thesis.lyx 148 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597
  1. #LyX 2.3 created this file. For more info see http://www.lyx.org/
  2. \lyxformat 544
  3. \begin_document
  4. \begin_header
  5. \save_transient_properties true
  6. \origin unavailable
  7. \textclass extbook
  8. \begin_preamble
  9. % List all used files in log output
  10. \listfiles
  11. % Add a DRAFT watermark
  12. \usepackage{draftwatermark}
  13. \SetWatermarkLightness{0.97}
  14. \SetWatermarkScale{1}
  15. % Set up required header format
  16. \usepackage{fancyhdr}
  17. \pagestyle{fancy}
  18. \renewcommand{\headrulewidth}{0pt}
  19. \rhead{}
  20. \lhead{}
  21. \rfoot{}
  22. \lfoot{}
  23. \cfoot{\thepage} % Page number bottom center
  24. % https://tex.stackexchange.com/questions/65680/automatically-bold-first-sentence-of-a-floats-caption
  25. \usepackage{xstring}
  26. \usepackage{etoolbox}
  27. \usepackage{caption}
  28. \captionsetup{labelfont=bf,tableposition=top}
  29. \makeatletter
  30. \newcommand\formatlabel[1]{%
  31. \noexpandarg
  32. \IfSubStr{#1}{.}{%
  33. \StrBefore{#1}{.}[\firstcaption]%
  34. \StrBehind{#1}{.}[\secondcaption]%
  35. \textbf{\firstcaption.} \secondcaption}{%
  36. #1}%
  37. }
  38. \patchcmd{\@caption}{#3}{\formatlabel{#3}}
  39. \makeatother
  40. \end_preamble
  41. \use_default_options true
  42. \begin_modules
  43. todonotes
  44. \end_modules
  45. \maintain_unincluded_children false
  46. \language english
  47. \language_package default
  48. \inputencoding utf8
  49. \fontencoding default
  50. \font_roman "default" "default"
  51. \font_sans "default" "default"
  52. \font_typewriter "default" "default"
  53. \font_math "auto" "auto"
  54. \font_default_family default
  55. \use_non_tex_fonts false
  56. \font_sc false
  57. \font_osf false
  58. \font_sf_scale 100 100
  59. \font_tt_scale 100 100
  60. \use_microtype false
  61. \use_dash_ligatures true
  62. \graphics default
  63. \default_output_format pdf4
  64. \output_sync 0
  65. \bibtex_command default
  66. \index_command default
  67. \paperfontsize 12
  68. \spacing double
  69. \use_hyperref true
  70. \pdf_bookmarks true
  71. \pdf_bookmarksnumbered false
  72. \pdf_bookmarksopen false
  73. \pdf_bookmarksopenlevel 1
  74. \pdf_breaklinks false
  75. \pdf_pdfborder false
  76. \pdf_colorlinks false
  77. \pdf_backref false
  78. \pdf_pdfusetitle true
  79. \papersize letterpaper
  80. \use_geometry true
  81. \use_package amsmath 1
  82. \use_package amssymb 1
  83. \use_package cancel 1
  84. \use_package esint 1
  85. \use_package mathdots 1
  86. \use_package mathtools 1
  87. \use_package mhchem 1
  88. \use_package stackrel 1
  89. \use_package stmaryrd 1
  90. \use_package undertilde 1
  91. \cite_engine basic
  92. \cite_engine_type default
  93. \biblio_style plain
  94. \use_bibtopic false
  95. \use_indices false
  96. \paperorientation portrait
  97. \suppress_date false
  98. \justification true
  99. \use_refstyle 1
  100. \use_minted 0
  101. \index Index
  102. \shortcut idx
  103. \color #008000
  104. \end_index
  105. \leftmargin 1.5in
  106. \topmargin 1in
  107. \rightmargin 1in
  108. \bottommargin 1in
  109. \secnumdepth 3
  110. \tocdepth 3
  111. \paragraph_separation indent
  112. \paragraph_indentation default
  113. \is_math_indent 0
  114. \math_numbering_side default
  115. \quotes_style english
  116. \dynamic_quotes 0
  117. \papercolumns 1
  118. \papersides 2
  119. \paperpagestyle default
  120. \tracking_changes false
  121. \output_changes false
  122. \html_math_output 0
  123. \html_css_as_file 0
  124. \html_be_strict false
  125. \end_header
  126. \begin_body
  127. \begin_layout Title
  128. Bioinformatic analysis of complex, high-throughput genomic and epigenomic
  129. data in the context of immunology and transplant rejection
  130. \end_layout
  131. \begin_layout Author
  132. A thesis presented
  133. \begin_inset Newline newline
  134. \end_inset
  135. by
  136. \begin_inset Newline newline
  137. \end_inset
  138. Ryan C.
  139. Thompson
  140. \begin_inset Newline newline
  141. \end_inset
  142. to
  143. \begin_inset Newline newline
  144. \end_inset
  145. The Scripps Research Institute Graduate Program
  146. \begin_inset Newline newline
  147. \end_inset
  148. in partial fulfillment of the requirements for the degree of
  149. \begin_inset Newline newline
  150. \end_inset
  151. Doctor of Philosophy in the subject of Biology
  152. \begin_inset Newline newline
  153. \end_inset
  154. for
  155. \begin_inset Newline newline
  156. \end_inset
  157. The Scripps Research Institute
  158. \begin_inset Newline newline
  159. \end_inset
  160. La Jolla, California
  161. \end_layout
  162. \begin_layout Date
  163. May 2019
  164. \end_layout
  165. \begin_layout Standard
  166. [Copyright notice]
  167. \end_layout
  168. \begin_layout Standard
  169. [Thesis acceptance form]
  170. \end_layout
  171. \begin_layout Standard
  172. [Dedication]
  173. \end_layout
  174. \begin_layout Standard
  175. [Acknowledgements]
  176. \end_layout
  177. \begin_layout Standard
  178. \begin_inset CommandInset toc
  179. LatexCommand tableofcontents
  180. \end_inset
  181. \end_layout
  182. \begin_layout Standard
  183. \begin_inset FloatList table
  184. \end_inset
  185. \end_layout
  186. \begin_layout Standard
  187. \begin_inset FloatList figure
  188. \end_inset
  189. \end_layout
  190. \begin_layout Standard
  191. [List of Abbreviations]
  192. \end_layout
  193. \begin_layout Standard
  194. \begin_inset Flex TODO Note (inline)
  195. status open
  196. \begin_layout Plain Layout
  197. Look into auto-generated nomenclature list: https://wiki.lyx.org/Tips/Nomenclature
  198. \end_layout
  199. \end_inset
  200. \end_layout
  201. \begin_layout List of TODOs
  202. \end_layout
  203. \begin_layout Standard
  204. [Abstract]
  205. \end_layout
  206. \begin_layout Chapter*
  207. Abstract
  208. \end_layout
  209. \begin_layout Chapter
  210. Introduction
  211. \end_layout
  212. \begin_layout Section
  213. Background & Significance
  214. \end_layout
  215. \begin_layout Subsection
  216. Biological motivation
  217. \end_layout
  218. \begin_layout Itemize
  219. Rejection is the major long-term threat to organ and tissue grafts
  220. \end_layout
  221. \begin_deeper
  222. \begin_layout Itemize
  223. Common mechanisms of rejection
  224. \end_layout
  225. \begin_layout Itemize
  226. Effective immune suppression requires monitoring for rejection and tuning
  227. \end_layout
  228. \begin_layout Itemize
  229. Current tests for rejection (tissue biopsy) are invasive and biased
  230. \end_layout
  231. \begin_layout Itemize
  232. A blood test based on microarrays would be less biased and invasive
  233. \end_layout
  234. \end_deeper
  235. \begin_layout Itemize
  236. Memory cells are resistant to immune suppression
  237. \end_layout
  238. \begin_deeper
  239. \begin_layout Itemize
  240. Mechanisms of resistance in memory cells are poorly understood
  241. \end_layout
  242. \begin_layout Itemize
  243. A better understanding of immune memory formation is needed
  244. \end_layout
  245. \end_deeper
  246. \begin_layout Itemize
  247. Mesenchymal stem cell infusion is a promising new treatment to prevent/delay
  248. rejection
  249. \end_layout
  250. \begin_deeper
  251. \begin_layout Itemize
  252. Demonstrated in mice, but not yet in primates
  253. \end_layout
  254. \begin_layout Itemize
  255. Mechanism currently unknown, but MSC are known to be immune modulatory
  256. \end_layout
  257. \end_deeper
  258. \begin_layout Subsection
  259. Overview of bioinformatic analysis methods
  260. \end_layout
  261. \begin_layout Standard
  262. An overview of all the methods used, including what problem they solve,
  263. what assumptions they make, and a basic description of how they work.
  264. \end_layout
  265. \begin_layout Itemize
  266. ChIP-seq Peak calling
  267. \end_layout
  268. \begin_deeper
  269. \begin_layout Itemize
  270. Cross-correlation analysis to determine fragment size
  271. \end_layout
  272. \begin_layout Itemize
  273. Broad vs narrow peaks
  274. \end_layout
  275. \begin_layout Itemize
  276. SICER for broad peaks
  277. \end_layout
  278. \begin_layout Itemize
  279. IDR for biologically reproducible peaks
  280. \end_layout
  281. \begin_layout Itemize
  282. csaw peak filtering guidelines for unbiased downstream analysis
  283. \end_layout
  284. \end_deeper
  285. \begin_layout Itemize
  286. Normalization is non-trivial and application-dependant
  287. \end_layout
  288. \begin_deeper
  289. \begin_layout Itemize
  290. Expression arrays: RMA & fRMA; why fRMA is needed
  291. \end_layout
  292. \begin_layout Itemize
  293. Methylation arrays: M-value transformation approximates normal data but
  294. induces heteroskedasticity
  295. \end_layout
  296. \begin_layout Itemize
  297. RNA-seq: normalize based on assumption that the average gene is not changing
  298. \end_layout
  299. \begin_layout Itemize
  300. ChIP-seq: complex with many considerations, dependent on experimental methods,
  301. biological system, and analysis goals
  302. \end_layout
  303. \end_deeper
  304. \begin_layout Itemize
  305. Limma: The standard linear modeling framework for genomics
  306. \end_layout
  307. \begin_deeper
  308. \begin_layout Itemize
  309. empirical Bayes variance modeling: limma's core feature
  310. \end_layout
  311. \begin_layout Itemize
  312. edgeR & DESeq2: Extend with negative bonomial GLM for RNA-seq and other
  313. count data
  314. \end_layout
  315. \begin_layout Itemize
  316. voom: Extend with precision weights to model mean-variance trend
  317. \end_layout
  318. \begin_layout Itemize
  319. arrayWeights and duplicateCorrelation to handle complex variance structures
  320. \end_layout
  321. \end_deeper
  322. \begin_layout Itemize
  323. sva and ComBat for batch correction
  324. \end_layout
  325. \begin_layout Itemize
  326. Factor analysis: PCA, MDS, MOFA
  327. \end_layout
  328. \begin_deeper
  329. \begin_layout Itemize
  330. Batch-corrected PCA is informative, but careful application is required
  331. to avoid bias
  332. \end_layout
  333. \end_deeper
  334. \begin_layout Itemize
  335. Gene set analysis: camera and SPIA
  336. \end_layout
  337. \begin_layout Section
  338. Innovation
  339. \end_layout
  340. \begin_layout Itemize
  341. MSC infusion to improve transplant outcomes (prevent/delay rejection)
  342. \end_layout
  343. \begin_deeper
  344. \begin_layout Itemize
  345. Characterize MSC response to interferon gamma
  346. \end_layout
  347. \begin_layout Itemize
  348. IFN-g is thought to stimulate their function
  349. \end_layout
  350. \begin_layout Itemize
  351. Test IFN-g treated MSC infusion as a therapy to delay graft rejection in
  352. cynomolgus monkeys
  353. \end_layout
  354. \begin_layout Itemize
  355. Monitor animals post-transplant using blood RNA-seq at serial time points
  356. \end_layout
  357. \end_deeper
  358. \begin_layout Itemize
  359. Investigate dynamics of histone marks in CD4 T-cell activation and memory
  360. \end_layout
  361. \begin_deeper
  362. \begin_layout Itemize
  363. Previous studies have looked at single snapshots of histone marks
  364. \end_layout
  365. \begin_layout Itemize
  366. Instead, look at changes in histone marks across activation and memory
  367. \end_layout
  368. \end_deeper
  369. \begin_layout Itemize
  370. High-throughput sequencing and microarray technologies
  371. \end_layout
  372. \begin_deeper
  373. \begin_layout Itemize
  374. Powerful methods for assaying gene expression and epigenetics across entire
  375. genomes
  376. \end_layout
  377. \begin_layout Itemize
  378. Proper analysis requires finding and exploiting systematic genome-wide trends
  379. \end_layout
  380. \end_deeper
  381. \begin_layout Chapter
  382. Reproducible genome-wide epigenetic analysis of H3K4 and H3K27 methylation
  383. in naive and memory CD4 T-cell activation
  384. \end_layout
  385. \begin_layout Standard
  386. \begin_inset Flex TODO Note (inline)
  387. status open
  388. \begin_layout Plain Layout
  389. Author list: Me, Sarah, Dan
  390. \end_layout
  391. \end_inset
  392. \end_layout
  393. \begin_layout Section
  394. Approach
  395. \end_layout
  396. \begin_layout Itemize
  397. CD4 T-cells are central to all adaptive immune responses and memory
  398. \end_layout
  399. \begin_layout Itemize
  400. H3K4 and H3K27 methylation are major epigenetic regulators of gene expression
  401. \end_layout
  402. \begin_layout Itemize
  403. Canonically, H3K4 is activating and H3K27 is inhibitory, but the reality
  404. is complex
  405. \end_layout
  406. \begin_layout Itemize
  407. Looking at these marks during CD4 activation and memory should reveal new
  408. mechanistic details
  409. \end_layout
  410. \begin_layout Itemize
  411. Test
  412. \begin_inset Quotes eld
  413. \end_inset
  414. poised promoter
  415. \begin_inset Quotes erd
  416. \end_inset
  417. hypothesis in which H3K4 and H3K27 are both methylated
  418. \end_layout
  419. \begin_layout Itemize
  420. Expand scope of analysis beyond simple promoter counts
  421. \end_layout
  422. \begin_deeper
  423. \begin_layout Itemize
  424. Analyze peaks genome-wide, including in intergenic regions
  425. \end_layout
  426. \begin_layout Itemize
  427. Analysis of coverage distribution shape within promoters, e.g.
  428. upstream vs downstream coverage
  429. \end_layout
  430. \end_deeper
  431. \begin_layout Section
  432. Methods
  433. \end_layout
  434. \begin_layout Standard
  435. \begin_inset Float figure
  436. wide false
  437. sideways true
  438. status open
  439. \begin_layout Plain Layout
  440. \align center
  441. \begin_inset Graphics
  442. filename graphics/CD4-csaw/rulegraphs/rulegraph-all.pdf
  443. width 100theight%
  444. \end_inset
  445. \end_layout
  446. \begin_layout Plain Layout
  447. \begin_inset Caption Standard
  448. \begin_layout Plain Layout
  449. \begin_inset CommandInset label
  450. LatexCommand label
  451. name "fig:rulegraph"
  452. \end_inset
  453. \series bold
  454. Dependency graph of steps in reproducible workflow
  455. \end_layout
  456. \end_inset
  457. \end_layout
  458. \end_inset
  459. \end_layout
  460. \begin_layout Standard
  461. A reproducible workflow
  462. \begin_inset CommandInset citation
  463. LatexCommand cite
  464. key "gh-cd4-csaw"
  465. literal "false"
  466. \end_inset
  467. was written to analyze the raw ChIP-seq and RNA-seq data from previous
  468. studies
  469. \begin_inset CommandInset citation
  470. LatexCommand cite
  471. key "LaMere2016,LaMere2017"
  472. literal "true"
  473. \end_inset
  474. .
  475. Briefly, this data consists of RNA-seq and ChIP-seq from CD4 T-cells cultured
  476. from 4 donors.
  477. From each donor, naive and memory CD4 T-cells were isolated separately.
  478. Then cultures of both cells were activated [how?], and samples were taken
  479. at 4 time points: Day 0 (pre-activation), Day 1 (early activation), Day
  480. 5 (peak activation), and Day 14 (post-activation).
  481. For each combination of cell type and time point, RNA was isolated, and
  482. ChIP-seq was performed for each of 3 histone marks: H3K4me2, H3K4me3, and
  483. H3K27me3.
  484. The ChIP-seq input was also sequenced for each sample.
  485. The result was 32 samples for each assay.
  486. \end_layout
  487. \begin_layout Standard
  488. Sequence reads were retrieved from the Sequence Read Archive (SRA)
  489. \begin_inset CommandInset citation
  490. LatexCommand cite
  491. key "Leinonen2011"
  492. literal "false"
  493. \end_inset
  494. .
  495. ChIP-seq (and input) reads were aligned to CRCh38 genome assembly using
  496. Bowtie 2
  497. \begin_inset CommandInset citation
  498. LatexCommand cite
  499. key "Langmead2012,Schneider2017,gh-hg38-ref"
  500. literal "false"
  501. \end_inset
  502. .
  503. Artifact regions were annotated using a custom implementation of the GreyListCh
  504. IP algorithm, and these
  505. \begin_inset Quotes eld
  506. \end_inset
  507. greylists
  508. \begin_inset Quotes erd
  509. \end_inset
  510. were merged with the ENCODE blacklist
  511. \begin_inset CommandInset citation
  512. LatexCommand cite
  513. key "greylistchip,Amemiya2019,Dunham2012"
  514. literal "false"
  515. \end_inset
  516. .
  517. Any read or peak overlapping one of these regions was regarded as artifactual
  518. and excluded from downstream analyses.
  519. \end_layout
  520. \begin_layout Standard
  521. Peaks are called using epic, an implementation of the SICER algorithm
  522. \begin_inset CommandInset citation
  523. LatexCommand cite
  524. key "Zang2009,gh-epic"
  525. literal "false"
  526. \end_inset
  527. .
  528. Peaks are also called separately using MACS, but MACS was determined to
  529. be a poor fit for the data, and these peak calls are not used further
  530. \begin_inset CommandInset citation
  531. LatexCommand cite
  532. key "Zhang2008"
  533. literal "false"
  534. \end_inset
  535. .
  536. \end_layout
  537. \begin_layout Itemize
  538. Re-analyze previously published CD4 ChIP-seq & RNA-seq data
  539. \end_layout
  540. \begin_deeper
  541. \begin_layout Itemize
  542. Completely reimplement analysis from scratch as a reproducible workflow
  543. \end_layout
  544. \begin_layout Itemize
  545. Use newly published methods & algorithms not available during the original
  546. analysis: SICER, csaw, MOFA, ComBat, sva, GREAT, and more
  547. \end_layout
  548. \end_deeper
  549. \begin_layout Itemize
  550. SICER, IDR, csaw, & GREAT to call ChIP-seq peaks genome-wide, perform differenti
  551. al abundance analysis, and relate those peaks to gene expression
  552. \end_layout
  553. \begin_layout Itemize
  554. Promoter counts in sliding windows around each gene's highest-expressed
  555. TSS to investigate coverage distribution within promoters
  556. \end_layout
  557. \begin_layout Section
  558. Results
  559. \end_layout
  560. \begin_layout Standard
  561. \begin_inset Note Note
  562. status open
  563. \begin_layout Plain Layout
  564. Focus on what hypotheses were tested, then select figures that show how
  565. those hypotheses were tested, even if the result is a negative.
  566. \end_layout
  567. \end_inset
  568. \end_layout
  569. \begin_layout Subsection
  570. H3K4 and H3K27 methylation occur in broad regions and are enriched near
  571. promoters
  572. \end_layout
  573. \begin_layout Itemize
  574. Figures comparing MACS (non-broad peak caller) to SICER/epic (broad peak
  575. caller)
  576. \end_layout
  577. \begin_deeper
  578. \begin_layout Itemize
  579. Compare peak sizes and number of called peaks
  580. \end_layout
  581. \begin_layout Itemize
  582. Show representative IDR consistency plots for both
  583. \end_layout
  584. \end_deeper
  585. \begin_layout Itemize
  586. IDR analysis shows that SICER-called peaks are much more reproducible between
  587. biological replicates
  588. \end_layout
  589. \begin_layout Itemize
  590. Each histone mark is enriched within a certain radius of gene TSS positions,
  591. but that radius is different for each mark (figure)
  592. \end_layout
  593. \begin_layout Subsection
  594. RNA-seq has a large confounding batch effect
  595. \end_layout
  596. \begin_layout Itemize
  597. RNA-seq batch effect can be partially corrected, but still induces uncorrectable
  598. biases in downstream analysis
  599. \end_layout
  600. \begin_deeper
  601. \begin_layout Itemize
  602. Figure showing MDS plot before & after ComBat
  603. \end_layout
  604. \begin_layout Itemize
  605. Figure relating sample weights to batches, cell types, time points, etc.,
  606. showing that one batch is significantly worse quality
  607. \end_layout
  608. \begin_layout Itemize
  609. Figures showing p-value histograms for within-batch and cross-batch contrasts,
  610. showing that cross-batch contrasts have attenuated signal, as do comparisons
  611. within the bad batch
  612. \end_layout
  613. \end_deeper
  614. \begin_layout Subsection
  615. ChIP-seq must be corrected for hidden confounding factors
  616. \end_layout
  617. \begin_layout Itemize
  618. Figures showing pre- and post-SVA MDS plots for each histone mark
  619. \end_layout
  620. \begin_layout Itemize
  621. Figures showing BCV plots with and without SVA for each histone mark
  622. \end_layout
  623. \begin_layout Subsection
  624. H3K4 and H3K27 promoter methylation has broadly the expected correlation
  625. with gene expression
  626. \end_layout
  627. \begin_layout Itemize
  628. H3K4 is correlated with higher expression, and H3K27 is correlated with
  629. lower expression genome-wide
  630. \end_layout
  631. \begin_layout Itemize
  632. Figures showing these correlations: box/violin plots of expression distributions
  633. with every combination of peak presence/absence in promoter
  634. \end_layout
  635. \begin_layout Itemize
  636. Appropriate statistical tests showing significant differences in expected
  637. directions
  638. \end_layout
  639. \begin_layout Subsection
  640. MOFA recovers biologically relevant variation from blind analysis by correlating
  641. across datasets
  642. \end_layout
  643. \begin_layout Itemize
  644. MOFA
  645. \begin_inset CommandInset citation
  646. LatexCommand cite
  647. key "Argelaguet2018"
  648. literal "false"
  649. \end_inset
  650. successfully separates biologically relevant patterns of variation from
  651. technical confounding factors without knowing the sample labels, by finding
  652. latent factors that explain variation across multiple data sets.
