thesis.lyx 146 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499
  1. #LyX 2.3 created this file. For more info see http://www.lyx.org/
  2. \lyxformat 544
  3. \begin_document
  4. \begin_header
  5. \save_transient_properties true
  6. \origin unavailable
  7. \textclass extbook
  8. \begin_preamble
  9. % List all used files in log output
  10. \listfiles
  11. % Add a DRAFT watermark
  12. \usepackage{draftwatermark}
  13. \SetWatermarkLightness{0.97}
  14. \SetWatermarkScale{1}
  15. % Set up required header format
  16. \usepackage{fancyhdr}
  17. \pagestyle{fancy}
  18. \renewcommand{\headrulewidth}{0pt}
  19. \rhead{}
  20. \lhead{}
  21. \rfoot{}
  22. \lfoot{}
  23. \cfoot{\thepage} % Page number bottom center
  24. % https://tex.stackexchange.com/questions/65680/automatically-bold-first-sentence-of-a-floats-caption
  25. \usepackage{xstring}
  26. \usepackage{etoolbox}
  27. \usepackage{caption}
  28. \captionsetup{labelfont=bf,tableposition=top}
  29. \makeatletter
  30. \newcommand\formatlabel[1]{%
  31. \noexpandarg
  32. \IfSubStr{#1}{.}{%
  33. \StrBefore{#1}{.}[\firstcaption]%
  34. \StrBehind{#1}{.}[\secondcaption]%
  35. \textbf{\firstcaption.} \secondcaption}{%
  36. #1}%
  37. }
  38. \patchcmd{\@caption}{#3}{\formatlabel{#3}}
  39. \makeatother
  40. \end_preamble
  41. \use_default_options true
  42. \begin_modules
  43. todonotes
  44. \end_modules
  45. \maintain_unincluded_children false
  46. \language english
  47. \language_package default
  48. \inputencoding utf8
  49. \fontencoding default
  50. \font_roman "default" "default"
  51. \font_sans "default" "default"
  52. \font_typewriter "default" "default"
  53. \font_math "auto" "auto"
  54. \font_default_family default
  55. \use_non_tex_fonts false
  56. \font_sc false
  57. \font_osf false
  58. \font_sf_scale 100 100
  59. \font_tt_scale 100 100
  60. \use_microtype false
  61. \use_dash_ligatures true
  62. \graphics default
  63. \default_output_format pdf4
  64. \output_sync 0
  65. \bibtex_command default
  66. \index_command default
  67. \paperfontsize 12
  68. \spacing double
  69. \use_hyperref true
  70. \pdf_bookmarks true
  71. \pdf_bookmarksnumbered false
  72. \pdf_bookmarksopen false
  73. \pdf_bookmarksopenlevel 1
  74. \pdf_breaklinks false
  75. \pdf_pdfborder false
  76. \pdf_colorlinks false
  77. \pdf_backref false
  78. \pdf_pdfusetitle true
  79. \papersize letterpaper
  80. \use_geometry true
  81. \use_package amsmath 1
  82. \use_package amssymb 1
  83. \use_package cancel 1
  84. \use_package esint 1
  85. \use_package mathdots 1
  86. \use_package mathtools 1
  87. \use_package mhchem 1
  88. \use_package stackrel 1
  89. \use_package stmaryrd 1
  90. \use_package undertilde 1
  91. \cite_engine basic
  92. \cite_engine_type default
  93. \biblio_style plain
  94. \use_bibtopic false
  95. \use_indices false
  96. \paperorientation portrait
  97. \suppress_date false
  98. \justification true
  99. \use_refstyle 1
  100. \use_minted 0
  101. \index Index
  102. \shortcut idx
  103. \color #008000
  104. \end_index
  105. \leftmargin 1.5in
  106. \topmargin 1in
  107. \rightmargin 1in
  108. \bottommargin 1in
  109. \secnumdepth 3
  110. \tocdepth 3
  111. \paragraph_separation indent
  112. \paragraph_indentation default
  113. \is_math_indent 0
  114. \math_numbering_side default
  115. \quotes_style english
  116. \dynamic_quotes 0
  117. \papercolumns 1
  118. \papersides 2
  119. \paperpagestyle default
  120. \tracking_changes false
  121. \output_changes false
  122. \html_math_output 0
  123. \html_css_as_file 0
  124. \html_be_strict false
  125. \end_header
  126. \begin_body
  127. \begin_layout Title
  128. Bioinformatic analysis of complex, high-throughput genomic and epigenomic
  129. data in the context of immunology and transplant rejection
  130. \end_layout
  131. \begin_layout Author
  132. A thesis presented
  133. \begin_inset Newline newline
  134. \end_inset
  135. by
  136. \begin_inset Newline newline
  137. \end_inset
  138. Ryan C.
  139. Thompson
  140. \begin_inset Newline newline
  141. \end_inset
  142. to
  143. \begin_inset Newline newline
  144. \end_inset
  145. The Scripps Research Institute Graduate Program
  146. \begin_inset Newline newline
  147. \end_inset
  148. in partial fulfillment of the requirements for the degree of
  149. \begin_inset Newline newline
  150. \end_inset
  151. Doctor of Philosophy in the subject of Biology
  152. \begin_inset Newline newline
  153. \end_inset
  154. for
  155. \begin_inset Newline newline
  156. \end_inset
  157. The Scripps Research Institute
  158. \begin_inset Newline newline
  159. \end_inset
  160. La Jolla, California
  161. \end_layout
  162. \begin_layout Date
  163. May 2019
  164. \end_layout
  165. \begin_layout Standard
  166. [Copyright notice]
  167. \end_layout
  168. \begin_layout Standard
  169. [Thesis acceptance form]
  170. \end_layout
  171. \begin_layout Standard
  172. [Dedication]
  173. \end_layout
  174. \begin_layout Standard
  175. [Acknowledgements]
  176. \end_layout
  177. \begin_layout Standard
  178. \begin_inset CommandInset toc
  179. LatexCommand tableofcontents
  180. \end_inset
  181. \end_layout
  182. \begin_layout Standard
  183. \begin_inset FloatList table
  184. \end_inset
  185. \end_layout
  186. \begin_layout Standard
  187. \begin_inset FloatList figure
  188. \end_inset
  189. \end_layout
  190. \begin_layout Standard
  191. [List of Abbreviations]
  192. \end_layout
  193. \begin_layout Standard
  194. \begin_inset Flex TODO Note (inline)
  195. status open
  196. \begin_layout Plain Layout
  197. Look into auto-generated nomenclature list: https://wiki.lyx.org/Tips/Nomenclature
  198. \end_layout
  199. \end_inset
  200. \end_layout
  201. \begin_layout List of TODOs
  202. \end_layout
  203. \begin_layout Standard
  204. [Abstract]
  205. \end_layout
  206. \begin_layout Chapter*
  207. Abstract
  208. \end_layout
  209. \begin_layout Chapter
  210. Introduction
  211. \end_layout
  212. \begin_layout Section
  213. Background & Significance
  214. \end_layout
  215. \begin_layout Subsection
  216. Biological motivation
  217. \end_layout
  218. \begin_layout Itemize
  219. Rejection is the major long-term threat to organ and tissue grafts
  220. \end_layout
  221. \begin_deeper
  222. \begin_layout Itemize
  223. Common mechanisms of rejection
  224. \end_layout
  225. \begin_layout Itemize
  226. Effective immune suppression requires monitoring for rejection and tuning
  227. \end_layout
  228. \begin_layout Itemize
  229. Current tests for rejection (tissue biopsy) are invasive and biased
  230. \end_layout
  231. \begin_layout Itemize
  232. A blood test based on microarrays would be less biased and invasive
  233. \end_layout
  234. \end_deeper
  235. \begin_layout Itemize
  236. Memory cells are resistant to immune suppression
  237. \end_layout
  238. \begin_deeper
  239. \begin_layout Itemize
  240. Mechanisms of resistance in memory cells are poorly understood
  241. \end_layout
  242. \begin_layout Itemize
  243. A better understanding of immune memory formation is needed
  244. \end_layout
  245. \end_deeper
  246. \begin_layout Itemize
  247. Mesenchymal stem cell infusion is a promising new treatment to prevent/delay
  248. rejection
  249. \end_layout
  250. \begin_deeper
  251. \begin_layout Itemize
  252. Demonstrated in mice, but not yet in primates
  253. \end_layout
  254. \begin_layout Itemize
  255. Mechanism currently unknown, but MSC are known to be immune modulatory
  256. \end_layout
  257. \end_deeper
  258. \begin_layout Subsection
  259. Overview of bioinformatic analysis methods
  260. \end_layout
  261. \begin_layout Standard
  262. An overview of all the methods used, including what problem they solve,
  263. what assumptions they make, and a basic description of how they work.
  264. \end_layout
  265. \begin_layout Itemize
  266. ChIP-seq Peak calling
  267. \end_layout
  268. \begin_deeper
  269. \begin_layout Itemize
  270. Cross-correlation analysis to determine fragment size
  271. \end_layout
  272. \begin_layout Itemize
  273. Broad vs narrow peaks
  274. \end_layout
  275. \begin_layout Itemize
  276. SICER for broad peaks
  277. \end_layout
  278. \begin_layout Itemize
  279. IDR for biologically reproducible peaks
  280. \end_layout
  281. \begin_layout Itemize
  282. csaw peak filtering guidelines for unbiased downstream analysis
  283. \end_layout
  284. \end_deeper
  285. \begin_layout Itemize
  286. Normalization is non-trivial and application-dependant
  287. \end_layout
  288. \begin_deeper
  289. \begin_layout Itemize
  290. Expression arrays: RMA & fRMA; why fRMA is needed
  291. \end_layout
  292. \begin_layout Itemize
  293. Methylation arrays: M-value transformation approximates normal data but
  294. induces heteroskedasticity
  295. \end_layout
  296. \begin_layout Itemize
  297. RNA-seq: normalize based on assumption that the average gene is not changing
  298. \end_layout
  299. \begin_layout Itemize
  300. ChIP-seq: complex with many considerations, dependent on experimental methods,
  301. biological system, and analysis goals
  302. \end_layout
  303. \end_deeper
  304. \begin_layout Itemize
  305. Limma: The standard linear modeling framework for genomics
  306. \end_layout
  307. \begin_deeper
  308. \begin_layout Itemize
  309. empirical Bayes variance modeling: limma's core feature
  310. \end_layout
  311. \begin_layout Itemize
  312. edgeR & DESeq2: Extend with negative bonomial GLM for RNA-seq and other
  313. count data
  314. \end_layout
  315. \begin_layout Itemize
  316. voom: Extend with precision weights to model mean-variance trend
  317. \end_layout
  318. \begin_layout Itemize
  319. arrayWeights and duplicateCorrelation to handle complex variance structures
  320. \end_layout
  321. \end_deeper
  322. \begin_layout Itemize
  323. sva and ComBat for batch correction
  324. \end_layout
  325. \begin_layout Itemize
  326. Factor analysis: PCA, MDS, MOFA
  327. \end_layout
  328. \begin_deeper
  329. \begin_layout Itemize
  330. Batch-corrected PCA is informative, but careful application is required
  331. to avoid bias
  332. \end_layout
  333. \end_deeper
  334. \begin_layout Itemize
  335. Gene set analysis: camera and SPIA
  336. \end_layout
  337. \begin_layout Section
  338. Innovation
  339. \end_layout
  340. \begin_layout Itemize
  341. MSC infusion to improve transplant outcomes (prevent/delay rejection)
  342. \end_layout
  343. \begin_deeper
  344. \begin_layout Itemize
  345. Characterize MSC response to interferon gamma
  346. \end_layout
  347. \begin_layout Itemize
  348. IFN-g is thought to stimulate their function
  349. \end_layout
  350. \begin_layout Itemize
  351. Test IFN-g treated MSC infusion as a therapy to delay graft rejection in
  352. cynomolgus monkeys
  353. \end_layout
  354. \begin_layout Itemize
  355. Monitor animals post-transplant using blood RNA-seq at serial time points
  356. \end_layout
  357. \end_deeper
  358. \begin_layout Itemize
  359. Investigate dynamics of histone marks in CD4 T-cell activation and memory
  360. \end_layout
  361. \begin_deeper
  362. \begin_layout Itemize
  363. Previous studies have looked at single snapshots of histone marks
  364. \end_layout
  365. \begin_layout Itemize
  366. Instead, look at changes in histone marks across activation and memory
  367. \end_layout
  368. \end_deeper
  369. \begin_layout Itemize
  370. High-throughput sequencing and microarray technologies
  371. \end_layout
  372. \begin_deeper
  373. \begin_layout Itemize
  374. Powerful methods for assaying gene expression and epigenetics across entire
  375. genomes
  376. \end_layout
  377. \begin_layout Itemize
  378. Proper analysis requires finding and exploiting systematic genome-wide trends
  379. \end_layout
  380. \end_deeper
  381. \begin_layout Chapter
  382. Reproducible genome-wide epigenetic analysis of H3K4 and H3K27 methylation
  383. in naive and memory CD4 T-cell activation
  384. \end_layout
  385. \begin_layout Standard
  386. \begin_inset Flex TODO Note (inline)
  387. status open
  388. \begin_layout Plain Layout
  389. Author list: Me, Sarah, Dan
  390. \end_layout
  391. \end_inset
  392. \end_layout
  393. \begin_layout Section
  394. Approach
  395. \end_layout
  396. \begin_layout Itemize
  397. CD4 T-cells are central to all adaptive immune responses and memory
  398. \end_layout
  399. \begin_layout Itemize
  400. H3K4 and H3K27 methylation are major epigenetic regulators of gene expression
  401. \end_layout
  402. \begin_layout Itemize
  403. Canonically, H3K4 is activating and H3K27 is inhibitory, but the reality
  404. is complex
  405. \end_layout
  406. \begin_layout Itemize
  407. Looking at these marks during CD4 activation and memory should reveal new
  408. mechanistic details
  409. \end_layout
  410. \begin_layout Itemize
  411. Test
  412. \begin_inset Quotes eld
  413. \end_inset
  414. poised promoter
  415. \begin_inset Quotes erd
  416. \end_inset
  417. hypothesis in which H3K4 and H3K27 are both methylated
  418. \end_layout
  419. \begin_layout Itemize
  420. Expand scope of analysis beyond simple promoter counts
  421. \end_layout
  422. \begin_deeper
  423. \begin_layout Itemize
  424. Analyze peaks genome-wide, including in intergenic regions
  425. \end_layout
  426. \begin_layout Itemize
  427. Analysis of coverage distribution shape within promoters, e.g.
  428. upstream vs downstream coverage
  429. \end_layout
  430. \end_deeper
  431. \begin_layout Section
  432. Methods
  433. \end_layout
  434. \begin_layout Standard
  435. \begin_inset Float figure
  436. wide false
  437. sideways true
  438. status open
  439. \begin_layout Plain Layout
  440. \align center
  441. \begin_inset Graphics
  442. filename graphics/CD4-csaw/rulegraphs/rulegraph-all.pdf
  443. width 100theight%
  444. \end_inset
  445. \end_layout
  446. \begin_layout Plain Layout
  447. \begin_inset Caption Standard
  448. \begin_layout Plain Layout
  449. \begin_inset CommandInset label
  450. LatexCommand label
  451. name "fig:rulegraph"
  452. \end_inset
  453. \series bold
  454. Dependency graph of steps in reproducible workflow
  455. \end_layout
  456. \end_inset
  457. \end_layout
  458. \end_inset
  459. \end_layout
  460. \begin_layout Standard
  461. A reproducible workflow
  462. \begin_inset CommandInset citation
  463. LatexCommand cite
  464. key "gh-cd4-csaw"
  465. literal "false"
  466. \end_inset
  467. was written to analyze the raw ChIP-seq and RNA-seq data from previous
  468. studies
  469. \begin_inset CommandInset citation
  470. LatexCommand cite
  471. key "LaMere2016,LaMere2017"
  472. literal "true"
  473. \end_inset
  474. .
  475. Briefly, this data consists of RNA-seq and ChIP-seq from CD4 T-cells cultured
  476. from 4 donors.
  477. From each donor, naive and memory CD4 T-cells were isolated separately.
  478. Then cultures of both cells were activated [how?], and samples were taken
  479. at 4 time points: Day 0 (pre-activation), Day 1 (early activation), Day
  480. 5 (peak activation), and Day 14 (post-activation).
  481. For each combination of cell type and time point, RNA was isolated, and
  482. ChIP-seq was performed for each of 3 histone marks: H3K4me2, H3K4me3, and
  483. H3K27me3.
  484. The ChIP-seq input was also sequenced for each sample.
  485. The result was 32 samples for each assay.
  486. \end_layout
  487. \begin_layout Standard
  488. Sequence reads were retrieved from the Sequence Read Archive (SRA)
  489. \begin_inset CommandInset citation
  490. LatexCommand cite
  491. key "Leinonen2011"
  492. literal "false"
  493. \end_inset
  494. .
  495. ChIP-seq (and input) reads were aligned to CRCh38 genome assembly using
  496. Bowtie 2
  497. \begin_inset CommandInset citation
  498. LatexCommand cite
  499. key "Langmead2012,Schneider2017,gh-hg38-ref"
  500. literal "false"
  501. \end_inset
  502. .
  503. Artifact regions were annotated using a custom implementation of the GreyListCh
  504. IP algorithm, and these
  505. \begin_inset Quotes eld
  506. \end_inset
  507. greylists
  508. \begin_inset Quotes erd
  509. \end_inset
  510. were merged with the ENCODE blacklist
  511. \begin_inset CommandInset citation
  512. LatexCommand cite
  513. key "greylistchip,Amemiya2019,Dunham2012"
  514. literal "false"
  515. \end_inset
  516. .
  517. Any read or peak overlapping one of these regions was regarded as artifactual
  518. and excluded from downstream analyses.
  519. \end_layout
  520. \begin_layout Standard
  521. Peaks are called using epic, an implementation of the SICER algorithm
  522. \begin_inset CommandInset citation
  523. LatexCommand cite
  524. key "Zang2009,gh-epic"
  525. literal "false"
  526. \end_inset
  527. .
  528. Peaks are also called separately using MACS, but MACS was determined to
  529. be a poor fit for the data, and these peak calls are not used further
  530. \begin_inset CommandInset citation
  531. LatexCommand cite
  532. key "Zhang2008"
  533. literal "false"
  534. \end_inset
  535. .
  536. \end_layout
  537. \begin_layout Itemize
  538. Re-analyze previously published CD4 ChIP-seq & RNA-seq data
  539. \end_layout
  540. \begin_deeper
  541. \begin_layout Itemize
  542. Completely reimplement analysis from scratch as a reproducible workflow
  543. \end_layout
  544. \begin_layout Itemize
  545. Use newly published methods & algorithms not available during the original
  546. analysis: SICER, csaw, MOFA, ComBat, sva, GREAT, and more
  547. \end_layout
  548. \end_deeper
  549. \begin_layout Itemize
  550. SICER, IDR, csaw, & GREAT to call ChIP-seq peaks genome-wide, perform differenti
  551. al abundance analysis, and relate those peaks to gene expression
  552. \end_layout
  553. \begin_layout Itemize
  554. Promoter counts in sliding windows around each gene's highest-expressed
  555. TSS to investigate coverage distribution within promoters
  556. \end_layout
  557. \begin_layout Section
  558. Results
  559. \end_layout
  560. \begin_layout Standard
  561. \begin_inset Note Note
  562. status open
  563. \begin_layout Plain Layout
  564. Focus on what hypotheses were tested, then select figures that show how
  565. those hypotheses were tested, even if the result is a negative.
  566. \end_layout
  567. \end_inset
  568. \end_layout
  569. \begin_layout Subsection
  570. H3K4 and H3K27 methylation occur in broad regions and are enriched near
  571. promoters
  572. \end_layout
  573. \begin_layout Itemize
  574. Figures comparing MACS (non-broad peak caller) to SICER/epic (broad peak
  575. caller)
  576. \end_layout
  577. \begin_deeper
  578. \begin_layout Itemize
  579. Compare peak sizes and number of called peaks
  580. \end_layout
  581. \begin_layout Itemize
  582. Show representative IDR consistency plots for both
  583. \end_layout
  584. \end_deeper
  585. \begin_layout Itemize
  586. IDR analysis shows that SICER-called peaks are much more reproducible between
  587. biological replicates
  588. \end_layout
  589. \begin_layout Itemize
  590. Each histone mark is enriched within a certain radius of gene TSS positions,
  591. but that radius is different for each mark (figure)
  592. \end_layout
  593. \begin_layout Subsection
  594. RNA-seq has a large confounding batch effect
  595. \end_layout
  596. \begin_layout Itemize
  597. RNA-seq batch effect can be partially corrected, but still induces uncorrectable
  598. biases in downstream analysis
  599. \end_layout
  600. \begin_deeper
  601. \begin_layout Itemize
  602. Figure showing MDS plot before & after ComBat
  603. \end_layout
  604. \begin_layout Itemize
  605. Figure relating sample weights to batches, cell types, time points, etc.,
  606. showing that one batch is significantly worse quality
  607. \end_layout
  608. \begin_layout Itemize
  609. Figures showing p-value histograms for within-batch and cross-batch contrasts,
  610. showing that cross-batch contrasts have attenuated signal, as do comparisons
  611. within the bad batch
  612. \end_layout
  613. \end_deeper
  614. \begin_layout Subsection
  615. ChIP-seq must be corrected for hidden confounding factors
  616. \end_layout
  617. \begin_layout Itemize
  618. Figures showing pre- and post-SVA MDS plots for each histone mark
  619. \end_layout
  620. \begin_layout Itemize
  621. Figures showing BCV plots with and without SVA for each histone mark
  622. \end_layout
  623. \begin_layout Subsection
  624. H3K4 and H3K27 promoter methylation has broadly the expected correlation
  625. with gene expression
  626. \end_layout
  627. \begin_layout Itemize
  628. H3K4 is correlated with higher expression, and H3K27 is correlated with
  629. lower expression genome-wide
  630. \end_layout
  631. \begin_layout Itemize
  632. Figures showing these correlations: box/violin plots of expression distributions
  633. with every combination of peak presence/absence in promoter
  634. \end_layout
  635. \begin_layout Itemize
  636. Appropriate statistical tests showing significant differences in expected
  637. directions
  638. \end_layout
  639. \begin_layout Subsection
  640. MOFA recovers biologically relevant variation from blind analysis by correlating
  641. across datasets
  642. \end_layout
  643. \begin_layout Itemize
  644. MOFA
  645. \begin_inset CommandInset citation
  646. LatexCommand cite
  647. key "Argelaguet2018"
  648. literal "false"
  649. \end_inset
  650. successfully separates biologically relevant patterns of variation from
  651. technical confounding factors without knowing the sample labels, by finding
  652. latent factors that explain variation across multiple data sets.
