thesis.lyx 97 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078
  1. #LyX 2.3 created this file. For more info see http://www.lyx.org/
  2. \lyxformat 544
  3. \begin_document
  4. \begin_header
  5. \save_transient_properties true
  6. \origin unavailable
  7. \textclass extbook
  8. \begin_preamble
  9. % List all used files in log output
  10. \listfiles
  11. % Add a DRAFT watermark
  12. \usepackage{draftwatermark}
  13. \SetWatermarkLightness{0.97}
  14. \SetWatermarkScale{1}
  15. % Set up required header format
  16. \usepackage{fancyhdr}
  17. \pagestyle{fancy}
  18. \renewcommand{\headrulewidth}{0pt}
  19. \rhead{}
  20. \lhead{}
  21. \rfoot{}
  22. \lfoot{}
  23. \cfoot{\thepage} % Page number bottom center
  24. % https://tex.stackexchange.com/questions/65680/automatically-bold-first-sentence-of-a-floats-caption
  25. \usepackage{xstring}
  26. \usepackage{etoolbox}
  27. \usepackage{caption}
  28. \captionsetup{labelfont=bf,tableposition=top}
  29. \makeatletter
  30. \newcommand\formatlabel[1]{%
  31. \noexpandarg
  32. \IfSubStr{#1}{.}{%
  33. \StrBefore{#1}{.}[\firstcaption]%
  34. \StrBehind{#1}{.}[\secondcaption]%
  35. \textbf{\firstcaption.} \secondcaption}{%
  36. #1}%
  37. }
  38. \patchcmd{\@caption}{#3}{\formatlabel{#3}}
  39. \makeatother
  40. \end_preamble
  41. \use_default_options true
  42. \begin_modules
  43. todonotes
  44. \end_modules
  45. \maintain_unincluded_children false
  46. \language english
  47. \language_package default
  48. \inputencoding utf8
  49. \fontencoding default
  50. \font_roman "default" "default"
  51. \font_sans "default" "default"
  52. \font_typewriter "default" "default"
  53. \font_math "auto" "auto"
  54. \font_default_family default
  55. \use_non_tex_fonts false
  56. \font_sc false
  57. \font_osf false
  58. \font_sf_scale 100 100
  59. \font_tt_scale 100 100
  60. \use_microtype false
  61. \use_dash_ligatures true
  62. \graphics default
  63. \default_output_format pdf4
  64. \output_sync 0
  65. \bibtex_command default
  66. \index_command default
  67. \paperfontsize 12
  68. \spacing double
  69. \use_hyperref true
  70. \pdf_bookmarks true
  71. \pdf_bookmarksnumbered false
  72. \pdf_bookmarksopen false
  73. \pdf_bookmarksopenlevel 1
  74. \pdf_breaklinks false
  75. \pdf_pdfborder false
  76. \pdf_colorlinks false
  77. \pdf_backref false
  78. \pdf_pdfusetitle true
  79. \papersize letterpaper
  80. \use_geometry true
  81. \use_package amsmath 1
  82. \use_package amssymb 1
  83. \use_package cancel 1
  84. \use_package esint 1
  85. \use_package mathdots 1
  86. \use_package mathtools 1
  87. \use_package mhchem 1
  88. \use_package stackrel 1
  89. \use_package stmaryrd 1
  90. \use_package undertilde 1
  91. \cite_engine basic
  92. \cite_engine_type default
  93. \biblio_style plain
  94. \use_bibtopic false
  95. \use_indices false
  96. \paperorientation portrait
  97. \suppress_date false
  98. \justification true
  99. \use_refstyle 1
  100. \use_minted 0
  101. \index Index
  102. \shortcut idx
  103. \color #008000
  104. \end_index
  105. \leftmargin 1.5in
  106. \topmargin 1in
  107. \rightmargin 1in
  108. \bottommargin 1in
  109. \secnumdepth 3
  110. \tocdepth 3
  111. \paragraph_separation indent
  112. \paragraph_indentation default
  113. \is_math_indent 0
  114. \math_numbering_side default
  115. \quotes_style english
  116. \dynamic_quotes 0
  117. \papercolumns 1
  118. \papersides 2
  119. \paperpagestyle default
  120. \tracking_changes false
  121. \output_changes false
  122. \html_math_output 0
  123. \html_css_as_file 0
  124. \html_be_strict false
  125. \end_header
  126. \begin_body
  127. \begin_layout Title
  128. Bioinformatic analysis of complex, high-throughput genomic and epigenomic
  129. data in the context of immunology and transplant rejection
  130. \end_layout
  131. \begin_layout Author
  132. A thesis presented
  133. \begin_inset Newline newline
  134. \end_inset
  135. by
  136. \begin_inset Newline newline
  137. \end_inset
  138. Ryan C.
  139. Thompson
  140. \begin_inset Newline newline
  141. \end_inset
  142. to
  143. \begin_inset Newline newline
  144. \end_inset
  145. The Scripps Research Institute Graduate Program
  146. \begin_inset Newline newline
  147. \end_inset
  148. in partial fulfillment of the requirements for the degree of
  149. \begin_inset Newline newline
  150. \end_inset
  151. Doctor of Philosophy in the subject of Biology
  152. \begin_inset Newline newline
  153. \end_inset
  154. for
  155. \begin_inset Newline newline
  156. \end_inset
  157. The Scripps Research Institute
  158. \begin_inset Newline newline
  159. \end_inset
  160. La Jolla, California
  161. \end_layout
  162. \begin_layout Date
  163. May 2019
  164. \end_layout
  165. \begin_layout Standard
  166. [Copyright notice]
  167. \end_layout
  168. \begin_layout Standard
  169. [Thesis acceptance form]
  170. \end_layout
  171. \begin_layout Standard
  172. [Dedication]
  173. \end_layout
  174. \begin_layout Standard
  175. [Acknowledgements]
  176. \end_layout
  177. \begin_layout Standard
  178. \begin_inset CommandInset toc
  179. LatexCommand tableofcontents
  180. \end_inset
  181. \end_layout
  182. \begin_layout Standard
  183. \begin_inset FloatList table
  184. \end_inset
  185. \end_layout
  186. \begin_layout Standard
  187. \begin_inset FloatList figure
  188. \end_inset
  189. \end_layout
  190. \begin_layout Standard
  191. [List of Abbreviations]
  192. \end_layout
  193. \begin_layout Standard
  194. \begin_inset Flex TODO Note (inline)
  195. status open
  196. \begin_layout Plain Layout
  197. Look into auto-generated nomenclature list: https://wiki.lyx.org/Tips/Nomenclature
  198. \end_layout
  199. \end_inset
  200. \end_layout
  201. \begin_layout List of TODOs
  202. \end_layout
  203. \begin_layout Standard
  204. [Abstract]
  205. \end_layout
  206. \begin_layout Chapter*
  207. Abstract
  208. \end_layout
  209. \begin_layout Chapter
  210. Introduction
  211. \end_layout
  212. \begin_layout Section
  213. Background & Significance
  214. \end_layout
  215. \begin_layout Subsection
  216. Biological motivation
  217. \end_layout
  218. \begin_layout Itemize
  219. Rejection is the major long-term threat to organ and tissue grafts
  220. \end_layout
  221. \begin_deeper
  222. \begin_layout Itemize
  223. Common mechanisms of rejection
  224. \end_layout
  225. \begin_layout Itemize
  226. Effective immune suppression requires monitoring for rejection and tuning
  227. \end_layout
  228. \begin_layout Itemize
  229. Current tests for rejection (tissue biopsy) are invasive and biased
  230. \end_layout
  231. \begin_layout Itemize
  232. A blood test based on microarrays would be less biased and invasive
  233. \end_layout
  234. \end_deeper
  235. \begin_layout Itemize
  236. Memory cells are resistant to immune suppression
  237. \end_layout
  238. \begin_deeper
  239. \begin_layout Itemize
  240. Mechanisms of resistance in memory cells are poorly understood
  241. \end_layout
  242. \begin_layout Itemize
  243. A better understanding of immune memory formation is needed
  244. \end_layout
  245. \end_deeper
  246. \begin_layout Itemize
  247. Mesenchymal stem cell infusion is a promising new treatment to prevent/delay
  248. rejection
  249. \end_layout
  250. \begin_deeper
  251. \begin_layout Itemize
  252. Demonstrated in mice, but not yet in primates
  253. \end_layout
  254. \begin_layout Itemize
  255. Mechanism currently unknown, but MSC are known to be immune modulatory
  256. \end_layout
  257. \end_deeper
  258. \begin_layout Subsection
  259. Overview of bioinformatic analysis methods
  260. \end_layout
  261. \begin_layout Standard
  262. An overview of all the methods used, including what problem they solve,
  263. what assumptions they make, and a basic description of how they work.
  264. \end_layout
  265. \begin_layout Itemize
  266. ChIP-seq Peak calling
  267. \end_layout
  268. \begin_deeper
  269. \begin_layout Itemize
  270. Cross-correlation analysis to determine fragment size
  271. \end_layout
  272. \begin_layout Itemize
  273. Broad vs narrow peaks
  274. \end_layout
  275. \begin_layout Itemize
  276. SICER for broad peaks
  277. \end_layout
  278. \begin_layout Itemize
  279. IDR for biologically reproducible peaks
  280. \end_layout
  281. \begin_layout Itemize
  282. csaw peak filtering guidelines for unbiased downstream analysis
  283. \end_layout
  284. \end_deeper
  285. \begin_layout Itemize
  286. Normalization is non-trivial and application-dependant
  287. \end_layout
  288. \begin_deeper
  289. \begin_layout Itemize
  290. Expression arrays: RMA & fRMA; why fRMA is needed
  291. \end_layout
  292. \begin_layout Itemize
  293. Methylation arrays: M-value transformation approximates normal data but
  294. induces heteroskedasticity
  295. \end_layout
  296. \begin_layout Itemize
  297. RNA-seq: normalize based on assumption that the average gene is not changing
  298. \end_layout
  299. \begin_layout Itemize
  300. ChIP-seq: complex with many considerations, dependent on experimental methods,
  301. biological system, and analysis goals
  302. \end_layout
  303. \end_deeper
  304. \begin_layout Itemize
  305. Limma: The standard linear modeling framework for genomics
  306. \end_layout
  307. \begin_deeper
  308. \begin_layout Itemize
  309. empirical Bayes variance modeling: limma's core feature
  310. \end_layout
  311. \begin_layout Itemize
  312. edgeR & DESeq2: Extend with negative bonomial GLM for RNA-seq and other
  313. count data
  314. \end_layout
  315. \begin_layout Itemize
  316. voom: Extend with precision weights to model mean-variance trend
  317. \end_layout
  318. \begin_layout Itemize
  319. arrayWeights and duplicateCorrelation to handle complex variance structures
  320. \end_layout
  321. \end_deeper
  322. \begin_layout Itemize
  323. sva and ComBat for batch correction
  324. \end_layout
  325. \begin_layout Itemize
  326. Factor analysis: PCA, MDS, MOFA
  327. \end_layout
  328. \begin_deeper
  329. \begin_layout Itemize
  330. Batch-corrected PCA is informative, but careful application is required
  331. to avoid bias
  332. \end_layout
  333. \end_deeper
  334. \begin_layout Itemize
  335. Gene set analysis: camera and SPIA
  336. \end_layout
  337. \begin_layout Section
  338. Innovation
  339. \end_layout
  340. \begin_layout Itemize
  341. MSC infusion to improve transplant outcomes (prevent/delay rejection)
  342. \end_layout
  343. \begin_deeper
  344. \begin_layout Itemize
  345. Characterize MSC response to interferon gamma
  346. \end_layout
  347. \begin_layout Itemize
  348. IFN-g is thought to stimulate their function
  349. \end_layout
  350. \begin_layout Itemize
  351. Test IFN-g treated MSC infusion as a therapy to delay graft rejection in
  352. cynomolgus monkeys
  353. \end_layout
  354. \begin_layout Itemize
  355. Monitor animals post-transplant using blood RNA-seq at serial time points
  356. \end_layout
  357. \end_deeper
  358. \begin_layout Itemize
  359. Investigate dynamics of histone marks in CD4 T-cell activation and memory
  360. \end_layout
  361. \begin_deeper
  362. \begin_layout Itemize
  363. Previous studies have looked at single snapshots of histone marks
  364. \end_layout
  365. \begin_layout Itemize
  366. Instead, look at changes in histone marks across activation and memory
  367. \end_layout
  368. \end_deeper
  369. \begin_layout Itemize
  370. High-throughput sequencing and microarray technologies
  371. \end_layout
  372. \begin_deeper
  373. \begin_layout Itemize
  374. Powerful methods for assaying gene expression and epigenetics across entire
  375. genomes
  376. \end_layout
  377. \begin_layout Itemize
  378. Proper analysis requires finding and exploiting systematic genome-wide trends
  379. \end_layout
  380. \end_deeper
  381. \begin_layout Chapter
  382. Reproducible genome-wide epigenetic analysis of H3K4 and H3K27 methylation
  383. in naive and memory CD4 T-cell activation
  384. \end_layout
  385. \begin_layout Standard
  386. \begin_inset Flex TODO Note (inline)
  387. status open
  388. \begin_layout Plain Layout
  389. Author list: Me, Sarah, Dan
  390. \end_layout
  391. \end_inset
  392. \end_layout
  393. \begin_layout Section
  394. Approach
  395. \end_layout
  396. \begin_layout Itemize
  397. CD4 T-cells are central to all adaptive immune responses and memory
  398. \end_layout
  399. \begin_layout Itemize
  400. H3K4 and H3K27 methylation are major epigenetic regulators of gene expression
  401. \end_layout
  402. \begin_layout Itemize
  403. Canonically, H3K4 is activating and H3K27 is inhibitory, but the reality
  404. is complex
  405. \end_layout
  406. \begin_layout Itemize
  407. Looking at these marks during CD4 activation and memory should reveal new
  408. mechanistic details
  409. \end_layout
  410. \begin_layout Itemize
  411. Test
  412. \begin_inset Quotes eld
  413. \end_inset
  414. poised promoter
  415. \begin_inset Quotes erd
  416. \end_inset
  417. hypothesis in which H3K4 and H3K27 are both methylated
  418. \end_layout
  419. \begin_layout Itemize
  420. Expand scope of analysis beyond simple promoter counts
  421. \end_layout
  422. \begin_deeper
  423. \begin_layout Itemize
  424. Analyze peaks genome-wide, including in intergenic regions
  425. \end_layout
  426. \begin_layout Itemize
  427. Analysis of coverage distribution shape within promoters, e.g.
  428. upstream vs downstream coverage
  429. \end_layout
  430. \end_deeper
  431. \begin_layout Section
  432. Methods
  433. \end_layout
  434. \begin_layout Itemize
  435. Re-analyze previously published CD4 ChIP-seq & RNA-seq data
  436. \begin_inset CommandInset citation
  437. LatexCommand cite
  438. key "LaMere2016,Lamere2017"
  439. literal "true"
  440. \end_inset
  441. \end_layout
  442. \begin_deeper
  443. \begin_layout Itemize
  444. Completely reimplement analysis from scratch as a reproducible workflow
  445. \end_layout
  446. \begin_layout Itemize
  447. Use newly published methods & algorithms not available during the original
  448. analysis: SICER, csaw, MOFA, ComBat, sva, GREAT, and more
  449. \end_layout
  450. \end_deeper
  451. \begin_layout Itemize
  452. SICER, IDR, csaw, & GREAT to call ChIP-seq peaks genome-wide, perform differenti
  453. al abundance analysis, and relate those peaks to gene expression
  454. \end_layout
  455. \begin_layout Itemize
  456. Promoter counts in sliding windows around each gene's highest-expressed
  457. TSS to investigate coverage distribution within promoters
  458. \end_layout
  459. \begin_layout Section
  460. Results
  461. \end_layout
  462. \begin_layout Standard
  463. \begin_inset Note Note
  464. status open
  465. \begin_layout Plain Layout
  466. Focus on what hypotheses were tested, then select figures that show how
  467. those hypotheses were tested, even if the result is a negative.
