LatexCommand cite
  6753. key "Ritchie2006"
  6754. literal "false"
  6755. \end_inset
  6756. .
  6757. The remainder of the analysis proceeded as in analysis A.
  6758. For analysis C, the voom method was adapted to run on methylation array
  6759. data and used to model and correct for the mean-variance trend using individual
  6760. observation weights
  6761. \begin_inset CommandInset citation
  6762. LatexCommand cite
  6763. key "Law2013"
  6764. literal "false"
  6765. \end_inset
  6766. , which were combined with the sample weights
  6767. \begin_inset CommandInset citation
  6768. LatexCommand cite
  6769. key "Liu2015,Ritchie2006"
  6770. literal "false"
  6771. \end_inset
  6772. .
  6773. Each time weights were used, they were estimated once before estimating
  6774. the random effect correlation value, and then the weights were re-estimated
  6775. taking the random effect into account.
  6776. The remainder of the analysis proceeded as in analysis B.
  6777. \end_layout
  6778. \begin_layout Section
  6779. Results
  6780. \end_layout
  6781. \begin_layout Standard
  6782. \begin_inset Flex TODO Note (inline)
  6783. status open
  6784. \begin_layout Plain Layout
  6785. Improve subsection titles in this section.
  6786. \end_layout
  6787. \end_inset
  6788. \end_layout
  6789. \begin_layout Standard
  6790. \begin_inset Flex TODO Note (inline)
  6791. status open
  6792. \begin_layout Plain Layout
  6793. Reconsider subsection organization?
  6794. \end_layout
  6795. \end_inset
  6796. \end_layout
  6797. \begin_layout Subsection
  6798. Separate normalization with RMA introduces unwanted biases in classification
  6799. \end_layout
  6800. \begin_layout Standard
  6801. \begin_inset Float figure
  6802. wide false
  6803. sideways false
  6804. status open
  6805. \begin_layout Plain Layout
  6806. \align center
  6807. \begin_inset Graphics
  6808. filename graphics/PAM/predplot.pdf
  6809. lyxscale 50
  6810. width 60col%
  6811. groupId colwidth
  6812. \end_inset
  6813. \end_layout
  6814. \begin_layout Plain Layout
  6815. \begin_inset Caption Standard
  6816. \begin_layout Plain Layout
  6817. \begin_inset CommandInset label
  6818. LatexCommand label
  6819. name "fig:Classifier-probabilities-RMA"
  6820. \end_inset
  6821. \series bold
  6822. Classifier probabilities on validation samples when normalized with RMA
  6823. together vs.
  6824. separately.
  6825. \series default
  6826. The PAM classifier algorithm was trained on the training set of arrays to
  6827. distinguish AR from TX and then used to assign class probabilities to the
  6828. validation set.
  6829. The process was performed after normalizing all samples together and after
  6830. normalizing the training and test sets separately, and the class probabilities
  6831. assigned to each sample in the validation set were plotted against each
  6832. other (PP(AR), posterior probability of being AR).
  6833. The color of each point indicates the true classification of that sample.
  6834. \end_layout
  6835. \end_inset
  6836. \end_layout
  6837. \end_inset
  6838. \end_layout
  6839. \begin_layout Standard
  6840. To demonstrate the problem with non-single-channel normalization methods,
  6841. we considered the problem of training a classifier to distinguish TX from
  6842. AR using the samples from the internal set as training data, evaluating
  6843. performance on the external set.
  6844. First, training and evaluation were performed after normalizing all array
  6845. samples together as a single set using RMA, and second, the internal samples
  6846. were normalized separately from the external samples and the training and
  6847. evaluation were repeated.
  6848. For each sample in the validation set, the classifier probabilities from
  6849. both classifiers were plotted against each other (Fig.
  6850. \begin_inset CommandInset ref
  6851. LatexCommand ref
  6852. reference "fig:Classifier-probabilities-RMA"
  6853. plural "false"
  6854. caps "false"
  6855. noprefix "false"
  6856. \end_inset
  6857. ).
  6858. As expected, separate normalization biases the classifier probabilities,
  6859. resulting in several misclassifications.
  6860. In this case, the bias from separate normalization causes the classifier
  6861. to assign a lower probability of AR to every sample.
  6862. \end_layout
  6863. \begin_layout Subsection
  6864. fRMA and SCAN maintain classification performance while eliminating dependence
  6865. on normalization strategy
  6866. \end_layout
  6867. \begin_layout Standard
  6868. \begin_inset Float figure
  6869. wide false
  6870. sideways false
  6871. status open
  6872. \begin_layout Plain Layout
  6873. \align center
  6874. \begin_inset Float figure
  6875. placement tb
  6876. wide false
  6877. sideways false
  6878. status open
  6879. \begin_layout Plain Layout
  6880. \align center
  6881. \begin_inset Graphics
  6882. filename graphics/PAM/ROC-TXvsAR-internal.pdf
  6883. lyxscale 50
  6884. height 40theight%
  6885. groupId roc-pam
  6886. \end_inset
  6887. \end_layout
  6888. \begin_layout Plain Layout
  6889. \begin_inset Caption Standard
  6890. \begin_layout Plain Layout
  6891. \begin_inset CommandInset label
  6892. LatexCommand label
  6893. name "fig:ROC-PAM-int"
  6894. \end_inset
  6895. ROC curves for PAM on internal validation data
  6896. \end_layout
  6897. \end_inset
  6898. \end_layout
  6899. \end_inset
  6900. \end_layout
  6901. \begin_layout Plain Layout
  6902. \align center
  6903. \begin_inset Float figure
  6904. placement tb
  6905. wide false
  6906. sideways false
  6907. status open
  6908. \begin_layout Plain Layout
  6909. \align center
  6910. \begin_inset Graphics
  6911. filename graphics/PAM/ROC-TXvsAR-external.pdf
  6912. lyxscale 50
  6913. height 40theight%
  6914. groupId roc-pam
  6915. \end_inset
  6916. \end_layout
  6917. \begin_layout Plain Layout
  6918. \begin_inset Caption Standard
  6919. \begin_layout Plain Layout
  6920. \begin_inset CommandInset label
  6921. LatexCommand label
  6922. name "fig:ROC-PAM-ext"
  6923. \end_inset
  6924. ROC curves for PAM on external validation data
  6925. \end_layout
  6926. \end_inset
  6927. \end_layout
  6928. \end_inset
  6929. \end_layout
  6930. \begin_layout Plain Layout
  6931. \begin_inset Caption Standard
  6932. \begin_layout Plain Layout
  6933. \series bold
  6934. \begin_inset CommandInset label
  6935. LatexCommand label
  6936. name "fig:ROC-PAM-main"
  6937. \end_inset
  6938. ROC curves for PAM using different normalization strategies.
  6939. \series default
  6940. ROC curves were generated for PAM classification of AR vs TX after 6 different
  6941. normalization strategies applied to the same data sets.
  6942. Only fRMA and SCAN are single-channel normalizations.
  6943. The other normalizations are for comparison.
  6944. \end_layout
  6945. \end_inset
  6946. \end_layout
  6947. \end_inset
  6948. \end_layout
  6949. \begin_layout Standard
  6950. \begin_inset Float table
  6951. wide false
  6952. sideways false
  6953. status open
  6954. \begin_layout Plain Layout
  6955. \align center
  6956. \begin_inset Tabular
  6957. <lyxtabular version="3" rows="7" columns="4">
  6958. <features tabularvalignment="middle">
  6959. <column alignment="center" valignment="top">
  6960. <column alignment="center" valignment="top">
  6961. <column alignment="center" valignment="top">
  6962. <column alignment="center" valignment="top">
  6963. <row>
  6964. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6965. \begin_inset Text
  6966. \begin_layout Plain Layout
  6967. \family roman
  6968. \series medium
  6969. \shape up
  6970. \size normal
  6971. \emph off
  6972. \bar no
  6973. \strikeout off
  6974. \xout off
  6975. \uuline off
  6976. \uwave off
  6977. \noun off
  6978. \color none
  6979. Normalization
  6980. \end_layout
  6981. \end_inset
  6982. </cell>
  6983. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6984. \begin_inset Text
  6985. \begin_layout Plain Layout
  6986. Single-channel?
  6987. \end_layout
  6988. \end_inset
  6989. </cell>
  6990. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6991. \begin_inset Text
  6992. \begin_layout Plain Layout
  6993. \family roman
  6994. \series medium
  6995. \shape up
  6996. \size normal
  6997. \emph off
  6998. \bar no
  6999. \strikeout off
  7000. \xout off
  7001. \uuline off
  7002. \uwave off
  7003. \noun off
  7004. \color none
  7005. Internal Val.
  7006. AUC
  7007. \end_layout
  7008. \end_inset
  7009. </cell>
  7010. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  7011. \begin_inset Text
  7012. \begin_layout Plain Layout
  7013. External Val.
  7014. AUC
  7015. \end_layout
  7016. \end_inset
  7017. </cell>
  7018. </row>
  7019. <row>
  7020. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7021. \begin_inset Text
  7022. \begin_layout Plain Layout
  7023. \family roman
  7024. \series medium
  7025. \shape up
  7026. \size normal
  7027. \emph off
  7028. \bar no
  7029. \strikeout off
  7030. \xout off
  7031. \uuline off
  7032. \uwave off
  7033. \noun off
  7034. \color none
  7035. RMA
  7036. \end_layout
  7037. \end_inset
  7038. </cell>
  7039. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7040. \begin_inset Text
  7041. \begin_layout Plain Layout
  7042. No
  7043. \end_layout
  7044. \end_inset
  7045. </cell>
  7046. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7047. \begin_inset Text
  7048. \begin_layout Plain Layout
  7049. \family roman
  7050. \series medium
  7051. \shape up
  7052. \size normal
  7053. \emph off
  7054. \bar no
  7055. \strikeout off
  7056. \xout off
  7057. \uuline off
  7058. \uwave off
  7059. \noun off
  7060. \color none
  7061. 0.852
  7062. \end_layout
  7063. \end_inset
  7064. </cell>
  7065. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  7066. \begin_inset Text
  7067. \begin_layout Plain Layout
  7068. \family roman
  7069. \series medium
  7070. \shape up
  7071. \size normal
  7072. \emph off
  7073. \bar no
  7074. \strikeout off
  7075. \xout off
  7076. \uuline off
  7077. \uwave off
  7078. \noun off
  7079. \color none
  7080. 0.713
  7081. \end_layout
  7082. \end_inset
  7083. </cell>
  7084. </row>
  7085. <row>
  7086. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7087. \begin_inset Text
  7088. \begin_layout Plain Layout
  7089. \family roman
  7090. \series medium
  7091. \shape up
  7092. \size normal
  7093. \emph off
  7094. \bar no
  7095. \strikeout off
  7096. \xout off
  7097. \uuline off
  7098. \uwave off
  7099. \noun off
  7100. \color none
  7101. dChip
  7102. \end_layout
  7103. \end_inset
  7104. </cell>
  7105. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7106. \begin_inset Text
  7107. \begin_layout Plain Layout
  7108. No
  7109. \end_layout
  7110. \end_inset
  7111. </cell>
  7112. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7113. \begin_inset Text
  7114. \begin_layout Plain Layout
  7115. \family roman
  7116. \series medium
  7117. \shape up
  7118. \size normal
  7119. \emph off
  7120. \bar no
  7121. \strikeout off
  7122. \xout off
  7123. \uuline off
  7124. \uwave off
  7125. \noun off
  7126. \color none
  7127. 0.891
  7128. \end_layout
  7129. \end_inset
  7130. </cell>
  7131. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  7132. \begin_inset Text
  7133. \begin_layout Plain Layout
  7134. \family roman
  7135. \series medium
  7136. \shape up
  7137. \size normal
  7138. \emph off
  7139. \bar no
  7140. \strikeout off
  7141. \xout off
  7142. \uuline off
  7143. \uwave off
  7144. \noun off
  7145. \color none
  7146. 0.657
  7147. \end_layout
  7148. \end_inset
  7149. </cell>
  7150. </row>
  7151. <row>
  7152. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7153. \begin_inset Text
  7154. \begin_layout Plain Layout
  7155. \family roman
  7156. \series medium
  7157. \shape up
  7158. \size normal
  7159. \emph off
  7160. \bar no
  7161. \strikeout off
  7162. \xout off
  7163. \uuline off
  7164. \uwave off
  7165. \noun off
  7166. \color none
  7167. RMA + GRSN
  7168. \end_layout
  7169. \end_inset
  7170. </cell>
  7171. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7172. \begin_inset Text
  7173. \begin_layout Plain Layout
  7174. No
  7175. \end_layout
  7176. \end_inset
  7177. </cell>
  7178. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7179. \begin_inset Text
  7180. \begin_layout Plain Layout
  7181. \family roman
  7182. \series medium
  7183. \shape up
  7184. \size normal
  7185. \emph off
  7186. \bar no
  7187. \strikeout off
  7188. \xout off
  7189. \uuline off
  7190. \uwave off
  7191. \noun off
  7192. \color none
  7193. 0.816
  7194. \end_layout
  7195. \end_inset
  7196. </cell>
  7197. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  7198. \begin_inset Text
  7199. \begin_layout Plain Layout
  7200. \family roman
  7201. \series medium
  7202. \shape up
  7203. \size normal
  7204. \emph off
  7205. \bar no
  7206. \strikeout off
  7207. \xout off
  7208. \uuline off
  7209. \uwave off
  7210. \noun off
  7211. \color none
  7212. 0.750
  7213. \end_layout
  7214. \end_inset
  7215. </cell>
  7216. </row>
  7217. <row>
  7218. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7219. \begin_inset Text
  7220. \begin_layout Plain Layout
  7221. \family roman
  7222. \series medium
  7223. \shape up
  7224. \size normal
  7225. \emph off
  7226. \bar no
  7227. \strikeout off
  7228. \xout off
  7229. \uuline off
  7230. \uwave off
  7231. \noun off
  7232. \color none
  7233. dChip + GRSN
  7234. \end_layout
  7235. \end_inset
  7236. </cell>
  7237. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7238. \begin_inset Text
  7239. \begin_layout Plain Layout
  7240. No
  7241. \end_layout
  7242. \end_inset
  7243. </cell>
  7244. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7245. \begin_inset Text
  7246. \begin_layout Plain Layout
  7247. \family roman
  7248. \series medium
  7249. \shape up
  7250. \size normal
  7251. \emph off
  7252. \bar no
  7253. \strikeout off
  7254. \xout off
  7255. \uuline off
  7256. \uwave off
  7257. \noun off
  7258. \color none
  7259. 0.875
  7260. \end_layout
  7261. \end_inset
  7262. </cell>
  7263. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  7264. \begin_inset Text
  7265. \begin_layout Plain Layout
  7266. \family roman
  7267. \series medium
  7268. \shape up
  7269. \size normal
  7270. \emph off
  7271. \bar no
  7272. \strikeout off
  7273. \xout off
  7274. \uuline off
  7275. \uwave off
  7276. \noun off
  7277. \color none
  7278. 0.642
  7279. \end_layout
  7280. \end_inset
  7281. </cell>
  7282. </row>
  7283. <row>
  7284. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7285. \begin_inset Text
  7286. \begin_layout Plain Layout
  7287. \family roman
  7288. \series medium
  7289. \shape up
  7290. \size normal
  7291. \emph off
  7292. \bar no
  7293. \strikeout off
  7294. \xout off
  7295. \uuline off
  7296. \uwave off
  7297. \noun off
  7298. \color none
  7299. fRMA
  7300. \end_layout
  7301. \end_inset
  7302. </cell>
  7303. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7304. \begin_inset Text
  7305. \begin_layout Plain Layout
  7306. Yes
  7307. \end_layout
  7308. \end_inset
  7309. </cell>
  7310. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7311. \begin_inset Text
  7312. \begin_layout Plain Layout
  7313. \family roman
  7314. \series medium
  7315. \shape up
  7316. \size normal
  7317. \emph off
  7318. \bar no
  7319. \strikeout off
  7320. \xout off
  7321. \uuline off
  7322. \uwave off
  7323. \noun off
  7324. \color none
  7325. 0.863
  7326. \end_layout
  7327. \end_inset
  7328. </cell>
  7329. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  7330. \begin_inset Text
  7331. \begin_layout Plain Layout
  7332. \family roman
  7333. \series medium
  7334. \shape up
  7335. \size normal
  7336. \emph off
  7337. \bar no
  7338. \strikeout off
  7339. \xout off
  7340. \uuline off
  7341. \uwave off
  7342. \noun off
  7343. \color none
  7344. 0.718
  7345. \end_layout
  7346. \end_inset
  7347. </cell>
  7348. </row>
  7349. <row>
  7350. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  7351. \begin_inset Text
  7352. \begin_layout Plain Layout
  7353. \family roman
  7354. \series medium
  7355. \shape up
  7356. \size normal
  7357. \emph off
  7358. \bar no
  7359. \strikeout off
  7360. \xout off
  7361. \uuline off
  7362. \uwave off
  7363. \noun off
  7364. \color none
  7365. SCAN
  7366. \end_layout
  7367. \end_inset
  7368. </cell>
  7369. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  7370. \begin_inset Text
  7371. \begin_layout Plain Layout
  7372. Yes
  7373. \end_layout
  7374. \end_inset
  7375. </cell>
  7376. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  7377. \begin_inset Text
  7378. \begin_layout Plain Layout
  7379. \family roman
  7380. \series medium
  7381. \shape up
  7382. \size normal
  7383. \emph off
  7384. \bar no
  7385. \strikeout off
  7386. \xout off
  7387. \uuline off
  7388. \uwave off
  7389. \noun off
  7390. \color none
  7391. 0.853
  7392. \end_layout
  7393. \end_inset
  7394. </cell>
  7395. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  7396. \begin_inset Text
  7397. \begin_layout Plain Layout
  7398. \family roman
  7399. \series medium
  7400. \shape up
  7401. \size normal
  7402. \emph off
  7403. \bar no
  7404. \strikeout off
  7405. \xout off
  7406. \uuline off
  7407. \uwave off
  7408. \noun off
  7409. \color none
  7410. 0.689
  7411. \end_layout
  7412. \end_inset
  7413. </cell>
  7414. </row>
  7415. </lyxtabular>
  7416. \end_inset
  7417. \end_layout
  7418. \begin_layout Plain Layout
  7419. \begin_inset Caption Standard
  7420. \begin_layout Plain Layout
  7421. \begin_inset CommandInset label
  7422. LatexCommand label
  7423. name "tab:AUC-PAM"
  7424. \end_inset
  7425. \series bold
  7426. ROC curve AUC values for internal and external validation with 6 different
  7427. normalization strategies.
  7428. \series default
  7429. These AUC values correspond to the ROC curves in Figure
  7430. \begin_inset CommandInset ref
  7431. LatexCommand ref
  7432. reference "fig:ROC-PAM-main"
  7433. plural "false"
  7434. caps "false"
  7435. noprefix "false"
  7436. \end_inset
  7437. .
  7438. \end_layout
  7439. \end_inset
  7440. \end_layout
  7441. \end_inset
  7442. \end_layout
  7443. \begin_layout Standard
  7444. For internal validation, the 6 methods' AUC values ranged from 0.816 to 0.891,
  7445. as shown in Table
  7446. \begin_inset CommandInset ref
  7447. LatexCommand ref
  7448. reference "tab:AUC-PAM"
  7449. plural "false"
  7450. caps "false"
  7451. noprefix "false"
  7452. \end_inset
  7453. .
  7454. Among the non-single-channel normalizations, dChip outperformed RMA, while
  7455. GRSN reduced the AUC values for both dChip and RMA.
  7456. Both single-channel methods, fRMA and SCAN, slightly outperformed RMA,
  7457. with fRMA ahead of SCAN.
  7458. However, the difference between RMA and fRMA is still quite small.
  7459. Figure
  7460. \begin_inset CommandInset ref
  7461. LatexCommand ref
  7462. reference "fig:ROC-PAM-int"
  7463. plural "false"
  7464. caps "false"
  7465. noprefix "false"
  7466. \end_inset
  7467. shows that the ROC curves for RMA, dChip, and fRMA look very similar and
  7468. relatively smooth, while both GRSN curves and the curve for SCAN have a
  7469. more jagged appearance.
  7470. \end_layout
  7471. \begin_layout Standard
  7472. For external validation, as expected, all the AUC values are lower than
  7473. the internal validations, ranging from 0.642 to 0.750 (Table
  7474. \begin_inset CommandInset ref
  7475. LatexCommand ref
  7476. reference "tab:AUC-PAM"
  7477. plural "false"
  7478. caps "false"
  7479. noprefix "false"
  7480. \end_inset
  7481. ).
  7482. With or without GRSN, RMA shows its dominance over dChip in this more challengi
  7483. ng test.
  7484. Unlike in the internal validation, GRSN actually improves the classifier
  7485. performance for RMA, although it does not for dChip.
  7486. Once again, both single-channel methods perform about on par with RMA,
  7487. with fRMA performing slightly better and SCAN performing a bit worse.
  7488. Figure
  7489. \begin_inset CommandInset ref
  7490. LatexCommand ref
  7491. reference "fig:ROC-PAM-ext"
  7492. plural "false"
  7493. caps "false"
  7494. noprefix "false"
  7495. \end_inset
  7496. shows the ROC curves for the external validation test.
  7497. As expected, none of them are as clean-looking as the internal validation
  7498. ROC curves.
  7499. The curves for RMA, RMA+GRSN, and fRMA all look similar, while the other
  7500. curves look more divergent.
