thesis.lyx 313 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522
  1. #LyX 2.3 created this file. For more info see http://www.lyx.org/
  2. \lyxformat 544
  3. \begin_document
  4. \begin_header
  5. \save_transient_properties true
  6. \origin unavailable
  7. \textclass extbook
  8. \begin_preamble
  9. % List all used files in log output
  10. \listfiles
  11. % Add a DRAFT watermark
  12. \usepackage{draftwatermark}
  13. \SetWatermarkLightness{0.97}
  14. \SetWatermarkScale{1}
  15. % Set up required header format
  16. \usepackage{fancyhdr}
  17. \pagestyle{fancy}
  18. \renewcommand{\headrulewidth}{0pt}
  19. \rhead{}
  20. \lhead{}
  21. \rfoot{}
  22. \lfoot{}
  23. \cfoot{\thepage} % Page number bottom center
  24. % Allow FloatBarrier command
  25. \usepackage{placeins}
  26. % Allow landscape pages
  27. \usepackage{pdflscape}
  28. % Allow doing things after the end of the current page
  29. % (to avoid landscape figures breaking up text)
  30. \usepackage{afterpage}
  31. % This one breaks subfigs so it's disabled
  32. % https://tex.stackexchange.com/questions/65680/automatically-bold-first-sentence-of-a-floats-caption
  33. \end_preamble
  34. \use_default_options true
  35. \begin_modules
  36. todonotes
  37. \end_modules
  38. \maintain_unincluded_children false
  39. \language english
  40. \language_package default
  41. \inputencoding utf8
  42. \fontencoding default
  43. \font_roman "default" "default"
  44. \font_sans "default" "default"
  45. \font_typewriter "default" "default"
  46. \font_math "auto" "auto"
  47. \font_default_family default
  48. \use_non_tex_fonts false
  49. \font_sc false
  50. \font_osf false
  51. \font_sf_scale 100 100
  52. \font_tt_scale 100 100
  53. \use_microtype false
  54. \use_dash_ligatures true
  55. \graphics default
  56. \default_output_format pdf4
  57. \output_sync 0
  58. \bibtex_command biber
  59. \index_command default
  60. \paperfontsize 12
  61. \spacing double
  62. \use_hyperref true
  63. \pdf_bookmarks true
  64. \pdf_bookmarksnumbered false
  65. \pdf_bookmarksopen false
  66. \pdf_bookmarksopenlevel 1
  67. \pdf_breaklinks false
  68. \pdf_pdfborder false
  69. \pdf_colorlinks false
  70. \pdf_backref false
  71. \pdf_pdfusetitle true
  72. \papersize letterpaper
  73. \use_geometry true
  74. \use_package amsmath 1
  75. \use_package amssymb 1
  76. \use_package cancel 1
  77. \use_package esint 1
  78. \use_package mathdots 1
  79. \use_package mathtools 1
  80. \use_package mhchem 1
  81. \use_package stackrel 1
  82. \use_package stmaryrd 1
  83. \use_package undertilde 1
  84. \cite_engine biblatex
  85. \cite_engine_type authoryear
  86. \biblio_style plain
  87. \biblatex_bibstyle authoryear
  88. \biblatex_citestyle numeric
  89. \use_bibtopic false
  90. \use_indices false
  91. \paperorientation portrait
  92. \suppress_date false
  93. \justification true
  94. \use_refstyle 1
  95. \use_minted 0
  96. \index Index
  97. \shortcut idx
  98. \color #008000
  99. \end_index
  100. \leftmargin 1.5in
  101. \topmargin 1in
  102. \rightmargin 1in
  103. \bottommargin 1in
  104. \secnumdepth 3
  105. \tocdepth 3
  106. \paragraph_separation indent
  107. \paragraph_indentation default
  108. \is_math_indent 0
  109. \math_numbering_side default
  110. \quotes_style english
  111. \dynamic_quotes 0
  112. \papercolumns 1
  113. \papersides 1
  114. \paperpagestyle default
  115. \tracking_changes false
  116. \output_changes false
  117. \html_math_output 0
  118. \html_css_as_file 0
  119. \html_be_strict false
  120. \end_header
  121. \begin_body
  122. \begin_layout Title
  123. Bioinformatic analysis of complex, high-throughput genomic and epigenomic
  124. data in the context of immunology and transplant rejection
  125. \end_layout
  126. \begin_layout Author
  127. A thesis presented
  128. \begin_inset Newline newline
  129. \end_inset
  130. by
  131. \begin_inset Newline newline
  132. \end_inset
  133. Ryan C.
  134. Thompson
  135. \begin_inset Newline newline
  136. \end_inset
  137. to
  138. \begin_inset Newline newline
  139. \end_inset
  140. The Scripps Research Institute Graduate Program
  141. \begin_inset Newline newline
  142. \end_inset
  143. in partial fulfillment of the requirements for the degree of
  144. \begin_inset Newline newline
  145. \end_inset
  146. Doctor of Philosophy in the subject of Biology
  147. \begin_inset Newline newline
  148. \end_inset
  149. for
  150. \begin_inset Newline newline
  151. \end_inset
  152. The Scripps Research Institute
  153. \begin_inset Newline newline
  154. \end_inset
  155. La Jolla, California
  156. \end_layout
  157. \begin_layout Date
  158. October 2019
  159. \end_layout
  160. \begin_layout Standard
  161. [Copyright notice]
  162. \end_layout
  163. \begin_layout Standard
  164. [Thesis acceptance form]
  165. \end_layout
  166. \begin_layout Standard
  167. [Dedication]
  168. \end_layout
  169. \begin_layout Standard
  170. [Acknowledgements]
  171. \end_layout
  172. \begin_layout Standard
  173. \begin_inset Flex TODO Note (inline)
  174. status open
  175. \begin_layout Plain Layout
  176. I'm looking for feedback on: Section titles; figure formatting; figure legends;
  177. typographical errors; ...
  178. \end_layout
  179. \end_inset
  180. \end_layout
  181. \begin_layout Standard
  182. \begin_inset CommandInset toc
  183. LatexCommand tableofcontents
  184. \end_inset
  185. \end_layout
  186. \begin_layout Standard
  187. \begin_inset FloatList table
  188. \end_inset
  189. \end_layout
  190. \begin_layout Standard
  191. \begin_inset FloatList figure
  192. \end_inset
  193. \end_layout
  194. \begin_layout Standard
  195. [List of Abbreviations]
  196. \end_layout
  197. \begin_layout List of TODOs
  198. \end_layout
  199. \begin_layout Standard
  200. \begin_inset Flex TODO Note (inline)
  201. status open
  202. \begin_layout Plain Layout
  203. Check all figures to make sure they fit on the page with their legends.
  204. \end_layout
  205. \end_inset
  206. \end_layout
  207. \begin_layout Standard
  208. \begin_inset Flex TODO Note (inline)
  209. status open
  210. \begin_layout Plain Layout
  211. Search and replace: naive -> naïve
  212. \end_layout
  213. \end_inset
  214. \end_layout
  215. \begin_layout Standard
  216. \begin_inset Flex TODO Note (inline)
  217. status open
  218. \begin_layout Plain Layout
  219. Look into auto-generated nomenclature list: https://wiki.lyx.org/Tips/Nomenclature.
  220. Otherwise, do a manual pass for all abbreviations at the end.
  221. Do nomenclature/abbreviations independently for each chapter.
  222. \end_layout
  223. \end_inset
  224. \end_layout
  225. \begin_layout Standard
  226. \begin_inset Flex TODO Note (inline)
  227. status open
  228. \begin_layout Plain Layout
  229. Make all descriptions consistent in terms of
  230. \begin_inset Quotes eld
  231. \end_inset
  232. we did X
  233. \begin_inset Quotes erd
  234. \end_inset
  235. vs
  236. \begin_inset Quotes eld
  237. \end_inset
  238. I did X
  239. \begin_inset Quotes erd
  240. \end_inset
  241. vs
  242. \begin_inset Quotes eld
  243. \end_inset
  244. X was done
  245. \begin_inset Quotes erd
  246. \end_inset
  247. .
  248. \end_layout
  249. \end_inset
  250. \end_layout
  251. \begin_layout Chapter*
  252. Abstract
  253. \end_layout
  254. \begin_layout Standard
  255. \begin_inset Note Note
  256. status open
  257. \begin_layout Plain Layout
  258. It is included as an integral part of the thesis and should immediately
  259. precede the introduction.
  260. \end_layout
  261. \begin_layout Plain Layout
  262. Preparing your Abstract.
  263. Your abstract (a succinct description of your work) is limited to 350 words.
  264. UMI will shorten it if they must; please do not exceed the limit.
  265. \end_layout
  266. \begin_layout Itemize
  267. Include pertinent place names, names of persons (in full), and other proper
  268. nouns.
  269. These are useful in automated retrieval.
  270. \end_layout
  271. \begin_layout Itemize
  272. Display symbols, as well as foreign words and phrases, clearly and accurately.
  273. Include transliterations for characters other than Roman and Greek letters
  274. and Arabic numerals.
  275. Include accents and diacritical marks.
  276. \end_layout
  277. \begin_layout Itemize
  278. Do not include graphs, charts, tables, or illustrations in your abstract.
  279. \end_layout
  280. \end_inset
  281. \end_layout
  282. \begin_layout Standard
  283. \begin_inset Flex TODO Note (inline)
  284. status open
  285. \begin_layout Plain Layout
  286. Obviously the abstract gets written last.
  287. \end_layout
  288. \end_inset
  289. \end_layout
  290. \begin_layout Chapter
  291. Introduction
  292. \end_layout
  293. \begin_layout Section
  294. Background & Significance
  295. \end_layout
  296. \begin_layout Subsection
  297. Biological motivation
  298. \end_layout
  299. \begin_layout Standard
  300. \begin_inset Flex TODO Note (inline)
  301. status open
  302. \begin_layout Plain Layout
  303. Rethink the subsection organization after the intro is written.
  304. \end_layout
  305. \end_inset
  306. \end_layout
  307. \begin_layout Standard
  308. \begin_inset Flex TODO Note (inline)
  309. status open
  310. \begin_layout Plain Layout
  311. Citations are needed all over the place.
  312. A lot of this is knowledge I've just absorbed from years of conversation
  313. in the Salomon lab, without ever having seen a citation for it.
  314. \end_layout
  315. \end_inset
  316. \end_layout
  317. \begin_layout Subsubsection
  318. Rejection is the major long-term threat to organ and tissue allografts
  319. \end_layout
  320. \begin_layout Standard
  321. Organ and tissue transplants are a life-saving treatment for people who
  322. have lost the function of an important organ.
  323. In some cases, it is possible to transplant a patient's own tissue from
  324. one area of their body to another, referred to as an autograft.
  325. This is common for tissues that are distributed throughout many areas of
  326. the body, such as skin and bone.
  327. However, in cases of organ failure, there is no functional self tissue
  328. remaining, and a transplant from another person – the donor – is required.
  329. This is referred to as an allograft.
  330. \end_layout
  331. \begin_layout Standard
  332. \begin_inset Flex TODO Note (inline)
  333. status open
  334. \begin_layout Plain Layout
  335. Possible citation for degree of generic variability: https://www.ncbi.nlm.nih.gov/pu
  336. bmed/22424236?dopt=Abstract
  337. \end_layout
  338. \end_inset
  339. \end_layout
  340. \begin_layout Standard
  341. \begin_inset Flex TODO Note (inline)
  342. status open
  343. \begin_layout Plain Layout
  344. How much mechanistic detail is needed here? My work doesn't really go into
  345. specific rejection mechanisms, so I think it's best to keep it basic.
  346. \end_layout
  347. \end_inset
  348. \end_layout
  349. \begin_layout Standard
  350. Because an allograft comes from a different person, it is genetically distinct
  351. from the rest of the recipient's body.
  352. Some genetic variants occur in protein coding regions, resulting in protein
  353. products that differ from the equivalent proteins in the graft recipient's
  354. own tissue.
  355. As a result, without intervention, the recipient's immune system will eventuall
  356. y identify the graft as foreign tissue and begin attacking it, eventually
  357. resulting in failure and death of the graft, a process referred to as transplan
  358. t rejection.
  359. Rejection is the most significant challenge to the long-term health of
  360. an allograft.
  361. Like any adaptive immune response, graft rejection generally occurs via
  362. two broad mechanisms: cellular immunity, in which CD8+ T-cells induce apoptosis
  363. in the graft cells; and humoral immunity, in which B-cells produce antibodies
  364. that bind to graft proteins and direct an immune response against the graft.
  365. In either case, rejection shows most of the typical hallmarks of an adaptive
  366. immune response, in particular mediation by CD4+ T-cells and formation
  367. of immune memory.
  368. \end_layout
  369. \begin_layout Subsubsection
  370. Diagnosis and treatment of allograft rejection is a major challenge
  371. \end_layout
  372. \begin_layout Standard
  373. To prevent rejection, allograft recipients are treated with immune suppression.
  374. The goal is to achieve sufficient suppression of the immune system to prevent
  375. rejection of the graft without compromising the ability of the immune system
  376. to raise a normal response against infection.
  377. As such, a delicate balance must be struck: insufficient immune suppression
  378. may lead to rejection and ultimately loss of the graft; exceissive suppression
  379. leaves the patient vulnerable to life-threatening opportunistic infections.
  380. Because every patient is different, immune suppression must be tailored
  381. for each patient.
  382. Furthermore, immune suppression must be tuned over time, as the immune
  383. system's activity is not static, nor is it held in a steady state.
  384. In order to properly adjust the dosage of immune suppression drugs, it
  385. is necessary to monitor the health of the transplant and increase the dosage
  386. if evidence of rejection is observed.
  387. \end_layout
  388. \begin_layout Standard
  389. However, diagnosis of rejection is a significant challenge.
  390. Early diagnosis is essential in order to step up immune suppression before
  391. the immune system damages the graft beyond recovery.
  392. The current gold standard test for graft rejection is a tissue biopsy,
  393. examained for visible signs of rejection by a trained histologist.
  394. When a patient shows symptoms of possible rejection, a
  395. \begin_inset Quotes eld
  396. \end_inset
  397. for cause
  398. \begin_inset Quotes erd
  399. \end_inset
  400. biopsy is performed to confirm the diagnosis, and immune suppression is
  401. adjusted as necessary.
  402. However, in many cases, the early stages of rejection are asymptomatic,
  403. known as
  404. \begin_inset Quotes eld
  405. \end_inset
  406. sub-clinical
  407. \begin_inset Quotes erd
  408. \end_inset
  409. rejection.
  410. In light of this, is is now common to perform
  411. \begin_inset Quotes eld
  412. \end_inset
  413. protocol biopsies
  414. \begin_inset Quotes erd
  415. \end_inset
  416. at specific times after transplantation of a graft, even if no symptoms
  417. of rejection are apparent, in addition to
  418. \begin_inset Quotes eld
  419. \end_inset
  420. for cause
  421. \begin_inset Quotes erd
  422. \end_inset
  423. biopsies
  424. \begin_inset CommandInset citation
  425. LatexCommand cite
  426. key "Wilkinson2006"
  427. literal "false"
  428. \end_inset
  429. .
  430. \end_layout
  431. \begin_layout Standard
  432. However, biopsies have a number of downsides that limit their effectiveness
  433. as a diagnostic tool.
  434. First, the need for manual inspection by a histologist means that diagnosis
  435. is subject to the biases of the particular histologist examining the biopsy.
  436. In marginal cases two different histologists may give two different diagnoses
  437. to the same biopsy.
  438. Second, a biopsy can only evaluate if rejection is occurring in the section
  439. of the graft from which the tissue was extracted.
  440. If rejection is only occurring in one section of the graft and the tissue
  441. is extracted from a different section, it may result in a false negative
  442. diagnosis.
  443. Most importantly, however, extraction of tissue from a graft is invasive
  444. and is treated as an injury by the body, which results in inflammation
  445. that in turn promotes increased immune system activity.
  446. Hence, the invasiveness of biopsies severely limits the frequency with
  447. which the can safely be performed.
  448. Typically protocol biopsies are not scheduled more than about once per
  449. month
  450. \begin_inset CommandInset citation
  451. LatexCommand cite
  452. key "Wilkinson2006"
  453. literal "false"
  454. \end_inset
  455. .
  456. A less invasive diagnostic test for rejection would bring manifold benefits.
  457. Such a test would enable more frequent testing and therefore earlier detection
  458. of rejection events.
  459. In addition, having a larger pool of historical data for a given patient
  460. would make it easier to evaluate when a given test is outside the normal
  461. parameters for that specific patient, rather than relying on normal ranges
  462. for the population as a whole.
  463. Lastly, more frequent tests would be a boon to the transplant research
  464. community.
  465. Beyond simply providing more data, the increased time granularity of the
  466. tests will enable studying the progression of a rejection event on the
  467. scale of days to weeks, rather than months.
  468. \end_layout
  469. \begin_layout Subsubsection
  470. Memory cells are resistant to immune suppression
  471. \end_layout
  472. \begin_layout Standard
  473. One of the defining features of the adaptive immune system is immune memory:
  474. the ability of the immune system to recognize a previously encountered
  475. foreign antigen and respond more quickly and more strongly to that antigen
  476. in subsequent encounters.
  477. When the immune system first encounters a new antigen, the lymphocytes
  478. that respond are known as naive cells – T-cells and B-cells that have never
  479. detected their target antigens before.
  480. Once activated by their specific antigen presented by an antigen-presenting
  481. cell in the proper co-stimulatory context, naive cells differentiate into
  482. effector cells that carry out their respective functions in targeting and
  483. destroying the source of the foreign antigen.
  484. The requirement for co-stimulation is an important feature of naive cells
  485. that limits
  486. \begin_inset Quotes eld
  487. \end_inset
  488. false positive
  489. \begin_inset Quotes erd
  490. \end_inset
  491. immune responses, because antigen-presenting cells usually only express
  492. the proper co-stimulation after detecting evidence of an infection, such
  493. as the presence of common bacterial cell components or inflamed tissue.
  494. Most effector cells die after the foreign antigen is cleared, but some
  495. remain and differentiate into memory cells.
  496. Like naive cells, memory cells respond to detection of their specific antigen
  497. by differentiating into effector cells, ready to fight an infection.
  498. However, unlike naive cells, memory cells do not require the same degree
  499. of co-stimulatory signaling for activation, and once activated, they proliferat
  500. e and differentiate into effector cells more quickly than naive cells do.
  501. \end_layout
  502. \begin_layout Standard
  503. In the context of a pathogenic infection, immune memory is a major advantage,
  504. allowing an organism to rapidly fight off a previously encountered pathogen
  505. much more quickly and effectively than the first time it was encountered.
  506. However, if effector cells that recognize an antigen from an allograft
  507. are allowed to differentiate into memory cells, suppressing rejection of
  508. the graft becomes much more difficult.
  509. Many immune suppression drugs work by interfering with the co-stimulation
  510. that naive cells require in order to mount an immune response.
  511. Since memory cells do not require this co-stimulation, these drugs are
  512. not effective at suppressing an immune response that is mediated by memory
  513. cells.
  514. Secondly, because memory cells are able to mount a stronger and faster
  515. response to an antigen, all else being equal they require stronger immune
  516. suppression than naive cells to prevent an immune response.
  517. However, immune suppression affects the entire immune system, not just
  518. cells recognizing a specific antigen, so increasing the dosage of immune
  519. suppression drugs also increases the risk of complications from a compromised
  520. immune system, such as opportunistic infections.
  521. While the differences in cell surface markers between naive and memory
  522. cells have been fairly well characterized, the internal regulatory mechanisms
  523. that allow memory cells to respond more quickly and without co-stimulation
  524. are still poorly understood.
  525. In order to develop immune suppression that either prevents the formation
  526. of memory cells or works more effectively against memory cells, the mechanisms
  527. of immune memory formation and regulation must be better understood.
  528. \end_layout
  529. \begin_layout Subsection
  530. Overview of bioinformatic analysis methods
  531. \end_layout
  532. \begin_layout Standard
  533. An overview of all the methods used, including what problem they solve,
  534. what assumptions they make, and a basic description of how they work.
  535. \end_layout
  536. \begin_layout Standard
  537. \begin_inset Flex TODO Note (inline)
  538. status open
  539. \begin_layout Plain Layout
  540. Many of these points are also addressed in the approach sections of the
  541. following chapters? Redundant?
  542. \end_layout
  543. \end_inset
  544. \end_layout
  545. \begin_layout Subsubsection
  546. ChIP-seq Peak calling
  547. \end_layout
  548. \begin_layout Itemize
  549. Cross-correlation analysis to determine fragment size
  550. \end_layout
  551. \begin_layout Itemize
  552. Broad vs narrow peaks
  553. \end_layout
  554. \begin_layout Itemize
  555. MACS for narrow, SICER for broad peaks
  556. \end_layout
  557. \begin_layout Itemize
  558. IDR for biologically reproducible peaks
  559. \end_layout
  560. \begin_layout Itemize
  561. csaw peak filtering guidelines for unbiased downstream analysis
  562. \end_layout
  563. \begin_layout Subsubsection
  564. Normalization is non-trivial and application-dependant
  565. \end_layout
  566. \begin_layout Itemize
  567. Expression arrays: RMA & fRMA; why fRMA is needed
  568. \end_layout
  569. \begin_layout Itemize
  570. Methylation arrays: M-value transformation approximates normal data but
  571. induces heteroskedasticity
  572. \end_layout
  573. \begin_layout Itemize
  574. RNA-seq: normalize based on assumption that the average gene is not changing
  575. \end_layout
  576. \begin_layout Itemize
  577. ChIP-seq: complex with many considerations, dependent on experimental methods,
  578. biological system, and analysis goals
  579. \end_layout
  580. \begin_layout Subsubsection
  581. Limma: The standard linear modeling framework for genomics
  582. \end_layout
  583. \begin_layout Itemize
  584. empirical Bayes variance modeling: limma's core feature
  585. \end_layout
  586. \begin_layout Itemize
  587. edgeR & DESeq2: Extend with negative bonomial GLM for RNA-seq and other
  588. count data
  589. \end_layout
  590. \begin_layout Itemize
  591. voom: Extend with precision weights to model mean-variance trend
  592. \end_layout
  593. \begin_layout Itemize
  594. arrayWeights and duplicateCorrelation to handle complex variance structures
  595. \end_layout
  596. \begin_layout Subsubsection
  597. sva and ComBat for batch correction
  598. \end_layout
  599. \begin_layout Subsubsection
  600. Factor analysis: PCA, MDS, MOFA
  601. \end_layout
  602. \begin_layout Itemize
  603. Batch-corrected PCA is informative, but careful application is required
  604. to avoid bias
  605. \end_layout
  606. \begin_layout Section
  607. Innovation
  608. \end_layout
  609. \begin_layout Subsection
  610. MSC infusion to improve transplant outcomes (prevent/delay rejection)
  611. \end_layout
  612. \begin_layout Standard
  613. \begin_inset Flex TODO Note (inline)
  614. status open
  615. \begin_layout Plain Layout
  616. Do I still talk about this? It's the motivation for chapter 4, but I don't
  617. actually present any work related to MSCs.
  618. \end_layout
  619. \end_inset
  620. \end_layout
  621. \begin_layout Itemize
  622. Demonstrated in mice, but not yet in primates
  623. \end_layout
  624. \begin_layout Itemize
  625. Mechanism currently unknown, but MSC are known to be immune modulatory
  626. \end_layout
  627. \begin_layout Itemize
  628. Characterize MSC response to interferon gamma
  629. \end_layout
  630. \begin_layout Itemize
  631. IFN-g is thought to stimulate their function
  632. \end_layout
  633. \begin_layout Itemize
  634. Test IFN-g treated MSC infusion as a therapy to delay graft rejection in
  635. cynomolgus monkeys
  636. \end_layout
  637. \begin_layout Itemize
  638. Monitor animals post-transplant using blood RNA-seq at serial time points
  639. \end_layout
  640. \begin_layout Subsection
  641. Investigate dynamics of histone marks in CD4 T-cell activation and memory
  642. \end_layout
  643. \begin_layout Itemize
  644. Previous studies have looked at single snapshots of histone marks
  645. \end_layout
  646. \begin_layout Itemize
  647. Instead, look at changes in histone marks across activation and memory
  648. \end_layout
  649. \begin_layout Subsection
  650. High-throughput sequencing and microarray technologies
  651. \end_layout
  652. \begin_layout Itemize
  653. Powerful methods for assaying gene expression and epigenetics across entire
  654. genomes
  655. \end_layout
  656. \begin_layout Itemize
  657. Proper analysis requires finding and exploiting systematic genome-wide trends
  658. \end_layout
  659. \begin_layout Chapter
  660. Reproducible genome-wide epigenetic analysis of H3K4 and H3K27 methylation
  661. in naive and memory CD4 T-cell activation
  662. \end_layout
  663. \begin_layout Standard
  664. \begin_inset Flex TODO Note (inline)
  665. status open
  666. \begin_layout Plain Layout
  667. Chapter author list: Me, Sarah, Dan
  668. \end_layout
  669. \end_inset
  670. \end_layout
  671. \begin_layout Standard
  672. \begin_inset Flex TODO Note (inline)
  673. status open
  674. \begin_layout Plain Layout
  675. Need better section titles throughout the entire chapter
  676. \end_layout
  677. \end_inset
  678. \end_layout
  679. \begin_layout Section
  680. Approach
  681. \end_layout
  682. \begin_layout Standard
  683. \begin_inset Flex TODO Note (inline)
  684. status open
  685. \begin_layout Plain Layout
  686. Check on the exact correct way to write
  687. \begin_inset Quotes eld
  688. \end_inset
  689. CD4 T-cell
  690. \begin_inset Quotes erd
  691. \end_inset
  692. .
  693. I think there might be a plus sign somwehere in there now? Also, maybe
  694. figure out a reasonable way to abbreviate
  695. \begin_inset Quotes eld
  696. \end_inset
  697. naive CD4 T-cells
  698. \begin_inset Quotes erd
  699. \end_inset
  700. and
  701. \begin_inset Quotes eld
  702. \end_inset
  703. memory CD4 T-cells
  704. \begin_inset Quotes erd
  705. \end_inset
  706. .
  707. \end_layout
  708. \end_inset
  709. \end_layout
  710. \begin_layout Standard
  711. \begin_inset Flex TODO Note (inline)
  712. status open
  713. \begin_layout Plain Layout
  714. Is it ok to just copy a bunch of citations from the intros to Sarah's papers?
  715. That feels like cheating somehow.
  716. \end_layout
  717. \end_inset
  718. \end_layout
  719. \begin_layout Standard
  720. CD4 T-cells are central to all adaptive immune responses, as well as immune
  721. memory [CITE?].
  722. After an infection is cleared, a subset of the naive CD4 T-cells that responded
  723. to that infection differentiate into memory CD4 T-cells, which are responsible
  724. for responding to the same pathogen in the future.
  725. Memory CD4 T-cells are functionally distinct, able to respond to an infection
  726. more quickly and without the co-stimulation requried by naive CD4 T-cells.
  727. However, the molecular mechanisms underlying this functional distinction
  728. are not well-understood.
  729. Epigenetic regulation via histone modification is thought to play an important
  730. role, but while many studies have looked at static snapshots of histone
  731. methylation in T-cells, few studies have looked at the dynamics of histone
  732. regulation after T-cell activation, nor the differences in histone methylation
  733. between naive and memory T-cells.
  734. H3K4me2, H3K4me3 and H3K27me3 are three histone marks thought to be major
  735. epigenetic regulators of gene expression.
  736. The goal of the present study is to investigate the role of these histone
  737. marks in CD4 T-cell activation kinetics and memory differentiation.
  738. In static snapshots, H3K4me2 and H3K4me3 are often observed in the promoters
  739. of highly transcribed genes, while H3K27me3 is more often observed in promoters
  740. of inactive genes with little to no transcription occurring.
  741. As a result, the two H3K4 marks have been characterized as
  742. \begin_inset Quotes eld
  743. \end_inset
  744. activating
  745. \begin_inset Quotes erd
  746. \end_inset
  747. marks, while H3K27me3 has been characterized as
  748. \begin_inset Quotes eld
  749. \end_inset
  750. deactivating
  751. \begin_inset Quotes erd
  752. \end_inset
  753. .
  754. Despite these characterizations, the actual causal relationship between
  755. these histone modifications and gene transcription is complex and likely
  756. involves positive and negative feedback loops between the two.
  757. \end_layout
  758. \begin_layout Standard
  759. In order to investigate the relationship between gene expression and these
  760. histone modifications in the context of naive and memory CD4 T-cell activation,
  761. a previously published data set of combined RNA-seq and ChIP-seq data was
  762. re-analyzed using up-to-date methods designed to address the specific analysis
  763. challenges posed by this data set.
  764. The data set contains naive and memory CD4 T-cell samples in a time course
  765. before and after activation.
  766. Like the original analysis, this analysis looks at the dynamics of these
  767. marks histone marks and compare them to gene expression dynamics at the
  768. same time points during activation, as well as comapre them between naive
  769. and memory cells, in hope of discovering evidence of new mechanistic details
  770. in the interplay between them.