  653. \end_layout
  654. \begin_deeper
  655. \begin_layout Itemize
  656. Figure: show percent-variance-explained plot from MOFA and PCA-like plots
  657. for the relevant latent factors
  658. \end_layout
  659. \begin_layout Itemize
  660. MOFA analysis also shows that batch effect correction can't get much better
  661. than it already is (Figure comparing blind MOFA batch correction to ComBat
  662. correction)
  663. \end_layout
  664. \end_deeper
  665. \begin_layout Subsection
  666. Naive-to-memory convergence observed in H3K4 and RNA-seq data, not in H3K27me3
  667. \end_layout
  668. \begin_layout Itemize
  669. H3K4 and RNA-seq data show clear evidence of naive convergence with memory
  670. between days 1 and 5 (MDS plot figure, also compare with last figure from
  671. \begin_inset CommandInset citation
  672. LatexCommand cite
  673. key "LaMere2016"
  674. literal "false"
  675. \end_inset
  676. )
  677. \end_layout
  678. \begin_layout Standard
  679. \begin_inset Flex TODO Note (inline)
  680. status open
  681. \begin_layout Plain Layout
  682. Note that Sarah has granted permission to use her figures
  683. \end_layout
  684. \end_inset
  685. \end_layout
  686. \begin_layout Itemize
  687. Table of numbers of genes different between N & M at each time point, showing
  688. dwindling differences at later time points, consistent with convergence
  689. \end_layout
  690. \begin_layout Itemize
  691. Similar figure for H3K27me3 showing lack of convergence
  692. \end_layout
  693. \begin_layout Subsection
  694. Effect of promoter coverage upstream vs downstream of TSS
  695. \end_layout
  696. \begin_layout Itemize
  697. H3K4me peaks seem to correlate with increased expression as long as they
  698. are anywhere near the TSS
  699. \end_layout
  700. \begin_layout Itemize
  701. H3K27me3 peaks can have different correlations to gene expression depending
  702. on their position relative to TSS (e.g.
  703. upstream vs downstream) Results consistent with
  704. \begin_inset CommandInset citation
  705. LatexCommand cite
  706. key "Young2011"
  707. literal "false"
  708. \end_inset
  709. \end_layout
  710. \begin_layout Section
  711. Discussion
  712. \end_layout
  713. \begin_layout Itemize
  714. "Promoter radius" is not constant and must be defined empirically for a
  715. given data set
  716. \end_layout
  717. \begin_layout Itemize
  718. MOFA shows great promise for accelerating discovery of major biological
  719. effects in multi-omics datasets
  720. \end_layout
  721. \begin_deeper
  722. \begin_layout Itemize
  723. MOFA was added to this analysis late and played primarily a confirmatory
  724. role, but it was able to confirm earlier conclusions with much less prior
  725. information (no sample labels) and much less analyst effort
  726. \end_layout
  727. \begin_layout Itemize
  728. MOFA confirmed that the already-implemented batch correction in the RNA-seq
  729. data was already performing as well as possible given the limitations of
  730. the data
  731. \end_layout
  732. \end_deeper
  733. \begin_layout Itemize
  734. Naive-to-memory convergence implies that naive cells are differentiating
  735. into memory cells, and that gene expression and H3K4 methylation are involved
  736. in this differentiation while H3K27me3 is less involved
  737. \end_layout
  738. \begin_layout Itemize
  739. H3K27me3, canonically regarded as a deactivating mark, seems to have a more
  740. complex
  741. \end_layout
  742. \begin_layout Itemize
  743. Discuss advantages of developing using a reproducible workflow
  744. \end_layout
  745. \begin_layout Chapter
  746. Improving array-based analyses of transplant rejection by optimizing data
  747. preprocessing
  748. \end_layout
  749. \begin_layout Standard
  750. \begin_inset Note Note
  751. status open
  752. \begin_layout Plain Layout
  753. Author list: Me, Sunil, Tom, Padma, Dan
  754. \end_layout
  755. \end_inset
  756. \end_layout
  757. \begin_layout Section
  758. Approach
  759. \end_layout
  760. \begin_layout Subsection
  761. Proper pre-processing is essential for array data
  762. \end_layout
  763. \begin_layout Standard
  764. \begin_inset Flex TODO Note (inline)
  765. status open
  766. \begin_layout Plain Layout
  767. This section could probably use some citations
  768. \end_layout
  769. \end_inset
  770. \end_layout
  771. \begin_layout Standard
  772. Microarrays, bead ararys, and similar assays produce raw data in the form
  773. of fluorescence intensity measurements, with the each intensity measurement
  774. proportional to the abundance of some fluorescently-labelled target DNA
  775. or RNA sequence that base pairs to a specific probe sequence.
  776. However, these measurements for each probe are also affected my many technical
  777. confounding factors, such as the concentration of target material, strength
  778. of off-target binding, and the sensitivity of the imaging sensor.
  779. Some array designs also use multiple probe sequences for each target.
  780. Hence, extensive pre-processing of array data is necessary to normalize
  781. out the effects of these technical factors and summarize the information
  782. from multiple probes to arrive at a single usable estimate of abundance
  783. or other relevant quantity, such as a ratio of two abundances, for each
  784. target.
  785. \end_layout
  786. \begin_layout Standard
  787. The choice of pre-processing algorithms used in the analysis of an array
  788. data set can have a large effect on the results of that analysis.
  789. However, despite their importance, these steps are often neglected or rushed
  790. in order to get to the more scientifically interesting analysis steps involving
  791. the actual biology of the system under study.
  792. Hence, it is often possible to achieve substantial gains in statistical
  793. power, model goodness-of-fit, or other relevant performance measures, by
  794. checking the assumptions made by each preprocessing step and choosing specific
  795. normalization methods tailored to the specific goals of the current analysis.
  796. \end_layout
  797. \begin_layout Subsection
  798. Normalization for clinical microarray classifiers must be single-channel
  799. \end_layout
  800. \begin_layout Subsubsection
  801. Standard normalization methods are unsuitable for clinical application
  802. \end_layout
  803. \begin_layout Standard
  804. As the cost of performing microarray assays falls, there is increasing interest
  805. in using genomic assays for diagnostic purposes, such as distinguishing
  806. healthy transplants (TX) from transplants undergoing acute rejection (AR)
  807. or acute dysfunction with no rejection (ADNR).
  808. However, the the standard normalization algorithm used for microarray data,
  809. Robust Multi-chip Average (RMA)
  810. \begin_inset CommandInset citation
  811. LatexCommand cite
  812. key "Irizarry2003a"
  813. literal "false"
  814. \end_inset
  815. , is not applicable in a clinical setting.
  816. Two of the steps in RMA, quantile normalization and probe summarization
  817. by median polish, depend on every array in the data set being normalized.
  818. This means that adding or removing any arrays from a data set changes the
  819. normalized values for all arrays, and data sets that have been normalized
  820. separately cannot be compared to each other.
  821. Hence, when using RMA, any arrays to be analyzed together must also be
  822. normalized together, and the set of arrays included in the data set must
  823. be held constant throughout an analysis.
  824. \end_layout
  825. \begin_layout Standard
  826. These limitations present serious impediments to the use of arrays as a
  827. diagnostic tool.
  828. When training a classifier, the samples to be classified must not be involved
  829. in any step of the training process, lest their inclusion bias the training
  830. process.
  831. Once a classifier is deployed in a clinical setting, the samples to be
  832. classified will not even
  833. \emph on
  834. exist
  835. \emph default
  836. at the time of training, so including them would be impossible even if
  837. it were statistically justifiable.
  838. Therefore, any machine learning application for microarrays demands that
  839. the normalized expression values computed for an array must depend only
  840. on information contained within that array.
  841. This would ensure that each array's normalization is independent of every
  842. other array, and that arrays normalized separately can still be compared
  843. to each other without bias.
  844. Such a normalization is commonly referred to as
  845. \begin_inset Quotes eld
  846. \end_inset
  847. single-channel normalization
  848. \begin_inset Quotes erd
  849. \end_inset
  850. .
  851. \end_layout
  852. \begin_layout Subsubsection
  853. Several strategies are available to meet clinical normalization requirements
  854. \end_layout
  855. \begin_layout Standard
  856. Frozen RMA (fRMA) addresses these concerns by replacing the quantile normalizati
  857. on and median polish with alternatives that do not introduce inter-array
  858. dependence, allowing each array to be normalized independently of all others
  859. \begin_inset CommandInset citation
  860. LatexCommand cite
  861. key "McCall2010"
  862. literal "false"
  863. \end_inset
  864. .
  865. Quantile normalization is performed against a pre-generated set of quantiles
  866. learned from a collection of 850 publically available arrays sampled from
  867. a wide variety of tissues in the Gene Expression Omnibus (GEO).
  868. Each array's probe intensity distribution is normalized against these pre-gener
  869. ated quantiles.
  870. The median polish step is replaced with a robust weighted average of probe
  871. intensities, using inverse variance weights learned from the same public
  872. GEO data.
  873. The result is a normalization that satisfies the requirements mentioned
  874. above: each array is normalized independently of all others, and any two
  875. normalized arrays can be compared directly to each other.
  876. \end_layout
  877. \begin_layout Standard
  878. One important limitation of fRMA is that it requires a separate reference
  879. data set from which to learn the parameters (reference quantiles and probe
  880. weights) that will be used to normalize each array.
  881. These parameters are specific to a given array platform, and pre-generated
  882. parameters are only provided for the most common platforms, such as Affymetrix
  883. hgu133plus2.
  884. For a less common platform, such as hthgu133pluspm, is is necessary to
  885. learn custom parameters from in-house data before fRMA can be used to normalize
  886. samples on that platform
  887. \begin_inset CommandInset citation
  888. LatexCommand cite
  889. key "McCall2011"
  890. literal "false"
  891. \end_inset
  892. .
  893. \end_layout
  894. \begin_layout Standard
  895. One other option is the aptly-named Single Channel Array Normalization (SCAN),
  896. which adapts a normalization method originally designed for tiling arrays
  897. \begin_inset CommandInset citation
  898. LatexCommand cite
  899. key "Piccolo2012"
  900. literal "false"
  901. \end_inset
  902. .
  903. SCAN is truly single-channel in that it does not require a set of normalization
  904. paramters estimated from an external set of reference samples like fRMA
  905. does.
  906. \end_layout
  907. \begin_layout Subsection
  908. Heteroskedasticity must be accounted for in methylation array data
  909. \end_layout
  910. \begin_layout Subsubsection
  911. Methylation array preprocessing induces heteroskedasticity
  912. \end_layout
  913. \begin_layout Standard
  914. DNA methylation arrays are a relatively new kind of assay that uses microarrays
  915. to measure the degree of methylation on cytosines in specific regions arrayed
  916. across the genome.
  917. First, bisulfite treatment converts all unmethylated cytosines to uracil
  918. (which then become thymine after amplication) while leaving methylated
  919. cytosines unaffected.
  920. Then, each target region is interrogated with two probes: one binds to
  921. the original genomic sequence and interrogates the level of methylated
  922. DNA, and the other binds to the same sequence with all cytosines replaced
  923. by thymidines and interrogates the level of unmethylated DNA.
  924. \end_layout
  925. \begin_layout Standard
  926. \begin_inset Float figure
  927. wide false
  928. sideways false
  929. status collapsed
  930. \begin_layout Plain Layout
  931. \align center
  932. \begin_inset Graphics
  933. filename graphics/methylvoom/sigmoid.pdf
  934. \end_inset
  935. \end_layout
  936. \begin_layout Plain Layout
  937. \begin_inset Caption Standard
  938. \begin_layout Plain Layout
  939. \begin_inset CommandInset label
  940. LatexCommand label
  941. name "fig:Sigmoid-beta-m-mapping"
  942. \end_inset
  943. \series bold
  944. Sigmoid shape of the mapping between β and M values
  945. \end_layout
  946. \end_inset
  947. \end_layout
  948. \end_inset
  949. \end_layout
  950. \begin_layout Standard
  951. After normalization, these two probe intensities are summarized in one of
  952. two ways, each with advantages and disadvantages.
  953. β
  954. \series bold
  955. \series default
  956. values, interpreted as fraction of DNA copies methylated, range from 0 to
  957. 1.
  958. β
  959. \series bold
  960. \series default
  961. values are conceptually easy to interpret, but the constrained range makes
  962. them unsuitable for linear modeling, and their error distributions are
  963. highly non-normal, which also frustrates linear modeling.
  964. M-values, interpreted as the log ratio of methylated to unmethylated copies,
  965. are computed by mapping the beta values from
  966. \begin_inset Formula $[0,1]$
  967. \end_inset
  968. onto
  969. \begin_inset Formula $(-\infty,+\infty)$
  970. \end_inset
  971. using a sigmoid curve (Figure
  972. \begin_inset CommandInset ref
  973. LatexCommand ref
  974. reference "fig:Sigmoid-beta-m-mapping"
  975. plural "false"
  976. caps "false"
  977. noprefix "false"
  978. \end_inset
  979. ).
  980. This transformation results in values with better statistical perperties:
  981. the unconstrained range is suitable for linear modeling, and the error
  982. distributions are more normal.
  983. Hence, most linear modeling and other statistical testing on methylation
  984. arrays is performed using M-values.
  985. \end_layout
  986. \begin_layout Standard
  987. However, the steep slope of the sigmoid transformation near 0 and 1 tends
  988. to over-exaggerate small differences in β values near those extremes, which
  989. in turn amplifies the error in those values, leading to a U-shaped trend
  990. in the mean-variance curve: extreme values have higher variances than values
  991. near the middle.
  992. This mean-variance dependency must be accounted for when fitting the linear
  993. model for differential methylation, or else the variance will be systematically
  994. overestimated for probes with moderate M-values and underestimated for
  995. probes with extreme M-values.
  996. \end_layout
  997. \begin_layout Subsubsection
  998. The voom method for RNA-seq data can model M-value heteroskedasticity
  999. \end_layout
  1000. \begin_layout Standard
  1001. RNA-seq read count data are also known to show heteroskedasticity, and the
  1002. voom method was developed for modeling this heteroskedasticity by estimating
  1003. the mean-variance trend in the data and using this trend to assign precision
  1004. weights to each observation
  1005. \begin_inset CommandInset citation
  1006. LatexCommand cite
  1007. key "Law2013"
  1008. literal "false"
  1009. \end_inset
  1010. .
  1011. While methylation array data are not derived from counts and have a very
  1012. different mean-variance relationship from that of typical RNA-seq data,
  1013. the voom method makes no specific assumptions on the shape of the mean-variance
  1014. relationship - it only assumes that the relationship is smooth enough to
  1015. model using a lowess curve.
  1016. Hence, the method is sufficiently general to model the mean-variance relationsh
  1017. ip in methylation array data.
  1018. However, the standard implementation of voom assumes that the input is
  1019. given in raw read counts, and it must be adapted to run on methylation
  1020. M-values.
  1021. \end_layout
  1022. \begin_layout Section
  1023. Methods
  1024. \end_layout
  1025. \begin_layout Subsection
  1026. Evaluation of classifier performance with different normalization methods
  1027. \end_layout
  1028. \begin_layout Standard
  1029. For testing different expression microarray normalizations, a data set of
  1030. 157 hgu133plus2 arrays was used, consisting of blood samples from kidney
  1031. transplant patients whose grafts had been graded as TX, AR, or ADNR via
  1032. biopsy and histology (46 TX, 69 AR, 42 ADNR)
  1033. \begin_inset CommandInset citation
  1034. LatexCommand cite
  1035. key "Kurian2014"
  1036. literal "true"
  1037. \end_inset
  1038. .
  1039. Additionally, an external validation set of 75 samples was gathered from
  1040. public GEO data (37 TX, 38 AR, no ADNR).
  1041. \end_layout
  1042. \begin_layout Standard
  1043. \begin_inset Flex TODO Note (inline)
  1044. status collapsed
  1045. \begin_layout Plain Layout
  1046. Find appropriate GEO identifiers if possible.
  1047. Kurian 2014 says GSE15296, but this seems to be different data.
  1048. I also need to look up the GEO accession for the external validation set.
  1049. \end_layout
  1050. \end_inset
  1051. \end_layout
  1052. \begin_layout Standard
  1053. To evaluate the effect of each normalization on classifier performance,
  1054. the same classifier training and validation procedure was used after each
  1055. normalization method.
  1056. The PAM package was used to train a nearest shrunken centroid classifier
  1057. on the training set and select the appropriate threshold for centroid shrinking.
  1058. Then the trained classifier was used to predict the class probabilities
  1059. of each validation sample.
  1060. From these class probabilities, ROC curves and area-under-curve (AUC) values
  1061. were generated
  1062. \begin_inset CommandInset citation
  1063. LatexCommand cite
  1064. key "Turck2011"
  1065. literal "false"
  1066. \end_inset
  1067. .
  1068. Each normalization was tested on two different sets of training and validation
  1069. samples.
  1070. For internal validation, the 115 TX and AR arrays in the internal set were
  1071. split at random into two equal sized sets, one for training and one for
  1072. validation, each containing the same numbers of TX and AR samples as the
  1073. other set.
  1074. For external validation, the full set of 115 TX and AR samples were used
  1075. as a training set, and the 75 external TX and AR samples were used as the
  1076. validation set.
  1077. Thus, 2 ROC curves and AUC values were generated for each normalization
  1078. method: one internal and one external.
  1079. Because the external validation set contains no ADNR samples, only classificati
  1080. on of TX and AR samples was considered.
  1081. The ADNR samples were included during normalization but excluded from all
  1082. classifier training and validation.
  1083. This ensures that the performance on internal and external validation sets
  1084. is directly comparable, since both are performing the same task: distinguising
  1085. TX from AR.
  1086. \end_layout
  1087. \begin_layout Standard
  1088. \begin_inset Flex TODO Note (inline)
  1089. status collapsed
  1090. \begin_layout Plain Layout
  1091. Summarize the get.best.threshold algorithm for PAM threshold selection
  1092. \end_layout
  1093. \end_inset
  1094. \end_layout
  1095. \begin_layout Standard
  1096. Six different normalization strategies were evaluated.
  1097. First, 2 well-known non-single-channel normalization methods were considered:
  1098. RMA and dChip
  1099. \begin_inset CommandInset citation
  1100. LatexCommand cite
  1101. key "Li2001,Irizarry2003a"
  1102. literal "false"
  1103. \end_inset
  1104. .
  1105. Since RMA produces expression values on a log2 scale and dChip does not,
  1106. the values from dChip were log2 transformed after normalization.
  1107. Next, RMA and dChip followed by Global Rank-invariant Set Normalization
  1108. (GRSN) were tested
  1109. \begin_inset CommandInset citation
  1110. LatexCommand cite
  1111. key "Pelz2008"
  1112. literal "false"
  1113. \end_inset
  1114. .
  1115. Post-processing with GRSN does not turn RMA or dChip into single-channel
  1116. methods, but it may help mitigate batch effects and is therefore useful
  1117. as a benchmark.
  1118. Lastly, the two single-channel normalization methods, fRMA and SCAN, were
  1119. tested
  1120. \begin_inset CommandInset citation
  1121. LatexCommand cite
  1122. key "McCall2010,Piccolo2012"
  1123. literal "false"
  1124. \end_inset
  1125. .
  1126. When evaluting internal validation performance, only the 157 internal samples
  1127. were normalized; when evaluating external validation performance, all 157
  1128. internal samples and 75 external samples were normalized together.
  1129. \end_layout
  1130. \begin_layout Standard
  1131. For demonstrating the problem with separate normalization of training and
  1132. validation data, one additional normalization was performed: the internal
  1133. and external sets were each normalized separately using RMA, and the normalized
  1134. data for each set were combined into a single set with no further attempts
  1135. at normalizing between the two sets.
  1136. The represents approximately how RMA would have to be used in a clinical
  1137. setting, where the samples to be classified are not available at the time
  1138. the classifier is trained.
  1139. \end_layout
  1140. \begin_layout Subsection
  1141. Generating custom fRMA vectors for hthgu133pluspm array platform
  1142. \end_layout
  1143. \begin_layout Standard
  1144. In order to enable fRMA normalization for the hthgu133pluspm array platform,
  1145. custom fRMA normalization vectors were trained using the frmaTools package
  1146. \begin_inset CommandInset citation
  1147. LatexCommand cite
  1148. key "McCall2011"
  1149. literal "false"
  1150. \end_inset
  1151. .
  1152. Separate vectors were created for two types of samples: kidney graft biopsy
  1153. samples and blood samples from graft recipients.
  1154. For training, a 341 kidney biopsy samples from 2 data sets and 965 blood
  1155. samples from 5 data sets were used as the reference set.
  1156. Arrays were groups into batches based on unique combinations of sample
  1157. type (blood or biopsy), diagnosis (TX, AR, etc.), data set, and scan date.
  1158. Thus, each batch represents arrays of the same kind that were run together
  1159. on the same day.
  1160. For estimating the probe inverse variance weights, frmaTools requires equal-siz
  1161. ed batches, which means a batch size must be chosen, and then batches smaller
  1162. than that size must be ignored, while batches larger than the chosen size
  1163. must be downsampled.
  1164. This downsampling is performed randomly, so the sampling process is repeated
  1165. 5 times and the resulting normalizations are compared to each other.
  1166. \end_layout
  1167. \begin_layout Standard
  1168. To evaluate the consistency of the generated normalization vectors, the
  1169. 5 fRMA vector sets generated from 5 random batch samplings were each used
  1170. to normalize the same 20 randomly selected samples from each tissue.
  1171. Then the normalized expression values for each probe on each array were
  1172. compared across all normalizations.
  1173. Each fRMA normalization was also compared against the normalized expression
  1174. values obtained by normalizing the same 20 samples with ordinary RMA.
