thesis.lyx 337 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085150861508715088150891509015091
  1. #LyX 2.3 created this file. For more info see http://www.lyx.org/
  2. \lyxformat 544
  3. \begin_document
  4. \begin_header
  5. \save_transient_properties true
  6. \origin unavailable
  7. \textclass extbook
  8. \begin_preamble
  9. % List all used files in log output
  10. \listfiles
  11. % Add a DRAFT watermark
  12. \usepackage{draftwatermark}
  13. \usepackage{accsupp}
  14. \SetWatermarkLightness{0.97}
  15. \SetWatermarkScale{1}
  16. % Make watermark not copyable (in Adobe Reader)
  17. \SetWatermarkText{\BeginAccSupp{method=escape,ActualText={}}DRAFT\EndAccSupp{}}
  18. % Set up required header format
  19. \usepackage{fancyhdr}
  20. \pagestyle{fancy}
  21. \renewcommand{\headrulewidth}{0pt}
  22. \rhead{}
  23. \lhead{}
  24. \chead{}
  25. \rfoot{}
  26. \lfoot{}
  27. % Make page number not copyable (in Adobe Reader)
  28. \cfoot{\BeginAccSupp{method=escape,ActualText={}}\thepage\EndAccSupp{}} % Page number bottom center
  29. % Allow FloatBarrier command
  30. \usepackage{placeins}
  31. % Allow landscape pages
  32. \usepackage{pdflscape}
  33. % Allow doing things after the end of the current page
  34. % (to avoid landscape figures breaking up text)
  35. \usepackage{afterpage}
  36. % This one breaks subfigs so it's disabled
  37. % https://tex.stackexchange.com/questions/65680/automatically-bold-first-sentence-of-a-floats-caption
  38. \end_preamble
  39. \use_default_options true
  40. \begin_modules
  41. todonotes
  42. \end_modules
  43. \maintain_unincluded_children false
  44. \language english
  45. \language_package default
  46. \inputencoding utf8
  47. \fontencoding default
  48. \font_roman "default" "default"
  49. \font_sans "default" "default"
  50. \font_typewriter "default" "default"
  51. \font_math "auto" "auto"
  52. \font_default_family default
  53. \use_non_tex_fonts false
  54. \font_sc false
  55. \font_osf false
  56. \font_sf_scale 100 100
  57. \font_tt_scale 100 100
  58. \use_microtype false
  59. \use_dash_ligatures true
  60. \graphics default
  61. \default_output_format pdf4
  62. \output_sync 0
  63. \bibtex_command biber
  64. \index_command default
  65. \paperfontsize 12
  66. \spacing double
  67. \use_hyperref true
  68. \pdf_bookmarks true
  69. \pdf_bookmarksnumbered false
  70. \pdf_bookmarksopen false
  71. \pdf_bookmarksopenlevel 1
  72. \pdf_breaklinks false
  73. \pdf_pdfborder false
  74. \pdf_colorlinks false
  75. \pdf_backref false
  76. \pdf_pdfusetitle true
  77. \papersize letterpaper
  78. \use_geometry true
  79. \use_package amsmath 1
  80. \use_package amssymb 1
  81. \use_package cancel 1
  82. \use_package esint 1
  83. \use_package mathdots 1
  84. \use_package mathtools 1
  85. \use_package mhchem 1
  86. \use_package stackrel 1
  87. \use_package stmaryrd 1
  88. \use_package undertilde 1
  89. \cite_engine biblatex
  90. \cite_engine_type authoryear
  91. \biblio_style plain
  92. \biblatex_bibstyle authoryear
  93. \biblatex_citestyle numeric
  94. \use_bibtopic false
  95. \use_indices false
  96. \paperorientation portrait
  97. \suppress_date false
  98. \justification true
  99. \use_refstyle 1
  100. \use_minted 0
  101. \index Index
  102. \shortcut idx
  103. \color #008000
  104. \end_index
  105. \leftmargin 1.5in
  106. \topmargin 1in
  107. \rightmargin 1in
  108. \bottommargin 1in
  109. \secnumdepth 3
  110. \tocdepth 3
  111. \paragraph_separation indent
  112. \paragraph_indentation default
  113. \is_math_indent 0
  114. \math_numbering_side default
  115. \quotes_style english
  116. \dynamic_quotes 0
  117. \papercolumns 1
  118. \papersides 1
  119. \paperpagestyle default
  120. \tracking_changes false
  121. \output_changes false
  122. \html_math_output 0
  123. \html_css_as_file 0
  124. \html_be_strict false
  125. \end_header
  126. \begin_body
  127. \begin_layout Title
  128. Bioinformatic analysis of complex, high-throughput genomic and epigenomic
  129. data in the context of immunology and transplant rejection
  130. \end_layout
  131. \begin_layout Author
  132. A thesis presented
  133. \begin_inset Newline newline
  134. \end_inset
  135. by
  136. \begin_inset Newline newline
  137. \end_inset
  138. Ryan C.
  139. Thompson
  140. \begin_inset Newline newline
  141. \end_inset
  142. to
  143. \begin_inset Newline newline
  144. \end_inset
  145. The Scripps Research Institute Graduate Program
  146. \begin_inset Newline newline
  147. \end_inset
  148. in partial fulfillment of the requirements for the degree of
  149. \begin_inset Newline newline
  150. \end_inset
  151. Doctor of Philosophy in the subject of Biology
  152. \begin_inset Newline newline
  153. \end_inset
  154. for
  155. \begin_inset Newline newline
  156. \end_inset
  157. The Scripps Research Institute
  158. \begin_inset Newline newline
  159. \end_inset
  160. La Jolla, California
  161. \end_layout
  162. \begin_layout Date
  163. October 2019
  164. \end_layout
  165. \begin_layout Standard
  166. [Copyright notice]
  167. \end_layout
  168. \begin_layout Standard
  169. [Thesis acceptance form]
  170. \end_layout
  171. \begin_layout Standard
  172. [Dedication]
  173. \end_layout
  174. \begin_layout Standard
  175. [Acknowledgements]
  176. \end_layout
  177. \begin_layout Standard
  178. \begin_inset CommandInset toc
  179. LatexCommand tableofcontents
  180. \end_inset
  181. \end_layout
  182. \begin_layout Standard
  183. \begin_inset FloatList table
  184. \end_inset
  185. \end_layout
  186. \begin_layout Standard
  187. \begin_inset FloatList figure
  188. \end_inset
  189. \end_layout
  190. \begin_layout Standard
  191. [List of Abbreviations]
  192. \end_layout
  193. \begin_layout List of TODOs
  194. \end_layout
  195. \begin_layout Standard
  196. \begin_inset Flex TODO Note (inline)
  197. status open
  198. \begin_layout Plain Layout
  199. Check all figures to make sure they fit on the page with their legends.
  200. \end_layout
  201. \end_inset
  202. \end_layout
  203. \begin_layout Standard
  204. \begin_inset Flex TODO Note (inline)
  205. status open
  206. \begin_layout Plain Layout
  207. Search and replace: naive -> naïve
  208. \end_layout
  209. \end_inset
  210. \end_layout
  211. \begin_layout Standard
  212. \begin_inset Flex TODO Note (inline)
  213. status open
  214. \begin_layout Plain Layout
  215. Look into auto-generated nomenclature list: https://wiki.lyx.org/Tips/Nomenclature.
  216. Otherwise, do a manual pass for all abbreviations at the end.
  217. Do nomenclature/abbreviations independently for each chapter.
  218. \end_layout
  219. \end_inset
  220. \end_layout
  221. \begin_layout Standard
  222. \begin_inset Flex TODO Note (inline)
  223. status open
  224. \begin_layout Plain Layout
  225. Make all descriptions consistent in terms of
  226. \begin_inset Quotes eld
  227. \end_inset
  228. we did X
  229. \begin_inset Quotes erd
  230. \end_inset
  231. vs
  232. \begin_inset Quotes eld
  233. \end_inset
  234. I did X
  235. \begin_inset Quotes erd
  236. \end_inset
  237. vs
  238. \begin_inset Quotes eld
  239. \end_inset
  240. X was done
  241. \begin_inset Quotes erd
  242. \end_inset
  243. .
  244. \end_layout
  245. \end_inset
  246. \end_layout
  247. \begin_layout Chapter*
  248. Abstract
  249. \end_layout
  250. \begin_layout Standard
  251. \begin_inset Note Note
  252. status open
  253. \begin_layout Plain Layout
  254. It is included as an integral part of the thesis and should immediately
  255. precede the introduction.
  256. \end_layout
  257. \begin_layout Plain Layout
  258. Preparing your Abstract.
  259. Your abstract (a succinct description of your work) is limited to 350 words.
  260. UMI will shorten it if they must; please do not exceed the limit.
  261. \end_layout
  262. \begin_layout Itemize
  263. Include pertinent place names, names of persons (in full), and other proper
  264. nouns.
  265. These are useful in automated retrieval.
  266. \end_layout
  267. \begin_layout Itemize
  268. Display symbols, as well as foreign words and phrases, clearly and accurately.
  269. Include transliterations for characters other than Roman and Greek letters
  270. and Arabic numerals.
  271. Include accents and diacritical marks.
  272. \end_layout
  273. \begin_layout Itemize
  274. Do not include graphs, charts, tables, or illustrations in your abstract.
  275. \end_layout
  276. \end_inset
  277. \end_layout
  278. \begin_layout Standard
  279. \begin_inset Flex TODO Note (inline)
  280. status open
  281. \begin_layout Plain Layout
  282. Obviously the abstract gets written last.
  283. \end_layout
  284. \end_inset
  285. \end_layout
  286. \begin_layout Chapter*
  287. Notes to draft readers
  288. \end_layout
  289. \begin_layout Standard
  290. Thank you so much for agreeing to read my thesis and give me feedback on
  291. it.
  292. What you are currently reading is a rough draft, in need of many revisions.
  293. You can always find the latest version at
  294. \begin_inset CommandInset href
  295. LatexCommand href
  296. target "https://mneme.dedyn.io/~ryan/Thesis/thesis.pdf"
  297. literal "false"
  298. \end_inset
  299. .
  300. the PDF at this link is updated periodically with my latest revisions,
  301. but you can just download the current version and give me feedback on that.
  302. Don't worry about keeping up with the updates.
  303. \end_layout
  304. \begin_layout Standard
  305. As for what feedback I'm looking for, first of all, don't waste your time
  306. marking spelling mistakes and such.
  307. I haven't run a spell checker on it yet, so let me worry about that.
  308. Also, I'm aware that many abbreviations are not properly introduced the
  309. first time they are used, so don't worry about that either.
  310. However, if you see any glaring formatting issues, such as a figure being
  311. too large and getting cut off at the edge of the page, please note them.
  312. In addition, if any of the text in the figures is too small, please note
  313. that as well.
  314. \end_layout
  315. \begin_layout Standard
  316. Beyond that, what I'm mainly interested in is feedback on the content.
  317. For example: does the introduction flow logically, and does it provide
  318. enough background to understand the other chapters? Does each chapter make
  319. it clear what work and analyses I have done? Do the figures clearly communicate
  320. the results I'm trying to show? Do you feel that the claims in the results
  321. and discussion sections are well-supported? There's no need to suggest
  322. improvements; just note areas that you feel need improvement.
  323. Additionally, while I am well aware that Chapter 1 (the introduction) contains
  324. many un-cited claims, all the other chapters (2,3, and 4)
  325. \emph on
  326. should
  327. \emph default
  328. be fully cited.
  329. So if you notice any un-cited claims in those chapters, please flag them
  330. for my attention.
  331. Similarly, if you discover any factual errors, please note them as well.
  332. \end_layout
  333. \begin_layout Standard
  334. You can provide your feedback in whatever way is most convenient to you.
  335. You could mark up this PDF with highlights and notes, then send it back
  336. to me.
  337. Or you could collect your comments in a separate text file and send that
  338. to me, or whatever else you like.
  339. However, if you send me your feedback in a separate document, please note
  340. a section/figure/table number for each comment, and
  341. \emph on
  342. also
  343. \emph default
  344. send me the exact PDF that you read so I can reference it while reading
  345. your comments, since as mentioned above, the current version I'm working
  346. on will have changed by that point (which might include shuffling sections
  347. and figures around, changing their numbers).
  348. One last thing: you'll see a bunch of text in orange boxes throughout the
  349. PDF.
  350. These are notes to myself about things that need to be fixed later, so
  351. if you see a problem noted in an orange box, that means I'm already aware
  352. of it, and there's no need to comment on it.
  353. \end_layout
  354. \begin_layout Standard
  355. My thesis is due Thursday, October 10th, so in order to be useful to me,
  356. I'll need your feedback at least a few days before that, ideally by Monday,
  357. October 7th.
  358. If you have limited time and are unable to get through the whole thesis,
  359. please focus your effors on Chapters 1 and 2, since those are the roughest
  360. and most in need of revision.
  361. Chapter 3 is fairly short and straightforward, and Chapter 4 is an adaptation
  362. of a paper that's already been through a few rounds of revision, so they
  363. should be a lot tighter.
  364. If you can't spare any time between now and then, or if something unexpected
  365. comes up, I understand.
  366. Just let me know.
  367. \end_layout
  368. \begin_layout Standard
  369. Thanks again for your help, and happy reading!
  370. \end_layout
  371. \begin_layout Chapter
  372. Introduction
  373. \end_layout
  374. \begin_layout Section
  375. Background & Significance
  376. \end_layout
  377. \begin_layout Subsection
  378. Biological motivation
  379. \end_layout
  380. \begin_layout Standard
  381. \begin_inset Flex TODO Note (inline)
  382. status open
  383. \begin_layout Plain Layout
  384. Rethink the subsection organization after the intro is written.
  385. \end_layout
  386. \end_inset
  387. \end_layout
  388. \begin_layout Standard
  389. \begin_inset Flex TODO Note (inline)
  390. status open
  391. \begin_layout Plain Layout
  392. Citations are needed all over the place.
  393. A lot of this is knowledge I've just absorbed from years of conversation
  394. in the Salomon lab, without ever having seen a citation for it.
  395. \end_layout
  396. \end_inset
  397. \end_layout
  398. \begin_layout Subsubsection
  399. Rejection is the major long-term threat to organ and tissue allografts
  400. \end_layout
  401. \begin_layout Standard
  402. Organ and tissue transplants are a life-saving treatment for people who
  403. have lost the function of an important organ.
  404. In some cases, it is possible to transplant a patient's own tissue from
  405. one area of their body to another, referred to as an autograft.
  406. This is common for tissues that are distributed throughout many areas of
  407. the body, such as skin and bone.
  408. However, in cases of organ failure, there is no functional self tissue
  409. remaining, and a transplant from another person – the donor – is required.
  410. This is referred to as an allograft.
  411. \end_layout
  412. \begin_layout Standard
  413. \begin_inset Flex TODO Note (inline)
  414. status open
  415. \begin_layout Plain Layout
  416. Possible citation for degree of generic variability: https://www.ncbi.nlm.nih.gov/pu
  417. bmed/22424236?dopt=Abstract
  418. \end_layout
  419. \end_inset
  420. \end_layout
  421. \begin_layout Standard
  422. \begin_inset Flex TODO Note (inline)
  423. status open
  424. \begin_layout Plain Layout
  425. How much mechanistic detail is needed here? My work doesn't really go into
  426. specific rejection mechanisms, so I think it's best to keep it basic.
  427. \end_layout
  428. \end_inset
  429. \end_layout
  430. \begin_layout Standard
  431. Because an allograft comes from a different person, it is genetically distinct
  432. from the rest of the recipient's body.
  433. Some genetic variants occur in protein coding regions, resulting in protein
  434. products that differ from the equivalent proteins in the graft recipient's
  435. own tissue.
  436. As a result, without intervention, the recipient's immune system will eventuall
  437. y identify the graft as foreign tissue and begin attacking it, eventually
  438. resulting in failure and death of the graft, a process referred to as transplan
  439. t rejection.
  440. Rejection is the most significant challenge to the long-term health of
  441. an allograft.
  442. Like any adaptive immune response, graft rejection generally occurs via
  443. two broad mechanisms: cellular immunity, in which CD8+ T-cells induce apoptosis
  444. in the graft cells; and humoral immunity, in which B-cells produce antibodies
  445. that bind to graft proteins and direct an immune response against the graft.
  446. In either case, rejection shows most of the typical hallmarks of an adaptive
  447. immune response, in particular mediation by CD4+ T-cells and formation
  448. of immune memory.
  449. \end_layout
  450. \begin_layout Subsubsection
  451. Diagnosis and treatment of allograft rejection is a major challenge
  452. \end_layout
  453. \begin_layout Standard
  454. To prevent rejection, allograft recipients are treated with immune suppression.
  455. The goal is to achieve sufficient suppression of the immune system to prevent
  456. rejection of the graft without compromising the ability of the immune system
  457. to raise a normal response against infection.
  458. As such, a delicate balance must be struck: insufficient immune suppression
  459. may lead to rejection and ultimately loss of the graft; exceissive suppression
  460. leaves the patient vulnerable to life-threatening opportunistic infections.
  461. Because every patient is different, immune suppression must be tailored
  462. for each patient.
  463. Furthermore, immune suppression must be tuned over time, as the immune
  464. system's activity is not static, nor is it held in a steady state.
  465. In order to properly adjust the dosage of immune suppression drugs, it
  466. is necessary to monitor the health of the transplant and increase the dosage
  467. if evidence of rejection is observed.
  468. \end_layout
  469. \begin_layout Standard
  470. However, diagnosis of rejection is a significant challenge.
  471. Early diagnosis is essential in order to step up immune suppression before
  472. the immune system damages the graft beyond recovery.
  473. The current gold standard test for graft rejection is a tissue biopsy,
  474. examained for visible signs of rejection by a trained histologist.
  475. When a patient shows symptoms of possible rejection, a
  476. \begin_inset Quotes eld
  477. \end_inset
  478. for cause
  479. \begin_inset Quotes erd
  480. \end_inset
  481. biopsy is performed to confirm the diagnosis, and immune suppression is
  482. adjusted as necessary.
  483. However, in many cases, the early stages of rejection are asymptomatic,
  484. known as
  485. \begin_inset Quotes eld
  486. \end_inset
  487. sub-clinical
  488. \begin_inset Quotes erd
  489. \end_inset
  490. rejection.
  491. In light of this, is is now common to perform
  492. \begin_inset Quotes eld
  493. \end_inset
  494. protocol biopsies
  495. \begin_inset Quotes erd
  496. \end_inset
  497. at specific times after transplantation of a graft, even if no symptoms
  498. of rejection are apparent, in addition to
  499. \begin_inset Quotes eld
  500. \end_inset
  501. for cause
  502. \begin_inset Quotes erd
  503. \end_inset
  504. biopsies
  505. \begin_inset CommandInset citation
  506. LatexCommand cite
  507. key "Wilkinson2006"
  508. literal "false"
  509. \end_inset
  510. .
  511. \end_layout
  512. \begin_layout Standard
  513. However, biopsies have a number of downsides that limit their effectiveness
  514. as a diagnostic tool.
  515. First, the need for manual inspection by a histologist means that diagnosis
  516. is subject to the biases of the particular histologist examining the biopsy.
  517. In marginal cases two different histologists may give two different diagnoses
  518. to the same biopsy.
  519. Second, a biopsy can only evaluate if rejection is occurring in the section
  520. of the graft from which the tissue was extracted.
  521. If rejection is only occurring in one section of the graft and the tissue
  522. is extracted from a different section, it may result in a false negative
  523. diagnosis.
  524. Most importantly, however, extraction of tissue from a graft is invasive
  525. and is treated as an injury by the body, which results in inflammation
  526. that in turn promotes increased immune system activity.
  527. Hence, the invasiveness of biopsies severely limits the frequency with
  528. which the can safely be performed.
  529. Typically protocol biopsies are not scheduled more than about once per
  530. month
  531. \begin_inset CommandInset citation
  532. LatexCommand cite
  533. key "Wilkinson2006"
  534. literal "false"
  535. \end_inset
  536. .
  537. A less invasive diagnostic test for rejection would bring manifold benefits.
  538. Such a test would enable more frequent testing and therefore earlier detection
  539. of rejection events.
  540. In addition, having a larger pool of historical data for a given patient
  541. would make it easier to evaluate when a given test is outside the normal
  542. parameters for that specific patient, rather than relying on normal ranges
  543. for the population as a whole.
  544. Lastly, more frequent tests would be a boon to the transplant research
  545. community.
  546. Beyond simply providing more data, the increased time granularity of the
  547. tests will enable studying the progression of a rejection event on the
  548. scale of days to weeks, rather than months.
  549. \end_layout
  550. \begin_layout Subsubsection
  551. Memory cells are resistant to immune suppression
  552. \end_layout
  553. \begin_layout Standard
  554. One of the defining features of the adaptive immune system is immune memory:
  555. the ability of the immune system to recognize a previously encountered
  556. foreign antigen and respond more quickly and more strongly to that antigen
  557. in subsequent encounters.
  558. When the immune system first encounters a new antigen, the lymphocytes
  559. that respond are known as naive cells – T-cells and B-cells that have never
  560. detected their target antigens before.
  561. Once activated by their specific antigen presented by an antigen-presenting
  562. cell in the proper co-stimulatory context, naive cells differentiate into
  563. effector cells that carry out their respective functions in targeting and
  564. destroying the source of the foreign antigen.
  565. The requirement for co-stimulation is an important feature of naive cells
  566. that limits
  567. \begin_inset Quotes eld
  568. \end_inset
  569. false positive
  570. \begin_inset Quotes erd
  571. \end_inset
  572. immune responses, because antigen-presenting cells usually only express
  573. the proper co-stimulation after detecting evidence of an infection, such
  574. as the presence of common bacterial cell components or inflamed tissue.
  575. Most effector cells die after the foreign antigen is cleared, but some
  576. remain and differentiate into memory cells.
  577. Like naive cells, memory cells respond to detection of their specific antigen
  578. by differentiating into effector cells, ready to fight an infection.
  579. However, unlike naive cells, memory cells do not require the same degree
  580. of co-stimulatory signaling for activation, and once activated, they proliferat
  581. e and differentiate into effector cells more quickly than naive cells do.
  582. \end_layout
  583. \begin_layout Standard
  584. In the context of a pathogenic infection, immune memory is a major advantage,
  585. allowing an organism to rapidly fight off a previously encountered pathogen
  586. much more quickly and effectively than the first time it was encountered.
  587. However, if effector cells that recognize an antigen from an allograft
  588. are allowed to differentiate into memory cells, suppressing rejection of
  589. the graft becomes much more difficult.
  590. Many immune suppression drugs work by interfering with the co-stimulation
  591. that naive cells require in order to mount an immune response.
  592. Since memory cells do not require this co-stimulation, these drugs are
  593. not effective at suppressing an immune response that is mediated by memory
  594. cells.
  595. Secondly, because memory cells are able to mount a stronger and faster
  596. response to an antigen, all else being equal they require stronger immune
  597. suppression than naive cells to prevent an immune response.
  598. However, immune suppression affects the entire immune system, not just
  599. cells recognizing a specific antigen, so increasing the dosage of immune
  600. suppression drugs also increases the risk of complications from a compromised
  601. immune system, such as opportunistic infections.
  602. While the differences in cell surface markers between naive and memory
  603. cells have been fairly well characterized, the internal regulatory mechanisms
  604. that allow memory cells to respond more quickly and without co-stimulation
  605. are still poorly understood.
  606. In order to develop immune suppression that either prevents the formation
  607. of memory cells or works more effectively against memory cells, the mechanisms
  608. of immune memory formation and regulation must be better understood.
  609. \end_layout
  610. \begin_layout Subsection
  611. Overview of bioinformatic analysis methods
  612. \end_layout
  613. \begin_layout Standard
  614. The studies presented in this work all involve the analysis of high-throughput
  615. genomic and epigenomic data.
  616. These data present many unique analysis challenges, and a wide array of
  617. software tools are available to analyze them.
  618. This section presents an overview of the methods used, including what problems
  619. they solve, what assumptions they make, and a basic description of how
  620. they work.
  621. \end_layout
  622. \begin_layout Standard
  623. \begin_inset Flex TODO Note (inline)
  624. status open
  625. \begin_layout Plain Layout
  626. Many of these points may also be addressed in the approach/methods sections
  627. of the following chapters? Redundant?
  628. \end_layout
  629. \end_inset
  630. \end_layout
  631. \begin_layout Subsubsection
  632. Limma: The standard linear modeling framework for genomics
  633. \end_layout
  634. \begin_layout Standard
  635. Linear models are a generalization of the
  636. \begin_inset Formula $t$
  637. \end_inset
  638. -test and ANOVA to arbitrarily complex experimental designs.
  639. In a typical linear model, there is one dependent variable observation
  640. per sample.
  641. For example, in a linear model of height as a function of age and sex,
  642. there is one height measurement per person.
  643. However, when analyzing genomic data, each sample consists of observations
  644. of thousands of dependent variables.
  645. For example, in an RNA-seq experiment, the dependent variables may be the
  646. count of RNA-seq reads for each annotated gene.
  647. In abstract terms, each dependent variable being measured is referred to
  648. as a feature.
  649. The simplest approach to analyzing such data would be to fit the same model
  650. independently to each feature.
  651. However, this is undesirable for most genomics data sets.
  652. Genomics assays like high-throughput sequencing are expensive, and often
  653. generating the samples is also quite expensive and time-consuming.
  654. This expense limits the sample sizes typically employed in genomics experiments
  655. , and as a result the statistical power of each individual feature's linear
  656. model is likewise limited.
  657. However, because thousands of features from the same samples are analyzed
  658. together, there is an opportunity to improve the statistical power of the
  659. analysis by exploiting shared patterns of variation across features.
  660. This is the core feature of limma, a linear modeling framework designed
  661. for genomic data.
  662. Limma is typically used to analyze expression microarray data, and more
  663. recently RNA-seq data, but it can also be used to analyze any other data
  664. for which linear modeling is appropriate.
  665. \end_layout
  666. \begin_layout Standard
  667. The central challenge when fitting a linear model is to estimate the variance
  668. of the data accurately.
  669. This quantity is the most difficult to estimate when sample sizes are small.
  670. A single shared variance could be estimated for all of the features together,
  671. and this estimate would be very stable, in contrast to the individual feature
  672. variance estimates.
  673. However, this would require the assumption that every feature is equally
  674. variable, which is known to be false for most genomic data sets.
  675. Limma offers a compromise between these two extremes by using a method
  676. called empirical Bayes moderation to
  677. \begin_inset Quotes eld
  678. \end_inset
  679. squeeze
  680. \begin_inset Quotes erd
  681. \end_inset
  682. the distribution of estimated variances toward a single common value that
  683. represents the variance of an average feature in the data
  684. \begin_inset CommandInset citation
  685. LatexCommand cite
  686. key "Smyth2004"
  687. literal "false"
  688. \end_inset
  689. .
  690. While the individual feature variance estimates are not stable, the common
  691. variance estiamate for the entire data set is quite stable, so using a
  692. combination of the two yields a variance estimate for each feature with
  693. greater precision than the individual feature varaiances.
  694. The trade-off for this improvement is that squeezing each estimated variance
  695. toward the common value introduces some bias – the variance will be underestima
  696. ted for features with high variance and overestimated for features with
  697. low variance.
  698. Essentially, limma assumes that extreme variances are less common than
  699. variances close to the common value.
  700. The variance estimates from this empirical Bayes procedure are shown empiricall
  701. y to yield greater statistical power than either the individual feature
  702. variances or the single common value.
  703. \end_layout
  704. \begin_layout Standard
  705. On top of this core framework, limma also implements many other enhancements
  706. that, further relax the assumptions of the model and extend the scope of
  707. what kinds of data it can analyze.
  708. Instead of squeezing toward a single common variance value, limma can model
  709. the common variance as a function of a covariate, such as average expression
  710. \begin_inset CommandInset citation
  711. LatexCommand cite
  712. key "Law2013"
  713. literal "false"
  714. \end_inset
  715. .
  716. This is essential for RNA-seq data, where higher gene counts yield more
  717. precise expression measurements and therefore smaller variances than low-count
  718. genes.
  719. While linear models typically assume that all samples have equal variance,
  720. limma is able to relax this assumption by identifying and down-weighting
  721. samples the diverge more strongly from the lienar model across many features
  722. \begin_inset CommandInset citation
  723. LatexCommand cite
  724. key "Ritchie2006,Liu2015"
  725. literal "false"
  726. \end_inset
  727. .
  728. In addition, limma is also able to fit simple mixed models incorporating
  729. one random effect in addition to the fixed effects represented by an ordinary
  730. linear model
  731. \begin_inset CommandInset citation
  732. LatexCommand cite
  733. key "Smyth2005a"
  734. literal "false"
  735. \end_inset
  736. .
  737. Once again, limma shares information between features to obtain a robust
  738. estimate for the random effect correlation.
  739. \end_layout
  740. \begin_layout Subsubsection
  741. edgeR provides limma-like analysis features for count data
  742. \end_layout
  743. \begin_layout Standard
  744. Although limma can be applied to read counts from RNA-seq data, it is less
  745. suitable for counts from ChIP-seq data, which tend to be much smaller and
  746. therefore violate the assumption of a normal distribution more severely.
  747. For all count-based data, the edgeR package works similarly to limma, but
  748. uses a generalized linear model instead of a linear model.
  749. The most important difference is that the GLM in edgeR models the counts
  750. directly using a negative binomial distribution rather than modeling the
  751. normalized log counts using a normal distribution
  752. \begin_inset CommandInset citation
  753. LatexCommand cite
  754. key "Chen2014,McCarthy2012,Robinson2010a"
  755. literal "false"
  756. \end_inset
  757. .
  758. The negative binomial is a good fit for count data because it can be derived
  759. as a gamma-distributed mixture of Poisson distributions.
  760. The Poisson distribution accurately represents the distribution of counts
  761. expected for a given gene abundance, and the gamma distribution is then
  762. used to represent the variation in gene abundance between biological replicates.
  763. For this reason, the square root of the dispersion paramter of the negative
  764. binomial is sometimes referred to as the biological coefficient of variation,
  765. since it represents the variability that was present in the samples prior
  766. to the Poisson
  767. \begin_inset Quotes eld
  768. \end_inset
  769. noise
  770. \begin_inset Quotes erd
  771. \end_inset
  772. that was generated by the random sampling of reads in proportion to feature
  773. abundances.
  774. The choice of a gamma distribution is arbitrary and motivated by mathematical
  775. convenience, since a gamma-Poisson mixture yields the numerically tractable
  776. negative binomial distribution.
  777. Thus, edgeR assumes
  778. \emph on
  779. a prioi
  780. \emph default
  781. that the variation in abundances between replicates follows a gamma distribution.
  782. For differential abundance testing, edgeR offers a likelihood ratio test,
  783. but more recently recommends a quasi-likelihood test that properly factors
  784. the uncertainty in variance estimation into the statistical significance
  785. for each feature
  786. \begin_inset CommandInset citation
  787. LatexCommand cite
  788. key "Lund2012"
  789. literal "false"
  790. \end_inset
  791. .
  792. \end_layout
  793. \begin_layout Subsubsection
  794. ChIP-seq Peak calling
  795. \end_layout
  796. \begin_layout Standard
  797. Unlike RNA-seq data, in which gene annotations provide a well-defined set
  798. of genomic regions in which to count reads, ChIP-seq data can potentially
  799. occur anywhere in the genome.
  800. However, most genome regions will not contain significant ChIP-seq read
  801. coverage, and analyzing every position in the entire genome is statistically
  802. and computationally infeasible, so it is necesary to identify regions of
  803. interest inside which ChIP-seq reads will be counted and analyzed.
  804. One option is to define a set of interesting regions
  805. \emph on
  806. a priori
  807. \emph default
  808. , for example by defining a promoter region for each annotated gene.
  809. However, it is also possible to use the ChIP-seq data itself to identify
  810. regions with ChIP-seq read coverage significantly above the background
  811. level, known as peaks.
  812. \end_layout
  813. \begin_layout Standard
  814. There are generally two kinds of peaks that can be identified: narrow peaks
  815. and broadly enriched regions.
  816. Proteins like transcription factors that bind specific sites in the genome
  817. typically show most of their read coverage at these specific sites and
  818. very little coverage anywhere else.
  819. Because the footprint of the protein is consistent wherever it binds, each
  820. peak has a consistent size, typically tens to hundreds of base pairs.
  821. Algorithms like MACS exploit this pattern to identify specific loci at
  822. which such
  823. \begin_inset Quotes eld
  824. \end_inset
  825. narrow peaks
  826. \begin_inset Quotes erd
  827. \end_inset
  828. occur by looking for the characteristic peak shape in the ChIP-seq coverage
  829. rising above the surrounding background coverage
  830. \begin_inset CommandInset citation
  831. LatexCommand cite
  832. key "Zhang2008"
  833. literal "false"
  834. \end_inset
  835. .
  836. In contrast, some proteins, chief among them histones, do not bind only
  837. at a small number of specific sites, but rather bind potentailly almost
  838. everywhere in the entire genome.
  839. When looking at histone marks, adjacent histones tend to be similarly marked,
  840. and a given mark may be present on an arbitrary number of consecutive histones
  841. along the genome.
  842. Hence, there is no consistent
  843. \begin_inset Quotes eld
  844. \end_inset
  845. footprint size
  846. \begin_inset Quotes erd
  847. \end_inset
  848. for ChIP-seq peaks based on histone marks, and peaks typically span many
  849. histones.
  850. Hence, typical peaks span many hundreds or even thousands of base pairs.
  851. Instead of identifying specific loci of strong enrichment, algorithms like
  852. SICER assume that peaks are represented in the ChIP-seq data by modest
  853. enrichment above background occurring across broad regions, and they attempt
  854. to identify the extent of those regions
  855. \begin_inset CommandInset citation
  856. LatexCommand cite
  857. key "Zang2009"
  858. literal "false"
  859. \end_inset
  860. .
  861. In all cases, better results are obtained if the local background coverage
  862. level can be estimated from ChIP-seq input samples, since various biases
  863. can result in uneven background coverage.
  864. \end_layout
  865. \begin_layout Standard
  866. Regardless of the type of peak identified, it is important to identify peaks
  867. that occur consistently across biological replicates.
  868. The ENCODE project has developed a method called irreproducible discovery
  869. rate for this purpose
  870. \begin_inset CommandInset citation
  871. LatexCommand cite
  872. key "Li2006"
  873. literal "false"
  874. \end_inset
  875. .
  876. The IDR is defined as the probability that a peak identified in one biological
  877. replicate will
  878. \emph on
  879. not
  880. \emph default
  881. also be identified in a second replicate.
  882. Where the more familiar false discovery rate measures the degree of corresponde
  883. nce between a data-derived ranked list and the true list of significant
  884. features, IDR instead measures the degree of correspondence between two
  885. ranked lists derived from different data.
  886. IDR assumes that the highest-ranked features are
  887. \begin_inset Quotes eld
  888. \end_inset
  889. signal
  890. \begin_inset Quotes erd
  891. \end_inset
  892. peaks that tend to be listed in the same order in both lists, while the
  893. lowest-ranked features are essentially noise peaks, listed in random order
  894. with no correspondence between the lists.
  895. IDR attempts to locate the
  896. \begin_inset Quotes eld
  897. \end_inset
  898. crossover point
  899. \begin_inset Quotes erd
  900. \end_inset
  901. between the signal and the noise by determining how for down the list the
  902. correspondence between feature ranks breaks down.
  903. \end_layout
  904. \begin_layout Standard
  905. In addition to other considerations, if called peaks are to be used as regions
  906. of interest for differential abundance analysis, then care must be taken
  907. to call peaks in a way that is blind to differential abundance between
  908. experimental conditions, or else the statistical significance calculations
  909. for differential abundance will overstate their confidence in the results.
  910. The csaw package provides guidelines for calling peaks in this way: peaks
  911. are called based on a combination of all ChIP-seq reads from all experimental
  912. conditions, so that the identified peaks are based on the average abundance
  913. across all conditions, which is independent of any differential abundance
  914. between condtions
  915. \begin_inset CommandInset citation
  916. LatexCommand cite
  917. key "Lun2015a"
  918. literal "false"
  919. \end_inset
  920. .
  921. \end_layout
  922. \begin_layout Subsubsection
  923. Normalization of high-throughput data is non-trivial and application-dependant
  924. \end_layout
  925. \begin_layout Standard
  926. High-throughput data sets invariable require some kind of normalization
  927. before further analysis can be conducted.
  928. In general, the goal of normalization is to remove effects in the data
  929. that are caused by technical factors that have nothing to do with the biology
  930. being studied.
  931. \end_layout
  932. \begin_layout Standard
  933. For Affymetrix expression arrays, the standard normalization algorithm used
  934. in most analyses is Robust Multichip Average (RMA).
  935. RMA is designed with the assumption that some fraction of probes on each
  936. array will be artifactual and takes advantage of the fact that each gene
  937. is represented by multiple probes by implementing normalization and summarizati
  938. on steps that are robust against outlier probes.
  939. However, RMA uses the probe intensities of all arrays in the data set in
  940. the normalization of each individual array, meaning that the normalized
  941. expression values in each array depend on every array in the data set,
  942. and will necessarily change each time an array is added or removed from
  943. the data set.
  944. If this is undesirable, frozen RMA implements a variant of RMA where the
  945. relevant distributional parameters are learned from a large reference set
  946. of diverse public array data sets and then
  947. \begin_inset Quotes eld
  948. \end_inset
  949. frozen
  950. \begin_inset Quotes erd
  951. \end_inset
  952. , so that each array is effectively normalized against this frozen reference
  953. set rather than the other arrays in the data set under study.
  954. \end_layout
  955. \begin_layout Standard
  956. In contrast, high-throughput sequencing data present very different normalizatio
  957. n challenges.
  958. The simplest case is RNA-seq in which read counts are obtained for a set
  959. of gene annotations, yielding a matrix of counts with rows representing
  960. genes and columns representing samples.
  961. Because RNA-seq approximates a process of sampling from a population with
  962. replacement, each gene's count is only interpretable as a fraction of the
  963. total reads for that sample.
  964. For that reason, RNA-seq abundances are often reported as counts per million
  965. (CPM).
  966. Furthermore, if the abundance of a single gene increases, then in order
  967. for its fraction of the total reads to increase, all other genes' fractions
  968. must decrease to accomodate it.
  969. This effect is known as composition bias, and it is an artifact of the
  970. read sampling process that has nothing to do with the biology of the samples
  971. and must therefore be normalized out.
  972. The most commonly used methods to normalize for composition bias in RNA-seq
  973. data seek to equalize the average gene abundance across samples, under
  974. the assumption that the average gene is likely not changing
  975. \begin_inset CommandInset citation
  976. LatexCommand cite
  977. key "Robinson2010,Anders2010"
  978. literal "false"
  979. \end_inset
  980. .
  981. \end_layout
  982. \begin_layout Standard
  983. In ChIP-seq data, normalization is not as straightforward.
  984. The csaw package implements several different normalization strategies
  985. and provides guidance on when to use each one
  986. \begin_inset CommandInset citation
  987. LatexCommand cite
  988. key "Lun2015a"
  989. literal "false"
  990. \end_inset
  991. .
  992. Briefly, a typical ChIP-seq sample has a bimodal distribution of read counts:
  993. a low-abundance mode representing background regions and a high-abundance
  994. mode representing signal regions.
  995. This offers two potential normalization targets: equalizing background
  996. coverage or equalizing signal coverage.
  997. If the experiment is well controlled and ChIP efficiency is known to be
  998. consistent across all samples, then normalizing the background coverage
  999. to be equal across all samples is a reasonable strategy.
  1000. If this is not a safe assumption, then the preferred strategy is to normalize
  1001. the signal regions in a way similar to RNA-seq data by assuming that the
  1002. average signal region is not changing abundance between samples.
  1003. Beyond this, if a ChIP-seq experiment has a more complicated structure
  1004. that doesn't show the typical bimodal count distribution, it may be necessary
  1005. to implement a normalization as a smooth function of abundance.
  1006. However, this strategy makes a much stronger assumption about the data:
  1007. that the average log fold change is zero across all abundance levels.
  1008. Hence, the simpler scaling normalziations based on background or signal
  1009. regions are generally preferred whenever possible.
  1010. \end_layout
  1011. \begin_layout Subsubsection
  1012. ComBat and SVA for correction of known and unknown batch effects
  1013. \end_layout
  1014. \begin_layout Standard
  1015. In addition to well-understood effects that can be easily normalized out,
  1016. a data set often contains confounding biological effects that must be accounted
  1017. for in the modeling step.
  1018. For instance, in an experiment with pre-treatment and post-treatment samples
  1019. of cells from several different donors, donor variability represents a
  1020. known batch effect.
  1021. The most straightforward correction for known batches is to estimate the
  1022. mean for each batch independently and subtract out the differences, so
  1023. that all batches have identical means for each feature.
  1024. However, as with variance estimation, estimating the differences in batch
  1025. means is not necessarily robust at the feature level, so the ComBat method
  1026. adds empirical Bayes squeezing of the batch mean differences toward a common
  1027. value, analogous to limma's empirical Bayes squeezing of feature variance
  1028. estimates
  1029. \begin_inset CommandInset citation
  1030. LatexCommand cite
  1031. key "Johnson2007"
  1032. literal "false"
  1033. \end_inset
  1034. .
  1035. Effectively, ComBat assumes that modest differences between batch means
  1036. are real batch effects, but extreme differences between batch means are
  1037. more likely to be the result of outlier observations that happen to line
  1038. up with the batches rather than a genuine batch effect.
  1039. The result is a batch correction that is more robust against outliers than
  1040. simple subtraction of mean differences subtraction.
  1041. \end_layout
  1042. \begin_layout Standard
  1043. In some data sets, unknown batch effects may be present due to inherent
  1044. variability in in the data, either caused by technical or biological effects.
  1045. Examples of unknown batch effects include variations in enrichment efficiency
  1046. between ChIP-seq samples, variations in populations of different cell types,
  1047. and the effects of uncontrolled environmental factors on gene expression
  1048. in humans or live animals.
  1049. In an ordinary linear model context, unknown batch effects cannot be inferred
  1050. and must be treated as random noise.
  1051. However, in high-throughput experiments, once again information can be
  1052. shared across features to identify patterns of un-modeled variation that
  1053. are repeated in many features.
  1054. One attractive strategy would be to perform singular value decomposition
  1055. (SVD) on the matrix os linear model residuals (which contain all the un-modeled
  1056. variation in the data) and take the first few singular vectors as batch
  1057. effects.
  1058. While this can be effective, it makes the unreasonable assumption that
  1059. all batch effects are uncorrelated with any of the effects being modeled.
  1060. Surrogate variable analysis (SVA) starts with this approach, but takes
  1061. some additional steps to identify batch effects in the full data that are
  1062. both highly correlated with the singular vectors in the residuals and least
  1063. correlated with the effects of interest
  1064. \begin_inset CommandInset citation
  1065. LatexCommand cite
  1066. key "Leek2007"
  1067. literal "false"
  1068. \end_inset
  1069. .
  1070. Since the final batch effects are estimated from the full data, moderate
  1071. correlations between the batch effects and effects of interest are allowed,
  1072. which gives SVA much more freedom to estimate the true extent of the batch
  1073. effects compared to simple residual SVD.
  1074. Once the surrogate variables are estimated, they can be included as coefficient
  1075. s in the linear model in a similar fashion to known batch effects in order
  1076. to subtract out their effects on each feature's abundance.
  1077. \end_layout
  1078. \begin_layout Subsubsection
  1079. Factor analysis: PCA, MDS, MOFA
  1080. \end_layout
  1081. \begin_layout Standard
  1082. \begin_inset Flex TODO Note (inline)
  1083. status open
  1084. \begin_layout Plain Layout
  1085. Not sure if this merits a subsection here.
  1086. \end_layout
  1087. \end_inset
  1088. \end_layout
  1089. \begin_layout Itemize
  1090. Batch-corrected PCA is informative, but careful application is required
  1091. to avoid bias
  1092. \end_layout
  1093. \begin_layout Section
  1094. Innovation
  1095. \end_layout
  1096. \begin_layout Standard
  1097. \begin_inset Flex TODO Note (inline)
  1098. status open
  1099. \begin_layout Plain Layout
  1100. Is this entire section redundant with the Approach sections of each chapter?
  1101. I'm not really sure what to write here.
  1102. \end_layout
  1103. \end_inset
  1104. \end_layout
  1105. \begin_layout Subsection
  1106. MSC infusion to improve transplant outcomes (prevent/delay rejection)
  1107. \end_layout
  1108. \begin_layout Standard
  1109. \begin_inset Flex TODO Note (inline)
  1110. status open
  1111. \begin_layout Plain Layout
  1112. Do I still talk about this? It's the motivation for chapter 4, but I don't
  1113. actually present any work related to MSCs.
  1114. \end_layout
  1115. \end_inset
  1116. \end_layout
  1117. \begin_layout Itemize
  1118. Demonstrated in mice, but not yet in primates
  1119. \end_layout
  1120. \begin_layout Itemize
  1121. Mechanism currently unknown, but MSC are known to be immune modulatory
  1122. \end_layout
  1123. \begin_layout Itemize
  1124. Characterize MSC response to interferon gamma
  1125. \end_layout
  1126. \begin_layout Itemize
  1127. IFN-g is thought to stimulate their function
  1128. \end_layout
  1129. \begin_layout Itemize
  1130. Test IFN-g treated MSC infusion as a therapy to delay graft rejection in
  1131. cynomolgus monkeys
  1132. \end_layout
  1133. \begin_layout Itemize
  1134. Monitor animals post-transplant using blood RNA-seq at serial time points
  1135. \end_layout
  1136. \begin_layout Subsection
  1137. Investigate dynamics of histone marks in CD4 T-cell activation and memory
  1138. \end_layout
  1139. \begin_layout Itemize
  1140. Previous studies have looked at single snapshots of histone marks
  1141. \end_layout
  1142. \begin_layout Itemize
  1143. Instead, look at changes in histone marks across activation and memory
  1144. \end_layout
  1145. \begin_layout Subsection
  1146. High-throughput sequencing and microarray technologies
  1147. \end_layout
  1148. \begin_layout Itemize
  1149. Powerful methods for assaying gene expression and epigenetics across entire
  1150. genomes
  1151. \end_layout
  1152. \begin_layout Itemize
  1153. Proper analysis requires finding and exploiting systematic genome-wide trends
  1154. \end_layout
  1155. \begin_layout Chapter
  1156. Reproducible genome-wide epigenetic analysis of H3K4 and H3K27 methylation
  1157. in naive and memory CD4 T-cell activation
  1158. \end_layout
  1159. \begin_layout Standard
  1160. \begin_inset Flex TODO Note (inline)
  1161. status open
  1162. \begin_layout Plain Layout
  1163. Chapter author list: Me, Sarah, Dan
  1164. \end_layout
  1165. \end_inset
  1166. \end_layout
  1167. \begin_layout Standard
  1168. \begin_inset Flex TODO Note (inline)
  1169. status open
  1170. \begin_layout Plain Layout
  1171. Need better section titles throughout the entire chapter
  1172. \end_layout
  1173. \end_inset
  1174. \end_layout
  1175. \begin_layout Section
  1176. Approach
  1177. \end_layout
  1178. \begin_layout Standard
  1179. \begin_inset Flex TODO Note (inline)
  1180. status open
  1181. \begin_layout Plain Layout
  1182. Check on the exact correct way to write
  1183. \begin_inset Quotes eld
  1184. \end_inset
  1185. CD4 T-cell
  1186. \begin_inset Quotes erd
  1187. \end_inset
  1188. .
  1189. I think there might be a plus sign somwehere in there now? Also, maybe
  1190. figure out a reasonable way to abbreviate
  1191. \begin_inset Quotes eld
  1192. \end_inset
  1193. naive CD4 T-cells
  1194. \begin_inset Quotes erd
  1195. \end_inset
  1196. and
  1197. \begin_inset Quotes eld
  1198. \end_inset
  1199. memory CD4 T-cells
  1200. \begin_inset Quotes erd
  1201. \end_inset
  1202. .
  1203. \end_layout
  1204. \end_inset
  1205. \end_layout
  1206. \begin_layout Standard
  1207. \begin_inset Flex TODO Note (inline)
  1208. status open
  1209. \begin_layout Plain Layout
  1210. Is it ok to just copy a bunch of citations from the intros to Sarah's papers?
  1211. That feels like cheating somehow.
  1212. \end_layout
  1213. \end_inset
  1214. \end_layout
  1215. \begin_layout Standard
  1216. CD4 T-cells are central to all adaptive immune responses, as well as immune
  1217. memory [CITE?].
  1218. After an infection is cleared, a subset of the naive CD4 T-cells that responded
  1219. to that infection differentiate into memory CD4 T-cells, which are responsible
  1220. for responding to the same pathogen in the future.
  1221. Memory CD4 T-cells are functionally distinct, able to respond to an infection
  1222. more quickly and without the co-stimulation requried by naive CD4 T-cells.
  1223. However, the molecular mechanisms underlying this functional distinction
  1224. are not well-understood.
  1225. Epigenetic regulation via histone modification is thought to play an important
  1226. role, but while many studies have looked at static snapshots of histone
  1227. methylation in T-cells, few studies have looked at the dynamics of histone
  1228. regulation after T-cell activation, nor the differences in histone methylation
  1229. between naive and memory T-cells.
  1230. H3K4me2, H3K4me3 and H3K27me3 are three histone marks thought to be major
  1231. epigenetic regulators of gene expression.
  1232. The goal of the present study is to investigate the role of these histone
  1233. marks in CD4 T-cell activation kinetics and memory differentiation.
  1234. In static snapshots, H3K4me2 and H3K4me3 are often observed in the promoters
  1235. of highly transcribed genes, while H3K27me3 is more often observed in promoters
  1236. of inactive genes with little to no transcription occurring.
  1237. As a result, the two H3K4 marks have been characterized as
  1238. \begin_inset Quotes eld
  1239. \end_inset
  1240. activating
  1241. \begin_inset Quotes erd
  1242. \end_inset
  1243. marks, while H3K27me3 has been characterized as
  1244. \begin_inset Quotes eld
  1245. \end_inset
  1246. deactivating
  1247. \begin_inset Quotes erd
  1248. \end_inset
  1249. .
  1250. Despite these characterizations, the actual causal relationship between
  1251. these histone modifications and gene transcription is complex and likely
  1252. involves positive and negative feedback loops between the two.
  1253. \end_layout
  1254. \begin_layout Standard
  1255. In order to investigate the relationship between gene expression and these
  1256. histone modifications in the context of naive and memory CD4 T-cell activation,
  1257. a previously published data set of combined RNA-seq and ChIP-seq data was
  1258. re-analyzed using up-to-date methods designed to address the specific analysis
  1259. challenges posed by this data set.
  1260. The data set contains naive and memory CD4 T-cell samples in a time course
  1261. before and after activation.