  771. The original analysis of this data treated each gene promoter as a monolithinc
  772. unit and mostly assumed that ChIP-seq reads or peaks occuring anywhere
  773. within a promoter were equivalent, regardless of where they occurred relative
  774. to the gene structure.
  775. For an initial analysis of the data, this was a necessary simplifying assumptio
  776. n.
  777. The current analysis aims to relax this assumption, first by directly analyzing
  778. ChIP-seq peaks for differential modification, and second by taking a mor
  779. granular look at the ChIP-seq read coverage within promoter regions to
  780. ask whether the location of histone modifications relative to the gene's
  781. TSS is an important factor, as opposed to simple proximity.
  782. \end_layout
  783. \begin_layout Section
  784. Methods
  785. \end_layout
  786. \begin_layout Standard
  787. \begin_inset Flex TODO Note (inline)
  788. status open
  789. \begin_layout Plain Layout
  790. Look up some more details from the papers (e.g.
  791. activation method).
  792. \end_layout
  793. \end_inset
  794. \end_layout
  795. \begin_layout Standard
  796. A reproducible workflow was written to analyze the raw ChIP-seq and RNA-seq
  797. data from previous studies
  798. \begin_inset CommandInset citation
  799. LatexCommand cite
  800. key "gh-cd4-csaw,LaMere2016,LaMere2017"
  801. literal "true"
  802. \end_inset
  803. .
  804. Briefly, this data consists of RNA-seq and ChIP-seq from CD4 T-cells cultured
  805. from 4 donors.
  806. From each donor, naive and memory CD4 T-cells were isolated separately.
  807. Then cultures of both cells were activated [how?], and samples were taken
  808. at 4 time points: Day 0 (pre-activation), Day 1 (early activation), Day
  809. 5 (peak activation), and Day 14 (post-activation).
  810. For each combination of cell type and time point, RNA was isolated and
  811. sequenced, and ChIP-seq was performed for each of 3 histone marks: H3K4me2,
  812. H3K4me3, and H3K27me3.
  813. The ChIP-seq input DNA was also sequenced for each sample.
  814. The result was 32 samples for each assay.
  815. \end_layout
  816. \begin_layout Subsection
  817. RNA-seq differential expression analysis
  818. \end_layout
  819. \begin_layout Standard
  820. \begin_inset Note Note
  821. status collapsed
  822. \begin_layout Plain Layout
  823. \begin_inset Float figure
  824. wide false
  825. sideways false
  826. status open
  827. \begin_layout Plain Layout
  828. \align center
  829. \begin_inset Float figure
  830. wide false
  831. sideways false
  832. status collapsed
  833. \begin_layout Plain Layout
  834. \align center
  835. \begin_inset Graphics
  836. filename graphics/CD4-csaw/rnaseq-compare/ensmebl-vs-entrez-star-CROP.png
  837. lyxscale 25
  838. width 35col%
  839. groupId rna-comp-subfig
  840. \end_inset
  841. \end_layout
  842. \begin_layout Plain Layout
  843. \begin_inset Caption Standard
  844. \begin_layout Plain Layout
  845. STAR quantification, Entrez vs Ensembl gene annotation
  846. \end_layout
  847. \end_inset
  848. \end_layout
  849. \end_inset
  850. \begin_inset space \qquad{}
  851. \end_inset
  852. \begin_inset Float figure
  853. wide false
  854. sideways false
  855. status collapsed
  856. \begin_layout Plain Layout
  857. \align center
  858. \begin_inset Graphics
  859. filename graphics/CD4-csaw/rnaseq-compare/ensmebl-vs-entrez-shoal-CROP.png
  860. lyxscale 25
  861. width 35col%
  862. groupId rna-comp-subfig
  863. \end_inset
  864. \end_layout
  865. \begin_layout Plain Layout
  866. \begin_inset Caption Standard
  867. \begin_layout Plain Layout
  868. Salmon+Shoal quantification, Entrez vs Ensembl gene annotation
  869. \end_layout
  870. \end_inset
  871. \end_layout
  872. \end_inset
  873. \end_layout
  874. \begin_layout Plain Layout
  875. \align center
  876. \begin_inset Float figure
  877. wide false
  878. sideways false
  879. status collapsed
  880. \begin_layout Plain Layout
  881. \align center
  882. \begin_inset Graphics
  883. filename graphics/CD4-csaw/rnaseq-compare/star-vs-hisat2-CROP.png
  884. lyxscale 25
  885. width 35col%
  886. groupId rna-comp-subfig
  887. \end_inset
  888. \end_layout
  889. \begin_layout Plain Layout
  890. \begin_inset Caption Standard
  891. \begin_layout Plain Layout
  892. STAR vs HISAT2 quantification, Ensembl gene annotation
  893. \end_layout
  894. \end_inset
  895. \end_layout
  896. \end_inset
  897. \begin_inset space \qquad{}
  898. \end_inset
  899. \begin_inset Float figure
  900. wide false
  901. sideways false
  902. status collapsed
  903. \begin_layout Plain Layout
  904. \align center
  905. \begin_inset Graphics
  906. filename graphics/CD4-csaw/rnaseq-compare/star-vs-salmon-CROP.png
  907. lyxscale 25
  908. width 35col%
  909. groupId rna-comp-subfig
  910. \end_inset
  911. \end_layout
  912. \begin_layout Plain Layout
  913. \begin_inset Caption Standard
  914. \begin_layout Plain Layout
  915. Salomn vs STAR quantification, Ensembl gene annotation
  916. \end_layout
  917. \end_inset
  918. \end_layout
  919. \end_inset
  920. \end_layout
  921. \begin_layout Plain Layout
  922. \align center
  923. \begin_inset Float figure
  924. wide false
  925. sideways false
  926. status collapsed
  927. \begin_layout Plain Layout
  928. \align center
  929. \begin_inset Graphics
  930. filename graphics/CD4-csaw/rnaseq-compare/salmon-vs-kallisto-CROP.png
  931. lyxscale 25
  932. width 35col%
  933. groupId rna-comp-subfig
  934. \end_inset
  935. \end_layout
  936. \begin_layout Plain Layout
  937. \begin_inset Caption Standard
  938. \begin_layout Plain Layout
  939. Salmon vs Kallisto quantification, Ensembl gene annotation
  940. \end_layout
  941. \end_inset
  942. \end_layout
  943. \end_inset
  944. \begin_inset space \qquad{}
  945. \end_inset
  946. \begin_inset Float figure
  947. wide false
  948. sideways false
  949. status collapsed
  950. \begin_layout Plain Layout
  951. \align center
  952. \begin_inset Graphics
  953. filename graphics/CD4-csaw/rnaseq-compare/salmon-vs-shoal-CROP.png
  954. lyxscale 25
  955. width 35col%
  956. groupId rna-comp-subfig
  957. \end_inset
  958. \end_layout
  959. \begin_layout Plain Layout
  960. \begin_inset Caption Standard
  961. \begin_layout Plain Layout
  962. Salmon+Shoal vs Salmon alone, Ensembl gene annotation
  963. \end_layout
  964. \end_inset
  965. \end_layout
  966. \end_inset
  967. \end_layout
  968. \begin_layout Plain Layout
  969. \begin_inset Caption Standard
  970. \begin_layout Plain Layout
  971. \begin_inset CommandInset label
  972. LatexCommand label
  973. name "fig:RNA-norm-comp"
  974. \end_inset
  975. RNA-seq comparisons
  976. \end_layout
  977. \end_inset
  978. \end_layout
  979. \end_inset
  980. \end_layout
  981. \end_inset
  982. \end_layout
  983. \begin_layout Standard
  984. Sequence reads were retrieved from the Sequence Read Archive (SRA)
  985. \begin_inset CommandInset citation
  986. LatexCommand cite
  987. key "Leinonen2011"
  988. literal "false"
  989. \end_inset
  990. .
  991. Five different alignment and quantification methods were tested for the
  992. RNA-seq data
  993. \begin_inset CommandInset citation
  994. LatexCommand cite
  995. key "Dobin2012,Kim2019,Liao2014,Pimentel2016,Patro2017,gh-shoal,gh-hg38-ref"
  996. literal "false"
  997. \end_inset
  998. .
  999. Each quantification was tested with both Ensembl transcripts and UCSC known
  1000. gene annotations [CITE? Also which versions of each?].
  1001. Comparisons of downstream results from each combination of quantification
  1002. method and reference revealed that all quantifications gave broadly similar
  1003. results for most genes, so shoal with the Ensembl annotation was chosen
  1004. as the method theoretically most likely to partially mitigate some of the
  1005. batch effect in the data.
  1006. \end_layout
  1007. \begin_layout Standard
  1008. \begin_inset Float figure
  1009. wide false
  1010. sideways false
  1011. status collapsed
  1012. \begin_layout Plain Layout
  1013. \align center
  1014. \begin_inset Float figure
  1015. wide false
  1016. sideways false
  1017. status open
  1018. \begin_layout Plain Layout
  1019. \align center
  1020. \begin_inset Graphics
  1021. filename graphics/CD4-csaw/RNA-seq/PCA-no-batchsub-CROP.png
  1022. lyxscale 25
  1023. width 75col%
  1024. groupId rna-pca-subfig
  1025. \end_inset
  1026. \end_layout
  1027. \begin_layout Plain Layout
  1028. \begin_inset Caption Standard
  1029. \begin_layout Plain Layout
  1030. \series bold
  1031. \begin_inset CommandInset label
  1032. LatexCommand label
  1033. name "fig:RNA-PCA-no-batchsub"
  1034. \end_inset
  1035. Before batch correction
  1036. \end_layout
  1037. \end_inset
  1038. \end_layout
  1039. \end_inset
  1040. \end_layout
  1041. \begin_layout Plain Layout
  1042. \align center
  1043. \begin_inset Float figure
  1044. wide false
  1045. sideways false
  1046. status open
  1047. \begin_layout Plain Layout
  1048. \align center
  1049. \begin_inset Graphics
  1050. filename graphics/CD4-csaw/RNA-seq/PCA-combat-batchsub-CROP.png
  1051. lyxscale 25
  1052. width 75col%
  1053. groupId rna-pca-subfig
  1054. \end_inset
  1055. \end_layout
  1056. \begin_layout Plain Layout
  1057. \begin_inset Caption Standard
  1058. \begin_layout Plain Layout
  1059. \series bold
  1060. \begin_inset CommandInset label
  1061. LatexCommand label
  1062. name "fig:RNA-PCA-ComBat-batchsub"
  1063. \end_inset
  1064. After batch correction with ComBat
  1065. \end_layout
  1066. \end_inset
  1067. \end_layout
  1068. \end_inset
  1069. \end_layout
  1070. \begin_layout Plain Layout
  1071. \begin_inset Caption Standard
  1072. \begin_layout Plain Layout
  1073. \series bold
  1074. \begin_inset CommandInset label
  1075. LatexCommand label
  1076. name "fig:RNA-PCA"
  1077. \end_inset
  1078. PCoA plots of RNA-seq data showing effect of batch correction.
  1079. \end_layout
  1080. \end_inset
  1081. \end_layout
  1082. \end_inset
  1083. \end_layout
  1084. \begin_layout Standard
  1085. Due to an error in sample preparation, the RNA from the samples for days
  1086. 0 and 5 were sequenced using a different kit than those for days 1 and
  1087. 14.
  1088. This induced a substantial batch effect in the data due to differences
  1089. in sequencing biases between the two kits, and this batch effect is unfortunate
  1090. ly confounded with the time point variable (Figure
  1091. \begin_inset CommandInset ref
  1092. LatexCommand ref
  1093. reference "fig:RNA-PCA-no-batchsub"
  1094. plural "false"
  1095. caps "false"
  1096. noprefix "false"
  1097. \end_inset
  1098. ).
  1099. To do the best possible analysis with this data, this batch effect was
  1100. subtracted out from the data using ComBat
  1101. \begin_inset CommandInset citation
  1102. LatexCommand cite
  1103. key "Johnson2007"
  1104. literal "false"
  1105. \end_inset
  1106. , ignoring the time point variable due to the confounding with the batch
  1107. variable.
  1108. The result is a marked improvement, but the unavoidable counfounding with
  1109. time point means that certain real patterns of gene expression will be
  1110. indistinguishable from the batch effect and subtracted out as a result.
  1111. Specifically, any
  1112. \begin_inset Quotes eld
  1113. \end_inset
  1114. zig-zag
  1115. \begin_inset Quotes erd
  1116. \end_inset
  1117. pattern, such as a gene whose expression goes up on day 1, down on day
  1118. 5, and back up again on day 14, will be attenuated or eliminated entirely.
  1119. In the context of a T-cell activation time course, it is unlikely that
  1120. many genes of interest will follow such an expression pattern, so this
  1121. loss was deemed an acceptable cost for correcting the batch effect.
  1122. \end_layout
  1123. \begin_layout Standard
  1124. \begin_inset Float figure
  1125. wide false
  1126. sideways false
  1127. status collapsed
  1128. \begin_layout Plain Layout
  1129. \begin_inset Flex TODO Note (inline)
  1130. status open
  1131. \begin_layout Plain Layout
  1132. Just take the top row
  1133. \end_layout
  1134. \end_inset
  1135. \end_layout
  1136. \begin_layout Plain Layout
  1137. \align center
  1138. \begin_inset Graphics
  1139. filename graphics/CD4-csaw/RNA-seq/weights-vs-covars-CROP.png
  1140. lyxscale 25
  1141. width 100col%
  1142. groupId colwidth-raster
  1143. \end_inset
  1144. \end_layout
  1145. \begin_layout Plain Layout
  1146. \begin_inset Caption Standard
  1147. \begin_layout Plain Layout
  1148. \series bold
  1149. \begin_inset CommandInset label
  1150. LatexCommand label
  1151. name "fig:RNA-seq-weights-vs-covars"
  1152. \end_inset
  1153. RNA-seq sample weights, grouped by experimental and technical covariates.
  1154. \end_layout
  1155. \end_inset
  1156. \end_layout
  1157. \end_inset
  1158. \end_layout
  1159. \begin_layout Standard
  1160. However, removing the systematic component of the batch effect still leaves
  1161. the noise component.
  1162. The gene quantifications from the first batch are substantially noisier
  1163. than those in the second batch.
  1164. This analysis corrected for this by using limma's sample weighting method
  1165. to assign lower weights to the noisy samples of batch 1
  1166. \begin_inset CommandInset citation
  1167. LatexCommand cite
  1168. key "Ritchie2006,Liu2015"
  1169. literal "false"
  1170. \end_inset
  1171. .
  1172. The resulting analysis gives an accurate assessment of statistical significance
  1173. for all comparisons, which unfortuantely means a loss of statistical power
  1174. for comparisons involving samples in batch 1.
  1175. \end_layout
  1176. \begin_layout Standard
  1177. In any case, the RNA-seq counts were first normalized using trimmed mean
  1178. of M-values
  1179. \begin_inset CommandInset citation
  1180. LatexCommand cite
  1181. key "Robinson2010"
  1182. literal "false"
  1183. \end_inset
  1184. , converted to normalized logCPM with quality weights using voomWithQualityWeigh
  1185. ts
  1186. \begin_inset CommandInset citation
  1187. LatexCommand cite
  1188. key "Law2013,Liu2015"
  1189. literal "false"
  1190. \end_inset
  1191. , and batch-corrected at this point using ComBat.
  1192. A linear model was fit to the batch-corrected, quality-weighted data for
  1193. each gene using limma, and each gene was tested for differential expression
  1194. using limma's empirical Bayes moderated
  1195. \begin_inset Formula $t$
  1196. \end_inset
  1197. -test
  1198. \begin_inset CommandInset citation
  1199. LatexCommand cite
  1200. key "Smyth2005,Law2013,Phipson2013"
  1201. literal "false"
  1202. \end_inset
  1203. .
  1204. \end_layout
  1205. \begin_layout Subsection
  1206. ChIP-seq differential modification analysis
  1207. \end_layout
  1208. \begin_layout Standard
  1209. \begin_inset Float figure
  1210. wide false
  1211. sideways false
  1212. status collapsed
  1213. \begin_layout Plain Layout
  1214. \align center
  1215. \begin_inset Float figure
  1216. wide false
  1217. sideways false
  1218. status open
  1219. \begin_layout Plain Layout
  1220. \align center
  1221. \begin_inset Graphics
  1222. filename graphics/CD4-csaw/csaw/CCF-plots-noBL-PAGE2-CROP.pdf
  1223. lyxscale 50
  1224. height 40theight%
  1225. groupId ccf-subfig
  1226. \end_inset
  1227. \end_layout
  1228. \begin_layout Plain Layout
  1229. \begin_inset Caption Standard
  1230. \begin_layout Plain Layout
  1231. \series bold
  1232. \begin_inset CommandInset label
  1233. LatexCommand label
  1234. name "fig:CCF-without-blacklist"
  1235. \end_inset
  1236. Cross-correlation plots without removing blacklisted reads.
  1237. \series default
  1238. Without blacklisting, many artifactual peaks are visible in the cross-correlatio
  1239. ns of the ChIP-seq samples, and the peak at the true fragment size (147
  1240. \begin_inset space ~
  1241. \end_inset
  1242. bp) is frequently overshadowed by the artifactual peak at the read length
  1243. (100
  1244. \begin_inset space ~
  1245. \end_inset
  1246. bp).
  1247. \end_layout
  1248. \end_inset
  1249. \end_layout
  1250. \end_inset
  1251. \end_layout
  1252. \begin_layout Plain Layout
  1253. \align center
  1254. \begin_inset Float figure
  1255. wide false
  1256. sideways false
  1257. status open
  1258. \begin_layout Plain Layout
  1259. \align center
  1260. \begin_inset Graphics
  1261. filename graphics/CD4-csaw/csaw/CCF-plots-PAGE2-CROP.pdf
  1262. lyxscale 50
  1263. height 40theight%
  1264. groupId ccf-subfig
  1265. \end_inset
  1266. \end_layout
  1267. \begin_layout Plain Layout
  1268. \begin_inset Caption Standard
  1269. \begin_layout Plain Layout
  1270. \series bold
  1271. \begin_inset CommandInset label
  1272. LatexCommand label
  1273. name "fig:CCF-with-blacklist"
  1274. \end_inset
  1275. Cross-correlation plots with blacklisted reads removed.
  1276. \series default
  1277. After blacklisting, most ChIP-seq samples have clean-looking periodic cross-cor
  1278. relation plots, with the largest peak around 147
  1279. \begin_inset space ~
  1280. \end_inset
  1281. bp, the expected size for a fragment of DNA from a single nucleosome, and
  1282. little to no peak at the read length, 100
  1283. \begin_inset space ~
  1284. \end_inset
  1285. bp.
  1286. \end_layout
  1287. \end_inset
  1288. \end_layout
  1289. \end_inset
  1290. \end_layout
  1291. \begin_layout Plain Layout
  1292. \begin_inset Caption Standard
  1293. \begin_layout Plain Layout
  1294. \series bold
  1295. \begin_inset CommandInset label
  1296. LatexCommand label
  1297. name "fig:CCF-master"
  1298. \end_inset
  1299. Strand cross-correlation plots for ChIP-seq data, before and after blacklisting.
  1300. \end_layout
  1301. \end_inset
  1302. \end_layout
  1303. \end_inset
  1304. \end_layout
  1305. \begin_layout Standard
  1306. \begin_inset Note Note
  1307. status open
  1308. \begin_layout Plain Layout
  1309. \begin_inset Float figure
  1310. wide false
  1311. sideways false
  1312. status collapsed
  1313. \begin_layout Plain Layout
  1314. \align center
  1315. \begin_inset Graphics
  1316. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-sample-MAplot-bins-CROP.png
  1317. lyxscale 25
  1318. width 100col%
  1319. groupId colwidth-raster
  1320. \end_inset
  1321. \end_layout
  1322. \begin_layout Plain Layout
  1323. \begin_inset Caption Standard
  1324. \begin_layout Plain Layout
  1325. \series bold
  1326. \begin_inset CommandInset label
  1327. LatexCommand label
  1328. name "fig:MA-plot-bigbins"
  1329. \end_inset
  1330. MA plot of H3K4me2 read counts in 10kb bins for two arbitrary samples.
  1331. \end_layout
  1332. \end_inset
  1333. \end_layout
  1334. \end_inset
  1335. \end_layout
  1336. \end_inset
  1337. \end_layout
  1338. \begin_layout Standard
  1339. \begin_inset Flex TODO Note (inline)
  1340. status open
  1341. \begin_layout Plain Layout
  1342. Be consistent about use of
  1343. \begin_inset Quotes eld
  1344. \end_inset
  1345. differential binding
  1346. \begin_inset Quotes erd
  1347. \end_inset
  1348. vs
  1349. \begin_inset Quotes eld
  1350. \end_inset
  1351. differential modification
  1352. \begin_inset Quotes erd
  1353. \end_inset
  1354. throughout this chapter.
  1355. The latter is usually preferred.
  1356. \end_layout
  1357. \end_inset
  1358. \end_layout
  1359. \begin_layout Standard
  1360. Sequence reads were retrieved from SRA
  1361. \begin_inset CommandInset citation
  1362. LatexCommand cite
  1363. key "Leinonen2011"
  1364. literal "false"
  1365. \end_inset
  1366. .
  1367. ChIP-seq (and input) reads were aligned to GRCh38 genome assembly using
  1368. Bowtie 2
  1369. \begin_inset CommandInset citation
  1370. LatexCommand cite
  1371. key "Langmead2012,Schneider2017,gh-hg38-ref"
  1372. literal "false"
  1373. \end_inset
  1374. .
  1375. Artifact regions were annotated using a custom implementation of the GreyListCh
  1376. IP algorithm, and these
  1377. \begin_inset Quotes eld
  1378. \end_inset
  1379. greylists
  1380. \begin_inset Quotes erd
  1381. \end_inset
  1382. were merged with the published ENCODE blacklists
  1383. \begin_inset CommandInset citation
  1384. LatexCommand cite
  1385. key "greylistchip,Amemiya2019,Dunham2012,gh-cd4-csaw"
  1386. literal "false"
  1387. \end_inset
  1388. .
  1389. Any read or called peak overlapping one of these regions was regarded as
  1390. artifactual and excluded from downstream analyses.
  1391. Figure
  1392. \begin_inset CommandInset ref
  1393. LatexCommand ref
  1394. reference "fig:CCF-master"
  1395. plural "false"
  1396. caps "false"
  1397. noprefix "false"
  1398. \end_inset
  1399. shows the improvement after blacklisting in the strand cross-correlation
  1400. plots, a common quality control plot for ChIP-seq data.
  1401. Peaks were called using epic, an implementation of the SICER algorithm
  1402. \begin_inset CommandInset citation
  1403. LatexCommand cite
  1404. key "Zang2009,gh-epic"
  1405. literal "false"
  1406. \end_inset
  1407. .
  1408. Peaks were also called separately using MACS, but MACS was determined to
  1409. be a poor fit for the data, and these peak calls are not used in any further
  1410. analyses
  1411. \begin_inset CommandInset citation
  1412. LatexCommand cite
  1413. key "Zhang2008"
  1414. literal "false"
  1415. \end_inset
  1416. .
  1417. Consensus peaks were determined by applying the irreproducible discovery
  1418. rate (IDR) framework
  1419. \begin_inset CommandInset citation
  1420. LatexCommand cite
  1421. key "Li2006,gh-idr"
  1422. literal "false"
  1423. \end_inset
  1424. to find peaks consistently called in the same locations across all 4 donors.
  1425. \end_layout
  1426. \begin_layout Standard
  1427. Promoters were defined by computing the distance from each annotated TSS
  1428. to the nearest called peak and examining the distribution of distances,
  1429. observing that peaks for each histone mark were enriched within a certain
  1430. distance of the TSS.
  1431. For H3K4me2 and H3K4me3, this distance was about 1
  1432. \begin_inset space ~
  1433. \end_inset
  1434. kb, while for H3K27me3 it was 2.5
  1435. \begin_inset space ~
  1436. \end_inset
  1437. kb.
  1438. These distances were used as an
  1439. \begin_inset Quotes eld
  1440. \end_inset
  1441. effective promoter radius
  1442. \begin_inset Quotes erd
  1443. \end_inset
  1444. for each mark.
  1445. The promoter region for each gene was defined as the region of the genome
  1446. within this distance upstream or downstream of the gene's annotated TSS.
  1447. For genes with multiple annotated TSSs, a promoter region was defined for
  1448. each TSS individually, and any promoters that overlapped (due to multiple
  1449. TSSs being closer than 2 times the radius) were merged into one large promoter.
  1450. Thus, some genes had multiple promoters defined, which were each analyzed
  1451. separately for differential modification.
  1452. \end_layout
  1453. \begin_layout Standard
  1454. \begin_inset Float figure
  1455. wide false
  1456. sideways false
  1457. status collapsed
  1458. \begin_layout Plain Layout
  1459. \begin_inset Float figure
  1460. wide false
  1461. sideways false
  1462. status collapsed
  1463. \begin_layout Plain Layout
  1464. \align center
  1465. \begin_inset Graphics
  1466. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-PCA-raw-CROP.png
  1467. lyxscale 25
  1468. width 45col%
  1469. groupId pcoa-subfig
  1470. \end_inset
  1471. \end_layout
  1472. \begin_layout Plain Layout
  1473. \begin_inset Caption Standard
  1474. \begin_layout Plain Layout
  1475. \series bold
  1476. \begin_inset CommandInset label
  1477. LatexCommand label
  1478. name "fig:PCoA-H3K4me2-bad"
  1479. \end_inset
  1480. H3K4me2, no correction
  1481. \end_layout
  1482. \end_inset
  1483. \end_layout
  1484. \end_inset
  1485. \begin_inset space \hfill{}
  1486. \end_inset
  1487. \begin_inset Float figure
  1488. wide false
  1489. sideways false
  1490. status collapsed
  1491. \begin_layout Plain Layout
  1492. \align center
  1493. \begin_inset Graphics
  1494. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-PCA-SVsub-CROP.png
  1495. lyxscale 25
  1496. width 45col%
  1497. groupId pcoa-subfig
  1498. \end_inset
  1499. \end_layout
  1500. \begin_layout Plain Layout
  1501. \begin_inset Caption Standard
  1502. \begin_layout Plain Layout
  1503. \series bold
  1504. \begin_inset CommandInset label
  1505. LatexCommand label
  1506. name "fig:PCoA-H3K4me2-good"
  1507. \end_inset
  1508. H3K4me2, SVs subtracted
  1509. \end_layout
  1510. \end_inset
  1511. \end_layout
  1512. \end_inset
  1513. \end_layout
  1514. \begin_layout Plain Layout
  1515. \begin_inset Float figure
  1516. wide false
  1517. sideways false
  1518. status collapsed
  1519. \begin_layout Plain Layout
  1520. \align center
  1521. \begin_inset Graphics
  1522. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-PCA-raw-CROP.png
  1523. lyxscale 25
  1524. width 45col%
  1525. groupId pcoa-subfig
  1526. \end_inset
  1527. \end_layout
  1528. \begin_layout Plain Layout
  1529. \begin_inset Caption Standard
  1530. \begin_layout Plain Layout
  1531. \series bold
  1532. \begin_inset CommandInset label
  1533. LatexCommand label
  1534. name "fig:PCoA-H3K4me3-bad"
  1535. \end_inset
  1536. H3K4me3, no correction
  1537. \end_layout
  1538. \end_inset
  1539. \end_layout
  1540. \end_inset
  1541. \begin_inset space \hfill{}
  1542. \end_inset
  1543. \begin_inset Float figure
  1544. wide false
  1545. sideways false
  1546. status collapsed
  1547. \begin_layout Plain Layout
  1548. \align center
  1549. \begin_inset Graphics
  1550. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-PCA-SVsub-CROP.png
  1551. lyxscale 25
  1552. width 45col%
  1553. groupId pcoa-subfig
  1554. \end_inset
  1555. \end_layout
  1556. \begin_layout Plain Layout
  1557. \begin_inset Caption Standard
  1558. \begin_layout Plain Layout
  1559. \series bold
  1560. \begin_inset CommandInset label
  1561. LatexCommand label
  1562. name "fig:PCoA-H3K4me3-good"
  1563. \end_inset
  1564. H3K4me3, SVs subtracted
  1565. \end_layout
  1566. \end_inset
  1567. \end_layout
  1568. \end_inset
  1569. \end_layout
  1570. \begin_layout Plain Layout
  1571. \begin_inset Float figure
  1572. wide false
  1573. sideways false
  1574. status collapsed
  1575. \begin_layout Plain Layout
  1576. \align center
  1577. \begin_inset Graphics
  1578. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-PCA-raw-CROP.png
  1579. lyxscale 25
  1580. width 45col%
  1581. groupId pcoa-subfig
  1582. \end_inset
  1583. \end_layout
  1584. \begin_layout Plain Layout
  1585. \begin_inset Caption Standard
  1586. \begin_layout Plain Layout
  1587. \series bold
  1588. \begin_inset CommandInset label
  1589. LatexCommand label
  1590. name "fig:PCoA-H3K27me3-bad"
  1591. \end_inset
  1592. H3K27me3, no correction
  1593. \end_layout
  1594. \end_inset
  1595. \end_layout
  1596. \end_inset
  1597. \begin_inset space \hfill{}
  1598. \end_inset
  1599. \begin_inset Float figure
  1600. wide false
  1601. sideways false
  1602. status collapsed
  1603. \begin_layout Plain Layout
  1604. \align center
  1605. \begin_inset Graphics
  1606. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-PCA-SVsub-CROP.png
  1607. lyxscale 25
  1608. width 45col%
  1609. groupId pcoa-subfig
  1610. \end_inset
  1611. \end_layout
  1612. \begin_layout Plain Layout
  1613. \begin_inset Caption Standard
  1614. \begin_layout Plain Layout
  1615. \series bold
  1616. \begin_inset CommandInset label
  1617. LatexCommand label
  1618. name "fig:PCoA-H3K27me3-good"
  1619. \end_inset
  1620. H3K27me3, SVs subtracted
  1621. \end_layout
  1622. \end_inset
  1623. \end_layout
  1624. \end_inset
  1625. \end_layout
  1626. \begin_layout Plain Layout
  1627. \begin_inset Caption Standard
  1628. \begin_layout Plain Layout
  1629. \series bold
  1630. \begin_inset CommandInset label
  1631. LatexCommand label
  1632. name "fig:PCoA-ChIP"
  1633. \end_inset
  1634. PCoA plots of ChIP-seq sliding window data, before and after subtracting
  1635. surrogate variables (SVs).