  468. \end_layout
  469. \end_inset
  470. \end_layout
  471. \begin_layout Subsection
  472. H3K4 and H3K27 methylation occur in broad regions and are enriched near
  473. promoters
  474. \end_layout
  475. \begin_layout Itemize
  476. Figures comparing MACS (non-broad peak caller) to SICER/epic (broad peak
  477. caller)
  478. \end_layout
  479. \begin_deeper
  480. \begin_layout Itemize
  481. Compare peak sizes and number of called peaks
  482. \end_layout
  483. \begin_layout Itemize
  484. Show representative IDR consistency plots for both
  485. \end_layout
  486. \end_deeper
  487. \begin_layout Itemize
  488. IDR analysis shows that SICER-called peaks are much more reproducible between
  489. biological replicates
  490. \end_layout
  491. \begin_layout Itemize
  492. Each histone mark is enriched within a certain radius of gene TSS positions,
  493. but that radius is different for each mark (figure)
  494. \end_layout
  495. \begin_layout Subsection
  496. RNA-seq has a large confounding batch effect
  497. \end_layout
  498. \begin_layout Itemize
  499. RNA-seq batch effect can be partially corrected, but still induces uncorrectable
  500. biases in downstream analysis
  501. \end_layout
  502. \begin_deeper
  503. \begin_layout Itemize
  504. Figure showing MDS plot before & after ComBat
  505. \end_layout
  506. \begin_layout Itemize
  507. Figure relating sample weights to batches, cell types, time points, etc.,
  508. showing that one batch is significantly worse quality
  509. \end_layout
  510. \begin_layout Itemize
  511. Figures showing p-value histograms for within-batch and cross-batch contrasts,
  512. showing that cross-batch contrasts have attenuated signal, as do comparisons
  513. within the bad batch
  514. \end_layout
  515. \end_deeper
  516. \begin_layout Subsection
  517. ChIP-seq must be corrected for hidden confounding factors
  518. \end_layout
  519. \begin_layout Itemize
  520. Figures showing pre- and post-SVA MDS plots for each histone mark
  521. \end_layout
  522. \begin_layout Itemize
  523. Figures showing BCV plots with and without SVA for each histone mark
  524. \end_layout
  525. \begin_layout Subsection
  526. H3K4 and H3K27 promoter methylation has broadly the expected correlation
  527. with gene expression
  528. \end_layout
  529. \begin_layout Itemize
  530. H3K4 is correlated with higher expression, and H3K27 is correlated with
  531. lower expression genome-wide
  532. \end_layout
  533. \begin_layout Itemize
  534. Figures showing these correlations: box/violin plots of expression distributions
  535. with every combination of peak presence/absence in promoter
  536. \end_layout
  537. \begin_layout Itemize
  538. Appropriate statistical tests showing significant differences in expected
  539. directions
  540. \end_layout
  541. \begin_layout Subsection
  542. MOFA recovers biologically relevant variation from blind analysis by correlating
  543. across datasets
  544. \end_layout
  545. \begin_layout Itemize
  546. MOFA
  547. \begin_inset CommandInset citation
  548. LatexCommand cite
  549. key "Argelaguet2018"
  550. literal "false"
  551. \end_inset
  552. successfully separates biologically relevant patterns of variation from
  553. technical confounding factors without knowing the sample labels, by finding
  554. latent factors that explain variation across multiple data sets.
  555. \end_layout
  556. \begin_deeper
  557. \begin_layout Itemize
  558. Figure: show percent-variance-explained plot from MOFA and PCA-like plots
  559. for the relevant latent factors
  560. \end_layout
  561. \begin_layout Itemize
  562. MOFA analysis also shows that batch effect correction can't get much better
  563. than it already is (Figure comparing blind MOFA batch correction to ComBat
  564. correction)
  565. \end_layout
  566. \end_deeper
  567. \begin_layout Subsection
  568. Naive-to-memory convergence observed in H3K4 and RNA-seq data, not in H3K27me3
  569. \end_layout
  570. \begin_layout Itemize
  571. H3K4 and RNA-seq data show clear evidence of naive convergence with memory
  572. between days 1 and 5 (MDS plot figure, also compare with last figure from
  573. \begin_inset CommandInset citation
  574. LatexCommand cite
  575. key "LaMere2016"
  576. literal "false"
  577. \end_inset
  578. )
  579. \end_layout
  580. \begin_layout Standard
  581. \begin_inset Flex TODO Note (inline)
  582. status open
  583. \begin_layout Plain Layout
  584. Get explicit permission from Sarah to include the figure
  585. \end_layout
  586. \end_inset
  587. \end_layout
  588. \begin_layout Itemize
  589. Table of numbers of genes different between N & M at each time point, showing
  590. dwindling differences at later time points, consistent with convergence
  591. \end_layout
  592. \begin_layout Itemize
  593. Similar figure for H3K27me3 showing lack of convergence
  594. \end_layout
  595. \begin_layout Subsection
  596. Effect of promoter coverage upstream vs downstream of TSS
  597. \end_layout
  598. \begin_layout Itemize
  599. H3K4me peaks seem to correlate with increased expression as long as they
  600. are anywhere near the TSS
  601. \end_layout
  602. \begin_layout Itemize
  603. H3K27me3 peaks can have different correlations to gene expression depending
  604. on their position relative to TSS (e.g.
  605. upstream vs downstream) Results consistent with
  606. \begin_inset CommandInset citation
  607. LatexCommand cite
  608. key "Young2011"
  609. literal "false"
  610. \end_inset
  611. \end_layout
  612. \begin_layout Section
  613. Discussion
  614. \end_layout
  615. \begin_layout Itemize
  616. "Promoter radius" is not constant and must be defined empirically for a
  617. given data set
  618. \end_layout
  619. \begin_layout Itemize
  620. MOFA shows great promise for accelerating discovery of major biological
  621. effects in multi-omics datasets
  622. \end_layout
  623. \begin_deeper
  624. \begin_layout Itemize
  625. MOFA was added to this analysis late and played primarily a confirmatory
  626. role, but it was able to confirm earlier conclusions with much less prior
  627. information (no sample labels) and much less analyst effort
  628. \end_layout
  629. \begin_layout Itemize
  630. MOFA confirmed that the already-implemented batch correction in the RNA-seq
  631. data was already performing as well as possible given the limitations of
  632. the data
  633. \end_layout
  634. \end_deeper
  635. \begin_layout Itemize
  636. Naive-to-memory convergence implies that naive cells are differentiating
  637. into memory cells, and that gene expression and H3K4 methylation are involved
  638. in this differentiation while H3K27me3 is less involved
  639. \end_layout
  640. \begin_layout Itemize
  641. H3K27me3, canonically regarded as a deactivating mark, seems to have a more
  642. complex
  643. \end_layout
  644. \begin_layout Itemize
  645. Discuss advantages of developing using a reproducible workflow
  646. \end_layout
  647. \begin_layout Chapter
  648. Improving array-based analyses of transplant rejection by optimizing data
  649. preprocessing
  650. \end_layout
  651. \begin_layout Standard
  652. \begin_inset Note Note
  653. status open
  654. \begin_layout Plain Layout
  655. Author list: Me, Sunil, Tom, Padma, Dan
  656. \end_layout
  657. \end_inset
  658. \end_layout
  659. \begin_layout Section
  660. Approach
  661. \end_layout
  662. \begin_layout Subsection
  663. Proper pre-processing is essential for array data
  664. \end_layout
  665. \begin_layout Standard
  666. \begin_inset Flex TODO Note (inline)
  667. status open
  668. \begin_layout Plain Layout
  669. This section could probably use some citations
  670. \end_layout
  671. \end_inset
  672. \end_layout
  673. \begin_layout Standard
  674. Microarrays, bead ararys, and similar assays produce raw data in the form
  675. of fluorescence intensity measurements, with the each intensity measurement
  676. proportional to the abundance of some fluorescently-labelled target DNA
  677. or RNA sequence that base pairs to a specific probe sequence.
  678. However, these measurements for each probe are also affected my many technical
  679. confounding factors, such as the concentration of target material, strength
  680. of off-target binding, and the sensitivity of the imaging sensor.
  681. Some array designs also use multiple probe sequences for each target.
  682. Hence, extensive pre-processing of array data is necessary to normalize
  683. out the effects of these technical factors and summarize the information
  684. from multiple probes to arrive at a single usable estimate of abundance
  685. or other relevant quantity, such as a ratio of two abundances, for each
  686. target.
  687. \end_layout
  688. \begin_layout Standard
  689. The choice of pre-processing algorithms used in the analysis of an array
  690. data set can have a large effect on the results of that analysis.
  691. However, despite their importance, these steps are often neglected or rushed
  692. in order to get to the more scientifically interesting analysis steps involving
  693. the actual biology of the system under study.
  694. Hence, it is often possible to achieve substantial gains in statistical
  695. power, model goodness-of-fit, or other relevant performance measures, by
  696. checking the assumptions made by each preprocessing step and choosing specific
  697. normalization methods tailored to the specific goals of the current analysis.
  698. \end_layout
  699. \begin_layout Subsection
  700. Frozen RMA for clinical microarray classifiers
  701. \end_layout
  702. \begin_layout Subsubsection
  703. Standard normalization methods are unsuitable for clinical application
  704. \end_layout
  705. \begin_layout Standard
  706. As the cost of performing microarray assays falls, there is increasing interest
  707. in using genomic assays for diagnostic purposes, such as distinguishing
  708. healthy transplants (TX) from transplants undergoing acute rejection (AR)
  709. or acute dysfunction with no rejection (ADNR).
  710. However, the the standard normalization algorithm used for microarray data,
  711. Robust Multi-chip Average (RMA)
  712. \begin_inset CommandInset citation
  713. LatexCommand cite
  714. key "Irizarry2003a"
  715. literal "false"
  716. \end_inset
  717. , is not applicable in a clinical setting.
  718. Two of the steps in RMA, quantile normalization and probe summarization
  719. by median polish, depend on every array in the data set being normalized.
  720. This means that adding or removing any arrays from a data set changes the
  721. normalized values for all arrays, and data sets that have been normalized
  722. separately cannot be compared to each other.
  723. Hence, when using RMA, any arrays to be analyzed together must also be
  724. normalized together, and the set of arrays included in the data set must
  725. be held constant throughout an analysis.
  726. \end_layout
  727. \begin_layout Standard
  728. These limitations present serious impediments to the use of arrays as a
  729. diagnostic tool.
  730. When training a classifier, the samples to be classified must not be involved
  731. in any step of the training process, lest their inclusion bias the training
  732. process.
  733. Once a classifier is deployed in a clinical setting, the samples to be
  734. classified will not even
  735. \emph on
  736. exist
  737. \emph default
  738. at the time of training, so including them would be impossible even if
  739. it were statistically justifiable.
  740. Therefore, any machine learning application for microarrays demands that
  741. the normalized expression values computed for an array must depend only
  742. on information contained within that array.
  743. This would ensure that each array's normalization is independent of every
  744. other array, and that arrays normalized separately can still be compared
  745. to each other without bias.
  746. \end_layout
  747. \begin_layout Subsubsection
  748. Frozen RMA satisfies clinical normalization requirements
  749. \end_layout
  750. \begin_layout Standard
  751. Frozen RMA (fRMA) addresses these concerns by replacing the quantile normalizati
  752. on and median polish with alternatives that do not introduce inter-array
  753. dependence, allowing each array to be normalized independently of all others
  754. \begin_inset CommandInset citation
  755. LatexCommand cite
  756. key "McCall2010"
  757. literal "false"
  758. \end_inset
  759. .
  760. Quantile normalization is performed against a pre-generated set of quantiles
  761. learned from a collection of 850 publically available arrays sampled from
  762. a wide variety of tissues in the Gene Expression Omnibus (GEO).
  763. Each array's probe intensity distribution is normalized against these pre-gener
  764. ated quantiles.
  765. The median polish step is replaced with a robust weighted average of probe
  766. intensities, using inverse variance weights learned from the same public
  767. GEO data.
  768. The result is a normalization that satisfies the requirements mentioned
  769. above: each array is normalized independently of all others, and any two
  770. normalized arrays can be compared directly to each other.
  771. \end_layout
  772. \begin_layout Standard
  773. One important limitation of fRMA is that it requires a separate reference
  774. data set from which to learn the parameters (reference quantiles and probe
  775. weights) that will be used to normalize each array.
  776. These parameters are specific to a given array platform, and pre-generated
  777. parameters are only provided for the most common platforms, such as Affymetrix
  778. hgu133plus2.
  779. For a less common platform, such as hthgu133pluspm, is is necessary to
  780. learn custom parameters from in-house data before fRMA can be used to normalize
  781. samples on that platform
  782. \begin_inset CommandInset citation
  783. LatexCommand cite
  784. key "HudsonK.&RemediosC.2010"
  785. literal "false"
  786. \end_inset
  787. .
  788. \end_layout
  789. \begin_layout Subsection
  790. Adapting voom to model heteroskedasticity in methylation array data
  791. \end_layout
  792. \begin_layout Subsubsection
  793. Methylation array preprocessing induces heteroskedasticity
  794. \end_layout
  795. \begin_layout Standard
  796. DNA methylation arrays are a relatively new kind of assay that uses microarrays
  797. to measure the degree of methylation on cytosines in specific regions arrayed
  798. across the genome.
  799. First, bisulfite treatment converts all unmethylated cytosines to uracil
  800. (which then become thymine after amplication) while leaving methylated
  801. cytosines unaffected.
  802. Then, each target region is interrogated with two probes: one binds to
  803. the original genomic sequence and interrogates the level of methylated
  804. DNA, and the other binds to the sequence with all Cs replaced by Ts and
  805. interrogates the level of unmethylated DNA.