  653. \end_layout
  654. \begin_deeper
  655. \begin_layout Itemize
  656. Figure: show percent-variance-explained plot from MOFA and PCA-like plots
  657. for the relevant latent factors
  658. \end_layout
  659. \begin_layout Itemize
  660. MOFA analysis also shows that batch effect correction can't get much better
  661. than it already is (Figure comparing blind MOFA batch correction to ComBat
  662. correction)
  663. \end_layout
  664. \end_deeper
  665. \begin_layout Subsection
  666. Naive-to-memory convergence observed in H3K4 and RNA-seq data, not in H3K27me3
  667. \end_layout
  668. \begin_layout Itemize
  669. H3K4 and RNA-seq data show clear evidence of naive convergence with memory
  670. between days 1 and 5 (MDS plot figure, also compare with last figure from
  671. \begin_inset CommandInset citation
  672. LatexCommand cite
  673. key "LaMere2016"
  674. literal "false"
  675. \end_inset
  676. )
  677. \end_layout
  678. \begin_layout Standard
  679. \begin_inset Flex TODO Note (inline)
  680. status open
  681. \begin_layout Plain Layout
  682. Note that Sarah has granted permission to use her figures
  683. \end_layout
  684. \end_inset
  685. \end_layout
  686. \begin_layout Itemize
  687. Table of numbers of genes different between N & M at each time point, showing
  688. dwindling differences at later time points, consistent with convergence
  689. \end_layout
  690. \begin_layout Itemize
  691. Similar figure for H3K27me3 showing lack of convergence
  692. \end_layout
  693. \begin_layout Subsection
  694. Effect of promoter coverage upstream vs downstream of TSS
  695. \end_layout
  696. \begin_layout Itemize
  697. H3K4me peaks seem to correlate with increased expression as long as they
  698. are anywhere near the TSS
  699. \end_layout
  700. \begin_layout Itemize
  701. H3K27me3 peaks can have different correlations to gene expression depending
  702. on their position relative to TSS (e.g.
  703. upstream vs downstream) Results consistent with
  704. \begin_inset CommandInset citation
  705. LatexCommand cite
  706. key "Young2011"
  707. literal "false"
  708. \end_inset
  709. \end_layout
  710. \begin_layout Section
  711. Discussion
  712. \end_layout
  713. \begin_layout Itemize
  714. "Promoter radius" is not constant and must be defined empirically for a
  715. given data set
  716. \end_layout
  717. \begin_layout Itemize
  718. MOFA shows great promise for accelerating discovery of major biological
  719. effects in multi-omics datasets
  720. \end_layout
  721. \begin_deeper
  722. \begin_layout Itemize
  723. MOFA was added to this analysis late and played primarily a confirmatory
  724. role, but it was able to confirm earlier conclusions with much less prior
  725. information (no sample labels) and much less analyst effort
  726. \end_layout
  727. \begin_layout Itemize
  728. MOFA confirmed that the already-implemented batch correction in the RNA-seq
  729. data was already performing as well as possible given the limitations of
  730. the data
  731. \end_layout
  732. \end_deeper
  733. \begin_layout Itemize
  734. Naive-to-memory convergence implies that naive cells are differentiating
  735. into memory cells, and that gene expression and H3K4 methylation are involved
  736. in this differentiation while H3K27me3 is less involved
  737. \end_layout
  738. \begin_layout Itemize
  739. H3K27me3, canonically regarded as a deactivating mark, seems to have a more
  740. complex
  741. \end_layout
  742. \begin_layout Itemize
  743. Discuss advantages of developing using a reproducible workflow
  744. \end_layout
  745. \begin_layout Chapter
  746. Improving array-based analyses of transplant rejection by optimizing data
  747. preprocessing
  748. \end_layout
  749. \begin_layout Standard
  750. \begin_inset Note Note
  751. status open
  752. \begin_layout Plain Layout
  753. Author list: Me, Sunil, Tom, Padma, Dan
  754. \end_layout
  755. \end_inset
  756. \end_layout
  757. \begin_layout Section
  758. Approach
  759. \end_layout
  760. \begin_layout Subsection
  761. Proper pre-processing is essential for array data
  762. \end_layout
  763. \begin_layout Standard
  764. \begin_inset Flex TODO Note (inline)
  765. status open
  766. \begin_layout Plain Layout
  767. This section could probably use some citations
  768. \end_layout
  769. \end_inset
  770. \end_layout
  771. \begin_layout Standard
  772. Microarrays, bead ararys, and similar assays produce raw data in the form
  773. of fluorescence intensity measurements, with the each intensity measurement
  774. proportional to the abundance of some fluorescently-labelled target DNA
  775. or RNA sequence that base pairs to a specific probe sequence.
  776. However, these measurements for each probe are also affected my many technical
  777. confounding factors, such as the concentration of target material, strength
  778. of off-target binding, and the sensitivity of the imaging sensor.
  779. Some array designs also use multiple probe sequences for each target.
  780. Hence, extensive pre-processing of array data is necessary to normalize
  781. out the effects of these technical factors and summarize the information
  782. from multiple probes to arrive at a single usable estimate of abundance
  783. or other relevant quantity, such as a ratio of two abundances, for each
  784. target.
  785. \end_layout
  786. \begin_layout Standard
  787. The choice of pre-processing algorithms used in the analysis of an array
  788. data set can have a large effect on the results of that analysis.
  789. However, despite their importance, these steps are often neglected or rushed
  790. in order to get to the more scientifically interesting analysis steps involving
  791. the actual biology of the system under study.
  792. Hence, it is often possible to achieve substantial gains in statistical
  793. power, model goodness-of-fit, or other relevant performance measures, by
  794. checking the assumptions made by each preprocessing step and choosing specific
  795. normalization methods tailored to the specific goals of the current analysis.
  796. \end_layout
  797. \begin_layout Subsection
  798. Normalization for clinical microarray classifiers must be single-channel
  799. \end_layout
  800. \begin_layout Subsubsection
  801. Standard normalization methods are unsuitable for clinical application
  802. \end_layout
  803. \begin_layout Standard
  804. As the cost of performing microarray assays falls, there is increasing interest
  805. in using genomic assays for diagnostic purposes, such as distinguishing
  806. healthy transplants (TX) from transplants undergoing acute rejection (AR)
  807. or acute dysfunction with no rejection (ADNR).
  808. However, the the standard normalization algorithm used for microarray data,
  809. Robust Multi-chip Average (RMA)
  810. \begin_inset CommandInset citation
  811. LatexCommand cite
  812. key "Irizarry2003a"
  813. literal "false"
  814. \end_inset
  815. , is not applicable in a clinical setting.
  816. Two of the steps in RMA, quantile normalization and probe summarization
  817. by median polish, depend on every array in the data set being normalized.
  818. This means that adding or removing any arrays from a data set changes the
  819. normalized values for all arrays, and data sets that have been normalized
  820. separately cannot be compared to each other.
  821. Hence, when using RMA, any arrays to be analyzed together must also be
  822. normalized together, and the set of arrays included in the data set must
  823. be held constant throughout an analysis.
  824. \end_layout
  825. \begin_layout Standard
  826. These limitations present serious impediments to the use of arrays as a
  827. diagnostic tool.
  828. When training a classifier, the samples to be classified must not be involved
  829. in any step of the training process, lest their inclusion bias the training
  830. process.
  831. Once a classifier is deployed in a clinical setting, the samples to be
  832. classified will not even
  833. \emph on
  834. exist
  835. \emph default
  836. at the time of training, so including them would be impossible even if
  837. it were statistically justifiable.
  838. Therefore, any machine learning application for microarrays demands that
  839. the normalized expression values computed for an array must depend only
  840. on information contained within that array.
  841. This would ensure that each array's normalization is independent of every
  842. other array, and that arrays normalized separately can still be compared
  843. to each other without bias.
  844. Such a normalization is commonly referred to as
  845. \begin_inset Quotes eld
  846. \end_inset
  847. single-channel normalization
  848. \begin_inset Quotes erd
  849. \end_inset
  850. .
  851. \end_layout
  852. \begin_layout Subsubsection
  853. Several strategies are available to meet clinical normalization requirements
  854. \end_layout
  855. \begin_layout Standard
  856. Frozen RMA (fRMA) addresses these concerns by replacing the quantile normalizati
  857. on and median polish with alternatives that do not introduce inter-array
  858. dependence, allowing each array to be normalized independently of all others
  859. \begin_inset CommandInset citation
  860. LatexCommand cite
  861. key "McCall2010"
  862. literal "false"
  863. \end_inset
  864. .
  865. Quantile normalization is performed against a pre-generated set of quantiles
  866. learned from a collection of 850 publically available arrays sampled from
  867. a wide variety of tissues in the Gene Expression Omnibus (GEO).
  868. Each array's probe intensity distribution is normalized against these pre-gener
  869. ated quantiles.
  870. The median polish step is replaced with a robust weighted average of probe
  871. intensities, using inverse variance weights learned from the same public
  872. GEO data.
  873. The result is a normalization that satisfies the requirements mentioned
  874. above: each array is normalized independently of all others, and any two
  875. normalized arrays can be compared directly to each other.
  876. \end_layout
  877. \begin_layout Standard
  878. One important limitation of fRMA is that it requires a separate reference
  879. data set from which to learn the parameters (reference quantiles and probe
  880. weights) that will be used to normalize each array.
  881. These parameters are specific to a given array platform, and pre-generated
  882. parameters are only provided for the most common platforms, such as Affymetrix
  883. hgu133plus2.
  884. For a less common platform, such as hthgu133pluspm, is is necessary to
  885. learn custom parameters from in-house data before fRMA can be used to normalize
  886. samples on that platform
  887. \begin_inset CommandInset citation
  888. LatexCommand cite
  889. key "McCall2011"
  890. literal "false"
  891. \end_inset
  892. .
  893. \end_layout
  894. \begin_layout Standard
  895. One other option is the aptly-named Single Channel Array Normalization (SCAN),
  896. which adapts a normalization method originally designed for tiling arrays
  897. \begin_inset CommandInset citation
  898. LatexCommand cite
  899. key "Piccolo2012"
  900. literal "false"
  901. \end_inset
  902. .
  903. SCAN is truly single-channel in that it does not require a set of normalization
  904. paramters estimated from an external set of reference samples like fRMA
  905. does.
  906. \end_layout
  907. \begin_layout Subsection
  908. Heteroskedasticity must be accounted for in methylation array data
  909. \end_layout
  910. \begin_layout Subsubsection
  911. Methylation array preprocessing induces heteroskedasticity
  912. \end_layout
  913. \begin_layout Standard
  914. DNA methylation arrays are a relatively new kind of assay that uses microarrays
  915. to measure the degree of methylation on cytosines in specific regions arrayed
  916. across the genome.
  917. First, bisulfite treatment converts all unmethylated cytosines to uracil
  918. (which then become thymine after amplication) while leaving methylated
  919. cytosines unaffected.
  920. Then, each target region is interrogated with two probes: one binds to
  921. the original genomic sequence and interrogates the level of methylated
  922. DNA, and the other binds to the same sequence with all cytosines replaced
  923. by thymidines and interrogates the level of unmethylated DNA.
  924. \end_layout
  925. \begin_layout Standard
  926. \begin_inset Float figure
  927. wide false
  928. sideways false
  929. status collapsed
  930. \begin_layout Plain Layout
  931. \align center
  932. \begin_inset Graphics
  933. filename graphics/methylvoom/sigmoid.pdf
  934. \end_inset
  935. \end_layout
  936. \begin_layout Plain Layout
  937. \begin_inset Caption Standard
  938. \begin_layout Plain Layout
  939. \begin_inset CommandInset label
  940. LatexCommand label
  941. name "fig:Sigmoid-beta-m-mapping"
  942. \end_inset
  943. \series bold
  944. Sigmoid shape of the mapping between β and M values
  945. \end_layout
  946. \end_inset
  947. \end_layout
  948. \end_inset
  949. \end_layout
  950. \begin_layout Standard
  951. After normalization, these two probe intensities are summarized in one of
  952. two ways, each with advantages and disadvantages.
  953. β
  954. \series bold
  955. \series default
  956. values, interpreted as fraction of DNA copies methylated, range from 0 to
  957. 1.
  958. β
  959. \series bold
  960. \series default
  961. values are conceptually easy to interpret, but the constrained range makes
  962. them unsuitable for linear modeling, and their error distributions are
  963. highly non-normal, which also frustrates linear modeling.
  964. M-values, interpreted as the log ratio of methylated to unmethylated copies,
  965. are computed by mapping the beta values from
  966. \begin_inset Formula $[0,1]$
  967. \end_inset
  968. onto
  969. \begin_inset Formula $(-\infty,+\infty)$
  970. \end_inset
  971. using a sigmoid curve (Figure
  972. \begin_inset CommandInset ref
  973. LatexCommand ref
  974. reference "fig:Sigmoid-beta-m-mapping"
  975. plural "false"
  976. caps "false"
  977. noprefix "false"
  978. \end_inset
  979. ).
  980. This transformation results in values with better statistical perperties:
  981. the unconstrained range is suitable for linear modeling, and the error
  982. distributions are more normal.
  983. Hence, most linear modeling and other statistical testing on methylation
  984. arrays is performed using M-values.
  985. \end_layout
  986. \begin_layout Standard
  987. However, the steep slope of the sigmoid transformation near 0 and 1 tends
  988. to over-exaggerate small differences in β values near those extremes, which
  989. in turn amplifies the error in those values, leading to a U-shaped trend
  990. in the mean-variance curve: extreme values have higher variances than values
  991. near the middle.
  992. This mean-variance dependency must be accounted for when fitting the linear
  993. model for differential methylation, or else the variance will be systematically
  994. overestimated for probes with moderate M-values and underestimated for
  995. probes with extreme M-values.
  996. \end_layout
  997. \begin_layout Subsubsection
  998. The voom method for RNA-seq data can model M-value heteroskedasticity
  999. \end_layout
  1000. \begin_layout Standard
  1001. RNA-seq read count data are also known to show heteroskedasticity, and the
  1002. voom method was developed for modeling this heteroskedasticity by estimating
  1003. the mean-variance trend in the data and using this trend to assign precision
  1004. weights to each observation
  1005. \begin_inset CommandInset citation
  1006. LatexCommand cite
  1007. key "Law2013"
  1008. literal "false"
  1009. \end_inset
  1010. .
  1011. While methylation array data are not derived from counts and have a very
  1012. different mean-variance relationship from that of typical RNA-seq data,
  1013. the voom method makes no specific assumptions on the shape of the mean-variance
  1014. relationship - it only assumes that the relationship is smooth enough to
  1015. model using a lowess curve.
  1016. Hence, the method is sufficiently general to model the mean-variance relationsh
  1017. ip in methylation array data.
  1018. However, the standard implementation of voom assumes that the input is
  1019. given in raw read counts, and it must be adapted to run on methylation
  1020. M-values.
  1021. \end_layout
  1022. \begin_layout Section
  1023. Methods
  1024. \end_layout
  1025. \begin_layout Subsection
  1026. Evaluation of classifier performance with different normalization methods
  1027. \end_layout
  1028. \begin_layout Standard
  1029. For testing different expression microarray normalizations, a data set of
  1030. 157 hgu133plus2 arrays was used, consisting of blood samples from kidney
  1031. transplant patients whose grafts had been graded as TX, AR, or ADNR via
  1032. biopsy and histology (46 TX, 69 AR, 42 ADNR)
  1033. \begin_inset CommandInset citation
  1034. LatexCommand cite
  1035. key "Kurian2014"
  1036. literal "true"
  1037. \end_inset
  1038. .
  1039. Additionally, an external validation set of 75 samples was gathered from
  1040. public GEO data (37 TX, 38 AR, no ADNR).
  1041. \end_layout
  1042. \begin_layout Standard
  1043. \begin_inset Flex TODO Note (inline)
  1044. status collapsed
  1045. \begin_layout Plain Layout
  1046. Find appropriate GEO identifiers if possible.
  1047. Kurian 2014 says GSE15296, but this seems to be different data.
  1048. I also need to look up the GEO accession for the external validation set.
  1049. \end_layout
  1050. \end_inset
  1051. \end_layout
  1052. \begin_layout Standard
  1053. To evaluate the effect of each normalization on classifier performance,
  1054. the same classifier training and validation procedure was used after each
  1055. normalization method.
  1056. The PAM package was used to train a nearest shrunken centroid classifier
  1057. on the training set and select the appropriate threshold for centroid shrinking.
  1058. Then the trained classifier was used to predict the class probabilities
  1059. of each validation sample.
  1060. From these class probabilities, ROC curves and area-under-curve (AUC) values
  1061. were generated
  1062. \begin_inset CommandInset citation
  1063. LatexCommand cite
  1064. key "Turck2011"
  1065. literal "false"
  1066. \end_inset
  1067. .
  1068. Each normalization was tested on two different sets of training and validation
  1069. samples.
  1070. For internal validation, the 115 TX and AR arrays in the internal set were
  1071. split at random into two equal sized sets, one for training and one for
  1072. validation, each containing the same numbers of TX and AR samples as the
  1073. other set.
  1074. For external validation, the full set of 115 TX and AR samples were used
  1075. as a training set, and the 75 external TX and AR samples were used as the
  1076. validation set.
  1077. Thus, 2 ROC curves and AUC values were generated for each normalization
  1078. method: one internal and one external.
  1079. Because the external validation set contains no ADNR samples, only classificati
  1080. on of TX and AR samples was considered.
  1081. The ADNR samples were included during normalization but excluded from all
  1082. classifier training and validation.
  1083. This ensures that the performance on internal and external validation sets
  1084. is directly comparable, since both are performing the same task: distinguising
  1085. TX from AR.
  1086. \end_layout
  1087. \begin_layout Standard
  1088. \begin_inset Flex TODO Note (inline)
  1089. status collapsed
  1090. \begin_layout Plain Layout
  1091. Summarize the get.best.threshold algorithm for PAM threshold selection
  1092. \end_layout
  1093. \end_inset
  1094. \end_layout
  1095. \begin_layout Standard
  1096. Six different normalization strategies were evaluated.
  1097. First, 2 well-known non-single-channel normalization methods were considered:
  1098. RMA and dChip
  1099. \begin_inset CommandInset citation
  1100. LatexCommand cite
  1101. key "Li2001,Irizarry2003a"
  1102. literal "false"
  1103. \end_inset
  1104. .
  1105. Since RMA produces expression values on a log2 scale and dChip does not,
  1106. the values from dChip were log2 transformed after normalization.
  1107. Next, RMA and dChip followed by Global Rank-invariant Set Normalization
  1108. (GRSN) were tested
  1109. \begin_inset CommandInset citation
  1110. LatexCommand cite
  1111. key "Pelz2008"
  1112. literal "false"
  1113. \end_inset
  1114. .
  1115. Post-processing with GRSN does not turn RMA or dChip into single-channel
  1116. methods, but it may help mitigate batch effects and is therefore useful
  1117. as a benchmark.
  1118. Lastly, the two single-channel normalization methods, fRMA and SCAN, were
  1119. tested
  1120. \begin_inset CommandInset citation
  1121. LatexCommand cite
  1122. key "McCall2010,Piccolo2012"
  1123. literal "false"
  1124. \end_inset
  1125. .
  1126. When evaluting internal validation performance, only the 157 internal samples
  1127. were normalized; when evaluating external validation performance, all 157
  1128. internal samples and 75 external samples were normalized together.
  1129. \end_layout
  1130. \begin_layout Standard
  1131. For demonstrating the problem with separate normalization of training and
  1132. validation data, one additional normalization was performed: the internal
  1133. and external sets were each normalized separately using RMA, and the normalized
  1134. data for each set were combined into a single set with no further attempts
  1135. at normalizing between the two sets.
  1136. The represents approximately how RMA would have to be used in a clinical
  1137. setting, where the samples to be classified are not available at the time
  1138. the classifier is trained.
  1139. \end_layout
  1140. \begin_layout Subsection
  1141. Generating custom fRMA vectors for hthgu133pluspm array platform
  1142. \end_layout
  1143. \begin_layout Standard
  1144. In order to enable fRMA normalization for the hthgu133pluspm array platform,
  1145. custom fRMA normalization vectors were trained using the frmaTools package
  1146. \begin_inset CommandInset citation
  1147. LatexCommand cite
  1148. key "McCall2011"
  1149. literal "false"
  1150. \end_inset
  1151. .
  1152. Separate vectors were created for two types of samples: kidney graft biopsy
  1153. samples and blood samples from graft recipients.
  1154. For training, a 341 kidney biopsy samples from 2 data sets and 965 blood
  1155. samples from 5 data sets were used as the reference set.
  1156. Arrays were groups into batches based on unique combinations of sample
  1157. type (blood or biopsy), diagnosis (TX, AR, etc.), data set, and scan date.
  1158. Thus, each batch represents arrays of the same kind that were run together
  1159. on the same day.
  1160. For estimating the probe inverse variance weights, frmaTools requires equal-siz
  1161. ed batches, which means a batch size must be chosen, and then batches smaller
  1162. than that size must be ignored, while batches larger than the chosen size
  1163. must be downsampled.
  1164. This downsampling is performed randomly, so the sampling process is repeated
  1165. 5 times and the resulting normalizations are compared to each other.
  1166. \end_layout
  1167. \begin_layout Standard
  1168. To evaluate the consistency of the generated normalization vectors, the
  1169. 5 fRMA vector sets generated from 5 random batch samplings were each used
  1170. to normalize the same 20 randomly selected samples from each tissue.
  1171. Then the normalized expression values for each probe on each array were
  1172. compared across all normalizations.
  1173. Each fRMA normalization was also compared against the normalized expression
  1174. values obtained by normalizing the same 20 samples with ordinary RMA.
  1175. \end_layout
  1176. \begin_layout Subsection
  1177. Modeling methylation array M-value heteroskedasticy in linear models with
  1178. modified voom implementation
  1179. \end_layout
  1180. \begin_layout Standard
  1181. \begin_inset Flex TODO Note (inline)
  1182. status open
  1183. \begin_layout Plain Layout
  1184. Put code on Github and reference it.
  1185. \end_layout
  1186. \end_inset
  1187. \end_layout
  1188. \begin_layout Standard
  1189. To investigate the whether DNA methylation could be used to distinguish
  1190. between healthy and dysfunctional transplants, a data set of 78 Illumina
  1191. 450k methylation arrays from human kidney graft biopsies was analyzed for
  1192. differential metylation between 4 transplant statuses: healthy transplant
  1193. (TX), transplants undergoing acute rejection (AR), acute dysfunction with
  1194. no rejection (ADNR), and chronic allograpft nephropathy (CAN).