  1175. \end_layout
  1176. \begin_layout Subsection
  1177. Modeling methylation array M-value heteroskedasticy in linear models with
  1178. modified voom implementation
  1179. \end_layout
  1180. \begin_layout Standard
  1181. \begin_inset Flex TODO Note (inline)
  1182. status open
  1183. \begin_layout Plain Layout
  1184. Put code on Github and reference it.
  1185. \end_layout
  1186. \end_inset
  1187. \end_layout
  1188. \begin_layout Standard
  1189. To investigate the whether DNA methylation could be used to distinguish
  1190. between healthy and dysfunctional transplants, a data set of 78 Illumina
  1191. 450k methylation arrays from human kidney graft biopsies was analyzed for
  1192. differential metylation between 4 transplant statuses: healthy transplant
  1193. (TX), transplants undergoing acute rejection (AR), acute dysfunction with
  1194. no rejection (ADNR), and chronic allograpft nephropathy (CAN).
  1195. The data consisted of 33 TX, 9 AR, 8 ADNR, and 28 CAN samples.
  1196. The uneven group sizes are a result of taking the biopsy samples before
  1197. the eventual fate of the transplant was known.
  1198. Each sample was additionally annotated with a donor ID (anonymized), Sex,
  1199. Age, Ethnicity, Creatinine Level, and Diabetes diagnosois (all samples
  1200. in this data set came from patients with either Type 1 or Type 2 diabetes).
  1201. \end_layout
  1202. \begin_layout Standard
  1203. The intensity data were first normalized using subset-quantile within array
  1204. normalization (SWAN)
  1205. \begin_inset CommandInset citation
  1206. LatexCommand cite
  1207. key "Maksimovic2012"
  1208. literal "false"
  1209. \end_inset
  1210. , then converted to intensity ratios (beta values)
  1211. \begin_inset CommandInset citation
  1212. LatexCommand cite
  1213. key "Aryee2014"
  1214. literal "false"
  1215. \end_inset
  1216. .
  1217. Any probes binding to loci that overlapped annotated SNPs were dropped,
  1218. and the annotated sex of each sample was verified against the sex inferred
  1219. from the ratio of median probe intensities for the X and Y chromosomes.
  1220. Then, the ratios were transformed to M-values.
  1221. \end_layout
  1222. \begin_layout Standard
  1223. From the M-values, a series of parallel analyses was performed, each adding
  1224. additional steps into the model fit to accomodate a feature of the data.
  1225. First, a
  1226. \begin_inset Quotes eld
  1227. \end_inset
  1228. basic
  1229. \begin_inset Quotes erd
  1230. \end_inset
  1231. linear modeling analysis was performed, compensating for known features
  1232. of the data using existing tools.
  1233. A design matrix was prepared including terms for the factor of interest
  1234. as well as the known biological confounders: sex, age, ethnicity, and diabetes.
  1235. Since some samples came from the same patients at differen times, the intra-pat
  1236. ient correlation was modeled as a random effect, estimating a shared correlation
  1237. value across all probes
  1238. \begin_inset CommandInset citation
  1239. LatexCommand cite
  1240. key "Smyth2005a"
  1241. literal "false"
  1242. \end_inset
  1243. .
  1244. Then the linear model was fit, and the variance was modeled using empirical
  1245. Bayes squeezing toward the mean-variance trend
  1246. \begin_inset CommandInset citation
  1247. LatexCommand cite
  1248. key "Ritchie2015"
  1249. literal "false"
  1250. \end_inset
  1251. .
  1252. Finally, t-tests or F-tests were performed a appropriate for each test:
  1253. t-tests for single contrasts, and F-tests for multiple contrasts.
  1254. \end_layout
  1255. \begin_layout Standard
  1256. For the second analysis, surrogate variable analysis (SVA) was used to infer
  1257. additional unobserved sources of heterogeneity in the data
  1258. \begin_inset CommandInset citation
  1259. LatexCommand cite
  1260. key "Leek2007"
  1261. literal "false"
  1262. \end_inset
  1263. .
  1264. These surrogate variables were added to the design matrix before fitting
  1265. the linear model.
  1266. In addition, sample quality weights were estimated from the data and used
  1267. during linear modeling to down-weight the contribution of highly variable
  1268. arrays while increasing the weight to arrays with lower variability
  1269. \begin_inset CommandInset citation
  1270. LatexCommand cite
  1271. key "Ritchie2006"
  1272. literal "false"
  1273. \end_inset
  1274. .
  1275. For the third analysis, the voom method was adapted to run on methylation
  1276. array data and used to model the mean-variance trend as individual observation
  1277. weights
  1278. \begin_inset CommandInset citation
  1279. LatexCommand cite
  1280. key "Law2013"
  1281. literal "false"
  1282. \end_inset
  1283. , which were combined with the sample weights
  1284. \begin_inset CommandInset citation
  1285. LatexCommand cite
  1286. key "Liu2015"
  1287. literal "false"
  1288. \end_inset
  1289. .
  1290. Each time weights were used, they were estimated once before estimating
  1291. the random effect correlation value, and then the weights were re-estimated
  1292. taking the random effect into account.
  1293. \end_layout
  1294. \begin_layout Section
  1295. Results
  1296. \end_layout
  1297. \begin_layout Standard
  1298. \begin_inset Flex TODO Note (inline)
  1299. status open
  1300. \begin_layout Plain Layout
  1301. Improve subsection titles in this section
  1302. \end_layout
  1303. \end_inset
  1304. \end_layout
  1305. \begin_layout Subsection
  1306. fRMA eliminates unwanted dependence of classifier training on normalization
  1307. strategy caused by RMA
  1308. \end_layout
  1309. \begin_layout Subsubsection
  1310. Separate normalization with RMA introduces unwanted biases in classification
  1311. \end_layout
  1312. \begin_layout Standard
  1313. \begin_inset Float figure
  1314. wide false
  1315. sideways false
  1316. status open
  1317. \begin_layout Plain Layout
  1318. \align center
  1319. \begin_inset Graphics
  1320. filename graphics/PAM/predplot.pdf
  1321. width 100col%
  1322. groupId colwidth
  1323. \end_inset
  1324. \end_layout
  1325. \begin_layout Plain Layout
  1326. \begin_inset Caption Standard
  1327. \begin_layout Plain Layout
  1328. \begin_inset CommandInset label
  1329. LatexCommand label
  1330. name "fig:Classifier-probabilities-RMA"
  1331. \end_inset
  1332. \series bold
  1333. Classifier probabilities on validation samples when normalized with RMA
  1334. together vs.
  1335. separately.
  1336. \end_layout
  1337. \end_inset
  1338. \end_layout
  1339. \end_inset
  1340. \end_layout
  1341. \begin_layout Standard
  1342. To demonstrate the problem with non-single-channel methods, we considered
  1343. the problem of training a classifier to distinguish TX from AR using the
  1344. samples from the internal set as training data, evaluating performance
  1345. on the external set.
  1346. First, training and evaluation were performed after normalizing all array
  1347. samples together as a single set using RMA, and second, the internal samples
  1348. were normalized separately from the external samples and the training and
  1349. evaluation were repeated.
  1350. For each sample in the validation set, the classifier probabilities from
  1351. both classifiers were plotted against each other (Fig.
  1352. \begin_inset CommandInset ref
  1353. LatexCommand ref
  1354. reference "fig:Classifier-probabilities-RMA"
  1355. plural "false"
  1356. caps "false"
  1357. noprefix "false"
  1358. \end_inset
  1359. ).
  1360. As expected, separate normalization biases the classifier probabilities,
  1361. resulting in several misclassifications.
  1362. In this case, the bias from separate normalization causes the classifier
  1363. to assign a lower probability of AR to every sample.
  1364. \end_layout
  1365. \begin_layout Subsubsection
  1366. fRMA and SCAN achieve maintain classification performance while eliminating
  1367. dependence on normalization strategy
  1368. \end_layout
  1369. \begin_layout Standard
  1370. \begin_inset Float figure
  1371. wide false
  1372. sideways false
  1373. status collapsed
  1374. \begin_layout Plain Layout
  1375. \align center
  1376. \begin_inset Graphics
  1377. filename graphics/PAM/ROC-TXvsAR-internal.pdf
  1378. width 100col%
  1379. groupId colwidth
  1380. \end_inset
  1381. \end_layout
  1382. \begin_layout Plain Layout
  1383. \begin_inset Caption Standard
  1384. \begin_layout Plain Layout
  1385. \begin_inset CommandInset label
  1386. LatexCommand label
  1387. name "fig:ROC-PAM-int"
  1388. \end_inset
  1389. ROC curves for PAM on internal validation data using different normalization
  1390. strategies
  1391. \end_layout
  1392. \end_inset
  1393. \end_layout
  1394. \end_inset
  1395. \end_layout
  1396. \begin_layout Standard
  1397. \begin_inset Float table
  1398. wide false
  1399. sideways false
  1400. status collapsed
  1401. \begin_layout Plain Layout
  1402. \align center
  1403. \begin_inset Tabular
  1404. <lyxtabular version="3" rows="7" columns="4">
  1405. <features tabularvalignment="middle">
  1406. <column alignment="center" valignment="top">
  1407. <column alignment="center" valignment="top">
  1408. <column alignment="center" valignment="top">
  1409. <column alignment="center" valignment="top">
  1410. <row>
  1411. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1412. \begin_inset Text
  1413. \begin_layout Plain Layout
  1414. \family roman
  1415. \series medium
  1416. \shape up
  1417. \size normal
  1418. \emph off
  1419. \bar no
  1420. \strikeout off
  1421. \xout off
  1422. \uuline off
  1423. \uwave off
  1424. \noun off
  1425. \color none
  1426. Normalization
  1427. \end_layout
  1428. \end_inset
  1429. </cell>
  1430. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1431. \begin_inset Text
  1432. \begin_layout Plain Layout
  1433. Single-channel?
  1434. \end_layout
  1435. \end_inset
  1436. </cell>
  1437. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1438. \begin_inset Text
  1439. \begin_layout Plain Layout
  1440. \family roman
  1441. \series medium
  1442. \shape up
  1443. \size normal
  1444. \emph off
  1445. \bar no
  1446. \strikeout off
  1447. \xout off
  1448. \uuline off
  1449. \uwave off
  1450. \noun off
  1451. \color none
  1452. Internal Val.
  1453. AUC
  1454. \end_layout
  1455. \end_inset
  1456. </cell>
  1457. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  1458. \begin_inset Text
  1459. \begin_layout Plain Layout
  1460. External Val.
  1461. AUC
  1462. \end_layout
  1463. \end_inset
  1464. </cell>
  1465. </row>
  1466. <row>
  1467. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1468. \begin_inset Text
  1469. \begin_layout Plain Layout
  1470. \family roman
  1471. \series medium
  1472. \shape up
  1473. \size normal
  1474. \emph off
  1475. \bar no
  1476. \strikeout off
  1477. \xout off
  1478. \uuline off
  1479. \uwave off
  1480. \noun off
  1481. \color none
  1482. RMA
  1483. \end_layout
  1484. \end_inset
  1485. </cell>
  1486. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1487. \begin_inset Text
  1488. \begin_layout Plain Layout
  1489. No
  1490. \end_layout
  1491. \end_inset
  1492. </cell>
  1493. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1494. \begin_inset Text
  1495. \begin_layout Plain Layout
  1496. \family roman
  1497. \series medium
  1498. \shape up
  1499. \size normal
  1500. \emph off
  1501. \bar no
  1502. \strikeout off
  1503. \xout off
  1504. \uuline off
  1505. \uwave off
  1506. \noun off
  1507. \color none
  1508. 0.852
  1509. \end_layout
  1510. \end_inset
  1511. </cell>
  1512. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  1513. \begin_inset Text
  1514. \begin_layout Plain Layout
  1515. \family roman
  1516. \series medium
  1517. \shape up
  1518. \size normal
  1519. \emph off
  1520. \bar no
  1521. \strikeout off
  1522. \xout off
  1523. \uuline off
  1524. \uwave off
  1525. \noun off
  1526. \color none
  1527. 0.713
  1528. \end_layout
  1529. \end_inset
  1530. </cell>
  1531. </row>
  1532. <row>
  1533. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1534. \begin_inset Text
  1535. \begin_layout Plain Layout
  1536. \family roman
  1537. \series medium
  1538. \shape up
  1539. \size normal
  1540. \emph off
  1541. \bar no
  1542. \strikeout off
  1543. \xout off
  1544. \uuline off
  1545. \uwave off
  1546. \noun off
  1547. \color none
  1548. dChip
  1549. \end_layout
  1550. \end_inset
  1551. </cell>
  1552. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1553. \begin_inset Text
  1554. \begin_layout Plain Layout
  1555. No
  1556. \end_layout
  1557. \end_inset
  1558. </cell>
  1559. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1560. \begin_inset Text
  1561. \begin_layout Plain Layout
  1562. \family roman
  1563. \series medium
  1564. \shape up
  1565. \size normal
  1566. \emph off
  1567. \bar no
  1568. \strikeout off
  1569. \xout off
  1570. \uuline off
  1571. \uwave off
  1572. \noun off
  1573. \color none
  1574. 0.891
  1575. \end_layout
  1576. \end_inset
  1577. </cell>
  1578. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  1579. \begin_inset Text
  1580. \begin_layout Plain Layout
  1581. \family roman
  1582. \series medium
  1583. \shape up
  1584. \size normal
  1585. \emph off
  1586. \bar no
  1587. \strikeout off
  1588. \xout off
  1589. \uuline off
  1590. \uwave off
  1591. \noun off
  1592. \color none
  1593. 0.657
  1594. \end_layout
  1595. \end_inset
  1596. </cell>
  1597. </row>
  1598. <row>
  1599. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1600. \begin_inset Text
  1601. \begin_layout Plain Layout
  1602. \family roman
  1603. \series medium
  1604. \shape up
  1605. \size normal
  1606. \emph off
  1607. \bar no
  1608. \strikeout off
  1609. \xout off
  1610. \uuline off
  1611. \uwave off
  1612. \noun off
  1613. \color none
  1614. RMA + GRSN
  1615. \end_layout
  1616. \end_inset
  1617. </cell>
  1618. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1619. \begin_inset Text
  1620. \begin_layout Plain Layout
  1621. No
  1622. \end_layout
  1623. \end_inset
  1624. </cell>
  1625. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1626. \begin_inset Text
  1627. \begin_layout Plain Layout
  1628. \family roman
  1629. \series medium
  1630. \shape up
  1631. \size normal
  1632. \emph off
  1633. \bar no
  1634. \strikeout off
  1635. \xout off
  1636. \uuline off
  1637. \uwave off
  1638. \noun off
  1639. \color none
  1640. 0.816
  1641. \end_layout
  1642. \end_inset
  1643. </cell>
  1644. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  1645. \begin_inset Text
  1646. \begin_layout Plain Layout
  1647. \family roman
  1648. \series medium
  1649. \shape up
  1650. \size normal
  1651. \emph off
  1652. \bar no
  1653. \strikeout off
  1654. \xout off
  1655. \uuline off
  1656. \uwave off
  1657. \noun off
  1658. \color none
  1659. 0.750
  1660. \end_layout
  1661. \end_inset
  1662. </cell>
  1663. </row>
  1664. <row>
  1665. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1666. \begin_inset Text
  1667. \begin_layout Plain Layout
  1668. \family roman
  1669. \series medium
  1670. \shape up
  1671. \size normal
  1672. \emph off
  1673. \bar no
  1674. \strikeout off
  1675. \xout off
  1676. \uuline off
  1677. \uwave off
  1678. \noun off
  1679. \color none
  1680. dChip + GRSN
  1681. \end_layout
  1682. \end_inset
  1683. </cell>
  1684. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1685. \begin_inset Text
  1686. \begin_layout Plain Layout
  1687. No
  1688. \end_layout
  1689. \end_inset
  1690. </cell>
  1691. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1692. \begin_inset Text
  1693. \begin_layout Plain Layout
  1694. \family roman
  1695. \series medium
  1696. \shape up
  1697. \size normal
  1698. \emph off
  1699. \bar no
  1700. \strikeout off
  1701. \xout off
  1702. \uuline off
  1703. \uwave off
  1704. \noun off
  1705. \color none
  1706. 0.875
  1707. \end_layout
  1708. \end_inset
  1709. </cell>
  1710. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  1711. \begin_inset Text
  1712. \begin_layout Plain Layout
  1713. \family roman
  1714. \series medium
  1715. \shape up
  1716. \size normal
  1717. \emph off
  1718. \bar no
  1719. \strikeout off
  1720. \xout off
  1721. \uuline off
  1722. \uwave off
  1723. \noun off
  1724. \color none
  1725. 0.642
  1726. \end_layout
  1727. \end_inset
  1728. </cell>
  1729. </row>
  1730. <row>
  1731. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1732. \begin_inset Text
  1733. \begin_layout Plain Layout
  1734. \family roman
  1735. \series medium
  1736. \shape up
  1737. \size normal
  1738. \emph off
  1739. \bar no
  1740. \strikeout off
  1741. \xout off
  1742. \uuline off
  1743. \uwave off
  1744. \noun off
  1745. \color none
  1746. fRMA
  1747. \end_layout
  1748. \end_inset
  1749. </cell>
  1750. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1751. \begin_inset Text
  1752. \begin_layout Plain Layout
  1753. Yes
  1754. \end_layout
  1755. \end_inset
  1756. </cell>
  1757. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1758. \begin_inset Text
  1759. \begin_layout Plain Layout
  1760. \family roman
  1761. \series medium
  1762. \shape up
  1763. \size normal
  1764. \emph off
  1765. \bar no
  1766. \strikeout off
  1767. \xout off
  1768. \uuline off
  1769. \uwave off
  1770. \noun off
  1771. \color none
  1772. 0.863
  1773. \end_layout
  1774. \end_inset
  1775. </cell>
  1776. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  1777. \begin_inset Text
  1778. \begin_layout Plain Layout
  1779. \family roman
  1780. \series medium
  1781. \shape up
  1782. \size normal
  1783. \emph off
  1784. \bar no
  1785. \strikeout off
  1786. \xout off
  1787. \uuline off
  1788. \uwave off
  1789. \noun off
  1790. \color none
  1791. 0.718
  1792. \end_layout
  1793. \end_inset
  1794. </cell>
  1795. </row>
  1796. <row>
  1797. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1798. \begin_inset Text
  1799. \begin_layout Plain Layout
  1800. \family roman
  1801. \series medium
  1802. \shape up
  1803. \size normal
  1804. \emph off
  1805. \bar no
  1806. \strikeout off
  1807. \xout off
  1808. \uuline off
  1809. \uwave off
  1810. \noun off
  1811. \color none
  1812. SCAN
  1813. \end_layout
  1814. \end_inset
  1815. </cell>
  1816. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1817. \begin_inset Text
  1818. \begin_layout Plain Layout
  1819. Yes
  1820. \end_layout
  1821. \end_inset
  1822. </cell>
  1823. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1824. \begin_inset Text
  1825. \begin_layout Plain Layout
  1826. \family roman
  1827. \series medium
  1828. \shape up
  1829. \size normal
  1830. \emph off
  1831. \bar no
  1832. \strikeout off
  1833. \xout off
  1834. \uuline off
  1835. \uwave off
  1836. \noun off
  1837. \color none
  1838. 0.853
  1839. \end_layout
  1840. \end_inset
  1841. </cell>
  1842. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  1843. \begin_inset Text
  1844. \begin_layout Plain Layout
  1845. \family roman
  1846. \series medium
  1847. \shape up
  1848. \size normal
  1849. \emph off
  1850. \bar no
  1851. \strikeout off
  1852. \xout off
  1853. \uuline off
  1854. \uwave off
  1855. \noun off
  1856. \color none
  1857. 0.689
  1858. \end_layout
  1859. \end_inset
  1860. </cell>
  1861. </row>
  1862. </lyxtabular>
  1863. \end_inset
  1864. \end_layout
  1865. \begin_layout Plain Layout
  1866. \begin_inset Caption Standard
  1867. \begin_layout Plain Layout
  1868. \begin_inset CommandInset label
  1869. LatexCommand label
  1870. name "tab:AUC-PAM"
  1871. \end_inset
  1872. \series bold
  1873. AUC values for internal and external validation with 6 different normalization
  1874. strategies.
  1875. \series default
  1876. Only fRMA and SCAN are single-channel normalizations.
  1877. The other 4 normalizations are for comparison.
  1878. \end_layout
  1879. \end_inset
  1880. \end_layout
  1881. \end_inset
  1882. \end_layout
  1883. \begin_layout Standard
  1884. For internal validation, the 6 methods' AUC values ranged from 0.816 to 0.891,
  1885. as shown in Table
  1886. \begin_inset CommandInset ref
  1887. LatexCommand ref
  1888. reference "tab:AUC-PAM"
  1889. plural "false"
  1890. caps "false"
  1891. noprefix "false"
  1892. \end_inset
  1893. .
  1894. Among the non-single-channel normalizations, dChip outperformed RMA, while
  1895. GRSN reduced the AUC values for both dChip and RMA.
  1896. Both single-channel methods, fRMA and SCAN, slightly outperformed RMA,
  1897. with fRMA ahead of SCAN.
  1898. However, the difference between RMA and fRMA is still quite small.
  1899. Figure
  1900. \begin_inset CommandInset ref
  1901. LatexCommand ref
  1902. reference "fig:ROC-PAM-int"
  1903. plural "false"
  1904. caps "false"
  1905. noprefix "false"
  1906. \end_inset
  1907. shows that the ROC curves for RMA, dChip, and fRMA look very similar and
  1908. relatively smooth, while both GRSN curves and the curve for SCAN have a
  1909. more jagged appearance.
  1910. \end_layout
  1911. \begin_layout Standard
  1912. \begin_inset Float figure
  1913. wide false
  1914. sideways false
  1915. status open
  1916. \begin_layout Plain Layout
  1917. \align center
  1918. \begin_inset Graphics
  1919. filename graphics/PAM/ROC-TXvsAR-external.pdf
  1920. width 100col%
  1921. groupId colwidth
  1922. \end_inset
  1923. \end_layout
  1924. \begin_layout Plain Layout
  1925. \begin_inset Caption Standard
  1926. \begin_layout Plain Layout
  1927. \begin_inset CommandInset label
  1928. LatexCommand label
  1929. name "fig:ROC-PAM-ext"
  1930. \end_inset
  1931. ROC curve for PAM on external validation data using different normalization
  1932. strategies
  1933. \end_layout
  1934. \end_inset
  1935. \end_layout
  1936. \end_inset
  1937. \end_layout
  1938. \begin_layout Standard
  1939. For external validation, as expected, all the AUC values are lower than
  1940. the internal validations, ranging from 0.642 to 0.750 (Table
  1941. \begin_inset CommandInset ref
  1942. LatexCommand ref
  1943. reference "tab:AUC-PAM"
  1944. plural "false"
  1945. caps "false"
  1946. noprefix "false"
  1947. \end_inset
  1948. ).
