thesis.lyx 337 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086
  1. #LyX 2.3 created this file. For more info see http://www.lyx.org/
  2. \lyxformat 544
  3. \begin_document
  4. \begin_header
  5. \save_transient_properties true
  6. \origin unavailable
  7. \textclass extbook
  8. \begin_preamble
  9. % List all used files in log output
  10. \listfiles
  11. % Add a DRAFT watermark
  12. \usepackage{draftwatermark}
  13. \usepackage{accsupp}
  14. \SetWatermarkLightness{0.97}
  15. \SetWatermarkScale{1}
  16. % Make watermark not copyable (in Adobe Reader)
  17. \SetWatermarkText{\BeginAccSupp{method=escape,ActualText={}}DRAFT\EndAccSupp{}}
  18. % Set up required header format
  19. \usepackage{fancyhdr}
  20. \pagestyle{fancy}
  21. \renewcommand{\headrulewidth}{0pt}
  22. \rhead{}
  23. \lhead{}
  24. \chead{}
  25. \rfoot{}
  26. \lfoot{}
  27. % Make page number not copyable (in Adobe Reader)
  28. \cfoot{\BeginAccSupp{method=escape,ActualText={}}\thepage\EndAccSupp{}} % Page number bottom center
  29. % Allow FloatBarrier command
  30. \usepackage{placeins}
  31. % Allow landscape pages
  32. \usepackage{pdflscape}
  33. % Allow doing things after the end of the current page
  34. % (to avoid landscape figures breaking up text)
  35. \usepackage{afterpage}
  36. % This one breaks subfigs so it's disabled
  37. % https://tex.stackexchange.com/questions/65680/automatically-bold-first-sentence-of-a-floats-caption
  38. \end_preamble
  39. \use_default_options true
  40. \begin_modules
  41. todonotes
  42. \end_modules
  43. \maintain_unincluded_children false
  44. \language english
  45. \language_package default
  46. \inputencoding utf8
  47. \fontencoding default
  48. \font_roman "default" "default"
  49. \font_sans "default" "default"
  50. \font_typewriter "default" "default"
  51. \font_math "auto" "auto"
  52. \font_default_family default
  53. \use_non_tex_fonts false
  54. \font_sc false
  55. \font_osf false
  56. \font_sf_scale 100 100
  57. \font_tt_scale 100 100
  58. \use_microtype false
  59. \use_dash_ligatures true
  60. \graphics default
  61. \default_output_format pdf4
  62. \output_sync 0
  63. \bibtex_command biber
  64. \index_command default
  65. \paperfontsize 12
  66. \spacing double
  67. \use_hyperref true
  68. \pdf_bookmarks true
  69. \pdf_bookmarksnumbered false
  70. \pdf_bookmarksopen false
  71. \pdf_bookmarksopenlevel 1
  72. \pdf_breaklinks false
  73. \pdf_pdfborder false
  74. \pdf_colorlinks false
  75. \pdf_backref false
  76. \pdf_pdfusetitle true
  77. \papersize letterpaper
  78. \use_geometry true
  79. \use_package amsmath 1
  80. \use_package amssymb 1
  81. \use_package cancel 1
  82. \use_package esint 1
  83. \use_package mathdots 1
  84. \use_package mathtools 1
  85. \use_package mhchem 1
  86. \use_package stackrel 1
  87. \use_package stmaryrd 1
  88. \use_package undertilde 1
  89. \cite_engine biblatex
  90. \cite_engine_type authoryear
  91. \biblio_style plain
  92. \biblatex_bibstyle authoryear
  93. \biblatex_citestyle numeric
  94. \use_bibtopic false
  95. \use_indices false
  96. \paperorientation portrait
  97. \suppress_date false
  98. \justification true
  99. \use_refstyle 1
  100. \use_minted 0
  101. \index Index
  102. \shortcut idx
  103. \color #008000
  104. \end_index
  105. \leftmargin 1.5in
  106. \topmargin 1in
  107. \rightmargin 1in
  108. \bottommargin 1in
  109. \secnumdepth 3
  110. \tocdepth 3
  111. \paragraph_separation indent
  112. \paragraph_indentation default
  113. \is_math_indent 0
  114. \math_numbering_side default
  115. \quotes_style english
  116. \dynamic_quotes 0
  117. \papercolumns 1
  118. \papersides 1
  119. \paperpagestyle default
  120. \tracking_changes false
  121. \output_changes false
  122. \html_math_output 0
  123. \html_css_as_file 0
  124. \html_be_strict false
  125. \end_header
  126. \begin_body
  127. \begin_layout Title
  128. Bioinformatic analysis of complex, high-throughput genomic and epigenomic
  129. data in the context of immunology and transplant rejection
  130. \end_layout
  131. \begin_layout Author
  132. A thesis presented
  133. \begin_inset Newline newline
  134. \end_inset
  135. by
  136. \begin_inset Newline newline
  137. \end_inset
  138. Ryan C.
  139. Thompson
  140. \begin_inset Newline newline
  141. \end_inset
  142. to
  143. \begin_inset Newline newline
  144. \end_inset
  145. The Scripps Research Institute Graduate Program
  146. \begin_inset Newline newline
  147. \end_inset
  148. in partial fulfillment of the requirements for the degree of
  149. \begin_inset Newline newline
  150. \end_inset
  151. Doctor of Philosophy in the subject of Biology
  152. \begin_inset Newline newline
  153. \end_inset
  154. for
  155. \begin_inset Newline newline
  156. \end_inset
  157. The Scripps Research Institute
  158. \begin_inset Newline newline
  159. \end_inset
  160. La Jolla, California
  161. \end_layout
  162. \begin_layout Date
  163. October 2019
  164. \end_layout
  165. \begin_layout Standard
  166. [Copyright notice]
  167. \end_layout
  168. \begin_layout Standard
  169. [Thesis acceptance form]
  170. \end_layout
  171. \begin_layout Standard
  172. [Dedication]
  173. \end_layout
  174. \begin_layout Standard
  175. [Acknowledgements]
  176. \end_layout
  177. \begin_layout Standard
  178. \begin_inset CommandInset toc
  179. LatexCommand tableofcontents
  180. \end_inset
  181. \end_layout
  182. \begin_layout Standard
  183. \begin_inset FloatList table
  184. \end_inset
  185. \end_layout
  186. \begin_layout Standard
  187. \begin_inset FloatList figure
  188. \end_inset
  189. \end_layout
  190. \begin_layout Standard
  191. [List of Abbreviations]
  192. \end_layout
  193. \begin_layout List of TODOs
  194. \end_layout
  195. \begin_layout Standard
  196. \begin_inset Flex TODO Note (inline)
  197. status open
  198. \begin_layout Plain Layout
  199. Check all figures to make sure they fit on the page with their legends.
  200. \end_layout
  201. \end_inset
  202. \end_layout
  203. \begin_layout Standard
  204. \begin_inset Flex TODO Note (inline)
  205. status open
  206. \begin_layout Plain Layout
  207. Search and replace: naive -> naïve
  208. \end_layout
  209. \end_inset
  210. \end_layout
  211. \begin_layout Standard
  212. \begin_inset Flex TODO Note (inline)
  213. status open
  214. \begin_layout Plain Layout
  215. Look into auto-generated nomenclature list: https://wiki.lyx.org/Tips/Nomenclature.
  216. Otherwise, do a manual pass for all abbreviations at the end.
  217. Do nomenclature/abbreviations independently for each chapter.
  218. \end_layout
  219. \end_inset
  220. \end_layout
  221. \begin_layout Standard
  222. \begin_inset Flex TODO Note (inline)
  223. status open
  224. \begin_layout Plain Layout
  225. Make all descriptions consistent in terms of
  226. \begin_inset Quotes eld
  227. \end_inset
  228. we did X
  229. \begin_inset Quotes erd
  230. \end_inset
  231. vs
  232. \begin_inset Quotes eld
  233. \end_inset
  234. I did X
  235. \begin_inset Quotes erd
  236. \end_inset
  237. vs
  238. \begin_inset Quotes eld
  239. \end_inset
  240. X was done
  241. \begin_inset Quotes erd
  242. \end_inset
  243. .
  244. \end_layout
  245. \end_inset
  246. \end_layout
  247. \begin_layout Chapter*
  248. Abstract
  249. \end_layout
  250. \begin_layout Standard
  251. \begin_inset Note Note
  252. status open
  253. \begin_layout Plain Layout
  254. It is included as an integral part of the thesis and should immediately
  255. precede the introduction.
  256. \end_layout
  257. \begin_layout Plain Layout
  258. Preparing your Abstract.
  259. Your abstract (a succinct description of your work) is limited to 350 words.
  260. UMI will shorten it if they must; please do not exceed the limit.
  261. \end_layout
  262. \begin_layout Itemize
  263. Include pertinent place names, names of persons (in full), and other proper
  264. nouns.
  265. These are useful in automated retrieval.
  266. \end_layout
  267. \begin_layout Itemize
  268. Display symbols, as well as foreign words and phrases, clearly and accurately.
  269. Include transliterations for characters other than Roman and Greek letters
  270. and Arabic numerals.
  271. Include accents and diacritical marks.
  272. \end_layout
  273. \begin_layout Itemize
  274. Do not include graphs, charts, tables, or illustrations in your abstract.
  275. \end_layout
  276. \end_inset
  277. \end_layout
  278. \begin_layout Standard
  279. \begin_inset Flex TODO Note (inline)
  280. status open
  281. \begin_layout Plain Layout
  282. Obviously the abstract gets written last.
  283. \end_layout
  284. \end_inset
  285. \end_layout
  286. \begin_layout Chapter*
  287. Notes to draft readers
  288. \end_layout
  289. \begin_layout Standard
  290. Thank you so much for agreeing to read my thesis and give me feedback on
  291. it.
  292. What you are currently reading is a rough draft, in need of many revisions.
  293. You can always find the latest version at
  294. \begin_inset CommandInset href
  295. LatexCommand href
  296. target "https://mneme.dedyn.io/~ryan/Thesis/thesis.pdf"
  297. literal "false"
  298. \end_inset
  299. .
  300. the PDF at this link is updated periodically with my latest revisions,
  301. but you can just download the current version and give me feedback on that.
  302. Don't worry about keeping up with the updates.
  303. \end_layout
  304. \begin_layout Standard
  305. As for what feedback I'm looking for, first of all, don't waste your time
  306. marking spelling mistakes and such.
  307. I haven't run a spell checker on it yet, so let me worry about that.
  308. However, if you see any glaring formatting issues, such as a figure being
  309. too large and getting cut off at the edge of the page, please note them.
  310. In addition, if any of the text in the figures is too small, please note
  311. that as well.
  312. \end_layout
  313. \begin_layout Standard
  314. Beyond that, what I'm mainly interested in is feedback on the content.
  315. For example: does the introduction flow logically, and does it provide
  316. enough background to understand the other chapters? Does each chapter make
  317. it clear what work and analyses I have done? Do the figures clearly communicate
  318. the results I'm trying to show? Do you feel that the claims in the results
  319. and discussion sections are well-supported? Additionally, while I am well
  320. aware that Chapter 1 (the introduction) contains many un-cited claims,
  321. all the other chapters (2,3, and 4)
  322. \emph on
  323. should
  324. \emph default
  325. be fully cited.
  326. So if you notice any un-cited claims in those chapters, please flag them
  327. for my attention.
  328. \end_layout
  329. \begin_layout Standard
  330. You can provide your feedback in whatever way is most convenient to you.
  331. You could mark up this PDF with highlights and notes, then send it back
  332. to me.
  333. Or you could collect your comments in a separate text file and send that
  334. to me, or whatever else you like.
  335. However, if you send me your feedback in a separate document, please note
  336. a section/figure/table number for each comment, and
  337. \emph on
  338. also
  339. \emph default
  340. send me the exact PDF that you read so I can reference it while reading
  341. your comments, since as mentioned above, the current version I'm working
  342. on will have changed by that point (which might include shuffling sections
  343. and figures around, changing their numbers).
  344. One last thing: you'll see a bunch of text in orange boxes throughout the
  345. PDF.
  346. These are notes to myself about things that need to be fixed later, so
  347. if you see a problem noted in an orange box, that means I'm already aware
  348. of it, and there's no need to comment on it.
  349. \end_layout
  350. \begin_layout Standard
  351. My thesis is due October 10th, so in order to be useful to me, I'll need
  352. your feedback at least a few days before that, ideally by October 7th.
  353. If you have limited time and are unable to get through the whole thesis,
  354. please focus your effors on Chapters 1 and 2, since those are the roughest
  355. and most in need of revision.
  356. Chapter 3 is fairly short and straightforward, and Chapter 4 is an adaptation
  357. of a paper that's already been through a few rounds of revision, so they
  358. should be a lot tighter.
  359. If you can't spare any time between now and then, or if something unexpected
  360. comes up, I understand.
  361. Just let me know.
  362. \end_layout
  363. \begin_layout Standard
  364. Thanks again for your help, and happy reading!
  365. \end_layout
  366. \begin_layout Chapter
  367. Introduction
  368. \end_layout
  369. \begin_layout Section
  370. Background & Significance
  371. \end_layout
  372. \begin_layout Subsection
  373. Biological motivation
  374. \end_layout
  375. \begin_layout Standard
  376. \begin_inset Flex TODO Note (inline)
  377. status open
  378. \begin_layout Plain Layout
  379. Rethink the subsection organization after the intro is written.
  380. \end_layout
  381. \end_inset
  382. \end_layout
  383. \begin_layout Standard
  384. \begin_inset Flex TODO Note (inline)
  385. status open
  386. \begin_layout Plain Layout
  387. Citations are needed all over the place.
  388. A lot of this is knowledge I've just absorbed from years of conversation
  389. in the Salomon lab, without ever having seen a citation for it.
  390. \end_layout
  391. \end_inset
  392. \end_layout
  393. \begin_layout Subsubsection
  394. Rejection is the major long-term threat to organ and tissue allografts
  395. \end_layout
  396. \begin_layout Standard
  397. Organ and tissue transplants are a life-saving treatment for people who
  398. have lost the function of an important organ.
  399. In some cases, it is possible to transplant a patient's own tissue from
  400. one area of their body to another, referred to as an autograft.
  401. This is common for tissues that are distributed throughout many areas of
  402. the body, such as skin and bone.
  403. However, in cases of organ failure, there is no functional self tissue
  404. remaining, and a transplant from another person – the donor – is required.
  405. This is referred to as an allograft.
  406. \end_layout
  407. \begin_layout Standard
  408. \begin_inset Flex TODO Note (inline)
  409. status open
  410. \begin_layout Plain Layout
  411. Possible citation for degree of generic variability: https://www.ncbi.nlm.nih.gov/pu
  412. bmed/22424236?dopt=Abstract
  413. \end_layout
  414. \end_inset
  415. \end_layout
  416. \begin_layout Standard
  417. \begin_inset Flex TODO Note (inline)
  418. status open
  419. \begin_layout Plain Layout
  420. How much mechanistic detail is needed here? My work doesn't really go into
  421. specific rejection mechanisms, so I think it's best to keep it basic.
  422. \end_layout
  423. \end_inset
  424. \end_layout
  425. \begin_layout Standard
  426. Because an allograft comes from a different person, it is genetically distinct
  427. from the rest of the recipient's body.
  428. Some genetic variants occur in protein coding regions, resulting in protein
  429. products that differ from the equivalent proteins in the graft recipient's
  430. own tissue.
  431. As a result, without intervention, the recipient's immune system will eventuall
  432. y identify the graft as foreign tissue and begin attacking it, eventually
  433. resulting in failure and death of the graft, a process referred to as transplan
  434. t rejection.
  435. Rejection is the most significant challenge to the long-term health of
  436. an allograft.
  437. Like any adaptive immune response, graft rejection generally occurs via
  438. two broad mechanisms: cellular immunity, in which CD8+ T-cells induce apoptosis
  439. in the graft cells; and humoral immunity, in which B-cells produce antibodies
  440. that bind to graft proteins and direct an immune response against the graft.
  441. In either case, rejection shows most of the typical hallmarks of an adaptive
  442. immune response, in particular mediation by CD4+ T-cells and formation
  443. of immune memory.
  444. \end_layout
  445. \begin_layout Subsubsection
  446. Diagnosis and treatment of allograft rejection is a major challenge
  447. \end_layout
  448. \begin_layout Standard
  449. To prevent rejection, allograft recipients are treated with immune suppression.
  450. The goal is to achieve sufficient suppression of the immune system to prevent
  451. rejection of the graft without compromising the ability of the immune system
  452. to raise a normal response against infection.
  453. As such, a delicate balance must be struck: insufficient immune suppression
  454. may lead to rejection and ultimately loss of the graft; exceissive suppression
  455. leaves the patient vulnerable to life-threatening opportunistic infections.
  456. Because every patient is different, immune suppression must be tailored
  457. for each patient.
  458. Furthermore, immune suppression must be tuned over time, as the immune
  459. system's activity is not static, nor is it held in a steady state.
  460. In order to properly adjust the dosage of immune suppression drugs, it
  461. is necessary to monitor the health of the transplant and increase the dosage
  462. if evidence of rejection is observed.
  463. \end_layout
  464. \begin_layout Standard
  465. However, diagnosis of rejection is a significant challenge.
  466. Early diagnosis is essential in order to step up immune suppression before
  467. the immune system damages the graft beyond recovery.
  468. The current gold standard test for graft rejection is a tissue biopsy,
  469. examained for visible signs of rejection by a trained histologist.
  470. When a patient shows symptoms of possible rejection, a
  471. \begin_inset Quotes eld
  472. \end_inset
  473. for cause
  474. \begin_inset Quotes erd
  475. \end_inset
  476. biopsy is performed to confirm the diagnosis, and immune suppression is
  477. adjusted as necessary.
  478. However, in many cases, the early stages of rejection are asymptomatic,
  479. known as
  480. \begin_inset Quotes eld
  481. \end_inset
  482. sub-clinical
  483. \begin_inset Quotes erd
  484. \end_inset
  485. rejection.
  486. In light of this, is is now common to perform
  487. \begin_inset Quotes eld
  488. \end_inset
  489. protocol biopsies
  490. \begin_inset Quotes erd
  491. \end_inset
  492. at specific times after transplantation of a graft, even if no symptoms
  493. of rejection are apparent, in addition to
  494. \begin_inset Quotes eld
  495. \end_inset
  496. for cause
  497. \begin_inset Quotes erd
  498. \end_inset
  499. biopsies
  500. \begin_inset CommandInset citation
  501. LatexCommand cite
  502. key "Wilkinson2006"
  503. literal "false"
  504. \end_inset
  505. .
  506. \end_layout
  507. \begin_layout Standard
  508. However, biopsies have a number of downsides that limit their effectiveness
  509. as a diagnostic tool.
  510. First, the need for manual inspection by a histologist means that diagnosis
  511. is subject to the biases of the particular histologist examining the biopsy.
  512. In marginal cases two different histologists may give two different diagnoses
  513. to the same biopsy.
  514. Second, a biopsy can only evaluate if rejection is occurring in the section
  515. of the graft from which the tissue was extracted.
  516. If rejection is only occurring in one section of the graft and the tissue
  517. is extracted from a different section, it may result in a false negative
  518. diagnosis.
  519. Most importantly, however, extraction of tissue from a graft is invasive
  520. and is treated as an injury by the body, which results in inflammation
  521. that in turn promotes increased immune system activity.
  522. Hence, the invasiveness of biopsies severely limits the frequency with
  523. which the can safely be performed.
  524. Typically protocol biopsies are not scheduled more than about once per
  525. month
  526. \begin_inset CommandInset citation
  527. LatexCommand cite
  528. key "Wilkinson2006"
  529. literal "false"
  530. \end_inset
  531. .
  532. A less invasive diagnostic test for rejection would bring manifold benefits.
  533. Such a test would enable more frequent testing and therefore earlier detection
  534. of rejection events.
  535. In addition, having a larger pool of historical data for a given patient
  536. would make it easier to evaluate when a given test is outside the normal
  537. parameters for that specific patient, rather than relying on normal ranges
  538. for the population as a whole.
  539. Lastly, more frequent tests would be a boon to the transplant research
  540. community.
  541. Beyond simply providing more data, the increased time granularity of the
  542. tests will enable studying the progression of a rejection event on the
  543. scale of days to weeks, rather than months.
  544. \end_layout
  545. \begin_layout Subsubsection
  546. Memory cells are resistant to immune suppression
  547. \end_layout
  548. \begin_layout Standard
  549. One of the defining features of the adaptive immune system is immune memory:
  550. the ability of the immune system to recognize a previously encountered
  551. foreign antigen and respond more quickly and more strongly to that antigen
  552. in subsequent encounters.
  553. When the immune system first encounters a new antigen, the lymphocytes
  554. that respond are known as naive cells – T-cells and B-cells that have never
  555. detected their target antigens before.
  556. Once activated by their specific antigen presented by an antigen-presenting
  557. cell in the proper co-stimulatory context, naive cells differentiate into
  558. effector cells that carry out their respective functions in targeting and
  559. destroying the source of the foreign antigen.
  560. The requirement for co-stimulation is an important feature of naive cells
  561. that limits
  562. \begin_inset Quotes eld
  563. \end_inset
  564. false positive
  565. \begin_inset Quotes erd
  566. \end_inset
  567. immune responses, because antigen-presenting cells usually only express
  568. the proper co-stimulation after detecting evidence of an infection, such
  569. as the presence of common bacterial cell components or inflamed tissue.
  570. Most effector cells die after the foreign antigen is cleared, but some
  571. remain and differentiate into memory cells.
  572. Like naive cells, memory cells respond to detection of their specific antigen
  573. by differentiating into effector cells, ready to fight an infection.
  574. However, unlike naive cells, memory cells do not require the same degree
  575. of co-stimulatory signaling for activation, and once activated, they proliferat
  576. e and differentiate into effector cells more quickly than naive cells do.
  577. \end_layout
  578. \begin_layout Standard
  579. In the context of a pathogenic infection, immune memory is a major advantage,
  580. allowing an organism to rapidly fight off a previously encountered pathogen
  581. much more quickly and effectively than the first time it was encountered.
  582. However, if effector cells that recognize an antigen from an allograft
  583. are allowed to differentiate into memory cells, suppressing rejection of
  584. the graft becomes much more difficult.
  585. Many immune suppression drugs work by interfering with the co-stimulation
  586. that naive cells require in order to mount an immune response.
  587. Since memory cells do not require this co-stimulation, these drugs are
  588. not effective at suppressing an immune response that is mediated by memory
  589. cells.
  590. Secondly, because memory cells are able to mount a stronger and faster
  591. response to an antigen, all else being equal they require stronger immune
  592. suppression than naive cells to prevent an immune response.
  593. However, immune suppression affects the entire immune system, not just
  594. cells recognizing a specific antigen, so increasing the dosage of immune
  595. suppression drugs also increases the risk of complications from a compromised
  596. immune system, such as opportunistic infections.
  597. While the differences in cell surface markers between naive and memory
  598. cells have been fairly well characterized, the internal regulatory mechanisms
  599. that allow memory cells to respond more quickly and without co-stimulation
  600. are still poorly understood.
  601. In order to develop immune suppression that either prevents the formation
  602. of memory cells or works more effectively against memory cells, the mechanisms
  603. of immune memory formation and regulation must be better understood.
  604. \end_layout
  605. \begin_layout Subsection
  606. Overview of bioinformatic analysis methods
  607. \end_layout
  608. \begin_layout Standard
  609. The studies presented in this work all involve the analysis of high-throughput
  610. genomic and epigenomic data.
  611. These data present many unique analysis challenges, and a wide array of
  612. software tools are available to analyze them.
  613. This section presents an overview of the methods used, including what problems
  614. they solve, what assumptions they make, and a basic description of how
  615. they work.
  616. \end_layout
  617. \begin_layout Standard
  618. \begin_inset Flex TODO Note (inline)
  619. status open
  620. \begin_layout Plain Layout
  621. Many of these points may also be addressed in the approach/methods sections
  622. of the following chapters? Redundant?
  623. \end_layout
  624. \end_inset
  625. \end_layout
  626. \begin_layout Subsubsection
  627. Limma: The standard linear modeling framework for genomics
  628. \end_layout
  629. \begin_layout Standard
  630. Linear models are a generalization of the
  631. \begin_inset Formula $t$
  632. \end_inset
  633. -test and ANOVA to arbitrarily complex experimental designs.
  634. In a typical linear model, there is one dependent variable observation
  635. per sample.
  636. For example, in a linear model of height as a function of age and sex,
  637. there is one height measurement per person.
  638. However, when analyzing genomic data, each sample consists of observations
  639. of thousands of dependent variables.
  640. For example, in an RNA-seq experiment, the dependent variables may be the
  641. count of RNA-seq reads for each annotated gene.
  642. In abstract terms, each dependent variable being measured is referred to
  643. as a feature.
  644. The simplest approach to analyzing such data would be to fit the same model
  645. independently to each feature.
  646. However, this is undesirable for most genomics data sets.
  647. Genomics assays like high-throughput sequencing are expensive, and often
  648. generating the samples is also quite expensive and time-consuming.
  649. This expense limits the sample sizes typically employed in genomics experiments
  650. , and as a result the statistical power of each individual feature's linear
  651. model is likewise limited.
  652. However, because thousands of features from the same samples are analyzed
  653. together, there is an opportunity to improve the statistical power of the
  654. analysis by exploiting shared patterns of variation across features.
  655. This is the core feature of limma, a linear modeling framework designed
  656. for genomic data.
  657. Limma is typically used to analyze expression microarray data, and more
  658. recently RNA-seq data, but it can also be used to analyze any other data
  659. for which linear modeling is appropriate.
  660. \end_layout
  661. \begin_layout Standard
  662. The central challenge when fitting a linear model is to estimate the variance
  663. of the data accurately.
  664. This quantity is the most difficult to estimate when sample sizes are small.
  665. A single shared variance could be estimated for all of the features together,
  666. and this estimate would be very stable, in contrast to the individual feature
  667. variance estimates.
  668. However, this would require the assumption that every feature is equally
  669. variable, which is known to be false for most genomic data sets.
  670. Limma offers a compromise between these two extremes by using a method
  671. called empirical Bayes moderation to
  672. \begin_inset Quotes eld
  673. \end_inset
  674. squeeze
  675. \begin_inset Quotes erd
  676. \end_inset
  677. the distribution of estimated variances toward a single common value that
  678. represents the variance of an average feature in the data
  679. \begin_inset CommandInset citation
  680. LatexCommand cite
  681. key "Smyth2004"
  682. literal "false"
  683. \end_inset
  684. .
  685. While the individual feature variance estimates are not stable, the common
  686. variance estiamate for the entire data set is quite stable, so using a
  687. combination of the two yields a variance estimate for each feature with
  688. greater precision than the individual feature varaiances.
  689. The trade-off for this improvement is that squeezing each estimated variance
  690. toward the common value introduces some bias – the variance will be underestima
  691. ted for features with high variance and overestimated for features with
  692. low variance.
  693. Essentially, limma assumes that extreme variances are less common than
  694. variances close to the common value.
  695. The variance estimates from this empirical Bayes procedure are shown empiricall
  696. y to yield greater statistical power than either the individual feature
  697. variances or the single common value.
  698. \end_layout
  699. \begin_layout Standard
  700. On top of this core framework, limma also implements many other enhancements
  701. that, further relax the assumptions of the model and extend the scope of
  702. what kinds of data it can analyze.
  703. Instead of squeezing toward a single common variance value, limma can model
  704. the common variance as a function of a covariate, such as average expression
  705. \begin_inset CommandInset citation
  706. LatexCommand cite
  707. key "Law2013"
  708. literal "false"
  709. \end_inset
  710. .
  711. This is essential for RNA-seq data, where higher gene counts yield more
  712. precise expression measurements and therefore smaller variances than low-count
  713. genes.
  714. While linear models typically assume that all samples have equal variance,
  715. limma is able to relax this assumption by identifying and down-weighting
  716. samples the diverge more strongly from the lienar model across many features
  717. \begin_inset CommandInset citation
  718. LatexCommand cite
  719. key "Ritchie2006,Liu2015"
  720. literal "false"
  721. \end_inset
  722. .
  723. In addition, limma is also able to fit simple mixed models incorporating
  724. one random effect in addition to the fixed effects represented by an ordinary
  725. linear model
  726. \begin_inset CommandInset citation
  727. LatexCommand cite
  728. key "Smyth2005a"
  729. literal "false"
  730. \end_inset
  731. .
  732. Once again, limma shares information between features to obtain a robust
  733. estimate for the random effect correlation.
  734. \end_layout
  735. \begin_layout Subsubsection
  736. edgeR provides limma-like analysis features for count data
  737. \end_layout
  738. \begin_layout Standard
  739. Although limma can be applied to read counts from RNA-seq data, it is less
  740. suitable for counts from ChIP-seq data, which tend to be much smaller and
  741. therefore violate the assumption of a normal distribution more severely.
  742. For all count-based data, the edgeR package works similarly to limma, but
  743. uses a generalized linear model instead of a linear model.
  744. The most important difference is that the GLM in edgeR models the counts
  745. directly using a negative binomial distribution rather than modeling the
  746. normalized log counts using a normal distribution
  747. \begin_inset CommandInset citation
  748. LatexCommand cite
  749. key "Chen2014,McCarthy2012,Robinson2010a"
  750. literal "false"
  751. \end_inset
  752. .
  753. The negative binomial is a good fit for count data because it can be derived
  754. as a gamma-distributed mixture of Poisson distributions.
  755. The Poisson distribution accurately represents the distribution of counts
  756. expected for a given gene abundance, and the gamma distribution is then
  757. used to represent the variation in gene abundance between biological replicates.
  758. For this reason, the square root of the dispersion paramter of the negative
  759. binomial is sometimes referred to as the biological coefficient of variation,
  760. since it represents the variability that was present in the samples prior
  761. to the Poisson
  762. \begin_inset Quotes eld
  763. \end_inset
  764. noise
  765. \begin_inset Quotes erd
  766. \end_inset
  767. that was generated by the random sampling of reads in proportion to feature
  768. abundances.
  769. The choice of a gamma distribution is arbitrary and motivated by mathematical
  770. convenience, since a gamma-Poisson mixture yields the numerically tractable
  771. negative binomial distribution.
  772. Thus, edgeR assumes
  773. \emph on
  774. a prioi
  775. \emph default
  776. that the variation in abundances between replicates follows a gamma distribution.
  777. For differential abundance testing, edgeR offers a likelihood ratio test,
  778. but more recently recommends a quasi-likelihood test that properly factors
  779. the uncertainty in variance estimation into the statistical significance
  780. for each feature
  781. \begin_inset CommandInset citation
  782. LatexCommand cite
  783. key "Lund2012"
  784. literal "false"
  785. \end_inset
  786. .
  787. \end_layout
  788. \begin_layout Subsubsection
  789. ChIP-seq Peak calling
  790. \end_layout
  791. \begin_layout Standard
  792. Unlike RNA-seq data, in which gene annotations provide a well-defined set
  793. of genomic regions in which to count reads, ChIP-seq data can potentially
  794. occur anywhere in the genome.
  795. However, most genome regions will not contain significant ChIP-seq read
  796. coverage, and analyzing every position in the entire genome is statistically
  797. and computationally infeasible, so it is necesary to identify regions of
  798. interest inside which ChIP-seq reads will be counted and analyzed.
  799. One option is to define a set of interesting regions
  800. \emph on
  801. a priori
  802. \emph default
  803. , for example by defining a promoter region for each annotated gene.
  804. However, it is also possible to use the ChIP-seq data itself to identify
  805. regions with ChIP-seq read coverage significantly above the background
  806. level, known as peaks.
  807. \end_layout
  808. \begin_layout Standard
  809. There are generally two kinds of peaks that can be identified: narrow peaks
  810. and broadly enriched regions.
  811. Proteins like transcription factors that bind specific sites in the genome
  812. typically show most of their read coverage at these specific sites and
  813. very little coverage anywhere else.
  814. Because the footprint of the protein is consistent wherever it binds, each
  815. peak has a consistent size, typically tens to hundreds of base pairs.
  816. Algorithms like MACS exploit this pattern to identify specific loci at
  817. which such
  818. \begin_inset Quotes eld
  819. \end_inset
  820. narrow peaks
  821. \begin_inset Quotes erd
  822. \end_inset
  823. occur by looking for the characteristic peak shape in the ChIP-seq coverage
  824. rising above the surrounding background coverage
  825. \begin_inset CommandInset citation
  826. LatexCommand cite
  827. key "Zhang2008"
  828. literal "false"
  829. \end_inset
  830. .
  831. In contrast, some proteins, chief among them histones, do not bind only
  832. at a small number of specific sites, but rather bind potentailly almost
  833. everywhere in the entire genome.
  834. When looking at histone marks, adjacent histones tend to be similarly marked,
  835. and a given mark may be present on an arbitrary number of consecutive histones
  836. along the genome.
  837. Hence, there is no consistent
  838. \begin_inset Quotes eld
  839. \end_inset
  840. footprint size
  841. \begin_inset Quotes erd
  842. \end_inset
  843. for ChIP-seq peaks based on histone marks, and peaks typically span many
  844. histones.
  845. Hence, typical peaks span many hundreds or even thousands of base pairs.
  846. Instead of identifying specific loci of strong enrichment, algorithms like
  847. SICER assume that peaks are represented in the ChIP-seq data by modest
  848. enrichment above background occurring across broad regions, and they attempt
  849. to identify the extent of those regions
  850. \begin_inset CommandInset citation
  851. LatexCommand cite
  852. key "Zang2009"
  853. literal "false"
  854. \end_inset
  855. .
  856. In all cases, better results are obtained if the local background coverage
  857. level can be estimated from ChIP-seq input samples, since various biases
  858. can result in uneven background coverage.
  859. \end_layout
  860. \begin_layout Standard
  861. Regardless of the type of peak identified, it is important to identify peaks
  862. that occur consistently across biological replicates.
  863. The ENCODE project has developed a method called irreproducible discovery
  864. rate for this purpose
  865. \begin_inset CommandInset citation
  866. LatexCommand cite
  867. key "Li2006"
  868. literal "false"
  869. \end_inset
  870. .
  871. The IDR is defined as the probability that a peak identified in one biological
  872. replicate will
  873. \emph on
  874. not
  875. \emph default
  876. also be identified in a second replicate.
  877. Where the more familiar false discovery rate measures the degree of corresponde
  878. nce between a data-derived ranked list and the true list of significant
  879. features, IDR instead measures the degree of correspondence between two
  880. ranked lists derived from different data.
  881. IDR assumes that the highest-ranked features are
  882. \begin_inset Quotes eld
  883. \end_inset
  884. signal
  885. \begin_inset Quotes erd
  886. \end_inset
  887. peaks that tend to be listed in the same order in both lists, while the
  888. lowest-ranked features are essentially noise peaks, listed in random order
  889. with no correspondence between the lists.
  890. IDR attempts to locate the
  891. \begin_inset Quotes eld
  892. \end_inset
  893. crossover point
  894. \begin_inset Quotes erd
  895. \end_inset
  896. between the signal and the noise by determining how for down the list the
  897. correspondence between feature ranks breaks down.
  898. \end_layout
  899. \begin_layout Standard
  900. In addition to other considerations, if called peaks are to be used as regions
  901. of interest for differential abundance analysis, then care must be taken
  902. to call peaks in a way that is blind to differential abundance between
  903. experimental conditions, or else the statistical significance calculations
  904. for differential abundance will overstate their confidence in the results.
  905. The csaw package provides guidelines for calling peaks in this way: peaks
  906. are called based on a combination of all ChIP-seq reads from all experimental
  907. conditions, so that the identified peaks are based on the average abundance
  908. across all conditions, which is independent of any differential abundance
  909. between condtions
  910. \begin_inset CommandInset citation
  911. LatexCommand cite
  912. key "Lun2015a"
  913. literal "false"
  914. \end_inset
  915. .
  916. \end_layout
  917. \begin_layout Subsubsection
  918. Normalization of high-throughput data is non-trivial and application-dependant
  919. \end_layout
  920. \begin_layout Standard
  921. High-throughput data sets invariable require some kind of normalization
  922. before further analysis can be conducted.
  923. In general, the goal of normalization is to remove effects in the data
  924. that are caused by technical factors that have nothing to do with the biology
  925. being studied.
  926. \end_layout
  927. \begin_layout Standard
  928. For Affymetrix expression arrays, the standard normalization algorithm used
  929. in most analyses is Robust Multichip Average (RMA).
  930. RMA is designed with the assumption that some fraction of probes on each
  931. array will be artifactual and takes advantage of the fact that each gene
  932. is represented by multiple probes by implementing normalization and summarizati
  933. on steps that are robust against outlier probes.
  934. However, RMA uses the probe intensities of all arrays in the data set in
  935. the normalization of each individual array, meaning that the normalized
  936. expression values in each array depend on every array in the data set,
  937. and will necessarily change each time an array is added or removed from
  938. the data set.
  939. If this is undesirable, frozen RMA implements a variant of RMA where the
  940. relevant distributional parameters are learned from a large reference set
  941. of diverse public array data sets and then
  942. \begin_inset Quotes eld
  943. \end_inset
  944. frozen
  945. \begin_inset Quotes erd
  946. \end_inset
  947. , so that each array is effectively normalized against this frozen reference
  948. set rather than the other arrays in the data set under study.
  949. \end_layout
  950. \begin_layout Standard
  951. In contrast, high-throughput sequencing data present very different normalizatio
  952. n challenges.
  953. The simplest case is RNA-seq in which read counts are obtained for a set
  954. of gene annotations, yielding a matrix of counts with rows representing
  955. genes and columns representing samples.
  956. Because RNA-seq approximates a process of sampling from a population with
  957. replacement, each gene's count is only interpretable as a fraction of the
  958. total reads for that sample.
  959. For that reason, RNA-seq abundances are often reported as counts per million
  960. (CPM).
  961. Furthermore, if the abundance of a single gene increases, then in order
  962. for its fraction of the total reads to increase, all other genes' fractions
  963. must decrease to accomodate it.
  964. This effect is known as composition bias, and it is an artifact of the
  965. read sampling process that has nothing to do with the biology of the samples
  966. and must therefore be normalized out.
  967. The most commonly used methods to normalize for composition bias in RNA-seq
  968. data seek to equalize the average gene abundance across samples, under
  969. the assumption that the average gene is likely not changing
  970. \begin_inset CommandInset citation
  971. LatexCommand cite
  972. key "Robinson2010,Anders2010"
  973. literal "false"
  974. \end_inset
  975. .
  976. \end_layout
  977. \begin_layout Standard
  978. In ChIP-seq data, normalization is not as straightforward.
  979. The csaw package implements several different normalization strategies
  980. and provides guidance on when to use each one
  981. \begin_inset CommandInset citation
  982. LatexCommand cite
  983. key "Lun2015a"
  984. literal "false"
  985. \end_inset
  986. .
  987. Briefly, a typical ChIP-seq sample has a bimodal distribution of read counts:
  988. a low-abundance mode representing background regions and a high-abundance
  989. mode representing signal regions.
  990. This offers two potential normalization targets: equalizing background
  991. coverage or equalizing signal coverage.
  992. If the experiment is well controlled and ChIP efficiency is known to be
  993. consistent across all samples, then normalizing the background coverage
  994. to be equal across all samples is a reasonable strategy.
  995. If this is not a safe assumption, then the preferred strategy is to normalize
  996. the signal regions in a way similar to RNA-seq data by assuming that the
  997. average signal region is not changing abundance between samples.
  998. Beyond this, if a ChIP-seq experiment has a more complicated structure
  999. that doesn't show the typical bimodal count distribution, it may be necessary
  1000. to implement a normalization as a smooth function of abundance.
  1001. However, this strategy makes a much stronger assumption about the data:
  1002. that the average log fold change is zero across all abundance levels.
  1003. Hence, the simpler scaling normalziations based on background or signal
  1004. regions are generally preferred whenever possible.
  1005. \end_layout
  1006. \begin_layout Subsubsection
  1007. ComBat and SVA for correction of known and unknown batch effects
  1008. \end_layout
  1009. \begin_layout Standard
  1010. In addition to well-understood effects that can be easily normalized out,
  1011. a data set often contains confounding biological effects that must be accounted
  1012. for in the modeling step.
  1013. For instance, in an experiment with pre-treatment and post-treatment samples
  1014. of cells from several different donors, donor variability represents a
  1015. known batch effect.
  1016. The most straightforward correction for known batches is to estimate the
  1017. mean for each batch independently and subtract out the differences, so
  1018. that all batches have identical means for each feature.
  1019. However, as with variance estimation, estimating the differences in batch
  1020. means is not necessarily robust at the feature level, so the ComBat method
  1021. adds empirical Bayes squeezing of the batch mean differences toward a common
  1022. value, analogous to limma's empirical Bayes squeezing of feature variance
  1023. estimates
  1024. \begin_inset CommandInset citation
  1025. LatexCommand cite
  1026. key "Johnson2007"
  1027. literal "false"
  1028. \end_inset
  1029. .
  1030. Effectively, ComBat assumes that modest differences between batch means
  1031. are real batch effects, but extreme differences between batch means are
  1032. more likely to be the result of outlier observations that happen to line
  1033. up with the batches rather than a genuine batch effect.
  1034. The result is a batch correction that is more robust against outliers than
  1035. simple subtraction of mean differences subtraction.
  1036. \end_layout
  1037. \begin_layout Standard
  1038. In some data sets, unknown batch effects may be present due to inherent
  1039. variability in in the data, either caused by technical or biological effects.
  1040. Examples of unknown batch effects include variations in enrichment efficiency
  1041. between ChIP-seq samples, variations in populations of different cell types,
  1042. and the effects of uncontrolled environmental factors on gene expression
  1043. in humans or live animals.
  1044. In an ordinary linear model context, unknown batch effects cannot be inferred
  1045. and must be treated as random noise.
  1046. However, in high-throughput experiments, once again information can be
  1047. shared across features to identify patterns of un-modeled variation that
  1048. are repeated in many features.
  1049. One attractive strategy would be to perform singular value decomposition
  1050. (SVD) on the matrix os linear model residuals (which contain all the un-modeled
  1051. variation in the data) and take the first few singular vectors as batch
  1052. effects.
  1053. While this can be effective, it makes the unreasonable assumption that
  1054. all batch effects are uncorrelated with any of the effects being modeled.
  1055. Surrogate variable analysis (SVA) starts with this approach, but takes
  1056. some additional steps to identify batch effects in the full data that are
  1057. both highly correlated with the singular vectors in the residuals and least
  1058. correlated with the effects of interest
  1059. \begin_inset CommandInset citation
  1060. LatexCommand cite
  1061. key "Leek2007"
  1062. literal "false"
  1063. \end_inset
  1064. .
  1065. Since the final batch effects are estimated from the full data, moderate
  1066. correlations between the batch effects and effects of interest are allowed,
  1067. which gives SVA much more freedom to estimate the true extent of the batch
  1068. effects compared to simple residual SVD.
  1069. Once the surrogate variables are estimated, they can be included as coefficient
  1070. s in the linear model in a similar fashion to known batch effects in order
  1071. to subtract out their effects on each feature's abundance.
  1072. \end_layout
  1073. \begin_layout Subsubsection
  1074. Factor analysis: PCA, MDS, MOFA
  1075. \end_layout
  1076. \begin_layout Standard
  1077. \begin_inset Flex TODO Note (inline)
  1078. status open
  1079. \begin_layout Plain Layout
  1080. Not sure if this merits a subsection here.
  1081. \end_layout
  1082. \end_inset
  1083. \end_layout
  1084. \begin_layout Itemize
  1085. Batch-corrected PCA is informative, but careful application is required
  1086. to avoid bias
  1087. \end_layout
  1088. \begin_layout Section
  1089. Innovation
  1090. \end_layout
  1091. \begin_layout Standard
  1092. \begin_inset Flex TODO Note (inline)
  1093. status open
  1094. \begin_layout Plain Layout
  1095. Is this entire section redundant with the Approach sections of each chapter?
  1096. I'm not really sure what to write here.
  1097. \end_layout
  1098. \end_inset
  1099. \end_layout
  1100. \begin_layout Subsection
  1101. MSC infusion to improve transplant outcomes (prevent/delay rejection)
  1102. \end_layout
  1103. \begin_layout Standard
  1104. \begin_inset Flex TODO Note (inline)
  1105. status open
  1106. \begin_layout Plain Layout
  1107. Do I still talk about this? It's the motivation for chapter 4, but I don't
  1108. actually present any work related to MSCs.
  1109. \end_layout
  1110. \end_inset
  1111. \end_layout
  1112. \begin_layout Itemize
  1113. Demonstrated in mice, but not yet in primates
  1114. \end_layout
  1115. \begin_layout Itemize
  1116. Mechanism currently unknown, but MSC are known to be immune modulatory
  1117. \end_layout
  1118. \begin_layout Itemize
  1119. Characterize MSC response to interferon gamma
  1120. \end_layout
  1121. \begin_layout Itemize
  1122. IFN-g is thought to stimulate their function
  1123. \end_layout
  1124. \begin_layout Itemize
  1125. Test IFN-g treated MSC infusion as a therapy to delay graft rejection in
  1126. cynomolgus monkeys
  1127. \end_layout
  1128. \begin_layout Itemize
  1129. Monitor animals post-transplant using blood RNA-seq at serial time points
  1130. \end_layout
  1131. \begin_layout Subsection
  1132. Investigate dynamics of histone marks in CD4 T-cell activation and memory
  1133. \end_layout
  1134. \begin_layout Itemize
  1135. Previous studies have looked at single snapshots of histone marks
  1136. \end_layout
  1137. \begin_layout Itemize
  1138. Instead, look at changes in histone marks across activation and memory
  1139. \end_layout
  1140. \begin_layout Subsection
  1141. High-throughput sequencing and microarray technologies
  1142. \end_layout
  1143. \begin_layout Itemize
  1144. Powerful methods for assaying gene expression and epigenetics across entire
  1145. genomes
  1146. \end_layout
  1147. \begin_layout Itemize
  1148. Proper analysis requires finding and exploiting systematic genome-wide trends
  1149. \end_layout
  1150. \begin_layout Chapter
  1151. Reproducible genome-wide epigenetic analysis of H3K4 and H3K27 methylation
  1152. in naive and memory CD4 T-cell activation
  1153. \end_layout
  1154. \begin_layout Standard
  1155. \begin_inset Flex TODO Note (inline)
  1156. status open
  1157. \begin_layout Plain Layout
  1158. Chapter author list: Me, Sarah, Dan
  1159. \end_layout
  1160. \end_inset
  1161. \end_layout
  1162. \begin_layout Standard
  1163. \begin_inset Flex TODO Note (inline)
  1164. status open
  1165. \begin_layout Plain Layout
  1166. Need better section titles throughout the entire chapter
  1167. \end_layout
  1168. \end_inset
  1169. \end_layout
  1170. \begin_layout Section
  1171. Approach
  1172. \end_layout
  1173. \begin_layout Standard
  1174. \begin_inset Flex TODO Note (inline)
  1175. status open
  1176. \begin_layout Plain Layout
  1177. Check on the exact correct way to write
  1178. \begin_inset Quotes eld
  1179. \end_inset
  1180. CD4 T-cell
  1181. \begin_inset Quotes erd
  1182. \end_inset
  1183. .
  1184. I think there might be a plus sign somwehere in there now? Also, maybe
  1185. figure out a reasonable way to abbreviate
  1186. \begin_inset Quotes eld
  1187. \end_inset
  1188. naive CD4 T-cells
  1189. \begin_inset Quotes erd
  1190. \end_inset
  1191. and
  1192. \begin_inset Quotes eld
  1193. \end_inset
  1194. memory CD4 T-cells
  1195. \begin_inset Quotes erd
  1196. \end_inset
  1197. .
  1198. \end_layout
  1199. \end_inset
  1200. \end_layout
  1201. \begin_layout Standard
  1202. \begin_inset Flex TODO Note (inline)
  1203. status open
  1204. \begin_layout Plain Layout
  1205. Is it ok to just copy a bunch of citations from the intros to Sarah's papers?
  1206. That feels like cheating somehow.
  1207. \end_layout
  1208. \end_inset
  1209. \end_layout
  1210. \begin_layout Standard
  1211. CD4 T-cells are central to all adaptive immune responses, as well as immune
  1212. memory [CITE?].
  1213. After an infection is cleared, a subset of the naive CD4 T-cells that responded
  1214. to that infection differentiate into memory CD4 T-cells, which are responsible
  1215. for responding to the same pathogen in the future.
  1216. Memory CD4 T-cells are functionally distinct, able to respond to an infection
  1217. more quickly and without the co-stimulation requried by naive CD4 T-cells.
  1218. However, the molecular mechanisms underlying this functional distinction
  1219. are not well-understood.
  1220. Epigenetic regulation via histone modification is thought to play an important
  1221. role, but while many studies have looked at static snapshots of histone
  1222. methylation in T-cells, few studies have looked at the dynamics of histone
  1223. regulation after T-cell activation, nor the differences in histone methylation
  1224. between naive and memory T-cells.
  1225. H3K4me2, H3K4me3 and H3K27me3 are three histone marks thought to be major
  1226. epigenetic regulators of gene expression.
  1227. The goal of the present study is to investigate the role of these histone
  1228. marks in CD4 T-cell activation kinetics and memory differentiation.
  1229. In static snapshots, H3K4me2 and H3K4me3 are often observed in the promoters
  1230. of highly transcribed genes, while H3K27me3 is more often observed in promoters
  1231. of inactive genes with little to no transcription occurring.
  1232. As a result, the two H3K4 marks have been characterized as
  1233. \begin_inset Quotes eld
  1234. \end_inset
  1235. activating
  1236. \begin_inset Quotes erd
  1237. \end_inset
  1238. marks, while H3K27me3 has been characterized as
  1239. \begin_inset Quotes eld
  1240. \end_inset
  1241. deactivating
  1242. \begin_inset Quotes erd
  1243. \end_inset
  1244. .
  1245. Despite these characterizations, the actual causal relationship between
  1246. these histone modifications and gene transcription is complex and likely
  1247. involves positive and negative feedback loops between the two.
  1248. \end_layout
  1249. \begin_layout Standard
  1250. In order to investigate the relationship between gene expression and these
  1251. histone modifications in the context of naive and memory CD4 T-cell activation,
  1252. a previously published data set of combined RNA-seq and ChIP-seq data was
  1253. re-analyzed using up-to-date methods designed to address the specific analysis
  1254. challenges posed by this data set.
  1255. The data set contains naive and memory CD4 T-cell samples in a time course
  1256. before and after activation.
  1257. Like the original analysis, this analysis looks at the dynamics of these
  1258. marks histone marks and compare them to gene expression dynamics at the
  1259. same time points during activation, as well as comapre them between naive
  1260. and memory cells, in hope of discovering evidence of new mechanistic details
  1261. in the interplay between them.