  1636. \end_layout
  1637. \end_inset
  1638. \end_layout
  1639. \end_inset
  1640. \end_layout
  1641. \begin_layout Standard
  1642. Reads in promoters, peaks, and sliding windows across the genome were counted
  1643. and normalized using csaw and analyzed for differential modification using
  1644. edgeR
  1645. \begin_inset CommandInset citation
  1646. LatexCommand cite
  1647. key "Lun2014,Lun2015a,Lund2012,Phipson2016"
  1648. literal "false"
  1649. \end_inset
  1650. .
  1651. Unobserved confounding factors in the ChIP-seq data were corrected using
  1652. SVA
  1653. \begin_inset CommandInset citation
  1654. LatexCommand cite
  1655. key "Leek2007,Leek2014"
  1656. literal "false"
  1657. \end_inset
  1658. .
  1659. Principal coordinate plots of the promoter count data for each histone
  1660. mark before and after subtracting surrogate variable effects are shown
  1661. in Figure
  1662. \begin_inset CommandInset ref
  1663. LatexCommand ref
  1664. reference "fig:PCoA-ChIP"
  1665. plural "false"
  1666. caps "false"
  1667. noprefix "false"
  1668. \end_inset
  1669. .
  1670. \end_layout
  1671. \begin_layout Standard
  1672. To investigate whether the location of a peak within the promoter region
  1673. was important,
  1674. \begin_inset Quotes eld
  1675. \end_inset
  1676. relative coverage profiles
  1677. \begin_inset Quotes erd
  1678. \end_inset
  1679. were generated.
  1680. First, 500-bp sliding windows were tiled around each annotated TSS: one
  1681. window centered on the TSS itself, and 10 windows each upstream and downstream,
  1682. thus covering a 10.5-kb region centered on the TSS with 21 windows.
  1683. Reads in each window for each TSS were counted in each sample, and the
  1684. counts were normalized and converted to log CPM as in the differential
  1685. modification analysis.
  1686. Then, the logCPM values within each promoter were normalized to an average
  1687. of zero, such that each window's normalized abundance now represents the
  1688. relative read depth of that window compared to all other windows in the
  1689. same promoter.
  1690. The normalized abundance values for each window in a promoter are collectively
  1691. referred to as that promoter's
  1692. \begin_inset Quotes eld
  1693. \end_inset
  1694. relative coverage profile
  1695. \begin_inset Quotes erd
  1696. \end_inset
  1697. .
  1698. \end_layout
  1699. \begin_layout Subsection
  1700. MOFA recovers biologically relevant variation from blind analysis by correlating
  1701. across datasets
  1702. \end_layout
  1703. \begin_layout Standard
  1704. \begin_inset ERT
  1705. status open
  1706. \begin_layout Plain Layout
  1707. \backslash
  1708. afterpage{
  1709. \end_layout
  1710. \begin_layout Plain Layout
  1711. \backslash
  1712. begin{landscape}
  1713. \end_layout
  1714. \end_inset
  1715. \end_layout
  1716. \begin_layout Standard
  1717. \begin_inset Float figure
  1718. wide false
  1719. sideways false
  1720. status open
  1721. \begin_layout Plain Layout
  1722. \begin_inset Float figure
  1723. wide false
  1724. sideways false
  1725. status open
  1726. \begin_layout Plain Layout
  1727. \align center
  1728. \begin_inset Graphics
  1729. filename graphics/CD4-csaw/MOFA-varExplaiend-matrix-CROP.png
  1730. lyxscale 25
  1731. width 45col%
  1732. groupId mofa-subfig
  1733. \end_inset
  1734. \end_layout
  1735. \begin_layout Plain Layout
  1736. \begin_inset Caption Standard
  1737. \begin_layout Plain Layout
  1738. \series bold
  1739. \begin_inset CommandInset label
  1740. LatexCommand label
  1741. name "fig:mofa-varexplained"
  1742. \end_inset
  1743. Variance explained in each data set by each latent factor estimated by MOFA.
  1744. \series default
  1745. For each latent factor (LF) learned by MOFA, the variance explained by
  1746. that factor in each data set (
  1747. \begin_inset Quotes eld
  1748. \end_inset
  1749. view
  1750. \begin_inset Quotes erd
  1751. \end_inset
  1752. ) is shown by the shading of the cells in the lower section.
  1753. The upper section shows the total fraction of each data set's variance
  1754. that is explained by all LFs combined.
  1755. \end_layout
  1756. \end_inset
  1757. \end_layout
  1758. \end_inset
  1759. \begin_inset space \hfill{}
  1760. \end_inset
  1761. \begin_inset Float figure
  1762. wide false
  1763. sideways false
  1764. status open
  1765. \begin_layout Plain Layout
  1766. \align center
  1767. \begin_inset Graphics
  1768. filename graphics/CD4-csaw/MOFA-LF-scatter-CROP.png
  1769. lyxscale 25
  1770. width 45col%
  1771. groupId mofa-subfig
  1772. \end_inset
  1773. \end_layout
  1774. \begin_layout Plain Layout
  1775. \begin_inset Caption Standard
  1776. \begin_layout Plain Layout
  1777. \series bold
  1778. \begin_inset CommandInset label
  1779. LatexCommand label
  1780. name "fig:mofa-lf-scatter"
  1781. \end_inset
  1782. Scatter plots of specific pairs of MOFA latent factors.
  1783. \series default
  1784. LFs 1, 4, and 5 explain substantial variation in all data sets, so they
  1785. are plotted against each other in order to reveal patterns of variation
  1786. that are shared across all data sets.
  1787. \end_layout
  1788. \end_inset
  1789. \end_layout
  1790. \end_inset
  1791. \end_layout
  1792. \begin_layout Plain Layout
  1793. \begin_inset Caption Standard
  1794. \begin_layout Plain Layout
  1795. \series bold
  1796. \begin_inset CommandInset label
  1797. LatexCommand label
  1798. name "fig:MOFA-master"
  1799. \end_inset
  1800. MOFA latent factors separate technical confounders from
  1801. \end_layout
  1802. \end_inset
  1803. \end_layout
  1804. \end_inset
  1805. \end_layout
  1806. \begin_layout Standard
  1807. \begin_inset ERT
  1808. status open
  1809. \begin_layout Plain Layout
  1810. \backslash
  1811. end{landscape}
  1812. \end_layout
  1813. \begin_layout Plain Layout
  1814. }
  1815. \end_layout
  1816. \end_inset
  1817. \end_layout
  1818. \begin_layout Standard
  1819. MOFA was run on all the ChIP-seq windows overlapping consensus peaks for
  1820. each histone mark, as well as the RNA-seq data, in order to identify patterns
  1821. of coordinated variation across all data sets
  1822. \begin_inset CommandInset citation
  1823. LatexCommand cite
  1824. key "Argelaguet2018"
  1825. literal "false"
  1826. \end_inset
  1827. .
  1828. The results are summarized in Figure
  1829. \begin_inset CommandInset ref
  1830. LatexCommand ref
  1831. reference "fig:MOFA-master"
  1832. plural "false"
  1833. caps "false"
  1834. noprefix "false"
  1835. \end_inset
  1836. .
  1837. Latent factors 1, 4, and 5 were determined to explain the most variation
  1838. consistently across all data sets (Fgure
  1839. \begin_inset CommandInset ref
  1840. LatexCommand ref
  1841. reference "fig:mofa-varexplained"
  1842. plural "false"
  1843. caps "false"
  1844. noprefix "false"
  1845. \end_inset
  1846. ), and scatter plots of these factors show that they also correlate best
  1847. with the experimental factors (Figure
  1848. \begin_inset CommandInset ref
  1849. LatexCommand ref
  1850. reference "fig:mofa-lf-scatter"
  1851. plural "false"
  1852. caps "false"
  1853. noprefix "false"
  1854. \end_inset
  1855. ).
  1856. Latent factor 2 captures the batch effect in the RNA-seq data.
  1857. Removing the effect of LF2 using MOFA theoretically yields a batch correction
  1858. that does not depend on knowing the experimental factors.
  1859. When this was attempted, the resulting batch correction was comparable
  1860. to ComBat (see Figure
  1861. \begin_inset CommandInset ref
  1862. LatexCommand ref
  1863. reference "fig:RNA-PCA-ComBat-batchsub"
  1864. plural "false"
  1865. caps "false"
  1866. noprefix "false"
  1867. \end_inset
  1868. ), indicating that the ComBat-based batch correction has little room for
  1869. improvement given the problems with the data set.
  1870. \end_layout
  1871. \begin_layout Standard
  1872. \begin_inset Note Note
  1873. status collapsed
  1874. \begin_layout Plain Layout
  1875. \begin_inset Float figure
  1876. wide false
  1877. sideways false
  1878. status open
  1879. \begin_layout Plain Layout
  1880. \align center
  1881. \begin_inset Graphics
  1882. filename graphics/CD4-csaw/MOFA-batch-correct-CROP.png
  1883. lyxscale 25
  1884. width 100col%
  1885. groupId colwidth-raster
  1886. \end_inset
  1887. \end_layout
  1888. \begin_layout Plain Layout
  1889. \begin_inset Caption Standard
  1890. \begin_layout Plain Layout
  1891. \series bold
  1892. \begin_inset CommandInset label
  1893. LatexCommand label
  1894. name "fig:mofa-batchsub"
  1895. \end_inset
  1896. Result of RNA-seq batch-correction using MOFA latent factors
  1897. \end_layout
  1898. \end_inset
  1899. \end_layout
  1900. \end_inset
  1901. \end_layout
  1902. \end_inset
  1903. \end_layout
  1904. \begin_layout Section
  1905. Results
  1906. \end_layout
  1907. \begin_layout Standard
  1908. \begin_inset Flex TODO Note (inline)
  1909. status open
  1910. \begin_layout Plain Layout
  1911. Focus on what hypotheses were tested, then select figures that show how
  1912. those hypotheses were tested, even if the result is a negative.
  1913. Not every interesting result needs to be in here.
  1914. Chapter should tell a story.
  1915. \end_layout
  1916. \end_inset
  1917. \end_layout
  1918. \begin_layout Standard
  1919. \begin_inset Flex TODO Note (inline)
  1920. status open
  1921. \begin_layout Plain Layout
  1922. Maybe reorder these sections to do RNA-seq, then ChIP-seq, then combined
  1923. analyses?
  1924. \end_layout
  1925. \end_inset
  1926. \end_layout
  1927. \begin_layout Subsection
  1928. Interpretation of RNA-seq analysis is limited by a major confounding factor
  1929. \end_layout
  1930. \begin_layout Standard
  1931. \begin_inset Float table
  1932. wide false
  1933. sideways false
  1934. status collapsed
  1935. \begin_layout Plain Layout
  1936. \align center
  1937. \begin_inset Tabular
  1938. <lyxtabular version="3" rows="11" columns="3">
  1939. <features tabularvalignment="middle">
  1940. <column alignment="center" valignment="top">
  1941. <column alignment="center" valignment="top">
  1942. <column alignment="center" valignment="top">
  1943. <row>
  1944. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1945. \begin_inset Text
  1946. \begin_layout Plain Layout
  1947. Test
  1948. \end_layout
  1949. \end_inset
  1950. </cell>
  1951. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1952. \begin_inset Text
  1953. \begin_layout Plain Layout
  1954. Est.
  1955. non-null
  1956. \end_layout
  1957. \end_inset
  1958. </cell>
  1959. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  1960. \begin_inset Text
  1961. \begin_layout Plain Layout
  1962. \begin_inset Formula $\mathrm{FDR}\le10\%$
  1963. \end_inset
  1964. \end_layout
  1965. \end_inset
  1966. </cell>
  1967. </row>
  1968. <row>
  1969. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1970. \begin_inset Text
  1971. \begin_layout Plain Layout
  1972. Naive Day 0 vs Day 1
  1973. \end_layout
  1974. \end_inset
  1975. </cell>
  1976. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1977. \begin_inset Text
  1978. \begin_layout Plain Layout
  1979. 5992
  1980. \end_layout
  1981. \end_inset
  1982. </cell>
  1983. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  1984. \begin_inset Text
  1985. \begin_layout Plain Layout
  1986. 1613
  1987. \end_layout
  1988. \end_inset
  1989. </cell>
  1990. </row>
  1991. <row>
  1992. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1993. \begin_inset Text
  1994. \begin_layout Plain Layout
  1995. Naive Day 0 vs Day 5
  1996. \end_layout
  1997. \end_inset
  1998. </cell>
  1999. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2000. \begin_inset Text
  2001. \begin_layout Plain Layout
  2002. 3038
  2003. \end_layout
  2004. \end_inset
  2005. </cell>
  2006. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2007. \begin_inset Text
  2008. \begin_layout Plain Layout
  2009. 32
  2010. \end_layout
  2011. \end_inset
  2012. </cell>
  2013. </row>
  2014. <row>
  2015. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2016. \begin_inset Text
  2017. \begin_layout Plain Layout
  2018. Naive Day 0 vs Day 14
  2019. \end_layout
  2020. \end_inset
  2021. </cell>
  2022. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2023. \begin_inset Text
  2024. \begin_layout Plain Layout
  2025. 1870
  2026. \end_layout
  2027. \end_inset
  2028. </cell>
  2029. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2030. \begin_inset Text
  2031. \begin_layout Plain Layout
  2032. 190
  2033. \end_layout
  2034. \end_inset
  2035. </cell>
  2036. </row>
  2037. <row>
  2038. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2039. \begin_inset Text
  2040. \begin_layout Plain Layout
  2041. Memory Day 0 vs Day 1
  2042. \end_layout
  2043. \end_inset
  2044. </cell>
  2045. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2046. \begin_inset Text
  2047. \begin_layout Plain Layout
  2048. 3195
  2049. \end_layout
  2050. \end_inset
  2051. </cell>
  2052. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2053. \begin_inset Text
  2054. \begin_layout Plain Layout
  2055. 411
  2056. \end_layout
  2057. \end_inset
  2058. </cell>
  2059. </row>
  2060. <row>
  2061. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2062. \begin_inset Text
  2063. \begin_layout Plain Layout
  2064. Memory Day 0 vs Day 5
  2065. \end_layout
  2066. \end_inset
  2067. </cell>
  2068. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2069. \begin_inset Text
  2070. \begin_layout Plain Layout
  2071. 2688
  2072. \end_layout
  2073. \end_inset
  2074. </cell>
  2075. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2076. \begin_inset Text
  2077. \begin_layout Plain Layout
  2078. 18
  2079. \end_layout
  2080. \end_inset
  2081. </cell>
  2082. </row>
  2083. <row>
  2084. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2085. \begin_inset Text
  2086. \begin_layout Plain Layout
  2087. Memory Day 0 vs Day 14
  2088. \end_layout
  2089. \end_inset
  2090. </cell>
  2091. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2092. \begin_inset Text
  2093. \begin_layout Plain Layout
  2094. 1911
  2095. \end_layout
  2096. \end_inset
  2097. </cell>
  2098. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2099. \begin_inset Text
  2100. \begin_layout Plain Layout
  2101. 227
  2102. \end_layout
  2103. \end_inset
  2104. </cell>
  2105. </row>
  2106. <row>
  2107. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2108. \begin_inset Text
  2109. \begin_layout Plain Layout
  2110. Day 0 Naive vs Memory
  2111. \end_layout
  2112. \end_inset
  2113. </cell>
  2114. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2115. \begin_inset Text
  2116. \begin_layout Plain Layout
  2117. 0
  2118. \end_layout
  2119. \end_inset
  2120. </cell>
  2121. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2122. \begin_inset Text
  2123. \begin_layout Plain Layout
  2124. 2
  2125. \end_layout
  2126. \end_inset
  2127. </cell>
  2128. </row>
  2129. <row>
  2130. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2131. \begin_inset Text
  2132. \begin_layout Plain Layout
  2133. Day 1 Naive vs Memory
  2134. \end_layout
  2135. \end_inset
  2136. </cell>
  2137. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2138. \begin_inset Text
  2139. \begin_layout Plain Layout
  2140. 9167
  2141. \end_layout
  2142. \end_inset
  2143. </cell>
  2144. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2145. \begin_inset Text
  2146. \begin_layout Plain Layout
  2147. 5532
  2148. \end_layout
  2149. \end_inset
  2150. </cell>
  2151. </row>
  2152. <row>
  2153. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2154. \begin_inset Text
  2155. \begin_layout Plain Layout
  2156. Day 5 Naive vs Memory
  2157. \end_layout
  2158. \end_inset
  2159. </cell>
  2160. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2161. \begin_inset Text
  2162. \begin_layout Plain Layout
  2163. 0
  2164. \end_layout
  2165. \end_inset
  2166. </cell>
  2167. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2168. \begin_inset Text
  2169. \begin_layout Plain Layout
  2170. 0
  2171. \end_layout
  2172. \end_inset
  2173. </cell>
  2174. </row>
  2175. <row>
  2176. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2177. \begin_inset Text
  2178. \begin_layout Plain Layout
  2179. Day 14 Naive vs Memory
  2180. \end_layout
  2181. \end_inset
  2182. </cell>
  2183. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2184. \begin_inset Text
  2185. \begin_layout Plain Layout
  2186. 6446
  2187. \end_layout
  2188. \end_inset
  2189. </cell>
  2190. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2191. \begin_inset Text
  2192. \begin_layout Plain Layout
  2193. 2319
  2194. \end_layout
  2195. \end_inset
  2196. </cell>
  2197. </row>
  2198. </lyxtabular>
  2199. \end_inset
  2200. \end_layout
  2201. \begin_layout Plain Layout
  2202. \begin_inset Caption Standard
  2203. \begin_layout Plain Layout
  2204. \series bold
  2205. \begin_inset CommandInset label
  2206. LatexCommand label
  2207. name "tab:Estimated-and-detected-rnaseq"
  2208. \end_inset
  2209. Estimated and detected differentially expressed genes.
  2210. \series default
  2211. \begin_inset Quotes eld
  2212. \end_inset
  2213. Test
  2214. \begin_inset Quotes erd
  2215. \end_inset
  2216. : Which sample groups were compared;
  2217. \begin_inset Quotes eld
  2218. \end_inset
  2219. Est non-null
  2220. \begin_inset Quotes erd
  2221. \end_inset
  2222. : Estimated number of differentially expressed genes, using the method of
  2223. averaging local FDR values
  2224. \begin_inset CommandInset citation
  2225. LatexCommand cite
  2226. key "Phipson2013Thesis"
  2227. literal "false"
  2228. \end_inset
  2229. ;
  2230. \begin_inset Quotes eld
  2231. \end_inset
  2232. \begin_inset Formula $\mathrm{FDR}\le10\%$
  2233. \end_inset
  2234. \begin_inset Quotes erd
  2235. \end_inset
  2236. : Number of significantly differentially expressed genes at an FDR threshold
  2237. of 10%.
  2238. The total number of genes tested was 16707.
  2239. \end_layout
  2240. \end_inset
  2241. \end_layout
  2242. \end_inset
  2243. \end_layout
  2244. \begin_layout Standard
  2245. \begin_inset Float figure
  2246. wide false
  2247. sideways false
  2248. status collapsed
  2249. \begin_layout Plain Layout
  2250. \align center
  2251. \begin_inset Graphics
  2252. filename graphics/CD4-csaw/RNA-seq/PCA-final-12-CROP.png
  2253. lyxscale 25
  2254. width 100col%
  2255. groupId colwidth-raster
  2256. \end_inset
  2257. \end_layout
  2258. \begin_layout Plain Layout
  2259. \begin_inset Caption Standard
  2260. \begin_layout Plain Layout
  2261. \series bold
  2262. \begin_inset CommandInset label
  2263. LatexCommand label
  2264. name "fig:rna-pca-final"
  2265. \end_inset
  2266. PCoA plot of RNA-seq samples after ComBat batch correction.
  2267. \series default
  2268. Each point represents an individual sample.
  2269. Samples with the same combination of cell type and time point are encircled
  2270. with a shaded region to aid in visual identification of the sample groups.
  2271. Samples with of same cell type from the same donor are connected by lines
  2272. to indicate the
  2273. \begin_inset Quotes eld
  2274. \end_inset
  2275. trajectory
  2276. \begin_inset Quotes erd
  2277. \end_inset
  2278. of each donor's cells over time in PCoA space.
  2279. \end_layout
  2280. \end_inset
  2281. \end_layout
  2282. \begin_layout Plain Layout
  2283. \end_layout
  2284. \end_inset
  2285. \end_layout
  2286. \begin_layout Standard
  2287. Genes called present in the RNA-seq data were tested for differential expression
  2288. between all time points and cell types.
  2289. The counts of differentially expressed genes are shown in Table
  2290. \begin_inset CommandInset ref
  2291. LatexCommand ref
  2292. reference "tab:Estimated-and-detected-rnaseq"
  2293. plural "false"
  2294. caps "false"
  2295. noprefix "false"
  2296. \end_inset
  2297. .
  2298. Notably, all the results for Day 0 and Day 5 have substantially fewer genes
  2299. called differentially expressed than any of the results for other time
  2300. points.
  2301. This is an unfortunate result of the difference in sample quality between
  2302. the two batches of RNA-seq data.
  2303. All the samples in Batch 1, which includes all the samples from Days 0
  2304. and 5, have substantially more variability than the samples in Batch 2,
  2305. which includes the other time points.
  2306. This is reflected in the substantially higher weights assigned to Batch
  2307. 2 (Figure
  2308. \begin_inset CommandInset ref
  2309. LatexCommand ref
  2310. reference "fig:RNA-seq-weights-vs-covars"
  2311. plural "false"
  2312. caps "false"
  2313. noprefix "false"
  2314. \end_inset
  2315. ).
  2316. The batch effect has both a systematic component and a random noise component.
  2317. While the systematic component was subtracted out using ComBat (Figure
  2318. \begin_inset CommandInset ref
  2319. LatexCommand ref
  2320. reference "fig:RNA-PCA"
  2321. plural "false"
  2322. caps "false"
  2323. noprefix "false"
  2324. \end_inset
  2325. ), no such correction is possible for the noise component: Batch 1 simply
  2326. has substantially more random noise in it, which reduces the statistical
  2327. power for any differential expression tests involving samples in that batch.
  2328. \end_layout
  2329. \begin_layout Standard
  2330. Despite the difficulty in detecting specific differentially expressed genes,
  2331. there is still evidence that differential expression is present for these
  2332. time points.
  2333. In Figure
  2334. \begin_inset CommandInset ref
  2335. LatexCommand ref
  2336. reference "fig:rna-pca-final"
  2337. plural "false"
  2338. caps "false"
  2339. noprefix "false"
  2340. \end_inset
  2341. , there is a clear separation between naive and memory samples at Day 0,
  2342. despite the fact that only 2 genes were significantly differentially expressed
  2343. for this comparison.
  2344. Similarly, the small numbers of genes detected for the Day 0 vs Day 5 compariso
  2345. ns do not reflect the large separation between these time points in Figure
  2346. \begin_inset CommandInset ref
  2347. LatexCommand ref
  2348. reference "fig:rna-pca-final"
  2349. plural "false"
  2350. caps "false"
  2351. noprefix "false"
  2352. \end_inset
  2353. .
  2354. In addition, the MOFA latent factor plots in Figure
  2355. \begin_inset CommandInset ref
  2356. LatexCommand ref
  2357. reference "fig:mofa-lf-scatter"
  2358. plural "false"
  2359. caps "false"
  2360. noprefix "false"
  2361. \end_inset
  2362. .
  2363. This suggests that there is indeed a differential expression signal present
  2364. in the data for these comparisons, but the large variability in the Batch
  2365. 1 samples obfuscates this signal at the individual gene level.
  2366. As a result, it is impossible to make any meaningful statements about the
  2367. \begin_inset Quotes eld
  2368. \end_inset
  2369. size
  2370. \begin_inset Quotes erd
  2371. \end_inset
  2372. of the gene signature for any time point, since the number of significant
  2373. genes as well as the estimated number of differentially expressed genes
  2374. depends so strongly on the variations in sample quality in addition to
  2375. the size of the differential expression signal in the data.
  2376. Gene-set enrichment analyses are similarly impractical.
  2377. However, analyses looking at genome-wide patterns of expression are still
  2378. practical.
  2379. \end_layout
  2380. \begin_layout Subsection
  2381. H3K4 and H3K27 methylation occur in broad regions and are enriched near
  2382. promoters
  2383. \end_layout
  2384. \begin_layout Standard
  2385. \begin_inset Float table
  2386. wide false
  2387. sideways false
  2388. status collapsed
  2389. \begin_layout Plain Layout
  2390. \align center
  2391. \begin_inset Flex TODO Note (inline)
  2392. status open
  2393. \begin_layout Plain Layout
  2394. Also get
  2395. \emph on
  2396. median
  2397. \emph default
  2398. peak width and maybe other quantiles (25%, 75%)
  2399. \end_layout
  2400. \end_inset
  2401. \end_layout
  2402. \begin_layout Plain Layout
  2403. \align center
  2404. \begin_inset Tabular
  2405. <lyxtabular version="3" rows="4" columns="5">
  2406. <features tabularvalignment="middle">
  2407. <column alignment="center" valignment="top">
  2408. <column alignment="center" valignment="top">
  2409. <column alignment="center" valignment="top">
  2410. <column alignment="center" valignment="top">
  2411. <column alignment="center" valignment="top">
  2412. <row>
  2413. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2414. \begin_inset Text
  2415. \begin_layout Plain Layout
  2416. Histone Mark
  2417. \end_layout
  2418. \end_inset
  2419. </cell>
  2420. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2421. \begin_inset Text
  2422. \begin_layout Plain Layout
  2423. # Peaks
  2424. \end_layout
  2425. \end_inset
  2426. </cell>
  2427. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2428. \begin_inset Text
  2429. \begin_layout Plain Layout
  2430. Mean peak width
  2431. \end_layout
  2432. \end_inset
  2433. </cell>
  2434. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2435. \begin_inset Text
  2436. \begin_layout Plain Layout
  2437. genome coverage
  2438. \end_layout
  2439. \end_inset
  2440. </cell>
  2441. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2442. \begin_inset Text
  2443. \begin_layout Plain Layout
  2444. FRiP
  2445. \end_layout
  2446. \end_inset
  2447. </cell>
  2448. </row>
  2449. <row>
  2450. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2451. \begin_inset Text
  2452. \begin_layout Plain Layout
  2453. H3K4me2
  2454. \end_layout
  2455. \end_inset
  2456. </cell>
  2457. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2458. \begin_inset Text
  2459. \begin_layout Plain Layout
  2460. 14965
  2461. \end_layout
  2462. \end_inset
  2463. </cell>
  2464. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2465. \begin_inset Text
  2466. \begin_layout Plain Layout
  2467. 3970
  2468. \end_layout
  2469. \end_inset
  2470. </cell>
  2471. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2472. \begin_inset Text
  2473. \begin_layout Plain Layout
  2474. 1.92%
  2475. \end_layout
  2476. \end_inset
  2477. </cell>
  2478. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2479. \begin_inset Text
  2480. \begin_layout Plain Layout
  2481. 14.2%
  2482. \end_layout
  2483. \end_inset
  2484. </cell>
  2485. </row>
  2486. <row>
  2487. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2488. \begin_inset Text
  2489. \begin_layout Plain Layout
  2490. H3K4me3
  2491. \end_layout
  2492. \end_inset
  2493. </cell>
  2494. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2495. \begin_inset Text
  2496. \begin_layout Plain Layout
  2497. 6163
  2498. \end_layout
  2499. \end_inset
  2500. </cell>
  2501. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2502. \begin_inset Text
  2503. \begin_layout Plain Layout
  2504. 2946
  2505. \end_layout
  2506. \end_inset
  2507. </cell>
  2508. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2509. \begin_inset Text
  2510. \begin_layout Plain Layout
  2511. 0.588%
  2512. \end_layout
  2513. \end_inset
  2514. </cell>
  2515. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2516. \begin_inset Text
  2517. \begin_layout Plain Layout
  2518. 6.57%
  2519. \end_layout
  2520. \end_inset
  2521. </cell>
  2522. </row>
  2523. <row>
  2524. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2525. \begin_inset Text
  2526. \begin_layout Plain Layout
  2527. H3K27me3
  2528. \end_layout
  2529. \end_inset
  2530. </cell>
  2531. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2532. \begin_inset Text
  2533. \begin_layout Plain Layout
  2534. 18139
  2535. \end_layout
  2536. \end_inset
  2537. </cell>
  2538. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2539. \begin_inset Text
  2540. \begin_layout Plain Layout
  2541. 18967
  2542. \end_layout
  2543. \end_inset
  2544. </cell>
  2545. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2546. \begin_inset Text
  2547. \begin_layout Plain Layout
  2548. 11.1%
  2549. \end_layout
  2550. \end_inset
  2551. </cell>
  2552. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2553. \begin_inset Text
  2554. \begin_layout Plain Layout
  2555. 22.5%
  2556. \end_layout
  2557. \end_inset
  2558. </cell>
  2559. </row>
  2560. </lyxtabular>
  2561. \end_inset
  2562. \end_layout
  2563. \begin_layout Plain Layout
  2564. \begin_inset Caption Standard
  2565. \begin_layout Plain Layout
  2566. \series bold
  2567. \begin_inset CommandInset label
  2568. LatexCommand label
  2569. name "tab:peak-calling-summary"
  2570. \end_inset
  2571. Peak-calling summary.
  2572. \series default
  2573. For each histone mark, the number of peaks called using SICER at an IDR
  2574. threshold of ???, the mean width of those peaks, the fraction of the genome
  2575. covered by peaks, and the fraction of reads in peaks (FRiP).