  806. \end_layout
  807. \begin_layout Standard
  808. \begin_inset Float figure
  809. wide false
  810. sideways false
  811. status collapsed
  812. \begin_layout Plain Layout
  813. \begin_inset Graphics
  814. filename graphics/methylvoom/sigmoid.pdf
  815. \end_inset
  816. \end_layout
  817. \begin_layout Plain Layout
  818. \begin_inset Caption Standard
  819. \begin_layout Plain Layout
  820. \begin_inset CommandInset label
  821. LatexCommand label
  822. name "fig:Sigmoid-beta-m-mapping"
  823. \end_inset
  824. \series bold
  825. Sigmoid shape of the mapping between β and M values
  826. \end_layout
  827. \end_inset
  828. \end_layout
  829. \end_inset
  830. \end_layout
  831. \begin_layout Standard
  832. After normalization, these two probe intensities are summarized in one of
  833. two ways, each with advantages and disadvantages.
  834. β
  835. \series bold
  836. \series default
  837. values, interpreted as fraction of DNA copies methylated, range from 0 to
  838. 1.
  839. β
  840. \series bold
  841. \series default
  842. values are conceptually easy to interpret, but the constrained range makes
  843. them unsuitable for linear modeling, and their error distributions are
  844. highly non-normal, which also frustrates linear modeling.
  845. M-values, interpreted as the log ratio of methylated to unmethylated copies,
  846. are computed by mapping the beta values from
  847. \begin_inset Formula $[0,1]$
  848. \end_inset
  849. onto
  850. \begin_inset Formula $(-\infty,+\infty)$
  851. \end_inset
  852. using a sigmoid curve (Figure
  853. \begin_inset CommandInset ref
  854. LatexCommand ref
  855. reference "fig:Sigmoid-beta-m-mapping"
  856. plural "false"
  857. caps "false"
  858. noprefix "false"
  859. \end_inset
  860. ).
  861. This transformation results in values with better statistical perperties:
  862. the unconstrained range is suitable for linear modeling, and the error
  863. distributions are more normal.
  864. Hence, most linear modeling and other statistical testing on methylation
  865. arrays is performed using M-values.
  866. \end_layout
  867. \begin_layout Standard
  868. However, the steep slope of the sigmoid transformation near 0 and 1 tends
  869. to over-exaggerate small differences in β values near those extremes, which
  870. in turn amplifies the error in those values, leading to a U-shaped trend
  871. in the mean-variance curve: extreme values have higher variances than values
  872. near the middle.
  873. This mean-variance dependency must be accounted for when fitting the linear
  874. model for differential methylation, or else the variance will be systematically
  875. overestimated for probes with moderate M-values and underestimated for
  876. probes with extreme M-values.
  877. \end_layout
  878. \begin_layout Subsubsection
  879. The voom method for RNA-seq data can model M-value heteroskedasticity
  880. \end_layout
  881. \begin_layout Standard
  882. RNA-seq read count data are also known to show heteroskedasticity, and the
  883. voom method was developed for modeling this heteroskedasticity by estimating
  884. the mean-variance trend in the data and using this trend to assign precision
  885. weights to each observation
  886. \begin_inset CommandInset citation
  887. LatexCommand cite
  888. key "Law2013"
  889. literal "false"
  890. \end_inset
  891. .
  892. While methylation array data are not derived from counts and have a very
  893. different mean-variance relationship from that of typical RNA-seq data,
  894. the voom method makes no specific assumptions on the shape of the mean-variance
  895. relationship - it only assumes that the relationship is smooth enough to
  896. model using a lowess curve.
  897. Hence, the method is sufficiently general to model the mean-variance relationsh
  898. ip in methylation array data.
  899. However, the standard implementation of voom assumes that the input is
  900. given in raw read counts, and it must be adapted to run on methylation
  901. M-values.
  902. \end_layout
  903. \begin_layout Standard
  904. \begin_inset Flex TODO Note (inline)
  905. status open
  906. \begin_layout Plain Layout
  907. Put code on Github and reference it
  908. \end_layout
  909. \end_inset
  910. \end_layout
  911. \begin_layout Section
  912. Methods
  913. \end_layout
  914. \begin_layout Subsection
  915. fRMA
  916. \end_layout
  917. \begin_layout Standard
  918. For testing RMA against fRMA, a data set of 157 hgu133plus2 arrays was used,
  919. consisting of blood samples from kidney transplant patients whose grafts
  920. had been graded as TX, AR, or ADNR via biopsy and histology
  921. \begin_inset CommandInset citation
  922. LatexCommand cite
  923. key "Kurian2014"
  924. literal "true"
  925. \end_inset
  926. .
  927. These were split into a training set (23 TX, 35 AR, 21 ADNR) and a validation
  928. set (23 TX, 34 AR, 21 ADNR).
  929. Additionally, an external validation was gathered from public GEO data
  930. (37 TX, 38 AR, no ADNR).
  931. \end_layout
  932. \begin_layout Standard
  933. \begin_inset Flex TODO Note (inline)
  934. status collapsed
  935. \begin_layout Plain Layout
  936. Find appropriate GEO identifiers if possible.
  937. Kurian 2014 says GSE15296, but this seems to be different data.
  938. I also need to look up the GEO accession for the external validation set.
  939. \end_layout
  940. \end_inset
  941. \end_layout
  942. \begin_layout Itemize
  943. Expression array normalization for detecting acute rejection
  944. \end_layout
  945. \begin_layout Itemize
  946. Use frozen RMA, a single-channel variant of RMA
  947. \end_layout
  948. \begin_layout Itemize
  949. Generate custom fRMA normalization vectors for each tissue (biopsy, blood)
  950. \end_layout
  951. \begin_layout Subsubsection
  952. Methylation arrays
  953. \end_layout
  954. \begin_layout Itemize
  955. Methylation arrays for differential methylation in rejection vs.
  956. healthy transplant
  957. \end_layout
  958. \begin_layout Itemize
  959. Adapt voom method originally designed for RNA-seq to model mean-variance
  960. dependence
  961. \end_layout
  962. \begin_layout Itemize
  963. Use sample precision weighting, duplicateCorrelation, and sva to adjust
  964. for other confounding factors
  965. \end_layout
  966. \begin_layout Section
  967. Results
  968. \end_layout
  969. \begin_layout Standard
  970. \begin_inset Flex TODO Note (inline)
  971. status open
  972. \begin_layout Plain Layout
  973. Improve subsection titles in this section
  974. \end_layout
  975. \end_inset
  976. \end_layout
  977. \begin_layout Subsection
  978. fRMA eliminates unwanted dependence of classifier training on normalization
  979. strategy caused by RMA
  980. \end_layout
  981. \begin_layout Subsubsection
  982. Separate normalization with RMA introduces unwanted biases in classification
  983. \end_layout
  984. \begin_layout Standard
  985. \begin_inset Float figure
  986. wide false
  987. sideways false
  988. status collapsed
  989. \begin_layout Plain Layout
  990. \begin_inset Graphics
  991. filename graphics/PAM/predplot.pdf
  992. \end_inset
  993. \end_layout
  994. \begin_layout Plain Layout
  995. \begin_inset Caption Standard
  996. \begin_layout Plain Layout
  997. \begin_inset CommandInset label
  998. LatexCommand label
  999. name "fig:Classifier-probabilities-RMA"
  1000. \end_inset
  1001. \series bold
  1002. Classifier probabilities on validation samples when normalized with RMA
  1003. together vs.
  1004. separately.
  1005. \end_layout
  1006. \end_inset
  1007. \end_layout
  1008. \end_inset
  1009. \end_layout
  1010. \begin_layout Standard
  1011. The initial data set for testing fRMA consisted of 157 hgu133plus2 arrays,
  1012. split into a training set (23 TX, 35 AR, 21 ADNR) and a validation set
  1013. (23 TX, 34 AR, 21 ADNR), along with an external validation set gathered
  1014. from public GEO data (37 TX, 38 AR, no ADNR)
  1015. \begin_inset CommandInset citation
  1016. LatexCommand cite
  1017. key "Kurian2014"
  1018. literal "true"
  1019. \end_inset
  1020. .
  1021. To demonstrate the problem, we considered the problem of training a classifier
  1022. to distinguish TX from AR using the TX and AR samples from the training
  1023. set and validation set as training data, evaluating performance on the
  1024. external validation set.
  1025. First, training and evaluation were performed after normalizing all array
  1026. samples together as a single set using RMA, and second, the internal samples
  1027. were normalized separately from the external samples and the training and
  1028. evaluation were repeated.
  1029. For each sample in the validation set, the classifier probabilities from
  1030. both classifiers were plotted against each other (Fig.
  1031. \begin_inset CommandInset ref
  1032. LatexCommand ref
  1033. reference "fig:Classifier-probabilities-RMA"
  1034. plural "false"
  1035. caps "false"
  1036. noprefix "false"
  1037. \end_inset
  1038. ).
  1039. As expected, separate normalization biases the classifier probabilities,
  1040. resulting in several misclassifications.
  1041. In this case, the bias from separate normalization causes the classifier
  1042. to assign a lower probability of AR to every sample.
  1043. Because it is not feasible to normalize all samples together in a clinical
  1044. context, this shows that an alternative to RMA is required.
  1045. \end_layout
  1046. \begin_layout Subsubsection
  1047. fRMA achieves equal classification performance while eliminating dependence
  1048. on normalization strategy
  1049. \end_layout
  1050. \begin_layout Standard
  1051. \begin_inset Float figure
  1052. wide false
  1053. sideways false
  1054. status open
  1055. \begin_layout Plain Layout
  1056. \begin_inset Graphics
  1057. filename graphics/PAM/external-roc-frma.pdf
  1058. \end_inset
  1059. \end_layout
  1060. \begin_layout Plain Layout
  1061. \begin_inset Caption Standard
  1062. \begin_layout Plain Layout
  1063. \begin_inset CommandInset label
  1064. LatexCommand label
  1065. name "fig:ROC-curve-PAM"
  1066. \end_inset
  1067. ROC curve for PAM on external validation data, normalizing with RMA and
  1068. fRMA
  1069. \end_layout
  1070. \end_inset
  1071. \end_layout
  1072. \end_inset
  1073. \end_layout
  1074. \begin_layout Itemize
  1075. fRMA eliminates this issue by normalizing each sample independently to the
  1076. same quantile distribution and summarizing probes using the same weights.
  1077. \end_layout
  1078. \begin_layout Itemize
  1079. Classifier performance on validation set is identical for
  1080. \begin_inset Quotes eld
  1081. \end_inset
  1082. RMA together
  1083. \begin_inset Quotes erd
  1084. \end_inset
  1085. and fRMA, so switching to clinically applicable normalization does not
  1086. sacrifice accuracy
  1087. \end_layout
  1088. \begin_layout Standard
  1089. \begin_inset Flex TODO Note (inline)
  1090. status open
  1091. \begin_layout Plain Layout
  1092. Check the published paper for any other possibly relevant figures to include
  1093. here.
  1094. \end_layout
  1095. \end_inset
  1096. \end_layout
  1097. \begin_layout Subsection
  1098. fRMA with custom-generated vectors
  1099. \end_layout
  1100. \begin_layout Itemize
  1101. Non-standard platform hthgu133pluspm - no pre-built fRMA vectors available,
  1102. so custom vectors must be learned from in-house data
  1103. \end_layout
  1104. \begin_layout Standard
  1105. \begin_inset Float figure
  1106. wide false
  1107. sideways false
  1108. status collapsed
  1109. \begin_layout Plain Layout
  1110. \begin_inset Graphics
  1111. filename graphics/frma-pax-bx/batchsize_batches.pdf
  1112. \end_inset
  1113. \end_layout
  1114. \begin_layout Plain Layout
  1115. \begin_inset Caption Standard
  1116. \begin_layout Plain Layout
  1117. \begin_inset CommandInset label
  1118. LatexCommand label
  1119. name "fig:batch-size-batches"
  1120. \end_inset
  1121. Effect of batch size selection on number of batches included in fRMA probe
  1122. weight learning
  1123. \end_layout
  1124. \end_inset
  1125. \end_layout
  1126. \end_inset
  1127. \end_layout
  1128. \begin_layout Standard
  1129. \begin_inset Float figure
  1130. wide false
  1131. sideways false
  1132. status collapsed
  1133. \begin_layout Plain Layout
  1134. \begin_inset Graphics
  1135. filename graphics/frma-pax-bx/batchsize_samples.pdf
  1136. \end_inset
  1137. \end_layout
  1138. \begin_layout Plain Layout
  1139. \begin_inset Caption Standard
  1140. \begin_layout Plain Layout
  1141. \begin_inset CommandInset label
  1142. LatexCommand label
  1143. name "fig:batch-size-samples"
  1144. \end_inset
  1145. Effect of batch size selection on number of samples included in fRMA probe
  1146. weight learning
  1147. \end_layout
  1148. \end_inset
  1149. \end_layout
  1150. \end_inset
  1151. \end_layout
  1152. \begin_layout Itemize
  1153. Large body of data available for training fRMA: 341 kidney graft biopsy
  1154. samples, 965 blood samples from graft recipients
  1155. \end_layout
  1156. \begin_deeper
  1157. \begin_layout Itemize
  1158. But not all samples can be used (see trade-off figure)
  1159. \end_layout
  1160. \begin_layout Itemize
  1161. Figure showing trade-off between more samples per group and fewer groups
  1162. with that may samples, to justify choice of number of samples per group
  1163. \end_layout
  1164. \begin_layout Itemize
  1165. pre-generated normalization vectors use ~850 samples
  1166. \begin_inset Flex TODO Note (Margin)
  1167. status collapsed
  1168. \begin_layout Plain Layout
  1169. Look up the exact numbers
  1170. \end_layout
  1171. \end_inset
  1172. \begin_inset CommandInset citation
  1173. LatexCommand cite
  1174. key "McCall2010"
  1175. literal "false"
  1176. \end_inset
  1177. , but are designed to be general across all tissues.