  1262. The original analysis of this data treated each gene promoter as a monolithinc
  1263. unit and mostly assumed that ChIP-seq reads or peaks occuring anywhere
  1264. within a promoter were equivalent, regardless of where they occurred relative
  1265. to the gene structure.
  1266. For an initial analysis of the data, this was a necessary simplifying assumptio
  1267. n.
  1268. The current analysis aims to relax this assumption, first by directly analyzing
  1269. ChIP-seq peaks for differential modification, and second by taking a mor
  1270. granular look at the ChIP-seq read coverage within promoter regions to
  1271. ask whether the location of histone modifications relative to the gene's
  1272. TSS is an important factor, as opposed to simple proximity.
  1273. \end_layout
  1274. \begin_layout Section
  1275. Methods
  1276. \end_layout
  1277. \begin_layout Standard
  1278. \begin_inset Flex TODO Note (inline)
  1279. status open
  1280. \begin_layout Plain Layout
  1281. Look up some more details from the papers (e.g.
  1282. activation method).
  1283. \end_layout
  1284. \end_inset
  1285. \end_layout
  1286. \begin_layout Standard
  1287. A reproducible workflow was written to analyze the raw ChIP-seq and RNA-seq
  1288. data from previous studies
  1289. \begin_inset CommandInset citation
  1290. LatexCommand cite
  1291. key "gh-cd4-csaw,LaMere2016,LaMere2017"
  1292. literal "true"
  1293. \end_inset
  1294. .
  1295. Briefly, this data consists of RNA-seq and ChIP-seq from CD4 T-cells cultured
  1296. from 4 donors.
  1297. From each donor, naive and memory CD4 T-cells were isolated separately.
  1298. Then cultures of both cells were activated [how?], and samples were taken
  1299. at 4 time points: Day 0 (pre-activation), Day 1 (early activation), Day
  1300. 5 (peak activation), and Day 14 (post-activation).
  1301. For each combination of cell type and time point, RNA was isolated and
  1302. sequenced, and ChIP-seq was performed for each of 3 histone marks: H3K4me2,
  1303. H3K4me3, and H3K27me3.
  1304. The ChIP-seq input DNA was also sequenced for each sample.
  1305. The result was 32 samples for each assay.
  1306. \end_layout
  1307. \begin_layout Subsection
  1308. RNA-seq differential expression analysis
  1309. \end_layout
  1310. \begin_layout Standard
  1311. \begin_inset Note Note
  1312. status collapsed
  1313. \begin_layout Plain Layout
  1314. \begin_inset Float figure
  1315. wide false
  1316. sideways false
  1317. status open
  1318. \begin_layout Plain Layout
  1319. \align center
  1320. \begin_inset Float figure
  1321. wide false
  1322. sideways false
  1323. status collapsed
  1324. \begin_layout Plain Layout
  1325. \align center
  1326. \begin_inset Graphics
  1327. filename graphics/CD4-csaw/rnaseq-compare/ensmebl-vs-entrez-star-CROP.png
  1328. lyxscale 25
  1329. width 35col%
  1330. groupId rna-comp-subfig
  1331. \end_inset
  1332. \end_layout
  1333. \begin_layout Plain Layout
  1334. \begin_inset Caption Standard
  1335. \begin_layout Plain Layout
  1336. STAR quantification, Entrez vs Ensembl gene annotation
  1337. \end_layout
  1338. \end_inset
  1339. \end_layout
  1340. \end_inset
  1341. \begin_inset space \qquad{}
  1342. \end_inset
  1343. \begin_inset Float figure
  1344. wide false
  1345. sideways false
  1346. status collapsed
  1347. \begin_layout Plain Layout
  1348. \align center
  1349. \begin_inset Graphics
  1350. filename graphics/CD4-csaw/rnaseq-compare/ensmebl-vs-entrez-shoal-CROP.png
  1351. lyxscale 25
  1352. width 35col%
  1353. groupId rna-comp-subfig
  1354. \end_inset
  1355. \end_layout
  1356. \begin_layout Plain Layout
  1357. \begin_inset Caption Standard
  1358. \begin_layout Plain Layout
  1359. Salmon+Shoal quantification, Entrez vs Ensembl gene annotation
  1360. \end_layout
  1361. \end_inset
  1362. \end_layout
  1363. \end_inset
  1364. \end_layout
  1365. \begin_layout Plain Layout
  1366. \align center
  1367. \begin_inset Float figure
  1368. wide false
  1369. sideways false
  1370. status collapsed
  1371. \begin_layout Plain Layout
  1372. \align center
  1373. \begin_inset Graphics
  1374. filename graphics/CD4-csaw/rnaseq-compare/star-vs-hisat2-CROP.png
  1375. lyxscale 25
  1376. width 35col%
  1377. groupId rna-comp-subfig
  1378. \end_inset
  1379. \end_layout
  1380. \begin_layout Plain Layout
  1381. \begin_inset Caption Standard
  1382. \begin_layout Plain Layout
  1383. STAR vs HISAT2 quantification, Ensembl gene annotation
  1384. \end_layout
  1385. \end_inset
  1386. \end_layout
  1387. \end_inset
  1388. \begin_inset space \qquad{}
  1389. \end_inset
  1390. \begin_inset Float figure
  1391. wide false
  1392. sideways false
  1393. status collapsed
  1394. \begin_layout Plain Layout
  1395. \align center
  1396. \begin_inset Graphics
  1397. filename graphics/CD4-csaw/rnaseq-compare/star-vs-salmon-CROP.png
  1398. lyxscale 25
  1399. width 35col%
  1400. groupId rna-comp-subfig
  1401. \end_inset
  1402. \end_layout
  1403. \begin_layout Plain Layout
  1404. \begin_inset Caption Standard
  1405. \begin_layout Plain Layout
  1406. Salomn vs STAR quantification, Ensembl gene annotation
  1407. \end_layout
  1408. \end_inset
  1409. \end_layout
  1410. \end_inset
  1411. \end_layout
  1412. \begin_layout Plain Layout
  1413. \align center
  1414. \begin_inset Float figure
  1415. wide false
  1416. sideways false
  1417. status collapsed
  1418. \begin_layout Plain Layout
  1419. \align center
  1420. \begin_inset Graphics
  1421. filename graphics/CD4-csaw/rnaseq-compare/salmon-vs-kallisto-CROP.png
  1422. lyxscale 25
  1423. width 35col%
  1424. groupId rna-comp-subfig
  1425. \end_inset
  1426. \end_layout
  1427. \begin_layout Plain Layout
  1428. \begin_inset Caption Standard
  1429. \begin_layout Plain Layout
  1430. Salmon vs Kallisto quantification, Ensembl gene annotation
  1431. \end_layout
  1432. \end_inset
  1433. \end_layout
  1434. \end_inset
  1435. \begin_inset space \qquad{}
  1436. \end_inset
  1437. \begin_inset Float figure
  1438. wide false
  1439. sideways false
  1440. status collapsed
  1441. \begin_layout Plain Layout
  1442. \align center
  1443. \begin_inset Graphics
  1444. filename graphics/CD4-csaw/rnaseq-compare/salmon-vs-shoal-CROP.png
  1445. lyxscale 25
  1446. width 35col%
  1447. groupId rna-comp-subfig
  1448. \end_inset
  1449. \end_layout
  1450. \begin_layout Plain Layout
  1451. \begin_inset Caption Standard
  1452. \begin_layout Plain Layout
  1453. Salmon+Shoal vs Salmon alone, Ensembl gene annotation
  1454. \end_layout
  1455. \end_inset
  1456. \end_layout
  1457. \end_inset
  1458. \end_layout
  1459. \begin_layout Plain Layout
  1460. \begin_inset Caption Standard
  1461. \begin_layout Plain Layout
  1462. \begin_inset CommandInset label
  1463. LatexCommand label
  1464. name "fig:RNA-norm-comp"
  1465. \end_inset
  1466. RNA-seq comparisons
  1467. \end_layout
  1468. \end_inset
  1469. \end_layout
  1470. \end_inset
  1471. \end_layout
  1472. \end_inset
  1473. \end_layout
  1474. \begin_layout Standard
  1475. Sequence reads were retrieved from the Sequence Read Archive (SRA)
  1476. \begin_inset CommandInset citation
  1477. LatexCommand cite
  1478. key "Leinonen2011"
  1479. literal "false"
  1480. \end_inset
  1481. .
  1482. Five different alignment and quantification methods were tested for the
  1483. RNA-seq data
  1484. \begin_inset CommandInset citation
  1485. LatexCommand cite
  1486. key "Dobin2012,Kim2019,Liao2014,Pimentel2016,Patro2017,gh-shoal,gh-hg38-ref"
  1487. literal "false"
  1488. \end_inset
  1489. .
  1490. Each quantification was tested with both Ensembl transcripts and UCSC known
  1491. gene annotations [CITE? Also which versions of each?].
  1492. Comparisons of downstream results from each combination of quantification
  1493. method and reference revealed that all quantifications gave broadly similar
  1494. results for most genes, so shoal with the Ensembl annotation was chosen
  1495. as the method theoretically most likely to partially mitigate some of the
  1496. batch effect in the data.
  1497. \end_layout
  1498. \begin_layout Standard
  1499. \begin_inset Float figure
  1500. wide false
  1501. sideways false
  1502. status collapsed
  1503. \begin_layout Plain Layout
  1504. \align center
  1505. \begin_inset Float figure
  1506. wide false
  1507. sideways false
  1508. status open
  1509. \begin_layout Plain Layout
  1510. \align center
  1511. \begin_inset Graphics
  1512. filename graphics/CD4-csaw/RNA-seq/PCA-no-batchsub-CROP.png
  1513. lyxscale 25
  1514. width 75col%
  1515. groupId rna-pca-subfig
  1516. \end_inset
  1517. \end_layout
  1518. \begin_layout Plain Layout
  1519. \begin_inset Caption Standard
  1520. \begin_layout Plain Layout
  1521. \series bold
  1522. \begin_inset CommandInset label
  1523. LatexCommand label
  1524. name "fig:RNA-PCA-no-batchsub"
  1525. \end_inset
  1526. Before batch correction
  1527. \end_layout
  1528. \end_inset
  1529. \end_layout
  1530. \end_inset
  1531. \end_layout
  1532. \begin_layout Plain Layout
  1533. \align center
  1534. \begin_inset Float figure
  1535. wide false
  1536. sideways false
  1537. status open
  1538. \begin_layout Plain Layout
  1539. \align center
  1540. \begin_inset Graphics
  1541. filename graphics/CD4-csaw/RNA-seq/PCA-combat-batchsub-CROP.png
  1542. lyxscale 25
  1543. width 75col%
  1544. groupId rna-pca-subfig
  1545. \end_inset
  1546. \end_layout
  1547. \begin_layout Plain Layout
  1548. \begin_inset Caption Standard
  1549. \begin_layout Plain Layout
  1550. \series bold
  1551. \begin_inset CommandInset label
  1552. LatexCommand label
  1553. name "fig:RNA-PCA-ComBat-batchsub"
  1554. \end_inset
  1555. After batch correction with ComBat
  1556. \end_layout
  1557. \end_inset
  1558. \end_layout
  1559. \end_inset
  1560. \end_layout
  1561. \begin_layout Plain Layout
  1562. \begin_inset Caption Standard
  1563. \begin_layout Plain Layout
  1564. \series bold
  1565. \begin_inset CommandInset label
  1566. LatexCommand label
  1567. name "fig:RNA-PCA"
  1568. \end_inset
  1569. PCoA plots of RNA-seq data showing effect of batch correction.
  1570. \end_layout
  1571. \end_inset
  1572. \end_layout
  1573. \end_inset
  1574. \end_layout
  1575. \begin_layout Standard
  1576. Due to an error in sample preparation, the RNA from the samples for days
  1577. 0 and 5 were sequenced using a different kit than those for days 1 and
  1578. 14.
  1579. This induced a substantial batch effect in the data due to differences
  1580. in sequencing biases between the two kits, and this batch effect is unfortunate
  1581. ly confounded with the time point variable (Figure
  1582. \begin_inset CommandInset ref
  1583. LatexCommand ref
  1584. reference "fig:RNA-PCA-no-batchsub"
  1585. plural "false"
  1586. caps "false"
  1587. noprefix "false"
  1588. \end_inset
  1589. ).
  1590. To do the best possible analysis with this data, this batch effect was
  1591. subtracted out from the data using ComBat
  1592. \begin_inset CommandInset citation
  1593. LatexCommand cite
  1594. key "Johnson2007"
  1595. literal "false"
  1596. \end_inset
  1597. , ignoring the time point variable due to the confounding with the batch
  1598. variable.
  1599. The result is a marked improvement, but the unavoidable counfounding with
  1600. time point means that certain real patterns of gene expression will be
  1601. indistinguishable from the batch effect and subtracted out as a result.
  1602. Specifically, any
  1603. \begin_inset Quotes eld
  1604. \end_inset
  1605. zig-zag
  1606. \begin_inset Quotes erd
  1607. \end_inset
  1608. pattern, such as a gene whose expression goes up on day 1, down on day
  1609. 5, and back up again on day 14, will be attenuated or eliminated entirely.
  1610. In the context of a T-cell activation time course, it is unlikely that
  1611. many genes of interest will follow such an expression pattern, so this
  1612. loss was deemed an acceptable cost for correcting the batch effect.
  1613. \end_layout
  1614. \begin_layout Standard
  1615. \begin_inset Float figure
  1616. wide false
  1617. sideways false
  1618. status collapsed
  1619. \begin_layout Plain Layout
  1620. \begin_inset Flex TODO Note (inline)
  1621. status open
  1622. \begin_layout Plain Layout
  1623. Just take the top row
  1624. \end_layout
  1625. \end_inset
  1626. \end_layout
  1627. \begin_layout Plain Layout
  1628. \align center
  1629. \begin_inset Graphics
  1630. filename graphics/CD4-csaw/RNA-seq/weights-vs-covars-CROP.png
  1631. lyxscale 25
  1632. width 100col%
  1633. groupId colwidth-raster
  1634. \end_inset
  1635. \end_layout
  1636. \begin_layout Plain Layout
  1637. \begin_inset Caption Standard
  1638. \begin_layout Plain Layout
  1639. \series bold
  1640. \begin_inset CommandInset label
  1641. LatexCommand label
  1642. name "fig:RNA-seq-weights-vs-covars"
  1643. \end_inset
  1644. RNA-seq sample weights, grouped by experimental and technical covariates.
  1645. \end_layout
  1646. \end_inset
  1647. \end_layout
  1648. \end_inset
  1649. \end_layout
  1650. \begin_layout Standard
  1651. However, removing the systematic component of the batch effect still leaves
  1652. the noise component.
  1653. The gene quantifications from the first batch are substantially noisier
  1654. than those in the second batch.
  1655. This analysis corrected for this by using limma's sample weighting method
  1656. to assign lower weights to the noisy samples of batch 1
  1657. \begin_inset CommandInset citation
  1658. LatexCommand cite
  1659. key "Ritchie2006,Liu2015"
  1660. literal "false"
  1661. \end_inset
  1662. .
  1663. The resulting analysis gives an accurate assessment of statistical significance
  1664. for all comparisons, which unfortuantely means a loss of statistical power
  1665. for comparisons involving samples in batch 1.
  1666. \end_layout
  1667. \begin_layout Standard
  1668. In any case, the RNA-seq counts were first normalized using trimmed mean
  1669. of M-values
  1670. \begin_inset CommandInset citation
  1671. LatexCommand cite
  1672. key "Robinson2010"
  1673. literal "false"
  1674. \end_inset
  1675. , converted to normalized logCPM with quality weights using voomWithQualityWeigh
  1676. ts
  1677. \begin_inset CommandInset citation
  1678. LatexCommand cite
  1679. key "Law2013,Liu2015"
  1680. literal "false"
  1681. \end_inset
  1682. , and batch-corrected at this point using ComBat.
  1683. A linear model was fit to the batch-corrected, quality-weighted data for
  1684. each gene using limma, and each gene was tested for differential expression
  1685. using limma's empirical Bayes moderated
  1686. \begin_inset Formula $t$
  1687. \end_inset
  1688. -test
  1689. \begin_inset CommandInset citation
  1690. LatexCommand cite
  1691. key "Smyth2005,Law2013,Phipson2013"
  1692. literal "false"
  1693. \end_inset
  1694. .
  1695. \end_layout
  1696. \begin_layout Subsection
  1697. ChIP-seq differential modification analysis
  1698. \end_layout
  1699. \begin_layout Standard
  1700. \begin_inset Float figure
  1701. wide false
  1702. sideways false
  1703. status collapsed
  1704. \begin_layout Plain Layout
  1705. \align center
  1706. \begin_inset Float figure
  1707. wide false
  1708. sideways false
  1709. status open
  1710. \begin_layout Plain Layout
  1711. \align center
  1712. \begin_inset Graphics
  1713. filename graphics/CD4-csaw/csaw/CCF-plots-noBL-PAGE2-CROP.pdf
  1714. lyxscale 50
  1715. height 40theight%
  1716. groupId ccf-subfig
  1717. \end_inset
  1718. \end_layout
  1719. \begin_layout Plain Layout
  1720. \begin_inset Caption Standard
  1721. \begin_layout Plain Layout
  1722. \series bold
  1723. \begin_inset CommandInset label
  1724. LatexCommand label
  1725. name "fig:CCF-without-blacklist"
  1726. \end_inset
  1727. Cross-correlation plots without removing blacklisted reads.
  1728. \series default
  1729. Without blacklisting, many artifactual peaks are visible in the cross-correlatio
  1730. ns of the ChIP-seq samples, and the peak at the true fragment size (147
  1731. \begin_inset space ~
  1732. \end_inset
  1733. bp) is frequently overshadowed by the artifactual peak at the read length
  1734. (100
  1735. \begin_inset space ~
  1736. \end_inset
  1737. bp).
  1738. \end_layout
  1739. \end_inset
  1740. \end_layout
  1741. \end_inset
  1742. \end_layout
  1743. \begin_layout Plain Layout
  1744. \align center
  1745. \begin_inset Float figure
  1746. wide false
  1747. sideways false
  1748. status open
  1749. \begin_layout Plain Layout
  1750. \align center
  1751. \begin_inset Graphics
  1752. filename graphics/CD4-csaw/csaw/CCF-plots-PAGE2-CROP.pdf
  1753. lyxscale 50
  1754. height 40theight%
  1755. groupId ccf-subfig
  1756. \end_inset
  1757. \end_layout
  1758. \begin_layout Plain Layout
  1759. \begin_inset Caption Standard
  1760. \begin_layout Plain Layout
  1761. \series bold
  1762. \begin_inset CommandInset label
  1763. LatexCommand label
  1764. name "fig:CCF-with-blacklist"
  1765. \end_inset
  1766. Cross-correlation plots with blacklisted reads removed.
  1767. \series default
  1768. After blacklisting, most ChIP-seq samples have clean-looking periodic cross-cor
  1769. relation plots, with the largest peak around 147
  1770. \begin_inset space ~
  1771. \end_inset
  1772. bp, the expected size for a fragment of DNA from a single nucleosome, and
  1773. little to no peak at the read length, 100
  1774. \begin_inset space ~
  1775. \end_inset
  1776. bp.
  1777. \end_layout
  1778. \end_inset
  1779. \end_layout
  1780. \end_inset
  1781. \end_layout
  1782. \begin_layout Plain Layout
  1783. \begin_inset Caption Standard
  1784. \begin_layout Plain Layout
  1785. \series bold
  1786. \begin_inset CommandInset label
  1787. LatexCommand label
  1788. name "fig:CCF-master"
  1789. \end_inset
  1790. Strand cross-correlation plots for ChIP-seq data, before and after blacklisting.
  1791. \end_layout
  1792. \end_inset
  1793. \end_layout
  1794. \end_inset
  1795. \end_layout
  1796. \begin_layout Standard
  1797. \begin_inset Note Note
  1798. status open
  1799. \begin_layout Plain Layout
  1800. \begin_inset Float figure
  1801. wide false
  1802. sideways false
  1803. status collapsed
  1804. \begin_layout Plain Layout
  1805. \align center
  1806. \begin_inset Graphics
  1807. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-sample-MAplot-bins-CROP.png
  1808. lyxscale 25
  1809. width 100col%
  1810. groupId colwidth-raster
  1811. \end_inset
  1812. \end_layout
  1813. \begin_layout Plain Layout
  1814. \begin_inset Caption Standard
  1815. \begin_layout Plain Layout
  1816. \series bold
  1817. \begin_inset CommandInset label
  1818. LatexCommand label
  1819. name "fig:MA-plot-bigbins"
  1820. \end_inset
  1821. MA plot of H3K4me2 read counts in 10kb bins for two arbitrary samples.
  1822. \end_layout
  1823. \end_inset
  1824. \end_layout
  1825. \end_inset
  1826. \end_layout
  1827. \end_inset
  1828. \end_layout
  1829. \begin_layout Standard
  1830. \begin_inset Flex TODO Note (inline)
  1831. status open
  1832. \begin_layout Plain Layout
  1833. Be consistent about use of
  1834. \begin_inset Quotes eld
  1835. \end_inset
  1836. differential binding
  1837. \begin_inset Quotes erd
  1838. \end_inset
  1839. vs
  1840. \begin_inset Quotes eld
  1841. \end_inset
  1842. differential modification
  1843. \begin_inset Quotes erd
  1844. \end_inset
  1845. throughout this chapter.
  1846. The latter is usually preferred.
  1847. \end_layout
  1848. \end_inset
  1849. \end_layout
  1850. \begin_layout Standard
  1851. Sequence reads were retrieved from SRA
  1852. \begin_inset CommandInset citation
  1853. LatexCommand cite
  1854. key "Leinonen2011"
  1855. literal "false"
  1856. \end_inset
  1857. .
  1858. ChIP-seq (and input) reads were aligned to GRCh38 genome assembly using
  1859. Bowtie 2
  1860. \begin_inset CommandInset citation
  1861. LatexCommand cite
  1862. key "Langmead2012,Schneider2017,gh-hg38-ref"
  1863. literal "false"
  1864. \end_inset
  1865. .
  1866. Artifact regions were annotated using a custom implementation of the GreyListCh
  1867. IP algorithm, and these
  1868. \begin_inset Quotes eld
  1869. \end_inset
  1870. greylists
  1871. \begin_inset Quotes erd
  1872. \end_inset
  1873. were merged with the published ENCODE blacklists
  1874. \begin_inset CommandInset citation
  1875. LatexCommand cite
  1876. key "greylistchip,Amemiya2019,Dunham2012,gh-cd4-csaw"
  1877. literal "false"
  1878. \end_inset
  1879. .
  1880. Any read or called peak overlapping one of these regions was regarded as
  1881. artifactual and excluded from downstream analyses.
  1882. Figure
  1883. \begin_inset CommandInset ref
  1884. LatexCommand ref
  1885. reference "fig:CCF-master"
  1886. plural "false"
  1887. caps "false"
  1888. noprefix "false"
  1889. \end_inset
  1890. shows the improvement after blacklisting in the strand cross-correlation
  1891. plots, a common quality control plot for ChIP-seq data.
  1892. Peaks were called using epic, an implementation of the SICER algorithm
  1893. \begin_inset CommandInset citation
  1894. LatexCommand cite
  1895. key "Zang2009,gh-epic"
  1896. literal "false"
  1897. \end_inset
  1898. .
  1899. Peaks were also called separately using MACS, but MACS was determined to
  1900. be a poor fit for the data, and these peak calls are not used in any further
  1901. analyses
  1902. \begin_inset CommandInset citation
  1903. LatexCommand cite
  1904. key "Zhang2008"
  1905. literal "false"
  1906. \end_inset
  1907. .
  1908. Consensus peaks were determined by applying the irreproducible discovery
  1909. rate (IDR) framework
  1910. \begin_inset CommandInset citation
  1911. LatexCommand cite
  1912. key "Li2006,gh-idr"
  1913. literal "false"
  1914. \end_inset
  1915. to find peaks consistently called in the same locations across all 4 donors.
  1916. \end_layout
  1917. \begin_layout Standard
  1918. Promoters were defined by computing the distance from each annotated TSS
  1919. to the nearest called peak and examining the distribution of distances,
  1920. observing that peaks for each histone mark were enriched within a certain
  1921. distance of the TSS.
  1922. For H3K4me2 and H3K4me3, this distance was about 1
  1923. \begin_inset space ~
  1924. \end_inset
  1925. kb, while for H3K27me3 it was 2.5
  1926. \begin_inset space ~
  1927. \end_inset
  1928. kb.
  1929. These distances were used as an
  1930. \begin_inset Quotes eld
  1931. \end_inset
  1932. effective promoter radius
  1933. \begin_inset Quotes erd
  1934. \end_inset
  1935. for each mark.
  1936. The promoter region for each gene was defined as the region of the genome
  1937. within this distance upstream or downstream of the gene's annotated TSS.
  1938. For genes with multiple annotated TSSs, a promoter region was defined for
  1939. each TSS individually, and any promoters that overlapped (due to multiple
  1940. TSSs being closer than 2 times the radius) were merged into one large promoter.
  1941. Thus, some genes had multiple promoters defined, which were each analyzed
  1942. separately for differential modification.
  1943. \end_layout
  1944. \begin_layout Standard
  1945. \begin_inset Float figure
  1946. wide false
  1947. sideways false
  1948. status collapsed
  1949. \begin_layout Plain Layout
  1950. \begin_inset Float figure
  1951. wide false
  1952. sideways false
  1953. status collapsed
  1954. \begin_layout Plain Layout
  1955. \align center
  1956. \begin_inset Graphics
  1957. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-PCA-raw-CROP.png
  1958. lyxscale 25
  1959. width 45col%
  1960. groupId pcoa-subfig
  1961. \end_inset
  1962. \end_layout
  1963. \begin_layout Plain Layout
  1964. \begin_inset Caption Standard
  1965. \begin_layout Plain Layout
  1966. \series bold
  1967. \begin_inset CommandInset label
  1968. LatexCommand label
  1969. name "fig:PCoA-H3K4me2-bad"
  1970. \end_inset
  1971. H3K4me2, no correction
  1972. \end_layout
  1973. \end_inset
  1974. \end_layout
  1975. \end_inset
  1976. \begin_inset space \hfill{}
  1977. \end_inset
  1978. \begin_inset Float figure
  1979. wide false
  1980. sideways false
  1981. status collapsed
  1982. \begin_layout Plain Layout
  1983. \align center
  1984. \begin_inset Graphics
  1985. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-PCA-SVsub-CROP.png
  1986. lyxscale 25
  1987. width 45col%
  1988. groupId pcoa-subfig
  1989. \end_inset
  1990. \end_layout
  1991. \begin_layout Plain Layout
  1992. \begin_inset Caption Standard
  1993. \begin_layout Plain Layout
  1994. \series bold
  1995. \begin_inset CommandInset label
  1996. LatexCommand label
  1997. name "fig:PCoA-H3K4me2-good"
  1998. \end_inset
  1999. H3K4me2, SVs subtracted
  2000. \end_layout
  2001. \end_inset
  2002. \end_layout
  2003. \end_inset
  2004. \end_layout
  2005. \begin_layout Plain Layout
  2006. \begin_inset Float figure
  2007. wide false
  2008. sideways false
  2009. status collapsed
  2010. \begin_layout Plain Layout
  2011. \align center
  2012. \begin_inset Graphics
  2013. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-PCA-raw-CROP.png
  2014. lyxscale 25
  2015. width 45col%
  2016. groupId pcoa-subfig
  2017. \end_inset
  2018. \end_layout
  2019. \begin_layout Plain Layout
  2020. \begin_inset Caption Standard
  2021. \begin_layout Plain Layout
  2022. \series bold
  2023. \begin_inset CommandInset label
  2024. LatexCommand label
  2025. name "fig:PCoA-H3K4me3-bad"
  2026. \end_inset
  2027. H3K4me3, no correction
  2028. \end_layout
  2029. \end_inset
  2030. \end_layout
  2031. \end_inset
  2032. \begin_inset space \hfill{}
  2033. \end_inset
  2034. \begin_inset Float figure
  2035. wide false
  2036. sideways false
  2037. status collapsed
  2038. \begin_layout Plain Layout
  2039. \align center
  2040. \begin_inset Graphics
  2041. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-PCA-SVsub-CROP.png
  2042. lyxscale 25
  2043. width 45col%
  2044. groupId pcoa-subfig
  2045. \end_inset
  2046. \end_layout
  2047. \begin_layout Plain Layout
  2048. \begin_inset Caption Standard
  2049. \begin_layout Plain Layout
  2050. \series bold
  2051. \begin_inset CommandInset label
  2052. LatexCommand label
  2053. name "fig:PCoA-H3K4me3-good"
  2054. \end_inset
  2055. H3K4me3, SVs subtracted
  2056. \end_layout
  2057. \end_inset
  2058. \end_layout
  2059. \end_inset
  2060. \end_layout
  2061. \begin_layout Plain Layout
  2062. \begin_inset Float figure
  2063. wide false
  2064. sideways false
  2065. status collapsed
  2066. \begin_layout Plain Layout
  2067. \align center
  2068. \begin_inset Graphics
  2069. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-PCA-raw-CROP.png
  2070. lyxscale 25
  2071. width 45col%
  2072. groupId pcoa-subfig
  2073. \end_inset
  2074. \end_layout
  2075. \begin_layout Plain Layout
  2076. \begin_inset Caption Standard
  2077. \begin_layout Plain Layout
  2078. \series bold
  2079. \begin_inset CommandInset label
  2080. LatexCommand label
  2081. name "fig:PCoA-H3K27me3-bad"
  2082. \end_inset
  2083. H3K27me3, no correction
  2084. \end_layout
  2085. \end_inset
  2086. \end_layout
  2087. \end_inset
  2088. \begin_inset space \hfill{}
  2089. \end_inset
  2090. \begin_inset Float figure
  2091. wide false
  2092. sideways false
  2093. status collapsed
  2094. \begin_layout Plain Layout
  2095. \align center
  2096. \begin_inset Graphics
  2097. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-PCA-SVsub-CROP.png
  2098. lyxscale 25
  2099. width 45col%
  2100. groupId pcoa-subfig
  2101. \end_inset
  2102. \end_layout
  2103. \begin_layout Plain Layout
  2104. \begin_inset Caption Standard
  2105. \begin_layout Plain Layout
  2106. \series bold
  2107. \begin_inset CommandInset label
  2108. LatexCommand label
  2109. name "fig:PCoA-H3K27me3-good"
  2110. \end_inset
  2111. H3K27me3, SVs subtracted
  2112. \end_layout
  2113. \end_inset
  2114. \end_layout
  2115. \end_inset
  2116. \end_layout
  2117. \begin_layout Plain Layout
  2118. \begin_inset Caption Standard
  2119. \begin_layout Plain Layout
  2120. \series bold
  2121. \begin_inset CommandInset label
  2122. LatexCommand label
  2123. name "fig:PCoA-ChIP"
  2124. \end_inset
  2125. PCoA plots of ChIP-seq sliding window data, before and after subtracting
  2126. surrogate variables (SVs).
  2127. \end_layout
  2128. \end_inset
  2129. \end_layout
  2130. \end_inset
  2131. \end_layout
  2132. \begin_layout Standard
  2133. Reads in promoters, peaks, and sliding windows across the genome were counted
  2134. and normalized using csaw and analyzed for differential modification using
  2135. edgeR
  2136. \begin_inset CommandInset citation
  2137. LatexCommand cite
  2138. key "Lun2014,Lun2015a,Lund2012,Phipson2016"
  2139. literal "false"
  2140. \end_inset
  2141. .
  2142. Unobserved confounding factors in the ChIP-seq data were corrected using
  2143. SVA
  2144. \begin_inset CommandInset citation
  2145. LatexCommand cite
  2146. key "Leek2007,Leek2014"
  2147. literal "false"
  2148. \end_inset
  2149. .
  2150. Principal coordinate plots of the promoter count data for each histone
  2151. mark before and after subtracting surrogate variable effects are shown
  2152. in Figure
  2153. \begin_inset CommandInset ref
  2154. LatexCommand ref
  2155. reference "fig:PCoA-ChIP"
  2156. plural "false"
  2157. caps "false"
  2158. noprefix "false"
  2159. \end_inset
  2160. .
  2161. \end_layout
  2162. \begin_layout Standard
  2163. To investigate whether the location of a peak within the promoter region
  2164. was important,
  2165. \begin_inset Quotes eld
  2166. \end_inset
  2167. relative coverage profiles
  2168. \begin_inset Quotes erd
  2169. \end_inset
  2170. were generated.
  2171. First, 500-bp sliding windows were tiled around each annotated TSS: one
  2172. window centered on the TSS itself, and 10 windows each upstream and downstream,
  2173. thus covering a 10.5-kb region centered on the TSS with 21 windows.
  2174. Reads in each window for each TSS were counted in each sample, and the
  2175. counts were normalized and converted to log CPM as in the differential
  2176. modification analysis.
  2177. Then, the logCPM values within each promoter were normalized to an average
  2178. of zero, such that each window's normalized abundance now represents the
  2179. relative read depth of that window compared to all other windows in the
  2180. same promoter.
  2181. The normalized abundance values for each window in a promoter are collectively
  2182. referred to as that promoter's
  2183. \begin_inset Quotes eld
  2184. \end_inset
  2185. relative coverage profile
  2186. \begin_inset Quotes erd
  2187. \end_inset
  2188. .
  2189. \end_layout
  2190. \begin_layout Subsection
  2191. MOFA recovers biologically relevant variation from blind analysis by correlating
  2192. across datasets
  2193. \end_layout
  2194. \begin_layout Standard
  2195. \begin_inset ERT
  2196. status open
  2197. \begin_layout Plain Layout
  2198. \backslash
  2199. afterpage{
  2200. \end_layout
  2201. \begin_layout Plain Layout
  2202. \backslash
  2203. begin{landscape}
  2204. \end_layout
  2205. \end_inset
  2206. \end_layout
  2207. \begin_layout Standard
  2208. \begin_inset Float figure
  2209. wide false
  2210. sideways false
  2211. status open
  2212. \begin_layout Plain Layout
  2213. \begin_inset Float figure
  2214. wide false
  2215. sideways false
  2216. status open
  2217. \begin_layout Plain Layout
  2218. \align center
  2219. \begin_inset Graphics
  2220. filename graphics/CD4-csaw/MOFA-varExplaiend-matrix-CROP.png
  2221. lyxscale 25
  2222. width 45col%
  2223. groupId mofa-subfig
  2224. \end_inset
  2225. \end_layout
  2226. \begin_layout Plain Layout
  2227. \begin_inset Caption Standard
  2228. \begin_layout Plain Layout
  2229. \series bold
  2230. \begin_inset CommandInset label
  2231. LatexCommand label
  2232. name "fig:mofa-varexplained"
  2233. \end_inset
  2234. Variance explained in each data set by each latent factor estimated by MOFA.
  2235. \series default
  2236. For each latent factor (LF) learned by MOFA, the variance explained by
  2237. that factor in each data set (
  2238. \begin_inset Quotes eld
  2239. \end_inset
  2240. view
  2241. \begin_inset Quotes erd
  2242. \end_inset
  2243. ) is shown by the shading of the cells in the lower section.
  2244. The upper section shows the total fraction of each data set's variance
  2245. that is explained by all LFs combined.
  2246. \end_layout
  2247. \end_inset
  2248. \end_layout
  2249. \end_inset
  2250. \begin_inset space \hfill{}
  2251. \end_inset
  2252. \begin_inset Float figure
  2253. wide false
  2254. sideways false
  2255. status open
  2256. \begin_layout Plain Layout
  2257. \align center
  2258. \begin_inset Graphics
  2259. filename graphics/CD4-csaw/MOFA-LF-scatter-CROP.png
  2260. lyxscale 25
  2261. width 45col%
  2262. groupId mofa-subfig
  2263. \end_inset
  2264. \end_layout
  2265. \begin_layout Plain Layout
  2266. \begin_inset Caption Standard
  2267. \begin_layout Plain Layout
  2268. \series bold
  2269. \begin_inset CommandInset label
  2270. LatexCommand label
  2271. name "fig:mofa-lf-scatter"
  2272. \end_inset
  2273. Scatter plots of specific pairs of MOFA latent factors.
  2274. \series default
  2275. LFs 1, 4, and 5 explain substantial variation in all data sets, so they
  2276. are plotted against each other in order to reveal patterns of variation
  2277. that are shared across all data sets.
  2278. \end_layout
  2279. \end_inset
  2280. \end_layout
  2281. \end_inset
  2282. \end_layout
  2283. \begin_layout Plain Layout
  2284. \begin_inset Caption Standard
  2285. \begin_layout Plain Layout
  2286. \series bold
  2287. \begin_inset CommandInset label
  2288. LatexCommand label
  2289. name "fig:MOFA-master"
  2290. \end_inset
  2291. MOFA latent factors separate technical confounders from
  2292. \end_layout
  2293. \end_inset
  2294. \end_layout
  2295. \end_inset
  2296. \end_layout
  2297. \begin_layout Standard
  2298. \begin_inset ERT
  2299. status open
  2300. \begin_layout Plain Layout
  2301. \backslash
  2302. end{landscape}
  2303. \end_layout
  2304. \begin_layout Plain Layout
  2305. }
  2306. \end_layout
  2307. \end_inset
  2308. \end_layout
  2309. \begin_layout Standard
  2310. MOFA was run on all the ChIP-seq windows overlapping consensus peaks for
  2311. each histone mark, as well as the RNA-seq data, in order to identify patterns
  2312. of coordinated variation across all data sets
  2313. \begin_inset CommandInset citation
  2314. LatexCommand cite
  2315. key "Argelaguet2018"
  2316. literal "false"
  2317. \end_inset
  2318. .
  2319. The results are summarized in Figure
  2320. \begin_inset CommandInset ref
  2321. LatexCommand ref
  2322. reference "fig:MOFA-master"
  2323. plural "false"
  2324. caps "false"
  2325. noprefix "false"
  2326. \end_inset
  2327. .
  2328. Latent factors 1, 4, and 5 were determined to explain the most variation
  2329. consistently across all data sets (Fgure
  2330. \begin_inset CommandInset ref
  2331. LatexCommand ref
  2332. reference "fig:mofa-varexplained"
  2333. plural "false"
  2334. caps "false"
  2335. noprefix "false"
  2336. \end_inset
  2337. ), and scatter plots of these factors show that they also correlate best
  2338. with the experimental factors (Figure
  2339. \begin_inset CommandInset ref
  2340. LatexCommand ref
  2341. reference "fig:mofa-lf-scatter"
  2342. plural "false"
  2343. caps "false"
  2344. noprefix "false"
  2345. \end_inset
  2346. ).
  2347. Latent factor 2 captures the batch effect in the RNA-seq data.
  2348. Removing the effect of LF2 using MOFA theoretically yields a batch correction
  2349. that does not depend on knowing the experimental factors.
  2350. When this was attempted, the resulting batch correction was comparable
  2351. to ComBat (see Figure
  2352. \begin_inset CommandInset ref
  2353. LatexCommand ref
  2354. reference "fig:RNA-PCA-ComBat-batchsub"
  2355. plural "false"
  2356. caps "false"
  2357. noprefix "false"
  2358. \end_inset
  2359. ), indicating that the ComBat-based batch correction has little room for
  2360. improvement given the problems with the data set.
  2361. \end_layout
  2362. \begin_layout Standard
  2363. \begin_inset Note Note
  2364. status collapsed
  2365. \begin_layout Plain Layout
  2366. \begin_inset Float figure
  2367. wide false
  2368. sideways false
  2369. status open
  2370. \begin_layout Plain Layout
  2371. \align center
  2372. \begin_inset Graphics
  2373. filename graphics/CD4-csaw/MOFA-batch-correct-CROP.png
  2374. lyxscale 25
  2375. width 100col%
  2376. groupId colwidth-raster
  2377. \end_inset
  2378. \end_layout
  2379. \begin_layout Plain Layout
  2380. \begin_inset Caption Standard
  2381. \begin_layout Plain Layout
  2382. \series bold
  2383. \begin_inset CommandInset label
  2384. LatexCommand label
  2385. name "fig:mofa-batchsub"
  2386. \end_inset
  2387. Result of RNA-seq batch-correction using MOFA latent factors
  2388. \end_layout
  2389. \end_inset
  2390. \end_layout
  2391. \end_inset
  2392. \end_layout
  2393. \end_inset
  2394. \end_layout
  2395. \begin_layout Section
  2396. Results
  2397. \end_layout
  2398. \begin_layout Standard
  2399. \begin_inset Flex TODO Note (inline)
  2400. status open
  2401. \begin_layout Plain Layout
  2402. Focus on what hypotheses were tested, then select figures that show how
  2403. those hypotheses were tested, even if the result is a negative.
  2404. Not every interesting result needs to be in here.
  2405. Chapter should tell a story.
  2406. \end_layout
  2407. \end_inset
  2408. \end_layout
  2409. \begin_layout Standard
  2410. \begin_inset Flex TODO Note (inline)
  2411. status open
  2412. \begin_layout Plain Layout
  2413. Maybe reorder these sections to do RNA-seq, then ChIP-seq, then combined
  2414. analyses?
  2415. \end_layout
  2416. \end_inset
  2417. \end_layout
  2418. \begin_layout Subsection
  2419. Interpretation of RNA-seq analysis is limited by a major confounding factor
  2420. \end_layout
  2421. \begin_layout Standard
  2422. \begin_inset Float table
  2423. wide false
  2424. sideways false
  2425. status collapsed
  2426. \begin_layout Plain Layout
  2427. \align center
  2428. \begin_inset Tabular
  2429. <lyxtabular version="3" rows="11" columns="3">
  2430. <features tabularvalignment="middle">
  2431. <column alignment="center" valignment="top">
  2432. <column alignment="center" valignment="top">
  2433. <column alignment="center" valignment="top">
  2434. <row>
  2435. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2436. \begin_inset Text
  2437. \begin_layout Plain Layout
  2438. Test
  2439. \end_layout
  2440. \end_inset
  2441. </cell>
  2442. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2443. \begin_inset Text
  2444. \begin_layout Plain Layout
  2445. Est.
  2446. non-null
  2447. \end_layout
  2448. \end_inset
  2449. </cell>
  2450. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2451. \begin_inset Text
  2452. \begin_layout Plain Layout
  2453. \begin_inset Formula $\mathrm{FDR}\le10\%$
  2454. \end_inset
  2455. \end_layout
  2456. \end_inset
  2457. </cell>
  2458. </row>
  2459. <row>
  2460. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2461. \begin_inset Text
  2462. \begin_layout Plain Layout
  2463. Naive Day 0 vs Day 1
  2464. \end_layout
  2465. \end_inset
  2466. </cell>
  2467. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2468. \begin_inset Text
  2469. \begin_layout Plain Layout
  2470. 5992
  2471. \end_layout
  2472. \end_inset
  2473. </cell>
  2474. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2475. \begin_inset Text
  2476. \begin_layout Plain Layout
  2477. 1613
  2478. \end_layout
  2479. \end_inset
  2480. </cell>
  2481. </row>
  2482. <row>
  2483. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2484. \begin_inset Text
  2485. \begin_layout Plain Layout
  2486. Naive Day 0 vs Day 5
  2487. \end_layout
  2488. \end_inset
  2489. </cell>
  2490. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2491. \begin_inset Text
  2492. \begin_layout Plain Layout
  2493. 3038
  2494. \end_layout
  2495. \end_inset
  2496. </cell>
  2497. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2498. \begin_inset Text
  2499. \begin_layout Plain Layout
  2500. 32
  2501. \end_layout
  2502. \end_inset
  2503. </cell>
  2504. </row>
  2505. <row>
  2506. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2507. \begin_inset Text
  2508. \begin_layout Plain Layout
  2509. Naive Day 0 vs Day 14
  2510. \end_layout
  2511. \end_inset
  2512. </cell>
  2513. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2514. \begin_inset Text
  2515. \begin_layout Plain Layout
  2516. 1870
  2517. \end_layout
  2518. \end_inset
  2519. </cell>
  2520. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2521. \begin_inset Text
  2522. \begin_layout Plain Layout
  2523. 190
  2524. \end_layout
  2525. \end_inset
  2526. </cell>
  2527. </row>
  2528. <row>
  2529. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2530. \begin_inset Text
  2531. \begin_layout Plain Layout
  2532. Memory Day 0 vs Day 1
  2533. \end_layout
  2534. \end_inset
  2535. </cell>
  2536. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2537. \begin_inset Text
  2538. \begin_layout Plain Layout
  2539. 3195
  2540. \end_layout
  2541. \end_inset
  2542. </cell>
  2543. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2544. \begin_inset Text
  2545. \begin_layout Plain Layout
  2546. 411
  2547. \end_layout
  2548. \end_inset
  2549. </cell>
  2550. </row>
  2551. <row>
  2552. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2553. \begin_inset Text
  2554. \begin_layout Plain Layout
  2555. Memory Day 0 vs Day 5
  2556. \end_layout
  2557. \end_inset
  2558. </cell>
  2559. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2560. \begin_inset Text
  2561. \begin_layout Plain Layout
  2562. 2688
  2563. \end_layout
  2564. \end_inset
  2565. </cell>
  2566. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2567. \begin_inset Text
  2568. \begin_layout Plain Layout
  2569. 18
  2570. \end_layout
  2571. \end_inset
  2572. </cell>
  2573. </row>
  2574. <row>
  2575. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2576. \begin_inset Text
  2577. \begin_layout Plain Layout
  2578. Memory Day 0 vs Day 14
  2579. \end_layout
  2580. \end_inset
  2581. </cell>
  2582. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2583. \begin_inset Text
  2584. \begin_layout Plain Layout
  2585. 1911
  2586. \end_layout
  2587. \end_inset
  2588. </cell>
  2589. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2590. \begin_inset Text
  2591. \begin_layout Plain Layout
  2592. 227
  2593. \end_layout
  2594. \end_inset
  2595. </cell>
  2596. </row>
  2597. <row>
  2598. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2599. \begin_inset Text
  2600. \begin_layout Plain Layout
  2601. Day 0 Naive vs Memory
  2602. \end_layout
  2603. \end_inset
  2604. </cell>
  2605. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2606. \begin_inset Text
  2607. \begin_layout Plain Layout
  2608. 0
  2609. \end_layout
  2610. \end_inset
  2611. </cell>
  2612. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2613. \begin_inset Text
  2614. \begin_layout Plain Layout
  2615. 2
  2616. \end_layout
  2617. \end_inset
  2618. </cell>
  2619. </row>
  2620. <row>
  2621. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2622. \begin_inset Text
  2623. \begin_layout Plain Layout
  2624. Day 1 Naive vs Memory
  2625. \end_layout
  2626. \end_inset
  2627. </cell>
  2628. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2629. \begin_inset Text
  2630. \begin_layout Plain Layout
  2631. 9167
  2632. \end_layout
  2633. \end_inset
  2634. </cell>
  2635. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2636. \begin_inset Text
  2637. \begin_layout Plain Layout
  2638. 5532
  2639. \end_layout
  2640. \end_inset
  2641. </cell>
  2642. </row>
  2643. <row>
  2644. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2645. \begin_inset Text
  2646. \begin_layout Plain Layout
  2647. Day 5 Naive vs Memory
  2648. \end_layout
  2649. \end_inset
  2650. </cell>
  2651. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2652. \begin_inset Text
  2653. \begin_layout Plain Layout
  2654. 0
  2655. \end_layout
  2656. \end_inset
  2657. </cell>
  2658. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2659. \begin_inset Text
  2660. \begin_layout Plain Layout
  2661. 0
  2662. \end_layout
  2663. \end_inset
  2664. </cell>
  2665. </row>
  2666. <row>
  2667. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2668. \begin_inset Text
  2669. \begin_layout Plain Layout
  2670. Day 14 Naive vs Memory
  2671. \end_layout
  2672. \end_inset
  2673. </cell>
  2674. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2675. \begin_inset Text
  2676. \begin_layout Plain Layout
  2677. 6446
  2678. \end_layout
  2679. \end_inset
  2680. </cell>
  2681. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2682. \begin_inset Text
  2683. \begin_layout Plain Layout
  2684. 2319
  2685. \end_layout
  2686. \end_inset
  2687. </cell>
  2688. </row>
  2689. </lyxtabular>
  2690. \end_inset
  2691. \end_layout
  2692. \begin_layout Plain Layout
  2693. \begin_inset Caption Standard
  2694. \begin_layout Plain Layout
  2695. \series bold
  2696. \begin_inset CommandInset label
  2697. LatexCommand label
  2698. name "tab:Estimated-and-detected-rnaseq"
  2699. \end_inset
  2700. Estimated and detected differentially expressed genes.
  2701. \series default
  2702. \begin_inset Quotes eld
  2703. \end_inset
  2704. Test
  2705. \begin_inset Quotes erd
  2706. \end_inset
  2707. : Which sample groups were compared;
  2708. \begin_inset Quotes eld
  2709. \end_inset
  2710. Est non-null
  2711. \begin_inset Quotes erd
  2712. \end_inset
  2713. : Estimated number of differentially expressed genes, using the method of
  2714. averaging local FDR values
  2715. \begin_inset CommandInset citation
  2716. LatexCommand cite
  2717. key "Phipson2013Thesis"
  2718. literal "false"
  2719. \end_inset
  2720. ;
  2721. \begin_inset Quotes eld
  2722. \end_inset
  2723. \begin_inset Formula $\mathrm{FDR}\le10\%$
  2724. \end_inset
  2725. \begin_inset Quotes erd
  2726. \end_inset
  2727. : Number of significantly differentially expressed genes at an FDR threshold
  2728. of 10%.
  2729. The total number of genes tested was 16707.
  2730. \end_layout
  2731. \end_inset
  2732. \end_layout
  2733. \end_inset
  2734. \end_layout
  2735. \begin_layout Standard
  2736. \begin_inset Float figure
  2737. wide false
  2738. sideways false
  2739. status collapsed
  2740. \begin_layout Plain Layout
  2741. \align center
  2742. \begin_inset Graphics
  2743. filename graphics/CD4-csaw/RNA-seq/PCA-final-12-CROP.png
  2744. lyxscale 25
  2745. width 100col%
  2746. groupId colwidth-raster
  2747. \end_inset
  2748. \end_layout
  2749. \begin_layout Plain Layout
  2750. \begin_inset Caption Standard
  2751. \begin_layout Plain Layout
  2752. \series bold
  2753. \begin_inset CommandInset label
  2754. LatexCommand label
  2755. name "fig:rna-pca-final"
  2756. \end_inset
  2757. PCoA plot of RNA-seq samples after ComBat batch correction.
  2758. \series default
  2759. Each point represents an individual sample.
  2760. Samples with the same combination of cell type and time point are encircled
  2761. with a shaded region to aid in visual identification of the sample groups.
  2762. Samples with of same cell type from the same donor are connected by lines
  2763. to indicate the
  2764. \begin_inset Quotes eld
  2765. \end_inset
  2766. trajectory
  2767. \begin_inset Quotes erd
  2768. \end_inset
  2769. of each donor's cells over time in PCoA space.