  2576. \end_layout
  2577. \end_inset
  2578. \end_layout
  2579. \end_inset
  2580. \end_layout
  2581. \begin_layout Standard
  2582. Table
  2583. \begin_inset CommandInset ref
  2584. LatexCommand ref
  2585. reference "tab:peak-calling-summary"
  2586. plural "false"
  2587. caps "false"
  2588. noprefix "false"
  2589. \end_inset
  2590. gives a summary of the peak calling statistics for each histone mark.
  2591. Consistent with previous observations [CITATION NEEDED], all 3 histone
  2592. marks occur in broad regions spanning many consecutive nucleosomes, rather
  2593. than in sharp peaks as would be expected for a transcription factor or
  2594. other molecule that binds to specific sites.
  2595. This conclusion is further supported by Figure
  2596. \begin_inset CommandInset ref
  2597. LatexCommand ref
  2598. reference "fig:CCF-with-blacklist"
  2599. plural "false"
  2600. caps "false"
  2601. noprefix "false"
  2602. \end_inset
  2603. , in which a clear nucleosome-sized periodicity is visible in the cross-correlat
  2604. ion value for each sample, indicating that each time a given mark is present
  2605. on one histone, it is also likely to be found on adjacent histones as well.
  2606. H3K27me3 enrichment in particular is substantially more broad than either
  2607. H3K4 mark, with a mean peak width of almost 19,000 bp.
  2608. This is also reflected in the periodicity observed in Figure
  2609. \begin_inset CommandInset ref
  2610. LatexCommand ref
  2611. reference "fig:CCF-with-blacklist"
  2612. plural "false"
  2613. caps "false"
  2614. noprefix "false"
  2615. \end_inset
  2616. , which remains strong much farther out for H3K27me3 than the other marks,
  2617. showing H3K27me3 especially tends to be found on long runs of consecutive
  2618. histones.
  2619. \end_layout
  2620. \begin_layout Standard
  2621. \begin_inset Float figure
  2622. wide false
  2623. sideways false
  2624. status open
  2625. \begin_layout Plain Layout
  2626. \begin_inset Flex TODO Note (inline)
  2627. status open
  2628. \begin_layout Plain Layout
  2629. Ensure this figure uses the peak calls from the new analysis.
  2630. \end_layout
  2631. \end_inset
  2632. \end_layout
  2633. \begin_layout Plain Layout
  2634. \begin_inset Flex TODO Note (inline)
  2635. status open
  2636. \begin_layout Plain Layout
  2637. Need a control: shuffle all peaks and repeat, N times.
  2638. Do real vs shuffled control both in a top/bottom arrangement.
  2639. \end_layout
  2640. \end_inset
  2641. \end_layout
  2642. \begin_layout Plain Layout
  2643. \begin_inset Flex TODO Note (inline)
  2644. status open
  2645. \begin_layout Plain Layout
  2646. Consider counting TSS inside peaks as negative number indicating how far
  2647. \emph on
  2648. inside
  2649. \emph default
  2650. the peak the TSS is (i.e.
  2651. distance to nearest non-peak area).
  2652. \end_layout
  2653. \end_inset
  2654. \end_layout
  2655. \begin_layout Plain Layout
  2656. \begin_inset Flex TODO Note (inline)
  2657. status open
  2658. \begin_layout Plain Layout
  2659. The H3K4 part of this figure is included in
  2660. \begin_inset CommandInset citation
  2661. LatexCommand cite
  2662. key "LaMere2016"
  2663. literal "false"
  2664. \end_inset
  2665. as Fig.
  2666. S2.
  2667. Do I need to do anything about that?
  2668. \end_layout
  2669. \end_inset
  2670. \end_layout
  2671. \begin_layout Plain Layout
  2672. \align center
  2673. \begin_inset Graphics
  2674. filename graphics/CD4-csaw/Promoter Peak Distance Profile-PAGE1-CROP.pdf
  2675. lyxscale 50
  2676. width 80col%
  2677. \end_inset
  2678. \end_layout
  2679. \begin_layout Plain Layout
  2680. \begin_inset Caption Standard
  2681. \begin_layout Plain Layout
  2682. \series bold
  2683. \begin_inset CommandInset label
  2684. LatexCommand label
  2685. name "fig:near-promoter-peak-enrich"
  2686. \end_inset
  2687. Enrichment of peaks in promoter neighborhoods.
  2688. \series default
  2689. This plot shows the distribution of distances from each annotated transcription
  2690. start site in the genome to the nearest called peak.
  2691. Each line represents one combination of histone mark, cell type, and time
  2692. point.
  2693. Distributions are smoothed using kernel density estimation [CITE? see ggplot2
  2694. stat_density()].
  2695. Transcription start sites that occur
  2696. \emph on
  2697. within
  2698. \emph default
  2699. peaks were excluded from this plot to avoid a large spike at zero that
  2700. would overshadow the rest of the distribution.
  2701. \end_layout
  2702. \end_inset
  2703. \end_layout
  2704. \end_inset
  2705. \end_layout
  2706. \begin_layout Standard
  2707. \begin_inset Float table
  2708. wide false
  2709. sideways false
  2710. status collapsed
  2711. \begin_layout Plain Layout
  2712. \align center
  2713. \begin_inset Tabular
  2714. <lyxtabular version="3" rows="4" columns="2">
  2715. <features tabularvalignment="middle">
  2716. <column alignment="center" valignment="top">
  2717. <column alignment="center" valignment="top">
  2718. <row>
  2719. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2720. \begin_inset Text
  2721. \begin_layout Plain Layout
  2722. Histone mark
  2723. \end_layout
  2724. \end_inset
  2725. </cell>
  2726. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2727. \begin_inset Text
  2728. \begin_layout Plain Layout
  2729. Effective promoter radius
  2730. \end_layout
  2731. \end_inset
  2732. </cell>
  2733. </row>
  2734. <row>
  2735. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2736. \begin_inset Text
  2737. \begin_layout Plain Layout
  2738. H3K4me2
  2739. \end_layout
  2740. \end_inset
  2741. </cell>
  2742. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2743. \begin_inset Text
  2744. \begin_layout Plain Layout
  2745. 1 kb
  2746. \end_layout
  2747. \end_inset
  2748. </cell>
  2749. </row>
  2750. <row>
  2751. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2752. \begin_inset Text
  2753. \begin_layout Plain Layout
  2754. H3K4me3
  2755. \end_layout
  2756. \end_inset
  2757. </cell>
  2758. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2759. \begin_inset Text
  2760. \begin_layout Plain Layout
  2761. 1 kb
  2762. \end_layout
  2763. \end_inset
  2764. </cell>
  2765. </row>
  2766. <row>
  2767. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2768. \begin_inset Text
  2769. \begin_layout Plain Layout
  2770. H3K27me3
  2771. \end_layout
  2772. \end_inset
  2773. </cell>
  2774. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2775. \begin_inset Text
  2776. \begin_layout Plain Layout
  2777. 2.5 kb
  2778. \end_layout
  2779. \end_inset
  2780. </cell>
  2781. </row>
  2782. </lyxtabular>
  2783. \end_inset
  2784. \end_layout
  2785. \begin_layout Plain Layout
  2786. \begin_inset Caption Standard
  2787. \begin_layout Plain Layout
  2788. \series bold
  2789. \begin_inset CommandInset label
  2790. LatexCommand label
  2791. name "tab:effective-promoter-radius"
  2792. \end_inset
  2793. Effective promoter radius for each histone mark.
  2794. \series default
  2795. These values represent the approximate distance from transcription start
  2796. site positions within which an excess of peaks are found, as shown in Figure
  2797. \begin_inset CommandInset ref
  2798. LatexCommand ref
  2799. reference "fig:near-promoter-peak-enrich"
  2800. plural "false"
  2801. caps "false"
  2802. noprefix "false"
  2803. \end_inset
  2804. .
  2805. \end_layout
  2806. \end_inset
  2807. \end_layout
  2808. \begin_layout Plain Layout
  2809. \end_layout
  2810. \end_inset
  2811. \end_layout
  2812. \begin_layout Standard
  2813. All 3 histone marks tend to occur more often near promoter regions, as shown
  2814. in Figure
  2815. \begin_inset CommandInset ref
  2816. LatexCommand ref
  2817. reference "fig:near-promoter-peak-enrich"
  2818. plural "false"
  2819. caps "false"
  2820. noprefix "false"
  2821. \end_inset
  2822. .
  2823. The majority of each density distribution is flat, representing the background
  2824. density of peaks genome-wide.
  2825. Each distribution has a peak near zero, representing an enrichment of peaks
  2826. close transcription start site (TSS) positions relative to the remainder
  2827. of the genome.
  2828. Interestingly, the
  2829. \begin_inset Quotes eld
  2830. \end_inset
  2831. radius
  2832. \begin_inset Quotes erd
  2833. \end_inset
  2834. within which this enrichment occurs is not the same for every histone mark
  2835. (Table
  2836. \begin_inset CommandInset ref
  2837. LatexCommand ref
  2838. reference "tab:effective-promoter-radius"
  2839. plural "false"
  2840. caps "false"
  2841. noprefix "false"
  2842. \end_inset
  2843. ).
  2844. For H3K4me2 and H3K4me3, peaks are most enriched within 1
  2845. \begin_inset space ~
  2846. \end_inset
  2847. kbp of TSS positions, while for H3K27me3, enrichment is broader, extending
  2848. to 2.5
  2849. \begin_inset space ~
  2850. \end_inset
  2851. kbp.
  2852. These
  2853. \begin_inset Quotes eld
  2854. \end_inset
  2855. effective promoter radii
  2856. \begin_inset Quotes erd
  2857. \end_inset
  2858. remain approximately the same across all combinations of experimental condition
  2859. (cell type, time point, and donor), so they appear to be a property of
  2860. the histone mark itself.
  2861. Hence, these radii were used to define the promoter regions for each histone
  2862. mark in all further analyses.
  2863. \end_layout
  2864. \begin_layout Standard
  2865. \begin_inset Flex TODO Note (inline)
  2866. status open
  2867. \begin_layout Plain Layout
  2868. Consider also showing figure for distance to nearest peak center, and reference
  2869. median peak size once that is known.
  2870. \end_layout
  2871. \end_inset
  2872. \end_layout
  2873. \begin_layout Subsection
  2874. H3K4 and H3K27 promoter methylation has broadly the expected correlation
  2875. with gene expression
  2876. \end_layout
  2877. \begin_layout Standard
  2878. \begin_inset Float figure
  2879. wide false
  2880. sideways false
  2881. status collapsed
  2882. \begin_layout Plain Layout
  2883. \begin_inset Flex TODO Note (inline)
  2884. status open
  2885. \begin_layout Plain Layout
  2886. This figure is generated from the old analysis.
  2887. Eiher note that in some way or re-generate it from the new peak calls.
  2888. \end_layout
  2889. \end_inset
  2890. \end_layout
  2891. \begin_layout Plain Layout
  2892. \align center
  2893. \begin_inset Graphics
  2894. filename graphics/CD4-csaw/FPKM by Peak Violin Plots-CROP.pdf
  2895. lyxscale 50
  2896. width 100col%
  2897. \end_inset
  2898. \end_layout
  2899. \begin_layout Plain Layout
  2900. \begin_inset Caption Standard
  2901. \begin_layout Plain Layout
  2902. \series bold
  2903. \begin_inset CommandInset label
  2904. LatexCommand label
  2905. name "fig:fpkm-by-peak"
  2906. \end_inset
  2907. Expression distributions of genes with and without promoter peaks.
  2908. \end_layout
  2909. \end_inset
  2910. \end_layout
  2911. \end_inset
  2912. \end_layout
  2913. \begin_layout Standard
  2914. H3K4me2 and H3K4me2 have previously been reported as activating marks whose
  2915. presence in a gene's promoter is associated with higher gene expression,
  2916. while H3K27me3 has been reported as inactivating [CITE].
  2917. The data are consistent with this characterization: genes whose promoters
  2918. (as defined by the radii for each histone mark listed in
  2919. \begin_inset CommandInset ref
  2920. LatexCommand ref
  2921. reference "tab:effective-promoter-radius"
  2922. plural "false"
  2923. caps "false"
  2924. noprefix "false"
  2925. \end_inset
  2926. ) overlap with a H3K4me2 or H3K4me3 peak tend to have higher expression
  2927. than those that don't, while H3K27me3 is likewise associated with lower
  2928. gene expression, as shown in
  2929. \begin_inset CommandInset ref
  2930. LatexCommand ref
  2931. reference "fig:fpkm-by-peak"
  2932. plural "false"
  2933. caps "false"
  2934. noprefix "false"
  2935. \end_inset
  2936. .
  2937. This pattern holds across all combinations of cell type and time point
  2938. (Welch's
  2939. \emph on
  2940. t
  2941. \emph default
  2942. -test, all
  2943. \begin_inset Formula $p\mathrm{-values}\ll2.2\times10^{-16}$
  2944. \end_inset
  2945. ).
  2946. The difference in average log FPKM values when a peak overlaps the promoter
  2947. is about
  2948. \begin_inset Formula $+5.67$
  2949. \end_inset
  2950. for H3K4me2,
  2951. \begin_inset Formula $+5.76$
  2952. \end_inset
  2953. for H3K4me2, and
  2954. \begin_inset Formula $-4.00$
  2955. \end_inset
  2956. for H3K27me3.
  2957. \end_layout
  2958. \begin_layout Standard
  2959. \begin_inset Flex TODO Note (inline)
  2960. status open
  2961. \begin_layout Plain Layout
  2962. I also have some figures looking at interactions between marks (e.g.
  2963. what if a promoter has both H3K4me3 and H3K27me3), but I don't know if
  2964. that much detail is warranted here, since all the effects just seem approximate
  2965. ly additive anyway.
  2966. \end_layout
  2967. \end_inset
  2968. \end_layout
  2969. \begin_layout Subsection
  2970. Gene expression and promoter histone methylation patterns in naive and memory
  2971. show convergence at day 14
  2972. \end_layout
  2973. \begin_layout Standard
  2974. \begin_inset ERT
  2975. status open
  2976. \begin_layout Plain Layout
  2977. \backslash
  2978. afterpage{
  2979. \end_layout
  2980. \begin_layout Plain Layout
  2981. \backslash
  2982. begin{landscape}
  2983. \end_layout
  2984. \end_inset
  2985. \end_layout
  2986. \begin_layout Standard
  2987. \begin_inset Float table
  2988. wide false
  2989. sideways false
  2990. status open
  2991. \begin_layout Plain Layout
  2992. \align center
  2993. \begin_inset Tabular
  2994. <lyxtabular version="3" rows="6" columns="7">
  2995. <features tabularvalignment="middle">
  2996. <column alignment="center" valignment="top">
  2997. <column alignment="center" valignment="top">
  2998. <column alignment="center" valignment="top">
  2999. <column alignment="center" valignment="top">
  3000. <column alignment="center" valignment="top">
  3001. <column alignment="center" valignment="top">
  3002. <column alignment="center" valignment="top">
  3003. <row>
  3004. <cell alignment="center" valignment="top" usebox="none">
  3005. \begin_inset Text
  3006. \begin_layout Plain Layout
  3007. \end_layout
  3008. \end_inset
  3009. </cell>
  3010. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3011. \begin_inset Text
  3012. \begin_layout Plain Layout
  3013. Number of significant promoters
  3014. \end_layout
  3015. \end_inset
  3016. </cell>
  3017. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3018. \begin_inset Text
  3019. \begin_layout Plain Layout
  3020. \end_layout
  3021. \end_inset
  3022. </cell>
  3023. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3024. \begin_inset Text
  3025. \begin_layout Plain Layout
  3026. \end_layout
  3027. \end_inset
  3028. </cell>
  3029. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3030. \begin_inset Text
  3031. \begin_layout Plain Layout
  3032. Est.
  3033. differentially modified promoters
  3034. \end_layout
  3035. \end_inset
  3036. </cell>
  3037. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3038. \begin_inset Text
  3039. \begin_layout Plain Layout
  3040. \end_layout
  3041. \end_inset
  3042. </cell>
  3043. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3044. \begin_inset Text
  3045. \begin_layout Plain Layout
  3046. \end_layout
  3047. \end_inset
  3048. </cell>
  3049. </row>
  3050. <row>
  3051. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3052. \begin_inset Text
  3053. \begin_layout Plain Layout
  3054. Time Point
  3055. \end_layout
  3056. \end_inset
  3057. </cell>
  3058. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3059. \begin_inset Text
  3060. \begin_layout Plain Layout
  3061. H3K4me2
  3062. \end_layout
  3063. \end_inset
  3064. </cell>
  3065. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3066. \begin_inset Text
  3067. \begin_layout Plain Layout
  3068. H3K4me3
  3069. \end_layout
  3070. \end_inset
  3071. </cell>
  3072. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3073. \begin_inset Text
  3074. \begin_layout Plain Layout
  3075. H3K27me3
  3076. \end_layout
  3077. \end_inset
  3078. </cell>
  3079. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3080. \begin_inset Text
  3081. \begin_layout Plain Layout
  3082. H3K4me2
  3083. \end_layout
  3084. \end_inset
  3085. </cell>
  3086. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3087. \begin_inset Text
  3088. \begin_layout Plain Layout
  3089. H3K4me3
  3090. \end_layout
  3091. \end_inset
  3092. </cell>
  3093. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3094. \begin_inset Text
  3095. \begin_layout Plain Layout
  3096. H3K27me3
  3097. \end_layout
  3098. \end_inset
  3099. </cell>
  3100. </row>
  3101. <row>
  3102. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3103. \begin_inset Text
  3104. \begin_layout Plain Layout
  3105. Day 0
  3106. \end_layout
  3107. \end_inset
  3108. </cell>
  3109. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3110. \begin_inset Text
  3111. \begin_layout Plain Layout
  3112. 4553
  3113. \end_layout
  3114. \end_inset
  3115. </cell>
  3116. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3117. \begin_inset Text
  3118. \begin_layout Plain Layout
  3119. 927
  3120. \end_layout
  3121. \end_inset
  3122. </cell>
  3123. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3124. \begin_inset Text
  3125. \begin_layout Plain Layout
  3126. 6
  3127. \end_layout
  3128. \end_inset
  3129. </cell>
  3130. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3131. \begin_inset Text
  3132. \begin_layout Plain Layout
  3133. 9967
  3134. \end_layout
  3135. \end_inset
  3136. </cell>
  3137. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3138. \begin_inset Text
  3139. \begin_layout Plain Layout
  3140. 4149
  3141. \end_layout
  3142. \end_inset
  3143. </cell>
  3144. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3145. \begin_inset Text
  3146. \begin_layout Plain Layout
  3147. 2404
  3148. \end_layout
  3149. \end_inset
  3150. </cell>
  3151. </row>
  3152. <row>
  3153. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3154. \begin_inset Text
  3155. \begin_layout Plain Layout
  3156. Day 1
  3157. \end_layout
  3158. \end_inset
  3159. </cell>
  3160. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3161. \begin_inset Text
  3162. \begin_layout Plain Layout
  3163. 567
  3164. \end_layout
  3165. \end_inset
  3166. </cell>
  3167. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3168. \begin_inset Text
  3169. \begin_layout Plain Layout
  3170. 278
  3171. \end_layout
  3172. \end_inset
  3173. </cell>
  3174. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3175. \begin_inset Text
  3176. \begin_layout Plain Layout
  3177. 1570
  3178. \end_layout
  3179. \end_inset
  3180. </cell>
  3181. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3182. \begin_inset Text
  3183. \begin_layout Plain Layout
  3184. 4370
  3185. \end_layout
  3186. \end_inset
  3187. </cell>
  3188. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3189. \begin_inset Text
  3190. \begin_layout Plain Layout
  3191. 2145
  3192. \end_layout
  3193. \end_inset
  3194. </cell>
  3195. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3196. \begin_inset Text
  3197. \begin_layout Plain Layout
  3198. 6598
  3199. \end_layout
  3200. \end_inset
  3201. </cell>
  3202. </row>
  3203. <row>
  3204. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3205. \begin_inset Text
  3206. \begin_layout Plain Layout
  3207. Day 5
  3208. \end_layout
  3209. \end_inset
  3210. </cell>
  3211. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3212. \begin_inset Text
  3213. \begin_layout Plain Layout
  3214. 2313
  3215. \end_layout
  3216. \end_inset
  3217. </cell>
  3218. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3219. \begin_inset Text
  3220. \begin_layout Plain Layout
  3221. 139
  3222. \end_layout
  3223. \end_inset
  3224. </cell>
  3225. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3226. \begin_inset Text
  3227. \begin_layout Plain Layout
  3228. 490
  3229. \end_layout
  3230. \end_inset
  3231. </cell>
  3232. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3233. \begin_inset Text
  3234. \begin_layout Plain Layout
  3235. 9450
  3236. \end_layout
  3237. \end_inset
  3238. </cell>
  3239. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3240. \begin_inset Text
  3241. \begin_layout Plain Layout
  3242. 1148
  3243. \end_layout
  3244. \end_inset
  3245. </cell>
  3246. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3247. \begin_inset Text
  3248. \begin_layout Plain Layout
  3249. 4141
  3250. \end_layout
  3251. \end_inset
  3252. </cell>
  3253. </row>
  3254. <row>
  3255. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3256. \begin_inset Text
  3257. \begin_layout Plain Layout
  3258. Day 14
  3259. \end_layout
  3260. \end_inset
  3261. </cell>
  3262. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3263. \begin_inset Text
  3264. \begin_layout Plain Layout
  3265. 0
  3266. \end_layout
  3267. \end_inset
  3268. </cell>
  3269. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3270. \begin_inset Text
  3271. \begin_layout Plain Layout
  3272. 0
  3273. \end_layout
  3274. \end_inset
  3275. </cell>
  3276. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3277. \begin_inset Text
  3278. \begin_layout Plain Layout
  3279. 0
  3280. \end_layout
  3281. \end_inset
  3282. </cell>
  3283. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3284. \begin_inset Text
  3285. \begin_layout Plain Layout
  3286. 0
  3287. \end_layout
  3288. \end_inset
  3289. </cell>
  3290. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3291. \begin_inset Text
  3292. \begin_layout Plain Layout
  3293. 0
  3294. \end_layout
  3295. \end_inset
  3296. </cell>
  3297. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3298. \begin_inset Text
  3299. \begin_layout Plain Layout
  3300. 0
  3301. \end_layout
  3302. \end_inset
  3303. </cell>
  3304. </row>
  3305. </lyxtabular>
  3306. \end_inset
  3307. \end_layout
  3308. \begin_layout Plain Layout
  3309. \begin_inset Caption Standard
  3310. \begin_layout Plain Layout
  3311. \series bold
  3312. \begin_inset CommandInset label
  3313. LatexCommand label
  3314. name "tab:Number-signif-promoters"
  3315. \end_inset
  3316. Number of differentially modified promoters between naive and memory cells
  3317. at each time point after activation.
  3318. \series default
  3319. This table shows both the number of differentially modified promoters detected
  3320. at a 10% FDR threshold (left half), and the total number of differentially
  3321. modified promoters as estimated using the method of
  3322. \begin_inset CommandInset citation
  3323. LatexCommand cite
  3324. key "Phipson2013"
  3325. literal "false"
  3326. \end_inset
  3327. (right half).
  3328. \end_layout
  3329. \end_inset
  3330. \end_layout
  3331. \end_inset
  3332. \end_layout
  3333. \begin_layout Standard
  3334. \begin_inset ERT
  3335. status open
  3336. \begin_layout Plain Layout
  3337. \backslash
  3338. end{landscape}
  3339. \end_layout
  3340. \begin_layout Plain Layout
  3341. }
  3342. \end_layout
  3343. \end_inset
  3344. \end_layout
  3345. \begin_layout Standard
  3346. \begin_inset Float figure
  3347. placement p
  3348. wide false
  3349. sideways false
  3350. status open
  3351. \begin_layout Plain Layout
  3352. \align center
  3353. \begin_inset Float figure
  3354. wide false
  3355. sideways false
  3356. status open
  3357. \begin_layout Plain Layout
  3358. \align center
  3359. \begin_inset Graphics
  3360. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-promoter-PCA-group-CROP.png
  3361. lyxscale 25
  3362. width 45col%
  3363. groupId pcoa-prom-subfig
  3364. \end_inset
  3365. \end_layout
  3366. \begin_layout Plain Layout
  3367. \begin_inset Caption Standard
  3368. \begin_layout Plain Layout
  3369. \series bold
  3370. \begin_inset CommandInset label
  3371. LatexCommand label
  3372. name "fig:PCoA-H3K4me2-prom"
  3373. \end_inset
  3374. PCoA plot of H3K4me2 promoters, after subtracting surrogate variables
  3375. \end_layout
  3376. \end_inset
  3377. \end_layout
  3378. \end_inset
  3379. \begin_inset space \hfill{}
  3380. \end_inset
  3381. \begin_inset Float figure
  3382. wide false
  3383. sideways false
  3384. status open
  3385. \begin_layout Plain Layout
  3386. \align center
  3387. \begin_inset Graphics
  3388. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-promoter-PCA-group-CROP.png
  3389. lyxscale 25
  3390. width 45col%
  3391. groupId pcoa-prom-subfig
  3392. \end_inset
  3393. \end_layout
  3394. \begin_layout Plain Layout
  3395. \begin_inset Caption Standard
  3396. \begin_layout Plain Layout
  3397. \series bold
  3398. \begin_inset CommandInset label
  3399. LatexCommand label
  3400. name "fig:PCoA-H3K4me3-prom"
  3401. \end_inset
  3402. PCoA plot of H3K4me3 promoters, after subtracting surrogate variables
  3403. \end_layout
  3404. \end_inset
  3405. \end_layout
  3406. \end_inset
  3407. \end_layout
  3408. \begin_layout Plain Layout
  3409. \align center
  3410. \begin_inset Float figure
  3411. wide false
  3412. sideways false
  3413. status collapsed
  3414. \begin_layout Plain Layout
  3415. \align center
  3416. \begin_inset Graphics
  3417. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-promoter-PCA-group-CROP.png
  3418. lyxscale 25
  3419. width 45col%
  3420. groupId pcoa-prom-subfig
  3421. \end_inset
  3422. \end_layout
  3423. \begin_layout Plain Layout
  3424. \begin_inset Caption Standard
  3425. \begin_layout Plain Layout
  3426. \series bold
  3427. \begin_inset CommandInset label
  3428. LatexCommand label
  3429. name "fig:PCoA-H3K27me3-prom"
  3430. \end_inset
  3431. PCoA plot of H3K27me3 promoters, after subtracting surrogate variables
  3432. \end_layout
  3433. \end_inset
  3434. \end_layout
  3435. \end_inset
  3436. \begin_inset space \hfill{}
  3437. \end_inset
  3438. \begin_inset Float figure
  3439. wide false
  3440. sideways false
  3441. status open
  3442. \begin_layout Plain Layout
  3443. \align center
  3444. \begin_inset Graphics
  3445. filename graphics/CD4-csaw/RNA-seq/PCA-final-23-CROP.png
  3446. lyxscale 25
  3447. width 45col%
  3448. groupId pcoa-prom-subfig
  3449. \end_inset
  3450. \end_layout
  3451. \begin_layout Plain Layout
  3452. \begin_inset Caption Standard
  3453. \begin_layout Plain Layout
  3454. \series bold
  3455. \begin_inset CommandInset label
  3456. LatexCommand label
  3457. name "fig:RNA-PCA-group"
  3458. \end_inset
  3459. RNA-seq PCoA showing principal coordiantes 2 and 3.
  3460. \end_layout
  3461. \end_inset
  3462. \end_layout
  3463. \end_inset
  3464. \end_layout
  3465. \begin_layout Plain Layout
  3466. \begin_inset Caption Standard
  3467. \begin_layout Plain Layout
  3468. \series bold
  3469. \begin_inset CommandInset label
  3470. LatexCommand label
  3471. name "fig:PCoA-promoters"
  3472. \end_inset
  3473. PCoA plots for promoter ChIP-seq and expression RNA-seq data
  3474. \end_layout
  3475. \end_inset
  3476. \end_layout
  3477. \end_inset
  3478. \end_layout
  3479. \begin_layout Standard
  3480. \begin_inset Flex TODO Note (inline)
  3481. status open
  3482. \begin_layout Plain Layout
  3483. Check up on figure refs in this paragraph
  3484. \end_layout
  3485. \end_inset
  3486. \end_layout
  3487. \begin_layout Standard
  3488. We hypothesized that if naive cells had differentiated into memory cells
  3489. by Day 14, then their patterns of expression and histone modification should
  3490. converge with those of memory cells at Day 14.