  1262. Like the original analysis, this analysis looks at the dynamics of these
  1263. marks histone marks and compare them to gene expression dynamics at the
  1264. same time points during activation, as well as comapre them between naive
  1265. and memory cells, in hope of discovering evidence of new mechanistic details
  1266. in the interplay between them.
  1267. The original analysis of this data treated each gene promoter as a monolithinc
  1268. unit and mostly assumed that ChIP-seq reads or peaks occuring anywhere
  1269. within a promoter were equivalent, regardless of where they occurred relative
  1270. to the gene structure.
  1271. For an initial analysis of the data, this was a necessary simplifying assumptio
  1272. n.
  1273. The current analysis aims to relax this assumption, first by directly analyzing
  1274. ChIP-seq peaks for differential modification, and second by taking a mor
  1275. granular look at the ChIP-seq read coverage within promoter regions to
  1276. ask whether the location of histone modifications relative to the gene's
  1277. TSS is an important factor, as opposed to simple proximity.
  1278. \end_layout
  1279. \begin_layout Section
  1280. Methods
  1281. \end_layout
  1282. \begin_layout Standard
  1283. \begin_inset Flex TODO Note (inline)
  1284. status open
  1285. \begin_layout Plain Layout
  1286. Look up some more details from the papers (e.g.
  1287. activation method).
  1288. \end_layout
  1289. \end_inset
  1290. \end_layout
  1291. \begin_layout Standard
  1292. A reproducible workflow was written to analyze the raw ChIP-seq and RNA-seq
  1293. data from previous studies
  1294. \begin_inset CommandInset citation
  1295. LatexCommand cite
  1296. key "gh-cd4-csaw,LaMere2016,LaMere2017"
  1297. literal "true"
  1298. \end_inset
  1299. .
  1300. Briefly, this data consists of RNA-seq and ChIP-seq from CD4 T-cells cultured
  1301. from 4 donors.
  1302. From each donor, naive and memory CD4 T-cells were isolated separately.
  1303. Then cultures of both cells were activated [how?], and samples were taken
  1304. at 4 time points: Day 0 (pre-activation), Day 1 (early activation), Day
  1305. 5 (peak activation), and Day 14 (post-activation).
  1306. For each combination of cell type and time point, RNA was isolated and
  1307. sequenced, and ChIP-seq was performed for each of 3 histone marks: H3K4me2,
  1308. H3K4me3, and H3K27me3.
  1309. The ChIP-seq input DNA was also sequenced for each sample.
  1310. The result was 32 samples for each assay.
  1311. \end_layout
  1312. \begin_layout Subsection
  1313. RNA-seq differential expression analysis
  1314. \end_layout
  1315. \begin_layout Standard
  1316. \begin_inset Note Note
  1317. status collapsed
  1318. \begin_layout Plain Layout
  1319. \begin_inset Float figure
  1320. wide false
  1321. sideways false
  1322. status open
  1323. \begin_layout Plain Layout
  1324. \align center
  1325. \begin_inset Float figure
  1326. wide false
  1327. sideways false
  1328. status collapsed
  1329. \begin_layout Plain Layout
  1330. \align center
  1331. \begin_inset Graphics
  1332. filename graphics/CD4-csaw/rnaseq-compare/ensmebl-vs-entrez-star-CROP.png
  1333. lyxscale 25
  1334. width 35col%
  1335. groupId rna-comp-subfig
  1336. \end_inset
  1337. \end_layout
  1338. \begin_layout Plain Layout
  1339. \begin_inset Caption Standard
  1340. \begin_layout Plain Layout
  1341. STAR quantification, Entrez vs Ensembl gene annotation
  1342. \end_layout
  1343. \end_inset
  1344. \end_layout
  1345. \end_inset
  1346. \begin_inset space \qquad{}
  1347. \end_inset
  1348. \begin_inset Float figure
  1349. wide false
  1350. sideways false
  1351. status collapsed
  1352. \begin_layout Plain Layout
  1353. \align center
  1354. \begin_inset Graphics
  1355. filename graphics/CD4-csaw/rnaseq-compare/ensmebl-vs-entrez-shoal-CROP.png
  1356. lyxscale 25
  1357. width 35col%
  1358. groupId rna-comp-subfig
  1359. \end_inset
  1360. \end_layout
  1361. \begin_layout Plain Layout
  1362. \begin_inset Caption Standard
  1363. \begin_layout Plain Layout
  1364. Salmon+Shoal quantification, Entrez vs Ensembl gene annotation
  1365. \end_layout
  1366. \end_inset
  1367. \end_layout
  1368. \end_inset
  1369. \end_layout
  1370. \begin_layout Plain Layout
  1371. \align center
  1372. \begin_inset Float figure
  1373. wide false
  1374. sideways false
  1375. status collapsed
  1376. \begin_layout Plain Layout
  1377. \align center
  1378. \begin_inset Graphics
  1379. filename graphics/CD4-csaw/rnaseq-compare/star-vs-hisat2-CROP.png
  1380. lyxscale 25
  1381. width 35col%
  1382. groupId rna-comp-subfig
  1383. \end_inset
  1384. \end_layout
  1385. \begin_layout Plain Layout
  1386. \begin_inset Caption Standard
  1387. \begin_layout Plain Layout
  1388. STAR vs HISAT2 quantification, Ensembl gene annotation
  1389. \end_layout
  1390. \end_inset
  1391. \end_layout
  1392. \end_inset
  1393. \begin_inset space \qquad{}
  1394. \end_inset
  1395. \begin_inset Float figure
  1396. wide false
  1397. sideways false
  1398. status collapsed
  1399. \begin_layout Plain Layout
  1400. \align center
  1401. \begin_inset Graphics
  1402. filename graphics/CD4-csaw/rnaseq-compare/star-vs-salmon-CROP.png
  1403. lyxscale 25
  1404. width 35col%
  1405. groupId rna-comp-subfig
  1406. \end_inset
  1407. \end_layout
  1408. \begin_layout Plain Layout
  1409. \begin_inset Caption Standard
  1410. \begin_layout Plain Layout
  1411. Salomn vs STAR quantification, Ensembl gene annotation
  1412. \end_layout
  1413. \end_inset
  1414. \end_layout
  1415. \end_inset
  1416. \end_layout
  1417. \begin_layout Plain Layout
  1418. \align center
  1419. \begin_inset Float figure
  1420. wide false
  1421. sideways false
  1422. status collapsed
  1423. \begin_layout Plain Layout
  1424. \align center
  1425. \begin_inset Graphics
  1426. filename graphics/CD4-csaw/rnaseq-compare/salmon-vs-kallisto-CROP.png
  1427. lyxscale 25
  1428. width 35col%
  1429. groupId rna-comp-subfig
  1430. \end_inset
  1431. \end_layout
  1432. \begin_layout Plain Layout
  1433. \begin_inset Caption Standard
  1434. \begin_layout Plain Layout
  1435. Salmon vs Kallisto quantification, Ensembl gene annotation
  1436. \end_layout
  1437. \end_inset
  1438. \end_layout
  1439. \end_inset
  1440. \begin_inset space \qquad{}
  1441. \end_inset
  1442. \begin_inset Float figure
  1443. wide false
  1444. sideways false
  1445. status collapsed
  1446. \begin_layout Plain Layout
  1447. \align center
  1448. \begin_inset Graphics
  1449. filename graphics/CD4-csaw/rnaseq-compare/salmon-vs-shoal-CROP.png
  1450. lyxscale 25
  1451. width 35col%
  1452. groupId rna-comp-subfig
  1453. \end_inset
  1454. \end_layout
  1455. \begin_layout Plain Layout
  1456. \begin_inset Caption Standard
  1457. \begin_layout Plain Layout
  1458. Salmon+Shoal vs Salmon alone, Ensembl gene annotation
  1459. \end_layout
  1460. \end_inset
  1461. \end_layout
  1462. \end_inset
  1463. \end_layout
  1464. \begin_layout Plain Layout
  1465. \begin_inset Caption Standard
  1466. \begin_layout Plain Layout
  1467. \begin_inset CommandInset label
  1468. LatexCommand label
  1469. name "fig:RNA-norm-comp"
  1470. \end_inset
  1471. RNA-seq comparisons
  1472. \end_layout
  1473. \end_inset
  1474. \end_layout
  1475. \end_inset
  1476. \end_layout
  1477. \end_inset
  1478. \end_layout
  1479. \begin_layout Standard
  1480. Sequence reads were retrieved from the Sequence Read Archive (SRA)
  1481. \begin_inset CommandInset citation
  1482. LatexCommand cite
  1483. key "Leinonen2011"
  1484. literal "false"
  1485. \end_inset
  1486. .
  1487. Five different alignment and quantification methods were tested for the
  1488. RNA-seq data
  1489. \begin_inset CommandInset citation
  1490. LatexCommand cite
  1491. key "Dobin2012,Kim2019,Liao2014,Pimentel2016,Patro2017,gh-shoal,gh-hg38-ref"
  1492. literal "false"
  1493. \end_inset
  1494. .
  1495. Each quantification was tested with both Ensembl transcripts and UCSC known
  1496. gene annotations [CITE? Also which versions of each?].
  1497. Comparisons of downstream results from each combination of quantification
  1498. method and reference revealed that all quantifications gave broadly similar
  1499. results for most genes, so shoal with the Ensembl annotation was chosen
  1500. as the method theoretically most likely to partially mitigate some of the
  1501. batch effect in the data.
  1502. \end_layout
  1503. \begin_layout Standard
  1504. \begin_inset Float figure
  1505. wide false
  1506. sideways false
  1507. status collapsed
  1508. \begin_layout Plain Layout
  1509. \align center
  1510. \begin_inset Float figure
  1511. wide false
  1512. sideways false
  1513. status open
  1514. \begin_layout Plain Layout
  1515. \align center
  1516. \begin_inset Graphics
  1517. filename graphics/CD4-csaw/RNA-seq/PCA-no-batchsub-CROP.png
  1518. lyxscale 25
  1519. width 75col%
  1520. groupId rna-pca-subfig
  1521. \end_inset
  1522. \end_layout
  1523. \begin_layout Plain Layout
  1524. \begin_inset Caption Standard
  1525. \begin_layout Plain Layout
  1526. \series bold
  1527. \begin_inset CommandInset label
  1528. LatexCommand label
  1529. name "fig:RNA-PCA-no-batchsub"
  1530. \end_inset
  1531. Before batch correction
  1532. \end_layout
  1533. \end_inset
  1534. \end_layout
  1535. \end_inset
  1536. \end_layout
  1537. \begin_layout Plain Layout
  1538. \align center
  1539. \begin_inset Float figure
  1540. wide false
  1541. sideways false
  1542. status open
  1543. \begin_layout Plain Layout
  1544. \align center
  1545. \begin_inset Graphics
  1546. filename graphics/CD4-csaw/RNA-seq/PCA-combat-batchsub-CROP.png
  1547. lyxscale 25
  1548. width 75col%
  1549. groupId rna-pca-subfig
  1550. \end_inset
  1551. \end_layout
  1552. \begin_layout Plain Layout
  1553. \begin_inset Caption Standard
  1554. \begin_layout Plain Layout
  1555. \series bold
  1556. \begin_inset CommandInset label
  1557. LatexCommand label
  1558. name "fig:RNA-PCA-ComBat-batchsub"
  1559. \end_inset
  1560. After batch correction with ComBat
  1561. \end_layout
  1562. \end_inset
  1563. \end_layout
  1564. \end_inset
  1565. \end_layout
  1566. \begin_layout Plain Layout
  1567. \begin_inset Caption Standard
  1568. \begin_layout Plain Layout
  1569. \series bold
  1570. \begin_inset CommandInset label
  1571. LatexCommand label
  1572. name "fig:RNA-PCA"
  1573. \end_inset
  1574. PCoA plots of RNA-seq data showing effect of batch correction.
  1575. \end_layout
  1576. \end_inset
  1577. \end_layout
  1578. \end_inset
  1579. \end_layout
  1580. \begin_layout Standard
  1581. Due to an error in sample preparation, the RNA from the samples for days
  1582. 0 and 5 were sequenced using a different kit than those for days 1 and
  1583. 14.
  1584. This induced a substantial batch effect in the data due to differences
  1585. in sequencing biases between the two kits, and this batch effect is unfortunate
  1586. ly confounded with the time point variable (Figure
  1587. \begin_inset CommandInset ref
  1588. LatexCommand ref
  1589. reference "fig:RNA-PCA-no-batchsub"
  1590. plural "false"
  1591. caps "false"
  1592. noprefix "false"
  1593. \end_inset
  1594. ).
  1595. To do the best possible analysis with this data, this batch effect was
  1596. subtracted out from the data using ComBat
  1597. \begin_inset CommandInset citation
  1598. LatexCommand cite
  1599. key "Johnson2007"
  1600. literal "false"
  1601. \end_inset
  1602. , ignoring the time point variable due to the confounding with the batch
  1603. variable.
  1604. The result is a marked improvement, but the unavoidable counfounding with
  1605. time point means that certain real patterns of gene expression will be
  1606. indistinguishable from the batch effect and subtracted out as a result.
  1607. Specifically, any
  1608. \begin_inset Quotes eld
  1609. \end_inset
  1610. zig-zag
  1611. \begin_inset Quotes erd
  1612. \end_inset
  1613. pattern, such as a gene whose expression goes up on day 1, down on day
  1614. 5, and back up again on day 14, will be attenuated or eliminated entirely.
  1615. In the context of a T-cell activation time course, it is unlikely that
  1616. many genes of interest will follow such an expression pattern, so this
  1617. loss was deemed an acceptable cost for correcting the batch effect.
  1618. \end_layout
  1619. \begin_layout Standard
  1620. \begin_inset Float figure
  1621. wide false
  1622. sideways false
  1623. status collapsed
  1624. \begin_layout Plain Layout
  1625. \begin_inset Flex TODO Note (inline)
  1626. status open
  1627. \begin_layout Plain Layout
  1628. Just take the top row
  1629. \end_layout
  1630. \end_inset
  1631. \end_layout
  1632. \begin_layout Plain Layout
  1633. \align center
  1634. \begin_inset Graphics
  1635. filename graphics/CD4-csaw/RNA-seq/weights-vs-covars-CROP.png
  1636. lyxscale 25
  1637. width 100col%
  1638. groupId colwidth-raster
  1639. \end_inset
  1640. \end_layout
  1641. \begin_layout Plain Layout
  1642. \begin_inset Caption Standard
  1643. \begin_layout Plain Layout
  1644. \series bold
  1645. \begin_inset CommandInset label
  1646. LatexCommand label
  1647. name "fig:RNA-seq-weights-vs-covars"
  1648. \end_inset
  1649. RNA-seq sample weights, grouped by experimental and technical covariates.
  1650. \end_layout
  1651. \end_inset
  1652. \end_layout
  1653. \end_inset
  1654. \end_layout
  1655. \begin_layout Standard
  1656. However, removing the systematic component of the batch effect still leaves
  1657. the noise component.
  1658. The gene quantifications from the first batch are substantially noisier
  1659. than those in the second batch.
  1660. This analysis corrected for this by using limma's sample weighting method
  1661. to assign lower weights to the noisy samples of batch 1
  1662. \begin_inset CommandInset citation
  1663. LatexCommand cite
  1664. key "Ritchie2006,Liu2015"
  1665. literal "false"
  1666. \end_inset
  1667. .
  1668. The resulting analysis gives an accurate assessment of statistical significance
  1669. for all comparisons, which unfortuantely means a loss of statistical power
  1670. for comparisons involving samples in batch 1.
  1671. \end_layout
  1672. \begin_layout Standard
  1673. In any case, the RNA-seq counts were first normalized using trimmed mean
  1674. of M-values
  1675. \begin_inset CommandInset citation
  1676. LatexCommand cite
  1677. key "Robinson2010"
  1678. literal "false"
  1679. \end_inset
  1680. , converted to normalized logCPM with quality weights using voomWithQualityWeigh
  1681. ts
  1682. \begin_inset CommandInset citation
  1683. LatexCommand cite
  1684. key "Law2013,Liu2015"
  1685. literal "false"
  1686. \end_inset
  1687. , and batch-corrected at this point using ComBat.
  1688. A linear model was fit to the batch-corrected, quality-weighted data for
  1689. each gene using limma, and each gene was tested for differential expression
  1690. using limma's empirical Bayes moderated
  1691. \begin_inset Formula $t$
  1692. \end_inset
  1693. -test
  1694. \begin_inset CommandInset citation
  1695. LatexCommand cite
  1696. key "Smyth2005,Law2013,Phipson2013"
  1697. literal "false"
  1698. \end_inset
  1699. .
  1700. \end_layout
  1701. \begin_layout Subsection
  1702. ChIP-seq differential modification analysis
  1703. \end_layout
  1704. \begin_layout Standard
  1705. \begin_inset Float figure
  1706. wide false
  1707. sideways false
  1708. status collapsed
  1709. \begin_layout Plain Layout
  1710. \align center
  1711. \begin_inset Float figure
  1712. wide false
  1713. sideways false
  1714. status open
  1715. \begin_layout Plain Layout
  1716. \align center
  1717. \begin_inset Graphics
  1718. filename graphics/CD4-csaw/csaw/CCF-plots-noBL-PAGE2-CROP.pdf
  1719. lyxscale 50
  1720. height 40theight%
  1721. groupId ccf-subfig
  1722. \end_inset
  1723. \end_layout
  1724. \begin_layout Plain Layout
  1725. \begin_inset Caption Standard
  1726. \begin_layout Plain Layout
  1727. \series bold
  1728. \begin_inset CommandInset label
  1729. LatexCommand label
  1730. name "fig:CCF-without-blacklist"
  1731. \end_inset
  1732. Cross-correlation plots without removing blacklisted reads.
  1733. \series default
  1734. Without blacklisting, many artifactual peaks are visible in the cross-correlatio
  1735. ns of the ChIP-seq samples, and the peak at the true fragment size (147
  1736. \begin_inset space ~
  1737. \end_inset
  1738. bp) is frequently overshadowed by the artifactual peak at the read length
  1739. (100
  1740. \begin_inset space ~
  1741. \end_inset
  1742. bp).
  1743. \end_layout
  1744. \end_inset
  1745. \end_layout
  1746. \end_inset
  1747. \end_layout
  1748. \begin_layout Plain Layout
  1749. \align center
  1750. \begin_inset Float figure
  1751. wide false
  1752. sideways false
  1753. status open
  1754. \begin_layout Plain Layout
  1755. \align center
  1756. \begin_inset Graphics
  1757. filename graphics/CD4-csaw/csaw/CCF-plots-PAGE2-CROP.pdf
  1758. lyxscale 50
  1759. height 40theight%
  1760. groupId ccf-subfig
  1761. \end_inset
  1762. \end_layout
  1763. \begin_layout Plain Layout
  1764. \begin_inset Caption Standard
  1765. \begin_layout Plain Layout
  1766. \series bold
  1767. \begin_inset CommandInset label
  1768. LatexCommand label
  1769. name "fig:CCF-with-blacklist"
  1770. \end_inset
  1771. Cross-correlation plots with blacklisted reads removed.
  1772. \series default
  1773. After blacklisting, most ChIP-seq samples have clean-looking periodic cross-cor
  1774. relation plots, with the largest peak around 147
  1775. \begin_inset space ~
  1776. \end_inset
  1777. bp, the expected size for a fragment of DNA from a single nucleosome, and
  1778. little to no peak at the read length, 100
  1779. \begin_inset space ~
  1780. \end_inset
  1781. bp.
  1782. \end_layout
  1783. \end_inset
  1784. \end_layout
  1785. \end_inset
  1786. \end_layout
  1787. \begin_layout Plain Layout
  1788. \begin_inset Caption Standard
  1789. \begin_layout Plain Layout
  1790. \series bold
  1791. \begin_inset CommandInset label
  1792. LatexCommand label
  1793. name "fig:CCF-master"
  1794. \end_inset
  1795. Strand cross-correlation plots for ChIP-seq data, before and after blacklisting.
  1796. \end_layout
  1797. \end_inset
  1798. \end_layout
  1799. \end_inset
  1800. \end_layout
  1801. \begin_layout Standard
  1802. \begin_inset Note Note
  1803. status open
  1804. \begin_layout Plain Layout
  1805. \begin_inset Float figure
  1806. wide false
  1807. sideways false
  1808. status collapsed
  1809. \begin_layout Plain Layout
  1810. \align center
  1811. \begin_inset Graphics
  1812. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-sample-MAplot-bins-CROP.png
  1813. lyxscale 25
  1814. width 100col%
  1815. groupId colwidth-raster
  1816. \end_inset
  1817. \end_layout
  1818. \begin_layout Plain Layout
  1819. \begin_inset Caption Standard
  1820. \begin_layout Plain Layout
  1821. \series bold
  1822. \begin_inset CommandInset label
  1823. LatexCommand label
  1824. name "fig:MA-plot-bigbins"
  1825. \end_inset
  1826. MA plot of H3K4me2 read counts in 10kb bins for two arbitrary samples.
  1827. \end_layout
  1828. \end_inset
  1829. \end_layout
  1830. \end_inset
  1831. \end_layout
  1832. \end_inset
  1833. \end_layout
  1834. \begin_layout Standard
  1835. \begin_inset Flex TODO Note (inline)
  1836. status open
  1837. \begin_layout Plain Layout
  1838. Be consistent about use of
  1839. \begin_inset Quotes eld
  1840. \end_inset
  1841. differential binding
  1842. \begin_inset Quotes erd
  1843. \end_inset
  1844. vs
  1845. \begin_inset Quotes eld
  1846. \end_inset
  1847. differential modification
  1848. \begin_inset Quotes erd
  1849. \end_inset
  1850. throughout this chapter.
  1851. The latter is usually preferred.
  1852. \end_layout
  1853. \end_inset
  1854. \end_layout
  1855. \begin_layout Standard
  1856. Sequence reads were retrieved from SRA
  1857. \begin_inset CommandInset citation
  1858. LatexCommand cite
  1859. key "Leinonen2011"
  1860. literal "false"
  1861. \end_inset
  1862. .
  1863. ChIP-seq (and input) reads were aligned to GRCh38 genome assembly using
  1864. Bowtie 2
  1865. \begin_inset CommandInset citation
  1866. LatexCommand cite
  1867. key "Langmead2012,Schneider2017,gh-hg38-ref"
  1868. literal "false"
  1869. \end_inset
  1870. .
  1871. Artifact regions were annotated using a custom implementation of the GreyListCh
  1872. IP algorithm, and these
  1873. \begin_inset Quotes eld
  1874. \end_inset
  1875. greylists
  1876. \begin_inset Quotes erd
  1877. \end_inset
  1878. were merged with the published ENCODE blacklists
  1879. \begin_inset CommandInset citation
  1880. LatexCommand cite
  1881. key "greylistchip,Amemiya2019,Dunham2012,gh-cd4-csaw"
  1882. literal "false"
  1883. \end_inset
  1884. .
  1885. Any read or called peak overlapping one of these regions was regarded as
  1886. artifactual and excluded from downstream analyses.
  1887. Figure
  1888. \begin_inset CommandInset ref
  1889. LatexCommand ref
  1890. reference "fig:CCF-master"
  1891. plural "false"
  1892. caps "false"
  1893. noprefix "false"
  1894. \end_inset
  1895. shows the improvement after blacklisting in the strand cross-correlation
  1896. plots, a common quality control plot for ChIP-seq data.
  1897. Peaks were called using epic, an implementation of the SICER algorithm
  1898. \begin_inset CommandInset citation
  1899. LatexCommand cite
  1900. key "Zang2009,gh-epic"
  1901. literal "false"
  1902. \end_inset
  1903. .
  1904. Peaks were also called separately using MACS, but MACS was determined to
  1905. be a poor fit for the data, and these peak calls are not used in any further
  1906. analyses
  1907. \begin_inset CommandInset citation
  1908. LatexCommand cite
  1909. key "Zhang2008"
  1910. literal "false"
  1911. \end_inset
  1912. .
  1913. Consensus peaks were determined by applying the irreproducible discovery
  1914. rate (IDR) framework
  1915. \begin_inset CommandInset citation
  1916. LatexCommand cite
  1917. key "Li2006,gh-idr"
  1918. literal "false"
  1919. \end_inset
  1920. to find peaks consistently called in the same locations across all 4 donors.
  1921. \end_layout
  1922. \begin_layout Standard
  1923. Promoters were defined by computing the distance from each annotated TSS
  1924. to the nearest called peak and examining the distribution of distances,
  1925. observing that peaks for each histone mark were enriched within a certain
  1926. distance of the TSS.
  1927. For H3K4me2 and H3K4me3, this distance was about 1
  1928. \begin_inset space ~
  1929. \end_inset
  1930. kb, while for H3K27me3 it was 2.5
  1931. \begin_inset space ~
  1932. \end_inset
  1933. kb.
  1934. These distances were used as an
  1935. \begin_inset Quotes eld
  1936. \end_inset
  1937. effective promoter radius
  1938. \begin_inset Quotes erd
  1939. \end_inset
  1940. for each mark.
  1941. The promoter region for each gene was defined as the region of the genome
  1942. within this distance upstream or downstream of the gene's annotated TSS.
  1943. For genes with multiple annotated TSSs, a promoter region was defined for
  1944. each TSS individually, and any promoters that overlapped (due to multiple
  1945. TSSs being closer than 2 times the radius) were merged into one large promoter.
  1946. Thus, some genes had multiple promoters defined, which were each analyzed
  1947. separately for differential modification.
  1948. \end_layout
  1949. \begin_layout Standard
  1950. \begin_inset Float figure
  1951. wide false
  1952. sideways false
  1953. status collapsed
  1954. \begin_layout Plain Layout
  1955. \begin_inset Float figure
  1956. wide false
  1957. sideways false
  1958. status collapsed
  1959. \begin_layout Plain Layout
  1960. \align center
  1961. \begin_inset Graphics
  1962. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-PCA-raw-CROP.png
  1963. lyxscale 25
  1964. width 45col%
  1965. groupId pcoa-subfig
  1966. \end_inset
  1967. \end_layout
  1968. \begin_layout Plain Layout
  1969. \begin_inset Caption Standard
  1970. \begin_layout Plain Layout
  1971. \series bold
  1972. \begin_inset CommandInset label
  1973. LatexCommand label
  1974. name "fig:PCoA-H3K4me2-bad"
  1975. \end_inset
  1976. H3K4me2, no correction
  1977. \end_layout
  1978. \end_inset
  1979. \end_layout
  1980. \end_inset
  1981. \begin_inset space \hfill{}
  1982. \end_inset
  1983. \begin_inset Float figure
  1984. wide false
  1985. sideways false
  1986. status collapsed
  1987. \begin_layout Plain Layout
  1988. \align center
  1989. \begin_inset Graphics
  1990. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-PCA-SVsub-CROP.png
  1991. lyxscale 25
  1992. width 45col%
  1993. groupId pcoa-subfig
  1994. \end_inset
  1995. \end_layout
  1996. \begin_layout Plain Layout
  1997. \begin_inset Caption Standard
  1998. \begin_layout Plain Layout
  1999. \series bold
  2000. \begin_inset CommandInset label
  2001. LatexCommand label
  2002. name "fig:PCoA-H3K4me2-good"
  2003. \end_inset
  2004. H3K4me2, SVs subtracted
  2005. \end_layout
  2006. \end_inset
  2007. \end_layout
  2008. \end_inset
  2009. \end_layout
  2010. \begin_layout Plain Layout
  2011. \begin_inset Float figure
  2012. wide false
  2013. sideways false
  2014. status collapsed
  2015. \begin_layout Plain Layout
  2016. \align center
  2017. \begin_inset Graphics
  2018. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-PCA-raw-CROP.png
  2019. lyxscale 25
  2020. width 45col%
  2021. groupId pcoa-subfig
  2022. \end_inset
  2023. \end_layout
  2024. \begin_layout Plain Layout
  2025. \begin_inset Caption Standard
  2026. \begin_layout Plain Layout
  2027. \series bold
  2028. \begin_inset CommandInset label
  2029. LatexCommand label
  2030. name "fig:PCoA-H3K4me3-bad"
  2031. \end_inset
  2032. H3K4me3, no correction
  2033. \end_layout
  2034. \end_inset
  2035. \end_layout
  2036. \end_inset
  2037. \begin_inset space \hfill{}
  2038. \end_inset
  2039. \begin_inset Float figure
  2040. wide false
  2041. sideways false
  2042. status collapsed
  2043. \begin_layout Plain Layout
  2044. \align center
  2045. \begin_inset Graphics
  2046. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-PCA-SVsub-CROP.png
  2047. lyxscale 25
  2048. width 45col%
  2049. groupId pcoa-subfig
  2050. \end_inset
  2051. \end_layout
  2052. \begin_layout Plain Layout
  2053. \begin_inset Caption Standard
  2054. \begin_layout Plain Layout
  2055. \series bold
  2056. \begin_inset CommandInset label
  2057. LatexCommand label
  2058. name "fig:PCoA-H3K4me3-good"
  2059. \end_inset
  2060. H3K4me3, SVs subtracted
  2061. \end_layout
  2062. \end_inset
  2063. \end_layout
  2064. \end_inset
  2065. \end_layout
  2066. \begin_layout Plain Layout
  2067. \begin_inset Float figure
  2068. wide false
  2069. sideways false
  2070. status collapsed
  2071. \begin_layout Plain Layout
  2072. \align center
  2073. \begin_inset Graphics
  2074. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-PCA-raw-CROP.png
  2075. lyxscale 25
  2076. width 45col%
  2077. groupId pcoa-subfig
  2078. \end_inset
  2079. \end_layout
  2080. \begin_layout Plain Layout
  2081. \begin_inset Caption Standard
  2082. \begin_layout Plain Layout
  2083. \series bold
  2084. \begin_inset CommandInset label
  2085. LatexCommand label
  2086. name "fig:PCoA-H3K27me3-bad"
  2087. \end_inset
  2088. H3K27me3, no correction
  2089. \end_layout
  2090. \end_inset
  2091. \end_layout
  2092. \end_inset
  2093. \begin_inset space \hfill{}
  2094. \end_inset
  2095. \begin_inset Float figure
  2096. wide false
  2097. sideways false
  2098. status collapsed
  2099. \begin_layout Plain Layout
  2100. \align center
  2101. \begin_inset Graphics
  2102. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-PCA-SVsub-CROP.png
  2103. lyxscale 25
  2104. width 45col%
  2105. groupId pcoa-subfig
  2106. \end_inset
  2107. \end_layout
  2108. \begin_layout Plain Layout
  2109. \begin_inset Caption Standard
  2110. \begin_layout Plain Layout
  2111. \series bold
  2112. \begin_inset CommandInset label
  2113. LatexCommand label
  2114. name "fig:PCoA-H3K27me3-good"
  2115. \end_inset
  2116. H3K27me3, SVs subtracted
  2117. \end_layout
  2118. \end_inset
  2119. \end_layout
  2120. \end_inset
  2121. \end_layout
  2122. \begin_layout Plain Layout
  2123. \begin_inset Caption Standard
  2124. \begin_layout Plain Layout
  2125. \series bold
  2126. \begin_inset CommandInset label
  2127. LatexCommand label
  2128. name "fig:PCoA-ChIP"
  2129. \end_inset
  2130. PCoA plots of ChIP-seq sliding window data, before and after subtracting
  2131. surrogate variables (SVs).
  2132. \end_layout
  2133. \end_inset
  2134. \end_layout
  2135. \end_inset
  2136. \end_layout
  2137. \begin_layout Standard
  2138. Reads in promoters, peaks, and sliding windows across the genome were counted
  2139. and normalized using csaw and analyzed for differential modification using
  2140. edgeR
  2141. \begin_inset CommandInset citation
  2142. LatexCommand cite
  2143. key "Lun2014,Lun2015a,Lund2012,Phipson2016"
  2144. literal "false"
  2145. \end_inset
  2146. .
  2147. Unobserved confounding factors in the ChIP-seq data were corrected using
  2148. SVA
  2149. \begin_inset CommandInset citation
  2150. LatexCommand cite
  2151. key "Leek2007,Leek2014"
  2152. literal "false"
  2153. \end_inset
  2154. .
  2155. Principal coordinate plots of the promoter count data for each histone
  2156. mark before and after subtracting surrogate variable effects are shown
  2157. in Figure
  2158. \begin_inset CommandInset ref
  2159. LatexCommand ref
  2160. reference "fig:PCoA-ChIP"
  2161. plural "false"
  2162. caps "false"
  2163. noprefix "false"
  2164. \end_inset
  2165. .
  2166. \end_layout
  2167. \begin_layout Standard
  2168. To investigate whether the location of a peak within the promoter region
  2169. was important,
  2170. \begin_inset Quotes eld
  2171. \end_inset
  2172. relative coverage profiles
  2173. \begin_inset Quotes erd
  2174. \end_inset
  2175. were generated.
  2176. First, 500-bp sliding windows were tiled around each annotated TSS: one
  2177. window centered on the TSS itself, and 10 windows each upstream and downstream,
  2178. thus covering a 10.5-kb region centered on the TSS with 21 windows.
  2179. Reads in each window for each TSS were counted in each sample, and the
  2180. counts were normalized and converted to log CPM as in the differential
  2181. modification analysis.
  2182. Then, the logCPM values within each promoter were normalized to an average
  2183. of zero, such that each window's normalized abundance now represents the
  2184. relative read depth of that window compared to all other windows in the
  2185. same promoter.
  2186. The normalized abundance values for each window in a promoter are collectively
  2187. referred to as that promoter's
  2188. \begin_inset Quotes eld
  2189. \end_inset
  2190. relative coverage profile
  2191. \begin_inset Quotes erd
  2192. \end_inset
  2193. .
  2194. \end_layout
  2195. \begin_layout Subsection
  2196. MOFA recovers biologically relevant variation from blind analysis by correlating
  2197. across datasets
  2198. \end_layout
  2199. \begin_layout Standard
  2200. \begin_inset ERT
  2201. status open
  2202. \begin_layout Plain Layout
  2203. \backslash
  2204. afterpage{
  2205. \end_layout
  2206. \begin_layout Plain Layout
  2207. \backslash
  2208. begin{landscape}
  2209. \end_layout
  2210. \end_inset
  2211. \end_layout
  2212. \begin_layout Standard
  2213. \begin_inset Float figure
  2214. wide false
  2215. sideways false
  2216. status open
  2217. \begin_layout Plain Layout
  2218. \begin_inset Float figure
  2219. wide false
  2220. sideways false
  2221. status open
  2222. \begin_layout Plain Layout
  2223. \align center
  2224. \begin_inset Graphics
  2225. filename graphics/CD4-csaw/MOFA-varExplaiend-matrix-CROP.png
  2226. lyxscale 25
  2227. width 45col%
  2228. groupId mofa-subfig
  2229. \end_inset
  2230. \end_layout
  2231. \begin_layout Plain Layout
  2232. \begin_inset Caption Standard
  2233. \begin_layout Plain Layout
  2234. \series bold
  2235. \begin_inset CommandInset label
  2236. LatexCommand label
  2237. name "fig:mofa-varexplained"
  2238. \end_inset
  2239. Variance explained in each data set by each latent factor estimated by MOFA.
  2240. \series default
  2241. For each latent factor (LF) learned by MOFA, the variance explained by
  2242. that factor in each data set (
  2243. \begin_inset Quotes eld
  2244. \end_inset
  2245. view
  2246. \begin_inset Quotes erd
  2247. \end_inset
  2248. ) is shown by the shading of the cells in the lower section.
  2249. The upper section shows the total fraction of each data set's variance
  2250. that is explained by all LFs combined.
  2251. \end_layout
  2252. \end_inset
  2253. \end_layout
  2254. \end_inset
  2255. \begin_inset space \hfill{}
  2256. \end_inset
  2257. \begin_inset Float figure
  2258. wide false
  2259. sideways false
  2260. status open
  2261. \begin_layout Plain Layout
  2262. \align center
  2263. \begin_inset Graphics
  2264. filename graphics/CD4-csaw/MOFA-LF-scatter-CROP.png
  2265. lyxscale 25
  2266. width 45col%
  2267. groupId mofa-subfig
  2268. \end_inset
  2269. \end_layout
  2270. \begin_layout Plain Layout
  2271. \begin_inset Caption Standard
  2272. \begin_layout Plain Layout
  2273. \series bold
  2274. \begin_inset CommandInset label
  2275. LatexCommand label
  2276. name "fig:mofa-lf-scatter"
  2277. \end_inset
  2278. Scatter plots of specific pairs of MOFA latent factors.
  2279. \series default
  2280. LFs 1, 4, and 5 explain substantial variation in all data sets, so they
  2281. are plotted against each other in order to reveal patterns of variation
  2282. that are shared across all data sets.
  2283. \end_layout
  2284. \end_inset
  2285. \end_layout
  2286. \end_inset
  2287. \end_layout
  2288. \begin_layout Plain Layout
  2289. \begin_inset Caption Standard
  2290. \begin_layout Plain Layout
  2291. \series bold
  2292. \begin_inset CommandInset label
  2293. LatexCommand label
  2294. name "fig:MOFA-master"
  2295. \end_inset
  2296. MOFA latent factors separate technical confounders from
  2297. \end_layout
  2298. \end_inset
  2299. \end_layout
  2300. \end_inset
  2301. \end_layout
  2302. \begin_layout Standard
  2303. \begin_inset ERT
  2304. status open
  2305. \begin_layout Plain Layout
  2306. \backslash
  2307. end{landscape}
  2308. \end_layout
  2309. \begin_layout Plain Layout
  2310. }
  2311. \end_layout
  2312. \end_inset
  2313. \end_layout
  2314. \begin_layout Standard
  2315. MOFA was run on all the ChIP-seq windows overlapping consensus peaks for
  2316. each histone mark, as well as the RNA-seq data, in order to identify patterns
  2317. of coordinated variation across all data sets
  2318. \begin_inset CommandInset citation
  2319. LatexCommand cite
  2320. key "Argelaguet2018"
  2321. literal "false"
  2322. \end_inset
  2323. .
  2324. The results are summarized in Figure
  2325. \begin_inset CommandInset ref
  2326. LatexCommand ref
  2327. reference "fig:MOFA-master"
  2328. plural "false"
  2329. caps "false"
  2330. noprefix "false"
  2331. \end_inset
  2332. .
  2333. Latent factors 1, 4, and 5 were determined to explain the most variation
  2334. consistently across all data sets (Fgure
  2335. \begin_inset CommandInset ref
  2336. LatexCommand ref
  2337. reference "fig:mofa-varexplained"
  2338. plural "false"
  2339. caps "false"
  2340. noprefix "false"
  2341. \end_inset
  2342. ), and scatter plots of these factors show that they also correlate best
  2343. with the experimental factors (Figure
  2344. \begin_inset CommandInset ref
  2345. LatexCommand ref
  2346. reference "fig:mofa-lf-scatter"
  2347. plural "false"
  2348. caps "false"
  2349. noprefix "false"
  2350. \end_inset
  2351. ).
  2352. Latent factor 2 captures the batch effect in the RNA-seq data.
  2353. Removing the effect of LF2 using MOFA theoretically yields a batch correction
  2354. that does not depend on knowing the experimental factors.
  2355. When this was attempted, the resulting batch correction was comparable
  2356. to ComBat (see Figure
  2357. \begin_inset CommandInset ref
  2358. LatexCommand ref
  2359. reference "fig:RNA-PCA-ComBat-batchsub"
  2360. plural "false"
  2361. caps "false"
  2362. noprefix "false"
  2363. \end_inset
  2364. ), indicating that the ComBat-based batch correction has little room for
  2365. improvement given the problems with the data set.
  2366. \end_layout
  2367. \begin_layout Standard
  2368. \begin_inset Note Note
  2369. status collapsed
  2370. \begin_layout Plain Layout
  2371. \begin_inset Float figure
  2372. wide false
  2373. sideways false
  2374. status open
  2375. \begin_layout Plain Layout
  2376. \align center
  2377. \begin_inset Graphics
  2378. filename graphics/CD4-csaw/MOFA-batch-correct-CROP.png
  2379. lyxscale 25
  2380. width 100col%
  2381. groupId colwidth-raster
  2382. \end_inset
  2383. \end_layout
  2384. \begin_layout Plain Layout
  2385. \begin_inset Caption Standard
  2386. \begin_layout Plain Layout
  2387. \series bold
  2388. \begin_inset CommandInset label
  2389. LatexCommand label
  2390. name "fig:mofa-batchsub"
  2391. \end_inset
  2392. Result of RNA-seq batch-correction using MOFA latent factors
  2393. \end_layout
  2394. \end_inset
  2395. \end_layout
  2396. \end_inset
  2397. \end_layout
  2398. \end_inset
  2399. \end_layout
  2400. \begin_layout Section
  2401. Results
  2402. \end_layout
  2403. \begin_layout Standard
  2404. \begin_inset Flex TODO Note (inline)
  2405. status open
  2406. \begin_layout Plain Layout
  2407. Focus on what hypotheses were tested, then select figures that show how
  2408. those hypotheses were tested, even if the result is a negative.
  2409. Not every interesting result needs to be in here.
  2410. Chapter should tell a story.
  2411. \end_layout
  2412. \end_inset
  2413. \end_layout
  2414. \begin_layout Standard
  2415. \begin_inset Flex TODO Note (inline)
  2416. status open
  2417. \begin_layout Plain Layout
  2418. Maybe reorder these sections to do RNA-seq, then ChIP-seq, then combined
  2419. analyses?
  2420. \end_layout
  2421. \end_inset
  2422. \end_layout
  2423. \begin_layout Subsection
  2424. Interpretation of RNA-seq analysis is limited by a major confounding factor
  2425. \end_layout
  2426. \begin_layout Standard
  2427. \begin_inset Float table
  2428. wide false
  2429. sideways false
  2430. status collapsed
  2431. \begin_layout Plain Layout
  2432. \align center
  2433. \begin_inset Tabular
  2434. <lyxtabular version="3" rows="11" columns="3">
  2435. <features tabularvalignment="middle">
  2436. <column alignment="center" valignment="top">
  2437. <column alignment="center" valignment="top">
  2438. <column alignment="center" valignment="top">
  2439. <row>
  2440. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2441. \begin_inset Text
  2442. \begin_layout Plain Layout
  2443. Test
  2444. \end_layout
  2445. \end_inset
  2446. </cell>
  2447. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2448. \begin_inset Text
  2449. \begin_layout Plain Layout
  2450. Est.
  2451. non-null
  2452. \end_layout
  2453. \end_inset
  2454. </cell>
  2455. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2456. \begin_inset Text
  2457. \begin_layout Plain Layout
  2458. \begin_inset Formula $\mathrm{FDR}\le10\%$
  2459. \end_inset
  2460. \end_layout
  2461. \end_inset
  2462. </cell>
  2463. </row>
  2464. <row>
  2465. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2466. \begin_inset Text
  2467. \begin_layout Plain Layout
  2468. Naive Day 0 vs Day 1
  2469. \end_layout
  2470. \end_inset
  2471. </cell>
  2472. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2473. \begin_inset Text
  2474. \begin_layout Plain Layout
  2475. 5992
  2476. \end_layout
  2477. \end_inset
  2478. </cell>
  2479. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2480. \begin_inset Text
  2481. \begin_layout Plain Layout
  2482. 1613
  2483. \end_layout
  2484. \end_inset
  2485. </cell>
  2486. </row>
  2487. <row>
  2488. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2489. \begin_inset Text
  2490. \begin_layout Plain Layout
  2491. Naive Day 0 vs Day 5
  2492. \end_layout
  2493. \end_inset
  2494. </cell>
  2495. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2496. \begin_inset Text
  2497. \begin_layout Plain Layout
  2498. 3038
  2499. \end_layout
  2500. \end_inset
  2501. </cell>
  2502. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2503. \begin_inset Text
  2504. \begin_layout Plain Layout
  2505. 32
  2506. \end_layout
  2507. \end_inset
  2508. </cell>
  2509. </row>
  2510. <row>
  2511. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2512. \begin_inset Text
  2513. \begin_layout Plain Layout
  2514. Naive Day 0 vs Day 14
  2515. \end_layout
  2516. \end_inset
  2517. </cell>
  2518. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2519. \begin_inset Text
  2520. \begin_layout Plain Layout
  2521. 1870
  2522. \end_layout
  2523. \end_inset
  2524. </cell>
  2525. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2526. \begin_inset Text
  2527. \begin_layout Plain Layout
  2528. 190
  2529. \end_layout
  2530. \end_inset
  2531. </cell>
  2532. </row>
  2533. <row>
  2534. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2535. \begin_inset Text
  2536. \begin_layout Plain Layout
  2537. Memory Day 0 vs Day 1
  2538. \end_layout
  2539. \end_inset
  2540. </cell>
  2541. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2542. \begin_inset Text
  2543. \begin_layout Plain Layout
  2544. 3195
  2545. \end_layout
  2546. \end_inset
  2547. </cell>
  2548. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2549. \begin_inset Text
  2550. \begin_layout Plain Layout
  2551. 411
  2552. \end_layout
  2553. \end_inset
  2554. </cell>
  2555. </row>
  2556. <row>
  2557. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2558. \begin_inset Text
  2559. \begin_layout Plain Layout
  2560. Memory Day 0 vs Day 5
  2561. \end_layout
  2562. \end_inset
  2563. </cell>
  2564. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2565. \begin_inset Text
  2566. \begin_layout Plain Layout
  2567. 2688
  2568. \end_layout
  2569. \end_inset
  2570. </cell>
  2571. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2572. \begin_inset Text
  2573. \begin_layout Plain Layout
  2574. 18
  2575. \end_layout
  2576. \end_inset
  2577. </cell>
  2578. </row>
  2579. <row>
  2580. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2581. \begin_inset Text
  2582. \begin_layout Plain Layout
  2583. Memory Day 0 vs Day 14
  2584. \end_layout
  2585. \end_inset
  2586. </cell>
  2587. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2588. \begin_inset Text
  2589. \begin_layout Plain Layout
  2590. 1911
  2591. \end_layout
  2592. \end_inset
  2593. </cell>
  2594. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2595. \begin_inset Text
  2596. \begin_layout Plain Layout
  2597. 227
  2598. \end_layout
  2599. \end_inset
  2600. </cell>
  2601. </row>
  2602. <row>
  2603. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2604. \begin_inset Text
  2605. \begin_layout Plain Layout
  2606. Day 0 Naive vs Memory
  2607. \end_layout
  2608. \end_inset
  2609. </cell>
  2610. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2611. \begin_inset Text
  2612. \begin_layout Plain Layout
  2613. 0
  2614. \end_layout
  2615. \end_inset
  2616. </cell>
  2617. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2618. \begin_inset Text
  2619. \begin_layout Plain Layout
  2620. 2
  2621. \end_layout
  2622. \end_inset
  2623. </cell>
  2624. </row>
  2625. <row>
  2626. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2627. \begin_inset Text
  2628. \begin_layout Plain Layout
  2629. Day 1 Naive vs Memory
  2630. \end_layout
  2631. \end_inset
  2632. </cell>
  2633. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2634. \begin_inset Text
  2635. \begin_layout Plain Layout
  2636. 9167
  2637. \end_layout
  2638. \end_inset
  2639. </cell>
  2640. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2641. \begin_inset Text
  2642. \begin_layout Plain Layout
  2643. 5532
  2644. \end_layout
  2645. \end_inset
  2646. </cell>
  2647. </row>
  2648. <row>
  2649. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2650. \begin_inset Text
  2651. \begin_layout Plain Layout
  2652. Day 5 Naive vs Memory
  2653. \end_layout
  2654. \end_inset
  2655. </cell>
  2656. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2657. \begin_inset Text
  2658. \begin_layout Plain Layout
  2659. 0
  2660. \end_layout
  2661. \end_inset
  2662. </cell>
  2663. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2664. \begin_inset Text
  2665. \begin_layout Plain Layout
  2666. 0
  2667. \end_layout
  2668. \end_inset
  2669. </cell>
  2670. </row>
  2671. <row>
  2672. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2673. \begin_inset Text
  2674. \begin_layout Plain Layout
  2675. Day 14 Naive vs Memory
  2676. \end_layout
  2677. \end_inset
  2678. </cell>
  2679. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2680. \begin_inset Text
  2681. \begin_layout Plain Layout
  2682. 6446
  2683. \end_layout
  2684. \end_inset
  2685. </cell>
  2686. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2687. \begin_inset Text
  2688. \begin_layout Plain Layout
  2689. 2319
  2690. \end_layout
  2691. \end_inset
  2692. </cell>
  2693. </row>
  2694. </lyxtabular>
  2695. \end_inset
  2696. \end_layout
  2697. \begin_layout Plain Layout
  2698. \begin_inset Caption Standard
  2699. \begin_layout Plain Layout
  2700. \series bold
  2701. \begin_inset CommandInset label
  2702. LatexCommand label
  2703. name "tab:Estimated-and-detected-rnaseq"
  2704. \end_inset
  2705. Estimated and detected differentially expressed genes.
  2706. \series default
  2707. \begin_inset Quotes eld
  2708. \end_inset
  2709. Test
  2710. \begin_inset Quotes erd
  2711. \end_inset
  2712. : Which sample groups were compared;
  2713. \begin_inset Quotes eld
  2714. \end_inset
  2715. Est non-null
  2716. \begin_inset Quotes erd
  2717. \end_inset
  2718. : Estimated number of differentially expressed genes, using the method of
  2719. averaging local FDR values
  2720. \begin_inset CommandInset citation
  2721. LatexCommand cite
  2722. key "Phipson2013Thesis"
  2723. literal "false"
  2724. \end_inset
  2725. ;
  2726. \begin_inset Quotes eld
  2727. \end_inset
  2728. \begin_inset Formula $\mathrm{FDR}\le10\%$
  2729. \end_inset
  2730. \begin_inset Quotes erd
  2731. \end_inset
  2732. : Number of significantly differentially expressed genes at an FDR threshold
  2733. of 10%.
  2734. The total number of genes tested was 16707.
  2735. \end_layout
  2736. \end_inset
  2737. \end_layout
  2738. \end_inset
  2739. \end_layout
  2740. \begin_layout Standard
  2741. \begin_inset Float figure
  2742. wide false
  2743. sideways false
  2744. status collapsed
  2745. \begin_layout Plain Layout
  2746. \align center
  2747. \begin_inset Graphics
  2748. filename graphics/CD4-csaw/RNA-seq/PCA-final-12-CROP.png
  2749. lyxscale 25
  2750. width 100col%
  2751. groupId colwidth-raster
  2752. \end_inset
  2753. \end_layout
  2754. \begin_layout Plain Layout
  2755. \begin_inset Caption Standard
  2756. \begin_layout Plain Layout
  2757. \series bold
  2758. \begin_inset CommandInset label
  2759. LatexCommand label
  2760. name "fig:rna-pca-final"
  2761. \end_inset
  2762. PCoA plot of RNA-seq samples after ComBat batch correction.
  2763. \series default
  2764. Each point represents an individual sample.
  2765. Samples with the same combination of cell type and time point are encircled
  2766. with a shaded region to aid in visual identification of the sample groups.