  2770. \end_layout
  2771. \end_inset
  2772. \end_layout
  2773. \begin_layout Plain Layout
  2774. \end_layout
  2775. \end_inset
  2776. \end_layout
  2777. \begin_layout Standard
  2778. Genes called present in the RNA-seq data were tested for differential expression
  2779. between all time points and cell types.
  2780. The counts of differentially expressed genes are shown in Table
  2781. \begin_inset CommandInset ref
  2782. LatexCommand ref
  2783. reference "tab:Estimated-and-detected-rnaseq"
  2784. plural "false"
  2785. caps "false"
  2786. noprefix "false"
  2787. \end_inset
  2788. .
  2789. Notably, all the results for Day 0 and Day 5 have substantially fewer genes
  2790. called differentially expressed than any of the results for other time
  2791. points.
  2792. This is an unfortunate result of the difference in sample quality between
  2793. the two batches of RNA-seq data.
  2794. All the samples in Batch 1, which includes all the samples from Days 0
  2795. and 5, have substantially more variability than the samples in Batch 2,
  2796. which includes the other time points.
  2797. This is reflected in the substantially higher weights assigned to Batch
  2798. 2 (Figure
  2799. \begin_inset CommandInset ref
  2800. LatexCommand ref
  2801. reference "fig:RNA-seq-weights-vs-covars"
  2802. plural "false"
  2803. caps "false"
  2804. noprefix "false"
  2805. \end_inset
  2806. ).
  2807. The batch effect has both a systematic component and a random noise component.
  2808. While the systematic component was subtracted out using ComBat (Figure
  2809. \begin_inset CommandInset ref
  2810. LatexCommand ref
  2811. reference "fig:RNA-PCA"
  2812. plural "false"
  2813. caps "false"
  2814. noprefix "false"
  2815. \end_inset
  2816. ), no such correction is possible for the noise component: Batch 1 simply
  2817. has substantially more random noise in it, which reduces the statistical
  2818. power for any differential expression tests involving samples in that batch.
  2819. \end_layout
  2820. \begin_layout Standard
  2821. Despite the difficulty in detecting specific differentially expressed genes,
  2822. there is still evidence that differential expression is present for these
  2823. time points.
  2824. In Figure
  2825. \begin_inset CommandInset ref
  2826. LatexCommand ref
  2827. reference "fig:rna-pca-final"
  2828. plural "false"
  2829. caps "false"
  2830. noprefix "false"
  2831. \end_inset
  2832. , there is a clear separation between naive and memory samples at Day 0,
  2833. despite the fact that only 2 genes were significantly differentially expressed
  2834. for this comparison.
  2835. Similarly, the small numbers of genes detected for the Day 0 vs Day 5 compariso
  2836. ns do not reflect the large separation between these time points in Figure
  2837. \begin_inset CommandInset ref
  2838. LatexCommand ref
  2839. reference "fig:rna-pca-final"
  2840. plural "false"
  2841. caps "false"
  2842. noprefix "false"
  2843. \end_inset
  2844. .
  2845. In addition, the MOFA latent factor plots in Figure
  2846. \begin_inset CommandInset ref
  2847. LatexCommand ref
  2848. reference "fig:mofa-lf-scatter"
  2849. plural "false"
  2850. caps "false"
  2851. noprefix "false"
  2852. \end_inset
  2853. .
  2854. This suggests that there is indeed a differential expression signal present
  2855. in the data for these comparisons, but the large variability in the Batch
  2856. 1 samples obfuscates this signal at the individual gene level.
  2857. As a result, it is impossible to make any meaningful statements about the
  2858. \begin_inset Quotes eld
  2859. \end_inset
  2860. size
  2861. \begin_inset Quotes erd
  2862. \end_inset
  2863. of the gene signature for any time point, since the number of significant
  2864. genes as well as the estimated number of differentially expressed genes
  2865. depends so strongly on the variations in sample quality in addition to
  2866. the size of the differential expression signal in the data.
  2867. Gene-set enrichment analyses are similarly impractical.
  2868. However, analyses looking at genome-wide patterns of expression are still
  2869. practical.
  2870. \end_layout
  2871. \begin_layout Subsection
  2872. H3K4 and H3K27 methylation occur in broad regions and are enriched near
  2873. promoters
  2874. \end_layout
  2875. \begin_layout Standard
  2876. \begin_inset Float table
  2877. wide false
  2878. sideways false
  2879. status collapsed
  2880. \begin_layout Plain Layout
  2881. \align center
  2882. \begin_inset Flex TODO Note (inline)
  2883. status open
  2884. \begin_layout Plain Layout
  2885. Also get
  2886. \emph on
  2887. median
  2888. \emph default
  2889. peak width and maybe other quantiles (25%, 75%)
  2890. \end_layout
  2891. \end_inset
  2892. \end_layout
  2893. \begin_layout Plain Layout
  2894. \align center
  2895. \begin_inset Tabular
  2896. <lyxtabular version="3" rows="4" columns="5">
  2897. <features tabularvalignment="middle">
  2898. <column alignment="center" valignment="top">
  2899. <column alignment="center" valignment="top">
  2900. <column alignment="center" valignment="top">
  2901. <column alignment="center" valignment="top">
  2902. <column alignment="center" valignment="top">
  2903. <row>
  2904. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2905. \begin_inset Text
  2906. \begin_layout Plain Layout
  2907. Histone Mark
  2908. \end_layout
  2909. \end_inset
  2910. </cell>
  2911. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2912. \begin_inset Text
  2913. \begin_layout Plain Layout
  2914. # Peaks
  2915. \end_layout
  2916. \end_inset
  2917. </cell>
  2918. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2919. \begin_inset Text
  2920. \begin_layout Plain Layout
  2921. Mean peak width
  2922. \end_layout
  2923. \end_inset
  2924. </cell>
  2925. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2926. \begin_inset Text
  2927. \begin_layout Plain Layout
  2928. genome coverage
  2929. \end_layout
  2930. \end_inset
  2931. </cell>
  2932. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2933. \begin_inset Text
  2934. \begin_layout Plain Layout
  2935. FRiP
  2936. \end_layout
  2937. \end_inset
  2938. </cell>
  2939. </row>
  2940. <row>
  2941. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2942. \begin_inset Text
  2943. \begin_layout Plain Layout
  2944. H3K4me2
  2945. \end_layout
  2946. \end_inset
  2947. </cell>
  2948. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2949. \begin_inset Text
  2950. \begin_layout Plain Layout
  2951. 14965
  2952. \end_layout
  2953. \end_inset
  2954. </cell>
  2955. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2956. \begin_inset Text
  2957. \begin_layout Plain Layout
  2958. 3970
  2959. \end_layout
  2960. \end_inset
  2961. </cell>
  2962. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2963. \begin_inset Text
  2964. \begin_layout Plain Layout
  2965. 1.92%
  2966. \end_layout
  2967. \end_inset
  2968. </cell>
  2969. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2970. \begin_inset Text
  2971. \begin_layout Plain Layout
  2972. 14.2%
  2973. \end_layout
  2974. \end_inset
  2975. </cell>
  2976. </row>
  2977. <row>
  2978. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2979. \begin_inset Text
  2980. \begin_layout Plain Layout
  2981. H3K4me3
  2982. \end_layout
  2983. \end_inset
  2984. </cell>
  2985. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2986. \begin_inset Text
  2987. \begin_layout Plain Layout
  2988. 6163
  2989. \end_layout
  2990. \end_inset
  2991. </cell>
  2992. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2993. \begin_inset Text
  2994. \begin_layout Plain Layout
  2995. 2946
  2996. \end_layout
  2997. \end_inset
  2998. </cell>
  2999. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3000. \begin_inset Text
  3001. \begin_layout Plain Layout
  3002. 0.588%
  3003. \end_layout
  3004. \end_inset
  3005. </cell>
  3006. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3007. \begin_inset Text
  3008. \begin_layout Plain Layout
  3009. 6.57%
  3010. \end_layout
  3011. \end_inset
  3012. </cell>
  3013. </row>
  3014. <row>
  3015. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3016. \begin_inset Text
  3017. \begin_layout Plain Layout
  3018. H3K27me3
  3019. \end_layout
  3020. \end_inset
  3021. </cell>
  3022. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3023. \begin_inset Text
  3024. \begin_layout Plain Layout
  3025. 18139
  3026. \end_layout
  3027. \end_inset
  3028. </cell>
  3029. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3030. \begin_inset Text
  3031. \begin_layout Plain Layout
  3032. 18967
  3033. \end_layout
  3034. \end_inset
  3035. </cell>
  3036. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3037. \begin_inset Text
  3038. \begin_layout Plain Layout
  3039. 11.1%
  3040. \end_layout
  3041. \end_inset
  3042. </cell>
  3043. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3044. \begin_inset Text
  3045. \begin_layout Plain Layout
  3046. 22.5%
  3047. \end_layout
  3048. \end_inset
  3049. </cell>
  3050. </row>
  3051. </lyxtabular>
  3052. \end_inset
  3053. \end_layout
  3054. \begin_layout Plain Layout
  3055. \begin_inset Caption Standard
  3056. \begin_layout Plain Layout
  3057. \series bold
  3058. \begin_inset CommandInset label
  3059. LatexCommand label
  3060. name "tab:peak-calling-summary"
  3061. \end_inset
  3062. Peak-calling summary.
  3063. \series default
  3064. For each histone mark, the number of peaks called using SICER at an IDR
  3065. threshold of ???, the mean width of those peaks, the fraction of the genome
  3066. covered by peaks, and the fraction of reads in peaks (FRiP).
  3067. \end_layout
  3068. \end_inset
  3069. \end_layout
  3070. \end_inset
  3071. \end_layout
  3072. \begin_layout Standard
  3073. Table
  3074. \begin_inset CommandInset ref
  3075. LatexCommand ref
  3076. reference "tab:peak-calling-summary"
  3077. plural "false"
  3078. caps "false"
  3079. noprefix "false"
  3080. \end_inset
  3081. gives a summary of the peak calling statistics for each histone mark.
  3082. Consistent with previous observations [CITATION NEEDED], all 3 histone
  3083. marks occur in broad regions spanning many consecutive nucleosomes, rather
  3084. than in sharp peaks as would be expected for a transcription factor or
  3085. other molecule that binds to specific sites.
  3086. This conclusion is further supported by Figure
  3087. \begin_inset CommandInset ref
  3088. LatexCommand ref
  3089. reference "fig:CCF-with-blacklist"
  3090. plural "false"
  3091. caps "false"
  3092. noprefix "false"
  3093. \end_inset
  3094. , in which a clear nucleosome-sized periodicity is visible in the cross-correlat
  3095. ion value for each sample, indicating that each time a given mark is present
  3096. on one histone, it is also likely to be found on adjacent histones as well.
  3097. H3K27me3 enrichment in particular is substantially more broad than either
  3098. H3K4 mark, with a mean peak width of almost 19,000 bp.
  3099. This is also reflected in the periodicity observed in Figure
  3100. \begin_inset CommandInset ref
  3101. LatexCommand ref
  3102. reference "fig:CCF-with-blacklist"
  3103. plural "false"
  3104. caps "false"
  3105. noprefix "false"
  3106. \end_inset
  3107. , which remains strong much farther out for H3K27me3 than the other marks,
  3108. showing H3K27me3 especially tends to be found on long runs of consecutive
  3109. histones.
  3110. \end_layout
  3111. \begin_layout Standard
  3112. \begin_inset Float figure
  3113. wide false
  3114. sideways false
  3115. status open
  3116. \begin_layout Plain Layout
  3117. \begin_inset Flex TODO Note (inline)
  3118. status open
  3119. \begin_layout Plain Layout
  3120. Ensure this figure uses the peak calls from the new analysis.
  3121. \end_layout
  3122. \end_inset
  3123. \end_layout
  3124. \begin_layout Plain Layout
  3125. \begin_inset Flex TODO Note (inline)
  3126. status open
  3127. \begin_layout Plain Layout
  3128. Need a control: shuffle all peaks and repeat, N times.
  3129. Do real vs shuffled control both in a top/bottom arrangement.
  3130. \end_layout
  3131. \end_inset
  3132. \end_layout
  3133. \begin_layout Plain Layout
  3134. \begin_inset Flex TODO Note (inline)
  3135. status open
  3136. \begin_layout Plain Layout
  3137. Consider counting TSS inside peaks as negative number indicating how far
  3138. \emph on
  3139. inside
  3140. \emph default
  3141. the peak the TSS is (i.e.
  3142. distance to nearest non-peak area).
  3143. \end_layout
  3144. \end_inset
  3145. \end_layout
  3146. \begin_layout Plain Layout
  3147. \begin_inset Flex TODO Note (inline)
  3148. status open
  3149. \begin_layout Plain Layout
  3150. The H3K4 part of this figure is included in
  3151. \begin_inset CommandInset citation
  3152. LatexCommand cite
  3153. key "LaMere2016"
  3154. literal "false"
  3155. \end_inset
  3156. as Fig.
  3157. S2.
  3158. Do I need to do anything about that?
  3159. \end_layout
  3160. \end_inset
  3161. \end_layout
  3162. \begin_layout Plain Layout
  3163. \align center
  3164. \begin_inset Graphics
  3165. filename graphics/CD4-csaw/Promoter Peak Distance Profile-PAGE1-CROP.pdf
  3166. lyxscale 50
  3167. width 80col%
  3168. \end_inset
  3169. \end_layout
  3170. \begin_layout Plain Layout
  3171. \begin_inset Caption Standard
  3172. \begin_layout Plain Layout
  3173. \series bold
  3174. \begin_inset CommandInset label
  3175. LatexCommand label
  3176. name "fig:near-promoter-peak-enrich"
  3177. \end_inset
  3178. Enrichment of peaks in promoter neighborhoods.
  3179. \series default
  3180. This plot shows the distribution of distances from each annotated transcription
  3181. start site in the genome to the nearest called peak.
  3182. Each line represents one combination of histone mark, cell type, and time
  3183. point.
  3184. Distributions are smoothed using kernel density estimation [CITE? see ggplot2
  3185. stat_density()].
  3186. Transcription start sites that occur
  3187. \emph on
  3188. within
  3189. \emph default
  3190. peaks were excluded from this plot to avoid a large spike at zero that
  3191. would overshadow the rest of the distribution.
  3192. \end_layout
  3193. \end_inset
  3194. \end_layout
  3195. \end_inset
  3196. \end_layout
  3197. \begin_layout Standard
  3198. \begin_inset Float table
  3199. wide false
  3200. sideways false
  3201. status collapsed
  3202. \begin_layout Plain Layout
  3203. \align center
  3204. \begin_inset Tabular
  3205. <lyxtabular version="3" rows="4" columns="2">
  3206. <features tabularvalignment="middle">
  3207. <column alignment="center" valignment="top">
  3208. <column alignment="center" valignment="top">
  3209. <row>
  3210. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3211. \begin_inset Text
  3212. \begin_layout Plain Layout
  3213. Histone mark
  3214. \end_layout
  3215. \end_inset
  3216. </cell>
  3217. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3218. \begin_inset Text
  3219. \begin_layout Plain Layout
  3220. Effective promoter radius
  3221. \end_layout
  3222. \end_inset
  3223. </cell>
  3224. </row>
  3225. <row>
  3226. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3227. \begin_inset Text
  3228. \begin_layout Plain Layout
  3229. H3K4me2
  3230. \end_layout
  3231. \end_inset
  3232. </cell>
  3233. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3234. \begin_inset Text
  3235. \begin_layout Plain Layout
  3236. 1 kb
  3237. \end_layout
  3238. \end_inset
  3239. </cell>
  3240. </row>
  3241. <row>
  3242. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3243. \begin_inset Text
  3244. \begin_layout Plain Layout
  3245. H3K4me3
  3246. \end_layout
  3247. \end_inset
  3248. </cell>
  3249. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3250. \begin_inset Text
  3251. \begin_layout Plain Layout
  3252. 1 kb
  3253. \end_layout
  3254. \end_inset
  3255. </cell>
  3256. </row>
  3257. <row>
  3258. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3259. \begin_inset Text
  3260. \begin_layout Plain Layout
  3261. H3K27me3
  3262. \end_layout
  3263. \end_inset
  3264. </cell>
  3265. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3266. \begin_inset Text
  3267. \begin_layout Plain Layout
  3268. 2.5 kb
  3269. \end_layout
  3270. \end_inset
  3271. </cell>
  3272. </row>
  3273. </lyxtabular>
  3274. \end_inset
  3275. \end_layout
  3276. \begin_layout Plain Layout
  3277. \begin_inset Caption Standard
  3278. \begin_layout Plain Layout
  3279. \series bold
  3280. \begin_inset CommandInset label
  3281. LatexCommand label
  3282. name "tab:effective-promoter-radius"
  3283. \end_inset
  3284. Effective promoter radius for each histone mark.
  3285. \series default
  3286. These values represent the approximate distance from transcription start
  3287. site positions within which an excess of peaks are found, as shown in Figure
  3288. \begin_inset CommandInset ref
  3289. LatexCommand ref
  3290. reference "fig:near-promoter-peak-enrich"
  3291. plural "false"
  3292. caps "false"
  3293. noprefix "false"
  3294. \end_inset
  3295. .
  3296. \end_layout
  3297. \end_inset
  3298. \end_layout
  3299. \begin_layout Plain Layout
  3300. \end_layout
  3301. \end_inset
  3302. \end_layout
  3303. \begin_layout Standard
  3304. All 3 histone marks tend to occur more often near promoter regions, as shown
  3305. in Figure
  3306. \begin_inset CommandInset ref
  3307. LatexCommand ref
  3308. reference "fig:near-promoter-peak-enrich"
  3309. plural "false"
  3310. caps "false"
  3311. noprefix "false"
  3312. \end_inset
  3313. .
  3314. The majority of each density distribution is flat, representing the background
  3315. density of peaks genome-wide.
  3316. Each distribution has a peak near zero, representing an enrichment of peaks
  3317. close transcription start site (TSS) positions relative to the remainder
  3318. of the genome.
  3319. Interestingly, the
  3320. \begin_inset Quotes eld
  3321. \end_inset
  3322. radius
  3323. \begin_inset Quotes erd
  3324. \end_inset
  3325. within which this enrichment occurs is not the same for every histone mark
  3326. (Table
  3327. \begin_inset CommandInset ref
  3328. LatexCommand ref
  3329. reference "tab:effective-promoter-radius"
  3330. plural "false"
  3331. caps "false"
  3332. noprefix "false"
  3333. \end_inset
  3334. ).
  3335. For H3K4me2 and H3K4me3, peaks are most enriched within 1
  3336. \begin_inset space ~
  3337. \end_inset
  3338. kbp of TSS positions, while for H3K27me3, enrichment is broader, extending
  3339. to 2.5
  3340. \begin_inset space ~
  3341. \end_inset
  3342. kbp.
  3343. These
  3344. \begin_inset Quotes eld
  3345. \end_inset
  3346. effective promoter radii
  3347. \begin_inset Quotes erd
  3348. \end_inset
  3349. remain approximately the same across all combinations of experimental condition
  3350. (cell type, time point, and donor), so they appear to be a property of
  3351. the histone mark itself.
  3352. Hence, these radii were used to define the promoter regions for each histone
  3353. mark in all further analyses.
  3354. \end_layout
  3355. \begin_layout Standard
  3356. \begin_inset Flex TODO Note (inline)
  3357. status open
  3358. \begin_layout Plain Layout
  3359. Consider also showing figure for distance to nearest peak center, and reference
  3360. median peak size once that is known.
  3361. \end_layout
  3362. \end_inset
  3363. \end_layout
  3364. \begin_layout Subsection
  3365. H3K4 and H3K27 promoter methylation has broadly the expected correlation
  3366. with gene expression
  3367. \end_layout
  3368. \begin_layout Standard
  3369. \begin_inset Float figure
  3370. wide false
  3371. sideways false
  3372. status collapsed
  3373. \begin_layout Plain Layout
  3374. \begin_inset Flex TODO Note (inline)
  3375. status open
  3376. \begin_layout Plain Layout
  3377. This figure is generated from the old analysis.
  3378. Eiher note that in some way or re-generate it from the new peak calls.
  3379. \end_layout
  3380. \end_inset
  3381. \end_layout
  3382. \begin_layout Plain Layout
  3383. \align center
  3384. \begin_inset Graphics
  3385. filename graphics/CD4-csaw/FPKM by Peak Violin Plots-CROP.pdf
  3386. lyxscale 50
  3387. width 100col%
  3388. \end_inset
  3389. \end_layout
  3390. \begin_layout Plain Layout
  3391. \begin_inset Caption Standard
  3392. \begin_layout Plain Layout
  3393. \series bold
  3394. \begin_inset CommandInset label
  3395. LatexCommand label
  3396. name "fig:fpkm-by-peak"
  3397. \end_inset
  3398. Expression distributions of genes with and without promoter peaks.
  3399. \end_layout
  3400. \end_inset
  3401. \end_layout
  3402. \end_inset
  3403. \end_layout
  3404. \begin_layout Standard
  3405. H3K4me2 and H3K4me2 have previously been reported as activating marks whose
  3406. presence in a gene's promoter is associated with higher gene expression,
  3407. while H3K27me3 has been reported as inactivating [CITE].
  3408. The data are consistent with this characterization: genes whose promoters
  3409. (as defined by the radii for each histone mark listed in
  3410. \begin_inset CommandInset ref
  3411. LatexCommand ref
  3412. reference "tab:effective-promoter-radius"
  3413. plural "false"
  3414. caps "false"
  3415. noprefix "false"
  3416. \end_inset
  3417. ) overlap with a H3K4me2 or H3K4me3 peak tend to have higher expression
  3418. than those that don't, while H3K27me3 is likewise associated with lower
  3419. gene expression, as shown in
  3420. \begin_inset CommandInset ref
  3421. LatexCommand ref
  3422. reference "fig:fpkm-by-peak"
  3423. plural "false"
  3424. caps "false"
  3425. noprefix "false"
  3426. \end_inset
  3427. .
  3428. This pattern holds across all combinations of cell type and time point
  3429. (Welch's
  3430. \emph on
  3431. t
  3432. \emph default
  3433. -test, all
  3434. \begin_inset Formula $p\mathrm{-values}\ll2.2\times10^{-16}$
  3435. \end_inset
  3436. ).
  3437. The difference in average log FPKM values when a peak overlaps the promoter
  3438. is about
  3439. \begin_inset Formula $+5.67$
  3440. \end_inset
  3441. for H3K4me2,
  3442. \begin_inset Formula $+5.76$
  3443. \end_inset
  3444. for H3K4me2, and
  3445. \begin_inset Formula $-4.00$
  3446. \end_inset
  3447. for H3K27me3.
  3448. \end_layout
  3449. \begin_layout Standard
  3450. \begin_inset Flex TODO Note (inline)
  3451. status open
  3452. \begin_layout Plain Layout
  3453. I also have some figures looking at interactions between marks (e.g.
  3454. what if a promoter has both H3K4me3 and H3K27me3), but I don't know if
  3455. that much detail is warranted here, since all the effects just seem approximate
  3456. ly additive anyway.
  3457. \end_layout
  3458. \end_inset
  3459. \end_layout
  3460. \begin_layout Subsection
  3461. Gene expression and promoter histone methylation patterns in naive and memory
  3462. show convergence at day 14
  3463. \end_layout
  3464. \begin_layout Standard
  3465. \begin_inset ERT
  3466. status open
  3467. \begin_layout Plain Layout
  3468. \backslash
  3469. afterpage{
  3470. \end_layout
  3471. \begin_layout Plain Layout
  3472. \backslash
  3473. begin{landscape}
  3474. \end_layout
  3475. \end_inset
  3476. \end_layout
  3477. \begin_layout Standard
  3478. \begin_inset Float table
  3479. wide false
  3480. sideways false
  3481. status open
  3482. \begin_layout Plain Layout
  3483. \align center
  3484. \begin_inset Tabular
  3485. <lyxtabular version="3" rows="6" columns="7">
  3486. <features tabularvalignment="middle">
  3487. <column alignment="center" valignment="top">
  3488. <column alignment="center" valignment="top">
  3489. <column alignment="center" valignment="top">
  3490. <column alignment="center" valignment="top">
  3491. <column alignment="center" valignment="top">
  3492. <column alignment="center" valignment="top">
  3493. <column alignment="center" valignment="top">
  3494. <row>
  3495. <cell alignment="center" valignment="top" usebox="none">
  3496. \begin_inset Text
  3497. \begin_layout Plain Layout
  3498. \end_layout
  3499. \end_inset
  3500. </cell>
  3501. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3502. \begin_inset Text
  3503. \begin_layout Plain Layout
  3504. Number of significant promoters
  3505. \end_layout
  3506. \end_inset
  3507. </cell>
  3508. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3509. \begin_inset Text
  3510. \begin_layout Plain Layout
  3511. \end_layout
  3512. \end_inset
  3513. </cell>
  3514. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3515. \begin_inset Text
  3516. \begin_layout Plain Layout
  3517. \end_layout
  3518. \end_inset
  3519. </cell>
  3520. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3521. \begin_inset Text
  3522. \begin_layout Plain Layout
  3523. Est.
  3524. differentially modified promoters
  3525. \end_layout
  3526. \end_inset
  3527. </cell>
  3528. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3529. \begin_inset Text
  3530. \begin_layout Plain Layout
  3531. \end_layout
  3532. \end_inset
  3533. </cell>
  3534. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3535. \begin_inset Text
  3536. \begin_layout Plain Layout
  3537. \end_layout
  3538. \end_inset
  3539. </cell>
  3540. </row>
  3541. <row>
  3542. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3543. \begin_inset Text
  3544. \begin_layout Plain Layout
  3545. Time Point
  3546. \end_layout
  3547. \end_inset
  3548. </cell>
  3549. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3550. \begin_inset Text
  3551. \begin_layout Plain Layout
  3552. H3K4me2
  3553. \end_layout
  3554. \end_inset
  3555. </cell>
  3556. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3557. \begin_inset Text
  3558. \begin_layout Plain Layout
  3559. H3K4me3
  3560. \end_layout
  3561. \end_inset
  3562. </cell>
  3563. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3564. \begin_inset Text
  3565. \begin_layout Plain Layout
  3566. H3K27me3
  3567. \end_layout
  3568. \end_inset
  3569. </cell>
  3570. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3571. \begin_inset Text
  3572. \begin_layout Plain Layout
  3573. H3K4me2
  3574. \end_layout
  3575. \end_inset
  3576. </cell>
  3577. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3578. \begin_inset Text
  3579. \begin_layout Plain Layout
  3580. H3K4me3
  3581. \end_layout
  3582. \end_inset
  3583. </cell>
  3584. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3585. \begin_inset Text
  3586. \begin_layout Plain Layout
  3587. H3K27me3
  3588. \end_layout
  3589. \end_inset
  3590. </cell>
  3591. </row>
  3592. <row>
  3593. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3594. \begin_inset Text
  3595. \begin_layout Plain Layout
  3596. Day 0
  3597. \end_layout
  3598. \end_inset
  3599. </cell>
  3600. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3601. \begin_inset Text
  3602. \begin_layout Plain Layout
  3603. 4553
  3604. \end_layout
  3605. \end_inset
  3606. </cell>
  3607. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3608. \begin_inset Text
  3609. \begin_layout Plain Layout
  3610. 927
  3611. \end_layout
  3612. \end_inset
  3613. </cell>
  3614. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3615. \begin_inset Text
  3616. \begin_layout Plain Layout
  3617. 6
  3618. \end_layout
  3619. \end_inset
  3620. </cell>
  3621. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3622. \begin_inset Text
  3623. \begin_layout Plain Layout
  3624. 9967
  3625. \end_layout
  3626. \end_inset
  3627. </cell>
  3628. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3629. \begin_inset Text
  3630. \begin_layout Plain Layout
  3631. 4149
  3632. \end_layout
  3633. \end_inset
  3634. </cell>
  3635. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3636. \begin_inset Text
  3637. \begin_layout Plain Layout
  3638. 2404
  3639. \end_layout
  3640. \end_inset
  3641. </cell>
  3642. </row>
  3643. <row>
  3644. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3645. \begin_inset Text
  3646. \begin_layout Plain Layout
  3647. Day 1
  3648. \end_layout
  3649. \end_inset
  3650. </cell>
  3651. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3652. \begin_inset Text
  3653. \begin_layout Plain Layout
  3654. 567
  3655. \end_layout
  3656. \end_inset
  3657. </cell>
  3658. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3659. \begin_inset Text
  3660. \begin_layout Plain Layout
  3661. 278
  3662. \end_layout
  3663. \end_inset
  3664. </cell>
  3665. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3666. \begin_inset Text
  3667. \begin_layout Plain Layout
  3668. 1570
  3669. \end_layout
  3670. \end_inset
  3671. </cell>
  3672. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3673. \begin_inset Text
  3674. \begin_layout Plain Layout
  3675. 4370
  3676. \end_layout
  3677. \end_inset
  3678. </cell>
  3679. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3680. \begin_inset Text
  3681. \begin_layout Plain Layout
  3682. 2145
  3683. \end_layout
  3684. \end_inset
  3685. </cell>
  3686. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3687. \begin_inset Text
  3688. \begin_layout Plain Layout
  3689. 6598
  3690. \end_layout
  3691. \end_inset
  3692. </cell>
  3693. </row>
  3694. <row>
  3695. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3696. \begin_inset Text
  3697. \begin_layout Plain Layout
  3698. Day 5
  3699. \end_layout
  3700. \end_inset
  3701. </cell>
  3702. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3703. \begin_inset Text
  3704. \begin_layout Plain Layout
  3705. 2313
  3706. \end_layout
  3707. \end_inset
  3708. </cell>
  3709. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3710. \begin_inset Text
  3711. \begin_layout Plain Layout
  3712. 139
  3713. \end_layout
  3714. \end_inset
  3715. </cell>
  3716. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3717. \begin_inset Text
  3718. \begin_layout Plain Layout
  3719. 490
  3720. \end_layout
  3721. \end_inset
  3722. </cell>
  3723. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3724. \begin_inset Text
  3725. \begin_layout Plain Layout
  3726. 9450
  3727. \end_layout
  3728. \end_inset
  3729. </cell>
  3730. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3731. \begin_inset Text
  3732. \begin_layout Plain Layout
  3733. 1148
  3734. \end_layout
  3735. \end_inset
  3736. </cell>
  3737. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3738. \begin_inset Text
  3739. \begin_layout Plain Layout
  3740. 4141
  3741. \end_layout
  3742. \end_inset
  3743. </cell>
  3744. </row>
  3745. <row>
  3746. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3747. \begin_inset Text
  3748. \begin_layout Plain Layout
  3749. Day 14
  3750. \end_layout
  3751. \end_inset
  3752. </cell>
  3753. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3754. \begin_inset Text
  3755. \begin_layout Plain Layout
  3756. 0
  3757. \end_layout
  3758. \end_inset
  3759. </cell>
  3760. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3761. \begin_inset Text
  3762. \begin_layout Plain Layout
  3763. 0
  3764. \end_layout
  3765. \end_inset
  3766. </cell>
  3767. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3768. \begin_inset Text
  3769. \begin_layout Plain Layout
  3770. 0
  3771. \end_layout
  3772. \end_inset
  3773. </cell>
  3774. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3775. \begin_inset Text
  3776. \begin_layout Plain Layout
  3777. 0
  3778. \end_layout
  3779. \end_inset
  3780. </cell>
  3781. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3782. \begin_inset Text
  3783. \begin_layout Plain Layout
  3784. 0
  3785. \end_layout
  3786. \end_inset
  3787. </cell>
  3788. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3789. \begin_inset Text
  3790. \begin_layout Plain Layout
  3791. 0
  3792. \end_layout
  3793. \end_inset
  3794. </cell>
  3795. </row>
  3796. </lyxtabular>
  3797. \end_inset
  3798. \end_layout
  3799. \begin_layout Plain Layout
  3800. \begin_inset Caption Standard
  3801. \begin_layout Plain Layout
  3802. \series bold
  3803. \begin_inset CommandInset label
  3804. LatexCommand label
  3805. name "tab:Number-signif-promoters"
  3806. \end_inset
  3807. Number of differentially modified promoters between naive and memory cells
  3808. at each time point after activation.
  3809. \series default
  3810. This table shows both the number of differentially modified promoters detected
  3811. at a 10% FDR threshold (left half), and the total number of differentially
  3812. modified promoters as estimated using the method of
  3813. \begin_inset CommandInset citation
  3814. LatexCommand cite
  3815. key "Phipson2013"
  3816. literal "false"
  3817. \end_inset
  3818. (right half).
  3819. \end_layout
  3820. \end_inset
  3821. \end_layout
  3822. \end_inset
  3823. \end_layout
  3824. \begin_layout Standard
  3825. \begin_inset ERT
  3826. status open
  3827. \begin_layout Plain Layout
  3828. \backslash
  3829. end{landscape}
  3830. \end_layout
  3831. \begin_layout Plain Layout
  3832. }
  3833. \end_layout
  3834. \end_inset
  3835. \end_layout
  3836. \begin_layout Standard
  3837. \begin_inset Float figure
  3838. placement p
  3839. wide false
  3840. sideways false
  3841. status open
  3842. \begin_layout Plain Layout
  3843. \align center
  3844. \begin_inset Float figure
  3845. wide false
  3846. sideways false
  3847. status open
  3848. \begin_layout Plain Layout
  3849. \align center
  3850. \begin_inset Graphics
  3851. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-promoter-PCA-group-CROP.png
  3852. lyxscale 25
  3853. width 45col%
  3854. groupId pcoa-prom-subfig
  3855. \end_inset
  3856. \end_layout
  3857. \begin_layout Plain Layout
  3858. \begin_inset Caption Standard
  3859. \begin_layout Plain Layout
  3860. \series bold
  3861. \begin_inset CommandInset label
  3862. LatexCommand label
  3863. name "fig:PCoA-H3K4me2-prom"
  3864. \end_inset
  3865. PCoA plot of H3K4me2 promoters, after subtracting surrogate variables
  3866. \end_layout
  3867. \end_inset
  3868. \end_layout
  3869. \end_inset
  3870. \begin_inset space \hfill{}
  3871. \end_inset
  3872. \begin_inset Float figure
  3873. wide false
  3874. sideways false
  3875. status open
  3876. \begin_layout Plain Layout
  3877. \align center
  3878. \begin_inset Graphics
  3879. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-promoter-PCA-group-CROP.png
  3880. lyxscale 25
  3881. width 45col%
  3882. groupId pcoa-prom-subfig
  3883. \end_inset
  3884. \end_layout
  3885. \begin_layout Plain Layout
  3886. \begin_inset Caption Standard
  3887. \begin_layout Plain Layout
  3888. \series bold
  3889. \begin_inset CommandInset label
  3890. LatexCommand label
  3891. name "fig:PCoA-H3K4me3-prom"
  3892. \end_inset
  3893. PCoA plot of H3K4me3 promoters, after subtracting surrogate variables
  3894. \end_layout
  3895. \end_inset
  3896. \end_layout
  3897. \end_inset
  3898. \end_layout
  3899. \begin_layout Plain Layout
  3900. \align center
  3901. \begin_inset Float figure
  3902. wide false
  3903. sideways false
  3904. status collapsed
  3905. \begin_layout Plain Layout
  3906. \align center
  3907. \begin_inset Graphics
  3908. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-promoter-PCA-group-CROP.png
  3909. lyxscale 25
  3910. width 45col%
  3911. groupId pcoa-prom-subfig
  3912. \end_inset
  3913. \end_layout
  3914. \begin_layout Plain Layout
  3915. \begin_inset Caption Standard
  3916. \begin_layout Plain Layout
  3917. \series bold
  3918. \begin_inset CommandInset label
  3919. LatexCommand label
  3920. name "fig:PCoA-H3K27me3-prom"
  3921. \end_inset
  3922. PCoA plot of H3K27me3 promoters, after subtracting surrogate variables
  3923. \end_layout
  3924. \end_inset
  3925. \end_layout
  3926. \end_inset
  3927. \begin_inset space \hfill{}
  3928. \end_inset
  3929. \begin_inset Float figure
  3930. wide false
  3931. sideways false
  3932. status open
  3933. \begin_layout Plain Layout
  3934. \align center
  3935. \begin_inset Graphics
  3936. filename graphics/CD4-csaw/RNA-seq/PCA-final-23-CROP.png
  3937. lyxscale 25
  3938. width 45col%
  3939. groupId pcoa-prom-subfig
  3940. \end_inset
  3941. \end_layout
  3942. \begin_layout Plain Layout
  3943. \begin_inset Caption Standard
  3944. \begin_layout Plain Layout
  3945. \series bold
  3946. \begin_inset CommandInset label
  3947. LatexCommand label
  3948. name "fig:RNA-PCA-group"
  3949. \end_inset
  3950. RNA-seq PCoA showing principal coordiantes 2 and 3.
  3951. \end_layout
  3952. \end_inset
  3953. \end_layout
  3954. \end_inset
  3955. \end_layout
  3956. \begin_layout Plain Layout
  3957. \begin_inset Caption Standard
  3958. \begin_layout Plain Layout
  3959. \series bold
  3960. \begin_inset CommandInset label
  3961. LatexCommand label
  3962. name "fig:PCoA-promoters"
  3963. \end_inset
  3964. PCoA plots for promoter ChIP-seq and expression RNA-seq data
  3965. \end_layout
  3966. \end_inset
  3967. \end_layout
  3968. \end_inset
  3969. \end_layout
  3970. \begin_layout Standard
  3971. \begin_inset Flex TODO Note (inline)
  3972. status open
  3973. \begin_layout Plain Layout
  3974. Check up on figure refs in this paragraph
  3975. \end_layout
  3976. \end_inset
  3977. \end_layout
  3978. \begin_layout Standard
  3979. We hypothesized that if naive cells had differentiated into memory cells
  3980. by Day 14, then their patterns of expression and histone modification should
  3981. converge with those of memory cells at Day 14.
  3982. Figure
  3983. \begin_inset CommandInset ref
  3984. LatexCommand ref
  3985. reference "fig:PCoA-promoters"
  3986. plural "false"
  3987. caps "false"
  3988. noprefix "false"
  3989. \end_inset
  3990. shows the patterns of variation in all 3 histone marks in the promoter
  3991. regions of the genome using principal coordinate analysis.
  3992. All 3 marks show a noticeable convergence between the naive and memory
  3993. samples at day 14, visible as an overlapping of the day 14 groups on each
  3994. plot.
  3995. This is consistent with the counts of significantly differentially modified
  3996. promoters and estimates of the total numbers of differentially modified
  3997. promoters shown in Table
  3998. \begin_inset CommandInset ref
  3999. LatexCommand ref
  4000. reference "tab:Number-signif-promoters"
  4001. plural "false"
  4002. caps "false"
  4003. noprefix "false"
  4004. \end_inset
  4005. .
  4006. For all histone marks, evidence of differential modification between naive
  4007. and memory samples was detected at every time point except day 14.
  4008. The day 14 convergence pattern is also present in the RNA-seq data (Figure
  4009. \begin_inset CommandInset ref
  4010. LatexCommand ref
  4011. reference "fig:RNA-PCA-group"
  4012. plural "false"
  4013. caps "false"
  4014. noprefix "false"
  4015. \end_inset
  4016. ), albiet in the 2nd and 3rd principal coordinates, indicating that it is
  4017. not the most dominant pattern driving gene expression.
  4018. Taken together, the data show that promoter histone methylation for these
  4019. 3 histone marks and RNA expression for naive and memory cells are most
  4020. similar at day 14, the furthest time point after activation.
  4021. MOFA was also able to capture this day 14 convergence pattern in latent
  4022. factor 5 (Figure
  4023. \begin_inset CommandInset ref
  4024. LatexCommand ref
  4025. reference "fig:mofa-lf-scatter"
  4026. plural "false"
  4027. caps "false"
  4028. noprefix "false"
  4029. \end_inset
  4030. ), which accounts for shared variation across all 3 histone marks and the
  4031. RNA-seq data, confirming that this convergence is a coordinated pattern
  4032. across all 4 data sets.
  4033. While this observation does not prove that the naive cells have differentiated
  4034. into memory cells at Day 14, it is consistent with that hypothesis.
  4035. \end_layout
  4036. \begin_layout Subsection
  4037. Effect of H3K4me2 and H3K4me3 promoter coverage upstream vs downstream of
  4038. TSS
  4039. \end_layout
  4040. \begin_layout Standard
  4041. \begin_inset Flex TODO Note (inline)
  4042. status open
  4043. \begin_layout Plain Layout
  4044. Need a better section title, for this and the next one.
  4045. \end_layout
  4046. \end_inset
  4047. \end_layout
  4048. \begin_layout Standard
  4049. \begin_inset Flex TODO Note (inline)
  4050. status open
  4051. \begin_layout Plain Layout
  4052. Make sure use of coverage/abundance/whatever is consistent.
  4053. \end_layout
  4054. \end_inset
  4055. \end_layout
  4056. \begin_layout Standard
  4057. \begin_inset Flex TODO Note (inline)
  4058. status open
  4059. \begin_layout Plain Layout
  4060. For the figures in this section and the next, the group labels are arbitrary,
  4061. so if time allows, it would be good to manually reorder them in a logical
  4062. way, e.g.
  4063. most upstream to most downstream.
  4064. If this is done, make sure to update the text with the correct group labels.
  4065. \end_layout
  4066. \end_inset
  4067. \end_layout
  4068. \begin_layout Standard
  4069. \begin_inset ERT
  4070. status open
  4071. \begin_layout Plain Layout
  4072. \backslash
  4073. afterpage{
  4074. \end_layout
  4075. \begin_layout Plain Layout
  4076. \backslash
  4077. begin{landscape}
  4078. \end_layout
  4079. \end_inset
  4080. \end_layout
  4081. \begin_layout Standard
  4082. \begin_inset Float figure
  4083. wide false
  4084. sideways false
  4085. status open
  4086. \begin_layout Plain Layout
  4087. \align center
  4088. \begin_inset Float figure
  4089. wide false
  4090. sideways false
  4091. status open
  4092. \begin_layout Plain Layout
  4093. \align center
  4094. \begin_inset Graphics
  4095. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-neighborhood-clusters-CROP.png
  4096. lyxscale 25
  4097. width 30col%
  4098. groupId covprof-subfig
  4099. \end_inset
  4100. \end_layout
  4101. \begin_layout Plain Layout
  4102. \begin_inset Caption Standard
  4103. \begin_layout Plain Layout
  4104. \series bold
  4105. \begin_inset CommandInset label
  4106. LatexCommand label
  4107. name "fig:H3K4me2-neighborhood-clusters"
  4108. \end_inset
  4109. Average relative coverage for each bin in each cluster
  4110. \end_layout
  4111. \end_inset
  4112. \end_layout
  4113. \end_inset
  4114. \begin_inset space \hfill{}
  4115. \end_inset
  4116. \begin_inset Float figure
  4117. wide false
  4118. sideways false
  4119. status open
  4120. \begin_layout Plain Layout
  4121. \align center
  4122. \begin_inset Graphics
  4123. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-neighborhood-PCA-CROP.png
  4124. lyxscale 25
  4125. width 30col%
  4126. groupId covprof-subfig
  4127. \end_inset
  4128. \end_layout
  4129. \begin_layout Plain Layout
  4130. \begin_inset Caption Standard
  4131. \begin_layout Plain Layout
  4132. \series bold
  4133. \begin_inset CommandInset label
  4134. LatexCommand label
  4135. name "fig:H3K4me2-neighborhood-pca"
  4136. \end_inset
  4137. PCA of relative coverage depth, colored by K-means cluster membership.
  4138. \end_layout
  4139. \end_inset
  4140. \end_layout
  4141. \end_inset
  4142. \begin_inset space \hfill{}
  4143. \end_inset
  4144. \begin_inset Float figure
  4145. wide false
  4146. sideways false
  4147. status open
  4148. \begin_layout Plain Layout
  4149. \align center
  4150. \begin_inset Graphics
  4151. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-neighborhood-expression-CROP.png
  4152. lyxscale 25
  4153. width 30col%
  4154. groupId covprof-subfig
  4155. \end_inset
  4156. \end_layout
  4157. \begin_layout Plain Layout
  4158. \begin_inset Caption Standard
  4159. \begin_layout Plain Layout
  4160. \series bold
  4161. \begin_inset CommandInset label
  4162. LatexCommand label
  4163. name "fig:H3K4me2-neighborhood-expression"
  4164. \end_inset
  4165. Gene expression grouped by promoter coverage clusters.
  4166. \end_layout
  4167. \end_inset
  4168. \end_layout
  4169. \end_inset
  4170. \end_layout
  4171. \begin_layout Plain Layout
  4172. \begin_inset Caption Standard
  4173. \begin_layout Plain Layout
  4174. \series bold
  4175. \begin_inset CommandInset label
  4176. LatexCommand label
  4177. name "fig:H3K4me2-neighborhood"
  4178. \end_inset
  4179. K-means clustering of promoter H3K4me2 relative coverage depth in naive
  4180. day 0 samples.
  4181. \series default
  4182. H3K4me2 ChIP-seq reads were binned into 500-bp windows tiled across each
  4183. promoter from 5
  4184. \begin_inset space ~
  4185. \end_inset
  4186. kbp upstream to 5
  4187. \begin_inset space ~
  4188. \end_inset
  4189. kbp downstream, and the logCPM values were normalized within each promoter
  4190. to an average of 0, yielding relative coverage depths.
  4191. These were then grouped using K-means clustering with
  4192. \begin_inset Formula $K=6$
  4193. \end_inset
  4194. ,
  4195. \series bold
  4196. \series default
  4197. and the average bin values were plotted for each cluster (a).
  4198. The
  4199. \begin_inset Formula $x$
  4200. \end_inset
  4201. -axis is the genomic coordinate of each bin relative to the the transcription
  4202. start site, and the
  4203. \begin_inset Formula $y$
  4204. \end_inset
  4205. -axis is the mean relative coverage depth of that bin across all promoters
  4206. in the cluster.
  4207. Each line represents the average
  4208. \begin_inset Quotes eld
  4209. \end_inset
  4210. shape
  4211. \begin_inset Quotes erd
  4212. \end_inset
  4213. of the promoter coverage for promoters in that cluster.
  4214. PCA was performed on the same data, and the first two principal components
  4215. were plotted, coloring each point by its K-means cluster identity (b).
  4216. For each cluster, the distribution of gene expression values was plotted
  4217. (c).
  4218. \end_layout
  4219. \end_inset
  4220. \end_layout
  4221. \end_inset
  4222. \end_layout
  4223. \begin_layout Standard
  4224. \begin_inset ERT
  4225. status open
  4226. \begin_layout Plain Layout
  4227. \backslash
  4228. end{landscape}
  4229. \end_layout
  4230. \begin_layout Plain Layout
  4231. }
  4232. \end_layout
  4233. \end_inset
  4234. \end_layout
  4235. \begin_layout Standard
  4236. To test whether the position of a histone mark relative to a gene's transcriptio
  4237. n start site (TSS) was important, we looked at the
  4238. \begin_inset Quotes eld
  4239. \end_inset
  4240. landscape
  4241. \begin_inset Quotes erd
  4242. \end_inset
  4243. of ChIP-seq read coverage in naive Day 0 samples within 5 kb of each gene's
  4244. TSS by binning reads into 500-bp windows tiled across each promoter LogCPM
  4245. values were calculated for the bins in each promoter and then the average
  4246. logCPM for each promoter's bins was normalized to zero, such that the values
  4247. represent coverage relative to other regions of the same promoter rather
  4248. than being proportional to absolute read count.
  4249. The promoters were then clustered based on the normalized bin abundances
  4250. using
  4251. \begin_inset Formula $k$
  4252. \end_inset
  4253. -means clustering with
  4254. \begin_inset Formula $K=6$
  4255. \end_inset
  4256. .
  4257. Different values of
  4258. \begin_inset Formula $K$
  4259. \end_inset
  4260. were also tested, but did not substantially change the interpretation of
  4261. the data.
  4262. \end_layout
  4263. \begin_layout Standard
  4264. For H3K4me2, plotting the average bin abundances for each cluster reveals
  4265. a simple pattern (Figure
  4266. \begin_inset CommandInset ref
  4267. LatexCommand ref
  4268. reference "fig:H3K4me2-neighborhood-clusters"
  4269. plural "false"
  4270. caps "false"
  4271. noprefix "false"
  4272. \end_inset
  4273. ): Cluster 5 represents a completely flat promoter coverage profile, likely
  4274. consisting of genes with no H3K4me2 methylation in the promoter.
  4275. All the other clusters represent a continuum of peak positions relative
  4276. to the TSS.
  4277. In order from must upstream to most downstream, they are Clusters 6, 4,
  4278. 3, 1, and 2.
  4279. There do not appear to be any clusters representing coverage patterns other
  4280. than lone peaks, such as coverage troughs or double peaks.
  4281. Next, all promoters were plotted in a PCA plot based on the same relative
  4282. bin abundance data, and colored based on cluster membership (Figure
  4283. \begin_inset CommandInset ref
  4284. LatexCommand ref
  4285. reference "fig:H3K4me2-neighborhood-pca"
  4286. plural "false"
  4287. caps "false"
  4288. noprefix "false"
  4289. \end_inset
  4290. ).
  4291. The PCA plot shows Cluster 5 (the
  4292. \begin_inset Quotes eld
  4293. \end_inset
  4294. no peak
  4295. \begin_inset Quotes erd
  4296. \end_inset
  4297. cluster) at the center, with the other clusters arranged in a counter-clockwise
  4298. arc around it in the order noted above, from most upstream peak to most
  4299. downstream.
  4300. Notably, the
  4301. \begin_inset Quotes eld
  4302. \end_inset
  4303. clusters
  4304. \begin_inset Quotes erd
  4305. \end_inset
  4306. form a single large
  4307. \begin_inset Quotes eld
  4308. \end_inset
  4309. cloud
  4310. \begin_inset Quotes erd
  4311. \end_inset
  4312. with no apparent separation between them, further supporting the conclusion
  4313. that these clusters represent an arbitrary partitioning of a continuous
  4314. distribution of promoter coverage landscapes.
  4315. While the clusters are a useful abstraction that aids in visualization,
  4316. they are ultimately not an accurate representation of the data.
  4317. A better representation might be something like a polar coordinate system
  4318. with the origin at the center of Cluster 5, where the radius represents
  4319. the peak height above the background and the angle represents the peak's
  4320. position upstream or downstream of the TSS.
  4321. The continuous nature of the distribution also explains why different values
  4322. of
  4323. \begin_inset Formula $K$
  4324. \end_inset
  4325. led to similar conclusions.
  4326. \end_layout
  4327. \begin_layout Standard
  4328. \begin_inset Flex TODO Note (inline)
  4329. status open
  4330. \begin_layout Plain Layout
  4331. RNA-seq values in the plots use logCPM but should really use logFPKM or
  4332. logTPM.