  1178. The samples we have are suitable for tissue-specific normalization vectors.
  1179. \end_layout
  1180. \end_deeper
  1181. \begin_layout Itemize
  1182. Figure: MA plot, RMA vs fRMA, to show that the normalization is appreciably
  1183. and non-linearly different
  1184. \end_layout
  1185. \begin_layout Itemize
  1186. Figure MA plot, fRMA vs fRMA with different randomly-chosen sample subsets
  1187. to show consistency
  1188. \end_layout
  1189. \begin_layout Itemize
  1190. custom fRMA normalization improved cross-validated classifier performance
  1191. \end_layout
  1192. \begin_layout Standard
  1193. \begin_inset Flex TODO Note (inline)
  1194. status open
  1195. \begin_layout Plain Layout
  1196. Get a figure from Tom showing classifier performance improvement (compared
  1197. to all-sample RMA, I guess?), if possible
  1198. \end_layout
  1199. \end_inset
  1200. \end_layout
  1201. \begin_layout Subsection
  1202. Adapting voom to methylation array data improves model fit
  1203. \end_layout
  1204. \begin_layout Itemize
  1205. voom, precision weights, and sva improved model fit
  1206. \end_layout
  1207. \begin_deeper
  1208. \begin_layout Itemize
  1209. Also increased sensitivity for detecting differential methylation
  1210. \end_layout
  1211. \end_deeper
  1212. \begin_layout Itemize
  1213. Figure showing (a) heteroskedasticy without voom, (b) voom-modeled mean-variance
  1214. trend, and (c) homoskedastic mean-variance trend after running voom
  1215. \end_layout
  1216. \begin_layout Itemize
  1217. Figure showing sample weights and their relations to
  1218. \end_layout
  1219. \begin_layout Itemize
  1220. Figure showing MDS plot with and without SVA correction
  1221. \end_layout
  1222. \begin_layout Itemize
  1223. Figure and/or table showing improved p-value historgrams/number of significant
  1224. genes (might need to get this from Padma)
  1225. \end_layout
  1226. \begin_layout Section
  1227. Discussion
  1228. \end_layout
  1229. \begin_layout Itemize
  1230. fRMA enables classifying new samples without re-normalizing the entire data
  1231. set
  1232. \end_layout
  1233. \begin_deeper
  1234. \begin_layout Itemize
  1235. Critical for translating a classifier into clinical practice
  1236. \end_layout
  1237. \end_deeper
  1238. \begin_layout Itemize
  1239. Methods like voom designed for RNA-seq can also help with array analysis
  1240. \end_layout
  1241. \begin_layout Itemize
  1242. Extracting and modeling confounders common to many features improves model
  1243. correspondence to known biology
  1244. \end_layout
  1245. \begin_layout Chapter
  1246. Globin-blocking for more effective blood RNA-seq analysis in primate animal
  1247. model
  1248. \end_layout
  1249. \begin_layout Standard
  1250. \begin_inset Flex TODO Note (inline)
  1251. status open
  1252. \begin_layout Plain Layout
  1253. Choose between above and the paper title: Optimizing yield of deep RNA sequencin
  1254. g for gene expression profiling by globin reduction of peripheral blood
  1255. samples from cynomolgus monkeys (Macaca fascicularis).
  1256. \end_layout
  1257. \end_inset
  1258. \end_layout
  1259. \begin_layout Standard
  1260. \begin_inset Flex TODO Note (inline)
  1261. status open
  1262. \begin_layout Plain Layout
  1263. Chapter author list: https://tex.stackexchange.com/questions/156862/displaying-aut
  1264. hor-for-each-chapter-in-book Every chapter gets an author list, which may
  1265. or may not be part of a citation to a published/preprinted paper.
  1266. \end_layout
  1267. \end_inset
  1268. \end_layout
  1269. \begin_layout Standard
  1270. \begin_inset Flex TODO Note (inline)
  1271. status open
  1272. \begin_layout Plain Layout
  1273. Preprint then cite the paper
  1274. \end_layout
  1275. \end_inset
  1276. \end_layout
  1277. \begin_layout Section*
  1278. Abstract
  1279. \end_layout
  1280. \begin_layout Paragraph
  1281. Background
  1282. \end_layout
  1283. \begin_layout Standard
  1284. Primate blood contains high concentrations of globin messenger RNA.
  1285. Globin reduction is a standard technique used to improve the expression
  1286. results obtained by DNA microarrays on RNA from blood samples.
  1287. However, with whole transcriptome RNA-sequencing (RNA-seq) quickly replacing
  1288. microarrays for many applications, the impact of globin reduction for RNA-seq
  1289. has not been previously studied.
  1290. Moreover, no off-the-shelf kits are available for globin reduction in nonhuman
  1291. primates.
  1292. \end_layout
  1293. \begin_layout Paragraph
  1294. Results
  1295. \end_layout
  1296. \begin_layout Standard
  1297. Here we report a protocol for RNA-seq in primate blood samples that uses
  1298. complimentary oligonucleotides to block reverse transcription of the alpha
  1299. and beta globin genes.
  1300. In test samples from cynomolgus monkeys (Macaca fascicularis), this globin
  1301. blocking protocol approximately doubles the yield of informative (non-globin)
  1302. reads by greatly reducing the fraction of globin reads, while also improving
  1303. the consistency in sequencing depth between samples.
  1304. The increased yield enables detection of about 2000 more genes, significantly
  1305. increases the correlation in measured gene expression levels between samples,
  1306. and increases the sensitivity of differential gene expression tests.
  1307. \end_layout
  1308. \begin_layout Paragraph
  1309. Conclusions
  1310. \end_layout
  1311. \begin_layout Standard
  1312. These results show that globin blocking significantly improves the cost-effectiv
  1313. eness of mRNA sequencing in primate blood samples by doubling the yield
  1314. of useful reads, allowing detection of more genes, and improving the precision
  1315. of gene expression measurements.
  1316. Based on these results, a globin reducing or blocking protocol is recommended
  1317. for all RNA-seq studies of primate blood samples.
  1318. \end_layout
  1319. \begin_layout Section
  1320. Approach
  1321. \end_layout
  1322. \begin_layout Standard
  1323. \begin_inset Note Note
  1324. status open
  1325. \begin_layout Plain Layout
  1326. Consider putting some of this in the Intro chapter
  1327. \end_layout
  1328. \begin_layout Itemize
  1329. Cynomolgus monkeys as a model organism
  1330. \end_layout
  1331. \begin_deeper
  1332. \begin_layout Itemize
  1333. Highly related to humans
  1334. \end_layout
  1335. \begin_layout Itemize
  1336. Small size and short life cycle - good research animal
  1337. \end_layout
  1338. \begin_layout Itemize
  1339. Genomics resources still in development
  1340. \end_layout
  1341. \end_deeper
  1342. \begin_layout Itemize
  1343. Inadequacy of existing blood RNA-seq protocols
  1344. \end_layout
  1345. \begin_deeper
  1346. \begin_layout Itemize
  1347. Existing protocols use a separate globin pulldown step, slowing down processing
  1348. \end_layout
  1349. \end_deeper
  1350. \end_inset
  1351. \end_layout
  1352. \begin_layout Standard
  1353. Increasingly, researchers are turning to high-throughput mRNA sequencing
  1354. technologies (RNA-seq) in preference to expression microarrays for analysis
  1355. of gene expression
  1356. \begin_inset CommandInset citation
  1357. LatexCommand cite
  1358. key "Mutz2012"
  1359. literal "false"
  1360. \end_inset
  1361. .
  1362. The advantages are even greater for study of model organisms with no well-estab
  1363. lished array platforms available, such as the cynomolgus monkey (Macaca
  1364. fascicularis).
  1365. High fractions of globin mRNA are naturally present in mammalian peripheral
  1366. blood samples (up to 70% of total mRNA) and these are known to interfere
  1367. with the results of array-based expression profiling
  1368. \begin_inset CommandInset citation
  1369. LatexCommand cite
  1370. key "Winn2010"
  1371. literal "false"
  1372. \end_inset
  1373. .
  1374. The importance of globin reduction for RNA-seq of blood has only been evaluated
  1375. for a deepSAGE protocol on human samples
  1376. \begin_inset CommandInset citation
  1377. LatexCommand cite
  1378. key "Mastrokolias2012"
  1379. literal "false"
  1380. \end_inset
  1381. .
  1382. In the present report, we evaluated globin reduction using custom blocking
  1383. oligonucleotides for deep RNA-seq of peripheral blood samples from a nonhuman
  1384. primate, cynomolgus monkey, using the Illumina technology platform.
  1385. We demonstrate that globin reduction significantly improves the cost-effectiven
  1386. ess of RNA-seq in blood samples.
  1387. Thus, our protocol offers a significant advantage to any investigator planning
  1388. to use RNA-seq for gene expression profiling of nonhuman primate blood
  1389. samples.
  1390. Our method can be generally applied to any species by designing complementary
  1391. oligonucleotide blocking probes to the globin gene sequences of that species.
  1392. Indeed, any highly expressed but biologically uninformative transcripts
  1393. can also be blocked to further increase sequencing efficiency and value
  1394. \begin_inset CommandInset citation
  1395. LatexCommand cite
  1396. key "Arnaud2016"
  1397. literal "false"
  1398. \end_inset
  1399. .
  1400. \end_layout
  1401. \begin_layout Section
  1402. Methods
  1403. \end_layout
  1404. \begin_layout Subsection*
  1405. Sample collection
  1406. \end_layout
  1407. \begin_layout Standard
  1408. All research reported here was done under IACUC-approved protocols at the
  1409. University of Miami and complied with all applicable federal and state
  1410. regulations and ethical principles for nonhuman primate research.
  1411. Blood draws occurred between 16 April 2012 and 18 June 2015.
  1412. The experimental system involved intrahepatic pancreatic islet transplantation
  1413. into Cynomolgus monkeys with induced diabetes mellitus with or without
  1414. concomitant infusion of mesenchymal stem cells.
  1415. Blood was collected at serial time points before and after transplantation
  1416. into PAXgene Blood RNA tubes (PreAnalytiX/Qiagen, Valencia, CA) at the
  1417. precise volume:volume ratio of 2.5 ml whole blood into 6.9 ml of PAX gene
  1418. additive.
  1419. \end_layout
  1420. \begin_layout Subsection*
  1421. Globin Blocking
  1422. \end_layout
  1423. \begin_layout Standard
  1424. Four oligonucleotides were designed to hybridize to the 3’ end of the transcript
  1425. s for Cynomolgus HBA1, HBA2 and HBB, with two hybridization sites for HBB
  1426. and 2 sites for HBA (the chosen sites were identical in both HBA genes).
  1427. All oligos were purchased from Sigma and were entirely composed of 2’O-Me
  1428. bases with a C3 spacer positioned at the 3’ ends to prevent any polymerase
  1429. mediated primer extension.
  1430. \end_layout
  1431. \begin_layout Quote
  1432. HBA1/2 site 1: GCCCACUCAGACUUUAUUCAAAG-C3spacer
  1433. \end_layout
  1434. \begin_layout Quote
  1435. HBA1/2 site 2: GGUGCAAGGAGGGGAGGAG-C3spacer
  1436. \end_layout
  1437. \begin_layout Quote
  1438. HBB site 1: AAUGAAAAUAAAUGUUUUUUAUUAG-C3spacer
  1439. \end_layout
  1440. \begin_layout Quote
  1441. HBB site 2: CUCAAGGCCCUUCAUAAUAUCCC-C3spacer
  1442. \end_layout
  1443. \begin_layout Subsection*
  1444. RNA-seq Library Preparation
  1445. \end_layout
  1446. \begin_layout Standard
  1447. Sequencing libraries were prepared with 200ng total RNA from each sample.
  1448. Polyadenylated mRNA was selected from 200 ng aliquots of cynomologus blood-deri
  1449. ved total RNA using Ambion Dynabeads Oligo(dT)25 beads (Invitrogen) following
  1450. manufacturer’s recommended protocol.
  1451. PolyA selected RNA was then combined with 8 pmol of HBA1/2 (site 1), 8
  1452. pmol of HBA1/2 (site 2), 12 pmol of HBB (site 1) and 12 pmol of HBB (site
  1453. 2) oligonucleotides.
  1454. In addition, 20 pmol of RT primer containing a portion of the Illumina
  1455. adapter sequence (B-oligo-dTV: GAGTTCCTTGGCACCCGAGAATTCCATTTTTTTTTTTTTTTTTTTV)
  1456. and 4 µL of 5X First Strand buffer (250 mM Tris-HCl pH 8.3, 375 mM KCl,
  1457. 15mM MgCl2) were added in a total volume of 15 µL.
  1458. The RNA was fragmented by heating this cocktail for 3 minutes at 95°C and
  1459. then placed on ice.
  1460. This was followed by the addition of 2 µL 0.1 M DTT, 1 µL RNaseOUT, 1 µL
  1461. 10mM dNTPs 10% biotin-16 aminoallyl-2’- dUTP and 10% biotin-16 aminoallyl-2’-
  1462. dCTP (TriLink Biotech, San Diego, CA), 1 µL Superscript II (200U/ µL, Thermo-Fi
  1463. sher).
  1464. A second “unblocked” library was prepared in the same way for each sample
  1465. but replacing the blocking oligos with an equivalent volume of water.
  1466. The reaction was carried out at 25°C for 15 minutes and 42°C for 40 minutes,
  1467. followed by incubation at 75°C for 10 minutes to inactivate the reverse
  1468. transcriptase.
  1469. \end_layout
  1470. \begin_layout Standard
  1471. The cDNA/RNA hybrid molecules were purified using 1.8X Ampure XP beads (Agencourt
  1472. ) following supplier’s recommended protocol.
  1473. The cDNA/RNA hybrid was eluted in 25 µL of 10 mM Tris-HCl pH 8.0, and then
  1474. bound to 25 µL of M280 Magnetic Streptavidin beads washed per recommended
  1475. protocol (Thermo-Fisher).
  1476. After 30 minutes of binding, beads were washed one time in 100 µL 0.1N NaOH
  1477. to denature and remove the bound RNA, followed by two 100 µL washes with
  1478. 1X TE buffer.
  1479. \end_layout
  1480. \begin_layout Standard
  1481. Subsequent attachment of the 5-prime Illumina A adapter was performed by
  1482. on-bead random primer extension of the following sequence (A-N8 primer:
  1483. TTCAGAGTTCTACAGTCCGACGATCNNNNNNNN).
  1484. Briefly, beads were resuspended in a 20 µL reaction containing 5 µM A-N8
  1485. primer, 40mM Tris-HCl pH 7.5, 20mM MgCl2, 50mM NaCl, 0.325U/µL Sequenase
  1486. 2.0 (Affymetrix, Santa Clara, CA), 0.0025U/µL inorganic pyrophosphatase (Affymetr
  1487. ix) and 300 µM each dNTP.
  1488. Reaction was incubated at 22°C for 30 minutes, then beads were washed 2
  1489. times with 1X TE buffer (200µL).
  1490. \end_layout
  1491. \begin_layout Standard
  1492. The magnetic streptavidin beads were resuspended in 34 µL nuclease-free
  1493. water and added directly to a PCR tube.
  1494. The two Illumina protocol-specified PCR primers were added at 0.53 µM (Illumina
  1495. TruSeq Universal Primer 1 and Illumina TruSeq barcoded PCR primer 2), along
  1496. with 40 µL 2X KAPA HiFi Hotstart ReadyMix (KAPA, Willmington MA) and thermocycl
  1497. ed as follows: starting with 98°C (2 min-hold); 15 cycles of 98°C, 20sec;
  1498. 60°C, 30sec; 72°C, 30sec; and finished with a 72°C (2 min-hold).