  2767. Samples with of same cell type from the same donor are connected by lines
  2768. to indicate the
  2769. \begin_inset Quotes eld
  2770. \end_inset
  2771. trajectory
  2772. \begin_inset Quotes erd
  2773. \end_inset
  2774. of each donor's cells over time in PCoA space.
  2775. \end_layout
  2776. \end_inset
  2777. \end_layout
  2778. \begin_layout Plain Layout
  2779. \end_layout
  2780. \end_inset
  2781. \end_layout
  2782. \begin_layout Standard
  2783. Genes called present in the RNA-seq data were tested for differential expression
  2784. between all time points and cell types.
  2785. The counts of differentially expressed genes are shown in Table
  2786. \begin_inset CommandInset ref
  2787. LatexCommand ref
  2788. reference "tab:Estimated-and-detected-rnaseq"
  2789. plural "false"
  2790. caps "false"
  2791. noprefix "false"
  2792. \end_inset
  2793. .
  2794. Notably, all the results for Day 0 and Day 5 have substantially fewer genes
  2795. called differentially expressed than any of the results for other time
  2796. points.
  2797. This is an unfortunate result of the difference in sample quality between
  2798. the two batches of RNA-seq data.
  2799. All the samples in Batch 1, which includes all the samples from Days 0
  2800. and 5, have substantially more variability than the samples in Batch 2,
  2801. which includes the other time points.
  2802. This is reflected in the substantially higher weights assigned to Batch
  2803. 2 (Figure
  2804. \begin_inset CommandInset ref
  2805. LatexCommand ref
  2806. reference "fig:RNA-seq-weights-vs-covars"
  2807. plural "false"
  2808. caps "false"
  2809. noprefix "false"
  2810. \end_inset
  2811. ).
  2812. The batch effect has both a systematic component and a random noise component.
  2813. While the systematic component was subtracted out using ComBat (Figure
  2814. \begin_inset CommandInset ref
  2815. LatexCommand ref
  2816. reference "fig:RNA-PCA"
  2817. plural "false"
  2818. caps "false"
  2819. noprefix "false"
  2820. \end_inset
  2821. ), no such correction is possible for the noise component: Batch 1 simply
  2822. has substantially more random noise in it, which reduces the statistical
  2823. power for any differential expression tests involving samples in that batch.
  2824. \end_layout
  2825. \begin_layout Standard
  2826. Despite the difficulty in detecting specific differentially expressed genes,
  2827. there is still evidence that differential expression is present for these
  2828. time points.
  2829. In Figure
  2830. \begin_inset CommandInset ref
  2831. LatexCommand ref
  2832. reference "fig:rna-pca-final"
  2833. plural "false"
  2834. caps "false"
  2835. noprefix "false"
  2836. \end_inset
  2837. , there is a clear separation between naive and memory samples at Day 0,
  2838. despite the fact that only 2 genes were significantly differentially expressed
  2839. for this comparison.
  2840. Similarly, the small numbers of genes detected for the Day 0 vs Day 5 compariso
  2841. ns do not reflect the large separation between these time points in Figure
  2842. \begin_inset CommandInset ref
  2843. LatexCommand ref
  2844. reference "fig:rna-pca-final"
  2845. plural "false"
  2846. caps "false"
  2847. noprefix "false"
  2848. \end_inset
  2849. .
  2850. In addition, the MOFA latent factor plots in Figure
  2851. \begin_inset CommandInset ref
  2852. LatexCommand ref
  2853. reference "fig:mofa-lf-scatter"
  2854. plural "false"
  2855. caps "false"
  2856. noprefix "false"
  2857. \end_inset
  2858. .
  2859. This suggests that there is indeed a differential expression signal present
  2860. in the data for these comparisons, but the large variability in the Batch
  2861. 1 samples obfuscates this signal at the individual gene level.
  2862. As a result, it is impossible to make any meaningful statements about the
  2863. \begin_inset Quotes eld
  2864. \end_inset
  2865. size
  2866. \begin_inset Quotes erd
  2867. \end_inset
  2868. of the gene signature for any time point, since the number of significant
  2869. genes as well as the estimated number of differentially expressed genes
  2870. depends so strongly on the variations in sample quality in addition to
  2871. the size of the differential expression signal in the data.
  2872. Gene-set enrichment analyses are similarly impractical.
  2873. However, analyses looking at genome-wide patterns of expression are still
  2874. practical.
  2875. \end_layout
  2876. \begin_layout Subsection
  2877. H3K4 and H3K27 methylation occur in broad regions and are enriched near
  2878. promoters
  2879. \end_layout
  2880. \begin_layout Standard
  2881. \begin_inset Float table
  2882. wide false
  2883. sideways false
  2884. status collapsed
  2885. \begin_layout Plain Layout
  2886. \align center
  2887. \begin_inset Flex TODO Note (inline)
  2888. status open
  2889. \begin_layout Plain Layout
  2890. Also get
  2891. \emph on
  2892. median
  2893. \emph default
  2894. peak width and maybe other quantiles (25%, 75%)
  2895. \end_layout
  2896. \end_inset
  2897. \end_layout
  2898. \begin_layout Plain Layout
  2899. \align center
  2900. \begin_inset Tabular
  2901. <lyxtabular version="3" rows="4" columns="5">
  2902. <features tabularvalignment="middle">
  2903. <column alignment="center" valignment="top">
  2904. <column alignment="center" valignment="top">
  2905. <column alignment="center" valignment="top">
  2906. <column alignment="center" valignment="top">
  2907. <column alignment="center" valignment="top">
  2908. <row>
  2909. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2910. \begin_inset Text
  2911. \begin_layout Plain Layout
  2912. Histone Mark
  2913. \end_layout
  2914. \end_inset
  2915. </cell>
  2916. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2917. \begin_inset Text
  2918. \begin_layout Plain Layout
  2919. # Peaks
  2920. \end_layout
  2921. \end_inset
  2922. </cell>
  2923. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2924. \begin_inset Text
  2925. \begin_layout Plain Layout
  2926. Mean peak width
  2927. \end_layout
  2928. \end_inset
  2929. </cell>
  2930. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2931. \begin_inset Text
  2932. \begin_layout Plain Layout
  2933. genome coverage
  2934. \end_layout
  2935. \end_inset
  2936. </cell>
  2937. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2938. \begin_inset Text
  2939. \begin_layout Plain Layout
  2940. FRiP
  2941. \end_layout
  2942. \end_inset
  2943. </cell>
  2944. </row>
  2945. <row>
  2946. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2947. \begin_inset Text
  2948. \begin_layout Plain Layout
  2949. H3K4me2
  2950. \end_layout
  2951. \end_inset
  2952. </cell>
  2953. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2954. \begin_inset Text
  2955. \begin_layout Plain Layout
  2956. 14965
  2957. \end_layout
  2958. \end_inset
  2959. </cell>
  2960. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2961. \begin_inset Text
  2962. \begin_layout Plain Layout
  2963. 3970
  2964. \end_layout
  2965. \end_inset
  2966. </cell>
  2967. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2968. \begin_inset Text
  2969. \begin_layout Plain Layout
  2970. 1.92%
  2971. \end_layout
  2972. \end_inset
  2973. </cell>
  2974. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2975. \begin_inset Text
  2976. \begin_layout Plain Layout
  2977. 14.2%
  2978. \end_layout
  2979. \end_inset
  2980. </cell>
  2981. </row>
  2982. <row>
  2983. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2984. \begin_inset Text
  2985. \begin_layout Plain Layout
  2986. H3K4me3
  2987. \end_layout
  2988. \end_inset
  2989. </cell>
  2990. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2991. \begin_inset Text
  2992. \begin_layout Plain Layout
  2993. 6163
  2994. \end_layout
  2995. \end_inset
  2996. </cell>
  2997. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2998. \begin_inset Text
  2999. \begin_layout Plain Layout
  3000. 2946
  3001. \end_layout
  3002. \end_inset
  3003. </cell>
  3004. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3005. \begin_inset Text
  3006. \begin_layout Plain Layout
  3007. 0.588%
  3008. \end_layout
  3009. \end_inset
  3010. </cell>
  3011. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3012. \begin_inset Text
  3013. \begin_layout Plain Layout
  3014. 6.57%
  3015. \end_layout
  3016. \end_inset
  3017. </cell>
  3018. </row>
  3019. <row>
  3020. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3021. \begin_inset Text
  3022. \begin_layout Plain Layout
  3023. H3K27me3
  3024. \end_layout
  3025. \end_inset
  3026. </cell>
  3027. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3028. \begin_inset Text
  3029. \begin_layout Plain Layout
  3030. 18139
  3031. \end_layout
  3032. \end_inset
  3033. </cell>
  3034. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3035. \begin_inset Text
  3036. \begin_layout Plain Layout
  3037. 18967
  3038. \end_layout
  3039. \end_inset
  3040. </cell>
  3041. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3042. \begin_inset Text
  3043. \begin_layout Plain Layout
  3044. 11.1%
  3045. \end_layout
  3046. \end_inset
  3047. </cell>
  3048. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3049. \begin_inset Text
  3050. \begin_layout Plain Layout
  3051. 22.5%
  3052. \end_layout
  3053. \end_inset
  3054. </cell>
  3055. </row>
  3056. </lyxtabular>
  3057. \end_inset
  3058. \end_layout
  3059. \begin_layout Plain Layout
  3060. \begin_inset Caption Standard
  3061. \begin_layout Plain Layout
  3062. \series bold
  3063. \begin_inset CommandInset label
  3064. LatexCommand label
  3065. name "tab:peak-calling-summary"
  3066. \end_inset
  3067. Peak-calling summary.
  3068. \series default
  3069. For each histone mark, the number of peaks called using SICER at an IDR
  3070. threshold of ???, the mean width of those peaks, the fraction of the genome
  3071. covered by peaks, and the fraction of reads in peaks (FRiP).
  3072. \end_layout
  3073. \end_inset
  3074. \end_layout
  3075. \end_inset
  3076. \end_layout
  3077. \begin_layout Standard
  3078. Table
  3079. \begin_inset CommandInset ref
  3080. LatexCommand ref
  3081. reference "tab:peak-calling-summary"
  3082. plural "false"
  3083. caps "false"
  3084. noprefix "false"
  3085. \end_inset
  3086. gives a summary of the peak calling statistics for each histone mark.
  3087. Consistent with previous observations [CITATION NEEDED], all 3 histone
  3088. marks occur in broad regions spanning many consecutive nucleosomes, rather
  3089. than in sharp peaks as would be expected for a transcription factor or
  3090. other molecule that binds to specific sites.
  3091. This conclusion is further supported by Figure
  3092. \begin_inset CommandInset ref
  3093. LatexCommand ref
  3094. reference "fig:CCF-with-blacklist"
  3095. plural "false"
  3096. caps "false"
  3097. noprefix "false"
  3098. \end_inset
  3099. , in which a clear nucleosome-sized periodicity is visible in the cross-correlat
  3100. ion value for each sample, indicating that each time a given mark is present
  3101. on one histone, it is also likely to be found on adjacent histones as well.
  3102. H3K27me3 enrichment in particular is substantially more broad than either
  3103. H3K4 mark, with a mean peak width of almost 19,000 bp.
  3104. This is also reflected in the periodicity observed in Figure
  3105. \begin_inset CommandInset ref
  3106. LatexCommand ref
  3107. reference "fig:CCF-with-blacklist"
  3108. plural "false"
  3109. caps "false"
  3110. noprefix "false"
  3111. \end_inset
  3112. , which remains strong much farther out for H3K27me3 than the other marks,
  3113. showing H3K27me3 especially tends to be found on long runs of consecutive
  3114. histones.
  3115. \end_layout
  3116. \begin_layout Standard
  3117. \begin_inset Float figure
  3118. wide false
  3119. sideways false
  3120. status open
  3121. \begin_layout Plain Layout
  3122. \begin_inset Flex TODO Note (inline)
  3123. status open
  3124. \begin_layout Plain Layout
  3125. Ensure this figure uses the peak calls from the new analysis.
  3126. \end_layout
  3127. \end_inset
  3128. \end_layout
  3129. \begin_layout Plain Layout
  3130. \begin_inset Flex TODO Note (inline)
  3131. status open
  3132. \begin_layout Plain Layout
  3133. Need a control: shuffle all peaks and repeat, N times.
  3134. Do real vs shuffled control both in a top/bottom arrangement.
  3135. \end_layout
  3136. \end_inset
  3137. \end_layout
  3138. \begin_layout Plain Layout
  3139. \begin_inset Flex TODO Note (inline)
  3140. status open
  3141. \begin_layout Plain Layout
  3142. Consider counting TSS inside peaks as negative number indicating how far
  3143. \emph on
  3144. inside
  3145. \emph default
  3146. the peak the TSS is (i.e.
  3147. distance to nearest non-peak area).
  3148. \end_layout
  3149. \end_inset
  3150. \end_layout
  3151. \begin_layout Plain Layout
  3152. \begin_inset Flex TODO Note (inline)
  3153. status open
  3154. \begin_layout Plain Layout
  3155. The H3K4 part of this figure is included in
  3156. \begin_inset CommandInset citation
  3157. LatexCommand cite
  3158. key "LaMere2016"
  3159. literal "false"
  3160. \end_inset
  3161. as Fig.
  3162. S2.
  3163. Do I need to do anything about that?
  3164. \end_layout
  3165. \end_inset
  3166. \end_layout
  3167. \begin_layout Plain Layout
  3168. \align center
  3169. \begin_inset Graphics
  3170. filename graphics/CD4-csaw/Promoter Peak Distance Profile-PAGE1-CROP.pdf
  3171. lyxscale 50
  3172. width 80col%
  3173. \end_inset
  3174. \end_layout
  3175. \begin_layout Plain Layout
  3176. \begin_inset Caption Standard
  3177. \begin_layout Plain Layout
  3178. \series bold
  3179. \begin_inset CommandInset label
  3180. LatexCommand label
  3181. name "fig:near-promoter-peak-enrich"
  3182. \end_inset
  3183. Enrichment of peaks in promoter neighborhoods.
  3184. \series default
  3185. This plot shows the distribution of distances from each annotated transcription
  3186. start site in the genome to the nearest called peak.
  3187. Each line represents one combination of histone mark, cell type, and time
  3188. point.
  3189. Distributions are smoothed using kernel density estimation [CITE? see ggplot2
  3190. stat_density()].
  3191. Transcription start sites that occur
  3192. \emph on
  3193. within
  3194. \emph default
  3195. peaks were excluded from this plot to avoid a large spike at zero that
  3196. would overshadow the rest of the distribution.
  3197. \end_layout
  3198. \end_inset
  3199. \end_layout
  3200. \end_inset
  3201. \end_layout
  3202. \begin_layout Standard
  3203. \begin_inset Float table
  3204. wide false
  3205. sideways false
  3206. status collapsed
  3207. \begin_layout Plain Layout
  3208. \align center
  3209. \begin_inset Tabular
  3210. <lyxtabular version="3" rows="4" columns="2">
  3211. <features tabularvalignment="middle">
  3212. <column alignment="center" valignment="top">
  3213. <column alignment="center" valignment="top">
  3214. <row>
  3215. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3216. \begin_inset Text
  3217. \begin_layout Plain Layout
  3218. Histone mark
  3219. \end_layout
  3220. \end_inset
  3221. </cell>
  3222. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3223. \begin_inset Text
  3224. \begin_layout Plain Layout
  3225. Effective promoter radius
  3226. \end_layout
  3227. \end_inset
  3228. </cell>
  3229. </row>
  3230. <row>
  3231. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3232. \begin_inset Text
  3233. \begin_layout Plain Layout
  3234. H3K4me2
  3235. \end_layout
  3236. \end_inset
  3237. </cell>
  3238. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3239. \begin_inset Text
  3240. \begin_layout Plain Layout
  3241. 1 kb
  3242. \end_layout
  3243. \end_inset
  3244. </cell>
  3245. </row>
  3246. <row>
  3247. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3248. \begin_inset Text
  3249. \begin_layout Plain Layout
  3250. H3K4me3
  3251. \end_layout
  3252. \end_inset
  3253. </cell>
  3254. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3255. \begin_inset Text
  3256. \begin_layout Plain Layout
  3257. 1 kb
  3258. \end_layout
  3259. \end_inset
  3260. </cell>
  3261. </row>
  3262. <row>
  3263. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3264. \begin_inset Text
  3265. \begin_layout Plain Layout
  3266. H3K27me3
  3267. \end_layout
  3268. \end_inset
  3269. </cell>
  3270. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3271. \begin_inset Text
  3272. \begin_layout Plain Layout
  3273. 2.5 kb
  3274. \end_layout
  3275. \end_inset
  3276. </cell>
  3277. </row>
  3278. </lyxtabular>
  3279. \end_inset
  3280. \end_layout
  3281. \begin_layout Plain Layout
  3282. \begin_inset Caption Standard
  3283. \begin_layout Plain Layout
  3284. \series bold
  3285. \begin_inset CommandInset label
  3286. LatexCommand label
  3287. name "tab:effective-promoter-radius"
  3288. \end_inset
  3289. Effective promoter radius for each histone mark.
  3290. \series default
  3291. These values represent the approximate distance from transcription start
  3292. site positions within which an excess of peaks are found, as shown in Figure
  3293. \begin_inset CommandInset ref
  3294. LatexCommand ref
  3295. reference "fig:near-promoter-peak-enrich"
  3296. plural "false"
  3297. caps "false"
  3298. noprefix "false"
  3299. \end_inset
  3300. .
  3301. \end_layout
  3302. \end_inset
  3303. \end_layout
  3304. \begin_layout Plain Layout
  3305. \end_layout
  3306. \end_inset
  3307. \end_layout
  3308. \begin_layout Standard
  3309. All 3 histone marks tend to occur more often near promoter regions, as shown
  3310. in Figure
  3311. \begin_inset CommandInset ref
  3312. LatexCommand ref
  3313. reference "fig:near-promoter-peak-enrich"
  3314. plural "false"
  3315. caps "false"
  3316. noprefix "false"
  3317. \end_inset
  3318. .
  3319. The majority of each density distribution is flat, representing the background
  3320. density of peaks genome-wide.
  3321. Each distribution has a peak near zero, representing an enrichment of peaks
  3322. close transcription start site (TSS) positions relative to the remainder
  3323. of the genome.
  3324. Interestingly, the
  3325. \begin_inset Quotes eld
  3326. \end_inset
  3327. radius
  3328. \begin_inset Quotes erd
  3329. \end_inset
  3330. within which this enrichment occurs is not the same for every histone mark
  3331. (Table
  3332. \begin_inset CommandInset ref
  3333. LatexCommand ref
  3334. reference "tab:effective-promoter-radius"
  3335. plural "false"
  3336. caps "false"
  3337. noprefix "false"
  3338. \end_inset
  3339. ).
  3340. For H3K4me2 and H3K4me3, peaks are most enriched within 1
  3341. \begin_inset space ~
  3342. \end_inset
  3343. kbp of TSS positions, while for H3K27me3, enrichment is broader, extending
  3344. to 2.5
  3345. \begin_inset space ~
  3346. \end_inset
  3347. kbp.
  3348. These
  3349. \begin_inset Quotes eld
  3350. \end_inset
  3351. effective promoter radii
  3352. \begin_inset Quotes erd
  3353. \end_inset
  3354. remain approximately the same across all combinations of experimental condition
  3355. (cell type, time point, and donor), so they appear to be a property of
  3356. the histone mark itself.
  3357. Hence, these radii were used to define the promoter regions for each histone
  3358. mark in all further analyses.
  3359. \end_layout
  3360. \begin_layout Standard
  3361. \begin_inset Flex TODO Note (inline)
  3362. status open
  3363. \begin_layout Plain Layout
  3364. Consider also showing figure for distance to nearest peak center, and reference
  3365. median peak size once that is known.
  3366. \end_layout
  3367. \end_inset
  3368. \end_layout
  3369. \begin_layout Subsection
  3370. H3K4 and H3K27 promoter methylation has broadly the expected correlation
  3371. with gene expression
  3372. \end_layout
  3373. \begin_layout Standard
  3374. \begin_inset Float figure
  3375. wide false
  3376. sideways false
  3377. status collapsed
  3378. \begin_layout Plain Layout
  3379. \begin_inset Flex TODO Note (inline)
  3380. status open
  3381. \begin_layout Plain Layout
  3382. This figure is generated from the old analysis.
  3383. Eiher note that in some way or re-generate it from the new peak calls.
  3384. \end_layout
  3385. \end_inset
  3386. \end_layout
  3387. \begin_layout Plain Layout
  3388. \align center
  3389. \begin_inset Graphics
  3390. filename graphics/CD4-csaw/FPKM by Peak Violin Plots-CROP.pdf
  3391. lyxscale 50
  3392. width 100col%
  3393. \end_inset
  3394. \end_layout
  3395. \begin_layout Plain Layout
  3396. \begin_inset Caption Standard
  3397. \begin_layout Plain Layout
  3398. \series bold
  3399. \begin_inset CommandInset label
  3400. LatexCommand label
  3401. name "fig:fpkm-by-peak"
  3402. \end_inset
  3403. Expression distributions of genes with and without promoter peaks.
  3404. \end_layout
  3405. \end_inset
  3406. \end_layout
  3407. \end_inset
  3408. \end_layout
  3409. \begin_layout Standard
  3410. H3K4me2 and H3K4me2 have previously been reported as activating marks whose
  3411. presence in a gene's promoter is associated with higher gene expression,
  3412. while H3K27me3 has been reported as inactivating [CITE].
  3413. The data are consistent with this characterization: genes whose promoters
  3414. (as defined by the radii for each histone mark listed in
  3415. \begin_inset CommandInset ref
  3416. LatexCommand ref
  3417. reference "tab:effective-promoter-radius"
  3418. plural "false"
  3419. caps "false"
  3420. noprefix "false"
  3421. \end_inset
  3422. ) overlap with a H3K4me2 or H3K4me3 peak tend to have higher expression
  3423. than those that don't, while H3K27me3 is likewise associated with lower
  3424. gene expression, as shown in
  3425. \begin_inset CommandInset ref
  3426. LatexCommand ref
  3427. reference "fig:fpkm-by-peak"
  3428. plural "false"
  3429. caps "false"
  3430. noprefix "false"
  3431. \end_inset
  3432. .
  3433. This pattern holds across all combinations of cell type and time point
  3434. (Welch's
  3435. \emph on
  3436. t
  3437. \emph default
  3438. -test, all
  3439. \begin_inset Formula $p\mathrm{-values}\ll2.2\times10^{-16}$
  3440. \end_inset
  3441. ).
  3442. The difference in average log FPKM values when a peak overlaps the promoter
  3443. is about
  3444. \begin_inset Formula $+5.67$
  3445. \end_inset
  3446. for H3K4me2,
  3447. \begin_inset Formula $+5.76$
  3448. \end_inset
  3449. for H3K4me2, and
  3450. \begin_inset Formula $-4.00$
  3451. \end_inset
  3452. for H3K27me3.
  3453. \end_layout
  3454. \begin_layout Standard
  3455. \begin_inset Flex TODO Note (inline)
  3456. status open
  3457. \begin_layout Plain Layout
  3458. I also have some figures looking at interactions between marks (e.g.
  3459. what if a promoter has both H3K4me3 and H3K27me3), but I don't know if
  3460. that much detail is warranted here, since all the effects just seem approximate
  3461. ly additive anyway.
  3462. \end_layout
  3463. \end_inset
  3464. \end_layout
  3465. \begin_layout Subsection
  3466. Gene expression and promoter histone methylation patterns in naive and memory
  3467. show convergence at day 14
  3468. \end_layout
  3469. \begin_layout Standard
  3470. \begin_inset ERT
  3471. status open
  3472. \begin_layout Plain Layout
  3473. \backslash
  3474. afterpage{
  3475. \end_layout
  3476. \begin_layout Plain Layout
  3477. \backslash
  3478. begin{landscape}
  3479. \end_layout
  3480. \end_inset
  3481. \end_layout
  3482. \begin_layout Standard
  3483. \begin_inset Float table
  3484. wide false
  3485. sideways false
  3486. status open
  3487. \begin_layout Plain Layout
  3488. \align center
  3489. \begin_inset Tabular
  3490. <lyxtabular version="3" rows="6" columns="7">
  3491. <features tabularvalignment="middle">
  3492. <column alignment="center" valignment="top">
  3493. <column alignment="center" valignment="top">
  3494. <column alignment="center" valignment="top">
  3495. <column alignment="center" valignment="top">
  3496. <column alignment="center" valignment="top">
  3497. <column alignment="center" valignment="top">
  3498. <column alignment="center" valignment="top">
  3499. <row>
  3500. <cell alignment="center" valignment="top" usebox="none">
  3501. \begin_inset Text
  3502. \begin_layout Plain Layout
  3503. \end_layout
  3504. \end_inset
  3505. </cell>
  3506. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3507. \begin_inset Text
  3508. \begin_layout Plain Layout
  3509. Number of significant promoters
  3510. \end_layout
  3511. \end_inset
  3512. </cell>
  3513. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3514. \begin_inset Text
  3515. \begin_layout Plain Layout
  3516. \end_layout
  3517. \end_inset
  3518. </cell>
  3519. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3520. \begin_inset Text
  3521. \begin_layout Plain Layout
  3522. \end_layout
  3523. \end_inset
  3524. </cell>
  3525. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3526. \begin_inset Text
  3527. \begin_layout Plain Layout
  3528. Est.
  3529. differentially modified promoters
  3530. \end_layout
  3531. \end_inset
  3532. </cell>
  3533. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3534. \begin_inset Text
  3535. \begin_layout Plain Layout
  3536. \end_layout
  3537. \end_inset
  3538. </cell>
  3539. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3540. \begin_inset Text
  3541. \begin_layout Plain Layout
  3542. \end_layout
  3543. \end_inset
  3544. </cell>
  3545. </row>
  3546. <row>
  3547. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3548. \begin_inset Text
  3549. \begin_layout Plain Layout
  3550. Time Point
  3551. \end_layout
  3552. \end_inset
  3553. </cell>
  3554. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3555. \begin_inset Text
  3556. \begin_layout Plain Layout
  3557. H3K4me2
  3558. \end_layout
  3559. \end_inset
  3560. </cell>
  3561. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3562. \begin_inset Text
  3563. \begin_layout Plain Layout
  3564. H3K4me3
  3565. \end_layout
  3566. \end_inset
  3567. </cell>
  3568. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3569. \begin_inset Text
  3570. \begin_layout Plain Layout
  3571. H3K27me3
  3572. \end_layout
  3573. \end_inset
  3574. </cell>
  3575. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3576. \begin_inset Text
  3577. \begin_layout Plain Layout
  3578. H3K4me2
  3579. \end_layout
  3580. \end_inset
  3581. </cell>
  3582. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3583. \begin_inset Text
  3584. \begin_layout Plain Layout
  3585. H3K4me3
  3586. \end_layout
  3587. \end_inset
  3588. </cell>
  3589. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3590. \begin_inset Text
  3591. \begin_layout Plain Layout
  3592. H3K27me3
  3593. \end_layout
  3594. \end_inset
  3595. </cell>
  3596. </row>
  3597. <row>
  3598. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3599. \begin_inset Text
  3600. \begin_layout Plain Layout
  3601. Day 0
  3602. \end_layout
  3603. \end_inset
  3604. </cell>
  3605. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3606. \begin_inset Text
  3607. \begin_layout Plain Layout
  3608. 4553
  3609. \end_layout
  3610. \end_inset
  3611. </cell>
  3612. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3613. \begin_inset Text
  3614. \begin_layout Plain Layout
  3615. 927
  3616. \end_layout
  3617. \end_inset
  3618. </cell>
  3619. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3620. \begin_inset Text
  3621. \begin_layout Plain Layout
  3622. 6
  3623. \end_layout
  3624. \end_inset
  3625. </cell>
  3626. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3627. \begin_inset Text
  3628. \begin_layout Plain Layout
  3629. 9967
  3630. \end_layout
  3631. \end_inset
  3632. </cell>
  3633. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3634. \begin_inset Text
  3635. \begin_layout Plain Layout
  3636. 4149
  3637. \end_layout
  3638. \end_inset
  3639. </cell>
  3640. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3641. \begin_inset Text
  3642. \begin_layout Plain Layout
  3643. 2404
  3644. \end_layout
  3645. \end_inset
  3646. </cell>
  3647. </row>
  3648. <row>
  3649. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3650. \begin_inset Text
  3651. \begin_layout Plain Layout
  3652. Day 1
  3653. \end_layout
  3654. \end_inset
  3655. </cell>
  3656. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3657. \begin_inset Text
  3658. \begin_layout Plain Layout
  3659. 567
  3660. \end_layout
  3661. \end_inset
  3662. </cell>
  3663. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3664. \begin_inset Text
  3665. \begin_layout Plain Layout
  3666. 278
  3667. \end_layout
  3668. \end_inset
  3669. </cell>
  3670. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3671. \begin_inset Text
  3672. \begin_layout Plain Layout
  3673. 1570
  3674. \end_layout
  3675. \end_inset
  3676. </cell>
  3677. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3678. \begin_inset Text
  3679. \begin_layout Plain Layout
  3680. 4370
  3681. \end_layout
  3682. \end_inset
  3683. </cell>
  3684. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3685. \begin_inset Text
  3686. \begin_layout Plain Layout
  3687. 2145
  3688. \end_layout
  3689. \end_inset
  3690. </cell>
  3691. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3692. \begin_inset Text
  3693. \begin_layout Plain Layout
  3694. 6598
  3695. \end_layout
  3696. \end_inset
  3697. </cell>
  3698. </row>
  3699. <row>
  3700. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3701. \begin_inset Text
  3702. \begin_layout Plain Layout
  3703. Day 5
  3704. \end_layout
  3705. \end_inset
  3706. </cell>
  3707. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3708. \begin_inset Text
  3709. \begin_layout Plain Layout
  3710. 2313
  3711. \end_layout
  3712. \end_inset
  3713. </cell>
  3714. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3715. \begin_inset Text
  3716. \begin_layout Plain Layout
  3717. 139
  3718. \end_layout
  3719. \end_inset
  3720. </cell>
  3721. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3722. \begin_inset Text
  3723. \begin_layout Plain Layout
  3724. 490
  3725. \end_layout
  3726. \end_inset
  3727. </cell>
  3728. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3729. \begin_inset Text
  3730. \begin_layout Plain Layout
  3731. 9450
  3732. \end_layout
  3733. \end_inset
  3734. </cell>
  3735. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3736. \begin_inset Text
  3737. \begin_layout Plain Layout
  3738. 1148
  3739. \end_layout
  3740. \end_inset
  3741. </cell>
  3742. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3743. \begin_inset Text
  3744. \begin_layout Plain Layout
  3745. 4141
  3746. \end_layout
  3747. \end_inset
  3748. </cell>
  3749. </row>
  3750. <row>
  3751. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3752. \begin_inset Text
  3753. \begin_layout Plain Layout
  3754. Day 14
  3755. \end_layout
  3756. \end_inset
  3757. </cell>
  3758. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3759. \begin_inset Text
  3760. \begin_layout Plain Layout
  3761. 0
  3762. \end_layout
  3763. \end_inset
  3764. </cell>
  3765. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3766. \begin_inset Text
  3767. \begin_layout Plain Layout
  3768. 0
  3769. \end_layout
  3770. \end_inset
  3771. </cell>
  3772. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3773. \begin_inset Text
  3774. \begin_layout Plain Layout
  3775. 0
  3776. \end_layout
  3777. \end_inset
  3778. </cell>
  3779. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3780. \begin_inset Text
  3781. \begin_layout Plain Layout
  3782. 0
  3783. \end_layout
  3784. \end_inset
  3785. </cell>
  3786. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3787. \begin_inset Text
  3788. \begin_layout Plain Layout
  3789. 0
  3790. \end_layout
  3791. \end_inset
  3792. </cell>
  3793. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3794. \begin_inset Text
  3795. \begin_layout Plain Layout
  3796. 0
  3797. \end_layout
  3798. \end_inset
  3799. </cell>
  3800. </row>
  3801. </lyxtabular>
  3802. \end_inset
  3803. \end_layout
  3804. \begin_layout Plain Layout
  3805. \begin_inset Caption Standard
  3806. \begin_layout Plain Layout
  3807. \series bold
  3808. \begin_inset CommandInset label
  3809. LatexCommand label
  3810. name "tab:Number-signif-promoters"
  3811. \end_inset
  3812. Number of differentially modified promoters between naive and memory cells
  3813. at each time point after activation.
  3814. \series default
  3815. This table shows both the number of differentially modified promoters detected
  3816. at a 10% FDR threshold (left half), and the total number of differentially
  3817. modified promoters as estimated using the method of
  3818. \begin_inset CommandInset citation
  3819. LatexCommand cite
  3820. key "Phipson2013"
  3821. literal "false"
  3822. \end_inset
  3823. (right half).
  3824. \end_layout
  3825. \end_inset
  3826. \end_layout
  3827. \end_inset
  3828. \end_layout
  3829. \begin_layout Standard
  3830. \begin_inset ERT
  3831. status open
  3832. \begin_layout Plain Layout
  3833. \backslash
  3834. end{landscape}
  3835. \end_layout
  3836. \begin_layout Plain Layout
  3837. }
  3838. \end_layout
  3839. \end_inset
  3840. \end_layout
  3841. \begin_layout Standard
  3842. \begin_inset Float figure
  3843. placement p
  3844. wide false
  3845. sideways false
  3846. status open
  3847. \begin_layout Plain Layout
  3848. \align center
  3849. \begin_inset Float figure
  3850. wide false
  3851. sideways false
  3852. status open
  3853. \begin_layout Plain Layout
  3854. \align center
  3855. \begin_inset Graphics
  3856. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-promoter-PCA-group-CROP.png
  3857. lyxscale 25
  3858. width 45col%
  3859. groupId pcoa-prom-subfig
  3860. \end_inset
  3861. \end_layout
  3862. \begin_layout Plain Layout
  3863. \begin_inset Caption Standard
  3864. \begin_layout Plain Layout
  3865. \series bold
  3866. \begin_inset CommandInset label
  3867. LatexCommand label
  3868. name "fig:PCoA-H3K4me2-prom"
  3869. \end_inset
  3870. PCoA plot of H3K4me2 promoters, after subtracting surrogate variables
  3871. \end_layout
  3872. \end_inset
  3873. \end_layout
  3874. \end_inset
  3875. \begin_inset space \hfill{}
  3876. \end_inset
  3877. \begin_inset Float figure
  3878. wide false
  3879. sideways false
  3880. status open
  3881. \begin_layout Plain Layout
  3882. \align center
  3883. \begin_inset Graphics
  3884. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-promoter-PCA-group-CROP.png
  3885. lyxscale 25
  3886. width 45col%
  3887. groupId pcoa-prom-subfig
  3888. \end_inset
  3889. \end_layout
  3890. \begin_layout Plain Layout
  3891. \begin_inset Caption Standard
  3892. \begin_layout Plain Layout
  3893. \series bold
  3894. \begin_inset CommandInset label
  3895. LatexCommand label
  3896. name "fig:PCoA-H3K4me3-prom"
  3897. \end_inset
  3898. PCoA plot of H3K4me3 promoters, after subtracting surrogate variables
  3899. \end_layout
  3900. \end_inset
  3901. \end_layout
  3902. \end_inset
  3903. \end_layout
  3904. \begin_layout Plain Layout
  3905. \align center
  3906. \begin_inset Float figure
  3907. wide false
  3908. sideways false
  3909. status collapsed
  3910. \begin_layout Plain Layout
  3911. \align center
  3912. \begin_inset Graphics
  3913. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-promoter-PCA-group-CROP.png
  3914. lyxscale 25
  3915. width 45col%
  3916. groupId pcoa-prom-subfig
  3917. \end_inset
  3918. \end_layout
  3919. \begin_layout Plain Layout
  3920. \begin_inset Caption Standard
  3921. \begin_layout Plain Layout
  3922. \series bold
  3923. \begin_inset CommandInset label
  3924. LatexCommand label
  3925. name "fig:PCoA-H3K27me3-prom"
  3926. \end_inset
  3927. PCoA plot of H3K27me3 promoters, after subtracting surrogate variables
  3928. \end_layout
  3929. \end_inset
  3930. \end_layout
  3931. \end_inset
  3932. \begin_inset space \hfill{}
  3933. \end_inset
  3934. \begin_inset Float figure
  3935. wide false
  3936. sideways false
  3937. status open
  3938. \begin_layout Plain Layout
  3939. \align center
  3940. \begin_inset Graphics
  3941. filename graphics/CD4-csaw/RNA-seq/PCA-final-23-CROP.png
  3942. lyxscale 25
  3943. width 45col%
  3944. groupId pcoa-prom-subfig
  3945. \end_inset
  3946. \end_layout
  3947. \begin_layout Plain Layout
  3948. \begin_inset Caption Standard
  3949. \begin_layout Plain Layout
  3950. \series bold
  3951. \begin_inset CommandInset label
  3952. LatexCommand label
  3953. name "fig:RNA-PCA-group"
  3954. \end_inset
  3955. RNA-seq PCoA showing principal coordiantes 2 and 3.
  3956. \end_layout
  3957. \end_inset
  3958. \end_layout
  3959. \end_inset
  3960. \end_layout
  3961. \begin_layout Plain Layout
  3962. \begin_inset Caption Standard
  3963. \begin_layout Plain Layout
  3964. \series bold
  3965. \begin_inset CommandInset label
  3966. LatexCommand label
  3967. name "fig:PCoA-promoters"
  3968. \end_inset
  3969. PCoA plots for promoter ChIP-seq and expression RNA-seq data
  3970. \end_layout
  3971. \end_inset
  3972. \end_layout
  3973. \end_inset
  3974. \end_layout
  3975. \begin_layout Standard
  3976. \begin_inset Flex TODO Note (inline)
  3977. status open
  3978. \begin_layout Plain Layout
  3979. Check up on figure refs in this paragraph
  3980. \end_layout
  3981. \end_inset
  3982. \end_layout
  3983. \begin_layout Standard
  3984. We hypothesized that if naive cells had differentiated into memory cells
  3985. by Day 14, then their patterns of expression and histone modification should
  3986. converge with those of memory cells at Day 14.
  3987. Figure
  3988. \begin_inset CommandInset ref
  3989. LatexCommand ref
  3990. reference "fig:PCoA-promoters"
  3991. plural "false"
  3992. caps "false"
  3993. noprefix "false"
  3994. \end_inset
  3995. shows the patterns of variation in all 3 histone marks in the promoter
  3996. regions of the genome using principal coordinate analysis.
  3997. All 3 marks show a noticeable convergence between the naive and memory
  3998. samples at day 14, visible as an overlapping of the day 14 groups on each
  3999. plot.
  4000. This is consistent with the counts of significantly differentially modified
  4001. promoters and estimates of the total numbers of differentially modified
  4002. promoters shown in Table
  4003. \begin_inset CommandInset ref
  4004. LatexCommand ref
  4005. reference "tab:Number-signif-promoters"
  4006. plural "false"
  4007. caps "false"
  4008. noprefix "false"
  4009. \end_inset
  4010. .
  4011. For all histone marks, evidence of differential modification between naive
  4012. and memory samples was detected at every time point except day 14.
  4013. The day 14 convergence pattern is also present in the RNA-seq data (Figure
  4014. \begin_inset CommandInset ref
  4015. LatexCommand ref
  4016. reference "fig:RNA-PCA-group"
  4017. plural "false"
  4018. caps "false"
  4019. noprefix "false"
  4020. \end_inset
  4021. ), albiet in the 2nd and 3rd principal coordinates, indicating that it is
  4022. not the most dominant pattern driving gene expression.
  4023. Taken together, the data show that promoter histone methylation for these
  4024. 3 histone marks and RNA expression for naive and memory cells are most
  4025. similar at day 14, the furthest time point after activation.
  4026. MOFA was also able to capture this day 14 convergence pattern in latent
  4027. factor 5 (Figure
  4028. \begin_inset CommandInset ref
  4029. LatexCommand ref
  4030. reference "fig:mofa-lf-scatter"
  4031. plural "false"
  4032. caps "false"
  4033. noprefix "false"
  4034. \end_inset
  4035. ), which accounts for shared variation across all 3 histone marks and the
  4036. RNA-seq data, confirming that this convergence is a coordinated pattern
  4037. across all 4 data sets.
  4038. While this observation does not prove that the naive cells have differentiated
  4039. into memory cells at Day 14, it is consistent with that hypothesis.
  4040. \end_layout
  4041. \begin_layout Subsection
  4042. Effect of H3K4me2 and H3K4me3 promoter coverage upstream vs downstream of
  4043. TSS
  4044. \end_layout
  4045. \begin_layout Standard
  4046. \begin_inset Flex TODO Note (inline)
  4047. status open
  4048. \begin_layout Plain Layout
  4049. Need a better section title, for this and the next one.
  4050. \end_layout
  4051. \end_inset
  4052. \end_layout
  4053. \begin_layout Standard
  4054. \begin_inset Flex TODO Note (inline)
  4055. status open
  4056. \begin_layout Plain Layout
  4057. Make sure use of coverage/abundance/whatever is consistent.
  4058. \end_layout
  4059. \end_inset
  4060. \end_layout
  4061. \begin_layout Standard
  4062. \begin_inset Flex TODO Note (inline)
  4063. status open
  4064. \begin_layout Plain Layout
  4065. For the figures in this section and the next, the group labels are arbitrary,
  4066. so if time allows, it would be good to manually reorder them in a logical
  4067. way, e.g.
  4068. most upstream to most downstream.
  4069. If this is done, make sure to update the text with the correct group labels.
  4070. \end_layout
  4071. \end_inset
  4072. \end_layout
  4073. \begin_layout Standard
  4074. \begin_inset ERT
  4075. status open
  4076. \begin_layout Plain Layout
  4077. \backslash
  4078. afterpage{
  4079. \end_layout
  4080. \begin_layout Plain Layout
  4081. \backslash
  4082. begin{landscape}
  4083. \end_layout
  4084. \end_inset
  4085. \end_layout
  4086. \begin_layout Standard
  4087. \begin_inset Float figure
  4088. wide false
  4089. sideways false
  4090. status open
  4091. \begin_layout Plain Layout
  4092. \align center
  4093. \begin_inset Float figure
  4094. wide false
  4095. sideways false
  4096. status open
  4097. \begin_layout Plain Layout
  4098. \align center
  4099. \begin_inset Graphics
  4100. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-neighborhood-clusters-CROP.png
  4101. lyxscale 25
  4102. width 30col%
  4103. groupId covprof-subfig
  4104. \end_inset
  4105. \end_layout
  4106. \begin_layout Plain Layout
  4107. \begin_inset Caption Standard
  4108. \begin_layout Plain Layout
  4109. \series bold
  4110. \begin_inset CommandInset label
  4111. LatexCommand label
  4112. name "fig:H3K4me2-neighborhood-clusters"
  4113. \end_inset
  4114. Average relative coverage for each bin in each cluster
  4115. \end_layout
  4116. \end_inset
  4117. \end_layout
  4118. \end_inset
  4119. \begin_inset space \hfill{}
  4120. \end_inset
  4121. \begin_inset Float figure
  4122. wide false
  4123. sideways false
  4124. status open
  4125. \begin_layout Plain Layout
  4126. \align center
  4127. \begin_inset Graphics
  4128. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-neighborhood-PCA-CROP.png
  4129. lyxscale 25
  4130. width 30col%
  4131. groupId covprof-subfig
  4132. \end_inset
  4133. \end_layout
  4134. \begin_layout Plain Layout
  4135. \begin_inset Caption Standard
  4136. \begin_layout Plain Layout
  4137. \series bold
  4138. \begin_inset CommandInset label
  4139. LatexCommand label
  4140. name "fig:H3K4me2-neighborhood-pca"
  4141. \end_inset
  4142. PCA of relative coverage depth, colored by K-means cluster membership.
  4143. \end_layout
  4144. \end_inset
  4145. \end_layout
  4146. \end_inset
  4147. \begin_inset space \hfill{}
  4148. \end_inset
  4149. \begin_inset Float figure
  4150. wide false
  4151. sideways false
  4152. status open
  4153. \begin_layout Plain Layout
  4154. \align center
  4155. \begin_inset Graphics
  4156. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-neighborhood-expression-CROP.png
  4157. lyxscale 25
  4158. width 30col%
  4159. groupId covprof-subfig
  4160. \end_inset
  4161. \end_layout
  4162. \begin_layout Plain Layout
  4163. \begin_inset Caption Standard
  4164. \begin_layout Plain Layout
  4165. \series bold
  4166. \begin_inset CommandInset label
  4167. LatexCommand label
  4168. name "fig:H3K4me2-neighborhood-expression"
  4169. \end_inset
  4170. Gene expression grouped by promoter coverage clusters.
  4171. \end_layout
  4172. \end_inset
  4173. \end_layout
  4174. \end_inset
  4175. \end_layout
  4176. \begin_layout Plain Layout
  4177. \begin_inset Caption Standard
  4178. \begin_layout Plain Layout
  4179. \series bold
  4180. \begin_inset CommandInset label
  4181. LatexCommand label
  4182. name "fig:H3K4me2-neighborhood"
  4183. \end_inset
  4184. K-means clustering of promoter H3K4me2 relative coverage depth in naive
  4185. day 0 samples.
  4186. \series default
  4187. H3K4me2 ChIP-seq reads were binned into 500-bp windows tiled across each
  4188. promoter from 5
  4189. \begin_inset space ~
  4190. \end_inset
  4191. kbp upstream to 5
  4192. \begin_inset space ~
  4193. \end_inset
  4194. kbp downstream, and the logCPM values were normalized within each promoter
  4195. to an average of 0, yielding relative coverage depths.
  4196. These were then grouped using K-means clustering with
  4197. \begin_inset Formula $K=6$
  4198. \end_inset
  4199. ,
  4200. \series bold
  4201. \series default
  4202. and the average bin values were plotted for each cluster (a).
  4203. The
  4204. \begin_inset Formula $x$
  4205. \end_inset
  4206. -axis is the genomic coordinate of each bin relative to the the transcription
  4207. start site, and the
  4208. \begin_inset Formula $y$
  4209. \end_inset
  4210. -axis is the mean relative coverage depth of that bin across all promoters
  4211. in the cluster.
  4212. Each line represents the average
  4213. \begin_inset Quotes eld
  4214. \end_inset
  4215. shape
  4216. \begin_inset Quotes erd
  4217. \end_inset
  4218. of the promoter coverage for promoters in that cluster.
  4219. PCA was performed on the same data, and the first two principal components
  4220. were plotted, coloring each point by its K-means cluster identity (b).
  4221. For each cluster, the distribution of gene expression values was plotted
  4222. (c).
  4223. \end_layout
  4224. \end_inset
  4225. \end_layout
  4226. \end_inset
  4227. \end_layout
  4228. \begin_layout Standard
  4229. \begin_inset ERT
  4230. status open
  4231. \begin_layout Plain Layout
  4232. \backslash
  4233. end{landscape}
  4234. \end_layout
  4235. \begin_layout Plain Layout
  4236. }
  4237. \end_layout
  4238. \end_inset
  4239. \end_layout
  4240. \begin_layout Standard
  4241. To test whether the position of a histone mark relative to a gene's transcriptio
  4242. n start site (TSS) was important, we looked at the
  4243. \begin_inset Quotes eld
  4244. \end_inset
  4245. landscape
  4246. \begin_inset Quotes erd
  4247. \end_inset
  4248. of ChIP-seq read coverage in naive Day 0 samples within 5 kb of each gene's
  4249. TSS by binning reads into 500-bp windows tiled across each promoter LogCPM
  4250. values were calculated for the bins in each promoter and then the average
  4251. logCPM for each promoter's bins was normalized to zero, such that the values
  4252. represent coverage relative to other regions of the same promoter rather
  4253. than being proportional to absolute read count.
  4254. The promoters were then clustered based on the normalized bin abundances
  4255. using
  4256. \begin_inset Formula $k$
  4257. \end_inset
  4258. -means clustering with
  4259. \begin_inset Formula $K=6$
  4260. \end_inset
  4261. .
  4262. Different values of
  4263. \begin_inset Formula $K$
  4264. \end_inset
  4265. were also tested, but did not substantially change the interpretation of
  4266. the data.
  4267. \end_layout
  4268. \begin_layout Standard
  4269. For H3K4me2, plotting the average bin abundances for each cluster reveals
  4270. a simple pattern (Figure
  4271. \begin_inset CommandInset ref
  4272. LatexCommand ref
  4273. reference "fig:H3K4me2-neighborhood-clusters"
  4274. plural "false"
  4275. caps "false"
  4276. noprefix "false"
  4277. \end_inset
  4278. ): Cluster 5 represents a completely flat promoter coverage profile, likely
  4279. consisting of genes with no H3K4me2 methylation in the promoter.
  4280. All the other clusters represent a continuum of peak positions relative
  4281. to the TSS.
  4282. In order from must upstream to most downstream, they are Clusters 6, 4,
  4283. 3, 1, and 2.
  4284. There do not appear to be any clusters representing coverage patterns other
  4285. than lone peaks, such as coverage troughs or double peaks.
  4286. Next, all promoters were plotted in a PCA plot based on the same relative
  4287. bin abundance data, and colored based on cluster membership (Figure
  4288. \begin_inset CommandInset ref
  4289. LatexCommand ref
  4290. reference "fig:H3K4me2-neighborhood-pca"
  4291. plural "false"
  4292. caps "false"
  4293. noprefix "false"
  4294. \end_inset
  4295. ).
  4296. The PCA plot shows Cluster 5 (the
  4297. \begin_inset Quotes eld
  4298. \end_inset
  4299. no peak
  4300. \begin_inset Quotes erd
  4301. \end_inset
  4302. cluster) at the center, with the other clusters arranged in a counter-clockwise
  4303. arc around it in the order noted above, from most upstream peak to most
  4304. downstream.
  4305. Notably, the
  4306. \begin_inset Quotes eld
  4307. \end_inset
  4308. clusters
  4309. \begin_inset Quotes erd
  4310. \end_inset
  4311. form a single large
  4312. \begin_inset Quotes eld
  4313. \end_inset
  4314. cloud
  4315. \begin_inset Quotes erd
  4316. \end_inset
  4317. with no apparent separation between them, further supporting the conclusion
  4318. that these clusters represent an arbitrary partitioning of a continuous
  4319. distribution of promoter coverage landscapes.
  4320. While the clusters are a useful abstraction that aids in visualization,
  4321. they are ultimately not an accurate representation of the data.
  4322. A better representation might be something like a polar coordinate system
  4323. with the origin at the center of Cluster 5, where the radius represents
  4324. the peak height above the background and the angle represents the peak's
  4325. position upstream or downstream of the TSS.
  4326. The continuous nature of the distribution also explains why different values
  4327. of
  4328. \begin_inset Formula $K$
  4329. \end_inset
  4330. led to similar conclusions.