  7501. \end_layout
  7502. \begin_layout Subsection
  7503. fRMA with custom-generated vectors enables single-channel normalization
  7504. on hthgu133pluspm platform
  7505. \end_layout
  7506. \begin_layout Standard
  7507. \begin_inset Float figure
  7508. wide false
  7509. sideways false
  7510. status open
  7511. \begin_layout Plain Layout
  7512. \align center
  7513. \begin_inset Float figure
  7514. placement tb
  7515. wide false
  7516. sideways false
  7517. status collapsed
  7518. \begin_layout Plain Layout
  7519. \align center
  7520. \begin_inset Graphics
  7521. filename graphics/frma-pax-bx/batchsize_batches.pdf
  7522. lyxscale 50
  7523. height 35theight%
  7524. groupId frmatools-subfig
  7525. \end_inset
  7526. \end_layout
  7527. \begin_layout Plain Layout
  7528. \begin_inset Caption Standard
  7529. \begin_layout Plain Layout
  7530. \begin_inset CommandInset label
  7531. LatexCommand label
  7532. name "fig:batch-size-batches"
  7533. \end_inset
  7534. \series bold
  7535. Number of batches usable in fRMA probe weight learning as a function of
  7536. batch size.
  7537. \end_layout
  7538. \end_inset
  7539. \end_layout
  7540. \end_inset
  7541. \end_layout
  7542. \begin_layout Plain Layout
  7543. \align center
  7544. \begin_inset Float figure
  7545. placement tb
  7546. wide false
  7547. sideways false
  7548. status collapsed
  7549. \begin_layout Plain Layout
  7550. \align center
  7551. \begin_inset Graphics
  7552. filename graphics/frma-pax-bx/batchsize_samples.pdf
  7553. lyxscale 50
  7554. height 35theight%
  7555. groupId frmatools-subfig
  7556. \end_inset
  7557. \end_layout
  7558. \begin_layout Plain Layout
  7559. \begin_inset Caption Standard
  7560. \begin_layout Plain Layout
  7561. \begin_inset CommandInset label
  7562. LatexCommand label
  7563. name "fig:batch-size-samples"
  7564. \end_inset
  7565. \series bold
  7566. Number of samples usable in fRMA probe weight learning as a function of
  7567. batch size.
  7568. \end_layout
  7569. \end_inset
  7570. \end_layout
  7571. \end_inset
  7572. \end_layout
  7573. \begin_layout Plain Layout
  7574. \begin_inset Caption Standard
  7575. \begin_layout Plain Layout
  7576. \series bold
  7577. \begin_inset CommandInset label
  7578. LatexCommand label
  7579. name "fig:frmatools-batch-size"
  7580. \end_inset
  7581. Effect of batch size selection on number of batches and number of samples
  7582. included in fRMA probe weight learning.
  7583. \series default
  7584. For batch sizes ranging from 3 to 15, the number of batches (a) and samples
  7585. (b) included in probe weight training were plotted for biopsy (BX) and
  7586. blood (PAX) samples.
  7587. The selected batch size, 5, is marked with a dotted vertical line.
  7588. \end_layout
  7589. \end_inset
  7590. \end_layout
  7591. \end_inset
  7592. \end_layout
  7593. \begin_layout Standard
  7594. In order to enable use of fRMA to normalize hthgu133pluspm, a custom set
  7595. of fRMA vectors was created.
  7596. First, an appropriate batch size was chosen by looking at the number of
  7597. batches and number of samples included as a function of batch size (Figure
  7598. \begin_inset CommandInset ref
  7599. LatexCommand ref
  7600. reference "fig:frmatools-batch-size"
  7601. plural "false"
  7602. caps "false"
  7603. noprefix "false"
  7604. \end_inset
  7605. ).
  7606. For a given batch size, all batches with fewer samples that the chosen
  7607. size must be ignored during training, while larger batches must be randomly
  7608. downsampled to the chosen size.
  7609. Hence, the number of samples included for a given batch size equals the
  7610. batch size times the number of batches with at least that many samples.
  7611. From Figure
  7612. \begin_inset CommandInset ref
  7613. LatexCommand ref
  7614. reference "fig:batch-size-samples"
  7615. plural "false"
  7616. caps "false"
  7617. noprefix "false"
  7618. \end_inset
  7619. , it is apparent that that a batch size of 8 maximizes the number of samples
  7620. included in training.
  7621. Increasing the batch size beyond this causes too many smaller batches to
  7622. be excluded, reducing the total number of samples for both tissue types.
  7623. However, a batch size of 8 is not necessarily optimal.
  7624. The article introducing frmaTools concluded that it was highly advantageous
  7625. to use a smaller batch size in order to include more batches, even at the
  7626. expense of including fewer total samples in training
  7627. \begin_inset CommandInset citation
  7628. LatexCommand cite
  7629. key "McCall2011"
  7630. literal "false"
  7631. \end_inset
  7632. .
  7633. To strike an appropriate balance between more batches and more samples,
  7634. a batch size of 5 was chosen.
  7635. For both blood and biopsy samples, this increased the number of batches
  7636. included by 10, with only a modest reduction in the number of samples compared
  7637. to a batch size of 8.
  7638. With a batch size of 5, 26 batches of biopsy samples and 46 batches of
  7639. blood samples were available.
  7640. \end_layout
  7641. \begin_layout Standard
  7642. \begin_inset Float figure
  7643. wide false
  7644. sideways false
  7645. status collapsed
  7646. \begin_layout Plain Layout
  7647. \begin_inset Float figure
  7648. wide false
  7649. sideways false
  7650. status open
  7651. \begin_layout Plain Layout
  7652. \align center
  7653. \begin_inset Graphics
  7654. filename graphics/frma-pax-bx/M-BX-violin.pdf
  7655. lyxscale 40
  7656. width 45col%
  7657. groupId m-violin
  7658. \end_inset
  7659. \end_layout
  7660. \begin_layout Plain Layout
  7661. \begin_inset Caption Standard
  7662. \begin_layout Plain Layout
  7663. \begin_inset CommandInset label
  7664. LatexCommand label
  7665. name "fig:m-bx-violin"
  7666. \end_inset
  7667. \series bold
  7668. Violin plot of inter-normalization log ratios for biopsy samples.
  7669. \end_layout
  7670. \end_inset
  7671. \end_layout
  7672. \end_inset
  7673. \begin_inset space \hfill{}
  7674. \end_inset
  7675. \begin_inset Float figure
  7676. wide false
  7677. sideways false
  7678. status collapsed
  7679. \begin_layout Plain Layout
  7680. \align center
  7681. \begin_inset Graphics
  7682. filename graphics/frma-pax-bx/M-PAX-violin.pdf
  7683. lyxscale 40
  7684. width 45col%
  7685. groupId m-violin
  7686. \end_inset
  7687. \end_layout
  7688. \begin_layout Plain Layout
  7689. \begin_inset Caption Standard
  7690. \begin_layout Plain Layout
  7691. \begin_inset CommandInset label
  7692. LatexCommand label
  7693. name "fig:m-pax-violin"
  7694. \end_inset
  7695. \series bold
  7696. Violin plot of inter-normalization log ratios for blood samples.
  7697. \end_layout
  7698. \end_inset
  7699. \end_layout
  7700. \end_inset
  7701. \end_layout
  7702. \begin_layout Plain Layout
  7703. \begin_inset Caption Standard
  7704. \begin_layout Plain Layout
  7705. \begin_inset CommandInset label
  7706. LatexCommand label
  7707. name "fig:frma-violin"
  7708. \end_inset
  7709. \series bold
  7710. Violin plot of log ratios between normalizations for 20 biopsy samples.
  7711. \series default
  7712. Each of 20 randomly selected samples was normalized with RMA and with 5
  7713. different sets of fRMA vectors.
  7714. The distribution of log ratios between normalized expression values, aggregated
  7715. across all 20 arrays, was plotted for each pair of normalizations.
  7716. \end_layout
  7717. \end_inset
  7718. \end_layout
  7719. \end_inset
  7720. \end_layout
  7721. \begin_layout Standard
  7722. Since fRMA training requires equal-size batches, larger batches are downsampled
  7723. randomly.
  7724. This introduces a nondeterministic step in the generation of normalization
  7725. vectors.
  7726. To show that this randomness does not substantially change the outcome,
  7727. the random downsampling and subsequent vector learning was repeated 5 times,
  7728. with a different random seed each time.
  7729. 20 samples were selected at random as a test set and normalized with each
  7730. of the 5 sets of fRMA normalization vectors as well as ordinary RMA, and
  7731. the normalized expression values were compared across normalizations.
  7732. Figure
  7733. \begin_inset CommandInset ref
  7734. LatexCommand ref
  7735. reference "fig:m-bx-violin"
  7736. plural "false"
  7737. caps "false"
  7738. noprefix "false"
  7739. \end_inset
  7740. shows a summary of these comparisons for biopsy samples.
  7741. Comparing RMA to each of the 5 fRMA normalizations, the distribution of
  7742. log ratios is somewhat wide, indicating that the normalizations disagree
  7743. on the expression values of a fair number of probe sets.
  7744. In contrast, comparisons of fRMA against fRMA, the vast majority of probe
  7745. sets have very small log ratios, indicating a very high agreement between
  7746. the normalized values generated by the two normalizations.
  7747. This shows that the fRMA normalization's behavior is not very sensitive
  7748. to the random downsampling of larger batches during training.
  7749. \end_layout
  7750. \begin_layout Standard
  7751. \begin_inset Float figure
  7752. wide false
  7753. sideways false
  7754. status open
  7755. \begin_layout Plain Layout
  7756. \align center
  7757. \begin_inset Float figure
  7758. wide false
  7759. sideways false
  7760. status collapsed
  7761. \begin_layout Plain Layout
  7762. \align center
  7763. \begin_inset Graphics
  7764. filename graphics/frma-pax-bx/MA-BX-RMA.fRMA-RASTER.png
  7765. lyxscale 10
  7766. width 45col%
  7767. groupId ma-frma
  7768. \end_inset
  7769. \end_layout
  7770. \begin_layout Plain Layout
  7771. \begin_inset Caption Standard
  7772. \begin_layout Plain Layout
  7773. \begin_inset CommandInset label
  7774. LatexCommand label
  7775. name "fig:ma-bx-rma-frma"
  7776. \end_inset
  7777. RMA vs.
  7778. fRMA for biopsy samples.
  7779. \end_layout
  7780. \end_inset
  7781. \end_layout
  7782. \end_inset
  7783. \begin_inset space \hfill{}
  7784. \end_inset
  7785. \begin_inset Float figure
  7786. wide false
  7787. sideways false
  7788. status collapsed
  7789. \begin_layout Plain Layout
  7790. \align center
  7791. \begin_inset Graphics
  7792. filename graphics/frma-pax-bx/MA-BX-fRMA.fRMA-RASTER.png
  7793. lyxscale 10
  7794. width 45col%
  7795. groupId ma-frma
  7796. \end_inset
  7797. \end_layout
  7798. \begin_layout Plain Layout
  7799. \begin_inset Caption Standard
  7800. \begin_layout Plain Layout
  7801. \begin_inset CommandInset label
  7802. LatexCommand label
  7803. name "fig:ma-bx-frma-frma"
  7804. \end_inset
  7805. fRMA vs fRMA for biopsy samples.
  7806. \end_layout
  7807. \end_inset
  7808. \end_layout
  7809. \end_inset
  7810. \end_layout
  7811. \begin_layout Plain Layout
  7812. \align center
  7813. \begin_inset Float figure
  7814. wide false
  7815. sideways false
  7816. status collapsed
  7817. \begin_layout Plain Layout
  7818. \align center
  7819. \begin_inset Graphics
  7820. filename graphics/frma-pax-bx/MA-PAX-RMA.fRMA-RASTER.png
  7821. lyxscale 10
  7822. width 45col%
  7823. groupId ma-frma
  7824. \end_inset
  7825. \end_layout
  7826. \begin_layout Plain Layout
  7827. \begin_inset Caption Standard
  7828. \begin_layout Plain Layout
  7829. \begin_inset CommandInset label
  7830. LatexCommand label
  7831. name "fig:MA-PAX-rma-frma"
  7832. \end_inset
  7833. RMA vs.
  7834. fRMA for blood samples.
  7835. \end_layout
  7836. \end_inset
  7837. \end_layout
  7838. \end_inset
  7839. \begin_inset space \hfill{}
  7840. \end_inset
  7841. \begin_inset Float figure
  7842. wide false
  7843. sideways false
  7844. status collapsed
  7845. \begin_layout Plain Layout
  7846. \align center
  7847. \begin_inset Graphics
  7848. filename graphics/frma-pax-bx/MA-PAX-fRMA.fRMA-RASTER.png
  7849. lyxscale 10
  7850. width 45col%
  7851. groupId ma-frma
  7852. \end_inset
  7853. \end_layout
  7854. \begin_layout Plain Layout
  7855. \begin_inset Caption Standard
  7856. \begin_layout Plain Layout
  7857. \begin_inset CommandInset label
  7858. LatexCommand label
  7859. name "fig:MA-PAX-frma-frma"
  7860. \end_inset
  7861. fRMA vs fRMA for blood samples.
  7862. \end_layout
  7863. \end_inset
  7864. \end_layout
  7865. \end_inset
  7866. \end_layout
  7867. \begin_layout Plain Layout
  7868. \begin_inset Caption Standard
  7869. \begin_layout Plain Layout
  7870. \series bold
  7871. \begin_inset CommandInset label
  7872. LatexCommand label
  7873. name "fig:Representative-MA-plots"
  7874. \end_inset
  7875. Representative MA plots comparing RMA and custom fRMA normalizations.
  7876. \series default
  7877. For each plot, 20 samples were normalized using 2 different normalizations,
  7878. and then averages (A) and log ratios (M) were plotted between the two different
  7879. normalizations for every probe.
  7880. For the
  7881. \begin_inset Quotes eld
  7882. \end_inset
  7883. fRMA vs fRMA
  7884. \begin_inset Quotes erd
  7885. \end_inset
  7886. plots (b & d), two different fRMA normalizations using vectors from two
  7887. independent batch samplings were compared.
  7888. Density of points is represented by blue shading, and individual outlier
  7889. points are plotted.
  7890. \end_layout
  7891. \end_inset
  7892. \end_layout
  7893. \end_inset
  7894. \end_layout
  7895. \begin_layout Standard
  7896. Figure
  7897. \begin_inset CommandInset ref
  7898. LatexCommand ref
  7899. reference "fig:ma-bx-rma-frma"
  7900. plural "false"
  7901. caps "false"
  7902. noprefix "false"
  7903. \end_inset
  7904. shows an MA plot of the RMA-normalized values against the fRMA-normalized
  7905. values for the same probe sets and arrays, corresponding to the first row
  7906. of Figure
  7907. \begin_inset CommandInset ref
  7908. LatexCommand ref
  7909. reference "fig:m-bx-violin"
  7910. plural "false"
  7911. caps "false"
  7912. noprefix "false"
  7913. \end_inset
  7914. .
  7915. This MA plot shows that not only is there a wide distribution of M-values,
  7916. but the trend of M-values is dependent on the average normalized intensity.
  7917. This is expected, since the overall trend represents the differences in
  7918. the quantile normalization step.
  7919. When running RMA, only the quantiles for these specific 20 arrays are used,
  7920. while for fRMA the quantile distribution is taking from all arrays used
  7921. in training.
  7922. Figure
  7923. \begin_inset CommandInset ref
  7924. LatexCommand ref
  7925. reference "fig:ma-bx-frma-frma"
  7926. plural "false"
  7927. caps "false"
  7928. noprefix "false"
  7929. \end_inset
  7930. shows a similar MA plot comparing 2 different fRMA normalizations, correspondin
  7931. g to the 6th row of Figure
  7932. \begin_inset CommandInset ref
  7933. LatexCommand ref
  7934. reference "fig:m-bx-violin"
  7935. plural "false"
  7936. caps "false"
  7937. noprefix "false"
  7938. \end_inset
  7939. .
  7940. The MA plot is very tightly centered around zero with no visible trend.
  7941. Figures
  7942. \begin_inset CommandInset ref
  7943. LatexCommand ref
  7944. reference "fig:m-pax-violin"
  7945. plural "false"
  7946. caps "false"
  7947. noprefix "false"
  7948. \end_inset
  7949. ,
  7950. \begin_inset CommandInset ref
  7951. LatexCommand ref
  7952. reference "fig:MA-PAX-rma-frma"
  7953. plural "false"
  7954. caps "false"
  7955. noprefix "false"
  7956. \end_inset
  7957. , and
  7958. \begin_inset CommandInset ref
  7959. LatexCommand ref
  7960. reference "fig:ma-bx-frma-frma"
  7961. plural "false"
  7962. caps "false"
  7963. noprefix "false"
  7964. \end_inset
  7965. show exactly the same information for the blood samples, once again comparing
  7966. the normalized expression values between normalizations for all probe sets
  7967. across 20 randomly selected test arrays.
  7968. Once again, there is a wider distribution of log ratios between RMA-normalized
  7969. values and fRMA-normalized, and a much tighter distribution when comparing
  7970. different fRMA normalizations to each other, indicating that the fRMA training
  7971. process is robust to random batch downsampling for the blood samples as
  7972. well.
  7973. \end_layout
  7974. \begin_layout Subsection
  7975. SVA, voom, and array weights improve model fit for methylation array data
  7976. \end_layout
  7977. \begin_layout Standard
  7978. \begin_inset ERT
  7979. status open
  7980. \begin_layout Plain Layout
  7981. \backslash
  7982. afterpage{
  7983. \end_layout
  7984. \begin_layout Plain Layout
  7985. \backslash
  7986. begin{landscape}
  7987. \end_layout
  7988. \end_inset
  7989. \end_layout
  7990. \begin_layout Standard
  7991. \begin_inset Float figure
  7992. wide false
  7993. sideways false
  7994. status open
  7995. \begin_layout Plain Layout
  7996. \begin_inset Flex TODO Note (inline)
  7997. status open
  7998. \begin_layout Plain Layout
  7999. Fix axis labels:
  8000. \begin_inset Quotes eld
  8001. \end_inset
  8002. log2 M-value
  8003. \begin_inset Quotes erd
  8004. \end_inset
  8005. is redundant because M-values are already log scale
  8006. \end_layout
  8007. \end_inset
  8008. \end_layout
  8009. \begin_layout Plain Layout
  8010. \begin_inset Float figure
  8011. wide false
  8012. sideways false
  8013. status collapsed
  8014. \begin_layout Plain Layout
  8015. \align center
  8016. \begin_inset Graphics
  8017. filename graphics/methylvoom/unadj.dupcor/meanvar-trends-PAGE1-CROP-RASTER.png
  8018. lyxscale 15
  8019. width 30col%
  8020. groupId voomaw-subfig
  8021. \end_inset
  8022. \end_layout
  8023. \begin_layout Plain Layout
  8024. \begin_inset Caption Standard
  8025. \begin_layout Plain Layout
  8026. \begin_inset CommandInset label
  8027. LatexCommand label
  8028. name "fig:meanvar-basic"
  8029. \end_inset
  8030. Mean-variance trend for analysis A.
  8031. \end_layout
  8032. \end_inset
  8033. \end_layout
  8034. \end_inset
  8035. \begin_inset space \hfill{}
  8036. \end_inset
  8037. \begin_inset Float figure
  8038. wide false
  8039. sideways false
  8040. status collapsed
  8041. \begin_layout Plain Layout
  8042. \align center
  8043. \begin_inset Graphics
  8044. filename graphics/methylvoom/unadj.dupcor.sva.aw/meanvar-trends-PAGE1-CROP-RASTER.png
  8045. lyxscale 15
  8046. width 30col%
  8047. groupId voomaw-subfig
  8048. \end_inset
  8049. \end_layout
  8050. \begin_layout Plain Layout
  8051. \begin_inset Caption Standard
  8052. \begin_layout Plain Layout
  8053. \begin_inset CommandInset label
  8054. LatexCommand label
  8055. name "fig:meanvar-sva-aw"
  8056. \end_inset
  8057. Mean-variance trend for analysis B.
  8058. \end_layout
  8059. \end_inset
  8060. \end_layout
  8061. \end_inset
  8062. \begin_inset space \hfill{}
  8063. \end_inset
  8064. \begin_inset Float figure
  8065. wide false
  8066. sideways false
  8067. status collapsed
  8068. \begin_layout Plain Layout
  8069. \align center
  8070. \begin_inset Graphics
  8071. filename graphics/methylvoom/unadj.dupcor.sva.voomaw/meanvar-trends-PAGE2-CROP-RASTER.png
  8072. lyxscale 15
  8073. width 30col%
  8074. groupId voomaw-subfig
  8075. \end_inset
  8076. \end_layout
  8077. \begin_layout Plain Layout
  8078. \begin_inset Caption Standard
  8079. \begin_layout Plain Layout
  8080. \begin_inset CommandInset label
  8081. LatexCommand label
  8082. name "fig:meanvar-sva-voomaw"
  8083. \end_inset
  8084. Mean-variance trend after voom modeling in analysis C.
  8085. \end_layout
  8086. \end_inset
  8087. \end_layout
  8088. \end_inset
  8089. \end_layout
  8090. \begin_layout Plain Layout
  8091. \begin_inset Caption Standard
  8092. \begin_layout Plain Layout
  8093. \series bold
  8094. Mean-variance trend modeling in methylation array data.
  8095. \series default
  8096. The estimated log2(standard deviation) for each probe is plotted against
  8097. the probe's average M-value across all samples as a black point, with some
  8098. transparency to make over-plotting more visible, since there are about
  8099. 450,000 points.
  8100. Density of points is also indicated by the dark blue contour lines.
  8101. The prior variance trend estimated by eBayes is shown in light blue, while
  8102. the lowess trend of the points is shown in red.