  4333. Fix if time allows.
  4334. \end_layout
  4335. \end_inset
  4336. \end_layout
  4337. \begin_layout Standard
  4338. \begin_inset Flex TODO Note (inline)
  4339. status open
  4340. \begin_layout Plain Layout
  4341. Should have a table of p-values on difference of means between Cluster 5
  4342. and the others.
  4343. \end_layout
  4344. \end_inset
  4345. \end_layout
  4346. \begin_layout Standard
  4347. To investigate the association between relative peak position and gene expressio
  4348. n, we plotted the Naive Day 0 expression for the genes in each cluster (Figure
  4349. \begin_inset CommandInset ref
  4350. LatexCommand ref
  4351. reference "fig:H3K4me2-neighborhood-expression"
  4352. plural "false"
  4353. caps "false"
  4354. noprefix "false"
  4355. \end_inset
  4356. ).
  4357. Most genes in Cluster 5, the
  4358. \begin_inset Quotes eld
  4359. \end_inset
  4360. no peak
  4361. \begin_inset Quotes erd
  4362. \end_inset
  4363. cluster, have low expression values.
  4364. Taking this as the
  4365. \begin_inset Quotes eld
  4366. \end_inset
  4367. baseline
  4368. \begin_inset Quotes erd
  4369. \end_inset
  4370. distribution when no H3K4me2 methylation is present, we can compare the
  4371. other clusters' distributions to determine which peak positions are associated
  4372. with elevated expression.
  4373. As might be expected, the 3 clusters representing peaks closest to the
  4374. TSS, Clusters 1, 3, and 4, show the highest average expression distributions.
  4375. Specifically, these clusters all have their highest ChIP-seq abundance
  4376. within 1kb of the TSS, consistent with the previously determined promoter
  4377. radius.
  4378. In contrast, cluster 6, which represents peaks several kb upstream of the
  4379. TSS, shows a slightly higher average expression than baseline, while Cluster
  4380. 2, which represents peaks several kb downstream, doesn't appear to show
  4381. any appreciable difference.
  4382. Interestingly, the cluster with the highest average expression is Cluster
  4383. 1, which represents peaks about 1 kb downstream of the TSS, rather than
  4384. Cluster 3, which represents peaks centered directly at the TSS.
  4385. This suggests that conceptualizing the promoter as a region centered on
  4386. the TSS with a certain
  4387. \begin_inset Quotes eld
  4388. \end_inset
  4389. radius
  4390. \begin_inset Quotes erd
  4391. \end_inset
  4392. may be an oversimplification – a peak that is a specific distance from
  4393. the TSS may have a different degree of influence depending on whether it
  4394. is upstream or downstream of the TSS.
  4395. \end_layout
  4396. \begin_layout Standard
  4397. \begin_inset ERT
  4398. status open
  4399. \begin_layout Plain Layout
  4400. \backslash
  4401. afterpage{
  4402. \end_layout
  4403. \begin_layout Plain Layout
  4404. \backslash
  4405. begin{landscape}
  4406. \end_layout
  4407. \end_inset
  4408. \end_layout
  4409. \begin_layout Standard
  4410. \begin_inset Float figure
  4411. wide false
  4412. sideways false
  4413. status open
  4414. \begin_layout Plain Layout
  4415. \align center
  4416. \begin_inset Float figure
  4417. wide false
  4418. sideways false
  4419. status open
  4420. \begin_layout Plain Layout
  4421. \align center
  4422. \begin_inset Graphics
  4423. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-neighborhood-clusters-CROP.png
  4424. lyxscale 25
  4425. width 30col%
  4426. groupId covprof-subfig
  4427. \end_inset
  4428. \end_layout
  4429. \begin_layout Plain Layout
  4430. \begin_inset Caption Standard
  4431. \begin_layout Plain Layout
  4432. \series bold
  4433. \begin_inset CommandInset label
  4434. LatexCommand label
  4435. name "fig:H3K4me3-neighborhood-clusters"
  4436. \end_inset
  4437. Average relative coverage for each bin in each cluster
  4438. \end_layout
  4439. \end_inset
  4440. \end_layout
  4441. \end_inset
  4442. \begin_inset space \hfill{}
  4443. \end_inset
  4444. \begin_inset Float figure
  4445. wide false
  4446. sideways false
  4447. status open
  4448. \begin_layout Plain Layout
  4449. \align center
  4450. \begin_inset Graphics
  4451. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-neighborhood-PCA-CROP.png
  4452. lyxscale 25
  4453. width 30col%
  4454. groupId covprof-subfig
  4455. \end_inset
  4456. \end_layout
  4457. \begin_layout Plain Layout
  4458. \begin_inset Caption Standard
  4459. \begin_layout Plain Layout
  4460. \series bold
  4461. \begin_inset CommandInset label
  4462. LatexCommand label
  4463. name "fig:H3K4me3-neighborhood-pca"
  4464. \end_inset
  4465. PCA of relative coverage depth, colored by K-means cluster membership.
  4466. \end_layout
  4467. \end_inset
  4468. \end_layout
  4469. \end_inset
  4470. \begin_inset space \hfill{}
  4471. \end_inset
  4472. \begin_inset Float figure
  4473. wide false
  4474. sideways false
  4475. status open
  4476. \begin_layout Plain Layout
  4477. \align center
  4478. \begin_inset Graphics
  4479. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-neighborhood-expression-CROP.png
  4480. lyxscale 25
  4481. width 30col%
  4482. groupId covprof-subfig
  4483. \end_inset
  4484. \end_layout
  4485. \begin_layout Plain Layout
  4486. \begin_inset Caption Standard
  4487. \begin_layout Plain Layout
  4488. \series bold
  4489. \begin_inset CommandInset label
  4490. LatexCommand label
  4491. name "fig:H3K4me3-neighborhood-expression"
  4492. \end_inset
  4493. Gene expression grouped by promoter coverage clusters.
  4494. \end_layout
  4495. \end_inset
  4496. \end_layout
  4497. \end_inset
  4498. \end_layout
  4499. \begin_layout Plain Layout
  4500. \begin_inset Caption Standard
  4501. \begin_layout Plain Layout
  4502. \series bold
  4503. \begin_inset CommandInset label
  4504. LatexCommand label
  4505. name "fig:H3K4me3-neighborhood"
  4506. \end_inset
  4507. K-means clustering of promoter H3K4me3 relative coverage depth in naive
  4508. day 0 samples.
  4509. \series default
  4510. H3K4me2 ChIP-seq reads were binned into 500-bp windows tiled across each
  4511. promoter from 5
  4512. \begin_inset space ~
  4513. \end_inset
  4514. kbp upstream to 5
  4515. \begin_inset space ~
  4516. \end_inset
  4517. kbp downstream, and the logCPM values were normalized within each promoter
  4518. to an average of 0, yielding relative coverage depths.
  4519. These were then grouped using K-means clustering with
  4520. \begin_inset Formula $K=6$
  4521. \end_inset
  4522. ,
  4523. \series bold
  4524. \series default
  4525. and the average bin values were plotted for each cluster (a).
  4526. The
  4527. \begin_inset Formula $x$
  4528. \end_inset
  4529. -axis is the genomic coordinate of each bin relative to the the transcription
  4530. start site, and the
  4531. \begin_inset Formula $y$
  4532. \end_inset
  4533. -axis is the mean relative coverage depth of that bin across all promoters
  4534. in the cluster.
  4535. Each line represents the average
  4536. \begin_inset Quotes eld
  4537. \end_inset
  4538. shape
  4539. \begin_inset Quotes erd
  4540. \end_inset
  4541. of the promoter coverage for promoters in that cluster.
  4542. PCA was performed on the same data, and the first two principal components
  4543. were plotted, coloring each point by its K-means cluster identity (b).
  4544. For each cluster, the distribution of gene expression values was plotted
  4545. (c).
  4546. \end_layout
  4547. \end_inset
  4548. \end_layout
  4549. \end_inset
  4550. \end_layout
  4551. \begin_layout Standard
  4552. \begin_inset ERT
  4553. status open
  4554. \begin_layout Plain Layout
  4555. \backslash
  4556. end{landscape}
  4557. \end_layout
  4558. \begin_layout Plain Layout
  4559. }
  4560. \end_layout
  4561. \end_inset
  4562. \end_layout
  4563. \begin_layout Standard
  4564. \begin_inset Flex TODO Note (inline)
  4565. status open
  4566. \begin_layout Plain Layout
  4567. Is there more to say here?
  4568. \end_layout
  4569. \end_inset
  4570. \end_layout
  4571. \begin_layout Standard
  4572. All observations described above for H3K4me2 ChIP-seq also appear to hold
  4573. for H3K4me3 as well (Figure
  4574. \begin_inset CommandInset ref
  4575. LatexCommand ref
  4576. reference "fig:H3K4me3-neighborhood"
  4577. plural "false"
  4578. caps "false"
  4579. noprefix "false"
  4580. \end_inset
  4581. ).
  4582. This is expected, since there is a high correlation between the positions
  4583. where both histone marks occur.
  4584. \end_layout
  4585. \begin_layout Subsection
  4586. Promoter coverage H3K27me3
  4587. \end_layout
  4588. \begin_layout Standard
  4589. \begin_inset ERT
  4590. status open
  4591. \begin_layout Plain Layout
  4592. \backslash
  4593. afterpage{
  4594. \end_layout
  4595. \begin_layout Plain Layout
  4596. \backslash
  4597. begin{landscape}
  4598. \end_layout
  4599. \end_inset
  4600. \end_layout
  4601. \begin_layout Standard
  4602. \begin_inset Float figure
  4603. wide false
  4604. sideways false
  4605. status collapsed
  4606. \begin_layout Plain Layout
  4607. \align center
  4608. \begin_inset Float figure
  4609. wide false
  4610. sideways false
  4611. status open
  4612. \begin_layout Plain Layout
  4613. \align center
  4614. \begin_inset Graphics
  4615. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-neighborhood-clusters-CROP.png
  4616. lyxscale 25
  4617. width 30col%
  4618. groupId covprof-subfig
  4619. \end_inset
  4620. \end_layout
  4621. \begin_layout Plain Layout
  4622. \begin_inset Caption Standard
  4623. \begin_layout Plain Layout
  4624. \series bold
  4625. \begin_inset CommandInset label
  4626. LatexCommand label
  4627. name "fig:H3K27me3-neighborhood-clusters"
  4628. \end_inset
  4629. Average relative coverage for each bin in each cluster
  4630. \end_layout
  4631. \end_inset
  4632. \end_layout
  4633. \end_inset
  4634. \begin_inset space \hfill{}
  4635. \end_inset
  4636. \begin_inset Float figure
  4637. wide false
  4638. sideways false
  4639. status open
  4640. \begin_layout Plain Layout
  4641. \align center
  4642. \begin_inset Graphics
  4643. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-neighborhood-PCA-CROP.png
  4644. lyxscale 25
  4645. width 30col%
  4646. groupId covprof-subfig
  4647. \end_inset
  4648. \end_layout
  4649. \begin_layout Plain Layout
  4650. \begin_inset Caption Standard
  4651. \begin_layout Plain Layout
  4652. \series bold
  4653. \begin_inset CommandInset label
  4654. LatexCommand label
  4655. name "fig:H3K27me3-neighborhood-pca"
  4656. \end_inset
  4657. PCA of relative coverage depth, colored by K-means cluster membership.
  4658. \series default
  4659. Note that Cluster 6 is hidden behind all the other clusters.
  4660. \end_layout
  4661. \end_inset
  4662. \end_layout
  4663. \end_inset
  4664. \begin_inset space \hfill{}
  4665. \end_inset
  4666. \begin_inset Float figure
  4667. wide false
  4668. sideways false
  4669. status open
  4670. \begin_layout Plain Layout
  4671. \align center
  4672. \begin_inset Graphics
  4673. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-neighborhood-expression-CROP.png
  4674. lyxscale 25
  4675. width 30col%
  4676. groupId covprof-subfig
  4677. \end_inset
  4678. \end_layout
  4679. \begin_layout Plain Layout
  4680. \begin_inset Caption Standard
  4681. \begin_layout Plain Layout
  4682. \series bold
  4683. \begin_inset CommandInset label
  4684. LatexCommand label
  4685. name "fig:H3K27me3-neighborhood-expression"
  4686. \end_inset
  4687. Gene expression grouped by promoter coverage clusters.
  4688. \end_layout
  4689. \end_inset
  4690. \end_layout
  4691. \end_inset
  4692. \end_layout
  4693. \begin_layout Plain Layout
  4694. \begin_inset Flex TODO Note (inline)
  4695. status open
  4696. \begin_layout Plain Layout
  4697. Repeated figure legends are kind of an issue here.
  4698. What to do?
  4699. \end_layout
  4700. \end_inset
  4701. \end_layout
  4702. \begin_layout Plain Layout
  4703. \begin_inset Caption Standard
  4704. \begin_layout Plain Layout
  4705. \series bold
  4706. \begin_inset CommandInset label
  4707. LatexCommand label
  4708. name "fig:H3K27me3-neighborhood"
  4709. \end_inset
  4710. K-means clustering of promoter H3K27me3 relative coverage depth in naive
  4711. day 0 samples.
  4712. \series default
  4713. H3K27me3 ChIP-seq reads were binned into 500-bp windows tiled across each
  4714. promoter from 5
  4715. \begin_inset space ~
  4716. \end_inset
  4717. kbp upstream to 5
  4718. \begin_inset space ~
  4719. \end_inset
  4720. kbp downstream, and the logCPM values were normalized within each promoter
  4721. to an average of 0, yielding relative coverage depths.
  4722. These were then grouped using
  4723. \begin_inset Formula $k$
  4724. \end_inset
  4725. -means clustering with
  4726. \begin_inset Formula $K=6$
  4727. \end_inset
  4728. ,
  4729. \series bold
  4730. \series default
  4731. and the average bin values were plotted for each cluster (a).
  4732. The
  4733. \begin_inset Formula $x$
  4734. \end_inset
  4735. -axis is the genomic coordinate of each bin relative to the the transcription
  4736. start site, and the
  4737. \begin_inset Formula $y$
  4738. \end_inset
  4739. -axis is the mean relative coverage depth of that bin across all promoters
  4740. in the cluster.
  4741. Each line represents the average
  4742. \begin_inset Quotes eld
  4743. \end_inset
  4744. shape
  4745. \begin_inset Quotes erd
  4746. \end_inset
  4747. of the promoter coverage for promoters in that cluster.
  4748. PCA was performed on the same data, and the first two principal components
  4749. were plotted, coloring each point by its K-means cluster identity (b).
  4750. For each cluster, the distribution of gene expression values was plotted
  4751. (c).
  4752. \end_layout
  4753. \end_inset
  4754. \end_layout
  4755. \end_inset
  4756. \end_layout
  4757. \begin_layout Standard
  4758. \begin_inset ERT
  4759. status open
  4760. \begin_layout Plain Layout
  4761. \backslash
  4762. end{landscape}
  4763. \end_layout
  4764. \begin_layout Plain Layout
  4765. }
  4766. \end_layout
  4767. \end_inset
  4768. \end_layout
  4769. \begin_layout Standard
  4770. \begin_inset Flex TODO Note (inline)
  4771. status open
  4772. \begin_layout Plain Layout
  4773. Should maybe re-explain what was done or refer back to the previous section.
  4774. \end_layout
  4775. \end_inset
  4776. \end_layout
  4777. \begin_layout Standard
  4778. Unlike both H3K4 marks, whose main patterns of variation appear directly
  4779. related to the size and position of a single peak within the promoter,
  4780. the patterns of H3K27me3 methylation in promoters are more complex (Figure
  4781. \begin_inset CommandInset ref
  4782. LatexCommand ref
  4783. reference "fig:H3K27me3-neighborhood"
  4784. plural "false"
  4785. caps "false"
  4786. noprefix "false"
  4787. \end_inset
  4788. ).
  4789. Once again looking at the relative coverage in a 500-bp wide bins in a
  4790. 5kb radius around each TSS, promoters were clustered based on the normalized
  4791. relative coverage values in each bin using
  4792. \begin_inset Formula $k$
  4793. \end_inset
  4794. -means clustering with
  4795. \begin_inset Formula $K=6$
  4796. \end_inset
  4797. (Figure
  4798. \begin_inset CommandInset ref
  4799. LatexCommand ref
  4800. reference "fig:H3K27me3-neighborhood-clusters"
  4801. plural "false"
  4802. caps "false"
  4803. noprefix "false"
  4804. \end_inset
  4805. ).
  4806. This time, 3
  4807. \begin_inset Quotes eld
  4808. \end_inset
  4809. axes
  4810. \begin_inset Quotes erd
  4811. \end_inset
  4812. of variation can be observed, each represented by 2 clusters with opposing
  4813. patterns.
  4814. The first axis is greater upstream coverage (Cluster 1) vs.
  4815. greater downstream coverage (Cluster 3); the second axis is the coverage
  4816. at the TSS itself: peak (Cluster 4) or trough (Cluster 2); lastly, the
  4817. third axis represents a trough upstream of the TSS (Cluster 5) vs.
  4818. downstream of the TSS (Cluster 6).
  4819. Referring to these opposing pairs of clusters as axes of variation is justified
  4820. , because they correspond precisely to the first 3 principal components
  4821. in the PCA plot of the relative coverage values (Figure
  4822. \begin_inset CommandInset ref
  4823. LatexCommand ref
  4824. reference "fig:H3K27me3-neighborhood-pca"
  4825. plural "false"
  4826. caps "false"
  4827. noprefix "false"
  4828. \end_inset
  4829. ).
  4830. The PCA plot reveals that as in the case of H3K4me2, all the
  4831. \begin_inset Quotes eld
  4832. \end_inset
  4833. clusters
  4834. \begin_inset Quotes erd
  4835. \end_inset
  4836. are really just sections of a single connected cloud rather than discrete
  4837. clusters.
  4838. The cloud is approximately ellipsoid-shaped, with each PC being an axis
  4839. of the ellipse, and each cluster consisting of a pyrimidal section of the
  4840. ellipsoid.
  4841. \end_layout
  4842. \begin_layout Standard
  4843. In Figure
  4844. \begin_inset CommandInset ref
  4845. LatexCommand ref
  4846. reference "fig:H3K27me3-neighborhood-expression"
  4847. plural "false"
  4848. caps "false"
  4849. noprefix "false"
  4850. \end_inset
  4851. , we can see that Clusters 1 and 2 are the only clusters with higher gene
  4852. expression than the others.
  4853. For Cluster 2, this is expected, since this cluster represents genes with
  4854. depletion of H3K27me3 near the promoter.
  4855. Hence, elevated expression in cluster 2 is consistent with the conventional
  4856. view of H3K27me3 as a deactivating mark.
  4857. However, Cluster 1, the cluster with the most elevated gene expression,
  4858. represents genes with elevated coverage upstream of the TSS, or equivalently,
  4859. decreased coverage downstream, inside the gene body.
  4860. The opposite pattern, in which H3K27me3 is more abundant within the gene
  4861. body and less abundance in the upstream promoter region, does not show
  4862. any elevation in gene expression.
  4863. As with H3K4me2, this shows that the location of H3K27 trimethylation relative
  4864. to the TSS is potentially an important factor beyond simple proximity.
  4865. \end_layout
  4866. \begin_layout Standard
  4867. \begin_inset Flex TODO Note (inline)
  4868. status open
  4869. \begin_layout Plain Layout
  4870. Show the figures where the negative result ended this line of inquiry.
  4871. I need to debug some errors resulting from an R upgrade to do this.
  4872. \end_layout
  4873. \end_inset
  4874. \end_layout
  4875. \begin_layout Subsection
  4876. Defined pattern analysis
  4877. \end_layout
  4878. \begin_layout Standard
  4879. \begin_inset Flex TODO Note (inline)
  4880. status open
  4881. \begin_layout Plain Layout
  4882. This was where I defined interesting expression patterns and then looked
  4883. at initial relative promoter coverage for each expression pattern.
  4884. Negative result.
  4885. I forgot about this until recently.
  4886. Worth including? Remember to also write methods.
  4887. \end_layout
  4888. \end_inset
  4889. \end_layout
  4890. \begin_layout Subsection
  4891. Promoter CpG islands?
  4892. \end_layout
  4893. \begin_layout Standard
  4894. \begin_inset Flex TODO Note (inline)
  4895. status collapsed
  4896. \begin_layout Plain Layout
  4897. I forgot until recently about the work I did on this.
  4898. Worth including? Remember to also write methods.
  4899. \end_layout
  4900. \end_inset
  4901. \end_layout
  4902. \begin_layout Section
  4903. Discussion
  4904. \end_layout
  4905. \begin_layout Standard
  4906. \begin_inset Flex TODO Note (inline)
  4907. status open
  4908. \begin_layout Plain Layout
  4909. Write better section headers
  4910. \end_layout
  4911. \end_inset
  4912. \end_layout
  4913. \begin_layout Subsection
  4914. Effective promoter radius
  4915. \end_layout
  4916. \begin_layout Standard
  4917. Figure
  4918. \begin_inset CommandInset ref
  4919. LatexCommand ref
  4920. reference "fig:near-promoter-peak-enrich"
  4921. plural "false"
  4922. caps "false"
  4923. noprefix "false"
  4924. \end_inset
  4925. shows that H3K4me2, H3K4me3, and H3K27me3 are all enriched near promoters,
  4926. relative to the rest of the genome, consistent with their conventionally
  4927. understood role in regulating gene transcription.
  4928. Interestingly, the radius within this enrichment occurs is not the same
  4929. for each histone mark.
  4930. H3K4me2 and H3K4me3 are enriched within a 1
  4931. \begin_inset space \thinspace{}
  4932. \end_inset
  4933. kb radius, while H3K27me3 is enriched within 2.5
  4934. \begin_inset space \thinspace{}
  4935. \end_inset
  4936. kb.
  4937. Notably, the determined promoter radius was consistent across all experimental
  4938. conditions, varying only between different histone marks.
  4939. This suggests that the conventional
  4940. \begin_inset Quotes eld
  4941. \end_inset
  4942. one size fits all
  4943. \begin_inset Quotes erd
  4944. \end_inset
  4945. approach of defining a single promoter region for each gene (or each TSS)
  4946. and using that same promoter region for analyzing all types of genomic
  4947. data within an experiment may not be appropriate, and a better approach
  4948. may be to use a separate promoter radius for each kind of data, with each
  4949. radius being derived from the data itself.
  4950. Furthermore, the apparent assymetry of upstream and downstream promoter
  4951. histone modification with respect to gene expression, seen in Figures
  4952. \begin_inset CommandInset ref
  4953. LatexCommand ref
  4954. reference "fig:H3K4me2-neighborhood"
  4955. plural "false"
  4956. caps "false"
  4957. noprefix "false"
  4958. \end_inset
  4959. ,
  4960. \begin_inset CommandInset ref
  4961. LatexCommand ref
  4962. reference "fig:H3K4me3-neighborhood"
  4963. plural "false"
  4964. caps "false"
  4965. noprefix "false"
  4966. \end_inset
  4967. , and
  4968. \begin_inset CommandInset ref
  4969. LatexCommand ref
  4970. reference "fig:H3K27me3-neighborhood"
  4971. plural "false"
  4972. caps "false"
  4973. noprefix "false"
  4974. \end_inset
  4975. , shows that even the concept of a promoter
  4976. \begin_inset Quotes eld
  4977. \end_inset
  4978. radius
  4979. \begin_inset Quotes erd
  4980. \end_inset
  4981. is likely an oversimplification.
  4982. At a minimum, nearby enrichment of peaks should be evaluated separately
  4983. for both upstream and downstream peaks, and an appropriate
  4984. \begin_inset Quotes eld
  4985. \end_inset
  4986. radius
  4987. \begin_inset Quotes erd
  4988. \end_inset
  4989. should be selected for each direction.
  4990. \end_layout
  4991. \begin_layout Standard
  4992. Figures
  4993. \begin_inset CommandInset ref
  4994. LatexCommand ref
  4995. reference "fig:H3K4me2-neighborhood"
  4996. plural "false"
  4997. caps "false"
  4998. noprefix "false"
  4999. \end_inset
  5000. and
  5001. \begin_inset CommandInset ref
  5002. LatexCommand ref
  5003. reference "fig:H3K4me3-neighborhood"
  5004. plural "false"
  5005. caps "false"
  5006. noprefix "false"
  5007. \end_inset
  5008. show that the determined promoter radius of 1
  5009. \begin_inset space ~
  5010. \end_inset
  5011. kb is approximately consistent with the distance from the TSS at which enrichmen
  5012. t of H3K4 methylationis correlates with increased expression, showing that
  5013. this radius, which was determined by a simple analysis of measuring the
  5014. distance from each TSS to the nearest peak, also has functional significance.
  5015. For H3K27me3, the correlation between histone modification near the promoter
  5016. and gene expression is more complex, involving non-peak variations such
  5017. as troughs in coverage at the TSS and asymmetric coverage upstream and
  5018. downstream, so it is difficult in this case to evaluate whether the 2.5
  5019. \begin_inset space ~
  5020. \end_inset
  5021. kb radius determined from TSS-to-peak distances is functionally significant.
  5022. However, the two patterns of coverage associated with elevated expression
  5023. levels both have interesting features within this radius.
  5024. \end_layout
  5025. \begin_layout Standard
  5026. \begin_inset Flex TODO Note (inline)
  5027. status open
  5028. \begin_layout Plain Layout
  5029. My instinct is to say
  5030. \begin_inset Quotes eld
  5031. \end_inset
  5032. further study is needed
  5033. \begin_inset Quotes erd
  5034. \end_inset
  5035. here, but that goes in Chapter 5, right?
  5036. \end_layout
  5037. \end_inset
  5038. \end_layout
  5039. \begin_layout Subsection
  5040. Convergence
  5041. \end_layout
  5042. \begin_layout Standard
  5043. \begin_inset Flex TODO Note (inline)
  5044. status open
  5045. \begin_layout Plain Layout
  5046. Look up some more references for these histone marks being involved in memory
  5047. differentiation.
  5048. (Ask Sarah)
  5049. \end_layout
  5050. \end_inset
  5051. \end_layout
  5052. \begin_layout Standard
  5053. We have observed that all 3 histone marks and the gene expression data all
  5054. exhibit evidence of convergence in abundance between naive and memory cells
  5055. by day 14 after activation (Figure
  5056. \begin_inset CommandInset ref
  5057. LatexCommand ref
  5058. reference "fig:PCoA-promoters"
  5059. plural "false"
  5060. caps "false"
  5061. noprefix "false"
  5062. \end_inset
  5063. , Table
  5064. \begin_inset CommandInset ref
  5065. LatexCommand ref
  5066. reference "tab:Number-signif-promoters"
  5067. plural "false"
  5068. caps "false"
  5069. noprefix "false"
  5070. \end_inset
  5071. ).
  5072. The MOFA latent factor scatter plots (Figure
  5073. \begin_inset CommandInset ref
  5074. LatexCommand ref
  5075. reference "fig:mofa-lf-scatter"
  5076. plural "false"
  5077. caps "false"
  5078. noprefix "false"
  5079. \end_inset
  5080. ) show that this pattern of convergence is captured in latent factor 5.
  5081. Like all the latent factors in this plot, this factor explains a substantial
  5082. portion of the variance in all 4 data sets, indicating a coordinated pattern
  5083. of variation shared across all histone marks and gene expression.
  5084. This, of course, is consistent with the expectation that any naive CD4
  5085. T-cells remaining at day 14 should have differentiated into memory cells
  5086. by that time, and should therefore have a genomic state similar to memory
  5087. cells.
  5088. This convergence is evidence that these histone marks all play an important
  5089. role in the naive-to-memory differentiation process.
  5090. A histone mark that was not involved in naive-to-memory differentiation
  5091. would not be expected to converge in this way after activation.
  5092. \end_layout
  5093. \begin_layout Standard
  5094. \begin_inset Float figure
  5095. wide false
  5096. sideways false
  5097. status collapsed
  5098. \begin_layout Plain Layout
  5099. \align center
  5100. \begin_inset Graphics
  5101. filename graphics/CD4-csaw/LaMere2016_fig8.pdf
  5102. lyxscale 50
  5103. width 60col%
  5104. groupId colwidth
  5105. \end_inset
  5106. \end_layout
  5107. \begin_layout Plain Layout
  5108. \begin_inset Caption Standard
  5109. \begin_layout Plain Layout
  5110. \series bold
  5111. \begin_inset CommandInset label
  5112. LatexCommand label
  5113. name "fig:Lamere2016-Fig8"
  5114. \end_inset
  5115. Lamere 2016 Figure 8
  5116. \begin_inset CommandInset citation
  5117. LatexCommand cite
  5118. key "LaMere2016"
  5119. literal "false"
  5120. \end_inset
  5121. ,
  5122. \begin_inset Quotes eld
  5123. \end_inset
  5124. Model for the role of H3K4 methylation during CD4 T-cell activation.
  5125. \begin_inset Quotes erd
  5126. \end_inset
  5127. \series default
  5128. Reproduced with permission.
  5129. \end_layout
  5130. \end_inset
  5131. \end_layout
  5132. \end_inset
  5133. \end_layout
  5134. \begin_layout Standard
  5135. In H3K4me2, H3K4me3, and RNA-seq, this convergence appears to be in progress
  5136. already by Day 5, shown by the smaller distance between naive and memory
  5137. cells at day 5 along the
  5138. \begin_inset Formula $y$
  5139. \end_inset
  5140. -axes in Figures
  5141. \begin_inset CommandInset ref
  5142. LatexCommand ref
  5143. reference "fig:PCoA-H3K4me2-prom"
  5144. plural "false"
  5145. caps "false"
  5146. noprefix "false"
  5147. \end_inset
  5148. ,
  5149. \begin_inset CommandInset ref
  5150. LatexCommand ref
  5151. reference "fig:PCoA-H3K4me3-prom"
  5152. plural "false"
  5153. caps "false"
  5154. noprefix "false"
  5155. \end_inset
  5156. , and
  5157. \begin_inset CommandInset ref
  5158. LatexCommand ref
  5159. reference "fig:RNA-PCA-group"
  5160. plural "false"
  5161. caps "false"
  5162. noprefix "false"
  5163. \end_inset
  5164. .
  5165. This agrees with the model proposed by Sarah Lamere based on an prior analysis
  5166. of the same data, shown in Figure
  5167. \begin_inset CommandInset ref
  5168. LatexCommand ref
  5169. reference "fig:Lamere2016-Fig8"
  5170. plural "false"
  5171. caps "false"
  5172. noprefix "false"
  5173. \end_inset
  5174. , which shows the pattern of H3K4 methylation and expression for naive cells
  5175. and memory cells converging at day 5.
  5176. This model was developed without the benefit of the PCoA plots in Figure
  5177. \begin_inset CommandInset ref
  5178. LatexCommand ref
  5179. reference "fig:PCoA-promoters"
  5180. plural "false"
  5181. caps "false"
  5182. noprefix "false"
  5183. \end_inset
  5184. , which have been corrected for confounding factors by ComBat and SVA.
  5185. This shows that proper batch correction assists in extracting meaningful
  5186. patterns in the data while eliminating systematic sources of irrelevant
  5187. variation in the data, allowing simple automated procedures like PCoA to
  5188. reveal interesting behaviors in the data that were previously only detectable
  5189. by a detailed manual analysis.
  5190. \end_layout
  5191. \begin_layout Standard
  5192. While the ideal comparison to demonstrate this convergence would be naive
  5193. cells at day 14 to memory cells at day 0, this is not feasible in this
  5194. experimental system, since neither naive nor memory cells are able to fully
  5195. return to their pre-activation state, as shown by the lack of overlap between
  5196. days 0 and 14 for either naive or memory cells in Figure
  5197. \begin_inset CommandInset ref
  5198. LatexCommand ref
  5199. reference "fig:PCoA-promoters"
  5200. plural "false"
  5201. caps "false"
  5202. noprefix "false"
  5203. \end_inset
  5204. .
  5205. \end_layout
  5206. \begin_layout Subsection
  5207. Positional
  5208. \end_layout
  5209. \begin_layout Standard
  5210. When looking at patterns in the relative coverage of each histone mark near
  5211. the TSS of each gene, several interesting patterns were apparent.
  5212. For H3K4me2 and H3K4me3, the pattern was straightforward: the consistent
  5213. pattern across all promoters was a single peak a few kb wide, with the
  5214. main axis of variation being the position of this peak relative to the
  5215. TSS (Figures
  5216. \begin_inset CommandInset ref
  5217. LatexCommand ref
  5218. reference "fig:H3K4me2-neighborhood"
  5219. plural "false"
  5220. caps "false"
  5221. noprefix "false"
  5222. \end_inset
  5223. &
  5224. \begin_inset CommandInset ref
  5225. LatexCommand ref
  5226. reference "fig:H3K4me3-neighborhood"
  5227. plural "false"
  5228. caps "false"
  5229. noprefix "false"
  5230. \end_inset
  5231. ).
  5232. There were no obvious
  5233. \begin_inset Quotes eld
  5234. \end_inset
  5235. preferred
  5236. \begin_inset Quotes erd
  5237. \end_inset
  5238. positions, but rather a continuous distribution of relative positions ranging
  5239. all across the promoter region.
  5240. The association with gene expression was also straightforward: peaks closer
  5241. to the TSS were more strongly associated with elevated gene expression.
  5242. Coverage downstream of the TSS appears to be more strongly associated with
  5243. elevated expression than coverage the same distance upstream, indicating
  5244. that the
  5245. \begin_inset Quotes eld
  5246. \end_inset
  5247. effective promoter region
  5248. \begin_inset Quotes erd
  5249. \end_inset
  5250. for H3K4me2 and H3K4me3 may be centered downstream of the TSS.
  5251. \end_layout
  5252. \begin_layout Standard
  5253. The relative promoter coverage for H3K27me3 had a more complex pattern,
  5254. with two specific patterns of promoter coverage associated with elevated
  5255. expression: a sharp depletion of H3K27me3 around the TSS relative to the
  5256. surrounding area, and a depletion of H3K27me3 downstream of the TSS relative
  5257. to upstream (Figure
  5258. \begin_inset CommandInset ref
  5259. LatexCommand ref
  5260. reference "fig:H3K27me3-neighborhood"
  5261. plural "false"
  5262. caps "false"
  5263. noprefix "false"
  5264. \end_inset
  5265. ).
  5266. A previous study found that H3K27me3 depletion within the gene body was
  5267. associated with elevated gene expression in 4 different cell types in mice
  5268. \begin_inset CommandInset citation
  5269. LatexCommand cite
  5270. key "Young2011"
  5271. literal "false"
  5272. \end_inset
  5273. .
  5274. This is consistent with the second pattern described here.
  5275. This study also reported that a spike in coverage at the TSS was associated
  5276. with
  5277. \emph on
  5278. lower
  5279. \emph default
  5280. expression, which is indirectly consistent with the first pattern described
  5281. here, in the sense that it associates lower H3K27me3 levels near the TSS
  5282. with higher expression.
  5283. \end_layout
  5284. \begin_layout Subsection
  5285. Workflow
  5286. \end_layout
  5287. \begin_layout Standard
  5288. \begin_inset ERT
  5289. status open
  5290. \begin_layout Plain Layout
  5291. \backslash
  5292. afterpage{
  5293. \end_layout
  5294. \begin_layout Plain Layout
  5295. \backslash
  5296. begin{landscape}
  5297. \end_layout
  5298. \end_inset
  5299. \end_layout
  5300. \begin_layout Standard
  5301. \begin_inset Float figure
  5302. wide false
  5303. sideways false
  5304. status open
  5305. \begin_layout Plain Layout
  5306. \align center
  5307. \begin_inset Graphics
  5308. filename graphics/CD4-csaw/rulegraphs/rulegraph-all.pdf
  5309. lyxscale 50
  5310. width 100col%
  5311. height 95theight%
  5312. \end_inset
  5313. \end_layout
  5314. \begin_layout Plain Layout
  5315. \begin_inset Caption Standard
  5316. \begin_layout Plain Layout
  5317. \begin_inset CommandInset label
  5318. LatexCommand label
  5319. name "fig:rulegraph"
  5320. \end_inset
  5321. \series bold
  5322. Dependency graph of steps in reproducible workflow.
  5323. \end_layout
  5324. \end_inset
  5325. \end_layout
  5326. \end_inset
  5327. \end_layout
  5328. \begin_layout Standard
  5329. \begin_inset ERT
  5330. status open
  5331. \begin_layout Plain Layout
  5332. \backslash
  5333. end{landscape}
  5334. \end_layout
  5335. \begin_layout Plain Layout
  5336. }
  5337. \end_layout
  5338. \end_inset
  5339. \end_layout
  5340. \begin_layout Standard
  5341. The analyses described in this chapter were organized into a reproducible
  5342. workflow using the Snakemake workflow management system.
  5343. As shown in Figure
  5344. \begin_inset CommandInset ref
  5345. LatexCommand ref
  5346. reference "fig:rulegraph"
  5347. plural "false"
  5348. caps "false"
  5349. noprefix "false"
  5350. \end_inset
  5351. , the workflow includes many steps with complex dependencies between them.
  5352. For example, the step that counts the number of ChIP-seq reads in 500
  5353. \begin_inset space ~
  5354. \end_inset
  5355. bp windows in each promoter (the starting point for Figures
  5356. \begin_inset CommandInset ref
  5357. LatexCommand ref
  5358. reference "fig:H3K4me2-neighborhood"
  5359. plural "false"
  5360. caps "false"
  5361. noprefix "false"
  5362. \end_inset
  5363. ,
  5364. \begin_inset CommandInset ref
  5365. LatexCommand ref
  5366. reference "fig:H3K4me3-neighborhood"
  5367. plural "false"
  5368. caps "false"
  5369. noprefix "false"
  5370. \end_inset
  5371. , and
  5372. \begin_inset CommandInset ref
  5373. LatexCommand ref
  5374. reference "fig:H3K27me3-neighborhood"
  5375. plural "false"
  5376. caps "false"
  5377. noprefix "false"
  5378. \end_inset
  5379. ), named
  5380. \begin_inset Formula $\texttt{chipseq\_count\_tss\_neighborhoods}$
  5381. \end_inset
  5382. , depends on the RNA-seq abundance estimates in order to select the most-used
  5383. TSS for each gene, the aligned ChIP-seq reads, the index for those reads,
  5384. and the blacklist of regions to be excluded from ChIP-seq analysis.
  5385. Each step declares its inputs and outputs, and Snakemake uses these to
  5386. determine the dependencies between steps.
  5387. Each step is marked as depending on all the steps whose outputs match its
  5388. inputs, generating the workflow graph in Figure
  5389. \begin_inset CommandInset ref
  5390. LatexCommand ref
  5391. reference "fig:rulegraph"
  5392. plural "false"
  5393. caps "false"
  5394. noprefix "false"
  5395. \end_inset
  5396. , which Snakemake uses to determine order in which to execute each step
  5397. so that each step is executed only after all of the steps it depends on
  5398. have completed, thereby automating the entire workflow from start to finish.
  5399. \end_layout
  5400. \begin_layout Standard
  5401. In addition to simply making it easier to organize the steps in the analysis,
  5402. structuring the analysis as a workflow allowed for some analysis strategies
  5403. that would not have been practical otherwise.
  5404. For example, 5 different RNA-seq quantification methods were tested against
  5405. two different reference transcriptome annotations for a total of 10 different
  5406. quantifications of the same RNA-seq data.
  5407. These were then compared against each other in the exploratory data analysis
  5408. step, to determine that the results were not very sensitive to either the
  5409. choice of quantification method or the choice of annotation.
  5410. This was possible with a single script for the exploratory data analysis,
  5411. because Snakemake was able to automate running this script for every combinatio
  5412. n of method and reference.
  5413. In a similar manner, two different peak calling methods were tested against
  5414. each other, and in this case it was determined that SICER was unambiguously
  5415. superior to MACS for all histone marks studied.
  5416. By enabling these types of comparisons, structuring the analysis as an
  5417. automated workflow allowed important analysis decisions to be made in a
  5418. data-driven way, by running every reasonable option through the downstream
  5419. steps, seeing the consequences of choosing each option, and deciding accordingl
  5420. y.
  5421. \end_layout
  5422. \begin_layout Subsection
  5423. Data quality issues limit conclusions
  5424. \end_layout
  5425. \begin_layout Standard
  5426. \begin_inset Flex TODO Note (inline)
  5427. status open
  5428. \begin_layout Plain Layout
  5429. Is this needed?
  5430. \end_layout
  5431. \end_inset
  5432. \end_layout
  5433. \begin_layout Section
  5434. Future Directions
  5435. \end_layout
  5436. \begin_layout Standard
  5437. The analysis of RNA-seq and ChIP-seq in CD4 T-cells in Chapter 2 is in many
  5438. ways a preliminary study that suggests a multitude of new avenues of investigat
  5439. ion.
  5440. Here we consider a selection of such avenues.
  5441. \end_layout
  5442. \begin_layout Subsection
  5443. Negative results
  5444. \end_layout
  5445. \begin_layout Standard
  5446. Two additional analyses were conducted beyond those reported in the results.
  5447. First, we searched for evidence that the presence or absence of a CpG island
  5448. in the promoter was correlated with increases or decreases in gene expression
  5449. or any histone mark in any of the tested contrasts.
  5450. Second, we searched for evidence that the relative ChIP-seq coverage profiles
  5451. prior to activations could predict the change in expression of a gene after
  5452. activation.
  5453. Neither analysis turned up any clear positive results.
  5454. \end_layout
  5455. \begin_layout Subsection
  5456. Improve on the idea of an effective promoter radius
  5457. \end_layout
  5458. \begin_layout Standard
  5459. This study introduced the concept of an
  5460. \begin_inset Quotes eld
  5461. \end_inset
  5462. effective promoter radius
  5463. \begin_inset Quotes erd
  5464. \end_inset
  5465. specific to each histone mark based on distince from the TSS within which
  5466. an excess of peaks was called for that mark.
  5467. This concept was then used to guide further analyses throughout the study.
  5468. However, while the effective promoter radius was useful in those analyses,
  5469. it is both limited in theory and shown in practice to be a possible oversimplif
  5470. ication.
  5471. First, the effective promoter radii used in this study were chosen based
  5472. on manual inspection of the TSS-to-peak distance distributions in Figure
  5473. \begin_inset CommandInset ref
  5474. LatexCommand ref
  5475. reference "fig:near-promoter-peak-enrich"
  5476. plural "false"
  5477. caps "false"
  5478. noprefix "false"
  5479. \end_inset
  5480. , selecting round numbers of analyst convenience (Table
  5481. \begin_inset CommandInset ref
  5482. LatexCommand ref
  5483. reference "tab:effective-promoter-radius"
  5484. plural "false"
  5485. caps "false"
  5486. noprefix "false"
  5487. \end_inset
  5488. ).
  5489. It would be better to define an algorithm that selects a more precise radius
  5490. based on the features of the graph.
  5491. One possible way to do this would be to randomly rearrange the called peaks
  5492. throughout the genome many (while preserving the distribution of peak widths)
  5493. and re-generate the same plot as in Figure
  5494. \begin_inset CommandInset ref
  5495. LatexCommand ref
  5496. reference "fig:near-promoter-peak-enrich"
  5497. plural "false"
  5498. caps "false"
  5499. noprefix "false"
  5500. \end_inset
  5501. .
  5502. This would yield a better
  5503. \begin_inset Quotes eld
  5504. \end_inset
  5505. background
  5506. \begin_inset Quotes erd
  5507. \end_inset
  5508. distribution that demonstrates the degree of near-TSS enrichment that would
  5509. be expected by random chance.
  5510. The effective promoter radius could be defined as the point where the true
  5511. distribution diverges from the randomized background distribution.
  5512. \end_layout
  5513. \begin_layout Standard
  5514. Furthermore, the above definition of effective promoter radius has the significa
  5515. nt limitation of being based on the peak calling method.
  5516. It is thus very sensitive to the choice of peak caller and significance
  5517. threshold for calling peaks, as well as the degree of saturation in the
  5518. sequencing.
  5519. Calling peaks from ChIP-seq samples with insufficient coverage depth, with
  5520. the wrong peak caller, or with a different significance threshold could
  5521. give a drastically different number of called peaks, and hence a drastically
  5522. different distribution of peak-to-TSS distances.
  5523. To address this, it is desirable to develop a better method of determining
  5524. the effective promoter radius that relies only on the distribution of read
  5525. coverage around the TSS, independent of the peak calling.
  5526. Furthermore, as demonstrated by the upstream-downstream asymmetries observed
  5527. in Figures
  5528. \begin_inset CommandInset ref
  5529. LatexCommand ref
  5530. reference "fig:H3K4me2-neighborhood"
  5531. plural "false"
  5532. caps "false"
  5533. noprefix "false"
  5534. \end_inset
  5535. ,
  5536. \begin_inset CommandInset ref
  5537. LatexCommand ref
  5538. reference "fig:H3K4me3-neighborhood"
  5539. plural "false"
  5540. caps "false"
  5541. noprefix "false"
  5542. \end_inset
  5543. , and
  5544. \begin_inset CommandInset ref
  5545. LatexCommand ref
  5546. reference "fig:H3K27me3-neighborhood"
  5547. plural "false"
  5548. caps "false"
  5549. noprefix "false"
  5550. \end_inset
  5551. , this definition should determine a different radius for the upstream and
  5552. downstream directions.
  5553. At this point, it may be better to rename this concept
  5554. \begin_inset Quotes eld
  5555. \end_inset
  5556. effective promoter extent
  5557. \begin_inset Quotes erd
  5558. \end_inset
  5559. and avoid the word
  5560. \begin_inset Quotes eld
  5561. \end_inset
  5562. radius
  5563. \begin_inset Quotes erd
  5564. \end_inset
  5565. , since a radius implies a symmetry about the TSS that is not supported
  5566. by the data.
  5567. \end_layout
  5568. \begin_layout Standard
  5569. Beyond improving the definition of effective promoter extent, functional
  5570. validation is necessary to show that this measure of near-TSS enrichment
  5571. has biological meaning.
  5572. Figures
  5573. \begin_inset CommandInset ref
  5574. LatexCommand ref
  5575. reference "fig:H3K4me2-neighborhood"
  5576. plural "false"
  5577. caps "false"
  5578. noprefix "false"
  5579. \end_inset
  5580. and
  5581. \begin_inset CommandInset ref
  5582. LatexCommand ref
  5583. reference "fig:H3K4me3-neighborhood"
  5584. plural "false"
  5585. caps "false"
  5586. noprefix "false"
  5587. \end_inset
  5588. already provide a very limited functional validation of the chosen promoter
  5589. extents for H3K4me2 and H3K4me3 by showing that spikes in coverage within
  5590. this region are most strongly correlated with elevated gene expression.
  5591. However, there are other ways to show functional relevance of the promoter
  5592. extent.
  5593. For example, correlations could be computed between read counts in peaks
  5594. nearby gene promoters and the expression level of those genes, and these
  5595. correlations could be plotted against the distance of the peak upstream
  5596. or downstream of the gene's TSS.
  5597. If the promoter extent truly defines a
  5598. \begin_inset Quotes eld
  5599. \end_inset
  5600. sphere of influence
  5601. \begin_inset Quotes erd
  5602. \end_inset
  5603. within which a histone mark is involved with the regulation of a gene,
  5604. then the correlations for peaks within this extent should be significantly
  5605. higher than those further upstream or downstream.
  5606. Peaks within these extents may also be more likely to show differential
  5607. modification than those outside genic regions of the genome.
  5608. \end_layout
  5609. \begin_layout Subsection
  5610. Design experiments to focus on post-activation convergence of naive & memory
  5611. cells
  5612. \end_layout
  5613. \begin_layout Standard
  5614. In this study, a convergence between naive and memory cells was observed
  5615. in both the pattern of gene expression and in epigenetic state of the 3
  5616. histone marks studied, consistent with the hypothesis that any naive cells
  5617. remaining 14 days after activation have differentiated into memory cells,
  5618. and that both gene expression and these histone marks are involved in this
  5619. differentiation.
  5620. However, the current study was not designed with this specific hypothesis
  5621. in mind, and it therefore has some deficiencies with regard to testing
  5622. it.
  5623. The memory CD4 samples at day 14 do not resemble the memory samples at
  5624. day 0, indicating that in the specific model of activation used for this
  5625. experiment, the cells are not guaranteed to return to their original pre-activa
  5626. tion state, or perhaps this process takes substantially longer than 14 days.
  5627. This is a challenge for the convergence hypothesis because the ideal comparison
  5628. to prove that naive cells are converging to a resting memory state would
  5629. be to compare the final naive time point to the Day 0 memory samples, but
  5630. this comparison is only meaningful if memory cells generally return to
  5631. the same
  5632. \begin_inset Quotes eld
  5633. \end_inset
  5634. resting
  5635. \begin_inset Quotes erd
  5636. \end_inset
  5637. state that they started at.
  5638. \end_layout
  5639. \begin_layout Standard
  5640. To better study the convergence hypothesis, a new experiment should be designed
  5641. using a model system for T-cell activation that is known to allow cells
  5642. to return as closely as possible to their pre-activation state.
  5643. Alternatively, if it is not possible to find or design such a model system,
  5644. the same cell cultures could be activated serially multiple times, and
  5645. sequenced after each activation cycle right before the next activation.
  5646. It is likely that several activations in the same model system will settle
  5647. into a cylical pattern, converging to a consistent
  5648. \begin_inset Quotes eld
  5649. \end_inset
  5650. resting
  5651. \begin_inset Quotes erd
  5652. \end_inset
  5653. state after each activation, even if this state is different from the initial
  5654. resting state at Day 0.
  5655. If so, it will be possible to compare the final states of both naive and
  5656. memory cells to show that they converge despite different initial conditions.
  5657. \end_layout
  5658. \begin_layout Standard
  5659. In addition, if naive-to-memory convergence is a general pattern, it should
  5660. also be detectable in other epigenetic marks, including other histone marks
  5661. and DNA methylation.
  5662. An experiment should be designed studying a large number of epigenetic
  5663. marks known or suspected to be involved in regulation of gene expression,
  5664. assaying all of these at the same pre- and post-activation time points.
  5665. Multi-dataset factor analysis methods like MOFA can then be used to identify
  5666. coordinated patterns of regulation shared across many epigenetic marks.
  5667. If possible, some
  5668. \begin_inset Quotes eld
  5669. \end_inset
  5670. negative control
  5671. \begin_inset Quotes erd
  5672. \end_inset
  5673. marks should be included that are known
  5674. \emph on
  5675. not
  5676. \emph default
  5677. to be involved in T-cell activation or memory formation.
  5678. Of course, CD4 T-cells are not the only adaptive immune cells with memory.
  5679. A similar study could be designed for CD8 T-cells, B-cells, and even specific
  5680. subsets of CD4 T-cells.