  4331. \end_layout
  4332. \begin_layout Standard
  4333. \begin_inset Flex TODO Note (inline)
  4334. status open
  4335. \begin_layout Plain Layout
  4336. RNA-seq values in the plots use logCPM but should really use logFPKM or
  4337. logTPM.
  4338. Fix if time allows.
  4339. \end_layout
  4340. \end_inset
  4341. \end_layout
  4342. \begin_layout Standard
  4343. \begin_inset Flex TODO Note (inline)
  4344. status open
  4345. \begin_layout Plain Layout
  4346. Should have a table of p-values on difference of means between Cluster 5
  4347. and the others.
  4348. \end_layout
  4349. \end_inset
  4350. \end_layout
  4351. \begin_layout Standard
  4352. To investigate the association between relative peak position and gene expressio
  4353. n, we plotted the Naive Day 0 expression for the genes in each cluster (Figure
  4354. \begin_inset CommandInset ref
  4355. LatexCommand ref
  4356. reference "fig:H3K4me2-neighborhood-expression"
  4357. plural "false"
  4358. caps "false"
  4359. noprefix "false"
  4360. \end_inset
  4361. ).
  4362. Most genes in Cluster 5, the
  4363. \begin_inset Quotes eld
  4364. \end_inset
  4365. no peak
  4366. \begin_inset Quotes erd
  4367. \end_inset
  4368. cluster, have low expression values.
  4369. Taking this as the
  4370. \begin_inset Quotes eld
  4371. \end_inset
  4372. baseline
  4373. \begin_inset Quotes erd
  4374. \end_inset
  4375. distribution when no H3K4me2 methylation is present, we can compare the
  4376. other clusters' distributions to determine which peak positions are associated
  4377. with elevated expression.
  4378. As might be expected, the 3 clusters representing peaks closest to the
  4379. TSS, Clusters 1, 3, and 4, show the highest average expression distributions.
  4380. Specifically, these clusters all have their highest ChIP-seq abundance
  4381. within 1kb of the TSS, consistent with the previously determined promoter
  4382. radius.
  4383. In contrast, cluster 6, which represents peaks several kb upstream of the
  4384. TSS, shows a slightly higher average expression than baseline, while Cluster
  4385. 2, which represents peaks several kb downstream, doesn't appear to show
  4386. any appreciable difference.
  4387. Interestingly, the cluster with the highest average expression is Cluster
  4388. 1, which represents peaks about 1 kb downstream of the TSS, rather than
  4389. Cluster 3, which represents peaks centered directly at the TSS.
  4390. This suggests that conceptualizing the promoter as a region centered on
  4391. the TSS with a certain
  4392. \begin_inset Quotes eld
  4393. \end_inset
  4394. radius
  4395. \begin_inset Quotes erd
  4396. \end_inset
  4397. may be an oversimplification – a peak that is a specific distance from
  4398. the TSS may have a different degree of influence depending on whether it
  4399. is upstream or downstream of the TSS.
  4400. \end_layout
  4401. \begin_layout Standard
  4402. \begin_inset ERT
  4403. status open
  4404. \begin_layout Plain Layout
  4405. \backslash
  4406. afterpage{
  4407. \end_layout
  4408. \begin_layout Plain Layout
  4409. \backslash
  4410. begin{landscape}
  4411. \end_layout
  4412. \end_inset
  4413. \end_layout
  4414. \begin_layout Standard
  4415. \begin_inset Float figure
  4416. wide false
  4417. sideways false
  4418. status open
  4419. \begin_layout Plain Layout
  4420. \align center
  4421. \begin_inset Float figure
  4422. wide false
  4423. sideways false
  4424. status open
  4425. \begin_layout Plain Layout
  4426. \align center
  4427. \begin_inset Graphics
  4428. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-neighborhood-clusters-CROP.png
  4429. lyxscale 25
  4430. width 30col%
  4431. groupId covprof-subfig
  4432. \end_inset
  4433. \end_layout
  4434. \begin_layout Plain Layout
  4435. \begin_inset Caption Standard
  4436. \begin_layout Plain Layout
  4437. \series bold
  4438. \begin_inset CommandInset label
  4439. LatexCommand label
  4440. name "fig:H3K4me3-neighborhood-clusters"
  4441. \end_inset
  4442. Average relative coverage for each bin in each cluster
  4443. \end_layout
  4444. \end_inset
  4445. \end_layout
  4446. \end_inset
  4447. \begin_inset space \hfill{}
  4448. \end_inset
  4449. \begin_inset Float figure
  4450. wide false
  4451. sideways false
  4452. status open
  4453. \begin_layout Plain Layout
  4454. \align center
  4455. \begin_inset Graphics
  4456. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-neighborhood-PCA-CROP.png
  4457. lyxscale 25
  4458. width 30col%
  4459. groupId covprof-subfig
  4460. \end_inset
  4461. \end_layout
  4462. \begin_layout Plain Layout
  4463. \begin_inset Caption Standard
  4464. \begin_layout Plain Layout
  4465. \series bold
  4466. \begin_inset CommandInset label
  4467. LatexCommand label
  4468. name "fig:H3K4me3-neighborhood-pca"
  4469. \end_inset
  4470. PCA of relative coverage depth, colored by K-means cluster membership.
  4471. \end_layout
  4472. \end_inset
  4473. \end_layout
  4474. \end_inset
  4475. \begin_inset space \hfill{}
  4476. \end_inset
  4477. \begin_inset Float figure
  4478. wide false
  4479. sideways false
  4480. status open
  4481. \begin_layout Plain Layout
  4482. \align center
  4483. \begin_inset Graphics
  4484. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-neighborhood-expression-CROP.png
  4485. lyxscale 25
  4486. width 30col%
  4487. groupId covprof-subfig
  4488. \end_inset
  4489. \end_layout
  4490. \begin_layout Plain Layout
  4491. \begin_inset Caption Standard
  4492. \begin_layout Plain Layout
  4493. \series bold
  4494. \begin_inset CommandInset label
  4495. LatexCommand label
  4496. name "fig:H3K4me3-neighborhood-expression"
  4497. \end_inset
  4498. Gene expression grouped by promoter coverage clusters.
  4499. \end_layout
  4500. \end_inset
  4501. \end_layout
  4502. \end_inset
  4503. \end_layout
  4504. \begin_layout Plain Layout
  4505. \begin_inset Caption Standard
  4506. \begin_layout Plain Layout
  4507. \series bold
  4508. \begin_inset CommandInset label
  4509. LatexCommand label
  4510. name "fig:H3K4me3-neighborhood"
  4511. \end_inset
  4512. K-means clustering of promoter H3K4me3 relative coverage depth in naive
  4513. day 0 samples.
  4514. \series default
  4515. H3K4me2 ChIP-seq reads were binned into 500-bp windows tiled across each
  4516. promoter from 5
  4517. \begin_inset space ~
  4518. \end_inset
  4519. kbp upstream to 5
  4520. \begin_inset space ~
  4521. \end_inset
  4522. kbp downstream, and the logCPM values were normalized within each promoter
  4523. to an average of 0, yielding relative coverage depths.
  4524. These were then grouped using K-means clustering with
  4525. \begin_inset Formula $K=6$
  4526. \end_inset
  4527. ,
  4528. \series bold
  4529. \series default
  4530. and the average bin values were plotted for each cluster (a).
  4531. The
  4532. \begin_inset Formula $x$
  4533. \end_inset
  4534. -axis is the genomic coordinate of each bin relative to the the transcription
  4535. start site, and the
  4536. \begin_inset Formula $y$
  4537. \end_inset
  4538. -axis is the mean relative coverage depth of that bin across all promoters
  4539. in the cluster.
  4540. Each line represents the average
  4541. \begin_inset Quotes eld
  4542. \end_inset
  4543. shape
  4544. \begin_inset Quotes erd
  4545. \end_inset
  4546. of the promoter coverage for promoters in that cluster.
  4547. PCA was performed on the same data, and the first two principal components
  4548. were plotted, coloring each point by its K-means cluster identity (b).
  4549. For each cluster, the distribution of gene expression values was plotted
  4550. (c).
  4551. \end_layout
  4552. \end_inset
  4553. \end_layout
  4554. \end_inset
  4555. \end_layout
  4556. \begin_layout Standard
  4557. \begin_inset ERT
  4558. status open
  4559. \begin_layout Plain Layout
  4560. \backslash
  4561. end{landscape}
  4562. \end_layout
  4563. \begin_layout Plain Layout
  4564. }
  4565. \end_layout
  4566. \end_inset
  4567. \end_layout
  4568. \begin_layout Standard
  4569. \begin_inset Flex TODO Note (inline)
  4570. status open
  4571. \begin_layout Plain Layout
  4572. Is there more to say here?
  4573. \end_layout
  4574. \end_inset
  4575. \end_layout
  4576. \begin_layout Standard
  4577. All observations described above for H3K4me2 ChIP-seq also appear to hold
  4578. for H3K4me3 as well (Figure
  4579. \begin_inset CommandInset ref
  4580. LatexCommand ref
  4581. reference "fig:H3K4me3-neighborhood"
  4582. plural "false"
  4583. caps "false"
  4584. noprefix "false"
  4585. \end_inset
  4586. ).
  4587. This is expected, since there is a high correlation between the positions
  4588. where both histone marks occur.
  4589. \end_layout
  4590. \begin_layout Subsection
  4591. Promoter coverage H3K27me3
  4592. \end_layout
  4593. \begin_layout Standard
  4594. \begin_inset ERT
  4595. status open
  4596. \begin_layout Plain Layout
  4597. \backslash
  4598. afterpage{
  4599. \end_layout
  4600. \begin_layout Plain Layout
  4601. \backslash
  4602. begin{landscape}
  4603. \end_layout
  4604. \end_inset
  4605. \end_layout
  4606. \begin_layout Standard
  4607. \begin_inset Float figure
  4608. wide false
  4609. sideways false
  4610. status collapsed
  4611. \begin_layout Plain Layout
  4612. \align center
  4613. \begin_inset Float figure
  4614. wide false
  4615. sideways false
  4616. status open
  4617. \begin_layout Plain Layout
  4618. \align center
  4619. \begin_inset Graphics
  4620. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-neighborhood-clusters-CROP.png
  4621. lyxscale 25
  4622. width 30col%
  4623. groupId covprof-subfig
  4624. \end_inset
  4625. \end_layout
  4626. \begin_layout Plain Layout
  4627. \begin_inset Caption Standard
  4628. \begin_layout Plain Layout
  4629. \series bold
  4630. \begin_inset CommandInset label
  4631. LatexCommand label
  4632. name "fig:H3K27me3-neighborhood-clusters"
  4633. \end_inset
  4634. Average relative coverage for each bin in each cluster
  4635. \end_layout
  4636. \end_inset
  4637. \end_layout
  4638. \end_inset
  4639. \begin_inset space \hfill{}
  4640. \end_inset
  4641. \begin_inset Float figure
  4642. wide false
  4643. sideways false
  4644. status open
  4645. \begin_layout Plain Layout
  4646. \align center
  4647. \begin_inset Graphics
  4648. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-neighborhood-PCA-CROP.png
  4649. lyxscale 25
  4650. width 30col%
  4651. groupId covprof-subfig
  4652. \end_inset
  4653. \end_layout
  4654. \begin_layout Plain Layout
  4655. \begin_inset Caption Standard
  4656. \begin_layout Plain Layout
  4657. \series bold
  4658. \begin_inset CommandInset label
  4659. LatexCommand label
  4660. name "fig:H3K27me3-neighborhood-pca"
  4661. \end_inset
  4662. PCA of relative coverage depth, colored by K-means cluster membership.
  4663. \series default
  4664. Note that Cluster 6 is hidden behind all the other clusters.
  4665. \end_layout
  4666. \end_inset
  4667. \end_layout
  4668. \end_inset
  4669. \begin_inset space \hfill{}
  4670. \end_inset
  4671. \begin_inset Float figure
  4672. wide false
  4673. sideways false
  4674. status open
  4675. \begin_layout Plain Layout
  4676. \align center
  4677. \begin_inset Graphics
  4678. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-neighborhood-expression-CROP.png
  4679. lyxscale 25
  4680. width 30col%
  4681. groupId covprof-subfig
  4682. \end_inset
  4683. \end_layout
  4684. \begin_layout Plain Layout
  4685. \begin_inset Caption Standard
  4686. \begin_layout Plain Layout
  4687. \series bold
  4688. \begin_inset CommandInset label
  4689. LatexCommand label
  4690. name "fig:H3K27me3-neighborhood-expression"
  4691. \end_inset
  4692. Gene expression grouped by promoter coverage clusters.
  4693. \end_layout
  4694. \end_inset
  4695. \end_layout
  4696. \end_inset
  4697. \end_layout
  4698. \begin_layout Plain Layout
  4699. \begin_inset Flex TODO Note (inline)
  4700. status open
  4701. \begin_layout Plain Layout
  4702. Repeated figure legends are kind of an issue here.
  4703. What to do?
  4704. \end_layout
  4705. \end_inset
  4706. \end_layout
  4707. \begin_layout Plain Layout
  4708. \begin_inset Caption Standard
  4709. \begin_layout Plain Layout
  4710. \series bold
  4711. \begin_inset CommandInset label
  4712. LatexCommand label
  4713. name "fig:H3K27me3-neighborhood"
  4714. \end_inset
  4715. K-means clustering of promoter H3K27me3 relative coverage depth in naive
  4716. day 0 samples.
  4717. \series default
  4718. H3K27me3 ChIP-seq reads were binned into 500-bp windows tiled across each
  4719. promoter from 5
  4720. \begin_inset space ~
  4721. \end_inset
  4722. kbp upstream to 5
  4723. \begin_inset space ~
  4724. \end_inset
  4725. kbp downstream, and the logCPM values were normalized within each promoter
  4726. to an average of 0, yielding relative coverage depths.
  4727. These were then grouped using
  4728. \begin_inset Formula $k$
  4729. \end_inset
  4730. -means clustering with
  4731. \begin_inset Formula $K=6$
  4732. \end_inset
  4733. ,
  4734. \series bold
  4735. \series default
  4736. and the average bin values were plotted for each cluster (a).
  4737. The
  4738. \begin_inset Formula $x$
  4739. \end_inset
  4740. -axis is the genomic coordinate of each bin relative to the the transcription
  4741. start site, and the
  4742. \begin_inset Formula $y$
  4743. \end_inset
  4744. -axis is the mean relative coverage depth of that bin across all promoters
  4745. in the cluster.
  4746. Each line represents the average
  4747. \begin_inset Quotes eld
  4748. \end_inset
  4749. shape
  4750. \begin_inset Quotes erd
  4751. \end_inset
  4752. of the promoter coverage for promoters in that cluster.
  4753. PCA was performed on the same data, and the first two principal components
  4754. were plotted, coloring each point by its K-means cluster identity (b).
  4755. For each cluster, the distribution of gene expression values was plotted
  4756. (c).
  4757. \end_layout
  4758. \end_inset
  4759. \end_layout
  4760. \end_inset
  4761. \end_layout
  4762. \begin_layout Standard
  4763. \begin_inset ERT
  4764. status open
  4765. \begin_layout Plain Layout
  4766. \backslash
  4767. end{landscape}
  4768. \end_layout
  4769. \begin_layout Plain Layout
  4770. }
  4771. \end_layout
  4772. \end_inset
  4773. \end_layout
  4774. \begin_layout Standard
  4775. \begin_inset Flex TODO Note (inline)
  4776. status open
  4777. \begin_layout Plain Layout
  4778. Should maybe re-explain what was done or refer back to the previous section.
  4779. \end_layout
  4780. \end_inset
  4781. \end_layout
  4782. \begin_layout Standard
  4783. Unlike both H3K4 marks, whose main patterns of variation appear directly
  4784. related to the size and position of a single peak within the promoter,
  4785. the patterns of H3K27me3 methylation in promoters are more complex (Figure
  4786. \begin_inset CommandInset ref
  4787. LatexCommand ref
  4788. reference "fig:H3K27me3-neighborhood"
  4789. plural "false"
  4790. caps "false"
  4791. noprefix "false"
  4792. \end_inset
  4793. ).
  4794. Once again looking at the relative coverage in a 500-bp wide bins in a
  4795. 5kb radius around each TSS, promoters were clustered based on the normalized
  4796. relative coverage values in each bin using
  4797. \begin_inset Formula $k$
  4798. \end_inset
  4799. -means clustering with
  4800. \begin_inset Formula $K=6$
  4801. \end_inset
  4802. (Figure
  4803. \begin_inset CommandInset ref
  4804. LatexCommand ref
  4805. reference "fig:H3K27me3-neighborhood-clusters"
  4806. plural "false"
  4807. caps "false"
  4808. noprefix "false"
  4809. \end_inset
  4810. ).
  4811. This time, 3
  4812. \begin_inset Quotes eld
  4813. \end_inset
  4814. axes
  4815. \begin_inset Quotes erd
  4816. \end_inset
  4817. of variation can be observed, each represented by 2 clusters with opposing
  4818. patterns.
  4819. The first axis is greater upstream coverage (Cluster 1) vs.
  4820. greater downstream coverage (Cluster 3); the second axis is the coverage
  4821. at the TSS itself: peak (Cluster 4) or trough (Cluster 2); lastly, the
  4822. third axis represents a trough upstream of the TSS (Cluster 5) vs.
  4823. downstream of the TSS (Cluster 6).
  4824. Referring to these opposing pairs of clusters as axes of variation is justified
  4825. , because they correspond precisely to the first 3 principal components
  4826. in the PCA plot of the relative coverage values (Figure
  4827. \begin_inset CommandInset ref
  4828. LatexCommand ref
  4829. reference "fig:H3K27me3-neighborhood-pca"
  4830. plural "false"
  4831. caps "false"
  4832. noprefix "false"
  4833. \end_inset
  4834. ).
  4835. The PCA plot reveals that as in the case of H3K4me2, all the
  4836. \begin_inset Quotes eld
  4837. \end_inset
  4838. clusters
  4839. \begin_inset Quotes erd
  4840. \end_inset
  4841. are really just sections of a single connected cloud rather than discrete
  4842. clusters.
  4843. The cloud is approximately ellipsoid-shaped, with each PC being an axis
  4844. of the ellipse, and each cluster consisting of a pyrimidal section of the
  4845. ellipsoid.
  4846. \end_layout
  4847. \begin_layout Standard
  4848. In Figure
  4849. \begin_inset CommandInset ref
  4850. LatexCommand ref
  4851. reference "fig:H3K27me3-neighborhood-expression"
  4852. plural "false"
  4853. caps "false"
  4854. noprefix "false"
  4855. \end_inset
  4856. , we can see that Clusters 1 and 2 are the only clusters with higher gene
  4857. expression than the others.
  4858. For Cluster 2, this is expected, since this cluster represents genes with
  4859. depletion of H3K27me3 near the promoter.
  4860. Hence, elevated expression in cluster 2 is consistent with the conventional
  4861. view of H3K27me3 as a deactivating mark.
  4862. However, Cluster 1, the cluster with the most elevated gene expression,
  4863. represents genes with elevated coverage upstream of the TSS, or equivalently,
  4864. decreased coverage downstream, inside the gene body.
  4865. The opposite pattern, in which H3K27me3 is more abundant within the gene
  4866. body and less abundance in the upstream promoter region, does not show
  4867. any elevation in gene expression.
  4868. As with H3K4me2, this shows that the location of H3K27 trimethylation relative
  4869. to the TSS is potentially an important factor beyond simple proximity.
  4870. \end_layout
  4871. \begin_layout Standard
  4872. \begin_inset Flex TODO Note (inline)
  4873. status open
  4874. \begin_layout Plain Layout
  4875. Show the figures where the negative result ended this line of inquiry.
  4876. I need to debug some errors resulting from an R upgrade to do this.
  4877. \end_layout
  4878. \end_inset
  4879. \end_layout
  4880. \begin_layout Subsection
  4881. Defined pattern analysis
  4882. \end_layout
  4883. \begin_layout Standard
  4884. \begin_inset Flex TODO Note (inline)
  4885. status open
  4886. \begin_layout Plain Layout
  4887. This was where I defined interesting expression patterns and then looked
  4888. at initial relative promoter coverage for each expression pattern.
  4889. Negative result.
  4890. I forgot about this until recently.
  4891. Worth including? Remember to also write methods.
  4892. \end_layout
  4893. \end_inset
  4894. \end_layout
  4895. \begin_layout Subsection
  4896. Promoter CpG islands?
  4897. \end_layout
  4898. \begin_layout Standard
  4899. \begin_inset Flex TODO Note (inline)
  4900. status collapsed
  4901. \begin_layout Plain Layout
  4902. I forgot until recently about the work I did on this.
  4903. Worth including? Remember to also write methods.
  4904. \end_layout
  4905. \end_inset
  4906. \end_layout
  4907. \begin_layout Section
  4908. Discussion
  4909. \end_layout
  4910. \begin_layout Standard
  4911. \begin_inset Flex TODO Note (inline)
  4912. status open
  4913. \begin_layout Plain Layout
  4914. Write better section headers
  4915. \end_layout
  4916. \end_inset
  4917. \end_layout
  4918. \begin_layout Subsection
  4919. Effective promoter radius
  4920. \end_layout
  4921. \begin_layout Standard
  4922. Figure
  4923. \begin_inset CommandInset ref
  4924. LatexCommand ref
  4925. reference "fig:near-promoter-peak-enrich"
  4926. plural "false"
  4927. caps "false"
  4928. noprefix "false"
  4929. \end_inset
  4930. shows that H3K4me2, H3K4me3, and H3K27me3 are all enriched near promoters,
  4931. relative to the rest of the genome, consistent with their conventionally
  4932. understood role in regulating gene transcription.
  4933. Interestingly, the radius within this enrichment occurs is not the same
  4934. for each histone mark.
  4935. H3K4me2 and H3K4me3 are enriched within a 1
  4936. \begin_inset space \thinspace{}
  4937. \end_inset
  4938. kb radius, while H3K27me3 is enriched within 2.5
  4939. \begin_inset space \thinspace{}
  4940. \end_inset
  4941. kb.
  4942. Notably, the determined promoter radius was consistent across all experimental
  4943. conditions, varying only between different histone marks.
  4944. This suggests that the conventional
  4945. \begin_inset Quotes eld
  4946. \end_inset
  4947. one size fits all
  4948. \begin_inset Quotes erd
  4949. \end_inset
  4950. approach of defining a single promoter region for each gene (or each TSS)
  4951. and using that same promoter region for analyzing all types of genomic
  4952. data within an experiment may not be appropriate, and a better approach
  4953. may be to use a separate promoter radius for each kind of data, with each
  4954. radius being derived from the data itself.
  4955. Furthermore, the apparent assymetry of upstream and downstream promoter
  4956. histone modification with respect to gene expression, seen in Figures
  4957. \begin_inset CommandInset ref
  4958. LatexCommand ref
  4959. reference "fig:H3K4me2-neighborhood"
  4960. plural "false"
  4961. caps "false"
  4962. noprefix "false"
  4963. \end_inset
  4964. ,
  4965. \begin_inset CommandInset ref
  4966. LatexCommand ref
  4967. reference "fig:H3K4me3-neighborhood"
  4968. plural "false"
  4969. caps "false"
  4970. noprefix "false"
  4971. \end_inset
  4972. , and
  4973. \begin_inset CommandInset ref
  4974. LatexCommand ref
  4975. reference "fig:H3K27me3-neighborhood"
  4976. plural "false"
  4977. caps "false"
  4978. noprefix "false"
  4979. \end_inset
  4980. , shows that even the concept of a promoter
  4981. \begin_inset Quotes eld
  4982. \end_inset
  4983. radius
  4984. \begin_inset Quotes erd
  4985. \end_inset
  4986. is likely an oversimplification.
  4987. At a minimum, nearby enrichment of peaks should be evaluated separately
  4988. for both upstream and downstream peaks, and an appropriate
  4989. \begin_inset Quotes eld
  4990. \end_inset
  4991. radius
  4992. \begin_inset Quotes erd
  4993. \end_inset
  4994. should be selected for each direction.
  4995. \end_layout
  4996. \begin_layout Standard
  4997. Figures
  4998. \begin_inset CommandInset ref
  4999. LatexCommand ref
  5000. reference "fig:H3K4me2-neighborhood"
  5001. plural "false"
  5002. caps "false"
  5003. noprefix "false"
  5004. \end_inset
  5005. and
  5006. \begin_inset CommandInset ref
  5007. LatexCommand ref
  5008. reference "fig:H3K4me3-neighborhood"
  5009. plural "false"
  5010. caps "false"
  5011. noprefix "false"
  5012. \end_inset
  5013. show that the determined promoter radius of 1
  5014. \begin_inset space ~
  5015. \end_inset
  5016. kb is approximately consistent with the distance from the TSS at which enrichmen
  5017. t of H3K4 methylationis correlates with increased expression, showing that
  5018. this radius, which was determined by a simple analysis of measuring the
  5019. distance from each TSS to the nearest peak, also has functional significance.
  5020. For H3K27me3, the correlation between histone modification near the promoter
  5021. and gene expression is more complex, involving non-peak variations such
  5022. as troughs in coverage at the TSS and asymmetric coverage upstream and
  5023. downstream, so it is difficult in this case to evaluate whether the 2.5
  5024. \begin_inset space ~
  5025. \end_inset
  5026. kb radius determined from TSS-to-peak distances is functionally significant.
  5027. However, the two patterns of coverage associated with elevated expression
  5028. levels both have interesting features within this radius.
  5029. \end_layout
  5030. \begin_layout Standard
  5031. \begin_inset Flex TODO Note (inline)
  5032. status open
  5033. \begin_layout Plain Layout
  5034. My instinct is to say
  5035. \begin_inset Quotes eld
  5036. \end_inset
  5037. further study is needed
  5038. \begin_inset Quotes erd
  5039. \end_inset
  5040. here, but that goes in Chapter 5, right?
  5041. \end_layout
  5042. \end_inset
  5043. \end_layout
  5044. \begin_layout Subsection
  5045. Convergence
  5046. \end_layout
  5047. \begin_layout Standard
  5048. \begin_inset Flex TODO Note (inline)
  5049. status open
  5050. \begin_layout Plain Layout
  5051. Look up some more references for these histone marks being involved in memory
  5052. differentiation.
  5053. (Ask Sarah)
  5054. \end_layout
  5055. \end_inset
  5056. \end_layout
  5057. \begin_layout Standard
  5058. We have observed that all 3 histone marks and the gene expression data all
  5059. exhibit evidence of convergence in abundance between naive and memory cells
  5060. by day 14 after activation (Figure
  5061. \begin_inset CommandInset ref
  5062. LatexCommand ref
  5063. reference "fig:PCoA-promoters"
  5064. plural "false"
  5065. caps "false"
  5066. noprefix "false"
  5067. \end_inset
  5068. , Table
  5069. \begin_inset CommandInset ref
  5070. LatexCommand ref
  5071. reference "tab:Number-signif-promoters"
  5072. plural "false"
  5073. caps "false"
  5074. noprefix "false"
  5075. \end_inset
  5076. ).
  5077. The MOFA latent factor scatter plots (Figure
  5078. \begin_inset CommandInset ref
  5079. LatexCommand ref
  5080. reference "fig:mofa-lf-scatter"
  5081. plural "false"
  5082. caps "false"
  5083. noprefix "false"
  5084. \end_inset
  5085. ) show that this pattern of convergence is captured in latent factor 5.
  5086. Like all the latent factors in this plot, this factor explains a substantial
  5087. portion of the variance in all 4 data sets, indicating a coordinated pattern
  5088. of variation shared across all histone marks and gene expression.
  5089. This, of course, is consistent with the expectation that any naive CD4
  5090. T-cells remaining at day 14 should have differentiated into memory cells
  5091. by that time, and should therefore have a genomic state similar to memory
  5092. cells.
  5093. This convergence is evidence that these histone marks all play an important
  5094. role in the naive-to-memory differentiation process.
  5095. A histone mark that was not involved in naive-to-memory differentiation
  5096. would not be expected to converge in this way after activation.
  5097. \end_layout
  5098. \begin_layout Standard
  5099. \begin_inset Float figure
  5100. wide false
  5101. sideways false
  5102. status collapsed
  5103. \begin_layout Plain Layout
  5104. \align center
  5105. \begin_inset Graphics
  5106. filename graphics/CD4-csaw/LaMere2016_fig8.pdf
  5107. lyxscale 50
  5108. width 60col%
  5109. groupId colwidth
  5110. \end_inset
  5111. \end_layout
  5112. \begin_layout Plain Layout
  5113. \begin_inset Caption Standard
  5114. \begin_layout Plain Layout
  5115. \series bold
  5116. \begin_inset CommandInset label
  5117. LatexCommand label
  5118. name "fig:Lamere2016-Fig8"
  5119. \end_inset
  5120. Lamere 2016 Figure 8
  5121. \begin_inset CommandInset citation
  5122. LatexCommand cite
  5123. key "LaMere2016"
  5124. literal "false"
  5125. \end_inset
  5126. ,
  5127. \begin_inset Quotes eld
  5128. \end_inset
  5129. Model for the role of H3K4 methylation during CD4 T-cell activation.
  5130. \begin_inset Quotes erd
  5131. \end_inset
  5132. \series default
  5133. Reproduced with permission.
  5134. \end_layout
  5135. \end_inset
  5136. \end_layout
  5137. \end_inset
  5138. \end_layout
  5139. \begin_layout Standard
  5140. In H3K4me2, H3K4me3, and RNA-seq, this convergence appears to be in progress
  5141. already by Day 5, shown by the smaller distance between naive and memory
  5142. cells at day 5 along the
  5143. \begin_inset Formula $y$
  5144. \end_inset
  5145. -axes in Figures
  5146. \begin_inset CommandInset ref
  5147. LatexCommand ref
  5148. reference "fig:PCoA-H3K4me2-prom"
  5149. plural "false"
  5150. caps "false"
  5151. noprefix "false"
  5152. \end_inset
  5153. ,
  5154. \begin_inset CommandInset ref
  5155. LatexCommand ref
  5156. reference "fig:PCoA-H3K4me3-prom"
  5157. plural "false"
  5158. caps "false"
  5159. noprefix "false"
  5160. \end_inset
  5161. , and
  5162. \begin_inset CommandInset ref
  5163. LatexCommand ref
  5164. reference "fig:RNA-PCA-group"
  5165. plural "false"
  5166. caps "false"
  5167. noprefix "false"
  5168. \end_inset
  5169. .
  5170. This agrees with the model proposed by Sarah Lamere based on an prior analysis
  5171. of the same data, shown in Figure
  5172. \begin_inset CommandInset ref
  5173. LatexCommand ref
  5174. reference "fig:Lamere2016-Fig8"
  5175. plural "false"
  5176. caps "false"
  5177. noprefix "false"
  5178. \end_inset
  5179. , which shows the pattern of H3K4 methylation and expression for naive cells
  5180. and memory cells converging at day 5.
  5181. This model was developed without the benefit of the PCoA plots in Figure
  5182. \begin_inset CommandInset ref
  5183. LatexCommand ref
  5184. reference "fig:PCoA-promoters"
  5185. plural "false"
  5186. caps "false"
  5187. noprefix "false"
  5188. \end_inset
  5189. , which have been corrected for confounding factors by ComBat and SVA.
  5190. This shows that proper batch correction assists in extracting meaningful
  5191. patterns in the data while eliminating systematic sources of irrelevant
  5192. variation in the data, allowing simple automated procedures like PCoA to
  5193. reveal interesting behaviors in the data that were previously only detectable
  5194. by a detailed manual analysis.
  5195. \end_layout
  5196. \begin_layout Standard
  5197. While the ideal comparison to demonstrate this convergence would be naive
  5198. cells at day 14 to memory cells at day 0, this is not feasible in this
  5199. experimental system, since neither naive nor memory cells are able to fully
  5200. return to their pre-activation state, as shown by the lack of overlap between
  5201. days 0 and 14 for either naive or memory cells in Figure
  5202. \begin_inset CommandInset ref
  5203. LatexCommand ref
  5204. reference "fig:PCoA-promoters"
  5205. plural "false"
  5206. caps "false"
  5207. noprefix "false"
  5208. \end_inset
  5209. .
  5210. \end_layout
  5211. \begin_layout Subsection
  5212. Positional
  5213. \end_layout
  5214. \begin_layout Standard
  5215. When looking at patterns in the relative coverage of each histone mark near
  5216. the TSS of each gene, several interesting patterns were apparent.
  5217. For H3K4me2 and H3K4me3, the pattern was straightforward: the consistent
  5218. pattern across all promoters was a single peak a few kb wide, with the
  5219. main axis of variation being the position of this peak relative to the
  5220. TSS (Figures
  5221. \begin_inset CommandInset ref
  5222. LatexCommand ref
  5223. reference "fig:H3K4me2-neighborhood"
  5224. plural "false"
  5225. caps "false"
  5226. noprefix "false"
  5227. \end_inset
  5228. &
  5229. \begin_inset CommandInset ref
  5230. LatexCommand ref
  5231. reference "fig:H3K4me3-neighborhood"
  5232. plural "false"
  5233. caps "false"
  5234. noprefix "false"
  5235. \end_inset
  5236. ).
  5237. There were no obvious
  5238. \begin_inset Quotes eld
  5239. \end_inset
  5240. preferred
  5241. \begin_inset Quotes erd
  5242. \end_inset
  5243. positions, but rather a continuous distribution of relative positions ranging
  5244. all across the promoter region.
  5245. The association with gene expression was also straightforward: peaks closer
  5246. to the TSS were more strongly associated with elevated gene expression.
  5247. Coverage downstream of the TSS appears to be more strongly associated with
  5248. elevated expression than coverage the same distance upstream, indicating
  5249. that the
  5250. \begin_inset Quotes eld
  5251. \end_inset
  5252. effective promoter region
  5253. \begin_inset Quotes erd
  5254. \end_inset
  5255. for H3K4me2 and H3K4me3 may be centered downstream of the TSS.
  5256. \end_layout
  5257. \begin_layout Standard
  5258. The relative promoter coverage for H3K27me3 had a more complex pattern,
  5259. with two specific patterns of promoter coverage associated with elevated
  5260. expression: a sharp depletion of H3K27me3 around the TSS relative to the
  5261. surrounding area, and a depletion of H3K27me3 downstream of the TSS relative
  5262. to upstream (Figure
  5263. \begin_inset CommandInset ref
  5264. LatexCommand ref
  5265. reference "fig:H3K27me3-neighborhood"
  5266. plural "false"
  5267. caps "false"
  5268. noprefix "false"
  5269. \end_inset
  5270. ).
  5271. A previous study found that H3K27me3 depletion within the gene body was
  5272. associated with elevated gene expression in 4 different cell types in mice
  5273. \begin_inset CommandInset citation
  5274. LatexCommand cite
  5275. key "Young2011"
  5276. literal "false"
  5277. \end_inset
  5278. .
  5279. This is consistent with the second pattern described here.
  5280. This study also reported that a spike in coverage at the TSS was associated
  5281. with
  5282. \emph on
  5283. lower
  5284. \emph default
  5285. expression, which is indirectly consistent with the first pattern described
  5286. here, in the sense that it associates lower H3K27me3 levels near the TSS
  5287. with higher expression.
  5288. \end_layout
  5289. \begin_layout Subsection
  5290. Workflow
  5291. \end_layout
  5292. \begin_layout Standard
  5293. \begin_inset ERT
  5294. status open
  5295. \begin_layout Plain Layout
  5296. \backslash
  5297. afterpage{
  5298. \end_layout
  5299. \begin_layout Plain Layout
  5300. \backslash
  5301. begin{landscape}
  5302. \end_layout
  5303. \end_inset
  5304. \end_layout
  5305. \begin_layout Standard
  5306. \begin_inset Float figure
  5307. wide false
  5308. sideways false
  5309. status open
  5310. \begin_layout Plain Layout
  5311. \align center
  5312. \begin_inset Graphics
  5313. filename graphics/CD4-csaw/rulegraphs/rulegraph-all.pdf
  5314. lyxscale 50
  5315. width 100col%
  5316. height 95theight%
  5317. \end_inset
  5318. \end_layout
  5319. \begin_layout Plain Layout
  5320. \begin_inset Caption Standard
  5321. \begin_layout Plain Layout
  5322. \begin_inset CommandInset label
  5323. LatexCommand label
  5324. name "fig:rulegraph"
  5325. \end_inset
  5326. \series bold
  5327. Dependency graph of steps in reproducible workflow.
  5328. \end_layout
  5329. \end_inset
  5330. \end_layout
  5331. \end_inset
  5332. \end_layout
  5333. \begin_layout Standard
  5334. \begin_inset ERT
  5335. status open
  5336. \begin_layout Plain Layout
  5337. \backslash
  5338. end{landscape}
  5339. \end_layout
  5340. \begin_layout Plain Layout
  5341. }
  5342. \end_layout
  5343. \end_inset
  5344. \end_layout
  5345. \begin_layout Standard
  5346. The analyses described in this chapter were organized into a reproducible
  5347. workflow using the Snakemake workflow management system.
  5348. As shown in Figure
  5349. \begin_inset CommandInset ref
  5350. LatexCommand ref
  5351. reference "fig:rulegraph"
  5352. plural "false"
  5353. caps "false"
  5354. noprefix "false"
  5355. \end_inset
  5356. , the workflow includes many steps with complex dependencies between them.
  5357. For example, the step that counts the number of ChIP-seq reads in 500
  5358. \begin_inset space ~
  5359. \end_inset
  5360. bp windows in each promoter (the starting point for Figures
  5361. \begin_inset CommandInset ref
  5362. LatexCommand ref
  5363. reference "fig:H3K4me2-neighborhood"
  5364. plural "false"
  5365. caps "false"
  5366. noprefix "false"
  5367. \end_inset
  5368. ,
  5369. \begin_inset CommandInset ref
  5370. LatexCommand ref
  5371. reference "fig:H3K4me3-neighborhood"
  5372. plural "false"
  5373. caps "false"
  5374. noprefix "false"
  5375. \end_inset
  5376. , and
  5377. \begin_inset CommandInset ref
  5378. LatexCommand ref
  5379. reference "fig:H3K27me3-neighborhood"
  5380. plural "false"
  5381. caps "false"
  5382. noprefix "false"
  5383. \end_inset
  5384. ), named
  5385. \begin_inset Formula $\texttt{chipseq\_count\_tss\_neighborhoods}$
  5386. \end_inset
  5387. , depends on the RNA-seq abundance estimates in order to select the most-used
  5388. TSS for each gene, the aligned ChIP-seq reads, the index for those reads,
  5389. and the blacklist of regions to be excluded from ChIP-seq analysis.
  5390. Each step declares its inputs and outputs, and Snakemake uses these to
  5391. determine the dependencies between steps.
  5392. Each step is marked as depending on all the steps whose outputs match its
  5393. inputs, generating the workflow graph in Figure
  5394. \begin_inset CommandInset ref
  5395. LatexCommand ref
  5396. reference "fig:rulegraph"
  5397. plural "false"
  5398. caps "false"
  5399. noprefix "false"
  5400. \end_inset
  5401. , which Snakemake uses to determine order in which to execute each step
  5402. so that each step is executed only after all of the steps it depends on
  5403. have completed, thereby automating the entire workflow from start to finish.
  5404. \end_layout
  5405. \begin_layout Standard
  5406. In addition to simply making it easier to organize the steps in the analysis,
  5407. structuring the analysis as a workflow allowed for some analysis strategies
  5408. that would not have been practical otherwise.
  5409. For example, 5 different RNA-seq quantification methods were tested against
  5410. two different reference transcriptome annotations for a total of 10 different
  5411. quantifications of the same RNA-seq data.
  5412. These were then compared against each other in the exploratory data analysis
  5413. step, to determine that the results were not very sensitive to either the
  5414. choice of quantification method or the choice of annotation.
  5415. This was possible with a single script for the exploratory data analysis,
  5416. because Snakemake was able to automate running this script for every combinatio
  5417. n of method and reference.
  5418. In a similar manner, two different peak calling methods were tested against
  5419. each other, and in this case it was determined that SICER was unambiguously
  5420. superior to MACS for all histone marks studied.
  5421. By enabling these types of comparisons, structuring the analysis as an
  5422. automated workflow allowed important analysis decisions to be made in a
  5423. data-driven way, by running every reasonable option through the downstream
  5424. steps, seeing the consequences of choosing each option, and deciding accordingl
  5425. y.
  5426. \end_layout
  5427. \begin_layout Subsection
  5428. Data quality issues limit conclusions
  5429. \end_layout
  5430. \begin_layout Standard
  5431. \begin_inset Flex TODO Note (inline)
  5432. status open
  5433. \begin_layout Plain Layout
  5434. Is this needed?
  5435. \end_layout
  5436. \end_inset
  5437. \end_layout
  5438. \begin_layout Section
  5439. Future Directions
  5440. \end_layout
  5441. \begin_layout Standard
  5442. The analysis of RNA-seq and ChIP-seq in CD4 T-cells in Chapter 2 is in many
  5443. ways a preliminary study that suggests a multitude of new avenues of investigat
  5444. ion.
  5445. Here we consider a selection of such avenues.
  5446. \end_layout
  5447. \begin_layout Subsection
  5448. Negative results
  5449. \end_layout
  5450. \begin_layout Standard
  5451. Two additional analyses were conducted beyond those reported in the results.
  5452. First, we searched for evidence that the presence or absence of a CpG island
  5453. in the promoter was correlated with increases or decreases in gene expression
  5454. or any histone mark in any of the tested contrasts.
  5455. Second, we searched for evidence that the relative ChIP-seq coverage profiles
  5456. prior to activations could predict the change in expression of a gene after
  5457. activation.
  5458. Neither analysis turned up any clear positive results.
  5459. \end_layout
  5460. \begin_layout Subsection
  5461. Improve on the idea of an effective promoter radius
  5462. \end_layout
  5463. \begin_layout Standard
  5464. This study introduced the concept of an
  5465. \begin_inset Quotes eld
  5466. \end_inset
  5467. effective promoter radius
  5468. \begin_inset Quotes erd
  5469. \end_inset
  5470. specific to each histone mark based on distince from the TSS within which
  5471. an excess of peaks was called for that mark.
  5472. This concept was then used to guide further analyses throughout the study.
  5473. However, while the effective promoter radius was useful in those analyses,
  5474. it is both limited in theory and shown in practice to be a possible oversimplif
  5475. ication.
  5476. First, the effective promoter radii used in this study were chosen based
  5477. on manual inspection of the TSS-to-peak distance distributions in Figure
  5478. \begin_inset CommandInset ref
  5479. LatexCommand ref
  5480. reference "fig:near-promoter-peak-enrich"
  5481. plural "false"
  5482. caps "false"
  5483. noprefix "false"
  5484. \end_inset
  5485. , selecting round numbers of analyst convenience (Table
  5486. \begin_inset CommandInset ref
  5487. LatexCommand ref
  5488. reference "tab:effective-promoter-radius"
  5489. plural "false"
  5490. caps "false"
  5491. noprefix "false"
  5492. \end_inset
  5493. ).
  5494. It would be better to define an algorithm that selects a more precise radius
  5495. based on the features of the graph.
  5496. One possible way to do this would be to randomly rearrange the called peaks
  5497. throughout the genome many (while preserving the distribution of peak widths)
  5498. and re-generate the same plot as in Figure
  5499. \begin_inset CommandInset ref
  5500. LatexCommand ref
  5501. reference "fig:near-promoter-peak-enrich"
  5502. plural "false"
  5503. caps "false"
  5504. noprefix "false"
  5505. \end_inset
  5506. .
  5507. This would yield a better
  5508. \begin_inset Quotes eld
  5509. \end_inset
  5510. background
  5511. \begin_inset Quotes erd
  5512. \end_inset
  5513. distribution that demonstrates the degree of near-TSS enrichment that would
  5514. be expected by random chance.
  5515. The effective promoter radius could be defined as the point where the true
  5516. distribution diverges from the randomized background distribution.
  5517. \end_layout
  5518. \begin_layout Standard
  5519. Furthermore, the above definition of effective promoter radius has the significa
  5520. nt limitation of being based on the peak calling method.
  5521. It is thus very sensitive to the choice of peak caller and significance
  5522. threshold for calling peaks, as well as the degree of saturation in the
  5523. sequencing.
  5524. Calling peaks from ChIP-seq samples with insufficient coverage depth, with
  5525. the wrong peak caller, or with a different significance threshold could
  5526. give a drastically different number of called peaks, and hence a drastically
  5527. different distribution of peak-to-TSS distances.
  5528. To address this, it is desirable to develop a better method of determining
  5529. the effective promoter radius that relies only on the distribution of read
  5530. coverage around the TSS, independent of the peak calling.
  5531. Furthermore, as demonstrated by the upstream-downstream asymmetries observed
  5532. in Figures
  5533. \begin_inset CommandInset ref
  5534. LatexCommand ref
  5535. reference "fig:H3K4me2-neighborhood"
  5536. plural "false"
  5537. caps "false"
  5538. noprefix "false"
  5539. \end_inset
  5540. ,
  5541. \begin_inset CommandInset ref
  5542. LatexCommand ref
  5543. reference "fig:H3K4me3-neighborhood"
  5544. plural "false"
  5545. caps "false"
  5546. noprefix "false"
  5547. \end_inset
  5548. , and
  5549. \begin_inset CommandInset ref
  5550. LatexCommand ref
  5551. reference "fig:H3K27me3-neighborhood"
  5552. plural "false"
  5553. caps "false"
  5554. noprefix "false"
  5555. \end_inset
  5556. , this definition should determine a different radius for the upstream and
  5557. downstream directions.
  5558. At this point, it may be better to rename this concept
  5559. \begin_inset Quotes eld
  5560. \end_inset
  5561. effective promoter extent
  5562. \begin_inset Quotes erd
  5563. \end_inset
  5564. and avoid the word
  5565. \begin_inset Quotes eld
  5566. \end_inset
  5567. radius
  5568. \begin_inset Quotes erd
  5569. \end_inset
  5570. , since a radius implies a symmetry about the TSS that is not supported
  5571. by the data.
  5572. \end_layout
  5573. \begin_layout Standard
  5574. Beyond improving the definition of effective promoter extent, functional
  5575. validation is necessary to show that this measure of near-TSS enrichment
  5576. has biological meaning.
  5577. Figures
  5578. \begin_inset CommandInset ref
  5579. LatexCommand ref
  5580. reference "fig:H3K4me2-neighborhood"
  5581. plural "false"
  5582. caps "false"
  5583. noprefix "false"
  5584. \end_inset
  5585. and
  5586. \begin_inset CommandInset ref
  5587. LatexCommand ref
  5588. reference "fig:H3K4me3-neighborhood"
  5589. plural "false"
  5590. caps "false"
  5591. noprefix "false"
  5592. \end_inset
  5593. already provide a very limited functional validation of the chosen promoter
  5594. extents for H3K4me2 and H3K4me3 by showing that spikes in coverage within
  5595. this region are most strongly correlated with elevated gene expression.
  5596. However, there are other ways to show functional relevance of the promoter
  5597. extent.
  5598. For example, correlations could be computed between read counts in peaks
  5599. nearby gene promoters and the expression level of those genes, and these
  5600. correlations could be plotted against the distance of the peak upstream
  5601. or downstream of the gene's TSS.
  5602. If the promoter extent truly defines a
  5603. \begin_inset Quotes eld
  5604. \end_inset
  5605. sphere of influence
  5606. \begin_inset Quotes erd
  5607. \end_inset
  5608. within which a histone mark is involved with the regulation of a gene,
  5609. then the correlations for peaks within this extent should be significantly
  5610. higher than those further upstream or downstream.
  5611. Peaks within these extents may also be more likely to show differential
  5612. modification than those outside genic regions of the genome.
  5613. \end_layout
  5614. \begin_layout Subsection
  5615. Design experiments to focus on post-activation convergence of naive & memory
  5616. cells
  5617. \end_layout
  5618. \begin_layout Standard
  5619. In this study, a convergence between naive and memory cells was observed
  5620. in both the pattern of gene expression and in epigenetic state of the 3
  5621. histone marks studied, consistent with the hypothesis that any naive cells
  5622. remaining 14 days after activation have differentiated into memory cells,
  5623. and that both gene expression and these histone marks are involved in this
  5624. differentiation.
  5625. However, the current study was not designed with this specific hypothesis
  5626. in mind, and it therefore has some deficiencies with regard to testing
  5627. it.
  5628. The memory CD4 samples at day 14 do not resemble the memory samples at
  5629. day 0, indicating that in the specific model of activation used for this
  5630. experiment, the cells are not guaranteed to return to their original pre-activa
  5631. tion state, or perhaps this process takes substantially longer than 14 days.
  5632. This is a challenge for the convergence hypothesis because the ideal comparison
  5633. to prove that naive cells are converging to a resting memory state would
  5634. be to compare the final naive time point to the Day 0 memory samples, but
  5635. this comparison is only meaningful if memory cells generally return to
  5636. the same
  5637. \begin_inset Quotes eld
  5638. \end_inset
  5639. resting
  5640. \begin_inset Quotes erd
  5641. \end_inset
  5642. state that they started at.
  5643. \end_layout
  5644. \begin_layout Standard
  5645. To better study the convergence hypothesis, a new experiment should be designed
  5646. using a model system for T-cell activation that is known to allow cells
  5647. to return as closely as possible to their pre-activation state.
  5648. Alternatively, if it is not possible to find or design such a model system,
  5649. the same cell cultures could be activated serially multiple times, and
  5650. sequenced after each activation cycle right before the next activation.
  5651. It is likely that several activations in the same model system will settle
  5652. into a cylical pattern, converging to a consistent
  5653. \begin_inset Quotes eld
  5654. \end_inset
  5655. resting
  5656. \begin_inset Quotes erd
  5657. \end_inset
  5658. state after each activation, even if this state is different from the initial
  5659. resting state at Day 0.
  5660. If so, it will be possible to compare the final states of both naive and
  5661. memory cells to show that they converge despite different initial conditions.
  5662. \end_layout
  5663. \begin_layout Standard
  5664. In addition, if naive-to-memory convergence is a general pattern, it should
  5665. also be detectable in other epigenetic marks, including other histone marks
  5666. and DNA methylation.
  5667. An experiment should be designed studying a large number of epigenetic
  5668. marks known or suspected to be involved in regulation of gene expression,
  5669. assaying all of these at the same pre- and post-activation time points.
  5670. Multi-dataset factor analysis methods like MOFA can then be used to identify
  5671. coordinated patterns of regulation shared across many epigenetic marks.
  5672. If possible, some
  5673. \begin_inset Quotes eld
  5674. \end_inset
  5675. negative control
  5676. \begin_inset Quotes erd
  5677. \end_inset
  5678. marks should be included that are known
  5679. \emph on
  5680. not
  5681. \emph default
  5682. to be involved in T-cell activation or memory formation.
  5683. Of course, CD4 T-cells are not the only adaptive immune cells with memory.
  5684. A similar study could be designed for CD8 T-cells, B-cells, and even specific
  5685. subsets of CD4 T-cells.