  8103. \end_layout
  8104. \end_inset
  8105. \end_layout
  8106. \end_inset
  8107. \end_layout
  8108. \begin_layout Standard
  8109. \begin_inset ERT
  8110. status open
  8111. \begin_layout Plain Layout
  8112. \backslash
  8113. end{landscape}
  8114. \end_layout
  8115. \begin_layout Plain Layout
  8116. }
  8117. \end_layout
  8118. \end_inset
  8119. \end_layout
  8120. \begin_layout Standard
  8121. Figure
  8122. \begin_inset CommandInset ref
  8123. LatexCommand ref
  8124. reference "fig:meanvar-basic"
  8125. plural "false"
  8126. caps "false"
  8127. noprefix "false"
  8128. \end_inset
  8129. shows the relationship between the mean M-value and the standard deviation
  8130. calculated for each probe in the methylation array data set.
  8131. A few features of the data are apparent.
  8132. First, the data are very strongly bimodal, with peaks in the density around
  8133. M-values of +4 and -4.
  8134. These modes correspond to methylation sites that are nearly 100% methylated
  8135. and nearly 100% unmethylated, respectively.
  8136. The strong bimodality indicates that a majority of probes interrogate sites
  8137. that fall into one of these two categories.
  8138. The points in between these modes represent sites that are either partially
  8139. methylated in many samples, or are fully methylated in some samples and
  8140. fully unmethylated in other samples, or some combination.
  8141. The next visible feature of the data is the W-shaped variance trend.
  8142. The upticks in the variance trend on either side are expected, based on
  8143. the sigmoid transformation exaggerating small differences at extreme M-values
  8144. (Figure
  8145. \begin_inset CommandInset ref
  8146. LatexCommand ref
  8147. reference "fig:Sigmoid-beta-m-mapping"
  8148. plural "false"
  8149. caps "false"
  8150. noprefix "false"
  8151. \end_inset
  8152. ).
  8153. However, the uptick in the center is interesting: it indicates that sites
  8154. that are not constitutively methylated or unmethylated have a higher variance.
  8155. This could be a genuine biological effect, or it could be spurious noise
  8156. that is only observable at sites with varying methylation.
  8157. \end_layout
  8158. \begin_layout Standard
  8159. In Figure
  8160. \begin_inset CommandInset ref
  8161. LatexCommand ref
  8162. reference "fig:meanvar-sva-aw"
  8163. plural "false"
  8164. caps "false"
  8165. noprefix "false"
  8166. \end_inset
  8167. , we see the mean-variance trend for the same methylation array data, this
  8168. time with surrogate variables and sample quality weights estimated from
  8169. the data and included in the model.
  8170. As expected, the overall average variance is smaller, since the surrogate
  8171. variables account for some of the variance.
  8172. In addition, the uptick in variance in the middle of the M-value range
  8173. has disappeared, turning the W shape into a wide U shape.
  8174. This indicates that the excess variance in the probes with intermediate
  8175. M-values was explained by systematic variations not correlated with known
  8176. covariates, and these variations were modeled by the surrogate variables.
  8177. The result is a nearly flat variance trend for the entire intermediate
  8178. M-value range from about -3 to +3.
  8179. Note that this corresponds closely to the range within which the M-value
  8180. transformation shown in Figure
  8181. \begin_inset CommandInset ref
  8182. LatexCommand ref
  8183. reference "fig:Sigmoid-beta-m-mapping"
  8184. plural "false"
  8185. caps "false"
  8186. noprefix "false"
  8187. \end_inset
  8188. is nearly linear.
  8189. In contrast, the excess variance at the extremes (greater than +3 and less
  8190. than -3) was not
  8191. \begin_inset Quotes eld
  8192. \end_inset
  8193. absorbed
  8194. \begin_inset Quotes erd
  8195. \end_inset
  8196. by the surrogate variables and remains in the plot, indicating that this
  8197. variation has no systematic component: probes with extreme M-values are
  8198. uniformly more variable across all samples, as expected.
  8199. \end_layout
  8200. \begin_layout Standard
  8201. Figure
  8202. \begin_inset CommandInset ref
  8203. LatexCommand ref
  8204. reference "fig:meanvar-sva-voomaw"
  8205. plural "false"
  8206. caps "false"
  8207. noprefix "false"
  8208. \end_inset
  8209. shows the mean-variance trend after fitting the model with the observation
  8210. weights assigned by voom based on the mean-variance trend shown in Figure
  8211. \begin_inset CommandInset ref
  8212. LatexCommand ref
  8213. reference "fig:meanvar-sva-aw"
  8214. plural "false"
  8215. caps "false"
  8216. noprefix "false"
  8217. \end_inset
  8218. .
  8219. As expected, the weights exactly counteract the trend in the data, resulting
  8220. in a nearly flat trend centered vertically at 1 (i.e.
  8221. 0 on the log scale).
  8222. This shows that the observations with extreme M-values have been appropriately
  8223. down-weighted to account for the fact that the noise in those observations
  8224. has been amplified by the non-linear M-value transformation.
  8225. In turn, this gives relatively more weight to observations in the middle
  8226. region, which are more likely to correspond to probes measuring interesting
  8227. biology (not constitutively methylated or unmethylated).
  8228. \end_layout
  8229. \begin_layout Standard
  8230. \begin_inset Float table
  8231. wide false
  8232. sideways false
  8233. status open
  8234. \begin_layout Plain Layout
  8235. \align center
  8236. \begin_inset Tabular
  8237. <lyxtabular version="3" rows="5" columns="3">
  8238. <features tabularvalignment="middle">
  8239. <column alignment="center" valignment="top">
  8240. <column alignment="center" valignment="top">
  8241. <column alignment="center" valignment="top">
  8242. <row>
  8243. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8244. \begin_inset Text
  8245. \begin_layout Plain Layout
  8246. Covariate
  8247. \end_layout
  8248. \end_inset
  8249. </cell>
  8250. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8251. \begin_inset Text
  8252. \begin_layout Plain Layout
  8253. Test used
  8254. \end_layout
  8255. \end_inset
  8256. </cell>
  8257. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  8258. \begin_inset Text
  8259. \begin_layout Plain Layout
  8260. p-value
  8261. \end_layout
  8262. \end_inset
  8263. </cell>
  8264. </row>
  8265. <row>
  8266. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8267. \begin_inset Text
  8268. \begin_layout Plain Layout
  8269. Transplant Status
  8270. \end_layout
  8271. \end_inset
  8272. </cell>
  8273. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8274. \begin_inset Text
  8275. \begin_layout Plain Layout
  8276. F-test
  8277. \end_layout
  8278. \end_inset
  8279. </cell>
  8280. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8281. \begin_inset Text
  8282. \begin_layout Plain Layout
  8283. 0.404
  8284. \end_layout
  8285. \end_inset
  8286. </cell>
  8287. </row>
  8288. <row>
  8289. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8290. \begin_inset Text
  8291. \begin_layout Plain Layout
  8292. Diabetes Diagnosis
  8293. \end_layout
  8294. \end_inset
  8295. </cell>
  8296. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8297. \begin_inset Text
  8298. \begin_layout Plain Layout
  8299. \emph on
  8300. t
  8301. \emph default
  8302. -test
  8303. \end_layout
  8304. \end_inset
  8305. </cell>
  8306. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8307. \begin_inset Text
  8308. \begin_layout Plain Layout
  8309. 0.00106
  8310. \end_layout
  8311. \end_inset
  8312. </cell>
  8313. </row>
  8314. <row>
  8315. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8316. \begin_inset Text
  8317. \begin_layout Plain Layout
  8318. Sex
  8319. \end_layout
  8320. \end_inset
  8321. </cell>
  8322. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8323. \begin_inset Text
  8324. \begin_layout Plain Layout
  8325. \emph on
  8326. t
  8327. \emph default
  8328. -test
  8329. \end_layout
  8330. \end_inset
  8331. </cell>
  8332. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8333. \begin_inset Text
  8334. \begin_layout Plain Layout
  8335. 0.148
  8336. \end_layout
  8337. \end_inset
  8338. </cell>
  8339. </row>
  8340. <row>
  8341. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8342. \begin_inset Text
  8343. \begin_layout Plain Layout
  8344. Age
  8345. \end_layout
  8346. \end_inset
  8347. </cell>
  8348. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8349. \begin_inset Text
  8350. \begin_layout Plain Layout
  8351. linear regression
  8352. \end_layout
  8353. \end_inset
  8354. </cell>
  8355. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  8356. \begin_inset Text
  8357. \begin_layout Plain Layout
  8358. 0.212
  8359. \end_layout
  8360. \end_inset
  8361. </cell>
  8362. </row>
  8363. </lyxtabular>
  8364. \end_inset
  8365. \end_layout
  8366. \begin_layout Plain Layout
  8367. \begin_inset Caption Standard
  8368. \begin_layout Plain Layout
  8369. \series bold
  8370. \begin_inset CommandInset label
  8371. LatexCommand label
  8372. name "tab:weight-covariate-tests"
  8373. \end_inset
  8374. Association of sample weights with clinical covariates in methylation array
  8375. data.
  8376. \series default
  8377. Computed sample quality log weights were tested for significant association
  8378. with each of the variables in the model (1st column).
  8379. An appropriate test was selected for each variable based on whether the
  8380. variable had 2 categories (
  8381. \emph on
  8382. t
  8383. \emph default
  8384. -test), had more than 2 categories (F-test), or was numeric (linear regression).
  8385. The test selected is shown in the 2nd column.
  8386. P-values for association with the log weights are shown in the 3rd column.
  8387. No multiple testing adjustment was performed for these p-values.
  8388. \end_layout
  8389. \end_inset
  8390. \end_layout
  8391. \end_inset
  8392. \end_layout
  8393. \begin_layout Standard
  8394. \begin_inset Float figure
  8395. wide false
  8396. sideways false
  8397. status open
  8398. \begin_layout Plain Layout
  8399. \begin_inset Flex TODO Note (inline)
  8400. status open
  8401. \begin_layout Plain Layout
  8402. Redo the sample weight boxplot with notches, and remove fill colors
  8403. \end_layout
  8404. \end_inset
  8405. \end_layout
  8406. \begin_layout Plain Layout
  8407. \align center
  8408. \begin_inset Graphics
  8409. filename graphics/methylvoom/unadj.dupcor.sva.voomaw/sample-weights-PAGE3-CROP.pdf
  8410. lyxscale 50
  8411. width 60col%
  8412. groupId colwidth
  8413. \end_inset
  8414. \end_layout
  8415. \begin_layout Plain Layout
  8416. \begin_inset Caption Standard
  8417. \begin_layout Plain Layout
  8418. \begin_inset CommandInset label
  8419. LatexCommand label
  8420. name "fig:diabetes-sample-weights"
  8421. \end_inset
  8422. \series bold
  8423. Box-and-whiskers plot of sample quality weights grouped by diabetes diagnosis.
  8424. \series default
  8425. Samples were grouped based on diabetes diagnosis, and the distribution of
  8426. sample quality weights for each diagnosis was plotted as a box-and-whiskers
  8427. plot
  8428. \begin_inset CommandInset citation
  8429. LatexCommand cite
  8430. key "McGill1978"
  8431. literal "false"
  8432. \end_inset
  8433. .
  8434. \end_layout
  8435. \end_inset
  8436. \end_layout
  8437. \begin_layout Plain Layout
  8438. \end_layout
  8439. \end_inset
  8440. \end_layout
  8441. \begin_layout Standard
  8442. To determine whether any of the known experimental factors had an impact
  8443. on data quality, the sample quality weights estimated from the data were
  8444. tested for association with each of the experimental factors (Table
  8445. \begin_inset CommandInset ref
  8446. LatexCommand ref
  8447. reference "tab:weight-covariate-tests"
  8448. plural "false"
  8449. caps "false"
  8450. noprefix "false"
  8451. \end_inset
  8452. ).
  8453. Diabetes diagnosis was found to have a potentially significant association
  8454. with the sample weights, with a t-test p-value of
  8455. \begin_inset Formula $1.06\times10^{-3}$
  8456. \end_inset
  8457. .
  8458. Figure
  8459. \begin_inset CommandInset ref
  8460. LatexCommand ref
  8461. reference "fig:diabetes-sample-weights"
  8462. plural "false"
  8463. caps "false"
  8464. noprefix "false"
  8465. \end_inset
  8466. shows the distribution of sample weights grouped by diabetes diagnosis.
  8467. The samples from patients with Type 2 diabetes were assigned significantly
  8468. lower weights than those from patients with Type 1 diabetes.
  8469. This indicates that the type 2 diabetes samples had an overall higher variance
  8470. on average across all probes.
  8471. \end_layout
  8472. \begin_layout Standard
  8473. \begin_inset Float table
  8474. wide false
  8475. sideways false
  8476. status open
  8477. \begin_layout Plain Layout
  8478. \align center
  8479. \begin_inset Flex TODO Note (inline)
  8480. status open
  8481. \begin_layout Plain Layout
  8482. Consider transposing these tables
  8483. \end_layout
  8484. \end_inset
  8485. \end_layout
  8486. \begin_layout Plain Layout
  8487. \begin_inset Float table
  8488. wide false
  8489. sideways false
  8490. status open
  8491. \begin_layout Plain Layout
  8492. \align center
  8493. \begin_inset Tabular
  8494. <lyxtabular version="3" rows="5" columns="4">
  8495. <features tabularvalignment="middle">
  8496. <column alignment="center" valignment="top">
  8497. <column alignment="center" valignment="top">
  8498. <column alignment="center" valignment="top">
  8499. <column alignment="center" valignment="top">
  8500. <row>
  8501. <cell alignment="center" valignment="top" usebox="none">
  8502. \begin_inset Text
  8503. \begin_layout Plain Layout
  8504. \end_layout
  8505. \end_inset
  8506. </cell>
  8507. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8508. \begin_inset Text
  8509. \begin_layout Plain Layout
  8510. Analysis
  8511. \end_layout
  8512. \end_inset
  8513. </cell>
  8514. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8515. \begin_inset Text
  8516. \begin_layout Plain Layout
  8517. \end_layout
  8518. \end_inset
  8519. </cell>
  8520. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8521. \begin_inset Text
  8522. \begin_layout Plain Layout
  8523. \end_layout
  8524. \end_inset
  8525. </cell>
  8526. </row>
  8527. <row>
  8528. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8529. \begin_inset Text
  8530. \begin_layout Plain Layout
  8531. Contrast
  8532. \end_layout
  8533. \end_inset
  8534. </cell>
  8535. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8536. \begin_inset Text
  8537. \begin_layout Plain Layout
  8538. A
  8539. \end_layout
  8540. \end_inset
  8541. </cell>
  8542. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8543. \begin_inset Text
  8544. \begin_layout Plain Layout
  8545. B
  8546. \end_layout
  8547. \end_inset
  8548. </cell>
  8549. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  8550. \begin_inset Text
  8551. \begin_layout Plain Layout
  8552. C
  8553. \end_layout
  8554. \end_inset
  8555. </cell>
  8556. </row>
  8557. <row>
  8558. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8559. \begin_inset Text
  8560. \begin_layout Plain Layout
  8561. TX vs AR
  8562. \end_layout
  8563. \end_inset
  8564. </cell>
  8565. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8566. \begin_inset Text
  8567. \begin_layout Plain Layout
  8568. 0
  8569. \end_layout
  8570. \end_inset
  8571. </cell>
  8572. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8573. \begin_inset Text
  8574. \begin_layout Plain Layout
  8575. 25
  8576. \end_layout
  8577. \end_inset
  8578. </cell>
  8579. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8580. \begin_inset Text
  8581. \begin_layout Plain Layout
  8582. 22
  8583. \end_layout
  8584. \end_inset
  8585. </cell>
  8586. </row>
  8587. <row>
  8588. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8589. \begin_inset Text
  8590. \begin_layout Plain Layout
  8591. TX vs ADNR
  8592. \end_layout
  8593. \end_inset
  8594. </cell>
  8595. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8596. \begin_inset Text
  8597. \begin_layout Plain Layout
  8598. 7
  8599. \end_layout
  8600. \end_inset
  8601. </cell>
  8602. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8603. \begin_inset Text
  8604. \begin_layout Plain Layout
  8605. 338
  8606. \end_layout
  8607. \end_inset
  8608. </cell>
  8609. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8610. \begin_inset Text
  8611. \begin_layout Plain Layout
  8612. 369
  8613. \end_layout
  8614. \end_inset
  8615. </cell>
  8616. </row>
  8617. <row>
  8618. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8619. \begin_inset Text
  8620. \begin_layout Plain Layout
  8621. TX vs CAN
  8622. \end_layout
  8623. \end_inset
  8624. </cell>
  8625. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8626. \begin_inset Text
  8627. \begin_layout Plain Layout
  8628. 0
  8629. \end_layout
  8630. \end_inset
  8631. </cell>
  8632. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8633. \begin_inset Text
  8634. \begin_layout Plain Layout
  8635. 231
  8636. \end_layout
  8637. \end_inset
  8638. </cell>
  8639. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  8640. \begin_inset Text
  8641. \begin_layout Plain Layout
  8642. 278
  8643. \end_layout
  8644. \end_inset
  8645. </cell>
  8646. </row>
  8647. </lyxtabular>
  8648. \end_inset
  8649. \end_layout
  8650. \begin_layout Plain Layout
  8651. \begin_inset Caption Standard
  8652. \begin_layout Plain Layout
  8653. \begin_inset CommandInset label
  8654. LatexCommand label
  8655. name "tab:methyl-num-signif"
  8656. \end_inset
  8657. Number of probes significant at 10% FDR.
  8658. \end_layout
  8659. \end_inset
  8660. \end_layout
  8661. \end_inset
  8662. \begin_inset space \hfill{}
  8663. \end_inset
  8664. \begin_inset Float table
  8665. wide false
  8666. sideways false
  8667. status open
  8668. \begin_layout Plain Layout
  8669. \align center
  8670. \begin_inset Tabular
  8671. <lyxtabular version="3" rows="5" columns="4">
  8672. <features tabularvalignment="middle">
  8673. <column alignment="center" valignment="top">
  8674. <column alignment="center" valignment="top">
  8675. <column alignment="center" valignment="top">
  8676. <column alignment="center" valignment="top">
  8677. <row>
  8678. <cell alignment="center" valignment="top" usebox="none">
  8679. \begin_inset Text
  8680. \begin_layout Plain Layout
  8681. \end_layout
  8682. \end_inset
  8683. </cell>
  8684. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8685. \begin_inset Text
  8686. \begin_layout Plain Layout
  8687. Analysis
  8688. \end_layout
  8689. \end_inset
  8690. </cell>
  8691. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8692. \begin_inset Text
  8693. \begin_layout Plain Layout
  8694. \end_layout
  8695. \end_inset
  8696. </cell>
  8697. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8698. \begin_inset Text
  8699. \begin_layout Plain Layout
  8700. \end_layout
  8701. \end_inset
  8702. </cell>
  8703. </row>
  8704. <row>
  8705. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8706. \begin_inset Text
  8707. \begin_layout Plain Layout
  8708. Contrast
  8709. \end_layout
  8710. \end_inset
  8711. </cell>
  8712. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8713. \begin_inset Text
  8714. \begin_layout Plain Layout
  8715. A
  8716. \end_layout
  8717. \end_inset
  8718. </cell>
  8719. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8720. \begin_inset Text
  8721. \begin_layout Plain Layout
  8722. B
  8723. \end_layout
  8724. \end_inset
  8725. </cell>
  8726. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  8727. \begin_inset Text
  8728. \begin_layout Plain Layout
  8729. C
  8730. \end_layout
  8731. \end_inset
  8732. </cell>
  8733. </row>
  8734. <row>
  8735. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8736. \begin_inset Text
  8737. \begin_layout Plain Layout
  8738. TX vs AR
  8739. \end_layout
  8740. \end_inset
  8741. </cell>
  8742. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8743. \begin_inset Text
  8744. \begin_layout Plain Layout
  8745. 0
  8746. \end_layout
  8747. \end_inset
  8748. </cell>
  8749. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8750. \begin_inset Text
  8751. \begin_layout Plain Layout
  8752. 10,063
  8753. \end_layout
  8754. \end_inset
  8755. </cell>
  8756. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8757. \begin_inset Text
  8758. \begin_layout Plain Layout
  8759. 11,225
  8760. \end_layout
  8761. \end_inset
  8762. </cell>
  8763. </row>
  8764. <row>
  8765. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8766. \begin_inset Text
  8767. \begin_layout Plain Layout
  8768. TX vs ADNR
  8769. \end_layout
  8770. \end_inset
  8771. </cell>
  8772. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8773. \begin_inset Text
  8774. \begin_layout Plain Layout
  8775. 27
  8776. \end_layout
  8777. \end_inset
  8778. </cell>
  8779. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8780. \begin_inset Text
  8781. \begin_layout Plain Layout
  8782. 12,674
  8783. \end_layout
  8784. \end_inset
  8785. </cell>
  8786. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8787. \begin_inset Text
  8788. \begin_layout Plain Layout
  8789. 13,086
  8790. \end_layout
  8791. \end_inset
  8792. </cell>
  8793. </row>
  8794. <row>
  8795. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8796. \begin_inset Text
  8797. \begin_layout Plain Layout
  8798. TX vs CAN
  8799. \end_layout
  8800. \end_inset
  8801. </cell>
  8802. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8803. \begin_inset Text
  8804. \begin_layout Plain Layout
  8805. 966
  8806. \end_layout
  8807. \end_inset
  8808. </cell>
  8809. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8810. \begin_inset Text
  8811. \begin_layout Plain Layout
  8812. 20,039
  8813. \end_layout
  8814. \end_inset
  8815. </cell>
  8816. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  8817. \begin_inset Text
  8818. \begin_layout Plain Layout
  8819. 20,955
  8820. \end_layout
  8821. \end_inset
  8822. </cell>
  8823. </row>
  8824. </lyxtabular>
  8825. \end_inset
  8826. \end_layout
  8827. \begin_layout Plain Layout
  8828. \begin_inset Caption Standard
  8829. \begin_layout Plain Layout
  8830. \begin_inset CommandInset label
  8831. LatexCommand label
  8832. name "tab:methyl-est-nonnull"
  8833. \end_inset
  8834. Estimated number of non-null tests, using the method of averaging local
  8835. FDR values
  8836. \begin_inset CommandInset citation
  8837. LatexCommand cite
  8838. key "Phipson2013Thesis"
  8839. literal "false"
  8840. \end_inset
  8841. .