  5681. \end_layout
  5682. \begin_layout Subsection
  5683. Follow up on hints of interesting patterns in promoter relative coverage
  5684. profiles
  5685. \end_layout
  5686. \begin_layout Standard
  5687. \begin_inset Flex TODO Note (inline)
  5688. status open
  5689. \begin_layout Plain Layout
  5690. I think I might need to write up the negative results for the Promoter CpG
  5691. and defined pattern analysis before writing this section.
  5692. \end_layout
  5693. \end_inset
  5694. \end_layout
  5695. \begin_layout Itemize
  5696. Also find better normalizations: maybe borrow from MACS/SICER background
  5697. correction methods?
  5698. \end_layout
  5699. \begin_layout Itemize
  5700. For H3K4, define polar coordinates based on PC1 & 2: R = peak size, Theta
  5701. = peak position.
  5702. Then correlate with expression.
  5703. \end_layout
  5704. \begin_layout Itemize
  5705. Current analysis only at Day 0.
  5706. Need to study across time points.
  5707. \end_layout
  5708. \begin_layout Itemize
  5709. Integrating data across so many dimensions is a significant analysis challenge
  5710. \end_layout
  5711. \begin_layout Subsection
  5712. Investigate causes of high correlation between mutually exclusive histone
  5713. marks
  5714. \end_layout
  5715. \begin_layout Standard
  5716. The high correlation between coverage depth observed between H3K4me2 and
  5717. H3K4me3 is both expected and unexpected.
  5718. Since both marks are associated with elevated gene transcription, a positive
  5719. correlation between them is not surprising.
  5720. However, these two marks represent different post-translational modifications
  5721. of the
  5722. \emph on
  5723. same
  5724. \emph default
  5725. lysine residue on the histone H3 polypeptide, which means that they cannot
  5726. both be present on the same H3 subunit.
  5727. Thus, the high correlation between them has several potential explanations.
  5728. One possible reason is cell population heterogeneity: perhaps some genomic
  5729. loci are frequently marked with H3K4me2 in some cells, while in other cells
  5730. the same loci are marked with H3K4me3.
  5731. Another possibility is allele-specific modifications: the loci are marked
  5732. in each diploid cell with H3K4me2 on one allele and H3K4me3 on the other
  5733. allele.
  5734. Lastly, since each histone octamer contains 2 H3 subunits, it is possible
  5735. that having one H3K4me2 mark and one H3K4me3 mark on a given histone octamer
  5736. represents a distinct epigenetic state with a different function than either
  5737. double H3K4me2 or double H3K4me3.
  5738. \end_layout
  5739. \begin_layout Standard
  5740. These three hypotheses could be disentangled by single-cell ChIP-seq.
  5741. If the correlation between these two histone marks persists even within
  5742. the reads for each individual cell, then cell population heterogeneity
  5743. cannot explain the correlation.
  5744. Allele-specific modification can be tested for by looking at the correlation
  5745. between read coverage of the two histone marks at heterozygous loci.
  5746. If the correlation between read counts for opposite loci is low, then this
  5747. is consistent with allele-specific modification.
  5748. Finally if the modifications do not separate by either cell or allele,
  5749. the colocation of these two marks is most likely occurring at the level
  5750. of individual histones, with the heterogenously modified histone representing
  5751. a distinct state.
  5752. \end_layout
  5753. \begin_layout Standard
  5754. However, another experiment would be required to show direct evidence of
  5755. such a heterogeneously modified state.
  5756. Specifically a
  5757. \begin_inset Quotes eld
  5758. \end_inset
  5759. double ChIP
  5760. \begin_inset Quotes erd
  5761. \end_inset
  5762. experiment would need to be performed, where the input DNA is first subjected
  5763. to an immunoprecipitation pulldown from the anti-H3K4me2 antibody, and
  5764. then the enriched material is collected, with proteins still bound, and
  5765. immunoprecipitated
  5766. \emph on
  5767. again
  5768. \emph default
  5769. using the anti-H3K4me3 antibody.
  5770. If this yields significant numbers of non-artifactual reads in the same
  5771. regions as the individual pulldowns of the two marks, this is strong evidence
  5772. that the two marks are occurring on opposite H3 subunits of the same histones.
  5773. \end_layout
  5774. \begin_layout Standard
  5775. \begin_inset Flex TODO Note (inline)
  5776. status open
  5777. \begin_layout Plain Layout
  5778. Try to see if double ChIP-seq is actually feasible, and if not, come up
  5779. with some other idea for directly detecting the mixed mod state.
  5780. Oh! Actually ChIP-seq isn't required, only double ChIP followed by quantificati
  5781. on.
  5782. That's one possible angle.
  5783. \end_layout
  5784. \end_inset
  5785. \end_layout
  5786. \begin_layout Chapter
  5787. Improving array-based diagnostics for transplant rejection by optimizing
  5788. data preprocessing
  5789. \end_layout
  5790. \begin_layout Standard
  5791. \begin_inset Note Note
  5792. status open
  5793. \begin_layout Plain Layout
  5794. Chapter author list: Me, Sunil, Tom, Padma, Dan
  5795. \end_layout
  5796. \end_inset
  5797. \end_layout
  5798. \begin_layout Section
  5799. Approach
  5800. \end_layout
  5801. \begin_layout Subsection
  5802. Proper pre-processing is essential for array data
  5803. \end_layout
  5804. \begin_layout Standard
  5805. \begin_inset Flex TODO Note (inline)
  5806. status open
  5807. \begin_layout Plain Layout
  5808. This section could probably use some citations
  5809. \end_layout
  5810. \end_inset
  5811. \end_layout
  5812. \begin_layout Standard
  5813. Microarrays, bead arrays, and similar assays produce raw data in the form
  5814. of fluorescence intensity measurements, with the each intensity measurement
  5815. proportional to the abundance of some fluorescently-labelled target DNA
  5816. or RNA sequence that base pairs to a specific probe sequence.
  5817. However, these measurements for each probe are also affected my many technical
  5818. confounding factors, such as the concentration of target material, strength
  5819. of off-target binding, and the sensitivity of the imaging sensor.
  5820. Some array designs also use multiple probe sequences for each target.
  5821. Hence, extensive pre-processing of array data is necessary to normalize
  5822. out the effects of these technical factors and summarize the information
  5823. from multiple probes to arrive at a single usable estimate of abundance
  5824. or other relevant quantity, such as a ratio of two abundances, for each
  5825. target.
  5826. \end_layout
  5827. \begin_layout Standard
  5828. The choice of pre-processing algorithms used in the analysis of an array
  5829. data set can have a large effect on the results of that analysis.
  5830. However, despite their importance, these steps are often neglected or rushed
  5831. in order to get to the more scientifically interesting analysis steps involving
  5832. the actual biology of the system under study.
  5833. Hence, it is often possible to achieve substantial gains in statistical
  5834. power, model goodness-of-fit, or other relevant performance measures, by
  5835. checking the assumptions made by each preprocessing step and choosing specific
  5836. normalization methods tailored to the specific goals of the current analysis.
  5837. \end_layout
  5838. \begin_layout Subsection
  5839. Clinical diagnostic applications for microarrays require single-channel
  5840. normalization
  5841. \end_layout
  5842. \begin_layout Standard
  5843. As the cost of performing microarray assays falls, there is increasing interest
  5844. in using genomic assays for diagnostic purposes, such as distinguishing
  5845. healthy transplants (TX) from transplants undergoing acute rejection (AR)
  5846. or acute dysfunction with no rejection (ADNR).
  5847. However, the the standard normalization algorithm used for microarray data,
  5848. Robust Multi-chip Average (RMA)
  5849. \begin_inset CommandInset citation
  5850. LatexCommand cite
  5851. key "Irizarry2003a"
  5852. literal "false"
  5853. \end_inset
  5854. , is not applicable in a clinical setting.
  5855. Two of the steps in RMA, quantile normalization and probe summarization
  5856. by median polish, depend on every array in the data set being normalized.
  5857. This means that adding or removing any arrays from a data set changes the
  5858. normalized values for all arrays, and data sets that have been normalized
  5859. separately cannot be compared to each other.
  5860. Hence, when using RMA, any arrays to be analyzed together must also be
  5861. normalized together, and the set of arrays included in the data set must
  5862. be held constant throughout an analysis.
  5863. \end_layout
  5864. \begin_layout Standard
  5865. These limitations present serious impediments to the use of arrays as a
  5866. diagnostic tool.
  5867. When training a classifier, the samples to be classified must not be involved
  5868. in any step of the training process, lest their inclusion bias the training
  5869. process.
  5870. Once a classifier is deployed in a clinical setting, the samples to be
  5871. classified will not even
  5872. \emph on
  5873. exist
  5874. \emph default
  5875. at the time of training, so including them would be impossible even if
  5876. it were statistically justifiable.
  5877. Therefore, any machine learning application for microarrays demands that
  5878. the normalized expression values computed for an array must depend only
  5879. on information contained within that array.
  5880. This would ensure that each array's normalization is independent of every
  5881. other array, and that arrays normalized separately can still be compared
  5882. to each other without bias.
  5883. Such a normalization is commonly referred to as
  5884. \begin_inset Quotes eld
  5885. \end_inset
  5886. single-channel normalization
  5887. \begin_inset Quotes erd
  5888. \end_inset
  5889. .
  5890. \end_layout
  5891. \begin_layout Standard
  5892. Frozen RMA (fRMA) addresses these concerns by replacing the quantile normalizati
  5893. on and median polish with alternatives that do not introduce inter-array
  5894. dependence, allowing each array to be normalized independently of all others
  5895. \begin_inset CommandInset citation
  5896. LatexCommand cite
  5897. key "McCall2010"
  5898. literal "false"
  5899. \end_inset
  5900. .
  5901. Quantile normalization is performed against a pre-generated set of quantiles
  5902. learned from a collection of 850 publically available arrays sampled from
  5903. a wide variety of tissues in the Gene Expression Omnibus (GEO).
  5904. Each array's probe intensity distribution is normalized against these pre-gener
  5905. ated quantiles.
  5906. The median polish step is replaced with a robust weighted average of probe
  5907. intensities, using inverse variance weights learned from the same public
  5908. GEO data.
  5909. The result is a normalization that satisfies the requirements mentioned
  5910. above: each array is normalized independently of all others, and any two
  5911. normalized arrays can be compared directly to each other.
  5912. \end_layout
  5913. \begin_layout Standard
  5914. One important limitation of fRMA is that it requires a separate reference
  5915. data set from which to learn the parameters (reference quantiles and probe
  5916. weights) that will be used to normalize each array.
  5917. These parameters are specific to a given array platform, and pre-generated
  5918. parameters are only provided for the most common platforms, such as Affymetrix
  5919. hgu133plus2.
  5920. For a less common platform, such as hthgu133pluspm, is is necessary to
  5921. learn custom parameters from in-house data before fRMA can be used to normalize
  5922. samples on that platform
  5923. \begin_inset CommandInset citation
  5924. LatexCommand cite
  5925. key "McCall2011"
  5926. literal "false"
  5927. \end_inset
  5928. .
  5929. \end_layout
  5930. \begin_layout Standard
  5931. One other option is the aptly-named Single Channel Array Normalization (SCAN),
  5932. which adapts a normalization method originally designed for tiling arrays
  5933. \begin_inset CommandInset citation
  5934. LatexCommand cite
  5935. key "Piccolo2012"
  5936. literal "false"
  5937. \end_inset
  5938. .
  5939. SCAN is truly single-channel in that it does not require a set of normalization
  5940. paramters estimated from an external set of reference samples like fRMA
  5941. does.
  5942. \end_layout
  5943. \begin_layout Subsection
  5944. Heteroskedasticity must be accounted for in methylation array data
  5945. \end_layout
  5946. \begin_layout Standard
  5947. DNA methylation arrays are a relatively new kind of assay that uses microarrays
  5948. to measure the degree of methylation on cytosines in specific regions arrayed
  5949. across the genome.
  5950. First, bisulfite treatment converts all unmethylated cytosines to uracil
  5951. (which then become thymine after amplication) while leaving methylated
  5952. cytosines unaffected.
  5953. Then, each target region is interrogated with two probes: one binds to
  5954. the original genomic sequence and interrogates the level of methylated
  5955. DNA, and the other binds to the same sequence with all cytosines replaced
  5956. by thymidines and interrogates the level of unmethylated DNA.
  5957. \end_layout
  5958. \begin_layout Standard
  5959. \begin_inset Float figure
  5960. wide false
  5961. sideways false
  5962. status collapsed
  5963. \begin_layout Plain Layout
  5964. \align center
  5965. \begin_inset Graphics
  5966. filename graphics/methylvoom/sigmoid.pdf
  5967. lyxscale 50
  5968. width 60col%
  5969. groupId colwidth
  5970. \end_inset
  5971. \end_layout
  5972. \begin_layout Plain Layout
  5973. \begin_inset Caption Standard
  5974. \begin_layout Plain Layout
  5975. \begin_inset CommandInset label
  5976. LatexCommand label
  5977. name "fig:Sigmoid-beta-m-mapping"
  5978. \end_inset
  5979. \series bold
  5980. Sigmoid shape of the mapping between β and M values
  5981. \end_layout
  5982. \end_inset
  5983. \end_layout
  5984. \end_inset
  5985. \end_layout
  5986. \begin_layout Standard
  5987. After normalization, these two probe intensities are summarized in one of
  5988. two ways, each with advantages and disadvantages.
  5989. β
  5990. \series bold
  5991. \series default
  5992. values, interpreted as fraction of DNA copies methylated, range from 0 to
  5993. 1.
  5994. β
  5995. \series bold
  5996. \series default
  5997. values are conceptually easy to interpret, but the constrained range makes
  5998. them unsuitable for linear modeling, and their error distributions are
  5999. highly non-normal, which also frustrates linear modeling.
  6000. M-values, interpreted as the log ratio of methylated to unmethylated copies,
  6001. are computed by mapping the beta values from
  6002. \begin_inset Formula $[0,1]$
  6003. \end_inset
  6004. onto
  6005. \begin_inset Formula $(-\infty,+\infty)$
  6006. \end_inset
  6007. using a sigmoid curve (Figure
  6008. \begin_inset CommandInset ref
  6009. LatexCommand ref
  6010. reference "fig:Sigmoid-beta-m-mapping"
  6011. plural "false"
  6012. caps "false"
  6013. noprefix "false"
  6014. \end_inset
  6015. ).
  6016. This transformation results in values with better statistical perperties:
  6017. the unconstrained range is suitable for linear modeling, and the error
  6018. distributions are more normal.
  6019. Hence, most linear modeling and other statistical testing on methylation
  6020. arrays is performed using M-values.
  6021. \end_layout
  6022. \begin_layout Standard
  6023. However, the steep slope of the sigmoid transformation near 0 and 1 tends
  6024. to over-exaggerate small differences in β values near those extremes, which
  6025. in turn amplifies the error in those values, leading to a U-shaped trend
  6026. in the mean-variance curve: extreme values have higher variances than values
  6027. near the middle.
  6028. This mean-variance dependency must be accounted for when fitting the linear
  6029. model for differential methylation, or else the variance will be systematically
  6030. overestimated for probes with moderate M-values and underestimated for
  6031. probes with extreme M-values.
  6032. This is particularly undesirable for methylation data because the intermediate
  6033. M-values are the ones of most interest, since they are more likely to represent
  6034. areas of varying methylation, whereas extreme M-values typically represent
  6035. complete methylation or complete lack of methylation.
  6036. \end_layout
  6037. \begin_layout Standard
  6038. RNA-seq read count data are also known to show heteroskedasticity, and the
  6039. voom method was introduced for modeling this heteroskedasticity by estimating
  6040. the mean-variance trend in the data and using this trend to assign precision
  6041. weights to each observation
  6042. \begin_inset CommandInset citation
  6043. LatexCommand cite
  6044. key "Law2013"
  6045. literal "false"
  6046. \end_inset
  6047. .
  6048. While methylation array data are not derived from counts and have a very
  6049. different mean-variance relationship from that of typical RNA-seq data,
  6050. the voom method makes no specific assumptions on the shape of the mean-variance
  6051. relationship – it only assumes that the relationship can be modeled as
  6052. a smooth curve.
  6053. Hence, the method is sufficiently general to model the mean-variance relationsh
  6054. ip in methylation array data.
  6055. However, the standard implementation of voom assumes that the input is
  6056. given in raw read counts, and it must be adapted to run on methylation
  6057. M-values.
  6058. \end_layout
  6059. \begin_layout Section
  6060. Methods
  6061. \end_layout
  6062. \begin_layout Subsection
  6063. Evaluation of classifier performance with different normalization methods
  6064. \end_layout
  6065. \begin_layout Standard
  6066. For testing different expression microarray normalizations, a data set of
  6067. 157 hgu133plus2 arrays was used, consisting of blood samples from kidney
  6068. transplant patients whose grafts had been graded as TX, AR, or ADNR via
  6069. biopsy and histology (46 TX, 69 AR, 42 ADNR)
  6070. \begin_inset CommandInset citation
  6071. LatexCommand cite
  6072. key "Kurian2014"
  6073. literal "true"
  6074. \end_inset
  6075. .
  6076. Additionally, an external validation set of 75 samples was gathered from
  6077. public GEO data (37 TX, 38 AR, no ADNR).
  6078. \end_layout
  6079. \begin_layout Standard
  6080. \begin_inset Flex TODO Note (inline)
  6081. status open
  6082. \begin_layout Plain Layout
  6083. Find appropriate GEO identifiers if possible.
  6084. Kurian 2014 says GSE15296, but this seems to be different data.
  6085. I also need to look up the GEO accession for the external validation set.
  6086. \end_layout
  6087. \end_inset
  6088. \end_layout
  6089. \begin_layout Standard
  6090. To evaluate the effect of each normalization on classifier performance,
  6091. the same classifier training and validation procedure was used after each
  6092. normalization method.
  6093. The PAM package was used to train a nearest shrunken centroid classifier
  6094. on the training set and select the appropriate threshold for centroid shrinking.
  6095. Then the trained classifier was used to predict the class probabilities
  6096. of each validation sample.
  6097. From these class probabilities, ROC curves and area-under-curve (AUC) values
  6098. were generated
  6099. \begin_inset CommandInset citation
  6100. LatexCommand cite
  6101. key "Turck2011"
  6102. literal "false"
  6103. \end_inset
  6104. .
  6105. Each normalization was tested on two different sets of training and validation
  6106. samples.
  6107. For internal validation, the 115 TX and AR arrays in the internal set were
  6108. split at random into two equal sized sets, one for training and one for
  6109. validation, each containing the same numbers of TX and AR samples as the
  6110. other set.
  6111. For external validation, the full set of 115 TX and AR samples were used
  6112. as a training set, and the 75 external TX and AR samples were used as the
  6113. validation set.
  6114. Thus, 2 ROC curves and AUC values were generated for each normalization
  6115. method: one internal and one external.
  6116. Because the external validation set contains no ADNR samples, only classificati
  6117. on of TX and AR samples was considered.
  6118. The ADNR samples were included during normalization but excluded from all
  6119. classifier training and validation.
  6120. This ensures that the performance on internal and external validation sets
  6121. is directly comparable, since both are performing the same task: distinguising
  6122. TX from AR.
  6123. \end_layout
  6124. \begin_layout Standard
  6125. \begin_inset Flex TODO Note (inline)
  6126. status open
  6127. \begin_layout Plain Layout
  6128. Summarize the get.best.threshold algorithm for PAM threshold selection, or
  6129. just put the code online?
  6130. \end_layout
  6131. \end_inset
  6132. \end_layout
  6133. \begin_layout Standard
  6134. Six different normalization strategies were evaluated.
  6135. First, 2 well-known non-single-channel normalization methods were considered:
  6136. RMA and dChip
  6137. \begin_inset CommandInset citation
  6138. LatexCommand cite
  6139. key "Li2001,Irizarry2003a"
  6140. literal "false"
  6141. \end_inset
  6142. .
  6143. Since RMA produces expression values on a log2 scale and dChip does not,
  6144. the values from dChip were log2 transformed after normalization.
  6145. Next, RMA and dChip followed by Global Rank-invariant Set Normalization
  6146. (GRSN) were tested
  6147. \begin_inset CommandInset citation
  6148. LatexCommand cite
  6149. key "Pelz2008"
  6150. literal "false"
  6151. \end_inset
  6152. .
  6153. Post-processing with GRSN does not turn RMA or dChip into single-channel
  6154. methods, but it may help mitigate batch effects and is therefore useful
  6155. as a benchmark.
  6156. Lastly, the two single-channel normalization methods, fRMA and SCAN, were
  6157. tested
  6158. \begin_inset CommandInset citation
  6159. LatexCommand cite
  6160. key "McCall2010,Piccolo2012"
  6161. literal "false"
  6162. \end_inset
  6163. .
  6164. When evaluting internal validation performance, only the 157 internal samples
  6165. were normalized; when evaluating external validation performance, all 157
  6166. internal samples and 75 external samples were normalized together.
  6167. \end_layout
  6168. \begin_layout Standard
  6169. For demonstrating the problem with separate normalization of training and
  6170. validation data, one additional normalization was performed: the internal
  6171. and external sets were each normalized separately using RMA, and the normalized
  6172. data for each set were combined into a single set with no further attempts
  6173. at normalizing between the two sets.
  6174. The represents approximately how RMA would have to be used in a clinical
  6175. setting, where the samples to be classified are not available at the time
  6176. the classifier is trained.
  6177. \end_layout
  6178. \begin_layout Subsection
  6179. Generating custom fRMA vectors for hthgu133pluspm array platform
  6180. \end_layout
  6181. \begin_layout Standard
  6182. In order to enable fRMA normalization for the hthgu133pluspm array platform,
  6183. custom fRMA normalization vectors were trained using the frmaTools package
  6184. \begin_inset CommandInset citation
  6185. LatexCommand cite
  6186. key "McCall2011"
  6187. literal "false"
  6188. \end_inset
  6189. .
  6190. Separate vectors were created for two types of samples: kidney graft biopsy
  6191. samples and blood samples from graft recipients.
  6192. For training, a 341 kidney biopsy samples from 2 data sets and 965 blood
  6193. samples from 5 data sets were used as the reference set.
  6194. Arrays were groups into batches based on unique combinations of sample
  6195. type (blood or biopsy), diagnosis (TX, AR, etc.), data set, and scan date.
  6196. Thus, each batch represents arrays of the same kind that were run together
  6197. on the same day.
  6198. For estimating the probe inverse variance weights, frmaTools requires equal-siz
  6199. ed batches, which means a batch size must be chosen, and then batches smaller
  6200. than that size must be ignored, while batches larger than the chosen size
  6201. must be downsampled.
  6202. This downsampling is performed randomly, so the sampling process is repeated
  6203. 5 times and the resulting normalizations are compared to each other.
  6204. \end_layout
  6205. \begin_layout Standard
  6206. To evaluate the consistency of the generated normalization vectors, the
  6207. 5 fRMA vector sets generated from 5 random batch samplings were each used
  6208. to normalize the same 20 randomly selected samples from each tissue.
  6209. Then the normalized expression values for each probe on each array were
  6210. compared across all normalizations.
  6211. Each fRMA normalization was also compared against the normalized expression
  6212. values obtained by normalizing the same 20 samples with ordinary RMA.
  6213. \end_layout
  6214. \begin_layout Subsection
  6215. Modeling methylation array M-value heteroskedasticy in linear models with
  6216. modified voom implementation
  6217. \end_layout
  6218. \begin_layout Standard
  6219. \begin_inset Flex TODO Note (inline)
  6220. status open
  6221. \begin_layout Plain Layout
  6222. Put code on Github and reference it.
  6223. \end_layout
  6224. \end_inset
  6225. \end_layout
  6226. \begin_layout Standard
  6227. To investigate the whether DNA methylation could be used to distinguish
  6228. between healthy and dysfunctional transplants, a data set of 78 Illumina
  6229. 450k methylation arrays from human kidney graft biopsies was analyzed for
  6230. differential metylation between 4 transplant statuses: healthy transplant
  6231. (TX), transplants undergoing acute rejection (AR), acute dysfunction with
  6232. no rejection (ADNR), and chronic allograpft nephropathy (CAN).
  6233. The data consisted of 33 TX, 9 AR, 8 ADNR, and 28 CAN samples.
  6234. The uneven group sizes are a result of taking the biopsy samples before
  6235. the eventual fate of the transplant was known.
  6236. Each sample was additionally annotated with a donor ID (anonymized), Sex,
  6237. Age, Ethnicity, Creatinine Level, and Diabetes diagnosois (all samples
  6238. in this data set came from patients with either Type 1 or Type 2 diabetes).
  6239. \end_layout
  6240. \begin_layout Standard
  6241. The intensity data were first normalized using subset-quantile within array
  6242. normalization (SWAN)
  6243. \begin_inset CommandInset citation
  6244. LatexCommand cite
  6245. key "Maksimovic2012"
  6246. literal "false"
  6247. \end_inset
  6248. , then converted to intensity ratios (beta values)
  6249. \begin_inset CommandInset citation
  6250. LatexCommand cite
  6251. key "Aryee2014"
  6252. literal "false"
  6253. \end_inset
  6254. .
  6255. Any probes binding to loci that overlapped annotated SNPs were dropped,
  6256. and the annotated sex of each sample was verified against the sex inferred
  6257. from the ratio of median probe intensities for the X and Y chromosomes.
  6258. Then, the ratios were transformed to M-values.
  6259. \end_layout
  6260. \begin_layout Standard
  6261. \begin_inset Float table
  6262. wide false
  6263. sideways false
  6264. status open
  6265. \begin_layout Plain Layout
  6266. \align center
  6267. \begin_inset Tabular
  6268. <lyxtabular version="3" rows="4" columns="6">
  6269. <features tabularvalignment="middle">
  6270. <column alignment="center" valignment="top">
  6271. <column alignment="center" valignment="top">
  6272. <column alignment="center" valignment="top">
  6273. <column alignment="center" valignment="top">
  6274. <column alignment="center" valignment="top">
  6275. <column alignment="center" valignment="top">
  6276. <row>
  6277. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6278. \begin_inset Text
  6279. \begin_layout Plain Layout
  6280. Analysis
  6281. \end_layout
  6282. \end_inset
  6283. </cell>
  6284. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6285. \begin_inset Text
  6286. \begin_layout Plain Layout
  6287. random effect
  6288. \end_layout
  6289. \end_inset
  6290. </cell>
  6291. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6292. \begin_inset Text
  6293. \begin_layout Plain Layout
  6294. eBayes
  6295. \end_layout
  6296. \end_inset
  6297. </cell>
  6298. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6299. \begin_inset Text
  6300. \begin_layout Plain Layout
  6301. SVA
  6302. \end_layout
  6303. \end_inset
  6304. </cell>
  6305. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6306. \begin_inset Text
  6307. \begin_layout Plain Layout
  6308. weights
  6309. \end_layout
  6310. \end_inset
  6311. </cell>
  6312. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  6313. \begin_inset Text
  6314. \begin_layout Plain Layout
  6315. voom
  6316. \end_layout
  6317. \end_inset
  6318. </cell>
  6319. </row>
  6320. <row>
  6321. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6322. \begin_inset Text
  6323. \begin_layout Plain Layout
  6324. A
  6325. \end_layout
  6326. \end_inset
  6327. </cell>
  6328. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6329. \begin_inset Text
  6330. \begin_layout Plain Layout
  6331. Yes
  6332. \end_layout
  6333. \end_inset
  6334. </cell>
  6335. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6336. \begin_inset Text
  6337. \begin_layout Plain Layout
  6338. Yes
  6339. \end_layout
  6340. \end_inset
  6341. </cell>
  6342. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6343. \begin_inset Text
  6344. \begin_layout Plain Layout
  6345. No
  6346. \end_layout
  6347. \end_inset
  6348. </cell>
  6349. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6350. \begin_inset Text
  6351. \begin_layout Plain Layout
  6352. No
  6353. \end_layout
  6354. \end_inset
  6355. </cell>
  6356. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  6357. \begin_inset Text
  6358. \begin_layout Plain Layout
  6359. No
  6360. \end_layout
  6361. \end_inset
  6362. </cell>
  6363. </row>
  6364. <row>
  6365. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6366. \begin_inset Text
  6367. \begin_layout Plain Layout
  6368. B
  6369. \end_layout
  6370. \end_inset
  6371. </cell>
  6372. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6373. \begin_inset Text
  6374. \begin_layout Plain Layout
  6375. Yes
  6376. \end_layout
  6377. \end_inset
  6378. </cell>
  6379. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6380. \begin_inset Text
  6381. \begin_layout Plain Layout
  6382. Yes
  6383. \end_layout
  6384. \end_inset
  6385. </cell>
  6386. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6387. \begin_inset Text
  6388. \begin_layout Plain Layout
  6389. Yes
  6390. \end_layout
  6391. \end_inset
  6392. </cell>
  6393. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6394. \begin_inset Text
  6395. \begin_layout Plain Layout
  6396. Yes
  6397. \end_layout
  6398. \end_inset
  6399. </cell>
  6400. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  6401. \begin_inset Text
  6402. \begin_layout Plain Layout
  6403. No
  6404. \end_layout
  6405. \end_inset
  6406. </cell>
  6407. </row>
  6408. <row>
  6409. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6410. \begin_inset Text
  6411. \begin_layout Plain Layout
  6412. C
  6413. \end_layout
  6414. \end_inset
  6415. </cell>
  6416. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6417. \begin_inset Text
  6418. \begin_layout Plain Layout
  6419. Yes
  6420. \end_layout
  6421. \end_inset
  6422. </cell>
  6423. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6424. \begin_inset Text
  6425. \begin_layout Plain Layout
  6426. Yes
  6427. \end_layout
  6428. \end_inset
  6429. </cell>
  6430. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6431. \begin_inset Text
  6432. \begin_layout Plain Layout
  6433. Yes
  6434. \end_layout
  6435. \end_inset
  6436. </cell>
  6437. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6438. \begin_inset Text
  6439. \begin_layout Plain Layout
  6440. Yes
  6441. \end_layout
  6442. \end_inset
  6443. </cell>
  6444. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  6445. \begin_inset Text
  6446. \begin_layout Plain Layout
  6447. Yes
  6448. \end_layout
  6449. \end_inset
  6450. </cell>
  6451. </row>
  6452. </lyxtabular>
  6453. \end_inset
  6454. \end_layout
  6455. \begin_layout Plain Layout
  6456. \begin_inset Caption Standard
  6457. \begin_layout Plain Layout
  6458. \series bold
  6459. \begin_inset CommandInset label
  6460. LatexCommand label
  6461. name "tab:Summary-of-meth-analysis"
  6462. \end_inset
  6463. Summary of analysis variants for methylation array data.
  6464. \series default
  6465. Each analysis included a different set of steps to adjust or account for
  6466. various systematic features of the data.
  6467. Random effect: The model included a random effect accounting for correlation
  6468. between samples from the same patient
  6469. \begin_inset CommandInset citation
  6470. LatexCommand cite
  6471. key "Smyth2005a"
  6472. literal "false"
  6473. \end_inset
  6474. ; eBayes: Empirical bayes squeezing of per-probe variances toward the mean-varia
  6475. nce trend
  6476. \begin_inset CommandInset citation
  6477. LatexCommand cite
  6478. key "Ritchie2015"
  6479. literal "false"
  6480. \end_inset
  6481. ; SVA: Surrogate variable analysis to account for unobserved confounders
  6482. \begin_inset CommandInset citation
  6483. LatexCommand cite
  6484. key "Leek2007"
  6485. literal "false"
  6486. \end_inset
  6487. ; Weights: Estimate sample weights to account for differences in sample
  6488. quality
  6489. \begin_inset CommandInset citation
  6490. LatexCommand cite
  6491. key "Liu2015,Ritchie2006"
  6492. literal "false"
  6493. \end_inset
  6494. ; voom: Use mean-variance trend to assign individual sample weights
  6495. \begin_inset CommandInset citation
  6496. LatexCommand cite
  6497. key "Law2013"
  6498. literal "false"
  6499. \end_inset
  6500. .
  6501. See the text for a more detailed explanation of each step.
  6502. \end_layout
  6503. \end_inset
  6504. \end_layout
  6505. \end_inset
  6506. \end_layout
  6507. \begin_layout Standard
  6508. From the M-values, a series of parallel analyses was performed, each adding
  6509. additional steps into the model fit to accomodate a feature of the data
  6510. (see Table
  6511. \begin_inset CommandInset ref
  6512. LatexCommand ref
  6513. reference "tab:Summary-of-meth-analysis"
  6514. plural "false"
  6515. caps "false"
  6516. noprefix "false"
  6517. \end_inset
  6518. ).
  6519. For analysis A, a
  6520. \begin_inset Quotes eld
  6521. \end_inset
  6522. basic
  6523. \begin_inset Quotes erd
  6524. \end_inset
  6525. linear modeling analysis was performed, compensating for known confounders
  6526. by including terms for the factor of interest (transplant status) as well
  6527. as the known biological confounders: sex, age, ethnicity, and diabetes.
  6528. Since some samples came from the same patients at different times, the
  6529. intra-patient correlation was modeled as a random effect, estimating a
  6530. shared correlation value across all probes
  6531. \begin_inset CommandInset citation
  6532. LatexCommand cite
  6533. key "Smyth2005a"
  6534. literal "false"
  6535. \end_inset
  6536. .
  6537. Then the linear model was fit, and the variance was modeled using empirical
  6538. Bayes squeezing toward the mean-variance trend
  6539. \begin_inset CommandInset citation
  6540. LatexCommand cite
  6541. key "Ritchie2015"
  6542. literal "false"
  6543. \end_inset
  6544. .
  6545. Finally, t-tests or F-tests were performed as appropriate for each test:
  6546. t-tests for single contrasts, and F-tests for multiple contrasts.
  6547. P-values were corrected for multiple testing using the Benjamini-Hochberg
  6548. procedure for FDR control
  6549. \begin_inset CommandInset citation
  6550. LatexCommand cite
  6551. key "Benjamini1995"
  6552. literal "false"
  6553. \end_inset
  6554. .
  6555. \end_layout
  6556. \begin_layout Standard
  6557. For the analysis B, surrogate variable analysis (SVA) was used to infer
  6558. additional unobserved sources of heterogeneity in the data
  6559. \begin_inset CommandInset citation
  6560. LatexCommand cite
  6561. key "Leek2007"
  6562. literal "false"
  6563. \end_inset
  6564. .
  6565. These surrogate variables were added to the design matrix before fitting
  6566. the linear model.
  6567. In addition, sample quality weights were estimated from the data and used
  6568. during linear modeling to down-weight the contribution of highly variable
  6569. arrays while increasing the weight to arrays with lower variability
  6570. \begin_inset CommandInset citation
  6571. LatexCommand cite
  6572. key "Ritchie2006"
  6573. literal "false"
  6574. \end_inset
  6575. .
  6576. The remainder of the analysis proceeded as in analysis A.
  6577. For analysis C, the voom method was adapted to run on methylation array
  6578. data and used to model and correct for the mean-variance trend using individual
  6579. observation weights
  6580. \begin_inset CommandInset citation
  6581. LatexCommand cite
  6582. key "Law2013"
  6583. literal "false"
  6584. \end_inset
  6585. , which were combined with the sample weights
  6586. \begin_inset CommandInset citation
  6587. LatexCommand cite
  6588. key "Liu2015,Ritchie2006"
  6589. literal "false"
  6590. \end_inset
  6591. .
  6592. Each time weights were used, they were estimated once before estimating
  6593. the random effect correlation value, and then the weights were re-estimated
  6594. taking the random effect into account.
  6595. The remainder of the analysis proceeded as in analysis B.
  6596. \end_layout
  6597. \begin_layout Section
  6598. Results
  6599. \end_layout
  6600. \begin_layout Standard
  6601. \begin_inset Flex TODO Note (inline)
  6602. status open
  6603. \begin_layout Plain Layout
  6604. Improve subsection titles in this section.
  6605. \end_layout
  6606. \end_inset
  6607. \end_layout
  6608. \begin_layout Standard
  6609. \begin_inset Flex TODO Note (inline)
  6610. status open
  6611. \begin_layout Plain Layout
  6612. Reconsider subsection organization?
  6613. \end_layout
  6614. \end_inset
  6615. \end_layout
  6616. \begin_layout Subsection
  6617. Separate normalization with RMA introduces unwanted biases in classification
  6618. \end_layout
  6619. \begin_layout Standard
  6620. \begin_inset Float figure
  6621. wide false
  6622. sideways false
  6623. status open
  6624. \begin_layout Plain Layout
  6625. \align center
  6626. \begin_inset Graphics
  6627. filename graphics/PAM/predplot.pdf
  6628. lyxscale 50
  6629. width 60col%
  6630. groupId colwidth
  6631. \end_inset
  6632. \end_layout
  6633. \begin_layout Plain Layout
  6634. \begin_inset Caption Standard
  6635. \begin_layout Plain Layout
  6636. \begin_inset CommandInset label
  6637. LatexCommand label
  6638. name "fig:Classifier-probabilities-RMA"
  6639. \end_inset
  6640. \series bold
  6641. Classifier probabilities on validation samples when normalized with RMA
  6642. together vs.
  6643. separately.
  6644. \series default
  6645. The PAM classifier algorithm was trained on the training set of arrays to
  6646. distinguish AR from TX and then used to assign class probabilities to the
  6647. validation set.
  6648. The process was performed after normalizing all samples together and after
  6649. normalizing the training and test sets separately, and the class probabilities
  6650. assigned to each sample in the validation set were plotted against each
  6651. other (PP(AR), posterior probability of being AR).
  6652. The color of each point indicates the true classification of that sample.
  6653. \end_layout
  6654. \end_inset
  6655. \end_layout
  6656. \end_inset
  6657. \end_layout
  6658. \begin_layout Standard
  6659. To demonstrate the problem with non-single-channel normalization methods,
  6660. we considered the problem of training a classifier to distinguish TX from
  6661. AR using the samples from the internal set as training data, evaluating
  6662. performance on the external set.
  6663. First, training and evaluation were performed after normalizing all array
  6664. samples together as a single set using RMA, and second, the internal samples
  6665. were normalized separately from the external samples and the training and
  6666. evaluation were repeated.
  6667. For each sample in the validation set, the classifier probabilities from
  6668. both classifiers were plotted against each other (Fig.
  6669. \begin_inset CommandInset ref
  6670. LatexCommand ref
  6671. reference "fig:Classifier-probabilities-RMA"
  6672. plural "false"
  6673. caps "false"
  6674. noprefix "false"
  6675. \end_inset
  6676. ).
  6677. As expected, separate normalization biases the classifier probabilities,
  6678. resulting in several misclassifications.
  6679. In this case, the bias from separate normalization causes the classifier
  6680. to assign a lower probability of AR to every sample.
  6681. \end_layout
  6682. \begin_layout Subsection
  6683. fRMA and SCAN maintain classification performance while eliminating dependence
  6684. on normalization strategy
  6685. \end_layout
  6686. \begin_layout Standard
  6687. \begin_inset Float figure
  6688. wide false
  6689. sideways false
  6690. status open
  6691. \begin_layout Plain Layout
  6692. \align center
  6693. \begin_inset Float figure
  6694. placement tb
  6695. wide false
  6696. sideways false
  6697. status open
  6698. \begin_layout Plain Layout
  6699. \align center
  6700. \begin_inset Graphics
  6701. filename graphics/PAM/ROC-TXvsAR-internal.pdf
  6702. lyxscale 50
  6703. height 40theight%
  6704. groupId roc-pam
  6705. \end_inset
  6706. \end_layout
  6707. \begin_layout Plain Layout
  6708. \begin_inset Caption Standard
  6709. \begin_layout Plain Layout
  6710. \begin_inset CommandInset label
  6711. LatexCommand label
  6712. name "fig:ROC-PAM-int"
  6713. \end_inset
  6714. ROC curves for PAM on internal validation data
  6715. \end_layout
  6716. \end_inset
  6717. \end_layout
  6718. \end_inset
  6719. \end_layout
  6720. \begin_layout Plain Layout
  6721. \align center
  6722. \begin_inset Float figure
  6723. placement tb
  6724. wide false
  6725. sideways false
  6726. status open
  6727. \begin_layout Plain Layout
  6728. \align center
  6729. \begin_inset Graphics
  6730. filename graphics/PAM/ROC-TXvsAR-external.pdf
  6731. lyxscale 50
  6732. height 40theight%
  6733. groupId roc-pam
  6734. \end_inset
  6735. \end_layout
  6736. \begin_layout Plain Layout
  6737. \begin_inset Caption Standard
  6738. \begin_layout Plain Layout
  6739. \begin_inset CommandInset label
  6740. LatexCommand label
  6741. name "fig:ROC-PAM-ext"
  6742. \end_inset
  6743. ROC curves for PAM on external validation data
  6744. \end_layout
  6745. \end_inset
  6746. \end_layout
  6747. \end_inset
  6748. \end_layout
  6749. \begin_layout Plain Layout
  6750. \begin_inset Caption Standard
  6751. \begin_layout Plain Layout
  6752. \series bold
  6753. \begin_inset CommandInset label
  6754. LatexCommand label
  6755. name "fig:ROC-PAM-main"
  6756. \end_inset
  6757. ROC curves for PAM using different normalization strategies.
  6758. \series default
  6759. ROC curves were generated for PAM classification of AR vs TX after 6 different
  6760. normalization strategies applied to the same data sets.
  6761. Only fRMA and SCAN are single-channel normalizations.
  6762. The other normalizations are for comparison.
  6763. \end_layout
  6764. \end_inset
  6765. \end_layout
  6766. \end_inset
  6767. \end_layout
  6768. \begin_layout Standard
  6769. \begin_inset Float table
  6770. wide false
  6771. sideways false
  6772. status open
  6773. \begin_layout Plain Layout
  6774. \align center
  6775. \begin_inset Tabular
  6776. <lyxtabular version="3" rows="7" columns="4">
  6777. <features tabularvalignment="middle">
  6778. <column alignment="center" valignment="top">
  6779. <column alignment="center" valignment="top">
  6780. <column alignment="center" valignment="top">
  6781. <column alignment="center" valignment="top">
  6782. <row>
  6783. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6784. \begin_inset Text
  6785. \begin_layout Plain Layout
  6786. \family roman
  6787. \series medium
  6788. \shape up
  6789. \size normal
  6790. \emph off
  6791. \bar no
  6792. \strikeout off
  6793. \xout off
  6794. \uuline off
  6795. \uwave off
  6796. \noun off
  6797. \color none
  6798. Normalization
  6799. \end_layout
  6800. \end_inset
  6801. </cell>
  6802. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6803. \begin_inset Text
  6804. \begin_layout Plain Layout
  6805. Single-channel?
  6806. \end_layout
  6807. \end_inset
  6808. </cell>
  6809. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6810. \begin_inset Text
  6811. \begin_layout Plain Layout
  6812. \family roman
  6813. \series medium
  6814. \shape up
  6815. \size normal
  6816. \emph off
  6817. \bar no
  6818. \strikeout off
  6819. \xout off
  6820. \uuline off
  6821. \uwave off
  6822. \noun off
  6823. \color none
  6824. Internal Val.
  6825. AUC
  6826. \end_layout
  6827. \end_inset
  6828. </cell>
  6829. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  6830. \begin_inset Text
  6831. \begin_layout Plain Layout
  6832. External Val.
  6833. AUC
  6834. \end_layout
  6835. \end_inset
  6836. </cell>
  6837. </row>
  6838. <row>
  6839. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6840. \begin_inset Text
  6841. \begin_layout Plain Layout
  6842. \family roman
  6843. \series medium
  6844. \shape up
  6845. \size normal
  6846. \emph off
  6847. \bar no
  6848. \strikeout off
  6849. \xout off
  6850. \uuline off
  6851. \uwave off
  6852. \noun off
  6853. \color none
  6854. RMA
  6855. \end_layout
  6856. \end_inset
  6857. </cell>
  6858. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6859. \begin_inset Text
  6860. \begin_layout Plain Layout
  6861. No
  6862. \end_layout
  6863. \end_inset
  6864. </cell>
  6865. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6866. \begin_inset Text
  6867. \begin_layout Plain Layout
  6868. \family roman
  6869. \series medium
  6870. \shape up
  6871. \size normal
  6872. \emph off
  6873. \bar no
  6874. \strikeout off
  6875. \xout off
  6876. \uuline off
  6877. \uwave off
  6878. \noun off
  6879. \color none
  6880. 0.852
  6881. \end_layout
  6882. \end_inset
  6883. </cell>
  6884. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  6885. \begin_inset Text
  6886. \begin_layout Plain Layout
  6887. \family roman
  6888. \series medium
  6889. \shape up
  6890. \size normal
  6891. \emph off
  6892. \bar no
  6893. \strikeout off
  6894. \xout off
  6895. \uuline off
  6896. \uwave off
  6897. \noun off
  6898. \color none
  6899. 0.713
  6900. \end_layout
  6901. \end_inset
  6902. </cell>
  6903. </row>
  6904. <row>
  6905. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6906. \begin_inset Text
  6907. \begin_layout Plain Layout
  6908. \family roman
  6909. \series medium
  6910. \shape up
  6911. \size normal
  6912. \emph off
  6913. \bar no
  6914. \strikeout off
  6915. \xout off
  6916. \uuline off
  6917. \uwave off
  6918. \noun off
  6919. \color none
  6920. dChip
  6921. \end_layout
  6922. \end_inset
  6923. </cell>
  6924. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6925. \begin_inset Text
  6926. \begin_layout Plain Layout
  6927. No
  6928. \end_layout
  6929. \end_inset
  6930. </cell>
  6931. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6932. \begin_inset Text
  6933. \begin_layout Plain Layout
  6934. \family roman
  6935. \series medium
  6936. \shape up
  6937. \size normal
  6938. \emph off
  6939. \bar no
  6940. \strikeout off
  6941. \xout off
  6942. \uuline off
  6943. \uwave off
  6944. \noun off
  6945. \color none
  6946. 0.891
  6947. \end_layout
  6948. \end_inset
  6949. </cell>
  6950. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  6951. \begin_inset Text
  6952. \begin_layout Plain Layout
  6953. \family roman
  6954. \series medium
  6955. \shape up
  6956. \size normal
  6957. \emph off
  6958. \bar no
  6959. \strikeout off
  6960. \xout off
  6961. \uuline off
  6962. \uwave off
  6963. \noun off
  6964. \color none
  6965. 0.657
  6966. \end_layout
  6967. \end_inset
  6968. </cell>
  6969. </row>
  6970. <row>
  6971. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6972. \begin_inset Text
  6973. \begin_layout Plain Layout
  6974. \family roman
  6975. \series medium
  6976. \shape up
  6977. \size normal
  6978. \emph off
  6979. \bar no
  6980. \strikeout off
  6981. \xout off
  6982. \uuline off
  6983. \uwave off
  6984. \noun off
  6985. \color none
  6986. RMA + GRSN
  6987. \end_layout
  6988. \end_inset
  6989. </cell>
  6990. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6991. \begin_inset Text
  6992. \begin_layout Plain Layout
  6993. No
  6994. \end_layout
  6995. \end_inset
  6996. </cell>
  6997. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6998. \begin_inset Text
  6999. \begin_layout Plain Layout
  7000. \family roman
  7001. \series medium
  7002. \shape up
  7003. \size normal
  7004. \emph off
  7005. \bar no
  7006. \strikeout off
  7007. \xout off
  7008. \uuline off
  7009. \uwave off
  7010. \noun off
  7011. \color none
  7012. 0.816
  7013. \end_layout
  7014. \end_inset
  7015. </cell>
  7016. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  7017. \begin_inset Text
  7018. \begin_layout Plain Layout
  7019. \family roman
  7020. \series medium
  7021. \shape up
  7022. \size normal
  7023. \emph off
  7024. \bar no
  7025. \strikeout off
  7026. \xout off
  7027. \uuline off
  7028. \uwave off
  7029. \noun off
  7030. \color none
  7031. 0.750
  7032. \end_layout
  7033. \end_inset
  7034. </cell>
  7035. </row>
  7036. <row>
  7037. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7038. \begin_inset Text
  7039. \begin_layout Plain Layout
  7040. \family roman
  7041. \series medium
  7042. \shape up
  7043. \size normal
  7044. \emph off
  7045. \bar no
  7046. \strikeout off
  7047. \xout off
  7048. \uuline off
  7049. \uwave off
  7050. \noun off
  7051. \color none
  7052. dChip + GRSN
  7053. \end_layout
  7054. \end_inset
  7055. </cell>
  7056. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7057. \begin_inset Text
  7058. \begin_layout Plain Layout
  7059. No
  7060. \end_layout
  7061. \end_inset
  7062. </cell>
  7063. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7064. \begin_inset Text
  7065. \begin_layout Plain Layout
  7066. \family roman
  7067. \series medium
  7068. \shape up
  7069. \size normal
  7070. \emph off
  7071. \bar no
  7072. \strikeout off
  7073. \xout off
  7074. \uuline off
  7075. \uwave off
  7076. \noun off
  7077. \color none
  7078. 0.875
  7079. \end_layout
  7080. \end_inset
  7081. </cell>
  7082. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  7083. \begin_inset Text
  7084. \begin_layout Plain Layout
  7085. \family roman
  7086. \series medium
  7087. \shape up
  7088. \size normal
  7089. \emph off
  7090. \bar no
  7091. \strikeout off
  7092. \xout off
  7093. \uuline off
  7094. \uwave off
  7095. \noun off
  7096. \color none
  7097. 0.642
  7098. \end_layout
  7099. \end_inset
  7100. </cell>
  7101. </row>
  7102. <row>
  7103. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7104. \begin_inset Text
  7105. \begin_layout Plain Layout
  7106. \family roman
  7107. \series medium
  7108. \shape up
  7109. \size normal
  7110. \emph off
  7111. \bar no
  7112. \strikeout off
  7113. \xout off
  7114. \uuline off
  7115. \uwave off
  7116. \noun off
  7117. \color none
  7118. fRMA
  7119. \end_layout
  7120. \end_inset
  7121. </cell>
  7122. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7123. \begin_inset Text
  7124. \begin_layout Plain Layout
  7125. Yes
  7126. \end_layout
  7127. \end_inset
  7128. </cell>
  7129. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7130. \begin_inset Text
  7131. \begin_layout Plain Layout
  7132. \family roman
  7133. \series medium
  7134. \shape up
  7135. \size normal
  7136. \emph off
  7137. \bar no
  7138. \strikeout off
  7139. \xout off
  7140. \uuline off
  7141. \uwave off
  7142. \noun off
  7143. \color none
  7144. 0.863
  7145. \end_layout
  7146. \end_inset
  7147. </cell>
  7148. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  7149. \begin_inset Text
  7150. \begin_layout Plain Layout
  7151. \family roman
  7152. \series medium
  7153. \shape up
  7154. \size normal
  7155. \emph off
  7156. \bar no
  7157. \strikeout off
  7158. \xout off
  7159. \uuline off
  7160. \uwave off
  7161. \noun off
  7162. \color none
  7163. 0.718
  7164. \end_layout
  7165. \end_inset
  7166. </cell>
  7167. </row>
  7168. <row>
  7169. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  7170. \begin_inset Text
  7171. \begin_layout Plain Layout
  7172. \family roman
  7173. \series medium
  7174. \shape up
  7175. \size normal
  7176. \emph off
  7177. \bar no
  7178. \strikeout off
  7179. \xout off
  7180. \uuline off
  7181. \uwave off
  7182. \noun off
  7183. \color none
  7184. SCAN
  7185. \end_layout
  7186. \end_inset
  7187. </cell>
  7188. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  7189. \begin_inset Text
  7190. \begin_layout Plain Layout
  7191. Yes
  7192. \end_layout
  7193. \end_inset
  7194. </cell>
  7195. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  7196. \begin_inset Text
  7197. \begin_layout Plain Layout
  7198. \family roman
  7199. \series medium
  7200. \shape up
  7201. \size normal
  7202. \emph off
  7203. \bar no
  7204. \strikeout off
  7205. \xout off
  7206. \uuline off
  7207. \uwave off
  7208. \noun off
  7209. \color none
  7210. 0.853
  7211. \end_layout
  7212. \end_inset
  7213. </cell>
  7214. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  7215. \begin_inset Text
  7216. \begin_layout Plain Layout
  7217. \family roman
  7218. \series medium
  7219. \shape up
  7220. \size normal
  7221. \emph off
  7222. \bar no
  7223. \strikeout off
  7224. \xout off
  7225. \uuline off
  7226. \uwave off
  7227. \noun off
  7228. \color none
  7229. 0.689
  7230. \end_layout
  7231. \end_inset
  7232. </cell>
  7233. </row>
  7234. </lyxtabular>
  7235. \end_inset
  7236. \end_layout
  7237. \begin_layout Plain Layout
  7238. \begin_inset Caption Standard
  7239. \begin_layout Plain Layout
  7240. \begin_inset CommandInset label
  7241. LatexCommand label
  7242. name "tab:AUC-PAM"
  7243. \end_inset
  7244. \series bold
  7245. ROC curve AUC values for internal and external validation with 6 different
  7246. normalization strategies.