  5686. \end_layout
  5687. \begin_layout Subsection
  5688. Follow up on hints of interesting patterns in promoter relative coverage
  5689. profiles
  5690. \end_layout
  5691. \begin_layout Standard
  5692. \begin_inset Flex TODO Note (inline)
  5693. status open
  5694. \begin_layout Plain Layout
  5695. I think I might need to write up the negative results for the Promoter CpG
  5696. and defined pattern analysis before writing this section.
  5697. \end_layout
  5698. \end_inset
  5699. \end_layout
  5700. \begin_layout Itemize
  5701. Also find better normalizations: maybe borrow from MACS/SICER background
  5702. correction methods?
  5703. \end_layout
  5704. \begin_layout Itemize
  5705. For H3K4, define polar coordinates based on PC1 & 2: R = peak size, Theta
  5706. = peak position.
  5707. Then correlate with expression.
  5708. \end_layout
  5709. \begin_layout Itemize
  5710. Current analysis only at Day 0.
  5711. Need to study across time points.
  5712. \end_layout
  5713. \begin_layout Itemize
  5714. Integrating data across so many dimensions is a significant analysis challenge
  5715. \end_layout
  5716. \begin_layout Subsection
  5717. Investigate causes of high correlation between mutually exclusive histone
  5718. marks
  5719. \end_layout
  5720. \begin_layout Standard
  5721. The high correlation between coverage depth observed between H3K4me2 and
  5722. H3K4me3 is both expected and unexpected.
  5723. Since both marks are associated with elevated gene transcription, a positive
  5724. correlation between them is not surprising.
  5725. However, these two marks represent different post-translational modifications
  5726. of the
  5727. \emph on
  5728. same
  5729. \emph default
  5730. lysine residue on the histone H3 polypeptide, which means that they cannot
  5731. both be present on the same H3 subunit.
  5732. Thus, the high correlation between them has several potential explanations.
  5733. One possible reason is cell population heterogeneity: perhaps some genomic
  5734. loci are frequently marked with H3K4me2 in some cells, while in other cells
  5735. the same loci are marked with H3K4me3.
  5736. Another possibility is allele-specific modifications: the loci are marked
  5737. in each diploid cell with H3K4me2 on one allele and H3K4me3 on the other
  5738. allele.
  5739. Lastly, since each histone octamer contains 2 H3 subunits, it is possible
  5740. that having one H3K4me2 mark and one H3K4me3 mark on a given histone octamer
  5741. represents a distinct epigenetic state with a different function than either
  5742. double H3K4me2 or double H3K4me3.
  5743. \end_layout
  5744. \begin_layout Standard
  5745. These three hypotheses could be disentangled by single-cell ChIP-seq.
  5746. If the correlation between these two histone marks persists even within
  5747. the reads for each individual cell, then cell population heterogeneity
  5748. cannot explain the correlation.
  5749. Allele-specific modification can be tested for by looking at the correlation
  5750. between read coverage of the two histone marks at heterozygous loci.
  5751. If the correlation between read counts for opposite loci is low, then this
  5752. is consistent with allele-specific modification.
  5753. Finally if the modifications do not separate by either cell or allele,
  5754. the colocation of these two marks is most likely occurring at the level
  5755. of individual histones, with the heterogenously modified histone representing
  5756. a distinct state.
  5757. \end_layout
  5758. \begin_layout Standard
  5759. However, another experiment would be required to show direct evidence of
  5760. such a heterogeneously modified state.
  5761. Specifically a
  5762. \begin_inset Quotes eld
  5763. \end_inset
  5764. double ChIP
  5765. \begin_inset Quotes erd
  5766. \end_inset
  5767. experiment would need to be performed, where the input DNA is first subjected
  5768. to an immunoprecipitation pulldown from the anti-H3K4me2 antibody, and
  5769. then the enriched material is collected, with proteins still bound, and
  5770. immunoprecipitated
  5771. \emph on
  5772. again
  5773. \emph default
  5774. using the anti-H3K4me3 antibody.
  5775. If this yields significant numbers of non-artifactual reads in the same
  5776. regions as the individual pulldowns of the two marks, this is strong evidence
  5777. that the two marks are occurring on opposite H3 subunits of the same histones.
  5778. \end_layout
  5779. \begin_layout Standard
  5780. \begin_inset Flex TODO Note (inline)
  5781. status open
  5782. \begin_layout Plain Layout
  5783. Try to see if double ChIP-seq is actually feasible, and if not, come up
  5784. with some other idea for directly detecting the mixed mod state.
  5785. Oh! Actually ChIP-seq isn't required, only double ChIP followed by quantificati
  5786. on.
  5787. That's one possible angle.
  5788. \end_layout
  5789. \end_inset
  5790. \end_layout
  5791. \begin_layout Chapter
  5792. Improving array-based diagnostics for transplant rejection by optimizing
  5793. data preprocessing
  5794. \end_layout
  5795. \begin_layout Standard
  5796. \begin_inset Note Note
  5797. status open
  5798. \begin_layout Plain Layout
  5799. Chapter author list: Me, Sunil, Tom, Padma, Dan
  5800. \end_layout
  5801. \end_inset
  5802. \end_layout
  5803. \begin_layout Section
  5804. Approach
  5805. \end_layout
  5806. \begin_layout Subsection
  5807. Proper pre-processing is essential for array data
  5808. \end_layout
  5809. \begin_layout Standard
  5810. \begin_inset Flex TODO Note (inline)
  5811. status open
  5812. \begin_layout Plain Layout
  5813. This section could probably use some citations
  5814. \end_layout
  5815. \end_inset
  5816. \end_layout
  5817. \begin_layout Standard
  5818. Microarrays, bead arrays, and similar assays produce raw data in the form
  5819. of fluorescence intensity measurements, with the each intensity measurement
  5820. proportional to the abundance of some fluorescently-labelled target DNA
  5821. or RNA sequence that base pairs to a specific probe sequence.
  5822. However, these measurements for each probe are also affected my many technical
  5823. confounding factors, such as the concentration of target material, strength
  5824. of off-target binding, and the sensitivity of the imaging sensor.
  5825. Some array designs also use multiple probe sequences for each target.
  5826. Hence, extensive pre-processing of array data is necessary to normalize
  5827. out the effects of these technical factors and summarize the information
  5828. from multiple probes to arrive at a single usable estimate of abundance
  5829. or other relevant quantity, such as a ratio of two abundances, for each
  5830. target.
  5831. \end_layout
  5832. \begin_layout Standard
  5833. The choice of pre-processing algorithms used in the analysis of an array
  5834. data set can have a large effect on the results of that analysis.
  5835. However, despite their importance, these steps are often neglected or rushed
  5836. in order to get to the more scientifically interesting analysis steps involving
  5837. the actual biology of the system under study.
  5838. Hence, it is often possible to achieve substantial gains in statistical
  5839. power, model goodness-of-fit, or other relevant performance measures, by
  5840. checking the assumptions made by each preprocessing step and choosing specific
  5841. normalization methods tailored to the specific goals of the current analysis.
  5842. \end_layout
  5843. \begin_layout Subsection
  5844. Clinical diagnostic applications for microarrays require single-channel
  5845. normalization
  5846. \end_layout
  5847. \begin_layout Standard
  5848. As the cost of performing microarray assays falls, there is increasing interest
  5849. in using genomic assays for diagnostic purposes, such as distinguishing
  5850. healthy transplants (TX) from transplants undergoing acute rejection (AR)
  5851. or acute dysfunction with no rejection (ADNR).
  5852. However, the the standard normalization algorithm used for microarray data,
  5853. Robust Multi-chip Average (RMA)
  5854. \begin_inset CommandInset citation
  5855. LatexCommand cite
  5856. key "Irizarry2003a"
  5857. literal "false"
  5858. \end_inset
  5859. , is not applicable in a clinical setting.
  5860. Two of the steps in RMA, quantile normalization and probe summarization
  5861. by median polish, depend on every array in the data set being normalized.
  5862. This means that adding or removing any arrays from a data set changes the
  5863. normalized values for all arrays, and data sets that have been normalized
  5864. separately cannot be compared to each other.
  5865. Hence, when using RMA, any arrays to be analyzed together must also be
  5866. normalized together, and the set of arrays included in the data set must
  5867. be held constant throughout an analysis.
  5868. \end_layout
  5869. \begin_layout Standard
  5870. These limitations present serious impediments to the use of arrays as a
  5871. diagnostic tool.
  5872. When training a classifier, the samples to be classified must not be involved
  5873. in any step of the training process, lest their inclusion bias the training
  5874. process.
  5875. Once a classifier is deployed in a clinical setting, the samples to be
  5876. classified will not even
  5877. \emph on
  5878. exist
  5879. \emph default
  5880. at the time of training, so including them would be impossible even if
  5881. it were statistically justifiable.
  5882. Therefore, any machine learning application for microarrays demands that
  5883. the normalized expression values computed for an array must depend only
  5884. on information contained within that array.
  5885. This would ensure that each array's normalization is independent of every
  5886. other array, and that arrays normalized separately can still be compared
  5887. to each other without bias.
  5888. Such a normalization is commonly referred to as
  5889. \begin_inset Quotes eld
  5890. \end_inset
  5891. single-channel normalization
  5892. \begin_inset Quotes erd
  5893. \end_inset
  5894. .
  5895. \end_layout
  5896. \begin_layout Standard
  5897. Frozen RMA (fRMA) addresses these concerns by replacing the quantile normalizati
  5898. on and median polish with alternatives that do not introduce inter-array
  5899. dependence, allowing each array to be normalized independently of all others
  5900. \begin_inset CommandInset citation
  5901. LatexCommand cite
  5902. key "McCall2010"
  5903. literal "false"
  5904. \end_inset
  5905. .
  5906. Quantile normalization is performed against a pre-generated set of quantiles
  5907. learned from a collection of 850 publically available arrays sampled from
  5908. a wide variety of tissues in the Gene Expression Omnibus (GEO).
  5909. Each array's probe intensity distribution is normalized against these pre-gener
  5910. ated quantiles.
  5911. The median polish step is replaced with a robust weighted average of probe
  5912. intensities, using inverse variance weights learned from the same public
  5913. GEO data.
  5914. The result is a normalization that satisfies the requirements mentioned
  5915. above: each array is normalized independently of all others, and any two
  5916. normalized arrays can be compared directly to each other.
  5917. \end_layout
  5918. \begin_layout Standard
  5919. One important limitation of fRMA is that it requires a separate reference
  5920. data set from which to learn the parameters (reference quantiles and probe
  5921. weights) that will be used to normalize each array.
  5922. These parameters are specific to a given array platform, and pre-generated
  5923. parameters are only provided for the most common platforms, such as Affymetrix
  5924. hgu133plus2.
  5925. For a less common platform, such as hthgu133pluspm, is is necessary to
  5926. learn custom parameters from in-house data before fRMA can be used to normalize
  5927. samples on that platform
  5928. \begin_inset CommandInset citation
  5929. LatexCommand cite
  5930. key "McCall2011"
  5931. literal "false"
  5932. \end_inset
  5933. .
  5934. \end_layout
  5935. \begin_layout Standard
  5936. One other option is the aptly-named Single Channel Array Normalization (SCAN),
  5937. which adapts a normalization method originally designed for tiling arrays
  5938. \begin_inset CommandInset citation
  5939. LatexCommand cite
  5940. key "Piccolo2012"
  5941. literal "false"
  5942. \end_inset
  5943. .
  5944. SCAN is truly single-channel in that it does not require a set of normalization
  5945. paramters estimated from an external set of reference samples like fRMA
  5946. does.
  5947. \end_layout
  5948. \begin_layout Subsection
  5949. Heteroskedasticity must be accounted for in methylation array data
  5950. \end_layout
  5951. \begin_layout Standard
  5952. DNA methylation arrays are a relatively new kind of assay that uses microarrays
  5953. to measure the degree of methylation on cytosines in specific regions arrayed
  5954. across the genome.
  5955. First, bisulfite treatment converts all unmethylated cytosines to uracil
  5956. (which then become thymine after amplication) while leaving methylated
  5957. cytosines unaffected.
  5958. Then, each target region is interrogated with two probes: one binds to
  5959. the original genomic sequence and interrogates the level of methylated
  5960. DNA, and the other binds to the same sequence with all cytosines replaced
  5961. by thymidines and interrogates the level of unmethylated DNA.
  5962. \end_layout
  5963. \begin_layout Standard
  5964. \begin_inset Float figure
  5965. wide false
  5966. sideways false
  5967. status collapsed
  5968. \begin_layout Plain Layout
  5969. \align center
  5970. \begin_inset Graphics
  5971. filename graphics/methylvoom/sigmoid.pdf
  5972. lyxscale 50
  5973. width 60col%
  5974. groupId colwidth
  5975. \end_inset
  5976. \end_layout
  5977. \begin_layout Plain Layout
  5978. \begin_inset Caption Standard
  5979. \begin_layout Plain Layout
  5980. \begin_inset CommandInset label
  5981. LatexCommand label
  5982. name "fig:Sigmoid-beta-m-mapping"
  5983. \end_inset
  5984. \series bold
  5985. Sigmoid shape of the mapping between β and M values
  5986. \end_layout
  5987. \end_inset
  5988. \end_layout
  5989. \end_inset
  5990. \end_layout
  5991. \begin_layout Standard
  5992. After normalization, these two probe intensities are summarized in one of
  5993. two ways, each with advantages and disadvantages.
  5994. β
  5995. \series bold
  5996. \series default
  5997. values, interpreted as fraction of DNA copies methylated, range from 0 to
  5998. 1.
  5999. β
  6000. \series bold
  6001. \series default
  6002. values are conceptually easy to interpret, but the constrained range makes
  6003. them unsuitable for linear modeling, and their error distributions are
  6004. highly non-normal, which also frustrates linear modeling.
  6005. M-values, interpreted as the log ratio of methylated to unmethylated copies,
  6006. are computed by mapping the beta values from
  6007. \begin_inset Formula $[0,1]$
  6008. \end_inset
  6009. onto
  6010. \begin_inset Formula $(-\infty,+\infty)$
  6011. \end_inset
  6012. using a sigmoid curve (Figure
  6013. \begin_inset CommandInset ref
  6014. LatexCommand ref
  6015. reference "fig:Sigmoid-beta-m-mapping"
  6016. plural "false"
  6017. caps "false"
  6018. noprefix "false"
  6019. \end_inset
  6020. ).
  6021. This transformation results in values with better statistical perperties:
  6022. the unconstrained range is suitable for linear modeling, and the error
  6023. distributions are more normal.
  6024. Hence, most linear modeling and other statistical testing on methylation
  6025. arrays is performed using M-values.
  6026. \end_layout
  6027. \begin_layout Standard
  6028. However, the steep slope of the sigmoid transformation near 0 and 1 tends
  6029. to over-exaggerate small differences in β values near those extremes, which
  6030. in turn amplifies the error in those values, leading to a U-shaped trend
  6031. in the mean-variance curve: extreme values have higher variances than values
  6032. near the middle.
  6033. This mean-variance dependency must be accounted for when fitting the linear
  6034. model for differential methylation, or else the variance will be systematically
  6035. overestimated for probes with moderate M-values and underestimated for
  6036. probes with extreme M-values.
  6037. This is particularly undesirable for methylation data because the intermediate
  6038. M-values are the ones of most interest, since they are more likely to represent
  6039. areas of varying methylation, whereas extreme M-values typically represent
  6040. complete methylation or complete lack of methylation.
  6041. \end_layout
  6042. \begin_layout Standard
  6043. RNA-seq read count data are also known to show heteroskedasticity, and the
  6044. voom method was introduced for modeling this heteroskedasticity by estimating
  6045. the mean-variance trend in the data and using this trend to assign precision
  6046. weights to each observation
  6047. \begin_inset CommandInset citation
  6048. LatexCommand cite
  6049. key "Law2013"
  6050. literal "false"
  6051. \end_inset
  6052. .
  6053. While methylation array data are not derived from counts and have a very
  6054. different mean-variance relationship from that of typical RNA-seq data,
  6055. the voom method makes no specific assumptions on the shape of the mean-variance
  6056. relationship – it only assumes that the relationship can be modeled as
  6057. a smooth curve.
  6058. Hence, the method is sufficiently general to model the mean-variance relationsh
  6059. ip in methylation array data.
  6060. However, the standard implementation of voom assumes that the input is
  6061. given in raw read counts, and it must be adapted to run on methylation
  6062. M-values.
  6063. \end_layout
  6064. \begin_layout Section
  6065. Methods
  6066. \end_layout
  6067. \begin_layout Subsection
  6068. Evaluation of classifier performance with different normalization methods
  6069. \end_layout
  6070. \begin_layout Standard
  6071. For testing different expression microarray normalizations, a data set of
  6072. 157 hgu133plus2 arrays was used, consisting of blood samples from kidney
  6073. transplant patients whose grafts had been graded as TX, AR, or ADNR via
  6074. biopsy and histology (46 TX, 69 AR, 42 ADNR)
  6075. \begin_inset CommandInset citation
  6076. LatexCommand cite
  6077. key "Kurian2014"
  6078. literal "true"
  6079. \end_inset
  6080. .
  6081. Additionally, an external validation set of 75 samples was gathered from
  6082. public GEO data (37 TX, 38 AR, no ADNR).
  6083. \end_layout
  6084. \begin_layout Standard
  6085. \begin_inset Flex TODO Note (inline)
  6086. status open
  6087. \begin_layout Plain Layout
  6088. Find appropriate GEO identifiers if possible.
  6089. Kurian 2014 says GSE15296, but this seems to be different data.
  6090. I also need to look up the GEO accession for the external validation set.
  6091. \end_layout
  6092. \end_inset
  6093. \end_layout
  6094. \begin_layout Standard
  6095. To evaluate the effect of each normalization on classifier performance,
  6096. the same classifier training and validation procedure was used after each
  6097. normalization method.
  6098. The PAM package was used to train a nearest shrunken centroid classifier
  6099. on the training set and select the appropriate threshold for centroid shrinking.
  6100. Then the trained classifier was used to predict the class probabilities
  6101. of each validation sample.
  6102. From these class probabilities, ROC curves and area-under-curve (AUC) values
  6103. were generated
  6104. \begin_inset CommandInset citation
  6105. LatexCommand cite
  6106. key "Turck2011"
  6107. literal "false"
  6108. \end_inset
  6109. .
  6110. Each normalization was tested on two different sets of training and validation
  6111. samples.
  6112. For internal validation, the 115 TX and AR arrays in the internal set were
  6113. split at random into two equal sized sets, one for training and one for
  6114. validation, each containing the same numbers of TX and AR samples as the
  6115. other set.
  6116. For external validation, the full set of 115 TX and AR samples were used
  6117. as a training set, and the 75 external TX and AR samples were used as the
  6118. validation set.
  6119. Thus, 2 ROC curves and AUC values were generated for each normalization
  6120. method: one internal and one external.
  6121. Because the external validation set contains no ADNR samples, only classificati
  6122. on of TX and AR samples was considered.
  6123. The ADNR samples were included during normalization but excluded from all
  6124. classifier training and validation.
  6125. This ensures that the performance on internal and external validation sets
  6126. is directly comparable, since both are performing the same task: distinguising
  6127. TX from AR.
  6128. \end_layout
  6129. \begin_layout Standard
  6130. \begin_inset Flex TODO Note (inline)
  6131. status open
  6132. \begin_layout Plain Layout
  6133. Summarize the get.best.threshold algorithm for PAM threshold selection, or
  6134. just put the code online?
  6135. \end_layout
  6136. \end_inset
  6137. \end_layout
  6138. \begin_layout Standard
  6139. Six different normalization strategies were evaluated.
  6140. First, 2 well-known non-single-channel normalization methods were considered:
  6141. RMA and dChip
  6142. \begin_inset CommandInset citation
  6143. LatexCommand cite
  6144. key "Li2001,Irizarry2003a"
  6145. literal "false"
  6146. \end_inset
  6147. .
  6148. Since RMA produces expression values on a log2 scale and dChip does not,
  6149. the values from dChip were log2 transformed after normalization.
  6150. Next, RMA and dChip followed by Global Rank-invariant Set Normalization
  6151. (GRSN) were tested
  6152. \begin_inset CommandInset citation
  6153. LatexCommand cite
  6154. key "Pelz2008"
  6155. literal "false"
  6156. \end_inset
  6157. .
  6158. Post-processing with GRSN does not turn RMA or dChip into single-channel
  6159. methods, but it may help mitigate batch effects and is therefore useful
  6160. as a benchmark.
  6161. Lastly, the two single-channel normalization methods, fRMA and SCAN, were
  6162. tested
  6163. \begin_inset CommandInset citation
  6164. LatexCommand cite
  6165. key "McCall2010,Piccolo2012"
  6166. literal "false"
  6167. \end_inset
  6168. .
  6169. When evaluting internal validation performance, only the 157 internal samples
  6170. were normalized; when evaluating external validation performance, all 157
  6171. internal samples and 75 external samples were normalized together.
  6172. \end_layout
  6173. \begin_layout Standard
  6174. For demonstrating the problem with separate normalization of training and
  6175. validation data, one additional normalization was performed: the internal
  6176. and external sets were each normalized separately using RMA, and the normalized
  6177. data for each set were combined into a single set with no further attempts
  6178. at normalizing between the two sets.
  6179. The represents approximately how RMA would have to be used in a clinical
  6180. setting, where the samples to be classified are not available at the time
  6181. the classifier is trained.
  6182. \end_layout
  6183. \begin_layout Subsection
  6184. Generating custom fRMA vectors for hthgu133pluspm array platform
  6185. \end_layout
  6186. \begin_layout Standard
  6187. In order to enable fRMA normalization for the hthgu133pluspm array platform,
  6188. custom fRMA normalization vectors were trained using the frmaTools package
  6189. \begin_inset CommandInset citation
  6190. LatexCommand cite
  6191. key "McCall2011"
  6192. literal "false"
  6193. \end_inset
  6194. .
  6195. Separate vectors were created for two types of samples: kidney graft biopsy
  6196. samples and blood samples from graft recipients.
  6197. For training, a 341 kidney biopsy samples from 2 data sets and 965 blood
  6198. samples from 5 data sets were used as the reference set.
  6199. Arrays were groups into batches based on unique combinations of sample
  6200. type (blood or biopsy), diagnosis (TX, AR, etc.), data set, and scan date.
  6201. Thus, each batch represents arrays of the same kind that were run together
  6202. on the same day.
  6203. For estimating the probe inverse variance weights, frmaTools requires equal-siz
  6204. ed batches, which means a batch size must be chosen, and then batches smaller
  6205. than that size must be ignored, while batches larger than the chosen size
  6206. must be downsampled.
  6207. This downsampling is performed randomly, so the sampling process is repeated
  6208. 5 times and the resulting normalizations are compared to each other.
  6209. \end_layout
  6210. \begin_layout Standard
  6211. To evaluate the consistency of the generated normalization vectors, the
  6212. 5 fRMA vector sets generated from 5 random batch samplings were each used
  6213. to normalize the same 20 randomly selected samples from each tissue.
  6214. Then the normalized expression values for each probe on each array were
  6215. compared across all normalizations.
  6216. Each fRMA normalization was also compared against the normalized expression
  6217. values obtained by normalizing the same 20 samples with ordinary RMA.
  6218. \end_layout
  6219. \begin_layout Subsection
  6220. Modeling methylation array M-value heteroskedasticy in linear models with
  6221. modified voom implementation
  6222. \end_layout
  6223. \begin_layout Standard
  6224. \begin_inset Flex TODO Note (inline)
  6225. status open
  6226. \begin_layout Plain Layout
  6227. Put code on Github and reference it.
  6228. \end_layout
  6229. \end_inset
  6230. \end_layout
  6231. \begin_layout Standard
  6232. To investigate the whether DNA methylation could be used to distinguish
  6233. between healthy and dysfunctional transplants, a data set of 78 Illumina
  6234. 450k methylation arrays from human kidney graft biopsies was analyzed for
  6235. differential metylation between 4 transplant statuses: healthy transplant
  6236. (TX), transplants undergoing acute rejection (AR), acute dysfunction with
  6237. no rejection (ADNR), and chronic allograpft nephropathy (CAN).
  6238. The data consisted of 33 TX, 9 AR, 8 ADNR, and 28 CAN samples.
  6239. The uneven group sizes are a result of taking the biopsy samples before
  6240. the eventual fate of the transplant was known.
  6241. Each sample was additionally annotated with a donor ID (anonymized), Sex,
  6242. Age, Ethnicity, Creatinine Level, and Diabetes diagnosois (all samples
  6243. in this data set came from patients with either Type 1 or Type 2 diabetes).
  6244. \end_layout
  6245. \begin_layout Standard
  6246. The intensity data were first normalized using subset-quantile within array
  6247. normalization (SWAN)
  6248. \begin_inset CommandInset citation
  6249. LatexCommand cite
  6250. key "Maksimovic2012"
  6251. literal "false"
  6252. \end_inset
  6253. , then converted to intensity ratios (beta values)
  6254. \begin_inset CommandInset citation
  6255. LatexCommand cite
  6256. key "Aryee2014"
  6257. literal "false"
  6258. \end_inset
  6259. .
  6260. Any probes binding to loci that overlapped annotated SNPs were dropped,
  6261. and the annotated sex of each sample was verified against the sex inferred
  6262. from the ratio of median probe intensities for the X and Y chromosomes.
  6263. Then, the ratios were transformed to M-values.
  6264. \end_layout
  6265. \begin_layout Standard
  6266. \begin_inset Float table
  6267. wide false
  6268. sideways false
  6269. status open
  6270. \begin_layout Plain Layout
  6271. \align center
  6272. \begin_inset Tabular
  6273. <lyxtabular version="3" rows="4" columns="6">
  6274. <features tabularvalignment="middle">
  6275. <column alignment="center" valignment="top">
  6276. <column alignment="center" valignment="top">
  6277. <column alignment="center" valignment="top">
  6278. <column alignment="center" valignment="top">
  6279. <column alignment="center" valignment="top">
  6280. <column alignment="center" valignment="top">
  6281. <row>
  6282. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6283. \begin_inset Text
  6284. \begin_layout Plain Layout
  6285. Analysis
  6286. \end_layout
  6287. \end_inset
  6288. </cell>
  6289. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6290. \begin_inset Text
  6291. \begin_layout Plain Layout
  6292. random effect
  6293. \end_layout
  6294. \end_inset
  6295. </cell>
  6296. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6297. \begin_inset Text
  6298. \begin_layout Plain Layout
  6299. eBayes
  6300. \end_layout
  6301. \end_inset
  6302. </cell>
  6303. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6304. \begin_inset Text
  6305. \begin_layout Plain Layout
  6306. SVA
  6307. \end_layout
  6308. \end_inset
  6309. </cell>
  6310. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6311. \begin_inset Text
  6312. \begin_layout Plain Layout
  6313. weights
  6314. \end_layout
  6315. \end_inset
  6316. </cell>
  6317. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  6318. \begin_inset Text
  6319. \begin_layout Plain Layout
  6320. voom
  6321. \end_layout
  6322. \end_inset
  6323. </cell>
  6324. </row>
  6325. <row>
  6326. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6327. \begin_inset Text
  6328. \begin_layout Plain Layout
  6329. A
  6330. \end_layout
  6331. \end_inset
  6332. </cell>
  6333. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6334. \begin_inset Text
  6335. \begin_layout Plain Layout
  6336. Yes
  6337. \end_layout
  6338. \end_inset
  6339. </cell>
  6340. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6341. \begin_inset Text
  6342. \begin_layout Plain Layout
  6343. Yes
  6344. \end_layout
  6345. \end_inset
  6346. </cell>
  6347. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6348. \begin_inset Text
  6349. \begin_layout Plain Layout
  6350. No
  6351. \end_layout
  6352. \end_inset
  6353. </cell>
  6354. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6355. \begin_inset Text
  6356. \begin_layout Plain Layout
  6357. No
  6358. \end_layout
  6359. \end_inset
  6360. </cell>
  6361. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  6362. \begin_inset Text
  6363. \begin_layout Plain Layout
  6364. No
  6365. \end_layout
  6366. \end_inset
  6367. </cell>
  6368. </row>
  6369. <row>
  6370. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6371. \begin_inset Text
  6372. \begin_layout Plain Layout
  6373. B
  6374. \end_layout
  6375. \end_inset
  6376. </cell>
  6377. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6378. \begin_inset Text
  6379. \begin_layout Plain Layout
  6380. Yes
  6381. \end_layout
  6382. \end_inset
  6383. </cell>
  6384. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6385. \begin_inset Text
  6386. \begin_layout Plain Layout
  6387. Yes
  6388. \end_layout
  6389. \end_inset
  6390. </cell>
  6391. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6392. \begin_inset Text
  6393. \begin_layout Plain Layout
  6394. Yes
  6395. \end_layout
  6396. \end_inset
  6397. </cell>
  6398. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6399. \begin_inset Text
  6400. \begin_layout Plain Layout
  6401. Yes
  6402. \end_layout
  6403. \end_inset
  6404. </cell>
  6405. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  6406. \begin_inset Text
  6407. \begin_layout Plain Layout
  6408. No
  6409. \end_layout
  6410. \end_inset
  6411. </cell>
  6412. </row>
  6413. <row>
  6414. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6415. \begin_inset Text
  6416. \begin_layout Plain Layout
  6417. C
  6418. \end_layout
  6419. \end_inset
  6420. </cell>
  6421. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6422. \begin_inset Text
  6423. \begin_layout Plain Layout
  6424. Yes
  6425. \end_layout
  6426. \end_inset
  6427. </cell>
  6428. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6429. \begin_inset Text
  6430. \begin_layout Plain Layout
  6431. Yes
  6432. \end_layout
  6433. \end_inset
  6434. </cell>
  6435. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6436. \begin_inset Text
  6437. \begin_layout Plain Layout
  6438. Yes
  6439. \end_layout
  6440. \end_inset
  6441. </cell>
  6442. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6443. \begin_inset Text
  6444. \begin_layout Plain Layout
  6445. Yes
  6446. \end_layout
  6447. \end_inset
  6448. </cell>
  6449. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  6450. \begin_inset Text
  6451. \begin_layout Plain Layout
  6452. Yes
  6453. \end_layout
  6454. \end_inset
  6455. </cell>
  6456. </row>
  6457. </lyxtabular>
  6458. \end_inset
  6459. \end_layout
  6460. \begin_layout Plain Layout
  6461. \begin_inset Caption Standard
  6462. \begin_layout Plain Layout
  6463. \series bold
  6464. \begin_inset CommandInset label
  6465. LatexCommand label
  6466. name "tab:Summary-of-meth-analysis"
  6467. \end_inset
  6468. Summary of analysis variants for methylation array data.
  6469. \series default
  6470. Each analysis included a different set of steps to adjust or account for
  6471. various systematic features of the data.
  6472. Random effect: The model included a random effect accounting for correlation
  6473. between samples from the same patient
  6474. \begin_inset CommandInset citation
  6475. LatexCommand cite
  6476. key "Smyth2005a"
  6477. literal "false"
  6478. \end_inset
  6479. ; eBayes: Empirical bayes squeezing of per-probe variances toward the mean-varia
  6480. nce trend
  6481. \begin_inset CommandInset citation
  6482. LatexCommand cite
  6483. key "Ritchie2015"
  6484. literal "false"
  6485. \end_inset
  6486. ; SVA: Surrogate variable analysis to account for unobserved confounders
  6487. \begin_inset CommandInset citation
  6488. LatexCommand cite
  6489. key "Leek2007"
  6490. literal "false"
  6491. \end_inset
  6492. ; Weights: Estimate sample weights to account for differences in sample
  6493. quality
  6494. \begin_inset CommandInset citation
  6495. LatexCommand cite
  6496. key "Liu2015,Ritchie2006"
  6497. literal "false"
  6498. \end_inset
  6499. ; voom: Use mean-variance trend to assign individual sample weights
  6500. \begin_inset CommandInset citation
  6501. LatexCommand cite
  6502. key "Law2013"
  6503. literal "false"
  6504. \end_inset
  6505. .
  6506. See the text for a more detailed explanation of each step.
  6507. \end_layout
  6508. \end_inset
  6509. \end_layout
  6510. \end_inset
  6511. \end_layout
  6512. \begin_layout Standard
  6513. From the M-values, a series of parallel analyses was performed, each adding
  6514. additional steps into the model fit to accomodate a feature of the data
  6515. (see Table
  6516. \begin_inset CommandInset ref
  6517. LatexCommand ref
  6518. reference "tab:Summary-of-meth-analysis"
  6519. plural "false"
  6520. caps "false"
  6521. noprefix "false"
  6522. \end_inset
  6523. ).
  6524. For analysis A, a
  6525. \begin_inset Quotes eld
  6526. \end_inset
  6527. basic
  6528. \begin_inset Quotes erd
  6529. \end_inset
  6530. linear modeling analysis was performed, compensating for known confounders
  6531. by including terms for the factor of interest (transplant status) as well
  6532. as the known biological confounders: sex, age, ethnicity, and diabetes.
  6533. Since some samples came from the same patients at different times, the
  6534. intra-patient correlation was modeled as a random effect, estimating a
  6535. shared correlation value across all probes
  6536. \begin_inset CommandInset citation
  6537. LatexCommand cite
  6538. key "Smyth2005a"
  6539. literal "false"
  6540. \end_inset
  6541. .
  6542. Then the linear model was fit, and the variance was modeled using empirical
  6543. Bayes squeezing toward the mean-variance trend
  6544. \begin_inset CommandInset citation
  6545. LatexCommand cite
  6546. key "Ritchie2015"
  6547. literal "false"
  6548. \end_inset
  6549. .
  6550. Finally, t-tests or F-tests were performed as appropriate for each test:
  6551. t-tests for single contrasts, and F-tests for multiple contrasts.
  6552. P-values were corrected for multiple testing using the Benjamini-Hochberg
  6553. procedure for FDR control
  6554. \begin_inset CommandInset citation
  6555. LatexCommand cite
  6556. key "Benjamini1995"
  6557. literal "false"
  6558. \end_inset
  6559. .
  6560. \end_layout
  6561. \begin_layout Standard
  6562. For the analysis B, surrogate variable analysis (SVA) was used to infer
  6563. additional unobserved sources of heterogeneity in the data
  6564. \begin_inset CommandInset citation
  6565. LatexCommand cite
  6566. key "Leek2007"
  6567. literal "false"
  6568. \end_inset
  6569. .
  6570. These surrogate variables were added to the design matrix before fitting
  6571. the linear model.
  6572. In addition, sample quality weights were estimated from the data and used
  6573. during linear modeling to down-weight the contribution of highly variable
  6574. arrays while increasing the weight to arrays with lower variability
  6575. \begin_inset CommandInset citation
  6576. LatexCommand cite
  6577. key "Ritchie2006"
  6578. literal "false"
  6579. \end_inset
  6580. .
  6581. The remainder of the analysis proceeded as in analysis A.
  6582. For analysis C, the voom method was adapted to run on methylation array
  6583. data and used to model and correct for the mean-variance trend using individual
  6584. observation weights
  6585. \begin_inset CommandInset citation
  6586. LatexCommand cite
  6587. key "Law2013"
  6588. literal "false"
  6589. \end_inset
  6590. , which were combined with the sample weights
  6591. \begin_inset CommandInset citation
  6592. LatexCommand cite
  6593. key "Liu2015,Ritchie2006"
  6594. literal "false"
  6595. \end_inset
  6596. .
  6597. Each time weights were used, they were estimated once before estimating
  6598. the random effect correlation value, and then the weights were re-estimated
  6599. taking the random effect into account.
  6600. The remainder of the analysis proceeded as in analysis B.
  6601. \end_layout
  6602. \begin_layout Section
  6603. Results
  6604. \end_layout
  6605. \begin_layout Standard
  6606. \begin_inset Flex TODO Note (inline)
  6607. status open
  6608. \begin_layout Plain Layout
  6609. Improve subsection titles in this section.
  6610. \end_layout
  6611. \end_inset
  6612. \end_layout
  6613. \begin_layout Standard
  6614. \begin_inset Flex TODO Note (inline)
  6615. status open
  6616. \begin_layout Plain Layout
  6617. Reconsider subsection organization?
  6618. \end_layout
  6619. \end_inset
  6620. \end_layout
  6621. \begin_layout Subsection
  6622. Separate normalization with RMA introduces unwanted biases in classification
  6623. \end_layout
  6624. \begin_layout Standard
  6625. \begin_inset Float figure
  6626. wide false
  6627. sideways false
  6628. status open
  6629. \begin_layout Plain Layout
  6630. \align center
  6631. \begin_inset Graphics
  6632. filename graphics/PAM/predplot.pdf
  6633. lyxscale 50
  6634. width 60col%
  6635. groupId colwidth
  6636. \end_inset
  6637. \end_layout
  6638. \begin_layout Plain Layout
  6639. \begin_inset Caption Standard
  6640. \begin_layout Plain Layout
  6641. \begin_inset CommandInset label
  6642. LatexCommand label
  6643. name "fig:Classifier-probabilities-RMA"
  6644. \end_inset
  6645. \series bold
  6646. Classifier probabilities on validation samples when normalized with RMA
  6647. together vs.
  6648. separately.
  6649. \series default
  6650. The PAM classifier algorithm was trained on the training set of arrays to
  6651. distinguish AR from TX and then used to assign class probabilities to the
  6652. validation set.
  6653. The process was performed after normalizing all samples together and after
  6654. normalizing the training and test sets separately, and the class probabilities
  6655. assigned to each sample in the validation set were plotted against each
  6656. other (PP(AR), posterior probability of being AR).
  6657. The color of each point indicates the true classification of that sample.
  6658. \end_layout
  6659. \end_inset
  6660. \end_layout
  6661. \end_inset
  6662. \end_layout
  6663. \begin_layout Standard
  6664. To demonstrate the problem with non-single-channel normalization methods,
  6665. we considered the problem of training a classifier to distinguish TX from
  6666. AR using the samples from the internal set as training data, evaluating
  6667. performance on the external set.
  6668. First, training and evaluation were performed after normalizing all array
  6669. samples together as a single set using RMA, and second, the internal samples
  6670. were normalized separately from the external samples and the training and
  6671. evaluation were repeated.
  6672. For each sample in the validation set, the classifier probabilities from
  6673. both classifiers were plotted against each other (Fig.
  6674. \begin_inset CommandInset ref
  6675. LatexCommand ref
  6676. reference "fig:Classifier-probabilities-RMA"
  6677. plural "false"
  6678. caps "false"
  6679. noprefix "false"
  6680. \end_inset
  6681. ).
  6682. As expected, separate normalization biases the classifier probabilities,
  6683. resulting in several misclassifications.
  6684. In this case, the bias from separate normalization causes the classifier
  6685. to assign a lower probability of AR to every sample.
  6686. \end_layout
  6687. \begin_layout Subsection
  6688. fRMA and SCAN maintain classification performance while eliminating dependence
  6689. on normalization strategy
  6690. \end_layout
  6691. \begin_layout Standard
  6692. \begin_inset Float figure
  6693. wide false
  6694. sideways false
  6695. status open
  6696. \begin_layout Plain Layout
  6697. \align center
  6698. \begin_inset Float figure
  6699. placement tb
  6700. wide false
  6701. sideways false
  6702. status open
  6703. \begin_layout Plain Layout
  6704. \align center
  6705. \begin_inset Graphics
  6706. filename graphics/PAM/ROC-TXvsAR-internal.pdf
  6707. lyxscale 50
  6708. height 40theight%
  6709. groupId roc-pam
  6710. \end_inset
  6711. \end_layout
  6712. \begin_layout Plain Layout
  6713. \begin_inset Caption Standard
  6714. \begin_layout Plain Layout
  6715. \begin_inset CommandInset label
  6716. LatexCommand label
  6717. name "fig:ROC-PAM-int"
  6718. \end_inset
  6719. ROC curves for PAM on internal validation data
  6720. \end_layout
  6721. \end_inset
  6722. \end_layout
  6723. \end_inset
  6724. \end_layout
  6725. \begin_layout Plain Layout
  6726. \align center
  6727. \begin_inset Float figure
  6728. placement tb
  6729. wide false
  6730. sideways false
  6731. status open
  6732. \begin_layout Plain Layout
  6733. \align center
  6734. \begin_inset Graphics
  6735. filename graphics/PAM/ROC-TXvsAR-external.pdf
  6736. lyxscale 50
  6737. height 40theight%
  6738. groupId roc-pam
  6739. \end_inset
  6740. \end_layout
  6741. \begin_layout Plain Layout
  6742. \begin_inset Caption Standard
  6743. \begin_layout Plain Layout
  6744. \begin_inset CommandInset label
  6745. LatexCommand label
  6746. name "fig:ROC-PAM-ext"
  6747. \end_inset
  6748. ROC curves for PAM on external validation data
  6749. \end_layout
  6750. \end_inset
  6751. \end_layout
  6752. \end_inset
  6753. \end_layout
  6754. \begin_layout Plain Layout
  6755. \begin_inset Caption Standard
  6756. \begin_layout Plain Layout
  6757. \series bold
  6758. \begin_inset CommandInset label
  6759. LatexCommand label
  6760. name "fig:ROC-PAM-main"
  6761. \end_inset
  6762. ROC curves for PAM using different normalization strategies.
  6763. \series default
  6764. ROC curves were generated for PAM classification of AR vs TX after 6 different
  6765. normalization strategies applied to the same data sets.
  6766. Only fRMA and SCAN are single-channel normalizations.
  6767. The other normalizations are for comparison.
  6768. \end_layout
  6769. \end_inset
  6770. \end_layout
  6771. \end_inset
  6772. \end_layout
  6773. \begin_layout Standard
  6774. \begin_inset Float table
  6775. wide false
  6776. sideways false
  6777. status open
  6778. \begin_layout Plain Layout
  6779. \align center
  6780. \begin_inset Tabular
  6781. <lyxtabular version="3" rows="7" columns="4">
  6782. <features tabularvalignment="middle">
  6783. <column alignment="center" valignment="top">
  6784. <column alignment="center" valignment="top">
  6785. <column alignment="center" valignment="top">
  6786. <column alignment="center" valignment="top">
  6787. <row>
  6788. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6789. \begin_inset Text
  6790. \begin_layout Plain Layout
  6791. \family roman
  6792. \series medium
  6793. \shape up
  6794. \size normal
  6795. \emph off
  6796. \bar no
  6797. \strikeout off
  6798. \xout off
  6799. \uuline off
  6800. \uwave off
  6801. \noun off
  6802. \color none
  6803. Normalization
  6804. \end_layout
  6805. \end_inset
  6806. </cell>
  6807. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6808. \begin_inset Text
  6809. \begin_layout Plain Layout
  6810. Single-channel?
  6811. \end_layout
  6812. \end_inset
  6813. </cell>
  6814. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6815. \begin_inset Text
  6816. \begin_layout Plain Layout
  6817. \family roman
  6818. \series medium
  6819. \shape up
  6820. \size normal
  6821. \emph off
  6822. \bar no
  6823. \strikeout off
  6824. \xout off
  6825. \uuline off
  6826. \uwave off
  6827. \noun off
  6828. \color none
  6829. Internal Val.
  6830. AUC
  6831. \end_layout
  6832. \end_inset
  6833. </cell>
  6834. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  6835. \begin_inset Text
  6836. \begin_layout Plain Layout
  6837. External Val.
  6838. AUC
  6839. \end_layout
  6840. \end_inset
  6841. </cell>
  6842. </row>
  6843. <row>
  6844. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6845. \begin_inset Text
  6846. \begin_layout Plain Layout
  6847. \family roman
  6848. \series medium
  6849. \shape up
  6850. \size normal
  6851. \emph off
  6852. \bar no
  6853. \strikeout off
  6854. \xout off
  6855. \uuline off
  6856. \uwave off
  6857. \noun off
  6858. \color none
  6859. RMA
  6860. \end_layout
  6861. \end_inset
  6862. </cell>
  6863. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6864. \begin_inset Text
  6865. \begin_layout Plain Layout
  6866. No
  6867. \end_layout
  6868. \end_inset
  6869. </cell>
  6870. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6871. \begin_inset Text
  6872. \begin_layout Plain Layout
  6873. \family roman
  6874. \series medium
  6875. \shape up
  6876. \size normal
  6877. \emph off
  6878. \bar no
  6879. \strikeout off
  6880. \xout off
  6881. \uuline off
  6882. \uwave off
  6883. \noun off
  6884. \color none
  6885. 0.852
  6886. \end_layout
  6887. \end_inset
  6888. </cell>
  6889. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  6890. \begin_inset Text
  6891. \begin_layout Plain Layout
  6892. \family roman
  6893. \series medium
  6894. \shape up
  6895. \size normal
  6896. \emph off
  6897. \bar no
  6898. \strikeout off
  6899. \xout off
  6900. \uuline off
  6901. \uwave off
  6902. \noun off
  6903. \color none
  6904. 0.713
  6905. \end_layout
  6906. \end_inset
  6907. </cell>
  6908. </row>
  6909. <row>
  6910. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6911. \begin_inset Text
  6912. \begin_layout Plain Layout
  6913. \family roman
  6914. \series medium
  6915. \shape up
  6916. \size normal
  6917. \emph off
  6918. \bar no
  6919. \strikeout off
  6920. \xout off
  6921. \uuline off
  6922. \uwave off
  6923. \noun off
  6924. \color none
  6925. dChip
  6926. \end_layout
  6927. \end_inset
  6928. </cell>
  6929. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6930. \begin_inset Text
  6931. \begin_layout Plain Layout
  6932. No
  6933. \end_layout
  6934. \end_inset
  6935. </cell>
  6936. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6937. \begin_inset Text
  6938. \begin_layout Plain Layout
  6939. \family roman
  6940. \series medium
  6941. \shape up
  6942. \size normal
  6943. \emph off
  6944. \bar no
  6945. \strikeout off
  6946. \xout off
  6947. \uuline off
  6948. \uwave off
  6949. \noun off
  6950. \color none
  6951. 0.891
  6952. \end_layout
  6953. \end_inset
  6954. </cell>
  6955. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  6956. \begin_inset Text
  6957. \begin_layout Plain Layout
  6958. \family roman
  6959. \series medium
  6960. \shape up
  6961. \size normal
  6962. \emph off
  6963. \bar no
  6964. \strikeout off
  6965. \xout off
  6966. \uuline off
  6967. \uwave off
  6968. \noun off
  6969. \color none
  6970. 0.657
  6971. \end_layout
  6972. \end_inset
  6973. </cell>
  6974. </row>
  6975. <row>
  6976. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6977. \begin_inset Text
  6978. \begin_layout Plain Layout
  6979. \family roman
  6980. \series medium
  6981. \shape up
  6982. \size normal
  6983. \emph off
  6984. \bar no
  6985. \strikeout off
  6986. \xout off
  6987. \uuline off
  6988. \uwave off
  6989. \noun off
  6990. \color none
  6991. RMA + GRSN
  6992. \end_layout
  6993. \end_inset
  6994. </cell>
  6995. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6996. \begin_inset Text
  6997. \begin_layout Plain Layout
  6998. No
  6999. \end_layout
  7000. \end_inset
  7001. </cell>
  7002. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7003. \begin_inset Text
  7004. \begin_layout Plain Layout
  7005. \family roman
  7006. \series medium
  7007. \shape up
  7008. \size normal
  7009. \emph off
  7010. \bar no
  7011. \strikeout off
  7012. \xout off
  7013. \uuline off
  7014. \uwave off
  7015. \noun off
  7016. \color none
  7017. 0.816
  7018. \end_layout
  7019. \end_inset
  7020. </cell>
  7021. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  7022. \begin_inset Text
  7023. \begin_layout Plain Layout
  7024. \family roman
  7025. \series medium
  7026. \shape up
  7027. \size normal
  7028. \emph off
  7029. \bar no
  7030. \strikeout off
  7031. \xout off
  7032. \uuline off
  7033. \uwave off
  7034. \noun off
  7035. \color none
  7036. 0.750
  7037. \end_layout
  7038. \end_inset
  7039. </cell>
  7040. </row>
  7041. <row>
  7042. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7043. \begin_inset Text
  7044. \begin_layout Plain Layout
  7045. \family roman
  7046. \series medium
  7047. \shape up
  7048. \size normal
  7049. \emph off
  7050. \bar no
  7051. \strikeout off
  7052. \xout off
  7053. \uuline off
  7054. \uwave off
  7055. \noun off
  7056. \color none
  7057. dChip + GRSN
  7058. \end_layout
  7059. \end_inset
  7060. </cell>
  7061. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7062. \begin_inset Text
  7063. \begin_layout Plain Layout
  7064. No
  7065. \end_layout
  7066. \end_inset
  7067. </cell>
  7068. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7069. \begin_inset Text
  7070. \begin_layout Plain Layout
  7071. \family roman
  7072. \series medium
  7073. \shape up
  7074. \size normal
  7075. \emph off
  7076. \bar no
  7077. \strikeout off
  7078. \xout off
  7079. \uuline off
  7080. \uwave off
  7081. \noun off
  7082. \color none
  7083. 0.875
  7084. \end_layout
  7085. \end_inset
  7086. </cell>
  7087. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  7088. \begin_inset Text
  7089. \begin_layout Plain Layout
  7090. \family roman
  7091. \series medium
  7092. \shape up
  7093. \size normal
  7094. \emph off
  7095. \bar no
  7096. \strikeout off
  7097. \xout off
  7098. \uuline off
  7099. \uwave off
  7100. \noun off
  7101. \color none
  7102. 0.642
  7103. \end_layout
  7104. \end_inset
  7105. </cell>
  7106. </row>
  7107. <row>
  7108. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7109. \begin_inset Text
  7110. \begin_layout Plain Layout
  7111. \family roman
  7112. \series medium
  7113. \shape up
  7114. \size normal
  7115. \emph off
  7116. \bar no
  7117. \strikeout off
  7118. \xout off
  7119. \uuline off
  7120. \uwave off
  7121. \noun off
  7122. \color none
  7123. fRMA
  7124. \end_layout
  7125. \end_inset
  7126. </cell>
  7127. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7128. \begin_inset Text
  7129. \begin_layout Plain Layout
  7130. Yes
  7131. \end_layout
  7132. \end_inset
  7133. </cell>
  7134. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7135. \begin_inset Text
  7136. \begin_layout Plain Layout
  7137. \family roman
  7138. \series medium
  7139. \shape up
  7140. \size normal
  7141. \emph off
  7142. \bar no
  7143. \strikeout off
  7144. \xout off
  7145. \uuline off
  7146. \uwave off
  7147. \noun off
  7148. \color none
  7149. 0.863
  7150. \end_layout
  7151. \end_inset
  7152. </cell>
  7153. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  7154. \begin_inset Text
  7155. \begin_layout Plain Layout
  7156. \family roman
  7157. \series medium
  7158. \shape up
  7159. \size normal
  7160. \emph off
  7161. \bar no
  7162. \strikeout off
  7163. \xout off
  7164. \uuline off
  7165. \uwave off
  7166. \noun off
  7167. \color none
  7168. 0.718
  7169. \end_layout
  7170. \end_inset
  7171. </cell>
  7172. </row>
  7173. <row>
  7174. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  7175. \begin_inset Text
  7176. \begin_layout Plain Layout
  7177. \family roman
  7178. \series medium
  7179. \shape up
  7180. \size normal
  7181. \emph off
  7182. \bar no
  7183. \strikeout off
  7184. \xout off
  7185. \uuline off
  7186. \uwave off
  7187. \noun off
  7188. \color none
  7189. SCAN
  7190. \end_layout
  7191. \end_inset
  7192. </cell>
  7193. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  7194. \begin_inset Text
  7195. \begin_layout Plain Layout
  7196. Yes
  7197. \end_layout
  7198. \end_inset
  7199. </cell>
  7200. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  7201. \begin_inset Text
  7202. \begin_layout Plain Layout
  7203. \family roman
  7204. \series medium
  7205. \shape up
  7206. \size normal
  7207. \emph off
  7208. \bar no
  7209. \strikeout off
  7210. \xout off
  7211. \uuline off
  7212. \uwave off
  7213. \noun off
  7214. \color none
  7215. 0.853
  7216. \end_layout
  7217. \end_inset
  7218. </cell>
  7219. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  7220. \begin_inset Text
  7221. \begin_layout Plain Layout
  7222. \family roman
  7223. \series medium
  7224. \shape up
  7225. \size normal
  7226. \emph off
  7227. \bar no
  7228. \strikeout off
  7229. \xout off
  7230. \uuline off
  7231. \uwave off
  7232. \noun off
  7233. \color none
  7234. 0.689
  7235. \end_layout
  7236. \end_inset
  7237. </cell>
  7238. </row>
  7239. </lyxtabular>
  7240. \end_inset
  7241. \end_layout
  7242. \begin_layout Plain Layout
  7243. \begin_inset Caption Standard
  7244. \begin_layout Plain Layout
  7245. \begin_inset CommandInset label
  7246. LatexCommand label
  7247. name "tab:AUC-PAM"
  7248. \end_inset
  7249. \series bold
  7250. ROC curve AUC values for internal and external validation with 6 different
  7251. normalization strategies.