  1499. \end_layout
  1500. \begin_layout Standard
  1501. PCR products were purified with 1X Ampure Beads following manufacturer’s
  1502. recommended protocol.
  1503. Libraries were then analyzed using the Agilent TapeStation and quantitation
  1504. of desired size range was performed by “smear analysis”.
  1505. Samples were pooled in equimolar batches of 16 samples.
  1506. Pooled libraries were size selected on 2% agarose gels (E-Gel EX Agarose
  1507. Gels; Thermo-Fisher).
  1508. Products were cut between 250 and 350 bp (corresponding to insert sizes
  1509. of 130 to 230 bps).
  1510. Finished library pools were then sequenced on the Illumina NextSeq500 instrumen
  1511. t with 75 base read lengths.
  1512. \end_layout
  1513. \begin_layout Subsection*
  1514. Read alignment and counting
  1515. \end_layout
  1516. \begin_layout Standard
  1517. Reads were aligned to the cynomolgus genome using STAR
  1518. \begin_inset CommandInset citation
  1519. LatexCommand cite
  1520. key "Dobin2013,Wilson2013"
  1521. literal "false"
  1522. \end_inset
  1523. .
  1524. Counts of uniquely mapped reads were obtained for every gene in each sample
  1525. with the “featureCounts” function from the Rsubread package, using each
  1526. of the three possibilities for the “strandSpecific” option: sense, antisense,
  1527. and unstranded
  1528. \begin_inset CommandInset citation
  1529. LatexCommand cite
  1530. key "Liao2014"
  1531. literal "false"
  1532. \end_inset
  1533. .
  1534. A few artifacts in the cynomolgus genome annotation complicated read counting.
  1535. First, no ortholog is annotated for alpha globin in the cynomolgus genome,
  1536. presumably because the human genome has two alpha globin genes with nearly
  1537. identical sequences, making the orthology relationship ambiguous.
  1538. However, two loci in the cynomolgus genome are as “hemoglobin subunit alpha-lik
  1539. e” (LOC102136192 and LOC102136846).
  1540. LOC102136192 is annotated as a pseudogene while LOC102136846 is annotated
  1541. as protein-coding.
  1542. Our globin reduction protocol was designed to include blocking of these
  1543. two genes.
  1544. Indeed, these two genes have almost the same read counts in each library
  1545. as the properly-annotated HBB gene and much larger counts than any other
  1546. gene in the unblocked libraries, giving confidence that reads derived from
  1547. the real alpha globin are mapping to both genes.
  1548. Thus, reads from both of these loci were counted as alpha globin reads
  1549. in all further analyses.
  1550. The second artifact is a small, uncharacterized non-coding RNA gene (LOC1021365
  1551. 91), which overlaps the HBA-like gene (LOC102136192) on the opposite strand.
  1552. If counting is not performed in stranded mode (or if a non-strand-specific
  1553. sequencing protocol is used), many reads mapping to the globin gene will
  1554. be discarded as ambiguous due to their overlap with this ncRNA gene, resulting
  1555. in significant undercounting of globin reads.
  1556. Therefore, stranded sense counts were used for all further analysis in
  1557. the present study to insure that we accurately accounted for globin transcript
  1558. reduction.
  1559. However, we note that stranded reads are not necessary for RNA-seq using
  1560. our protocol in standard practice.
  1561. \end_layout
  1562. \begin_layout Subsection*
  1563. Normalization and Exploratory Data Analysis
  1564. \end_layout
  1565. \begin_layout Standard
  1566. Libraries were normalized by computing scaling factors using the edgeR package’s
  1567. Trimmed Mean of M-values method
  1568. \begin_inset CommandInset citation
  1569. LatexCommand cite
  1570. key "Robinson2010"
  1571. literal "false"
  1572. \end_inset
  1573. .
  1574. Log2 counts per million values (logCPM) were calculated using the cpm function
  1575. in edgeR for individual samples and aveLogCPM function for averages across
  1576. groups of samples, using those functions’ default prior count values to
  1577. avoid taking the logarithm of 0.
  1578. Genes were considered “present” if their average normalized logCPM values
  1579. across all libraries were at least -1.
  1580. Normalizing for gene length was unnecessary because the sequencing protocol
  1581. is 3’-biased and hence the expected read count for each gene is related
  1582. to the transcript’s copy number but not its length.
  1583. \end_layout
  1584. \begin_layout Standard
  1585. In order to assess the effect of blocking on reproducibility, Pearson and
  1586. Spearman correlation coefficients were computed between the logCPM values
  1587. for every pair of libraries within the globin-blocked (GB) and unblocked
  1588. (non-GB) groups, and edgeR's “estimateDisp” function was used to compute
  1589. negative binomial dispersions separately for the two groups
  1590. \begin_inset CommandInset citation
  1591. LatexCommand cite
  1592. key "Chen2014"
  1593. literal "false"
  1594. \end_inset
  1595. .
  1596. \end_layout
  1597. \begin_layout Subsection*
  1598. Differential Expression Analysis
  1599. \end_layout
  1600. \begin_layout Standard
  1601. All tests for differential gene expression were performed using edgeR, by
  1602. first fitting a negative binomial generalized linear model to the counts
  1603. and normalization factors and then performing a quasi-likelihood F-test
  1604. with robust estimation of outlier gene dispersions
  1605. \begin_inset CommandInset citation
  1606. LatexCommand cite
  1607. key "Lund2012,Phipson2016"
  1608. literal "false"
  1609. \end_inset
  1610. .
  1611. To investigate the effects of globin blocking on each gene, an additive
  1612. model was fit to the full data with coefficients for globin blocking and
  1613. SampleID.
  1614. To test the effect of globin blocking on detection of differentially expressed
  1615. genes, the GB samples and non-GB samples were each analyzed independently
  1616. as follows: for each animal with both a pre-transplant and a post-transplant
  1617. time point in the data set, the pre-transplant sample and the earliest
  1618. post-transplant sample were selected, and all others were excluded, yielding
  1619. a pre-/post-transplant pair of samples for each animal (N=7 animals with
  1620. paired samples).
  1621. These samples were analyzed for pre-transplant vs.
  1622. post-transplant differential gene expression while controlling for inter-animal
  1623. variation using an additive model with coefficients for transplant and
  1624. animal ID.
  1625. In all analyses, p-values were adjusted using the Benjamini-Hochberg procedure
  1626. for FDR correction
  1627. \begin_inset CommandInset citation
  1628. LatexCommand cite
  1629. key "Benjamini1995"
  1630. literal "false"
  1631. \end_inset
  1632. .
  1633. \end_layout
  1634. \begin_layout Standard
  1635. \begin_inset Note Note
  1636. status open
  1637. \begin_layout Itemize
  1638. New blood RNA-seq protocol to block reverse transcription of globin genes
  1639. \end_layout
  1640. \begin_layout Itemize
  1641. Blood RNA-seq time course after transplants with/without MSC infusion
  1642. \end_layout
  1643. \end_inset
  1644. \end_layout
  1645. \begin_layout Section
  1646. Results
  1647. \end_layout
  1648. \begin_layout Subsection*
  1649. Globin blocking yields a larger and more consistent fraction of useful reads
  1650. \end_layout
  1651. \begin_layout Standard
  1652. The objective of the present study was to validate a new protocol for deep
  1653. RNA-seq of whole blood drawn into PaxGene tubes from cynomolgus monkeys
  1654. undergoing islet transplantation, with particular focus on minimizing the
  1655. loss of useful sequencing space to uninformative globin reads.
  1656. The details of the analysis with respect to transplant outcomes and the
  1657. impact of mesenchymal stem cell treatment will be reported in a separate
  1658. manuscript (in preparation).
  1659. To focus on the efficacy of our globin blocking protocol, 37 blood samples,
  1660. 16 from pre-transplant and 21 from post-transplant time points, were each
  1661. prepped once with and once without globin blocking oligos, and were then
  1662. sequenced on an Illumina NextSeq500 instrument.
  1663. The number of reads aligning to each gene in the cynomolgus genome was
  1664. counted.
  1665. Table 1 summarizes the distribution of read fractions among the GB and
  1666. non-GB libraries.
  1667. In the libraries with no globin blocking, globin reads made up an average
  1668. of 44.6% of total input reads, while reads assigned to all other genes made
  1669. up an average of 26.3%.
  1670. The remaining reads either aligned to intergenic regions (that include
  1671. long non-coding RNAs) or did not align with any annotated transcripts in
  1672. the current build of the cynomolgus genome.
  1673. In the GB libraries, globin reads made up only 3.48% and reads assigned
  1674. to all other genes increased to 50.4%.
  1675. Thus, globin blocking resulted in a 92.2% reduction in globin reads and
  1676. a 91.6% increase in yield of useful non-globin reads.
  1677. \end_layout
  1678. \begin_layout Standard
  1679. This reduction is not quite as efficient as the previous analysis showed
  1680. for human samples by DeepSAGE (<0.4% globin reads after globin reduction)
  1681. \begin_inset CommandInset citation
  1682. LatexCommand cite
  1683. key "Mastrokolias2012"
  1684. literal "false"
  1685. \end_inset
  1686. .
  1687. Nonetheless, this degree of globin reduction is sufficient to nearly double
  1688. the yield of useful reads.
  1689. Thus, globin blocking cuts the required sequencing effort (and costs) to
  1690. achieve a target coverage depth by almost 50%.
  1691. Consistent with this near doubling of yield, the average difference in
  1692. un-normalized logCPM across all genes between the GB libraries and non-GB
  1693. libraries is approximately 1 (mean = 1.01, median = 1.08), an overall 2-fold
  1694. increase.
  1695. Un-normalized values are used here because the TMM normalization correctly
  1696. identifies this 2-fold difference as biologically irrelevant and removes
  1697. it.
  1698. \end_layout
  1699. \begin_layout Standard
  1700. \begin_inset Float figure
  1701. wide false
  1702. sideways false
  1703. status open
  1704. \begin_layout Plain Layout
  1705. \align center
  1706. \begin_inset Graphics
  1707. filename graphics/Globin Paper/figure1 - globin-fractions.pdf
  1708. \end_inset
  1709. \end_layout
  1710. \begin_layout Plain Layout
  1711. \begin_inset Caption Standard
  1712. \begin_layout Plain Layout
  1713. \series bold
  1714. \begin_inset Argument 1
  1715. status collapsed
  1716. \begin_layout Plain Layout
  1717. Fraction of genic reads in each sample aligned to non-globin genes, with
  1718. and without globin blocking (GB).
  1719. \end_layout
  1720. \end_inset
  1721. \begin_inset CommandInset label
  1722. LatexCommand label
  1723. name "fig:Fraction-of-genic-reads"
  1724. \end_inset
  1725. Fraction of genic reads in each sample aligned to non-globin genes, with
  1726. and without globin blocking (GB).
  1727. \series default
  1728. All reads in each sequencing library were aligned to the cyno genome, and
  1729. the number of reads uniquely aligning to each gene was counted.
  1730. For each sample, counts were summed separately for all globin genes and
  1731. for the remainder of the genes (non-globin genes), and the fraction of
  1732. genic reads aligned to non-globin genes was computed.
  1733. Each point represents an individual sample.
  1734. Gray + signs indicate the means for globin-blocked libraries and unblocked
  1735. libraries.
  1736. The overall distribution for each group is represented as a notched box
  1737. plots.