  1195. The data consisted of 33 TX, 9 AR, 8 ADNR, and 28 CAN samples.
  1196. The uneven group sizes are a result of taking the biopsy samples before
  1197. the eventual fate of the transplant was known.
  1198. Each sample was additionally annotated with a donor ID (anonymized), Sex,
  1199. Age, Ethnicity, Creatinine Level, and Diabetes diagnosois (all samples
  1200. in this data set came from patients with either Type 1 or Type 2 diabetes).
  1201. \end_layout
  1202. \begin_layout Standard
  1203. The intensity data were first normalized using subset-quantile within array
  1204. normalization (SWAN)
  1205. \begin_inset CommandInset citation
  1206. LatexCommand cite
  1207. key "Maksimovic2012"
  1208. literal "false"
  1209. \end_inset
  1210. , then converted to intensity ratios (beta values)
  1211. \begin_inset CommandInset citation
  1212. LatexCommand cite
  1213. key "Aryee2014"
  1214. literal "false"
  1215. \end_inset
  1216. .
  1217. Any probes binding to loci that overlapped annotated SNPs were dropped,
  1218. and the annotated sex of each sample was verified against the sex inferred
  1219. from the ratio of median probe intensities for the X and Y chromosomes.
  1220. Then, the ratios were transformed to M-values.
  1221. \end_layout
  1222. \begin_layout Standard
  1223. From the M-values, a series of parallel analyses was performed, each adding
  1224. additional steps into the model fit to accomodate a feature of the data.
  1225. First, a
  1226. \begin_inset Quotes eld
  1227. \end_inset
  1228. basic
  1229. \begin_inset Quotes erd
  1230. \end_inset
  1231. linear modeling analysis was performed, compensating for known features
  1232. of the data using existing tools.
  1233. A design matrix was prepared including terms for the factor of interest
  1234. as well as the known biological confounders: sex, age, ethnicity, and diabetes.
  1235. Since some samples came from the same patients at differen times, the intra-pat
  1236. ient correlation was modeled as a random effect, estimating a shared correlation
  1237. value across all probes
  1238. \begin_inset CommandInset citation
  1239. LatexCommand cite
  1240. key "Smyth2005a"
  1241. literal "false"
  1242. \end_inset
  1243. .
  1244. Then the linear model was fit, and the variance was modeled using empirical
  1245. Bayes squeezing toward the mean-variance trend
  1246. \begin_inset CommandInset citation
  1247. LatexCommand cite
  1248. key "Ritchie2015"
  1249. literal "false"
  1250. \end_inset
  1251. .
  1252. Finally, t-tests or F-tests were performed a appropriate for each test:
  1253. t-tests for single contrasts, and F-tests for multiple contrasts.
  1254. \end_layout
  1255. \begin_layout Standard
  1256. For the second analysis, surrogate variable analysis (SVA) was used to infer
  1257. additional unobserved sources of heterogeneity in the data
  1258. \begin_inset CommandInset citation
  1259. LatexCommand cite
  1260. key "Leek2007"
  1261. literal "false"
  1262. \end_inset
  1263. .
  1264. These surrogate variables were added to the design matrix before fitting
  1265. the linear model.
  1266. In addition, sample quality weights were estimated from the data and used
  1267. during linear modeling to down-weight the contribution of highly variable
  1268. arrays while increasing the weight to arrays with lower variability
  1269. \begin_inset CommandInset citation
  1270. LatexCommand cite
  1271. key "Ritchie2006"
  1272. literal "false"
  1273. \end_inset
  1274. .
  1275. For the third analysis, the voom method was adapted to run on methylation
  1276. array data and used to model the mean-variance trend as individual observation
  1277. weights
  1278. \begin_inset CommandInset citation
  1279. LatexCommand cite
  1280. key "Law2013"
  1281. literal "false"
  1282. \end_inset
  1283. , which were combined with the sample weights
  1284. \begin_inset CommandInset citation
  1285. LatexCommand cite
  1286. key "Liu2015"
  1287. literal "false"
  1288. \end_inset
  1289. .
  1290. Each time weights were used, they were estimated once before estimating
  1291. the random effect correlation value, and then the weights were re-estimated
  1292. taking the random effect into account.
  1293. \end_layout
  1294. \begin_layout Section
  1295. Results
  1296. \end_layout
  1297. \begin_layout Standard
  1298. \begin_inset Flex TODO Note (inline)
  1299. status open
  1300. \begin_layout Plain Layout
  1301. Improve subsection titles in this section
  1302. \end_layout
  1303. \end_inset
  1304. \end_layout
  1305. \begin_layout Subsection
  1306. fRMA eliminates unwanted dependence of classifier training on normalization
  1307. strategy caused by RMA
  1308. \end_layout
  1309. \begin_layout Subsubsection
  1310. Separate normalization with RMA introduces unwanted biases in classification
  1311. \end_layout
  1312. \begin_layout Standard
  1313. \begin_inset Float figure
  1314. wide false
  1315. sideways false
  1316. status open
  1317. \begin_layout Plain Layout
  1318. \align center
  1319. \begin_inset Graphics
  1320. filename graphics/PAM/predplot.pdf
  1321. width 100col%
  1322. groupId colwidth
  1323. \end_inset
  1324. \end_layout
  1325. \begin_layout Plain Layout
  1326. \begin_inset Caption Standard
  1327. \begin_layout Plain Layout
  1328. \begin_inset CommandInset label
  1329. LatexCommand label
  1330. name "fig:Classifier-probabilities-RMA"
  1331. \end_inset
  1332. \series bold
  1333. Classifier probabilities on validation samples when normalized with RMA
  1334. together vs.
  1335. separately.
  1336. \end_layout
  1337. \end_inset
  1338. \end_layout
  1339. \end_inset
  1340. \end_layout
  1341. \begin_layout Standard
  1342. To demonstrate the problem with non-single-channel methods, we considered
  1343. the problem of training a classifier to distinguish TX from AR using the
  1344. samples from the internal set as training data, evaluating performance
  1345. on the external set.
  1346. First, training and evaluation were performed after normalizing all array
  1347. samples together as a single set using RMA, and second, the internal samples
  1348. were normalized separately from the external samples and the training and
  1349. evaluation were repeated.
  1350. For each sample in the validation set, the classifier probabilities from
  1351. both classifiers were plotted against each other (Fig.
  1352. \begin_inset CommandInset ref
  1353. LatexCommand ref
  1354. reference "fig:Classifier-probabilities-RMA"
  1355. plural "false"
  1356. caps "false"
  1357. noprefix "false"
  1358. \end_inset
  1359. ).
  1360. As expected, separate normalization biases the classifier probabilities,
  1361. resulting in several misclassifications.
  1362. In this case, the bias from separate normalization causes the classifier
  1363. to assign a lower probability of AR to every sample.
  1364. \end_layout
  1365. \begin_layout Subsubsection
  1366. fRMA and SCAN achieve maintain classification performance while eliminating
  1367. dependence on normalization strategy
  1368. \end_layout
  1369. \begin_layout Standard
  1370. \begin_inset Float figure
  1371. wide false
  1372. sideways false
  1373. status collapsed
  1374. \begin_layout Plain Layout
  1375. \align center
  1376. \begin_inset Graphics
  1377. filename graphics/PAM/ROC-TXvsAR-internal.pdf
  1378. width 100col%
  1379. groupId colwidth
  1380. \end_inset
  1381. \end_layout
  1382. \begin_layout Plain Layout
  1383. \begin_inset Caption Standard
  1384. \begin_layout Plain Layout
  1385. \begin_inset CommandInset label
  1386. LatexCommand label
  1387. name "fig:ROC-PAM-int"
  1388. \end_inset
  1389. ROC curves for PAM on internal validation data using different normalization
  1390. strategies
  1391. \end_layout
  1392. \end_inset
  1393. \end_layout
  1394. \end_inset
  1395. \end_layout
  1396. \begin_layout Standard
  1397. \begin_inset Float table
  1398. wide false
  1399. sideways false
  1400. status collapsed
  1401. \begin_layout Plain Layout
  1402. \align center
  1403. \begin_inset Tabular
  1404. <lyxtabular version="3" rows="7" columns="4">
  1405. <features tabularvalignment="middle">
  1406. <column alignment="center" valignment="top">
  1407. <column alignment="center" valignment="top">
  1408. <column alignment="center" valignment="top">
  1409. <column alignment="center" valignment="top">
  1410. <row>
  1411. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1412. \begin_inset Text
  1413. \begin_layout Plain Layout
  1414. \family roman
  1415. \series medium
  1416. \shape up
  1417. \size normal
  1418. \emph off
  1419. \bar no
  1420. \strikeout off
  1421. \xout off
  1422. \uuline off
  1423. \uwave off
  1424. \noun off
  1425. \color none
  1426. Normalization
  1427. \end_layout
  1428. \end_inset
  1429. </cell>
  1430. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1431. \begin_inset Text
  1432. \begin_layout Plain Layout
  1433. Single-channel?
  1434. \end_layout
  1435. \end_inset
  1436. </cell>
  1437. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1438. \begin_inset Text
  1439. \begin_layout Plain Layout
  1440. \family roman
  1441. \series medium
  1442. \shape up
  1443. \size normal
  1444. \emph off
  1445. \bar no
  1446. \strikeout off
  1447. \xout off
  1448. \uuline off
  1449. \uwave off
  1450. \noun off
  1451. \color none
  1452. Internal Val.
  1453. AUC
  1454. \end_layout
  1455. \end_inset
  1456. </cell>
  1457. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  1458. \begin_inset Text
  1459. \begin_layout Plain Layout
  1460. External Val.
  1461. AUC
  1462. \end_layout
  1463. \end_inset
  1464. </cell>
  1465. </row>
  1466. <row>
  1467. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1468. \begin_inset Text
  1469. \begin_layout Plain Layout
  1470. \family roman
  1471. \series medium
  1472. \shape up
  1473. \size normal
  1474. \emph off
  1475. \bar no
  1476. \strikeout off
  1477. \xout off
  1478. \uuline off
  1479. \uwave off
  1480. \noun off
  1481. \color none
  1482. RMA
  1483. \end_layout
  1484. \end_inset
  1485. </cell>
  1486. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1487. \begin_inset Text
  1488. \begin_layout Plain Layout
  1489. No
  1490. \end_layout
  1491. \end_inset
  1492. </cell>
  1493. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1494. \begin_inset Text
  1495. \begin_layout Plain Layout
  1496. \family roman
  1497. \series medium
  1498. \shape up
  1499. \size normal
  1500. \emph off
  1501. \bar no
  1502. \strikeout off
  1503. \xout off
  1504. \uuline off
  1505. \uwave off
  1506. \noun off
  1507. \color none
  1508. 0.852
  1509. \end_layout
  1510. \end_inset
  1511. </cell>
  1512. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  1513. \begin_inset Text
  1514. \begin_layout Plain Layout
  1515. \family roman
  1516. \series medium
  1517. \shape up
  1518. \size normal
  1519. \emph off
  1520. \bar no
  1521. \strikeout off
  1522. \xout off
  1523. \uuline off
  1524. \uwave off
  1525. \noun off
  1526. \color none
  1527. 0.713
  1528. \end_layout
  1529. \end_inset
  1530. </cell>
  1531. </row>
  1532. <row>
  1533. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1534. \begin_inset Text
  1535. \begin_layout Plain Layout
  1536. \family roman
  1537. \series medium
  1538. \shape up
  1539. \size normal
  1540. \emph off
  1541. \bar no
  1542. \strikeout off
  1543. \xout off
  1544. \uuline off
  1545. \uwave off
  1546. \noun off
  1547. \color none
  1548. dChip
  1549. \end_layout
  1550. \end_inset
  1551. </cell>
  1552. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1553. \begin_inset Text
  1554. \begin_layout Plain Layout
  1555. No
  1556. \end_layout
  1557. \end_inset
  1558. </cell>
  1559. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1560. \begin_inset Text
  1561. \begin_layout Plain Layout
  1562. \family roman
  1563. \series medium
  1564. \shape up
  1565. \size normal
  1566. \emph off
  1567. \bar no
  1568. \strikeout off
  1569. \xout off
  1570. \uuline off
  1571. \uwave off
  1572. \noun off
  1573. \color none
  1574. 0.891
  1575. \end_layout
  1576. \end_inset
  1577. </cell>
  1578. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  1579. \begin_inset Text
  1580. \begin_layout Plain Layout
  1581. \family roman
  1582. \series medium
  1583. \shape up
  1584. \size normal
  1585. \emph off
  1586. \bar no
  1587. \strikeout off
  1588. \xout off
  1589. \uuline off
  1590. \uwave off
  1591. \noun off
  1592. \color none
  1593. 0.657
  1594. \end_layout
  1595. \end_inset
  1596. </cell>
  1597. </row>
  1598. <row>
  1599. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1600. \begin_inset Text
  1601. \begin_layout Plain Layout
  1602. \family roman
  1603. \series medium
  1604. \shape up
  1605. \size normal
  1606. \emph off
  1607. \bar no
  1608. \strikeout off
  1609. \xout off
  1610. \uuline off
  1611. \uwave off
  1612. \noun off
  1613. \color none
  1614. RMA + GRSN
  1615. \end_layout
  1616. \end_inset
  1617. </cell>
  1618. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1619. \begin_inset Text
  1620. \begin_layout Plain Layout
  1621. No
  1622. \end_layout
  1623. \end_inset
  1624. </cell>
  1625. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1626. \begin_inset Text
  1627. \begin_layout Plain Layout
  1628. \family roman
  1629. \series medium
  1630. \shape up
  1631. \size normal
  1632. \emph off
  1633. \bar no
  1634. \strikeout off
  1635. \xout off
  1636. \uuline off
  1637. \uwave off
  1638. \noun off
  1639. \color none
  1640. 0.816
  1641. \end_layout
  1642. \end_inset
  1643. </cell>
  1644. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  1645. \begin_inset Text
  1646. \begin_layout Plain Layout
  1647. \family roman
  1648. \series medium
  1649. \shape up
  1650. \size normal
  1651. \emph off
  1652. \bar no
  1653. \strikeout off
  1654. \xout off
  1655. \uuline off
  1656. \uwave off
  1657. \noun off
  1658. \color none
  1659. 0.750
  1660. \end_layout
  1661. \end_inset
  1662. </cell>
  1663. </row>
  1664. <row>
  1665. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1666. \begin_inset Text
  1667. \begin_layout Plain Layout
  1668. \family roman
  1669. \series medium
  1670. \shape up
  1671. \size normal
  1672. \emph off
  1673. \bar no
  1674. \strikeout off
  1675. \xout off
  1676. \uuline off
  1677. \uwave off
  1678. \noun off
  1679. \color none
  1680. dChip + GRSN
  1681. \end_layout
  1682. \end_inset
  1683. </cell>
  1684. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1685. \begin_inset Text
  1686. \begin_layout Plain Layout
  1687. No
  1688. \end_layout
  1689. \end_inset
  1690. </cell>
  1691. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1692. \begin_inset Text
  1693. \begin_layout Plain Layout
  1694. \family roman
  1695. \series medium
  1696. \shape up
  1697. \size normal
  1698. \emph off
  1699. \bar no
  1700. \strikeout off
  1701. \xout off
  1702. \uuline off
  1703. \uwave off
  1704. \noun off
  1705. \color none
  1706. 0.875
  1707. \end_layout
  1708. \end_inset
  1709. </cell>
  1710. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  1711. \begin_inset Text
  1712. \begin_layout Plain Layout
  1713. \family roman
  1714. \series medium
  1715. \shape up
  1716. \size normal
  1717. \emph off
  1718. \bar no
  1719. \strikeout off
  1720. \xout off
  1721. \uuline off
  1722. \uwave off
  1723. \noun off
  1724. \color none
  1725. 0.642
  1726. \end_layout
  1727. \end_inset
  1728. </cell>
  1729. </row>
  1730. <row>
  1731. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1732. \begin_inset Text
  1733. \begin_layout Plain Layout
  1734. \family roman
  1735. \series medium
  1736. \shape up
  1737. \size normal
  1738. \emph off
  1739. \bar no
  1740. \strikeout off
  1741. \xout off
  1742. \uuline off
  1743. \uwave off
  1744. \noun off
  1745. \color none
  1746. fRMA
  1747. \end_layout
  1748. \end_inset
  1749. </cell>
  1750. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1751. \begin_inset Text
  1752. \begin_layout Plain Layout
  1753. Yes
  1754. \end_layout
  1755. \end_inset
  1756. </cell>
  1757. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1758. \begin_inset Text
  1759. \begin_layout Plain Layout
  1760. \family roman
  1761. \series medium
  1762. \shape up
  1763. \size normal
  1764. \emph off
  1765. \bar no
  1766. \strikeout off
  1767. \xout off
  1768. \uuline off
  1769. \uwave off
  1770. \noun off
  1771. \color none
  1772. 0.863
  1773. \end_layout
  1774. \end_inset
  1775. </cell>
  1776. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  1777. \begin_inset Text
  1778. \begin_layout Plain Layout
  1779. \family roman
  1780. \series medium
  1781. \shape up
  1782. \size normal
  1783. \emph off
  1784. \bar no
  1785. \strikeout off
  1786. \xout off
  1787. \uuline off
  1788. \uwave off
  1789. \noun off
  1790. \color none
  1791. 0.718
  1792. \end_layout
  1793. \end_inset
  1794. </cell>
  1795. </row>
  1796. <row>
  1797. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1798. \begin_inset Text
  1799. \begin_layout Plain Layout
  1800. \family roman
  1801. \series medium
  1802. \shape up
  1803. \size normal
  1804. \emph off
  1805. \bar no
  1806. \strikeout off
  1807. \xout off
  1808. \uuline off
  1809. \uwave off
  1810. \noun off
  1811. \color none
  1812. SCAN
  1813. \end_layout
  1814. \end_inset
  1815. </cell>
  1816. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1817. \begin_inset Text
  1818. \begin_layout Plain Layout
  1819. Yes
  1820. \end_layout
  1821. \end_inset
  1822. </cell>
  1823. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1824. \begin_inset Text
  1825. \begin_layout Plain Layout
  1826. \family roman
  1827. \series medium
  1828. \shape up
  1829. \size normal
  1830. \emph off
  1831. \bar no
  1832. \strikeout off
  1833. \xout off
  1834. \uuline off
  1835. \uwave off
  1836. \noun off
  1837. \color none
  1838. 0.853
  1839. \end_layout
  1840. \end_inset
  1841. </cell>
  1842. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  1843. \begin_inset Text
  1844. \begin_layout Plain Layout
  1845. \family roman
  1846. \series medium
  1847. \shape up
  1848. \size normal
  1849. \emph off
  1850. \bar no
  1851. \strikeout off
  1852. \xout off
  1853. \uuline off
  1854. \uwave off
  1855. \noun off
  1856. \color none
  1857. 0.689
  1858. \end_layout
  1859. \end_inset
  1860. </cell>
  1861. </row>
  1862. </lyxtabular>
  1863. \end_inset
  1864. \end_layout
  1865. \begin_layout Plain Layout
  1866. \begin_inset Caption Standard
  1867. \begin_layout Plain Layout
  1868. \begin_inset CommandInset label
  1869. LatexCommand label
  1870. name "tab:AUC-PAM"
  1871. \end_inset
  1872. \series bold
  1873. AUC values for internal and external validation with 6 different normalization
  1874. strategies.
  1875. \series default
  1876. Only fRMA and SCAN are single-channel normalizations.
  1877. The other 4 normalizations are for comparison.
  1878. \end_layout
  1879. \end_inset
  1880. \end_layout
  1881. \end_inset
  1882. \end_layout
  1883. \begin_layout Standard
  1884. For internal validation, the 6 methods' AUC values ranged from 0.816 to 0.891,
  1885. as shown in Table
  1886. \begin_inset CommandInset ref
  1887. LatexCommand ref
  1888. reference "tab:AUC-PAM"
  1889. plural "false"
  1890. caps "false"
  1891. noprefix "false"
  1892. \end_inset
  1893. .
  1894. Among the non-single-channel normalizations, dChip outperformed RMA, while
  1895. GRSN reduced the AUC values for both dChip and RMA.
  1896. Both single-channel methods, fRMA and SCAN, slightly outperformed RMA,
  1897. with fRMA ahead of SCAN.
  1898. However, the difference between RMA and fRMA is still quite small.
  1899. Figure
  1900. \begin_inset CommandInset ref
  1901. LatexCommand ref
  1902. reference "fig:ROC-PAM-int"
  1903. plural "false"
  1904. caps "false"
  1905. noprefix "false"
  1906. \end_inset
  1907. shows that the ROC curves for RMA, dChip, and fRMA look very similar and
  1908. relatively smooth, while both GRSN curves and the curve for SCAN have a
  1909. more jagged appearance.
  1910. \end_layout
  1911. \begin_layout Standard
  1912. \begin_inset Float figure
  1913. wide false
  1914. sideways false
  1915. status open
  1916. \begin_layout Plain Layout
  1917. \align center
  1918. \begin_inset Graphics
  1919. filename graphics/PAM/ROC-TXvsAR-external.pdf
  1920. width 100col%
  1921. groupId colwidth
  1922. \end_inset
  1923. \end_layout
  1924. \begin_layout Plain Layout
  1925. \begin_inset Caption Standard
  1926. \begin_layout Plain Layout
  1927. \begin_inset CommandInset label
  1928. LatexCommand label
  1929. name "fig:ROC-PAM-ext"
  1930. \end_inset
  1931. ROC curve for PAM on external validation data using different normalization
  1932. strategies
  1933. \end_layout
  1934. \end_inset
  1935. \end_layout
  1936. \end_inset
  1937. \end_layout
  1938. \begin_layout Standard
  1939. For external validation, as expected, all the AUC values are lower than
  1940. the internal validations, ranging from 0.642 to 0.750 (Table
  1941. \begin_inset CommandInset ref
  1942. LatexCommand ref
  1943. reference "tab:AUC-PAM"
  1944. plural "false"
  1945. caps "false"
  1946. noprefix "false"
  1947. \end_inset
  1948. ).
  1949. With or without GRSN, RMA shows its dominance over dChip in this more challengi
  1950. ng test.
  1951. Unlike in the internal validation, GRSN actually improves the classifier
  1952. performance for RMA, although it does not for dChip.
  1953. Once again, both single-channel methods perform about on par with RMA,
  1954. with fRMA performing slightly better and SCAN performing a bit worse.
  1955. Figure
  1956. \begin_inset CommandInset ref
  1957. LatexCommand ref
  1958. reference "fig:ROC-PAM-ext"
  1959. plural "false"
  1960. caps "false"
  1961. noprefix "false"
  1962. \end_inset
  1963. shows the ROC curves for the external validation test.