  8842. \end_layout
  8843. \end_inset
  8844. \end_layout
  8845. \end_inset
  8846. \end_layout
  8847. \begin_layout Plain Layout
  8848. \begin_inset Caption Standard
  8849. \begin_layout Plain Layout
  8850. \series bold
  8851. Estimates of degree of differential methylation in for each contrast in
  8852. each analysis.
  8853. \series default
  8854. For each of the analyses in Table
  8855. \begin_inset CommandInset ref
  8856. LatexCommand ref
  8857. reference "tab:Summary-of-meth-analysis"
  8858. plural "false"
  8859. caps "false"
  8860. noprefix "false"
  8861. \end_inset
  8862. , these tables show the number of probes called significantly differentially
  8863. methylated at a threshold of 10% FDR for each comparison between TX and
  8864. the other 3 transplant statuses (a) and the estimated total number of probes
  8865. that are differentially methylated (b).
  8866. \end_layout
  8867. \end_inset
  8868. \end_layout
  8869. \end_inset
  8870. \end_layout
  8871. \begin_layout Standard
  8872. \begin_inset Float figure
  8873. wide false
  8874. sideways false
  8875. status open
  8876. \begin_layout Plain Layout
  8877. \align center
  8878. \series bold
  8879. \begin_inset Float figure
  8880. wide false
  8881. sideways false
  8882. status collapsed
  8883. \begin_layout Plain Layout
  8884. \align center
  8885. \begin_inset Graphics
  8886. filename graphics/methylvoom/unadj.dupcor/pval-histograms-PAGE1.pdf
  8887. lyxscale 33
  8888. width 30col%
  8889. groupId meth-pval-hist
  8890. \end_inset
  8891. \end_layout
  8892. \begin_layout Plain Layout
  8893. \series bold
  8894. \begin_inset Caption Standard
  8895. \begin_layout Plain Layout
  8896. AR vs.
  8897. TX, Analysis A
  8898. \end_layout
  8899. \end_inset
  8900. \end_layout
  8901. \begin_layout Plain Layout
  8902. \end_layout
  8903. \end_inset
  8904. \begin_inset space \hfill{}
  8905. \end_inset
  8906. \begin_inset Float figure
  8907. wide false
  8908. sideways false
  8909. status collapsed
  8910. \begin_layout Plain Layout
  8911. \align center
  8912. \begin_inset Graphics
  8913. filename graphics/methylvoom/unadj.dupcor/pval-histograms-PAGE2.pdf
  8914. lyxscale 33
  8915. width 30col%
  8916. groupId meth-pval-hist
  8917. \end_inset
  8918. \end_layout
  8919. \begin_layout Plain Layout
  8920. \series bold
  8921. \begin_inset Caption Standard
  8922. \begin_layout Plain Layout
  8923. ADNR vs.
  8924. TX, Analysis A
  8925. \end_layout
  8926. \end_inset
  8927. \end_layout
  8928. \end_inset
  8929. \begin_inset space \hfill{}
  8930. \end_inset
  8931. \begin_inset Float figure
  8932. wide false
  8933. sideways false
  8934. status collapsed
  8935. \begin_layout Plain Layout
  8936. \align center
  8937. \begin_inset Graphics
  8938. filename graphics/methylvoom/unadj.dupcor/pval-histograms-PAGE3.pdf
  8939. lyxscale 33
  8940. width 30col%
  8941. groupId meth-pval-hist
  8942. \end_inset
  8943. \end_layout
  8944. \begin_layout Plain Layout
  8945. \series bold
  8946. \begin_inset Caption Standard
  8947. \begin_layout Plain Layout
  8948. CAN vs.
  8949. TX, Analysis A
  8950. \end_layout
  8951. \end_inset
  8952. \end_layout
  8953. \end_inset
  8954. \end_layout
  8955. \begin_layout Plain Layout
  8956. \align center
  8957. \series bold
  8958. \begin_inset Float figure
  8959. wide false
  8960. sideways false
  8961. status collapsed
  8962. \begin_layout Plain Layout
  8963. \align center
  8964. \begin_inset Graphics
  8965. filename graphics/methylvoom/unadj.dupcor.sva.aw/pval-histograms-PAGE1.pdf
  8966. lyxscale 33
  8967. width 30col%
  8968. groupId meth-pval-hist
  8969. \end_inset
  8970. \end_layout
  8971. \begin_layout Plain Layout
  8972. \series bold
  8973. \begin_inset Caption Standard
  8974. \begin_layout Plain Layout
  8975. AR vs.
  8976. TX, Analysis B
  8977. \end_layout
  8978. \end_inset
  8979. \end_layout
  8980. \end_inset
  8981. \begin_inset space \hfill{}
  8982. \end_inset
  8983. \begin_inset Float figure
  8984. wide false
  8985. sideways false
  8986. status collapsed
  8987. \begin_layout Plain Layout
  8988. \align center
  8989. \begin_inset Graphics
  8990. filename graphics/methylvoom/unadj.dupcor.sva.aw/pval-histograms-PAGE2.pdf
  8991. lyxscale 33
  8992. width 30col%
  8993. groupId meth-pval-hist
  8994. \end_inset
  8995. \end_layout
  8996. \begin_layout Plain Layout
  8997. \series bold
  8998. \begin_inset Caption Standard
  8999. \begin_layout Plain Layout
  9000. ADNR vs.
  9001. TX, Analysis B
  9002. \end_layout
  9003. \end_inset
  9004. \end_layout
  9005. \end_inset
  9006. \begin_inset space \hfill{}
  9007. \end_inset
  9008. \begin_inset Float figure
  9009. wide false
  9010. sideways false
  9011. status collapsed
  9012. \begin_layout Plain Layout
  9013. \align center
  9014. \begin_inset Graphics
  9015. filename graphics/methylvoom/unadj.dupcor.sva.aw/pval-histograms-PAGE3.pdf
  9016. lyxscale 33
  9017. width 30col%
  9018. groupId meth-pval-hist
  9019. \end_inset
  9020. \end_layout
  9021. \begin_layout Plain Layout
  9022. \series bold
  9023. \begin_inset Caption Standard
  9024. \begin_layout Plain Layout
  9025. CAN vs.
  9026. TX, Analysis B
  9027. \end_layout
  9028. \end_inset
  9029. \end_layout
  9030. \end_inset
  9031. \end_layout
  9032. \begin_layout Plain Layout
  9033. \align center
  9034. \series bold
  9035. \begin_inset Float figure
  9036. wide false
  9037. sideways false
  9038. status collapsed
  9039. \begin_layout Plain Layout
  9040. \align center
  9041. \begin_inset Graphics
  9042. filename graphics/methylvoom/unadj.dupcor.sva.voomaw/pval-histograms-PAGE1.pdf
  9043. lyxscale 33
  9044. width 30col%
  9045. groupId meth-pval-hist
  9046. \end_inset
  9047. \end_layout
  9048. \begin_layout Plain Layout
  9049. \series bold
  9050. \begin_inset Caption Standard
  9051. \begin_layout Plain Layout
  9052. AR vs.
  9053. TX, Analysis C
  9054. \end_layout
  9055. \end_inset
  9056. \end_layout
  9057. \end_inset
  9058. \begin_inset space \hfill{}
  9059. \end_inset
  9060. \begin_inset Float figure
  9061. wide false
  9062. sideways false
  9063. status collapsed
  9064. \begin_layout Plain Layout
  9065. \align center
  9066. \begin_inset Graphics
  9067. filename graphics/methylvoom/unadj.dupcor.sva.voomaw/pval-histograms-PAGE2.pdf
  9068. lyxscale 33
  9069. width 30col%
  9070. groupId meth-pval-hist
  9071. \end_inset
  9072. \end_layout
  9073. \begin_layout Plain Layout
  9074. \series bold
  9075. \begin_inset Caption Standard
  9076. \begin_layout Plain Layout
  9077. ADNR vs.
  9078. TX, Analysis C
  9079. \end_layout
  9080. \end_inset
  9081. \end_layout
  9082. \end_inset
  9083. \begin_inset space \hfill{}
  9084. \end_inset
  9085. \begin_inset Float figure
  9086. wide false
  9087. sideways false
  9088. status collapsed
  9089. \begin_layout Plain Layout
  9090. \align center
  9091. \begin_inset Graphics
  9092. filename graphics/methylvoom/unadj.dupcor.sva.voomaw/pval-histograms-PAGE3.pdf
  9093. lyxscale 33
  9094. width 30col%
  9095. groupId meth-pval-hist
  9096. \end_inset
  9097. \end_layout
  9098. \begin_layout Plain Layout
  9099. \series bold
  9100. \begin_inset Caption Standard
  9101. \begin_layout Plain Layout
  9102. CAN vs.
  9103. TX, Analysis C
  9104. \end_layout
  9105. \end_inset
  9106. \end_layout
  9107. \end_inset
  9108. \end_layout
  9109. \begin_layout Plain Layout
  9110. \begin_inset Caption Standard
  9111. \begin_layout Plain Layout
  9112. \series bold
  9113. \begin_inset CommandInset label
  9114. LatexCommand label
  9115. name "fig:meth-p-value-histograms"
  9116. \end_inset
  9117. Probe p-value histograms for each contrast in each analysis.
  9118. \series default
  9119. For each differential methylation test of interest, the distribution of
  9120. p-values across all probes is plotted as a histogram.
  9121. The red solid line indicates the density that would be expected under the
  9122. null hypothesis for all probes (a
  9123. \begin_inset Formula $\mathrm{Uniform}(0,1)$
  9124. \end_inset
  9125. distribution), while the blue dotted line indicates the fraction of p-values
  9126. that actually follow the null hypothesis (
  9127. \begin_inset Formula $\hat{\pi}_{0}$
  9128. \end_inset
  9129. ) estimated using the method of averaging local FDR values
  9130. \begin_inset CommandInset citation
  9131. LatexCommand cite
  9132. key "Phipson2013Thesis"
  9133. literal "false"
  9134. \end_inset
  9135. .
  9136. the blue line is only shown in each plot if the estimate of
  9137. \begin_inset Formula $\hat{\pi}_{0}$
  9138. \end_inset
  9139. for that p-value distribution is different from 1.
  9140. \end_layout
  9141. \end_inset
  9142. \end_layout
  9143. \end_inset
  9144. \end_layout
  9145. \begin_layout Standard
  9146. Table
  9147. \begin_inset CommandInset ref
  9148. LatexCommand ref
  9149. reference "tab:methyl-num-signif"
  9150. plural "false"
  9151. caps "false"
  9152. noprefix "false"
  9153. \end_inset
  9154. shows the number of significantly differentially methylated probes reported
  9155. by each analysis for each comparison of interest at an FDR of 10%.
  9156. As expected, the more elaborate analyses, B and C, report more significant
  9157. probes than the more basic analysis A, consistent with the conclusions
  9158. above that the data contain hidden systematic variations that must be modeled.
  9159. Table
  9160. \begin_inset CommandInset ref
  9161. LatexCommand ref
  9162. reference "tab:methyl-est-nonnull"
  9163. plural "false"
  9164. caps "false"
  9165. noprefix "false"
  9166. \end_inset
  9167. shows the estimated number differentially methylated probes for each test
  9168. from each analysis.
  9169. This was computed by estimating the proportion of null hypotheses that
  9170. were true using the method of
  9171. \begin_inset CommandInset citation
  9172. LatexCommand cite
  9173. key "Phipson2013Thesis"
  9174. literal "false"
  9175. \end_inset
  9176. and subtracting that fraction from the total number of probes, yielding
  9177. an estimate of the number of null hypotheses that are false based on the
  9178. distribution of p-values across the entire dataset.
  9179. Note that this does not identify which null hypotheses should be rejected
  9180. (i.e.
  9181. which probes are significant); it only estimates the true number of such
  9182. probes.
  9183. Once again, analyses B and C result it much larger estimates for the number
  9184. of differentially methylated probes.
  9185. In this case, analysis C, the only analysis that includes voom, estimates
  9186. the largest number of differentially methylated probes for all 3 contrasts.
  9187. If the assumptions of all the methods employed hold, then this represents
  9188. a gain in statistical power over the simpler analysis A.
  9189. Figure
  9190. \begin_inset CommandInset ref
  9191. LatexCommand ref
  9192. reference "fig:meth-p-value-histograms"
  9193. plural "false"
  9194. caps "false"
  9195. noprefix "false"
  9196. \end_inset
  9197. shows the p-value distributions for each test, from which the numbers in
  9198. Table
  9199. \begin_inset CommandInset ref
  9200. LatexCommand ref
  9201. reference "tab:methyl-est-nonnull"
  9202. plural "false"
  9203. caps "false"
  9204. noprefix "false"
  9205. \end_inset
  9206. were generated.
  9207. The distributions for analysis A all have a dip in density near zero, which
  9208. is a strong sign of a poor model fit.
  9209. The histograms for analyses B and C are more well-behaved, with a uniform
  9210. component stretching all the way from 0 to 1 representing the probes for
  9211. which the null hypotheses is true (no differential methylation), and a
  9212. zero-biased component representing the probes for which the null hypothesis
  9213. is false (differentially methylated).
  9214. These histograms do not indicate any major issues with the model fit.
  9215. \end_layout
  9216. \begin_layout Standard
  9217. \begin_inset Flex TODO Note (inline)
  9218. status open
  9219. \begin_layout Plain Layout
  9220. If time allows, maybe generate the PCA plots before/after SVA effect subtraction
  9221. ?
  9222. \end_layout
  9223. \end_inset
  9224. \end_layout
  9225. \begin_layout Section
  9226. Discussion
  9227. \end_layout
  9228. \begin_layout Subsection
  9229. fRMA achieves clinically applicable normalization without sacrificing classifica
  9230. tion performance
  9231. \end_layout
  9232. \begin_layout Standard
  9233. As shown in Figure
  9234. \begin_inset CommandInset ref
  9235. LatexCommand ref
  9236. reference "fig:Classifier-probabilities-RMA"
  9237. plural "false"
  9238. caps "false"
  9239. noprefix "false"
  9240. \end_inset
  9241. , improper normalization, particularly separate normalization of training
  9242. and test samples, leads to unwanted biases in classification.
  9243. In a controlled experimental context, it is always possible to correct
  9244. this issue by normalizing all experimental samples together.
  9245. However, because it is not feasible to normalize all samples together in
  9246. a clinical context, a single-channel normalization is required is required.
  9247. \end_layout
  9248. \begin_layout Standard
  9249. The major concern in using a single-channel normalization is that non-single-cha
  9250. nnel methods can share information between arrays to improve the normalization,
  9251. and single-channel methods risk sacrificing the gains in normalization
  9252. accuracy that come from this information sharing.
  9253. In the case of RMA, this information sharing is accomplished through quantile
  9254. normalization and median polish steps.
  9255. The need for information sharing in quantile normalization can easily be
  9256. removed by learning a fixed set of quantiles from external data and normalizing
  9257. each array to these fixed quantiles, instead of the quantiles of the data
  9258. itself.
  9259. As long as the fixed quantiles are reasonable, the result will be similar
  9260. to standard RMA.
  9261. However, there is no analogous way to eliminate cross-array information
  9262. sharing in the median polish step, so fRMA replaces this with a weighted
  9263. average of probes on each array, with the weights learned from external
  9264. data.
  9265. This step of fRMA has the greatest potential to diverge from RMA un undesirable
  9266. ways.
  9267. \end_layout
  9268. \begin_layout Standard
  9269. However, when run on real data, fRMA performed at least as well as RMA in
  9270. both the internal validation and external validation tests.
  9271. This shows that fRMA can be used to normalize individual clinical samples
  9272. in a class prediction context without sacrificing the classifier performance
  9273. that would be obtained by using the more well-established RMA for normalization.
  9274. The other single-channel normalization method considered, SCAN, showed
  9275. some loss of AUC in the external validation test.
  9276. Based on these results, fRMA is the preferred normalization for clinical
  9277. samples in a class prediction context.
  9278. \end_layout
  9279. \begin_layout Subsection
  9280. Robust fRMA vectors can be generated for new array platforms
  9281. \end_layout
  9282. \begin_layout Standard
  9283. \begin_inset Flex TODO Note (inline)
  9284. status open
  9285. \begin_layout Plain Layout
  9286. Look up the exact numbers, do a find & replace for
  9287. \begin_inset Quotes eld
  9288. \end_inset
  9289. 850
  9290. \begin_inset Quotes erd
  9291. \end_inset
  9292. \end_layout
  9293. \end_inset
  9294. \end_layout
  9295. \begin_layout Standard
  9296. The published fRMA normalization vectors for the hgu133plus2 platform were
  9297. generated from a set of about 850 samples chosen from a wide range of tissues,
  9298. which the authors determined was sufficient to generate a robust set of
  9299. normalization vectors that could be applied across all tissues
  9300. \begin_inset CommandInset citation
  9301. LatexCommand cite
  9302. key "McCall2010"
  9303. literal "false"
  9304. \end_inset
  9305. .
  9306. Since we only had hthgu133pluspm for 2 tissues of interest, our needs were
  9307. more modest.
  9308. Even using only 130 samples in 26 batches of 5 samples each for kidney
  9309. biopsies, we were able to train a robust set of fRMA normalization vectors
  9310. that were not meaningfully affected by the random selection of 5 samples
  9311. from each batch.
  9312. As expected, the training process was just as robust for the blood samples
  9313. with 230 samples in 46 batches of 5 samples each.
  9314. Because these vectors were each generated using training samples from a
  9315. single tissue, they are not suitable for general use, unlike the vectors
  9316. provided with fRMA itself.
  9317. They are purpose-built for normalizing a specific type of sample on a specific
  9318. platform.
  9319. This is a mostly acceptable limitation in the context of developing a machine
  9320. learning classifier for diagnosing a disease based on samples of a specific
  9321. tissue.
  9322. \end_layout
  9323. \begin_layout Standard
  9324. \begin_inset Flex TODO Note (inline)
  9325. status open
  9326. \begin_layout Plain Layout
  9327. Talk about how these vectors can be used for any data from these tissues
  9328. on this platform even though they were custom made for this data set.
  9329. \end_layout
  9330. \end_inset
  9331. \end_layout
  9332. \begin_layout Standard
  9333. \begin_inset Flex TODO Note (inline)
  9334. status open
  9335. \begin_layout Plain Layout
  9336. How to bring up that these custom vectors were used in another project by
  9337. someone else that was never published?
  9338. \end_layout
  9339. \end_inset
  9340. \end_layout
  9341. \begin_layout Subsection
  9342. Methylation array data can be successfully analyzed using existing techniques,
  9343. but machine learning poses additional challenges
  9344. \end_layout
  9345. \begin_layout Standard
  9346. Both analysis strategies B and C both yield a reasonable analysis, with
  9347. a mean-variance trend that matches the expected behavior for the non-linear
  9348. M-value transformation (Figure
  9349. \begin_inset CommandInset ref
  9350. LatexCommand ref
  9351. reference "fig:meanvar-sva-aw"
  9352. plural "false"
  9353. caps "false"
  9354. noprefix "false"
  9355. \end_inset
  9356. ) and well-behaved p-value distributions (Figure
  9357. \begin_inset CommandInset ref
  9358. LatexCommand ref
  9359. reference "fig:meth-p-value-histograms"
  9360. plural "false"
  9361. caps "false"
  9362. noprefix "false"
  9363. \end_inset
  9364. ).
  9365. These two analyses also yield similar numbers of significant probes (Table
  9366. \begin_inset CommandInset ref
  9367. LatexCommand ref
  9368. reference "tab:methyl-num-signif"
  9369. plural "false"
  9370. caps "false"
  9371. noprefix "false"
  9372. \end_inset
  9373. ) and similar estimates of the number of differentially methylated probes
  9374. (Table
  9375. \begin_inset CommandInset ref
  9376. LatexCommand ref
  9377. reference "tab:methyl-est-nonnull"
  9378. plural "false"
  9379. caps "false"
  9380. noprefix "false"
  9381. \end_inset
  9382. ).
  9383. The main difference between these two analyses is the method used to account
  9384. for the mean-variance trend.
  9385. In analysis B, the trend is estimated and applied at the probe level: each
  9386. probe's estimated variance is squeezed toward the trend using an empirical
  9387. Bayes procedure (Figure
  9388. \begin_inset CommandInset ref
  9389. LatexCommand ref
  9390. reference "fig:meanvar-sva-aw"
  9391. plural "false"
  9392. caps "false"
  9393. noprefix "false"
  9394. \end_inset
  9395. ).
  9396. In analysis C, the trend is still estimated at the probe level, but instead
  9397. of estimating a single variance value shared across all observations for
  9398. a given probe, the voom method computes an initial estimate of the variance
  9399. for each observation individually based on where its model-fitted M-value
  9400. falls on the trend line and then assigns inverse-variance weights to model
  9401. the difference in variance between observations.
