presentation.mkdn 6.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254
  1. % Bioinformatic analysis of complex, high-throughput genomic and epigenomic data in the context of $\mathsf{CD4}^{+}$ T-cell differentiation and diagnosis and treatment of transplant rejection
  2. % Ryan C. Thompson \
  3. Su Lab \
  4. The Scripps Research Institute
  5. % October 24, 2019
  6. # Intro
  7. # Biological motivation: Transplant rejection
  8. ## Organ transplants are a life-saving treatment for many
  9. \Large
  10. * 36,528 transplants performed in the USA in 2018[^1]
  11. . . .
  12. * 100 transplants every day!
  13. . . .
  14. * Over 113,000 people on the national transplant waiting list as of
  15. July 2019
  16. [^1]: Source: https://www.organdonor.gov/statistics-stories/statistics.html
  17. ## Organ transplants are a life-saving treatment for many
  18. ![Organ donation statistics for the USA in 2018[^2]](graphics/presentation/transplants-organ-CROP.pdf){ height=70% }
  19. [^2]: Source: https://www.organdonor.gov/statistics-stories/statistics.html
  20. ## Rejection is an adaptive immune response against a graft
  21. * The host's adaptive immune system identifies and attacks cells
  22. bearing non-self antigens
  23. . . .
  24. * An allograft contains differnet genetic variants from the host,
  25. resulting in protein-coding differences
  26. . . .
  27. * Left unchecked, the host immune system eventually notices these
  28. alloantigens and begins attacking (rejecting) the graft
  29. . . .
  30. \Large
  31. * Rejection is the major long-term threat to organ allografts
  32. ## Allograft rejection remains a major long-term problem
  33. ![Kidney allograft survival rates in children by transplant year[^3]](graphics/presentation/kidney-graft-survival.png){ height=65% }
  34. [^3]: Kim & Marks. "Long-term outcomes of children after solid organ transplantation". In: Clinics (2014)
  35. ## Rejection is treated with immune suppressive drugs
  36. * To prevent rejection, a graft recipient must take immune suppressive
  37. drugs for the rest of their life
  38. * The graft is periodically checked for signs of rejection, and immune
  39. suppression dosage is adjusted accordingly
  40. * Immune suppression is a delicate balance: too much leads to immune
  41. compromise; too little leads to rejection.
  42. . . .
  43. * Both diagnosis and treatment present significant challenges
  44. * Immune memory is a major confounder
  45. ## My thesis topics
  46. ### Chapter 2
  47. Genome-wide epigenetic analysis of H3K4 and H3K27 methylation in naïve
  48. and memory $\mathsf{CD4}^{+}$ T-cell activation
  49. ### Chapter 3
  50. Improving array-based diagnostics for transplant rejection by
  51. optimizing data preprocessing
  52. ### Chapter 4
  53. Globin-blocking for more effective blood RNA-seq analysis in primate
  54. animal model for experimental graft rejection treatment
  55. ## Today's focus
  56. ### Chapter 2
  57. \Large
  58. Genome-wide epigenetic analysis of H3K4 and H3K27 methylation in naïve
  59. and memory $\mathsf{CD4}^{+}$ T-cell activation
  60. ## Memory cells: faster, stronger, and more independent
  61. ![Memory T-cells proliferate and respond more quickly](graphics/presentation/T-cells-SVG.pdf)
  62. ## Immune memory is a significant contributor to rejection
  63. ![Memory T-cells proliferate and respond more quickly](graphics/presentation/T-cells-SVG.pdf)
  64. # Figure Storage
  65. ## Slides
  66. <!-- ## Slide -->
  67. <!-- ![Figure](graphics/Intro/eBayes-CROP-RASTER.png) -->
  68. <!-- ## Slide -->
  69. <!-- ![Figure](graphics/CD4-csaw/IDR/D4659vsD5053_epic-PAGE1-CROP-RASTER.png) -->