  7247. \series default
  7248. These AUC values correspond to the ROC curves in Figure
  7249. \begin_inset CommandInset ref
  7250. LatexCommand ref
  7251. reference "fig:ROC-PAM-main"
  7252. plural "false"
  7253. caps "false"
  7254. noprefix "false"
  7255. \end_inset
  7256. .
  7257. \end_layout
  7258. \end_inset
  7259. \end_layout
  7260. \end_inset
  7261. \end_layout
  7262. \begin_layout Standard
  7263. For internal validation, the 6 methods' AUC values ranged from 0.816 to 0.891,
  7264. as shown in Table
  7265. \begin_inset CommandInset ref
  7266. LatexCommand ref
  7267. reference "tab:AUC-PAM"
  7268. plural "false"
  7269. caps "false"
  7270. noprefix "false"
  7271. \end_inset
  7272. .
  7273. Among the non-single-channel normalizations, dChip outperformed RMA, while
  7274. GRSN reduced the AUC values for both dChip and RMA.
  7275. Both single-channel methods, fRMA and SCAN, slightly outperformed RMA,
  7276. with fRMA ahead of SCAN.
  7277. However, the difference between RMA and fRMA is still quite small.
  7278. Figure
  7279. \begin_inset CommandInset ref
  7280. LatexCommand ref
  7281. reference "fig:ROC-PAM-int"
  7282. plural "false"
  7283. caps "false"
  7284. noprefix "false"
  7285. \end_inset
  7286. shows that the ROC curves for RMA, dChip, and fRMA look very similar and
  7287. relatively smooth, while both GRSN curves and the curve for SCAN have a
  7288. more jagged appearance.
  7289. \end_layout
  7290. \begin_layout Standard
  7291. For external validation, as expected, all the AUC values are lower than
  7292. the internal validations, ranging from 0.642 to 0.750 (Table
  7293. \begin_inset CommandInset ref
  7294. LatexCommand ref
  7295. reference "tab:AUC-PAM"
  7296. plural "false"
  7297. caps "false"
  7298. noprefix "false"
  7299. \end_inset
  7300. ).
  7301. With or without GRSN, RMA shows its dominance over dChip in this more challengi
  7302. ng test.
  7303. Unlike in the internal validation, GRSN actually improves the classifier
  7304. performance for RMA, although it does not for dChip.
  7305. Once again, both single-channel methods perform about on par with RMA,
  7306. with fRMA performing slightly better and SCAN performing a bit worse.
  7307. Figure
  7308. \begin_inset CommandInset ref
  7309. LatexCommand ref
  7310. reference "fig:ROC-PAM-ext"
  7311. plural "false"
  7312. caps "false"
  7313. noprefix "false"
  7314. \end_inset
  7315. shows the ROC curves for the external validation test.
  7316. As expected, none of them are as clean-looking as the internal validation
  7317. ROC curves.
  7318. The curves for RMA, RMA+GRSN, and fRMA all look similar, while the other
  7319. curves look more divergent.
  7320. \end_layout
  7321. \begin_layout Subsection
  7322. fRMA with custom-generated vectors enables single-channel normalization
  7323. on hthgu133pluspm platform
  7324. \end_layout
  7325. \begin_layout Standard
  7326. \begin_inset Float figure
  7327. wide false
  7328. sideways false
  7329. status open
  7330. \begin_layout Plain Layout
  7331. \align center
  7332. \begin_inset Float figure
  7333. placement tb
  7334. wide false
  7335. sideways false
  7336. status collapsed
  7337. \begin_layout Plain Layout
  7338. \align center
  7339. \begin_inset Graphics
  7340. filename graphics/frma-pax-bx/batchsize_batches.pdf
  7341. lyxscale 50
  7342. height 35theight%
  7343. groupId frmatools-subfig
  7344. \end_inset
  7345. \end_layout
  7346. \begin_layout Plain Layout
  7347. \begin_inset Caption Standard
  7348. \begin_layout Plain Layout
  7349. \begin_inset CommandInset label
  7350. LatexCommand label
  7351. name "fig:batch-size-batches"
  7352. \end_inset
  7353. \series bold
  7354. Number of batches usable in fRMA probe weight learning as a function of
  7355. batch size.
  7356. \end_layout
  7357. \end_inset
  7358. \end_layout
  7359. \end_inset
  7360. \end_layout
  7361. \begin_layout Plain Layout
  7362. \align center
  7363. \begin_inset Float figure
  7364. placement tb
  7365. wide false
  7366. sideways false
  7367. status collapsed
  7368. \begin_layout Plain Layout
  7369. \align center
  7370. \begin_inset Graphics
  7371. filename graphics/frma-pax-bx/batchsize_samples.pdf
  7372. lyxscale 50
  7373. height 35theight%
  7374. groupId frmatools-subfig
  7375. \end_inset
  7376. \end_layout
  7377. \begin_layout Plain Layout
  7378. \begin_inset Caption Standard
  7379. \begin_layout Plain Layout
  7380. \begin_inset CommandInset label
  7381. LatexCommand label
  7382. name "fig:batch-size-samples"
  7383. \end_inset
  7384. \series bold
  7385. Number of samples usable in fRMA probe weight learning as a function of
  7386. batch size.
  7387. \end_layout
  7388. \end_inset
  7389. \end_layout
  7390. \end_inset
  7391. \end_layout
  7392. \begin_layout Plain Layout
  7393. \begin_inset Caption Standard
  7394. \begin_layout Plain Layout
  7395. \series bold
  7396. \begin_inset CommandInset label
  7397. LatexCommand label
  7398. name "fig:frmatools-batch-size"
  7399. \end_inset
  7400. Effect of batch size selection on number of batches and number of samples
  7401. included in fRMA probe weight learning.
  7402. \series default
  7403. For batch sizes ranging from 3 to 15, the number of batches (a) and samples
  7404. (b) included in probe weight training were plotted for biopsy (BX) and
  7405. blood (PAX) samples.
  7406. The selected batch size, 5, is marked with a dotted vertical line.
  7407. \end_layout
  7408. \end_inset
  7409. \end_layout
  7410. \end_inset
  7411. \end_layout
  7412. \begin_layout Standard
  7413. In order to enable use of fRMA to normalize hthgu133pluspm, a custom set
  7414. of fRMA vectors was created.
  7415. First, an appropriate batch size was chosen by looking at the number of
  7416. batches and number of samples included as a function of batch size (Figure
  7417. \begin_inset CommandInset ref
  7418. LatexCommand ref
  7419. reference "fig:frmatools-batch-size"
  7420. plural "false"
  7421. caps "false"
  7422. noprefix "false"
  7423. \end_inset
  7424. ).
  7425. For a given batch size, all batches with fewer samples that the chosen
  7426. size must be ignored during training, while larger batches must be randomly
  7427. downsampled to the chosen size.
  7428. Hence, the number of samples included for a given batch size equals the
  7429. batch size times the number of batches with at least that many samples.
  7430. From Figure
  7431. \begin_inset CommandInset ref
  7432. LatexCommand ref
  7433. reference "fig:batch-size-samples"
  7434. plural "false"
  7435. caps "false"
  7436. noprefix "false"
  7437. \end_inset
  7438. , it is apparent that that a batch size of 8 maximizes the number of samples
  7439. included in training.
  7440. Increasing the batch size beyond this causes too many smaller batches to
  7441. be excluded, reducing the total number of samples for both tissue types.
  7442. However, a batch size of 8 is not necessarily optimal.
  7443. The article introducing frmaTools concluded that it was highly advantageous
  7444. to use a smaller batch size in order to include more batches, even at the
  7445. expense of including fewer total samples in training
  7446. \begin_inset CommandInset citation
  7447. LatexCommand cite
  7448. key "McCall2011"
  7449. literal "false"
  7450. \end_inset
  7451. .
  7452. To strike an appropriate balance between more batches and more samples,
  7453. a batch size of 5 was chosen.
  7454. For both blood and biopsy samples, this increased the number of batches
  7455. included by 10, with only a modest reduction in the number of samples compared
  7456. to a batch size of 8.
  7457. With a batch size of 5, 26 batches of biopsy samples and 46 batches of
  7458. blood samples were available.
  7459. \end_layout
  7460. \begin_layout Standard
  7461. \begin_inset Float figure
  7462. wide false
  7463. sideways false
  7464. status collapsed
  7465. \begin_layout Plain Layout
  7466. \begin_inset Float figure
  7467. wide false
  7468. sideways false
  7469. status open
  7470. \begin_layout Plain Layout
  7471. \align center
  7472. \begin_inset Graphics
  7473. filename graphics/frma-pax-bx/M-BX-violin.pdf
  7474. lyxscale 40
  7475. width 45col%
  7476. groupId m-violin
  7477. \end_inset
  7478. \end_layout
  7479. \begin_layout Plain Layout
  7480. \begin_inset Caption Standard
  7481. \begin_layout Plain Layout
  7482. \begin_inset CommandInset label
  7483. LatexCommand label
  7484. name "fig:m-bx-violin"
  7485. \end_inset
  7486. \series bold
  7487. Violin plot of inter-normalization log ratios for biopsy samples.
  7488. \end_layout
  7489. \end_inset
  7490. \end_layout
  7491. \end_inset
  7492. \begin_inset space \hfill{}
  7493. \end_inset
  7494. \begin_inset Float figure
  7495. wide false
  7496. sideways false
  7497. status collapsed
  7498. \begin_layout Plain Layout
  7499. \align center
  7500. \begin_inset Graphics
  7501. filename graphics/frma-pax-bx/M-PAX-violin.pdf
  7502. lyxscale 40
  7503. width 45col%
  7504. groupId m-violin
  7505. \end_inset
  7506. \end_layout
  7507. \begin_layout Plain Layout
  7508. \begin_inset Caption Standard
  7509. \begin_layout Plain Layout
  7510. \begin_inset CommandInset label
  7511. LatexCommand label
  7512. name "fig:m-pax-violin"
  7513. \end_inset
  7514. \series bold
  7515. Violin plot of inter-normalization log ratios for blood samples.
  7516. \end_layout
  7517. \end_inset
  7518. \end_layout
  7519. \end_inset
  7520. \end_layout
  7521. \begin_layout Plain Layout
  7522. \begin_inset Caption Standard
  7523. \begin_layout Plain Layout
  7524. \begin_inset CommandInset label
  7525. LatexCommand label
  7526. name "fig:frma-violin"
  7527. \end_inset
  7528. \series bold
  7529. Violin plot of log ratios between normalizations for 20 biopsy samples.
  7530. \series default
  7531. Each of 20 randomly selected samples was normalized with RMA and with 5
  7532. different sets of fRMA vectors.
  7533. The distribution of log ratios between normalized expression values, aggregated
  7534. across all 20 arrays, was plotted for each pair of normalizations.
  7535. \end_layout
  7536. \end_inset
  7537. \end_layout
  7538. \end_inset
  7539. \end_layout
  7540. \begin_layout Standard
  7541. Since fRMA training requires equal-size batches, larger batches are downsampled
  7542. randomly.
  7543. This introduces a nondeterministic step in the generation of normalization
  7544. vectors.
  7545. To show that this randomness does not substantially change the outcome,
  7546. the random downsampling and subsequent vector learning was repeated 5 times,
  7547. with a different random seed each time.
  7548. 20 samples were selected at random as a test set and normalized with each
  7549. of the 5 sets of fRMA normalization vectors as well as ordinary RMA, and
  7550. the normalized expression values were compared across normalizations.
  7551. Figure
  7552. \begin_inset CommandInset ref
  7553. LatexCommand ref
  7554. reference "fig:m-bx-violin"
  7555. plural "false"
  7556. caps "false"
  7557. noprefix "false"
  7558. \end_inset
  7559. shows a summary of these comparisons for biopsy samples.
  7560. Comparing RMA to each of the 5 fRMA normalizations, the distribution of
  7561. log ratios is somewhat wide, indicating that the normalizations disagree
  7562. on the expression values of a fair number of probe sets.
  7563. In contrast, comparisons of fRMA against fRMA, the vast mojority of probe
  7564. sets have very small log ratios, indicating a very high agreement between
  7565. the normalized values generated by the two normalizations.
  7566. This shows that the fRMA normalization's behavior is not very sensitive
  7567. to the random downsampling of larger batches during training.
  7568. \end_layout
  7569. \begin_layout Standard
  7570. \begin_inset Float figure
  7571. wide false
  7572. sideways false
  7573. status open
  7574. \begin_layout Plain Layout
  7575. \align center
  7576. \begin_inset Float figure
  7577. wide false
  7578. sideways false
  7579. status collapsed
  7580. \begin_layout Plain Layout
  7581. \align center
  7582. \begin_inset Graphics
  7583. filename graphics/frma-pax-bx/MA-BX-RMA.fRMA-RASTER.png
  7584. lyxscale 10
  7585. width 45col%
  7586. groupId ma-frma
  7587. \end_inset
  7588. \end_layout
  7589. \begin_layout Plain Layout
  7590. \begin_inset Caption Standard
  7591. \begin_layout Plain Layout
  7592. \begin_inset CommandInset label
  7593. LatexCommand label
  7594. name "fig:ma-bx-rma-frma"
  7595. \end_inset
  7596. RMA vs.
  7597. fRMA for biopsy samples.
  7598. \end_layout
  7599. \end_inset
  7600. \end_layout
  7601. \end_inset
  7602. \begin_inset space \hfill{}
  7603. \end_inset
  7604. \begin_inset Float figure
  7605. wide false
  7606. sideways false
  7607. status collapsed
  7608. \begin_layout Plain Layout
  7609. \align center
  7610. \begin_inset Graphics
  7611. filename graphics/frma-pax-bx/MA-BX-fRMA.fRMA-RASTER.png
  7612. lyxscale 10
  7613. width 45col%
  7614. groupId ma-frma
  7615. \end_inset
  7616. \end_layout
  7617. \begin_layout Plain Layout
  7618. \begin_inset Caption Standard
  7619. \begin_layout Plain Layout
  7620. \begin_inset CommandInset label
  7621. LatexCommand label
  7622. name "fig:ma-bx-frma-frma"
  7623. \end_inset
  7624. fRMA vs fRMA for biopsy samples.
  7625. \end_layout
  7626. \end_inset
  7627. \end_layout
  7628. \end_inset
  7629. \end_layout
  7630. \begin_layout Plain Layout
  7631. \align center
  7632. \begin_inset Float figure
  7633. wide false
  7634. sideways false
  7635. status collapsed
  7636. \begin_layout Plain Layout
  7637. \align center
  7638. \begin_inset Graphics
  7639. filename graphics/frma-pax-bx/MA-PAX-RMA.fRMA-RASTER.png
  7640. lyxscale 10
  7641. width 45col%
  7642. groupId ma-frma
  7643. \end_inset
  7644. \end_layout
  7645. \begin_layout Plain Layout
  7646. \begin_inset Caption Standard
  7647. \begin_layout Plain Layout
  7648. \begin_inset CommandInset label
  7649. LatexCommand label
  7650. name "fig:MA-PAX-rma-frma"
  7651. \end_inset
  7652. RMA vs.
  7653. fRMA for blood samples.
  7654. \end_layout
  7655. \end_inset
  7656. \end_layout
  7657. \end_inset
  7658. \begin_inset space \hfill{}
  7659. \end_inset
  7660. \begin_inset Float figure
  7661. wide false
  7662. sideways false
  7663. status collapsed
  7664. \begin_layout Plain Layout
  7665. \align center
  7666. \begin_inset Graphics
  7667. filename graphics/frma-pax-bx/MA-PAX-fRMA.fRMA-RASTER.png
  7668. lyxscale 10
  7669. width 45col%
  7670. groupId ma-frma
  7671. \end_inset
  7672. \end_layout
  7673. \begin_layout Plain Layout
  7674. \begin_inset Caption Standard
  7675. \begin_layout Plain Layout
  7676. \begin_inset CommandInset label
  7677. LatexCommand label
  7678. name "fig:MA-PAX-frma-frma"
  7679. \end_inset
  7680. fRMA vs fRMA for blood samples.
  7681. \end_layout
  7682. \end_inset
  7683. \end_layout
  7684. \end_inset
  7685. \end_layout
  7686. \begin_layout Plain Layout
  7687. \begin_inset Caption Standard
  7688. \begin_layout Plain Layout
  7689. \series bold
  7690. \begin_inset CommandInset label
  7691. LatexCommand label
  7692. name "fig:Representative-MA-plots"
  7693. \end_inset
  7694. Representative MA plots comparing RMA and custom fRMA normalizations.
  7695. \series default
  7696. For each plot, 20 samples were normalized using 2 different normalizations,
  7697. and then averages (A) and log ratios (M) were plotted between the two different
  7698. normalizations for every probe.
  7699. For the
  7700. \begin_inset Quotes eld
  7701. \end_inset
  7702. fRMA vs fRMA
  7703. \begin_inset Quotes erd
  7704. \end_inset
  7705. plots (b & d), two different fRMA normalizations using vectors from two
  7706. independent batch samplings were compared.
  7707. Density of points is represented by blue shading, and individual outlier
  7708. points are plotted.
  7709. \end_layout
  7710. \end_inset
  7711. \end_layout
  7712. \end_inset
  7713. \end_layout
  7714. \begin_layout Standard
  7715. Figure
  7716. \begin_inset CommandInset ref
  7717. LatexCommand ref
  7718. reference "fig:ma-bx-rma-frma"
  7719. plural "false"
  7720. caps "false"
  7721. noprefix "false"
  7722. \end_inset
  7723. shows an MA plot of the RMA-normalized values against the fRMA-normalized
  7724. values for the same probe sets and arrays, corresponding to the first row
  7725. of Figure
  7726. \begin_inset CommandInset ref
  7727. LatexCommand ref
  7728. reference "fig:m-bx-violin"
  7729. plural "false"
  7730. caps "false"
  7731. noprefix "false"
  7732. \end_inset
  7733. .
  7734. This MA plot shows that not only is there a wide distribution of M-values,
  7735. but the trend of M-values is dependent on the average normalized intensity.
  7736. This is expected, since the overall trend represents the differences in
  7737. the quantile normalization step.
  7738. When running RMA, only the quantiles for these specific 20 arrays are used,
  7739. while for fRMA the quantile distribution is taking from all arrays used
  7740. in training.
  7741. Figure
  7742. \begin_inset CommandInset ref
  7743. LatexCommand ref
  7744. reference "fig:ma-bx-frma-frma"
  7745. plural "false"
  7746. caps "false"
  7747. noprefix "false"
  7748. \end_inset
  7749. shows a similar MA plot comparing 2 different fRMA normalizations, correspondin
  7750. g to the 6th row of Figure
  7751. \begin_inset CommandInset ref
  7752. LatexCommand ref
  7753. reference "fig:m-bx-violin"
  7754. plural "false"
  7755. caps "false"
  7756. noprefix "false"
  7757. \end_inset
  7758. .
  7759. The MA plot is very tightly centered around zero with no visible trend.
  7760. Figures
  7761. \begin_inset CommandInset ref
  7762. LatexCommand ref
  7763. reference "fig:m-pax-violin"
  7764. plural "false"
  7765. caps "false"
  7766. noprefix "false"
  7767. \end_inset
  7768. ,
  7769. \begin_inset CommandInset ref
  7770. LatexCommand ref
  7771. reference "fig:MA-PAX-rma-frma"
  7772. plural "false"
  7773. caps "false"
  7774. noprefix "false"
  7775. \end_inset
  7776. , and
  7777. \begin_inset CommandInset ref
  7778. LatexCommand ref
  7779. reference "fig:ma-bx-frma-frma"
  7780. plural "false"
  7781. caps "false"
  7782. noprefix "false"
  7783. \end_inset
  7784. show exactly the same information for the blood samples, once again comparing
  7785. the normalized expression values between normalizations for all probe sets
  7786. across 20 randomly selected test arrays.
  7787. Once again, there is a wider distribution of log ratios between RMA-normalized
  7788. values and fRMA-normalized, and a much tighter distribution when comparing
  7789. different fRMA normalizations to each other, indicating that the fRMA training
  7790. process is robust to random batch downsampling for the blood samples as
  7791. well.
  7792. \end_layout
  7793. \begin_layout Subsection
  7794. SVA, voom, and array weights improve model fit for methylation array data
  7795. \end_layout
  7796. \begin_layout Standard
  7797. \begin_inset ERT
  7798. status open
  7799. \begin_layout Plain Layout
  7800. \backslash
  7801. afterpage{
  7802. \end_layout
  7803. \begin_layout Plain Layout
  7804. \backslash
  7805. begin{landscape}
  7806. \end_layout
  7807. \end_inset
  7808. \end_layout
  7809. \begin_layout Standard
  7810. \begin_inset Float figure
  7811. wide false
  7812. sideways false
  7813. status open
  7814. \begin_layout Plain Layout
  7815. \begin_inset Flex TODO Note (inline)
  7816. status open
  7817. \begin_layout Plain Layout
  7818. Fix axis labels:
  7819. \begin_inset Quotes eld
  7820. \end_inset
  7821. log2 M-value
  7822. \begin_inset Quotes erd
  7823. \end_inset
  7824. is redundant because M-values are already log scale
  7825. \end_layout
  7826. \end_inset
  7827. \end_layout
  7828. \begin_layout Plain Layout
  7829. \begin_inset Float figure
  7830. wide false
  7831. sideways false
  7832. status collapsed
  7833. \begin_layout Plain Layout
  7834. \align center
  7835. \begin_inset Graphics
  7836. filename graphics/methylvoom/unadj.dupcor/meanvar-trends-PAGE1-CROP-RASTER.png
  7837. lyxscale 15
  7838. width 30col%
  7839. groupId voomaw-subfig
  7840. \end_inset
  7841. \end_layout
  7842. \begin_layout Plain Layout
  7843. \begin_inset Caption Standard
  7844. \begin_layout Plain Layout
  7845. \begin_inset CommandInset label
  7846. LatexCommand label
  7847. name "fig:meanvar-basic"
  7848. \end_inset
  7849. Mean-variance trend for analysis A.
  7850. \end_layout
  7851. \end_inset
  7852. \end_layout
  7853. \end_inset
  7854. \begin_inset space \hfill{}
  7855. \end_inset
  7856. \begin_inset Float figure
  7857. wide false
  7858. sideways false
  7859. status collapsed
  7860. \begin_layout Plain Layout
  7861. \align center
  7862. \begin_inset Graphics
  7863. filename graphics/methylvoom/unadj.dupcor.sva.aw/meanvar-trends-PAGE1-CROP-RASTER.png
  7864. lyxscale 15
  7865. width 30col%
  7866. groupId voomaw-subfig
  7867. \end_inset
  7868. \end_layout
  7869. \begin_layout Plain Layout
  7870. \begin_inset Caption Standard
  7871. \begin_layout Plain Layout
  7872. \begin_inset CommandInset label
  7873. LatexCommand label
  7874. name "fig:meanvar-sva-aw"
  7875. \end_inset
  7876. Mean-variance trend for analysis B.
  7877. \end_layout
  7878. \end_inset
  7879. \end_layout
  7880. \end_inset
  7881. \begin_inset space \hfill{}
  7882. \end_inset
  7883. \begin_inset Float figure
  7884. wide false
  7885. sideways false
  7886. status collapsed
  7887. \begin_layout Plain Layout
  7888. \align center
  7889. \begin_inset Graphics
  7890. filename graphics/methylvoom/unadj.dupcor.sva.voomaw/meanvar-trends-PAGE2-CROP-RASTER.png
  7891. lyxscale 15
  7892. width 30col%
  7893. groupId voomaw-subfig
  7894. \end_inset
  7895. \end_layout
  7896. \begin_layout Plain Layout
  7897. \begin_inset Caption Standard
  7898. \begin_layout Plain Layout
  7899. \begin_inset CommandInset label
  7900. LatexCommand label
  7901. name "fig:meanvar-sva-voomaw"
  7902. \end_inset
  7903. Mean-variance trend after voom modeling in analysis C.
  7904. \end_layout
  7905. \end_inset
  7906. \end_layout
  7907. \end_inset
  7908. \end_layout
  7909. \begin_layout Plain Layout
  7910. \begin_inset Caption Standard
  7911. \begin_layout Plain Layout
  7912. \series bold
  7913. Mean-variance trend modeling in methylation array data.
  7914. \series default
  7915. The estimated log2(standard deviation) for each probe is plotted against
  7916. the probe's average M-value across all samples as a black point, with some
  7917. transparency to make overplotting more visible, since there are about 450,000
  7918. points.
  7919. Density of points is also indicated by the dark blue contour lines.
  7920. The prior variance trend estimated by eBayes is shown in light blue, while
  7921. the lowess trend of the points is shown in red.
  7922. \end_layout
  7923. \end_inset
  7924. \end_layout
  7925. \end_inset
  7926. \end_layout
  7927. \begin_layout Standard
  7928. \begin_inset ERT
  7929. status open
  7930. \begin_layout Plain Layout
  7931. \backslash
  7932. end{landscape}
  7933. \end_layout
  7934. \begin_layout Plain Layout
  7935. }
  7936. \end_layout
  7937. \end_inset
  7938. \end_layout
  7939. \begin_layout Standard
  7940. Figure
  7941. \begin_inset CommandInset ref
  7942. LatexCommand ref
  7943. reference "fig:meanvar-basic"
  7944. plural "false"
  7945. caps "false"
  7946. noprefix "false"
  7947. \end_inset
  7948. shows the relationship between the mean M-value and the standard deviation
  7949. calculated for each probe in the methylation array data set.
  7950. A few features of the data are apparent.
  7951. First, the data are very strongly bimodal, with peaks in the density around
  7952. M-values of +4 and -4.
  7953. These modes correspond to methylation sites that are nearly 100% methylated
  7954. and nearly 100% unmethylated, respectively.
  7955. The strong bomodality indicates that a majority of probes interrogate sites
  7956. that fall into one of these two categories.
  7957. The points in between these modes represent sites that are either partially
  7958. methylated in many samples, or are fully methylated in some samples and
  7959. fully unmethylated in other samples, or some combination.
  7960. The next visible feature of the data is the W-shaped variance trend.
  7961. The upticks in the variance trend on either side are expected, based on
  7962. the sigmoid transformation exaggerating small differences at extreme M-values
  7963. (Figure
  7964. \begin_inset CommandInset ref
  7965. LatexCommand ref
  7966. reference "fig:Sigmoid-beta-m-mapping"
  7967. plural "false"
  7968. caps "false"
  7969. noprefix "false"
  7970. \end_inset
  7971. ).
  7972. However, the uptick in the center is interesting: it indicates that sites
  7973. that are not constitutitively methylated or unmethylated have a higher
  7974. variance.
  7975. This could be a genuine biological effect, or it could be spurious noise
  7976. that is only observable at sites with varying methylation.
  7977. \end_layout
  7978. \begin_layout Standard
  7979. In Figure
  7980. \begin_inset CommandInset ref
  7981. LatexCommand ref
  7982. reference "fig:meanvar-sva-aw"
  7983. plural "false"
  7984. caps "false"
  7985. noprefix "false"
  7986. \end_inset
  7987. , we see the mean-variance trend for the same methylation array data, this
  7988. time with surrogate variables and sample quality weights estimated from
  7989. the data and included in the model.
  7990. As expected, the overall average variance is smaller, since the surrogate
  7991. variables account for some of the variance.
  7992. In addition, the uptick in variance in the middle of the M-value range
  7993. has disappeared, turning the W shape into a wide U shape.
  7994. This indicates that the excess variance in the probes with intermediate
  7995. M-values was explained by systematic variations not correlated with known
  7996. covariates, and these variations were modeled by the surrogate variables.
  7997. The result is a nearly flat variance trend for the entire intermediate
  7998. M-value range from about -3 to +3.
  7999. Note that this corresponds closely to the range within which the M-value
  8000. transformation shown in Figure
  8001. \begin_inset CommandInset ref
  8002. LatexCommand ref
  8003. reference "fig:Sigmoid-beta-m-mapping"
  8004. plural "false"
  8005. caps "false"
  8006. noprefix "false"
  8007. \end_inset
  8008. is nearly linear.
  8009. In contrast, the excess variance at the extremes (greater than +3 and less
  8010. than -3) was not
  8011. \begin_inset Quotes eld
  8012. \end_inset
  8013. absorbed
  8014. \begin_inset Quotes erd
  8015. \end_inset
  8016. by the surrogate variables and remains in the plot, indicating that this
  8017. variation has no systematic component: probes with extreme M-values are
  8018. uniformly more variable across all samples, as expected.
  8019. \end_layout
  8020. \begin_layout Standard
  8021. Figure
  8022. \begin_inset CommandInset ref
  8023. LatexCommand ref
  8024. reference "fig:meanvar-sva-voomaw"
  8025. plural "false"
  8026. caps "false"
  8027. noprefix "false"
  8028. \end_inset
  8029. shows the mean-variance trend after fitting the model with the observation
  8030. weights assigned by voom based on the mean-variance trend shown in Figure
  8031. \begin_inset CommandInset ref
  8032. LatexCommand ref
  8033. reference "fig:meanvar-sva-aw"
  8034. plural "false"
  8035. caps "false"
  8036. noprefix "false"
  8037. \end_inset
  8038. .
  8039. As expected, the weights exactly counteract the trend in the data, resulting
  8040. in a nearly flat trend centered vertically at 1 (i.e.
  8041. 0 on the log scale).
  8042. This shows that the observations with extreme M-values have been appropriately
  8043. down-weighted to account for the fact that the noise in those observations
  8044. has been amplified by the non-linear M-value transformation.
  8045. In turn, this gives relatively more weight to observervations in the middle
  8046. region, which are more likely to correspond to probes measuring interesting
  8047. biology (not constitutively methylated or unmethylated).
  8048. \end_layout
  8049. \begin_layout Standard
  8050. \begin_inset Float table
  8051. wide false
  8052. sideways false
  8053. status open
  8054. \begin_layout Plain Layout
  8055. \align center
  8056. \begin_inset Tabular
  8057. <lyxtabular version="3" rows="5" columns="3">
  8058. <features tabularvalignment="middle">
  8059. <column alignment="center" valignment="top">
  8060. <column alignment="center" valignment="top">
  8061. <column alignment="center" valignment="top">
  8062. <row>
  8063. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8064. \begin_inset Text
  8065. \begin_layout Plain Layout
  8066. Covariate
  8067. \end_layout
  8068. \end_inset
  8069. </cell>
  8070. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8071. \begin_inset Text
  8072. \begin_layout Plain Layout
  8073. Test used
  8074. \end_layout
  8075. \end_inset
  8076. </cell>
  8077. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  8078. \begin_inset Text
  8079. \begin_layout Plain Layout
  8080. p-value
  8081. \end_layout
  8082. \end_inset
  8083. </cell>
  8084. </row>
  8085. <row>
  8086. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8087. \begin_inset Text
  8088. \begin_layout Plain Layout
  8089. Transplant Status
  8090. \end_layout
  8091. \end_inset
  8092. </cell>
  8093. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8094. \begin_inset Text
  8095. \begin_layout Plain Layout
  8096. F-test
  8097. \end_layout
  8098. \end_inset
  8099. </cell>
  8100. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8101. \begin_inset Text
  8102. \begin_layout Plain Layout
  8103. 0.404
  8104. \end_layout
  8105. \end_inset
  8106. </cell>
  8107. </row>
  8108. <row>
  8109. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8110. \begin_inset Text
  8111. \begin_layout Plain Layout
  8112. Diabetes Diagnosis
  8113. \end_layout
  8114. \end_inset
  8115. </cell>
  8116. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8117. \begin_inset Text
  8118. \begin_layout Plain Layout
  8119. \emph on
  8120. t
  8121. \emph default
  8122. -test
  8123. \end_layout
  8124. \end_inset
  8125. </cell>
  8126. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8127. \begin_inset Text
  8128. \begin_layout Plain Layout
  8129. 0.00106
  8130. \end_layout
  8131. \end_inset
  8132. </cell>
  8133. </row>
  8134. <row>
  8135. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8136. \begin_inset Text
  8137. \begin_layout Plain Layout
  8138. Sex
  8139. \end_layout
  8140. \end_inset
  8141. </cell>
  8142. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8143. \begin_inset Text
  8144. \begin_layout Plain Layout
  8145. \emph on
  8146. t
  8147. \emph default
  8148. -test
  8149. \end_layout
  8150. \end_inset
  8151. </cell>
  8152. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8153. \begin_inset Text
  8154. \begin_layout Plain Layout
  8155. 0.148
  8156. \end_layout
  8157. \end_inset
  8158. </cell>
  8159. </row>
  8160. <row>
  8161. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8162. \begin_inset Text
  8163. \begin_layout Plain Layout
  8164. Age
  8165. \end_layout
  8166. \end_inset
  8167. </cell>
  8168. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8169. \begin_inset Text
  8170. \begin_layout Plain Layout
  8171. linear regression
  8172. \end_layout
  8173. \end_inset
  8174. </cell>
  8175. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  8176. \begin_inset Text
  8177. \begin_layout Plain Layout
  8178. 0.212
  8179. \end_layout
  8180. \end_inset
  8181. </cell>
  8182. </row>
  8183. </lyxtabular>
  8184. \end_inset
  8185. \end_layout
  8186. \begin_layout Plain Layout
  8187. \begin_inset Caption Standard
  8188. \begin_layout Plain Layout
  8189. \series bold
  8190. \begin_inset CommandInset label
  8191. LatexCommand label
  8192. name "tab:weight-covariate-tests"
  8193. \end_inset
  8194. Association of sample weights with clinical covariates in methylation array
  8195. data.
  8196. \series default
  8197. Computed sample quality log weights were tested for significant association
  8198. with each of the variables in the model (1st column).
  8199. An appropriate test was selected for each variable based on whether the
  8200. variable had 2 categories (
  8201. \emph on
  8202. t
  8203. \emph default
  8204. -test), had more than 2 categories (F-test), or was numeric (linear regression).
  8205. The test selected is shown in the 2nd column.
  8206. P-values for association with the log weights are shown in the 3rd column.
  8207. No multiple testing adjustment was performed for these p-values.
  8208. \end_layout
  8209. \end_inset
  8210. \end_layout
  8211. \end_inset
  8212. \end_layout
  8213. \begin_layout Standard
  8214. \begin_inset Float figure
  8215. wide false
  8216. sideways false
  8217. status open
  8218. \begin_layout Plain Layout
  8219. \begin_inset Flex TODO Note (inline)
  8220. status open
  8221. \begin_layout Plain Layout
  8222. Redo the sample weight boxplot with notches, and remove fill colors
  8223. \end_layout
  8224. \end_inset
  8225. \end_layout
  8226. \begin_layout Plain Layout
  8227. \align center
  8228. \begin_inset Graphics
  8229. filename graphics/methylvoom/unadj.dupcor.sva.voomaw/sample-weights-PAGE3-CROP.pdf
  8230. lyxscale 50
  8231. width 60col%
  8232. groupId colwidth
  8233. \end_inset
  8234. \end_layout
  8235. \begin_layout Plain Layout
  8236. \begin_inset Caption Standard
  8237. \begin_layout Plain Layout
  8238. \begin_inset CommandInset label
  8239. LatexCommand label
  8240. name "fig:diabetes-sample-weights"
  8241. \end_inset
  8242. \series bold
  8243. Box-and-whiskers plot of sample quality weights grouped by diabetes diagnosis.
  8244. \series default
  8245. Samples were grouped based on diabetes diagnosis, and the distribution of
  8246. sample quality weights for each diagnosis was plotted as a box-and-whiskers
  8247. plot
  8248. \begin_inset CommandInset citation
  8249. LatexCommand cite
  8250. key "McGill1978"
  8251. literal "false"
  8252. \end_inset
  8253. .
  8254. \end_layout
  8255. \end_inset
  8256. \end_layout
  8257. \begin_layout Plain Layout
  8258. \end_layout
  8259. \end_inset
  8260. \end_layout
  8261. \begin_layout Standard
  8262. To determine whether any of the known experimental factors had an impact
  8263. on data quality, the sample quality weights estimated from the data were
  8264. tested for association with each of the experimental factors (Table
  8265. \begin_inset CommandInset ref
  8266. LatexCommand ref
  8267. reference "tab:weight-covariate-tests"
  8268. plural "false"
  8269. caps "false"
  8270. noprefix "false"
  8271. \end_inset
  8272. ).
  8273. Diabetes diagnosis was found to have a potentially significant association
  8274. with the sample weights, with a t-test p-value of
  8275. \begin_inset Formula $1.06\times10^{-3}$
  8276. \end_inset
  8277. .
  8278. Figure
  8279. \begin_inset CommandInset ref
  8280. LatexCommand ref
  8281. reference "fig:diabetes-sample-weights"
  8282. plural "false"
  8283. caps "false"
  8284. noprefix "false"
  8285. \end_inset
  8286. shows the distribution of sample weights grouped by diabetes diagnosis.
  8287. The samples from patients with Type 2 diabetes were assigned significantly
  8288. lower weights than those from patients with Type 1 diabetes.
  8289. This indicates that the type 2 diabetes samples had an overall higher variance
  8290. on average across all probes.
  8291. \end_layout
  8292. \begin_layout Standard
  8293. \begin_inset Float table
  8294. wide false
  8295. sideways false
  8296. status open
  8297. \begin_layout Plain Layout
  8298. \align center
  8299. \begin_inset Flex TODO Note (inline)
  8300. status open
  8301. \begin_layout Plain Layout
  8302. Consider transposing these tables
  8303. \end_layout
  8304. \end_inset
  8305. \end_layout
  8306. \begin_layout Plain Layout
  8307. \begin_inset Float table
  8308. wide false
  8309. sideways false
  8310. status open
  8311. \begin_layout Plain Layout
  8312. \align center
  8313. \begin_inset Tabular
  8314. <lyxtabular version="3" rows="5" columns="4">
  8315. <features tabularvalignment="middle">
  8316. <column alignment="center" valignment="top">
  8317. <column alignment="center" valignment="top">
  8318. <column alignment="center" valignment="top">
  8319. <column alignment="center" valignment="top">
  8320. <row>
  8321. <cell alignment="center" valignment="top" usebox="none">
  8322. \begin_inset Text
  8323. \begin_layout Plain Layout
  8324. \end_layout
  8325. \end_inset
  8326. </cell>
  8327. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8328. \begin_inset Text
  8329. \begin_layout Plain Layout
  8330. Analysis
  8331. \end_layout
  8332. \end_inset
  8333. </cell>
  8334. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8335. \begin_inset Text
  8336. \begin_layout Plain Layout
  8337. \end_layout
  8338. \end_inset
  8339. </cell>
  8340. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8341. \begin_inset Text
  8342. \begin_layout Plain Layout
  8343. \end_layout
  8344. \end_inset
  8345. </cell>
  8346. </row>
  8347. <row>
  8348. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8349. \begin_inset Text
  8350. \begin_layout Plain Layout
  8351. Contrast
  8352. \end_layout
  8353. \end_inset
  8354. </cell>
  8355. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8356. \begin_inset Text
  8357. \begin_layout Plain Layout
  8358. A
  8359. \end_layout
  8360. \end_inset
  8361. </cell>
  8362. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8363. \begin_inset Text
  8364. \begin_layout Plain Layout
  8365. B
  8366. \end_layout
  8367. \end_inset
  8368. </cell>
  8369. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  8370. \begin_inset Text
  8371. \begin_layout Plain Layout
  8372. C
  8373. \end_layout
  8374. \end_inset
  8375. </cell>
  8376. </row>
  8377. <row>
  8378. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8379. \begin_inset Text
  8380. \begin_layout Plain Layout
  8381. TX vs AR
  8382. \end_layout
  8383. \end_inset
  8384. </cell>
  8385. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8386. \begin_inset Text
  8387. \begin_layout Plain Layout
  8388. 0
  8389. \end_layout
  8390. \end_inset
  8391. </cell>
  8392. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8393. \begin_inset Text
  8394. \begin_layout Plain Layout
  8395. 25
  8396. \end_layout
  8397. \end_inset
  8398. </cell>
  8399. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8400. \begin_inset Text
  8401. \begin_layout Plain Layout
  8402. 22
  8403. \end_layout
  8404. \end_inset
  8405. </cell>
  8406. </row>
  8407. <row>
  8408. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8409. \begin_inset Text
  8410. \begin_layout Plain Layout
  8411. TX vs ADNR
  8412. \end_layout
  8413. \end_inset
  8414. </cell>
  8415. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8416. \begin_inset Text
  8417. \begin_layout Plain Layout
  8418. 7
  8419. \end_layout
  8420. \end_inset
  8421. </cell>
  8422. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8423. \begin_inset Text
  8424. \begin_layout Plain Layout
  8425. 338
  8426. \end_layout
  8427. \end_inset
  8428. </cell>
  8429. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8430. \begin_inset Text
  8431. \begin_layout Plain Layout
  8432. 369
  8433. \end_layout
  8434. \end_inset
  8435. </cell>
  8436. </row>
  8437. <row>
  8438. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8439. \begin_inset Text
  8440. \begin_layout Plain Layout
  8441. TX vs CAN
  8442. \end_layout
  8443. \end_inset
  8444. </cell>
  8445. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8446. \begin_inset Text
  8447. \begin_layout Plain Layout
  8448. 0
  8449. \end_layout
  8450. \end_inset
  8451. </cell>
  8452. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8453. \begin_inset Text
  8454. \begin_layout Plain Layout
  8455. 231
  8456. \end_layout
  8457. \end_inset
  8458. </cell>
  8459. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  8460. \begin_inset Text
  8461. \begin_layout Plain Layout
  8462. 278
  8463. \end_layout
  8464. \end_inset
  8465. </cell>
  8466. </row>
  8467. </lyxtabular>
  8468. \end_inset
  8469. \end_layout
  8470. \begin_layout Plain Layout
  8471. \begin_inset Caption Standard
  8472. \begin_layout Plain Layout
  8473. \begin_inset CommandInset label
  8474. LatexCommand label
  8475. name "tab:methyl-num-signif"
  8476. \end_inset
  8477. Number of probes significant at 10% FDR.
  8478. \end_layout
  8479. \end_inset
  8480. \end_layout
  8481. \end_inset
  8482. \begin_inset space \hfill{}
  8483. \end_inset
  8484. \begin_inset Float table
  8485. wide false
  8486. sideways false
  8487. status open
  8488. \begin_layout Plain Layout
  8489. \align center
  8490. \begin_inset Tabular
  8491. <lyxtabular version="3" rows="5" columns="4">
  8492. <features tabularvalignment="middle">
  8493. <column alignment="center" valignment="top">
  8494. <column alignment="center" valignment="top">
  8495. <column alignment="center" valignment="top">
  8496. <column alignment="center" valignment="top">
  8497. <row>
  8498. <cell alignment="center" valignment="top" usebox="none">
  8499. \begin_inset Text
  8500. \begin_layout Plain Layout
  8501. \end_layout
  8502. \end_inset
  8503. </cell>
  8504. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8505. \begin_inset Text
  8506. \begin_layout Plain Layout
  8507. Analysis
  8508. \end_layout
  8509. \end_inset
  8510. </cell>
  8511. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8512. \begin_inset Text
  8513. \begin_layout Plain Layout
  8514. \end_layout
  8515. \end_inset
  8516. </cell>
  8517. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8518. \begin_inset Text
  8519. \begin_layout Plain Layout
  8520. \end_layout
  8521. \end_inset
  8522. </cell>
  8523. </row>
  8524. <row>
  8525. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8526. \begin_inset Text
  8527. \begin_layout Plain Layout
  8528. Contrast
  8529. \end_layout
  8530. \end_inset
  8531. </cell>
  8532. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8533. \begin_inset Text
  8534. \begin_layout Plain Layout
  8535. A
  8536. \end_layout
  8537. \end_inset
  8538. </cell>
  8539. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8540. \begin_inset Text
  8541. \begin_layout Plain Layout
  8542. B
  8543. \end_layout
  8544. \end_inset
  8545. </cell>
  8546. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  8547. \begin_inset Text
  8548. \begin_layout Plain Layout
  8549. C
  8550. \end_layout
  8551. \end_inset
  8552. </cell>
  8553. </row>
  8554. <row>
  8555. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8556. \begin_inset Text
  8557. \begin_layout Plain Layout
  8558. TX vs AR
  8559. \end_layout
  8560. \end_inset
  8561. </cell>
  8562. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8563. \begin_inset Text
  8564. \begin_layout Plain Layout
  8565. 0
  8566. \end_layout
  8567. \end_inset
  8568. </cell>
  8569. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8570. \begin_inset Text
  8571. \begin_layout Plain Layout
  8572. 10,063
  8573. \end_layout
  8574. \end_inset
  8575. </cell>
  8576. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8577. \begin_inset Text
  8578. \begin_layout Plain Layout
  8579. 11,225
  8580. \end_layout
  8581. \end_inset
  8582. </cell>
  8583. </row>
  8584. <row>
  8585. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8586. \begin_inset Text
  8587. \begin_layout Plain Layout
  8588. TX vs ADNR
  8589. \end_layout
  8590. \end_inset
  8591. </cell>
  8592. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8593. \begin_inset Text
  8594. \begin_layout Plain Layout
  8595. 27
  8596. \end_layout
  8597. \end_inset
  8598. </cell>
  8599. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8600. \begin_inset Text
  8601. \begin_layout Plain Layout
  8602. 12,674
  8603. \end_layout
  8604. \end_inset
  8605. </cell>
  8606. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8607. \begin_inset Text
  8608. \begin_layout Plain Layout
  8609. 13,086
  8610. \end_layout
  8611. \end_inset
  8612. </cell>
  8613. </row>
  8614. <row>
  8615. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8616. \begin_inset Text
  8617. \begin_layout Plain Layout
  8618. TX vs CAN
  8619. \end_layout
  8620. \end_inset
  8621. </cell>
  8622. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8623. \begin_inset Text
  8624. \begin_layout Plain Layout
  8625. 966
  8626. \end_layout
  8627. \end_inset
  8628. </cell>
  8629. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8630. \begin_inset Text
  8631. \begin_layout Plain Layout
  8632. 20,039
  8633. \end_layout
  8634. \end_inset
  8635. </cell>
  8636. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  8637. \begin_inset Text
  8638. \begin_layout Plain Layout
  8639. 20,955
  8640. \end_layout
  8641. \end_inset
  8642. </cell>
  8643. </row>
  8644. </lyxtabular>
  8645. \end_inset
  8646. \end_layout
  8647. \begin_layout Plain Layout
  8648. \begin_inset Caption Standard
  8649. \begin_layout Plain Layout
  8650. \begin_inset CommandInset label
  8651. LatexCommand label
  8652. name "tab:methyl-est-nonnull"
  8653. \end_inset
  8654. Estimated number of non-null tests, using the method of averaging local
  8655. FDR values
  8656. \begin_inset CommandInset citation
  8657. LatexCommand cite
  8658. key "Phipson2013Thesis"
  8659. literal "false"
  8660. \end_inset
  8661. .
  8662. \end_layout
  8663. \end_inset
  8664. \end_layout
  8665. \end_inset
  8666. \end_layout
  8667. \begin_layout Plain Layout
  8668. \begin_inset Caption Standard
  8669. \begin_layout Plain Layout
  8670. \series bold
  8671. Estimates of degree of differential methylation in for each contrast in
  8672. each analysis.
  8673. \series default
  8674. For each of the analyses in Table
  8675. \begin_inset CommandInset ref
  8676. LatexCommand ref
  8677. reference "tab:Summary-of-meth-analysis"
  8678. plural "false"
  8679. caps "false"
  8680. noprefix "false"
  8681. \end_inset
  8682. , these tables show the number of probes called significantly differentially
  8683. methylated at a threshold of 10% FDR for each comparison between TX and
  8684. the other 3 transplant statuses (a) and the estimated total number of probes
  8685. that are differentially methylated (b).