  1964. As expected, none of them are as clean-looking as the internal validation
  1965. ROC curves.
  1966. The curves for RMA, RMA+GRSN, and fRMA all look similar, while the other
  1967. curves look more divergent.
  1968. \end_layout
  1969. \begin_layout Subsection
  1970. fRMA with custom-generated vectors enables normalization on hthgu133pluspm
  1971. \end_layout
  1972. \begin_layout Standard
  1973. \begin_inset Float figure
  1974. wide false
  1975. sideways false
  1976. status open
  1977. \begin_layout Plain Layout
  1978. \align center
  1979. \begin_inset Graphics
  1980. filename graphics/frma-pax-bx/batchsize_batches.pdf
  1981. \end_inset
  1982. \end_layout
  1983. \begin_layout Plain Layout
  1984. \begin_inset Caption Standard
  1985. \begin_layout Plain Layout
  1986. \begin_inset CommandInset label
  1987. LatexCommand label
  1988. name "fig:batch-size-batches"
  1989. \end_inset
  1990. \series bold
  1991. Effect of batch size selection on number of batches included in fRMA probe
  1992. weight learning.
  1993. \series default
  1994. For batch sizes ranging from 3 to 15, the number of batches with at least
  1995. that many samples was plotted for biopsy (BX) and blood (PAX) samples.
  1996. The selected batch size, 5, is marked with a dotted vertical line.
  1997. \end_layout
  1998. \end_inset
  1999. \end_layout
  2000. \end_inset
  2001. \end_layout
  2002. \begin_layout Standard
  2003. \begin_inset Float figure
  2004. wide false
  2005. sideways false
  2006. status open
  2007. \begin_layout Plain Layout
  2008. \align center
  2009. \begin_inset Graphics
  2010. filename graphics/frma-pax-bx/batchsize_samples.pdf
  2011. \end_inset
  2012. \end_layout
  2013. \begin_layout Plain Layout
  2014. \begin_inset Caption Standard
  2015. \begin_layout Plain Layout
  2016. \begin_inset CommandInset label
  2017. LatexCommand label
  2018. name "fig:batch-size-samples"
  2019. \end_inset
  2020. \series bold
  2021. Effect of batch size selection on number of samples included in fRMA probe
  2022. weight learning.
  2023. \series default
  2024. For batch sizes ranging from 3 to 15, the number of samples included in
  2025. probe weight training was plotted for biopsy (BX) and blood (PAX) samples.
  2026. The selected batch size, 5, is marked with a dotted vertical line.
  2027. \end_layout
  2028. \end_inset
  2029. \end_layout
  2030. \end_inset
  2031. \end_layout
  2032. \begin_layout Standard
  2033. In order to enable use of fRMA to normalize hthgu133pluspm, a custom set
  2034. of fRMA vectors was created.
  2035. First, an appropriate batch size was chosen by looking at the number of
  2036. batches and number of samples included as a function of batch size (Figures
  2037. \begin_inset CommandInset ref
  2038. LatexCommand ref
  2039. reference "fig:batch-size-batches"
  2040. plural "false"
  2041. caps "false"
  2042. noprefix "false"
  2043. \end_inset
  2044. and
  2045. \begin_inset CommandInset ref
  2046. LatexCommand ref
  2047. reference "fig:batch-size-samples"
  2048. plural "false"
  2049. caps "false"
  2050. noprefix "false"
  2051. \end_inset
  2052. , respectively).
  2053. For a given batch size, all batches with fewer samples that the chosen
  2054. size must be ignored during training, while larger batches must be randomly
  2055. downsampled to the chosen size.
  2056. Hence, the number of samples included for a given batch size equals the
  2057. batch size times the number of batches with at least that many samples.
  2058. From Figure
  2059. \begin_inset CommandInset ref
  2060. LatexCommand ref
  2061. reference "fig:batch-size-samples"
  2062. plural "false"
  2063. caps "false"
  2064. noprefix "false"
  2065. \end_inset
  2066. , it is apparent that that a batch size of 8 maximizes the number of samples
  2067. included in training.
  2068. Increasing the batch size beyond this causes too many smaller batches to
  2069. be excluded, reducing the total number of samples for both tissue types.
  2070. However, a batch size of 8 is not necessarily optimal.
  2071. The article introducing frmaTools concluded that it was highly advantageous
  2072. to use a smaller batch size in order to include more batches, even at the
  2073. expense of including fewer total samples in training
  2074. \begin_inset CommandInset citation
  2075. LatexCommand cite
  2076. key "McCall2011"
  2077. literal "false"
  2078. \end_inset
  2079. .
  2080. To strike an appropriate balance between more batches and more samples,
  2081. a batch size of 5 was chosen.
  2082. For both blood and biopsy samples, this increased the number of batches
  2083. included by 10, with only a modest reduction in the number of samples compared
  2084. to a batch size of 8.
  2085. With a batch size of 5, 26 batches of biopsy samples and 46 batches of
  2086. blood samples were available.
  2087. \end_layout
  2088. \begin_layout Standard
  2089. \begin_inset Float figure
  2090. wide false
  2091. sideways false
  2092. status open
  2093. \begin_layout Plain Layout
  2094. \align center
  2095. \begin_inset Graphics
  2096. filename graphics/frma-pax-bx/M-BX-violin.pdf
  2097. lyxscale 40
  2098. height 80theight%
  2099. groupId m-violin
  2100. \end_inset
  2101. \end_layout
  2102. \begin_layout Plain Layout
  2103. \begin_inset Caption Standard
  2104. \begin_layout Plain Layout
  2105. \begin_inset CommandInset label
  2106. LatexCommand label
  2107. name "fig:m-bx-violin"
  2108. \end_inset
  2109. \series bold
  2110. Violin plot of log ratios between normalizations for 20 biopsy samples.
  2111. \series default
  2112. Each of 20 randomly selected biopsy samples was normalized with RMA and
  2113. with 5 different sets of fRMA vectors.
  2114. This shows the distribution of log ratios between normalized expression
  2115. values, aggregated across all 20 arrays.
  2116. \end_layout
  2117. \end_inset
  2118. \end_layout
  2119. \end_inset
  2120. \end_layout
  2121. \begin_layout Standard
  2122. Since fRMA training requires equal-size batches, larger batches are downsampled
  2123. randomly.
  2124. This introduces a nondeterministic step in the generation of normalization
  2125. vectors.
  2126. To show that this randomness does not substantially change the outcome,
  2127. the random downsampling and subsequent vector learning was repeated 5 times,
  2128. with a different random seed each time.
  2129. 20 samples were selected at random as a test set and normalized with each
  2130. of the 5 sets of fRMA normalization vectors as well as ordinary RMA, and
  2131. the normalized expression values were compared across normalizations.
  2132. Figure
  2133. \begin_inset CommandInset ref
  2134. LatexCommand ref
  2135. reference "fig:m-bx-violin"
  2136. plural "false"
  2137. caps "false"
  2138. noprefix "false"
  2139. \end_inset
  2140. shows a summary of these comparisons for biopsy samples.
  2141. Comparing RMA to each of the 5 fRMA normalizations, the distribution of
  2142. log ratios is somewhat wide, indicating that the normalizations disagree
  2143. on the expression values of a fair number of probe sets.
  2144. In contrast, comparisons of fRMA against fRMA, the vast mojority of probe
  2145. sets have very small log ratios, indicating a very high agreement between
  2146. the normalized values generated by the two normalizations.
  2147. This shows that the fRMA normalization's behavior is not very sensitive
  2148. to the random downsampling of larger batches during training.
  2149. \end_layout
  2150. \begin_layout Standard
  2151. \begin_inset Float figure
  2152. wide false
  2153. sideways false
  2154. status open
  2155. \begin_layout Plain Layout
  2156. \align center
  2157. \begin_inset Graphics
  2158. filename graphics/frma-pax-bx/MA-BX-RMA.fRMA.pdf
  2159. lyxscale 50
  2160. groupId ma-frma
  2161. \end_inset
  2162. \end_layout
  2163. \begin_layout Plain Layout
  2164. \begin_inset Caption Standard
  2165. \begin_layout Plain Layout
  2166. \begin_inset CommandInset label
  2167. LatexCommand label
  2168. name "fig:ma-bx-rma-frma"
  2169. \end_inset
  2170. \series bold
  2171. Representative MA plot comparing RMA against fRMA for 20 biopsy samples.
  2172. \series default
  2173. Averages and log ratios were computed for every probe in each of 20 biopsy
  2174. samples between RMA normalization and fRMA.
  2175. Density of points is represented by darkness of shading, and individual
  2176. outlier points are plotted.
  2177. \end_layout
  2178. \end_inset
  2179. \end_layout
  2180. \end_inset
  2181. \end_layout
  2182. \begin_layout Standard
  2183. \begin_inset Float figure
  2184. wide false
  2185. sideways false
  2186. status open
  2187. \begin_layout Plain Layout
  2188. \align center
  2189. \begin_inset Graphics
  2190. filename graphics/frma-pax-bx/MA-BX-fRMA.fRMA.pdf
  2191. lyxscale 50
  2192. groupId ma-frma
  2193. \end_inset
  2194. \end_layout
  2195. \begin_layout Plain Layout
  2196. \begin_inset Caption Standard
  2197. \begin_layout Plain Layout
  2198. \begin_inset CommandInset label
  2199. LatexCommand label
  2200. name "fig:ma-bx-frma-frma"
  2201. \end_inset
  2202. \series bold
  2203. Representative MA plot comparing different fRMA vectors for 20 biopsy samples.
  2204. \series default
  2205. Averages and log ratios were computed for every probe in each of 20 biopsy
  2206. samples between fRMA normalizations using vectors from two different batch
  2207. samplings.
  2208. Density of points is represented by darkness of shading, and individual
  2209. outlier points are plotted.
  2210. \end_layout
  2211. \end_inset
  2212. \end_layout
  2213. \end_inset
  2214. \end_layout
  2215. \begin_layout Standard
  2216. Figure
  2217. \begin_inset CommandInset ref
  2218. LatexCommand ref
  2219. reference "fig:ma-bx-rma-frma"
  2220. plural "false"
  2221. caps "false"
  2222. noprefix "false"
  2223. \end_inset
  2224. shows an MA plot of the RMA-normalized values against the fRMA-normalized
  2225. values for the same probe sets and arrays, corresponding to the first row
  2226. of Figure
  2227. \begin_inset CommandInset ref
  2228. LatexCommand ref
  2229. reference "fig:m-bx-violin"
  2230. plural "false"
  2231. caps "false"
  2232. noprefix "false"
  2233. \end_inset
  2234. .
  2235. This MA plot shows that not only is there a wide distribution of M-values,
  2236. but the trend of M-values is dependent on the average normalized intensity.
  2237. This is expected, since the overall trend represents the differences in
  2238. the quantile normalization step.
  2239. When running RMA, only the quantiles for these specific 20 arrays are used,
  2240. while for fRMA the quantile distribution is taking from all arrays used
  2241. in training.
  2242. Figure
  2243. \begin_inset CommandInset ref
  2244. LatexCommand ref
  2245. reference "fig:ma-bx-frma-frma"
  2246. plural "false"
  2247. caps "false"
  2248. noprefix "false"
  2249. \end_inset
  2250. shows a similar MA plot comparing 2 different fRMA normalizations, correspondin
  2251. g to the 6th row of Figure
  2252. \begin_inset CommandInset ref
  2253. LatexCommand ref
  2254. reference "fig:m-bx-violin"
  2255. plural "false"
  2256. caps "false"
  2257. noprefix "false"
  2258. \end_inset
  2259. .
  2260. The MA plot is very tightly centered around zero with no visible trend.
  2261. Figures
  2262. \begin_inset CommandInset ref
  2263. LatexCommand ref
  2264. reference "fig:m-pax-violin"
  2265. plural "false"
  2266. caps "false"
  2267. noprefix "false"
  2268. \end_inset
  2269. ,
  2270. \begin_inset CommandInset ref
  2271. LatexCommand ref
  2272. reference "fig:MA-PAX-rma-frma"
  2273. plural "false"
  2274. caps "false"
  2275. noprefix "false"
  2276. \end_inset
  2277. , and
  2278. \begin_inset CommandInset ref
  2279. LatexCommand ref
  2280. reference "fig:ma-bx-frma-frma"
  2281. plural "false"
  2282. caps "false"
  2283. noprefix "false"
  2284. \end_inset
  2285. show exactly the same information for the blood samples, once again comparing
  2286. the normalized expression values between normalizations for all probe sets
  2287. across 20 randomly selected test arrays.
  2288. Once again, there is a wider distribution of log ratios between RMA-normalized
  2289. values and fRMA-normalized, and a much tighter distribution when comparing
  2290. different fRMA normalizations to each other, indicating that the fRMA training
  2291. process is robust to random batch downsampling for the blood samples as
  2292. well.
  2293. \end_layout
  2294. \begin_layout Standard
  2295. \begin_inset Float figure
  2296. wide false
  2297. sideways false
  2298. status open
  2299. \begin_layout Plain Layout
  2300. \align center
  2301. \begin_inset Graphics
  2302. filename graphics/frma-pax-bx/M-PAX-violin.pdf
  2303. lyxscale 40
  2304. height 80theight%
  2305. groupId m-violin
  2306. \end_inset
  2307. \end_layout
  2308. \begin_layout Plain Layout
  2309. \begin_inset Caption Standard
  2310. \begin_layout Plain Layout
  2311. \begin_inset CommandInset label
  2312. LatexCommand label
  2313. name "fig:m-pax-violin"
  2314. \end_inset
  2315. \series bold
  2316. Violin plot of log ratios between normalizations for 20 blood samples.
  2317. \series default
  2318. Each of 20 randomly selected blood samples was normalized with RMA and with
  2319. 5 different sets of fRMA vectors.
  2320. This shows the distribution of log ratios between normalized expression
  2321. values, aggregated across all 20 arrays.
  2322. \end_layout
  2323. \end_inset
  2324. \end_layout
  2325. \end_inset
  2326. \end_layout
  2327. \begin_layout Standard
  2328. \begin_inset Float figure
  2329. wide false
  2330. sideways false
  2331. status open
  2332. \begin_layout Plain Layout
  2333. \align center
  2334. \begin_inset Graphics
  2335. filename graphics/frma-pax-bx/MA-PAX-RMA.fRMA.pdf
  2336. lyxscale 50
  2337. groupId ma-frma
  2338. \end_inset
  2339. \end_layout
  2340. \begin_layout Plain Layout
  2341. \begin_inset Caption Standard
  2342. \begin_layout Plain Layout
  2343. \begin_inset CommandInset label
  2344. LatexCommand label
  2345. name "fig:MA-PAX-rma-frma"
  2346. \end_inset
  2347. \series bold
  2348. Representative MA plot comparing RMA against fRMA for 20 blood samples.
  2349. \series default
  2350. Averages and log ratios were computed for every probe in each of 20 blood
  2351. samples between RMA normalization and fRMA.
  2352. Density of points is represented by darkness of shading, and individual
  2353. outlier points are plotted.
  2354. \end_layout
  2355. \end_inset
  2356. \end_layout
  2357. \begin_layout Plain Layout
  2358. \end_layout
  2359. \end_inset
  2360. \end_layout
  2361. \begin_layout Standard
  2362. \begin_inset Float figure
  2363. wide false
  2364. sideways false
  2365. status open
  2366. \begin_layout Plain Layout
  2367. \align center
  2368. \begin_inset Graphics
  2369. filename graphics/frma-pax-bx/MA-PAX-fRMA.fRMA.pdf
  2370. lyxscale 50
  2371. groupId ma-frma
  2372. \end_inset
  2373. \end_layout
  2374. \begin_layout Plain Layout
  2375. \begin_inset Caption Standard
  2376. \begin_layout Plain Layout
  2377. \begin_inset CommandInset label
  2378. LatexCommand label
  2379. name "fig:MA-PAX-frma-frma"
  2380. \end_inset
  2381. \series bold
  2382. Representative MA plot comparing different fRMA vectors for 20 blood samples.
  2383. \series default
  2384. Averages and log ratios were computed for every probe in each of 20 blood
  2385. samples between fRMA normalizations using vectors from two different batch
  2386. samplings.
  2387. Density of points is represented by darkness of shading, and individual
  2388. outlier points are plotted.
  2389. \end_layout
  2390. \end_inset
  2391. \end_layout
  2392. \end_inset
  2393. \end_layout
  2394. \begin_layout Subsection
  2395. Adapting voom to methylation array data improves model fit
  2396. \end_layout
  2397. \begin_layout Standard
  2398. \begin_inset Flex TODO Note (inline)
  2399. status open
  2400. \begin_layout Plain Layout
  2401. Write figure legends
  2402. \end_layout
  2403. \end_inset
  2404. \end_layout
  2405. \begin_layout Standard
  2406. \begin_inset Float figure
  2407. wide false
  2408. sideways false
  2409. status open
  2410. \begin_layout Plain Layout
  2411. \begin_inset Graphics
  2412. filename graphics/methylvoom/unadj.dupcor/meanvar-trends-PAGE1-RASTER.png
  2413. lyxscale 15
  2414. groupId raster-600ppi
  2415. \end_inset
  2416. \end_layout
  2417. \begin_layout Plain Layout
  2418. \begin_inset Caption Standard
  2419. \begin_layout Plain Layout
  2420. \series bold
  2421. \begin_inset CommandInset label
  2422. LatexCommand label
  2423. name "fig:meanvar-basic"
  2424. \end_inset
  2425. Mean-variance trend with no SVA or weights
  2426. \end_layout
  2427. \end_inset
  2428. \end_layout
  2429. \end_inset
  2430. \end_layout
  2431. \begin_layout Standard
  2432. \begin_inset Float figure
  2433. wide false
  2434. sideways false
  2435. status open
  2436. \begin_layout Plain Layout
  2437. \begin_inset Graphics
  2438. filename graphics/methylvoom/unadj.dupcor.sva.aw/meanvar-trends-PAGE1-RASTER.png
  2439. lyxscale 15
  2440. groupId raster-600ppi
  2441. \end_inset
  2442. \end_layout
  2443. \begin_layout Plain Layout
  2444. \begin_inset Caption Standard
  2445. \begin_layout Plain Layout
  2446. \series bold
  2447. \begin_inset CommandInset label
  2448. LatexCommand label
  2449. name "fig:meanvar-sva-aw"
  2450. \end_inset
  2451. Mean-variance trend with SVA and sample quality weights.
  2452. \end_layout
  2453. \end_inset
  2454. \end_layout
  2455. \end_inset
  2456. \end_layout
  2457. \begin_layout Standard
  2458. \begin_inset Float figure
  2459. wide false
  2460. sideways false
  2461. status open
  2462. \begin_layout Plain Layout
  2463. \begin_inset Graphics
  2464. filename graphics/methylvoom/unadj.dupcor.sva.voomaw/meanvar-trends-PAGE1-RASTER.png
  2465. lyxscale 15
  2466. groupId raster-600ppi
  2467. \end_inset
  2468. \end_layout
  2469. \begin_layout Plain Layout
  2470. \begin_inset Caption Standard
  2471. \begin_layout Plain Layout
  2472. \series bold
  2473. \begin_inset CommandInset label
  2474. LatexCommand label
  2475. name "fig:voom-sva-voomaw"
  2476. \end_inset
  2477. Mean-variance trend modelled by voom, with SVA and sample weights.
  2478. \series default
  2479. The y-axis is the square root of the standard deviation for each probe,
  2480. because this is the scale on which voom fits its lowess curve.
  2481. \end_layout
  2482. \end_inset
  2483. \end_layout
  2484. \end_inset
  2485. \begin_inset Float figure
  2486. wide false
  2487. sideways false
  2488. status open
  2489. \begin_layout Plain Layout
  2490. \begin_inset Graphics
  2491. filename graphics/methylvoom/unadj.dupcor.sva.voomaw/meanvar-trends-PAGE2-RASTER.png
  2492. lyxscale 15
  2493. groupId raster-600ppi
  2494. \end_inset
  2495. \end_layout
  2496. \begin_layout Plain Layout
  2497. \begin_inset Caption Standard
  2498. \begin_layout Plain Layout
  2499. \series bold
  2500. \begin_inset CommandInset label
  2501. LatexCommand label
  2502. name "fig:meanvar-sva-voomaw"
  2503. \end_inset
  2504. Residual mean-variance trend after modeling with SVA, sample weights, and
  2505. voom.
  2506. \end_layout
  2507. \end_inset
  2508. \end_layout
  2509. \end_inset
  2510. \end_layout
  2511. \begin_layout Itemize
  2512. U-shaped mean-var trend visible in data, even after accounting for unobserved
  2513. confounders (SVA) and array quality (sample weights)
  2514. \end_layout
  2515. \begin_layout Itemize
  2516. \begin_inset Quotes eld
  2517. \end_inset
  2518. vooma
  2519. \begin_inset Quotes erd
  2520. \end_inset
  2521. models this trend, and after voom, the mean-variance trend is flat and
  2522. the median varaiance is approximately 1 (0 on log scale)
  2523. \end_layout
  2524. \begin_layout Itemize
  2525. M-value distribution is bimodal - expected if most CpG methylation states
  2526. are homogeneous among cell populations, either all methylated or all unmethylat
  2527. ed.