  70. <!-- ## Slide -->
  71. <!-- ![Figure](graphics/CD4-csaw/ChIP-seq/H3K4me2-sample-MAplot-bins-CROP.png) -->
  72. <!-- ## Slide -->
  73. <!-- ![Figure](graphics/Intro/med-pval-hist-colored-CROP.pdf) -->
  74. <!-- ## Slide -->
  75. <!-- ![Figure](graphics/CD4-csaw/RNA-seq/PCA-no-batchsub-CROP.png) -->
  76. <!-- ## Slide -->
  77. <!-- ![Figure](graphics/CD4-csaw/RNA-seq/PCA-combat-batchsub-CROP.png) -->
  78. <!-- ## Slide -->
  79. <!-- ![Figure](graphics/CD4-csaw/RNA-seq/weights-vs-covars-nobcv-CROP.png) -->
  80. <!-- ## Slide -->
  81. <!-- ![Figure](graphics/CD4-csaw/csaw/CCF-plots-noBL-PAGE2-CROP.pdf) -->
  82. <!-- ## Slide -->
  83. <!-- ![Figure](graphics/CD4-csaw/csaw/CCF-plots-PAGE2-CROP.pdf) -->
  84. <!-- ## Slide -->
  85. <!-- ![Figure](graphics/CD4-csaw/ChIP-seq/H3K4me2-PCA-raw-CROP.png) -->
  86. <!-- ## Slide -->
  87. <!-- ![Figure](graphics/CD4-csaw/ChIP-seq/H3K4me2-PCA-SVsub-CROP.png) -->
  88. <!-- ## Slide -->
  89. <!-- ![Figure](graphics/CD4-csaw/ChIP-seq/H3K4me3-PCA-raw-CROP.png) -->
  90. <!-- ## Slide -->
  91. <!-- ![Figure](graphics/CD4-csaw/ChIP-seq/H3K4me3-PCA-SVsub-CROP.png) -->
  92. <!-- ## Slide -->
  93. <!-- ![Figure](graphics/CD4-csaw/ChIP-seq/H3K27me3-PCA-raw-CROP.png) -->
  94. <!-- ## Slide -->
  95. <!-- ![Figure](graphics/CD4-csaw/ChIP-seq/H3K27me3-PCA-SVsub-CROP.png) -->
  96. <!-- ## Slide -->
  97. <!-- ![Figure](graphics/CD4-csaw/MOFA-varExplaiend-matrix-CROP.png) -->
  98. <!-- ## Slide -->
  99. <!-- ![Figure](graphics/CD4-csaw/MOFA-LF-scatter-small.png) -->
  100. <!-- ## Slide -->
  101. <!-- ![Figure](graphics/CD4-csaw/MOFA-batch-correct-CROP.png) -->
  102. <!-- ## Slide -->
  103. <!-- ![Figure](graphics/CD4-csaw/RNA-seq/PCA-final-12-CROP.png) -->
  104. <!-- ## Slide -->
  105. <!-- ![Figure](graphics/CD4-csaw/Promoter-Peak-Distance-Profile-PAGE1-CROP.pdf) -->
  106. <!-- ## Slide -->
  107. <!-- ![Figure](graphics/CD4-csaw/FPKM-by-Peak-Violin-Plots-CROP.pdf) -->
  108. <!-- ## Slide -->
  109. <!-- ![Figure](graphics/CD4-csaw/ChIP-seq/H3K4me2-promoter-PCA-group-CROP.png) -->
  110. <!-- ## Slide -->
  111. <!-- ![Figure](graphics/CD4-csaw/ChIP-seq/H3K4me3-promoter-PCA-group-CROP.png) -->
  112. <!-- ## Slide -->
  113. <!-- ![Figure](graphics/CD4-csaw/ChIP-seq/H3K27me3-promoter-PCA-group-CROP.png) -->
  114. <!-- ## Slide -->
  115. <!-- ![Figure](graphics/CD4-csaw/RNA-seq/PCA-final-23-CROP.png) -->
  116. <!-- ## Slide -->
  117. <!-- ![Figure](graphics/CD4-csaw/ChIP-seq/H3K4me2-neighborhood-clusters-CROP.png) -->
  118. <!-- ## Slide -->
  119. <!-- ![Figure](graphics/CD4-csaw/ChIP-seq/H3K4me2-neighborhood-PCA-CROP.png) -->
  120. <!-- ## Slide -->
  121. <!-- ![Figure](graphics/CD4-csaw/ChIP-seq/H3K4me2-neighborhood-expression-CROP.png) -->
  122. <!-- ## Slide -->
  123. <!-- ![Figure](graphics/CD4-csaw/ChIP-seq/H3K4me3-neighborhood-clusters-CROP.png) -->
  124. <!-- ## Slide -->
  125. <!-- ![Figure](graphics/CD4-csaw/ChIP-seq/H3K4me3-neighborhood-PCA-CROP.png) -->
  126. <!-- ## Slide -->
  127. <!-- ![Figure](graphics/CD4-csaw/ChIP-seq/H3K4me3-neighborhood-expression-CROP.png) -->
  128. <!-- ## Slide -->
  129. <!-- ![Figure](graphics/CD4-csaw/ChIP-seq/H3K27me3-neighborhood-clusters-CROP.png) -->
  130. <!-- ## Slide -->
  131. <!-- ![Figure](graphics/CD4-csaw/ChIP-seq/H3K27me3-neighborhood-PCA-CROP.png) -->
  132. <!-- ## Slide -->
  133. <!-- ![Figure](graphics/CD4-csaw/ChIP-seq/H3K27me3-neighborhood-expression-CROP.png) -->
  134. <!-- ## Slide -->
  135. <!-- ![Figure](graphics/CD4-csaw/LaMere2016_fig8.pdf) -->
  136. <!-- ## Slide -->
  137. <!-- ![Figure](graphics/CD4-csaw/rulegraphs/rulegraph-all.pdf) -->