  7252. \series default
  7253. These AUC values correspond to the ROC curves in Figure
  7254. \begin_inset CommandInset ref
  7255. LatexCommand ref
  7256. reference "fig:ROC-PAM-main"
  7257. plural "false"
  7258. caps "false"
  7259. noprefix "false"
  7260. \end_inset
  7261. .
  7262. \end_layout
  7263. \end_inset
  7264. \end_layout
  7265. \end_inset
  7266. \end_layout
  7267. \begin_layout Standard
  7268. For internal validation, the 6 methods' AUC values ranged from 0.816 to 0.891,
  7269. as shown in Table
  7270. \begin_inset CommandInset ref
  7271. LatexCommand ref
  7272. reference "tab:AUC-PAM"
  7273. plural "false"
  7274. caps "false"
  7275. noprefix "false"
  7276. \end_inset
  7277. .
  7278. Among the non-single-channel normalizations, dChip outperformed RMA, while
  7279. GRSN reduced the AUC values for both dChip and RMA.
  7280. Both single-channel methods, fRMA and SCAN, slightly outperformed RMA,
  7281. with fRMA ahead of SCAN.
  7282. However, the difference between RMA and fRMA is still quite small.
  7283. Figure
  7284. \begin_inset CommandInset ref
  7285. LatexCommand ref
  7286. reference "fig:ROC-PAM-int"
  7287. plural "false"
  7288. caps "false"
  7289. noprefix "false"
  7290. \end_inset
  7291. shows that the ROC curves for RMA, dChip, and fRMA look very similar and
  7292. relatively smooth, while both GRSN curves and the curve for SCAN have a
  7293. more jagged appearance.
  7294. \end_layout
  7295. \begin_layout Standard
  7296. For external validation, as expected, all the AUC values are lower than
  7297. the internal validations, ranging from 0.642 to 0.750 (Table
  7298. \begin_inset CommandInset ref
  7299. LatexCommand ref
  7300. reference "tab:AUC-PAM"
  7301. plural "false"
  7302. caps "false"
  7303. noprefix "false"
  7304. \end_inset
  7305. ).
  7306. With or without GRSN, RMA shows its dominance over dChip in this more challengi
  7307. ng test.
  7308. Unlike in the internal validation, GRSN actually improves the classifier
  7309. performance for RMA, although it does not for dChip.
  7310. Once again, both single-channel methods perform about on par with RMA,
  7311. with fRMA performing slightly better and SCAN performing a bit worse.
  7312. Figure
  7313. \begin_inset CommandInset ref
  7314. LatexCommand ref
  7315. reference "fig:ROC-PAM-ext"
  7316. plural "false"
  7317. caps "false"
  7318. noprefix "false"
  7319. \end_inset
  7320. shows the ROC curves for the external validation test.
  7321. As expected, none of them are as clean-looking as the internal validation
  7322. ROC curves.
  7323. The curves for RMA, RMA+GRSN, and fRMA all look similar, while the other
  7324. curves look more divergent.
  7325. \end_layout
  7326. \begin_layout Subsection
  7327. fRMA with custom-generated vectors enables single-channel normalization
  7328. on hthgu133pluspm platform
  7329. \end_layout
  7330. \begin_layout Standard
  7331. \begin_inset Float figure
  7332. wide false
  7333. sideways false
  7334. status open
  7335. \begin_layout Plain Layout
  7336. \align center
  7337. \begin_inset Float figure
  7338. placement tb
  7339. wide false
  7340. sideways false
  7341. status collapsed
  7342. \begin_layout Plain Layout
  7343. \align center
  7344. \begin_inset Graphics
  7345. filename graphics/frma-pax-bx/batchsize_batches.pdf
  7346. lyxscale 50
  7347. height 35theight%
  7348. groupId frmatools-subfig
  7349. \end_inset
  7350. \end_layout
  7351. \begin_layout Plain Layout
  7352. \begin_inset Caption Standard
  7353. \begin_layout Plain Layout
  7354. \begin_inset CommandInset label
  7355. LatexCommand label
  7356. name "fig:batch-size-batches"
  7357. \end_inset
  7358. \series bold
  7359. Number of batches usable in fRMA probe weight learning as a function of
  7360. batch size.
  7361. \end_layout
  7362. \end_inset
  7363. \end_layout
  7364. \end_inset
  7365. \end_layout
  7366. \begin_layout Plain Layout
  7367. \align center
  7368. \begin_inset Float figure
  7369. placement tb
  7370. wide false
  7371. sideways false
  7372. status collapsed
  7373. \begin_layout Plain Layout
  7374. \align center
  7375. \begin_inset Graphics
  7376. filename graphics/frma-pax-bx/batchsize_samples.pdf
  7377. lyxscale 50
  7378. height 35theight%
  7379. groupId frmatools-subfig
  7380. \end_inset
  7381. \end_layout
  7382. \begin_layout Plain Layout
  7383. \begin_inset Caption Standard
  7384. \begin_layout Plain Layout
  7385. \begin_inset CommandInset label
  7386. LatexCommand label
  7387. name "fig:batch-size-samples"
  7388. \end_inset
  7389. \series bold
  7390. Number of samples usable in fRMA probe weight learning as a function of
  7391. batch size.
  7392. \end_layout
  7393. \end_inset
  7394. \end_layout
  7395. \end_inset
  7396. \end_layout
  7397. \begin_layout Plain Layout
  7398. \begin_inset Caption Standard
  7399. \begin_layout Plain Layout
  7400. \series bold
  7401. \begin_inset CommandInset label
  7402. LatexCommand label
  7403. name "fig:frmatools-batch-size"
  7404. \end_inset
  7405. Effect of batch size selection on number of batches and number of samples
  7406. included in fRMA probe weight learning.
  7407. \series default
  7408. For batch sizes ranging from 3 to 15, the number of batches (a) and samples
  7409. (b) included in probe weight training were plotted for biopsy (BX) and
  7410. blood (PAX) samples.
  7411. The selected batch size, 5, is marked with a dotted vertical line.
  7412. \end_layout
  7413. \end_inset
  7414. \end_layout
  7415. \end_inset
  7416. \end_layout
  7417. \begin_layout Standard
  7418. In order to enable use of fRMA to normalize hthgu133pluspm, a custom set
  7419. of fRMA vectors was created.
  7420. First, an appropriate batch size was chosen by looking at the number of
  7421. batches and number of samples included as a function of batch size (Figure
  7422. \begin_inset CommandInset ref
  7423. LatexCommand ref
  7424. reference "fig:frmatools-batch-size"
  7425. plural "false"
  7426. caps "false"
  7427. noprefix "false"
  7428. \end_inset
  7429. ).
  7430. For a given batch size, all batches with fewer samples that the chosen
  7431. size must be ignored during training, while larger batches must be randomly
  7432. downsampled to the chosen size.
  7433. Hence, the number of samples included for a given batch size equals the
  7434. batch size times the number of batches with at least that many samples.
  7435. From Figure
  7436. \begin_inset CommandInset ref
  7437. LatexCommand ref
  7438. reference "fig:batch-size-samples"
  7439. plural "false"
  7440. caps "false"
  7441. noprefix "false"
  7442. \end_inset
  7443. , it is apparent that that a batch size of 8 maximizes the number of samples
  7444. included in training.
  7445. Increasing the batch size beyond this causes too many smaller batches to
  7446. be excluded, reducing the total number of samples for both tissue types.
  7447. However, a batch size of 8 is not necessarily optimal.
  7448. The article introducing frmaTools concluded that it was highly advantageous
  7449. to use a smaller batch size in order to include more batches, even at the
  7450. expense of including fewer total samples in training
  7451. \begin_inset CommandInset citation
  7452. LatexCommand cite
  7453. key "McCall2011"
  7454. literal "false"
  7455. \end_inset
  7456. .
  7457. To strike an appropriate balance between more batches and more samples,
  7458. a batch size of 5 was chosen.
  7459. For both blood and biopsy samples, this increased the number of batches
  7460. included by 10, with only a modest reduction in the number of samples compared
  7461. to a batch size of 8.
  7462. With a batch size of 5, 26 batches of biopsy samples and 46 batches of
  7463. blood samples were available.
  7464. \end_layout
  7465. \begin_layout Standard
  7466. \begin_inset Float figure
  7467. wide false
  7468. sideways false
  7469. status collapsed
  7470. \begin_layout Plain Layout
  7471. \begin_inset Float figure
  7472. wide false
  7473. sideways false
  7474. status open
  7475. \begin_layout Plain Layout
  7476. \align center
  7477. \begin_inset Graphics
  7478. filename graphics/frma-pax-bx/M-BX-violin.pdf
  7479. lyxscale 40
  7480. width 45col%
  7481. groupId m-violin
  7482. \end_inset
  7483. \end_layout
  7484. \begin_layout Plain Layout
  7485. \begin_inset Caption Standard
  7486. \begin_layout Plain Layout
  7487. \begin_inset CommandInset label
  7488. LatexCommand label
  7489. name "fig:m-bx-violin"
  7490. \end_inset
  7491. \series bold
  7492. Violin plot of inter-normalization log ratios for biopsy samples.
  7493. \end_layout
  7494. \end_inset
  7495. \end_layout
  7496. \end_inset
  7497. \begin_inset space \hfill{}
  7498. \end_inset
  7499. \begin_inset Float figure
  7500. wide false
  7501. sideways false
  7502. status collapsed
  7503. \begin_layout Plain Layout
  7504. \align center
  7505. \begin_inset Graphics
  7506. filename graphics/frma-pax-bx/M-PAX-violin.pdf
  7507. lyxscale 40
  7508. width 45col%
  7509. groupId m-violin
  7510. \end_inset
  7511. \end_layout
  7512. \begin_layout Plain Layout
  7513. \begin_inset Caption Standard
  7514. \begin_layout Plain Layout
  7515. \begin_inset CommandInset label
  7516. LatexCommand label
  7517. name "fig:m-pax-violin"
  7518. \end_inset
  7519. \series bold
  7520. Violin plot of inter-normalization log ratios for blood samples.
  7521. \end_layout
  7522. \end_inset
  7523. \end_layout
  7524. \end_inset
  7525. \end_layout
  7526. \begin_layout Plain Layout
  7527. \begin_inset Caption Standard
  7528. \begin_layout Plain Layout
  7529. \begin_inset CommandInset label
  7530. LatexCommand label
  7531. name "fig:frma-violin"
  7532. \end_inset
  7533. \series bold
  7534. Violin plot of log ratios between normalizations for 20 biopsy samples.
  7535. \series default
  7536. Each of 20 randomly selected samples was normalized with RMA and with 5
  7537. different sets of fRMA vectors.
  7538. The distribution of log ratios between normalized expression values, aggregated
  7539. across all 20 arrays, was plotted for each pair of normalizations.
  7540. \end_layout
  7541. \end_inset
  7542. \end_layout
  7543. \end_inset
  7544. \end_layout
  7545. \begin_layout Standard
  7546. Since fRMA training requires equal-size batches, larger batches are downsampled
  7547. randomly.
  7548. This introduces a nondeterministic step in the generation of normalization
  7549. vectors.
  7550. To show that this randomness does not substantially change the outcome,
  7551. the random downsampling and subsequent vector learning was repeated 5 times,
  7552. with a different random seed each time.
  7553. 20 samples were selected at random as a test set and normalized with each
  7554. of the 5 sets of fRMA normalization vectors as well as ordinary RMA, and
  7555. the normalized expression values were compared across normalizations.
  7556. Figure
  7557. \begin_inset CommandInset ref
  7558. LatexCommand ref
  7559. reference "fig:m-bx-violin"
  7560. plural "false"
  7561. caps "false"
  7562. noprefix "false"
  7563. \end_inset
  7564. shows a summary of these comparisons for biopsy samples.
  7565. Comparing RMA to each of the 5 fRMA normalizations, the distribution of
  7566. log ratios is somewhat wide, indicating that the normalizations disagree
  7567. on the expression values of a fair number of probe sets.
  7568. In contrast, comparisons of fRMA against fRMA, the vast mojority of probe
  7569. sets have very small log ratios, indicating a very high agreement between
  7570. the normalized values generated by the two normalizations.
  7571. This shows that the fRMA normalization's behavior is not very sensitive
  7572. to the random downsampling of larger batches during training.
  7573. \end_layout
  7574. \begin_layout Standard
  7575. \begin_inset Float figure
  7576. wide false
  7577. sideways false
  7578. status open
  7579. \begin_layout Plain Layout
  7580. \align center
  7581. \begin_inset Float figure
  7582. wide false
  7583. sideways false
  7584. status collapsed
  7585. \begin_layout Plain Layout
  7586. \align center
  7587. \begin_inset Graphics
  7588. filename graphics/frma-pax-bx/MA-BX-RMA.fRMA-RASTER.png
  7589. lyxscale 10
  7590. width 45col%
  7591. groupId ma-frma
  7592. \end_inset
  7593. \end_layout
  7594. \begin_layout Plain Layout
  7595. \begin_inset Caption Standard
  7596. \begin_layout Plain Layout
  7597. \begin_inset CommandInset label
  7598. LatexCommand label
  7599. name "fig:ma-bx-rma-frma"
  7600. \end_inset
  7601. RMA vs.
  7602. fRMA for biopsy samples.
  7603. \end_layout
  7604. \end_inset
  7605. \end_layout
  7606. \end_inset
  7607. \begin_inset space \hfill{}
  7608. \end_inset
  7609. \begin_inset Float figure
  7610. wide false
  7611. sideways false
  7612. status collapsed
  7613. \begin_layout Plain Layout
  7614. \align center
  7615. \begin_inset Graphics
  7616. filename graphics/frma-pax-bx/MA-BX-fRMA.fRMA-RASTER.png
  7617. lyxscale 10
  7618. width 45col%
  7619. groupId ma-frma
  7620. \end_inset
  7621. \end_layout
  7622. \begin_layout Plain Layout
  7623. \begin_inset Caption Standard
  7624. \begin_layout Plain Layout
  7625. \begin_inset CommandInset label
  7626. LatexCommand label
  7627. name "fig:ma-bx-frma-frma"
  7628. \end_inset
  7629. fRMA vs fRMA for biopsy samples.
  7630. \end_layout
  7631. \end_inset
  7632. \end_layout
  7633. \end_inset
  7634. \end_layout
  7635. \begin_layout Plain Layout
  7636. \align center
  7637. \begin_inset Float figure
  7638. wide false
  7639. sideways false
  7640. status collapsed
  7641. \begin_layout Plain Layout
  7642. \align center
  7643. \begin_inset Graphics
  7644. filename graphics/frma-pax-bx/MA-PAX-RMA.fRMA-RASTER.png
  7645. lyxscale 10
  7646. width 45col%
  7647. groupId ma-frma
  7648. \end_inset
  7649. \end_layout
  7650. \begin_layout Plain Layout
  7651. \begin_inset Caption Standard
  7652. \begin_layout Plain Layout
  7653. \begin_inset CommandInset label
  7654. LatexCommand label
  7655. name "fig:MA-PAX-rma-frma"
  7656. \end_inset
  7657. RMA vs.
  7658. fRMA for blood samples.
  7659. \end_layout
  7660. \end_inset
  7661. \end_layout
  7662. \end_inset
  7663. \begin_inset space \hfill{}
  7664. \end_inset
  7665. \begin_inset Float figure
  7666. wide false
  7667. sideways false
  7668. status collapsed
  7669. \begin_layout Plain Layout
  7670. \align center
  7671. \begin_inset Graphics
  7672. filename graphics/frma-pax-bx/MA-PAX-fRMA.fRMA-RASTER.png
  7673. lyxscale 10
  7674. width 45col%
  7675. groupId ma-frma
  7676. \end_inset
  7677. \end_layout
  7678. \begin_layout Plain Layout
  7679. \begin_inset Caption Standard
  7680. \begin_layout Plain Layout
  7681. \begin_inset CommandInset label
  7682. LatexCommand label
  7683. name "fig:MA-PAX-frma-frma"
  7684. \end_inset
  7685. fRMA vs fRMA for blood samples.
  7686. \end_layout
  7687. \end_inset
  7688. \end_layout
  7689. \end_inset
  7690. \end_layout
  7691. \begin_layout Plain Layout
  7692. \begin_inset Caption Standard
  7693. \begin_layout Plain Layout
  7694. \series bold
  7695. \begin_inset CommandInset label
  7696. LatexCommand label
  7697. name "fig:Representative-MA-plots"
  7698. \end_inset
  7699. Representative MA plots comparing RMA and custom fRMA normalizations.
  7700. \series default
  7701. For each plot, 20 samples were normalized using 2 different normalizations,
  7702. and then averages (A) and log ratios (M) were plotted between the two different
  7703. normalizations for every probe.
  7704. For the
  7705. \begin_inset Quotes eld
  7706. \end_inset
  7707. fRMA vs fRMA
  7708. \begin_inset Quotes erd
  7709. \end_inset
  7710. plots (b & d), two different fRMA normalizations using vectors from two
  7711. independent batch samplings were compared.
  7712. Density of points is represented by blue shading, and individual outlier
  7713. points are plotted.
  7714. \end_layout
  7715. \end_inset
  7716. \end_layout
  7717. \end_inset
  7718. \end_layout
  7719. \begin_layout Standard
  7720. Figure
  7721. \begin_inset CommandInset ref
  7722. LatexCommand ref
  7723. reference "fig:ma-bx-rma-frma"
  7724. plural "false"
  7725. caps "false"
  7726. noprefix "false"
  7727. \end_inset
  7728. shows an MA plot of the RMA-normalized values against the fRMA-normalized
  7729. values for the same probe sets and arrays, corresponding to the first row
  7730. of Figure
  7731. \begin_inset CommandInset ref
  7732. LatexCommand ref
  7733. reference "fig:m-bx-violin"
  7734. plural "false"
  7735. caps "false"
  7736. noprefix "false"
  7737. \end_inset
  7738. .
  7739. This MA plot shows that not only is there a wide distribution of M-values,
  7740. but the trend of M-values is dependent on the average normalized intensity.
  7741. This is expected, since the overall trend represents the differences in
  7742. the quantile normalization step.
  7743. When running RMA, only the quantiles for these specific 20 arrays are used,
  7744. while for fRMA the quantile distribution is taking from all arrays used
  7745. in training.
  7746. Figure
  7747. \begin_inset CommandInset ref
  7748. LatexCommand ref
  7749. reference "fig:ma-bx-frma-frma"
  7750. plural "false"
  7751. caps "false"
  7752. noprefix "false"
  7753. \end_inset
  7754. shows a similar MA plot comparing 2 different fRMA normalizations, correspondin
  7755. g to the 6th row of Figure
  7756. \begin_inset CommandInset ref
  7757. LatexCommand ref
  7758. reference "fig:m-bx-violin"
  7759. plural "false"
  7760. caps "false"
  7761. noprefix "false"
  7762. \end_inset
  7763. .
  7764. The MA plot is very tightly centered around zero with no visible trend.
  7765. Figures
  7766. \begin_inset CommandInset ref
  7767. LatexCommand ref
  7768. reference "fig:m-pax-violin"
  7769. plural "false"
  7770. caps "false"
  7771. noprefix "false"
  7772. \end_inset
  7773. ,
  7774. \begin_inset CommandInset ref
  7775. LatexCommand ref
  7776. reference "fig:MA-PAX-rma-frma"
  7777. plural "false"
  7778. caps "false"
  7779. noprefix "false"
  7780. \end_inset
  7781. , and
  7782. \begin_inset CommandInset ref
  7783. LatexCommand ref
  7784. reference "fig:ma-bx-frma-frma"
  7785. plural "false"
  7786. caps "false"
  7787. noprefix "false"
  7788. \end_inset
  7789. show exactly the same information for the blood samples, once again comparing
  7790. the normalized expression values between normalizations for all probe sets
  7791. across 20 randomly selected test arrays.
  7792. Once again, there is a wider distribution of log ratios between RMA-normalized
  7793. values and fRMA-normalized, and a much tighter distribution when comparing
  7794. different fRMA normalizations to each other, indicating that the fRMA training
  7795. process is robust to random batch downsampling for the blood samples as
  7796. well.
  7797. \end_layout
  7798. \begin_layout Subsection
  7799. SVA, voom, and array weights improve model fit for methylation array data
  7800. \end_layout
  7801. \begin_layout Standard
  7802. \begin_inset ERT
  7803. status open
  7804. \begin_layout Plain Layout
  7805. \backslash
  7806. afterpage{
  7807. \end_layout
  7808. \begin_layout Plain Layout
  7809. \backslash
  7810. begin{landscape}
  7811. \end_layout
  7812. \end_inset
  7813. \end_layout
  7814. \begin_layout Standard
  7815. \begin_inset Float figure
  7816. wide false
  7817. sideways false
  7818. status open
  7819. \begin_layout Plain Layout
  7820. \begin_inset Flex TODO Note (inline)
  7821. status open
  7822. \begin_layout Plain Layout
  7823. Fix axis labels:
  7824. \begin_inset Quotes eld
  7825. \end_inset
  7826. log2 M-value
  7827. \begin_inset Quotes erd
  7828. \end_inset
  7829. is redundant because M-values are already log scale
  7830. \end_layout
  7831. \end_inset
  7832. \end_layout
  7833. \begin_layout Plain Layout
  7834. \begin_inset Float figure
  7835. wide false
  7836. sideways false
  7837. status collapsed
  7838. \begin_layout Plain Layout
  7839. \align center
  7840. \begin_inset Graphics
  7841. filename graphics/methylvoom/unadj.dupcor/meanvar-trends-PAGE1-CROP-RASTER.png
  7842. lyxscale 15
  7843. width 30col%
  7844. groupId voomaw-subfig
  7845. \end_inset
  7846. \end_layout
  7847. \begin_layout Plain Layout
  7848. \begin_inset Caption Standard
  7849. \begin_layout Plain Layout
  7850. \begin_inset CommandInset label
  7851. LatexCommand label
  7852. name "fig:meanvar-basic"
  7853. \end_inset
  7854. Mean-variance trend for analysis A.
  7855. \end_layout
  7856. \end_inset
  7857. \end_layout
  7858. \end_inset
  7859. \begin_inset space \hfill{}
  7860. \end_inset
  7861. \begin_inset Float figure
  7862. wide false
  7863. sideways false
  7864. status collapsed
  7865. \begin_layout Plain Layout
  7866. \align center
  7867. \begin_inset Graphics
  7868. filename graphics/methylvoom/unadj.dupcor.sva.aw/meanvar-trends-PAGE1-CROP-RASTER.png
  7869. lyxscale 15
  7870. width 30col%
  7871. groupId voomaw-subfig
  7872. \end_inset
  7873. \end_layout
  7874. \begin_layout Plain Layout
  7875. \begin_inset Caption Standard
  7876. \begin_layout Plain Layout
  7877. \begin_inset CommandInset label
  7878. LatexCommand label
  7879. name "fig:meanvar-sva-aw"
  7880. \end_inset
  7881. Mean-variance trend for analysis B.
  7882. \end_layout
  7883. \end_inset
  7884. \end_layout
  7885. \end_inset
  7886. \begin_inset space \hfill{}
  7887. \end_inset
  7888. \begin_inset Float figure
  7889. wide false
  7890. sideways false
  7891. status collapsed
  7892. \begin_layout Plain Layout
  7893. \align center
  7894. \begin_inset Graphics
  7895. filename graphics/methylvoom/unadj.dupcor.sva.voomaw/meanvar-trends-PAGE2-CROP-RASTER.png
  7896. lyxscale 15
  7897. width 30col%
  7898. groupId voomaw-subfig
  7899. \end_inset
  7900. \end_layout
  7901. \begin_layout Plain Layout
  7902. \begin_inset Caption Standard
  7903. \begin_layout Plain Layout
  7904. \begin_inset CommandInset label
  7905. LatexCommand label
  7906. name "fig:meanvar-sva-voomaw"
  7907. \end_inset
  7908. Mean-variance trend after voom modeling in analysis C.
  7909. \end_layout
  7910. \end_inset
  7911. \end_layout
  7912. \end_inset
  7913. \end_layout
  7914. \begin_layout Plain Layout
  7915. \begin_inset Caption Standard
  7916. \begin_layout Plain Layout
  7917. \series bold
  7918. Mean-variance trend modeling in methylation array data.
  7919. \series default
  7920. The estimated log2(standard deviation) for each probe is plotted against
  7921. the probe's average M-value across all samples as a black point, with some
  7922. transparency to make overplotting more visible, since there are about 450,000
  7923. points.
  7924. Density of points is also indicated by the dark blue contour lines.
  7925. The prior variance trend estimated by eBayes is shown in light blue, while
  7926. the lowess trend of the points is shown in red.
  7927. \end_layout
  7928. \end_inset
  7929. \end_layout
  7930. \end_inset
  7931. \end_layout
  7932. \begin_layout Standard
  7933. \begin_inset ERT
  7934. status open
  7935. \begin_layout Plain Layout
  7936. \backslash
  7937. end{landscape}
  7938. \end_layout
  7939. \begin_layout Plain Layout
  7940. }
  7941. \end_layout
  7942. \end_inset
  7943. \end_layout
  7944. \begin_layout Standard
  7945. Figure
  7946. \begin_inset CommandInset ref
  7947. LatexCommand ref
  7948. reference "fig:meanvar-basic"
  7949. plural "false"
  7950. caps "false"
  7951. noprefix "false"
  7952. \end_inset
  7953. shows the relationship between the mean M-value and the standard deviation
  7954. calculated for each probe in the methylation array data set.
  7955. A few features of the data are apparent.
  7956. First, the data are very strongly bimodal, with peaks in the density around
  7957. M-values of +4 and -4.
  7958. These modes correspond to methylation sites that are nearly 100% methylated
  7959. and nearly 100% unmethylated, respectively.
  7960. The strong bomodality indicates that a majority of probes interrogate sites
  7961. that fall into one of these two categories.
  7962. The points in between these modes represent sites that are either partially
  7963. methylated in many samples, or are fully methylated in some samples and
  7964. fully unmethylated in other samples, or some combination.
  7965. The next visible feature of the data is the W-shaped variance trend.
  7966. The upticks in the variance trend on either side are expected, based on
  7967. the sigmoid transformation exaggerating small differences at extreme M-values
  7968. (Figure
  7969. \begin_inset CommandInset ref
  7970. LatexCommand ref
  7971. reference "fig:Sigmoid-beta-m-mapping"
  7972. plural "false"
  7973. caps "false"
  7974. noprefix "false"
  7975. \end_inset
  7976. ).
  7977. However, the uptick in the center is interesting: it indicates that sites
  7978. that are not constitutitively methylated or unmethylated have a higher
  7979. variance.
  7980. This could be a genuine biological effect, or it could be spurious noise
  7981. that is only observable at sites with varying methylation.
  7982. \end_layout
  7983. \begin_layout Standard
  7984. In Figure
  7985. \begin_inset CommandInset ref
  7986. LatexCommand ref
  7987. reference "fig:meanvar-sva-aw"
  7988. plural "false"
  7989. caps "false"
  7990. noprefix "false"
  7991. \end_inset
  7992. , we see the mean-variance trend for the same methylation array data, this
  7993. time with surrogate variables and sample quality weights estimated from
  7994. the data and included in the model.
  7995. As expected, the overall average variance is smaller, since the surrogate
  7996. variables account for some of the variance.
  7997. In addition, the uptick in variance in the middle of the M-value range
  7998. has disappeared, turning the W shape into a wide U shape.
  7999. This indicates that the excess variance in the probes with intermediate
  8000. M-values was explained by systematic variations not correlated with known
  8001. covariates, and these variations were modeled by the surrogate variables.
  8002. The result is a nearly flat variance trend for the entire intermediate
  8003. M-value range from about -3 to +3.
  8004. Note that this corresponds closely to the range within which the M-value
  8005. transformation shown in Figure
  8006. \begin_inset CommandInset ref
  8007. LatexCommand ref
  8008. reference "fig:Sigmoid-beta-m-mapping"
  8009. plural "false"
  8010. caps "false"
  8011. noprefix "false"
  8012. \end_inset
  8013. is nearly linear.
  8014. In contrast, the excess variance at the extremes (greater than +3 and less
  8015. than -3) was not
  8016. \begin_inset Quotes eld
  8017. \end_inset
  8018. absorbed
  8019. \begin_inset Quotes erd
  8020. \end_inset
  8021. by the surrogate variables and remains in the plot, indicating that this
  8022. variation has no systematic component: probes with extreme M-values are
  8023. uniformly more variable across all samples, as expected.
  8024. \end_layout
  8025. \begin_layout Standard
  8026. Figure
  8027. \begin_inset CommandInset ref
  8028. LatexCommand ref
  8029. reference "fig:meanvar-sva-voomaw"
  8030. plural "false"
  8031. caps "false"
  8032. noprefix "false"
  8033. \end_inset
  8034. shows the mean-variance trend after fitting the model with the observation
  8035. weights assigned by voom based on the mean-variance trend shown in Figure
  8036. \begin_inset CommandInset ref
  8037. LatexCommand ref
  8038. reference "fig:meanvar-sva-aw"
  8039. plural "false"
  8040. caps "false"
  8041. noprefix "false"
  8042. \end_inset
  8043. .
  8044. As expected, the weights exactly counteract the trend in the data, resulting
  8045. in a nearly flat trend centered vertically at 1 (i.e.
  8046. 0 on the log scale).
  8047. This shows that the observations with extreme M-values have been appropriately
  8048. down-weighted to account for the fact that the noise in those observations
  8049. has been amplified by the non-linear M-value transformation.
  8050. In turn, this gives relatively more weight to observervations in the middle
  8051. region, which are more likely to correspond to probes measuring interesting
  8052. biology (not constitutively methylated or unmethylated).
  8053. \end_layout
  8054. \begin_layout Standard
  8055. \begin_inset Float table
  8056. wide false
  8057. sideways false
  8058. status open
  8059. \begin_layout Plain Layout
  8060. \align center
  8061. \begin_inset Tabular
  8062. <lyxtabular version="3" rows="5" columns="3">
  8063. <features tabularvalignment="middle">
  8064. <column alignment="center" valignment="top">
  8065. <column alignment="center" valignment="top">
  8066. <column alignment="center" valignment="top">
  8067. <row>
  8068. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8069. \begin_inset Text
  8070. \begin_layout Plain Layout
  8071. Covariate
  8072. \end_layout
  8073. \end_inset
  8074. </cell>
  8075. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8076. \begin_inset Text
  8077. \begin_layout Plain Layout
  8078. Test used
  8079. \end_layout
  8080. \end_inset
  8081. </cell>
  8082. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  8083. \begin_inset Text
  8084. \begin_layout Plain Layout
  8085. p-value
  8086. \end_layout
  8087. \end_inset
  8088. </cell>
  8089. </row>
  8090. <row>
  8091. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8092. \begin_inset Text
  8093. \begin_layout Plain Layout
  8094. Transplant Status
  8095. \end_layout
  8096. \end_inset
  8097. </cell>
  8098. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8099. \begin_inset Text
  8100. \begin_layout Plain Layout
  8101. F-test
  8102. \end_layout
  8103. \end_inset
  8104. </cell>
  8105. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8106. \begin_inset Text
  8107. \begin_layout Plain Layout
  8108. 0.404
  8109. \end_layout
  8110. \end_inset
  8111. </cell>
  8112. </row>
  8113. <row>
  8114. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8115. \begin_inset Text
  8116. \begin_layout Plain Layout
  8117. Diabetes Diagnosis
  8118. \end_layout
  8119. \end_inset
  8120. </cell>
  8121. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8122. \begin_inset Text
  8123. \begin_layout Plain Layout
  8124. \emph on
  8125. t
  8126. \emph default
  8127. -test
  8128. \end_layout
  8129. \end_inset
  8130. </cell>
  8131. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8132. \begin_inset Text
  8133. \begin_layout Plain Layout
  8134. 0.00106
  8135. \end_layout
  8136. \end_inset
  8137. </cell>
  8138. </row>
  8139. <row>
  8140. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8141. \begin_inset Text
  8142. \begin_layout Plain Layout
  8143. Sex
  8144. \end_layout
  8145. \end_inset
  8146. </cell>
  8147. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8148. \begin_inset Text
  8149. \begin_layout Plain Layout
  8150. \emph on
  8151. t
  8152. \emph default
  8153. -test
  8154. \end_layout
  8155. \end_inset
  8156. </cell>
  8157. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8158. \begin_inset Text
  8159. \begin_layout Plain Layout
  8160. 0.148
  8161. \end_layout
  8162. \end_inset
  8163. </cell>
  8164. </row>
  8165. <row>
  8166. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8167. \begin_inset Text
  8168. \begin_layout Plain Layout
  8169. Age
  8170. \end_layout
  8171. \end_inset
  8172. </cell>
  8173. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8174. \begin_inset Text
  8175. \begin_layout Plain Layout
  8176. linear regression
  8177. \end_layout
  8178. \end_inset
  8179. </cell>
  8180. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  8181. \begin_inset Text
  8182. \begin_layout Plain Layout
  8183. 0.212
  8184. \end_layout
  8185. \end_inset
  8186. </cell>
  8187. </row>
  8188. </lyxtabular>
  8189. \end_inset
  8190. \end_layout
  8191. \begin_layout Plain Layout
  8192. \begin_inset Caption Standard
  8193. \begin_layout Plain Layout
  8194. \series bold
  8195. \begin_inset CommandInset label
  8196. LatexCommand label
  8197. name "tab:weight-covariate-tests"
  8198. \end_inset
  8199. Association of sample weights with clinical covariates in methylation array
  8200. data.
  8201. \series default
  8202. Computed sample quality log weights were tested for significant association
  8203. with each of the variables in the model (1st column).
  8204. An appropriate test was selected for each variable based on whether the
  8205. variable had 2 categories (
  8206. \emph on
  8207. t
  8208. \emph default
  8209. -test), had more than 2 categories (F-test), or was numeric (linear regression).
  8210. The test selected is shown in the 2nd column.
  8211. P-values for association with the log weights are shown in the 3rd column.
  8212. No multiple testing adjustment was performed for these p-values.
  8213. \end_layout
  8214. \end_inset
  8215. \end_layout
  8216. \end_inset
  8217. \end_layout
  8218. \begin_layout Standard
  8219. \begin_inset Float figure
  8220. wide false
  8221. sideways false
  8222. status open
  8223. \begin_layout Plain Layout
  8224. \begin_inset Flex TODO Note (inline)
  8225. status open
  8226. \begin_layout Plain Layout
  8227. Redo the sample weight boxplot with notches, and remove fill colors
  8228. \end_layout
  8229. \end_inset
  8230. \end_layout
  8231. \begin_layout Plain Layout
  8232. \align center
  8233. \begin_inset Graphics
  8234. filename graphics/methylvoom/unadj.dupcor.sva.voomaw/sample-weights-PAGE3-CROP.pdf
  8235. lyxscale 50
  8236. width 60col%
  8237. groupId colwidth
  8238. \end_inset
  8239. \end_layout
  8240. \begin_layout Plain Layout
  8241. \begin_inset Caption Standard
  8242. \begin_layout Plain Layout
  8243. \begin_inset CommandInset label
  8244. LatexCommand label
  8245. name "fig:diabetes-sample-weights"
  8246. \end_inset
  8247. \series bold
  8248. Box-and-whiskers plot of sample quality weights grouped by diabetes diagnosis.
  8249. \series default
  8250. Samples were grouped based on diabetes diagnosis, and the distribution of
  8251. sample quality weights for each diagnosis was plotted as a box-and-whiskers
  8252. plot
  8253. \begin_inset CommandInset citation
  8254. LatexCommand cite
  8255. key "McGill1978"
  8256. literal "false"
  8257. \end_inset
  8258. .
  8259. \end_layout
  8260. \end_inset
  8261. \end_layout
  8262. \begin_layout Plain Layout
  8263. \end_layout
  8264. \end_inset
  8265. \end_layout
  8266. \begin_layout Standard
  8267. To determine whether any of the known experimental factors had an impact
  8268. on data quality, the sample quality weights estimated from the data were
  8269. tested for association with each of the experimental factors (Table
  8270. \begin_inset CommandInset ref
  8271. LatexCommand ref
  8272. reference "tab:weight-covariate-tests"
  8273. plural "false"
  8274. caps "false"
  8275. noprefix "false"
  8276. \end_inset
  8277. ).
  8278. Diabetes diagnosis was found to have a potentially significant association
  8279. with the sample weights, with a t-test p-value of
  8280. \begin_inset Formula $1.06\times10^{-3}$
  8281. \end_inset
  8282. .
  8283. Figure
  8284. \begin_inset CommandInset ref
  8285. LatexCommand ref
  8286. reference "fig:diabetes-sample-weights"
  8287. plural "false"
  8288. caps "false"
  8289. noprefix "false"
  8290. \end_inset
  8291. shows the distribution of sample weights grouped by diabetes diagnosis.
  8292. The samples from patients with Type 2 diabetes were assigned significantly
  8293. lower weights than those from patients with Type 1 diabetes.
  8294. This indicates that the type 2 diabetes samples had an overall higher variance
  8295. on average across all probes.
  8296. \end_layout
  8297. \begin_layout Standard
  8298. \begin_inset Float table
  8299. wide false
  8300. sideways false
  8301. status open
  8302. \begin_layout Plain Layout
  8303. \align center
  8304. \begin_inset Flex TODO Note (inline)
  8305. status open
  8306. \begin_layout Plain Layout
  8307. Consider transposing these tables
  8308. \end_layout
  8309. \end_inset
  8310. \end_layout
  8311. \begin_layout Plain Layout
  8312. \begin_inset Float table
  8313. wide false
  8314. sideways false
  8315. status open
  8316. \begin_layout Plain Layout
  8317. \align center
  8318. \begin_inset Tabular
  8319. <lyxtabular version="3" rows="5" columns="4">
  8320. <features tabularvalignment="middle">
  8321. <column alignment="center" valignment="top">
  8322. <column alignment="center" valignment="top">
  8323. <column alignment="center" valignment="top">
  8324. <column alignment="center" valignment="top">
  8325. <row>
  8326. <cell alignment="center" valignment="top" usebox="none">
  8327. \begin_inset Text
  8328. \begin_layout Plain Layout
  8329. \end_layout
  8330. \end_inset
  8331. </cell>
  8332. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8333. \begin_inset Text
  8334. \begin_layout Plain Layout
  8335. Analysis
  8336. \end_layout
  8337. \end_inset
  8338. </cell>
  8339. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8340. \begin_inset Text
  8341. \begin_layout Plain Layout
  8342. \end_layout
  8343. \end_inset
  8344. </cell>
  8345. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8346. \begin_inset Text
  8347. \begin_layout Plain Layout
  8348. \end_layout
  8349. \end_inset
  8350. </cell>
  8351. </row>
  8352. <row>
  8353. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8354. \begin_inset Text
  8355. \begin_layout Plain Layout
  8356. Contrast
  8357. \end_layout
  8358. \end_inset
  8359. </cell>
  8360. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8361. \begin_inset Text
  8362. \begin_layout Plain Layout
  8363. A
  8364. \end_layout
  8365. \end_inset
  8366. </cell>
  8367. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8368. \begin_inset Text
  8369. \begin_layout Plain Layout
  8370. B
  8371. \end_layout
  8372. \end_inset
  8373. </cell>
  8374. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  8375. \begin_inset Text
  8376. \begin_layout Plain Layout
  8377. C
  8378. \end_layout
  8379. \end_inset
  8380. </cell>
  8381. </row>
  8382. <row>
  8383. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8384. \begin_inset Text
  8385. \begin_layout Plain Layout
  8386. TX vs AR
  8387. \end_layout
  8388. \end_inset
  8389. </cell>
  8390. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8391. \begin_inset Text
  8392. \begin_layout Plain Layout
  8393. 0
  8394. \end_layout
  8395. \end_inset
  8396. </cell>
  8397. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8398. \begin_inset Text
  8399. \begin_layout Plain Layout
  8400. 25
  8401. \end_layout
  8402. \end_inset
  8403. </cell>
  8404. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8405. \begin_inset Text
  8406. \begin_layout Plain Layout
  8407. 22
  8408. \end_layout
  8409. \end_inset
  8410. </cell>
  8411. </row>
  8412. <row>
  8413. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8414. \begin_inset Text
  8415. \begin_layout Plain Layout
  8416. TX vs ADNR
  8417. \end_layout
  8418. \end_inset
  8419. </cell>
  8420. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8421. \begin_inset Text
  8422. \begin_layout Plain Layout
  8423. 7
  8424. \end_layout
  8425. \end_inset
  8426. </cell>
  8427. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8428. \begin_inset Text
  8429. \begin_layout Plain Layout
  8430. 338
  8431. \end_layout
  8432. \end_inset
  8433. </cell>
  8434. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8435. \begin_inset Text
  8436. \begin_layout Plain Layout
  8437. 369
  8438. \end_layout
  8439. \end_inset
  8440. </cell>
  8441. </row>
  8442. <row>
  8443. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8444. \begin_inset Text
  8445. \begin_layout Plain Layout
  8446. TX vs CAN
  8447. \end_layout
  8448. \end_inset
  8449. </cell>
  8450. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8451. \begin_inset Text
  8452. \begin_layout Plain Layout
  8453. 0
  8454. \end_layout
  8455. \end_inset
  8456. </cell>
  8457. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8458. \begin_inset Text
  8459. \begin_layout Plain Layout
  8460. 231
  8461. \end_layout
  8462. \end_inset
  8463. </cell>
  8464. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  8465. \begin_inset Text
  8466. \begin_layout Plain Layout
  8467. 278
  8468. \end_layout
  8469. \end_inset
  8470. </cell>
  8471. </row>
  8472. </lyxtabular>
  8473. \end_inset
  8474. \end_layout
  8475. \begin_layout Plain Layout
  8476. \begin_inset Caption Standard
  8477. \begin_layout Plain Layout
  8478. \begin_inset CommandInset label
  8479. LatexCommand label
  8480. name "tab:methyl-num-signif"
  8481. \end_inset
  8482. Number of probes significant at 10% FDR.
  8483. \end_layout
  8484. \end_inset
  8485. \end_layout
  8486. \end_inset
  8487. \begin_inset space \hfill{}
  8488. \end_inset
  8489. \begin_inset Float table
  8490. wide false
  8491. sideways false
  8492. status open
  8493. \begin_layout Plain Layout
  8494. \align center
  8495. \begin_inset Tabular
  8496. <lyxtabular version="3" rows="5" columns="4">
  8497. <features tabularvalignment="middle">
  8498. <column alignment="center" valignment="top">
  8499. <column alignment="center" valignment="top">
  8500. <column alignment="center" valignment="top">
  8501. <column alignment="center" valignment="top">
  8502. <row>
  8503. <cell alignment="center" valignment="top" usebox="none">
  8504. \begin_inset Text
  8505. \begin_layout Plain Layout
  8506. \end_layout
  8507. \end_inset
  8508. </cell>
  8509. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8510. \begin_inset Text
  8511. \begin_layout Plain Layout
  8512. Analysis
  8513. \end_layout
  8514. \end_inset
  8515. </cell>
  8516. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8517. \begin_inset Text
  8518. \begin_layout Plain Layout
  8519. \end_layout
  8520. \end_inset
  8521. </cell>
  8522. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8523. \begin_inset Text
  8524. \begin_layout Plain Layout
  8525. \end_layout
  8526. \end_inset
  8527. </cell>
  8528. </row>
  8529. <row>
  8530. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8531. \begin_inset Text
  8532. \begin_layout Plain Layout
  8533. Contrast
  8534. \end_layout
  8535. \end_inset
  8536. </cell>
  8537. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8538. \begin_inset Text
  8539. \begin_layout Plain Layout
  8540. A
  8541. \end_layout
  8542. \end_inset
  8543. </cell>
  8544. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8545. \begin_inset Text
  8546. \begin_layout Plain Layout
  8547. B
  8548. \end_layout
  8549. \end_inset
  8550. </cell>
  8551. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  8552. \begin_inset Text
  8553. \begin_layout Plain Layout
  8554. C
  8555. \end_layout
  8556. \end_inset
  8557. </cell>
  8558. </row>
  8559. <row>
  8560. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8561. \begin_inset Text
  8562. \begin_layout Plain Layout
  8563. TX vs AR
  8564. \end_layout
  8565. \end_inset
  8566. </cell>
  8567. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8568. \begin_inset Text
  8569. \begin_layout Plain Layout
  8570. 0
  8571. \end_layout
  8572. \end_inset
  8573. </cell>
  8574. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8575. \begin_inset Text
  8576. \begin_layout Plain Layout
  8577. 10,063
  8578. \end_layout
  8579. \end_inset
  8580. </cell>
  8581. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8582. \begin_inset Text
  8583. \begin_layout Plain Layout
  8584. 11,225
  8585. \end_layout
  8586. \end_inset
  8587. </cell>
  8588. </row>
  8589. <row>
  8590. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8591. \begin_inset Text
  8592. \begin_layout Plain Layout
  8593. TX vs ADNR
  8594. \end_layout
  8595. \end_inset
  8596. </cell>
  8597. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8598. \begin_inset Text
  8599. \begin_layout Plain Layout
  8600. 27
  8601. \end_layout
  8602. \end_inset
  8603. </cell>
  8604. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8605. \begin_inset Text
  8606. \begin_layout Plain Layout
  8607. 12,674
  8608. \end_layout
  8609. \end_inset
  8610. </cell>
  8611. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8612. \begin_inset Text
  8613. \begin_layout Plain Layout
  8614. 13,086
  8615. \end_layout
  8616. \end_inset
  8617. </cell>
  8618. </row>
  8619. <row>
  8620. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8621. \begin_inset Text
  8622. \begin_layout Plain Layout
  8623. TX vs CAN
  8624. \end_layout
  8625. \end_inset
  8626. </cell>
  8627. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8628. \begin_inset Text
  8629. \begin_layout Plain Layout
  8630. 966
  8631. \end_layout
  8632. \end_inset
  8633. </cell>
  8634. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8635. \begin_inset Text
  8636. \begin_layout Plain Layout
  8637. 20,039
  8638. \end_layout
  8639. \end_inset
  8640. </cell>
  8641. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  8642. \begin_inset Text
  8643. \begin_layout Plain Layout
  8644. 20,955
  8645. \end_layout
  8646. \end_inset
  8647. </cell>
  8648. </row>
  8649. </lyxtabular>
  8650. \end_inset
  8651. \end_layout
  8652. \begin_layout Plain Layout
  8653. \begin_inset Caption Standard
  8654. \begin_layout Plain Layout
  8655. \begin_inset CommandInset label
  8656. LatexCommand label
  8657. name "tab:methyl-est-nonnull"
  8658. \end_inset
  8659. Estimated number of non-null tests, using the method of averaging local
  8660. FDR values
  8661. \begin_inset CommandInset citation
  8662. LatexCommand cite
  8663. key "Phipson2013Thesis"
  8664. literal "false"
  8665. \end_inset
  8666. .
  8667. \end_layout
  8668. \end_inset
  8669. \end_layout
  8670. \end_inset
  8671. \end_layout
  8672. \begin_layout Plain Layout
  8673. \begin_inset Caption Standard
  8674. \begin_layout Plain Layout
  8675. \series bold
  8676. Estimates of degree of differential methylation in for each contrast in
  8677. each analysis.
  8678. \series default
  8679. For each of the analyses in Table
  8680. \begin_inset CommandInset ref
  8681. LatexCommand ref
  8682. reference "tab:Summary-of-meth-analysis"
  8683. plural "false"
  8684. caps "false"
  8685. noprefix "false"
  8686. \end_inset
  8687. , these tables show the number of probes called significantly differentially
  8688. methylated at a threshold of 10% FDR for each comparison between TX and
  8689. the other 3 transplant statuses (a) and the estimated total number of probes
  8690. that are differentially methylated (b).