  9402. An overall variance is still estimated for each probe using the same empirical
  9403. Bayes method, but now the residual trend is flat (Figure
  9404. \begin_inset CommandInset ref
  9405. LatexCommand ref
  9406. reference "fig:meanvar-sva-voomaw"
  9407. plural "false"
  9408. caps "false"
  9409. noprefix "false"
  9410. \end_inset
  9411. ), indicating that the mean-variance trend is adequately modeled by scaling
  9412. the estimated variance for each observation using the weights computed
  9413. by voom.
  9414. \end_layout
  9415. \begin_layout Standard
  9416. The difference between the standard empirical Bayes trended variance modeling
  9417. (analysis B) and voom (analysis C) is analogous to the difference between
  9418. a t-test with equal variance and a t-test with unequal variance, except
  9419. that the unequal group variances used in the latter test are estimated
  9420. based on the mean-variance trend from all the probes rather than the data
  9421. for the specific probe being tested, thus stabilizing the group variance
  9422. estimates by sharing information between probes.
  9423. Allowing voom to model the variance using observation weights in this manner
  9424. allows the linear model fit to concentrate statistical power where it will
  9425. do the most good.
  9426. For example, if a particular probe's M-values are always at the extreme
  9427. of the M-value range (e.g.
  9428. less than -4) for ADNR samples, but the M-values for that probe in TX and
  9429. CAN samples are within the flat region of the mean-variance trend (between
  9430. -3 and +3), voom is able to down-weight the contribution of the high-variance
  9431. M-values from the ADNR samples in order to gain more statistical power
  9432. while testing for differential methylation between TX and CAN.
  9433. In contrast, modeling the mean-variance trend only at the probe level would
  9434. combine the high-variance ADNR samples and lower-variance samples from
  9435. other conditions and estimate an intermediate variance for this probe.
  9436. In practice, analysis B shows that this approach is adequate, but the voom
  9437. approach in analysis C is at least as good on all model fit criteria and
  9438. yields a larger estimate for the number of differentially methylated genes,
  9439. \emph on
  9440. and
  9441. \emph default
  9442. it matches up better with the theoretical
  9443. \end_layout
  9444. \begin_layout Standard
  9445. The significant association of diabetes diagnosis with sample quality is
  9446. interesting.
  9447. The samples with Type 2 diabetes tended to have more variation, averaged
  9448. across all probes, than those with Type 1 diabetes.
  9449. This is consistent with the consensus that type 2 diabetes and the associated
  9450. metabolic syndrome represent a broad dysregulation of the body's endocrine
  9451. signaling related to metabolism [citation needed].
  9452. This dysregulation could easily manifest as a greater degree of variation
  9453. in the DNA methylation patterns of affected tissues.
  9454. In contrast, Type 1 diabetes has a more specific cause and effect, so a
  9455. less variable methylation signature is expected.
  9456. \end_layout
  9457. \begin_layout Standard
  9458. This preliminary analysis suggests that some degree of differential methylation
  9459. exists between TX and each of the three types of transplant disfunction
  9460. studied.
  9461. Hence, it may be feasible to train a classifier to diagnose transplant
  9462. disfunction from DNA methylation array data.
  9463. However, the major importance of both SVA and sample quality weighting
  9464. for proper modeling of this data poses significant challenges for any attempt
  9465. at a machine learning on data of similar quality.
  9466. While these are easily used in a modeling context with full sample information,
  9467. neither of these methods is directly applicable in a machine learning context,
  9468. where the diagnosis is not known ahead of time.
  9469. If a machine learning approach for methylation-based diagnosis is to be
  9470. pursued, it will either require machine-learning-friendly methods to address
  9471. the same systematic trends in the data that SVA and sample quality weighting
  9472. address, or it will require higher quality data with substantially less
  9473. systematic perturbation of the data.
  9474. \end_layout
  9475. \begin_layout Section
  9476. Future Directions
  9477. \end_layout
  9478. \begin_layout Standard
  9479. \begin_inset Flex TODO Note (inline)
  9480. status open
  9481. \begin_layout Plain Layout
  9482. Some work was already being done with the existing fRMA vectors.
  9483. Do I mention that here?
  9484. \end_layout
  9485. \end_inset
  9486. \end_layout
  9487. \begin_layout Subsection
  9488. Improving fRMA to allow training from batches of unequal size
  9489. \end_layout
  9490. \begin_layout Standard
  9491. Because the tools for building fRMA normalization vectors require equal-size
  9492. batches, many samples must be discarded from the training data.
  9493. This is undesirable for a few reasons.
  9494. First, more data is simply better, all other things being equal.
  9495. In this case,
  9496. \begin_inset Quotes eld
  9497. \end_inset
  9498. better
  9499. \begin_inset Quotes erd
  9500. \end_inset
  9501. means a more precise estimate of normalization parameters.
  9502. In addition, the samples to be discarded must be chosen arbitrarily, which
  9503. introduces an unnecessary element of randomness into the estimation process.
  9504. While the randomness can be made deterministic by setting a consistent
  9505. random seed, the need for equal size batches also introduces a need for
  9506. the analyst to decide on the appropriate trade-off between batch size and
  9507. the number of batches.
  9508. This introduces an unnecessary and undesirable
  9509. \begin_inset Quotes eld
  9510. \end_inset
  9511. researcher degree of freedom
  9512. \begin_inset Quotes erd
  9513. \end_inset
  9514. into the analysis, since the generated normalization vectors now depend
  9515. on the choice of batch size based on vague selection criteria and instinct,
  9516. which can unintentionally introduce bias if the researcher chooses a batch
  9517. size based on what seems to yield the most favorable downstream results
  9518. \begin_inset CommandInset citation
  9519. LatexCommand cite
  9520. key "Simmons2011"
  9521. literal "false"
  9522. \end_inset
  9523. .
  9524. \end_layout
  9525. \begin_layout Standard
  9526. Fortunately, the requirement for equal-size batches is not inherent to the
  9527. fRMA algorithm but rather a limitation of the implementation in the frmaTools
  9528. package.
  9529. In personal communication, the package's author, Matthew McCall, has indicated
  9530. that with some work, it should be possible to improve the implementation
  9531. to work with batches of unequal sizes.
  9532. The current implementation ignores the batch size when calculating with-batch
  9533. and between-batch residual variances, since the batch size constant cancels
  9534. out later in the calculations as long as all batches are of equal size.
  9535. Hence, the calculations of these parameters would need to be modified to
  9536. remove this optimization and properly calculate the variances using the
  9537. full formula.
  9538. Once this modification is made, a new strategy would need to be developed
  9539. for assessing the stability of parameter estimates, since the random subsamplin
  9540. g step is eliminated, meaning that different subsamplings can no longer
  9541. be compared as in Figures
  9542. \begin_inset CommandInset ref
  9543. LatexCommand ref
  9544. reference "fig:frma-violin"
  9545. plural "false"
  9546. caps "false"
  9547. noprefix "false"
  9548. \end_inset
  9549. and
  9550. \begin_inset CommandInset ref
  9551. LatexCommand ref
  9552. reference "fig:Representative-MA-plots"
  9553. plural "false"
  9554. caps "false"
  9555. noprefix "false"
  9556. \end_inset
  9557. .
  9558. Bootstrap resampling is likely a good candidate here: sample many training
  9559. sets of equal size from the existing training set with replacement, estimate
  9560. parameters from each resampled training set, and compare the estimated
  9561. parameters between bootstraps in order to quantify the variability in each
  9562. parameter's estimation.
  9563. \end_layout
  9564. \begin_layout Subsection
  9565. Developing methylation arrays as a diagnostic tool for kidney transplant
  9566. rejection
  9567. \end_layout
  9568. \begin_layout Standard
  9569. The current study has showed that DNA methylation, as assayed by Illumina
  9570. 450k methylation arrays, has some potential for diagnosing transplant dysfuncti
  9571. ons, including rejection.
  9572. However, very few probes could be confidently identified as differentially
  9573. methylated between healthy and dysfunctional transplants.
  9574. One likely explanation for this is the predominant influence of unobserved
  9575. confounding factors.
  9576. SVA can model and correct for such factors, but the correction can never
  9577. be perfect, so some degree of unwanted systematic variation will always
  9578. remain after SVA correction.
  9579. If the effect size of the confounding factors was similar to that of the
  9580. factor of interest (in this case, transplant status), this would be an
  9581. acceptable limitation, since removing most of the confounding factors'
  9582. effects would allow the main effect to stand out.
  9583. However, in this data set, the confounding factors have a much larger effect
  9584. size than transplant status, which means that the small degree of remaining
  9585. variation not removed by SVA can still swamp the effect of interest, making
  9586. it difficult to detect.
  9587. This is, of course, a major issue when the end goal is to develop a classifier
  9588. to diagnose transplant rejection from methylation data, since batch-correction
  9589. methods like SVA that work in a linear modeling context cannot be applied
  9590. in a machine learning context.
  9591. \end_layout
  9592. \begin_layout Standard
  9593. Currently, the source of these unwanted systematic variations in the data
  9594. is unknown.
  9595. The best solution would be to determine the cause of the variation and
  9596. eliminate it, thereby eliminating the need to model and remove that variation.
  9597. However, if this proves impractical, another option is to use SVA to identify
  9598. probes that are highly associated with the surrogate variables that describe
  9599. the unwanted variation in the data.
  9600. These probes could be discarded prior to classifier training, in order
  9601. to maximize the chance that the training algorithm will be able to identify
  9602. highly predictive probes from those remaining.
  9603. Lastly, it is possible that some of this unwanted variation is a result
  9604. of the array-based assay being used and would be eliminated by switching
  9605. to assaying DNA methylation using bisulphite sequencing.
  9606. However, this carries the risk that the sequencing assay will have its
  9607. own set of biases that must be corrected for in a different way.
  9608. \end_layout
  9609. \begin_layout Chapter
  9610. Globin-blocking for more effective blood RNA-seq analysis in primate animal
  9611. model
  9612. \end_layout
  9613. \begin_layout Standard
  9614. \begin_inset Flex TODO Note (inline)
  9615. status open
  9616. \begin_layout Plain Layout
  9617. Choose between above and the paper title: Optimizing yield of deep RNA sequencin
  9618. g for gene expression profiling by globin reduction of peripheral blood
  9619. samples from cynomolgus monkeys (Macaca fascicularis).
  9620. \end_layout
  9621. \end_inset
  9622. \end_layout
  9623. \begin_layout Standard
  9624. \begin_inset Flex TODO Note (inline)
  9625. status open
  9626. \begin_layout Plain Layout
  9627. Chapter author list:
  9628. \begin_inset CommandInset href
  9629. LatexCommand href
  9630. target "https://tex.stackexchange.com/questions/156862/displaying-author-for-each-chapter-in-book"
  9631. \end_inset
  9632. Every chapter gets an author list, which may or may not be part of a citation
  9633. to a published/preprinted paper.
  9634. \end_layout
  9635. \end_inset
  9636. \end_layout
  9637. \begin_layout Standard
  9638. \begin_inset Flex TODO Note (inline)
  9639. status open
  9640. \begin_layout Plain Layout
  9641. Preprint then cite the paper
  9642. \end_layout
  9643. \end_inset
  9644. \end_layout
  9645. \begin_layout Section*
  9646. Abstract
  9647. \end_layout
  9648. \begin_layout Paragraph
  9649. Background
  9650. \end_layout
  9651. \begin_layout Standard
  9652. Primate blood contains high concentrations of globin messenger RNA.
  9653. Globin reduction is a standard technique used to improve the expression
  9654. results obtained by DNA microarrays on RNA from blood samples.
  9655. However, with whole transcriptome RNA-sequencing (RNA-seq) quickly replacing
  9656. microarrays for many applications, the impact of globin reduction for RNA-seq
  9657. has not been previously studied.
  9658. Moreover, no off-the-shelf kits are available for globin reduction in nonhuman
  9659. primates.
  9660. \end_layout
  9661. \begin_layout Paragraph
  9662. Results
  9663. \end_layout
  9664. \begin_layout Standard
  9665. Here we report a protocol for RNA-seq in primate blood samples that uses
  9666. complimentary oligonucleotides to block reverse transcription of the alpha
  9667. and beta globin genes.
  9668. In test samples from cynomolgus monkeys (Macaca fascicularis), this globin
  9669. blocking protocol approximately doubles the yield of informative (non-globin)
  9670. reads by greatly reducing the fraction of globin reads, while also improving
  9671. the consistency in sequencing depth between samples.
  9672. The increased yield enables detection of about 2000 more genes, significantly
  9673. increases the correlation in measured gene expression levels between samples,
  9674. and increases the sensitivity of differential gene expression tests.
  9675. \end_layout
  9676. \begin_layout Paragraph
  9677. Conclusions
  9678. \end_layout
  9679. \begin_layout Standard
  9680. These results show that globin blocking significantly improves the cost-effectiv
  9681. eness of mRNA sequencing in primate blood samples by doubling the yield
  9682. of useful reads, allowing detection of more genes, and improving the precision
  9683. of gene expression measurements.
  9684. Based on these results, a globin reducing or blocking protocol is recommended
  9685. for all RNA-seq studies of primate blood samples.
  9686. \end_layout
  9687. \begin_layout Section
  9688. Approach
  9689. \end_layout
  9690. \begin_layout Standard
  9691. \begin_inset Note Note
  9692. status open
  9693. \begin_layout Plain Layout
  9694. Consider putting some of this in the Intro chapter
  9695. \end_layout
  9696. \begin_layout Itemize
  9697. Cynomolgus monkeys as a model organism
  9698. \end_layout
  9699. \begin_deeper
  9700. \begin_layout Itemize
  9701. Highly related to humans
  9702. \end_layout
  9703. \begin_layout Itemize
  9704. Small size and short life cycle - good research animal
  9705. \end_layout
  9706. \begin_layout Itemize
  9707. Genomics resources still in development
  9708. \end_layout
  9709. \end_deeper
  9710. \begin_layout Itemize
  9711. Inadequacy of existing blood RNA-seq protocols
  9712. \end_layout
  9713. \begin_deeper
  9714. \begin_layout Itemize
  9715. Existing protocols use a separate globin pulldown step, slowing down processing
  9716. \end_layout
  9717. \end_deeper
  9718. \end_inset
  9719. \end_layout
  9720. \begin_layout Standard
  9721. Increasingly, researchers are turning to high-throughput mRNA sequencing
  9722. technologies (RNA-seq) in preference to expression microarrays for analysis
  9723. of gene expression
  9724. \begin_inset CommandInset citation
  9725. LatexCommand cite
  9726. key "Mutz2012"
  9727. literal "false"
  9728. \end_inset
  9729. .
  9730. The advantages are even greater for study of model organisms with no well-estab
  9731. lished array platforms available, such as the cynomolgus monkey (Macaca
  9732. fascicularis).
  9733. High fractions of globin mRNA are naturally present in mammalian peripheral
  9734. blood samples (up to 70% of total mRNA) and these are known to interfere
  9735. with the results of array-based expression profiling
  9736. \begin_inset CommandInset citation
  9737. LatexCommand cite
  9738. key "Winn2010"
  9739. literal "false"
  9740. \end_inset
  9741. .
  9742. The importance of globin reduction for RNA-seq of blood has only been evaluated
  9743. for a deepSAGE protocol on human samples
  9744. \begin_inset CommandInset citation
  9745. LatexCommand cite
  9746. key "Mastrokolias2012"
  9747. literal "false"
  9748. \end_inset
  9749. .
  9750. In the present report, we evaluated globin reduction using custom blocking
  9751. oligonucleotides for deep RNA-seq of peripheral blood samples from a nonhuman
  9752. primate, cynomolgus monkey, using the Illumina technology platform.
  9753. We demonstrate that globin reduction significantly improves the cost-effectiven
  9754. ess of RNA-seq in blood samples.
  9755. Thus, our protocol offers a significant advantage to any investigator planning
  9756. to use RNA-seq for gene expression profiling of nonhuman primate blood
  9757. samples.
  9758. Our method can be generally applied to any species by designing complementary
  9759. oligonucleotide blocking probes to the globin gene sequences of that species.
  9760. Indeed, any highly expressed but biologically uninformative transcripts
  9761. can also be blocked to further increase sequencing efficiency and value
  9762. \begin_inset CommandInset citation
  9763. LatexCommand cite
  9764. key "Arnaud2016"
  9765. literal "false"
  9766. \end_inset
  9767. .
  9768. \end_layout
  9769. \begin_layout Section
  9770. Methods
  9771. \end_layout
  9772. \begin_layout Subsection
  9773. Sample collection
  9774. \end_layout
  9775. \begin_layout Standard
  9776. All research reported here was done under IACUC-approved protocols at the
  9777. University of Miami and complied with all applicable federal and state
  9778. regulations and ethical principles for nonhuman primate research.
  9779. Blood draws occurred between 16 April 2012 and 18 June 2015.
  9780. The experimental system involved intrahepatic pancreatic islet transplantation
  9781. into Cynomolgus monkeys with induced diabetes mellitus with or without
  9782. concomitant infusion of mesenchymal stem cells.
  9783. Blood was collected at serial time points before and after transplantation
  9784. into PAXgene Blood RNA tubes (PreAnalytiX/Qiagen, Valencia, CA) at the
  9785. precise volume:volume ratio of 2.5 ml whole blood into 6.9 ml of PAX gene
  9786. additive.
  9787. \end_layout
  9788. \begin_layout Subsection
  9789. Globin Blocking
  9790. \end_layout
  9791. \begin_layout Standard
  9792. Four oligonucleotides were designed to hybridize to the 3’ end of the transcript
  9793. s for Cynomolgus HBA1, HBA2 and HBB, with two hybridization sites for HBB
  9794. and 2 sites for HBA (the chosen sites were identical in both HBA genes).
  9795. All oligos were purchased from Sigma and were entirely composed of 2’O-Me
  9796. bases with a C3 spacer positioned at the 3’ ends to prevent any polymerase
  9797. mediated primer extension.
  9798. \end_layout
  9799. \begin_layout Quote
  9800. HBA1/2 site 1: GCCCACUCAGACUUUAUUCAAAG-C3spacer
  9801. \end_layout
  9802. \begin_layout Quote
  9803. HBA1/2 site 2: GGUGCAAGGAGGGGAGGAG-C3spacer
  9804. \end_layout
  9805. \begin_layout Quote
  9806. HBB site 1: AAUGAAAAUAAAUGUUUUUUAUUAG-C3spacer
  9807. \end_layout
  9808. \begin_layout Quote
  9809. HBB site 2: CUCAAGGCCCUUCAUAAUAUCCC-C3spacer
  9810. \end_layout
  9811. \begin_layout Subsection
  9812. RNA-seq Library Preparation
  9813. \end_layout
  9814. \begin_layout Standard
  9815. \begin_inset Flex TODO Note (inline)
  9816. status open
  9817. \begin_layout Plain Layout
  9818. Add protected spaces where appropriate to prevent unwanted line breaks.
  9819. \end_layout
  9820. \end_inset
  9821. \end_layout
  9822. \begin_layout Standard
  9823. Sequencing libraries were prepared with 200
  9824. \begin_inset space ~
  9825. \end_inset
  9826. ng total RNA from each sample.
  9827. Polyadenylated mRNA was selected from 200 ng aliquots of cynomolgus blood-deriv
  9828. ed total RNA using Ambion Dynabeads Oligo(dT)25 beads (Invitrogen) following
  9829. manufacturer’s recommended protocol.
  9830. PolyA selected RNA was then combined with 8 pmol of HBA1/2 (site 1), 8
  9831. pmol of HBA1/2 (site 2), 12 pmol of HBB (site 1) and 12 pmol of HBB (site
  9832. 2) oligonucleotides.
  9833. In addition, 20 pmol of RT primer containing a portion of the Illumina
  9834. adapter sequence (B-oligo-dTV: GAGTTCCTTGGCACCCGAGAATTCCATTTTTTTTTTTTTTTTTTTV)
  9835. and 4 µL of 5X First Strand buffer (250 mM Tris-HCl pH 8.3, 375 mM KCl,
  9836. 15mM MgCl2) were added in a total volume of 15 µL.
  9837. The RNA was fragmented by heating this cocktail for 3 minutes at 95°C and
  9838. then placed on ice.
  9839. This was followed by the addition of 2 µL 0.1 M DTT, 1 µL RNaseOUT, 1 µL
  9840. 10mM dNTPs 10% biotin-16 aminoallyl-2’- dUTP and 10% biotin-16 aminoallyl-2’-
  9841. dCTP (TriLink Biotech, San Diego, CA), 1 µL Superscript II (200U/ µL, Thermo-Fi
  9842. sher).
  9843. A second “unblocked” library was prepared in the same way for each sample
  9844. but replacing the blocking oligos with an equivalent volume of water.
  9845. The reaction was carried out at 25°C for 15 minutes and 42°C for 40 minutes,
  9846. followed by incubation at 75°C for 10 minutes to inactivate the reverse
  9847. transcriptase.
  9848. \end_layout
  9849. \begin_layout Standard
  9850. The cDNA/RNA hybrid molecules were purified using 1.8X Ampure XP beads (Agencourt
  9851. ) following supplier’s recommended protocol.
  9852. The cDNA/RNA hybrid was eluted in 25 µL of 10 mM Tris-HCl pH 8.0, and then
  9853. bound to 25 µL of M280 Magnetic Streptavidin beads washed per recommended
  9854. protocol (Thermo-Fisher).