  1949. With or without GRSN, RMA shows its dominance over dChip in this more challengi
  1950. ng test.
  1951. Unlike in the internal validation, GRSN actually improves the classifier
  1952. performance for RMA, although it does not for dChip.
  1953. Once again, both single-channel methods perform about on par with RMA,
  1954. with fRMA performing slightly better and SCAN performing a bit worse.
  1955. Figure
  1956. \begin_inset CommandInset ref
  1957. LatexCommand ref
  1958. reference "fig:ROC-PAM-ext"
  1959. plural "false"
  1960. caps "false"
  1961. noprefix "false"
  1962. \end_inset
  1963. shows the ROC curves for the external validation test.
  1964. As expected, none of them are as clean-looking as the internal validation
  1965. ROC curves.
  1966. The curves for RMA, RMA+GRSN, and fRMA all look similar, while the other
  1967. curves look more divergent.
  1968. \end_layout
  1969. \begin_layout Subsection
  1970. fRMA with custom-generated vectors enables normalization on hthgu133pluspm
  1971. \end_layout
  1972. \begin_layout Standard
  1973. \begin_inset Float figure
  1974. wide false
  1975. sideways false
  1976. status open
  1977. \begin_layout Plain Layout
  1978. \align center
  1979. \begin_inset Graphics
  1980. filename graphics/frma-pax-bx/batchsize_batches.pdf
  1981. \end_inset
  1982. \end_layout
  1983. \begin_layout Plain Layout
  1984. \begin_inset Caption Standard
  1985. \begin_layout Plain Layout
  1986. \begin_inset CommandInset label
  1987. LatexCommand label
  1988. name "fig:batch-size-batches"
  1989. \end_inset
  1990. \series bold
  1991. Effect of batch size selection on number of batches included in fRMA probe
  1992. weight learning.
  1993. \series default
  1994. For batch sizes ranging from 3 to 15, the number of batches with at least
  1995. that many samples was plotted for biopsy (BX) and blood (PAX) samples.
  1996. The selected batch size, 5, is marked with a dotted vertical line.
  1997. \end_layout
  1998. \end_inset
  1999. \end_layout
  2000. \end_inset
  2001. \end_layout
  2002. \begin_layout Standard
  2003. \begin_inset Float figure
  2004. wide false
  2005. sideways false
  2006. status open
  2007. \begin_layout Plain Layout
  2008. \align center
  2009. \begin_inset Graphics
  2010. filename graphics/frma-pax-bx/batchsize_samples.pdf
  2011. \end_inset
  2012. \end_layout
  2013. \begin_layout Plain Layout
  2014. \begin_inset Caption Standard
  2015. \begin_layout Plain Layout
  2016. \begin_inset CommandInset label
  2017. LatexCommand label
  2018. name "fig:batch-size-samples"
  2019. \end_inset
  2020. \series bold
  2021. Effect of batch size selection on number of samples included in fRMA probe
  2022. weight learning.
  2023. \series default
  2024. For batch sizes ranging from 3 to 15, the number of samples included in
  2025. probe weight training was plotted for biopsy (BX) and blood (PAX) samples.
  2026. The selected batch size, 5, is marked with a dotted vertical line.
  2027. \end_layout
  2028. \end_inset
  2029. \end_layout
  2030. \end_inset
  2031. \end_layout
  2032. \begin_layout Standard
  2033. In order to enable use of fRMA to normalize hthgu133pluspm, a custom set
  2034. of fRMA vectors was created.
  2035. First, an appropriate batch size was chosen by looking at the number of
  2036. batches and number of samples included as a function of batch size (Figures
  2037. \begin_inset CommandInset ref
  2038. LatexCommand ref
  2039. reference "fig:batch-size-batches"
  2040. plural "false"
  2041. caps "false"
  2042. noprefix "false"
  2043. \end_inset
  2044. and
  2045. \begin_inset CommandInset ref
  2046. LatexCommand ref
  2047. reference "fig:batch-size-samples"
  2048. plural "false"
  2049. caps "false"
  2050. noprefix "false"
  2051. \end_inset
  2052. , respectively).
  2053. For a given batch size, all batches with fewer samples that the chosen
  2054. size must be ignored during training, while larger batches must be randomly
  2055. downsampled to the chosen size.
  2056. Hence, the number of samples included for a given batch size equals the
  2057. batch size times the number of batches with at least that many samples.
  2058. From Figure
  2059. \begin_inset CommandInset ref
  2060. LatexCommand ref
  2061. reference "fig:batch-size-samples"
  2062. plural "false"
  2063. caps "false"
  2064. noprefix "false"
  2065. \end_inset
  2066. , it is apparent that that a batch size of 8 maximizes the number of samples
  2067. included in training.
  2068. Increasing the batch size beyond this causes too many smaller batches to
  2069. be excluded, reducing the total number of samples for both tissue types.
  2070. However, a batch size of 8 is not necessarily optimal.
  2071. The article introducing frmaTools concluded that it was highly advantageous
  2072. to use a smaller batch size in order to include more batches, even at the
  2073. expense of including fewer total samples in training
  2074. \begin_inset CommandInset citation
  2075. LatexCommand cite
  2076. key "McCall2011"
  2077. literal "false"
  2078. \end_inset
  2079. .
  2080. To strike an appropriate balance between more batches and more samples,
  2081. a batch size of 5 was chosen.
  2082. For both blood and biopsy samples, this increased the number of batches
  2083. included by 10, with only a modest reduction in the number of samples compared
  2084. to a batch size of 8.
  2085. With a batch size of 5, 26 batches of biopsy samples and 46 batches of
  2086. blood samples were available.
  2087. \end_layout
  2088. \begin_layout Standard
  2089. \begin_inset Float figure
  2090. wide false
  2091. sideways false
  2092. status open
  2093. \begin_layout Plain Layout
  2094. \align center
  2095. \begin_inset Graphics
  2096. filename graphics/frma-pax-bx/M-BX-violin.pdf
  2097. lyxscale 40
  2098. height 80theight%
  2099. groupId m-violin
  2100. \end_inset
  2101. \end_layout
  2102. \begin_layout Plain Layout
  2103. \begin_inset Caption Standard
  2104. \begin_layout Plain Layout
  2105. \begin_inset CommandInset label
  2106. LatexCommand label
  2107. name "fig:m-bx-violin"
  2108. \end_inset
  2109. \series bold
  2110. Violin plot of log ratios between normalizations for 20 biopsy samples.
  2111. \series default
  2112. Each of 20 randomly selected biopsy samples was normalized with RMA and
  2113. with 5 different sets of fRMA vectors.
  2114. This shows the distribution of log ratios between normalized expression
  2115. values, aggregated across all 20 arrays.
  2116. \end_layout
  2117. \end_inset
  2118. \end_layout
  2119. \end_inset
  2120. \end_layout
  2121. \begin_layout Standard
  2122. Since fRMA training requires equal-size batches, larger batches are downsampled
  2123. randomly.
  2124. This introduces a nondeterministic step in the generation of normalization
  2125. vectors.
  2126. To show that this randomness does not substantially change the outcome,
  2127. the random downsampling and subsequent vector learning was repeated 5 times,
  2128. with a different random seed each time.
  2129. 20 samples were selected at random as a test set and normalized with each
  2130. of the 5 sets of fRMA normalization vectors as well as ordinary RMA, and
  2131. the normalized expression values were compared across normalizations.
  2132. Figure
  2133. \begin_inset CommandInset ref
  2134. LatexCommand ref
  2135. reference "fig:m-bx-violin"
  2136. plural "false"
  2137. caps "false"
  2138. noprefix "false"
  2139. \end_inset
  2140. shows a summary of these comparisons for biopsy samples.
  2141. Comparing RMA to each of the 5 fRMA normalizations, the distribution of
  2142. log ratios is somewhat wide, indicating that the normalizations disagree
  2143. on the expression values of a fair number of probe sets.
  2144. In contrast, comparisons of fRMA against fRMA, the vast mojority of probe
  2145. sets have very small log ratios, indicating a very high agreement between
  2146. the normalized values generated by the two normalizations.
  2147. This shows that the fRMA normalization's behavior is not very sensitive
  2148. to the random downsampling of larger batches during training.
  2149. \end_layout
  2150. \begin_layout Standard
  2151. \begin_inset Float figure
  2152. wide false
  2153. sideways false
  2154. status open
  2155. \begin_layout Plain Layout
  2156. \align center
  2157. \begin_inset Graphics
  2158. filename graphics/frma-pax-bx/MA-BX-RMA.fRMA.pdf
  2159. lyxscale 50
  2160. groupId ma-frma
  2161. \end_inset
  2162. \end_layout
  2163. \begin_layout Plain Layout
  2164. \begin_inset Caption Standard
  2165. \begin_layout Plain Layout
  2166. \begin_inset CommandInset label
  2167. LatexCommand label
  2168. name "fig:ma-bx-rma-frma"
  2169. \end_inset
  2170. \series bold
  2171. Representative MA plot comparing RMA against fRMA for 20 biopsy samples.
  2172. \series default
  2173. Averages and log ratios were computed for every probe in each of 20 biopsy
  2174. samples between RMA normalization and fRMA.
  2175. Density of points is represented by darkness of shading, and individual
  2176. outlier points are plotted.
  2177. \end_layout
  2178. \end_inset
  2179. \end_layout
  2180. \end_inset
  2181. \end_layout
  2182. \begin_layout Standard
  2183. \begin_inset Float figure
  2184. wide false
  2185. sideways false
  2186. status open
  2187. \begin_layout Plain Layout
  2188. \align center
  2189. \begin_inset Graphics
  2190. filename graphics/frma-pax-bx/MA-BX-fRMA.fRMA.pdf
  2191. lyxscale 50
  2192. groupId ma-frma
  2193. \end_inset
  2194. \end_layout
  2195. \begin_layout Plain Layout
  2196. \begin_inset Caption Standard
  2197. \begin_layout Plain Layout
  2198. \begin_inset CommandInset label
  2199. LatexCommand label
  2200. name "fig:ma-bx-frma-frma"
  2201. \end_inset
  2202. \series bold
  2203. Representative MA plot comparing different fRMA vectors for 20 biopsy samples.
  2204. \series default
  2205. Averages and log ratios were computed for every probe in each of 20 biopsy
  2206. samples between fRMA normalizations using vectors from two different batch
  2207. samplings.
  2208. Density of points is represented by darkness of shading, and individual
  2209. outlier points are plotted.
  2210. \end_layout
  2211. \end_inset
  2212. \end_layout
  2213. \end_inset
  2214. \end_layout
  2215. \begin_layout Standard
  2216. Figure
  2217. \begin_inset CommandInset ref
  2218. LatexCommand ref
  2219. reference "fig:ma-bx-rma-frma"
  2220. plural "false"
  2221. caps "false"
  2222. noprefix "false"
  2223. \end_inset
  2224. shows an MA plot of the RMA-normalized values against the fRMA-normalized
  2225. values for the same probe sets and arrays, corresponding to the first row
  2226. of Figure
  2227. \begin_inset CommandInset ref
  2228. LatexCommand ref
  2229. reference "fig:m-bx-violin"
  2230. plural "false"
  2231. caps "false"
  2232. noprefix "false"
  2233. \end_inset
  2234. .
  2235. This MA plot shows that not only is there a wide distribution of M-values,
  2236. but the trend of M-values is dependent on the average normalized intensity.
  2237. This is expected, since the overall trend represents the differences in
  2238. the quantile normalization step.
  2239. When running RMA, only the quantiles for these specific 20 arrays are used,
  2240. while for fRMA the quantile distribution is taking from all arrays used
  2241. in training.
  2242. Figure
  2243. \begin_inset CommandInset ref
  2244. LatexCommand ref
  2245. reference "fig:ma-bx-frma-frma"
  2246. plural "false"
  2247. caps "false"
  2248. noprefix "false"
  2249. \end_inset
  2250. shows a similar MA plot comparing 2 different fRMA normalizations, correspondin
  2251. g to the 6th row of Figure
  2252. \begin_inset CommandInset ref
  2253. LatexCommand ref
  2254. reference "fig:m-bx-violin"
  2255. plural "false"
  2256. caps "false"
  2257. noprefix "false"
  2258. \end_inset
  2259. .
  2260. The MA plot is very tightly centered around zero with no visible trend.
  2261. Figures
  2262. \begin_inset CommandInset ref
  2263. LatexCommand ref
  2264. reference "fig:m-pax-violin"
  2265. plural "false"
  2266. caps "false"
  2267. noprefix "false"
  2268. \end_inset
  2269. ,
  2270. \begin_inset CommandInset ref
  2271. LatexCommand ref
  2272. reference "fig:MA-PAX-rma-frma"
  2273. plural "false"
  2274. caps "false"
  2275. noprefix "false"
  2276. \end_inset
  2277. , and
  2278. \begin_inset CommandInset ref
  2279. LatexCommand ref
  2280. reference "fig:ma-bx-frma-frma"
  2281. plural "false"
  2282. caps "false"
  2283. noprefix "false"
  2284. \end_inset
  2285. show exactly the same information for the blood samples, once again comparing
  2286. the normalized expression values between normalizations for all probe sets
  2287. across 20 randomly selected test arrays.
  2288. Once again, there is a wider distribution of log ratios between RMA-normalized
  2289. values and fRMA-normalized, and a much tighter distribution when comparing
  2290. different fRMA normalizations to each other, indicating that the fRMA training
  2291. process is robust to random batch downsampling for the blood samples as
  2292. well.
  2293. \end_layout
  2294. \begin_layout Standard
  2295. \begin_inset Float figure
  2296. wide false
  2297. sideways false
  2298. status open
  2299. \begin_layout Plain Layout
  2300. \align center
  2301. \begin_inset Graphics
  2302. filename graphics/frma-pax-bx/M-PAX-violin.pdf
  2303. lyxscale 40
  2304. height 80theight%
  2305. groupId m-violin
  2306. \end_inset
  2307. \end_layout
  2308. \begin_layout Plain Layout
  2309. \begin_inset Caption Standard
  2310. \begin_layout Plain Layout
  2311. \begin_inset CommandInset label
  2312. LatexCommand label
  2313. name "fig:m-pax-violin"
  2314. \end_inset
  2315. \series bold
  2316. Violin plot of log ratios between normalizations for 20 blood samples.
  2317. \series default
  2318. Each of 20 randomly selected blood samples was normalized with RMA and with
  2319. 5 different sets of fRMA vectors.
  2320. This shows the distribution of log ratios between normalized expression
  2321. values, aggregated across all 20 arrays.
  2322. \end_layout
  2323. \end_inset
  2324. \end_layout
  2325. \end_inset
  2326. \end_layout
  2327. \begin_layout Standard
  2328. \begin_inset Float figure
  2329. wide false
  2330. sideways false
  2331. status open
  2332. \begin_layout Plain Layout
  2333. \align center
  2334. \begin_inset Graphics
  2335. filename graphics/frma-pax-bx/MA-PAX-RMA.fRMA.pdf
  2336. lyxscale 50
  2337. groupId ma-frma
  2338. \end_inset
  2339. \end_layout
  2340. \begin_layout Plain Layout
  2341. \begin_inset Caption Standard
  2342. \begin_layout Plain Layout
  2343. \begin_inset CommandInset label
  2344. LatexCommand label
  2345. name "fig:MA-PAX-rma-frma"
  2346. \end_inset
  2347. \series bold
  2348. Representative MA plot comparing RMA against fRMA for 20 blood samples.
  2349. \series default
  2350. Averages and log ratios were computed for every probe in each of 20 blood
  2351. samples between RMA normalization and fRMA.
  2352. Density of points is represented by darkness of shading, and individual
  2353. outlier points are plotted.
  2354. \end_layout
  2355. \end_inset
  2356. \end_layout
  2357. \begin_layout Plain Layout
  2358. \end_layout
  2359. \end_inset
  2360. \end_layout
  2361. \begin_layout Standard
  2362. \begin_inset Float figure
  2363. wide false
  2364. sideways false
  2365. status open
  2366. \begin_layout Plain Layout
  2367. \align center
  2368. \begin_inset Graphics
  2369. filename graphics/frma-pax-bx/MA-PAX-fRMA.fRMA.pdf
  2370. lyxscale 50
  2371. groupId ma-frma
  2372. \end_inset
  2373. \end_layout
  2374. \begin_layout Plain Layout
  2375. \begin_inset Caption Standard
  2376. \begin_layout Plain Layout
  2377. \begin_inset CommandInset label
  2378. LatexCommand label
  2379. name "fig:MA-PAX-frma-frma"
  2380. \end_inset
  2381. \series bold
  2382. Representative MA plot comparing different fRMA vectors for 20 blood samples.
  2383. \series default
  2384. Averages and log ratios were computed for every probe in each of 20 blood
  2385. samples between fRMA normalizations using vectors from two different batch
  2386. samplings.
  2387. Density of points is represented by darkness of shading, and individual
  2388. outlier points are plotted.
  2389. \end_layout
  2390. \end_inset
  2391. \end_layout
  2392. \end_inset
  2393. \end_layout
  2394. \begin_layout Subsection
  2395. Adapting voom to methylation array data improves model fit
  2396. \end_layout
  2397. \begin_layout Itemize
  2398. voom, precision weights, and sva improved model fit
  2399. \end_layout
  2400. \begin_deeper
  2401. \begin_layout Itemize
  2402. Also increased sensitivity for detecting differential methylation
  2403. \end_layout
  2404. \end_deeper
  2405. \begin_layout Itemize
  2406. Figure showing (a) heteroskedasticy without voom, (b) voom-modeled mean-variance
  2407. trend, and (c) homoskedastic mean-variance trend after running voom
  2408. \end_layout
  2409. \begin_layout Standard
  2410. \begin_inset Flex TODO Note (inline)
  2411. status open
  2412. \begin_layout Plain Layout
  2413. Write figure legends
  2414. \end_layout
  2415. \end_inset
  2416. \end_layout
  2417. \begin_layout Standard
  2418. \begin_inset Float figure
  2419. wide false
  2420. sideways false
  2421. status open
  2422. \begin_layout Plain Layout
  2423. \begin_inset Graphics
  2424. filename graphics/methylvoom/unadj.dupCor/meanvar-trends-PAGE1-RASTER.png
  2425. lyxscale 15
  2426. groupId raster-600ppi
  2427. \end_inset
  2428. \end_layout
  2429. \begin_layout Plain Layout
  2430. \begin_inset Caption Standard
  2431. \begin_layout Plain Layout
  2432. \series bold
  2433. \begin_inset CommandInset label
  2434. LatexCommand label
  2435. name "fig:meanvar-basic"
  2436. \end_inset
  2437. Mean-variance trend with no SVA or weights
  2438. \end_layout
  2439. \end_inset
  2440. \end_layout
  2441. \end_inset
  2442. \end_layout
  2443. \begin_layout Standard
  2444. \begin_inset Float figure
  2445. wide false
  2446. sideways false
  2447. status open
  2448. \begin_layout Plain Layout
  2449. \begin_inset Graphics
  2450. filename graphics/methylvoom/unadj.dupcor.sva.aw/meanvar-trends-PAGE1-RASTER.png
  2451. lyxscale 15
  2452. groupId raster-600ppi
  2453. \end_inset
  2454. \end_layout
  2455. \begin_layout Plain Layout
  2456. \begin_inset Caption Standard
  2457. \begin_layout Plain Layout
  2458. \series bold
  2459. \begin_inset CommandInset label
  2460. LatexCommand label
  2461. name "fig:meanvar-sva-aw"
  2462. \end_inset
  2463. Mean-variance trend with no SVA and sample quality weights.
  2464. \end_layout
  2465. \end_inset
  2466. \end_layout
  2467. \end_inset
  2468. \end_layout
  2469. \begin_layout Standard
  2470. \begin_inset Float figure
  2471. wide false
  2472. sideways false
  2473. status open
  2474. \begin_layout Plain Layout
  2475. \begin_inset Graphics
  2476. filename graphics/methylvoom/unadj.dupCor.sva.voomaw/meanvar-trends-PAGE1-RASTER.png
  2477. lyxscale 15
  2478. groupId raster-600ppi
  2479. \end_inset
  2480. \end_layout
  2481. \begin_layout Plain Layout
  2482. \begin_inset Caption Standard
  2483. \begin_layout Plain Layout
  2484. \series bold
  2485. \begin_inset CommandInset label
  2486. LatexCommand label
  2487. name "fig:voom-sva-voomaw"
  2488. \end_inset
  2489. Mean-variance trend modelled by voom, with SVA and sample weights.
  2490. \series default
  2491. The y-axis is the square root of the standard deviation for each probe,
  2492. because this is the scale on which voom fits its lowess curve.
  2493. \end_layout
  2494. \end_inset
  2495. \end_layout
  2496. \end_inset
  2497. \begin_inset Float figure
  2498. wide false
  2499. sideways false
  2500. status open
  2501. \begin_layout Plain Layout
  2502. \begin_inset Graphics
  2503. filename graphics/methylvoom/unadj.dupCor.sva.voomaw/meanvar-trends-PAGE2-RASTER.png
  2504. lyxscale 15
  2505. groupId raster-600ppi
  2506. \end_inset
  2507. \end_layout
  2508. \begin_layout Plain Layout
  2509. \begin_inset Caption Standard
  2510. \begin_layout Plain Layout
  2511. \series bold
  2512. \begin_inset CommandInset label
  2513. LatexCommand label
  2514. name "fig:meanvar-sva-voomaw"
  2515. \end_inset
  2516. Residual mean-variance trend after modeling with SVA, sample weights, and
  2517. voom.