  8686. \end_layout
  8687. \end_inset
  8688. \end_layout
  8689. \end_inset
  8690. \end_layout
  8691. \begin_layout Standard
  8692. \begin_inset Float figure
  8693. wide false
  8694. sideways false
  8695. status open
  8696. \begin_layout Plain Layout
  8697. \align center
  8698. \series bold
  8699. \begin_inset Float figure
  8700. wide false
  8701. sideways false
  8702. status collapsed
  8703. \begin_layout Plain Layout
  8704. \align center
  8705. \begin_inset Graphics
  8706. filename graphics/methylvoom/unadj.dupcor/pval-histograms-PAGE1.pdf
  8707. lyxscale 33
  8708. width 30col%
  8709. groupId meth-pval-hist
  8710. \end_inset
  8711. \end_layout
  8712. \begin_layout Plain Layout
  8713. \series bold
  8714. \begin_inset Caption Standard
  8715. \begin_layout Plain Layout
  8716. AR vs.
  8717. TX, Analysis A
  8718. \end_layout
  8719. \end_inset
  8720. \end_layout
  8721. \begin_layout Plain Layout
  8722. \end_layout
  8723. \end_inset
  8724. \begin_inset space \hfill{}
  8725. \end_inset
  8726. \begin_inset Float figure
  8727. wide false
  8728. sideways false
  8729. status collapsed
  8730. \begin_layout Plain Layout
  8731. \align center
  8732. \begin_inset Graphics
  8733. filename graphics/methylvoom/unadj.dupcor/pval-histograms-PAGE2.pdf
  8734. lyxscale 33
  8735. width 30col%
  8736. groupId meth-pval-hist
  8737. \end_inset
  8738. \end_layout
  8739. \begin_layout Plain Layout
  8740. \series bold
  8741. \begin_inset Caption Standard
  8742. \begin_layout Plain Layout
  8743. ADNR vs.
  8744. TX, Analysis A
  8745. \end_layout
  8746. \end_inset
  8747. \end_layout
  8748. \end_inset
  8749. \begin_inset space \hfill{}
  8750. \end_inset
  8751. \begin_inset Float figure
  8752. wide false
  8753. sideways false
  8754. status collapsed
  8755. \begin_layout Plain Layout
  8756. \align center
  8757. \begin_inset Graphics
  8758. filename graphics/methylvoom/unadj.dupcor/pval-histograms-PAGE3.pdf
  8759. lyxscale 33
  8760. width 30col%
  8761. groupId meth-pval-hist
  8762. \end_inset
  8763. \end_layout
  8764. \begin_layout Plain Layout
  8765. \series bold
  8766. \begin_inset Caption Standard
  8767. \begin_layout Plain Layout
  8768. CAN vs.
  8769. TX, Analysis A
  8770. \end_layout
  8771. \end_inset
  8772. \end_layout
  8773. \end_inset
  8774. \end_layout
  8775. \begin_layout Plain Layout
  8776. \align center
  8777. \series bold
  8778. \begin_inset Float figure
  8779. wide false
  8780. sideways false
  8781. status collapsed
  8782. \begin_layout Plain Layout
  8783. \align center
  8784. \begin_inset Graphics
  8785. filename graphics/methylvoom/unadj.dupcor.sva.aw/pval-histograms-PAGE1.pdf
  8786. lyxscale 33
  8787. width 30col%
  8788. groupId meth-pval-hist
  8789. \end_inset
  8790. \end_layout
  8791. \begin_layout Plain Layout
  8792. \series bold
  8793. \begin_inset Caption Standard
  8794. \begin_layout Plain Layout
  8795. AR vs.
  8796. TX, Analysis B
  8797. \end_layout
  8798. \end_inset
  8799. \end_layout
  8800. \end_inset
  8801. \begin_inset space \hfill{}
  8802. \end_inset
  8803. \begin_inset Float figure
  8804. wide false
  8805. sideways false
  8806. status collapsed
  8807. \begin_layout Plain Layout
  8808. \align center
  8809. \begin_inset Graphics
  8810. filename graphics/methylvoom/unadj.dupcor.sva.aw/pval-histograms-PAGE2.pdf
  8811. lyxscale 33
  8812. width 30col%
  8813. groupId meth-pval-hist
  8814. \end_inset
  8815. \end_layout
  8816. \begin_layout Plain Layout
  8817. \series bold
  8818. \begin_inset Caption Standard
  8819. \begin_layout Plain Layout
  8820. ADNR vs.
  8821. TX, Analysis B
  8822. \end_layout
  8823. \end_inset
  8824. \end_layout
  8825. \end_inset
  8826. \begin_inset space \hfill{}
  8827. \end_inset
  8828. \begin_inset Float figure
  8829. wide false
  8830. sideways false
  8831. status collapsed
  8832. \begin_layout Plain Layout
  8833. \align center
  8834. \begin_inset Graphics
  8835. filename graphics/methylvoom/unadj.dupcor.sva.aw/pval-histograms-PAGE3.pdf
  8836. lyxscale 33
  8837. width 30col%
  8838. groupId meth-pval-hist
  8839. \end_inset
  8840. \end_layout
  8841. \begin_layout Plain Layout
  8842. \series bold
  8843. \begin_inset Caption Standard
  8844. \begin_layout Plain Layout
  8845. CAN vs.
  8846. TX, Analysis B
  8847. \end_layout
  8848. \end_inset
  8849. \end_layout
  8850. \end_inset
  8851. \end_layout
  8852. \begin_layout Plain Layout
  8853. \align center
  8854. \series bold
  8855. \begin_inset Float figure
  8856. wide false
  8857. sideways false
  8858. status collapsed
  8859. \begin_layout Plain Layout
  8860. \align center
  8861. \begin_inset Graphics
  8862. filename graphics/methylvoom/unadj.dupcor.sva.voomaw/pval-histograms-PAGE1.pdf
  8863. lyxscale 33
  8864. width 30col%
  8865. groupId meth-pval-hist
  8866. \end_inset
  8867. \end_layout
  8868. \begin_layout Plain Layout
  8869. \series bold
  8870. \begin_inset Caption Standard
  8871. \begin_layout Plain Layout
  8872. AR vs.
  8873. TX, Analysis C
  8874. \end_layout
  8875. \end_inset
  8876. \end_layout
  8877. \end_inset
  8878. \begin_inset space \hfill{}
  8879. \end_inset
  8880. \begin_inset Float figure
  8881. wide false
  8882. sideways false
  8883. status collapsed
  8884. \begin_layout Plain Layout
  8885. \align center
  8886. \begin_inset Graphics
  8887. filename graphics/methylvoom/unadj.dupcor.sva.voomaw/pval-histograms-PAGE2.pdf
  8888. lyxscale 33
  8889. width 30col%
  8890. groupId meth-pval-hist
  8891. \end_inset
  8892. \end_layout
  8893. \begin_layout Plain Layout
  8894. \series bold
  8895. \begin_inset Caption Standard
  8896. \begin_layout Plain Layout
  8897. ADNR vs.
  8898. TX, Analysis C
  8899. \end_layout
  8900. \end_inset
  8901. \end_layout
  8902. \end_inset
  8903. \begin_inset space \hfill{}
  8904. \end_inset
  8905. \begin_inset Float figure
  8906. wide false
  8907. sideways false
  8908. status collapsed
  8909. \begin_layout Plain Layout
  8910. \align center
  8911. \begin_inset Graphics
  8912. filename graphics/methylvoom/unadj.dupcor.sva.voomaw/pval-histograms-PAGE3.pdf
  8913. lyxscale 33
  8914. width 30col%
  8915. groupId meth-pval-hist
  8916. \end_inset
  8917. \end_layout
  8918. \begin_layout Plain Layout
  8919. \series bold
  8920. \begin_inset Caption Standard
  8921. \begin_layout Plain Layout
  8922. CAN vs.
  8923. TX, Analysis C
  8924. \end_layout
  8925. \end_inset
  8926. \end_layout
  8927. \end_inset
  8928. \end_layout
  8929. \begin_layout Plain Layout
  8930. \begin_inset Caption Standard
  8931. \begin_layout Plain Layout
  8932. \series bold
  8933. \begin_inset CommandInset label
  8934. LatexCommand label
  8935. name "fig:meth-p-value-histograms"
  8936. \end_inset
  8937. Probe p-value histograms for each contrast in each analysis.
  8938. \series default
  8939. For each differential methylation test of interest, the distribution of
  8940. p-values across all probes is plotted as a histogram.
  8941. The red solid line indicates the density that would be expected under the
  8942. null hypothesis for all probes (a
  8943. \begin_inset Formula $\mathrm{Uniform}(0,1)$
  8944. \end_inset
  8945. distribution), while the blue dotted line indicates the fraction of p-values
  8946. that actually follow the null hypothesis (
  8947. \begin_inset Formula $\hat{\pi}_{0}$
  8948. \end_inset
  8949. ) estimated using the method of averaging local FDR values
  8950. \begin_inset CommandInset citation
  8951. LatexCommand cite
  8952. key "Phipson2013Thesis"
  8953. literal "false"
  8954. \end_inset
  8955. .
  8956. the blue line is only shown in each plot if the estimate of
  8957. \begin_inset Formula $\hat{\pi}_{0}$
  8958. \end_inset
  8959. for that p-value distribution is different from 1.
  8960. \end_layout
  8961. \end_inset
  8962. \end_layout
  8963. \end_inset
  8964. \end_layout
  8965. \begin_layout Standard
  8966. Table
  8967. \begin_inset CommandInset ref
  8968. LatexCommand ref
  8969. reference "tab:methyl-num-signif"
  8970. plural "false"
  8971. caps "false"
  8972. noprefix "false"
  8973. \end_inset
  8974. shows the number of significantly differentially methylated probes reported
  8975. by each analysis for each comparison of interest at an FDR of 10%.
  8976. As expected, the more elaborate analyses, B and C, report more significant
  8977. probes than the more basic analysis A, consistent with the conclusions
  8978. above that the data contain hidden systematic variations that must be modeled.
  8979. Table
  8980. \begin_inset CommandInset ref
  8981. LatexCommand ref
  8982. reference "tab:methyl-est-nonnull"
  8983. plural "false"
  8984. caps "false"
  8985. noprefix "false"
  8986. \end_inset
  8987. shows the estimated number differentially methylated probes for each test
  8988. from each analysis.
  8989. This was computed by estimating the proportion of null hypotheses that
  8990. were true using the method of
  8991. \begin_inset CommandInset citation
  8992. LatexCommand cite
  8993. key "Phipson2013Thesis"
  8994. literal "false"
  8995. \end_inset
  8996. and subtracting that fraction from the total number of probes, yielding
  8997. an estimate of the number of null hypotheses that are false based on the
  8998. distribution of p-values across the entire dataset.
  8999. Note that this does not identify which null hypotheses should be rejected
  9000. (i.e.
  9001. which probes are significant); it only estimates the true number of such
  9002. probes.
  9003. Once again, analyses B and C result it much larger estimates for the number
  9004. of differentially methylated probes.
  9005. In this case, analysis C, the only analysis that includes voom, estimates
  9006. the largest number of differentially methylated probes for all 3 contrasts.
  9007. If the assumptions of all the methods employed hold, then this represents
  9008. a gain in statistical power over the simpler analysis A.
  9009. Figure
  9010. \begin_inset CommandInset ref
  9011. LatexCommand ref
  9012. reference "fig:meth-p-value-histograms"
  9013. plural "false"
  9014. caps "false"
  9015. noprefix "false"
  9016. \end_inset
  9017. shows the p-value distributions for each test, from which the numbers in
  9018. Table
  9019. \begin_inset CommandInset ref
  9020. LatexCommand ref
  9021. reference "tab:methyl-est-nonnull"
  9022. plural "false"
  9023. caps "false"
  9024. noprefix "false"
  9025. \end_inset
  9026. were generated.
  9027. The distributions for analysis A all have a dip in density near zero, which
  9028. is a strong sign of a poor model fit.
  9029. The histograms for analyses B and C are more well-behaved, with a uniform
  9030. component stretching all the way from 0 to 1 representing the probes for
  9031. which the null hypotheses is true (no differential methylation), and a
  9032. zero-biased component representing the probes for which the null hypothesis
  9033. is false (differentially methylated).
  9034. These histograms do not indicate any major issues with the model fit.
  9035. \end_layout
  9036. \begin_layout Standard
  9037. \begin_inset Flex TODO Note (inline)
  9038. status open
  9039. \begin_layout Plain Layout
  9040. If time allows, maybe generate the PCA plots before/after SVA effect subtraction
  9041. ?
  9042. \end_layout
  9043. \end_inset
  9044. \end_layout
  9045. \begin_layout Section
  9046. Discussion
  9047. \end_layout
  9048. \begin_layout Subsection
  9049. fRMA achieves clinically applicable normalization without sacrificing classifica
  9050. tion performance
  9051. \end_layout
  9052. \begin_layout Standard
  9053. As shown in Figure
  9054. \begin_inset CommandInset ref
  9055. LatexCommand ref
  9056. reference "fig:Classifier-probabilities-RMA"
  9057. plural "false"
  9058. caps "false"
  9059. noprefix "false"
  9060. \end_inset
  9061. , improper normalization, particularly separate normalization of training
  9062. and test samples, leads to unwanted biases in classification.
  9063. In a controlled experimental context, it is always possible to correct
  9064. this issue by normalizing all experimental samples together.
  9065. However, because it is not feasible to normalize all samples together in
  9066. a clinical context, a single-channel normalization is required is required.
  9067. \end_layout
  9068. \begin_layout Standard
  9069. The major concern in using a single-channel normalization is that non-single-cha
  9070. nnel methods can share information between arrays to improve the normalization,
  9071. and single-channel methods risk sacrificing the gains in normalization
  9072. accuracy that come from this information sharing.
  9073. In the case of RMA, this information sharing is accomplished through quantile
  9074. normalization and median polish steps.
  9075. The need for information sharing in quantile normalization can easily be
  9076. removed by learning a fixed set of quantiles from external data and normalizing
  9077. each array to these fixed quantiles, instead of the quantiles of the data
  9078. itself.
  9079. As long as the fixed quantiles are reasonable, the result will be similar
  9080. to standard RMA.
  9081. However, there is no analogous way to eliminate cross-array information
  9082. sharing in the median polish step, so fRMA replaces this with a weighted
  9083. average of probes on each array, with the weights learned from external
  9084. data.
  9085. This step of fRMA has the greatest potential to diverge from RMA un undesirable
  9086. ways.
  9087. \end_layout
  9088. \begin_layout Standard
  9089. However, when run on real data, fRMA performed at least as well as RMA in
  9090. both the internal validation and external validation tests.
  9091. This shows that fRMA can be used to normalize individual clinical samples
  9092. in a class prediction context without sacrificing the classifier performance
  9093. that would be obtained by using the more well-established RMA for normalization.
  9094. The other single-channel normalization method considered, SCAN, showed
  9095. some loss of AUC in the external validation test.
  9096. Based on these results, fRMA is the preferred normalization for clinical
  9097. samples in a class prediction context.
  9098. \end_layout
  9099. \begin_layout Subsection
  9100. Robust fRMA vectors can be generated for new array platforms
  9101. \end_layout
  9102. \begin_layout Standard
  9103. \begin_inset Flex TODO Note (inline)
  9104. status open
  9105. \begin_layout Plain Layout
  9106. Look up the exact numbers, do a find & replace for
  9107. \begin_inset Quotes eld
  9108. \end_inset
  9109. 850
  9110. \begin_inset Quotes erd
  9111. \end_inset
  9112. \end_layout
  9113. \end_inset
  9114. \end_layout
  9115. \begin_layout Standard
  9116. The published fRMA normalization vectors for the hgu133plus2 platform were
  9117. generated from a set of about 850 samples chosen from a wide range of tissues,
  9118. which the authors determined was sufficient to generate a robust set of
  9119. normalization vectors that could be applied across all tissues
  9120. \begin_inset CommandInset citation
  9121. LatexCommand cite
  9122. key "McCall2010"
  9123. literal "false"
  9124. \end_inset
  9125. .
  9126. Since we only had hthgu133pluspm for 2 tissues of interest, our needs were
  9127. more modest.
  9128. Even using only 130 samples in 26 batches of 5 samples each for kidney
  9129. biopsies, we were able to train a robust set of fRMA normalization vectors
  9130. that were not meaningfully affected by the random selection of 5 samples
  9131. from each batch.
  9132. As expected, the training process was just as robust for the blood samples
  9133. with 230 samples in 46 batches of 5 samples each.
  9134. Because these vectors were each generated using training samples from a
  9135. single tissue, they are not suitable for general use, unlike the vectors
  9136. provided with fRMA itself.
  9137. They are purpose-built for normalizing a specific type of sample on a specific
  9138. platform.
  9139. This is a mostly acceptable limitation in the context of developing a machine
  9140. learning classifier for diagnosing a disease based on samples of a specific
  9141. tissue.
  9142. \end_layout
  9143. \begin_layout Standard
  9144. \begin_inset Flex TODO Note (inline)
  9145. status open
  9146. \begin_layout Plain Layout
  9147. Talk about how these vectors can be used for any data from these tissues
  9148. on this platform even though they were custom made for this data set.
  9149. \end_layout
  9150. \end_inset
  9151. \end_layout
  9152. \begin_layout Standard
  9153. \begin_inset Flex TODO Note (inline)
  9154. status open
  9155. \begin_layout Plain Layout
  9156. How to bring up that these custom vectors were used in another project by
  9157. someone else that was never published?
  9158. \end_layout
  9159. \end_inset
  9160. \end_layout
  9161. \begin_layout Subsection
  9162. Methylation array data can be successfully analyzed using existing techniques,
  9163. but machine learning poses additional challenges
  9164. \end_layout
  9165. \begin_layout Standard
  9166. Both analysis strategies B and C both yield a reasonable analysis, with
  9167. a mean-variance trend that matches the expected behavior for the non-linear
  9168. M-value transformation (Figure
  9169. \begin_inset CommandInset ref
  9170. LatexCommand ref
  9171. reference "fig:meanvar-sva-aw"
  9172. plural "false"
  9173. caps "false"
  9174. noprefix "false"
  9175. \end_inset
  9176. ) and well-behaved p-value distributions (Figure
  9177. \begin_inset CommandInset ref
  9178. LatexCommand ref
  9179. reference "fig:meth-p-value-histograms"
  9180. plural "false"
  9181. caps "false"
  9182. noprefix "false"
  9183. \end_inset
  9184. ).
  9185. These two analyses also yield similar numbers of significant probes (Table
  9186. \begin_inset CommandInset ref
  9187. LatexCommand ref
  9188. reference "tab:methyl-num-signif"
  9189. plural "false"
  9190. caps "false"
  9191. noprefix "false"
  9192. \end_inset
  9193. ) and similar estimates of the number of differentially methylated probes
  9194. (Table
  9195. \begin_inset CommandInset ref
  9196. LatexCommand ref
  9197. reference "tab:methyl-est-nonnull"
  9198. plural "false"
  9199. caps "false"
  9200. noprefix "false"
  9201. \end_inset
  9202. ).
  9203. The main difference between these two analyses is the method used to account
  9204. for the mean-variance trend.
  9205. In analysis B, the trend is estimated and applied at the probe level: each
  9206. probe's estimated variance is squeezed toward the trend using an empirical
  9207. Bayes procedure (Figure
  9208. \begin_inset CommandInset ref
  9209. LatexCommand ref
  9210. reference "fig:meanvar-sva-aw"
  9211. plural "false"
  9212. caps "false"
  9213. noprefix "false"
  9214. \end_inset
  9215. ).
  9216. In analysis C, the trend is still estimated at the probe level, but instead
  9217. of estimating a single variance value shared across all observations for
  9218. a given probe, the voom method computes an initial estiamte of the variance
  9219. for each observation individually based on where its model-fitted M-value
  9220. falls on the trend line and then assigns inverse-variance weights to model
  9221. the difference in variance between observations.
  9222. An overall variance is still estimated for each probe using the same empirical
  9223. Bayes method, but now the residual trend is flat (Figure
  9224. \begin_inset CommandInset ref
  9225. LatexCommand ref
  9226. reference "fig:meanvar-sva-voomaw"
  9227. plural "false"
  9228. caps "false"
  9229. noprefix "false"
  9230. \end_inset
  9231. ), indicating that the mean-variance trend is adequately modeled by scaling
  9232. the estimated variance for each observation using the weights computed
  9233. by voom.
  9234. \end_layout
  9235. \begin_layout Standard
  9236. The difference between the standard empirical Bayes trended variance modeling
  9237. (analysis B) and voom (analysis C) is analogous to the difference between
  9238. a t-test with equal variance and a t-test with unequal variance, except
  9239. that the unequal group variances used in the latter test are estimated
  9240. based on the mean-variance trend from all the probes rather than the data
  9241. for the specific probe being tested, thus stabilizing the group variance
  9242. estimates by sharing information between probes.
  9243. Allowing voom to model the variance using observation weights in this manner
  9244. allows the linear model fit to concentrate statistical power where it will
  9245. do the most good.
  9246. For example, if a particular probe's M-values are always at the extreme
  9247. of the M-value range (e.g.
  9248. less than -4) for ADNR samples, but the M-values for that probe in TX and
  9249. CAN samples are within the flat region of the mean-variance trend (between
  9250. -3 and +3), voom is able to down-weight the contribution of the high-variance
  9251. M-values from the ADNR samples in order to gain more statistical power
  9252. while testing for differential methylation between TX and CAN.
  9253. In contrast, modeling the mean-variance trend only at the probe level would
  9254. combine the high-variance ADNR samples and lower-variance samples from
  9255. other conditions and estimate an intermediate variance for this probe.
  9256. In practice, analysis B shows that this approach is adequate, but the voom
  9257. approach in analysis C is at least as good on all model fit criteria and
  9258. yields a larger estimate for the number of differentially methylated genes,
  9259. \emph on
  9260. and
  9261. \emph default
  9262. it matches up better with the theoretical
  9263. \end_layout
  9264. \begin_layout Standard
  9265. The significant association of diebetes diagnosis with sample quality is
  9266. interesting.
  9267. The samples with Type 2 diabetes tended to have more variation, averaged
  9268. across all probes, than those with Type 1 diabetes.
  9269. This is consistent with the consensus that type 2 disbetes and the associated
  9270. metabolic syndrome represent a broad dysregulation of the body's endocrine
  9271. signalling related to metabolism [citation needed].
  9272. This dysregulation could easily manifest as a greater degree of variation
  9273. in the DNA methylation patterns of affected tissues.
  9274. In contrast, Type 1 disbetes has a more specific cause and effect, so a
  9275. less variable methylation signature is expected.
  9276. \end_layout
  9277. \begin_layout Standard
  9278. This preliminary anlaysis suggests that some degree of differential methylation
  9279. exists between TX and each of the three types of transplant disfunction
  9280. studied.
  9281. Hence, it may be feasible to train a classifier to diagnose transplant
  9282. disfunction from DNA methylation array data.
  9283. However, the major importance of both SVA and sample quality weighting
  9284. for proper modeling of this data poses significant challenges for any attempt
  9285. at a machine learning on data of similar quality.
  9286. While these are easily used in a modeling context with full sample information,
  9287. neither of these methods is directly applicable in a machine learning context,
  9288. where the diagnosis is not known ahead of time.
  9289. If a machine learning approach for methylation-based diagnosis is to be
  9290. pursued, it will either require machine-learning-friendly methods to address
  9291. the same systematic trends in the data that SVA and sample quality weighting
  9292. address, or it will require higher quality data with substantially less
  9293. systematic perturbation of the data.
  9294. \end_layout
  9295. \begin_layout Section
  9296. Future Directions
  9297. \end_layout
  9298. \begin_layout Standard
  9299. \begin_inset Flex TODO Note (inline)
  9300. status open
  9301. \begin_layout Plain Layout
  9302. Some work was already being done with the existing fRMA vectors.
  9303. Do I mention that here?
  9304. \end_layout
  9305. \end_inset
  9306. \end_layout
  9307. \begin_layout Subsection
  9308. Improving fRMA to allow training from batches of unequal size
  9309. \end_layout
  9310. \begin_layout Standard
  9311. Because the tools for building fRMA normalization vectors require equal-size
  9312. batches, many samples must be discarded from the training data.
  9313. This is undesirable for a few reasons.
  9314. First, more data is simply better, all other things being equal.
  9315. In this case,
  9316. \begin_inset Quotes eld
  9317. \end_inset
  9318. better
  9319. \begin_inset Quotes erd
  9320. \end_inset
  9321. means a more precise estimate of normalization parameters.
  9322. In addition, the samples to be discarded must be chosen arbitrarily, which
  9323. introduces an unnecessary element of randomness into the estimation process.
  9324. While the randomness can be made deterministic by setting a consistent
  9325. random seed, the need for equal size batches also introduces a need for
  9326. the analyst to decide on the appropriate trade-off between batch size and
  9327. the number of batches.
  9328. This introduces an unnecessary and undesirable
  9329. \begin_inset Quotes eld
  9330. \end_inset
  9331. researcher degree of freedom
  9332. \begin_inset Quotes erd
  9333. \end_inset
  9334. into the analysis, since the generated normalization vectors now depend
  9335. on the choice of batch size based on vague selection criteria and instinct,
  9336. which can unintentionally inproduce bias if the researcher chooses a batch
  9337. size based on what seems to yield the most favorable downstream results
  9338. \begin_inset CommandInset citation
  9339. LatexCommand cite
  9340. key "Simmons2011"
  9341. literal "false"
  9342. \end_inset
  9343. .
  9344. \end_layout
  9345. \begin_layout Standard
  9346. Fortunately, the requirement for equal-size batches is not inherent to the
  9347. fRMA algorithm but rather a limitation of the implementation in the frmaTools
  9348. package.
  9349. In personal communication, the package's author, Matthew McCall, has indicated
  9350. that with some work, it should be possible to improve the implementation
  9351. to work with batches of unequal sizes.
  9352. The current implementation ignores the batch size when calculating with-batch
  9353. and between-batch residual variances, since the batch size constant cancels
  9354. out later in the calculations as long as all batches are of equal size.
  9355. Hence, the calculations of these parameters would need to be modified to
  9356. remove this optimization and properly calculate the variances using the
  9357. full formula.
  9358. Once this modification is made, a new strategy would need to be developed
  9359. for assessing the stability of parameter estimates, since the random subsamplin
  9360. g step is eliminated, meaning that different subsamplings can no longer
  9361. be compared as in Figures
  9362. \begin_inset CommandInset ref
  9363. LatexCommand ref
  9364. reference "fig:frma-violin"
  9365. plural "false"
  9366. caps "false"
  9367. noprefix "false"
  9368. \end_inset
  9369. and
  9370. \begin_inset CommandInset ref
  9371. LatexCommand ref
  9372. reference "fig:Representative-MA-plots"
  9373. plural "false"
  9374. caps "false"
  9375. noprefix "false"
  9376. \end_inset
  9377. .
  9378. Bootstrap resampling is likely a good candidate here: sample many training
  9379. sets of equal size from the existing training set with replacement, estimate
  9380. parameters from each resampled training set, and compare the estimated
  9381. parameters between bootstraps in order to quantify the variability in each
  9382. parameter's estimation.
  9383. \end_layout
  9384. \begin_layout Subsection
  9385. Developing methylation arrays as a diagnostic tool for kidney transplant
  9386. rejection
  9387. \end_layout
  9388. \begin_layout Standard
  9389. The current study has showed that DNA methylation, as assayed by Illumina
  9390. 450k methylation arrays, has some potential for diagnosing transplant dysfuncti
  9391. ons, including rejection.
  9392. However, very few probes could be confidently identified as differentially
  9393. methylated between healthy and dysfunctional transplants.
  9394. One likely explanation for this is the predominant influence of unobserved
  9395. confounding factors.
  9396. SVA can model and correct for such factors, but the correction can never
  9397. be perfect, so some degree of unwanted systematic variation will always
  9398. remain after SVA correction.
  9399. If the effect size of the confounding factors was similar to that of the
  9400. factor of interest (in this case, transplant status), this would be an
  9401. acceptable limitation, since removing most of the confounding factors'
  9402. effects would allow the main effect to stand out.
  9403. However, in this data set, the confounding factors have a much larger effect
  9404. size than transplant status, which means that the small degree of remaining
  9405. variation not removed by SVA can still swamp the effect of interest, making
  9406. it difficult to detect.
  9407. This is, of course, a major issue when the end goal is to develop a classifier
  9408. to diagnose transplant rejection from methylation data, since batch-correction
  9409. methods like SVA that work in a linear modeling context cannot be applied
  9410. in a machine learning context.
  9411. \end_layout
  9412. \begin_layout Standard
  9413. Currently, the source of these unwanted systematic variations in the data
  9414. is unknown.
  9415. The best solution would be to determine the cause of the variation and
  9416. eliminate it, thereby eliminating the need to model and remove that variation.
  9417. However, if this proves impractical, another option is to use SVA to identify
  9418. probes that are highly associated with the surrogate variables that describe
  9419. the unwanted variation in the data.
  9420. These probes could be discarded prior to classifier training, in order
  9421. to maximize the chance that the training algorithm will be able to identify
  9422. highly predictive probes from those remaining.
  9423. Lastly, it is possible that some of this unwanted variation is a result
  9424. of the array-based assay being used and would be eliminated by switching
  9425. to assaying DNA methylation using bisulphite sequencing.
  9426. However, this carries the risk that the sequencing assay will have its
  9427. own set of biases that must be corrected for in a different way.
  9428. \end_layout
  9429. \begin_layout Chapter
  9430. Globin-blocking for more effective blood RNA-seq analysis in primate animal
  9431. model
  9432. \end_layout
  9433. \begin_layout Standard
  9434. \begin_inset Flex TODO Note (inline)
  9435. status open
  9436. \begin_layout Plain Layout
  9437. Choose between above and the paper title: Optimizing yield of deep RNA sequencin
  9438. g for gene expression profiling by globin reduction of peripheral blood
  9439. samples from cynomolgus monkeys (Macaca fascicularis).
  9440. \end_layout
  9441. \end_inset
  9442. \end_layout
  9443. \begin_layout Standard
  9444. \begin_inset Flex TODO Note (inline)
  9445. status open
  9446. \begin_layout Plain Layout
  9447. Chapter author list: https://tex.stackexchange.com/questions/156862/displaying-aut
  9448. hor-for-each-chapter-in-book Every chapter gets an author list, which may
  9449. or may not be part of a citation to a published/preprinted paper.
  9450. \end_layout
  9451. \end_inset
  9452. \end_layout
  9453. \begin_layout Standard
  9454. \begin_inset Flex TODO Note (inline)
  9455. status open
  9456. \begin_layout Plain Layout
  9457. Preprint then cite the paper
  9458. \end_layout
  9459. \end_inset
  9460. \end_layout
  9461. \begin_layout Section*
  9462. Abstract
  9463. \end_layout
  9464. \begin_layout Paragraph
  9465. Background
  9466. \end_layout
  9467. \begin_layout Standard
  9468. Primate blood contains high concentrations of globin messenger RNA.
  9469. Globin reduction is a standard technique used to improve the expression
  9470. results obtained by DNA microarrays on RNA from blood samples.
  9471. However, with whole transcriptome RNA-sequencing (RNA-seq) quickly replacing
  9472. microarrays for many applications, the impact of globin reduction for RNA-seq
  9473. has not been previously studied.
  9474. Moreover, no off-the-shelf kits are available for globin reduction in nonhuman
  9475. primates.
  9476. \end_layout
  9477. \begin_layout Paragraph
  9478. Results
  9479. \end_layout
  9480. \begin_layout Standard
  9481. Here we report a protocol for RNA-seq in primate blood samples that uses
  9482. complimentary oligonucleotides to block reverse transcription of the alpha
  9483. and beta globin genes.
  9484. In test samples from cynomolgus monkeys (Macaca fascicularis), this globin
  9485. blocking protocol approximately doubles the yield of informative (non-globin)
  9486. reads by greatly reducing the fraction of globin reads, while also improving
  9487. the consistency in sequencing depth between samples.
  9488. The increased yield enables detection of about 2000 more genes, significantly
  9489. increases the correlation in measured gene expression levels between samples,
  9490. and increases the sensitivity of differential gene expression tests.
  9491. \end_layout
  9492. \begin_layout Paragraph
  9493. Conclusions
  9494. \end_layout
  9495. \begin_layout Standard
  9496. These results show that globin blocking significantly improves the cost-effectiv
  9497. eness of mRNA sequencing in primate blood samples by doubling the yield
  9498. of useful reads, allowing detection of more genes, and improving the precision
  9499. of gene expression measurements.
  9500. Based on these results, a globin reducing or blocking protocol is recommended
  9501. for all RNA-seq studies of primate blood samples.
  9502. \end_layout
  9503. \begin_layout Section
  9504. Approach
  9505. \end_layout
  9506. \begin_layout Standard
  9507. \begin_inset Note Note
  9508. status open
  9509. \begin_layout Plain Layout
  9510. Consider putting some of this in the Intro chapter
  9511. \end_layout
  9512. \begin_layout Itemize
  9513. Cynomolgus monkeys as a model organism
  9514. \end_layout
  9515. \begin_deeper
  9516. \begin_layout Itemize
  9517. Highly related to humans
  9518. \end_layout
  9519. \begin_layout Itemize
  9520. Small size and short life cycle - good research animal
  9521. \end_layout
  9522. \begin_layout Itemize
  9523. Genomics resources still in development
  9524. \end_layout
  9525. \end_deeper
  9526. \begin_layout Itemize
  9527. Inadequacy of existing blood RNA-seq protocols
  9528. \end_layout
  9529. \begin_deeper
  9530. \begin_layout Itemize
  9531. Existing protocols use a separate globin pulldown step, slowing down processing
  9532. \end_layout
  9533. \end_deeper
  9534. \end_inset
  9535. \end_layout
  9536. \begin_layout Standard
  9537. Increasingly, researchers are turning to high-throughput mRNA sequencing
  9538. technologies (RNA-seq) in preference to expression microarrays for analysis
  9539. of gene expression
  9540. \begin_inset CommandInset citation
  9541. LatexCommand cite
  9542. key "Mutz2012"
  9543. literal "false"
  9544. \end_inset
  9545. .
  9546. The advantages are even greater for study of model organisms with no well-estab
  9547. lished array platforms available, such as the cynomolgus monkey (Macaca
  9548. fascicularis).
  9549. High fractions of globin mRNA are naturally present in mammalian peripheral
  9550. blood samples (up to 70% of total mRNA) and these are known to interfere
  9551. with the results of array-based expression profiling
  9552. \begin_inset CommandInset citation
  9553. LatexCommand cite
  9554. key "Winn2010"
  9555. literal "false"
  9556. \end_inset
  9557. .
  9558. The importance of globin reduction for RNA-seq of blood has only been evaluated
  9559. for a deepSAGE protocol on human samples
  9560. \begin_inset CommandInset citation
  9561. LatexCommand cite
  9562. key "Mastrokolias2012"
  9563. literal "false"
  9564. \end_inset
  9565. .
  9566. In the present report, we evaluated globin reduction using custom blocking
  9567. oligonucleotides for deep RNA-seq of peripheral blood samples from a nonhuman
  9568. primate, cynomolgus monkey, using the Illumina technology platform.
  9569. We demonstrate that globin reduction significantly improves the cost-effectiven
  9570. ess of RNA-seq in blood samples.
  9571. Thus, our protocol offers a significant advantage to any investigator planning
  9572. to use RNA-seq for gene expression profiling of nonhuman primate blood
  9573. samples.
  9574. Our method can be generally applied to any species by designing complementary
  9575. oligonucleotide blocking probes to the globin gene sequences of that species.
  9576. Indeed, any highly expressed but biologically uninformative transcripts
  9577. can also be blocked to further increase sequencing efficiency and value
  9578. \begin_inset CommandInset citation
  9579. LatexCommand cite
  9580. key "Arnaud2016"
  9581. literal "false"
  9582. \end_inset
  9583. .
  9584. \end_layout
  9585. \begin_layout Section
  9586. Methods
  9587. \end_layout
  9588. \begin_layout Subsection
  9589. Sample collection
  9590. \end_layout
  9591. \begin_layout Standard
  9592. All research reported here was done under IACUC-approved protocols at the
  9593. University of Miami and complied with all applicable federal and state
  9594. regulations and ethical principles for nonhuman primate research.
  9595. Blood draws occurred between 16 April 2012 and 18 June 2015.
  9596. The experimental system involved intrahepatic pancreatic islet transplantation
  9597. into Cynomolgus monkeys with induced diabetes mellitus with or without
  9598. concomitant infusion of mesenchymal stem cells.
  9599. Blood was collected at serial time points before and after transplantation
  9600. into PAXgene Blood RNA tubes (PreAnalytiX/Qiagen, Valencia, CA) at the
  9601. precise volume:volume ratio of 2.5 ml whole blood into 6.9 ml of PAX gene
  9602. additive.
  9603. \end_layout
  9604. \begin_layout Subsection
  9605. Globin Blocking
  9606. \end_layout
  9607. \begin_layout Standard
  9608. Four oligonucleotides were designed to hybridize to the 3’ end of the transcript
  9609. s for Cynomolgus HBA1, HBA2 and HBB, with two hybridization sites for HBB
  9610. and 2 sites for HBA (the chosen sites were identical in both HBA genes).
  9611. All oligos were purchased from Sigma and were entirely composed of 2’O-Me
  9612. bases with a C3 spacer positioned at the 3’ ends to prevent any polymerase
  9613. mediated primer extension.
  9614. \end_layout
  9615. \begin_layout Quote
  9616. HBA1/2 site 1: GCCCACUCAGACUUUAUUCAAAG-C3spacer
  9617. \end_layout
  9618. \begin_layout Quote
  9619. HBA1/2 site 2: GGUGCAAGGAGGGGAGGAG-C3spacer
  9620. \end_layout
  9621. \begin_layout Quote
  9622. HBB site 1: AAUGAAAAUAAAUGUUUUUUAUUAG-C3spacer
  9623. \end_layout
  9624. \begin_layout Quote
  9625. HBB site 2: CUCAAGGCCCUUCAUAAUAUCCC-C3spacer
  9626. \end_layout
  9627. \begin_layout Subsection
  9628. RNA-seq Library Preparation
  9629. \end_layout
  9630. \begin_layout Standard
  9631. Sequencing libraries were prepared with 200ng total RNA from each sample.
  9632. Polyadenylated mRNA was selected from 200 ng aliquots of cynomologus blood-deri
  9633. ved total RNA using Ambion Dynabeads Oligo(dT)25 beads (Invitrogen) following
  9634. manufacturer’s recommended protocol.
  9635. PolyA selected RNA was then combined with 8 pmol of HBA1/2 (site 1), 8
  9636. pmol of HBA1/2 (site 2), 12 pmol of HBB (site 1) and 12 pmol of HBB (site
  9637. 2) oligonucleotides.
  9638. In addition, 20 pmol of RT primer containing a portion of the Illumina
  9639. adapter sequence (B-oligo-dTV: GAGTTCCTTGGCACCCGAGAATTCCATTTTTTTTTTTTTTTTTTTV)
  9640. and 4 µL of 5X First Strand buffer (250 mM Tris-HCl pH 8.3, 375 mM KCl,
  9641. 15mM MgCl2) were added in a total volume of 15 µL.
  9642. The RNA was fragmented by heating this cocktail for 3 minutes at 95°C and
  9643. then placed on ice.
  9644. This was followed by the addition of 2 µL 0.1 M DTT, 1 µL RNaseOUT, 1 µL
  9645. 10mM dNTPs 10% biotin-16 aminoallyl-2’- dUTP and 10% biotin-16 aminoallyl-2’-
  9646. dCTP (TriLink Biotech, San Diego, CA), 1 µL Superscript II (200U/ µL, Thermo-Fi
  9647. sher).
  9648. A second “unblocked” library was prepared in the same way for each sample
  9649. but replacing the blocking oligos with an equivalent volume of water.
  9650. The reaction was carried out at 25°C for 15 minutes and 42°C for 40 minutes,
  9651. followed by incubation at 75°C for 10 minutes to inactivate the reverse
  9652. transcriptase.
  9653. \end_layout
  9654. \begin_layout Standard
  9655. The cDNA/RNA hybrid molecules were purified using 1.8X Ampure XP beads (Agencourt
  9656. ) following supplier’s recommended protocol.
  9657. The cDNA/RNA hybrid was eluted in 25 µL of 10 mM Tris-HCl pH 8.0, and then
  9658. bound to 25 µL of M280 Magnetic Streptavidin beads washed per recommended
  9659. protocol (Thermo-Fisher).
  9660. After 30 minutes of binding, beads were washed one time in 100 µL 0.1N NaOH
  9661. to denature and remove the bound RNA, followed by two 100 µL washes with
  9662. 1X TE buffer.
  9663. \end_layout
  9664. \begin_layout Standard
  9665. Subsequent attachment of the 5-prime Illumina A adapter was performed by
  9666. on-bead random primer extension of the following sequence (A-N8 primer:
  9667. TTCAGAGTTCTACAGTCCGACGATCNNNNNNNN).
  9668. Briefly, beads were resuspended in a 20 µL reaction containing 5 µM A-N8
  9669. primer, 40mM Tris-HCl pH 7.5, 20mM MgCl2, 50mM NaCl, 0.325U/µL Sequenase
  9670. 2.0 (Affymetrix, Santa Clara, CA), 0.0025U/µL inorganic pyrophosphatase (Affymetr
  9671. ix) and 300 µM each dNTP.
  9672. Reaction was incubated at 22°C for 30 minutes, then beads were washed 2
  9673. times with 1X TE buffer (200µL).
  9674. \end_layout
  9675. \begin_layout Standard
  9676. The magnetic streptavidin beads were resuspended in 34 µL nuclease-free
  9677. water and added directly to a PCR tube.
  9678. The two Illumina protocol-specified PCR primers were added at 0.53 µM (Illumina
  9679. TruSeq Universal Primer 1 and Illumina TruSeq barcoded PCR primer 2), along
  9680. with 40 µL 2X KAPA HiFi Hotstart ReadyMix (KAPA, Willmington MA) and thermocycl
  9681. ed as follows: starting with 98°C (2 min-hold); 15 cycles of 98°C, 20sec;
  9682. 60°C, 30sec; 72°C, 30sec; and finished with a 72°C (2 min-hold).
  9683. \end_layout
  9684. \begin_layout Standard
  9685. PCR products were purified with 1X Ampure Beads following manufacturer’s
  9686. recommended protocol.
  9687. Libraries were then analyzed using the Agilent TapeStation and quantitation
  9688. of desired size range was performed by “smear analysis”.
  9689. Samples were pooled in equimolar batches of 16 samples.
  9690. Pooled libraries were size selected on 2% agarose gels (E-Gel EX Agarose
  9691. Gels; Thermo-Fisher).
  9692. Products were cut between 250 and 350 bp (corresponding to insert sizes
  9693. of 130 to 230 bps).
  9694. Finished library pools were then sequenced on the Illumina NextSeq500 instrumen
  9695. t with 75 base read lengths.
  9696. \end_layout
  9697. \begin_layout Subsection
  9698. Read alignment and counting
  9699. \end_layout
  9700. \begin_layout Standard
  9701. Reads were aligned to the cynomolgus genome using STAR
  9702. \begin_inset CommandInset citation
  9703. LatexCommand cite
  9704. key "Dobin2013,Wilson2013"
  9705. literal "false"
  9706. \end_inset
  9707. .
  9708. Counts of uniquely mapped reads were obtained for every gene in each sample
  9709. with the “featureCounts” function from the Rsubread package, using each
  9710. of the three possibilities for the “strandSpecific” option: sense, antisense,
  9711. and unstranded
  9712. \begin_inset CommandInset citation
  9713. LatexCommand cite
  9714. key "Liao2014"
  9715. literal "false"
  9716. \end_inset
  9717. .
  9718. A few artifacts in the cynomolgus genome annotation complicated read counting.
  9719. First, no ortholog is annotated for alpha globin in the cynomolgus genome,
  9720. presumably because the human genome has two alpha globin genes with nearly
  9721. identical sequences, making the orthology relationship ambiguous.
  9722. However, two loci in the cynomolgus genome are as “hemoglobin subunit alpha-lik
  9723. e” (LOC102136192 and LOC102136846).
  9724. LOC102136192 is annotated as a pseudogene while LOC102136846 is annotated
  9725. as protein-coding.
  9726. Our globin reduction protocol was designed to include blocking of these
  9727. two genes.
  9728. Indeed, these two genes have almost the same read counts in each library
  9729. as the properly-annotated HBB gene and much larger counts than any other
  9730. gene in the unblocked libraries, giving confidence that reads derived from
  9731. the real alpha globin are mapping to both genes.
  9732. Thus, reads from both of these loci were counted as alpha globin reads
  9733. in all further analyses.
  9734. The second artifact is a small, uncharacterized non-coding RNA gene (LOC1021365
  9735. 91), which overlaps the HBA-like gene (LOC102136192) on the opposite strand.
  9736. If counting is not performed in stranded mode (or if a non-strand-specific
  9737. sequencing protocol is used), many reads mapping to the globin gene will
  9738. be discarded as ambiguous due to their overlap with this ncRNA gene, resulting
  9739. in significant undercounting of globin reads.
  9740. Therefore, stranded sense counts were used for all further analysis in
  9741. the present study to insure that we accurately accounted for globin transcript
  9742. reduction.
  9743. However, we note that stranded reads are not necessary for RNA-seq using
  9744. our protocol in standard practice.
  9745. \end_layout
  9746. \begin_layout Subsection
  9747. Normalization and Exploratory Data Analysis
  9748. \end_layout
  9749. \begin_layout Standard
  9750. Libraries were normalized by computing scaling factors using the edgeR package’s
  9751. Trimmed Mean of M-values method
  9752. \begin_inset CommandInset citation
  9753. LatexCommand cite
  9754. key "Robinson2010"
  9755. literal "false"
  9756. \end_inset
  9757. .
  9758. Log2 counts per million values (logCPM) were calculated using the cpm function
  9759. in edgeR for individual samples and aveLogCPM function for averages across
  9760. groups of samples, using those functions’ default prior count values to
  9761. avoid taking the logarithm of 0.
  9762. Genes were considered “present” if their average normalized logCPM values
  9763. across all libraries were at least -1.
  9764. Normalizing for gene length was unnecessary because the sequencing protocol
  9765. is 3’-biased and hence the expected read count for each gene is related
  9766. to the transcript’s copy number but not its length.
  9767. \end_layout
  9768. \begin_layout Standard
  9769. In order to assess the effect of blocking on reproducibility, Pearson and
  9770. Spearman correlation coefficients were computed between the logCPM values
  9771. for every pair of libraries within the globin-blocked (GB) and unblocked
  9772. (non-GB) groups, and edgeR's “estimateDisp” function was used to compute
  9773. negative binomial dispersions separately for the two groups
  9774. \begin_inset CommandInset citation
  9775. LatexCommand cite
  9776. key "Chen2014"
  9777. literal "false"
  9778. \end_inset
  9779. .
  9780. \end_layout
  9781. \begin_layout Subsection
  9782. Differential Expression Analysis
  9783. \end_layout
  9784. \begin_layout Standard
  9785. All tests for differential gene expression were performed using edgeR, by
  9786. first fitting a negative binomial generalized linear model to the counts
  9787. and normalization factors and then performing a quasi-likelihood F-test
  9788. with robust estimation of outlier gene dispersions
  9789. \begin_inset CommandInset citation
  9790. LatexCommand cite
  9791. key "Lund2012,Phipson2016"
  9792. literal "false"
  9793. \end_inset
  9794. .
  9795. To investigate the effects of globin blocking on each gene, an additive
  9796. model was fit to the full data with coefficients for globin blocking and
  9797. SampleID.
  9798. To test the effect of globin blocking on detection of differentially expressed
  9799. genes, the GB samples and non-GB samples were each analyzed independently
  9800. as follows: for each animal with both a pre-transplant and a post-transplant
  9801. time point in the data set, the pre-transplant sample and the earliest
  9802. post-transplant sample were selected, and all others were excluded, yielding
  9803. a pre-/post-transplant pair of samples for each animal (N=7 animals with
  9804. paired samples).
  9805. These samples were analyzed for pre-transplant vs.
  9806. post-transplant differential gene expression while controlling for inter-animal
  9807. variation using an additive model with coefficients for transplant and
  9808. animal ID.
  9809. In all analyses, p-values were adjusted using the Benjamini-Hochberg procedure
  9810. for FDR control
  9811. \begin_inset CommandInset citation
  9812. LatexCommand cite
  9813. key "Benjamini1995"
  9814. literal "false"
  9815. \end_inset
  9816. .