  1738. Points are randomly spread vertically to avoid excessive overlapping.
  1739. \end_layout
  1740. \end_inset
  1741. \end_layout
  1742. \begin_layout Plain Layout
  1743. \end_layout
  1744. \end_inset
  1745. \end_layout
  1746. \begin_layout Standard
  1747. \begin_inset Float table
  1748. placement p
  1749. wide false
  1750. sideways true
  1751. status open
  1752. \begin_layout Plain Layout
  1753. \align center
  1754. \begin_inset Tabular
  1755. <lyxtabular version="3" rows="4" columns="7">
  1756. <features tabularvalignment="middle">
  1757. <column alignment="center" valignment="top">
  1758. <column alignment="center" valignment="top">
  1759. <column alignment="center" valignment="top">
  1760. <column alignment="center" valignment="top">
  1761. <column alignment="center" valignment="top">
  1762. <column alignment="center" valignment="top">
  1763. <column alignment="center" valignment="top">
  1764. <row>
  1765. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1766. \begin_inset Text
  1767. \begin_layout Plain Layout
  1768. \end_layout
  1769. \end_inset
  1770. </cell>
  1771. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1772. \begin_inset Text
  1773. \begin_layout Plain Layout
  1774. \family roman
  1775. \series medium
  1776. \shape up
  1777. \size normal
  1778. \emph off
  1779. \bar no
  1780. \strikeout off
  1781. \xout off
  1782. \uuline off
  1783. \uwave off
  1784. \noun off
  1785. \color none
  1786. Percent of Total Reads
  1787. \end_layout
  1788. \end_inset
  1789. </cell>
  1790. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1791. \begin_inset Text
  1792. \begin_layout Plain Layout
  1793. \end_layout
  1794. \end_inset
  1795. </cell>
  1796. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1797. \begin_inset Text
  1798. \begin_layout Plain Layout
  1799. \end_layout
  1800. \end_inset
  1801. </cell>
  1802. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1803. \begin_inset Text
  1804. \begin_layout Plain Layout
  1805. \end_layout
  1806. \end_inset
  1807. </cell>
  1808. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  1809. \begin_inset Text
  1810. \begin_layout Plain Layout
  1811. \family roman
  1812. \series medium
  1813. \shape up
  1814. \size normal
  1815. \emph off
  1816. \bar no
  1817. \strikeout off
  1818. \xout off
  1819. \uuline off
  1820. \uwave off
  1821. \noun off
  1822. \color none
  1823. Percent of Genic Reads
  1824. \end_layout
  1825. \end_inset
  1826. </cell>
  1827. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  1828. \begin_inset Text
  1829. \begin_layout Plain Layout
  1830. \end_layout
  1831. \end_inset
  1832. </cell>
  1833. </row>
  1834. <row>
  1835. <cell alignment="center" valignment="top" bottomline="true" leftline="true" usebox="none">
  1836. \begin_inset Text
  1837. \begin_layout Plain Layout
  1838. GB
  1839. \end_layout
  1840. \end_inset
  1841. </cell>
  1842. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1843. \begin_inset Text
  1844. \begin_layout Plain Layout
  1845. \family roman
  1846. \series medium
  1847. \shape up
  1848. \size normal
  1849. \emph off
  1850. \bar no
  1851. \strikeout off
  1852. \xout off
  1853. \uuline off
  1854. \uwave off
  1855. \noun off
  1856. \color none
  1857. Non-globin Reads
  1858. \end_layout
  1859. \end_inset
  1860. </cell>
  1861. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1862. \begin_inset Text
  1863. \begin_layout Plain Layout
  1864. \family roman
  1865. \series medium
  1866. \shape up
  1867. \size normal
  1868. \emph off
  1869. \bar no
  1870. \strikeout off
  1871. \xout off
  1872. \uuline off
  1873. \uwave off
  1874. \noun off
  1875. \color none
  1876. Globin Reads
  1877. \end_layout
  1878. \end_inset
  1879. </cell>
  1880. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1881. \begin_inset Text
  1882. \begin_layout Plain Layout
  1883. \family roman
  1884. \series medium
  1885. \shape up
  1886. \size normal
  1887. \emph off
  1888. \bar no
  1889. \strikeout off
  1890. \xout off
  1891. \uuline off
  1892. \uwave off
  1893. \noun off
  1894. \color none
  1895. All Genic Reads
  1896. \end_layout
  1897. \end_inset
  1898. </cell>
  1899. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1900. \begin_inset Text
  1901. \begin_layout Plain Layout
  1902. \family roman
  1903. \series medium
  1904. \shape up
  1905. \size normal
  1906. \emph off
  1907. \bar no
  1908. \strikeout off
  1909. \xout off
  1910. \uuline off
  1911. \uwave off
  1912. \noun off
  1913. \color none
  1914. All Aligned Reads
  1915. \end_layout
  1916. \end_inset
  1917. </cell>
  1918. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1919. \begin_inset Text
  1920. \begin_layout Plain Layout
  1921. \family roman
  1922. \series medium
  1923. \shape up
  1924. \size normal
  1925. \emph off
  1926. \bar no
  1927. \strikeout off
  1928. \xout off
  1929. \uuline off
  1930. \uwave off
  1931. \noun off
  1932. \color none
  1933. Non-globin Reads
  1934. \end_layout
  1935. \end_inset
  1936. </cell>
  1937. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  1938. \begin_inset Text
  1939. \begin_layout Plain Layout
  1940. \family roman
  1941. \series medium
  1942. \shape up
  1943. \size normal
  1944. \emph off
  1945. \bar no
  1946. \strikeout off
  1947. \xout off
  1948. \uuline off
  1949. \uwave off
  1950. \noun off
  1951. \color none
  1952. Globin Reads
  1953. \end_layout
  1954. \end_inset
  1955. </cell>
  1956. </row>
  1957. <row>
  1958. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1959. \begin_inset Text
  1960. \begin_layout Plain Layout
  1961. \family roman
  1962. \series medium
  1963. \shape up
  1964. \size normal
  1965. \emph off
  1966. \bar no
  1967. \strikeout off
  1968. \xout off
  1969. \uuline off
  1970. \uwave off
  1971. \noun off
  1972. \color none
  1973. Yes
  1974. \end_layout
  1975. \end_inset
  1976. </cell>
  1977. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1978. \begin_inset Text
  1979. \begin_layout Plain Layout
  1980. \family roman
  1981. \series medium
  1982. \shape up
  1983. \size normal
  1984. \emph off
  1985. \bar no
  1986. \strikeout off
  1987. \xout off
  1988. \uuline off
  1989. \uwave off
  1990. \noun off
  1991. \color none
  1992. 50.4% ± 6.82
  1993. \end_layout
  1994. \end_inset
  1995. </cell>
  1996. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1997. \begin_inset Text
  1998. \begin_layout Plain Layout
  1999. \family roman
  2000. \series medium
  2001. \shape up
  2002. \size normal
  2003. \emph off
  2004. \bar no
  2005. \strikeout off
  2006. \xout off
  2007. \uuline off
  2008. \uwave off
  2009. \noun off
  2010. \color none
  2011. 3.48% ± 2.94
  2012. \end_layout
  2013. \end_inset
  2014. </cell>
  2015. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2016. \begin_inset Text
  2017. \begin_layout Plain Layout
  2018. \family roman
  2019. \series medium
  2020. \shape up
  2021. \size normal
  2022. \emph off
  2023. \bar no
  2024. \strikeout off
  2025. \xout off
  2026. \uuline off
  2027. \uwave off
  2028. \noun off
  2029. \color none
  2030. 53.9% ± 6.81
  2031. \end_layout
  2032. \end_inset
  2033. </cell>
  2034. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2035. \begin_inset Text
  2036. \begin_layout Plain Layout
  2037. \family roman
  2038. \series medium
  2039. \shape up
  2040. \size normal
  2041. \emph off
  2042. \bar no
  2043. \strikeout off
  2044. \xout off
  2045. \uuline off
  2046. \uwave off
  2047. \noun off
  2048. \color none
  2049. 89.7% ± 2.40
  2050. \end_layout
  2051. \end_inset
  2052. </cell>
  2053. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2054. \begin_inset Text
  2055. \begin_layout Plain Layout
  2056. \family roman
  2057. \series medium
  2058. \shape up
  2059. \size normal
  2060. \emph off
  2061. \bar no
  2062. \strikeout off
  2063. \xout off
  2064. \uuline off
  2065. \uwave off
  2066. \noun off
  2067. \color none
  2068. 93.5% ± 5.25
  2069. \end_layout
  2070. \end_inset
  2071. </cell>
  2072. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2073. \begin_inset Text
  2074. \begin_layout Plain Layout
  2075. \family roman
  2076. \series medium
  2077. \shape up
  2078. \size normal
  2079. \emph off
  2080. \bar no
  2081. \strikeout off
  2082. \xout off
  2083. \uuline off
  2084. \uwave off
  2085. \noun off
  2086. \color none
  2087. 6.49% ± 5.25
  2088. \end_layout
  2089. \end_inset
  2090. </cell>
  2091. </row>
  2092. <row>
  2093. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2094. \begin_inset Text
  2095. \begin_layout Plain Layout
  2096. \family roman
  2097. \series medium
  2098. \shape up
  2099. \size normal
  2100. \emph off
  2101. \bar no
  2102. \strikeout off
  2103. \xout off
  2104. \uuline off
  2105. \uwave off
  2106. \noun off
  2107. \color none
  2108. No
  2109. \end_layout
  2110. \end_inset
  2111. </cell>
  2112. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2113. \begin_inset Text
  2114. \begin_layout Plain Layout
  2115. \family roman
  2116. \series medium
  2117. \shape up
  2118. \size normal
  2119. \emph off
  2120. \bar no
  2121. \strikeout off
  2122. \xout off
  2123. \uuline off
  2124. \uwave off
  2125. \noun off
  2126. \color none
  2127. 26.3% ± 8.95
  2128. \end_layout
  2129. \end_inset
  2130. </cell>
  2131. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2132. \begin_inset Text
  2133. \begin_layout Plain Layout
  2134. \family roman
  2135. \series medium
  2136. \shape up
  2137. \size normal
  2138. \emph off
  2139. \bar no
  2140. \strikeout off
  2141. \xout off
  2142. \uuline off
  2143. \uwave off
  2144. \noun off
  2145. \color none
  2146. 44.6% ± 16.6
  2147. \end_layout
  2148. \end_inset
  2149. </cell>
  2150. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2151. \begin_inset Text
  2152. \begin_layout Plain Layout
  2153. \family roman
  2154. \series medium
  2155. \shape up
  2156. \size normal
  2157. \emph off
  2158. \bar no
  2159. \strikeout off
  2160. \xout off
  2161. \uuline off
  2162. \uwave off
  2163. \noun off
  2164. \color none
  2165. 70.1% ± 9.38
  2166. \end_layout
  2167. \end_inset
  2168. </cell>
  2169. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2170. \begin_inset Text
  2171. \begin_layout Plain Layout
  2172. \family roman
  2173. \series medium
  2174. \shape up
  2175. \size normal
  2176. \emph off
  2177. \bar no
  2178. \strikeout off
  2179. \xout off
  2180. \uuline off
  2181. \uwave off
  2182. \noun off
  2183. \color none
  2184. 90.7% ± 5.16
  2185. \end_layout
  2186. \end_inset
  2187. </cell>
  2188. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2189. \begin_inset Text
  2190. \begin_layout Plain Layout
  2191. \family roman
  2192. \series medium
  2193. \shape up
  2194. \size normal
  2195. \emph off
  2196. \bar no
  2197. \strikeout off
  2198. \xout off
  2199. \uuline off
  2200. \uwave off
  2201. \noun off
  2202. \color none
  2203. 38.8% ± 17.1
  2204. \end_layout
  2205. \end_inset
  2206. </cell>
  2207. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2208. \begin_inset Text
  2209. \begin_layout Plain Layout
  2210. \family roman
  2211. \series medium
  2212. \shape up
  2213. \size normal
  2214. \emph off
  2215. \bar no
  2216. \strikeout off
  2217. \xout off
  2218. \uuline off
  2219. \uwave off
  2220. \noun off
  2221. \color none
  2222. 61.2% ± 17.1
  2223. \end_layout
  2224. \end_inset
  2225. </cell>
  2226. </row>
  2227. </lyxtabular>
  2228. \end_inset
  2229. \end_layout
  2230. \begin_layout Plain Layout
  2231. \begin_inset Caption Standard
  2232. \begin_layout Plain Layout
  2233. \series bold
  2234. \begin_inset Argument 1
  2235. status collapsed
  2236. \begin_layout Plain Layout
  2237. Fractions of reads mapping to genomic features in GB and non-GB samples.
  2238. \end_layout
  2239. \end_inset
  2240. \begin_inset CommandInset label
  2241. LatexCommand label
  2242. name "tab:Fractions-of-reads"
  2243. \end_inset
  2244. Fractions of reads mapping to genomic features in GB and non-GB samples.
  2245. \series default
  2246. All values are given as mean ± standard deviation.
  2247. \end_layout
  2248. \end_inset
  2249. \end_layout
  2250. \begin_layout Plain Layout
  2251. \end_layout
  2252. \end_inset
  2253. \end_layout
  2254. \begin_layout Standard
  2255. Another important aspect is that the standard deviations in Table
  2256. \begin_inset CommandInset ref
  2257. LatexCommand ref
  2258. reference "tab:Fractions-of-reads"
  2259. plural "false"
  2260. caps "false"
  2261. noprefix "false"
  2262. \end_inset
  2263. are uniformly smaller in the GB samples than the non-GB ones, indicating
  2264. much greater consistency of yield.
  2265. This is best seen in the percentage of non-globin reads as a fraction of
  2266. total reads aligned to annotated genes (genic reads).
  2267. For the non-GB samples, this measure ranges from 10.9% to 80.9%, while for
  2268. the GB samples it ranges from 81.9% to 99.9% (Figure
  2269. \begin_inset CommandInset ref
  2270. LatexCommand ref
  2271. reference "fig:Fraction-of-genic-reads"
  2272. plural "false"
  2273. caps "false"
  2274. noprefix "false"
  2275. \end_inset
  2276. ).
  2277. This means that for applications where it is critical that each sample
  2278. achieve a specified minimum coverage in order to provide useful information,
  2279. it would be necessary to budget up to 10 times the sequencing depth per
  2280. sample without globin blocking, even though the average yield improvement
  2281. for globin blocking is only 2-fold, because every sample has a chance of
  2282. being 90% globin and 10% useful reads.
  2283. Hence, the more consistent behavior of GB samples makes planning an experiment
  2284. easier and more efficient because it eliminates the need to over-sequence
  2285. every sample in order to guard against the worst case of a high-globin
  2286. fraction.
  2287. \end_layout
  2288. \begin_layout Subsection*
  2289. Globin blocking lowers the noise floor and allows detection of about 2000
  2290. more genes
  2291. \end_layout
  2292. \begin_layout Standard
  2293. \begin_inset Flex TODO Note (inline)
  2294. status open
  2295. \begin_layout Plain Layout
  2296. Remove redundant titles from figures
  2297. \end_layout
  2298. \end_inset
  2299. \end_layout
  2300. \begin_layout Standard
  2301. \begin_inset Float figure
  2302. wide false
  2303. sideways false
  2304. status open
  2305. \begin_layout Plain Layout
  2306. \align center
  2307. \begin_inset Graphics
  2308. filename graphics/Globin Paper/figure2 - aveLogCPM-colored.pdf
  2309. \end_inset
  2310. \end_layout
  2311. \begin_layout Plain Layout
  2312. \begin_inset Caption Standard
  2313. \begin_layout Plain Layout
  2314. \series bold
  2315. \begin_inset Argument 1
  2316. status collapsed
  2317. \begin_layout Plain Layout
  2318. Distributions of average group gene abundances when normalized separately
  2319. or together.
  2320. \end_layout
  2321. \end_inset
  2322. \begin_inset CommandInset label
  2323. LatexCommand label
  2324. name "fig:logcpm-dists"
  2325. \end_inset
  2326. Distributions of average group gene abundances when normalized separately
  2327. or together.
  2328. \series default
  2329. All reads in each sequencing library were aligned to the cyno genome, and
  2330. the number of reads uniquely aligning to each gene was counted.
  2331. Genes with zero counts in all libraries were discarded.
  2332. Libraries were normalized using the TMM method.
  2333. Libraries were split into globin-blocked (GB) and non-GB groups and the
  2334. average abundance for each gene in both groups, measured in log2 counts
  2335. per million reads counted, was computed using the aveLogCPM function.
  2336. The distribution of average gene logCPM values was plotted for both groups
  2337. using a kernel density plot to approximate a continuous distribution.
  2338. The logCPM GB distributions are marked in red, non-GB in blue.
  2339. The black vertical line denotes the chosen detection threshold of -1.
  2340. Top panel: Libraries were split into GB and non-GB groups first and normalized
  2341. separately.
  2342. Bottom panel: Libraries were all normalized together first and then split
  2343. into groups.
  2344. \end_layout
  2345. \end_inset
  2346. \end_layout
  2347. \begin_layout Plain Layout
  2348. \end_layout
  2349. \end_inset
  2350. \end_layout
  2351. \begin_layout Standard
  2352. Since globin blocking yields more usable sequencing depth, it should also
  2353. allow detection of more genes at any given threshold.
  2354. When we looked at the distribution of average normalized logCPM values
  2355. across all libraries for genes with at least one read assigned to them,
  2356. we observed the expected bimodal distribution, with a high-abundance "signal"
  2357. peak representing detected genes and a low-abundance "noise" peak representing
  2358. genes whose read count did not rise above the noise floor (Figure
  2359. \begin_inset CommandInset ref
  2360. LatexCommand ref
  2361. reference "fig:logcpm-dists"
  2362. plural "false"
  2363. caps "false"
  2364. noprefix "false"
  2365. \end_inset
  2366. ).
  2367. Consistent with the 2-fold increase in raw counts assigned to non-globin
  2368. genes, the signal peak for GB samples is shifted to the right relative
  2369. to the non-GB signal peak.
  2370. When all the samples are normalized together, this difference is normalized
  2371. out, lining up the signal peaks, and this reveals that, as expected, the
  2372. noise floor for the GB samples is about 2-fold lower.
  2373. This greater separation between signal and noise peaks in the GB samples
  2374. means that low-expression genes should be more easily detected and more
  2375. precisely quantified than in the non-GB samples.