  3491. Figure
  3492. \begin_inset CommandInset ref
  3493. LatexCommand ref
  3494. reference "fig:PCoA-promoters"
  3495. plural "false"
  3496. caps "false"
  3497. noprefix "false"
  3498. \end_inset
  3499. shows the patterns of variation in all 3 histone marks in the promoter
  3500. regions of the genome using principal coordinate analysis.
  3501. All 3 marks show a noticeable convergence between the naive and memory
  3502. samples at day 14, visible as an overlapping of the day 14 groups on each
  3503. plot.
  3504. This is consistent with the counts of significantly differentially modified
  3505. promoters and estimates of the total numbers of differentially modified
  3506. promoters shown in Table
  3507. \begin_inset CommandInset ref
  3508. LatexCommand ref
  3509. reference "tab:Number-signif-promoters"
  3510. plural "false"
  3511. caps "false"
  3512. noprefix "false"
  3513. \end_inset
  3514. .
  3515. For all histone marks, evidence of differential modification between naive
  3516. and memory samples was detected at every time point except day 14.
  3517. The day 14 convergence pattern is also present in the RNA-seq data (Figure
  3518. \begin_inset CommandInset ref
  3519. LatexCommand ref
  3520. reference "fig:RNA-PCA-group"
  3521. plural "false"
  3522. caps "false"
  3523. noprefix "false"
  3524. \end_inset
  3525. ), albiet in the 2nd and 3rd principal coordinates, indicating that it is
  3526. not the most dominant pattern driving gene expression.
  3527. Taken together, the data show that promoter histone methylation for these
  3528. 3 histone marks and RNA expression for naive and memory cells are most
  3529. similar at day 14, the furthest time point after activation.
  3530. MOFA was also able to capture this day 14 convergence pattern in latent
  3531. factor 5 (Figure
  3532. \begin_inset CommandInset ref
  3533. LatexCommand ref
  3534. reference "fig:mofa-lf-scatter"
  3535. plural "false"
  3536. caps "false"
  3537. noprefix "false"
  3538. \end_inset
  3539. ), which accounts for shared variation across all 3 histone marks and the
  3540. RNA-seq data, confirming that this convergence is a coordinated pattern
  3541. across all 4 data sets.
  3542. While this observation does not prove that the naive cells have differentiated
  3543. into memory cells at Day 14, it is consistent with that hypothesis.
  3544. \end_layout
  3545. \begin_layout Subsection
  3546. Effect of H3K4me2 and H3K4me3 promoter coverage upstream vs downstream of
  3547. TSS
  3548. \end_layout
  3549. \begin_layout Standard
  3550. \begin_inset Flex TODO Note (inline)
  3551. status open
  3552. \begin_layout Plain Layout
  3553. Need a better section title, for this and the next one.
  3554. \end_layout
  3555. \end_inset
  3556. \end_layout
  3557. \begin_layout Standard
  3558. \begin_inset Flex TODO Note (inline)
  3559. status open
  3560. \begin_layout Plain Layout
  3561. Make sure use of coverage/abundance/whatever is consistent.
  3562. \end_layout
  3563. \end_inset
  3564. \end_layout
  3565. \begin_layout Standard
  3566. \begin_inset Flex TODO Note (inline)
  3567. status open
  3568. \begin_layout Plain Layout
  3569. For the figures in this section and the next, the group labels are arbitrary,
  3570. so if time allows, it would be good to manually reorder them in a logical
  3571. way, e.g.
  3572. most upstream to most downstream.
  3573. If this is done, make sure to update the text with the correct group labels.
  3574. \end_layout
  3575. \end_inset
  3576. \end_layout
  3577. \begin_layout Standard
  3578. \begin_inset ERT
  3579. status open
  3580. \begin_layout Plain Layout
  3581. \backslash
  3582. afterpage{
  3583. \end_layout
  3584. \begin_layout Plain Layout
  3585. \backslash
  3586. begin{landscape}
  3587. \end_layout
  3588. \end_inset
  3589. \end_layout
  3590. \begin_layout Standard
  3591. \begin_inset Float figure
  3592. wide false
  3593. sideways false
  3594. status open
  3595. \begin_layout Plain Layout
  3596. \align center
  3597. \begin_inset Float figure
  3598. wide false
  3599. sideways false
  3600. status open
  3601. \begin_layout Plain Layout
  3602. \align center
  3603. \begin_inset Graphics
  3604. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-neighborhood-clusters-CROP.png
  3605. lyxscale 25
  3606. width 30col%
  3607. groupId covprof-subfig
  3608. \end_inset
  3609. \end_layout
  3610. \begin_layout Plain Layout
  3611. \begin_inset Caption Standard
  3612. \begin_layout Plain Layout
  3613. \series bold
  3614. \begin_inset CommandInset label
  3615. LatexCommand label
  3616. name "fig:H3K4me2-neighborhood-clusters"
  3617. \end_inset
  3618. Average relative coverage for each bin in each cluster
  3619. \end_layout
  3620. \end_inset
  3621. \end_layout
  3622. \end_inset
  3623. \begin_inset space \hfill{}
  3624. \end_inset
  3625. \begin_inset Float figure
  3626. wide false
  3627. sideways false
  3628. status open
  3629. \begin_layout Plain Layout
  3630. \align center
  3631. \begin_inset Graphics
  3632. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-neighborhood-PCA-CROP.png
  3633. lyxscale 25
  3634. width 30col%
  3635. groupId covprof-subfig
  3636. \end_inset
  3637. \end_layout
  3638. \begin_layout Plain Layout
  3639. \begin_inset Caption Standard
  3640. \begin_layout Plain Layout
  3641. \series bold
  3642. \begin_inset CommandInset label
  3643. LatexCommand label
  3644. name "fig:H3K4me2-neighborhood-pca"
  3645. \end_inset
  3646. PCA of relative coverage depth, colored by K-means cluster membership.
  3647. \end_layout
  3648. \end_inset
  3649. \end_layout
  3650. \end_inset
  3651. \begin_inset space \hfill{}
  3652. \end_inset
  3653. \begin_inset Float figure
  3654. wide false
  3655. sideways false
  3656. status open
  3657. \begin_layout Plain Layout
  3658. \align center
  3659. \begin_inset Graphics
  3660. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-neighborhood-expression-CROP.png
  3661. lyxscale 25
  3662. width 30col%
  3663. groupId covprof-subfig
  3664. \end_inset
  3665. \end_layout
  3666. \begin_layout Plain Layout
  3667. \begin_inset Caption Standard
  3668. \begin_layout Plain Layout
  3669. \series bold
  3670. \begin_inset CommandInset label
  3671. LatexCommand label
  3672. name "fig:H3K4me2-neighborhood-expression"
  3673. \end_inset
  3674. Gene expression grouped by promoter coverage clusters.
  3675. \end_layout
  3676. \end_inset
  3677. \end_layout
  3678. \end_inset
  3679. \end_layout
  3680. \begin_layout Plain Layout
  3681. \begin_inset Caption Standard
  3682. \begin_layout Plain Layout
  3683. \series bold
  3684. \begin_inset CommandInset label
  3685. LatexCommand label
  3686. name "fig:H3K4me2-neighborhood"
  3687. \end_inset
  3688. K-means clustering of promoter H3K4me2 relative coverage depth in naive
  3689. day 0 samples.
  3690. \series default
  3691. H3K4me2 ChIP-seq reads were binned into 500-bp windows tiled across each
  3692. promoter from 5
  3693. \begin_inset space ~
  3694. \end_inset
  3695. kbp upstream to 5
  3696. \begin_inset space ~
  3697. \end_inset
  3698. kbp downstream, and the logCPM values were normalized within each promoter
  3699. to an average of 0, yielding relative coverage depths.
  3700. These were then grouped using K-means clustering with
  3701. \begin_inset Formula $K=6$
  3702. \end_inset
  3703. ,
  3704. \series bold
  3705. \series default
  3706. and the average bin values were plotted for each cluster (a).
  3707. The
  3708. \begin_inset Formula $x$
  3709. \end_inset
  3710. -axis is the genomic coordinate of each bin relative to the the transcription
  3711. start site, and the
  3712. \begin_inset Formula $y$
  3713. \end_inset
  3714. -axis is the mean relative coverage depth of that bin across all promoters
  3715. in the cluster.
  3716. Each line represents the average
  3717. \begin_inset Quotes eld
  3718. \end_inset
  3719. shape
  3720. \begin_inset Quotes erd
  3721. \end_inset
  3722. of the promoter coverage for promoters in that cluster.
  3723. PCA was performed on the same data, and the first two principal components
  3724. were plotted, coloring each point by its K-means cluster identity (b).
  3725. For each cluster, the distribution of gene expression values was plotted
  3726. (c).
  3727. \end_layout
  3728. \end_inset
  3729. \end_layout
  3730. \end_inset
  3731. \end_layout
  3732. \begin_layout Standard
  3733. \begin_inset ERT
  3734. status open
  3735. \begin_layout Plain Layout
  3736. \backslash
  3737. end{landscape}
  3738. \end_layout
  3739. \begin_layout Plain Layout
  3740. }
  3741. \end_layout
  3742. \end_inset
  3743. \end_layout
  3744. \begin_layout Standard
  3745. To test whether the position of a histone mark relative to a gene's transcriptio
  3746. n start site (TSS) was important, we looked at the
  3747. \begin_inset Quotes eld
  3748. \end_inset
  3749. landscape
  3750. \begin_inset Quotes erd
  3751. \end_inset
  3752. of ChIP-seq read coverage in naive Day 0 samples within 5 kb of each gene's
  3753. TSS by binning reads into 500-bp windows tiled across each promoter LogCPM
  3754. values were calculated for the bins in each promoter and then the average
  3755. logCPM for each promoter's bins was normalized to zero, such that the values
  3756. represent coverage relative to other regions of the same promoter rather
  3757. than being proportional to absolute read count.
  3758. The promoters were then clustered based on the normalized bin abundances
  3759. using
  3760. \begin_inset Formula $k$
  3761. \end_inset
  3762. -means clustering with
  3763. \begin_inset Formula $K=6$
  3764. \end_inset
  3765. .
  3766. Different values of
  3767. \begin_inset Formula $K$
  3768. \end_inset
  3769. were also tested, but did not substantially change the interpretation of
  3770. the data.
  3771. \end_layout
  3772. \begin_layout Standard
  3773. For H3K4me2, plotting the average bin abundances for each cluster reveals
  3774. a simple pattern (Figure
  3775. \begin_inset CommandInset ref
  3776. LatexCommand ref
  3777. reference "fig:H3K4me2-neighborhood-clusters"
  3778. plural "false"
  3779. caps "false"
  3780. noprefix "false"
  3781. \end_inset
  3782. ): Cluster 5 represents a completely flat promoter coverage profile, likely
  3783. consisting of genes with no H3K4me2 methylation in the promoter.
  3784. All the other clusters represent a continuum of peak positions relative
  3785. to the TSS.
  3786. In order from must upstream to most downstream, they are Clusters 6, 4,
  3787. 3, 1, and 2.
  3788. There do not appear to be any clusters representing coverage patterns other
  3789. than lone peaks, such as coverage troughs or double peaks.
  3790. Next, all promoters were plotted in a PCA plot based on the same relative
  3791. bin abundance data, and colored based on cluster membership (Figure
  3792. \begin_inset CommandInset ref
  3793. LatexCommand ref
  3794. reference "fig:H3K4me2-neighborhood-pca"
  3795. plural "false"
  3796. caps "false"
  3797. noprefix "false"
  3798. \end_inset
  3799. ).
  3800. The PCA plot shows Cluster 5 (the
  3801. \begin_inset Quotes eld
  3802. \end_inset
  3803. no peak
  3804. \begin_inset Quotes erd
  3805. \end_inset
  3806. cluster) at the center, with the other clusters arranged in a counter-clockwise
  3807. arc around it in the order noted above, from most upstream peak to most
  3808. downstream.
  3809. Notably, the
  3810. \begin_inset Quotes eld
  3811. \end_inset
  3812. clusters
  3813. \begin_inset Quotes erd
  3814. \end_inset
  3815. form a single large
  3816. \begin_inset Quotes eld
  3817. \end_inset
  3818. cloud
  3819. \begin_inset Quotes erd
  3820. \end_inset
  3821. with no apparent separation between them, further supporting the conclusion
  3822. that these clusters represent an arbitrary partitioning of a continuous
  3823. distribution of promoter coverage landscapes.
  3824. While the clusters are a useful abstraction that aids in visualization,
  3825. they are ultimately not an accurate representation of the data.
  3826. A better representation might be something like a polar coordinate system
  3827. with the origin at the center of Cluster 5, where the radius represents
  3828. the peak height above the background and the angle represents the peak's
  3829. position upstream or downstream of the TSS.
  3830. The continuous nature of the distribution also explains why different values
  3831. of
  3832. \begin_inset Formula $K$
  3833. \end_inset
  3834. led to similar conclusions.
  3835. \end_layout
  3836. \begin_layout Standard
  3837. \begin_inset Flex TODO Note (inline)
  3838. status open
  3839. \begin_layout Plain Layout
  3840. RNA-seq values in the plots use logCPM but should really use logFPKM or
  3841. logTPM.
  3842. Fix if time allows.
  3843. \end_layout
  3844. \end_inset
  3845. \end_layout
  3846. \begin_layout Standard
  3847. \begin_inset Flex TODO Note (inline)
  3848. status open
  3849. \begin_layout Plain Layout
  3850. Should have a table of p-values on difference of means between Cluster 5
  3851. and the others.
  3852. \end_layout
  3853. \end_inset
  3854. \end_layout
  3855. \begin_layout Standard
  3856. To investigate the association between relative peak position and gene expressio
  3857. n, we plotted the Naive Day 0 expression for the genes in each cluster (Figure
  3858. \begin_inset CommandInset ref
  3859. LatexCommand ref
  3860. reference "fig:H3K4me2-neighborhood-expression"
  3861. plural "false"
  3862. caps "false"
  3863. noprefix "false"
  3864. \end_inset
  3865. ).
  3866. Most genes in Cluster 5, the
  3867. \begin_inset Quotes eld
  3868. \end_inset
  3869. no peak
  3870. \begin_inset Quotes erd
  3871. \end_inset
  3872. cluster, have low expression values.
  3873. Taking this as the
  3874. \begin_inset Quotes eld
  3875. \end_inset
  3876. baseline
  3877. \begin_inset Quotes erd
  3878. \end_inset
  3879. distribution when no H3K4me2 methylation is present, we can compare the
  3880. other clusters' distributions to determine which peak positions are associated
  3881. with elevated expression.
  3882. As might be expected, the 3 clusters representing peaks closest to the
  3883. TSS, Clusters 1, 3, and 4, show the highest average expression distributions.
  3884. Specifically, these clusters all have their highest ChIP-seq abundance
  3885. within 1kb of the TSS, consistent with the previously determined promoter
  3886. radius.
  3887. In contrast, cluster 6, which represents peaks several kb upstream of the
  3888. TSS, shows a slightly higher average expression than baseline, while Cluster
  3889. 2, which represents peaks several kb downstream, doesn't appear to show
  3890. any appreciable difference.
  3891. Interestingly, the cluster with the highest average expression is Cluster
  3892. 1, which represents peaks about 1 kb downstream of the TSS, rather than
  3893. Cluster 3, which represents peaks centered directly at the TSS.
  3894. This suggests that conceptualizing the promoter as a region centered on
  3895. the TSS with a certain
  3896. \begin_inset Quotes eld
  3897. \end_inset
  3898. radius
  3899. \begin_inset Quotes erd
  3900. \end_inset
  3901. may be an oversimplification – a peak that is a specific distance from
  3902. the TSS may have a different degree of influence depending on whether it
  3903. is upstream or downstream of the TSS.
  3904. \end_layout
  3905. \begin_layout Standard
  3906. \begin_inset ERT
  3907. status open
  3908. \begin_layout Plain Layout
  3909. \backslash
  3910. afterpage{
  3911. \end_layout
  3912. \begin_layout Plain Layout
  3913. \backslash
  3914. begin{landscape}
  3915. \end_layout
  3916. \end_inset
  3917. \end_layout
  3918. \begin_layout Standard
  3919. \begin_inset Float figure
  3920. wide false
  3921. sideways false
  3922. status open
  3923. \begin_layout Plain Layout
  3924. \align center
  3925. \begin_inset Float figure
  3926. wide false
  3927. sideways false
  3928. status open
  3929. \begin_layout Plain Layout
  3930. \align center
  3931. \begin_inset Graphics
  3932. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-neighborhood-clusters-CROP.png
  3933. lyxscale 25
  3934. width 30col%
  3935. groupId covprof-subfig
  3936. \end_inset
  3937. \end_layout
  3938. \begin_layout Plain Layout
  3939. \begin_inset Caption Standard
  3940. \begin_layout Plain Layout
  3941. \series bold
  3942. \begin_inset CommandInset label
  3943. LatexCommand label
  3944. name "fig:H3K4me3-neighborhood-clusters"
  3945. \end_inset
  3946. Average relative coverage for each bin in each cluster
  3947. \end_layout
  3948. \end_inset
  3949. \end_layout
  3950. \end_inset
  3951. \begin_inset space \hfill{}
  3952. \end_inset
  3953. \begin_inset Float figure
  3954. wide false
  3955. sideways false
  3956. status open
  3957. \begin_layout Plain Layout
  3958. \align center
  3959. \begin_inset Graphics
  3960. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-neighborhood-PCA-CROP.png
  3961. lyxscale 25
  3962. width 30col%
  3963. groupId covprof-subfig
  3964. \end_inset
  3965. \end_layout
  3966. \begin_layout Plain Layout
  3967. \begin_inset Caption Standard
  3968. \begin_layout Plain Layout
  3969. \series bold
  3970. \begin_inset CommandInset label
  3971. LatexCommand label
  3972. name "fig:H3K4me3-neighborhood-pca"
  3973. \end_inset
  3974. PCA of relative coverage depth, colored by K-means cluster membership.
  3975. \end_layout
  3976. \end_inset
  3977. \end_layout
  3978. \end_inset
  3979. \begin_inset space \hfill{}
  3980. \end_inset
  3981. \begin_inset Float figure
  3982. wide false
  3983. sideways false
  3984. status open
  3985. \begin_layout Plain Layout
  3986. \align center
  3987. \begin_inset Graphics
  3988. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-neighborhood-expression-CROP.png
  3989. lyxscale 25
  3990. width 30col%
  3991. groupId covprof-subfig
  3992. \end_inset
  3993. \end_layout
  3994. \begin_layout Plain Layout
  3995. \begin_inset Caption Standard
  3996. \begin_layout Plain Layout
  3997. \series bold
  3998. \begin_inset CommandInset label
  3999. LatexCommand label
  4000. name "fig:H3K4me3-neighborhood-expression"
  4001. \end_inset
  4002. Gene expression grouped by promoter coverage clusters.
  4003. \end_layout
  4004. \end_inset
  4005. \end_layout
  4006. \end_inset
  4007. \end_layout
  4008. \begin_layout Plain Layout
  4009. \begin_inset Caption Standard
  4010. \begin_layout Plain Layout
  4011. \series bold
  4012. \begin_inset CommandInset label
  4013. LatexCommand label
  4014. name "fig:H3K4me3-neighborhood"
  4015. \end_inset
  4016. K-means clustering of promoter H3K4me3 relative coverage depth in naive
  4017. day 0 samples.
  4018. \series default
  4019. H3K4me2 ChIP-seq reads were binned into 500-bp windows tiled across each
  4020. promoter from 5
  4021. \begin_inset space ~
  4022. \end_inset
  4023. kbp upstream to 5
  4024. \begin_inset space ~
  4025. \end_inset
  4026. kbp downstream, and the logCPM values were normalized within each promoter
  4027. to an average of 0, yielding relative coverage depths.
  4028. These were then grouped using K-means clustering with
  4029. \begin_inset Formula $K=6$
  4030. \end_inset
  4031. ,
  4032. \series bold
  4033. \series default
  4034. and the average bin values were plotted for each cluster (a).
  4035. The
  4036. \begin_inset Formula $x$
  4037. \end_inset
  4038. -axis is the genomic coordinate of each bin relative to the the transcription
  4039. start site, and the
  4040. \begin_inset Formula $y$
  4041. \end_inset
  4042. -axis is the mean relative coverage depth of that bin across all promoters
  4043. in the cluster.
  4044. Each line represents the average
  4045. \begin_inset Quotes eld
  4046. \end_inset
  4047. shape
  4048. \begin_inset Quotes erd
  4049. \end_inset
  4050. of the promoter coverage for promoters in that cluster.
  4051. PCA was performed on the same data, and the first two principal components
  4052. were plotted, coloring each point by its K-means cluster identity (b).
  4053. For each cluster, the distribution of gene expression values was plotted
  4054. (c).
  4055. \end_layout
  4056. \end_inset
  4057. \end_layout
  4058. \end_inset
  4059. \end_layout
  4060. \begin_layout Standard
  4061. \begin_inset ERT
  4062. status open
  4063. \begin_layout Plain Layout
  4064. \backslash
  4065. end{landscape}
  4066. \end_layout
  4067. \begin_layout Plain Layout
  4068. }
  4069. \end_layout
  4070. \end_inset
  4071. \end_layout
  4072. \begin_layout Standard
  4073. \begin_inset Flex TODO Note (inline)
  4074. status open
  4075. \begin_layout Plain Layout
  4076. Is there more to say here?
  4077. \end_layout
  4078. \end_inset
  4079. \end_layout
  4080. \begin_layout Standard
  4081. All observations described above for H3K4me2 ChIP-seq also appear to hold
  4082. for H3K4me3 as well (Figure
  4083. \begin_inset CommandInset ref
  4084. LatexCommand ref
  4085. reference "fig:H3K4me3-neighborhood"
  4086. plural "false"
  4087. caps "false"
  4088. noprefix "false"
  4089. \end_inset
  4090. ).
  4091. This is expected, since there is a high correlation between the positions
  4092. where both histone marks occur.
  4093. \end_layout
  4094. \begin_layout Subsection
  4095. Promoter coverage H3K27me3
  4096. \end_layout
  4097. \begin_layout Standard
  4098. \begin_inset ERT
  4099. status open
  4100. \begin_layout Plain Layout
  4101. \backslash
  4102. afterpage{
  4103. \end_layout
  4104. \begin_layout Plain Layout
  4105. \backslash
  4106. begin{landscape}
  4107. \end_layout
  4108. \end_inset
  4109. \end_layout
  4110. \begin_layout Standard
  4111. \begin_inset Float figure
  4112. wide false
  4113. sideways false
  4114. status collapsed
  4115. \begin_layout Plain Layout
  4116. \align center
  4117. \begin_inset Float figure
  4118. wide false
  4119. sideways false
  4120. status open
  4121. \begin_layout Plain Layout
  4122. \align center
  4123. \begin_inset Graphics
  4124. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-neighborhood-clusters-CROP.png
  4125. lyxscale 25
  4126. width 30col%
  4127. groupId covprof-subfig
  4128. \end_inset
  4129. \end_layout
  4130. \begin_layout Plain Layout
  4131. \begin_inset Caption Standard
  4132. \begin_layout Plain Layout
  4133. \series bold
  4134. \begin_inset CommandInset label
  4135. LatexCommand label
  4136. name "fig:H3K27me3-neighborhood-clusters"
  4137. \end_inset
  4138. Average relative coverage for each bin in each cluster
  4139. \end_layout
  4140. \end_inset
  4141. \end_layout
  4142. \end_inset
  4143. \begin_inset space \hfill{}
  4144. \end_inset
  4145. \begin_inset Float figure
  4146. wide false
  4147. sideways false
  4148. status open
  4149. \begin_layout Plain Layout
  4150. \align center
  4151. \begin_inset Graphics
  4152. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-neighborhood-PCA-CROP.png
  4153. lyxscale 25
  4154. width 30col%
  4155. groupId covprof-subfig
  4156. \end_inset
  4157. \end_layout
  4158. \begin_layout Plain Layout
  4159. \begin_inset Caption Standard
  4160. \begin_layout Plain Layout
  4161. \series bold
  4162. \begin_inset CommandInset label
  4163. LatexCommand label
  4164. name "fig:H3K27me3-neighborhood-pca"
  4165. \end_inset
  4166. PCA of relative coverage depth, colored by K-means cluster membership.
  4167. \series default
  4168. Note that Cluster 6 is hidden behind all the other clusters.
  4169. \end_layout
  4170. \end_inset
  4171. \end_layout
  4172. \end_inset
  4173. \begin_inset space \hfill{}
  4174. \end_inset
  4175. \begin_inset Float figure
  4176. wide false
  4177. sideways false
  4178. status open
  4179. \begin_layout Plain Layout
  4180. \align center
  4181. \begin_inset Graphics
  4182. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-neighborhood-expression-CROP.png
  4183. lyxscale 25
  4184. width 30col%
  4185. groupId covprof-subfig
  4186. \end_inset
  4187. \end_layout
  4188. \begin_layout Plain Layout
  4189. \begin_inset Caption Standard
  4190. \begin_layout Plain Layout
  4191. \series bold
  4192. \begin_inset CommandInset label
  4193. LatexCommand label
  4194. name "fig:H3K27me3-neighborhood-expression"
  4195. \end_inset
  4196. Gene expression grouped by promoter coverage clusters.
  4197. \end_layout
  4198. \end_inset
  4199. \end_layout
  4200. \end_inset
  4201. \end_layout
  4202. \begin_layout Plain Layout
  4203. \begin_inset Flex TODO Note (inline)
  4204. status open
  4205. \begin_layout Plain Layout
  4206. Repeated figure legends are kind of an issue here.
  4207. What to do?
  4208. \end_layout
  4209. \end_inset
  4210. \end_layout
  4211. \begin_layout Plain Layout
  4212. \begin_inset Caption Standard
  4213. \begin_layout Plain Layout
  4214. \series bold
  4215. \begin_inset CommandInset label
  4216. LatexCommand label
  4217. name "fig:H3K27me3-neighborhood"
  4218. \end_inset
  4219. K-means clustering of promoter H3K27me3 relative coverage depth in naive
  4220. day 0 samples.
  4221. \series default
  4222. H3K27me3 ChIP-seq reads were binned into 500-bp windows tiled across each
  4223. promoter from 5
  4224. \begin_inset space ~
  4225. \end_inset
  4226. kbp upstream to 5
  4227. \begin_inset space ~
  4228. \end_inset
  4229. kbp downstream, and the logCPM values were normalized within each promoter
  4230. to an average of 0, yielding relative coverage depths.
  4231. These were then grouped using
  4232. \begin_inset Formula $k$
  4233. \end_inset
  4234. -means clustering with
  4235. \begin_inset Formula $K=6$
  4236. \end_inset
  4237. ,
  4238. \series bold
  4239. \series default
  4240. and the average bin values were plotted for each cluster (a).
  4241. The
  4242. \begin_inset Formula $x$
  4243. \end_inset
  4244. -axis is the genomic coordinate of each bin relative to the the transcription
  4245. start site, and the
  4246. \begin_inset Formula $y$
  4247. \end_inset
  4248. -axis is the mean relative coverage depth of that bin across all promoters
  4249. in the cluster.
  4250. Each line represents the average
  4251. \begin_inset Quotes eld
  4252. \end_inset
  4253. shape
  4254. \begin_inset Quotes erd
  4255. \end_inset
  4256. of the promoter coverage for promoters in that cluster.
  4257. PCA was performed on the same data, and the first two principal components
  4258. were plotted, coloring each point by its K-means cluster identity (b).
  4259. For each cluster, the distribution of gene expression values was plotted
  4260. (c).