  2528. \end_layout
  2529. \begin_layout Standard
  2530. \begin_inset Float table
  2531. wide false
  2532. sideways false
  2533. status open
  2534. \begin_layout Plain Layout
  2535. \align center
  2536. \begin_inset Tabular
  2537. <lyxtabular version="3" rows="5" columns="2">
  2538. <features tabularvalignment="middle">
  2539. <column alignment="center" valignment="top">
  2540. <column alignment="center" valignment="top">
  2541. <row>
  2542. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2543. \begin_inset Text
  2544. \begin_layout Plain Layout
  2545. Covariate
  2546. \end_layout
  2547. \end_inset
  2548. </cell>
  2549. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2550. \begin_inset Text
  2551. \begin_layout Plain Layout
  2552. p-value
  2553. \end_layout
  2554. \end_inset
  2555. </cell>
  2556. </row>
  2557. <row>
  2558. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2559. \begin_inset Text
  2560. \begin_layout Plain Layout
  2561. Transplant Status
  2562. \end_layout
  2563. \end_inset
  2564. </cell>
  2565. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2566. \begin_inset Text
  2567. \begin_layout Plain Layout
  2568. 0.404
  2569. \end_layout
  2570. \end_inset
  2571. </cell>
  2572. </row>
  2573. <row>
  2574. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2575. \begin_inset Text
  2576. \begin_layout Plain Layout
  2577. Diabetes Diagnosis
  2578. \end_layout
  2579. \end_inset
  2580. </cell>
  2581. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2582. \begin_inset Text
  2583. \begin_layout Plain Layout
  2584. 0.00106
  2585. \end_layout
  2586. \end_inset
  2587. </cell>
  2588. </row>
  2589. <row>
  2590. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2591. \begin_inset Text
  2592. \begin_layout Plain Layout
  2593. Sex
  2594. \end_layout
  2595. \end_inset
  2596. </cell>
  2597. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2598. \begin_inset Text
  2599. \begin_layout Plain Layout
  2600. 0.148
  2601. \end_layout
  2602. \end_inset
  2603. </cell>
  2604. </row>
  2605. <row>
  2606. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2607. \begin_inset Text
  2608. \begin_layout Plain Layout
  2609. Age
  2610. \end_layout
  2611. \end_inset
  2612. </cell>
  2613. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2614. \begin_inset Text
  2615. \begin_layout Plain Layout
  2616. 0.212
  2617. \end_layout
  2618. \end_inset
  2619. </cell>
  2620. </row>
  2621. </lyxtabular>
  2622. \end_inset
  2623. \end_layout
  2624. \begin_layout Plain Layout
  2625. \begin_inset Caption Standard
  2626. \begin_layout Plain Layout
  2627. \begin_inset CommandInset label
  2628. LatexCommand label
  2629. name "tab:weight-covariate-tests"
  2630. \end_inset
  2631. Association of sample weights with clinical covariates.
  2632. \end_layout
  2633. \end_inset
  2634. \end_layout
  2635. \begin_layout Plain Layout
  2636. \end_layout
  2637. \end_inset
  2638. \end_layout
  2639. \begin_layout Standard
  2640. \begin_inset Flex TODO Note (inline)
  2641. status open
  2642. \begin_layout Plain Layout
  2643. Redo the sample weight boxplot with notches and without fill colors
  2644. \end_layout
  2645. \end_inset
  2646. \end_layout
  2647. \begin_layout Standard
  2648. \begin_inset Float figure
  2649. wide false
  2650. sideways false
  2651. status open
  2652. \begin_layout Plain Layout
  2653. \begin_inset Graphics
  2654. filename graphics/methylvoom/unadj.dupcor.sva.voomaw/sample-weights-PAGE3.pdf
  2655. \end_inset
  2656. \end_layout
  2657. \begin_layout Plain Layout
  2658. \begin_inset Caption Standard
  2659. \begin_layout Plain Layout
  2660. \begin_inset CommandInset label
  2661. LatexCommand label
  2662. name "fig:diabetes-sample-weights"
  2663. \end_inset
  2664. \series bold
  2665. Boxplot of sample quality weights grouped by diabetes diagnosis.
  2666. \end_layout
  2667. \end_inset
  2668. \end_layout
  2669. \begin_layout Plain Layout
  2670. \end_layout
  2671. \end_inset
  2672. \end_layout
  2673. \begin_layout Itemize
  2674. Based on estimated sample weights, T2D samples are significantly more variable
  2675. than T1D samples (t-test p = 1.06e-3)
  2676. \end_layout
  2677. \begin_layout Itemize
  2678. Should not affect further analysis
  2679. \end_layout
  2680. \begin_layout Standard
  2681. \begin_inset Float table
  2682. wide false
  2683. sideways false
  2684. status open
  2685. \begin_layout Plain Layout
  2686. \begin_inset Tabular
  2687. <lyxtabular version="3" rows="5" columns="4">
  2688. <features tabularvalignment="middle">
  2689. <column alignment="center" valignment="top">
  2690. <column alignment="center" valignment="top">
  2691. <column alignment="center" valignment="top">
  2692. <column alignment="center" valignment="top">
  2693. <row>
  2694. <cell alignment="center" valignment="top" usebox="none">
  2695. \begin_inset Text
  2696. \begin_layout Plain Layout
  2697. \end_layout
  2698. \end_inset
  2699. </cell>
  2700. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2701. \begin_inset Text
  2702. \begin_layout Plain Layout
  2703. Analysis
  2704. \end_layout
  2705. \end_inset
  2706. </cell>
  2707. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2708. \begin_inset Text
  2709. \begin_layout Plain Layout
  2710. \end_layout
  2711. \end_inset
  2712. </cell>
  2713. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2714. \begin_inset Text
  2715. \begin_layout Plain Layout
  2716. \end_layout
  2717. \end_inset
  2718. </cell>
  2719. </row>
  2720. <row>
  2721. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2722. \begin_inset Text
  2723. \begin_layout Plain Layout
  2724. Contrast
  2725. \end_layout
  2726. \end_inset
  2727. </cell>
  2728. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2729. \begin_inset Text
  2730. \begin_layout Plain Layout
  2731. A
  2732. \end_layout
  2733. \end_inset
  2734. </cell>
  2735. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2736. \begin_inset Text
  2737. \begin_layout Plain Layout
  2738. B
  2739. \end_layout
  2740. \end_inset
  2741. </cell>
  2742. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2743. \begin_inset Text
  2744. \begin_layout Plain Layout
  2745. C
  2746. \end_layout
  2747. \end_inset
  2748. </cell>
  2749. </row>
  2750. <row>
  2751. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2752. \begin_inset Text
  2753. \begin_layout Plain Layout
  2754. TX vs AR
  2755. \end_layout
  2756. \end_inset
  2757. </cell>
  2758. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2759. \begin_inset Text
  2760. \begin_layout Plain Layout
  2761. 0
  2762. \end_layout
  2763. \end_inset
  2764. </cell>
  2765. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2766. \begin_inset Text
  2767. \begin_layout Plain Layout
  2768. 25
  2769. \end_layout
  2770. \end_inset
  2771. </cell>
  2772. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2773. \begin_inset Text
  2774. \begin_layout Plain Layout
  2775. 22
  2776. \end_layout
  2777. \end_inset
  2778. </cell>
  2779. </row>
  2780. <row>
  2781. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2782. \begin_inset Text
  2783. \begin_layout Plain Layout
  2784. TX vs ADNR
  2785. \end_layout
  2786. \end_inset
  2787. </cell>
  2788. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2789. \begin_inset Text
  2790. \begin_layout Plain Layout
  2791. 7
  2792. \end_layout
  2793. \end_inset
  2794. </cell>
  2795. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2796. \begin_inset Text
  2797. \begin_layout Plain Layout
  2798. 338
  2799. \end_layout
  2800. \end_inset
  2801. </cell>
  2802. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2803. \begin_inset Text
  2804. \begin_layout Plain Layout
  2805. 369
  2806. \end_layout
  2807. \end_inset
  2808. </cell>
  2809. </row>
  2810. <row>
  2811. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2812. \begin_inset Text
  2813. \begin_layout Plain Layout
  2814. TX vs CAN
  2815. \end_layout
  2816. \end_inset
  2817. </cell>
  2818. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2819. \begin_inset Text
  2820. \begin_layout Plain Layout
  2821. 0
  2822. \end_layout
  2823. \end_inset
  2824. </cell>
  2825. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2826. \begin_inset Text
  2827. \begin_layout Plain Layout
  2828. 231
  2829. \end_layout
  2830. \end_inset
  2831. </cell>
  2832. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2833. \begin_inset Text
  2834. \begin_layout Plain Layout
  2835. 278
  2836. \end_layout
  2837. \end_inset
  2838. </cell>
  2839. </row>
  2840. </lyxtabular>
  2841. \end_inset
  2842. \end_layout
  2843. \begin_layout Plain Layout
  2844. \begin_inset Caption Standard
  2845. \begin_layout Plain Layout
  2846. \begin_inset CommandInset label
  2847. LatexCommand label
  2848. name "tab:methyl-num-signif"
  2849. \end_inset
  2850. \series bold
  2851. Number of probes significant at 10% FDR for each contrast in each analysis.
  2852. \end_layout
  2853. \end_inset
  2854. \end_layout
  2855. \end_inset
  2856. \end_layout
  2857. \begin_layout Standard
  2858. \begin_inset Flex TODO Note (inline)
  2859. status open
  2860. \begin_layout Plain Layout
  2861. Cite the pi0 estimation method from propTrueNull
  2862. \end_layout
  2863. \end_inset
  2864. \end_layout
  2865. \begin_layout Standard
  2866. \begin_inset Float table
  2867. wide false
  2868. sideways false
  2869. status open
  2870. \begin_layout Plain Layout
  2871. \begin_inset Tabular
  2872. <lyxtabular version="3" rows="5" columns="4">
  2873. <features tabularvalignment="middle">
  2874. <column alignment="center" valignment="top">
  2875. <column alignment="center" valignment="top">
  2876. <column alignment="center" valignment="top">
  2877. <column alignment="center" valignment="top">
  2878. <row>
  2879. <cell alignment="center" valignment="top" usebox="none">
  2880. \begin_inset Text
  2881. \begin_layout Plain Layout
  2882. \end_layout
  2883. \end_inset
  2884. </cell>
  2885. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2886. \begin_inset Text
  2887. \begin_layout Plain Layout
  2888. Analysis
  2889. \end_layout
  2890. \end_inset
  2891. </cell>
  2892. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2893. \begin_inset Text
  2894. \begin_layout Plain Layout
  2895. \end_layout
  2896. \end_inset
  2897. </cell>
  2898. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2899. \begin_inset Text
  2900. \begin_layout Plain Layout
  2901. \end_layout
  2902. \end_inset
  2903. </cell>
  2904. </row>
  2905. <row>
  2906. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2907. \begin_inset Text
  2908. \begin_layout Plain Layout
  2909. Contrast
  2910. \end_layout
  2911. \end_inset
  2912. </cell>
  2913. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2914. \begin_inset Text
  2915. \begin_layout Plain Layout
  2916. A
  2917. \end_layout
  2918. \end_inset
  2919. </cell>
  2920. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2921. \begin_inset Text
  2922. \begin_layout Plain Layout
  2923. B
  2924. \end_layout
  2925. \end_inset
  2926. </cell>
  2927. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2928. \begin_inset Text
  2929. \begin_layout Plain Layout
  2930. C
  2931. \end_layout
  2932. \end_inset
  2933. </cell>
  2934. </row>
  2935. <row>
  2936. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2937. \begin_inset Text
  2938. \begin_layout Plain Layout
  2939. TX vs AR
  2940. \end_layout
  2941. \end_inset
  2942. </cell>
  2943. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2944. \begin_inset Text
  2945. \begin_layout Plain Layout
  2946. 0
  2947. \end_layout
  2948. \end_inset
  2949. </cell>
  2950. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2951. \begin_inset Text
  2952. \begin_layout Plain Layout
  2953. 10,063
  2954. \end_layout
  2955. \end_inset
  2956. </cell>
  2957. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2958. \begin_inset Text
  2959. \begin_layout Plain Layout
  2960. 11,225
  2961. \end_layout
  2962. \end_inset
  2963. </cell>
  2964. </row>
  2965. <row>
  2966. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2967. \begin_inset Text
  2968. \begin_layout Plain Layout
  2969. TX vs ADNR
  2970. \end_layout
  2971. \end_inset
  2972. </cell>
  2973. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2974. \begin_inset Text
  2975. \begin_layout Plain Layout
  2976. 27
  2977. \end_layout
  2978. \end_inset
  2979. </cell>
  2980. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2981. \begin_inset Text
  2982. \begin_layout Plain Layout
  2983. 12,674
  2984. \end_layout
  2985. \end_inset
  2986. </cell>
  2987. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2988. \begin_inset Text
  2989. \begin_layout Plain Layout
  2990. 13,086
  2991. \end_layout
  2992. \end_inset
  2993. </cell>
  2994. </row>
  2995. <row>
  2996. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2997. \begin_inset Text
  2998. \begin_layout Plain Layout
  2999. TX vs CAN
  3000. \end_layout
  3001. \end_inset
  3002. </cell>
  3003. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3004. \begin_inset Text
  3005. \begin_layout Plain Layout
  3006. 966
  3007. \end_layout
  3008. \end_inset
  3009. </cell>
  3010. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3011. \begin_inset Text
  3012. \begin_layout Plain Layout
  3013. 20,039
  3014. \end_layout
  3015. \end_inset
  3016. </cell>
  3017. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3018. \begin_inset Text
  3019. \begin_layout Plain Layout
  3020. 20,955
  3021. \end_layout
  3022. \end_inset
  3023. </cell>
  3024. </row>
  3025. </lyxtabular>
  3026. \end_inset
  3027. \end_layout
  3028. \begin_layout Plain Layout
  3029. \begin_inset Caption Standard
  3030. \begin_layout Plain Layout
  3031. \begin_inset CommandInset label
  3032. LatexCommand label
  3033. name "tab:methyl-est-nonnull"
  3034. \end_inset
  3035. \series bold
  3036. Estimated number of non-null tests for each contrast in each analysis.
  3037. \end_layout
  3038. \end_inset
  3039. \end_layout
  3040. \end_inset
  3041. \end_layout
  3042. \begin_layout Standard
  3043. \begin_inset Flex TODO Note (inline)
  3044. status open
  3045. \begin_layout Plain Layout
  3046. Re-generate p-value histograms for all relevant contrasts in a single figure.
  3047. \end_layout
  3048. \end_inset
  3049. \end_layout
  3050. \begin_layout Itemize
  3051. Better variance properties in analyses B and C give more significant probes
  3052. (10% FDR)
  3053. \begin_inset CommandInset ref
  3054. LatexCommand ref
  3055. reference "tab:methyl-num-signif"
  3056. plural "false"
  3057. caps "false"
  3058. noprefix "false"
  3059. \end_inset
  3060. , more probes estimated to be differentially methylated
  3061. \begin_inset CommandInset ref
  3062. LatexCommand ref
  3063. reference "tab:methyl-est-nonnull"
  3064. plural "false"
  3065. caps "false"
  3066. noprefix "false"
  3067. \end_inset
  3068. , and better looking p-value distributions [histogram figures].
  3069. \end_layout
  3070. \begin_layout Section
  3071. Discussion
  3072. \end_layout
  3073. \begin_layout Subsection
  3074. fRMA achieves clinically applicable normalization without sacrificing classifica
  3075. tion performance
  3076. \end_layout
  3077. \begin_layout Standard
  3078. As shown in Figure
  3079. \begin_inset CommandInset ref
  3080. LatexCommand ref
  3081. reference "fig:Classifier-probabilities-RMA"
  3082. plural "false"
  3083. caps "false"
  3084. noprefix "false"
  3085. \end_inset
  3086. , improper normalization, particularly separate normalization of training
  3087. and test samples, leads to unwanted biases in classification.
  3088. In a controlled experimental context, it is always possible to correct
  3089. this issue by normalizing all experimental samples together.
  3090. However, because it is not feasible to normalize all samples together in
  3091. a clinical context, a single-channel normalization is required is required.
  3092. \end_layout
  3093. \begin_layout Standard
  3094. The major concern in using a single-channel normalization is that non-single-cha
  3095. nnel methods can share information between arrays to improve the normalization,
  3096. and single-channel methods risk sacrificing the gains in normalization
  3097. accuracy that come from this information sharing.
  3098. In the case of RMA, this information sharing is accomplished through quantile
  3099. normalization and median polish steps.
  3100. The need for information sharing in quantile normalization can easily be
  3101. removed by learning a fixed set of quantiles from external data and normalizing
  3102. each array to these fixed quantiles, instead of the quantiles of the data
  3103. itself.
  3104. As long as the fixed quantiles are reasonable, the result will be similar
  3105. to standard RMA.
  3106. However, there is no analogous way to eliminate cross-array information
  3107. sharing in the median polish step, so fRMA replaces this with a weighted
  3108. average of probes on each array, with the weights learned from external
  3109. data.
  3110. This step of fRMA has the greatest potential to diverge from RMA un undesirable
  3111. ways.
  3112. \end_layout
  3113. \begin_layout Standard
  3114. However, when run on real data, fRMA performed at least as well as RMA in
  3115. both the internal validation and external validation tests.
  3116. This shows that fRMA can be used to normalize individual clinical samples
  3117. in a class prediction context without sacrificing the classifier performance
  3118. that would be obtained by using the more well-established RMA for normalization.
  3119. The other single-channel normalization method considered, SCAN, showed
  3120. some loss of AUC in the external validation test.
  3121. Based on these results, fRMA is the preferred normalization for clinical
  3122. samples in a class prediction context.
  3123. \end_layout
  3124. \begin_layout Subsection
  3125. Robust fRMA vectors can be generated for new array platforms
  3126. \end_layout
  3127. \begin_layout Standard
  3128. \begin_inset Flex TODO Note (inline)
  3129. status open
  3130. \begin_layout Plain Layout
  3131. Look up the exact numbers, do a find & replace for
  3132. \begin_inset Quotes eld
  3133. \end_inset
  3134. 850
  3135. \begin_inset Quotes erd
  3136. \end_inset
  3137. \end_layout
  3138. \end_inset
  3139. \end_layout
  3140. \begin_layout Standard
  3141. The published fRMA normalization vectors for the hgu133plus2 platform were
  3142. generated from a set of about 850 samples chosen from a wide range of tissues,
  3143. which the authors determined was sufficient to generate a robust set of
  3144. normalization vectors that could be applied across all tissues
  3145. \begin_inset CommandInset citation
  3146. LatexCommand cite
  3147. key "McCall2010"
  3148. literal "false"
  3149. \end_inset
  3150. .
  3151. Since we only had hthgu133pluspm for 2 tissues of interest, our needs were
  3152. more modest.
  3153. Even using only 130 samples in 26 batches of 5 samples each for kidney
  3154. biopsies, we were able to train a robust set of fRMA normalization vectors
  3155. that were not meaningfully affected by the random selection of 5 samples
  3156. from each batch.
  3157. As expected, the training process was just as robust for the blood samples
  3158. with 230 samples in 46 batches of 5 samples each.
  3159. Because these vectors were each generated using training samples from a
  3160. single tissue, they are not suitable for general use, unlike the vectors
  3161. provided with fRMA itself.
  3162. They are purpose-build for normalizing a specific type of sample on a specific
  3163. platform.
  3164. \end_layout
  3165. \begin_layout Subsection
  3166. voom
  3167. \end_layout
  3168. \begin_layout Itemize
  3169. Methods like voom designed for RNA-seq can also help with array analysis
  3170. \end_layout
  3171. \begin_layout Itemize
  3172. Extracting and modeling confounders common to many features improves model
  3173. correspondence to known biology
  3174. \end_layout
  3175. \begin_layout Chapter
  3176. Globin-blocking for more effective blood RNA-seq analysis in primate animal
  3177. model
  3178. \end_layout
  3179. \begin_layout Standard
  3180. \begin_inset Flex TODO Note (inline)
  3181. status open
  3182. \begin_layout Plain Layout
  3183. Choose between above and the paper title: Optimizing yield of deep RNA sequencin
  3184. g for gene expression profiling by globin reduction of peripheral blood
  3185. samples from cynomolgus monkeys (Macaca fascicularis).
  3186. \end_layout
  3187. \end_inset
  3188. \end_layout
  3189. \begin_layout Standard
  3190. \begin_inset Flex TODO Note (inline)
  3191. status open
  3192. \begin_layout Plain Layout
  3193. Chapter author list: https://tex.stackexchange.com/questions/156862/displaying-aut
  3194. hor-for-each-chapter-in-book Every chapter gets an author list, which may
  3195. or may not be part of a citation to a published/preprinted paper.
  3196. \end_layout
  3197. \end_inset
  3198. \end_layout
  3199. \begin_layout Standard
  3200. \begin_inset Flex TODO Note (inline)
  3201. status open
  3202. \begin_layout Plain Layout
  3203. Preprint then cite the paper
  3204. \end_layout
  3205. \end_inset
  3206. \end_layout
  3207. \begin_layout Section*
  3208. Abstract
  3209. \end_layout
  3210. \begin_layout Paragraph
  3211. Background
  3212. \end_layout
  3213. \begin_layout Standard
  3214. Primate blood contains high concentrations of globin messenger RNA.
  3215. Globin reduction is a standard technique used to improve the expression
  3216. results obtained by DNA microarrays on RNA from blood samples.
  3217. However, with whole transcriptome RNA-sequencing (RNA-seq) quickly replacing
  3218. microarrays for many applications, the impact of globin reduction for RNA-seq
  3219. has not been previously studied.
  3220. Moreover, no off-the-shelf kits are available for globin reduction in nonhuman
  3221. primates.
  3222. \end_layout
  3223. \begin_layout Paragraph
  3224. Results
  3225. \end_layout
  3226. \begin_layout Standard
  3227. Here we report a protocol for RNA-seq in primate blood samples that uses
  3228. complimentary oligonucleotides to block reverse transcription of the alpha
  3229. and beta globin genes.
  3230. In test samples from cynomolgus monkeys (Macaca fascicularis), this globin
  3231. blocking protocol approximately doubles the yield of informative (non-globin)
  3232. reads by greatly reducing the fraction of globin reads, while also improving
  3233. the consistency in sequencing depth between samples.
  3234. The increased yield enables detection of about 2000 more genes, significantly
  3235. increases the correlation in measured gene expression levels between samples,
  3236. and increases the sensitivity of differential gene expression tests.
  3237. \end_layout
  3238. \begin_layout Paragraph
  3239. Conclusions
  3240. \end_layout
  3241. \begin_layout Standard
  3242. These results show that globin blocking significantly improves the cost-effectiv
  3243. eness of mRNA sequencing in primate blood samples by doubling the yield
  3244. of useful reads, allowing detection of more genes, and improving the precision
  3245. of gene expression measurements.
  3246. Based on these results, a globin reducing or blocking protocol is recommended
  3247. for all RNA-seq studies of primate blood samples.
  3248. \end_layout
  3249. \begin_layout Section
  3250. Approach
  3251. \end_layout
  3252. \begin_layout Standard
  3253. \begin_inset Note Note
  3254. status open
  3255. \begin_layout Plain Layout
  3256. Consider putting some of this in the Intro chapter
  3257. \end_layout
  3258. \begin_layout Itemize
  3259. Cynomolgus monkeys as a model organism
  3260. \end_layout
  3261. \begin_deeper
  3262. \begin_layout Itemize
  3263. Highly related to humans
  3264. \end_layout
  3265. \begin_layout Itemize
  3266. Small size and short life cycle - good research animal
  3267. \end_layout
  3268. \begin_layout Itemize
  3269. Genomics resources still in development
  3270. \end_layout
  3271. \end_deeper
  3272. \begin_layout Itemize
  3273. Inadequacy of existing blood RNA-seq protocols
  3274. \end_layout
  3275. \begin_deeper
  3276. \begin_layout Itemize
  3277. Existing protocols use a separate globin pulldown step, slowing down processing
  3278. \end_layout
  3279. \end_deeper
  3280. \end_inset
  3281. \end_layout
  3282. \begin_layout Standard
  3283. Increasingly, researchers are turning to high-throughput mRNA sequencing
  3284. technologies (RNA-seq) in preference to expression microarrays for analysis
  3285. of gene expression
  3286. \begin_inset CommandInset citation
  3287. LatexCommand cite
  3288. key "Mutz2012"
  3289. literal "false"
  3290. \end_inset
  3291. .