  8691. \end_layout
  8692. \end_inset
  8693. \end_layout
  8694. \end_inset
  8695. \end_layout
  8696. \begin_layout Standard
  8697. \begin_inset Float figure
  8698. wide false
  8699. sideways false
  8700. status open
  8701. \begin_layout Plain Layout
  8702. \align center
  8703. \series bold
  8704. \begin_inset Float figure
  8705. wide false
  8706. sideways false
  8707. status collapsed
  8708. \begin_layout Plain Layout
  8709. \align center
  8710. \begin_inset Graphics
  8711. filename graphics/methylvoom/unadj.dupcor/pval-histograms-PAGE1.pdf
  8712. lyxscale 33
  8713. width 30col%
  8714. groupId meth-pval-hist
  8715. \end_inset
  8716. \end_layout
  8717. \begin_layout Plain Layout
  8718. \series bold
  8719. \begin_inset Caption Standard
  8720. \begin_layout Plain Layout
  8721. AR vs.
  8722. TX, Analysis A
  8723. \end_layout
  8724. \end_inset
  8725. \end_layout
  8726. \begin_layout Plain Layout
  8727. \end_layout
  8728. \end_inset
  8729. \begin_inset space \hfill{}
  8730. \end_inset
  8731. \begin_inset Float figure
  8732. wide false
  8733. sideways false
  8734. status collapsed
  8735. \begin_layout Plain Layout
  8736. \align center
  8737. \begin_inset Graphics
  8738. filename graphics/methylvoom/unadj.dupcor/pval-histograms-PAGE2.pdf
  8739. lyxscale 33
  8740. width 30col%
  8741. groupId meth-pval-hist
  8742. \end_inset
  8743. \end_layout
  8744. \begin_layout Plain Layout
  8745. \series bold
  8746. \begin_inset Caption Standard
  8747. \begin_layout Plain Layout
  8748. ADNR vs.
  8749. TX, Analysis A
  8750. \end_layout
  8751. \end_inset
  8752. \end_layout
  8753. \end_inset
  8754. \begin_inset space \hfill{}
  8755. \end_inset
  8756. \begin_inset Float figure
  8757. wide false
  8758. sideways false
  8759. status collapsed
  8760. \begin_layout Plain Layout
  8761. \align center
  8762. \begin_inset Graphics
  8763. filename graphics/methylvoom/unadj.dupcor/pval-histograms-PAGE3.pdf
  8764. lyxscale 33
  8765. width 30col%
  8766. groupId meth-pval-hist
  8767. \end_inset
  8768. \end_layout
  8769. \begin_layout Plain Layout
  8770. \series bold
  8771. \begin_inset Caption Standard
  8772. \begin_layout Plain Layout
  8773. CAN vs.
  8774. TX, Analysis A
  8775. \end_layout
  8776. \end_inset
  8777. \end_layout
  8778. \end_inset
  8779. \end_layout
  8780. \begin_layout Plain Layout
  8781. \align center
  8782. \series bold
  8783. \begin_inset Float figure
  8784. wide false
  8785. sideways false
  8786. status collapsed
  8787. \begin_layout Plain Layout
  8788. \align center
  8789. \begin_inset Graphics
  8790. filename graphics/methylvoom/unadj.dupcor.sva.aw/pval-histograms-PAGE1.pdf
  8791. lyxscale 33
  8792. width 30col%
  8793. groupId meth-pval-hist
  8794. \end_inset
  8795. \end_layout
  8796. \begin_layout Plain Layout
  8797. \series bold
  8798. \begin_inset Caption Standard
  8799. \begin_layout Plain Layout
  8800. AR vs.
  8801. TX, Analysis B
  8802. \end_layout
  8803. \end_inset
  8804. \end_layout
  8805. \end_inset
  8806. \begin_inset space \hfill{}
  8807. \end_inset
  8808. \begin_inset Float figure
  8809. wide false
  8810. sideways false
  8811. status collapsed
  8812. \begin_layout Plain Layout
  8813. \align center
  8814. \begin_inset Graphics
  8815. filename graphics/methylvoom/unadj.dupcor.sva.aw/pval-histograms-PAGE2.pdf
  8816. lyxscale 33
  8817. width 30col%
  8818. groupId meth-pval-hist
  8819. \end_inset
  8820. \end_layout
  8821. \begin_layout Plain Layout
  8822. \series bold
  8823. \begin_inset Caption Standard
  8824. \begin_layout Plain Layout
  8825. ADNR vs.
  8826. TX, Analysis B
  8827. \end_layout
  8828. \end_inset
  8829. \end_layout
  8830. \end_inset
  8831. \begin_inset space \hfill{}
  8832. \end_inset
  8833. \begin_inset Float figure
  8834. wide false
  8835. sideways false
  8836. status collapsed
  8837. \begin_layout Plain Layout
  8838. \align center
  8839. \begin_inset Graphics
  8840. filename graphics/methylvoom/unadj.dupcor.sva.aw/pval-histograms-PAGE3.pdf
  8841. lyxscale 33
  8842. width 30col%
  8843. groupId meth-pval-hist
  8844. \end_inset
  8845. \end_layout
  8846. \begin_layout Plain Layout
  8847. \series bold
  8848. \begin_inset Caption Standard
  8849. \begin_layout Plain Layout
  8850. CAN vs.
  8851. TX, Analysis B
  8852. \end_layout
  8853. \end_inset
  8854. \end_layout
  8855. \end_inset
  8856. \end_layout
  8857. \begin_layout Plain Layout
  8858. \align center
  8859. \series bold
  8860. \begin_inset Float figure
  8861. wide false
  8862. sideways false
  8863. status collapsed
  8864. \begin_layout Plain Layout
  8865. \align center
  8866. \begin_inset Graphics
  8867. filename graphics/methylvoom/unadj.dupcor.sva.voomaw/pval-histograms-PAGE1.pdf
  8868. lyxscale 33
  8869. width 30col%
  8870. groupId meth-pval-hist
  8871. \end_inset
  8872. \end_layout
  8873. \begin_layout Plain Layout
  8874. \series bold
  8875. \begin_inset Caption Standard
  8876. \begin_layout Plain Layout
  8877. AR vs.
  8878. TX, Analysis C
  8879. \end_layout
  8880. \end_inset
  8881. \end_layout
  8882. \end_inset
  8883. \begin_inset space \hfill{}
  8884. \end_inset
  8885. \begin_inset Float figure
  8886. wide false
  8887. sideways false
  8888. status collapsed
  8889. \begin_layout Plain Layout
  8890. \align center
  8891. \begin_inset Graphics
  8892. filename graphics/methylvoom/unadj.dupcor.sva.voomaw/pval-histograms-PAGE2.pdf
  8893. lyxscale 33
  8894. width 30col%
  8895. groupId meth-pval-hist
  8896. \end_inset
  8897. \end_layout
  8898. \begin_layout Plain Layout
  8899. \series bold
  8900. \begin_inset Caption Standard
  8901. \begin_layout Plain Layout
  8902. ADNR vs.
  8903. TX, Analysis C
  8904. \end_layout
  8905. \end_inset
  8906. \end_layout
  8907. \end_inset
  8908. \begin_inset space \hfill{}
  8909. \end_inset
  8910. \begin_inset Float figure
  8911. wide false
  8912. sideways false
  8913. status collapsed
  8914. \begin_layout Plain Layout
  8915. \align center
  8916. \begin_inset Graphics
  8917. filename graphics/methylvoom/unadj.dupcor.sva.voomaw/pval-histograms-PAGE3.pdf
  8918. lyxscale 33
  8919. width 30col%
  8920. groupId meth-pval-hist
  8921. \end_inset
  8922. \end_layout
  8923. \begin_layout Plain Layout
  8924. \series bold
  8925. \begin_inset Caption Standard
  8926. \begin_layout Plain Layout
  8927. CAN vs.
  8928. TX, Analysis C
  8929. \end_layout
  8930. \end_inset
  8931. \end_layout
  8932. \end_inset
  8933. \end_layout
  8934. \begin_layout Plain Layout
  8935. \begin_inset Caption Standard
  8936. \begin_layout Plain Layout
  8937. \series bold
  8938. \begin_inset CommandInset label
  8939. LatexCommand label
  8940. name "fig:meth-p-value-histograms"
  8941. \end_inset
  8942. Probe p-value histograms for each contrast in each analysis.
  8943. \series default
  8944. For each differential methylation test of interest, the distribution of
  8945. p-values across all probes is plotted as a histogram.
  8946. The red solid line indicates the density that would be expected under the
  8947. null hypothesis for all probes (a
  8948. \begin_inset Formula $\mathrm{Uniform}(0,1)$
  8949. \end_inset
  8950. distribution), while the blue dotted line indicates the fraction of p-values
  8951. that actually follow the null hypothesis (
  8952. \begin_inset Formula $\hat{\pi}_{0}$
  8953. \end_inset
  8954. ) estimated using the method of averaging local FDR values
  8955. \begin_inset CommandInset citation
  8956. LatexCommand cite
  8957. key "Phipson2013Thesis"
  8958. literal "false"
  8959. \end_inset
  8960. .
  8961. the blue line is only shown in each plot if the estimate of
  8962. \begin_inset Formula $\hat{\pi}_{0}$
  8963. \end_inset
  8964. for that p-value distribution is different from 1.
  8965. \end_layout
  8966. \end_inset
  8967. \end_layout
  8968. \end_inset
  8969. \end_layout
  8970. \begin_layout Standard
  8971. Table
  8972. \begin_inset CommandInset ref
  8973. LatexCommand ref
  8974. reference "tab:methyl-num-signif"
  8975. plural "false"
  8976. caps "false"
  8977. noprefix "false"
  8978. \end_inset
  8979. shows the number of significantly differentially methylated probes reported
  8980. by each analysis for each comparison of interest at an FDR of 10%.
  8981. As expected, the more elaborate analyses, B and C, report more significant
  8982. probes than the more basic analysis A, consistent with the conclusions
  8983. above that the data contain hidden systematic variations that must be modeled.
  8984. Table
  8985. \begin_inset CommandInset ref
  8986. LatexCommand ref
  8987. reference "tab:methyl-est-nonnull"
  8988. plural "false"
  8989. caps "false"
  8990. noprefix "false"
  8991. \end_inset
  8992. shows the estimated number differentially methylated probes for each test
  8993. from each analysis.
  8994. This was computed by estimating the proportion of null hypotheses that
  8995. were true using the method of
  8996. \begin_inset CommandInset citation
  8997. LatexCommand cite
  8998. key "Phipson2013Thesis"
  8999. literal "false"
  9000. \end_inset
  9001. and subtracting that fraction from the total number of probes, yielding
  9002. an estimate of the number of null hypotheses that are false based on the
  9003. distribution of p-values across the entire dataset.
  9004. Note that this does not identify which null hypotheses should be rejected
  9005. (i.e.
  9006. which probes are significant); it only estimates the true number of such
  9007. probes.
  9008. Once again, analyses B and C result it much larger estimates for the number
  9009. of differentially methylated probes.
  9010. In this case, analysis C, the only analysis that includes voom, estimates
  9011. the largest number of differentially methylated probes for all 3 contrasts.
  9012. If the assumptions of all the methods employed hold, then this represents
  9013. a gain in statistical power over the simpler analysis A.
  9014. Figure
  9015. \begin_inset CommandInset ref
  9016. LatexCommand ref
  9017. reference "fig:meth-p-value-histograms"
  9018. plural "false"
  9019. caps "false"
  9020. noprefix "false"
  9021. \end_inset
  9022. shows the p-value distributions for each test, from which the numbers in
  9023. Table
  9024. \begin_inset CommandInset ref
  9025. LatexCommand ref
  9026. reference "tab:methyl-est-nonnull"
  9027. plural "false"
  9028. caps "false"
  9029. noprefix "false"
  9030. \end_inset
  9031. were generated.
  9032. The distributions for analysis A all have a dip in density near zero, which
  9033. is a strong sign of a poor model fit.
  9034. The histograms for analyses B and C are more well-behaved, with a uniform
  9035. component stretching all the way from 0 to 1 representing the probes for
  9036. which the null hypotheses is true (no differential methylation), and a
  9037. zero-biased component representing the probes for which the null hypothesis
  9038. is false (differentially methylated).
  9039. These histograms do not indicate any major issues with the model fit.
  9040. \end_layout
  9041. \begin_layout Standard
  9042. \begin_inset Flex TODO Note (inline)
  9043. status open
  9044. \begin_layout Plain Layout
  9045. If time allows, maybe generate the PCA plots before/after SVA effect subtraction
  9046. ?
  9047. \end_layout
  9048. \end_inset
  9049. \end_layout
  9050. \begin_layout Section
  9051. Discussion
  9052. \end_layout
  9053. \begin_layout Subsection
  9054. fRMA achieves clinically applicable normalization without sacrificing classifica
  9055. tion performance
  9056. \end_layout
  9057. \begin_layout Standard
  9058. As shown in Figure
  9059. \begin_inset CommandInset ref
  9060. LatexCommand ref
  9061. reference "fig:Classifier-probabilities-RMA"
  9062. plural "false"
  9063. caps "false"
  9064. noprefix "false"
  9065. \end_inset
  9066. , improper normalization, particularly separate normalization of training
  9067. and test samples, leads to unwanted biases in classification.
  9068. In a controlled experimental context, it is always possible to correct
  9069. this issue by normalizing all experimental samples together.
  9070. However, because it is not feasible to normalize all samples together in
  9071. a clinical context, a single-channel normalization is required is required.
  9072. \end_layout
  9073. \begin_layout Standard
  9074. The major concern in using a single-channel normalization is that non-single-cha
  9075. nnel methods can share information between arrays to improve the normalization,
  9076. and single-channel methods risk sacrificing the gains in normalization
  9077. accuracy that come from this information sharing.
  9078. In the case of RMA, this information sharing is accomplished through quantile
  9079. normalization and median polish steps.
  9080. The need for information sharing in quantile normalization can easily be
  9081. removed by learning a fixed set of quantiles from external data and normalizing
  9082. each array to these fixed quantiles, instead of the quantiles of the data
  9083. itself.
  9084. As long as the fixed quantiles are reasonable, the result will be similar
  9085. to standard RMA.
  9086. However, there is no analogous way to eliminate cross-array information
  9087. sharing in the median polish step, so fRMA replaces this with a weighted
  9088. average of probes on each array, with the weights learned from external
  9089. data.
  9090. This step of fRMA has the greatest potential to diverge from RMA un undesirable
  9091. ways.
  9092. \end_layout
  9093. \begin_layout Standard
  9094. However, when run on real data, fRMA performed at least as well as RMA in
  9095. both the internal validation and external validation tests.
  9096. This shows that fRMA can be used to normalize individual clinical samples
  9097. in a class prediction context without sacrificing the classifier performance
  9098. that would be obtained by using the more well-established RMA for normalization.
  9099. The other single-channel normalization method considered, SCAN, showed
  9100. some loss of AUC in the external validation test.
  9101. Based on these results, fRMA is the preferred normalization for clinical
  9102. samples in a class prediction context.
  9103. \end_layout
  9104. \begin_layout Subsection
  9105. Robust fRMA vectors can be generated for new array platforms
  9106. \end_layout
  9107. \begin_layout Standard
  9108. \begin_inset Flex TODO Note (inline)
  9109. status open
  9110. \begin_layout Plain Layout
  9111. Look up the exact numbers, do a find & replace for
  9112. \begin_inset Quotes eld
  9113. \end_inset
  9114. 850
  9115. \begin_inset Quotes erd
  9116. \end_inset
  9117. \end_layout
  9118. \end_inset
  9119. \end_layout
  9120. \begin_layout Standard
  9121. The published fRMA normalization vectors for the hgu133plus2 platform were
  9122. generated from a set of about 850 samples chosen from a wide range of tissues,
  9123. which the authors determined was sufficient to generate a robust set of
  9124. normalization vectors that could be applied across all tissues
  9125. \begin_inset CommandInset citation
  9126. LatexCommand cite
  9127. key "McCall2010"
  9128. literal "false"
  9129. \end_inset
  9130. .
  9131. Since we only had hthgu133pluspm for 2 tissues of interest, our needs were
  9132. more modest.
  9133. Even using only 130 samples in 26 batches of 5 samples each for kidney
  9134. biopsies, we were able to train a robust set of fRMA normalization vectors
  9135. that were not meaningfully affected by the random selection of 5 samples
  9136. from each batch.
  9137. As expected, the training process was just as robust for the blood samples
  9138. with 230 samples in 46 batches of 5 samples each.
  9139. Because these vectors were each generated using training samples from a
  9140. single tissue, they are not suitable for general use, unlike the vectors
  9141. provided with fRMA itself.
  9142. They are purpose-built for normalizing a specific type of sample on a specific
  9143. platform.
  9144. This is a mostly acceptable limitation in the context of developing a machine
  9145. learning classifier for diagnosing a disease based on samples of a specific
  9146. tissue.
  9147. \end_layout
  9148. \begin_layout Standard
  9149. \begin_inset Flex TODO Note (inline)
  9150. status open
  9151. \begin_layout Plain Layout
  9152. Talk about how these vectors can be used for any data from these tissues
  9153. on this platform even though they were custom made for this data set.
  9154. \end_layout
  9155. \end_inset
  9156. \end_layout
  9157. \begin_layout Standard
  9158. \begin_inset Flex TODO Note (inline)
  9159. status open
  9160. \begin_layout Plain Layout
  9161. How to bring up that these custom vectors were used in another project by
  9162. someone else that was never published?
  9163. \end_layout
  9164. \end_inset
  9165. \end_layout
  9166. \begin_layout Subsection
  9167. Methylation array data can be successfully analyzed using existing techniques,
  9168. but machine learning poses additional challenges
  9169. \end_layout
  9170. \begin_layout Standard
  9171. Both analysis strategies B and C both yield a reasonable analysis, with
  9172. a mean-variance trend that matches the expected behavior for the non-linear
  9173. M-value transformation (Figure
  9174. \begin_inset CommandInset ref
  9175. LatexCommand ref
  9176. reference "fig:meanvar-sva-aw"
  9177. plural "false"
  9178. caps "false"
  9179. noprefix "false"
  9180. \end_inset
  9181. ) and well-behaved p-value distributions (Figure
  9182. \begin_inset CommandInset ref
  9183. LatexCommand ref
  9184. reference "fig:meth-p-value-histograms"
  9185. plural "false"
  9186. caps "false"
  9187. noprefix "false"
  9188. \end_inset
  9189. ).
  9190. These two analyses also yield similar numbers of significant probes (Table
  9191. \begin_inset CommandInset ref
  9192. LatexCommand ref
  9193. reference "tab:methyl-num-signif"
  9194. plural "false"
  9195. caps "false"
  9196. noprefix "false"
  9197. \end_inset
  9198. ) and similar estimates of the number of differentially methylated probes
  9199. (Table
  9200. \begin_inset CommandInset ref
  9201. LatexCommand ref
  9202. reference "tab:methyl-est-nonnull"
  9203. plural "false"
  9204. caps "false"
  9205. noprefix "false"
  9206. \end_inset
  9207. ).
  9208. The main difference between these two analyses is the method used to account
  9209. for the mean-variance trend.
  9210. In analysis B, the trend is estimated and applied at the probe level: each
  9211. probe's estimated variance is squeezed toward the trend using an empirical
  9212. Bayes procedure (Figure
  9213. \begin_inset CommandInset ref
  9214. LatexCommand ref
  9215. reference "fig:meanvar-sva-aw"
  9216. plural "false"
  9217. caps "false"
  9218. noprefix "false"
  9219. \end_inset
  9220. ).
  9221. In analysis C, the trend is still estimated at the probe level, but instead
  9222. of estimating a single variance value shared across all observations for
  9223. a given probe, the voom method computes an initial estiamte of the variance
  9224. for each observation individually based on where its model-fitted M-value
  9225. falls on the trend line and then assigns inverse-variance weights to model
  9226. the difference in variance between observations.
  9227. An overall variance is still estimated for each probe using the same empirical
  9228. Bayes method, but now the residual trend is flat (Figure
  9229. \begin_inset CommandInset ref
  9230. LatexCommand ref
  9231. reference "fig:meanvar-sva-voomaw"
  9232. plural "false"
  9233. caps "false"
  9234. noprefix "false"
  9235. \end_inset
  9236. ), indicating that the mean-variance trend is adequately modeled by scaling
  9237. the estimated variance for each observation using the weights computed
  9238. by voom.
  9239. \end_layout
  9240. \begin_layout Standard
  9241. The difference between the standard empirical Bayes trended variance modeling
  9242. (analysis B) and voom (analysis C) is analogous to the difference between
  9243. a t-test with equal variance and a t-test with unequal variance, except
  9244. that the unequal group variances used in the latter test are estimated
  9245. based on the mean-variance trend from all the probes rather than the data
  9246. for the specific probe being tested, thus stabilizing the group variance
  9247. estimates by sharing information between probes.
  9248. Allowing voom to model the variance using observation weights in this manner
  9249. allows the linear model fit to concentrate statistical power where it will
  9250. do the most good.
  9251. For example, if a particular probe's M-values are always at the extreme
  9252. of the M-value range (e.g.
  9253. less than -4) for ADNR samples, but the M-values for that probe in TX and
  9254. CAN samples are within the flat region of the mean-variance trend (between
  9255. -3 and +3), voom is able to down-weight the contribution of the high-variance
  9256. M-values from the ADNR samples in order to gain more statistical power
  9257. while testing for differential methylation between TX and CAN.
  9258. In contrast, modeling the mean-variance trend only at the probe level would
  9259. combine the high-variance ADNR samples and lower-variance samples from
  9260. other conditions and estimate an intermediate variance for this probe.
  9261. In practice, analysis B shows that this approach is adequate, but the voom
  9262. approach in analysis C is at least as good on all model fit criteria and
  9263. yields a larger estimate for the number of differentially methylated genes,
  9264. \emph on
  9265. and
  9266. \emph default
  9267. it matches up better with the theoretical
  9268. \end_layout
  9269. \begin_layout Standard
  9270. The significant association of diebetes diagnosis with sample quality is
  9271. interesting.
  9272. The samples with Type 2 diabetes tended to have more variation, averaged
  9273. across all probes, than those with Type 1 diabetes.
  9274. This is consistent with the consensus that type 2 disbetes and the associated
  9275. metabolic syndrome represent a broad dysregulation of the body's endocrine
  9276. signalling related to metabolism [citation needed].
  9277. This dysregulation could easily manifest as a greater degree of variation
  9278. in the DNA methylation patterns of affected tissues.
  9279. In contrast, Type 1 disbetes has a more specific cause and effect, so a
  9280. less variable methylation signature is expected.
  9281. \end_layout
  9282. \begin_layout Standard
  9283. This preliminary anlaysis suggests that some degree of differential methylation
  9284. exists between TX and each of the three types of transplant disfunction
  9285. studied.
  9286. Hence, it may be feasible to train a classifier to diagnose transplant
  9287. disfunction from DNA methylation array data.
  9288. However, the major importance of both SVA and sample quality weighting
  9289. for proper modeling of this data poses significant challenges for any attempt
  9290. at a machine learning on data of similar quality.
  9291. While these are easily used in a modeling context with full sample information,
  9292. neither of these methods is directly applicable in a machine learning context,
  9293. where the diagnosis is not known ahead of time.
  9294. If a machine learning approach for methylation-based diagnosis is to be
  9295. pursued, it will either require machine-learning-friendly methods to address
  9296. the same systematic trends in the data that SVA and sample quality weighting
  9297. address, or it will require higher quality data with substantially less
  9298. systematic perturbation of the data.
  9299. \end_layout
  9300. \begin_layout Section
  9301. Future Directions
  9302. \end_layout
  9303. \begin_layout Standard
  9304. \begin_inset Flex TODO Note (inline)
  9305. status open
  9306. \begin_layout Plain Layout
  9307. Some work was already being done with the existing fRMA vectors.
  9308. Do I mention that here?
  9309. \end_layout
  9310. \end_inset
  9311. \end_layout
  9312. \begin_layout Subsection
  9313. Improving fRMA to allow training from batches of unequal size
  9314. \end_layout
  9315. \begin_layout Standard
  9316. Because the tools for building fRMA normalization vectors require equal-size
  9317. batches, many samples must be discarded from the training data.
  9318. This is undesirable for a few reasons.
  9319. First, more data is simply better, all other things being equal.
  9320. In this case,
  9321. \begin_inset Quotes eld
  9322. \end_inset
  9323. better
  9324. \begin_inset Quotes erd
  9325. \end_inset
  9326. means a more precise estimate of normalization parameters.
  9327. In addition, the samples to be discarded must be chosen arbitrarily, which
  9328. introduces an unnecessary element of randomness into the estimation process.
  9329. While the randomness can be made deterministic by setting a consistent
  9330. random seed, the need for equal size batches also introduces a need for
  9331. the analyst to decide on the appropriate trade-off between batch size and
  9332. the number of batches.
  9333. This introduces an unnecessary and undesirable
  9334. \begin_inset Quotes eld
  9335. \end_inset
  9336. researcher degree of freedom
  9337. \begin_inset Quotes erd
  9338. \end_inset
  9339. into the analysis, since the generated normalization vectors now depend
  9340. on the choice of batch size based on vague selection criteria and instinct,
  9341. which can unintentionally inproduce bias if the researcher chooses a batch
  9342. size based on what seems to yield the most favorable downstream results
  9343. \begin_inset CommandInset citation
  9344. LatexCommand cite
  9345. key "Simmons2011"
  9346. literal "false"
  9347. \end_inset
  9348. .
  9349. \end_layout
  9350. \begin_layout Standard
  9351. Fortunately, the requirement for equal-size batches is not inherent to the
  9352. fRMA algorithm but rather a limitation of the implementation in the frmaTools
  9353. package.
  9354. In personal communication, the package's author, Matthew McCall, has indicated
  9355. that with some work, it should be possible to improve the implementation
  9356. to work with batches of unequal sizes.
  9357. The current implementation ignores the batch size when calculating with-batch
  9358. and between-batch residual variances, since the batch size constant cancels
  9359. out later in the calculations as long as all batches are of equal size.
  9360. Hence, the calculations of these parameters would need to be modified to
  9361. remove this optimization and properly calculate the variances using the
  9362. full formula.
  9363. Once this modification is made, a new strategy would need to be developed
  9364. for assessing the stability of parameter estimates, since the random subsamplin
  9365. g step is eliminated, meaning that different subsamplings can no longer
  9366. be compared as in Figures
  9367. \begin_inset CommandInset ref
  9368. LatexCommand ref
  9369. reference "fig:frma-violin"
  9370. plural "false"
  9371. caps "false"
  9372. noprefix "false"
  9373. \end_inset
  9374. and
  9375. \begin_inset CommandInset ref
  9376. LatexCommand ref
  9377. reference "fig:Representative-MA-plots"
  9378. plural "false"
  9379. caps "false"
  9380. noprefix "false"
  9381. \end_inset
  9382. .
  9383. Bootstrap resampling is likely a good candidate here: sample many training
  9384. sets of equal size from the existing training set with replacement, estimate
  9385. parameters from each resampled training set, and compare the estimated
  9386. parameters between bootstraps in order to quantify the variability in each
  9387. parameter's estimation.
  9388. \end_layout
  9389. \begin_layout Subsection
  9390. Developing methylation arrays as a diagnostic tool for kidney transplant
  9391. rejection
  9392. \end_layout
  9393. \begin_layout Standard
  9394. The current study has showed that DNA methylation, as assayed by Illumina
  9395. 450k methylation arrays, has some potential for diagnosing transplant dysfuncti
  9396. ons, including rejection.
  9397. However, very few probes could be confidently identified as differentially
  9398. methylated between healthy and dysfunctional transplants.
  9399. One likely explanation for this is the predominant influence of unobserved
  9400. confounding factors.
  9401. SVA can model and correct for such factors, but the correction can never
  9402. be perfect, so some degree of unwanted systematic variation will always
  9403. remain after SVA correction.
  9404. If the effect size of the confounding factors was similar to that of the
  9405. factor of interest (in this case, transplant status), this would be an
  9406. acceptable limitation, since removing most of the confounding factors'
  9407. effects would allow the main effect to stand out.
  9408. However, in this data set, the confounding factors have a much larger effect
  9409. size than transplant status, which means that the small degree of remaining
  9410. variation not removed by SVA can still swamp the effect of interest, making
  9411. it difficult to detect.
  9412. This is, of course, a major issue when the end goal is to develop a classifier
  9413. to diagnose transplant rejection from methylation data, since batch-correction
  9414. methods like SVA that work in a linear modeling context cannot be applied
  9415. in a machine learning context.
  9416. \end_layout
  9417. \begin_layout Standard
  9418. Currently, the source of these unwanted systematic variations in the data
  9419. is unknown.
  9420. The best solution would be to determine the cause of the variation and
  9421. eliminate it, thereby eliminating the need to model and remove that variation.
  9422. However, if this proves impractical, another option is to use SVA to identify
  9423. probes that are highly associated with the surrogate variables that describe
  9424. the unwanted variation in the data.
  9425. These probes could be discarded prior to classifier training, in order
  9426. to maximize the chance that the training algorithm will be able to identify
  9427. highly predictive probes from those remaining.
  9428. Lastly, it is possible that some of this unwanted variation is a result
  9429. of the array-based assay being used and would be eliminated by switching
  9430. to assaying DNA methylation using bisulphite sequencing.
  9431. However, this carries the risk that the sequencing assay will have its
  9432. own set of biases that must be corrected for in a different way.
  9433. \end_layout
  9434. \begin_layout Chapter
  9435. Globin-blocking for more effective blood RNA-seq analysis in primate animal
  9436. model
  9437. \end_layout
  9438. \begin_layout Standard
  9439. \begin_inset Flex TODO Note (inline)
  9440. status open
  9441. \begin_layout Plain Layout
  9442. Choose between above and the paper title: Optimizing yield of deep RNA sequencin
  9443. g for gene expression profiling by globin reduction of peripheral blood
  9444. samples from cynomolgus monkeys (Macaca fascicularis).
  9445. \end_layout
  9446. \end_inset
  9447. \end_layout
  9448. \begin_layout Standard
  9449. \begin_inset Flex TODO Note (inline)
  9450. status open
  9451. \begin_layout Plain Layout
  9452. Chapter author list: https://tex.stackexchange.com/questions/156862/displaying-aut
  9453. hor-for-each-chapter-in-book Every chapter gets an author list, which may
  9454. or may not be part of a citation to a published/preprinted paper.
  9455. \end_layout
  9456. \end_inset
  9457. \end_layout
  9458. \begin_layout Standard
  9459. \begin_inset Flex TODO Note (inline)
  9460. status open
  9461. \begin_layout Plain Layout
  9462. Preprint then cite the paper
  9463. \end_layout
  9464. \end_inset
  9465. \end_layout
  9466. \begin_layout Section*
  9467. Abstract
  9468. \end_layout
  9469. \begin_layout Paragraph
  9470. Background
  9471. \end_layout
  9472. \begin_layout Standard
  9473. Primate blood contains high concentrations of globin messenger RNA.
  9474. Globin reduction is a standard technique used to improve the expression
  9475. results obtained by DNA microarrays on RNA from blood samples.
  9476. However, with whole transcriptome RNA-sequencing (RNA-seq) quickly replacing
  9477. microarrays for many applications, the impact of globin reduction for RNA-seq
  9478. has not been previously studied.
  9479. Moreover, no off-the-shelf kits are available for globin reduction in nonhuman
  9480. primates.
  9481. \end_layout
  9482. \begin_layout Paragraph
  9483. Results
  9484. \end_layout
  9485. \begin_layout Standard
  9486. Here we report a protocol for RNA-seq in primate blood samples that uses
  9487. complimentary oligonucleotides to block reverse transcription of the alpha
  9488. and beta globin genes.
  9489. In test samples from cynomolgus monkeys (Macaca fascicularis), this globin
  9490. blocking protocol approximately doubles the yield of informative (non-globin)
  9491. reads by greatly reducing the fraction of globin reads, while also improving
  9492. the consistency in sequencing depth between samples.
  9493. The increased yield enables detection of about 2000 more genes, significantly
  9494. increases the correlation in measured gene expression levels between samples,
  9495. and increases the sensitivity of differential gene expression tests.
  9496. \end_layout
  9497. \begin_layout Paragraph
  9498. Conclusions
  9499. \end_layout
  9500. \begin_layout Standard
  9501. These results show that globin blocking significantly improves the cost-effectiv
  9502. eness of mRNA sequencing in primate blood samples by doubling the yield
  9503. of useful reads, allowing detection of more genes, and improving the precision
  9504. of gene expression measurements.
  9505. Based on these results, a globin reducing or blocking protocol is recommended
  9506. for all RNA-seq studies of primate blood samples.
  9507. \end_layout
  9508. \begin_layout Section
  9509. Approach
  9510. \end_layout
  9511. \begin_layout Standard
  9512. \begin_inset Note Note
  9513. status open
  9514. \begin_layout Plain Layout
  9515. Consider putting some of this in the Intro chapter
  9516. \end_layout
  9517. \begin_layout Itemize
  9518. Cynomolgus monkeys as a model organism
  9519. \end_layout
  9520. \begin_deeper
  9521. \begin_layout Itemize
  9522. Highly related to humans
  9523. \end_layout
  9524. \begin_layout Itemize
  9525. Small size and short life cycle - good research animal
  9526. \end_layout
  9527. \begin_layout Itemize
  9528. Genomics resources still in development
  9529. \end_layout
  9530. \end_deeper
  9531. \begin_layout Itemize
  9532. Inadequacy of existing blood RNA-seq protocols
  9533. \end_layout
  9534. \begin_deeper
  9535. \begin_layout Itemize
  9536. Existing protocols use a separate globin pulldown step, slowing down processing
  9537. \end_layout
  9538. \end_deeper
  9539. \end_inset
  9540. \end_layout
  9541. \begin_layout Standard
  9542. Increasingly, researchers are turning to high-throughput mRNA sequencing
  9543. technologies (RNA-seq) in preference to expression microarrays for analysis
  9544. of gene expression
  9545. \begin_inset CommandInset citation
  9546. LatexCommand cite
  9547. key "Mutz2012"
  9548. literal "false"
  9549. \end_inset
  9550. .
  9551. The advantages are even greater for study of model organisms with no well-estab
  9552. lished array platforms available, such as the cynomolgus monkey (Macaca
  9553. fascicularis).
  9554. High fractions of globin mRNA are naturally present in mammalian peripheral
  9555. blood samples (up to 70% of total mRNA) and these are known to interfere
  9556. with the results of array-based expression profiling
  9557. \begin_inset CommandInset citation
  9558. LatexCommand cite
  9559. key "Winn2010"
  9560. literal "false"
  9561. \end_inset
  9562. .
  9563. The importance of globin reduction for RNA-seq of blood has only been evaluated
  9564. for a deepSAGE protocol on human samples
  9565. \begin_inset CommandInset citation
  9566. LatexCommand cite
  9567. key "Mastrokolias2012"
  9568. literal "false"
  9569. \end_inset
  9570. .
  9571. In the present report, we evaluated globin reduction using custom blocking
  9572. oligonucleotides for deep RNA-seq of peripheral blood samples from a nonhuman
  9573. primate, cynomolgus monkey, using the Illumina technology platform.
  9574. We demonstrate that globin reduction significantly improves the cost-effectiven
  9575. ess of RNA-seq in blood samples.
  9576. Thus, our protocol offers a significant advantage to any investigator planning
  9577. to use RNA-seq for gene expression profiling of nonhuman primate blood
  9578. samples.
  9579. Our method can be generally applied to any species by designing complementary
  9580. oligonucleotide blocking probes to the globin gene sequences of that species.
  9581. Indeed, any highly expressed but biologically uninformative transcripts
  9582. can also be blocked to further increase sequencing efficiency and value
  9583. \begin_inset CommandInset citation
  9584. LatexCommand cite
  9585. key "Arnaud2016"
  9586. literal "false"
  9587. \end_inset
  9588. .
  9589. \end_layout
  9590. \begin_layout Section
  9591. Methods
  9592. \end_layout
  9593. \begin_layout Subsection
  9594. Sample collection
  9595. \end_layout
  9596. \begin_layout Standard
  9597. All research reported here was done under IACUC-approved protocols at the
  9598. University of Miami and complied with all applicable federal and state
  9599. regulations and ethical principles for nonhuman primate research.
  9600. Blood draws occurred between 16 April 2012 and 18 June 2015.
  9601. The experimental system involved intrahepatic pancreatic islet transplantation
  9602. into Cynomolgus monkeys with induced diabetes mellitus with or without
  9603. concomitant infusion of mesenchymal stem cells.
  9604. Blood was collected at serial time points before and after transplantation
  9605. into PAXgene Blood RNA tubes (PreAnalytiX/Qiagen, Valencia, CA) at the
  9606. precise volume:volume ratio of 2.5 ml whole blood into 6.9 ml of PAX gene
  9607. additive.
  9608. \end_layout
  9609. \begin_layout Subsection
  9610. Globin Blocking
  9611. \end_layout
  9612. \begin_layout Standard
  9613. Four oligonucleotides were designed to hybridize to the 3’ end of the transcript
  9614. s for Cynomolgus HBA1, HBA2 and HBB, with two hybridization sites for HBB
  9615. and 2 sites for HBA (the chosen sites were identical in both HBA genes).
  9616. All oligos were purchased from Sigma and were entirely composed of 2’O-Me
  9617. bases with a C3 spacer positioned at the 3’ ends to prevent any polymerase
  9618. mediated primer extension.
  9619. \end_layout
  9620. \begin_layout Quote
  9621. HBA1/2 site 1: GCCCACUCAGACUUUAUUCAAAG-C3spacer
  9622. \end_layout
  9623. \begin_layout Quote
  9624. HBA1/2 site 2: GGUGCAAGGAGGGGAGGAG-C3spacer
  9625. \end_layout
  9626. \begin_layout Quote
  9627. HBB site 1: AAUGAAAAUAAAUGUUUUUUAUUAG-C3spacer
  9628. \end_layout
  9629. \begin_layout Quote
  9630. HBB site 2: CUCAAGGCCCUUCAUAAUAUCCC-C3spacer
  9631. \end_layout
  9632. \begin_layout Subsection
  9633. RNA-seq Library Preparation
  9634. \end_layout
  9635. \begin_layout Standard
  9636. Sequencing libraries were prepared with 200ng total RNA from each sample.
  9637. Polyadenylated mRNA was selected from 200 ng aliquots of cynomologus blood-deri
  9638. ved total RNA using Ambion Dynabeads Oligo(dT)25 beads (Invitrogen) following
  9639. manufacturer’s recommended protocol.
  9640. PolyA selected RNA was then combined with 8 pmol of HBA1/2 (site 1), 8
  9641. pmol of HBA1/2 (site 2), 12 pmol of HBB (site 1) and 12 pmol of HBB (site
  9642. 2) oligonucleotides.
  9643. In addition, 20 pmol of RT primer containing a portion of the Illumina
  9644. adapter sequence (B-oligo-dTV: GAGTTCCTTGGCACCCGAGAATTCCATTTTTTTTTTTTTTTTTTTV)
  9645. and 4 µL of 5X First Strand buffer (250 mM Tris-HCl pH 8.3, 375 mM KCl,
  9646. 15mM MgCl2) were added in a total volume of 15 µL.
  9647. The RNA was fragmented by heating this cocktail for 3 minutes at 95°C and
  9648. then placed on ice.
  9649. This was followed by the addition of 2 µL 0.1 M DTT, 1 µL RNaseOUT, 1 µL
  9650. 10mM dNTPs 10% biotin-16 aminoallyl-2’- dUTP and 10% biotin-16 aminoallyl-2’-
  9651. dCTP (TriLink Biotech, San Diego, CA), 1 µL Superscript II (200U/ µL, Thermo-Fi
  9652. sher).
  9653. A second “unblocked” library was prepared in the same way for each sample
  9654. but replacing the blocking oligos with an equivalent volume of water.
  9655. The reaction was carried out at 25°C for 15 minutes and 42°C for 40 minutes,
  9656. followed by incubation at 75°C for 10 minutes to inactivate the reverse
  9657. transcriptase.
  9658. \end_layout
  9659. \begin_layout Standard
  9660. The cDNA/RNA hybrid molecules were purified using 1.8X Ampure XP beads (Agencourt
  9661. ) following supplier’s recommended protocol.
  9662. The cDNA/RNA hybrid was eluted in 25 µL of 10 mM Tris-HCl pH 8.0, and then
  9663. bound to 25 µL of M280 Magnetic Streptavidin beads washed per recommended
  9664. protocol (Thermo-Fisher).
  9665. After 30 minutes of binding, beads were washed one time in 100 µL 0.1N NaOH
  9666. to denature and remove the bound RNA, followed by two 100 µL washes with
  9667. 1X TE buffer.
  9668. \end_layout
  9669. \begin_layout Standard
  9670. Subsequent attachment of the 5-prime Illumina A adapter was performed by
  9671. on-bead random primer extension of the following sequence (A-N8 primer:
  9672. TTCAGAGTTCTACAGTCCGACGATCNNNNNNNN).
  9673. Briefly, beads were resuspended in a 20 µL reaction containing 5 µM A-N8
  9674. primer, 40mM Tris-HCl pH 7.5, 20mM MgCl2, 50mM NaCl, 0.325U/µL Sequenase
  9675. 2.0 (Affymetrix, Santa Clara, CA), 0.0025U/µL inorganic pyrophosphatase (Affymetr
  9676. ix) and 300 µM each dNTP.
  9677. Reaction was incubated at 22°C for 30 minutes, then beads were washed 2
  9678. times with 1X TE buffer (200µL).
  9679. \end_layout
  9680. \begin_layout Standard
  9681. The magnetic streptavidin beads were resuspended in 34 µL nuclease-free
  9682. water and added directly to a PCR tube.
  9683. The two Illumina protocol-specified PCR primers were added at 0.53 µM (Illumina
  9684. TruSeq Universal Primer 1 and Illumina TruSeq barcoded PCR primer 2), along
  9685. with 40 µL 2X KAPA HiFi Hotstart ReadyMix (KAPA, Willmington MA) and thermocycl
  9686. ed as follows: starting with 98°C (2 min-hold); 15 cycles of 98°C, 20sec;
  9687. 60°C, 30sec; 72°C, 30sec; and finished with a 72°C (2 min-hold).
  9688. \end_layout
  9689. \begin_layout Standard
  9690. PCR products were purified with 1X Ampure Beads following manufacturer’s
  9691. recommended protocol.
  9692. Libraries were then analyzed using the Agilent TapeStation and quantitation
  9693. of desired size range was performed by “smear analysis”.
  9694. Samples were pooled in equimolar batches of 16 samples.
  9695. Pooled libraries were size selected on 2% agarose gels (E-Gel EX Agarose
  9696. Gels; Thermo-Fisher).
  9697. Products were cut between 250 and 350 bp (corresponding to insert sizes
  9698. of 130 to 230 bps).
  9699. Finished library pools were then sequenced on the Illumina NextSeq500 instrumen
  9700. t with 75 base read lengths.
  9701. \end_layout
  9702. \begin_layout Subsection
  9703. Read alignment and counting
  9704. \end_layout
  9705. \begin_layout Standard
  9706. Reads were aligned to the cynomolgus genome using STAR
  9707. \begin_inset CommandInset citation
  9708. LatexCommand cite
  9709. key "Dobin2013,Wilson2013"
  9710. literal "false"
  9711. \end_inset
  9712. .
  9713. Counts of uniquely mapped reads were obtained for every gene in each sample
  9714. with the “featureCounts” function from the Rsubread package, using each
  9715. of the three possibilities for the “strandSpecific” option: sense, antisense,
  9716. and unstranded
  9717. \begin_inset CommandInset citation
  9718. LatexCommand cite
  9719. key "Liao2014"
  9720. literal "false"
  9721. \end_inset
  9722. .
  9723. A few artifacts in the cynomolgus genome annotation complicated read counting.
  9724. First, no ortholog is annotated for alpha globin in the cynomolgus genome,
  9725. presumably because the human genome has two alpha globin genes with nearly
  9726. identical sequences, making the orthology relationship ambiguous.
  9727. However, two loci in the cynomolgus genome are as “hemoglobin subunit alpha-lik
  9728. e” (LOC102136192 and LOC102136846).
  9729. LOC102136192 is annotated as a pseudogene while LOC102136846 is annotated
  9730. as protein-coding.
  9731. Our globin reduction protocol was designed to include blocking of these
  9732. two genes.
  9733. Indeed, these two genes have almost the same read counts in each library
  9734. as the properly-annotated HBB gene and much larger counts than any other
  9735. gene in the unblocked libraries, giving confidence that reads derived from
  9736. the real alpha globin are mapping to both genes.
  9737. Thus, reads from both of these loci were counted as alpha globin reads
  9738. in all further analyses.
  9739. The second artifact is a small, uncharacterized non-coding RNA gene (LOC1021365
  9740. 91), which overlaps the HBA-like gene (LOC102136192) on the opposite strand.
  9741. If counting is not performed in stranded mode (or if a non-strand-specific
  9742. sequencing protocol is used), many reads mapping to the globin gene will
  9743. be discarded as ambiguous due to their overlap with this ncRNA gene, resulting
  9744. in significant undercounting of globin reads.
  9745. Therefore, stranded sense counts were used for all further analysis in
  9746. the present study to insure that we accurately accounted for globin transcript
  9747. reduction.
  9748. However, we note that stranded reads are not necessary for RNA-seq using
  9749. our protocol in standard practice.
  9750. \end_layout
  9751. \begin_layout Subsection
  9752. Normalization and Exploratory Data Analysis
  9753. \end_layout
  9754. \begin_layout Standard
  9755. Libraries were normalized by computing scaling factors using the edgeR package’s
  9756. Trimmed Mean of M-values method
  9757. \begin_inset CommandInset citation
  9758. LatexCommand cite
  9759. key "Robinson2010"
  9760. literal "false"
  9761. \end_inset
  9762. .
  9763. Log2 counts per million values (logCPM) were calculated using the cpm function
  9764. in edgeR for individual samples and aveLogCPM function for averages across
  9765. groups of samples, using those functions’ default prior count values to
  9766. avoid taking the logarithm of 0.
  9767. Genes were considered “present” if their average normalized logCPM values
  9768. across all libraries were at least -1.
  9769. Normalizing for gene length was unnecessary because the sequencing protocol
  9770. is 3’-biased and hence the expected read count for each gene is related
  9771. to the transcript’s copy number but not its length.
  9772. \end_layout
  9773. \begin_layout Standard
  9774. In order to assess the effect of blocking on reproducibility, Pearson and
  9775. Spearman correlation coefficients were computed between the logCPM values
  9776. for every pair of libraries within the globin-blocked (GB) and unblocked
  9777. (non-GB) groups, and edgeR's “estimateDisp” function was used to compute
  9778. negative binomial dispersions separately for the two groups
  9779. \begin_inset CommandInset citation
  9780. LatexCommand cite
  9781. key "Chen2014"
  9782. literal "false"
  9783. \end_inset
  9784. .
  9785. \end_layout
  9786. \begin_layout Subsection
  9787. Differential Expression Analysis
  9788. \end_layout
  9789. \begin_layout Standard
  9790. All tests for differential gene expression were performed using edgeR, by
  9791. first fitting a negative binomial generalized linear model to the counts
  9792. and normalization factors and then performing a quasi-likelihood F-test
  9793. with robust estimation of outlier gene dispersions
  9794. \begin_inset CommandInset citation
  9795. LatexCommand cite
  9796. key "Lund2012,Phipson2016"
  9797. literal "false"
  9798. \end_inset
  9799. .
  9800. To investigate the effects of globin blocking on each gene, an additive
  9801. model was fit to the full data with coefficients for globin blocking and
  9802. SampleID.
  9803. To test the effect of globin blocking on detection of differentially expressed
  9804. genes, the GB samples and non-GB samples were each analyzed independently
  9805. as follows: for each animal with both a pre-transplant and a post-transplant
  9806. time point in the data set, the pre-transplant sample and the earliest
  9807. post-transplant sample were selected, and all others were excluded, yielding
  9808. a pre-/post-transplant pair of samples for each animal (N=7 animals with
  9809. paired samples).
  9810. These samples were analyzed for pre-transplant vs.
  9811. post-transplant differential gene expression while controlling for inter-animal
  9812. variation using an additive model with coefficients for transplant and
  9813. animal ID.
  9814. In all analyses, p-values were adjusted using the Benjamini-Hochberg procedure
  9815. for FDR control
  9816. \begin_inset CommandInset citation
  9817. LatexCommand cite
  9818. key "Benjamini1995"
  9819. literal "false"
  9820. \end_inset
  9821. .