  2518. \end_layout
  2519. \end_inset
  2520. \end_layout
  2521. \end_inset
  2522. \end_layout
  2523. \begin_layout Standard
  2524. \begin_inset Float table
  2525. wide false
  2526. sideways false
  2527. status open
  2528. \begin_layout Plain Layout
  2529. \align center
  2530. \begin_inset Tabular
  2531. <lyxtabular version="3" rows="5" columns="2">
  2532. <features tabularvalignment="middle">
  2533. <column alignment="center" valignment="top">
  2534. <column alignment="center" valignment="top">
  2535. <row>
  2536. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2537. \begin_inset Text
  2538. \begin_layout Plain Layout
  2539. Covariate
  2540. \end_layout
  2541. \end_inset
  2542. </cell>
  2543. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2544. \begin_inset Text
  2545. \begin_layout Plain Layout
  2546. p-value
  2547. \end_layout
  2548. \end_inset
  2549. </cell>
  2550. </row>
  2551. <row>
  2552. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2553. \begin_inset Text
  2554. \begin_layout Plain Layout
  2555. Transplant Status
  2556. \end_layout
  2557. \end_inset
  2558. </cell>
  2559. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2560. \begin_inset Text
  2561. \begin_layout Plain Layout
  2562. 0.404
  2563. \end_layout
  2564. \end_inset
  2565. </cell>
  2566. </row>
  2567. <row>
  2568. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2569. \begin_inset Text
  2570. \begin_layout Plain Layout
  2571. Diabetes Diagnosis
  2572. \end_layout
  2573. \end_inset
  2574. </cell>
  2575. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2576. \begin_inset Text
  2577. \begin_layout Plain Layout
  2578. 0.00106
  2579. \end_layout
  2580. \end_inset
  2581. </cell>
  2582. </row>
  2583. <row>
  2584. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2585. \begin_inset Text
  2586. \begin_layout Plain Layout
  2587. Sex
  2588. \end_layout
  2589. \end_inset
  2590. </cell>
  2591. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2592. \begin_inset Text
  2593. \begin_layout Plain Layout
  2594. 0.148
  2595. \end_layout
  2596. \end_inset
  2597. </cell>
  2598. </row>
  2599. <row>
  2600. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2601. \begin_inset Text
  2602. \begin_layout Plain Layout
  2603. Age
  2604. \end_layout
  2605. \end_inset
  2606. </cell>
  2607. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2608. \begin_inset Text
  2609. \begin_layout Plain Layout
  2610. 0.212
  2611. \end_layout
  2612. \end_inset
  2613. </cell>
  2614. </row>
  2615. </lyxtabular>
  2616. \end_inset
  2617. \end_layout
  2618. \begin_layout Plain Layout
  2619. \begin_inset Caption Standard
  2620. \begin_layout Plain Layout
  2621. \begin_inset CommandInset label
  2622. LatexCommand label
  2623. name "tab:weight-covariate-tests"
  2624. \end_inset
  2625. Association of sample weights with clinical covariates.
  2626. \end_layout
  2627. \end_inset
  2628. \end_layout
  2629. \begin_layout Plain Layout
  2630. \end_layout
  2631. \end_inset
  2632. \end_layout
  2633. \begin_layout Standard
  2634. \begin_inset Float table
  2635. wide false
  2636. sideways false
  2637. status open
  2638. \begin_layout Plain Layout
  2639. \begin_inset Tabular
  2640. <lyxtabular version="3" rows="5" columns="4">
  2641. <features tabularvalignment="middle">
  2642. <column alignment="center" valignment="top">
  2643. <column alignment="center" valignment="top">
  2644. <column alignment="center" valignment="top">
  2645. <column alignment="center" valignment="top">
  2646. <row>
  2647. <cell alignment="center" valignment="top" usebox="none">
  2648. \begin_inset Text
  2649. \begin_layout Plain Layout
  2650. \end_layout
  2651. \end_inset
  2652. </cell>
  2653. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2654. \begin_inset Text
  2655. \begin_layout Plain Layout
  2656. Analysis
  2657. \end_layout
  2658. \end_inset
  2659. </cell>
  2660. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2661. \begin_inset Text
  2662. \begin_layout Plain Layout
  2663. \end_layout
  2664. \end_inset
  2665. </cell>
  2666. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2667. \begin_inset Text
  2668. \begin_layout Plain Layout
  2669. \end_layout
  2670. \end_inset
  2671. </cell>
  2672. </row>
  2673. <row>
  2674. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2675. \begin_inset Text
  2676. \begin_layout Plain Layout
  2677. Contrast
  2678. \end_layout
  2679. \end_inset
  2680. </cell>
  2681. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2682. \begin_inset Text
  2683. \begin_layout Plain Layout
  2684. A
  2685. \end_layout
  2686. \end_inset
  2687. </cell>
  2688. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2689. \begin_inset Text
  2690. \begin_layout Plain Layout
  2691. B
  2692. \end_layout
  2693. \end_inset
  2694. </cell>
  2695. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2696. \begin_inset Text
  2697. \begin_layout Plain Layout
  2698. C
  2699. \end_layout
  2700. \end_inset
  2701. </cell>
  2702. </row>
  2703. <row>
  2704. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2705. \begin_inset Text
  2706. \begin_layout Plain Layout
  2707. TX vs AR
  2708. \end_layout
  2709. \end_inset
  2710. </cell>
  2711. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2712. \begin_inset Text
  2713. \begin_layout Plain Layout
  2714. 0
  2715. \end_layout
  2716. \end_inset
  2717. </cell>
  2718. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2719. \begin_inset Text
  2720. \begin_layout Plain Layout
  2721. 25
  2722. \end_layout
  2723. \end_inset
  2724. </cell>
  2725. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2726. \begin_inset Text
  2727. \begin_layout Plain Layout
  2728. 22
  2729. \end_layout
  2730. \end_inset
  2731. </cell>
  2732. </row>
  2733. <row>
  2734. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2735. \begin_inset Text
  2736. \begin_layout Plain Layout
  2737. TX vs ADNR
  2738. \end_layout
  2739. \end_inset
  2740. </cell>
  2741. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2742. \begin_inset Text
  2743. \begin_layout Plain Layout
  2744. 7
  2745. \end_layout
  2746. \end_inset
  2747. </cell>
  2748. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2749. \begin_inset Text
  2750. \begin_layout Plain Layout
  2751. 338
  2752. \end_layout
  2753. \end_inset
  2754. </cell>
  2755. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2756. \begin_inset Text
  2757. \begin_layout Plain Layout
  2758. 369
  2759. \end_layout
  2760. \end_inset
  2761. </cell>
  2762. </row>
  2763. <row>
  2764. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2765. \begin_inset Text
  2766. \begin_layout Plain Layout
  2767. TX vs CAN
  2768. \end_layout
  2769. \end_inset
  2770. </cell>
  2771. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2772. \begin_inset Text
  2773. \begin_layout Plain Layout
  2774. 0
  2775. \end_layout
  2776. \end_inset
  2777. </cell>
  2778. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2779. \begin_inset Text
  2780. \begin_layout Plain Layout
  2781. 231
  2782. \end_layout
  2783. \end_inset
  2784. </cell>
  2785. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2786. \begin_inset Text
  2787. \begin_layout Plain Layout
  2788. 278
  2789. \end_layout
  2790. \end_inset
  2791. </cell>
  2792. </row>
  2793. </lyxtabular>
  2794. \end_inset
  2795. \end_layout
  2796. \begin_layout Plain Layout
  2797. \begin_inset Caption Standard
  2798. \begin_layout Plain Layout
  2799. \begin_inset CommandInset label
  2800. LatexCommand label
  2801. name "tab:methyl-num-signif"
  2802. \end_inset
  2803. \series bold
  2804. Number of probes significant at 10% FDR for each contrast in each analysis.
  2805. \end_layout
  2806. \end_inset
  2807. \end_layout
  2808. \end_inset
  2809. \end_layout
  2810. \begin_layout Standard
  2811. \begin_inset Flex TODO Note (inline)
  2812. status open
  2813. \begin_layout Plain Layout
  2814. Cite the pi0 estimation method from propTrueNull
  2815. \end_layout
  2816. \end_inset
  2817. \end_layout
  2818. \begin_layout Standard
  2819. \begin_inset Float table
  2820. wide false
  2821. sideways false
  2822. status open
  2823. \begin_layout Plain Layout
  2824. \begin_inset Tabular
  2825. <lyxtabular version="3" rows="5" columns="4">
  2826. <features tabularvalignment="middle">
  2827. <column alignment="center" valignment="top">
  2828. <column alignment="center" valignment="top">
  2829. <column alignment="center" valignment="top">
  2830. <column alignment="center" valignment="top">
  2831. <row>
  2832. <cell alignment="center" valignment="top" usebox="none">
  2833. \begin_inset Text
  2834. \begin_layout Plain Layout
  2835. \end_layout
  2836. \end_inset
  2837. </cell>
  2838. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2839. \begin_inset Text
  2840. \begin_layout Plain Layout
  2841. Analysis
  2842. \end_layout
  2843. \end_inset
  2844. </cell>
  2845. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2846. \begin_inset Text
  2847. \begin_layout Plain Layout
  2848. \end_layout
  2849. \end_inset
  2850. </cell>
  2851. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2852. \begin_inset Text
  2853. \begin_layout Plain Layout
  2854. \end_layout
  2855. \end_inset
  2856. </cell>
  2857. </row>
  2858. <row>
  2859. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2860. \begin_inset Text
  2861. \begin_layout Plain Layout
  2862. Contrast
  2863. \end_layout
  2864. \end_inset
  2865. </cell>
  2866. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2867. \begin_inset Text
  2868. \begin_layout Plain Layout
  2869. A
  2870. \end_layout
  2871. \end_inset
  2872. </cell>
  2873. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2874. \begin_inset Text
  2875. \begin_layout Plain Layout
  2876. B
  2877. \end_layout
  2878. \end_inset
  2879. </cell>
  2880. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2881. \begin_inset Text
  2882. \begin_layout Plain Layout
  2883. C
  2884. \end_layout
  2885. \end_inset
  2886. </cell>
  2887. </row>
  2888. <row>
  2889. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2890. \begin_inset Text
  2891. \begin_layout Plain Layout
  2892. TX vs AR
  2893. \end_layout
  2894. \end_inset
  2895. </cell>
  2896. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2897. \begin_inset Text
  2898. \begin_layout Plain Layout
  2899. 0
  2900. \end_layout
  2901. \end_inset
  2902. </cell>
  2903. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2904. \begin_inset Text
  2905. \begin_layout Plain Layout
  2906. 10,063
  2907. \end_layout
  2908. \end_inset
  2909. </cell>
  2910. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2911. \begin_inset Text
  2912. \begin_layout Plain Layout
  2913. 11,225
  2914. \end_layout
  2915. \end_inset
  2916. </cell>
  2917. </row>
  2918. <row>
  2919. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2920. \begin_inset Text
  2921. \begin_layout Plain Layout
  2922. TX vs ADNR
  2923. \end_layout
  2924. \end_inset
  2925. </cell>
  2926. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2927. \begin_inset Text
  2928. \begin_layout Plain Layout
  2929. 27
  2930. \end_layout
  2931. \end_inset
  2932. </cell>
  2933. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2934. \begin_inset Text
  2935. \begin_layout Plain Layout
  2936. 12,674
  2937. \end_layout
  2938. \end_inset
  2939. </cell>
  2940. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2941. \begin_inset Text
  2942. \begin_layout Plain Layout
  2943. 13,086
  2944. \end_layout
  2945. \end_inset
  2946. </cell>
  2947. </row>
  2948. <row>
  2949. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2950. \begin_inset Text
  2951. \begin_layout Plain Layout
  2952. TX vs CAN
  2953. \end_layout
  2954. \end_inset
  2955. </cell>
  2956. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2957. \begin_inset Text
  2958. \begin_layout Plain Layout
  2959. 966
  2960. \end_layout
  2961. \end_inset
  2962. </cell>
  2963. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2964. \begin_inset Text
  2965. \begin_layout Plain Layout
  2966. 20,039
  2967. \end_layout
  2968. \end_inset
  2969. </cell>
  2970. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2971. \begin_inset Text
  2972. \begin_layout Plain Layout
  2973. 20,955
  2974. \end_layout
  2975. \end_inset
  2976. </cell>
  2977. </row>
  2978. </lyxtabular>
  2979. \end_inset
  2980. \end_layout
  2981. \begin_layout Plain Layout
  2982. \begin_inset Caption Standard
  2983. \begin_layout Plain Layout
  2984. \begin_inset CommandInset label
  2985. LatexCommand label
  2986. name "tab:methyl-est-nonnull"
  2987. \end_inset
  2988. \series bold
  2989. Estimated number of non-null tests for each contrast in each analysis.
  2990. \end_layout
  2991. \end_inset
  2992. \end_layout
  2993. \end_inset
  2994. \end_layout
  2995. \begin_layout Standard
  2996. \begin_inset Flex TODO Note (inline)
  2997. status open
  2998. \begin_layout Plain Layout
  2999. Re-generate p-value histograms for all relevant contrasts in a single figure.
  3000. \end_layout
  3001. \end_inset
  3002. \end_layout
  3003. \begin_layout Section
  3004. Discussion
  3005. \end_layout
  3006. \begin_layout Subsection
  3007. fRMA achieves clinically applicable normalization without sacrificing classifica
  3008. tion performance
  3009. \end_layout
  3010. \begin_layout Standard
  3011. As shown in Figure
  3012. \begin_inset CommandInset ref
  3013. LatexCommand ref
  3014. reference "fig:Classifier-probabilities-RMA"
  3015. plural "false"
  3016. caps "false"
  3017. noprefix "false"
  3018. \end_inset
  3019. , improper normalization, particularly separate normalization of training
  3020. and test samples, leads to unwanted biases in classification.
  3021. In a controlled experimental context, it is always possible to correct
  3022. this issue by normalizing all experimental samples together.
  3023. However, because it is not feasible to normalize all samples together in
  3024. a clinical context, a single-channel normalization is required is required.
  3025. \end_layout
  3026. \begin_layout Standard
  3027. The major concern in using a single-channel normalization is that non-single-cha
  3028. nnel methods can share information between arrays to improve the normalization,
  3029. and single-channel methods risk sacrificing the gains in normalization
  3030. accuracy that come from this information sharing.
  3031. In the case of RMA, this information sharing is accomplished through quantile
  3032. normalization and median polish steps.
  3033. The need for information sharing in quantile normalization can easily be
  3034. removed by learning a fixed set of quantiles from external data and normalizing
  3035. each array to these fixed quantiles, instead of the quantiles of the data
  3036. itself.
  3037. As long as the fixed quantiles are reasonable, the result will be similar
  3038. to standard RMA.
  3039. However, there is no analogous way to eliminate cross-array information
  3040. sharing in the median polish step, so fRMA replaces this with a weighted
  3041. average of probes on each array, with the weights learned from external
  3042. data.
  3043. This step of fRMA has the greatest potential to diverge from RMA un undesirable
  3044. ways.
  3045. \end_layout
  3046. \begin_layout Standard
  3047. However, when run on real data, fRMA performed at least as well as RMA in
  3048. both the internal validation and external validation tests.
  3049. This shows that fRMA can be used to normalize individual clinical samples
  3050. in a class prediction context without sacrificing the classifier performance
  3051. that would be obtained by using the more well-established RMA for normalization.
  3052. The other single-channel normalization method considered, SCAN, showed
  3053. some loss of AUC in the external validation test.
  3054. Based on these results, fRMA is the preferred normalization for clinical
  3055. samples in a class prediction context.
  3056. \end_layout
  3057. \begin_layout Subsection
  3058. Robust fRMA vectors can be generated for new array platforms
  3059. \end_layout
  3060. \begin_layout Standard
  3061. \begin_inset Flex TODO Note (inline)
  3062. status open
  3063. \begin_layout Plain Layout
  3064. Look up the exact numbers, do a find & replace for
  3065. \begin_inset Quotes eld
  3066. \end_inset
  3067. 850
  3068. \begin_inset Quotes erd
  3069. \end_inset
  3070. \end_layout
  3071. \end_inset
  3072. \end_layout
  3073. \begin_layout Standard
  3074. The published fRMA normalization vectors for the hgu133plus2 platform were
  3075. generated from a set of about 850 samples chosen from a wide range of tissues,
  3076. which the authors determined was sufficient to generate a robust set of
  3077. normalization vectors that could be applied across all tissues
  3078. \begin_inset CommandInset citation
  3079. LatexCommand cite
  3080. key "McCall2010"
  3081. literal "false"
  3082. \end_inset
  3083. .
  3084. Since we only had hthgu133pluspm for 2 tissues of interest, our needs were
  3085. more modest.
  3086. Even using only 130 samples in 26 batches of 5 samples each for kidney
  3087. biopsies, we were able to train a robust set of fRMA normalization vectors
  3088. that were not meaningfully affected by the random selection of 5 samples
  3089. from each batch.
  3090. As expected, the training process was just as robust for the blood samples
  3091. with 230 samples in 46 batches of 5 samples each.
  3092. Because these vectors were each generated using training samples from a
  3093. single tissue, they are not suitable for general use, unlike the vectors
  3094. provided with fRMA itself.
  3095. They are purpose-build for normalizing a specific type of sample on a specific
  3096. platform.
  3097. \end_layout
  3098. \begin_layout Subsection
  3099. voom
  3100. \end_layout
  3101. \begin_layout Itemize
  3102. Methods like voom designed for RNA-seq can also help with array analysis
  3103. \end_layout
  3104. \begin_layout Itemize
  3105. Extracting and modeling confounders common to many features improves model
  3106. correspondence to known biology
  3107. \end_layout
  3108. \begin_layout Chapter
  3109. Globin-blocking for more effective blood RNA-seq analysis in primate animal
  3110. model
  3111. \end_layout
  3112. \begin_layout Standard
  3113. \begin_inset Flex TODO Note (inline)
  3114. status open
  3115. \begin_layout Plain Layout
  3116. Choose between above and the paper title: Optimizing yield of deep RNA sequencin
  3117. g for gene expression profiling by globin reduction of peripheral blood
  3118. samples from cynomolgus monkeys (Macaca fascicularis).
  3119. \end_layout
  3120. \end_inset
  3121. \end_layout
  3122. \begin_layout Standard
  3123. \begin_inset Flex TODO Note (inline)
  3124. status open
  3125. \begin_layout Plain Layout
  3126. Chapter author list: https://tex.stackexchange.com/questions/156862/displaying-aut
  3127. hor-for-each-chapter-in-book Every chapter gets an author list, which may
  3128. or may not be part of a citation to a published/preprinted paper.
  3129. \end_layout
  3130. \end_inset
  3131. \end_layout
  3132. \begin_layout Standard
  3133. \begin_inset Flex TODO Note (inline)
  3134. status open
  3135. \begin_layout Plain Layout
  3136. Preprint then cite the paper
  3137. \end_layout
  3138. \end_inset
  3139. \end_layout
  3140. \begin_layout Section*
  3141. Abstract
  3142. \end_layout
  3143. \begin_layout Paragraph
  3144. Background
  3145. \end_layout
  3146. \begin_layout Standard
  3147. Primate blood contains high concentrations of globin messenger RNA.
  3148. Globin reduction is a standard technique used to improve the expression
  3149. results obtained by DNA microarrays on RNA from blood samples.
  3150. However, with whole transcriptome RNA-sequencing (RNA-seq) quickly replacing
  3151. microarrays for many applications, the impact of globin reduction for RNA-seq
  3152. has not been previously studied.
  3153. Moreover, no off-the-shelf kits are available for globin reduction in nonhuman
  3154. primates.
  3155. \end_layout
  3156. \begin_layout Paragraph
  3157. Results
  3158. \end_layout
  3159. \begin_layout Standard
  3160. Here we report a protocol for RNA-seq in primate blood samples that uses
  3161. complimentary oligonucleotides to block reverse transcription of the alpha
  3162. and beta globin genes.
  3163. In test samples from cynomolgus monkeys (Macaca fascicularis), this globin
  3164. blocking protocol approximately doubles the yield of informative (non-globin)
  3165. reads by greatly reducing the fraction of globin reads, while also improving
  3166. the consistency in sequencing depth between samples.
  3167. The increased yield enables detection of about 2000 more genes, significantly
  3168. increases the correlation in measured gene expression levels between samples,
  3169. and increases the sensitivity of differential gene expression tests.
  3170. \end_layout
  3171. \begin_layout Paragraph
  3172. Conclusions
  3173. \end_layout
  3174. \begin_layout Standard
  3175. These results show that globin blocking significantly improves the cost-effectiv
  3176. eness of mRNA sequencing in primate blood samples by doubling the yield
  3177. of useful reads, allowing detection of more genes, and improving the precision
  3178. of gene expression measurements.
  3179. Based on these results, a globin reducing or blocking protocol is recommended
  3180. for all RNA-seq studies of primate blood samples.
  3181. \end_layout
  3182. \begin_layout Section
  3183. Approach
  3184. \end_layout
  3185. \begin_layout Standard
  3186. \begin_inset Note Note
  3187. status open
  3188. \begin_layout Plain Layout
  3189. Consider putting some of this in the Intro chapter
  3190. \end_layout
  3191. \begin_layout Itemize
  3192. Cynomolgus monkeys as a model organism
  3193. \end_layout
  3194. \begin_deeper
  3195. \begin_layout Itemize
  3196. Highly related to humans
  3197. \end_layout
  3198. \begin_layout Itemize
  3199. Small size and short life cycle - good research animal
  3200. \end_layout
  3201. \begin_layout Itemize
  3202. Genomics resources still in development
  3203. \end_layout
  3204. \end_deeper
  3205. \begin_layout Itemize
  3206. Inadequacy of existing blood RNA-seq protocols
  3207. \end_layout
  3208. \begin_deeper
  3209. \begin_layout Itemize
  3210. Existing protocols use a separate globin pulldown step, slowing down processing
  3211. \end_layout
  3212. \end_deeper
  3213. \end_inset
  3214. \end_layout
  3215. \begin_layout Standard
  3216. Increasingly, researchers are turning to high-throughput mRNA sequencing
  3217. technologies (RNA-seq) in preference to expression microarrays for analysis
  3218. of gene expression
  3219. \begin_inset CommandInset citation
  3220. LatexCommand cite
  3221. key "Mutz2012"
  3222. literal "false"
  3223. \end_inset
  3224. .
  3225. The advantages are even greater for study of model organisms with no well-estab
  3226. lished array platforms available, such as the cynomolgus monkey (Macaca
  3227. fascicularis).
  3228. High fractions of globin mRNA are naturally present in mammalian peripheral
  3229. blood samples (up to 70% of total mRNA) and these are known to interfere
  3230. with the results of array-based expression profiling
  3231. \begin_inset CommandInset citation
  3232. LatexCommand cite
  3233. key "Winn2010"
  3234. literal "false"
  3235. \end_inset
  3236. .