  2376. \end_layout
  2377. \begin_layout Standard
  2378. \begin_inset Float figure
  2379. wide false
  2380. sideways false
  2381. status open
  2382. \begin_layout Plain Layout
  2383. \align center
  2384. \begin_inset Graphics
  2385. filename graphics/Globin Paper/figure3 - detection.pdf
  2386. \end_inset
  2387. \end_layout
  2388. \begin_layout Plain Layout
  2389. \begin_inset Caption Standard
  2390. \begin_layout Plain Layout
  2391. \series bold
  2392. \begin_inset Argument 1
  2393. status collapsed
  2394. \begin_layout Plain Layout
  2395. Gene detections as a function of abundance thresholds in globin-blocked
  2396. (GB) and non-GB samples.
  2397. \end_layout
  2398. \end_inset
  2399. \begin_inset CommandInset label
  2400. LatexCommand label
  2401. name "fig:Gene-detections"
  2402. \end_inset
  2403. Gene detections as a function of abundance thresholds in globin-blocked
  2404. (GB) and non-GB samples.
  2405. \series default
  2406. Average abundance (logCPM,
  2407. \begin_inset Formula $\log_{2}$
  2408. \end_inset
  2409. counts per million reads counted) was computed by separate group normalization
  2410. as described in Figure
  2411. \begin_inset CommandInset ref
  2412. LatexCommand ref
  2413. reference "fig:logcpm-dists"
  2414. plural "false"
  2415. caps "false"
  2416. noprefix "false"
  2417. \end_inset
  2418. for both the GB and non-GB groups, as well as for all samples considered
  2419. as one large group.
  2420. For each every integer threshold from -2 to 3, the number of genes detected
  2421. at or above that logCPM threshold was plotted for each group.
  2422. \end_layout
  2423. \end_inset
  2424. \end_layout
  2425. \begin_layout Plain Layout
  2426. \end_layout
  2427. \end_inset
  2428. \end_layout
  2429. \begin_layout Standard
  2430. Based on these distributions, we selected a detection threshold of -1, which
  2431. is approximately the leftmost edge of the trough between the signal and
  2432. noise peaks.
  2433. This represents the most liberal possible detection threshold that doesn't
  2434. call substantial numbers of noise genes as detected.
  2435. Among the full dataset, 13429 genes were detected at this threshold, and
  2436. 22276 were not.
  2437. When considering the GB libraries and non-GB libraries separately and re-comput
  2438. ing normalization factors independently within each group, 14535 genes were
  2439. detected in the GB libraries while only 12460 were detected in the non-GB
  2440. libraries.
  2441. Thus, GB allowed the detection of 2000 extra genes that were buried under
  2442. the noise floor without GB.
  2443. This pattern of at least 2000 additional genes detected with GB was also
  2444. consistent across a wide range of possible detection thresholds, from -2
  2445. to 3 (see Figure
  2446. \begin_inset CommandInset ref
  2447. LatexCommand ref
  2448. reference "fig:Gene-detections"
  2449. plural "false"
  2450. caps "false"
  2451. noprefix "false"
  2452. \end_inset
  2453. ).
  2454. \end_layout
  2455. \begin_layout Subsection*
  2456. Globin blocking does not add significant additional noise or decrease sample
  2457. quality
  2458. \end_layout
  2459. \begin_layout Standard
  2460. One potential worry is that the globin blocking protocol could perturb the
  2461. levels of non-globin genes.
  2462. There are two kinds of possible perturbations: systematic and random.
  2463. The former is not a major concern for detection of differential expression,
  2464. since a 2-fold change in every sample has no effect on the relative fold
  2465. change between samples.
  2466. In contrast, random perturbations would increase the noise and obscure
  2467. the signal in the dataset, reducing the capacity to detect differential
  2468. expression.
  2469. \end_layout
  2470. \begin_layout Standard
  2471. \begin_inset Float figure
  2472. wide false
  2473. sideways false
  2474. status open
  2475. \begin_layout Plain Layout
  2476. \align center
  2477. \begin_inset Graphics
  2478. filename graphics/Globin Paper/figure4 - maplot-colored.pdf
  2479. \end_inset
  2480. \end_layout
  2481. \begin_layout Plain Layout
  2482. \begin_inset Caption Standard
  2483. \begin_layout Plain Layout
  2484. \begin_inset Argument 1
  2485. status collapsed
  2486. \begin_layout Plain Layout
  2487. MA plot showing effects of globin blocking on each gene's abundance.
  2488. \end_layout
  2489. \end_inset
  2490. \begin_inset CommandInset label
  2491. LatexCommand label
  2492. name "fig:MA-plot"
  2493. \end_inset
  2494. \series bold
  2495. MA plot showing effects of globin blocking on each gene's abundance.
  2496. \series default
  2497. All libraries were normalized together as described in Figure
  2498. \begin_inset CommandInset ref
  2499. LatexCommand ref
  2500. reference "fig:logcpm-dists"
  2501. plural "false"
  2502. caps "false"
  2503. noprefix "false"
  2504. \end_inset
  2505. , and genes with an average logCPM below -1 were filtered out.
  2506. Each remaining gene was tested for differential abundance with respect
  2507. to globin blocking (GB) using edgeR’s quasi-likelihod F-test, fitting a
  2508. negative binomial generalized linear model to table of read counts in each
  2509. library.
  2510. For each gene, edgeR reported average abundance (logCPM),
  2511. \begin_inset Formula $\log_{2}$
  2512. \end_inset
  2513. fold change (logFC), p-value, and Benjamini-Hochberg adjusted false discovery
  2514. rate (FDR).
  2515. Each gene's logFC was plotted against its logCPM, colored by FDR.
  2516. Red points are significant at ≤10% FDR, and blue are not significant at
  2517. that threshold.
  2518. The alpha and beta globin genes targeted for blocking are marked with large
  2519. triangles, while all other genes are represented as small points.
  2520. \end_layout
  2521. \end_inset
  2522. \end_layout
  2523. \begin_layout Plain Layout
  2524. \end_layout
  2525. \end_inset
  2526. \end_layout
  2527. \begin_layout Standard
  2528. \begin_inset Flex TODO Note (inline)
  2529. status open
  2530. \begin_layout Plain Layout
  2531. Standardize on
  2532. \begin_inset Quotes eld
  2533. \end_inset
  2534. log2
  2535. \begin_inset Quotes erd
  2536. \end_inset
  2537. notation
  2538. \end_layout
  2539. \end_inset
  2540. \end_layout
  2541. \begin_layout Standard
  2542. The data do indeed show small systematic perturbations in gene levels (Figure
  2543. \begin_inset CommandInset ref
  2544. LatexCommand ref
  2545. reference "fig:MA-plot"
  2546. plural "false"
  2547. caps "false"
  2548. noprefix "false"
  2549. \end_inset
  2550. ).
  2551. Other than the 3 designated alpha and beta globin genes, two other genes
  2552. stand out as having especially large negative log fold changes: HBD and
  2553. LOC1021365.
  2554. HBD, delta globin, is most likely targeted by the blocking oligos due to
  2555. high sequence homology with the other globin genes.
  2556. LOC1021365 is the aforementioned ncRNA that is reverse-complementary to
  2557. one of the alpha-like genes and that would be expected to be removed during
  2558. the globin blocking step.
  2559. All other genes appear in a cluster centered vertically at 0, and the vast
  2560. majority of genes in this cluster show an absolute log2(FC) of 0.5 or less.
  2561. Nevertheless, many of these small perturbations are still statistically
  2562. significant, indicating that the globin blocking oligos likely cause very
  2563. small but non-zero systematic perturbations in measured gene expression
  2564. levels.
  2565. \end_layout
  2566. \begin_layout Standard
  2567. \begin_inset Float figure
  2568. wide false
  2569. sideways false
  2570. status open
  2571. \begin_layout Plain Layout
  2572. \align center
  2573. \begin_inset Graphics
  2574. filename graphics/Globin Paper/figure5 - corrplot.pdf
  2575. \end_inset
  2576. \end_layout
  2577. \begin_layout Plain Layout
  2578. \begin_inset Caption Standard
  2579. \begin_layout Plain Layout
  2580. \series bold
  2581. \begin_inset Argument 1
  2582. status collapsed
  2583. \begin_layout Plain Layout
  2584. Comparison of inter-sample gene abundance correlations with and without
  2585. globin blocking.
  2586. \end_layout
  2587. \end_inset
  2588. \begin_inset CommandInset label
  2589. LatexCommand label
  2590. name "fig:gene-abundance-correlations"
  2591. \end_inset
  2592. Comparison of inter-sample gene abundance correlations with and without
  2593. globin blocking (GB).
  2594. \series default
  2595. All libraries were normalized together as described in Figure 2, and genes
  2596. with an average abundance (logCPM, log2 counts per million reads counted)
  2597. less than -1 were filtered out.
  2598. Each gene’s logCPM was computed in each library using the edgeR cpm function.
  2599. For each pair of biological samples, the Pearson correlation between those
  2600. samples' GB libraries was plotted against the correlation between the same
  2601. samples’ non-GB libraries.
  2602. Each point represents an unique pair of samples.
  2603. The solid gray line shows a quantile-quantile plot of distribution of GB
  2604. correlations vs.
  2605. that of non-GB correlations.
  2606. The thin dashed line is the identity line, provided for reference.
  2607. \end_layout
  2608. \end_inset
  2609. \end_layout
  2610. \begin_layout Plain Layout
  2611. \end_layout
  2612. \end_inset
  2613. \end_layout
  2614. \begin_layout Standard
  2615. To evaluate the possibility of globin blocking causing random perturbations
  2616. and reducing sample quality, we computed the Pearson correlation between
  2617. logCPM values for every pair of samples with and without GB and plotted
  2618. them against each other (Figure
  2619. \begin_inset CommandInset ref
  2620. LatexCommand ref
  2621. reference "fig:gene-abundance-correlations"
  2622. plural "false"
  2623. caps "false"
  2624. noprefix "false"
  2625. \end_inset
  2626. ).
  2627. The plot indicated that the GB libraries have higher sample-to-sample correlati
  2628. ons than the non-GB libraries.
  2629. Parametric and nonparametric tests for differences between the correlations
  2630. with and without GB both confirmed that this difference was highly significant
  2631. (2-sided paired t-test: t = 37.2, df = 665, P ≪ 2.2e-16; 2-sided Wilcoxon
  2632. sign-rank test: V = 2195, P ≪ 2.2e-16).
  2633. Performing the same tests on the Spearman correlations gave the same conclusion
  2634. (t-test: t = 26.8, df = 665, P ≪ 2.2e-16; sign-rank test: V = 8781, P ≪ 2.2e-16).
  2635. The edgeR package was used to compute the overall biological coefficient
  2636. of variation (BCV) for GB and non-GB libraries, and found that globin blocking
  2637. resulted in a negligible increase in the BCV (0.417 with GB vs.
  2638. 0.400 without).
  2639. The near equality of the BCVs for both sets indicates that the higher correlati
  2640. ons in the GB libraries are most likely a result of the increased yield
  2641. of useful reads, which reduces the contribution of Poisson counting uncertainty
  2642. to the overall variance of the logCPM values
  2643. \begin_inset CommandInset citation
  2644. LatexCommand cite
  2645. key "McCarthy2012"
  2646. literal "false"
  2647. \end_inset
  2648. .
  2649. This improves the precision of expression measurements and more than offsets
  2650. the negligible increase in BCV.