  3292. The advantages are even greater for study of model organisms with no well-estab
  3293. lished array platforms available, such as the cynomolgus monkey (Macaca
  3294. fascicularis).
  3295. High fractions of globin mRNA are naturally present in mammalian peripheral
  3296. blood samples (up to 70% of total mRNA) and these are known to interfere
  3297. with the results of array-based expression profiling
  3298. \begin_inset CommandInset citation
  3299. LatexCommand cite
  3300. key "Winn2010"
  3301. literal "false"
  3302. \end_inset
  3303. .
  3304. The importance of globin reduction for RNA-seq of blood has only been evaluated
  3305. for a deepSAGE protocol on human samples
  3306. \begin_inset CommandInset citation
  3307. LatexCommand cite
  3308. key "Mastrokolias2012"
  3309. literal "false"
  3310. \end_inset
  3311. .
  3312. In the present report, we evaluated globin reduction using custom blocking
  3313. oligonucleotides for deep RNA-seq of peripheral blood samples from a nonhuman
  3314. primate, cynomolgus monkey, using the Illumina technology platform.
  3315. We demonstrate that globin reduction significantly improves the cost-effectiven
  3316. ess of RNA-seq in blood samples.
  3317. Thus, our protocol offers a significant advantage to any investigator planning
  3318. to use RNA-seq for gene expression profiling of nonhuman primate blood
  3319. samples.
  3320. Our method can be generally applied to any species by designing complementary
  3321. oligonucleotide blocking probes to the globin gene sequences of that species.
  3322. Indeed, any highly expressed but biologically uninformative transcripts
  3323. can also be blocked to further increase sequencing efficiency and value
  3324. \begin_inset CommandInset citation
  3325. LatexCommand cite
  3326. key "Arnaud2016"
  3327. literal "false"
  3328. \end_inset
  3329. .
  3330. \end_layout
  3331. \begin_layout Section
  3332. Methods
  3333. \end_layout
  3334. \begin_layout Subsection*
  3335. Sample collection
  3336. \end_layout
  3337. \begin_layout Standard
  3338. All research reported here was done under IACUC-approved protocols at the
  3339. University of Miami and complied with all applicable federal and state
  3340. regulations and ethical principles for nonhuman primate research.
  3341. Blood draws occurred between 16 April 2012 and 18 June 2015.
  3342. The experimental system involved intrahepatic pancreatic islet transplantation
  3343. into Cynomolgus monkeys with induced diabetes mellitus with or without
  3344. concomitant infusion of mesenchymal stem cells.
  3345. Blood was collected at serial time points before and after transplantation
  3346. into PAXgene Blood RNA tubes (PreAnalytiX/Qiagen, Valencia, CA) at the
  3347. precise volume:volume ratio of 2.5 ml whole blood into 6.9 ml of PAX gene
  3348. additive.
  3349. \end_layout
  3350. \begin_layout Subsection*
  3351. Globin Blocking
  3352. \end_layout
  3353. \begin_layout Standard
  3354. Four oligonucleotides were designed to hybridize to the 3’ end of the transcript
  3355. s for Cynomolgus HBA1, HBA2 and HBB, with two hybridization sites for HBB
  3356. and 2 sites for HBA (the chosen sites were identical in both HBA genes).
  3357. All oligos were purchased from Sigma and were entirely composed of 2’O-Me
  3358. bases with a C3 spacer positioned at the 3’ ends to prevent any polymerase
  3359. mediated primer extension.
  3360. \end_layout
  3361. \begin_layout Quote
  3362. HBA1/2 site 1: GCCCACUCAGACUUUAUUCAAAG-C3spacer
  3363. \end_layout
  3364. \begin_layout Quote
  3365. HBA1/2 site 2: GGUGCAAGGAGGGGAGGAG-C3spacer
  3366. \end_layout
  3367. \begin_layout Quote
  3368. HBB site 1: AAUGAAAAUAAAUGUUUUUUAUUAG-C3spacer
  3369. \end_layout
  3370. \begin_layout Quote
  3371. HBB site 2: CUCAAGGCCCUUCAUAAUAUCCC-C3spacer
  3372. \end_layout
  3373. \begin_layout Subsection*
  3374. RNA-seq Library Preparation
  3375. \end_layout
  3376. \begin_layout Standard
  3377. Sequencing libraries were prepared with 200ng total RNA from each sample.
  3378. Polyadenylated mRNA was selected from 200 ng aliquots of cynomologus blood-deri
  3379. ved total RNA using Ambion Dynabeads Oligo(dT)25 beads (Invitrogen) following
  3380. manufacturer’s recommended protocol.
  3381. PolyA selected RNA was then combined with 8 pmol of HBA1/2 (site 1), 8
  3382. pmol of HBA1/2 (site 2), 12 pmol of HBB (site 1) and 12 pmol of HBB (site
  3383. 2) oligonucleotides.
  3384. In addition, 20 pmol of RT primer containing a portion of the Illumina
  3385. adapter sequence (B-oligo-dTV: GAGTTCCTTGGCACCCGAGAATTCCATTTTTTTTTTTTTTTTTTTV)
  3386. and 4 µL of 5X First Strand buffer (250 mM Tris-HCl pH 8.3, 375 mM KCl,
  3387. 15mM MgCl2) were added in a total volume of 15 µL.
  3388. The RNA was fragmented by heating this cocktail for 3 minutes at 95°C and
  3389. then placed on ice.
  3390. This was followed by the addition of 2 µL 0.1 M DTT, 1 µL RNaseOUT, 1 µL
  3391. 10mM dNTPs 10% biotin-16 aminoallyl-2’- dUTP and 10% biotin-16 aminoallyl-2’-
  3392. dCTP (TriLink Biotech, San Diego, CA), 1 µL Superscript II (200U/ µL, Thermo-Fi
  3393. sher).
  3394. A second “unblocked” library was prepared in the same way for each sample
  3395. but replacing the blocking oligos with an equivalent volume of water.
  3396. The reaction was carried out at 25°C for 15 minutes and 42°C for 40 minutes,
  3397. followed by incubation at 75°C for 10 minutes to inactivate the reverse
  3398. transcriptase.
  3399. \end_layout
  3400. \begin_layout Standard
  3401. The cDNA/RNA hybrid molecules were purified using 1.8X Ampure XP beads (Agencourt
  3402. ) following supplier’s recommended protocol.
  3403. The cDNA/RNA hybrid was eluted in 25 µL of 10 mM Tris-HCl pH 8.0, and then
  3404. bound to 25 µL of M280 Magnetic Streptavidin beads washed per recommended
  3405. protocol (Thermo-Fisher).
  3406. After 30 minutes of binding, beads were washed one time in 100 µL 0.1N NaOH
  3407. to denature and remove the bound RNA, followed by two 100 µL washes with
  3408. 1X TE buffer.
  3409. \end_layout
  3410. \begin_layout Standard
  3411. Subsequent attachment of the 5-prime Illumina A adapter was performed by
  3412. on-bead random primer extension of the following sequence (A-N8 primer:
  3413. TTCAGAGTTCTACAGTCCGACGATCNNNNNNNN).
  3414. Briefly, beads were resuspended in a 20 µL reaction containing 5 µM A-N8
  3415. primer, 40mM Tris-HCl pH 7.5, 20mM MgCl2, 50mM NaCl, 0.325U/µL Sequenase
  3416. 2.0 (Affymetrix, Santa Clara, CA), 0.0025U/µL inorganic pyrophosphatase (Affymetr
  3417. ix) and 300 µM each dNTP.
  3418. Reaction was incubated at 22°C for 30 minutes, then beads were washed 2
  3419. times with 1X TE buffer (200µL).
  3420. \end_layout
  3421. \begin_layout Standard
  3422. The magnetic streptavidin beads were resuspended in 34 µL nuclease-free
  3423. water and added directly to a PCR tube.
  3424. The two Illumina protocol-specified PCR primers were added at 0.53 µM (Illumina
  3425. TruSeq Universal Primer 1 and Illumina TruSeq barcoded PCR primer 2), along
  3426. with 40 µL 2X KAPA HiFi Hotstart ReadyMix (KAPA, Willmington MA) and thermocycl
  3427. ed as follows: starting with 98°C (2 min-hold); 15 cycles of 98°C, 20sec;
  3428. 60°C, 30sec; 72°C, 30sec; and finished with a 72°C (2 min-hold).
  3429. \end_layout
  3430. \begin_layout Standard
  3431. PCR products were purified with 1X Ampure Beads following manufacturer’s
  3432. recommended protocol.
  3433. Libraries were then analyzed using the Agilent TapeStation and quantitation
  3434. of desired size range was performed by “smear analysis”.
  3435. Samples were pooled in equimolar batches of 16 samples.
  3436. Pooled libraries were size selected on 2% agarose gels (E-Gel EX Agarose
  3437. Gels; Thermo-Fisher).
  3438. Products were cut between 250 and 350 bp (corresponding to insert sizes
  3439. of 130 to 230 bps).
  3440. Finished library pools were then sequenced on the Illumina NextSeq500 instrumen
  3441. t with 75 base read lengths.
  3442. \end_layout
  3443. \begin_layout Subsection*
  3444. Read alignment and counting
  3445. \end_layout
  3446. \begin_layout Standard
  3447. Reads were aligned to the cynomolgus genome using STAR
  3448. \begin_inset CommandInset citation
  3449. LatexCommand cite
  3450. key "Dobin2013,Wilson2013"
  3451. literal "false"
  3452. \end_inset
  3453. .
  3454. Counts of uniquely mapped reads were obtained for every gene in each sample
  3455. with the “featureCounts” function from the Rsubread package, using each
  3456. of the three possibilities for the “strandSpecific” option: sense, antisense,
  3457. and unstranded
  3458. \begin_inset CommandInset citation
  3459. LatexCommand cite
  3460. key "Liao2014"
  3461. literal "false"
  3462. \end_inset
  3463. .
  3464. A few artifacts in the cynomolgus genome annotation complicated read counting.
  3465. First, no ortholog is annotated for alpha globin in the cynomolgus genome,
  3466. presumably because the human genome has two alpha globin genes with nearly
  3467. identical sequences, making the orthology relationship ambiguous.
  3468. However, two loci in the cynomolgus genome are as “hemoglobin subunit alpha-lik
  3469. e” (LOC102136192 and LOC102136846).
  3470. LOC102136192 is annotated as a pseudogene while LOC102136846 is annotated
  3471. as protein-coding.
  3472. Our globin reduction protocol was designed to include blocking of these
  3473. two genes.
  3474. Indeed, these two genes have almost the same read counts in each library
  3475. as the properly-annotated HBB gene and much larger counts than any other
  3476. gene in the unblocked libraries, giving confidence that reads derived from
  3477. the real alpha globin are mapping to both genes.
  3478. Thus, reads from both of these loci were counted as alpha globin reads
  3479. in all further analyses.
  3480. The second artifact is a small, uncharacterized non-coding RNA gene (LOC1021365
  3481. 91), which overlaps the HBA-like gene (LOC102136192) on the opposite strand.
  3482. If counting is not performed in stranded mode (or if a non-strand-specific
  3483. sequencing protocol is used), many reads mapping to the globin gene will
  3484. be discarded as ambiguous due to their overlap with this ncRNA gene, resulting
  3485. in significant undercounting of globin reads.
  3486. Therefore, stranded sense counts were used for all further analysis in
  3487. the present study to insure that we accurately accounted for globin transcript
  3488. reduction.
  3489. However, we note that stranded reads are not necessary for RNA-seq using
  3490. our protocol in standard practice.
  3491. \end_layout
  3492. \begin_layout Subsection*
  3493. Normalization and Exploratory Data Analysis
  3494. \end_layout
  3495. \begin_layout Standard
  3496. Libraries were normalized by computing scaling factors using the edgeR package’s
  3497. Trimmed Mean of M-values method
  3498. \begin_inset CommandInset citation
  3499. LatexCommand cite
  3500. key "Robinson2010"
  3501. literal "false"
  3502. \end_inset
  3503. .
  3504. Log2 counts per million values (logCPM) were calculated using the cpm function
  3505. in edgeR for individual samples and aveLogCPM function for averages across
  3506. groups of samples, using those functions’ default prior count values to
  3507. avoid taking the logarithm of 0.
  3508. Genes were considered “present” if their average normalized logCPM values
  3509. across all libraries were at least -1.
  3510. Normalizing for gene length was unnecessary because the sequencing protocol
  3511. is 3’-biased and hence the expected read count for each gene is related
  3512. to the transcript’s copy number but not its length.
  3513. \end_layout
  3514. \begin_layout Standard
  3515. In order to assess the effect of blocking on reproducibility, Pearson and
  3516. Spearman correlation coefficients were computed between the logCPM values
  3517. for every pair of libraries within the globin-blocked (GB) and unblocked
  3518. (non-GB) groups, and edgeR's “estimateDisp” function was used to compute
  3519. negative binomial dispersions separately for the two groups
  3520. \begin_inset CommandInset citation
  3521. LatexCommand cite
  3522. key "Chen2014"
  3523. literal "false"
  3524. \end_inset
  3525. .
  3526. \end_layout
  3527. \begin_layout Subsection*
  3528. Differential Expression Analysis
  3529. \end_layout
  3530. \begin_layout Standard
  3531. All tests for differential gene expression were performed using edgeR, by
  3532. first fitting a negative binomial generalized linear model to the counts
  3533. and normalization factors and then performing a quasi-likelihood F-test
  3534. with robust estimation of outlier gene dispersions
  3535. \begin_inset CommandInset citation
  3536. LatexCommand cite
  3537. key "Lund2012,Phipson2016"
  3538. literal "false"
  3539. \end_inset
  3540. .
  3541. To investigate the effects of globin blocking on each gene, an additive
  3542. model was fit to the full data with coefficients for globin blocking and
  3543. SampleID.
  3544. To test the effect of globin blocking on detection of differentially expressed
  3545. genes, the GB samples and non-GB samples were each analyzed independently
  3546. as follows: for each animal with both a pre-transplant and a post-transplant
  3547. time point in the data set, the pre-transplant sample and the earliest
  3548. post-transplant sample were selected, and all others were excluded, yielding
  3549. a pre-/post-transplant pair of samples for each animal (N=7 animals with
  3550. paired samples).
  3551. These samples were analyzed for pre-transplant vs.
  3552. post-transplant differential gene expression while controlling for inter-animal
  3553. variation using an additive model with coefficients for transplant and
  3554. animal ID.
  3555. In all analyses, p-values were adjusted using the Benjamini-Hochberg procedure
  3556. for FDR correction
  3557. \begin_inset CommandInset citation
  3558. LatexCommand cite
  3559. key "Benjamini1995"
  3560. literal "false"
  3561. \end_inset
  3562. .
  3563. \end_layout
  3564. \begin_layout Standard
  3565. \begin_inset Note Note
  3566. status open
  3567. \begin_layout Itemize
  3568. New blood RNA-seq protocol to block reverse transcription of globin genes
  3569. \end_layout
  3570. \begin_layout Itemize
  3571. Blood RNA-seq time course after transplants with/without MSC infusion
  3572. \end_layout
  3573. \end_inset
  3574. \end_layout
  3575. \begin_layout Section
  3576. Results
  3577. \end_layout
  3578. \begin_layout Subsection*
  3579. Globin blocking yields a larger and more consistent fraction of useful reads
  3580. \end_layout
  3581. \begin_layout Standard
  3582. The objective of the present study was to validate a new protocol for deep
  3583. RNA-seq of whole blood drawn into PaxGene tubes from cynomolgus monkeys
  3584. undergoing islet transplantation, with particular focus on minimizing the
  3585. loss of useful sequencing space to uninformative globin reads.
  3586. The details of the analysis with respect to transplant outcomes and the
  3587. impact of mesenchymal stem cell treatment will be reported in a separate
  3588. manuscript (in preparation).
  3589. To focus on the efficacy of our globin blocking protocol, 37 blood samples,
  3590. 16 from pre-transplant and 21 from post-transplant time points, were each
  3591. prepped once with and once without globin blocking oligos, and were then
  3592. sequenced on an Illumina NextSeq500 instrument.
  3593. The number of reads aligning to each gene in the cynomolgus genome was
  3594. counted.
  3595. Table 1 summarizes the distribution of read fractions among the GB and
  3596. non-GB libraries.
  3597. In the libraries with no globin blocking, globin reads made up an average
  3598. of 44.6% of total input reads, while reads assigned to all other genes made
  3599. up an average of 26.3%.
  3600. The remaining reads either aligned to intergenic regions (that include
  3601. long non-coding RNAs) or did not align with any annotated transcripts in
  3602. the current build of the cynomolgus genome.
  3603. In the GB libraries, globin reads made up only 3.48% and reads assigned
  3604. to all other genes increased to 50.4%.
  3605. Thus, globin blocking resulted in a 92.2% reduction in globin reads and
  3606. a 91.6% increase in yield of useful non-globin reads.
  3607. \end_layout
  3608. \begin_layout Standard
  3609. This reduction is not quite as efficient as the previous analysis showed
  3610. for human samples by DeepSAGE (<0.4% globin reads after globin reduction)
  3611. \begin_inset CommandInset citation
  3612. LatexCommand cite
  3613. key "Mastrokolias2012"
  3614. literal "false"
  3615. \end_inset
  3616. .
  3617. Nonetheless, this degree of globin reduction is sufficient to nearly double
  3618. the yield of useful reads.
  3619. Thus, globin blocking cuts the required sequencing effort (and costs) to
  3620. achieve a target coverage depth by almost 50%.
  3621. Consistent with this near doubling of yield, the average difference in
  3622. un-normalized logCPM across all genes between the GB libraries and non-GB
  3623. libraries is approximately 1 (mean = 1.01, median = 1.08), an overall 2-fold
  3624. increase.
  3625. Un-normalized values are used here because the TMM normalization correctly
  3626. identifies this 2-fold difference as biologically irrelevant and removes
  3627. it.
  3628. \end_layout
  3629. \begin_layout Standard
  3630. \begin_inset Float figure
  3631. wide false
  3632. sideways false
  3633. status open
  3634. \begin_layout Plain Layout
  3635. \align center
  3636. \begin_inset Graphics
  3637. filename graphics/Globin Paper/figure1 - globin-fractions.pdf
  3638. \end_inset
  3639. \end_layout
  3640. \begin_layout Plain Layout
  3641. \begin_inset Caption Standard
  3642. \begin_layout Plain Layout
  3643. \series bold
  3644. \begin_inset Argument 1
  3645. status collapsed
  3646. \begin_layout Plain Layout
  3647. Fraction of genic reads in each sample aligned to non-globin genes, with
  3648. and without globin blocking (GB).
  3649. \end_layout
  3650. \end_inset
  3651. \begin_inset CommandInset label
  3652. LatexCommand label
  3653. name "fig:Fraction-of-genic-reads"
  3654. \end_inset
  3655. Fraction of genic reads in each sample aligned to non-globin genes, with
  3656. and without globin blocking (GB).
  3657. \series default
  3658. All reads in each sequencing library were aligned to the cyno genome, and
  3659. the number of reads uniquely aligning to each gene was counted.
  3660. For each sample, counts were summed separately for all globin genes and
  3661. for the remainder of the genes (non-globin genes), and the fraction of
  3662. genic reads aligned to non-globin genes was computed.
  3663. Each point represents an individual sample.
  3664. Gray + signs indicate the means for globin-blocked libraries and unblocked
  3665. libraries.
  3666. The overall distribution for each group is represented as a notched box
  3667. plots.