  3237. The importance of globin reduction for RNA-seq of blood has only been evaluated
  3238. for a deepSAGE protocol on human samples
  3239. \begin_inset CommandInset citation
  3240. LatexCommand cite
  3241. key "Mastrokolias2012"
  3242. literal "false"
  3243. \end_inset
  3244. .
  3245. In the present report, we evaluated globin reduction using custom blocking
  3246. oligonucleotides for deep RNA-seq of peripheral blood samples from a nonhuman
  3247. primate, cynomolgus monkey, using the Illumina technology platform.
  3248. We demonstrate that globin reduction significantly improves the cost-effectiven
  3249. ess of RNA-seq in blood samples.
  3250. Thus, our protocol offers a significant advantage to any investigator planning
  3251. to use RNA-seq for gene expression profiling of nonhuman primate blood
  3252. samples.
  3253. Our method can be generally applied to any species by designing complementary
  3254. oligonucleotide blocking probes to the globin gene sequences of that species.
  3255. Indeed, any highly expressed but biologically uninformative transcripts
  3256. can also be blocked to further increase sequencing efficiency and value
  3257. \begin_inset CommandInset citation
  3258. LatexCommand cite
  3259. key "Arnaud2016"
  3260. literal "false"
  3261. \end_inset
  3262. .
  3263. \end_layout
  3264. \begin_layout Section
  3265. Methods
  3266. \end_layout
  3267. \begin_layout Subsection*
  3268. Sample collection
  3269. \end_layout
  3270. \begin_layout Standard
  3271. All research reported here was done under IACUC-approved protocols at the
  3272. University of Miami and complied with all applicable federal and state
  3273. regulations and ethical principles for nonhuman primate research.
  3274. Blood draws occurred between 16 April 2012 and 18 June 2015.
  3275. The experimental system involved intrahepatic pancreatic islet transplantation
  3276. into Cynomolgus monkeys with induced diabetes mellitus with or without
  3277. concomitant infusion of mesenchymal stem cells.
  3278. Blood was collected at serial time points before and after transplantation
  3279. into PAXgene Blood RNA tubes (PreAnalytiX/Qiagen, Valencia, CA) at the
  3280. precise volume:volume ratio of 2.5 ml whole blood into 6.9 ml of PAX gene
  3281. additive.
  3282. \end_layout
  3283. \begin_layout Subsection*
  3284. Globin Blocking
  3285. \end_layout
  3286. \begin_layout Standard
  3287. Four oligonucleotides were designed to hybridize to the 3’ end of the transcript
  3288. s for Cynomolgus HBA1, HBA2 and HBB, with two hybridization sites for HBB
  3289. and 2 sites for HBA (the chosen sites were identical in both HBA genes).
  3290. All oligos were purchased from Sigma and were entirely composed of 2’O-Me
  3291. bases with a C3 spacer positioned at the 3’ ends to prevent any polymerase
  3292. mediated primer extension.
  3293. \end_layout
  3294. \begin_layout Quote
  3295. HBA1/2 site 1: GCCCACUCAGACUUUAUUCAAAG-C3spacer
  3296. \end_layout
  3297. \begin_layout Quote
  3298. HBA1/2 site 2: GGUGCAAGGAGGGGAGGAG-C3spacer
  3299. \end_layout
  3300. \begin_layout Quote
  3301. HBB site 1: AAUGAAAAUAAAUGUUUUUUAUUAG-C3spacer
  3302. \end_layout
  3303. \begin_layout Quote
  3304. HBB site 2: CUCAAGGCCCUUCAUAAUAUCCC-C3spacer
  3305. \end_layout
  3306. \begin_layout Subsection*
  3307. RNA-seq Library Preparation
  3308. \end_layout
  3309. \begin_layout Standard
  3310. Sequencing libraries were prepared with 200ng total RNA from each sample.
  3311. Polyadenylated mRNA was selected from 200 ng aliquots of cynomologus blood-deri
  3312. ved total RNA using Ambion Dynabeads Oligo(dT)25 beads (Invitrogen) following
  3313. manufacturer’s recommended protocol.
  3314. PolyA selected RNA was then combined with 8 pmol of HBA1/2 (site 1), 8
  3315. pmol of HBA1/2 (site 2), 12 pmol of HBB (site 1) and 12 pmol of HBB (site
  3316. 2) oligonucleotides.
  3317. In addition, 20 pmol of RT primer containing a portion of the Illumina
  3318. adapter sequence (B-oligo-dTV: GAGTTCCTTGGCACCCGAGAATTCCATTTTTTTTTTTTTTTTTTTV)
  3319. and 4 µL of 5X First Strand buffer (250 mM Tris-HCl pH 8.3, 375 mM KCl,
  3320. 15mM MgCl2) were added in a total volume of 15 µL.
  3321. The RNA was fragmented by heating this cocktail for 3 minutes at 95°C and
  3322. then placed on ice.
  3323. This was followed by the addition of 2 µL 0.1 M DTT, 1 µL RNaseOUT, 1 µL
  3324. 10mM dNTPs 10% biotin-16 aminoallyl-2’- dUTP and 10% biotin-16 aminoallyl-2’-
  3325. dCTP (TriLink Biotech, San Diego, CA), 1 µL Superscript II (200U/ µL, Thermo-Fi
  3326. sher).
  3327. A second “unblocked” library was prepared in the same way for each sample
  3328. but replacing the blocking oligos with an equivalent volume of water.
  3329. The reaction was carried out at 25°C for 15 minutes and 42°C for 40 minutes,
  3330. followed by incubation at 75°C for 10 minutes to inactivate the reverse
  3331. transcriptase.
  3332. \end_layout
  3333. \begin_layout Standard
  3334. The cDNA/RNA hybrid molecules were purified using 1.8X Ampure XP beads (Agencourt
  3335. ) following supplier’s recommended protocol.
  3336. The cDNA/RNA hybrid was eluted in 25 µL of 10 mM Tris-HCl pH 8.0, and then
  3337. bound to 25 µL of M280 Magnetic Streptavidin beads washed per recommended
  3338. protocol (Thermo-Fisher).
  3339. After 30 minutes of binding, beads were washed one time in 100 µL 0.1N NaOH
  3340. to denature and remove the bound RNA, followed by two 100 µL washes with
  3341. 1X TE buffer.
  3342. \end_layout
  3343. \begin_layout Standard
  3344. Subsequent attachment of the 5-prime Illumina A adapter was performed by
  3345. on-bead random primer extension of the following sequence (A-N8 primer:
  3346. TTCAGAGTTCTACAGTCCGACGATCNNNNNNNN).
  3347. Briefly, beads were resuspended in a 20 µL reaction containing 5 µM A-N8
  3348. primer, 40mM Tris-HCl pH 7.5, 20mM MgCl2, 50mM NaCl, 0.325U/µL Sequenase
  3349. 2.0 (Affymetrix, Santa Clara, CA), 0.0025U/µL inorganic pyrophosphatase (Affymetr
  3350. ix) and 300 µM each dNTP.
  3351. Reaction was incubated at 22°C for 30 minutes, then beads were washed 2
  3352. times with 1X TE buffer (200µL).
  3353. \end_layout
  3354. \begin_layout Standard
  3355. The magnetic streptavidin beads were resuspended in 34 µL nuclease-free
  3356. water and added directly to a PCR tube.
  3357. The two Illumina protocol-specified PCR primers were added at 0.53 µM (Illumina
  3358. TruSeq Universal Primer 1 and Illumina TruSeq barcoded PCR primer 2), along
  3359. with 40 µL 2X KAPA HiFi Hotstart ReadyMix (KAPA, Willmington MA) and thermocycl
  3360. ed as follows: starting with 98°C (2 min-hold); 15 cycles of 98°C, 20sec;
  3361. 60°C, 30sec; 72°C, 30sec; and finished with a 72°C (2 min-hold).
  3362. \end_layout
  3363. \begin_layout Standard
  3364. PCR products were purified with 1X Ampure Beads following manufacturer’s
  3365. recommended protocol.
  3366. Libraries were then analyzed using the Agilent TapeStation and quantitation
  3367. of desired size range was performed by “smear analysis”.
  3368. Samples were pooled in equimolar batches of 16 samples.
  3369. Pooled libraries were size selected on 2% agarose gels (E-Gel EX Agarose
  3370. Gels; Thermo-Fisher).
  3371. Products were cut between 250 and 350 bp (corresponding to insert sizes
  3372. of 130 to 230 bps).
  3373. Finished library pools were then sequenced on the Illumina NextSeq500 instrumen
  3374. t with 75 base read lengths.
  3375. \end_layout
  3376. \begin_layout Subsection*
  3377. Read alignment and counting
  3378. \end_layout
  3379. \begin_layout Standard
  3380. Reads were aligned to the cynomolgus genome using STAR
  3381. \begin_inset CommandInset citation
  3382. LatexCommand cite
  3383. key "Dobin2013,Wilson2013"
  3384. literal "false"
  3385. \end_inset
  3386. .
  3387. Counts of uniquely mapped reads were obtained for every gene in each sample
  3388. with the “featureCounts” function from the Rsubread package, using each
  3389. of the three possibilities for the “strandSpecific” option: sense, antisense,
  3390. and unstranded
  3391. \begin_inset CommandInset citation
  3392. LatexCommand cite
  3393. key "Liao2014"
  3394. literal "false"
  3395. \end_inset
  3396. .
  3397. A few artifacts in the cynomolgus genome annotation complicated read counting.
  3398. First, no ortholog is annotated for alpha globin in the cynomolgus genome,
  3399. presumably because the human genome has two alpha globin genes with nearly
  3400. identical sequences, making the orthology relationship ambiguous.
  3401. However, two loci in the cynomolgus genome are as “hemoglobin subunit alpha-lik
  3402. e” (LOC102136192 and LOC102136846).
  3403. LOC102136192 is annotated as a pseudogene while LOC102136846 is annotated
  3404. as protein-coding.
  3405. Our globin reduction protocol was designed to include blocking of these
  3406. two genes.
  3407. Indeed, these two genes have almost the same read counts in each library
  3408. as the properly-annotated HBB gene and much larger counts than any other
  3409. gene in the unblocked libraries, giving confidence that reads derived from
  3410. the real alpha globin are mapping to both genes.
  3411. Thus, reads from both of these loci were counted as alpha globin reads
  3412. in all further analyses.
  3413. The second artifact is a small, uncharacterized non-coding RNA gene (LOC1021365
  3414. 91), which overlaps the HBA-like gene (LOC102136192) on the opposite strand.
  3415. If counting is not performed in stranded mode (or if a non-strand-specific
  3416. sequencing protocol is used), many reads mapping to the globin gene will
  3417. be discarded as ambiguous due to their overlap with this ncRNA gene, resulting
  3418. in significant undercounting of globin reads.
  3419. Therefore, stranded sense counts were used for all further analysis in
  3420. the present study to insure that we accurately accounted for globin transcript
  3421. reduction.
  3422. However, we note that stranded reads are not necessary for RNA-seq using
  3423. our protocol in standard practice.
  3424. \end_layout
  3425. \begin_layout Subsection*
  3426. Normalization and Exploratory Data Analysis
  3427. \end_layout
  3428. \begin_layout Standard
  3429. Libraries were normalized by computing scaling factors using the edgeR package’s
  3430. Trimmed Mean of M-values method
  3431. \begin_inset CommandInset citation
  3432. LatexCommand cite
  3433. key "Robinson2010"
  3434. literal "false"
  3435. \end_inset
  3436. .
  3437. Log2 counts per million values (logCPM) were calculated using the cpm function
  3438. in edgeR for individual samples and aveLogCPM function for averages across
  3439. groups of samples, using those functions’ default prior count values to
  3440. avoid taking the logarithm of 0.
  3441. Genes were considered “present” if their average normalized logCPM values
  3442. across all libraries were at least -1.
  3443. Normalizing for gene length was unnecessary because the sequencing protocol
  3444. is 3’-biased and hence the expected read count for each gene is related
  3445. to the transcript’s copy number but not its length.
  3446. \end_layout
  3447. \begin_layout Standard
  3448. In order to assess the effect of blocking on reproducibility, Pearson and
  3449. Spearman correlation coefficients were computed between the logCPM values
  3450. for every pair of libraries within the globin-blocked (GB) and unblocked
  3451. (non-GB) groups, and edgeR's “estimateDisp” function was used to compute
  3452. negative binomial dispersions separately for the two groups
  3453. \begin_inset CommandInset citation
  3454. LatexCommand cite
  3455. key "Chen2014"
  3456. literal "false"
  3457. \end_inset
  3458. .
  3459. \end_layout
  3460. \begin_layout Subsection*
  3461. Differential Expression Analysis
  3462. \end_layout
  3463. \begin_layout Standard
  3464. All tests for differential gene expression were performed using edgeR, by
  3465. first fitting a negative binomial generalized linear model to the counts
  3466. and normalization factors and then performing a quasi-likelihood F-test
  3467. with robust estimation of outlier gene dispersions
  3468. \begin_inset CommandInset citation
  3469. LatexCommand cite
  3470. key "Lund2012,Phipson2016"
  3471. literal "false"
  3472. \end_inset
  3473. .
  3474. To investigate the effects of globin blocking on each gene, an additive
  3475. model was fit to the full data with coefficients for globin blocking and
  3476. SampleID.
  3477. To test the effect of globin blocking on detection of differentially expressed
  3478. genes, the GB samples and non-GB samples were each analyzed independently
  3479. as follows: for each animal with both a pre-transplant and a post-transplant
  3480. time point in the data set, the pre-transplant sample and the earliest
  3481. post-transplant sample were selected, and all others were excluded, yielding
  3482. a pre-/post-transplant pair of samples for each animal (N=7 animals with
  3483. paired samples).
  3484. These samples were analyzed for pre-transplant vs.
  3485. post-transplant differential gene expression while controlling for inter-animal
  3486. variation using an additive model with coefficients for transplant and
  3487. animal ID.
  3488. In all analyses, p-values were adjusted using the Benjamini-Hochberg procedure
  3489. for FDR correction
  3490. \begin_inset CommandInset citation
  3491. LatexCommand cite
  3492. key "Benjamini1995"
  3493. literal "false"
  3494. \end_inset
  3495. .
  3496. \end_layout
  3497. \begin_layout Standard
  3498. \begin_inset Note Note
  3499. status open
  3500. \begin_layout Itemize
  3501. New blood RNA-seq protocol to block reverse transcription of globin genes
  3502. \end_layout
  3503. \begin_layout Itemize
  3504. Blood RNA-seq time course after transplants with/without MSC infusion
  3505. \end_layout
  3506. \end_inset
  3507. \end_layout
  3508. \begin_layout Section
  3509. Results
  3510. \end_layout
  3511. \begin_layout Subsection*
  3512. Globin blocking yields a larger and more consistent fraction of useful reads
  3513. \end_layout
  3514. \begin_layout Standard
  3515. The objective of the present study was to validate a new protocol for deep
  3516. RNA-seq of whole blood drawn into PaxGene tubes from cynomolgus monkeys
  3517. undergoing islet transplantation, with particular focus on minimizing the
  3518. loss of useful sequencing space to uninformative globin reads.
  3519. The details of the analysis with respect to transplant outcomes and the
  3520. impact of mesenchymal stem cell treatment will be reported in a separate
  3521. manuscript (in preparation).
  3522. To focus on the efficacy of our globin blocking protocol, 37 blood samples,
  3523. 16 from pre-transplant and 21 from post-transplant time points, were each
  3524. prepped once with and once without globin blocking oligos, and were then
  3525. sequenced on an Illumina NextSeq500 instrument.
  3526. The number of reads aligning to each gene in the cynomolgus genome was
  3527. counted.
  3528. Table 1 summarizes the distribution of read fractions among the GB and
  3529. non-GB libraries.
  3530. In the libraries with no globin blocking, globin reads made up an average
  3531. of 44.6% of total input reads, while reads assigned to all other genes made
  3532. up an average of 26.3%.
  3533. The remaining reads either aligned to intergenic regions (that include
  3534. long non-coding RNAs) or did not align with any annotated transcripts in
  3535. the current build of the cynomolgus genome.
  3536. In the GB libraries, globin reads made up only 3.48% and reads assigned
  3537. to all other genes increased to 50.4%.
  3538. Thus, globin blocking resulted in a 92.2% reduction in globin reads and
  3539. a 91.6% increase in yield of useful non-globin reads.
  3540. \end_layout
  3541. \begin_layout Standard
  3542. This reduction is not quite as efficient as the previous analysis showed
  3543. for human samples by DeepSAGE (<0.4% globin reads after globin reduction)
  3544. \begin_inset CommandInset citation
  3545. LatexCommand cite
  3546. key "Mastrokolias2012"
  3547. literal "false"
  3548. \end_inset
  3549. .
  3550. Nonetheless, this degree of globin reduction is sufficient to nearly double
  3551. the yield of useful reads.
  3552. Thus, globin blocking cuts the required sequencing effort (and costs) to
  3553. achieve a target coverage depth by almost 50%.
  3554. Consistent with this near doubling of yield, the average difference in
  3555. un-normalized logCPM across all genes between the GB libraries and non-GB
  3556. libraries is approximately 1 (mean = 1.01, median = 1.08), an overall 2-fold
  3557. increase.
  3558. Un-normalized values are used here because the TMM normalization correctly
  3559. identifies this 2-fold difference as biologically irrelevant and removes
  3560. it.
  3561. \end_layout
  3562. \begin_layout Standard
  3563. \begin_inset Float figure
  3564. wide false
  3565. sideways false
  3566. status open
  3567. \begin_layout Plain Layout
  3568. \align center
  3569. \begin_inset Graphics
  3570. filename graphics/Globin Paper/figure1 - globin-fractions.pdf
  3571. \end_inset
  3572. \end_layout
  3573. \begin_layout Plain Layout
  3574. \begin_inset Caption Standard
  3575. \begin_layout Plain Layout
  3576. \series bold
  3577. \begin_inset Argument 1
  3578. status collapsed
  3579. \begin_layout Plain Layout
  3580. Fraction of genic reads in each sample aligned to non-globin genes, with
  3581. and without globin blocking (GB).
  3582. \end_layout
  3583. \end_inset
  3584. \begin_inset CommandInset label
  3585. LatexCommand label
  3586. name "fig:Fraction-of-genic-reads"
  3587. \end_inset
  3588. Fraction of genic reads in each sample aligned to non-globin genes, with
  3589. and without globin blocking (GB).
  3590. \series default
  3591. All reads in each sequencing library were aligned to the cyno genome, and
  3592. the number of reads uniquely aligning to each gene was counted.
  3593. For each sample, counts were summed separately for all globin genes and
  3594. for the remainder of the genes (non-globin genes), and the fraction of
  3595. genic reads aligned to non-globin genes was computed.
  3596. Each point represents an individual sample.
  3597. Gray + signs indicate the means for globin-blocked libraries and unblocked
  3598. libraries.
  3599. The overall distribution for each group is represented as a notched box
  3600. plots.