  4261. \end_layout
  4262. \end_inset
  4263. \end_layout
  4264. \end_inset
  4265. \end_layout
  4266. \begin_layout Standard
  4267. \begin_inset ERT
  4268. status open
  4269. \begin_layout Plain Layout
  4270. \backslash
  4271. end{landscape}
  4272. \end_layout
  4273. \begin_layout Plain Layout
  4274. }
  4275. \end_layout
  4276. \end_inset
  4277. \end_layout
  4278. \begin_layout Standard
  4279. \begin_inset Flex TODO Note (inline)
  4280. status open
  4281. \begin_layout Plain Layout
  4282. Should maybe re-explain what was done or refer back to the previous section.
  4283. \end_layout
  4284. \end_inset
  4285. \end_layout
  4286. \begin_layout Standard
  4287. Unlike both H3K4 marks, whose main patterns of variation appear directly
  4288. related to the size and position of a single peak within the promoter,
  4289. the patterns of H3K27me3 methylation in promoters are more complex (Figure
  4290. \begin_inset CommandInset ref
  4291. LatexCommand ref
  4292. reference "fig:H3K27me3-neighborhood"
  4293. plural "false"
  4294. caps "false"
  4295. noprefix "false"
  4296. \end_inset
  4297. ).
  4298. Once again looking at the relative coverage in a 500-bp wide bins in a
  4299. 5kb radius around each TSS, promoters were clustered based on the normalized
  4300. relative coverage values in each bin using
  4301. \begin_inset Formula $k$
  4302. \end_inset
  4303. -means clustering with
  4304. \begin_inset Formula $K=6$
  4305. \end_inset
  4306. (Figure
  4307. \begin_inset CommandInset ref
  4308. LatexCommand ref
  4309. reference "fig:H3K27me3-neighborhood-clusters"
  4310. plural "false"
  4311. caps "false"
  4312. noprefix "false"
  4313. \end_inset
  4314. ).
  4315. This time, 3
  4316. \begin_inset Quotes eld
  4317. \end_inset
  4318. axes
  4319. \begin_inset Quotes erd
  4320. \end_inset
  4321. of variation can be observed, each represented by 2 clusters with opposing
  4322. patterns.
  4323. The first axis is greater upstream coverage (Cluster 1) vs.
  4324. greater downstream coverage (Cluster 3); the second axis is the coverage
  4325. at the TSS itself: peak (Cluster 4) or trough (Cluster 2); lastly, the
  4326. third axis represents a trough upstream of the TSS (Cluster 5) vs.
  4327. downstream of the TSS (Cluster 6).
  4328. Referring to these opposing pairs of clusters as axes of variation is justified
  4329. , because they correspond precisely to the first 3 principal components
  4330. in the PCA plot of the relative coverage values (Figure
  4331. \begin_inset CommandInset ref
  4332. LatexCommand ref
  4333. reference "fig:H3K27me3-neighborhood-pca"
  4334. plural "false"
  4335. caps "false"
  4336. noprefix "false"
  4337. \end_inset
  4338. ).
  4339. The PCA plot reveals that as in the case of H3K4me2, all the
  4340. \begin_inset Quotes eld
  4341. \end_inset
  4342. clusters
  4343. \begin_inset Quotes erd
  4344. \end_inset
  4345. are really just sections of a single connected cloud rather than discrete
  4346. clusters.
  4347. The cloud is approximately ellipsoid-shaped, with each PC being an axis
  4348. of the ellipse, and each cluster consisting of a pyrimidal section of the
  4349. ellipsoid.
  4350. \end_layout
  4351. \begin_layout Standard
  4352. In Figure
  4353. \begin_inset CommandInset ref
  4354. LatexCommand ref
  4355. reference "fig:H3K27me3-neighborhood-expression"
  4356. plural "false"
  4357. caps "false"
  4358. noprefix "false"
  4359. \end_inset
  4360. , we can see that Clusters 1 and 2 are the only clusters with higher gene
  4361. expression than the others.
  4362. For Cluster 2, this is expected, since this cluster represents genes with
  4363. depletion of H3K27me3 near the promoter.
  4364. Hence, elevated expression in cluster 2 is consistent with the conventional
  4365. view of H3K27me3 as a deactivating mark.
  4366. However, Cluster 1, the cluster with the most elevated gene expression,
  4367. represents genes with elevated coverage upstream of the TSS, or equivalently,
  4368. decreased coverage downstream, inside the gene body.
  4369. The opposite pattern, in which H3K27me3 is more abundant within the gene
  4370. body and less abundance in the upstream promoter region, does not show
  4371. any elevation in gene expression.
  4372. As with H3K4me2, this shows that the location of H3K27 trimethylation relative
  4373. to the TSS is potentially an important factor beyond simple proximity.
  4374. \end_layout
  4375. \begin_layout Standard
  4376. \begin_inset Flex TODO Note (inline)
  4377. status open
  4378. \begin_layout Plain Layout
  4379. Show the figures where the negative result ended this line of inquiry.
  4380. I need to debug some errors resulting from an R upgrade to do this.
  4381. \end_layout
  4382. \end_inset
  4383. \end_layout
  4384. \begin_layout Subsection
  4385. Defined pattern analysis
  4386. \end_layout
  4387. \begin_layout Standard
  4388. \begin_inset Flex TODO Note (inline)
  4389. status open
  4390. \begin_layout Plain Layout
  4391. This was where I defined interesting expression patterns and then looked
  4392. at initial relative promoter coverage for each expression pattern.
  4393. Negative result.
  4394. I forgot about this until recently.
  4395. Worth including? Remember to also write methods.
  4396. \end_layout
  4397. \end_inset
  4398. \end_layout
  4399. \begin_layout Subsection
  4400. Promoter CpG islands?
  4401. \end_layout
  4402. \begin_layout Standard
  4403. \begin_inset Flex TODO Note (inline)
  4404. status collapsed
  4405. \begin_layout Plain Layout
  4406. I forgot until recently about the work I did on this.
  4407. Worth including? Remember to also write methods.
  4408. \end_layout
  4409. \end_inset
  4410. \end_layout
  4411. \begin_layout Section
  4412. Discussion
  4413. \end_layout
  4414. \begin_layout Standard
  4415. \begin_inset Flex TODO Note (inline)
  4416. status open
  4417. \begin_layout Plain Layout
  4418. Write better section headers
  4419. \end_layout
  4420. \end_inset
  4421. \end_layout
  4422. \begin_layout Subsection
  4423. Effective promoter radius
  4424. \end_layout
  4425. \begin_layout Standard
  4426. Figure
  4427. \begin_inset CommandInset ref
  4428. LatexCommand ref
  4429. reference "fig:near-promoter-peak-enrich"
  4430. plural "false"
  4431. caps "false"
  4432. noprefix "false"
  4433. \end_inset
  4434. shows that H3K4me2, H3K4me3, and H3K27me3 are all enriched near promoters,
  4435. relative to the rest of the genome, consistent with their conventionally
  4436. understood role in regulating gene transcription.
  4437. Interestingly, the radius within this enrichment occurs is not the same
  4438. for each histone mark.
  4439. H3K4me2 and H3K4me3 are enriched within a 1
  4440. \begin_inset space \thinspace{}
  4441. \end_inset
  4442. kb radius, while H3K27me3 is enriched within 2.5
  4443. \begin_inset space \thinspace{}
  4444. \end_inset
  4445. kb.
  4446. Notably, the determined promoter radius was consistent across all experimental
  4447. conditions, varying only between different histone marks.
  4448. This suggests that the conventional
  4449. \begin_inset Quotes eld
  4450. \end_inset
  4451. one size fits all
  4452. \begin_inset Quotes erd
  4453. \end_inset
  4454. approach of defining a single promoter region for each gene (or each TSS)
  4455. and using that same promoter region for analyzing all types of genomic
  4456. data within an experiment may not be appropriate, and a better approach
  4457. may be to use a separate promoter radius for each kind of data, with each
  4458. radius being derived from the data itself.
  4459. Furthermore, the apparent assymetry of upstream and downstream promoter
  4460. histone modification with respect to gene expression, seen in Figures
  4461. \begin_inset CommandInset ref
  4462. LatexCommand ref
  4463. reference "fig:H3K4me2-neighborhood"
  4464. plural "false"
  4465. caps "false"
  4466. noprefix "false"
  4467. \end_inset
  4468. ,
  4469. \begin_inset CommandInset ref
  4470. LatexCommand ref
  4471. reference "fig:H3K4me3-neighborhood"
  4472. plural "false"
  4473. caps "false"
  4474. noprefix "false"
  4475. \end_inset
  4476. , and
  4477. \begin_inset CommandInset ref
  4478. LatexCommand ref
  4479. reference "fig:H3K27me3-neighborhood"
  4480. plural "false"
  4481. caps "false"
  4482. noprefix "false"
  4483. \end_inset
  4484. , shows that even the concept of a promoter
  4485. \begin_inset Quotes eld
  4486. \end_inset
  4487. radius
  4488. \begin_inset Quotes erd
  4489. \end_inset
  4490. is likely an oversimplification.
  4491. At a minimum, nearby enrichment of peaks should be evaluated separately
  4492. for both upstream and downstream peaks, and an appropriate
  4493. \begin_inset Quotes eld
  4494. \end_inset
  4495. radius
  4496. \begin_inset Quotes erd
  4497. \end_inset
  4498. should be selected for each direction.
  4499. \end_layout
  4500. \begin_layout Standard
  4501. Figures
  4502. \begin_inset CommandInset ref
  4503. LatexCommand ref
  4504. reference "fig:H3K4me2-neighborhood"
  4505. plural "false"
  4506. caps "false"
  4507. noprefix "false"
  4508. \end_inset
  4509. and
  4510. \begin_inset CommandInset ref
  4511. LatexCommand ref
  4512. reference "fig:H3K4me3-neighborhood"
  4513. plural "false"
  4514. caps "false"
  4515. noprefix "false"
  4516. \end_inset
  4517. show that the determined promoter radius of 1
  4518. \begin_inset space ~
  4519. \end_inset
  4520. kb is approximately consistent with the distance from the TSS at which enrichmen
  4521. t of H3K4 methylationis correlates with increased expression, showing that
  4522. this radius, which was determined by a simple analysis of measuring the
  4523. distance from each TSS to the nearest peak, also has functional significance.
  4524. For H3K27me3, the correlation between histone modification near the promoter
  4525. and gene expression is more complex, involving non-peak variations such
  4526. as troughs in coverage at the TSS and asymmetric coverage upstream and
  4527. downstream, so it is difficult in this case to evaluate whether the 2.5
  4528. \begin_inset space ~
  4529. \end_inset
  4530. kb radius determined from TSS-to-peak distances is functionally significant.
  4531. However, the two patterns of coverage associated with elevated expression
  4532. levels both have interesting features within this radius.
  4533. \end_layout
  4534. \begin_layout Standard
  4535. \begin_inset Flex TODO Note (inline)
  4536. status open
  4537. \begin_layout Plain Layout
  4538. My instinct is to say
  4539. \begin_inset Quotes eld
  4540. \end_inset
  4541. further study is needed
  4542. \begin_inset Quotes erd
  4543. \end_inset
  4544. here, but that goes in Chapter 5, right?
  4545. \end_layout
  4546. \end_inset
  4547. \end_layout
  4548. \begin_layout Subsection
  4549. Convergence
  4550. \end_layout
  4551. \begin_layout Standard
  4552. \begin_inset Flex TODO Note (inline)
  4553. status open
  4554. \begin_layout Plain Layout
  4555. Look up some more references for these histone marks being involved in memory
  4556. differentiation.
  4557. (Ask Sarah)
  4558. \end_layout
  4559. \end_inset
  4560. \end_layout
  4561. \begin_layout Standard
  4562. We have observed that all 3 histone marks and the gene expression data all
  4563. exhibit evidence of convergence in abundance between naive and memory cells
  4564. by day 14 after activation (Figure
  4565. \begin_inset CommandInset ref
  4566. LatexCommand ref
  4567. reference "fig:PCoA-promoters"
  4568. plural "false"
  4569. caps "false"
  4570. noprefix "false"
  4571. \end_inset
  4572. , Table
  4573. \begin_inset CommandInset ref
  4574. LatexCommand ref
  4575. reference "tab:Number-signif-promoters"
  4576. plural "false"
  4577. caps "false"
  4578. noprefix "false"
  4579. \end_inset
  4580. ).
  4581. The MOFA latent factor scatter plots (Figure
  4582. \begin_inset CommandInset ref
  4583. LatexCommand ref
  4584. reference "fig:mofa-lf-scatter"
  4585. plural "false"
  4586. caps "false"
  4587. noprefix "false"
  4588. \end_inset
  4589. ) show that this pattern of convergence is captured in latent factor 5.
  4590. Like all the latent factors in this plot, this factor explains a substantial
  4591. portion of the variance in all 4 data sets, indicating a coordinated pattern
  4592. of variation shared across all histone marks and gene expression.
  4593. This, of course, is consistent with the expectation that any naive CD4
  4594. T-cells remaining at day 14 should have differentiated into memory cells
  4595. by that time, and should therefore have a genomic state similar to memory
  4596. cells.
  4597. This convergence is evidence that these histone marks all play an important
  4598. role in the naive-to-memory differentiation process.
  4599. A histone mark that was not involved in naive-to-memory differentiation
  4600. would not be expected to converge in this way after activation.
  4601. \end_layout
  4602. \begin_layout Standard
  4603. \begin_inset Float figure
  4604. wide false
  4605. sideways false
  4606. status collapsed
  4607. \begin_layout Plain Layout
  4608. \align center
  4609. \begin_inset Graphics
  4610. filename graphics/CD4-csaw/LaMere2016_fig8.pdf
  4611. lyxscale 50
  4612. width 60col%
  4613. groupId colwidth
  4614. \end_inset
  4615. \end_layout
  4616. \begin_layout Plain Layout
  4617. \begin_inset Caption Standard
  4618. \begin_layout Plain Layout
  4619. \series bold
  4620. \begin_inset CommandInset label
  4621. LatexCommand label
  4622. name "fig:Lamere2016-Fig8"
  4623. \end_inset
  4624. Lamere 2016 Figure 8
  4625. \begin_inset CommandInset citation
  4626. LatexCommand cite
  4627. key "LaMere2016"
  4628. literal "false"
  4629. \end_inset
  4630. ,
  4631. \begin_inset Quotes eld
  4632. \end_inset
  4633. Model for the role of H3K4 methylation during CD4 T-cell activation.
  4634. \begin_inset Quotes erd
  4635. \end_inset
  4636. \series default
  4637. Reproduced with permission.
  4638. \end_layout
  4639. \end_inset
  4640. \end_layout
  4641. \end_inset
  4642. \end_layout
  4643. \begin_layout Standard
  4644. In H3K4me2, H3K4me3, and RNA-seq, this convergence appears to be in progress
  4645. already by Day 5, shown by the smaller distance between naive and memory
  4646. cells at day 5 along the
  4647. \begin_inset Formula $y$
  4648. \end_inset
  4649. -axes in Figures
  4650. \begin_inset CommandInset ref
  4651. LatexCommand ref
  4652. reference "fig:PCoA-H3K4me2-prom"
  4653. plural "false"
  4654. caps "false"
  4655. noprefix "false"
  4656. \end_inset
  4657. ,
  4658. \begin_inset CommandInset ref
  4659. LatexCommand ref
  4660. reference "fig:PCoA-H3K4me3-prom"
  4661. plural "false"
  4662. caps "false"
  4663. noprefix "false"
  4664. \end_inset
  4665. , and
  4666. \begin_inset CommandInset ref
  4667. LatexCommand ref
  4668. reference "fig:RNA-PCA-group"
  4669. plural "false"
  4670. caps "false"
  4671. noprefix "false"
  4672. \end_inset
  4673. .
  4674. This agrees with the model proposed by Sarah Lamere based on an prior analysis
  4675. of the same data, shown in Figure
  4676. \begin_inset CommandInset ref
  4677. LatexCommand ref
  4678. reference "fig:Lamere2016-Fig8"
  4679. plural "false"
  4680. caps "false"
  4681. noprefix "false"
  4682. \end_inset
  4683. , which shows the pattern of H3K4 methylation and expression for naive cells
  4684. and memory cells converging at day 5.
  4685. This model was developed without the benefit of the PCoA plots in Figure
  4686. \begin_inset CommandInset ref
  4687. LatexCommand ref
  4688. reference "fig:PCoA-promoters"
  4689. plural "false"
  4690. caps "false"
  4691. noprefix "false"
  4692. \end_inset
  4693. , which have been corrected for confounding factors by ComBat and SVA.
  4694. This shows that proper batch correction assists in extracting meaningful
  4695. patterns in the data while eliminating systematic sources of irrelevant
  4696. variation in the data, allowing simple automated procedures like PCoA to
  4697. reveal interesting behaviors in the data that were previously only detectable
  4698. by a detailed manual analysis.
  4699. \end_layout
  4700. \begin_layout Standard
  4701. While the ideal comparison to demonstrate this convergence would be naive
  4702. cells at day 14 to memory cells at day 0, this is not feasible in this
  4703. experimental system, since neither naive nor memory cells are able to fully
  4704. return to their pre-activation state, as shown by the lack of overlap between
  4705. days 0 and 14 for either naive or memory cells in Figure
  4706. \begin_inset CommandInset ref
  4707. LatexCommand ref
  4708. reference "fig:PCoA-promoters"
  4709. plural "false"
  4710. caps "false"
  4711. noprefix "false"
  4712. \end_inset
  4713. .
  4714. \end_layout
  4715. \begin_layout Subsection
  4716. Positional
  4717. \end_layout
  4718. \begin_layout Standard
  4719. When looking at patterns in the relative coverage of each histone mark near
  4720. the TSS of each gene, several interesting patterns were apparent.
  4721. For H3K4me2 and H3K4me3, the pattern was straightforward: the consistent
  4722. pattern across all promoters was a single peak a few kb wide, with the
  4723. main axis of variation being the position of this peak relative to the
  4724. TSS (Figures
  4725. \begin_inset CommandInset ref
  4726. LatexCommand ref
  4727. reference "fig:H3K4me2-neighborhood"
  4728. plural "false"
  4729. caps "false"
  4730. noprefix "false"
  4731. \end_inset
  4732. &
  4733. \begin_inset CommandInset ref
  4734. LatexCommand ref
  4735. reference "fig:H3K4me3-neighborhood"
  4736. plural "false"
  4737. caps "false"
  4738. noprefix "false"
  4739. \end_inset
  4740. ).
  4741. There were no obvious
  4742. \begin_inset Quotes eld
  4743. \end_inset
  4744. preferred
  4745. \begin_inset Quotes erd
  4746. \end_inset
  4747. positions, but rather a continuous distribution of relative positions ranging
  4748. all across the promoter region.
  4749. The association with gene expression was also straightforward: peaks closer
  4750. to the TSS were more strongly associated with elevated gene expression.
  4751. Coverage downstream of the TSS appears to be more strongly associated with
  4752. elevated expression than coverage the same distance upstream, indicating
  4753. that the
  4754. \begin_inset Quotes eld
  4755. \end_inset
  4756. effective promoter region
  4757. \begin_inset Quotes erd
  4758. \end_inset
  4759. for H3K4me2 and H3K4me3 may be centered downstream of the TSS.
  4760. \end_layout
  4761. \begin_layout Standard
  4762. The relative promoter coverage for H3K27me3 had a more complex pattern,
  4763. with two specific patterns of promoter coverage associated with elevated
  4764. expression: a sharp depletion of H3K27me3 around the TSS relative to the
  4765. surrounding area, and a depletion of H3K27me3 downstream of the TSS relative
  4766. to upstream (Figure
  4767. \begin_inset CommandInset ref
  4768. LatexCommand ref
  4769. reference "fig:H3K27me3-neighborhood"
  4770. plural "false"
  4771. caps "false"
  4772. noprefix "false"
  4773. \end_inset
  4774. ).
  4775. A previous study found that H3K27me3 depletion within the gene body was
  4776. associated with elevated gene expression in 4 different cell types in mice
  4777. \begin_inset CommandInset citation
  4778. LatexCommand cite
  4779. key "Young2011"
  4780. literal "false"
  4781. \end_inset
  4782. .
  4783. This is consistent with the second pattern described here.
  4784. This study also reported that a spike in coverage at the TSS was associated
  4785. with
  4786. \emph on
  4787. lower
  4788. \emph default
  4789. expression, which is indirectly consistent with the first pattern described
  4790. here, in the sense that it associates lower H3K27me3 levels near the TSS
  4791. with higher expression.
  4792. \end_layout
  4793. \begin_layout Subsection
  4794. Workflow
  4795. \end_layout
  4796. \begin_layout Standard
  4797. \begin_inset ERT
  4798. status open
  4799. \begin_layout Plain Layout
  4800. \backslash
  4801. afterpage{
  4802. \end_layout
  4803. \begin_layout Plain Layout
  4804. \backslash
  4805. begin{landscape}
  4806. \end_layout
  4807. \end_inset
  4808. \end_layout
  4809. \begin_layout Standard
  4810. \begin_inset Float figure
  4811. wide false
  4812. sideways false
  4813. status open
  4814. \begin_layout Plain Layout
  4815. \align center
  4816. \begin_inset Graphics
  4817. filename graphics/CD4-csaw/rulegraphs/rulegraph-all.pdf
  4818. lyxscale 50
  4819. width 100col%
  4820. height 95theight%
  4821. \end_inset
  4822. \end_layout
  4823. \begin_layout Plain Layout
  4824. \begin_inset Caption Standard
  4825. \begin_layout Plain Layout
  4826. \begin_inset CommandInset label
  4827. LatexCommand label
  4828. name "fig:rulegraph"
  4829. \end_inset
  4830. \series bold
  4831. Dependency graph of steps in reproducible workflow.
  4832. \end_layout
  4833. \end_inset
  4834. \end_layout
  4835. \end_inset
  4836. \end_layout
  4837. \begin_layout Standard
  4838. \begin_inset ERT
  4839. status open
  4840. \begin_layout Plain Layout
  4841. \backslash
  4842. end{landscape}
  4843. \end_layout
  4844. \begin_layout Plain Layout
  4845. }
  4846. \end_layout
  4847. \end_inset
  4848. \end_layout
  4849. \begin_layout Standard
  4850. The analyses described in this chapter were organized into a reproducible
  4851. workflow using the Snakemake workflow management system.
  4852. As shown in Figure
  4853. \begin_inset CommandInset ref
  4854. LatexCommand ref
  4855. reference "fig:rulegraph"
  4856. plural "false"
  4857. caps "false"
  4858. noprefix "false"
  4859. \end_inset
  4860. , the workflow includes many steps with complex dependencies between them.
  4861. For example, the step that counts the number of ChIP-seq reads in 500
  4862. \begin_inset space ~
  4863. \end_inset
  4864. bp windows in each promoter (the starting point for Figures
  4865. \begin_inset CommandInset ref
  4866. LatexCommand ref
  4867. reference "fig:H3K4me2-neighborhood"
  4868. plural "false"
  4869. caps "false"
  4870. noprefix "false"
  4871. \end_inset
  4872. ,
  4873. \begin_inset CommandInset ref
  4874. LatexCommand ref
  4875. reference "fig:H3K4me3-neighborhood"
  4876. plural "false"
  4877. caps "false"
  4878. noprefix "false"
  4879. \end_inset
  4880. , and
  4881. \begin_inset CommandInset ref
  4882. LatexCommand ref
  4883. reference "fig:H3K27me3-neighborhood"
  4884. plural "false"
  4885. caps "false"
  4886. noprefix "false"
  4887. \end_inset
  4888. ), named
  4889. \begin_inset Formula $\texttt{chipseq\_count\_tss\_neighborhoods}$
  4890. \end_inset
  4891. , depends on the RNA-seq abundance estimates in order to select the most-used
  4892. TSS for each gene, the aligned ChIP-seq reads, the index for those reads,
  4893. and the blacklist of regions to be excluded from ChIP-seq analysis.
  4894. Each step declares its inputs and outputs, and Snakemake uses these to
  4895. determine the dependencies between steps.
  4896. Each step is marked as depending on all the steps whose outputs match its
  4897. inputs, generating the workflow graph in Figure
  4898. \begin_inset CommandInset ref
  4899. LatexCommand ref
  4900. reference "fig:rulegraph"
  4901. plural "false"
  4902. caps "false"
  4903. noprefix "false"
  4904. \end_inset
  4905. , which Snakemake uses to determine order in which to execute each step
  4906. so that each step is executed only after all of the steps it depends on
  4907. have completed, thereby automating the entire workflow from start to finish.
  4908. \end_layout
  4909. \begin_layout Standard
  4910. In addition to simply making it easier to organize the steps in the analysis,
  4911. structuring the analysis as a workflow allowed for some analysis strategies
  4912. that would not have been practical otherwise.
  4913. For example, 5 different RNA-seq quantification methods were tested against
  4914. two different reference transcriptome annotations for a total of 10 different
  4915. quantifications of the same RNA-seq data.
  4916. These were then compared against each other in the exploratory data analysis
  4917. step, to determine that the results were not very sensitive to either the
  4918. choice of quantification method or the choice of annotation.
  4919. This was possible with a single script for the exploratory data analysis,
  4920. because Snakemake was able to automate running this script for every combinatio
  4921. n of method and reference.
  4922. In a similar manner, two different peak calling methods were tested against
  4923. each other, and in this case it was determined that SICER was unambiguously
  4924. superior to MACS for all histone marks studied.
  4925. By enabling these types of comparisons, structuring the analysis as an
  4926. automated workflow allowed important analysis decisions to be made in a
  4927. data-driven way, by running every reasonable option through the downstream
  4928. steps, seeing the consequences of choosing each option, and deciding accordingl
  4929. y.
  4930. \end_layout
  4931. \begin_layout Subsection
  4932. Data quality issues limit conclusions
  4933. \end_layout
  4934. \begin_layout Standard
  4935. \begin_inset Flex TODO Note (inline)
  4936. status open
  4937. \begin_layout Plain Layout
  4938. Is this needed?
  4939. \end_layout
  4940. \end_inset
  4941. \end_layout
  4942. \begin_layout Section
  4943. Future Directions
  4944. \end_layout
  4945. \begin_layout Standard
  4946. The analysis of RNA-seq and ChIP-seq in CD4 T-cells in Chapter 2 is in many
  4947. ways a preliminary study that suggests a multitude of new avenues of investigat
  4948. ion.
  4949. Here we consider a selection of such avenues.
  4950. \end_layout
  4951. \begin_layout Subsection
  4952. Negative results
  4953. \end_layout
  4954. \begin_layout Standard
  4955. Two additional analyses were conducted beyond those reported in the results.
  4956. First, we searched for evidence that the presence or absence of a CpG island
  4957. in the promoter was correlated with increases or decreases in gene expression
  4958. or any histone mark in any of the tested contrasts.
  4959. Second, we searched for evidence that the relative ChIP-seq coverage profiles
  4960. prior to activations could predict the change in expression of a gene after
  4961. activation.
  4962. Neither analysis turned up any clear positive results.
  4963. \end_layout
  4964. \begin_layout Subsection
  4965. Improve on the idea of an effective promoter radius
  4966. \end_layout
  4967. \begin_layout Standard
  4968. This study introduced the concept of an
  4969. \begin_inset Quotes eld
  4970. \end_inset
  4971. effective promoter radius
  4972. \begin_inset Quotes erd
  4973. \end_inset
  4974. specific to each histone mark based on distince from the TSS within which
  4975. an excess of peaks was called for that mark.
  4976. This concept was then used to guide further analyses throughout the study.
  4977. However, while the effective promoter radius was useful in those analyses,
  4978. it is both limited in theory and shown in practice to be a possible oversimplif
  4979. ication.
  4980. First, the effective promoter radii used in this study were chosen based
  4981. on manual inspection of the TSS-to-peak distance distributions in Figure
  4982. \begin_inset CommandInset ref
  4983. LatexCommand ref
  4984. reference "fig:near-promoter-peak-enrich"
  4985. plural "false"
  4986. caps "false"
  4987. noprefix "false"
  4988. \end_inset
  4989. , selecting round numbers of analyst convenience (Table
  4990. \begin_inset CommandInset ref
  4991. LatexCommand ref
  4992. reference "tab:effective-promoter-radius"
  4993. plural "false"
  4994. caps "false"
  4995. noprefix "false"
  4996. \end_inset
  4997. ).
  4998. It would be better to define an algorithm that selects a more precise radius
  4999. based on the features of the graph.
  5000. One possible way to do this would be to randomly rearrange the called peaks
  5001. throughout the genome many (while preserving the distribution of peak widths)
  5002. and re-generate the same plot as in Figure
  5003. \begin_inset CommandInset ref
  5004. LatexCommand ref
  5005. reference "fig:near-promoter-peak-enrich"
  5006. plural "false"
  5007. caps "false"
  5008. noprefix "false"
  5009. \end_inset
  5010. .
  5011. This would yield a better
  5012. \begin_inset Quotes eld
  5013. \end_inset
  5014. background
  5015. \begin_inset Quotes erd
  5016. \end_inset
  5017. distribution that demonstrates the degree of near-TSS enrichment that would
  5018. be expected by random chance.
  5019. The effective promoter radius could be defined as the point where the true
  5020. distribution diverges from the randomized background distribution.