  9822. \end_layout
  9823. \begin_layout Standard
  9824. \begin_inset Note Note
  9825. status open
  9826. \begin_layout Itemize
  9827. New blood RNA-seq protocol to block reverse transcription of globin genes
  9828. \end_layout
  9829. \begin_layout Itemize
  9830. Blood RNA-seq time course after transplants with/without MSC infusion
  9831. \end_layout
  9832. \end_inset
  9833. \end_layout
  9834. \begin_layout Section
  9835. Results
  9836. \end_layout
  9837. \begin_layout Subsection
  9838. Globin blocking yields a larger and more consistent fraction of useful reads
  9839. \end_layout
  9840. \begin_layout Standard
  9841. \begin_inset ERT
  9842. status open
  9843. \begin_layout Plain Layout
  9844. \backslash
  9845. afterpage{
  9846. \end_layout
  9847. \begin_layout Plain Layout
  9848. \backslash
  9849. begin{landscape}
  9850. \end_layout
  9851. \end_inset
  9852. \end_layout
  9853. \begin_layout Standard
  9854. \begin_inset Float table
  9855. placement p
  9856. wide false
  9857. sideways false
  9858. status open
  9859. \begin_layout Plain Layout
  9860. \align center
  9861. \begin_inset Tabular
  9862. <lyxtabular version="3" rows="4" columns="7">
  9863. <features tabularvalignment="middle">
  9864. <column alignment="center" valignment="top">
  9865. <column alignment="center" valignment="top">
  9866. <column alignment="center" valignment="top">
  9867. <column alignment="center" valignment="top">
  9868. <column alignment="center" valignment="top">
  9869. <column alignment="center" valignment="top">
  9870. <column alignment="center" valignment="top">
  9871. <row>
  9872. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  9873. \begin_inset Text
  9874. \begin_layout Plain Layout
  9875. \end_layout
  9876. \end_inset
  9877. </cell>
  9878. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  9879. \begin_inset Text
  9880. \begin_layout Plain Layout
  9881. \family roman
  9882. \series medium
  9883. \shape up
  9884. \size normal
  9885. \emph off
  9886. \bar no
  9887. \strikeout off
  9888. \xout off
  9889. \uuline off
  9890. \uwave off
  9891. \noun off
  9892. \color none
  9893. Percent of Total Reads
  9894. \end_layout
  9895. \end_inset
  9896. </cell>
  9897. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  9898. \begin_inset Text
  9899. \begin_layout Plain Layout
  9900. \end_layout
  9901. \end_inset
  9902. </cell>
  9903. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  9904. \begin_inset Text
  9905. \begin_layout Plain Layout
  9906. \end_layout
  9907. \end_inset
  9908. </cell>
  9909. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  9910. \begin_inset Text
  9911. \begin_layout Plain Layout
  9912. \end_layout
  9913. \end_inset
  9914. </cell>
  9915. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  9916. \begin_inset Text
  9917. \begin_layout Plain Layout
  9918. \family roman
  9919. \series medium
  9920. \shape up
  9921. \size normal
  9922. \emph off
  9923. \bar no
  9924. \strikeout off
  9925. \xout off
  9926. \uuline off
  9927. \uwave off
  9928. \noun off
  9929. \color none
  9930. Percent of Genic Reads
  9931. \end_layout
  9932. \end_inset
  9933. </cell>
  9934. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  9935. \begin_inset Text
  9936. \begin_layout Plain Layout
  9937. \end_layout
  9938. \end_inset
  9939. </cell>
  9940. </row>
  9941. <row>
  9942. <cell alignment="center" valignment="top" bottomline="true" leftline="true" usebox="none">
  9943. \begin_inset Text
  9944. \begin_layout Plain Layout
  9945. GB
  9946. \end_layout
  9947. \end_inset
  9948. </cell>
  9949. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  9950. \begin_inset Text
  9951. \begin_layout Plain Layout
  9952. \family roman
  9953. \series medium
  9954. \shape up
  9955. \size normal
  9956. \emph off
  9957. \bar no
  9958. \strikeout off
  9959. \xout off
  9960. \uuline off
  9961. \uwave off
  9962. \noun off
  9963. \color none
  9964. Non-globin Reads
  9965. \end_layout
  9966. \end_inset
  9967. </cell>
  9968. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  9969. \begin_inset Text
  9970. \begin_layout Plain Layout
  9971. \family roman
  9972. \series medium
  9973. \shape up
  9974. \size normal
  9975. \emph off
  9976. \bar no
  9977. \strikeout off
  9978. \xout off
  9979. \uuline off
  9980. \uwave off
  9981. \noun off
  9982. \color none
  9983. Globin Reads
  9984. \end_layout
  9985. \end_inset
  9986. </cell>
  9987. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  9988. \begin_inset Text
  9989. \begin_layout Plain Layout
  9990. \family roman
  9991. \series medium
  9992. \shape up
  9993. \size normal
  9994. \emph off
  9995. \bar no
  9996. \strikeout off
  9997. \xout off
  9998. \uuline off
  9999. \uwave off
  10000. \noun off
  10001. \color none
  10002. All Genic Reads
  10003. \end_layout
  10004. \end_inset
  10005. </cell>
  10006. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10007. \begin_inset Text
  10008. \begin_layout Plain Layout
  10009. \family roman
  10010. \series medium
  10011. \shape up
  10012. \size normal
  10013. \emph off
  10014. \bar no
  10015. \strikeout off
  10016. \xout off
  10017. \uuline off
  10018. \uwave off
  10019. \noun off
  10020. \color none
  10021. All Aligned Reads
  10022. \end_layout
  10023. \end_inset
  10024. </cell>
  10025. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10026. \begin_inset Text
  10027. \begin_layout Plain Layout
  10028. \family roman
  10029. \series medium
  10030. \shape up
  10031. \size normal
  10032. \emph off
  10033. \bar no
  10034. \strikeout off
  10035. \xout off
  10036. \uuline off
  10037. \uwave off
  10038. \noun off
  10039. \color none
  10040. Non-globin Reads
  10041. \end_layout
  10042. \end_inset
  10043. </cell>
  10044. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  10045. \begin_inset Text
  10046. \begin_layout Plain Layout
  10047. \family roman
  10048. \series medium
  10049. \shape up
  10050. \size normal
  10051. \emph off
  10052. \bar no
  10053. \strikeout off
  10054. \xout off
  10055. \uuline off
  10056. \uwave off
  10057. \noun off
  10058. \color none
  10059. Globin Reads
  10060. \end_layout
  10061. \end_inset
  10062. </cell>
  10063. </row>
  10064. <row>
  10065. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10066. \begin_inset Text
  10067. \begin_layout Plain Layout
  10068. \family roman
  10069. \series medium
  10070. \shape up
  10071. \size normal
  10072. \emph off
  10073. \bar no
  10074. \strikeout off
  10075. \xout off
  10076. \uuline off
  10077. \uwave off
  10078. \noun off
  10079. \color none
  10080. Yes
  10081. \end_layout
  10082. \end_inset
  10083. </cell>
  10084. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10085. \begin_inset Text
  10086. \begin_layout Plain Layout
  10087. \family roman
  10088. \series medium
  10089. \shape up
  10090. \size normal
  10091. \emph off
  10092. \bar no
  10093. \strikeout off
  10094. \xout off
  10095. \uuline off
  10096. \uwave off
  10097. \noun off
  10098. \color none
  10099. 50.4% ± 6.82
  10100. \end_layout
  10101. \end_inset
  10102. </cell>
  10103. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10104. \begin_inset Text
  10105. \begin_layout Plain Layout
  10106. \family roman
  10107. \series medium
  10108. \shape up
  10109. \size normal
  10110. \emph off
  10111. \bar no
  10112. \strikeout off
  10113. \xout off
  10114. \uuline off
  10115. \uwave off
  10116. \noun off
  10117. \color none
  10118. 3.48% ± 2.94
  10119. \end_layout
  10120. \end_inset
  10121. </cell>
  10122. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10123. \begin_inset Text
  10124. \begin_layout Plain Layout
  10125. \family roman
  10126. \series medium
  10127. \shape up
  10128. \size normal
  10129. \emph off
  10130. \bar no
  10131. \strikeout off
  10132. \xout off
  10133. \uuline off
  10134. \uwave off
  10135. \noun off
  10136. \color none
  10137. 53.9% ± 6.81
  10138. \end_layout
  10139. \end_inset
  10140. </cell>
  10141. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10142. \begin_inset Text
  10143. \begin_layout Plain Layout
  10144. \family roman
  10145. \series medium
  10146. \shape up
  10147. \size normal
  10148. \emph off
  10149. \bar no
  10150. \strikeout off
  10151. \xout off
  10152. \uuline off
  10153. \uwave off
  10154. \noun off
  10155. \color none
  10156. 89.7% ± 2.40
  10157. \end_layout
  10158. \end_inset
  10159. </cell>
  10160. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10161. \begin_inset Text
  10162. \begin_layout Plain Layout
  10163. \family roman
  10164. \series medium
  10165. \shape up
  10166. \size normal
  10167. \emph off
  10168. \bar no
  10169. \strikeout off
  10170. \xout off
  10171. \uuline off
  10172. \uwave off
  10173. \noun off
  10174. \color none
  10175. 93.5% ± 5.25
  10176. \end_layout
  10177. \end_inset
  10178. </cell>
  10179. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  10180. \begin_inset Text
  10181. \begin_layout Plain Layout
  10182. \family roman
  10183. \series medium
  10184. \shape up
  10185. \size normal
  10186. \emph off
  10187. \bar no
  10188. \strikeout off
  10189. \xout off
  10190. \uuline off
  10191. \uwave off
  10192. \noun off
  10193. \color none
  10194. 6.49% ± 5.25
  10195. \end_layout
  10196. \end_inset
  10197. </cell>
  10198. </row>
  10199. <row>
  10200. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10201. \begin_inset Text
  10202. \begin_layout Plain Layout
  10203. \family roman
  10204. \series medium
  10205. \shape up
  10206. \size normal
  10207. \emph off
  10208. \bar no
  10209. \strikeout off
  10210. \xout off
  10211. \uuline off
  10212. \uwave off
  10213. \noun off
  10214. \color none
  10215. No
  10216. \end_layout
  10217. \end_inset
  10218. </cell>
  10219. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10220. \begin_inset Text
  10221. \begin_layout Plain Layout
  10222. \family roman
  10223. \series medium
  10224. \shape up
  10225. \size normal
  10226. \emph off
  10227. \bar no
  10228. \strikeout off
  10229. \xout off
  10230. \uuline off
  10231. \uwave off
  10232. \noun off
  10233. \color none
  10234. 26.3% ± 8.95
  10235. \end_layout
  10236. \end_inset
  10237. </cell>
  10238. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10239. \begin_inset Text
  10240. \begin_layout Plain Layout
  10241. \family roman
  10242. \series medium
  10243. \shape up
  10244. \size normal
  10245. \emph off
  10246. \bar no
  10247. \strikeout off
  10248. \xout off
  10249. \uuline off
  10250. \uwave off
  10251. \noun off
  10252. \color none
  10253. 44.6% ± 16.6
  10254. \end_layout
  10255. \end_inset
  10256. </cell>
  10257. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10258. \begin_inset Text
  10259. \begin_layout Plain Layout
  10260. \family roman
  10261. \series medium
  10262. \shape up
  10263. \size normal
  10264. \emph off
  10265. \bar no
  10266. \strikeout off
  10267. \xout off
  10268. \uuline off
  10269. \uwave off
  10270. \noun off
  10271. \color none
  10272. 70.1% ± 9.38
  10273. \end_layout
  10274. \end_inset
  10275. </cell>
  10276. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10277. \begin_inset Text
  10278. \begin_layout Plain Layout
  10279. \family roman
  10280. \series medium
  10281. \shape up
  10282. \size normal
  10283. \emph off
  10284. \bar no
  10285. \strikeout off
  10286. \xout off
  10287. \uuline off
  10288. \uwave off
  10289. \noun off
  10290. \color none
  10291. 90.7% ± 5.16
  10292. \end_layout
  10293. \end_inset
  10294. </cell>
  10295. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10296. \begin_inset Text
  10297. \begin_layout Plain Layout
  10298. \family roman
  10299. \series medium
  10300. \shape up
  10301. \size normal
  10302. \emph off
  10303. \bar no
  10304. \strikeout off
  10305. \xout off
  10306. \uuline off
  10307. \uwave off
  10308. \noun off
  10309. \color none
  10310. 38.8% ± 17.1
  10311. \end_layout
  10312. \end_inset
  10313. </cell>
  10314. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  10315. \begin_inset Text
  10316. \begin_layout Plain Layout
  10317. \family roman
  10318. \series medium
  10319. \shape up
  10320. \size normal
  10321. \emph off
  10322. \bar no
  10323. \strikeout off
  10324. \xout off
  10325. \uuline off
  10326. \uwave off
  10327. \noun off
  10328. \color none
  10329. 61.2% ± 17.1
  10330. \end_layout
  10331. \end_inset
  10332. </cell>
  10333. </row>
  10334. </lyxtabular>
  10335. \end_inset
  10336. \end_layout
  10337. \begin_layout Plain Layout
  10338. \begin_inset Caption Standard
  10339. \begin_layout Plain Layout
  10340. \series bold
  10341. \begin_inset Argument 1
  10342. status collapsed
  10343. \begin_layout Plain Layout
  10344. Fractions of reads mapping to genomic features in GB and non-GB samples.
  10345. \end_layout
  10346. \end_inset
  10347. \begin_inset CommandInset label
  10348. LatexCommand label
  10349. name "tab:Fractions-of-reads"
  10350. \end_inset
  10351. Fractions of reads mapping to genomic features in GB and non-GB samples.
  10352. \series default
  10353. All values are given as mean ± standard deviation.
  10354. \end_layout
  10355. \end_inset
  10356. \end_layout
  10357. \end_inset
  10358. \end_layout
  10359. \begin_layout Standard
  10360. \begin_inset ERT
  10361. status open
  10362. \begin_layout Plain Layout
  10363. \backslash
  10364. end{landscape}
  10365. \end_layout
  10366. \begin_layout Plain Layout
  10367. }
  10368. \end_layout
  10369. \end_inset
  10370. \end_layout
  10371. \begin_layout Standard
  10372. The objective of the present study was to validate a new protocol for deep
  10373. RNA-seq of whole blood drawn into PaxGene tubes from cynomolgus monkeys
  10374. undergoing islet transplantation, with particular focus on minimizing the
  10375. loss of useful sequencing space to uninformative globin reads.
  10376. The details of the analysis with respect to transplant outcomes and the
  10377. impact of mesenchymal stem cell treatment will be reported in a separate
  10378. manuscript (in preparation).
  10379. To focus on the efficacy of our globin blocking protocol, 37 blood samples,
  10380. 16 from pre-transplant and 21 from post-transplant time points, were each
  10381. prepped once with and once without globin blocking oligos, and were then
  10382. sequenced on an Illumina NextSeq500 instrument.
  10383. The number of reads aligning to each gene in the cynomolgus genome was
  10384. counted.
  10385. Table 1 summarizes the distribution of read fractions among the GB and
  10386. non-GB libraries.
  10387. In the libraries with no globin blocking, globin reads made up an average
  10388. of 44.6% of total input reads, while reads assigned to all other genes made
  10389. up an average of 26.3%.
  10390. The remaining reads either aligned to intergenic regions (that include
  10391. long non-coding RNAs) or did not align with any annotated transcripts in
  10392. the current build of the cynomolgus genome.
  10393. In the GB libraries, globin reads made up only 3.48% and reads assigned
  10394. to all other genes increased to 50.4%.
  10395. Thus, globin blocking resulted in a 92.2% reduction in globin reads and
  10396. a 91.6% increase in yield of useful non-globin reads.
  10397. \end_layout
  10398. \begin_layout Standard
  10399. This reduction is not quite as efficient as the previous analysis showed
  10400. for human samples by DeepSAGE (<0.4% globin reads after globin reduction)
  10401. \begin_inset CommandInset citation
  10402. LatexCommand cite
  10403. key "Mastrokolias2012"
  10404. literal "false"
  10405. \end_inset
  10406. .
  10407. Nonetheless, this degree of globin reduction is sufficient to nearly double
  10408. the yield of useful reads.
  10409. Thus, globin blocking cuts the required sequencing effort (and costs) to
  10410. achieve a target coverage depth by almost 50%.
  10411. Consistent with this near doubling of yield, the average difference in
  10412. un-normalized logCPM across all genes between the GB libraries and non-GB
  10413. libraries is approximately 1 (mean = 1.01, median = 1.08), an overall 2-fold
  10414. increase.
  10415. Un-normalized values are used here because the TMM normalization correctly
  10416. identifies this 2-fold difference as biologically irrelevant and removes
  10417. it.
  10418. \end_layout
  10419. \begin_layout Standard
  10420. \begin_inset Float figure
  10421. wide false
  10422. sideways false
  10423. status collapsed
  10424. \begin_layout Plain Layout
  10425. \align center
  10426. \begin_inset Graphics
  10427. filename graphics/Globin Paper/figure1 - globin-fractions.pdf
  10428. lyxscale 50
  10429. width 75col%
  10430. \end_inset
  10431. \end_layout
  10432. \begin_layout Plain Layout
  10433. \begin_inset Caption Standard
  10434. \begin_layout Plain Layout
  10435. \series bold
  10436. \begin_inset Argument 1
  10437. status collapsed
  10438. \begin_layout Plain Layout
  10439. Fraction of genic reads in each sample aligned to non-globin genes, with
  10440. and without globin blocking (GB).
  10441. \end_layout
  10442. \end_inset
  10443. \begin_inset CommandInset label
  10444. LatexCommand label
  10445. name "fig:Fraction-of-genic-reads"
  10446. \end_inset
  10447. Fraction of genic reads in each sample aligned to non-globin genes, with
  10448. and without globin blocking (GB).
  10449. \series default
  10450. All reads in each sequencing library were aligned to the cyno genome, and
  10451. the number of reads uniquely aligning to each gene was counted.
  10452. For each sample, counts were summed separately for all globin genes and
  10453. for the remainder of the genes (non-globin genes), and the fraction of
  10454. genic reads aligned to non-globin genes was computed.
  10455. Each point represents an individual sample.
  10456. Gray + signs indicate the means for globin-blocked libraries and unblocked
  10457. libraries.
  10458. The overall distribution for each group is represented as a notched box
  10459. plots.
  10460. Points are randomly spread vertically to avoid excessive overlapping.
  10461. \end_layout
  10462. \end_inset
  10463. \end_layout
  10464. \end_inset
  10465. \end_layout
  10466. \begin_layout Standard
  10467. Another important aspect is that the standard deviations in Table
  10468. \begin_inset CommandInset ref
  10469. LatexCommand ref
  10470. reference "tab:Fractions-of-reads"
  10471. plural "false"
  10472. caps "false"
  10473. noprefix "false"
  10474. \end_inset
  10475. are uniformly smaller in the GB samples than the non-GB ones, indicating
  10476. much greater consistency of yield.
  10477. This is best seen in the percentage of non-globin reads as a fraction of
  10478. total reads aligned to annotated genes (genic reads).
  10479. For the non-GB samples, this measure ranges from 10.9% to 80.9%, while for
  10480. the GB samples it ranges from 81.9% to 99.9% (Figure
  10481. \begin_inset CommandInset ref
  10482. LatexCommand ref
  10483. reference "fig:Fraction-of-genic-reads"
  10484. plural "false"
  10485. caps "false"
  10486. noprefix "false"
  10487. \end_inset
  10488. ).
  10489. This means that for applications where it is critical that each sample
  10490. achieve a specified minimum coverage in order to provide useful information,
  10491. it would be necessary to budget up to 10 times the sequencing depth per
  10492. sample without globin blocking, even though the average yield improvement
  10493. for globin blocking is only 2-fold, because every sample has a chance of
  10494. being 90% globin and 10% useful reads.
  10495. Hence, the more consistent behavior of GB samples makes planning an experiment
  10496. easier and more efficient because it eliminates the need to over-sequence
  10497. every sample in order to guard against the worst case of a high-globin
  10498. fraction.
  10499. \end_layout
  10500. \begin_layout Subsection
  10501. Globin blocking lowers the noise floor and allows detection of about 2000
  10502. more low-expression genes
  10503. \end_layout
  10504. \begin_layout Standard
  10505. \begin_inset Flex TODO Note (inline)
  10506. status open
  10507. \begin_layout Plain Layout
  10508. Remove redundant titles from figures
  10509. \end_layout
  10510. \end_inset
  10511. \end_layout
  10512. \begin_layout Standard
  10513. \begin_inset Float figure
  10514. wide false
  10515. sideways false
  10516. status collapsed
  10517. \begin_layout Plain Layout
  10518. \align center
  10519. \begin_inset Graphics
  10520. filename graphics/Globin Paper/figure2 - aveLogCPM-colored.pdf
  10521. lyxscale 50
  10522. height 60theight%
  10523. \end_inset
  10524. \end_layout
  10525. \begin_layout Plain Layout
  10526. \begin_inset Caption Standard
  10527. \begin_layout Plain Layout
  10528. \series bold
  10529. \begin_inset Argument 1
  10530. status collapsed
  10531. \begin_layout Plain Layout
  10532. Distributions of average group gene abundances when normalized separately
  10533. or together.
  10534. \end_layout
  10535. \end_inset
  10536. \begin_inset CommandInset label
  10537. LatexCommand label
  10538. name "fig:logcpm-dists"
  10539. \end_inset
  10540. Distributions of average group gene abundances when normalized separately
  10541. or together.
  10542. \series default
  10543. All reads in each sequencing library were aligned to the cyno genome, and
  10544. the number of reads uniquely aligning to each gene was counted.
  10545. Genes with zero counts in all libraries were discarded.
  10546. Libraries were normalized using the TMM method.
  10547. Libraries were split into globin-blocked (GB) and non-GB groups and the
  10548. average abundance for each gene in both groups, measured in log2 counts
  10549. per million reads counted, was computed using the aveLogCPM function.
  10550. The distribution of average gene logCPM values was plotted for both groups
  10551. using a kernel density plot to approximate a continuous distribution.
  10552. The logCPM GB distributions are marked in red, non-GB in blue.
  10553. The black vertical line denotes the chosen detection threshold of -1.
  10554. Top panel: Libraries were split into GB and non-GB groups first and normalized
  10555. separately.
  10556. Bottom panel: Libraries were all normalized together first and then split
  10557. into groups.
  10558. \end_layout
  10559. \end_inset
  10560. \end_layout
  10561. \begin_layout Plain Layout
  10562. \end_layout
  10563. \end_inset
  10564. \end_layout
  10565. \begin_layout Standard
  10566. Since globin blocking yields more usable sequencing depth, it should also
  10567. allow detection of more genes at any given threshold.
  10568. When we looked at the distribution of average normalized logCPM values
  10569. across all libraries for genes with at least one read assigned to them,
  10570. we observed the expected bimodal distribution, with a high-abundance "signal"
  10571. peak representing detected genes and a low-abundance "noise" peak representing
  10572. genes whose read count did not rise above the noise floor (Figure
  10573. \begin_inset CommandInset ref
  10574. LatexCommand ref
  10575. reference "fig:logcpm-dists"
  10576. plural "false"
  10577. caps "false"
  10578. noprefix "false"
  10579. \end_inset
  10580. ).
  10581. Consistent with the 2-fold increase in raw counts assigned to non-globin
  10582. genes, the signal peak for GB samples is shifted to the right relative
  10583. to the non-GB signal peak.
  10584. When all the samples are normalized together, this difference is normalized
  10585. out, lining up the signal peaks, and this reveals that, as expected, the
  10586. noise floor for the GB samples is about 2-fold lower.
  10587. This greater separation between signal and noise peaks in the GB samples
  10588. means that low-expression genes should be more easily detected and more
  10589. precisely quantified than in the non-GB samples.
  10590. \end_layout
  10591. \begin_layout Standard
  10592. \begin_inset Float figure
  10593. wide false
  10594. sideways false
  10595. status collapsed
  10596. \begin_layout Plain Layout
  10597. \align center
  10598. \begin_inset Graphics
  10599. filename graphics/Globin Paper/figure3 - detection.pdf
  10600. lyxscale 50
  10601. width 70col%
  10602. \end_inset
  10603. \end_layout
  10604. \begin_layout Plain Layout
  10605. \begin_inset Caption Standard
  10606. \begin_layout Plain Layout
  10607. \series bold
  10608. \begin_inset Argument 1
  10609. status collapsed
  10610. \begin_layout Plain Layout
  10611. Gene detections as a function of abundance thresholds in globin-blocked
  10612. (GB) and non-GB samples.
  10613. \end_layout
  10614. \end_inset
  10615. \begin_inset CommandInset label
  10616. LatexCommand label
  10617. name "fig:Gene-detections"
  10618. \end_inset
  10619. Gene detections as a function of abundance thresholds in globin-blocked
  10620. (GB) and non-GB samples.
  10621. \series default
  10622. Average abundance (logCPM,
  10623. \begin_inset Formula $\log_{2}$
  10624. \end_inset
  10625. counts per million reads counted) was computed by separate group normalization
  10626. as described in Figure
  10627. \begin_inset CommandInset ref
  10628. LatexCommand ref
  10629. reference "fig:logcpm-dists"
  10630. plural "false"
  10631. caps "false"
  10632. noprefix "false"
  10633. \end_inset
  10634. for both the GB and non-GB groups, as well as for all samples considered
  10635. as one large group.
  10636. For each every integer threshold from -2 to 3, the number of genes detected
  10637. at or above that logCPM threshold was plotted for each group.
  10638. \end_layout
  10639. \end_inset
  10640. \end_layout
  10641. \begin_layout Plain Layout
  10642. \end_layout
  10643. \end_inset
  10644. \end_layout
  10645. \begin_layout Standard
  10646. Based on these distributions, we selected a detection threshold of -1, which
  10647. is approximately the leftmost edge of the trough between the signal and
  10648. noise peaks.
  10649. This represents the most liberal possible detection threshold that doesn't
  10650. call substantial numbers of noise genes as detected.
  10651. Among the full dataset, 13429 genes were detected at this threshold, and
  10652. 22276 were not.
  10653. When considering the GB libraries and non-GB libraries separately and re-comput
  10654. ing normalization factors independently within each group, 14535 genes were
  10655. detected in the GB libraries while only 12460 were detected in the non-GB
  10656. libraries.
  10657. Thus, GB allowed the detection of 2000 extra genes that were buried under
  10658. the noise floor without GB.
  10659. This pattern of at least 2000 additional genes detected with GB was also
  10660. consistent across a wide range of possible detection thresholds, from -2
  10661. to 3 (see Figure
  10662. \begin_inset CommandInset ref
  10663. LatexCommand ref
  10664. reference "fig:Gene-detections"
  10665. plural "false"
  10666. caps "false"
  10667. noprefix "false"
  10668. \end_inset
  10669. ).
  10670. \end_layout
  10671. \begin_layout Subsection
  10672. Globin blocking does not add significant additional noise or decrease sample
  10673. quality
  10674. \end_layout
  10675. \begin_layout Standard
  10676. One potential worry is that the globin blocking protocol could perturb the
  10677. levels of non-globin genes.
  10678. There are two kinds of possible perturbations: systematic and random.
  10679. The former is not a major concern for detection of differential expression,
  10680. since a 2-fold change in every sample has no effect on the relative fold
  10681. change between samples.
  10682. In contrast, random perturbations would increase the noise and obscure
  10683. the signal in the dataset, reducing the capacity to detect differential
  10684. expression.
  10685. \end_layout
  10686. \begin_layout Standard
  10687. \begin_inset Float figure
  10688. wide false
  10689. sideways false
  10690. status collapsed
  10691. \begin_layout Plain Layout
  10692. \align center
  10693. \begin_inset Graphics
  10694. filename graphics/Globin Paper/figure4 - maplot-colored.pdf
  10695. lyxscale 50
  10696. width 60col%
  10697. groupId colwidth
  10698. \end_inset
  10699. \end_layout
  10700. \begin_layout Plain Layout
  10701. \begin_inset Caption Standard
  10702. \begin_layout Plain Layout
  10703. \begin_inset Argument 1
  10704. status collapsed
  10705. \begin_layout Plain Layout
  10706. MA plot showing effects of globin blocking on each gene's abundance.
  10707. \end_layout
  10708. \end_inset
  10709. \begin_inset CommandInset label
  10710. LatexCommand label
  10711. name "fig:MA-plot"
  10712. \end_inset
  10713. \series bold
  10714. MA plot showing effects of globin blocking on each gene's abundance.
  10715. \series default
  10716. All libraries were normalized together as described in Figure
  10717. \begin_inset CommandInset ref
  10718. LatexCommand ref
  10719. reference "fig:logcpm-dists"
  10720. plural "false"
  10721. caps "false"
  10722. noprefix "false"
  10723. \end_inset
  10724. , and genes with an average logCPM below -1 were filtered out.
  10725. Each remaining gene was tested for differential abundance with respect
  10726. to globin blocking (GB) using edgeR’s quasi-likelihood F-test, fitting
  10727. a negative binomial generalized linear model to table of read counts in
  10728. each library.
  10729. For each gene, edgeR reported average abundance (logCPM),
  10730. \begin_inset Formula $\log_{2}$
  10731. \end_inset
  10732. fold change (logFC), p-value, and Benjamini-Hochberg adjusted false discovery
  10733. rate (FDR).
  10734. Each gene's logFC was plotted against its logCPM, colored by FDR.
  10735. Red points are significant at ≤10% FDR, and blue are not significant at
  10736. that threshold.
  10737. The alpha and beta globin genes targeted for blocking are marked with large
  10738. triangles, while all other genes are represented as small points.
  10739. \end_layout
  10740. \end_inset
  10741. \end_layout
  10742. \begin_layout Plain Layout
  10743. \end_layout
  10744. \end_inset
  10745. \end_layout
  10746. \begin_layout Standard
  10747. \begin_inset Flex TODO Note (inline)
  10748. status open
  10749. \begin_layout Plain Layout
  10750. Standardize on
  10751. \begin_inset Quotes eld
  10752. \end_inset
  10753. log2
  10754. \begin_inset Quotes erd
  10755. \end_inset
  10756. notation
  10757. \end_layout
  10758. \end_inset
  10759. \end_layout
  10760. \begin_layout Standard
  10761. The data do indeed show small systematic perturbations in gene levels (Figure
  10762. \begin_inset CommandInset ref
  10763. LatexCommand ref
  10764. reference "fig:MA-plot"
  10765. plural "false"
  10766. caps "false"
  10767. noprefix "false"
  10768. \end_inset
  10769. ).
  10770. Other than the 3 designated alpha and beta globin genes, two other genes
  10771. stand out as having especially large negative log fold changes: HBD and
  10772. LOC1021365.
  10773. HBD, delta globin, is most likely targeted by the blocking oligos due to
  10774. high sequence homology with the other globin genes.
  10775. LOC1021365 is the aforementioned ncRNA that is reverse-complementary to
  10776. one of the alpha-like genes and that would be expected to be removed during
  10777. the globin blocking step.
  10778. All other genes appear in a cluster centered vertically at 0, and the vast
  10779. majority of genes in this cluster show an absolute log2(FC) of 0.5 or less.
  10780. Nevertheless, many of these small perturbations are still statistically
  10781. significant, indicating that the globin blocking oligos likely cause very
  10782. small but non-zero systematic perturbations in measured gene expression
  10783. levels.
  10784. \end_layout
  10785. \begin_layout Standard
  10786. \begin_inset Float figure
  10787. wide false
  10788. sideways false
  10789. status collapsed
  10790. \begin_layout Plain Layout
  10791. \align center
  10792. \begin_inset Graphics
  10793. filename graphics/Globin Paper/figure5 - corrplot.pdf
  10794. lyxscale 50
  10795. width 70col%
  10796. \end_inset
  10797. \end_layout
  10798. \begin_layout Plain Layout
  10799. \begin_inset Caption Standard
  10800. \begin_layout Plain Layout
  10801. \series bold
  10802. \begin_inset Argument 1
  10803. status collapsed
  10804. \begin_layout Plain Layout
  10805. Comparison of inter-sample gene abundance correlations with and without
  10806. globin blocking.
  10807. \end_layout
  10808. \end_inset
  10809. \begin_inset CommandInset label
  10810. LatexCommand label
  10811. name "fig:gene-abundance-correlations"
  10812. \end_inset
  10813. Comparison of inter-sample gene abundance correlations with and without
  10814. globin blocking (GB).
  10815. \series default
  10816. All libraries were normalized together as described in Figure 2, and genes
  10817. with an average abundance (logCPM, log2 counts per million reads counted)
  10818. less than -1 were filtered out.
  10819. Each gene’s logCPM was computed in each library using the edgeR cpm function.
  10820. For each pair of biological samples, the Pearson correlation between those
  10821. samples' GB libraries was plotted against the correlation between the same
  10822. samples’ non-GB libraries.
  10823. Each point represents an unique pair of samples.
  10824. The solid gray line shows a quantile-quantile plot of distribution of GB
  10825. correlations vs.
  10826. that of non-GB correlations.
  10827. The thin dashed line is the identity line, provided for reference.
  10828. \end_layout
  10829. \end_inset
  10830. \end_layout
  10831. \begin_layout Plain Layout
  10832. \end_layout
  10833. \end_inset
  10834. \end_layout
  10835. \begin_layout Standard
  10836. To evaluate the possibility of globin blocking causing random perturbations
  10837. and reducing sample quality, we computed the Pearson correlation between
  10838. logCPM values for every pair of samples with and without GB and plotted
  10839. them against each other (Figure
  10840. \begin_inset CommandInset ref
  10841. LatexCommand ref
  10842. reference "fig:gene-abundance-correlations"
  10843. plural "false"
  10844. caps "false"
  10845. noprefix "false"
  10846. \end_inset
  10847. ).
  10848. The plot indicated that the GB libraries have higher sample-to-sample correlati
  10849. ons than the non-GB libraries.
  10850. Parametric and nonparametric tests for differences between the correlations
  10851. with and without GB both confirmed that this difference was highly significant
  10852. (2-sided paired t-test: t = 37.2, df = 665, P ≪ 2.2e-16; 2-sided Wilcoxon
  10853. sign-rank test: V = 2195, P ≪ 2.2e-16).
  10854. Performing the same tests on the Spearman correlations gave the same conclusion
  10855. (t-test: t = 26.8, df = 665, P ≪ 2.2e-16; sign-rank test: V = 8781, P ≪ 2.2e-16).
  10856. The edgeR package was used to compute the overall biological coefficient
  10857. of variation (BCV) for GB and non-GB libraries, and found that globin blocking
  10858. resulted in a negligible increase in the BCV (0.417 with GB vs.
  10859. 0.400 without).
  10860. The near equality of the BCVs for both sets indicates that the higher correlati
  10861. ons in the GB libraries are most likely a result of the increased yield
  10862. of useful reads, which reduces the contribution of Poisson counting uncertainty
  10863. to the overall variance of the logCPM values
  10864. \begin_inset CommandInset citation
  10865. LatexCommand cite
  10866. key "McCarthy2012"
  10867. literal "false"
  10868. \end_inset
  10869. .
  10870. This improves the precision of expression measurements and more than offsets
  10871. the negligible increase in BCV.
  10872. \end_layout
  10873. \begin_layout Subsection
  10874. More differentially expressed genes are detected with globin blocking
  10875. \end_layout
  10876. \begin_layout Standard
  10877. \begin_inset Float table
  10878. wide false
  10879. sideways false
  10880. status collapsed
  10881. \begin_layout Plain Layout
  10882. \align center
  10883. \begin_inset Tabular
  10884. <lyxtabular version="3" rows="5" columns="5">
  10885. <features tabularvalignment="middle">
  10886. <column alignment="center" valignment="top">
  10887. <column alignment="center" valignment="top">
  10888. <column alignment="center" valignment="top">
  10889. <column alignment="center" valignment="top">
  10890. <column alignment="center" valignment="top">
  10891. <row>
  10892. <cell alignment="center" valignment="top" usebox="none">
  10893. \begin_inset Text
  10894. \begin_layout Plain Layout
  10895. \end_layout
  10896. \end_inset
  10897. </cell>
  10898. <cell alignment="center" valignment="top" usebox="none">
  10899. \begin_inset Text
  10900. \begin_layout Plain Layout
  10901. \end_layout
  10902. \end_inset
  10903. </cell>
  10904. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  10905. \begin_inset Text
  10906. \begin_layout Plain Layout
  10907. \series bold
  10908. No Globin Blocking
  10909. \end_layout
  10910. \end_inset
  10911. </cell>
  10912. <cell multicolumn="2" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10913. \begin_inset Text
  10914. \begin_layout Plain Layout
  10915. \end_layout
  10916. \end_inset
  10917. </cell>
  10918. <cell multicolumn="2" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  10919. \begin_inset Text
  10920. \begin_layout Plain Layout
  10921. \end_layout
  10922. \end_inset
  10923. </cell>
  10924. </row>
  10925. <row>
  10926. <cell alignment="center" valignment="top" usebox="none">
  10927. \begin_inset Text
  10928. \begin_layout Plain Layout
  10929. \end_layout
  10930. \end_inset
  10931. </cell>
  10932. <cell alignment="center" valignment="top" usebox="none">
  10933. \begin_inset Text
  10934. \begin_layout Plain Layout
  10935. \end_layout
  10936. \end_inset
  10937. </cell>
  10938. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10939. \begin_inset Text
  10940. \begin_layout Plain Layout
  10941. \series bold
  10942. Up
  10943. \end_layout
  10944. \end_inset
  10945. </cell>
  10946. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10947. \begin_inset Text
  10948. \begin_layout Plain Layout
  10949. \series bold
  10950. NS
  10951. \end_layout
  10952. \end_inset
  10953. </cell>
  10954. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  10955. \begin_inset Text
  10956. \begin_layout Plain Layout
  10957. \series bold
  10958. Down
  10959. \end_layout
  10960. \end_inset
  10961. </cell>
  10962. </row>
  10963. <row>
  10964. <cell multirow="3" alignment="center" valignment="middle" topline="true" bottomline="true" leftline="true" usebox="none">
  10965. \begin_inset Text
  10966. \begin_layout Plain Layout
  10967. \series bold
  10968. Globin-Blocking
  10969. \end_layout
  10970. \end_inset
  10971. </cell>
  10972. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10973. \begin_inset Text
  10974. \begin_layout Plain Layout
  10975. \series bold
  10976. Up
  10977. \end_layout
  10978. \end_inset
  10979. </cell>
  10980. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10981. \begin_inset Text
  10982. \begin_layout Plain Layout
  10983. \family roman
  10984. \series medium
  10985. \shape up
  10986. \size normal
  10987. \emph off
  10988. \bar no
  10989. \strikeout off
  10990. \xout off
  10991. \uuline off
  10992. \uwave off
  10993. \noun off
  10994. \color none
  10995. 231
  10996. \end_layout
  10997. \end_inset
  10998. </cell>
  10999. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  11000. \begin_inset Text
  11001. \begin_layout Plain Layout
  11002. \family roman
  11003. \series medium
  11004. \shape up
  11005. \size normal
  11006. \emph off
  11007. \bar no
  11008. \strikeout off
  11009. \xout off
  11010. \uuline off
  11011. \uwave off
  11012. \noun off
  11013. \color none
  11014. 515
  11015. \end_layout
  11016. \end_inset
  11017. </cell>
  11018. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  11019. \begin_inset Text
  11020. \begin_layout Plain Layout
  11021. \family roman
  11022. \series medium
  11023. \shape up
  11024. \size normal
  11025. \emph off
  11026. \bar no
  11027. \strikeout off
  11028. \xout off
  11029. \uuline off
  11030. \uwave off
  11031. \noun off
  11032. \color none
  11033. 2
  11034. \end_layout
  11035. \end_inset
  11036. </cell>
  11037. </row>
  11038. <row>
  11039. <cell multirow="4" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  11040. \begin_inset Text
  11041. \begin_layout Plain Layout
  11042. \end_layout
  11043. \end_inset
  11044. </cell>
  11045. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  11046. \begin_inset Text
  11047. \begin_layout Plain Layout
  11048. \series bold
  11049. NS
  11050. \end_layout
  11051. \end_inset
  11052. </cell>
  11053. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  11054. \begin_inset Text
  11055. \begin_layout Plain Layout
  11056. \family roman
  11057. \series medium
  11058. \shape up
  11059. \size normal
  11060. \emph off
  11061. \bar no
  11062. \strikeout off
  11063. \xout off
  11064. \uuline off
  11065. \uwave off
  11066. \noun off
  11067. \color none
  11068. 160
  11069. \end_layout
  11070. \end_inset
  11071. </cell>
  11072. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  11073. \begin_inset Text
  11074. \begin_layout Plain Layout
  11075. \family roman
  11076. \series medium
  11077. \shape up
  11078. \size normal
  11079. \emph off
  11080. \bar no
  11081. \strikeout off
  11082. \xout off
  11083. \uuline off
  11084. \uwave off
  11085. \noun off
  11086. \color none
  11087. 11235
  11088. \end_layout
  11089. \end_inset
  11090. </cell>
  11091. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  11092. \begin_inset Text
  11093. \begin_layout Plain Layout
  11094. \family roman
  11095. \series medium
  11096. \shape up
  11097. \size normal
  11098. \emph off
  11099. \bar no
  11100. \strikeout off
  11101. \xout off
  11102. \uuline off
  11103. \uwave off
  11104. \noun off
  11105. \color none
  11106. 136
  11107. \end_layout
  11108. \end_inset
  11109. </cell>
  11110. </row>
  11111. <row>
  11112. <cell multirow="4" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  11113. \begin_inset Text
  11114. \begin_layout Plain Layout
  11115. \end_layout
  11116. \end_inset
  11117. </cell>
  11118. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  11119. \begin_inset Text
  11120. \begin_layout Plain Layout
  11121. \series bold
  11122. Down
  11123. \end_layout
  11124. \end_inset
  11125. </cell>
  11126. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  11127. \begin_inset Text
  11128. \begin_layout Plain Layout
  11129. \family roman
  11130. \series medium
  11131. \shape up
  11132. \size normal
  11133. \emph off
  11134. \bar no
  11135. \strikeout off
  11136. \xout off
  11137. \uuline off
  11138. \uwave off
  11139. \noun off
  11140. \color none
  11141. 0
  11142. \end_layout
  11143. \end_inset
  11144. </cell>
  11145. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  11146. \begin_inset Text
  11147. \begin_layout Plain Layout
  11148. \family roman
  11149. \series medium
  11150. \shape up
  11151. \size normal
  11152. \emph off
  11153. \bar no
  11154. \strikeout off
  11155. \xout off
  11156. \uuline off
  11157. \uwave off
  11158. \noun off
  11159. \color none
  11160. 548
  11161. \end_layout
  11162. \end_inset
  11163. </cell>
  11164. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  11165. \begin_inset Text
  11166. \begin_layout Plain Layout
  11167. \family roman
  11168. \series medium
  11169. \shape up
  11170. \size normal
  11171. \emph off
  11172. \bar no
  11173. \strikeout off
  11174. \xout off
  11175. \uuline off
  11176. \uwave off
  11177. \noun off
  11178. \color none
  11179. 127
  11180. \end_layout
  11181. \end_inset
  11182. </cell>
  11183. </row>
  11184. </lyxtabular>
  11185. \end_inset
  11186. \end_layout
  11187. \begin_layout Plain Layout
  11188. \begin_inset Caption Standard
  11189. \begin_layout Plain Layout
  11190. \series bold
  11191. \begin_inset Argument 1
  11192. status open
  11193. \begin_layout Plain Layout
  11194. Comparison of significantly differentially expressed genes with and without
  11195. globin blocking.
  11196. \end_layout
  11197. \end_inset
  11198. \begin_inset CommandInset label
  11199. LatexCommand label
  11200. name "tab:Comparison-of-significant"
  11201. \end_inset
  11202. Comparison of significantly differentially expressed genes with and without
  11203. globin blocking.
  11204. \series default
  11205. Up, Down: Genes significantly up/down-regulated in post-transplant samples
  11206. relative to pre-transplant samples, with a false discovery rate of 10%
  11207. or less.
  11208. NS: Non-significant genes (false discovery rate greater than 10%).
  11209. \end_layout
  11210. \end_inset
  11211. \end_layout
  11212. \begin_layout Plain Layout
  11213. \end_layout
  11214. \end_inset
  11215. \end_layout
  11216. \begin_layout Standard
  11217. To compare performance on differential gene expression tests, we took subsets
  11218. of both the GB and non-GB libraries with exactly one pre-transplant and
  11219. one post-transplant sample for each animal that had paired samples available
  11220. for analysis (N=7 animals, N=14 samples in each subset).
  11221. The same test for pre- vs.
  11222. post-transplant differential gene expression was performed on the same
  11223. 7 pairs of samples from GB libraries and non-GB libraries, in each case
  11224. using an FDR of 10% as the threshold of significance.
  11225. Out of 12954 genes that passed the detection threshold in both subsets,
  11226. 358 were called significantly differentially expressed in the same direction
  11227. in both sets; 1063 were differentially expressed in the GB set only; 296
  11228. were differentially expressed in the non-GB set only; 2 genes were called
  11229. significantly up in the GB set but significantly down in the non-GB set;
  11230. and the remaining 11235 were not called differentially expressed in either
  11231. set.
  11232. These data are summarized in Table
  11233. \begin_inset CommandInset ref
  11234. LatexCommand ref
  11235. reference "tab:Comparison-of-significant"
  11236. plural "false"
  11237. caps "false"
  11238. noprefix "false"
  11239. \end_inset
  11240. .
  11241. The differences in BCV calculated by EdgeR for these subsets of samples
  11242. were negligible (BCV = 0.302 for GB and 0.297 for non-GB).
  11243. \end_layout
  11244. \begin_layout Standard
  11245. The key point is that the GB data results in substantially more differentially
  11246. expressed calls than the non-GB data.
  11247. Since there is no gold standard for this dataset, it is impossible to be
  11248. certain whether this is due to under-calling of differential expression
  11249. in the non-GB samples or over-calling in the GB samples.
  11250. However, given that both datasets are derived from the same biological
  11251. samples and have nearly equal BCVs, it is more likely that the larger number
  11252. of DE calls in the GB samples are genuine detections that were enabled
  11253. by the higher sequencing depth and measurement precision of the GB samples.
  11254. Note that the same set of genes was considered in both subsets, so the
  11255. larger number of differentially expressed gene calls in the GB data set
  11256. reflects a greater sensitivity to detect significant differential gene
  11257. expression and not simply the larger total number of detected genes in
  11258. GB samples described earlier.
  11259. \end_layout
  11260. \begin_layout Section
  11261. Discussion
  11262. \end_layout
  11263. \begin_layout Standard
  11264. The original experience with whole blood gene expression profiling on DNA
  11265. microarrays demonstrated that the high concentration of globin transcripts
  11266. reduced the sensitivity to detect genes with relatively low expression
  11267. levels, in effect, significantly reducing the sensitivity.
  11268. To address this limitation, commercial protocols for globin reduction were
  11269. developed based on strategies to block globin transcript amplification
  11270. during labeling or physically removing globin transcripts by affinity bead
  11271. methods
  11272. \begin_inset CommandInset citation
  11273. LatexCommand cite
  11274. key "Winn2010"
  11275. literal "false"
  11276. \end_inset
  11277. .
  11278. More recently, using the latest generation of labeling protocols and arrays,
  11279. it was determined that globin reduction was no longer necessary to obtain
  11280. sufficient sensitivity to detect differential transcript expression
  11281. \begin_inset CommandInset citation
  11282. LatexCommand cite
  11283. key "NuGEN2010"
  11284. literal "false"
  11285. \end_inset
  11286. .
  11287. However, we are not aware of any publications using these currently available
  11288. protocols the with latest generation of microarrays that actually compare
  11289. the detection sensitivity with and without globin reduction.
  11290. However, in practice this has now been adopted generally primarily driven
  11291. by concerns for cost control.
  11292. The main objective of our work was to directly test the impact of globin
  11293. gene transcripts and a new globin blocking protocol for application to
  11294. the newest generation of differential gene expression profiling determined
  11295. using next generation sequencing.
  11296. \end_layout
  11297. \begin_layout Standard
  11298. The challenge of doing global gene expression profiling in cynomolgus monkeys
  11299. is that the current available arrays were never designed to comprehensively
  11300. cover this genome and have not been updated since the first assemblies
  11301. of the cynomolgus genome were published.
  11302. Therefore, we determined that the best strategy for peripheral blood profiling
  11303. was to do deep RNA-seq and inform the workflow using the latest available
  11304. genome assembly and annotation
  11305. \begin_inset CommandInset citation
  11306. LatexCommand cite
  11307. key "Wilson2013"
  11308. literal "false"
  11309. \end_inset
  11310. .
  11311. However, it was not immediately clear whether globin reduction was necessary
  11312. for RNA-seq or how much improvement in efficiency or sensitivity to detect
  11313. differential gene expression would be achieved for the added cost and work.
  11314. \end_layout
  11315. \begin_layout Standard
  11316. We only found one report that demonstrated that globin reduction significantly
  11317. improved the effective read yields for sequencing of human peripheral blood
  11318. cell RNA using a DeepSAGE protocol
  11319. \begin_inset CommandInset citation
  11320. LatexCommand cite
  11321. key "Mastrokolias2012"
  11322. literal "false"
  11323. \end_inset
  11324. .
  11325. The approach to DeepSAGE involves two different restriction enzymes that
  11326. purify and then tag small fragments of transcripts at specific locations
  11327. and thus, significantly reduces the complexity of the transcriptome.
  11328. Therefore, we could not determine how DeepSAGE results would translate
  11329. to the common strategy in the field for assaying the entire transcript
  11330. population by whole-transcriptome 3’-end RNA-seq.
  11331. Furthermore, if globin reduction is necessary, we also needed a globin
  11332. reduction method specific to cynomolgus globin sequences that would work
  11333. an organism for which no kit is available off the shelf.
  11334. \end_layout
  11335. \begin_layout Standard
  11336. As mentioned above, the addition of globin blocking oligos has a very small
  11337. impact on measured expression levels of gene expression.
  11338. However, this is a non-issue for the purposes of differential expression
  11339. testing, since a systematic change in a gene in all samples does not affect
  11340. relative expression levels between samples.
  11341. However, we must acknowledge that simple comparisons of gene expression
  11342. data obtained by GB and non-GB protocols are not possible without additional
  11343. normalization.
  11344. \end_layout
  11345. \begin_layout Standard
  11346. More importantly, globin blocking not only nearly doubles the yield of usable
  11347. reads, it also increases inter-sample correlation and sensitivity to detect
  11348. differential gene expression relative to the same set of samples profiled
  11349. without blocking.
  11350. In addition, globin blocking does not add a significant amount of random
  11351. noise to the data.
  11352. Globin blocking thus represents a cost-effective way to squeeze more data
  11353. and statistical power out of the same blood samples and the same amount
  11354. of sequencing.
  11355. In conclusion, globin reduction greatly increases the yield of useful RNA-seq
  11356. reads mapping to the rest of the genome, with minimal perturbations in
  11357. the relative levels of non-globin genes.
  11358. Based on these results, globin transcript reduction using sequence-specific,
  11359. complementary blocking oligonucleotides is recommended for all deep RNA-seq
  11360. of cynomolgus and other nonhuman primate blood samples.
  11361. \end_layout
  11362. \begin_layout Section
  11363. Future Directions
  11364. \end_layout
  11365. \begin_layout Standard
  11366. One drawback of the globin blocking method presented in this analysis is
  11367. a poor yield of genic reads, only around 50%.
  11368. In a separate experiment, the reagent mixture was modified so as to address
  11369. this drawback, resulting in a method that produces an even better reduction
  11370. in globin reads without reducing the overall fraction of genic reads.
  11371. However, the data showing this improvement consists of only a few test
  11372. samples, so the larger data set analyzed above was chosen in order to demonstra
  11373. te the effectiveness of the method in reducing globin reads while preserving
  11374. the biological signal.
  11375. \end_layout
  11376. \begin_layout Standard
  11377. The motivation for developing a fast practical way to enrich for non-globin
  11378. reads in cyno blood samples was to enable a large-scale RNA-seq experiment
  11379. investigating the effects of mesenchymal stem cell infusion on blood gene
  11380. expression in cynomologus transplant recipients in a time course after
  11381. transplantation.
  11382. With the globin blocking method in place, the way is now clear for this
  11383. experiment to proceed.
  11384. \end_layout
  11385. \begin_layout Chapter
  11386. Future Directions
  11387. \end_layout
  11388. \begin_layout Standard
  11389. \begin_inset Flex TODO Note (inline)
  11390. status open
  11391. \begin_layout Plain Layout
  11392. If there are any chapter-independent future directions, put them here.
  11393. Otherwise, delete this section.
  11394. Check in the directions if this is OK.
  11395. \end_layout
  11396. \end_inset
  11397. \end_layout
  11398. \begin_layout Chapter
  11399. Closing remarks
  11400. \end_layout
  11401. \begin_layout Standard
  11402. \begin_inset ERT
  11403. status collapsed
  11404. \begin_layout Plain Layout
  11405. % Use "References" as the title of the Bibliography
  11406. \end_layout
  11407. \begin_layout Plain Layout
  11408. \backslash
  11409. renewcommand{
  11410. \backslash
  11411. bibname}{References}
  11412. \end_layout
  11413. \end_inset
  11414. \end_layout
  11415. \begin_layout Standard
  11416. \begin_inset CommandInset bibtex
  11417. LatexCommand bibtex
  11418. btprint "btPrintCited"
  11419. bibfiles "code-refs,refs-PROCESSED"
  11420. options "bibtotoc,unsrt"
  11421. \end_inset
  11422. \end_layout
  11423. \begin_layout Standard
  11424. \begin_inset Flex TODO Note (inline)
  11425. status open
  11426. \begin_layout Plain Layout
  11427. Check bib entry formatting & sort order
  11428. \end_layout
  11429. \end_inset
  11430. \end_layout
  11431. \begin_layout Standard
  11432. \begin_inset Flex TODO Note (inline)
  11433. status open
  11434. \begin_layout Plain Layout
  11435. Check in-text citation format.
  11436. Probably don't just want [1], [2], etc.
  11437. \end_layout
  11438. \end_inset
  11439. \end_layout
  11440. \end_body
  11441. \end_document