  3668. Points are randomly spread vertically to avoid excessive overlapping.
  3669. \end_layout
  3670. \end_inset
  3671. \end_layout
  3672. \begin_layout Plain Layout
  3673. \end_layout
  3674. \end_inset
  3675. \end_layout
  3676. \begin_layout Standard
  3677. \begin_inset Float table
  3678. placement p
  3679. wide false
  3680. sideways true
  3681. status open
  3682. \begin_layout Plain Layout
  3683. \align center
  3684. \begin_inset Tabular
  3685. <lyxtabular version="3" rows="4" columns="7">
  3686. <features tabularvalignment="middle">
  3687. <column alignment="center" valignment="top">
  3688. <column alignment="center" valignment="top">
  3689. <column alignment="center" valignment="top">
  3690. <column alignment="center" valignment="top">
  3691. <column alignment="center" valignment="top">
  3692. <column alignment="center" valignment="top">
  3693. <column alignment="center" valignment="top">
  3694. <row>
  3695. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3696. \begin_inset Text
  3697. \begin_layout Plain Layout
  3698. \end_layout
  3699. \end_inset
  3700. </cell>
  3701. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3702. \begin_inset Text
  3703. \begin_layout Plain Layout
  3704. \family roman
  3705. \series medium
  3706. \shape up
  3707. \size normal
  3708. \emph off
  3709. \bar no
  3710. \strikeout off
  3711. \xout off
  3712. \uuline off
  3713. \uwave off
  3714. \noun off
  3715. \color none
  3716. Percent of Total Reads
  3717. \end_layout
  3718. \end_inset
  3719. </cell>
  3720. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3721. \begin_inset Text
  3722. \begin_layout Plain Layout
  3723. \end_layout
  3724. \end_inset
  3725. </cell>
  3726. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3727. \begin_inset Text
  3728. \begin_layout Plain Layout
  3729. \end_layout
  3730. \end_inset
  3731. </cell>
  3732. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3733. \begin_inset Text
  3734. \begin_layout Plain Layout
  3735. \end_layout
  3736. \end_inset
  3737. </cell>
  3738. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3739. \begin_inset Text
  3740. \begin_layout Plain Layout
  3741. \family roman
  3742. \series medium
  3743. \shape up
  3744. \size normal
  3745. \emph off
  3746. \bar no
  3747. \strikeout off
  3748. \xout off
  3749. \uuline off
  3750. \uwave off
  3751. \noun off
  3752. \color none
  3753. Percent of Genic Reads
  3754. \end_layout
  3755. \end_inset
  3756. </cell>
  3757. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3758. \begin_inset Text
  3759. \begin_layout Plain Layout
  3760. \end_layout
  3761. \end_inset
  3762. </cell>
  3763. </row>
  3764. <row>
  3765. <cell alignment="center" valignment="top" bottomline="true" leftline="true" usebox="none">
  3766. \begin_inset Text
  3767. \begin_layout Plain Layout
  3768. GB
  3769. \end_layout
  3770. \end_inset
  3771. </cell>
  3772. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3773. \begin_inset Text
  3774. \begin_layout Plain Layout
  3775. \family roman
  3776. \series medium
  3777. \shape up
  3778. \size normal
  3779. \emph off
  3780. \bar no
  3781. \strikeout off
  3782. \xout off
  3783. \uuline off
  3784. \uwave off
  3785. \noun off
  3786. \color none
  3787. Non-globin Reads
  3788. \end_layout
  3789. \end_inset
  3790. </cell>
  3791. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3792. \begin_inset Text
  3793. \begin_layout Plain Layout
  3794. \family roman
  3795. \series medium
  3796. \shape up
  3797. \size normal
  3798. \emph off
  3799. \bar no
  3800. \strikeout off
  3801. \xout off
  3802. \uuline off
  3803. \uwave off
  3804. \noun off
  3805. \color none
  3806. Globin Reads
  3807. \end_layout
  3808. \end_inset
  3809. </cell>
  3810. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3811. \begin_inset Text
  3812. \begin_layout Plain Layout
  3813. \family roman
  3814. \series medium
  3815. \shape up
  3816. \size normal
  3817. \emph off
  3818. \bar no
  3819. \strikeout off
  3820. \xout off
  3821. \uuline off
  3822. \uwave off
  3823. \noun off
  3824. \color none
  3825. All Genic Reads
  3826. \end_layout
  3827. \end_inset
  3828. </cell>
  3829. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3830. \begin_inset Text
  3831. \begin_layout Plain Layout
  3832. \family roman
  3833. \series medium
  3834. \shape up
  3835. \size normal
  3836. \emph off
  3837. \bar no
  3838. \strikeout off
  3839. \xout off
  3840. \uuline off
  3841. \uwave off
  3842. \noun off
  3843. \color none
  3844. All Aligned Reads
  3845. \end_layout
  3846. \end_inset
  3847. </cell>
  3848. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3849. \begin_inset Text
  3850. \begin_layout Plain Layout
  3851. \family roman
  3852. \series medium
  3853. \shape up
  3854. \size normal
  3855. \emph off
  3856. \bar no
  3857. \strikeout off
  3858. \xout off
  3859. \uuline off
  3860. \uwave off
  3861. \noun off
  3862. \color none
  3863. Non-globin Reads
  3864. \end_layout
  3865. \end_inset
  3866. </cell>
  3867. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3868. \begin_inset Text
  3869. \begin_layout Plain Layout
  3870. \family roman
  3871. \series medium
  3872. \shape up
  3873. \size normal
  3874. \emph off
  3875. \bar no
  3876. \strikeout off
  3877. \xout off
  3878. \uuline off
  3879. \uwave off
  3880. \noun off
  3881. \color none
  3882. Globin Reads
  3883. \end_layout
  3884. \end_inset
  3885. </cell>
  3886. </row>
  3887. <row>
  3888. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3889. \begin_inset Text
  3890. \begin_layout Plain Layout
  3891. \family roman
  3892. \series medium
  3893. \shape up
  3894. \size normal
  3895. \emph off
  3896. \bar no
  3897. \strikeout off
  3898. \xout off
  3899. \uuline off
  3900. \uwave off
  3901. \noun off
  3902. \color none
  3903. Yes
  3904. \end_layout
  3905. \end_inset
  3906. </cell>
  3907. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3908. \begin_inset Text
  3909. \begin_layout Plain Layout
  3910. \family roman
  3911. \series medium
  3912. \shape up
  3913. \size normal
  3914. \emph off
  3915. \bar no
  3916. \strikeout off
  3917. \xout off
  3918. \uuline off
  3919. \uwave off
  3920. \noun off
  3921. \color none
  3922. 50.4% ± 6.82
  3923. \end_layout
  3924. \end_inset
  3925. </cell>
  3926. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3927. \begin_inset Text
  3928. \begin_layout Plain Layout
  3929. \family roman
  3930. \series medium
  3931. \shape up
  3932. \size normal
  3933. \emph off
  3934. \bar no
  3935. \strikeout off
  3936. \xout off
  3937. \uuline off
  3938. \uwave off
  3939. \noun off
  3940. \color none
  3941. 3.48% ± 2.94
  3942. \end_layout
  3943. \end_inset
  3944. </cell>
  3945. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3946. \begin_inset Text
  3947. \begin_layout Plain Layout
  3948. \family roman
  3949. \series medium
  3950. \shape up
  3951. \size normal
  3952. \emph off
  3953. \bar no
  3954. \strikeout off
  3955. \xout off
  3956. \uuline off
  3957. \uwave off
  3958. \noun off
  3959. \color none
  3960. 53.9% ± 6.81
  3961. \end_layout
  3962. \end_inset
  3963. </cell>
  3964. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3965. \begin_inset Text
  3966. \begin_layout Plain Layout
  3967. \family roman
  3968. \series medium
  3969. \shape up
  3970. \size normal
  3971. \emph off
  3972. \bar no
  3973. \strikeout off
  3974. \xout off
  3975. \uuline off
  3976. \uwave off
  3977. \noun off
  3978. \color none
  3979. 89.7% ± 2.40
  3980. \end_layout
  3981. \end_inset
  3982. </cell>
  3983. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3984. \begin_inset Text
  3985. \begin_layout Plain Layout
  3986. \family roman
  3987. \series medium
  3988. \shape up
  3989. \size normal
  3990. \emph off
  3991. \bar no
  3992. \strikeout off
  3993. \xout off
  3994. \uuline off
  3995. \uwave off
  3996. \noun off
  3997. \color none
  3998. 93.5% ± 5.25
  3999. \end_layout
  4000. \end_inset
  4001. </cell>
  4002. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  4003. \begin_inset Text
  4004. \begin_layout Plain Layout
  4005. \family roman
  4006. \series medium
  4007. \shape up
  4008. \size normal
  4009. \emph off
  4010. \bar no
  4011. \strikeout off
  4012. \xout off
  4013. \uuline off
  4014. \uwave off
  4015. \noun off
  4016. \color none
  4017. 6.49% ± 5.25
  4018. \end_layout
  4019. \end_inset
  4020. </cell>
  4021. </row>
  4022. <row>
  4023. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  4024. \begin_inset Text
  4025. \begin_layout Plain Layout
  4026. \family roman
  4027. \series medium
  4028. \shape up
  4029. \size normal
  4030. \emph off
  4031. \bar no
  4032. \strikeout off
  4033. \xout off
  4034. \uuline off
  4035. \uwave off
  4036. \noun off
  4037. \color none
  4038. No
  4039. \end_layout
  4040. \end_inset
  4041. </cell>
  4042. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  4043. \begin_inset Text
  4044. \begin_layout Plain Layout
  4045. \family roman
  4046. \series medium
  4047. \shape up
  4048. \size normal
  4049. \emph off
  4050. \bar no
  4051. \strikeout off
  4052. \xout off
  4053. \uuline off
  4054. \uwave off
  4055. \noun off
  4056. \color none
  4057. 26.3% ± 8.95
  4058. \end_layout
  4059. \end_inset
  4060. </cell>
  4061. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  4062. \begin_inset Text
  4063. \begin_layout Plain Layout
  4064. \family roman
  4065. \series medium
  4066. \shape up
  4067. \size normal
  4068. \emph off
  4069. \bar no
  4070. \strikeout off
  4071. \xout off
  4072. \uuline off
  4073. \uwave off
  4074. \noun off
  4075. \color none
  4076. 44.6% ± 16.6
  4077. \end_layout
  4078. \end_inset
  4079. </cell>
  4080. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  4081. \begin_inset Text
  4082. \begin_layout Plain Layout
  4083. \family roman
  4084. \series medium
  4085. \shape up
  4086. \size normal
  4087. \emph off
  4088. \bar no
  4089. \strikeout off
  4090. \xout off
  4091. \uuline off
  4092. \uwave off
  4093. \noun off
  4094. \color none
  4095. 70.1% ± 9.38
  4096. \end_layout
  4097. \end_inset
  4098. </cell>
  4099. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  4100. \begin_inset Text
  4101. \begin_layout Plain Layout
  4102. \family roman
  4103. \series medium
  4104. \shape up
  4105. \size normal
  4106. \emph off
  4107. \bar no
  4108. \strikeout off
  4109. \xout off
  4110. \uuline off
  4111. \uwave off
  4112. \noun off
  4113. \color none
  4114. 90.7% ± 5.16
  4115. \end_layout
  4116. \end_inset
  4117. </cell>
  4118. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  4119. \begin_inset Text
  4120. \begin_layout Plain Layout
  4121. \family roman
  4122. \series medium
  4123. \shape up
  4124. \size normal
  4125. \emph off
  4126. \bar no
  4127. \strikeout off
  4128. \xout off
  4129. \uuline off
  4130. \uwave off
  4131. \noun off
  4132. \color none
  4133. 38.8% ± 17.1
  4134. \end_layout
  4135. \end_inset
  4136. </cell>
  4137. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  4138. \begin_inset Text
  4139. \begin_layout Plain Layout
  4140. \family roman
  4141. \series medium
  4142. \shape up
  4143. \size normal
  4144. \emph off
  4145. \bar no
  4146. \strikeout off
  4147. \xout off
  4148. \uuline off
  4149. \uwave off
  4150. \noun off
  4151. \color none
  4152. 61.2% ± 17.1
  4153. \end_layout
  4154. \end_inset
  4155. </cell>
  4156. </row>
  4157. </lyxtabular>
  4158. \end_inset
  4159. \end_layout
  4160. \begin_layout Plain Layout
  4161. \begin_inset Caption Standard
  4162. \begin_layout Plain Layout
  4163. \series bold
  4164. \begin_inset Argument 1
  4165. status collapsed
  4166. \begin_layout Plain Layout
  4167. Fractions of reads mapping to genomic features in GB and non-GB samples.
  4168. \end_layout
  4169. \end_inset
  4170. \begin_inset CommandInset label
  4171. LatexCommand label
  4172. name "tab:Fractions-of-reads"
  4173. \end_inset
  4174. Fractions of reads mapping to genomic features in GB and non-GB samples.
  4175. \series default
  4176. All values are given as mean ± standard deviation.
  4177. \end_layout
  4178. \end_inset
  4179. \end_layout
  4180. \begin_layout Plain Layout
  4181. \end_layout
  4182. \end_inset
  4183. \end_layout
  4184. \begin_layout Standard
  4185. Another important aspect is that the standard deviations in Table
  4186. \begin_inset CommandInset ref
  4187. LatexCommand ref
  4188. reference "tab:Fractions-of-reads"
  4189. plural "false"
  4190. caps "false"
  4191. noprefix "false"
  4192. \end_inset
  4193. are uniformly smaller in the GB samples than the non-GB ones, indicating
  4194. much greater consistency of yield.
  4195. This is best seen in the percentage of non-globin reads as a fraction of
  4196. total reads aligned to annotated genes (genic reads).
  4197. For the non-GB samples, this measure ranges from 10.9% to 80.9%, while for
  4198. the GB samples it ranges from 81.9% to 99.9% (Figure
  4199. \begin_inset CommandInset ref
  4200. LatexCommand ref
  4201. reference "fig:Fraction-of-genic-reads"
  4202. plural "false"
  4203. caps "false"
  4204. noprefix "false"
  4205. \end_inset
  4206. ).
  4207. This means that for applications where it is critical that each sample
  4208. achieve a specified minimum coverage in order to provide useful information,
  4209. it would be necessary to budget up to 10 times the sequencing depth per
  4210. sample without globin blocking, even though the average yield improvement
  4211. for globin blocking is only 2-fold, because every sample has a chance of
  4212. being 90% globin and 10% useful reads.
  4213. Hence, the more consistent behavior of GB samples makes planning an experiment
  4214. easier and more efficient because it eliminates the need to over-sequence
  4215. every sample in order to guard against the worst case of a high-globin
  4216. fraction.
  4217. \end_layout
  4218. \begin_layout Subsection*
  4219. Globin blocking lowers the noise floor and allows detection of about 2000
  4220. more genes
  4221. \end_layout
  4222. \begin_layout Standard
  4223. \begin_inset Flex TODO Note (inline)
  4224. status open
  4225. \begin_layout Plain Layout
  4226. Remove redundant titles from figures
  4227. \end_layout
  4228. \end_inset
  4229. \end_layout
  4230. \begin_layout Standard
  4231. \begin_inset Float figure
  4232. wide false
  4233. sideways false
  4234. status open
  4235. \begin_layout Plain Layout
  4236. \align center
  4237. \begin_inset Graphics
  4238. filename graphics/Globin Paper/figure2 - aveLogCPM-colored.pdf
  4239. \end_inset
  4240. \end_layout
  4241. \begin_layout Plain Layout
  4242. \begin_inset Caption Standard
  4243. \begin_layout Plain Layout
  4244. \series bold
  4245. \begin_inset Argument 1
  4246. status collapsed
  4247. \begin_layout Plain Layout
  4248. Distributions of average group gene abundances when normalized separately
  4249. or together.
  4250. \end_layout
  4251. \end_inset
  4252. \begin_inset CommandInset label
  4253. LatexCommand label
  4254. name "fig:logcpm-dists"
  4255. \end_inset
  4256. Distributions of average group gene abundances when normalized separately
  4257. or together.
  4258. \series default
  4259. All reads in each sequencing library were aligned to the cyno genome, and
  4260. the number of reads uniquely aligning to each gene was counted.
  4261. Genes with zero counts in all libraries were discarded.
  4262. Libraries were normalized using the TMM method.
  4263. Libraries were split into globin-blocked (GB) and non-GB groups and the
  4264. average abundance for each gene in both groups, measured in log2 counts
  4265. per million reads counted, was computed using the aveLogCPM function.
  4266. The distribution of average gene logCPM values was plotted for both groups
  4267. using a kernel density plot to approximate a continuous distribution.
  4268. The logCPM GB distributions are marked in red, non-GB in blue.
  4269. The black vertical line denotes the chosen detection threshold of -1.
  4270. Top panel: Libraries were split into GB and non-GB groups first and normalized
  4271. separately.
  4272. Bottom panel: Libraries were all normalized together first and then split
  4273. into groups.
  4274. \end_layout
  4275. \end_inset
  4276. \end_layout
  4277. \begin_layout Plain Layout
  4278. \end_layout
  4279. \end_inset
  4280. \end_layout
  4281. \begin_layout Standard
  4282. Since globin blocking yields more usable sequencing depth, it should also
  4283. allow detection of more genes at any given threshold.
  4284. When we looked at the distribution of average normalized logCPM values
  4285. across all libraries for genes with at least one read assigned to them,
  4286. we observed the expected bimodal distribution, with a high-abundance "signal"
  4287. peak representing detected genes and a low-abundance "noise" peak representing
  4288. genes whose read count did not rise above the noise floor (Figure
  4289. \begin_inset CommandInset ref
  4290. LatexCommand ref
  4291. reference "fig:logcpm-dists"
  4292. plural "false"
  4293. caps "false"
  4294. noprefix "false"
  4295. \end_inset
  4296. ).
  4297. Consistent with the 2-fold increase in raw counts assigned to non-globin
  4298. genes, the signal peak for GB samples is shifted to the right relative
  4299. to the non-GB signal peak.
  4300. When all the samples are normalized together, this difference is normalized
  4301. out, lining up the signal peaks, and this reveals that, as expected, the
  4302. noise floor for the GB samples is about 2-fold lower.
  4303. This greater separation between signal and noise peaks in the GB samples
  4304. means that low-expression genes should be more easily detected and more
  4305. precisely quantified than in the non-GB samples.
  4306. \end_layout
  4307. \begin_layout Standard
  4308. \begin_inset Float figure
  4309. wide false
  4310. sideways false
  4311. status open
  4312. \begin_layout Plain Layout
  4313. \align center
  4314. \begin_inset Graphics
  4315. filename graphics/Globin Paper/figure3 - detection.pdf
  4316. \end_inset
  4317. \end_layout
  4318. \begin_layout Plain Layout
  4319. \begin_inset Caption Standard
  4320. \begin_layout Plain Layout
  4321. \series bold
  4322. \begin_inset Argument 1
  4323. status collapsed
  4324. \begin_layout Plain Layout
  4325. Gene detections as a function of abundance thresholds in globin-blocked
  4326. (GB) and non-GB samples.
  4327. \end_layout
  4328. \end_inset
  4329. \begin_inset CommandInset label
  4330. LatexCommand label
  4331. name "fig:Gene-detections"
  4332. \end_inset
  4333. Gene detections as a function of abundance thresholds in globin-blocked
  4334. (GB) and non-GB samples.
  4335. \series default
  4336. Average abundance (logCPM,
  4337. \begin_inset Formula $\log_{2}$
  4338. \end_inset
  4339. counts per million reads counted) was computed by separate group normalization
  4340. as described in Figure
  4341. \begin_inset CommandInset ref
  4342. LatexCommand ref
  4343. reference "fig:logcpm-dists"
  4344. plural "false"
  4345. caps "false"
  4346. noprefix "false"
  4347. \end_inset
  4348. for both the GB and non-GB groups, as well as for all samples considered
  4349. as one large group.
  4350. For each every integer threshold from -2 to 3, the number of genes detected
  4351. at or above that logCPM threshold was plotted for each group.
  4352. \end_layout
  4353. \end_inset
  4354. \end_layout
  4355. \begin_layout Plain Layout
  4356. \end_layout
  4357. \end_inset
  4358. \end_layout
  4359. \begin_layout Standard
  4360. Based on these distributions, we selected a detection threshold of -1, which
  4361. is approximately the leftmost edge of the trough between the signal and
  4362. noise peaks.
  4363. This represents the most liberal possible detection threshold that doesn't
  4364. call substantial numbers of noise genes as detected.
  4365. Among the full dataset, 13429 genes were detected at this threshold, and
  4366. 22276 were not.
  4367. When considering the GB libraries and non-GB libraries separately and re-comput
  4368. ing normalization factors independently within each group, 14535 genes were
  4369. detected in the GB libraries while only 12460 were detected in the non-GB
  4370. libraries.
  4371. Thus, GB allowed the detection of 2000 extra genes that were buried under
  4372. the noise floor without GB.
  4373. This pattern of at least 2000 additional genes detected with GB was also
  4374. consistent across a wide range of possible detection thresholds, from -2
  4375. to 3 (see Figure
  4376. \begin_inset CommandInset ref
  4377. LatexCommand ref
  4378. reference "fig:Gene-detections"
  4379. plural "false"
  4380. caps "false"
  4381. noprefix "false"
  4382. \end_inset
  4383. ).
  4384. \end_layout
  4385. \begin_layout Subsection*
  4386. Globin blocking does not add significant additional noise or decrease sample
  4387. quality
  4388. \end_layout
  4389. \begin_layout Standard
  4390. One potential worry is that the globin blocking protocol could perturb the
  4391. levels of non-globin genes.
  4392. There are two kinds of possible perturbations: systematic and random.
  4393. The former is not a major concern for detection of differential expression,
  4394. since a 2-fold change in every sample has no effect on the relative fold
  4395. change between samples.
  4396. In contrast, random perturbations would increase the noise and obscure
  4397. the signal in the dataset, reducing the capacity to detect differential
  4398. expression.
  4399. \end_layout
  4400. \begin_layout Standard
  4401. \begin_inset Float figure
  4402. wide false
  4403. sideways false
  4404. status open
  4405. \begin_layout Plain Layout
  4406. \align center
  4407. \begin_inset Graphics
  4408. filename graphics/Globin Paper/figure4 - maplot-colored.pdf
  4409. \end_inset
  4410. \end_layout
  4411. \begin_layout Plain Layout
  4412. \begin_inset Caption Standard
  4413. \begin_layout Plain Layout
  4414. \begin_inset Argument 1
  4415. status collapsed
  4416. \begin_layout Plain Layout
  4417. MA plot showing effects of globin blocking on each gene's abundance.
  4418. \end_layout
  4419. \end_inset
  4420. \begin_inset CommandInset label
  4421. LatexCommand label
  4422. name "fig:MA-plot"
  4423. \end_inset
  4424. \series bold
  4425. MA plot showing effects of globin blocking on each gene's abundance.
  4426. \series default
  4427. All libraries were normalized together as described in Figure
  4428. \begin_inset CommandInset ref
  4429. LatexCommand ref
  4430. reference "fig:logcpm-dists"
  4431. plural "false"
  4432. caps "false"
  4433. noprefix "false"
  4434. \end_inset
  4435. , and genes with an average logCPM below -1 were filtered out.
  4436. Each remaining gene was tested for differential abundance with respect
  4437. to globin blocking (GB) using edgeR’s quasi-likelihod F-test, fitting a
  4438. negative binomial generalized linear model to table of read counts in each
  4439. library.
  4440. For each gene, edgeR reported average abundance (logCPM),
  4441. \begin_inset Formula $\log_{2}$
  4442. \end_inset
  4443. fold change (logFC), p-value, and Benjamini-Hochberg adjusted false discovery
  4444. rate (FDR).
  4445. Each gene's logFC was plotted against its logCPM, colored by FDR.
  4446. Red points are significant at ≤10% FDR, and blue are not significant at
  4447. that threshold.
  4448. The alpha and beta globin genes targeted for blocking are marked with large
  4449. triangles, while all other genes are represented as small points.
  4450. \end_layout
  4451. \end_inset
  4452. \end_layout
  4453. \begin_layout Plain Layout
  4454. \end_layout
  4455. \end_inset
  4456. \end_layout
  4457. \begin_layout Standard
  4458. \begin_inset Flex TODO Note (inline)
  4459. status open
  4460. \begin_layout Plain Layout
  4461. Standardize on
  4462. \begin_inset Quotes eld
  4463. \end_inset
  4464. log2
  4465. \begin_inset Quotes erd
  4466. \end_inset
  4467. notation
  4468. \end_layout
  4469. \end_inset
  4470. \end_layout
  4471. \begin_layout Standard
  4472. The data do indeed show small systematic perturbations in gene levels (Figure
  4473. \begin_inset CommandInset ref
  4474. LatexCommand ref
  4475. reference "fig:MA-plot"
  4476. plural "false"
  4477. caps "false"
  4478. noprefix "false"
  4479. \end_inset
  4480. ).
  4481. Other than the 3 designated alpha and beta globin genes, two other genes
  4482. stand out as having especially large negative log fold changes: HBD and
  4483. LOC1021365.
  4484. HBD, delta globin, is most likely targeted by the blocking oligos due to
  4485. high sequence homology with the other globin genes.