  3601. Points are randomly spread vertically to avoid excessive overlapping.
  3602. \end_layout
  3603. \end_inset
  3604. \end_layout
  3605. \begin_layout Plain Layout
  3606. \end_layout
  3607. \end_inset
  3608. \end_layout
  3609. \begin_layout Standard
  3610. \begin_inset Float table
  3611. placement p
  3612. wide false
  3613. sideways true
  3614. status open
  3615. \begin_layout Plain Layout
  3616. \align center
  3617. \begin_inset Tabular
  3618. <lyxtabular version="3" rows="4" columns="7">
  3619. <features tabularvalignment="middle">
  3620. <column alignment="center" valignment="top">
  3621. <column alignment="center" valignment="top">
  3622. <column alignment="center" valignment="top">
  3623. <column alignment="center" valignment="top">
  3624. <column alignment="center" valignment="top">
  3625. <column alignment="center" valignment="top">
  3626. <column alignment="center" valignment="top">
  3627. <row>
  3628. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3629. \begin_inset Text
  3630. \begin_layout Plain Layout
  3631. \end_layout
  3632. \end_inset
  3633. </cell>
  3634. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3635. \begin_inset Text
  3636. \begin_layout Plain Layout
  3637. \family roman
  3638. \series medium
  3639. \shape up
  3640. \size normal
  3641. \emph off
  3642. \bar no
  3643. \strikeout off
  3644. \xout off
  3645. \uuline off
  3646. \uwave off
  3647. \noun off
  3648. \color none
  3649. Percent of Total Reads
  3650. \end_layout
  3651. \end_inset
  3652. </cell>
  3653. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3654. \begin_inset Text
  3655. \begin_layout Plain Layout
  3656. \end_layout
  3657. \end_inset
  3658. </cell>
  3659. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3660. \begin_inset Text
  3661. \begin_layout Plain Layout
  3662. \end_layout
  3663. \end_inset
  3664. </cell>
  3665. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3666. \begin_inset Text
  3667. \begin_layout Plain Layout
  3668. \end_layout
  3669. \end_inset
  3670. </cell>
  3671. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3672. \begin_inset Text
  3673. \begin_layout Plain Layout
  3674. \family roman
  3675. \series medium
  3676. \shape up
  3677. \size normal
  3678. \emph off
  3679. \bar no
  3680. \strikeout off
  3681. \xout off
  3682. \uuline off
  3683. \uwave off
  3684. \noun off
  3685. \color none
  3686. Percent of Genic Reads
  3687. \end_layout
  3688. \end_inset
  3689. </cell>
  3690. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3691. \begin_inset Text
  3692. \begin_layout Plain Layout
  3693. \end_layout
  3694. \end_inset
  3695. </cell>
  3696. </row>
  3697. <row>
  3698. <cell alignment="center" valignment="top" bottomline="true" leftline="true" usebox="none">
  3699. \begin_inset Text
  3700. \begin_layout Plain Layout
  3701. GB
  3702. \end_layout
  3703. \end_inset
  3704. </cell>
  3705. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3706. \begin_inset Text
  3707. \begin_layout Plain Layout
  3708. \family roman
  3709. \series medium
  3710. \shape up
  3711. \size normal
  3712. \emph off
  3713. \bar no
  3714. \strikeout off
  3715. \xout off
  3716. \uuline off
  3717. \uwave off
  3718. \noun off
  3719. \color none
  3720. Non-globin Reads
  3721. \end_layout
  3722. \end_inset
  3723. </cell>
  3724. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3725. \begin_inset Text
  3726. \begin_layout Plain Layout
  3727. \family roman
  3728. \series medium
  3729. \shape up
  3730. \size normal
  3731. \emph off
  3732. \bar no
  3733. \strikeout off
  3734. \xout off
  3735. \uuline off
  3736. \uwave off
  3737. \noun off
  3738. \color none
  3739. Globin Reads
  3740. \end_layout
  3741. \end_inset
  3742. </cell>
  3743. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3744. \begin_inset Text
  3745. \begin_layout Plain Layout
  3746. \family roman
  3747. \series medium
  3748. \shape up
  3749. \size normal
  3750. \emph off
  3751. \bar no
  3752. \strikeout off
  3753. \xout off
  3754. \uuline off
  3755. \uwave off
  3756. \noun off
  3757. \color none
  3758. All Genic Reads
  3759. \end_layout
  3760. \end_inset
  3761. </cell>
  3762. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3763. \begin_inset Text
  3764. \begin_layout Plain Layout
  3765. \family roman
  3766. \series medium
  3767. \shape up
  3768. \size normal
  3769. \emph off
  3770. \bar no
  3771. \strikeout off
  3772. \xout off
  3773. \uuline off
  3774. \uwave off
  3775. \noun off
  3776. \color none
  3777. All Aligned Reads
  3778. \end_layout
  3779. \end_inset
  3780. </cell>
  3781. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3782. \begin_inset Text
  3783. \begin_layout Plain Layout
  3784. \family roman
  3785. \series medium
  3786. \shape up
  3787. \size normal
  3788. \emph off
  3789. \bar no
  3790. \strikeout off
  3791. \xout off
  3792. \uuline off
  3793. \uwave off
  3794. \noun off
  3795. \color none
  3796. Non-globin Reads
  3797. \end_layout
  3798. \end_inset
  3799. </cell>
  3800. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3801. \begin_inset Text
  3802. \begin_layout Plain Layout
  3803. \family roman
  3804. \series medium
  3805. \shape up
  3806. \size normal
  3807. \emph off
  3808. \bar no
  3809. \strikeout off
  3810. \xout off
  3811. \uuline off
  3812. \uwave off
  3813. \noun off
  3814. \color none
  3815. Globin Reads
  3816. \end_layout
  3817. \end_inset
  3818. </cell>
  3819. </row>
  3820. <row>
  3821. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3822. \begin_inset Text
  3823. \begin_layout Plain Layout
  3824. \family roman
  3825. \series medium
  3826. \shape up
  3827. \size normal
  3828. \emph off
  3829. \bar no
  3830. \strikeout off
  3831. \xout off
  3832. \uuline off
  3833. \uwave off
  3834. \noun off
  3835. \color none
  3836. Yes
  3837. \end_layout
  3838. \end_inset
  3839. </cell>
  3840. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3841. \begin_inset Text
  3842. \begin_layout Plain Layout
  3843. \family roman
  3844. \series medium
  3845. \shape up
  3846. \size normal
  3847. \emph off
  3848. \bar no
  3849. \strikeout off
  3850. \xout off
  3851. \uuline off
  3852. \uwave off
  3853. \noun off
  3854. \color none
  3855. 50.4% ± 6.82
  3856. \end_layout
  3857. \end_inset
  3858. </cell>
  3859. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3860. \begin_inset Text
  3861. \begin_layout Plain Layout
  3862. \family roman
  3863. \series medium
  3864. \shape up
  3865. \size normal
  3866. \emph off
  3867. \bar no
  3868. \strikeout off
  3869. \xout off
  3870. \uuline off
  3871. \uwave off
  3872. \noun off
  3873. \color none
  3874. 3.48% ± 2.94
  3875. \end_layout
  3876. \end_inset
  3877. </cell>
  3878. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3879. \begin_inset Text
  3880. \begin_layout Plain Layout
  3881. \family roman
  3882. \series medium
  3883. \shape up
  3884. \size normal
  3885. \emph off
  3886. \bar no
  3887. \strikeout off
  3888. \xout off
  3889. \uuline off
  3890. \uwave off
  3891. \noun off
  3892. \color none
  3893. 53.9% ± 6.81
  3894. \end_layout
  3895. \end_inset
  3896. </cell>
  3897. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3898. \begin_inset Text
  3899. \begin_layout Plain Layout
  3900. \family roman
  3901. \series medium
  3902. \shape up
  3903. \size normal
  3904. \emph off
  3905. \bar no
  3906. \strikeout off
  3907. \xout off
  3908. \uuline off
  3909. \uwave off
  3910. \noun off
  3911. \color none
  3912. 89.7% ± 2.40
  3913. \end_layout
  3914. \end_inset
  3915. </cell>
  3916. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3917. \begin_inset Text
  3918. \begin_layout Plain Layout
  3919. \family roman
  3920. \series medium
  3921. \shape up
  3922. \size normal
  3923. \emph off
  3924. \bar no
  3925. \strikeout off
  3926. \xout off
  3927. \uuline off
  3928. \uwave off
  3929. \noun off
  3930. \color none
  3931. 93.5% ± 5.25
  3932. \end_layout
  3933. \end_inset
  3934. </cell>
  3935. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3936. \begin_inset Text
  3937. \begin_layout Plain Layout
  3938. \family roman
  3939. \series medium
  3940. \shape up
  3941. \size normal
  3942. \emph off
  3943. \bar no
  3944. \strikeout off
  3945. \xout off
  3946. \uuline off
  3947. \uwave off
  3948. \noun off
  3949. \color none
  3950. 6.49% ± 5.25
  3951. \end_layout
  3952. \end_inset
  3953. </cell>
  3954. </row>
  3955. <row>
  3956. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3957. \begin_inset Text
  3958. \begin_layout Plain Layout
  3959. \family roman
  3960. \series medium
  3961. \shape up
  3962. \size normal
  3963. \emph off
  3964. \bar no
  3965. \strikeout off
  3966. \xout off
  3967. \uuline off
  3968. \uwave off
  3969. \noun off
  3970. \color none
  3971. No
  3972. \end_layout
  3973. \end_inset
  3974. </cell>
  3975. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3976. \begin_inset Text
  3977. \begin_layout Plain Layout
  3978. \family roman
  3979. \series medium
  3980. \shape up
  3981. \size normal
  3982. \emph off
  3983. \bar no
  3984. \strikeout off
  3985. \xout off
  3986. \uuline off
  3987. \uwave off
  3988. \noun off
  3989. \color none
  3990. 26.3% ± 8.95
  3991. \end_layout
  3992. \end_inset
  3993. </cell>
  3994. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3995. \begin_inset Text
  3996. \begin_layout Plain Layout
  3997. \family roman
  3998. \series medium
  3999. \shape up
  4000. \size normal
  4001. \emph off
  4002. \bar no
  4003. \strikeout off
  4004. \xout off
  4005. \uuline off
  4006. \uwave off
  4007. \noun off
  4008. \color none
  4009. 44.6% ± 16.6
  4010. \end_layout
  4011. \end_inset
  4012. </cell>
  4013. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  4014. \begin_inset Text
  4015. \begin_layout Plain Layout
  4016. \family roman
  4017. \series medium
  4018. \shape up
  4019. \size normal
  4020. \emph off
  4021. \bar no
  4022. \strikeout off
  4023. \xout off
  4024. \uuline off
  4025. \uwave off
  4026. \noun off
  4027. \color none
  4028. 70.1% ± 9.38
  4029. \end_layout
  4030. \end_inset
  4031. </cell>
  4032. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  4033. \begin_inset Text
  4034. \begin_layout Plain Layout
  4035. \family roman
  4036. \series medium
  4037. \shape up
  4038. \size normal
  4039. \emph off
  4040. \bar no
  4041. \strikeout off
  4042. \xout off
  4043. \uuline off
  4044. \uwave off
  4045. \noun off
  4046. \color none
  4047. 90.7% ± 5.16
  4048. \end_layout
  4049. \end_inset
  4050. </cell>
  4051. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  4052. \begin_inset Text
  4053. \begin_layout Plain Layout
  4054. \family roman
  4055. \series medium
  4056. \shape up
  4057. \size normal
  4058. \emph off
  4059. \bar no
  4060. \strikeout off
  4061. \xout off
  4062. \uuline off
  4063. \uwave off
  4064. \noun off
  4065. \color none
  4066. 38.8% ± 17.1
  4067. \end_layout
  4068. \end_inset
  4069. </cell>
  4070. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  4071. \begin_inset Text
  4072. \begin_layout Plain Layout
  4073. \family roman
  4074. \series medium
  4075. \shape up
  4076. \size normal
  4077. \emph off
  4078. \bar no
  4079. \strikeout off
  4080. \xout off
  4081. \uuline off
  4082. \uwave off
  4083. \noun off
  4084. \color none
  4085. 61.2% ± 17.1
  4086. \end_layout
  4087. \end_inset
  4088. </cell>
  4089. </row>
  4090. </lyxtabular>
  4091. \end_inset
  4092. \end_layout
  4093. \begin_layout Plain Layout
  4094. \begin_inset Caption Standard
  4095. \begin_layout Plain Layout
  4096. \series bold
  4097. \begin_inset Argument 1
  4098. status collapsed
  4099. \begin_layout Plain Layout
  4100. Fractions of reads mapping to genomic features in GB and non-GB samples.
  4101. \end_layout
  4102. \end_inset
  4103. \begin_inset CommandInset label
  4104. LatexCommand label
  4105. name "tab:Fractions-of-reads"
  4106. \end_inset
  4107. Fractions of reads mapping to genomic features in GB and non-GB samples.
  4108. \series default
  4109. All values are given as mean ± standard deviation.
  4110. \end_layout
  4111. \end_inset
  4112. \end_layout
  4113. \begin_layout Plain Layout
  4114. \end_layout
  4115. \end_inset
  4116. \end_layout
  4117. \begin_layout Standard
  4118. Another important aspect is that the standard deviations in Table
  4119. \begin_inset CommandInset ref
  4120. LatexCommand ref
  4121. reference "tab:Fractions-of-reads"
  4122. plural "false"
  4123. caps "false"
  4124. noprefix "false"
  4125. \end_inset
  4126. are uniformly smaller in the GB samples than the non-GB ones, indicating
  4127. much greater consistency of yield.
  4128. This is best seen in the percentage of non-globin reads as a fraction of
  4129. total reads aligned to annotated genes (genic reads).
  4130. For the non-GB samples, this measure ranges from 10.9% to 80.9%, while for
  4131. the GB samples it ranges from 81.9% to 99.9% (Figure
  4132. \begin_inset CommandInset ref
  4133. LatexCommand ref
  4134. reference "fig:Fraction-of-genic-reads"
  4135. plural "false"
  4136. caps "false"
  4137. noprefix "false"
  4138. \end_inset
  4139. ).
  4140. This means that for applications where it is critical that each sample
  4141. achieve a specified minimum coverage in order to provide useful information,
  4142. it would be necessary to budget up to 10 times the sequencing depth per
  4143. sample without globin blocking, even though the average yield improvement
  4144. for globin blocking is only 2-fold, because every sample has a chance of
  4145. being 90% globin and 10% useful reads.
  4146. Hence, the more consistent behavior of GB samples makes planning an experiment
  4147. easier and more efficient because it eliminates the need to over-sequence
  4148. every sample in order to guard against the worst case of a high-globin
  4149. fraction.
  4150. \end_layout
  4151. \begin_layout Subsection*
  4152. Globin blocking lowers the noise floor and allows detection of about 2000
  4153. more genes
  4154. \end_layout
  4155. \begin_layout Standard
  4156. \begin_inset Flex TODO Note (inline)
  4157. status open
  4158. \begin_layout Plain Layout
  4159. Remove redundant titles from figures
  4160. \end_layout
  4161. \end_inset
  4162. \end_layout
  4163. \begin_layout Standard
  4164. \begin_inset Float figure
  4165. wide false
  4166. sideways false
  4167. status open
  4168. \begin_layout Plain Layout
  4169. \align center
  4170. \begin_inset Graphics
  4171. filename graphics/Globin Paper/figure2 - aveLogCPM-colored.pdf
  4172. \end_inset
  4173. \end_layout
  4174. \begin_layout Plain Layout
  4175. \begin_inset Caption Standard
  4176. \begin_layout Plain Layout
  4177. \series bold
  4178. \begin_inset Argument 1
  4179. status collapsed
  4180. \begin_layout Plain Layout
  4181. Distributions of average group gene abundances when normalized separately
  4182. or together.
  4183. \end_layout
  4184. \end_inset
  4185. \begin_inset CommandInset label
  4186. LatexCommand label
  4187. name "fig:logcpm-dists"
  4188. \end_inset
  4189. Distributions of average group gene abundances when normalized separately
  4190. or together.
  4191. \series default
  4192. All reads in each sequencing library were aligned to the cyno genome, and
  4193. the number of reads uniquely aligning to each gene was counted.
  4194. Genes with zero counts in all libraries were discarded.
  4195. Libraries were normalized using the TMM method.
  4196. Libraries were split into globin-blocked (GB) and non-GB groups and the
  4197. average abundance for each gene in both groups, measured in log2 counts
  4198. per million reads counted, was computed using the aveLogCPM function.
  4199. The distribution of average gene logCPM values was plotted for both groups
  4200. using a kernel density plot to approximate a continuous distribution.
  4201. The logCPM GB distributions are marked in red, non-GB in blue.
  4202. The black vertical line denotes the chosen detection threshold of -1.
  4203. Top panel: Libraries were split into GB and non-GB groups first and normalized
  4204. separately.
  4205. Bottom panel: Libraries were all normalized together first and then split
  4206. into groups.
  4207. \end_layout
  4208. \end_inset
  4209. \end_layout
  4210. \begin_layout Plain Layout
  4211. \end_layout
  4212. \end_inset
  4213. \end_layout
  4214. \begin_layout Standard
  4215. Since globin blocking yields more usable sequencing depth, it should also
  4216. allow detection of more genes at any given threshold.
  4217. When we looked at the distribution of average normalized logCPM values
  4218. across all libraries for genes with at least one read assigned to them,
  4219. we observed the expected bimodal distribution, with a high-abundance "signal"
  4220. peak representing detected genes and a low-abundance "noise" peak representing
  4221. genes whose read count did not rise above the noise floor (Figure
  4222. \begin_inset CommandInset ref
  4223. LatexCommand ref
  4224. reference "fig:logcpm-dists"
  4225. plural "false"
  4226. caps "false"
  4227. noprefix "false"
  4228. \end_inset
  4229. ).
  4230. Consistent with the 2-fold increase in raw counts assigned to non-globin
  4231. genes, the signal peak for GB samples is shifted to the right relative
  4232. to the non-GB signal peak.
  4233. When all the samples are normalized together, this difference is normalized
  4234. out, lining up the signal peaks, and this reveals that, as expected, the
  4235. noise floor for the GB samples is about 2-fold lower.
  4236. This greater separation between signal and noise peaks in the GB samples
  4237. means that low-expression genes should be more easily detected and more
  4238. precisely quantified than in the non-GB samples.
  4239. \end_layout
  4240. \begin_layout Standard
  4241. \begin_inset Float figure
  4242. wide false
  4243. sideways false
  4244. status open
  4245. \begin_layout Plain Layout
  4246. \align center
  4247. \begin_inset Graphics
  4248. filename graphics/Globin Paper/figure3 - detection.pdf
  4249. \end_inset
  4250. \end_layout
  4251. \begin_layout Plain Layout
  4252. \begin_inset Caption Standard
  4253. \begin_layout Plain Layout
  4254. \series bold
  4255. \begin_inset Argument 1
  4256. status collapsed
  4257. \begin_layout Plain Layout
  4258. Gene detections as a function of abundance thresholds in globin-blocked
  4259. (GB) and non-GB samples.
  4260. \end_layout
  4261. \end_inset
  4262. \begin_inset CommandInset label
  4263. LatexCommand label
  4264. name "fig:Gene-detections"
  4265. \end_inset
  4266. Gene detections as a function of abundance thresholds in globin-blocked
  4267. (GB) and non-GB samples.
  4268. \series default
  4269. Average abundance (logCPM,
  4270. \begin_inset Formula $\log_{2}$
  4271. \end_inset
  4272. counts per million reads counted) was computed by separate group normalization
  4273. as described in Figure
  4274. \begin_inset CommandInset ref
  4275. LatexCommand ref
  4276. reference "fig:logcpm-dists"
  4277. plural "false"
  4278. caps "false"
  4279. noprefix "false"
  4280. \end_inset
  4281. for both the GB and non-GB groups, as well as for all samples considered
  4282. as one large group.
  4283. For each every integer threshold from -2 to 3, the number of genes detected
  4284. at or above that logCPM threshold was plotted for each group.
  4285. \end_layout
  4286. \end_inset
  4287. \end_layout
  4288. \begin_layout Plain Layout
  4289. \end_layout
  4290. \end_inset
  4291. \end_layout
  4292. \begin_layout Standard
  4293. Based on these distributions, we selected a detection threshold of -1, which
  4294. is approximately the leftmost edge of the trough between the signal and
  4295. noise peaks.
  4296. This represents the most liberal possible detection threshold that doesn't
  4297. call substantial numbers of noise genes as detected.
  4298. Among the full dataset, 13429 genes were detected at this threshold, and
  4299. 22276 were not.
  4300. When considering the GB libraries and non-GB libraries separately and re-comput
  4301. ing normalization factors independently within each group, 14535 genes were
  4302. detected in the GB libraries while only 12460 were detected in the non-GB
  4303. libraries.
  4304. Thus, GB allowed the detection of 2000 extra genes that were buried under
  4305. the noise floor without GB.
  4306. This pattern of at least 2000 additional genes detected with GB was also
  4307. consistent across a wide range of possible detection thresholds, from -2
  4308. to 3 (see Figure
  4309. \begin_inset CommandInset ref
  4310. LatexCommand ref
  4311. reference "fig:Gene-detections"
  4312. plural "false"
  4313. caps "false"
  4314. noprefix "false"
  4315. \end_inset
  4316. ).
  4317. \end_layout
  4318. \begin_layout Subsection*
  4319. Globin blocking does not add significant additional noise or decrease sample
  4320. quality
  4321. \end_layout
  4322. \begin_layout Standard
  4323. One potential worry is that the globin blocking protocol could perturb the
  4324. levels of non-globin genes.
  4325. There are two kinds of possible perturbations: systematic and random.
  4326. The former is not a major concern for detection of differential expression,
  4327. since a 2-fold change in every sample has no effect on the relative fold
  4328. change between samples.
  4329. In contrast, random perturbations would increase the noise and obscure
  4330. the signal in the dataset, reducing the capacity to detect differential
  4331. expression.
  4332. \end_layout
  4333. \begin_layout Standard
  4334. \begin_inset Float figure
  4335. wide false
  4336. sideways false
  4337. status open
  4338. \begin_layout Plain Layout
  4339. \align center
  4340. \begin_inset Graphics
  4341. filename graphics/Globin Paper/figure4 - maplot-colored.pdf
  4342. \end_inset
  4343. \end_layout
  4344. \begin_layout Plain Layout
  4345. \begin_inset Caption Standard
  4346. \begin_layout Plain Layout
  4347. \begin_inset Argument 1
  4348. status collapsed
  4349. \begin_layout Plain Layout
  4350. MA plot showing effects of globin blocking on each gene's abundance.
  4351. \end_layout
  4352. \end_inset
  4353. \begin_inset CommandInset label
  4354. LatexCommand label
  4355. name "fig:MA-plot"
  4356. \end_inset
  4357. \series bold
  4358. MA plot showing effects of globin blocking on each gene's abundance.
  4359. \series default
  4360. All libraries were normalized together as described in Figure
  4361. \begin_inset CommandInset ref
  4362. LatexCommand ref
  4363. reference "fig:logcpm-dists"
  4364. plural "false"
  4365. caps "false"
  4366. noprefix "false"
  4367. \end_inset
  4368. , and genes with an average logCPM below -1 were filtered out.
  4369. Each remaining gene was tested for differential abundance with respect
  4370. to globin blocking (GB) using edgeR’s quasi-likelihod F-test, fitting a
  4371. negative binomial generalized linear model to table of read counts in each
  4372. library.
  4373. For each gene, edgeR reported average abundance (logCPM),
  4374. \begin_inset Formula $\log_{2}$
  4375. \end_inset
  4376. fold change (logFC), p-value, and Benjamini-Hochberg adjusted false discovery
  4377. rate (FDR).
  4378. Each gene's logFC was plotted against its logCPM, colored by FDR.
  4379. Red points are significant at ≤10% FDR, and blue are not significant at
  4380. that threshold.
  4381. The alpha and beta globin genes targeted for blocking are marked with large
  4382. triangles, while all other genes are represented as small points.
  4383. \end_layout
  4384. \end_inset
  4385. \end_layout
  4386. \begin_layout Plain Layout
  4387. \end_layout
  4388. \end_inset
  4389. \end_layout
  4390. \begin_layout Standard
  4391. \begin_inset Flex TODO Note (inline)
  4392. status open
  4393. \begin_layout Plain Layout
  4394. Standardize on
  4395. \begin_inset Quotes eld
  4396. \end_inset
  4397. log2
  4398. \begin_inset Quotes erd
  4399. \end_inset
  4400. notation
  4401. \end_layout
  4402. \end_inset
  4403. \end_layout
  4404. \begin_layout Standard
  4405. The data do indeed show small systematic perturbations in gene levels (Figure
  4406. \begin_inset CommandInset ref
  4407. LatexCommand ref
  4408. reference "fig:MA-plot"
  4409. plural "false"
  4410. caps "false"
  4411. noprefix "false"
  4412. \end_inset
  4413. ).
  4414. Other than the 3 designated alpha and beta globin genes, two other genes
  4415. stand out as having especially large negative log fold changes: HBD and
  4416. LOC1021365.
  4417. HBD, delta globin, is most likely targeted by the blocking oligos due to
  4418. high sequence homology with the other globin genes.
  4419. LOC1021365 is the aforementioned ncRNA that is reverse-complementary to
  4420. one of the alpha-like genes and that would be expected to be removed during
  4421. the globin blocking step.
  4422. All other genes appear in a cluster centered vertically at 0, and the vast
  4423. majority of genes in this cluster show an absolute log2(FC) of 0.5 or less.