  2651. \end_layout
  2652. \begin_layout Subsection*
  2653. More differentially expressed genes are detected with globin blocking
  2654. \end_layout
  2655. \begin_layout Standard
  2656. \begin_inset Float table
  2657. wide false
  2658. sideways false
  2659. status open
  2660. \begin_layout Plain Layout
  2661. \align center
  2662. \begin_inset Tabular
  2663. <lyxtabular version="3" rows="5" columns="5">
  2664. <features tabularvalignment="middle">
  2665. <column alignment="center" valignment="top">
  2666. <column alignment="center" valignment="top">
  2667. <column alignment="center" valignment="top">
  2668. <column alignment="center" valignment="top">
  2669. <column alignment="center" valignment="top">
  2670. <row>
  2671. <cell alignment="center" valignment="top" usebox="none">
  2672. \begin_inset Text
  2673. \begin_layout Plain Layout
  2674. \end_layout
  2675. \end_inset
  2676. </cell>
  2677. <cell alignment="center" valignment="top" usebox="none">
  2678. \begin_inset Text
  2679. \begin_layout Plain Layout
  2680. \end_layout
  2681. \end_inset
  2682. </cell>
  2683. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2684. \begin_inset Text
  2685. \begin_layout Plain Layout
  2686. \series bold
  2687. No Globin Blocking
  2688. \end_layout
  2689. \end_inset
  2690. </cell>
  2691. <cell multicolumn="2" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2692. \begin_inset Text
  2693. \begin_layout Plain Layout
  2694. \end_layout
  2695. \end_inset
  2696. </cell>
  2697. <cell multicolumn="2" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2698. \begin_inset Text
  2699. \begin_layout Plain Layout
  2700. \end_layout
  2701. \end_inset
  2702. </cell>
  2703. </row>
  2704. <row>
  2705. <cell alignment="center" valignment="top" usebox="none">
  2706. \begin_inset Text
  2707. \begin_layout Plain Layout
  2708. \end_layout
  2709. \end_inset
  2710. </cell>
  2711. <cell alignment="center" valignment="top" usebox="none">
  2712. \begin_inset Text
  2713. \begin_layout Plain Layout
  2714. \end_layout
  2715. \end_inset
  2716. </cell>
  2717. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2718. \begin_inset Text
  2719. \begin_layout Plain Layout
  2720. \series bold
  2721. Up
  2722. \end_layout
  2723. \end_inset
  2724. </cell>
  2725. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2726. \begin_inset Text
  2727. \begin_layout Plain Layout
  2728. \series bold
  2729. NS
  2730. \end_layout
  2731. \end_inset
  2732. </cell>
  2733. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2734. \begin_inset Text
  2735. \begin_layout Plain Layout
  2736. \series bold
  2737. Down
  2738. \end_layout
  2739. \end_inset
  2740. </cell>
  2741. </row>
  2742. <row>
  2743. <cell multirow="3" alignment="center" valignment="middle" topline="true" bottomline="true" leftline="true" usebox="none">
  2744. \begin_inset Text
  2745. \begin_layout Plain Layout
  2746. \series bold
  2747. Globin-Blocking
  2748. \end_layout
  2749. \end_inset
  2750. </cell>
  2751. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2752. \begin_inset Text
  2753. \begin_layout Plain Layout
  2754. \series bold
  2755. Up
  2756. \end_layout
  2757. \end_inset
  2758. </cell>
  2759. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2760. \begin_inset Text
  2761. \begin_layout Plain Layout
  2762. \family roman
  2763. \series medium
  2764. \shape up
  2765. \size normal
  2766. \emph off
  2767. \bar no
  2768. \strikeout off
  2769. \xout off
  2770. \uuline off
  2771. \uwave off
  2772. \noun off
  2773. \color none
  2774. 231
  2775. \end_layout
  2776. \end_inset
  2777. </cell>
  2778. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2779. \begin_inset Text
  2780. \begin_layout Plain Layout
  2781. \family roman
  2782. \series medium
  2783. \shape up
  2784. \size normal
  2785. \emph off
  2786. \bar no
  2787. \strikeout off
  2788. \xout off
  2789. \uuline off
  2790. \uwave off
  2791. \noun off
  2792. \color none
  2793. 515
  2794. \end_layout
  2795. \end_inset
  2796. </cell>
  2797. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2798. \begin_inset Text
  2799. \begin_layout Plain Layout
  2800. \family roman
  2801. \series medium
  2802. \shape up
  2803. \size normal
  2804. \emph off
  2805. \bar no
  2806. \strikeout off
  2807. \xout off
  2808. \uuline off
  2809. \uwave off
  2810. \noun off
  2811. \color none
  2812. 2
  2813. \end_layout
  2814. \end_inset
  2815. </cell>
  2816. </row>
  2817. <row>
  2818. <cell multirow="4" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2819. \begin_inset Text
  2820. \begin_layout Plain Layout
  2821. \end_layout
  2822. \end_inset
  2823. </cell>
  2824. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2825. \begin_inset Text
  2826. \begin_layout Plain Layout
  2827. \series bold
  2828. NS
  2829. \end_layout
  2830. \end_inset
  2831. </cell>
  2832. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2833. \begin_inset Text
  2834. \begin_layout Plain Layout
  2835. \family roman
  2836. \series medium
  2837. \shape up
  2838. \size normal
  2839. \emph off
  2840. \bar no
  2841. \strikeout off
  2842. \xout off
  2843. \uuline off
  2844. \uwave off
  2845. \noun off
  2846. \color none
  2847. 160
  2848. \end_layout
  2849. \end_inset
  2850. </cell>
  2851. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2852. \begin_inset Text
  2853. \begin_layout Plain Layout
  2854. \family roman
  2855. \series medium
  2856. \shape up
  2857. \size normal
  2858. \emph off
  2859. \bar no
  2860. \strikeout off
  2861. \xout off
  2862. \uuline off
  2863. \uwave off
  2864. \noun off
  2865. \color none
  2866. 11235
  2867. \end_layout
  2868. \end_inset
  2869. </cell>
  2870. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2871. \begin_inset Text
  2872. \begin_layout Plain Layout
  2873. \family roman
  2874. \series medium
  2875. \shape up
  2876. \size normal
  2877. \emph off
  2878. \bar no
  2879. \strikeout off
  2880. \xout off
  2881. \uuline off
  2882. \uwave off
  2883. \noun off
  2884. \color none
  2885. 136
  2886. \end_layout
  2887. \end_inset
  2888. </cell>
  2889. </row>
  2890. <row>
  2891. <cell multirow="4" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2892. \begin_inset Text
  2893. \begin_layout Plain Layout
  2894. \end_layout
  2895. \end_inset
  2896. </cell>
  2897. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2898. \begin_inset Text
  2899. \begin_layout Plain Layout
  2900. \series bold
  2901. Down
  2902. \end_layout
  2903. \end_inset
  2904. </cell>
  2905. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2906. \begin_inset Text
  2907. \begin_layout Plain Layout
  2908. \family roman
  2909. \series medium
  2910. \shape up
  2911. \size normal
  2912. \emph off
  2913. \bar no
  2914. \strikeout off
  2915. \xout off
  2916. \uuline off
  2917. \uwave off
  2918. \noun off
  2919. \color none
  2920. 0
  2921. \end_layout
  2922. \end_inset
  2923. </cell>
  2924. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2925. \begin_inset Text
  2926. \begin_layout Plain Layout
  2927. \family roman
  2928. \series medium
  2929. \shape up
  2930. \size normal
  2931. \emph off
  2932. \bar no
  2933. \strikeout off
  2934. \xout off
  2935. \uuline off
  2936. \uwave off
  2937. \noun off
  2938. \color none
  2939. 548
  2940. \end_layout
  2941. \end_inset
  2942. </cell>
  2943. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2944. \begin_inset Text
  2945. \begin_layout Plain Layout
  2946. \family roman
  2947. \series medium
  2948. \shape up
  2949. \size normal
  2950. \emph off
  2951. \bar no
  2952. \strikeout off
  2953. \xout off
  2954. \uuline off
  2955. \uwave off
  2956. \noun off
  2957. \color none
  2958. 127
  2959. \end_layout
  2960. \end_inset
  2961. </cell>
  2962. </row>
  2963. </lyxtabular>
  2964. \end_inset
  2965. \end_layout
  2966. \begin_layout Plain Layout
  2967. \begin_inset Caption Standard
  2968. \begin_layout Plain Layout
  2969. \series bold
  2970. \begin_inset Argument 1
  2971. status open
  2972. \begin_layout Plain Layout
  2973. Comparison of significantly differentially expressed genes with and without
  2974. globin blocking.
  2975. \end_layout
  2976. \end_inset
  2977. \begin_inset CommandInset label
  2978. LatexCommand label
  2979. name "tab:Comparison-of-significant"
  2980. \end_inset
  2981. Comparison of significantly differentially expressed genes with and without
  2982. globin blocking.
  2983. \series default
  2984. Up, Down: Genes significantly up/down-regulated in post-transplant samples
  2985. relative to pre-transplant samples, with a false discovery rate of 10%
  2986. or less.
  2987. NS: Non-significant genes (false discovery rate greater than 10%).
  2988. \end_layout
  2989. \end_inset
  2990. \end_layout
  2991. \begin_layout Plain Layout
  2992. \end_layout
  2993. \end_inset
  2994. \end_layout
  2995. \begin_layout Standard
  2996. To compare performance on differential gene expression tests, we took subsets
  2997. of both the GB and non-GB libraries with exactly one pre-transplant and
  2998. one post-transplant sample for each animal that had paired samples available
  2999. for analysis (N=7 animals, N=14 samples in each subset).
  3000. The same test for pre- vs.
  3001. post-transplant differential gene expression was performed on the same
  3002. 7 pairs of samples from GB libraries and non-GB libraries, in each case
  3003. using an FDR of 10% as the threshold of significance.
  3004. Out of 12954 genes that passed the detection threshold in both subsets,
  3005. 358 were called significantly differentially expressed in the same direction
  3006. in both sets; 1063 were differentially expressed in the GB set only; 296
  3007. were differentially expressed in the non-GB set only; 2 genes were called
  3008. significantly up in the GB set but significantly down in the non-GB set;
  3009. and the remaining 11235 were not called differentially expressed in either
  3010. set.
  3011. These data are summarized in Table
  3012. \begin_inset CommandInset ref
  3013. LatexCommand ref
  3014. reference "tab:Comparison-of-significant"
  3015. plural "false"
  3016. caps "false"
  3017. noprefix "false"
  3018. \end_inset
  3019. .
  3020. The differences in BCV calculated by EdgeR for these subsets of samples
  3021. were negligible (BCV = 0.302 for GB and 0.297 for non-GB).
  3022. \end_layout
  3023. \begin_layout Standard
  3024. The key point is that the GB data results in substantially more differentially
  3025. expressed calls than the non-GB data.
  3026. Since there is no gold standard for this dataset, it is impossible to be
  3027. certain whether this is due to under-calling of differential expression
  3028. in the non-GB samples or over-calling in the GB samples.
  3029. However, given that both datasets are derived from the same biological
  3030. samples and have nearly equal BCVs, it is more likely that the larger number
  3031. of DE calls in the GB samples are genuine detections that were enabled
  3032. by the higher sequencing depth and measurement precision of the GB samples.
  3033. Note that the same set of genes was considered in both subsets, so the
  3034. larger number of differentially expressed gene calls in the GB data set
  3035. reflects a greater sensitivity to detect significant differential gene
  3036. expression and not simply the larger total number of detected genes in
  3037. GB samples described earlier.
  3038. \end_layout
  3039. \begin_layout Section
  3040. Discussion
  3041. \end_layout
  3042. \begin_layout Standard
  3043. The original experience with whole blood gene expression profiling on DNA
  3044. microarrays demonstrated that the high concentration of globin transcripts
  3045. reduced the sensitivity to detect genes with relatively low expression
  3046. levels, in effect, significantly reducing the sensitivity.
  3047. To address this limitation, commercial protocols for globin reduction were
  3048. developed based on strategies to block globin transcript amplification
  3049. during labeling or physically removing globin transcripts by affinity bead
  3050. methods
  3051. \begin_inset CommandInset citation
  3052. LatexCommand cite
  3053. key "Winn2010"
  3054. literal "false"
  3055. \end_inset
  3056. .
  3057. More recently, using the latest generation of labeling protocols and arrays,
  3058. it was determined that globin reduction was no longer necessary to obtain
  3059. sufficient sensitivity to detect differential transcript expression
  3060. \begin_inset CommandInset citation
  3061. LatexCommand cite
  3062. key "NuGEN2010"
  3063. literal "false"
  3064. \end_inset
  3065. .
  3066. However, we are not aware of any publications using these currently available
  3067. protocols the with latest generation of microarrays that actually compare
  3068. the detection sensitivity with and without globin reduction.
  3069. However, in practice this has now been adopted generally primarily driven
  3070. by concerns for cost control.
  3071. The main objective of our work was to directly test the impact of globin
  3072. gene transcripts and a new globin blocking protocol for application to
  3073. the newest generation of differential gene expression profiling determined
  3074. using next generation sequencing.
  3075. \end_layout
  3076. \begin_layout Standard
  3077. The challenge of doing global gene expression profiling in cynomolgus monkeys
  3078. is that the current available arrays were never designed to comprehensively
  3079. cover this genome and have not been updated since the first assemblies
  3080. of the cynomolgus genome were published.
  3081. Therefore, we determined that the best strategy for peripheral blood profiling
  3082. was to do deep RNA-seq and inform the workflow using the latest available
  3083. genome assembly and annotation
  3084. \begin_inset CommandInset citation
  3085. LatexCommand cite
  3086. key "Wilson2013"
  3087. literal "false"
  3088. \end_inset
  3089. .
  3090. However, it was not immediately clear whether globin reduction was necessary
  3091. for RNA-seq or how much improvement in efficiency or sensitivity to detect
  3092. differential gene expression would be achieved for the added cost and work.
  3093. \end_layout
  3094. \begin_layout Standard
  3095. We only found one report that demonstrated that globin reduction significantly
  3096. improved the effective read yields for sequencing of human peripheral blood
  3097. cell RNA using a DeepSAGE protocol
  3098. \begin_inset CommandInset citation
  3099. LatexCommand cite
  3100. key "Mastrokolias2012"
  3101. literal "false"
  3102. \end_inset
  3103. .
  3104. The approach to DeepSAGE involves two different restriction enzymes that
  3105. purify and then tag small fragments of transcripts at specific locations
  3106. and thus, significantly reduces the complexity of the transcriptome.
  3107. Therefore, we could not determine how DeepSAGE results would translate
  3108. to the common strategy in the field for assaying the entire transcript
  3109. population by whole-transcriptome 3’-end RNA-seq.
  3110. Furthermore, if globin reduction is necessary, we also needed a globin
  3111. reduction method specific to cynomolgus globin sequences that would work
  3112. an organism for which no kit is available off the shelf.
  3113. \end_layout
  3114. \begin_layout Standard
  3115. As mentioned above, the addition of globin blocking oligos has a very small
  3116. impact on measured expression levels of gene expression.
  3117. However, this is a non-issue for the purposes of differential expression
  3118. testing, since a systematic change in a gene in all samples does not affect
  3119. relative expression levels between samples.
  3120. However, we must acknowledge that simple comparisons of gene expression
  3121. data obtained by GB and non-GB protocols are not possible without additional
  3122. normalization.
  3123. \end_layout
  3124. \begin_layout Standard
  3125. More importantly, globin blocking not only nearly doubles the yield of usable
  3126. reads, it also increases inter-sample correlation and sensitivity to detect
  3127. differential gene expression relative to the same set of samples profiled
  3128. without blocking.
  3129. In addition, globin blocking does not add a significant amount of random
  3130. noise to the data.
  3131. Globin blocking thus represents a cost-effective way to squeeze more data
  3132. and statistical power out of the same blood samples and the same amount
  3133. of sequencing.
  3134. In conclusion, globin reduction greatly increases the yield of useful RNA-seq
  3135. reads mapping to the rest of the genome, with minimal perturbations in
  3136. the relative levels of non-globin genes.
  3137. Based on these results, globin transcript reduction using sequence-specific,
  3138. complementary blocking oligonucleotides is recommended for all deep RNA-seq
  3139. of cynomolgus and other nonhuman primate blood samples.
  3140. \end_layout
  3141. \begin_layout Chapter
  3142. Future Directions
  3143. \end_layout
  3144. \begin_layout Itemize
  3145. Study other epigenetic marks in more contexts
  3146. \end_layout
  3147. \begin_deeper
  3148. \begin_layout Itemize
  3149. DNA methylation, histone marks, chromatin accessibility & conformation in
  3150. CD4 T-cells
  3151. \end_layout
  3152. \begin_layout Itemize
  3153. Also look at other types lymphocytes: CD8 T-cells, B-cells, NK cells
  3154. \end_layout
  3155. \end_deeper
  3156. \begin_layout Itemize
  3157. Investigate epigenetic regulation of lifespan extension in
  3158. \emph on
  3159. C.
  3160. elegans
  3161. \end_layout
  3162. \begin_deeper
  3163. \begin_layout Itemize
  3164. ChIP-seq of important transcriptional regulators to see how transcriptional
  3165. drift is prevented
  3166. \end_layout
  3167. \end_deeper
  3168. \begin_layout Standard
  3169. \begin_inset ERT
  3170. status open
  3171. \begin_layout Plain Layout
  3172. % Use "References" instead of "Bibliography"
  3173. \end_layout
  3174. \begin_layout Plain Layout
  3175. \backslash
  3176. renewcommand{
  3177. \backslash
  3178. bibname}{References}
  3179. \end_layout
  3180. \end_inset
  3181. \end_layout
  3182. \begin_layout Standard
  3183. \begin_inset Flex TODO Note (inline)
  3184. status open
  3185. \begin_layout Plain Layout
  3186. Check bib entry formatting & sort order
  3187. \end_layout
  3188. \end_inset
  3189. \end_layout
  3190. \begin_layout Standard
  3191. \begin_inset CommandInset bibtex
  3192. LatexCommand bibtex
  3193. btprint "btPrintCited"
  3194. bibfiles "refs"
  3195. options "bibtotoc,unsrt"
  3196. \end_inset
  3197. \end_layout
  3198. \end_body
  3199. \end_document