  9855. After 30 minutes of binding, beads were washed one time in 100 µL 0.1N NaOH
  9856. to denature and remove the bound RNA, followed by two 100 µL washes with
  9857. 1X TE buffer.
  9858. \end_layout
  9859. \begin_layout Standard
  9860. Subsequent attachment of the 5-prime Illumina A adapter was performed by
  9861. on-bead random primer extension of the following sequence (A-N8 primer:
  9862. TTCAGAGTTCTACAGTCCGACGATCNNNNNNNN).
  9863. Briefly, beads were resuspended in a 20 µL reaction containing 5 µM A-N8
  9864. primer, 40mM Tris-HCl pH 7.5, 20mM MgCl2, 50mM NaCl, 0.325U/µL Sequenase
  9865. 2.0 (Affymetrix, Santa Clara, CA), 0.0025U/µL inorganic pyrophosphatase (Affymetr
  9866. ix) and 300 µM each dNTP.
  9867. Reaction was incubated at 22°C for 30 minutes, then beads were washed 2
  9868. times with 1X TE buffer (200µL).
  9869. \end_layout
  9870. \begin_layout Standard
  9871. The magnetic streptavidin beads were resuspended in 34 µL nuclease-free
  9872. water and added directly to a PCR tube.
  9873. The two Illumina protocol-specified PCR primers were added at 0.53 µM (Illumina
  9874. TruSeq Universal Primer 1 and Illumina TruSeq barcoded PCR primer 2), along
  9875. with 40 µL 2X KAPA HiFi Hotstart ReadyMix (KAPA, Willmington MA) and thermocycl
  9876. ed as follows: starting with 98°C (2 min-hold); 15 cycles of 98°C, 20sec;
  9877. 60°C, 30sec; 72°C, 30sec; and finished with a 72°C (2 min-hold).
  9878. \end_layout
  9879. \begin_layout Standard
  9880. PCR products were purified with 1X Ampure Beads following manufacturer’s
  9881. recommended protocol.
  9882. Libraries were then analyzed using the Agilent TapeStation and quantitation
  9883. of desired size range was performed by “smear analysis”.
  9884. Samples were pooled in equimolar batches of 16 samples.
  9885. Pooled libraries were size selected on 2% agarose gels (E-Gel EX Agarose
  9886. Gels; Thermo-Fisher).
  9887. Products were cut between 250 and 350 bp (corresponding to insert sizes
  9888. of 130 to 230 bps).
  9889. Finished library pools were then sequenced on the Illumina NextSeq500 instrumen
  9890. t with 75 base read lengths.
  9891. \end_layout
  9892. \begin_layout Subsection
  9893. Read alignment and counting
  9894. \end_layout
  9895. \begin_layout Standard
  9896. Reads were aligned to the cynomolgus genome using STAR
  9897. \begin_inset CommandInset citation
  9898. LatexCommand cite
  9899. key "Dobin2013,Wilson2013"
  9900. literal "false"
  9901. \end_inset
  9902. .
  9903. Counts of uniquely mapped reads were obtained for every gene in each sample
  9904. with the
  9905. \begin_inset Flex Code
  9906. status open
  9907. \begin_layout Plain Layout
  9908. featureCounts
  9909. \end_layout
  9910. \end_inset
  9911. function from the
  9912. \begin_inset Flex Code
  9913. status open
  9914. \begin_layout Plain Layout
  9915. Rsubread
  9916. \end_layout
  9917. \end_inset
  9918. package, using each of the three possibilities for the
  9919. \begin_inset Flex Code
  9920. status open
  9921. \begin_layout Plain Layout
  9922. strandSpecific
  9923. \end_layout
  9924. \end_inset
  9925. option: sense, antisense, and unstranded
  9926. \begin_inset CommandInset citation
  9927. LatexCommand cite
  9928. key "Liao2014"
  9929. literal "false"
  9930. \end_inset
  9931. .
  9932. A few artifacts in the cynomolgus genome annotation complicated read counting.
  9933. First, no ortholog is annotated for alpha globin in the cynomolgus genome,
  9934. presumably because the human genome has two alpha globin genes with nearly
  9935. identical sequences, making the orthology relationship ambiguous.
  9936. However, two loci in the cynomolgus genome are as “hemoglobin subunit alpha-lik
  9937. e” (LOC102136192 and LOC102136846).
  9938. LOC102136192 is annotated as a pseudogene while LOC102136846 is annotated
  9939. as protein-coding.
  9940. Our globin reduction protocol was designed to include blocking of these
  9941. two genes.
  9942. Indeed, these two genes have almost the same read counts in each library
  9943. as the properly-annotated HBB gene and much larger counts than any other
  9944. gene in the unblocked libraries, giving confidence that reads derived from
  9945. the real alpha globin are mapping to both genes.
  9946. Thus, reads from both of these loci were counted as alpha globin reads
  9947. in all further analyses.
  9948. The second artifact is a small, uncharacterized non-coding RNA gene (LOC1021365
  9949. 91), which overlaps the HBA-like gene (LOC102136192) on the opposite strand.
  9950. If counting is not performed in stranded mode (or if a non-strand-specific
  9951. sequencing protocol is used), many reads mapping to the globin gene will
  9952. be discarded as ambiguous due to their overlap with this ncRNA gene, resulting
  9953. in significant undercounting of globin reads.
  9954. Therefore, stranded sense counts were used for all further analysis in
  9955. the present study to insure that we accurately accounted for globin transcript
  9956. reduction.
  9957. However, we note that stranded reads are not necessary for RNA-seq using
  9958. our protocol in standard practice.
  9959. \end_layout
  9960. \begin_layout Subsection
  9961. Normalization and Exploratory Data Analysis
  9962. \end_layout
  9963. \begin_layout Standard
  9964. Libraries were normalized by computing scaling factors using the
  9965. \begin_inset Flex Code
  9966. status open
  9967. \begin_layout Plain Layout
  9968. edgeR
  9969. \end_layout
  9970. \end_inset
  9971. package’s Trimmed Mean of M-values method
  9972. \begin_inset CommandInset citation
  9973. LatexCommand cite
  9974. key "Robinson2010"
  9975. literal "false"
  9976. \end_inset
  9977. .
  9978. Log2 counts per million values (logCPM) were calculated using the cpm function
  9979. in
  9980. \begin_inset Flex Code
  9981. status open
  9982. \begin_layout Plain Layout
  9983. edgeR
  9984. \end_layout
  9985. \end_inset
  9986. for individual samples and aveLogCPM function for averages across groups
  9987. of samples, using those functions’ default prior count values to avoid
  9988. taking the logarithm of 0.
  9989. Genes were considered “present” if their average normalized logCPM values
  9990. across all libraries were at least -1.
  9991. Normalizing for gene length was unnecessary because the sequencing protocol
  9992. is 3’-biased and hence the expected read count for each gene is related
  9993. to the transcript’s copy number but not its length.
  9994. \end_layout
  9995. \begin_layout Standard
  9996. In order to assess the effect of blocking on reproducibility, Pearson and
  9997. Spearman correlation coefficients were computed between the logCPM values
  9998. for every pair of libraries within the globin-blocked (GB) and unblocked
  9999. (non-GB) groups, and
  10000. \begin_inset Flex Code
  10001. status open
  10002. \begin_layout Plain Layout
  10003. edgeR
  10004. \end_layout
  10005. \end_inset
  10006. 's
  10007. \begin_inset Flex Code
  10008. status open
  10009. \begin_layout Plain Layout
  10010. estimateDisp
  10011. \end_layout
  10012. \end_inset
  10013. function was used to compute negative binomial dispersions separately for
  10014. the two groups
  10015. \begin_inset CommandInset citation
  10016. LatexCommand cite
  10017. key "Chen2014"
  10018. literal "false"
  10019. \end_inset
  10020. .
  10021. \end_layout
  10022. \begin_layout Subsection
  10023. Differential Expression Analysis
  10024. \end_layout
  10025. \begin_layout Standard
  10026. All tests for differential gene expression were performed using
  10027. \begin_inset Flex Code
  10028. status open
  10029. \begin_layout Plain Layout
  10030. edgeR
  10031. \end_layout
  10032. \end_inset
  10033. , by first fitting a negative binomial generalized linear model to the counts
  10034. and normalization factors and then performing a quasi-likelihood F-test
  10035. with robust estimation of outlier gene dispersions
  10036. \begin_inset CommandInset citation
  10037. LatexCommand cite
  10038. key "Lund2012,Phipson2016"
  10039. literal "false"
  10040. \end_inset
  10041. .
  10042. To investigate the effects of globin blocking on each gene, an additive
  10043. model was fit to the full data with coefficients for globin blocking and
  10044. SampleID.
  10045. To test the effect of globin blocking on detection of differentially expressed
  10046. genes, the GB samples and non-GB samples were each analyzed independently
  10047. as follows: for each animal with both a pre-transplant and a post-transplant
  10048. time point in the data set, the pre-transplant sample and the earliest
  10049. post-transplant sample were selected, and all others were excluded, yielding
  10050. a pre-/post-transplant pair of samples for each animal (N=7 animals with
  10051. paired samples).
  10052. These samples were analyzed for pre-transplant vs.
  10053. post-transplant differential gene expression while controlling for inter-animal
  10054. variation using an additive model with coefficients for transplant and
  10055. animal ID.
  10056. In all analyses, p-values were adjusted using the Benjamini-Hochberg procedure
  10057. for FDR control
  10058. \begin_inset CommandInset citation
  10059. LatexCommand cite
  10060. key "Benjamini1995"
  10061. literal "false"
  10062. \end_inset
  10063. .
  10064. \end_layout
  10065. \begin_layout Standard
  10066. \begin_inset Note Note
  10067. status open
  10068. \begin_layout Itemize
  10069. New blood RNA-seq protocol to block reverse transcription of globin genes
  10070. \end_layout
  10071. \begin_layout Itemize
  10072. Blood RNA-seq time course after transplants with/without MSC infusion
  10073. \end_layout
  10074. \end_inset
  10075. \end_layout
  10076. \begin_layout Section
  10077. Results
  10078. \end_layout
  10079. \begin_layout Subsection
  10080. Globin blocking yields a larger and more consistent fraction of useful reads
  10081. \end_layout
  10082. \begin_layout Standard
  10083. \begin_inset ERT
  10084. status open
  10085. \begin_layout Plain Layout
  10086. \backslash
  10087. afterpage{
  10088. \end_layout
  10089. \begin_layout Plain Layout
  10090. \backslash
  10091. begin{landscape}
  10092. \end_layout
  10093. \end_inset
  10094. \end_layout
  10095. \begin_layout Standard
  10096. \begin_inset Float table
  10097. placement p
  10098. wide false
  10099. sideways false
  10100. status open
  10101. \begin_layout Plain Layout
  10102. \align center
  10103. \begin_inset Tabular
  10104. <lyxtabular version="3" rows="4" columns="7">
  10105. <features tabularvalignment="middle">
  10106. <column alignment="center" valignment="top">
  10107. <column alignment="center" valignment="top">
  10108. <column alignment="center" valignment="top">
  10109. <column alignment="center" valignment="top">
  10110. <column alignment="center" valignment="top">
  10111. <column alignment="center" valignment="top">
  10112. <column alignment="center" valignment="top">
  10113. <row>
  10114. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10115. \begin_inset Text
  10116. \begin_layout Plain Layout
  10117. \end_layout
  10118. \end_inset
  10119. </cell>
  10120. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10121. \begin_inset Text
  10122. \begin_layout Plain Layout
  10123. \family roman
  10124. \series medium
  10125. \shape up
  10126. \size normal
  10127. \emph off
  10128. \bar no
  10129. \strikeout off
  10130. \xout off
  10131. \uuline off
  10132. \uwave off
  10133. \noun off
  10134. \color none
  10135. Percent of Total Reads
  10136. \end_layout
  10137. \end_inset
  10138. </cell>
  10139. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10140. \begin_inset Text
  10141. \begin_layout Plain Layout
  10142. \end_layout
  10143. \end_inset
  10144. </cell>
  10145. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10146. \begin_inset Text
  10147. \begin_layout Plain Layout
  10148. \end_layout
  10149. \end_inset
  10150. </cell>
  10151. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10152. \begin_inset Text
  10153. \begin_layout Plain Layout
  10154. \end_layout
  10155. \end_inset
  10156. </cell>
  10157. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  10158. \begin_inset Text
  10159. \begin_layout Plain Layout
  10160. \family roman
  10161. \series medium
  10162. \shape up
  10163. \size normal
  10164. \emph off
  10165. \bar no
  10166. \strikeout off
  10167. \xout off
  10168. \uuline off
  10169. \uwave off
  10170. \noun off
  10171. \color none
  10172. Percent of Genic Reads
  10173. \end_layout
  10174. \end_inset
  10175. </cell>
  10176. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  10177. \begin_inset Text
  10178. \begin_layout Plain Layout
  10179. \end_layout
  10180. \end_inset
  10181. </cell>
  10182. </row>
  10183. <row>
  10184. <cell alignment="center" valignment="top" bottomline="true" leftline="true" usebox="none">
  10185. \begin_inset Text
  10186. \begin_layout Plain Layout
  10187. GB
  10188. \end_layout
  10189. \end_inset
  10190. </cell>
  10191. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10192. \begin_inset Text
  10193. \begin_layout Plain Layout
  10194. \family roman
  10195. \series medium
  10196. \shape up
  10197. \size normal
  10198. \emph off
  10199. \bar no
  10200. \strikeout off
  10201. \xout off
  10202. \uuline off
  10203. \uwave off
  10204. \noun off
  10205. \color none
  10206. Non-globin Reads
  10207. \end_layout
  10208. \end_inset
  10209. </cell>
  10210. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10211. \begin_inset Text
  10212. \begin_layout Plain Layout
  10213. \family roman
  10214. \series medium
  10215. \shape up
  10216. \size normal
  10217. \emph off
  10218. \bar no
  10219. \strikeout off
  10220. \xout off
  10221. \uuline off
  10222. \uwave off
  10223. \noun off
  10224. \color none
  10225. Globin Reads
  10226. \end_layout
  10227. \end_inset
  10228. </cell>
  10229. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10230. \begin_inset Text
  10231. \begin_layout Plain Layout
  10232. \family roman
  10233. \series medium
  10234. \shape up
  10235. \size normal
  10236. \emph off
  10237. \bar no
  10238. \strikeout off
  10239. \xout off
  10240. \uuline off
  10241. \uwave off
  10242. \noun off
  10243. \color none
  10244. All Genic Reads
  10245. \end_layout
  10246. \end_inset
  10247. </cell>
  10248. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10249. \begin_inset Text
  10250. \begin_layout Plain Layout
  10251. \family roman
  10252. \series medium
  10253. \shape up
  10254. \size normal
  10255. \emph off
  10256. \bar no
  10257. \strikeout off
  10258. \xout off
  10259. \uuline off
  10260. \uwave off
  10261. \noun off
  10262. \color none
  10263. All Aligned Reads
  10264. \end_layout
  10265. \end_inset
  10266. </cell>
  10267. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10268. \begin_inset Text
  10269. \begin_layout Plain Layout
  10270. \family roman
  10271. \series medium
  10272. \shape up
  10273. \size normal
  10274. \emph off
  10275. \bar no
  10276. \strikeout off
  10277. \xout off
  10278. \uuline off
  10279. \uwave off
  10280. \noun off
  10281. \color none
  10282. Non-globin Reads
  10283. \end_layout
  10284. \end_inset
  10285. </cell>
  10286. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  10287. \begin_inset Text
  10288. \begin_layout Plain Layout
  10289. \family roman
  10290. \series medium
  10291. \shape up
  10292. \size normal
  10293. \emph off
  10294. \bar no
  10295. \strikeout off
  10296. \xout off
  10297. \uuline off
  10298. \uwave off
  10299. \noun off
  10300. \color none
  10301. Globin Reads
  10302. \end_layout
  10303. \end_inset
  10304. </cell>
  10305. </row>
  10306. <row>
  10307. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10308. \begin_inset Text
  10309. \begin_layout Plain Layout
  10310. \family roman
  10311. \series medium
  10312. \shape up
  10313. \size normal
  10314. \emph off
  10315. \bar no
  10316. \strikeout off
  10317. \xout off
  10318. \uuline off
  10319. \uwave off
  10320. \noun off
  10321. \color none
  10322. Yes
  10323. \end_layout
  10324. \end_inset
  10325. </cell>
  10326. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10327. \begin_inset Text
  10328. \begin_layout Plain Layout
  10329. \family roman
  10330. \series medium
  10331. \shape up
  10332. \size normal
  10333. \emph off
  10334. \bar no
  10335. \strikeout off
  10336. \xout off
  10337. \uuline off
  10338. \uwave off
  10339. \noun off
  10340. \color none
  10341. 50.4% ± 6.82
  10342. \end_layout
  10343. \end_inset
  10344. </cell>
  10345. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10346. \begin_inset Text
  10347. \begin_layout Plain Layout
  10348. \family roman
  10349. \series medium
  10350. \shape up
  10351. \size normal
  10352. \emph off
  10353. \bar no
  10354. \strikeout off
  10355. \xout off
  10356. \uuline off
  10357. \uwave off
  10358. \noun off
  10359. \color none
  10360. 3.48% ± 2.94
  10361. \end_layout
  10362. \end_inset
  10363. </cell>
  10364. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10365. \begin_inset Text
  10366. \begin_layout Plain Layout
  10367. \family roman
  10368. \series medium
  10369. \shape up
  10370. \size normal
  10371. \emph off
  10372. \bar no
  10373. \strikeout off
  10374. \xout off
  10375. \uuline off
  10376. \uwave off
  10377. \noun off
  10378. \color none
  10379. 53.9% ± 6.81
  10380. \end_layout
  10381. \end_inset
  10382. </cell>
  10383. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10384. \begin_inset Text
  10385. \begin_layout Plain Layout
  10386. \family roman
  10387. \series medium
  10388. \shape up
  10389. \size normal
  10390. \emph off
  10391. \bar no
  10392. \strikeout off
  10393. \xout off
  10394. \uuline off
  10395. \uwave off
  10396. \noun off
  10397. \color none
  10398. 89.7% ± 2.40
  10399. \end_layout
  10400. \end_inset
  10401. </cell>
  10402. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10403. \begin_inset Text
  10404. \begin_layout Plain Layout
  10405. \family roman
  10406. \series medium
  10407. \shape up
  10408. \size normal
  10409. \emph off
  10410. \bar no
  10411. \strikeout off
  10412. \xout off
  10413. \uuline off
  10414. \uwave off
  10415. \noun off
  10416. \color none
  10417. 93.5% ± 5.25
  10418. \end_layout
  10419. \end_inset
  10420. </cell>
  10421. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  10422. \begin_inset Text
  10423. \begin_layout Plain Layout
  10424. \family roman
  10425. \series medium
  10426. \shape up
  10427. \size normal
  10428. \emph off
  10429. \bar no
  10430. \strikeout off
  10431. \xout off
  10432. \uuline off
  10433. \uwave off
  10434. \noun off
  10435. \color none
  10436. 6.49% ± 5.25
  10437. \end_layout
  10438. \end_inset
  10439. </cell>
  10440. </row>
  10441. <row>
  10442. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10443. \begin_inset Text
  10444. \begin_layout Plain Layout
  10445. \family roman
  10446. \series medium
  10447. \shape up
  10448. \size normal
  10449. \emph off
  10450. \bar no
  10451. \strikeout off
  10452. \xout off
  10453. \uuline off
  10454. \uwave off
  10455. \noun off
  10456. \color none
  10457. No
  10458. \end_layout
  10459. \end_inset
  10460. </cell>
  10461. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10462. \begin_inset Text
  10463. \begin_layout Plain Layout
  10464. \family roman
  10465. \series medium
  10466. \shape up
  10467. \size normal
  10468. \emph off
  10469. \bar no
  10470. \strikeout off
  10471. \xout off
  10472. \uuline off
  10473. \uwave off
  10474. \noun off
  10475. \color none
  10476. 26.3% ± 8.95
  10477. \end_layout
  10478. \end_inset
  10479. </cell>
  10480. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10481. \begin_inset Text
  10482. \begin_layout Plain Layout
  10483. \family roman
  10484. \series medium
  10485. \shape up
  10486. \size normal
  10487. \emph off
  10488. \bar no
  10489. \strikeout off
  10490. \xout off
  10491. \uuline off
  10492. \uwave off
  10493. \noun off
  10494. \color none
  10495. 44.6% ± 16.6
  10496. \end_layout
  10497. \end_inset
  10498. </cell>
  10499. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10500. \begin_inset Text
  10501. \begin_layout Plain Layout
  10502. \family roman
  10503. \series medium
  10504. \shape up
  10505. \size normal
  10506. \emph off
  10507. \bar no
  10508. \strikeout off
  10509. \xout off
  10510. \uuline off
  10511. \uwave off
  10512. \noun off
  10513. \color none
  10514. 70.1% ± 9.38
  10515. \end_layout
  10516. \end_inset
  10517. </cell>
  10518. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10519. \begin_inset Text
  10520. \begin_layout Plain Layout
  10521. \family roman
  10522. \series medium
  10523. \shape up
  10524. \size normal
  10525. \emph off
  10526. \bar no
  10527. \strikeout off
  10528. \xout off
  10529. \uuline off
  10530. \uwave off
  10531. \noun off
  10532. \color none
  10533. 90.7% ± 5.16
  10534. \end_layout
  10535. \end_inset
  10536. </cell>
  10537. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10538. \begin_inset Text
  10539. \begin_layout Plain Layout
  10540. \family roman
  10541. \series medium
  10542. \shape up
  10543. \size normal
  10544. \emph off
  10545. \bar no
  10546. \strikeout off
  10547. \xout off
  10548. \uuline off
  10549. \uwave off
  10550. \noun off
  10551. \color none
  10552. 38.8% ± 17.1
  10553. \end_layout
  10554. \end_inset
  10555. </cell>
  10556. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  10557. \begin_inset Text
  10558. \begin_layout Plain Layout
  10559. \family roman
  10560. \series medium
  10561. \shape up
  10562. \size normal
  10563. \emph off
  10564. \bar no
  10565. \strikeout off
  10566. \xout off
  10567. \uuline off
  10568. \uwave off
  10569. \noun off
  10570. \color none
  10571. 61.2% ± 17.1
  10572. \end_layout
  10573. \end_inset
  10574. </cell>
  10575. </row>
  10576. </lyxtabular>
  10577. \end_inset
  10578. \end_layout
  10579. \begin_layout Plain Layout
  10580. \begin_inset Caption Standard
  10581. \begin_layout Plain Layout
  10582. \series bold
  10583. \begin_inset Argument 1
  10584. status collapsed
  10585. \begin_layout Plain Layout
  10586. Fractions of reads mapping to genomic features in GB and non-GB samples.
  10587. \end_layout
  10588. \end_inset
  10589. \begin_inset CommandInset label
  10590. LatexCommand label
  10591. name "tab:Fractions-of-reads"
  10592. \end_inset
  10593. Fractions of reads mapping to genomic features in GB and non-GB samples.
  10594. \series default
  10595. All values are given as mean ± standard deviation.
  10596. \end_layout
  10597. \end_inset
  10598. \end_layout
  10599. \end_inset
  10600. \end_layout
  10601. \begin_layout Standard
  10602. \begin_inset ERT
  10603. status open
  10604. \begin_layout Plain Layout
  10605. \backslash
  10606. end{landscape}
  10607. \end_layout
  10608. \begin_layout Plain Layout
  10609. }
  10610. \end_layout
  10611. \end_inset
  10612. \end_layout
  10613. \begin_layout Standard
  10614. The objective of the present study was to validate a new protocol for deep
  10615. RNA-seq of whole blood drawn into PaxGene tubes from cynomolgus monkeys
  10616. undergoing islet transplantation, with particular focus on minimizing the
  10617. loss of useful sequencing space to uninformative globin reads.