  4486. LOC1021365 is the aforementioned ncRNA that is reverse-complementary to
  4487. one of the alpha-like genes and that would be expected to be removed during
  4488. the globin blocking step.
  4489. All other genes appear in a cluster centered vertically at 0, and the vast
  4490. majority of genes in this cluster show an absolute log2(FC) of 0.5 or less.
  4491. Nevertheless, many of these small perturbations are still statistically
  4492. significant, indicating that the globin blocking oligos likely cause very
  4493. small but non-zero systematic perturbations in measured gene expression
  4494. levels.
  4495. \end_layout
  4496. \begin_layout Standard
  4497. \begin_inset Float figure
  4498. wide false
  4499. sideways false
  4500. status open
  4501. \begin_layout Plain Layout
  4502. \align center
  4503. \begin_inset Graphics
  4504. filename graphics/Globin Paper/figure5 - corrplot.pdf
  4505. \end_inset
  4506. \end_layout
  4507. \begin_layout Plain Layout
  4508. \begin_inset Caption Standard
  4509. \begin_layout Plain Layout
  4510. \series bold
  4511. \begin_inset Argument 1
  4512. status collapsed
  4513. \begin_layout Plain Layout
  4514. Comparison of inter-sample gene abundance correlations with and without
  4515. globin blocking.
  4516. \end_layout
  4517. \end_inset
  4518. \begin_inset CommandInset label
  4519. LatexCommand label
  4520. name "fig:gene-abundance-correlations"
  4521. \end_inset
  4522. Comparison of inter-sample gene abundance correlations with and without
  4523. globin blocking (GB).
  4524. \series default
  4525. All libraries were normalized together as described in Figure 2, and genes
  4526. with an average abundance (logCPM, log2 counts per million reads counted)
  4527. less than -1 were filtered out.
  4528. Each gene’s logCPM was computed in each library using the edgeR cpm function.
  4529. For each pair of biological samples, the Pearson correlation between those
  4530. samples' GB libraries was plotted against the correlation between the same
  4531. samples’ non-GB libraries.
  4532. Each point represents an unique pair of samples.
  4533. The solid gray line shows a quantile-quantile plot of distribution of GB
  4534. correlations vs.
  4535. that of non-GB correlations.
  4536. The thin dashed line is the identity line, provided for reference.
  4537. \end_layout
  4538. \end_inset
  4539. \end_layout
  4540. \begin_layout Plain Layout
  4541. \end_layout
  4542. \end_inset
  4543. \end_layout
  4544. \begin_layout Standard
  4545. To evaluate the possibility of globin blocking causing random perturbations
  4546. and reducing sample quality, we computed the Pearson correlation between
  4547. logCPM values for every pair of samples with and without GB and plotted
  4548. them against each other (Figure
  4549. \begin_inset CommandInset ref
  4550. LatexCommand ref
  4551. reference "fig:gene-abundance-correlations"
  4552. plural "false"
  4553. caps "false"
  4554. noprefix "false"
  4555. \end_inset
  4556. ).
  4557. The plot indicated that the GB libraries have higher sample-to-sample correlati
  4558. ons than the non-GB libraries.
  4559. Parametric and nonparametric tests for differences between the correlations
  4560. with and without GB both confirmed that this difference was highly significant
  4561. (2-sided paired t-test: t = 37.2, df = 665, P ≪ 2.2e-16; 2-sided Wilcoxon
  4562. sign-rank test: V = 2195, P ≪ 2.2e-16).
  4563. Performing the same tests on the Spearman correlations gave the same conclusion
  4564. (t-test: t = 26.8, df = 665, P ≪ 2.2e-16; sign-rank test: V = 8781, P ≪ 2.2e-16).
  4565. The edgeR package was used to compute the overall biological coefficient
  4566. of variation (BCV) for GB and non-GB libraries, and found that globin blocking
  4567. resulted in a negligible increase in the BCV (0.417 with GB vs.
  4568. 0.400 without).
  4569. The near equality of the BCVs for both sets indicates that the higher correlati
  4570. ons in the GB libraries are most likely a result of the increased yield
  4571. of useful reads, which reduces the contribution of Poisson counting uncertainty
  4572. to the overall variance of the logCPM values
  4573. \begin_inset CommandInset citation
  4574. LatexCommand cite
  4575. key "McCarthy2012"
  4576. literal "false"
  4577. \end_inset
  4578. .
  4579. This improves the precision of expression measurements and more than offsets
  4580. the negligible increase in BCV.
  4581. \end_layout
  4582. \begin_layout Subsection*
  4583. More differentially expressed genes are detected with globin blocking
  4584. \end_layout
  4585. \begin_layout Standard
  4586. \begin_inset Float table
  4587. wide false
  4588. sideways false
  4589. status open
  4590. \begin_layout Plain Layout
  4591. \align center
  4592. \begin_inset Tabular
  4593. <lyxtabular version="3" rows="5" columns="5">
  4594. <features tabularvalignment="middle">
  4595. <column alignment="center" valignment="top">
  4596. <column alignment="center" valignment="top">
  4597. <column alignment="center" valignment="top">
  4598. <column alignment="center" valignment="top">
  4599. <column alignment="center" valignment="top">
  4600. <row>
  4601. <cell alignment="center" valignment="top" usebox="none">
  4602. \begin_inset Text
  4603. \begin_layout Plain Layout
  4604. \end_layout
  4605. \end_inset
  4606. </cell>
  4607. <cell alignment="center" valignment="top" usebox="none">
  4608. \begin_inset Text
  4609. \begin_layout Plain Layout
  4610. \end_layout
  4611. \end_inset
  4612. </cell>
  4613. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  4614. \begin_inset Text
  4615. \begin_layout Plain Layout
  4616. \series bold
  4617. No Globin Blocking
  4618. \end_layout
  4619. \end_inset
  4620. </cell>
  4621. <cell multicolumn="2" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  4622. \begin_inset Text
  4623. \begin_layout Plain Layout
  4624. \end_layout
  4625. \end_inset
  4626. </cell>
  4627. <cell multicolumn="2" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  4628. \begin_inset Text
  4629. \begin_layout Plain Layout
  4630. \end_layout
  4631. \end_inset
  4632. </cell>
  4633. </row>
  4634. <row>
  4635. <cell alignment="center" valignment="top" usebox="none">
  4636. \begin_inset Text
  4637. \begin_layout Plain Layout
  4638. \end_layout
  4639. \end_inset
  4640. </cell>
  4641. <cell alignment="center" valignment="top" usebox="none">
  4642. \begin_inset Text
  4643. \begin_layout Plain Layout
  4644. \end_layout
  4645. \end_inset
  4646. </cell>
  4647. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4648. \begin_inset Text
  4649. \begin_layout Plain Layout
  4650. \series bold
  4651. Up
  4652. \end_layout
  4653. \end_inset
  4654. </cell>
  4655. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4656. \begin_inset Text
  4657. \begin_layout Plain Layout
  4658. \series bold
  4659. NS
  4660. \end_layout
  4661. \end_inset
  4662. </cell>
  4663. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  4664. \begin_inset Text
  4665. \begin_layout Plain Layout
  4666. \series bold
  4667. Down
  4668. \end_layout
  4669. \end_inset
  4670. </cell>
  4671. </row>
  4672. <row>
  4673. <cell multirow="3" alignment="center" valignment="middle" topline="true" bottomline="true" leftline="true" usebox="none">
  4674. \begin_inset Text
  4675. \begin_layout Plain Layout
  4676. \series bold
  4677. Globin-Blocking
  4678. \end_layout
  4679. \end_inset
  4680. </cell>
  4681. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4682. \begin_inset Text
  4683. \begin_layout Plain Layout
  4684. \series bold
  4685. Up
  4686. \end_layout
  4687. \end_inset
  4688. </cell>
  4689. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4690. \begin_inset Text
  4691. \begin_layout Plain Layout
  4692. \family roman
  4693. \series medium
  4694. \shape up
  4695. \size normal
  4696. \emph off
  4697. \bar no
  4698. \strikeout off
  4699. \xout off
  4700. \uuline off
  4701. \uwave off
  4702. \noun off
  4703. \color none
  4704. 231
  4705. \end_layout
  4706. \end_inset
  4707. </cell>
  4708. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4709. \begin_inset Text
  4710. \begin_layout Plain Layout
  4711. \family roman
  4712. \series medium
  4713. \shape up
  4714. \size normal
  4715. \emph off
  4716. \bar no
  4717. \strikeout off
  4718. \xout off
  4719. \uuline off
  4720. \uwave off
  4721. \noun off
  4722. \color none
  4723. 515
  4724. \end_layout
  4725. \end_inset
  4726. </cell>
  4727. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  4728. \begin_inset Text
  4729. \begin_layout Plain Layout
  4730. \family roman
  4731. \series medium
  4732. \shape up
  4733. \size normal
  4734. \emph off
  4735. \bar no
  4736. \strikeout off
  4737. \xout off
  4738. \uuline off
  4739. \uwave off
  4740. \noun off
  4741. \color none
  4742. 2
  4743. \end_layout
  4744. \end_inset
  4745. </cell>
  4746. </row>
  4747. <row>
  4748. <cell multirow="4" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4749. \begin_inset Text
  4750. \begin_layout Plain Layout
  4751. \end_layout
  4752. \end_inset
  4753. </cell>
  4754. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4755. \begin_inset Text
  4756. \begin_layout Plain Layout
  4757. \series bold
  4758. NS
  4759. \end_layout
  4760. \end_inset
  4761. </cell>
  4762. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4763. \begin_inset Text
  4764. \begin_layout Plain Layout
  4765. \family roman
  4766. \series medium
  4767. \shape up
  4768. \size normal
  4769. \emph off
  4770. \bar no
  4771. \strikeout off
  4772. \xout off
  4773. \uuline off
  4774. \uwave off
  4775. \noun off
  4776. \color none
  4777. 160
  4778. \end_layout
  4779. \end_inset
  4780. </cell>
  4781. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4782. \begin_inset Text
  4783. \begin_layout Plain Layout
  4784. \family roman
  4785. \series medium
  4786. \shape up
  4787. \size normal
  4788. \emph off
  4789. \bar no
  4790. \strikeout off
  4791. \xout off
  4792. \uuline off
  4793. \uwave off
  4794. \noun off
  4795. \color none
  4796. 11235
  4797. \end_layout
  4798. \end_inset
  4799. </cell>
  4800. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  4801. \begin_inset Text
  4802. \begin_layout Plain Layout
  4803. \family roman
  4804. \series medium
  4805. \shape up
  4806. \size normal
  4807. \emph off
  4808. \bar no
  4809. \strikeout off
  4810. \xout off
  4811. \uuline off
  4812. \uwave off
  4813. \noun off
  4814. \color none
  4815. 136
  4816. \end_layout
  4817. \end_inset
  4818. </cell>
  4819. </row>
  4820. <row>
  4821. <cell multirow="4" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  4822. \begin_inset Text
  4823. \begin_layout Plain Layout
  4824. \end_layout
  4825. \end_inset
  4826. </cell>
  4827. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  4828. \begin_inset Text
  4829. \begin_layout Plain Layout
  4830. \series bold
  4831. Down
  4832. \end_layout
  4833. \end_inset
  4834. </cell>
  4835. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  4836. \begin_inset Text
  4837. \begin_layout Plain Layout
  4838. \family roman
  4839. \series medium
  4840. \shape up
  4841. \size normal
  4842. \emph off
  4843. \bar no
  4844. \strikeout off
  4845. \xout off
  4846. \uuline off
  4847. \uwave off
  4848. \noun off
  4849. \color none
  4850. 0
  4851. \end_layout
  4852. \end_inset
  4853. </cell>
  4854. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  4855. \begin_inset Text
  4856. \begin_layout Plain Layout
  4857. \family roman
  4858. \series medium
  4859. \shape up
  4860. \size normal
  4861. \emph off
  4862. \bar no
  4863. \strikeout off
  4864. \xout off
  4865. \uuline off
  4866. \uwave off
  4867. \noun off
  4868. \color none
  4869. 548
  4870. \end_layout
  4871. \end_inset
  4872. </cell>
  4873. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  4874. \begin_inset Text
  4875. \begin_layout Plain Layout
  4876. \family roman
  4877. \series medium
  4878. \shape up
  4879. \size normal
  4880. \emph off
  4881. \bar no
  4882. \strikeout off
  4883. \xout off
  4884. \uuline off
  4885. \uwave off
  4886. \noun off
  4887. \color none
  4888. 127
  4889. \end_layout
  4890. \end_inset
  4891. </cell>
  4892. </row>
  4893. </lyxtabular>
  4894. \end_inset
  4895. \end_layout
  4896. \begin_layout Plain Layout
  4897. \begin_inset Caption Standard
  4898. \begin_layout Plain Layout
  4899. \series bold
  4900. \begin_inset Argument 1
  4901. status open
  4902. \begin_layout Plain Layout
  4903. Comparison of significantly differentially expressed genes with and without
  4904. globin blocking.
  4905. \end_layout
  4906. \end_inset
  4907. \begin_inset CommandInset label
  4908. LatexCommand label
  4909. name "tab:Comparison-of-significant"
  4910. \end_inset
  4911. Comparison of significantly differentially expressed genes with and without
  4912. globin blocking.
  4913. \series default
  4914. Up, Down: Genes significantly up/down-regulated in post-transplant samples
  4915. relative to pre-transplant samples, with a false discovery rate of 10%
  4916. or less.
  4917. NS: Non-significant genes (false discovery rate greater than 10%).
  4918. \end_layout
  4919. \end_inset
  4920. \end_layout
  4921. \begin_layout Plain Layout
  4922. \end_layout
  4923. \end_inset
  4924. \end_layout
  4925. \begin_layout Standard
  4926. To compare performance on differential gene expression tests, we took subsets
  4927. of both the GB and non-GB libraries with exactly one pre-transplant and
  4928. one post-transplant sample for each animal that had paired samples available
  4929. for analysis (N=7 animals, N=14 samples in each subset).
  4930. The same test for pre- vs.
  4931. post-transplant differential gene expression was performed on the same
  4932. 7 pairs of samples from GB libraries and non-GB libraries, in each case
  4933. using an FDR of 10% as the threshold of significance.
  4934. Out of 12954 genes that passed the detection threshold in both subsets,
  4935. 358 were called significantly differentially expressed in the same direction
  4936. in both sets; 1063 were differentially expressed in the GB set only; 296
  4937. were differentially expressed in the non-GB set only; 2 genes were called
  4938. significantly up in the GB set but significantly down in the non-GB set;
  4939. and the remaining 11235 were not called differentially expressed in either
  4940. set.
  4941. These data are summarized in Table
  4942. \begin_inset CommandInset ref
  4943. LatexCommand ref
  4944. reference "tab:Comparison-of-significant"
  4945. plural "false"
  4946. caps "false"
  4947. noprefix "false"
  4948. \end_inset
  4949. .
  4950. The differences in BCV calculated by EdgeR for these subsets of samples
  4951. were negligible (BCV = 0.302 for GB and 0.297 for non-GB).
  4952. \end_layout
  4953. \begin_layout Standard
  4954. The key point is that the GB data results in substantially more differentially
  4955. expressed calls than the non-GB data.
  4956. Since there is no gold standard for this dataset, it is impossible to be
  4957. certain whether this is due to under-calling of differential expression
  4958. in the non-GB samples or over-calling in the GB samples.
  4959. However, given that both datasets are derived from the same biological
  4960. samples and have nearly equal BCVs, it is more likely that the larger number
  4961. of DE calls in the GB samples are genuine detections that were enabled
  4962. by the higher sequencing depth and measurement precision of the GB samples.
  4963. Note that the same set of genes was considered in both subsets, so the
  4964. larger number of differentially expressed gene calls in the GB data set
  4965. reflects a greater sensitivity to detect significant differential gene
  4966. expression and not simply the larger total number of detected genes in
  4967. GB samples described earlier.
  4968. \end_layout
  4969. \begin_layout Section
  4970. Discussion
  4971. \end_layout
  4972. \begin_layout Standard
  4973. The original experience with whole blood gene expression profiling on DNA
  4974. microarrays demonstrated that the high concentration of globin transcripts
  4975. reduced the sensitivity to detect genes with relatively low expression
  4976. levels, in effect, significantly reducing the sensitivity.
  4977. To address this limitation, commercial protocols for globin reduction were
  4978. developed based on strategies to block globin transcript amplification
  4979. during labeling or physically removing globin transcripts by affinity bead
  4980. methods
  4981. \begin_inset CommandInset citation
  4982. LatexCommand cite
  4983. key "Winn2010"
  4984. literal "false"
  4985. \end_inset
  4986. .
  4987. More recently, using the latest generation of labeling protocols and arrays,
  4988. it was determined that globin reduction was no longer necessary to obtain
  4989. sufficient sensitivity to detect differential transcript expression
  4990. \begin_inset CommandInset citation
  4991. LatexCommand cite
  4992. key "NuGEN2010"
  4993. literal "false"
  4994. \end_inset
  4995. .
  4996. However, we are not aware of any publications using these currently available
  4997. protocols the with latest generation of microarrays that actually compare
  4998. the detection sensitivity with and without globin reduction.
  4999. However, in practice this has now been adopted generally primarily driven
  5000. by concerns for cost control.
  5001. The main objective of our work was to directly test the impact of globin
  5002. gene transcripts and a new globin blocking protocol for application to
  5003. the newest generation of differential gene expression profiling determined
  5004. using next generation sequencing.
  5005. \end_layout
  5006. \begin_layout Standard
  5007. The challenge of doing global gene expression profiling in cynomolgus monkeys
  5008. is that the current available arrays were never designed to comprehensively
  5009. cover this genome and have not been updated since the first assemblies
  5010. of the cynomolgus genome were published.
  5011. Therefore, we determined that the best strategy for peripheral blood profiling
  5012. was to do deep RNA-seq and inform the workflow using the latest available
  5013. genome assembly and annotation
  5014. \begin_inset CommandInset citation
  5015. LatexCommand cite
  5016. key "Wilson2013"
  5017. literal "false"
  5018. \end_inset
  5019. .
  5020. However, it was not immediately clear whether globin reduction was necessary
  5021. for RNA-seq or how much improvement in efficiency or sensitivity to detect
  5022. differential gene expression would be achieved for the added cost and work.
  5023. \end_layout
  5024. \begin_layout Standard
  5025. We only found one report that demonstrated that globin reduction significantly
  5026. improved the effective read yields for sequencing of human peripheral blood
  5027. cell RNA using a DeepSAGE protocol
  5028. \begin_inset CommandInset citation
  5029. LatexCommand cite
  5030. key "Mastrokolias2012"
  5031. literal "false"
  5032. \end_inset
  5033. .
  5034. The approach to DeepSAGE involves two different restriction enzymes that
  5035. purify and then tag small fragments of transcripts at specific locations
  5036. and thus, significantly reduces the complexity of the transcriptome.
  5037. Therefore, we could not determine how DeepSAGE results would translate
  5038. to the common strategy in the field for assaying the entire transcript
  5039. population by whole-transcriptome 3’-end RNA-seq.
  5040. Furthermore, if globin reduction is necessary, we also needed a globin
  5041. reduction method specific to cynomolgus globin sequences that would work
  5042. an organism for which no kit is available off the shelf.
  5043. \end_layout
  5044. \begin_layout Standard
  5045. As mentioned above, the addition of globin blocking oligos has a very small
  5046. impact on measured expression levels of gene expression.
  5047. However, this is a non-issue for the purposes of differential expression
  5048. testing, since a systematic change in a gene in all samples does not affect
  5049. relative expression levels between samples.
  5050. However, we must acknowledge that simple comparisons of gene expression
  5051. data obtained by GB and non-GB protocols are not possible without additional
  5052. normalization.
  5053. \end_layout
  5054. \begin_layout Standard
  5055. More importantly, globin blocking not only nearly doubles the yield of usable
  5056. reads, it also increases inter-sample correlation and sensitivity to detect
  5057. differential gene expression relative to the same set of samples profiled
  5058. without blocking.
  5059. In addition, globin blocking does not add a significant amount of random
  5060. noise to the data.
  5061. Globin blocking thus represents a cost-effective way to squeeze more data
  5062. and statistical power out of the same blood samples and the same amount
  5063. of sequencing.
  5064. In conclusion, globin reduction greatly increases the yield of useful RNA-seq
  5065. reads mapping to the rest of the genome, with minimal perturbations in
  5066. the relative levels of non-globin genes.
  5067. Based on these results, globin transcript reduction using sequence-specific,
  5068. complementary blocking oligonucleotides is recommended for all deep RNA-seq
  5069. of cynomolgus and other nonhuman primate blood samples.
  5070. \end_layout
  5071. \begin_layout Chapter
  5072. Future Directions
  5073. \end_layout
  5074. \begin_layout Standard
  5075. \begin_inset Flex TODO Note (inline)
  5076. status open
  5077. \begin_layout Plain Layout
  5078. Consider per-chapter future directions.
  5079. Check instructions.
  5080. \end_layout
  5081. \end_inset
  5082. \end_layout
  5083. \begin_layout Itemize
  5084. Study other epigenetic marks in more contexts
  5085. \end_layout
  5086. \begin_deeper
  5087. \begin_layout Itemize
  5088. DNA methylation, histone marks, chromatin accessibility & conformation in
  5089. CD4 T-cells
  5090. \end_layout
  5091. \begin_layout Itemize
  5092. Also look at other types lymphocytes: CD8 T-cells, B-cells, NK cells
  5093. \end_layout
  5094. \end_deeper
  5095. \begin_layout Itemize
  5096. Use CV or bootstrap to better evaluate classifiers
  5097. \end_layout
  5098. \begin_layout Standard
  5099. \begin_inset ERT
  5100. status open
  5101. \begin_layout Plain Layout
  5102. % Use "References" instead of "Bibliography"
  5103. \end_layout
  5104. \begin_layout Plain Layout
  5105. \backslash
  5106. renewcommand{
  5107. \backslash
  5108. bibname}{References}
  5109. \end_layout
  5110. \end_inset
  5111. \end_layout
  5112. \begin_layout Standard
  5113. \begin_inset Flex TODO Note (inline)
  5114. status open
  5115. \begin_layout Plain Layout
  5116. Check bib entry formatting & sort order
  5117. \end_layout
  5118. \end_inset
  5119. \end_layout
  5120. \begin_layout Standard
  5121. \begin_inset CommandInset bibtex
  5122. LatexCommand bibtex
  5123. btprint "btPrintCited"
  5124. bibfiles "refs,code-refs"
  5125. options "bibtotoc,unsrt"
  5126. \end_inset
  5127. \end_layout
  5128. \end_body
  5129. \end_document