  5021. \end_layout
  5022. \begin_layout Standard
  5023. Furthermore, the above definition of effective promoter radius has the significa
  5024. nt limitation of being based on the peak calling method.
  5025. It is thus very sensitive to the choice of peak caller and significance
  5026. threshold for calling peaks, as well as the degree of saturation in the
  5027. sequencing.
  5028. Calling peaks from ChIP-seq samples with insufficient coverage depth, with
  5029. the wrong peak caller, or with a different significance threshold could
  5030. give a drastically different number of called peaks, and hence a drastically
  5031. different distribution of peak-to-TSS distances.
  5032. To address this, it is desirable to develop a better method of determining
  5033. the effective promoter radius that relies only on the distribution of read
  5034. coverage around the TSS, independent of the peak calling.
  5035. Furthermore, as demonstrated by the upstream-downstream asymmetries observed
  5036. in Figures
  5037. \begin_inset CommandInset ref
  5038. LatexCommand ref
  5039. reference "fig:H3K4me2-neighborhood"
  5040. plural "false"
  5041. caps "false"
  5042. noprefix "false"
  5043. \end_inset
  5044. ,
  5045. \begin_inset CommandInset ref
  5046. LatexCommand ref
  5047. reference "fig:H3K4me3-neighborhood"
  5048. plural "false"
  5049. caps "false"
  5050. noprefix "false"
  5051. \end_inset
  5052. , and
  5053. \begin_inset CommandInset ref
  5054. LatexCommand ref
  5055. reference "fig:H3K27me3-neighborhood"
  5056. plural "false"
  5057. caps "false"
  5058. noprefix "false"
  5059. \end_inset
  5060. , this definition should determine a different radius for the upstream and
  5061. downstream directions.
  5062. At this point, it may be better to rename this concept
  5063. \begin_inset Quotes eld
  5064. \end_inset
  5065. effective promoter extent
  5066. \begin_inset Quotes erd
  5067. \end_inset
  5068. and avoid the word
  5069. \begin_inset Quotes eld
  5070. \end_inset
  5071. radius
  5072. \begin_inset Quotes erd
  5073. \end_inset
  5074. , since a radius implies a symmetry about the TSS that is not supported
  5075. by the data.
  5076. \end_layout
  5077. \begin_layout Standard
  5078. Beyond improving the definition of effective promoter extent, functional
  5079. validation is necessary to show that this measure of near-TSS enrichment
  5080. has biological meaning.
  5081. Figures
  5082. \begin_inset CommandInset ref
  5083. LatexCommand ref
  5084. reference "fig:H3K4me2-neighborhood"
  5085. plural "false"
  5086. caps "false"
  5087. noprefix "false"
  5088. \end_inset
  5089. and
  5090. \begin_inset CommandInset ref
  5091. LatexCommand ref
  5092. reference "fig:H3K4me3-neighborhood"
  5093. plural "false"
  5094. caps "false"
  5095. noprefix "false"
  5096. \end_inset
  5097. already provide a very limited functional validation of the chosen promoter
  5098. extents for H3K4me2 and H3K4me3 by showing that spikes in coverage within
  5099. this region are most strongly correlated with elevated gene expression.
  5100. However, there are other ways to show functional relevance of the promoter
  5101. extent.
  5102. For example, correlations could be computed between read counts in peaks
  5103. nearby gene promoters and the expression level of those genes, and these
  5104. correlations could be plotted against the distance of the peak upstream
  5105. or downstream of the gene's TSS.
  5106. If the promoter extent truly defines a
  5107. \begin_inset Quotes eld
  5108. \end_inset
  5109. sphere of influence
  5110. \begin_inset Quotes erd
  5111. \end_inset
  5112. within which a histone mark is involved with the regulation of a gene,
  5113. then the correlations for peaks within this extent should be significantly
  5114. higher than those further upstream or downstream.
  5115. Peaks within these extents may also be more likely to show differential
  5116. modification than those outside genic regions of the genome.
  5117. \end_layout
  5118. \begin_layout Subsection
  5119. Design experiments to focus on post-activation convergence of naive & memory
  5120. cells
  5121. \end_layout
  5122. \begin_layout Standard
  5123. In this study, a convergence between naive and memory cells was observed
  5124. in both the pattern of gene expression and in epigenetic state of the 3
  5125. histone marks studied, consistent with the hypothesis that any naive cells
  5126. remaining 14 days after activation have differentiated into memory cells,
  5127. and that both gene expression and these histone marks are involved in this
  5128. differentiation.
  5129. However, the current study was not designed with this specific hypothesis
  5130. in mind, and it therefore has some deficiencies with regard to testing
  5131. it.
  5132. The memory CD4 samples at day 14 do not resemble the memory samples at
  5133. day 0, indicating that in the specific model of activation used for this
  5134. experiment, the cells are not guaranteed to return to their original pre-activa
  5135. tion state, or perhaps this process takes substantially longer than 14 days.
  5136. This is a challenge for the convergence hypothesis because the ideal comparison
  5137. to prove that naive cells are converging to a resting memory state would
  5138. be to compare the final naive time point to the Day 0 memory samples, but
  5139. this comparison is only meaningful if memory cells generally return to
  5140. the same
  5141. \begin_inset Quotes eld
  5142. \end_inset
  5143. resting
  5144. \begin_inset Quotes erd
  5145. \end_inset
  5146. state that they started at.
  5147. \end_layout
  5148. \begin_layout Standard
  5149. To better study the convergence hypothesis, a new experiment should be designed
  5150. using a model system for T-cell activation that is known to allow cells
  5151. to return as closely as possible to their pre-activation state.
  5152. Alternatively, if it is not possible to find or design such a model system,
  5153. the same cell cultures could be activated serially multiple times, and
  5154. sequenced after each activation cycle right before the next activation.
  5155. It is likely that several activations in the same model system will settle
  5156. into a cylical pattern, converging to a consistent
  5157. \begin_inset Quotes eld
  5158. \end_inset
  5159. resting
  5160. \begin_inset Quotes erd
  5161. \end_inset
  5162. state after each activation, even if this state is different from the initial
  5163. resting state at Day 0.
  5164. If so, it will be possible to compare the final states of both naive and
  5165. memory cells to show that they converge despite different initial conditions.
  5166. \end_layout
  5167. \begin_layout Standard
  5168. In addition, if naive-to-memory convergence is a general pattern, it should
  5169. also be detectable in other epigenetic marks, including other histone marks
  5170. and DNA methylation.
  5171. An experiment should be designed studying a large number of epigenetic
  5172. marks known or suspected to be involved in regulation of gene expression,
  5173. assaying all of these at the same pre- and post-activation time points.
  5174. Multi-dataset factor analysis methods like MOFA can then be used to identify
  5175. coordinated patterns of regulation shared across many epigenetic marks.
  5176. If possible, some
  5177. \begin_inset Quotes eld
  5178. \end_inset
  5179. negative control
  5180. \begin_inset Quotes erd
  5181. \end_inset
  5182. marks should be included that are known
  5183. \emph on
  5184. not
  5185. \emph default
  5186. to be involved in T-cell activation or memory formation.
  5187. Of course, CD4 T-cells are not the only adaptive immune cells with memory.
  5188. A similar study could be designed for CD8 T-cells, B-cells, and even specific
  5189. subsets of CD4 T-cells.
  5190. \end_layout
  5191. \begin_layout Subsection
  5192. Follow up on hints of interesting patterns in promoter relative coverage
  5193. profiles
  5194. \end_layout
  5195. \begin_layout Standard
  5196. \begin_inset Flex TODO Note (inline)
  5197. status open
  5198. \begin_layout Plain Layout
  5199. I think I might need to write up the negative results for the Promoter CpG
  5200. and defined pattern analysis before writing this section.
  5201. \end_layout
  5202. \end_inset
  5203. \end_layout
  5204. \begin_layout Itemize
  5205. Also find better normalizations: maybe borrow from MACS/SICER background
  5206. correction methods?
  5207. \end_layout
  5208. \begin_layout Itemize
  5209. For H3K4, define polar coordinates based on PC1 & 2: R = peak size, Theta
  5210. = peak position.
  5211. Then correlate with expression.
  5212. \end_layout
  5213. \begin_layout Itemize
  5214. Current analysis only at Day 0.
  5215. Need to study across time points.
  5216. \end_layout
  5217. \begin_layout Itemize
  5218. Integrating data across so many dimensions is a significant analysis challenge
  5219. \end_layout
  5220. \begin_layout Subsection
  5221. Investigate causes of high correlation between mutually exclusive histone
  5222. marks
  5223. \end_layout
  5224. \begin_layout Standard
  5225. The high correlation between coverage depth observed between H3K4me2 and
  5226. H3K4me3 is both expected and unexpected.
  5227. Since both marks are associated with elevated gene transcription, a positive
  5228. correlation between them is not surprising.
  5229. However, these two marks represent different post-translational modifications
  5230. of the
  5231. \emph on
  5232. same
  5233. \emph default
  5234. lysine residue on the histone H3 polypeptide, which means that they cannot
  5235. both be present on the same H3 subunit.
  5236. Thus, the high correlation between them has several potential explanations.
  5237. One possible reason is cell population heterogeneity: perhaps some genomic
  5238. loci are frequently marked with H3K4me2 in some cells, while in other cells
  5239. the same loci are marked with H3K4me3.
  5240. Another possibility is allele-specific modifications: the loci are marked
  5241. in each diploid cell with H3K4me2 on one allele and H3K4me3 on the other
  5242. allele.
  5243. Lastly, since each histone octamer contains 2 H3 subunits, it is possible
  5244. that having one H3K4me2 mark and one H3K4me3 mark on a given histone octamer
  5245. represents a distinct epigenetic state with a different function than either
  5246. double H3K4me2 or double H3K4me3.
  5247. \end_layout
  5248. \begin_layout Standard
  5249. These three hypotheses could be disentangled by single-cell ChIP-seq.
  5250. If the correlation between these two histone marks persists even within
  5251. the reads for each individual cell, then cell population heterogeneity
  5252. cannot explain the correlation.
  5253. Allele-specific modification can be tested for by looking at the correlation
  5254. between read coverage of the two histone marks at heterozygous loci.
  5255. If the correlation between read counts for opposite loci is low, then this
  5256. is consistent with allele-specific modification.
  5257. Finally if the modifications do not separate by either cell or allele,
  5258. the colocation of these two marks is most likely occurring at the level
  5259. of individual histones, with the heterogenously modified histone representing
  5260. a distinct state.
  5261. \end_layout
  5262. \begin_layout Standard
  5263. However, another experiment would be required to show direct evidence of
  5264. such a heterogeneously modified state.
  5265. Specifically a
  5266. \begin_inset Quotes eld
  5267. \end_inset
  5268. double ChIP
  5269. \begin_inset Quotes erd
  5270. \end_inset
  5271. experiment would need to be performed, where the input DNA is first subjected
  5272. to an immunoprecipitation pulldown from the anti-H3K4me2 antibody, and
  5273. then the enriched material is collected, with proteins still bound, and
  5274. immunoprecipitated
  5275. \emph on
  5276. again
  5277. \emph default
  5278. using the anti-H3K4me3 antibody.
  5279. If this yields significant numbers of non-artifactual reads in the same
  5280. regions as the individual pulldowns of the two marks, this is strong evidence
  5281. that the two marks are occurring on opposite H3 subunits of the same histones.
  5282. \end_layout
  5283. \begin_layout Standard
  5284. \begin_inset Flex TODO Note (inline)
  5285. status open
  5286. \begin_layout Plain Layout
  5287. Try to see if double ChIP-seq is actually feasible, and if not, come up
  5288. with some other idea for directly detecting the mixed mod state.
  5289. Oh! Actually ChIP-seq isn't required, only double ChIP followed by quantificati
  5290. on.
  5291. That's one possible angle.
  5292. \end_layout
  5293. \end_inset
  5294. \end_layout
  5295. \begin_layout Chapter
  5296. Improving array-based diagnostics for transplant rejection by optimizing
  5297. data preprocessing
  5298. \end_layout
  5299. \begin_layout Standard
  5300. \begin_inset Note Note
  5301. status open
  5302. \begin_layout Plain Layout
  5303. Chapter author list: Me, Sunil, Tom, Padma, Dan
  5304. \end_layout
  5305. \end_inset
  5306. \end_layout
  5307. \begin_layout Section
  5308. Approach
  5309. \end_layout
  5310. \begin_layout Subsection
  5311. Proper pre-processing is essential for array data
  5312. \end_layout
  5313. \begin_layout Standard
  5314. \begin_inset Flex TODO Note (inline)
  5315. status open
  5316. \begin_layout Plain Layout
  5317. This section could probably use some citations
  5318. \end_layout
  5319. \end_inset
  5320. \end_layout
  5321. \begin_layout Standard
  5322. Microarrays, bead arrays, and similar assays produce raw data in the form
  5323. of fluorescence intensity measurements, with the each intensity measurement
  5324. proportional to the abundance of some fluorescently-labelled target DNA
  5325. or RNA sequence that base pairs to a specific probe sequence.
  5326. However, these measurements for each probe are also affected my many technical
  5327. confounding factors, such as the concentration of target material, strength
  5328. of off-target binding, and the sensitivity of the imaging sensor.
  5329. Some array designs also use multiple probe sequences for each target.
  5330. Hence, extensive pre-processing of array data is necessary to normalize
  5331. out the effects of these technical factors and summarize the information
  5332. from multiple probes to arrive at a single usable estimate of abundance
  5333. or other relevant quantity, such as a ratio of two abundances, for each
  5334. target.
  5335. \end_layout
  5336. \begin_layout Standard
  5337. The choice of pre-processing algorithms used in the analysis of an array
  5338. data set can have a large effect on the results of that analysis.
  5339. However, despite their importance, these steps are often neglected or rushed
  5340. in order to get to the more scientifically interesting analysis steps involving
  5341. the actual biology of the system under study.
  5342. Hence, it is often possible to achieve substantial gains in statistical
  5343. power, model goodness-of-fit, or other relevant performance measures, by
  5344. checking the assumptions made by each preprocessing step and choosing specific
  5345. normalization methods tailored to the specific goals of the current analysis.
  5346. \end_layout
  5347. \begin_layout Subsection
  5348. Clinical diagnostic applications for microarrays require single-channel
  5349. normalization
  5350. \end_layout
  5351. \begin_layout Standard
  5352. As the cost of performing microarray assays falls, there is increasing interest
  5353. in using genomic assays for diagnostic purposes, such as distinguishing
  5354. healthy transplants (TX) from transplants undergoing acute rejection (AR)
  5355. or acute dysfunction with no rejection (ADNR).
  5356. However, the the standard normalization algorithm used for microarray data,
  5357. Robust Multi-chip Average (RMA)
  5358. \begin_inset CommandInset citation
  5359. LatexCommand cite
  5360. key "Irizarry2003a"
  5361. literal "false"
  5362. \end_inset
  5363. , is not applicable in a clinical setting.
  5364. Two of the steps in RMA, quantile normalization and probe summarization
  5365. by median polish, depend on every array in the data set being normalized.
  5366. This means that adding or removing any arrays from a data set changes the
  5367. normalized values for all arrays, and data sets that have been normalized
  5368. separately cannot be compared to each other.
  5369. Hence, when using RMA, any arrays to be analyzed together must also be
  5370. normalized together, and the set of arrays included in the data set must
  5371. be held constant throughout an analysis.
  5372. \end_layout
  5373. \begin_layout Standard
  5374. These limitations present serious impediments to the use of arrays as a
  5375. diagnostic tool.
  5376. When training a classifier, the samples to be classified must not be involved
  5377. in any step of the training process, lest their inclusion bias the training
  5378. process.
  5379. Once a classifier is deployed in a clinical setting, the samples to be
  5380. classified will not even
  5381. \emph on
  5382. exist
  5383. \emph default
  5384. at the time of training, so including them would be impossible even if
  5385. it were statistically justifiable.
  5386. Therefore, any machine learning application for microarrays demands that
  5387. the normalized expression values computed for an array must depend only
  5388. on information contained within that array.
  5389. This would ensure that each array's normalization is independent of every
  5390. other array, and that arrays normalized separately can still be compared
  5391. to each other without bias.
  5392. Such a normalization is commonly referred to as
  5393. \begin_inset Quotes eld
  5394. \end_inset
  5395. single-channel normalization
  5396. \begin_inset Quotes erd
  5397. \end_inset
  5398. .
  5399. \end_layout
  5400. \begin_layout Standard
  5401. Frozen RMA (fRMA) addresses these concerns by replacing the quantile normalizati
  5402. on and median polish with alternatives that do not introduce inter-array
  5403. dependence, allowing each array to be normalized independently of all others
  5404. \begin_inset CommandInset citation
  5405. LatexCommand cite
  5406. key "McCall2010"
  5407. literal "false"
  5408. \end_inset
  5409. .
  5410. Quantile normalization is performed against a pre-generated set of quantiles
  5411. learned from a collection of 850 publically available arrays sampled from
  5412. a wide variety of tissues in the Gene Expression Omnibus (GEO).
  5413. Each array's probe intensity distribution is normalized against these pre-gener
  5414. ated quantiles.
  5415. The median polish step is replaced with a robust weighted average of probe
  5416. intensities, using inverse variance weights learned from the same public
  5417. GEO data.
  5418. The result is a normalization that satisfies the requirements mentioned
  5419. above: each array is normalized independently of all others, and any two
  5420. normalized arrays can be compared directly to each other.
  5421. \end_layout
  5422. \begin_layout Standard
  5423. One important limitation of fRMA is that it requires a separate reference
  5424. data set from which to learn the parameters (reference quantiles and probe
  5425. weights) that will be used to normalize each array.
  5426. These parameters are specific to a given array platform, and pre-generated
  5427. parameters are only provided for the most common platforms, such as Affymetrix
  5428. hgu133plus2.
  5429. For a less common platform, such as hthgu133pluspm, is is necessary to
  5430. learn custom parameters from in-house data before fRMA can be used to normalize
  5431. samples on that platform
  5432. \begin_inset CommandInset citation
  5433. LatexCommand cite
  5434. key "McCall2011"
  5435. literal "false"
  5436. \end_inset
  5437. .
  5438. \end_layout
  5439. \begin_layout Standard
  5440. One other option is the aptly-named Single Channel Array Normalization (SCAN),
  5441. which adapts a normalization method originally designed for tiling arrays
  5442. \begin_inset CommandInset citation
  5443. LatexCommand cite
  5444. key "Piccolo2012"
  5445. literal "false"
  5446. \end_inset
  5447. .
  5448. SCAN is truly single-channel in that it does not require a set of normalization
  5449. paramters estimated from an external set of reference samples like fRMA
  5450. does.
  5451. \end_layout
  5452. \begin_layout Subsection
  5453. Heteroskedasticity must be accounted for in methylation array data
  5454. \end_layout
  5455. \begin_layout Standard
  5456. DNA methylation arrays are a relatively new kind of assay that uses microarrays
  5457. to measure the degree of methylation on cytosines in specific regions arrayed
  5458. across the genome.
  5459. First, bisulfite treatment converts all unmethylated cytosines to uracil
  5460. (which then become thymine after amplication) while leaving methylated
  5461. cytosines unaffected.
  5462. Then, each target region is interrogated with two probes: one binds to
  5463. the original genomic sequence and interrogates the level of methylated
  5464. DNA, and the other binds to the same sequence with all cytosines replaced
  5465. by thymidines and interrogates the level of unmethylated DNA.
  5466. \end_layout
  5467. \begin_layout Standard
  5468. \begin_inset Float figure
  5469. wide false
  5470. sideways false
  5471. status collapsed
  5472. \begin_layout Plain Layout
  5473. \align center
  5474. \begin_inset Graphics
  5475. filename graphics/methylvoom/sigmoid.pdf
  5476. lyxscale 50
  5477. width 60col%
  5478. groupId colwidth
  5479. \end_inset
  5480. \end_layout
  5481. \begin_layout Plain Layout
  5482. \begin_inset Caption Standard
  5483. \begin_layout Plain Layout
  5484. \begin_inset CommandInset label
  5485. LatexCommand label
  5486. name "fig:Sigmoid-beta-m-mapping"
  5487. \end_inset
  5488. \series bold
  5489. Sigmoid shape of the mapping between β and M values
  5490. \end_layout
  5491. \end_inset
  5492. \end_layout
  5493. \end_inset
  5494. \end_layout
  5495. \begin_layout Standard
  5496. After normalization, these two probe intensities are summarized in one of
  5497. two ways, each with advantages and disadvantages.
  5498. β
  5499. \series bold
  5500. \series default
  5501. values, interpreted as fraction of DNA copies methylated, range from 0 to
  5502. 1.
  5503. β
  5504. \series bold
  5505. \series default
  5506. values are conceptually easy to interpret, but the constrained range makes
  5507. them unsuitable for linear modeling, and their error distributions are
  5508. highly non-normal, which also frustrates linear modeling.
  5509. M-values, interpreted as the log ratio of methylated to unmethylated copies,
  5510. are computed by mapping the beta values from
  5511. \begin_inset Formula $[0,1]$
  5512. \end_inset
  5513. onto
  5514. \begin_inset Formula $(-\infty,+\infty)$
  5515. \end_inset
  5516. using a sigmoid curve (Figure
  5517. \begin_inset CommandInset ref
  5518. LatexCommand ref
  5519. reference "fig:Sigmoid-beta-m-mapping"
  5520. plural "false"
  5521. caps "false"
  5522. noprefix "false"
  5523. \end_inset
  5524. ).
  5525. This transformation results in values with better statistical perperties:
  5526. the unconstrained range is suitable for linear modeling, and the error
  5527. distributions are more normal.
  5528. Hence, most linear modeling and other statistical testing on methylation
  5529. arrays is performed using M-values.
  5530. \end_layout
  5531. \begin_layout Standard
  5532. However, the steep slope of the sigmoid transformation near 0 and 1 tends
  5533. to over-exaggerate small differences in β values near those extremes, which
  5534. in turn amplifies the error in those values, leading to a U-shaped trend
  5535. in the mean-variance curve: extreme values have higher variances than values
  5536. near the middle.
  5537. This mean-variance dependency must be accounted for when fitting the linear
  5538. model for differential methylation, or else the variance will be systematically
  5539. overestimated for probes with moderate M-values and underestimated for
  5540. probes with extreme M-values.
  5541. This is particularly undesirable for methylation data because the intermediate
  5542. M-values are the ones of most interest, since they are more likely to represent
  5543. areas of varying methylation, whereas extreme M-values typically represent
  5544. complete methylation or complete lack of methylation.
  5545. \end_layout
  5546. \begin_layout Standard
  5547. RNA-seq read count data are also known to show heteroskedasticity, and the
  5548. voom method was introduced for modeling this heteroskedasticity by estimating
  5549. the mean-variance trend in the data and using this trend to assign precision
  5550. weights to each observation
  5551. \begin_inset CommandInset citation
  5552. LatexCommand cite
  5553. key "Law2013"
  5554. literal "false"
  5555. \end_inset
  5556. .
  5557. While methylation array data are not derived from counts and have a very
  5558. different mean-variance relationship from that of typical RNA-seq data,
  5559. the voom method makes no specific assumptions on the shape of the mean-variance
  5560. relationship – it only assumes that the relationship can be modeled as
  5561. a smooth curve.
  5562. Hence, the method is sufficiently general to model the mean-variance relationsh
  5563. ip in methylation array data.
  5564. However, the standard implementation of voom assumes that the input is
  5565. given in raw read counts, and it must be adapted to run on methylation
  5566. M-values.
  5567. \end_layout
  5568. \begin_layout Section
  5569. Methods
  5570. \end_layout
  5571. \begin_layout Subsection
  5572. Evaluation of classifier performance with different normalization methods
  5573. \end_layout
  5574. \begin_layout Standard
  5575. For testing different expression microarray normalizations, a data set of
  5576. 157 hgu133plus2 arrays was used, consisting of blood samples from kidney
  5577. transplant patients whose grafts had been graded as TX, AR, or ADNR via
  5578. biopsy and histology (46 TX, 69 AR, 42 ADNR)
  5579. \begin_inset CommandInset citation
  5580. LatexCommand cite
  5581. key "Kurian2014"
  5582. literal "true"
  5583. \end_inset
  5584. .
  5585. Additionally, an external validation set of 75 samples was gathered from
  5586. public GEO data (37 TX, 38 AR, no ADNR).
  5587. \end_layout
  5588. \begin_layout Standard
  5589. \begin_inset Flex TODO Note (inline)
  5590. status open
  5591. \begin_layout Plain Layout
  5592. Find appropriate GEO identifiers if possible.
  5593. Kurian 2014 says GSE15296, but this seems to be different data.
  5594. I also need to look up the GEO accession for the external validation set.
  5595. \end_layout
  5596. \end_inset
  5597. \end_layout
  5598. \begin_layout Standard
  5599. To evaluate the effect of each normalization on classifier performance,
  5600. the same classifier training and validation procedure was used after each
  5601. normalization method.
  5602. The PAM package was used to train a nearest shrunken centroid classifier
  5603. on the training set and select the appropriate threshold for centroid shrinking.
  5604. Then the trained classifier was used to predict the class probabilities
  5605. of each validation sample.
  5606. From these class probabilities, ROC curves and area-under-curve (AUC) values
  5607. were generated
  5608. \begin_inset CommandInset citation
  5609. LatexCommand cite
  5610. key "Turck2011"
  5611. literal "false"
  5612. \end_inset
  5613. .
  5614. Each normalization was tested on two different sets of training and validation
  5615. samples.
  5616. For internal validation, the 115 TX and AR arrays in the internal set were
  5617. split at random into two equal sized sets, one for training and one for
  5618. validation, each containing the same numbers of TX and AR samples as the
  5619. other set.
  5620. For external validation, the full set of 115 TX and AR samples were used
  5621. as a training set, and the 75 external TX and AR samples were used as the
  5622. validation set.
  5623. Thus, 2 ROC curves and AUC values were generated for each normalization
  5624. method: one internal and one external.
  5625. Because the external validation set contains no ADNR samples, only classificati
  5626. on of TX and AR samples was considered.
  5627. The ADNR samples were included during normalization but excluded from all
  5628. classifier training and validation.
  5629. This ensures that the performance on internal and external validation sets
  5630. is directly comparable, since both are performing the same task: distinguising
  5631. TX from AR.
  5632. \end_layout
  5633. \begin_layout Standard
  5634. \begin_inset Flex TODO Note (inline)
  5635. status open
  5636. \begin_layout Plain Layout
  5637. Summarize the get.best.threshold algorithm for PAM threshold selection, or
  5638. just put the code online?
  5639. \end_layout
  5640. \end_inset
  5641. \end_layout
  5642. \begin_layout Standard
  5643. Six different normalization strategies were evaluated.
  5644. First, 2 well-known non-single-channel normalization methods were considered:
  5645. RMA and dChip
  5646. \begin_inset CommandInset citation
  5647. LatexCommand cite
  5648. key "Li2001,Irizarry2003a"
  5649. literal "false"
  5650. \end_inset
  5651. .
  5652. Since RMA produces expression values on a log2 scale and dChip does not,
  5653. the values from dChip were log2 transformed after normalization.
  5654. Next, RMA and dChip followed by Global Rank-invariant Set Normalization
  5655. (GRSN) were tested
  5656. \begin_inset CommandInset citation
  5657. LatexCommand cite
  5658. key "Pelz2008"
  5659. literal "false"
  5660. \end_inset
  5661. .
  5662. Post-processing with GRSN does not turn RMA or dChip into single-channel
  5663. methods, but it may help mitigate batch effects and is therefore useful
  5664. as a benchmark.
  5665. Lastly, the two single-channel normalization methods, fRMA and SCAN, were
  5666. tested
  5667. \begin_inset CommandInset citation
  5668. LatexCommand cite
  5669. key "McCall2010,Piccolo2012"
  5670. literal "false"
  5671. \end_inset
  5672. .
  5673. When evaluting internal validation performance, only the 157 internal samples
  5674. were normalized; when evaluating external validation performance, all 157
  5675. internal samples and 75 external samples were normalized together.
  5676. \end_layout
  5677. \begin_layout Standard
  5678. For demonstrating the problem with separate normalization of training and
  5679. validation data, one additional normalization was performed: the internal
  5680. and external sets were each normalized separately using RMA, and the normalized
  5681. data for each set were combined into a single set with no further attempts
  5682. at normalizing between the two sets.
  5683. The represents approximately how RMA would have to be used in a clinical
  5684. setting, where the samples to be classified are not available at the time
  5685. the classifier is trained.
  5686. \end_layout
  5687. \begin_layout Subsection
  5688. Generating custom fRMA vectors for hthgu133pluspm array platform
  5689. \end_layout
  5690. \begin_layout Standard
  5691. In order to enable fRMA normalization for the hthgu133pluspm array platform,
  5692. custom fRMA normalization vectors were trained using the frmaTools package
  5693. \begin_inset CommandInset citation
  5694. LatexCommand cite
  5695. key "McCall2011"
  5696. literal "false"
  5697. \end_inset
  5698. .