  10618. The details of the analysis with respect to transplant outcomes and the
  10619. impact of mesenchymal stem cell treatment will be reported in a separate
  10620. manuscript (in preparation).
  10621. To focus on the efficacy of our globin blocking protocol, 37 blood samples,
  10622. 16 from pre-transplant and 21 from post-transplant time points, were each
  10623. prepped once with and once without globin blocking oligos, and were then
  10624. sequenced on an Illumina NextSeq500 instrument.
  10625. The number of reads aligning to each gene in the cynomolgus genome was
  10626. counted.
  10627. Table 1 summarizes the distribution of read fractions among the GB and
  10628. non-GB libraries.
  10629. In the libraries with no globin blocking, globin reads made up an average
  10630. of 44.6% of total input reads, while reads assigned to all other genes made
  10631. up an average of 26.3%.
  10632. The remaining reads either aligned to intergenic regions (that include
  10633. long non-coding RNAs) or did not align with any annotated transcripts in
  10634. the current build of the cynomolgus genome.
  10635. In the GB libraries, globin reads made up only 3.48% and reads assigned
  10636. to all other genes increased to 50.4%.
  10637. Thus, globin blocking resulted in a 92.2% reduction in globin reads and
  10638. a 91.6% increase in yield of useful non-globin reads.
  10639. \end_layout
  10640. \begin_layout Standard
  10641. This reduction is not quite as efficient as the previous analysis showed
  10642. for human samples by DeepSAGE (<0.4% globin reads after globin reduction)
  10643. \begin_inset CommandInset citation
  10644. LatexCommand cite
  10645. key "Mastrokolias2012"
  10646. literal "false"
  10647. \end_inset
  10648. .
  10649. Nonetheless, this degree of globin reduction is sufficient to nearly double
  10650. the yield of useful reads.
  10651. Thus, globin blocking cuts the required sequencing effort (and costs) to
  10652. achieve a target coverage depth by almost 50%.
  10653. Consistent with this near doubling of yield, the average difference in
  10654. un-normalized logCPM across all genes between the GB libraries and non-GB
  10655. libraries is approximately 1 (mean = 1.01, median = 1.08), an overall 2-fold
  10656. increase.
  10657. Un-normalized values are used here because the TMM normalization correctly
  10658. identifies this 2-fold difference as biologically irrelevant and removes
  10659. it.
  10660. \end_layout
  10661. \begin_layout Standard
  10662. \begin_inset Float figure
  10663. wide false
  10664. sideways false
  10665. status collapsed
  10666. \begin_layout Plain Layout
  10667. \align center
  10668. \begin_inset Graphics
  10669. filename graphics/Globin Paper/figure1 - globin-fractions.pdf
  10670. lyxscale 50
  10671. width 75col%
  10672. \end_inset
  10673. \end_layout
  10674. \begin_layout Plain Layout
  10675. \begin_inset Caption Standard
  10676. \begin_layout Plain Layout
  10677. \series bold
  10678. \begin_inset Argument 1
  10679. status collapsed
  10680. \begin_layout Plain Layout
  10681. Fraction of genic reads in each sample aligned to non-globin genes, with
  10682. and without globin blocking (GB).
  10683. \end_layout
  10684. \end_inset
  10685. \begin_inset CommandInset label
  10686. LatexCommand label
  10687. name "fig:Fraction-of-genic-reads"
  10688. \end_inset
  10689. Fraction of genic reads in each sample aligned to non-globin genes, with
  10690. and without globin blocking (GB).
  10691. \series default
  10692. All reads in each sequencing library were aligned to the cyno genome, and
  10693. the number of reads uniquely aligning to each gene was counted.
  10694. For each sample, counts were summed separately for all globin genes and
  10695. for the remainder of the genes (non-globin genes), and the fraction of
  10696. genic reads aligned to non-globin genes was computed.
  10697. Each point represents an individual sample.
  10698. Gray + signs indicate the means for globin-blocked libraries and unblocked
  10699. libraries.
  10700. The overall distribution for each group is represented as a notched box
  10701. plots.
  10702. Points are randomly spread vertically to avoid excessive overlapping.
  10703. \end_layout
  10704. \end_inset
  10705. \end_layout
  10706. \end_inset
  10707. \end_layout
  10708. \begin_layout Standard
  10709. Another important aspect is that the standard deviations in Table
  10710. \begin_inset CommandInset ref
  10711. LatexCommand ref
  10712. reference "tab:Fractions-of-reads"
  10713. plural "false"
  10714. caps "false"
  10715. noprefix "false"
  10716. \end_inset
  10717. are uniformly smaller in the GB samples than the non-GB ones, indicating
  10718. much greater consistency of yield.
  10719. This is best seen in the percentage of non-globin reads as a fraction of
  10720. total reads aligned to annotated genes (genic reads).
  10721. For the non-GB samples, this measure ranges from 10.9% to 80.9%, while for
  10722. the GB samples it ranges from 81.9% to 99.9% (Figure
  10723. \begin_inset CommandInset ref
  10724. LatexCommand ref
  10725. reference "fig:Fraction-of-genic-reads"
  10726. plural "false"
  10727. caps "false"
  10728. noprefix "false"
  10729. \end_inset
  10730. ).
  10731. This means that for applications where it is critical that each sample
  10732. achieve a specified minimum coverage in order to provide useful information,
  10733. it would be necessary to budget up to 10 times the sequencing depth per
  10734. sample without globin blocking, even though the average yield improvement
  10735. for globin blocking is only 2-fold, because every sample has a chance of
  10736. being 90% globin and 10% useful reads.
  10737. Hence, the more consistent behavior of GB samples makes planning an experiment
  10738. easier and more efficient because it eliminates the need to over-sequence
  10739. every sample in order to guard against the worst case of a high-globin
  10740. fraction.
  10741. \end_layout
  10742. \begin_layout Subsection
  10743. Globin blocking lowers the noise floor and allows detection of about 2000
  10744. more low-expression genes
  10745. \end_layout
  10746. \begin_layout Standard
  10747. \begin_inset Flex TODO Note (inline)
  10748. status open
  10749. \begin_layout Plain Layout
  10750. Remove redundant titles from figures
  10751. \end_layout
  10752. \end_inset
  10753. \end_layout
  10754. \begin_layout Standard
  10755. \begin_inset Float figure
  10756. wide false
  10757. sideways false
  10758. status collapsed
  10759. \begin_layout Plain Layout
  10760. \align center
  10761. \begin_inset Graphics
  10762. filename graphics/Globin Paper/figure2 - aveLogCPM-colored.pdf
  10763. lyxscale 50
  10764. height 60theight%
  10765. \end_inset
  10766. \end_layout
  10767. \begin_layout Plain Layout
  10768. \begin_inset Caption Standard
  10769. \begin_layout Plain Layout
  10770. \series bold
  10771. \begin_inset Argument 1
  10772. status collapsed
  10773. \begin_layout Plain Layout
  10774. Distributions of average group gene abundances when normalized separately
  10775. or together.
  10776. \end_layout
  10777. \end_inset
  10778. \begin_inset CommandInset label
  10779. LatexCommand label
  10780. name "fig:logcpm-dists"
  10781. \end_inset
  10782. Distributions of average group gene abundances when normalized separately
  10783. or together.
  10784. \series default
  10785. All reads in each sequencing library were aligned to the cyno genome, and
  10786. the number of reads uniquely aligning to each gene was counted.
  10787. Genes with zero counts in all libraries were discarded.
  10788. Libraries were normalized using the TMM method.
  10789. Libraries were split into globin-blocked (GB) and non-GB groups and the
  10790. average abundance for each gene in both groups, measured in log2 counts
  10791. per million reads counted, was computed using the aveLogCPM function.
  10792. The distribution of average gene logCPM values was plotted for both groups
  10793. using a kernel density plot to approximate a continuous distribution.
  10794. The logCPM GB distributions are marked in red, non-GB in blue.
  10795. The black vertical line denotes the chosen detection threshold of -1.
  10796. Top panel: Libraries were split into GB and non-GB groups first and normalized
  10797. separately.
  10798. Bottom panel: Libraries were all normalized together first and then split
  10799. into groups.
  10800. \end_layout
  10801. \end_inset
  10802. \end_layout
  10803. \begin_layout Plain Layout
  10804. \end_layout
  10805. \end_inset
  10806. \end_layout
  10807. \begin_layout Standard
  10808. Since globin blocking yields more usable sequencing depth, it should also
  10809. allow detection of more genes at any given threshold.
  10810. When we looked at the distribution of average normalized logCPM values
  10811. across all libraries for genes with at least one read assigned to them,
  10812. we observed the expected bimodal distribution, with a high-abundance "signal"
  10813. peak representing detected genes and a low-abundance "noise" peak representing
  10814. genes whose read count did not rise above the noise floor (Figure
  10815. \begin_inset CommandInset ref
  10816. LatexCommand ref
  10817. reference "fig:logcpm-dists"
  10818. plural "false"
  10819. caps "false"
  10820. noprefix "false"
  10821. \end_inset
  10822. ).
  10823. Consistent with the 2-fold increase in raw counts assigned to non-globin
  10824. genes, the signal peak for GB samples is shifted to the right relative
  10825. to the non-GB signal peak.
  10826. When all the samples are normalized together, this difference is normalized
  10827. out, lining up the signal peaks, and this reveals that, as expected, the
  10828. noise floor for the GB samples is about 2-fold lower.
  10829. This greater separation between signal and noise peaks in the GB samples
  10830. means that low-expression genes should be more easily detected and more
  10831. precisely quantified than in the non-GB samples.
  10832. \end_layout
  10833. \begin_layout Standard
  10834. \begin_inset Float figure
  10835. wide false
  10836. sideways false
  10837. status collapsed
  10838. \begin_layout Plain Layout
  10839. \align center
  10840. \begin_inset Graphics
  10841. filename graphics/Globin Paper/figure3 - detection.pdf
  10842. lyxscale 50
  10843. width 70col%
  10844. \end_inset
  10845. \end_layout
  10846. \begin_layout Plain Layout
  10847. \begin_inset Caption Standard
  10848. \begin_layout Plain Layout
  10849. \series bold
  10850. \begin_inset Argument 1
  10851. status collapsed
  10852. \begin_layout Plain Layout
  10853. Gene detections as a function of abundance thresholds in globin-blocked
  10854. (GB) and non-GB samples.
  10855. \end_layout
  10856. \end_inset
  10857. \begin_inset CommandInset label
  10858. LatexCommand label
  10859. name "fig:Gene-detections"
  10860. \end_inset
  10861. Gene detections as a function of abundance thresholds in globin-blocked
  10862. (GB) and non-GB samples.
  10863. \series default
  10864. Average abundance (logCPM,
  10865. \begin_inset Formula $\log_{2}$
  10866. \end_inset
  10867. counts per million reads counted) was computed by separate group normalization
  10868. as described in Figure
  10869. \begin_inset CommandInset ref
  10870. LatexCommand ref
  10871. reference "fig:logcpm-dists"
  10872. plural "false"
  10873. caps "false"
  10874. noprefix "false"
  10875. \end_inset
  10876. for both the GB and non-GB groups, as well as for all samples considered
  10877. as one large group.
  10878. For each every integer threshold from -2 to 3, the number of genes detected
  10879. at or above that logCPM threshold was plotted for each group.
  10880. \end_layout
  10881. \end_inset
  10882. \end_layout
  10883. \begin_layout Plain Layout
  10884. \end_layout
  10885. \end_inset
  10886. \end_layout
  10887. \begin_layout Standard
  10888. Based on these distributions, we selected a detection threshold of -1, which
  10889. is approximately the leftmost edge of the trough between the signal and
  10890. noise peaks.
  10891. This represents the most liberal possible detection threshold that doesn't
  10892. call substantial numbers of noise genes as detected.
  10893. Among the full dataset, 13429 genes were detected at this threshold, and
  10894. 22276 were not.
  10895. When considering the GB libraries and non-GB libraries separately and re-comput
  10896. ing normalization factors independently within each group, 14535 genes were
  10897. detected in the GB libraries while only 12460 were detected in the non-GB
  10898. libraries.
  10899. Thus, GB allowed the detection of 2000 extra genes that were buried under
  10900. the noise floor without GB.
  10901. This pattern of at least 2000 additional genes detected with GB was also
  10902. consistent across a wide range of possible detection thresholds, from -2
  10903. to 3 (see Figure
  10904. \begin_inset CommandInset ref
  10905. LatexCommand ref
  10906. reference "fig:Gene-detections"
  10907. plural "false"
  10908. caps "false"
  10909. noprefix "false"
  10910. \end_inset
  10911. ).
  10912. \end_layout
  10913. \begin_layout Subsection
  10914. Globin blocking does not add significant additional noise or decrease sample
  10915. quality
  10916. \end_layout
  10917. \begin_layout Standard
  10918. One potential worry is that the globin blocking protocol could perturb the
  10919. levels of non-globin genes.
  10920. There are two kinds of possible perturbations: systematic and random.
  10921. The former is not a major concern for detection of differential expression,
  10922. since a 2-fold change in every sample has no effect on the relative fold
  10923. change between samples.
  10924. In contrast, random perturbations would increase the noise and obscure
  10925. the signal in the dataset, reducing the capacity to detect differential
  10926. expression.
  10927. \end_layout
  10928. \begin_layout Standard
  10929. \begin_inset Float figure
  10930. wide false
  10931. sideways false
  10932. status collapsed
  10933. \begin_layout Plain Layout
  10934. \align center
  10935. \begin_inset Graphics
  10936. filename graphics/Globin Paper/figure4 - maplot-colored.pdf
  10937. lyxscale 50
  10938. width 60col%
  10939. groupId colwidth
  10940. \end_inset
  10941. \end_layout
  10942. \begin_layout Plain Layout
  10943. \begin_inset Caption Standard
  10944. \begin_layout Plain Layout
  10945. \begin_inset Argument 1
  10946. status collapsed
  10947. \begin_layout Plain Layout
  10948. MA plot showing effects of globin blocking on each gene's abundance.
  10949. \end_layout
  10950. \end_inset
  10951. \begin_inset CommandInset label
  10952. LatexCommand label
  10953. name "fig:MA-plot"
  10954. \end_inset
  10955. \series bold
  10956. MA plot showing effects of globin blocking on each gene's abundance.
  10957. \series default
  10958. All libraries were normalized together as described in Figure
  10959. \begin_inset CommandInset ref
  10960. LatexCommand ref
  10961. reference "fig:logcpm-dists"
  10962. plural "false"
  10963. caps "false"
  10964. noprefix "false"
  10965. \end_inset
  10966. , and genes with an average logCPM below -1 were filtered out.
  10967. Each remaining gene was tested for differential abundance with respect
  10968. to globin blocking (GB) using
  10969. \begin_inset Flex Code
  10970. status open
  10971. \begin_layout Plain Layout
  10972. edgeR
  10973. \end_layout
  10974. \end_inset
  10975. ’s quasi-likelihood F-test, fitting a negative binomial generalized linear
  10976. model to table of read counts in each library.
  10977. For each gene,
  10978. \begin_inset Flex Code
  10979. status open
  10980. \begin_layout Plain Layout
  10981. edgeR
  10982. \end_layout
  10983. \end_inset
  10984. reported average abundance (logCPM),
  10985. \begin_inset Formula $\log_{2}$
  10986. \end_inset
  10987. fold change (logFC), p-value, and Benjamini-Hochberg adjusted false discovery
  10988. rate (FDR).
  10989. Each gene's logFC was plotted against its logCPM, colored by FDR.
  10990. Red points are significant at ≤10% FDR, and blue are not significant at
  10991. that threshold.
  10992. The alpha and beta globin genes targeted for blocking are marked with large
  10993. triangles, while all other genes are represented as small points.
  10994. \end_layout
  10995. \end_inset
  10996. \end_layout
  10997. \begin_layout Plain Layout
  10998. \end_layout
  10999. \end_inset
  11000. \end_layout
  11001. \begin_layout Standard
  11002. \begin_inset Flex TODO Note (inline)
  11003. status open
  11004. \begin_layout Plain Layout
  11005. Standardize on
  11006. \begin_inset Quotes eld
  11007. \end_inset
  11008. log2
  11009. \begin_inset Quotes erd
  11010. \end_inset
  11011. notation
  11012. \end_layout
  11013. \end_inset
  11014. \end_layout
  11015. \begin_layout Standard
  11016. The data do indeed show small systematic perturbations in gene levels (Figure
  11017. \begin_inset CommandInset ref
  11018. LatexCommand ref
  11019. reference "fig:MA-plot"
  11020. plural "false"
  11021. caps "false"
  11022. noprefix "false"
  11023. \end_inset
  11024. ).
  11025. Other than the 3 designated alpha and beta globin genes, two other genes
  11026. stand out as having especially large negative log fold changes: HBD and
  11027. LOC1021365.
  11028. HBD, delta globin, is most likely targeted by the blocking oligos due to
  11029. high sequence homology with the other globin genes.
  11030. LOC1021365 is the aforementioned ncRNA that is reverse-complementary to
  11031. one of the alpha-like genes and that would be expected to be removed during
  11032. the globin blocking step.
  11033. All other genes appear in a cluster centered vertically at 0, and the vast
  11034. majority of genes in this cluster show an absolute log2(FC) of 0.5 or less.
  11035. Nevertheless, many of these small perturbations are still statistically
  11036. significant, indicating that the globin blocking oligos likely cause very
  11037. small but non-zero systematic perturbations in measured gene expression
  11038. levels.
  11039. \end_layout
  11040. \begin_layout Standard
  11041. \begin_inset Float figure
  11042. wide false
  11043. sideways false
  11044. status collapsed
  11045. \begin_layout Plain Layout
  11046. \align center
  11047. \begin_inset Graphics
  11048. filename graphics/Globin Paper/figure5 - corrplot.pdf
  11049. lyxscale 50
  11050. width 70col%
  11051. \end_inset
  11052. \end_layout
  11053. \begin_layout Plain Layout
  11054. \begin_inset Caption Standard
  11055. \begin_layout Plain Layout
  11056. \series bold
  11057. \begin_inset Argument 1
  11058. status collapsed
  11059. \begin_layout Plain Layout
  11060. Comparison of inter-sample gene abundance correlations with and without
  11061. globin blocking.
  11062. \end_layout
  11063. \end_inset
  11064. \begin_inset CommandInset label
  11065. LatexCommand label
  11066. name "fig:gene-abundance-correlations"
  11067. \end_inset
  11068. Comparison of inter-sample gene abundance correlations with and without
  11069. globin blocking (GB).
  11070. \series default
  11071. All libraries were normalized together as described in Figure 2, and genes
  11072. with an average abundance (logCPM, log2 counts per million reads counted)
  11073. less than -1 were filtered out.
  11074. Each gene’s logCPM was computed in each library using the
  11075. \begin_inset Flex Code
  11076. status open
  11077. \begin_layout Plain Layout
  11078. edgeR
  11079. \end_layout
  11080. \end_inset
  11081. cpm function.
  11082. For each pair of biological samples, the Pearson correlation between those
  11083. samples' GB libraries was plotted against the correlation between the same
  11084. samples’ non-GB libraries.
  11085. Each point represents an unique pair of samples.
  11086. The solid gray line shows a quantile-quantile plot of distribution of GB
  11087. correlations vs.
  11088. that of non-GB correlations.