  9817. \end_layout
  9818. \begin_layout Standard
  9819. \begin_inset Note Note
  9820. status open
  9821. \begin_layout Itemize
  9822. New blood RNA-seq protocol to block reverse transcription of globin genes
  9823. \end_layout
  9824. \begin_layout Itemize
  9825. Blood RNA-seq time course after transplants with/without MSC infusion
  9826. \end_layout
  9827. \end_inset
  9828. \end_layout
  9829. \begin_layout Section
  9830. Results
  9831. \end_layout
  9832. \begin_layout Subsection
  9833. Globin blocking yields a larger and more consistent fraction of useful reads
  9834. \end_layout
  9835. \begin_layout Standard
  9836. \begin_inset ERT
  9837. status open
  9838. \begin_layout Plain Layout
  9839. \backslash
  9840. afterpage{
  9841. \end_layout
  9842. \begin_layout Plain Layout
  9843. \backslash
  9844. begin{landscape}
  9845. \end_layout
  9846. \end_inset
  9847. \end_layout
  9848. \begin_layout Standard
  9849. \begin_inset Float table
  9850. placement p
  9851. wide false
  9852. sideways false
  9853. status open
  9854. \begin_layout Plain Layout
  9855. \align center
  9856. \begin_inset Tabular
  9857. <lyxtabular version="3" rows="4" columns="7">
  9858. <features tabularvalignment="middle">
  9859. <column alignment="center" valignment="top">
  9860. <column alignment="center" valignment="top">
  9861. <column alignment="center" valignment="top">
  9862. <column alignment="center" valignment="top">
  9863. <column alignment="center" valignment="top">
  9864. <column alignment="center" valignment="top">
  9865. <column alignment="center" valignment="top">
  9866. <row>
  9867. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  9868. \begin_inset Text
  9869. \begin_layout Plain Layout
  9870. \end_layout
  9871. \end_inset
  9872. </cell>
  9873. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  9874. \begin_inset Text
  9875. \begin_layout Plain Layout
  9876. \family roman
  9877. \series medium
  9878. \shape up
  9879. \size normal
  9880. \emph off
  9881. \bar no
  9882. \strikeout off
  9883. \xout off
  9884. \uuline off
  9885. \uwave off
  9886. \noun off
  9887. \color none
  9888. Percent of Total Reads
  9889. \end_layout
  9890. \end_inset
  9891. </cell>
  9892. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  9893. \begin_inset Text
  9894. \begin_layout Plain Layout
  9895. \end_layout
  9896. \end_inset
  9897. </cell>
  9898. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  9899. \begin_inset Text
  9900. \begin_layout Plain Layout
  9901. \end_layout
  9902. \end_inset
  9903. </cell>
  9904. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  9905. \begin_inset Text
  9906. \begin_layout Plain Layout
  9907. \end_layout
  9908. \end_inset
  9909. </cell>
  9910. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  9911. \begin_inset Text
  9912. \begin_layout Plain Layout
  9913. \family roman
  9914. \series medium
  9915. \shape up
  9916. \size normal
  9917. \emph off
  9918. \bar no
  9919. \strikeout off
  9920. \xout off
  9921. \uuline off
  9922. \uwave off
  9923. \noun off
  9924. \color none
  9925. Percent of Genic Reads
  9926. \end_layout
  9927. \end_inset
  9928. </cell>
  9929. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  9930. \begin_inset Text
  9931. \begin_layout Plain Layout
  9932. \end_layout
  9933. \end_inset
  9934. </cell>
  9935. </row>
  9936. <row>
  9937. <cell alignment="center" valignment="top" bottomline="true" leftline="true" usebox="none">
  9938. \begin_inset Text
  9939. \begin_layout Plain Layout
  9940. GB
  9941. \end_layout
  9942. \end_inset
  9943. </cell>
  9944. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  9945. \begin_inset Text
  9946. \begin_layout Plain Layout
  9947. \family roman
  9948. \series medium
  9949. \shape up
  9950. \size normal
  9951. \emph off
  9952. \bar no
  9953. \strikeout off
  9954. \xout off
  9955. \uuline off
  9956. \uwave off
  9957. \noun off
  9958. \color none
  9959. Non-globin Reads
  9960. \end_layout
  9961. \end_inset
  9962. </cell>
  9963. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  9964. \begin_inset Text
  9965. \begin_layout Plain Layout
  9966. \family roman
  9967. \series medium
  9968. \shape up
  9969. \size normal
  9970. \emph off
  9971. \bar no
  9972. \strikeout off
  9973. \xout off
  9974. \uuline off
  9975. \uwave off
  9976. \noun off
  9977. \color none
  9978. Globin Reads
  9979. \end_layout
  9980. \end_inset
  9981. </cell>
  9982. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  9983. \begin_inset Text
  9984. \begin_layout Plain Layout
  9985. \family roman
  9986. \series medium
  9987. \shape up
  9988. \size normal
  9989. \emph off
  9990. \bar no
  9991. \strikeout off
  9992. \xout off
  9993. \uuline off
  9994. \uwave off
  9995. \noun off
  9996. \color none
  9997. All Genic Reads
  9998. \end_layout
  9999. \end_inset
  10000. </cell>
  10001. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10002. \begin_inset Text
  10003. \begin_layout Plain Layout
  10004. \family roman
  10005. \series medium
  10006. \shape up
  10007. \size normal
  10008. \emph off
  10009. \bar no
  10010. \strikeout off
  10011. \xout off
  10012. \uuline off
  10013. \uwave off
  10014. \noun off
  10015. \color none
  10016. All Aligned Reads
  10017. \end_layout
  10018. \end_inset
  10019. </cell>
  10020. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10021. \begin_inset Text
  10022. \begin_layout Plain Layout
  10023. \family roman
  10024. \series medium
  10025. \shape up
  10026. \size normal
  10027. \emph off
  10028. \bar no
  10029. \strikeout off
  10030. \xout off
  10031. \uuline off
  10032. \uwave off
  10033. \noun off
  10034. \color none
  10035. Non-globin Reads
  10036. \end_layout
  10037. \end_inset
  10038. </cell>
  10039. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  10040. \begin_inset Text
  10041. \begin_layout Plain Layout
  10042. \family roman
  10043. \series medium
  10044. \shape up
  10045. \size normal
  10046. \emph off
  10047. \bar no
  10048. \strikeout off
  10049. \xout off
  10050. \uuline off
  10051. \uwave off
  10052. \noun off
  10053. \color none
  10054. Globin Reads
  10055. \end_layout
  10056. \end_inset
  10057. </cell>
  10058. </row>
  10059. <row>
  10060. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10061. \begin_inset Text
  10062. \begin_layout Plain Layout
  10063. \family roman
  10064. \series medium
  10065. \shape up
  10066. \size normal
  10067. \emph off
  10068. \bar no
  10069. \strikeout off
  10070. \xout off
  10071. \uuline off
  10072. \uwave off
  10073. \noun off
  10074. \color none
  10075. Yes
  10076. \end_layout
  10077. \end_inset
  10078. </cell>
  10079. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10080. \begin_inset Text
  10081. \begin_layout Plain Layout
  10082. \family roman
  10083. \series medium
  10084. \shape up
  10085. \size normal
  10086. \emph off
  10087. \bar no
  10088. \strikeout off
  10089. \xout off
  10090. \uuline off
  10091. \uwave off
  10092. \noun off
  10093. \color none
  10094. 50.4% ± 6.82
  10095. \end_layout
  10096. \end_inset
  10097. </cell>
  10098. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10099. \begin_inset Text
  10100. \begin_layout Plain Layout
  10101. \family roman
  10102. \series medium
  10103. \shape up
  10104. \size normal
  10105. \emph off
  10106. \bar no
  10107. \strikeout off
  10108. \xout off
  10109. \uuline off
  10110. \uwave off
  10111. \noun off
  10112. \color none
  10113. 3.48% ± 2.94
  10114. \end_layout
  10115. \end_inset
  10116. </cell>
  10117. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10118. \begin_inset Text
  10119. \begin_layout Plain Layout
  10120. \family roman
  10121. \series medium
  10122. \shape up
  10123. \size normal
  10124. \emph off
  10125. \bar no
  10126. \strikeout off
  10127. \xout off
  10128. \uuline off
  10129. \uwave off
  10130. \noun off
  10131. \color none
  10132. 53.9% ± 6.81
  10133. \end_layout
  10134. \end_inset
  10135. </cell>
  10136. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10137. \begin_inset Text
  10138. \begin_layout Plain Layout
  10139. \family roman
  10140. \series medium
  10141. \shape up
  10142. \size normal
  10143. \emph off
  10144. \bar no
  10145. \strikeout off
  10146. \xout off
  10147. \uuline off
  10148. \uwave off
  10149. \noun off
  10150. \color none
  10151. 89.7% ± 2.40
  10152. \end_layout
  10153. \end_inset
  10154. </cell>
  10155. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10156. \begin_inset Text
  10157. \begin_layout Plain Layout
  10158. \family roman
  10159. \series medium
  10160. \shape up
  10161. \size normal
  10162. \emph off
  10163. \bar no
  10164. \strikeout off
  10165. \xout off
  10166. \uuline off
  10167. \uwave off
  10168. \noun off
  10169. \color none
  10170. 93.5% ± 5.25
  10171. \end_layout
  10172. \end_inset
  10173. </cell>
  10174. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  10175. \begin_inset Text
  10176. \begin_layout Plain Layout
  10177. \family roman
  10178. \series medium
  10179. \shape up
  10180. \size normal
  10181. \emph off
  10182. \bar no
  10183. \strikeout off
  10184. \xout off
  10185. \uuline off
  10186. \uwave off
  10187. \noun off
  10188. \color none
  10189. 6.49% ± 5.25
  10190. \end_layout
  10191. \end_inset
  10192. </cell>
  10193. </row>
  10194. <row>
  10195. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10196. \begin_inset Text
  10197. \begin_layout Plain Layout
  10198. \family roman
  10199. \series medium
  10200. \shape up
  10201. \size normal
  10202. \emph off
  10203. \bar no
  10204. \strikeout off
  10205. \xout off
  10206. \uuline off
  10207. \uwave off
  10208. \noun off
  10209. \color none
  10210. No
  10211. \end_layout
  10212. \end_inset
  10213. </cell>
  10214. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10215. \begin_inset Text
  10216. \begin_layout Plain Layout
  10217. \family roman
  10218. \series medium
  10219. \shape up
  10220. \size normal
  10221. \emph off
  10222. \bar no
  10223. \strikeout off
  10224. \xout off
  10225. \uuline off
  10226. \uwave off
  10227. \noun off
  10228. \color none
  10229. 26.3% ± 8.95
  10230. \end_layout
  10231. \end_inset
  10232. </cell>
  10233. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10234. \begin_inset Text
  10235. \begin_layout Plain Layout
  10236. \family roman
  10237. \series medium
  10238. \shape up
  10239. \size normal
  10240. \emph off
  10241. \bar no
  10242. \strikeout off
  10243. \xout off
  10244. \uuline off
  10245. \uwave off
  10246. \noun off
  10247. \color none
  10248. 44.6% ± 16.6
  10249. \end_layout
  10250. \end_inset
  10251. </cell>
  10252. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10253. \begin_inset Text
  10254. \begin_layout Plain Layout
  10255. \family roman
  10256. \series medium
  10257. \shape up
  10258. \size normal
  10259. \emph off
  10260. \bar no
  10261. \strikeout off
  10262. \xout off
  10263. \uuline off
  10264. \uwave off
  10265. \noun off
  10266. \color none
  10267. 70.1% ± 9.38
  10268. \end_layout
  10269. \end_inset
  10270. </cell>
  10271. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10272. \begin_inset Text
  10273. \begin_layout Plain Layout
  10274. \family roman
  10275. \series medium
  10276. \shape up
  10277. \size normal
  10278. \emph off
  10279. \bar no
  10280. \strikeout off
  10281. \xout off
  10282. \uuline off
  10283. \uwave off
  10284. \noun off
  10285. \color none
  10286. 90.7% ± 5.16
  10287. \end_layout
  10288. \end_inset
  10289. </cell>
  10290. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10291. \begin_inset Text
  10292. \begin_layout Plain Layout
  10293. \family roman
  10294. \series medium
  10295. \shape up
  10296. \size normal
  10297. \emph off
  10298. \bar no
  10299. \strikeout off
  10300. \xout off
  10301. \uuline off
  10302. \uwave off
  10303. \noun off
  10304. \color none
  10305. 38.8% ± 17.1
  10306. \end_layout
  10307. \end_inset
  10308. </cell>
  10309. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  10310. \begin_inset Text
  10311. \begin_layout Plain Layout
  10312. \family roman
  10313. \series medium
  10314. \shape up
  10315. \size normal
  10316. \emph off
  10317. \bar no
  10318. \strikeout off
  10319. \xout off
  10320. \uuline off
  10321. \uwave off
  10322. \noun off
  10323. \color none
  10324. 61.2% ± 17.1
  10325. \end_layout
  10326. \end_inset
  10327. </cell>
  10328. </row>
  10329. </lyxtabular>
  10330. \end_inset
  10331. \end_layout
  10332. \begin_layout Plain Layout
  10333. \begin_inset Caption Standard
  10334. \begin_layout Plain Layout
  10335. \series bold
  10336. \begin_inset Argument 1
  10337. status collapsed
  10338. \begin_layout Plain Layout
  10339. Fractions of reads mapping to genomic features in GB and non-GB samples.
  10340. \end_layout
  10341. \end_inset
  10342. \begin_inset CommandInset label
  10343. LatexCommand label
  10344. name "tab:Fractions-of-reads"
  10345. \end_inset
  10346. Fractions of reads mapping to genomic features in GB and non-GB samples.
  10347. \series default
  10348. All values are given as mean ± standard deviation.
  10349. \end_layout
  10350. \end_inset
  10351. \end_layout
  10352. \end_inset
  10353. \end_layout
  10354. \begin_layout Standard
  10355. \begin_inset ERT
  10356. status open
  10357. \begin_layout Plain Layout
  10358. \backslash
  10359. end{landscape}
  10360. \end_layout
  10361. \begin_layout Plain Layout
  10362. }
  10363. \end_layout
  10364. \end_inset
  10365. \end_layout
  10366. \begin_layout Standard
  10367. The objective of the present study was to validate a new protocol for deep
  10368. RNA-seq of whole blood drawn into PaxGene tubes from cynomolgus monkeys
  10369. undergoing islet transplantation, with particular focus on minimizing the
  10370. loss of useful sequencing space to uninformative globin reads.
  10371. The details of the analysis with respect to transplant outcomes and the
  10372. impact of mesenchymal stem cell treatment will be reported in a separate
  10373. manuscript (in preparation).
  10374. To focus on the efficacy of our globin blocking protocol, 37 blood samples,
  10375. 16 from pre-transplant and 21 from post-transplant time points, were each
  10376. prepped once with and once without globin blocking oligos, and were then
  10377. sequenced on an Illumina NextSeq500 instrument.
  10378. The number of reads aligning to each gene in the cynomolgus genome was
  10379. counted.
  10380. Table 1 summarizes the distribution of read fractions among the GB and
  10381. non-GB libraries.
  10382. In the libraries with no globin blocking, globin reads made up an average
  10383. of 44.6% of total input reads, while reads assigned to all other genes made
  10384. up an average of 26.3%.
  10385. The remaining reads either aligned to intergenic regions (that include
  10386. long non-coding RNAs) or did not align with any annotated transcripts in
  10387. the current build of the cynomolgus genome.
  10388. In the GB libraries, globin reads made up only 3.48% and reads assigned
  10389. to all other genes increased to 50.4%.
  10390. Thus, globin blocking resulted in a 92.2% reduction in globin reads and
  10391. a 91.6% increase in yield of useful non-globin reads.
  10392. \end_layout
  10393. \begin_layout Standard
  10394. This reduction is not quite as efficient as the previous analysis showed
  10395. for human samples by DeepSAGE (<0.4% globin reads after globin reduction)
  10396. \begin_inset CommandInset citation
  10397. LatexCommand cite
  10398. key "Mastrokolias2012"
  10399. literal "false"
  10400. \end_inset
  10401. .
  10402. Nonetheless, this degree of globin reduction is sufficient to nearly double
  10403. the yield of useful reads.
  10404. Thus, globin blocking cuts the required sequencing effort (and costs) to
  10405. achieve a target coverage depth by almost 50%.
  10406. Consistent with this near doubling of yield, the average difference in
  10407. un-normalized logCPM across all genes between the GB libraries and non-GB
  10408. libraries is approximately 1 (mean = 1.01, median = 1.08), an overall 2-fold
  10409. increase.
  10410. Un-normalized values are used here because the TMM normalization correctly
  10411. identifies this 2-fold difference as biologically irrelevant and removes
  10412. it.
  10413. \end_layout
  10414. \begin_layout Standard
  10415. \begin_inset Float figure
  10416. wide false
  10417. sideways false
  10418. status collapsed
  10419. \begin_layout Plain Layout
  10420. \align center
  10421. \begin_inset Graphics
  10422. filename graphics/Globin Paper/figure1 - globin-fractions.pdf
  10423. lyxscale 50
  10424. width 75col%
  10425. \end_inset
  10426. \end_layout
  10427. \begin_layout Plain Layout
  10428. \begin_inset Caption Standard
  10429. \begin_layout Plain Layout
  10430. \series bold
  10431. \begin_inset Argument 1
  10432. status collapsed
  10433. \begin_layout Plain Layout
  10434. Fraction of genic reads in each sample aligned to non-globin genes, with
  10435. and without globin blocking (GB).
  10436. \end_layout
  10437. \end_inset
  10438. \begin_inset CommandInset label
  10439. LatexCommand label
  10440. name "fig:Fraction-of-genic-reads"
  10441. \end_inset
  10442. Fraction of genic reads in each sample aligned to non-globin genes, with
  10443. and without globin blocking (GB).
  10444. \series default
  10445. All reads in each sequencing library were aligned to the cyno genome, and
  10446. the number of reads uniquely aligning to each gene was counted.
  10447. For each sample, counts were summed separately for all globin genes and
  10448. for the remainder of the genes (non-globin genes), and the fraction of
  10449. genic reads aligned to non-globin genes was computed.
  10450. Each point represents an individual sample.
  10451. Gray + signs indicate the means for globin-blocked libraries and unblocked
  10452. libraries.
  10453. The overall distribution for each group is represented as a notched box
  10454. plots.
  10455. Points are randomly spread vertically to avoid excessive overlapping.
  10456. \end_layout
  10457. \end_inset
  10458. \end_layout
  10459. \end_inset
  10460. \end_layout
  10461. \begin_layout Standard
  10462. Another important aspect is that the standard deviations in Table
  10463. \begin_inset CommandInset ref
  10464. LatexCommand ref
  10465. reference "tab:Fractions-of-reads"
  10466. plural "false"
  10467. caps "false"
  10468. noprefix "false"
  10469. \end_inset
  10470. are uniformly smaller in the GB samples than the non-GB ones, indicating
  10471. much greater consistency of yield.
  10472. This is best seen in the percentage of non-globin reads as a fraction of
  10473. total reads aligned to annotated genes (genic reads).
  10474. For the non-GB samples, this measure ranges from 10.9% to 80.9%, while for
  10475. the GB samples it ranges from 81.9% to 99.9% (Figure
  10476. \begin_inset CommandInset ref
  10477. LatexCommand ref
  10478. reference "fig:Fraction-of-genic-reads"
  10479. plural "false"
  10480. caps "false"
  10481. noprefix "false"
  10482. \end_inset
  10483. ).
  10484. This means that for applications where it is critical that each sample
  10485. achieve a specified minimum coverage in order to provide useful information,
  10486. it would be necessary to budget up to 10 times the sequencing depth per
  10487. sample without globin blocking, even though the average yield improvement
  10488. for globin blocking is only 2-fold, because every sample has a chance of
  10489. being 90% globin and 10% useful reads.
  10490. Hence, the more consistent behavior of GB samples makes planning an experiment
  10491. easier and more efficient because it eliminates the need to over-sequence
  10492. every sample in order to guard against the worst case of a high-globin
  10493. fraction.
  10494. \end_layout
  10495. \begin_layout Subsection
  10496. Globin blocking lowers the noise floor and allows detection of about 2000
  10497. more low-expression genes
  10498. \end_layout
  10499. \begin_layout Standard
  10500. \begin_inset Flex TODO Note (inline)
  10501. status open
  10502. \begin_layout Plain Layout
  10503. Remove redundant titles from figures
  10504. \end_layout
  10505. \end_inset
  10506. \end_layout
  10507. \begin_layout Standard
  10508. \begin_inset Float figure
  10509. wide false
  10510. sideways false
  10511. status collapsed
  10512. \begin_layout Plain Layout
  10513. \align center
  10514. \begin_inset Graphics
  10515. filename graphics/Globin Paper/figure2 - aveLogCPM-colored.pdf
  10516. lyxscale 50
  10517. height 60theight%
  10518. \end_inset
  10519. \end_layout
  10520. \begin_layout Plain Layout
  10521. \begin_inset Caption Standard
  10522. \begin_layout Plain Layout
  10523. \series bold
  10524. \begin_inset Argument 1
  10525. status collapsed
  10526. \begin_layout Plain Layout
  10527. Distributions of average group gene abundances when normalized separately
  10528. or together.
  10529. \end_layout
  10530. \end_inset
  10531. \begin_inset CommandInset label
  10532. LatexCommand label
  10533. name "fig:logcpm-dists"
  10534. \end_inset
  10535. Distributions of average group gene abundances when normalized separately
  10536. or together.
  10537. \series default
  10538. All reads in each sequencing library were aligned to the cyno genome, and
  10539. the number of reads uniquely aligning to each gene was counted.
  10540. Genes with zero counts in all libraries were discarded.
  10541. Libraries were normalized using the TMM method.
  10542. Libraries were split into globin-blocked (GB) and non-GB groups and the
  10543. average abundance for each gene in both groups, measured in log2 counts
  10544. per million reads counted, was computed using the aveLogCPM function.
  10545. The distribution of average gene logCPM values was plotted for both groups
  10546. using a kernel density plot to approximate a continuous distribution.
  10547. The logCPM GB distributions are marked in red, non-GB in blue.
  10548. The black vertical line denotes the chosen detection threshold of -1.
  10549. Top panel: Libraries were split into GB and non-GB groups first and normalized
  10550. separately.
  10551. Bottom panel: Libraries were all normalized together first and then split
  10552. into groups.
  10553. \end_layout
  10554. \end_inset
  10555. \end_layout
  10556. \begin_layout Plain Layout
  10557. \end_layout
  10558. \end_inset
  10559. \end_layout
  10560. \begin_layout Standard
  10561. Since globin blocking yields more usable sequencing depth, it should also
  10562. allow detection of more genes at any given threshold.
  10563. When we looked at the distribution of average normalized logCPM values
  10564. across all libraries for genes with at least one read assigned to them,
  10565. we observed the expected bimodal distribution, with a high-abundance "signal"
  10566. peak representing detected genes and a low-abundance "noise" peak representing
  10567. genes whose read count did not rise above the noise floor (Figure
  10568. \begin_inset CommandInset ref
  10569. LatexCommand ref
  10570. reference "fig:logcpm-dists"
  10571. plural "false"
  10572. caps "false"
  10573. noprefix "false"
  10574. \end_inset
  10575. ).
  10576. Consistent with the 2-fold increase in raw counts assigned to non-globin
  10577. genes, the signal peak for GB samples is shifted to the right relative
  10578. to the non-GB signal peak.
  10579. When all the samples are normalized together, this difference is normalized
  10580. out, lining up the signal peaks, and this reveals that, as expected, the
  10581. noise floor for the GB samples is about 2-fold lower.
  10582. This greater separation between signal and noise peaks in the GB samples
  10583. means that low-expression genes should be more easily detected and more
  10584. precisely quantified than in the non-GB samples.
  10585. \end_layout
  10586. \begin_layout Standard
  10587. \begin_inset Float figure
  10588. wide false
  10589. sideways false
  10590. status collapsed
  10591. \begin_layout Plain Layout
  10592. \align center
  10593. \begin_inset Graphics
  10594. filename graphics/Globin Paper/figure3 - detection.pdf
  10595. lyxscale 50
  10596. width 70col%
  10597. \end_inset
  10598. \end_layout
  10599. \begin_layout Plain Layout
  10600. \begin_inset Caption Standard
  10601. \begin_layout Plain Layout
  10602. \series bold
  10603. \begin_inset Argument 1
  10604. status collapsed
  10605. \begin_layout Plain Layout
  10606. Gene detections as a function of abundance thresholds in globin-blocked
  10607. (GB) and non-GB samples.
  10608. \end_layout
  10609. \end_inset
  10610. \begin_inset CommandInset label
  10611. LatexCommand label
  10612. name "fig:Gene-detections"
  10613. \end_inset
  10614. Gene detections as a function of abundance thresholds in globin-blocked
  10615. (GB) and non-GB samples.
  10616. \series default
  10617. Average abundance (logCPM,
  10618. \begin_inset Formula $\log_{2}$
  10619. \end_inset
  10620. counts per million reads counted) was computed by separate group normalization
  10621. as described in Figure
  10622. \begin_inset CommandInset ref
  10623. LatexCommand ref
  10624. reference "fig:logcpm-dists"
  10625. plural "false"
  10626. caps "false"
  10627. noprefix "false"
  10628. \end_inset
  10629. for both the GB and non-GB groups, as well as for all samples considered
  10630. as one large group.
  10631. For each every integer threshold from -2 to 3, the number of genes detected
  10632. at or above that logCPM threshold was plotted for each group.
  10633. \end_layout
  10634. \end_inset
  10635. \end_layout
  10636. \begin_layout Plain Layout
  10637. \end_layout
  10638. \end_inset
  10639. \end_layout
  10640. \begin_layout Standard
  10641. Based on these distributions, we selected a detection threshold of -1, which
  10642. is approximately the leftmost edge of the trough between the signal and
  10643. noise peaks.
  10644. This represents the most liberal possible detection threshold that doesn't
  10645. call substantial numbers of noise genes as detected.
  10646. Among the full dataset, 13429 genes were detected at this threshold, and
  10647. 22276 were not.
  10648. When considering the GB libraries and non-GB libraries separately and re-comput
  10649. ing normalization factors independently within each group, 14535 genes were
  10650. detected in the GB libraries while only 12460 were detected in the non-GB
  10651. libraries.
  10652. Thus, GB allowed the detection of 2000 extra genes that were buried under
  10653. the noise floor without GB.
  10654. This pattern of at least 2000 additional genes detected with GB was also
  10655. consistent across a wide range of possible detection thresholds, from -2
  10656. to 3 (see Figure
  10657. \begin_inset CommandInset ref
  10658. LatexCommand ref
  10659. reference "fig:Gene-detections"
  10660. plural "false"
  10661. caps "false"
  10662. noprefix "false"
  10663. \end_inset
  10664. ).
  10665. \end_layout
  10666. \begin_layout Subsection
  10667. Globin blocking does not add significant additional noise or decrease sample
  10668. quality
  10669. \end_layout
  10670. \begin_layout Standard
  10671. One potential worry is that the globin blocking protocol could perturb the
  10672. levels of non-globin genes.
  10673. There are two kinds of possible perturbations: systematic and random.
  10674. The former is not a major concern for detection of differential expression,
  10675. since a 2-fold change in every sample has no effect on the relative fold
  10676. change between samples.
  10677. In contrast, random perturbations would increase the noise and obscure
  10678. the signal in the dataset, reducing the capacity to detect differential
  10679. expression.
  10680. \end_layout
  10681. \begin_layout Standard
  10682. \begin_inset Float figure
  10683. wide false
  10684. sideways false
  10685. status collapsed
  10686. \begin_layout Plain Layout
  10687. \align center
  10688. \begin_inset Graphics
  10689. filename graphics/Globin Paper/figure4 - maplot-colored.pdf
  10690. lyxscale 50
  10691. width 60col%
  10692. groupId colwidth
  10693. \end_inset
  10694. \end_layout
  10695. \begin_layout Plain Layout
  10696. \begin_inset Caption Standard
  10697. \begin_layout Plain Layout
  10698. \begin_inset Argument 1
  10699. status collapsed
  10700. \begin_layout Plain Layout
  10701. MA plot showing effects of globin blocking on each gene's abundance.
  10702. \end_layout
  10703. \end_inset
  10704. \begin_inset CommandInset label
  10705. LatexCommand label
  10706. name "fig:MA-plot"
  10707. \end_inset
  10708. \series bold
  10709. MA plot showing effects of globin blocking on each gene's abundance.
  10710. \series default
  10711. All libraries were normalized together as described in Figure
  10712. \begin_inset CommandInset ref
  10713. LatexCommand ref
  10714. reference "fig:logcpm-dists"
  10715. plural "false"
  10716. caps "false"
  10717. noprefix "false"
  10718. \end_inset
  10719. , and genes with an average logCPM below -1 were filtered out.
  10720. Each remaining gene was tested for differential abundance with respect
  10721. to globin blocking (GB) using edgeR’s quasi-likelihood F-test, fitting
  10722. a negative binomial generalized linear model to table of read counts in
  10723. each library.
  10724. For each gene, edgeR reported average abundance (logCPM),
  10725. \begin_inset Formula $\log_{2}$
  10726. \end_inset
  10727. fold change (logFC), p-value, and Benjamini-Hochberg adjusted false discovery
  10728. rate (FDR).
  10729. Each gene's logFC was plotted against its logCPM, colored by FDR.
  10730. Red points are significant at ≤10% FDR, and blue are not significant at
  10731. that threshold.
  10732. The alpha and beta globin genes targeted for blocking are marked with large
  10733. triangles, while all other genes are represented as small points.
  10734. \end_layout
  10735. \end_inset
  10736. \end_layout
  10737. \begin_layout Plain Layout
  10738. \end_layout
  10739. \end_inset
  10740. \end_layout
  10741. \begin_layout Standard
  10742. \begin_inset Flex TODO Note (inline)
  10743. status open
  10744. \begin_layout Plain Layout
  10745. Standardize on
  10746. \begin_inset Quotes eld
  10747. \end_inset
  10748. log2
  10749. \begin_inset Quotes erd
  10750. \end_inset
  10751. notation
  10752. \end_layout
  10753. \end_inset
  10754. \end_layout
  10755. \begin_layout Standard
  10756. The data do indeed show small systematic perturbations in gene levels (Figure
  10757. \begin_inset CommandInset ref
  10758. LatexCommand ref
  10759. reference "fig:MA-plot"
  10760. plural "false"
  10761. caps "false"
  10762. noprefix "false"
  10763. \end_inset
  10764. ).
  10765. Other than the 3 designated alpha and beta globin genes, two other genes
  10766. stand out as having especially large negative log fold changes: HBD and
  10767. LOC1021365.
  10768. HBD, delta globin, is most likely targeted by the blocking oligos due to
  10769. high sequence homology with the other globin genes.
  10770. LOC1021365 is the aforementioned ncRNA that is reverse-complementary to
  10771. one of the alpha-like genes and that would be expected to be removed during
  10772. the globin blocking step.
  10773. All other genes appear in a cluster centered vertically at 0, and the vast
  10774. majority of genes in this cluster show an absolute log2(FC) of 0.5 or less.
  10775. Nevertheless, many of these small perturbations are still statistically
  10776. significant, indicating that the globin blocking oligos likely cause very
  10777. small but non-zero systematic perturbations in measured gene expression
  10778. levels.
  10779. \end_layout
  10780. \begin_layout Standard
  10781. \begin_inset Float figure
  10782. wide false
  10783. sideways false
  10784. status collapsed
  10785. \begin_layout Plain Layout
  10786. \align center
  10787. \begin_inset Graphics
  10788. filename graphics/Globin Paper/figure5 - corrplot.pdf
  10789. lyxscale 50
  10790. width 70col%
  10791. \end_inset
  10792. \end_layout
  10793. \begin_layout Plain Layout
  10794. \begin_inset Caption Standard
  10795. \begin_layout Plain Layout
  10796. \series bold
  10797. \begin_inset Argument 1
  10798. status collapsed
  10799. \begin_layout Plain Layout
  10800. Comparison of inter-sample gene abundance correlations with and without
  10801. globin blocking.
  10802. \end_layout
  10803. \end_inset
  10804. \begin_inset CommandInset label
  10805. LatexCommand label
  10806. name "fig:gene-abundance-correlations"
  10807. \end_inset
  10808. Comparison of inter-sample gene abundance correlations with and without
  10809. globin blocking (GB).
  10810. \series default
  10811. All libraries were normalized together as described in Figure 2, and genes
  10812. with an average abundance (logCPM, log2 counts per million reads counted)
  10813. less than -1 were filtered out.
  10814. Each gene’s logCPM was computed in each library using the edgeR cpm function.
  10815. For each pair of biological samples, the Pearson correlation between those
  10816. samples' GB libraries was plotted against the correlation between the same
  10817. samples’ non-GB libraries.
  10818. Each point represents an unique pair of samples.
  10819. The solid gray line shows a quantile-quantile plot of distribution of GB
  10820. correlations vs.
  10821. that of non-GB correlations.
  10822. The thin dashed line is the identity line, provided for reference.
  10823. \end_layout
  10824. \end_inset
  10825. \end_layout
  10826. \begin_layout Plain Layout
  10827. \end_layout
  10828. \end_inset
  10829. \end_layout
  10830. \begin_layout Standard
  10831. To evaluate the possibility of globin blocking causing random perturbations
  10832. and reducing sample quality, we computed the Pearson correlation between
  10833. logCPM values for every pair of samples with and without GB and plotted
  10834. them against each other (Figure
  10835. \begin_inset CommandInset ref
  10836. LatexCommand ref
  10837. reference "fig:gene-abundance-correlations"
  10838. plural "false"
  10839. caps "false"
  10840. noprefix "false"
  10841. \end_inset
  10842. ).
  10843. The plot indicated that the GB libraries have higher sample-to-sample correlati
  10844. ons than the non-GB libraries.
  10845. Parametric and nonparametric tests for differences between the correlations
  10846. with and without GB both confirmed that this difference was highly significant
  10847. (2-sided paired t-test: t = 37.2, df = 665, P ≪ 2.2e-16; 2-sided Wilcoxon
  10848. sign-rank test: V = 2195, P ≪ 2.2e-16).
  10849. Performing the same tests on the Spearman correlations gave the same conclusion
  10850. (t-test: t = 26.8, df = 665, P ≪ 2.2e-16; sign-rank test: V = 8781, P ≪ 2.2e-16).
  10851. The edgeR package was used to compute the overall biological coefficient
  10852. of variation (BCV) for GB and non-GB libraries, and found that globin blocking
  10853. resulted in a negligible increase in the BCV (0.417 with GB vs.
  10854. 0.400 without).
  10855. The near equality of the BCVs for both sets indicates that the higher correlati
  10856. ons in the GB libraries are most likely a result of the increased yield
  10857. of useful reads, which reduces the contribution of Poisson counting uncertainty
  10858. to the overall variance of the logCPM values
  10859. \begin_inset CommandInset citation
  10860. LatexCommand cite
  10861. key "McCarthy2012"
  10862. literal "false"
  10863. \end_inset
  10864. .
  10865. This improves the precision of expression measurements and more than offsets
  10866. the negligible increase in BCV.
  10867. \end_layout
  10868. \begin_layout Subsection
  10869. More differentially expressed genes are detected with globin blocking
  10870. \end_layout
  10871. \begin_layout Standard
  10872. \begin_inset Float table
  10873. wide false
  10874. sideways false
  10875. status collapsed
  10876. \begin_layout Plain Layout
  10877. \align center
  10878. \begin_inset Tabular
  10879. <lyxtabular version="3" rows="5" columns="5">
  10880. <features tabularvalignment="middle">
  10881. <column alignment="center" valignment="top">
  10882. <column alignment="center" valignment="top">
  10883. <column alignment="center" valignment="top">
  10884. <column alignment="center" valignment="top">
  10885. <column alignment="center" valignment="top">
  10886. <row>
  10887. <cell alignment="center" valignment="top" usebox="none">
  10888. \begin_inset Text
  10889. \begin_layout Plain Layout
  10890. \end_layout
  10891. \end_inset
  10892. </cell>
  10893. <cell alignment="center" valignment="top" usebox="none">
  10894. \begin_inset Text
  10895. \begin_layout Plain Layout
  10896. \end_layout
  10897. \end_inset
  10898. </cell>
  10899. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  10900. \begin_inset Text
  10901. \begin_layout Plain Layout
  10902. \series bold
  10903. No Globin Blocking
  10904. \end_layout
  10905. \end_inset
  10906. </cell>
  10907. <cell multicolumn="2" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10908. \begin_inset Text
  10909. \begin_layout Plain Layout
  10910. \end_layout
  10911. \end_inset
  10912. </cell>
  10913. <cell multicolumn="2" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  10914. \begin_inset Text
  10915. \begin_layout Plain Layout
  10916. \end_layout
  10917. \end_inset
  10918. </cell>
  10919. </row>
  10920. <row>
  10921. <cell alignment="center" valignment="top" usebox="none">
  10922. \begin_inset Text
  10923. \begin_layout Plain Layout
  10924. \end_layout
  10925. \end_inset
  10926. </cell>
  10927. <cell alignment="center" valignment="top" usebox="none">
  10928. \begin_inset Text
  10929. \begin_layout Plain Layout
  10930. \end_layout
  10931. \end_inset
  10932. </cell>
  10933. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10934. \begin_inset Text
  10935. \begin_layout Plain Layout
  10936. \series bold
  10937. Up
  10938. \end_layout
  10939. \end_inset
  10940. </cell>
  10941. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10942. \begin_inset Text
  10943. \begin_layout Plain Layout
  10944. \series bold
  10945. NS
  10946. \end_layout
  10947. \end_inset
  10948. </cell>
  10949. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  10950. \begin_inset Text
  10951. \begin_layout Plain Layout
  10952. \series bold
  10953. Down
  10954. \end_layout
  10955. \end_inset
  10956. </cell>
  10957. </row>
  10958. <row>
  10959. <cell multirow="3" alignment="center" valignment="middle" topline="true" bottomline="true" leftline="true" usebox="none">
  10960. \begin_inset Text
  10961. \begin_layout Plain Layout
  10962. \series bold
  10963. Globin-Blocking
  10964. \end_layout
  10965. \end_inset
  10966. </cell>
  10967. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10968. \begin_inset Text
  10969. \begin_layout Plain Layout
  10970. \series bold
  10971. Up
  10972. \end_layout
  10973. \end_inset
  10974. </cell>
  10975. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10976. \begin_inset Text
  10977. \begin_layout Plain Layout
  10978. \family roman
  10979. \series medium
  10980. \shape up
  10981. \size normal
  10982. \emph off
  10983. \bar no
  10984. \strikeout off
  10985. \xout off
  10986. \uuline off
  10987. \uwave off
  10988. \noun off
  10989. \color none
  10990. 231
  10991. \end_layout
  10992. \end_inset
  10993. </cell>
  10994. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10995. \begin_inset Text
  10996. \begin_layout Plain Layout
  10997. \family roman
  10998. \series medium
  10999. \shape up
  11000. \size normal
  11001. \emph off
  11002. \bar no
  11003. \strikeout off
  11004. \xout off
  11005. \uuline off
  11006. \uwave off
  11007. \noun off
  11008. \color none
  11009. 515
  11010. \end_layout
  11011. \end_inset
  11012. </cell>
  11013. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  11014. \begin_inset Text
  11015. \begin_layout Plain Layout
  11016. \family roman
  11017. \series medium
  11018. \shape up
  11019. \size normal
  11020. \emph off
  11021. \bar no
  11022. \strikeout off
  11023. \xout off
  11024. \uuline off
  11025. \uwave off
  11026. \noun off
  11027. \color none
  11028. 2
  11029. \end_layout
  11030. \end_inset
  11031. </cell>
  11032. </row>
  11033. <row>
  11034. <cell multirow="4" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  11035. \begin_inset Text
  11036. \begin_layout Plain Layout
  11037. \end_layout
  11038. \end_inset
  11039. </cell>
  11040. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  11041. \begin_inset Text
  11042. \begin_layout Plain Layout
  11043. \series bold
  11044. NS
  11045. \end_layout
  11046. \end_inset
  11047. </cell>
  11048. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  11049. \begin_inset Text
  11050. \begin_layout Plain Layout
  11051. \family roman
  11052. \series medium
  11053. \shape up
  11054. \size normal
  11055. \emph off
  11056. \bar no
  11057. \strikeout off
  11058. \xout off
  11059. \uuline off
  11060. \uwave off
  11061. \noun off
  11062. \color none
  11063. 160
  11064. \end_layout
  11065. \end_inset
  11066. </cell>
  11067. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  11068. \begin_inset Text
  11069. \begin_layout Plain Layout
  11070. \family roman
  11071. \series medium
  11072. \shape up
  11073. \size normal
  11074. \emph off
  11075. \bar no
  11076. \strikeout off
  11077. \xout off
  11078. \uuline off
  11079. \uwave off
  11080. \noun off
  11081. \color none
  11082. 11235
  11083. \end_layout
  11084. \end_inset
  11085. </cell>
  11086. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  11087. \begin_inset Text
  11088. \begin_layout Plain Layout
  11089. \family roman
  11090. \series medium
  11091. \shape up
  11092. \size normal
  11093. \emph off
  11094. \bar no
  11095. \strikeout off
  11096. \xout off
  11097. \uuline off
  11098. \uwave off
  11099. \noun off
  11100. \color none
  11101. 136
  11102. \end_layout
  11103. \end_inset
  11104. </cell>
  11105. </row>
  11106. <row>
  11107. <cell multirow="4" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  11108. \begin_inset Text
  11109. \begin_layout Plain Layout
  11110. \end_layout
  11111. \end_inset
  11112. </cell>
  11113. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  11114. \begin_inset Text
  11115. \begin_layout Plain Layout
  11116. \series bold
  11117. Down
  11118. \end_layout
  11119. \end_inset
  11120. </cell>
  11121. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  11122. \begin_inset Text
  11123. \begin_layout Plain Layout
  11124. \family roman
  11125. \series medium
  11126. \shape up
  11127. \size normal
  11128. \emph off
  11129. \bar no
  11130. \strikeout off
  11131. \xout off
  11132. \uuline off
  11133. \uwave off
  11134. \noun off
  11135. \color none
  11136. 0
  11137. \end_layout
  11138. \end_inset
  11139. </cell>
  11140. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  11141. \begin_inset Text
  11142. \begin_layout Plain Layout
  11143. \family roman
  11144. \series medium
  11145. \shape up
  11146. \size normal
  11147. \emph off
  11148. \bar no
  11149. \strikeout off
  11150. \xout off
  11151. \uuline off
  11152. \uwave off
  11153. \noun off
  11154. \color none
  11155. 548
  11156. \end_layout
  11157. \end_inset
  11158. </cell>
  11159. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  11160. \begin_inset Text
  11161. \begin_layout Plain Layout
  11162. \family roman
  11163. \series medium
  11164. \shape up
  11165. \size normal
  11166. \emph off
  11167. \bar no
  11168. \strikeout off
  11169. \xout off
  11170. \uuline off
  11171. \uwave off
  11172. \noun off
  11173. \color none
  11174. 127
  11175. \end_layout
  11176. \end_inset
  11177. </cell>
  11178. </row>
  11179. </lyxtabular>
  11180. \end_inset
  11181. \end_layout
  11182. \begin_layout Plain Layout
  11183. \begin_inset Caption Standard
  11184. \begin_layout Plain Layout
  11185. \series bold
  11186. \begin_inset Argument 1
  11187. status open
  11188. \begin_layout Plain Layout
  11189. Comparison of significantly differentially expressed genes with and without
  11190. globin blocking.
  11191. \end_layout
  11192. \end_inset
  11193. \begin_inset CommandInset label
  11194. LatexCommand label
  11195. name "tab:Comparison-of-significant"
  11196. \end_inset
  11197. Comparison of significantly differentially expressed genes with and without
  11198. globin blocking.
  11199. \series default
  11200. Up, Down: Genes significantly up/down-regulated in post-transplant samples
  11201. relative to pre-transplant samples, with a false discovery rate of 10%
  11202. or less.
  11203. NS: Non-significant genes (false discovery rate greater than 10%).
  11204. \end_layout
  11205. \end_inset
  11206. \end_layout
  11207. \begin_layout Plain Layout
  11208. \end_layout
  11209. \end_inset
  11210. \end_layout
  11211. \begin_layout Standard
  11212. To compare performance on differential gene expression tests, we took subsets
  11213. of both the GB and non-GB libraries with exactly one pre-transplant and
  11214. one post-transplant sample for each animal that had paired samples available
  11215. for analysis (N=7 animals, N=14 samples in each subset).
  11216. The same test for pre- vs.
  11217. post-transplant differential gene expression was performed on the same
  11218. 7 pairs of samples from GB libraries and non-GB libraries, in each case
  11219. using an FDR of 10% as the threshold of significance.
  11220. Out of 12954 genes that passed the detection threshold in both subsets,
  11221. 358 were called significantly differentially expressed in the same direction
  11222. in both sets; 1063 were differentially expressed in the GB set only; 296
  11223. were differentially expressed in the non-GB set only; 2 genes were called
  11224. significantly up in the GB set but significantly down in the non-GB set;
  11225. and the remaining 11235 were not called differentially expressed in either
  11226. set.
  11227. These data are summarized in Table
  11228. \begin_inset CommandInset ref
  11229. LatexCommand ref
  11230. reference "tab:Comparison-of-significant"
  11231. plural "false"
  11232. caps "false"
  11233. noprefix "false"
  11234. \end_inset
  11235. .
  11236. The differences in BCV calculated by EdgeR for these subsets of samples
  11237. were negligible (BCV = 0.302 for GB and 0.297 for non-GB).
  11238. \end_layout
  11239. \begin_layout Standard
  11240. The key point is that the GB data results in substantially more differentially
  11241. expressed calls than the non-GB data.
  11242. Since there is no gold standard for this dataset, it is impossible to be
  11243. certain whether this is due to under-calling of differential expression
  11244. in the non-GB samples or over-calling in the GB samples.
  11245. However, given that both datasets are derived from the same biological
  11246. samples and have nearly equal BCVs, it is more likely that the larger number
  11247. of DE calls in the GB samples are genuine detections that were enabled
  11248. by the higher sequencing depth and measurement precision of the GB samples.
  11249. Note that the same set of genes was considered in both subsets, so the
  11250. larger number of differentially expressed gene calls in the GB data set
  11251. reflects a greater sensitivity to detect significant differential gene
  11252. expression and not simply the larger total number of detected genes in
  11253. GB samples described earlier.
  11254. \end_layout
  11255. \begin_layout Section
  11256. Discussion
  11257. \end_layout
  11258. \begin_layout Standard
  11259. The original experience with whole blood gene expression profiling on DNA
  11260. microarrays demonstrated that the high concentration of globin transcripts
  11261. reduced the sensitivity to detect genes with relatively low expression
  11262. levels, in effect, significantly reducing the sensitivity.
  11263. To address this limitation, commercial protocols for globin reduction were
  11264. developed based on strategies to block globin transcript amplification
  11265. during labeling or physically removing globin transcripts by affinity bead
  11266. methods
  11267. \begin_inset CommandInset citation
  11268. LatexCommand cite
  11269. key "Winn2010"
  11270. literal "false"
  11271. \end_inset
  11272. .
  11273. More recently, using the latest generation of labeling protocols and arrays,
  11274. it was determined that globin reduction was no longer necessary to obtain
  11275. sufficient sensitivity to detect differential transcript expression
  11276. \begin_inset CommandInset citation
  11277. LatexCommand cite
  11278. key "NuGEN2010"
  11279. literal "false"
  11280. \end_inset
  11281. .
  11282. However, we are not aware of any publications using these currently available
  11283. protocols the with latest generation of microarrays that actually compare
  11284. the detection sensitivity with and without globin reduction.
  11285. However, in practice this has now been adopted generally primarily driven
  11286. by concerns for cost control.
  11287. The main objective of our work was to directly test the impact of globin
  11288. gene transcripts and a new globin blocking protocol for application to
  11289. the newest generation of differential gene expression profiling determined
  11290. using next generation sequencing.
  11291. \end_layout
  11292. \begin_layout Standard
  11293. The challenge of doing global gene expression profiling in cynomolgus monkeys
  11294. is that the current available arrays were never designed to comprehensively
  11295. cover this genome and have not been updated since the first assemblies
  11296. of the cynomolgus genome were published.
  11297. Therefore, we determined that the best strategy for peripheral blood profiling
  11298. was to do deep RNA-seq and inform the workflow using the latest available
  11299. genome assembly and annotation
  11300. \begin_inset CommandInset citation
  11301. LatexCommand cite
  11302. key "Wilson2013"
  11303. literal "false"
  11304. \end_inset
  11305. .
  11306. However, it was not immediately clear whether globin reduction was necessary
  11307. for RNA-seq or how much improvement in efficiency or sensitivity to detect
  11308. differential gene expression would be achieved for the added cost and work.
  11309. \end_layout
  11310. \begin_layout Standard
  11311. We only found one report that demonstrated that globin reduction significantly
  11312. improved the effective read yields for sequencing of human peripheral blood
  11313. cell RNA using a DeepSAGE protocol
  11314. \begin_inset CommandInset citation
  11315. LatexCommand cite
  11316. key "Mastrokolias2012"
  11317. literal "false"
  11318. \end_inset
  11319. .
  11320. The approach to DeepSAGE involves two different restriction enzymes that
  11321. purify and then tag small fragments of transcripts at specific locations
  11322. and thus, significantly reduces the complexity of the transcriptome.
  11323. Therefore, we could not determine how DeepSAGE results would translate
  11324. to the common strategy in the field for assaying the entire transcript
  11325. population by whole-transcriptome 3’-end RNA-seq.
  11326. Furthermore, if globin reduction is necessary, we also needed a globin
  11327. reduction method specific to cynomolgus globin sequences that would work
  11328. an organism for which no kit is available off the shelf.
  11329. \end_layout
  11330. \begin_layout Standard
  11331. As mentioned above, the addition of globin blocking oligos has a very small
  11332. impact on measured expression levels of gene expression.
  11333. However, this is a non-issue for the purposes of differential expression
  11334. testing, since a systematic change in a gene in all samples does not affect
  11335. relative expression levels between samples.
  11336. However, we must acknowledge that simple comparisons of gene expression
  11337. data obtained by GB and non-GB protocols are not possible without additional
  11338. normalization.
  11339. \end_layout
  11340. \begin_layout Standard
  11341. More importantly, globin blocking not only nearly doubles the yield of usable
  11342. reads, it also increases inter-sample correlation and sensitivity to detect
  11343. differential gene expression relative to the same set of samples profiled
  11344. without blocking.
  11345. In addition, globin blocking does not add a significant amount of random
  11346. noise to the data.
  11347. Globin blocking thus represents a cost-effective way to squeeze more data
  11348. and statistical power out of the same blood samples and the same amount
  11349. of sequencing.
  11350. In conclusion, globin reduction greatly increases the yield of useful RNA-seq
  11351. reads mapping to the rest of the genome, with minimal perturbations in
  11352. the relative levels of non-globin genes.
  11353. Based on these results, globin transcript reduction using sequence-specific,
  11354. complementary blocking oligonucleotides is recommended for all deep RNA-seq
  11355. of cynomolgus and other nonhuman primate blood samples.
  11356. \end_layout
  11357. \begin_layout Section
  11358. Future Directions
  11359. \end_layout
  11360. \begin_layout Standard
  11361. One drawback of the globin blocking method presented in this analysis is
  11362. a poor yield of genic reads, only around 50%.
  11363. In a separate experiment, the reagent mixture was modified so as to address
  11364. this drawback, resulting in a method that produces an even better reduction
  11365. in globin reads without reducing the overall fraction of genic reads.
  11366. However, the data showing this improvement consists of only a few test
  11367. samples, so the larger data set analyzed above was chosen in order to demonstra
  11368. te the effectiveness of the method in reducing globin reads while preserving
  11369. the biological signal.
  11370. \end_layout
  11371. \begin_layout Standard
  11372. The motivation for developing a fast practical way to enrich for non-globin
  11373. reads in cyno blood samples was to enable a large-scale RNA-seq experiment
  11374. investigating the effects of mesenchymal stem cell infusion on blood gene
  11375. expression in cynomologus transplant recipients in a time course after
  11376. transplantation.
  11377. With the globin blocking method in place, the way is now clear for this
  11378. experiment to proceed.
  11379. \end_layout
  11380. \begin_layout Chapter
  11381. Future Directions
  11382. \end_layout
  11383. \begin_layout Standard
  11384. \begin_inset Flex TODO Note (inline)
  11385. status open
  11386. \begin_layout Plain Layout
  11387. If there are any chapter-independent future directions, put them here.
  11388. Otherwise, delete this section.
  11389. Check in the directions if this is OK.
  11390. \end_layout
  11391. \end_inset
  11392. \end_layout
  11393. \begin_layout Chapter
  11394. Closing remarks
  11395. \end_layout
  11396. \begin_layout Standard
  11397. \begin_inset ERT
  11398. status collapsed
  11399. \begin_layout Plain Layout
  11400. % Use "References" as the title of the Bibliography
  11401. \end_layout
  11402. \begin_layout Plain Layout
  11403. \backslash
  11404. renewcommand{
  11405. \backslash
  11406. bibname}{References}
  11407. \end_layout
  11408. \end_inset
  11409. \end_layout
  11410. \begin_layout Standard
  11411. \begin_inset CommandInset bibtex
  11412. LatexCommand bibtex
  11413. btprint "btPrintCited"
  11414. bibfiles "code-refs,refs-PROCESSED"
  11415. options "bibtotoc,unsrt"
  11416. \end_inset
  11417. \end_layout
  11418. \begin_layout Standard
  11419. \begin_inset Flex TODO Note (inline)
  11420. status open
  11421. \begin_layout Plain Layout
  11422. Check bib entry formatting & sort order
  11423. \end_layout
  11424. \end_inset
  11425. \end_layout
  11426. \begin_layout Standard
  11427. \begin_inset Flex TODO Note (inline)
  11428. status open
  11429. \begin_layout Plain Layout
  11430. Check in-text citation format.
  11431. Probably don't just want [1], [2], etc.
  11432. \end_layout
  11433. \end_inset
  11434. \end_layout
  11435. \end_body
  11436. \end_document