  4424. Nevertheless, many of these small perturbations are still statistically
  4425. significant, indicating that the globin blocking oligos likely cause very
  4426. small but non-zero systematic perturbations in measured gene expression
  4427. levels.
  4428. \end_layout
  4429. \begin_layout Standard
  4430. \begin_inset Float figure
  4431. wide false
  4432. sideways false
  4433. status open
  4434. \begin_layout Plain Layout
  4435. \align center
  4436. \begin_inset Graphics
  4437. filename graphics/Globin Paper/figure5 - corrplot.pdf
  4438. \end_inset
  4439. \end_layout
  4440. \begin_layout Plain Layout
  4441. \begin_inset Caption Standard
  4442. \begin_layout Plain Layout
  4443. \series bold
  4444. \begin_inset Argument 1
  4445. status collapsed
  4446. \begin_layout Plain Layout
  4447. Comparison of inter-sample gene abundance correlations with and without
  4448. globin blocking.
  4449. \end_layout
  4450. \end_inset
  4451. \begin_inset CommandInset label
  4452. LatexCommand label
  4453. name "fig:gene-abundance-correlations"
  4454. \end_inset
  4455. Comparison of inter-sample gene abundance correlations with and without
  4456. globin blocking (GB).
  4457. \series default
  4458. All libraries were normalized together as described in Figure 2, and genes
  4459. with an average abundance (logCPM, log2 counts per million reads counted)
  4460. less than -1 were filtered out.
  4461. Each gene’s logCPM was computed in each library using the edgeR cpm function.
  4462. For each pair of biological samples, the Pearson correlation between those
  4463. samples' GB libraries was plotted against the correlation between the same
  4464. samples’ non-GB libraries.
  4465. Each point represents an unique pair of samples.
  4466. The solid gray line shows a quantile-quantile plot of distribution of GB
  4467. correlations vs.
  4468. that of non-GB correlations.
  4469. The thin dashed line is the identity line, provided for reference.
  4470. \end_layout
  4471. \end_inset
  4472. \end_layout
  4473. \begin_layout Plain Layout
  4474. \end_layout
  4475. \end_inset
  4476. \end_layout
  4477. \begin_layout Standard
  4478. To evaluate the possibility of globin blocking causing random perturbations
  4479. and reducing sample quality, we computed the Pearson correlation between
  4480. logCPM values for every pair of samples with and without GB and plotted
  4481. them against each other (Figure
  4482. \begin_inset CommandInset ref
  4483. LatexCommand ref
  4484. reference "fig:gene-abundance-correlations"
  4485. plural "false"
  4486. caps "false"
  4487. noprefix "false"
  4488. \end_inset
  4489. ).
  4490. The plot indicated that the GB libraries have higher sample-to-sample correlati
  4491. ons than the non-GB libraries.
  4492. Parametric and nonparametric tests for differences between the correlations
  4493. with and without GB both confirmed that this difference was highly significant
  4494. (2-sided paired t-test: t = 37.2, df = 665, P ≪ 2.2e-16; 2-sided Wilcoxon
  4495. sign-rank test: V = 2195, P ≪ 2.2e-16).
  4496. Performing the same tests on the Spearman correlations gave the same conclusion
  4497. (t-test: t = 26.8, df = 665, P ≪ 2.2e-16; sign-rank test: V = 8781, P ≪ 2.2e-16).
  4498. The edgeR package was used to compute the overall biological coefficient
  4499. of variation (BCV) for GB and non-GB libraries, and found that globin blocking
  4500. resulted in a negligible increase in the BCV (0.417 with GB vs.
  4501. 0.400 without).
  4502. The near equality of the BCVs for both sets indicates that the higher correlati
  4503. ons in the GB libraries are most likely a result of the increased yield
  4504. of useful reads, which reduces the contribution of Poisson counting uncertainty
  4505. to the overall variance of the logCPM values
  4506. \begin_inset CommandInset citation
  4507. LatexCommand cite
  4508. key "McCarthy2012"
  4509. literal "false"
  4510. \end_inset
  4511. .
  4512. This improves the precision of expression measurements and more than offsets
  4513. the negligible increase in BCV.
  4514. \end_layout
  4515. \begin_layout Subsection*
  4516. More differentially expressed genes are detected with globin blocking
  4517. \end_layout
  4518. \begin_layout Standard
  4519. \begin_inset Float table
  4520. wide false
  4521. sideways false
  4522. status open
  4523. \begin_layout Plain Layout
  4524. \align center
  4525. \begin_inset Tabular
  4526. <lyxtabular version="3" rows="5" columns="5">
  4527. <features tabularvalignment="middle">
  4528. <column alignment="center" valignment="top">
  4529. <column alignment="center" valignment="top">
  4530. <column alignment="center" valignment="top">
  4531. <column alignment="center" valignment="top">
  4532. <column alignment="center" valignment="top">
  4533. <row>
  4534. <cell alignment="center" valignment="top" usebox="none">
  4535. \begin_inset Text
  4536. \begin_layout Plain Layout
  4537. \end_layout
  4538. \end_inset
  4539. </cell>
  4540. <cell alignment="center" valignment="top" usebox="none">
  4541. \begin_inset Text
  4542. \begin_layout Plain Layout
  4543. \end_layout
  4544. \end_inset
  4545. </cell>
  4546. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  4547. \begin_inset Text
  4548. \begin_layout Plain Layout
  4549. \series bold
  4550. No Globin Blocking
  4551. \end_layout
  4552. \end_inset
  4553. </cell>
  4554. <cell multicolumn="2" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  4555. \begin_inset Text
  4556. \begin_layout Plain Layout
  4557. \end_layout
  4558. \end_inset
  4559. </cell>
  4560. <cell multicolumn="2" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  4561. \begin_inset Text
  4562. \begin_layout Plain Layout
  4563. \end_layout
  4564. \end_inset
  4565. </cell>
  4566. </row>
  4567. <row>
  4568. <cell alignment="center" valignment="top" usebox="none">
  4569. \begin_inset Text
  4570. \begin_layout Plain Layout
  4571. \end_layout
  4572. \end_inset
  4573. </cell>
  4574. <cell alignment="center" valignment="top" usebox="none">
  4575. \begin_inset Text
  4576. \begin_layout Plain Layout
  4577. \end_layout
  4578. \end_inset
  4579. </cell>
  4580. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4581. \begin_inset Text
  4582. \begin_layout Plain Layout
  4583. \series bold
  4584. Up
  4585. \end_layout
  4586. \end_inset
  4587. </cell>
  4588. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4589. \begin_inset Text
  4590. \begin_layout Plain Layout
  4591. \series bold
  4592. NS
  4593. \end_layout
  4594. \end_inset
  4595. </cell>
  4596. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  4597. \begin_inset Text
  4598. \begin_layout Plain Layout
  4599. \series bold
  4600. Down
  4601. \end_layout
  4602. \end_inset
  4603. </cell>
  4604. </row>
  4605. <row>
  4606. <cell multirow="3" alignment="center" valignment="middle" topline="true" bottomline="true" leftline="true" usebox="none">
  4607. \begin_inset Text
  4608. \begin_layout Plain Layout
  4609. \series bold
  4610. Globin-Blocking
  4611. \end_layout
  4612. \end_inset
  4613. </cell>
  4614. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4615. \begin_inset Text
  4616. \begin_layout Plain Layout
  4617. \series bold
  4618. Up
  4619. \end_layout
  4620. \end_inset
  4621. </cell>
  4622. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4623. \begin_inset Text
  4624. \begin_layout Plain Layout
  4625. \family roman
  4626. \series medium
  4627. \shape up
  4628. \size normal
  4629. \emph off
  4630. \bar no
  4631. \strikeout off
  4632. \xout off
  4633. \uuline off
  4634. \uwave off
  4635. \noun off
  4636. \color none
  4637. 231
  4638. \end_layout
  4639. \end_inset
  4640. </cell>
  4641. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4642. \begin_inset Text
  4643. \begin_layout Plain Layout
  4644. \family roman
  4645. \series medium
  4646. \shape up
  4647. \size normal
  4648. \emph off
  4649. \bar no
  4650. \strikeout off
  4651. \xout off
  4652. \uuline off
  4653. \uwave off
  4654. \noun off
  4655. \color none
  4656. 515
  4657. \end_layout
  4658. \end_inset
  4659. </cell>
  4660. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  4661. \begin_inset Text
  4662. \begin_layout Plain Layout
  4663. \family roman
  4664. \series medium
  4665. \shape up
  4666. \size normal
  4667. \emph off
  4668. \bar no
  4669. \strikeout off
  4670. \xout off
  4671. \uuline off
  4672. \uwave off
  4673. \noun off
  4674. \color none
  4675. 2
  4676. \end_layout
  4677. \end_inset
  4678. </cell>
  4679. </row>
  4680. <row>
  4681. <cell multirow="4" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4682. \begin_inset Text
  4683. \begin_layout Plain Layout
  4684. \end_layout
  4685. \end_inset
  4686. </cell>
  4687. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4688. \begin_inset Text
  4689. \begin_layout Plain Layout
  4690. \series bold
  4691. NS
  4692. \end_layout
  4693. \end_inset
  4694. </cell>
  4695. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4696. \begin_inset Text
  4697. \begin_layout Plain Layout
  4698. \family roman
  4699. \series medium
  4700. \shape up
  4701. \size normal
  4702. \emph off
  4703. \bar no
  4704. \strikeout off
  4705. \xout off
  4706. \uuline off
  4707. \uwave off
  4708. \noun off
  4709. \color none
  4710. 160
  4711. \end_layout
  4712. \end_inset
  4713. </cell>
  4714. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4715. \begin_inset Text
  4716. \begin_layout Plain Layout
  4717. \family roman
  4718. \series medium
  4719. \shape up
  4720. \size normal
  4721. \emph off
  4722. \bar no
  4723. \strikeout off
  4724. \xout off
  4725. \uuline off
  4726. \uwave off
  4727. \noun off
  4728. \color none
  4729. 11235
  4730. \end_layout
  4731. \end_inset
  4732. </cell>
  4733. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  4734. \begin_inset Text
  4735. \begin_layout Plain Layout
  4736. \family roman
  4737. \series medium
  4738. \shape up
  4739. \size normal
  4740. \emph off
  4741. \bar no
  4742. \strikeout off
  4743. \xout off
  4744. \uuline off
  4745. \uwave off
  4746. \noun off
  4747. \color none
  4748. 136
  4749. \end_layout
  4750. \end_inset
  4751. </cell>
  4752. </row>
  4753. <row>
  4754. <cell multirow="4" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  4755. \begin_inset Text
  4756. \begin_layout Plain Layout
  4757. \end_layout
  4758. \end_inset
  4759. </cell>
  4760. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  4761. \begin_inset Text
  4762. \begin_layout Plain Layout
  4763. \series bold
  4764. Down
  4765. \end_layout
  4766. \end_inset
  4767. </cell>
  4768. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  4769. \begin_inset Text
  4770. \begin_layout Plain Layout
  4771. \family roman
  4772. \series medium
  4773. \shape up
  4774. \size normal
  4775. \emph off
  4776. \bar no
  4777. \strikeout off
  4778. \xout off
  4779. \uuline off
  4780. \uwave off
  4781. \noun off
  4782. \color none
  4783. 0
  4784. \end_layout
  4785. \end_inset
  4786. </cell>
  4787. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  4788. \begin_inset Text
  4789. \begin_layout Plain Layout
  4790. \family roman
  4791. \series medium
  4792. \shape up
  4793. \size normal
  4794. \emph off
  4795. \bar no
  4796. \strikeout off
  4797. \xout off
  4798. \uuline off
  4799. \uwave off
  4800. \noun off
  4801. \color none
  4802. 548
  4803. \end_layout
  4804. \end_inset
  4805. </cell>
  4806. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  4807. \begin_inset Text
  4808. \begin_layout Plain Layout
  4809. \family roman
  4810. \series medium
  4811. \shape up
  4812. \size normal
  4813. \emph off
  4814. \bar no
  4815. \strikeout off
  4816. \xout off
  4817. \uuline off
  4818. \uwave off
  4819. \noun off
  4820. \color none
  4821. 127
  4822. \end_layout
  4823. \end_inset
  4824. </cell>
  4825. </row>
  4826. </lyxtabular>
  4827. \end_inset
  4828. \end_layout
  4829. \begin_layout Plain Layout
  4830. \begin_inset Caption Standard
  4831. \begin_layout Plain Layout
  4832. \series bold
  4833. \begin_inset Argument 1
  4834. status open
  4835. \begin_layout Plain Layout
  4836. Comparison of significantly differentially expressed genes with and without
  4837. globin blocking.
  4838. \end_layout
  4839. \end_inset
  4840. \begin_inset CommandInset label
  4841. LatexCommand label
  4842. name "tab:Comparison-of-significant"
  4843. \end_inset
  4844. Comparison of significantly differentially expressed genes with and without
  4845. globin blocking.
  4846. \series default
  4847. Up, Down: Genes significantly up/down-regulated in post-transplant samples
  4848. relative to pre-transplant samples, with a false discovery rate of 10%
  4849. or less.
  4850. NS: Non-significant genes (false discovery rate greater than 10%).
  4851. \end_layout
  4852. \end_inset
  4853. \end_layout
  4854. \begin_layout Plain Layout
  4855. \end_layout
  4856. \end_inset
  4857. \end_layout
  4858. \begin_layout Standard
  4859. To compare performance on differential gene expression tests, we took subsets
  4860. of both the GB and non-GB libraries with exactly one pre-transplant and
  4861. one post-transplant sample for each animal that had paired samples available
  4862. for analysis (N=7 animals, N=14 samples in each subset).
  4863. The same test for pre- vs.
  4864. post-transplant differential gene expression was performed on the same
  4865. 7 pairs of samples from GB libraries and non-GB libraries, in each case
  4866. using an FDR of 10% as the threshold of significance.
  4867. Out of 12954 genes that passed the detection threshold in both subsets,
  4868. 358 were called significantly differentially expressed in the same direction
  4869. in both sets; 1063 were differentially expressed in the GB set only; 296
  4870. were differentially expressed in the non-GB set only; 2 genes were called
  4871. significantly up in the GB set but significantly down in the non-GB set;
  4872. and the remaining 11235 were not called differentially expressed in either
  4873. set.
  4874. These data are summarized in Table
  4875. \begin_inset CommandInset ref
  4876. LatexCommand ref
  4877. reference "tab:Comparison-of-significant"
  4878. plural "false"
  4879. caps "false"
  4880. noprefix "false"
  4881. \end_inset
  4882. .
  4883. The differences in BCV calculated by EdgeR for these subsets of samples
  4884. were negligible (BCV = 0.302 for GB and 0.297 for non-GB).
  4885. \end_layout
  4886. \begin_layout Standard
  4887. The key point is that the GB data results in substantially more differentially
  4888. expressed calls than the non-GB data.
  4889. Since there is no gold standard for this dataset, it is impossible to be
  4890. certain whether this is due to under-calling of differential expression
  4891. in the non-GB samples or over-calling in the GB samples.
  4892. However, given that both datasets are derived from the same biological
  4893. samples and have nearly equal BCVs, it is more likely that the larger number
  4894. of DE calls in the GB samples are genuine detections that were enabled
  4895. by the higher sequencing depth and measurement precision of the GB samples.
  4896. Note that the same set of genes was considered in both subsets, so the
  4897. larger number of differentially expressed gene calls in the GB data set
  4898. reflects a greater sensitivity to detect significant differential gene
  4899. expression and not simply the larger total number of detected genes in
  4900. GB samples described earlier.
  4901. \end_layout
  4902. \begin_layout Section
  4903. Discussion
  4904. \end_layout
  4905. \begin_layout Standard
  4906. The original experience with whole blood gene expression profiling on DNA
  4907. microarrays demonstrated that the high concentration of globin transcripts
  4908. reduced the sensitivity to detect genes with relatively low expression
  4909. levels, in effect, significantly reducing the sensitivity.
  4910. To address this limitation, commercial protocols for globin reduction were
  4911. developed based on strategies to block globin transcript amplification
  4912. during labeling or physically removing globin transcripts by affinity bead
  4913. methods
  4914. \begin_inset CommandInset citation
  4915. LatexCommand cite
  4916. key "Winn2010"
  4917. literal "false"
  4918. \end_inset
  4919. .
  4920. More recently, using the latest generation of labeling protocols and arrays,
  4921. it was determined that globin reduction was no longer necessary to obtain
  4922. sufficient sensitivity to detect differential transcript expression
  4923. \begin_inset CommandInset citation
  4924. LatexCommand cite
  4925. key "NuGEN2010"
  4926. literal "false"
  4927. \end_inset
  4928. .
  4929. However, we are not aware of any publications using these currently available
  4930. protocols the with latest generation of microarrays that actually compare
  4931. the detection sensitivity with and without globin reduction.
  4932. However, in practice this has now been adopted generally primarily driven
  4933. by concerns for cost control.
  4934. The main objective of our work was to directly test the impact of globin
  4935. gene transcripts and a new globin blocking protocol for application to
  4936. the newest generation of differential gene expression profiling determined
  4937. using next generation sequencing.
  4938. \end_layout
  4939. \begin_layout Standard
  4940. The challenge of doing global gene expression profiling in cynomolgus monkeys
  4941. is that the current available arrays were never designed to comprehensively
  4942. cover this genome and have not been updated since the first assemblies
  4943. of the cynomolgus genome were published.
  4944. Therefore, we determined that the best strategy for peripheral blood profiling
  4945. was to do deep RNA-seq and inform the workflow using the latest available
  4946. genome assembly and annotation
  4947. \begin_inset CommandInset citation
  4948. LatexCommand cite
  4949. key "Wilson2013"
  4950. literal "false"
  4951. \end_inset
  4952. .
  4953. However, it was not immediately clear whether globin reduction was necessary
  4954. for RNA-seq or how much improvement in efficiency or sensitivity to detect
  4955. differential gene expression would be achieved for the added cost and work.
  4956. \end_layout
  4957. \begin_layout Standard
  4958. We only found one report that demonstrated that globin reduction significantly
  4959. improved the effective read yields for sequencing of human peripheral blood
  4960. cell RNA using a DeepSAGE protocol
  4961. \begin_inset CommandInset citation
  4962. LatexCommand cite
  4963. key "Mastrokolias2012"
  4964. literal "false"
  4965. \end_inset
  4966. .
  4967. The approach to DeepSAGE involves two different restriction enzymes that
  4968. purify and then tag small fragments of transcripts at specific locations
  4969. and thus, significantly reduces the complexity of the transcriptome.
  4970. Therefore, we could not determine how DeepSAGE results would translate
  4971. to the common strategy in the field for assaying the entire transcript
  4972. population by whole-transcriptome 3’-end RNA-seq.
  4973. Furthermore, if globin reduction is necessary, we also needed a globin
  4974. reduction method specific to cynomolgus globin sequences that would work
  4975. an organism for which no kit is available off the shelf.
  4976. \end_layout
  4977. \begin_layout Standard
  4978. As mentioned above, the addition of globin blocking oligos has a very small
  4979. impact on measured expression levels of gene expression.
  4980. However, this is a non-issue for the purposes of differential expression
  4981. testing, since a systematic change in a gene in all samples does not affect
  4982. relative expression levels between samples.
  4983. However, we must acknowledge that simple comparisons of gene expression
  4984. data obtained by GB and non-GB protocols are not possible without additional
  4985. normalization.
  4986. \end_layout
  4987. \begin_layout Standard
  4988. More importantly, globin blocking not only nearly doubles the yield of usable
  4989. reads, it also increases inter-sample correlation and sensitivity to detect
  4990. differential gene expression relative to the same set of samples profiled
  4991. without blocking.
  4992. In addition, globin blocking does not add a significant amount of random
  4993. noise to the data.
  4994. Globin blocking thus represents a cost-effective way to squeeze more data
  4995. and statistical power out of the same blood samples and the same amount
  4996. of sequencing.
  4997. In conclusion, globin reduction greatly increases the yield of useful RNA-seq
  4998. reads mapping to the rest of the genome, with minimal perturbations in
  4999. the relative levels of non-globin genes.
  5000. Based on these results, globin transcript reduction using sequence-specific,
  5001. complementary blocking oligonucleotides is recommended for all deep RNA-seq
  5002. of cynomolgus and other nonhuman primate blood samples.
  5003. \end_layout
  5004. \begin_layout Chapter
  5005. Future Directions
  5006. \end_layout
  5007. \begin_layout Standard
  5008. \begin_inset Flex TODO Note (inline)
  5009. status open
  5010. \begin_layout Plain Layout
  5011. Consider per-chapter future directions.
  5012. Check instructions.
  5013. \end_layout
  5014. \end_inset
  5015. \end_layout
  5016. \begin_layout Itemize
  5017. Study other epigenetic marks in more contexts
  5018. \end_layout
  5019. \begin_deeper
  5020. \begin_layout Itemize
  5021. DNA methylation, histone marks, chromatin accessibility & conformation in
  5022. CD4 T-cells
  5023. \end_layout
  5024. \begin_layout Itemize
  5025. Also look at other types lymphocytes: CD8 T-cells, B-cells, NK cells
  5026. \end_layout
  5027. \end_deeper
  5028. \begin_layout Itemize
  5029. Use CV or bootstrap to better evaluate classifiers
  5030. \end_layout
  5031. \begin_layout Standard
  5032. \begin_inset ERT
  5033. status open
  5034. \begin_layout Plain Layout
  5035. % Use "References" instead of "Bibliography"
  5036. \end_layout
  5037. \begin_layout Plain Layout
  5038. \backslash
  5039. renewcommand{
  5040. \backslash
  5041. bibname}{References}
  5042. \end_layout
  5043. \end_inset
  5044. \end_layout
  5045. \begin_layout Standard
  5046. \begin_inset Flex TODO Note (inline)
  5047. status open
  5048. \begin_layout Plain Layout
  5049. Check bib entry formatting & sort order
  5050. \end_layout
  5051. \end_inset
  5052. \end_layout
  5053. \begin_layout Standard
  5054. \begin_inset CommandInset bibtex
  5055. LatexCommand bibtex
  5056. btprint "btPrintCited"
  5057. bibfiles "refs,code-refs"
  5058. options "bibtotoc,unsrt"
  5059. \end_inset
  5060. \end_layout
  5061. \end_body
  5062. \end_document