  11089. The thin dashed line is the identity line, provided for reference.
  11090. \end_layout
  11091. \end_inset
  11092. \end_layout
  11093. \begin_layout Plain Layout
  11094. \end_layout
  11095. \end_inset
  11096. \end_layout
  11097. \begin_layout Standard
  11098. To evaluate the possibility of globin blocking causing random perturbations
  11099. and reducing sample quality, we computed the Pearson correlation between
  11100. logCPM values for every pair of samples with and without GB and plotted
  11101. them against each other (Figure
  11102. \begin_inset CommandInset ref
  11103. LatexCommand ref
  11104. reference "fig:gene-abundance-correlations"
  11105. plural "false"
  11106. caps "false"
  11107. noprefix "false"
  11108. \end_inset
  11109. ).
  11110. The plot indicated that the GB libraries have higher sample-to-sample correlati
  11111. ons than the non-GB libraries.
  11112. Parametric and nonparametric tests for differences between the correlations
  11113. with and without GB both confirmed that this difference was highly significant
  11114. (2-sided paired t-test: t = 37.2, df = 665, P ≪ 2.2e-16; 2-sided Wilcoxon
  11115. sign-rank test: V = 2195, P ≪ 2.2e-16).
  11116. Performing the same tests on the Spearman correlations gave the same conclusion
  11117. (t-test: t = 26.8, df = 665, P ≪ 2.2e-16; sign-rank test: V = 8781, P ≪ 2.2e-16).
  11118. The
  11119. \begin_inset Flex Code
  11120. status open
  11121. \begin_layout Plain Layout
  11122. edgeR
  11123. \end_layout
  11124. \end_inset
  11125. package was used to compute the overall biological coefficient of variation
  11126. (BCV) for GB and non-GB libraries, and found that globin blocking resulted
  11127. in a negligible increase in the BCV (0.417 with GB vs.
  11128. 0.400 without).
  11129. The near equality of the BCVs for both sets indicates that the higher correlati
  11130. ons in the GB libraries are most likely a result of the increased yield
  11131. of useful reads, which reduces the contribution of Poisson counting uncertainty
  11132. to the overall variance of the logCPM values
  11133. \begin_inset CommandInset citation
  11134. LatexCommand cite
  11135. key "McCarthy2012"
  11136. literal "false"
  11137. \end_inset
  11138. .
  11139. This improves the precision of expression measurements and more than offsets
  11140. the negligible increase in BCV.
  11141. \end_layout
  11142. \begin_layout Subsection
  11143. More differentially expressed genes are detected with globin blocking
  11144. \end_layout
  11145. \begin_layout Standard
  11146. \begin_inset Float table
  11147. wide false
  11148. sideways false
  11149. status collapsed
  11150. \begin_layout Plain Layout
  11151. \align center
  11152. \begin_inset Tabular
  11153. <lyxtabular version="3" rows="5" columns="5">
  11154. <features tabularvalignment="middle">
  11155. <column alignment="center" valignment="top">
  11156. <column alignment="center" valignment="top">
  11157. <column alignment="center" valignment="top">
  11158. <column alignment="center" valignment="top">
  11159. <column alignment="center" valignment="top">
  11160. <row>
  11161. <cell alignment="center" valignment="top" usebox="none">
  11162. \begin_inset Text
  11163. \begin_layout Plain Layout
  11164. \end_layout
  11165. \end_inset
  11166. </cell>
  11167. <cell alignment="center" valignment="top" usebox="none">
  11168. \begin_inset Text
  11169. \begin_layout Plain Layout
  11170. \end_layout
  11171. \end_inset
  11172. </cell>
  11173. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  11174. \begin_inset Text
  11175. \begin_layout Plain Layout
  11176. \series bold
  11177. No Globin Blocking
  11178. \end_layout
  11179. \end_inset
  11180. </cell>
  11181. <cell multicolumn="2" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  11182. \begin_inset Text
  11183. \begin_layout Plain Layout
  11184. \end_layout
  11185. \end_inset
  11186. </cell>
  11187. <cell multicolumn="2" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  11188. \begin_inset Text
  11189. \begin_layout Plain Layout
  11190. \end_layout
  11191. \end_inset
  11192. </cell>
  11193. </row>
  11194. <row>
  11195. <cell alignment="center" valignment="top" usebox="none">
  11196. \begin_inset Text
  11197. \begin_layout Plain Layout
  11198. \end_layout
  11199. \end_inset
  11200. </cell>
  11201. <cell alignment="center" valignment="top" usebox="none">
  11202. \begin_inset Text
  11203. \begin_layout Plain Layout
  11204. \end_layout
  11205. \end_inset
  11206. </cell>
  11207. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  11208. \begin_inset Text
  11209. \begin_layout Plain Layout
  11210. \series bold
  11211. Up
  11212. \end_layout
  11213. \end_inset
  11214. </cell>
  11215. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  11216. \begin_inset Text
  11217. \begin_layout Plain Layout
  11218. \series bold
  11219. NS
  11220. \end_layout
  11221. \end_inset
  11222. </cell>
  11223. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  11224. \begin_inset Text
  11225. \begin_layout Plain Layout
  11226. \series bold
  11227. Down
  11228. \end_layout
  11229. \end_inset
  11230. </cell>
  11231. </row>
  11232. <row>
  11233. <cell multirow="3" alignment="center" valignment="middle" topline="true" bottomline="true" leftline="true" usebox="none">
  11234. \begin_inset Text
  11235. \begin_layout Plain Layout
  11236. \series bold
  11237. Globin-Blocking
  11238. \end_layout
  11239. \end_inset
  11240. </cell>
  11241. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  11242. \begin_inset Text
  11243. \begin_layout Plain Layout
  11244. \series bold
  11245. Up
  11246. \end_layout
  11247. \end_inset
  11248. </cell>
  11249. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  11250. \begin_inset Text
  11251. \begin_layout Plain Layout
  11252. \family roman
  11253. \series medium
  11254. \shape up
  11255. \size normal
  11256. \emph off
  11257. \bar no
  11258. \strikeout off
  11259. \xout off
  11260. \uuline off
  11261. \uwave off
  11262. \noun off
  11263. \color none
  11264. 231
  11265. \end_layout
  11266. \end_inset
  11267. </cell>
  11268. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  11269. \begin_inset Text
  11270. \begin_layout Plain Layout
  11271. \family roman
  11272. \series medium
  11273. \shape up
  11274. \size normal
  11275. \emph off
  11276. \bar no
  11277. \strikeout off
  11278. \xout off
  11279. \uuline off
  11280. \uwave off
  11281. \noun off
  11282. \color none
  11283. 515
  11284. \end_layout
  11285. \end_inset
  11286. </cell>
  11287. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  11288. \begin_inset Text
  11289. \begin_layout Plain Layout
  11290. \family roman
  11291. \series medium
  11292. \shape up
  11293. \size normal
  11294. \emph off
  11295. \bar no
  11296. \strikeout off
  11297. \xout off
  11298. \uuline off
  11299. \uwave off
  11300. \noun off
  11301. \color none
  11302. 2
  11303. \end_layout
  11304. \end_inset
  11305. </cell>
  11306. </row>
  11307. <row>
  11308. <cell multirow="4" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  11309. \begin_inset Text
  11310. \begin_layout Plain Layout
  11311. \end_layout
  11312. \end_inset
  11313. </cell>
  11314. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  11315. \begin_inset Text
  11316. \begin_layout Plain Layout
  11317. \series bold
  11318. NS
  11319. \end_layout
  11320. \end_inset
  11321. </cell>
  11322. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  11323. \begin_inset Text
  11324. \begin_layout Plain Layout
  11325. \family roman
  11326. \series medium
  11327. \shape up
  11328. \size normal
  11329. \emph off
  11330. \bar no
  11331. \strikeout off
  11332. \xout off
  11333. \uuline off
  11334. \uwave off
  11335. \noun off
  11336. \color none
  11337. 160
  11338. \end_layout
  11339. \end_inset
  11340. </cell>
  11341. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  11342. \begin_inset Text
  11343. \begin_layout Plain Layout
  11344. \family roman
  11345. \series medium
  11346. \shape up
  11347. \size normal
  11348. \emph off
  11349. \bar no
  11350. \strikeout off
  11351. \xout off
  11352. \uuline off
  11353. \uwave off
  11354. \noun off
  11355. \color none
  11356. 11235
  11357. \end_layout
  11358. \end_inset
  11359. </cell>
  11360. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  11361. \begin_inset Text
  11362. \begin_layout Plain Layout
  11363. \family roman
  11364. \series medium
  11365. \shape up
  11366. \size normal
  11367. \emph off
  11368. \bar no
  11369. \strikeout off
  11370. \xout off
  11371. \uuline off
  11372. \uwave off
  11373. \noun off
  11374. \color none
  11375. 136
  11376. \end_layout
  11377. \end_inset
  11378. </cell>
  11379. </row>
  11380. <row>
  11381. <cell multirow="4" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  11382. \begin_inset Text
  11383. \begin_layout Plain Layout
  11384. \end_layout
  11385. \end_inset
  11386. </cell>
  11387. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  11388. \begin_inset Text
  11389. \begin_layout Plain Layout
  11390. \series bold
  11391. Down
  11392. \end_layout
  11393. \end_inset
  11394. </cell>
  11395. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  11396. \begin_inset Text
  11397. \begin_layout Plain Layout
  11398. \family roman
  11399. \series medium
  11400. \shape up
  11401. \size normal
  11402. \emph off
  11403. \bar no
  11404. \strikeout off
  11405. \xout off
  11406. \uuline off
  11407. \uwave off
  11408. \noun off
  11409. \color none
  11410. 0
  11411. \end_layout
  11412. \end_inset
  11413. </cell>
  11414. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  11415. \begin_inset Text
  11416. \begin_layout Plain Layout
  11417. \family roman
  11418. \series medium
  11419. \shape up
  11420. \size normal
  11421. \emph off
  11422. \bar no
  11423. \strikeout off
  11424. \xout off
  11425. \uuline off
  11426. \uwave off
  11427. \noun off
  11428. \color none
  11429. 548
  11430. \end_layout
  11431. \end_inset
  11432. </cell>
  11433. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  11434. \begin_inset Text
  11435. \begin_layout Plain Layout
  11436. \family roman
  11437. \series medium
  11438. \shape up
  11439. \size normal
  11440. \emph off
  11441. \bar no
  11442. \strikeout off
  11443. \xout off
  11444. \uuline off
  11445. \uwave off
  11446. \noun off
  11447. \color none
  11448. 127
  11449. \end_layout
  11450. \end_inset
  11451. </cell>
  11452. </row>
  11453. </lyxtabular>
  11454. \end_inset
  11455. \end_layout
  11456. \begin_layout Plain Layout
  11457. \begin_inset Caption Standard
  11458. \begin_layout Plain Layout
  11459. \series bold
  11460. \begin_inset Argument 1
  11461. status open
  11462. \begin_layout Plain Layout
  11463. Comparison of significantly differentially expressed genes with and without
  11464. globin blocking.
  11465. \end_layout
  11466. \end_inset
  11467. \begin_inset CommandInset label
  11468. LatexCommand label
  11469. name "tab:Comparison-of-significant"
  11470. \end_inset
  11471. Comparison of significantly differentially expressed genes with and without
  11472. globin blocking.
  11473. \series default
  11474. Up, Down: Genes significantly up/down-regulated in post-transplant samples
  11475. relative to pre-transplant samples, with a false discovery rate of 10%
  11476. or less.
  11477. NS: Non-significant genes (false discovery rate greater than 10%).
  11478. \end_layout
  11479. \end_inset
  11480. \end_layout
  11481. \begin_layout Plain Layout
  11482. \end_layout
  11483. \end_inset
  11484. \end_layout
  11485. \begin_layout Standard
  11486. To compare performance on differential gene expression tests, we took subsets
  11487. of both the GB and non-GB libraries with exactly one pre-transplant and
  11488. one post-transplant sample for each animal that had paired samples available
  11489. for analysis (N=7 animals, N=14 samples in each subset).
  11490. The same test for pre- vs.
  11491. post-transplant differential gene expression was performed on the same
  11492. 7 pairs of samples from GB libraries and non-GB libraries, in each case
  11493. using an FDR of 10% as the threshold of significance.
  11494. Out of 12954 genes that passed the detection threshold in both subsets,
  11495. 358 were called significantly differentially expressed in the same direction
  11496. in both sets; 1063 were differentially expressed in the GB set only; 296
  11497. were differentially expressed in the non-GB set only; 2 genes were called
  11498. significantly up in the GB set but significantly down in the non-GB set;
  11499. and the remaining 11235 were not called differentially expressed in either
  11500. set.
  11501. These data are summarized in Table
  11502. \begin_inset CommandInset ref
  11503. LatexCommand ref
  11504. reference "tab:Comparison-of-significant"
  11505. plural "false"
  11506. caps "false"
  11507. noprefix "false"
  11508. \end_inset
  11509. .
  11510. The differences in BCV calculated by EdgeR for these subsets of samples
  11511. were negligible (BCV = 0.302 for GB and 0.297 for non-GB).
  11512. \end_layout
  11513. \begin_layout Standard
  11514. The key point is that the GB data results in substantially more differentially
  11515. expressed calls than the non-GB data.
  11516. Since there is no gold standard for this dataset, it is impossible to be
  11517. certain whether this is due to under-calling of differential expression
  11518. in the non-GB samples or over-calling in the GB samples.
  11519. However, given that both datasets are derived from the same biological
  11520. samples and have nearly equal BCVs, it is more likely that the larger number
  11521. of DE calls in the GB samples are genuine detections that were enabled
  11522. by the higher sequencing depth and measurement precision of the GB samples.
  11523. Note that the same set of genes was considered in both subsets, so the
  11524. larger number of differentially expressed gene calls in the GB data set
  11525. reflects a greater sensitivity to detect significant differential gene
  11526. expression and not simply the larger total number of detected genes in
  11527. GB samples described earlier.
  11528. \end_layout
  11529. \begin_layout Section
  11530. Discussion
  11531. \end_layout
  11532. \begin_layout Standard
  11533. The original experience with whole blood gene expression profiling on DNA
  11534. microarrays demonstrated that the high concentration of globin transcripts
  11535. reduced the sensitivity to detect genes with relatively low expression
  11536. levels, in effect, significantly reducing the sensitivity.
  11537. To address this limitation, commercial protocols for globin reduction were
  11538. developed based on strategies to block globin transcript amplification
  11539. during labeling or physically removing globin transcripts by affinity bead
  11540. methods
  11541. \begin_inset CommandInset citation
  11542. LatexCommand cite
  11543. key "Winn2010"
  11544. literal "false"
  11545. \end_inset
  11546. .
  11547. More recently, using the latest generation of labeling protocols and arrays,
  11548. it was determined that globin reduction was no longer necessary to obtain
  11549. sufficient sensitivity to detect differential transcript expression
  11550. \begin_inset CommandInset citation
  11551. LatexCommand cite
  11552. key "NuGEN2010"
  11553. literal "false"
  11554. \end_inset
  11555. .
  11556. However, we are not aware of any publications using these currently available
  11557. protocols the with latest generation of microarrays that actually compare
  11558. the detection sensitivity with and without globin reduction.
  11559. However, in practice this has now been adopted generally primarily driven
  11560. by concerns for cost control.
  11561. The main objective of our work was to directly test the impact of globin
  11562. gene transcripts and a new globin blocking protocol for application to
  11563. the newest generation of differential gene expression profiling determined
  11564. using next generation sequencing.
  11565. \end_layout
  11566. \begin_layout Standard
  11567. The challenge of doing global gene expression profiling in cynomolgus monkeys
  11568. is that the current available arrays were never designed to comprehensively
  11569. cover this genome and have not been updated since the first assemblies
  11570. of the cynomolgus genome were published.
  11571. Therefore, we determined that the best strategy for peripheral blood profiling
  11572. was to do deep RNA-seq and inform the workflow using the latest available
  11573. genome assembly and annotation
  11574. \begin_inset CommandInset citation
  11575. LatexCommand cite
  11576. key "Wilson2013"
  11577. literal "false"
  11578. \end_inset
  11579. .
  11580. However, it was not immediately clear whether globin reduction was necessary
  11581. for RNA-seq or how much improvement in efficiency or sensitivity to detect
  11582. differential gene expression would be achieved for the added cost and work.
  11583. \end_layout
  11584. \begin_layout Standard
  11585. We only found one report that demonstrated that globin reduction significantly
  11586. improved the effective read yields for sequencing of human peripheral blood
  11587. cell RNA using a DeepSAGE protocol
  11588. \begin_inset CommandInset citation
  11589. LatexCommand cite
  11590. key "Mastrokolias2012"
  11591. literal "false"
  11592. \end_inset
  11593. .
  11594. The approach to DeepSAGE involves two different restriction enzymes that
  11595. purify and then tag small fragments of transcripts at specific locations
  11596. and thus, significantly reduces the complexity of the transcriptome.
  11597. Therefore, we could not determine how DeepSAGE results would translate
  11598. to the common strategy in the field for assaying the entire transcript
  11599. population by whole-transcriptome 3’-end RNA-seq.
  11600. Furthermore, if globin reduction is necessary, we also needed a globin
  11601. reduction method specific to cynomolgus globin sequences that would work
  11602. an organism for which no kit is available off the shelf.
  11603. \end_layout
  11604. \begin_layout Standard
  11605. As mentioned above, the addition of globin blocking oligos has a very small
  11606. impact on measured expression levels of gene expression.
  11607. However, this is a non-issue for the purposes of differential expression
  11608. testing, since a systematic change in a gene in all samples does not affect
  11609. relative expression levels between samples.
  11610. However, we must acknowledge that simple comparisons of gene expression
  11611. data obtained by GB and non-GB protocols are not possible without additional
  11612. normalization.
  11613. \end_layout
  11614. \begin_layout Standard
  11615. More importantly, globin blocking not only nearly doubles the yield of usable
  11616. reads, it also increases inter-sample correlation and sensitivity to detect
  11617. differential gene expression relative to the same set of samples profiled
  11618. without blocking.
  11619. In addition, globin blocking does not add a significant amount of random
  11620. noise to the data.
  11621. Globin blocking thus represents a cost-effective way to squeeze more data
  11622. and statistical power out of the same blood samples and the same amount
  11623. of sequencing.
  11624. In conclusion, globin reduction greatly increases the yield of useful RNA-seq
  11625. reads mapping to the rest of the genome, with minimal perturbations in
  11626. the relative levels of non-globin genes.
  11627. Based on these results, globin transcript reduction using sequence-specific,
  11628. complementary blocking oligonucleotides is recommended for all deep RNA-seq
  11629. of cynomolgus and other nonhuman primate blood samples.
  11630. \end_layout
  11631. \begin_layout Section
  11632. Future Directions
  11633. \end_layout
  11634. \begin_layout Standard
  11635. One drawback of the globin blocking method presented in this analysis is
  11636. a poor yield of genic reads, only around 50%.
  11637. In a separate experiment, the reagent mixture was modified so as to address
  11638. this drawback, resulting in a method that produces an even better reduction
  11639. in globin reads without reducing the overall fraction of genic reads.
  11640. However, the data showing this improvement consists of only a few test
  11641. samples, so the larger data set analyzed above was chosen in order to demonstra
  11642. te the effectiveness of the method in reducing globin reads while preserving
  11643. the biological signal.
  11644. \end_layout
  11645. \begin_layout Standard
  11646. The motivation for developing a fast practical way to enrich for non-globin
  11647. reads in cyno blood samples was to enable a large-scale RNA-seq experiment
  11648. investigating the effects of mesenchymal stem cell infusion on blood gene
  11649. expression in cynomologus transplant recipients in a time course after
  11650. transplantation.
  11651. With the globin blocking method in place, the way is now clear for this
  11652. experiment to proceed.
  11653. \end_layout
  11654. \begin_layout Chapter
  11655. Future Directions
  11656. \end_layout
  11657. \begin_layout Standard
  11658. \begin_inset Flex TODO Note (inline)
  11659. status open
  11660. \begin_layout Plain Layout
  11661. If there are any chapter-independent future directions, put them here.
  11662. Otherwise, delete this section.
  11663. Check in the directions if this is OK.
  11664. \end_layout
  11665. \end_inset
  11666. \end_layout
  11667. \begin_layout Chapter
  11668. Closing remarks
  11669. \end_layout
  11670. \begin_layout Standard
  11671. \begin_inset ERT
  11672. status collapsed
  11673. \begin_layout Plain Layout
  11674. % Use "References" as the title of the Bibliography
  11675. \end_layout
  11676. \begin_layout Plain Layout
  11677. \backslash
  11678. renewcommand{
  11679. \backslash
  11680. bibname}{References}
  11681. \end_layout
  11682. \end_inset
  11683. \end_layout
  11684. \begin_layout Standard
  11685. \begin_inset CommandInset bibtex
  11686. LatexCommand bibtex
  11687. btprint "btPrintCited"
  11688. bibfiles "code-refs,refs-PROCESSED"
  11689. options "bibtotoc,unsrt"
  11690. \end_inset
  11691. \end_layout
  11692. \begin_layout Standard
  11693. \begin_inset Flex TODO Note (inline)
  11694. status open
  11695. \begin_layout Plain Layout
  11696. Check bib entry formatting & sort order
  11697. \end_layout
  11698. \end_inset
  11699. \end_layout
  11700. \begin_layout Standard
  11701. \begin_inset Flex TODO Note (inline)
  11702. status open
  11703. \begin_layout Plain Layout
  11704. Check in-text citation format.
  11705. Probably don't just want [1], [2], etc.
  11706. \end_layout
  11707. \end_inset
  11708. \end_layout
  11709. \end_body
  11710. \end_document