  5699. Separate vectors were created for two types of samples: kidney graft biopsy
  5700. samples and blood samples from graft recipients.
  5701. For training, a 341 kidney biopsy samples from 2 data sets and 965 blood
  5702. samples from 5 data sets were used as the reference set.
  5703. Arrays were groups into batches based on unique combinations of sample
  5704. type (blood or biopsy), diagnosis (TX, AR, etc.), data set, and scan date.
  5705. Thus, each batch represents arrays of the same kind that were run together
  5706. on the same day.
  5707. For estimating the probe inverse variance weights, frmaTools requires equal-siz
  5708. ed batches, which means a batch size must be chosen, and then batches smaller
  5709. than that size must be ignored, while batches larger than the chosen size
  5710. must be downsampled.
  5711. This downsampling is performed randomly, so the sampling process is repeated
  5712. 5 times and the resulting normalizations are compared to each other.
  5713. \end_layout
  5714. \begin_layout Standard
  5715. To evaluate the consistency of the generated normalization vectors, the
  5716. 5 fRMA vector sets generated from 5 random batch samplings were each used
  5717. to normalize the same 20 randomly selected samples from each tissue.
  5718. Then the normalized expression values for each probe on each array were
  5719. compared across all normalizations.
  5720. Each fRMA normalization was also compared against the normalized expression
  5721. values obtained by normalizing the same 20 samples with ordinary RMA.
  5722. \end_layout
  5723. \begin_layout Subsection
  5724. Modeling methylation array M-value heteroskedasticy in linear models with
  5725. modified voom implementation
  5726. \end_layout
  5727. \begin_layout Standard
  5728. \begin_inset Flex TODO Note (inline)
  5729. status open
  5730. \begin_layout Plain Layout
  5731. Put code on Github and reference it.
  5732. \end_layout
  5733. \end_inset
  5734. \end_layout
  5735. \begin_layout Standard
  5736. To investigate the whether DNA methylation could be used to distinguish
  5737. between healthy and dysfunctional transplants, a data set of 78 Illumina
  5738. 450k methylation arrays from human kidney graft biopsies was analyzed for
  5739. differential metylation between 4 transplant statuses: healthy transplant
  5740. (TX), transplants undergoing acute rejection (AR), acute dysfunction with
  5741. no rejection (ADNR), and chronic allograpft nephropathy (CAN).
  5742. The data consisted of 33 TX, 9 AR, 8 ADNR, and 28 CAN samples.
  5743. The uneven group sizes are a result of taking the biopsy samples before
  5744. the eventual fate of the transplant was known.
  5745. Each sample was additionally annotated with a donor ID (anonymized), Sex,
  5746. Age, Ethnicity, Creatinine Level, and Diabetes diagnosois (all samples
  5747. in this data set came from patients with either Type 1 or Type 2 diabetes).
  5748. \end_layout
  5749. \begin_layout Standard
  5750. The intensity data were first normalized using subset-quantile within array
  5751. normalization (SWAN)
  5752. \begin_inset CommandInset citation
  5753. LatexCommand cite
  5754. key "Maksimovic2012"
  5755. literal "false"
  5756. \end_inset
  5757. , then converted to intensity ratios (beta values)
  5758. \begin_inset CommandInset citation
  5759. LatexCommand cite
  5760. key "Aryee2014"
  5761. literal "false"
  5762. \end_inset
  5763. .
  5764. Any probes binding to loci that overlapped annotated SNPs were dropped,
  5765. and the annotated sex of each sample was verified against the sex inferred
  5766. from the ratio of median probe intensities for the X and Y chromosomes.
  5767. Then, the ratios were transformed to M-values.
  5768. \end_layout
  5769. \begin_layout Standard
  5770. \begin_inset Float table
  5771. wide false
  5772. sideways false
  5773. status open
  5774. \begin_layout Plain Layout
  5775. \align center
  5776. \begin_inset Tabular
  5777. <lyxtabular version="3" rows="4" columns="6">
  5778. <features tabularvalignment="middle">
  5779. <column alignment="center" valignment="top">
  5780. <column alignment="center" valignment="top">
  5781. <column alignment="center" valignment="top">
  5782. <column alignment="center" valignment="top">
  5783. <column alignment="center" valignment="top">
  5784. <column alignment="center" valignment="top">
  5785. <row>
  5786. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  5787. \begin_inset Text
  5788. \begin_layout Plain Layout
  5789. Analysis
  5790. \end_layout
  5791. \end_inset
  5792. </cell>
  5793. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  5794. \begin_inset Text
  5795. \begin_layout Plain Layout
  5796. random effect
  5797. \end_layout
  5798. \end_inset
  5799. </cell>
  5800. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  5801. \begin_inset Text
  5802. \begin_layout Plain Layout
  5803. eBayes
  5804. \end_layout
  5805. \end_inset
  5806. </cell>
  5807. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  5808. \begin_inset Text
  5809. \begin_layout Plain Layout
  5810. SVA
  5811. \end_layout
  5812. \end_inset
  5813. </cell>
  5814. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  5815. \begin_inset Text
  5816. \begin_layout Plain Layout
  5817. weights
  5818. \end_layout
  5819. \end_inset
  5820. </cell>
  5821. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  5822. \begin_inset Text
  5823. \begin_layout Plain Layout
  5824. voom
  5825. \end_layout
  5826. \end_inset
  5827. </cell>
  5828. </row>
  5829. <row>
  5830. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  5831. \begin_inset Text
  5832. \begin_layout Plain Layout
  5833. A
  5834. \end_layout
  5835. \end_inset
  5836. </cell>
  5837. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  5838. \begin_inset Text
  5839. \begin_layout Plain Layout
  5840. Yes
  5841. \end_layout
  5842. \end_inset
  5843. </cell>
  5844. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  5845. \begin_inset Text
  5846. \begin_layout Plain Layout
  5847. Yes
  5848. \end_layout
  5849. \end_inset
  5850. </cell>
  5851. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  5852. \begin_inset Text
  5853. \begin_layout Plain Layout
  5854. No
  5855. \end_layout
  5856. \end_inset
  5857. </cell>
  5858. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  5859. \begin_inset Text
  5860. \begin_layout Plain Layout
  5861. No
  5862. \end_layout
  5863. \end_inset
  5864. </cell>
  5865. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  5866. \begin_inset Text
  5867. \begin_layout Plain Layout
  5868. No
  5869. \end_layout
  5870. \end_inset
  5871. </cell>
  5872. </row>
  5873. <row>
  5874. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  5875. \begin_inset Text
  5876. \begin_layout Plain Layout
  5877. B
  5878. \end_layout
  5879. \end_inset
  5880. </cell>
  5881. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  5882. \begin_inset Text
  5883. \begin_layout Plain Layout
  5884. Yes
  5885. \end_layout
  5886. \end_inset
  5887. </cell>
  5888. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  5889. \begin_inset Text
  5890. \begin_layout Plain Layout
  5891. Yes
  5892. \end_layout
  5893. \end_inset
  5894. </cell>
  5895. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  5896. \begin_inset Text
  5897. \begin_layout Plain Layout
  5898. Yes
  5899. \end_layout
  5900. \end_inset
  5901. </cell>
  5902. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  5903. \begin_inset Text
  5904. \begin_layout Plain Layout
  5905. Yes
  5906. \end_layout
  5907. \end_inset
  5908. </cell>
  5909. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  5910. \begin_inset Text
  5911. \begin_layout Plain Layout
  5912. No
  5913. \end_layout
  5914. \end_inset
  5915. </cell>
  5916. </row>
  5917. <row>
  5918. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  5919. \begin_inset Text
  5920. \begin_layout Plain Layout
  5921. C
  5922. \end_layout
  5923. \end_inset
  5924. </cell>
  5925. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  5926. \begin_inset Text
  5927. \begin_layout Plain Layout
  5928. Yes
  5929. \end_layout
  5930. \end_inset
  5931. </cell>
  5932. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  5933. \begin_inset Text
  5934. \begin_layout Plain Layout
  5935. Yes
  5936. \end_layout
  5937. \end_inset
  5938. </cell>
  5939. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  5940. \begin_inset Text
  5941. \begin_layout Plain Layout
  5942. Yes
  5943. \end_layout
  5944. \end_inset
  5945. </cell>
  5946. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  5947. \begin_inset Text
  5948. \begin_layout Plain Layout
  5949. Yes
  5950. \end_layout
  5951. \end_inset
  5952. </cell>
  5953. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  5954. \begin_inset Text
  5955. \begin_layout Plain Layout
  5956. Yes
  5957. \end_layout
  5958. \end_inset
  5959. </cell>
  5960. </row>
  5961. </lyxtabular>
  5962. \end_inset
  5963. \end_layout
  5964. \begin_layout Plain Layout
  5965. \begin_inset Caption Standard
  5966. \begin_layout Plain Layout
  5967. \series bold
  5968. \begin_inset CommandInset label
  5969. LatexCommand label
  5970. name "tab:Summary-of-meth-analysis"
  5971. \end_inset
  5972. Summary of analysis variants for methylation array data.
  5973. \series default
  5974. Each analysis included a different set of steps to adjust or account for
  5975. various systematic features of the data.
  5976. Random effect: The model included a random effect accounting for correlation
  5977. between samples from the same patient
  5978. \begin_inset CommandInset citation
  5979. LatexCommand cite
  5980. key "Smyth2005a"
  5981. literal "false"
  5982. \end_inset
  5983. ; eBayes: Empirical bayes squeezing of per-probe variances toward the mean-varia
  5984. nce trend
  5985. \begin_inset CommandInset citation
  5986. LatexCommand cite
  5987. key "Ritchie2015"
  5988. literal "false"
  5989. \end_inset
  5990. ; SVA: Surrogate variable analysis to account for unobserved confounders
  5991. \begin_inset CommandInset citation
  5992. LatexCommand cite
  5993. key "Leek2007"
  5994. literal "false"
  5995. \end_inset
  5996. ; Weights: Estimate sample weights to account for differences in sample
  5997. quality
  5998. \begin_inset CommandInset citation
  5999. LatexCommand cite
  6000. key "Liu2015,Ritchie2006"
  6001. literal "false"
  6002. \end_inset
  6003. ; voom: Use mean-variance trend to assign individual sample weights
  6004. \begin_inset CommandInset citation
  6005. LatexCommand cite
  6006. key "Law2013"
  6007. literal "false"
  6008. \end_inset
  6009. .
  6010. See the text for a more detailed explanation of each step.
  6011. \end_layout
  6012. \end_inset
  6013. \end_layout
  6014. \end_inset
  6015. \end_layout
  6016. \begin_layout Standard
  6017. From the M-values, a series of parallel analyses was performed, each adding
  6018. additional steps into the model fit to accomodate a feature of the data
  6019. (see Table
  6020. \begin_inset CommandInset ref
  6021. LatexCommand ref
  6022. reference "tab:Summary-of-meth-analysis"
  6023. plural "false"
  6024. caps "false"
  6025. noprefix "false"
  6026. \end_inset
  6027. ).
  6028. For analysis A, a
  6029. \begin_inset Quotes eld
  6030. \end_inset
  6031. basic
  6032. \begin_inset Quotes erd
  6033. \end_inset
  6034. linear modeling analysis was performed, compensating for known confounders
  6035. by including terms for the factor of interest (transplant status) as well
  6036. as the known biological confounders: sex, age, ethnicity, and diabetes.
  6037. Since some samples came from the same patients at different times, the
  6038. intra-patient correlation was modeled as a random effect, estimating a
  6039. shared correlation value across all probes
  6040. \begin_inset CommandInset citation
  6041. LatexCommand cite
  6042. key "Smyth2005a"
  6043. literal "false"
  6044. \end_inset
  6045. .
  6046. Then the linear model was fit, and the variance was modeled using empirical
  6047. Bayes squeezing toward the mean-variance trend
  6048. \begin_inset CommandInset citation
  6049. LatexCommand cite
  6050. key "Ritchie2015"
  6051. literal "false"
  6052. \end_inset
  6053. .
  6054. Finally, t-tests or F-tests were performed as appropriate for each test:
  6055. t-tests for single contrasts, and F-tests for multiple contrasts.
  6056. P-values were corrected for multiple testing using the Benjamini-Hochberg
  6057. procedure for FDR control
  6058. \begin_inset CommandInset citation
  6059. LatexCommand cite
  6060. key "Benjamini1995"
  6061. literal "false"
  6062. \end_inset
  6063. .
  6064. \end_layout
  6065. \begin_layout Standard
  6066. For the analysis B, surrogate variable analysis (SVA) was used to infer
  6067. additional unobserved sources of heterogeneity in the data
  6068. \begin_inset CommandInset citation
  6069. LatexCommand cite
  6070. key "Leek2007"
  6071. literal "false"
  6072. \end_inset
  6073. .
  6074. These surrogate variables were added to the design matrix before fitting
  6075. the linear model.
  6076. In addition, sample quality weights were estimated from the data and used
  6077. during linear modeling to down-weight the contribution of highly variable
  6078. arrays while increasing the weight to arrays with lower variability
  6079. \begin_inset CommandInset citation
  6080. LatexCommand cite
  6081. key "Ritchie2006"
  6082. literal "false"
  6083. \end_inset
  6084. .
  6085. The remainder of the analysis proceeded as in analysis A.
  6086. For analysis C, the voom method was adapted to run on methylation array
  6087. data and used to model and correct for the mean-variance trend using individual
  6088. observation weights
  6089. \begin_inset CommandInset citation
  6090. LatexCommand cite
  6091. key "Law2013"
  6092. literal "false"
  6093. \end_inset
  6094. , which were combined with the sample weights
  6095. \begin_inset CommandInset citation
  6096. LatexCommand cite
  6097. key "Liu2015,Ritchie2006"
  6098. literal "false"
  6099. \end_inset
  6100. .
  6101. Each time weights were used, they were estimated once before estimating
  6102. the random effect correlation value, and then the weights were re-estimated
  6103. taking the random effect into account.
  6104. The remainder of the analysis proceeded as in analysis B.
  6105. \end_layout
  6106. \begin_layout Section
  6107. Results
  6108. \end_layout
  6109. \begin_layout Standard
  6110. \begin_inset Flex TODO Note (inline)
  6111. status open
  6112. \begin_layout Plain Layout
  6113. Improve subsection titles in this section.
  6114. \end_layout
  6115. \end_inset
  6116. \end_layout
  6117. \begin_layout Standard
  6118. \begin_inset Flex TODO Note (inline)
  6119. status open
  6120. \begin_layout Plain Layout
  6121. Reconsider subsection organization?
  6122. \end_layout
  6123. \end_inset
  6124. \end_layout
  6125. \begin_layout Subsection
  6126. Separate normalization with RMA introduces unwanted biases in classification
  6127. \end_layout
  6128. \begin_layout Standard
  6129. \begin_inset Float figure
  6130. wide false
  6131. sideways false
  6132. status open
  6133. \begin_layout Plain Layout
  6134. \align center
  6135. \begin_inset Graphics
  6136. filename graphics/PAM/predplot.pdf
  6137. lyxscale 50
  6138. width 60col%
  6139. groupId colwidth
  6140. \end_inset
  6141. \end_layout
  6142. \begin_layout Plain Layout
  6143. \begin_inset Caption Standard
  6144. \begin_layout Plain Layout
  6145. \begin_inset CommandInset label
  6146. LatexCommand label
  6147. name "fig:Classifier-probabilities-RMA"
  6148. \end_inset
  6149. \series bold
  6150. Classifier probabilities on validation samples when normalized with RMA
  6151. together vs.
  6152. separately.
  6153. \series default
  6154. The PAM classifier algorithm was trained on the training set of arrays to
  6155. distinguish AR from TX and then used to assign class probabilities to the
  6156. validation set.
  6157. The process was performed after normalizing all samples together and after
  6158. normalizing the training and test sets separately, and the class probabilities
  6159. assigned to each sample in the validation set were plotted against each
  6160. other (PP(AR), posterior probability of being AR).
  6161. The color of each point indicates the true classification of that sample.
  6162. \end_layout
  6163. \end_inset
  6164. \end_layout
  6165. \end_inset
  6166. \end_layout
  6167. \begin_layout Standard
  6168. To demonstrate the problem with non-single-channel normalization methods,
  6169. we considered the problem of training a classifier to distinguish TX from
  6170. AR using the samples from the internal set as training data, evaluating
  6171. performance on the external set.
  6172. First, training and evaluation were performed after normalizing all array
  6173. samples together as a single set using RMA, and second, the internal samples
  6174. were normalized separately from the external samples and the training and
  6175. evaluation were repeated.
  6176. For each sample in the validation set, the classifier probabilities from
  6177. both classifiers were plotted against each other (Fig.
  6178. \begin_inset CommandInset ref
  6179. LatexCommand ref
  6180. reference "fig:Classifier-probabilities-RMA"
  6181. plural "false"
  6182. caps "false"
  6183. noprefix "false"
  6184. \end_inset
  6185. ).
  6186. As expected, separate normalization biases the classifier probabilities,
  6187. resulting in several misclassifications.
  6188. In this case, the bias from separate normalization causes the classifier
  6189. to assign a lower probability of AR to every sample.
  6190. \end_layout
  6191. \begin_layout Subsection
  6192. fRMA and SCAN maintain classification performance while eliminating dependence
  6193. on normalization strategy
  6194. \end_layout
  6195. \begin_layout Standard
  6196. \begin_inset Float figure
  6197. wide false
  6198. sideways false
  6199. status open
  6200. \begin_layout Plain Layout
  6201. \align center
  6202. \begin_inset Float figure
  6203. placement tb
  6204. wide false
  6205. sideways false
  6206. status open
  6207. \begin_layout Plain Layout
  6208. \align center
  6209. \begin_inset Graphics
  6210. filename graphics/PAM/ROC-TXvsAR-internal.pdf
  6211. lyxscale 50
  6212. height 40theight%
  6213. groupId roc-pam
  6214. \end_inset
  6215. \end_layout
  6216. \begin_layout Plain Layout
  6217. \begin_inset Caption Standard
  6218. \begin_layout Plain Layout
  6219. \begin_inset CommandInset label
  6220. LatexCommand label
  6221. name "fig:ROC-PAM-int"
  6222. \end_inset
  6223. ROC curves for PAM on internal validation data
  6224. \end_layout
  6225. \end_inset
  6226. \end_layout
  6227. \end_inset
  6228. \end_layout
  6229. \begin_layout Plain Layout
  6230. \align center
  6231. \begin_inset Float figure
  6232. placement tb
  6233. wide false
  6234. sideways false
  6235. status open
  6236. \begin_layout Plain Layout
  6237. \align center
  6238. \begin_inset Graphics
  6239. filename graphics/PAM/ROC-TXvsAR-external.pdf
  6240. lyxscale 50
  6241. height 40theight%
  6242. groupId roc-pam
  6243. \end_inset
  6244. \end_layout
  6245. \begin_layout Plain Layout
  6246. \begin_inset Caption Standard
  6247. \begin_layout Plain Layout
  6248. \begin_inset CommandInset label
  6249. LatexCommand label
  6250. name "fig:ROC-PAM-ext"
  6251. \end_inset
  6252. ROC curves for PAM on external validation data
  6253. \end_layout
  6254. \end_inset
  6255. \end_layout
  6256. \end_inset
  6257. \end_layout
  6258. \begin_layout Plain Layout
  6259. \begin_inset Caption Standard
  6260. \begin_layout Plain Layout
  6261. \series bold
  6262. \begin_inset CommandInset label
  6263. LatexCommand label
  6264. name "fig:ROC-PAM-main"
  6265. \end_inset
  6266. ROC curves for PAM using different normalization strategies.
  6267. \series default
  6268. ROC curves were generated for PAM classification of AR vs TX after 6 different
  6269. normalization strategies applied to the same data sets.
  6270. Only fRMA and SCAN are single-channel normalizations.
  6271. The other normalizations are for comparison.
  6272. \end_layout
  6273. \end_inset
  6274. \end_layout
  6275. \end_inset
  6276. \end_layout
  6277. \begin_layout Standard
  6278. \begin_inset Float table
  6279. wide false
  6280. sideways false
  6281. status open
  6282. \begin_layout Plain Layout
  6283. \align center
  6284. \begin_inset Tabular
  6285. <lyxtabular version="3" rows="7" columns="4">
  6286. <features tabularvalignment="middle">
  6287. <column alignment="center" valignment="top">
  6288. <column alignment="center" valignment="top">
  6289. <column alignment="center" valignment="top">
  6290. <column alignment="center" valignment="top">
  6291. <row>
  6292. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6293. \begin_inset Text
  6294. \begin_layout Plain Layout
  6295. \family roman
  6296. \series medium
  6297. \shape up
  6298. \size normal
  6299. \emph off
  6300. \bar no
  6301. \strikeout off
  6302. \xout off
  6303. \uuline off
  6304. \uwave off
  6305. \noun off
  6306. \color none
  6307. Normalization
  6308. \end_layout
  6309. \end_inset
  6310. </cell>
  6311. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6312. \begin_inset Text
  6313. \begin_layout Plain Layout
  6314. Single-channel?
  6315. \end_layout
  6316. \end_inset
  6317. </cell>
  6318. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6319. \begin_inset Text
  6320. \begin_layout Plain Layout
  6321. \family roman
  6322. \series medium
  6323. \shape up
  6324. \size normal
  6325. \emph off
  6326. \bar no
  6327. \strikeout off
  6328. \xout off
  6329. \uuline off
  6330. \uwave off
  6331. \noun off
  6332. \color none
  6333. Internal Val.
  6334. AUC
  6335. \end_layout
  6336. \end_inset
  6337. </cell>
  6338. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  6339. \begin_inset Text
  6340. \begin_layout Plain Layout
  6341. External Val.
  6342. AUC
  6343. \end_layout
  6344. \end_inset
  6345. </cell>
  6346. </row>
  6347. <row>
  6348. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6349. \begin_inset Text
  6350. \begin_layout Plain Layout
  6351. \family roman
  6352. \series medium
  6353. \shape up
  6354. \size normal
  6355. \emph off
  6356. \bar no
  6357. \strikeout off
  6358. \xout off
  6359. \uuline off
  6360. \uwave off
  6361. \noun off
  6362. \color none
  6363. RMA
  6364. \end_layout
  6365. \end_inset
  6366. </cell>
  6367. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6368. \begin_inset Text
  6369. \begin_layout Plain Layout
  6370. No
  6371. \end_layout
  6372. \end_inset
  6373. </cell>
  6374. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6375. \begin_inset Text
  6376. \begin_layout Plain Layout
  6377. \family roman
  6378. \series medium
  6379. \shape up
  6380. \size normal
  6381. \emph off
  6382. \bar no
  6383. \strikeout off
  6384. \xout off
  6385. \uuline off
  6386. \uwave off
  6387. \noun off
  6388. \color none
  6389. 0.852
  6390. \end_layout
  6391. \end_inset
  6392. </cell>
  6393. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  6394. \begin_inset Text
  6395. \begin_layout Plain Layout
  6396. \family roman
  6397. \series medium
  6398. \shape up
  6399. \size normal
  6400. \emph off
  6401. \bar no
  6402. \strikeout off
  6403. \xout off
  6404. \uuline off
  6405. \uwave off
  6406. \noun off
  6407. \color none
  6408. 0.713
  6409. \end_layout
  6410. \end_inset
  6411. </cell>
  6412. </row>
  6413. <row>
  6414. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6415. \begin_inset Text
  6416. \begin_layout Plain Layout
  6417. \family roman
  6418. \series medium
  6419. \shape up
  6420. \size normal
  6421. \emph off
  6422. \bar no
  6423. \strikeout off
  6424. \xout off
  6425. \uuline off
  6426. \uwave off
  6427. \noun off
  6428. \color none
  6429. dChip
  6430. \end_layout
  6431. \end_inset
  6432. </cell>
  6433. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6434. \begin_inset Text
  6435. \begin_layout Plain Layout
  6436. No
  6437. \end_layout
  6438. \end_inset
  6439. </cell>
  6440. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6441. \begin_inset Text
  6442. \begin_layout Plain Layout
  6443. \family roman
  6444. \series medium
  6445. \shape up
  6446. \size normal
  6447. \emph off
  6448. \bar no
  6449. \strikeout off
  6450. \xout off
  6451. \uuline off
  6452. \uwave off
  6453. \noun off
  6454. \color none
  6455. 0.891
  6456. \end_layout
  6457. \end_inset
  6458. </cell>
  6459. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  6460. \begin_inset Text
  6461. \begin_layout Plain Layout
  6462. \family roman
  6463. \series medium
  6464. \shape up
  6465. \size normal
  6466. \emph off
  6467. \bar no
  6468. \strikeout off
  6469. \xout off
  6470. \uuline off
  6471. \uwave off
  6472. \noun off
  6473. \color none
  6474. 0.657
  6475. \end_layout
  6476. \end_inset
  6477. </cell>
  6478. </row>
  6479. <row>
  6480. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6481. \begin_inset Text
  6482. \begin_layout Plain Layout
  6483. \family roman
  6484. \series medium
  6485. \shape up
  6486. \size normal
  6487. \emph off
  6488. \bar no
  6489. \strikeout off
  6490. \xout off
  6491. \uuline off
  6492. \uwave off
  6493. \noun off
  6494. \color none
  6495. RMA + GRSN
  6496. \end_layout
  6497. \end_inset
  6498. </cell>
  6499. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6500. \begin_inset Text
  6501. \begin_layout Plain Layout
  6502. No
  6503. \end_layout
  6504. \end_inset
  6505. </cell>
  6506. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6507. \begin_inset Text
  6508. \begin_layout Plain Layout
  6509. \family roman
  6510. \series medium
  6511. \shape up
  6512. \size normal
  6513. \emph off
  6514. \bar no
  6515. \strikeout off
  6516. \xout off
  6517. \uuline off
  6518. \uwave off
  6519. \noun off
  6520. \color none
  6521. 0.816
  6522. \end_layout
  6523. \end_inset
  6524. </cell>
  6525. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  6526. \begin_inset Text
  6527. \begin_layout Plain Layout
  6528. \family roman
  6529. \series medium
  6530. \shape up
  6531. \size normal
  6532. \emph off
  6533. \bar no
  6534. \strikeout off
  6535. \xout off
  6536. \uuline off
  6537. \uwave off
  6538. \noun off
  6539. \color none
  6540. 0.750
  6541. \end_layout
  6542. \end_inset
  6543. </cell>
  6544. </row>
  6545. <row>
  6546. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6547. \begin_inset Text
  6548. \begin_layout Plain Layout
  6549. \family roman
  6550. \series medium
  6551. \shape up
  6552. \size normal
  6553. \emph off
  6554. \bar no
  6555. \strikeout off
  6556. \xout off
  6557. \uuline off
  6558. \uwave off
  6559. \noun off
  6560. \color none
  6561. dChip + GRSN
  6562. \end_layout
  6563. \end_inset
  6564. </cell>
  6565. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6566. \begin_inset Text
  6567. \begin_layout Plain Layout
  6568. No
  6569. \end_layout
  6570. \end_inset
  6571. </cell>
  6572. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6573. \begin_inset Text
  6574. \begin_layout Plain Layout
  6575. \family roman
  6576. \series medium
  6577. \shape up
  6578. \size normal
  6579. \emph off
  6580. \bar no
  6581. \strikeout off
  6582. \xout off
  6583. \uuline off
  6584. \uwave off
  6585. \noun off
  6586. \color none
  6587. 0.875
  6588. \end_layout
  6589. \end_inset
  6590. </cell>
  6591. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  6592. \begin_inset Text
  6593. \begin_layout Plain Layout
  6594. \family roman
  6595. \series medium
  6596. \shape up
  6597. \size normal
  6598. \emph off
  6599. \bar no
  6600. \strikeout off
  6601. \xout off
  6602. \uuline off
  6603. \uwave off
  6604. \noun off
  6605. \color none
  6606. 0.642
  6607. \end_layout
  6608. \end_inset
  6609. </cell>
  6610. </row>
  6611. <row>
  6612. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6613. \begin_inset Text
  6614. \begin_layout Plain Layout
  6615. \family roman
  6616. \series medium
  6617. \shape up
  6618. \size normal
  6619. \emph off
  6620. \bar no
  6621. \strikeout off
  6622. \xout off
  6623. \uuline off
  6624. \uwave off
  6625. \noun off
  6626. \color none
  6627. fRMA
  6628. \end_layout
  6629. \end_inset
  6630. </cell>
  6631. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6632. \begin_inset Text
  6633. \begin_layout Plain Layout
  6634. Yes
  6635. \end_layout
  6636. \end_inset
  6637. </cell>
  6638. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6639. \begin_inset Text
  6640. \begin_layout Plain Layout
  6641. \family roman
  6642. \series medium
  6643. \shape up
  6644. \size normal
  6645. \emph off
  6646. \bar no
  6647. \strikeout off
  6648. \xout off
  6649. \uuline off
  6650. \uwave off
  6651. \noun off
  6652. \color none
  6653. 0.863
  6654. \end_layout
  6655. \end_inset
  6656. </cell>
  6657. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  6658. \begin_inset Text
  6659. \begin_layout Plain Layout
  6660. \family roman
  6661. \series medium
  6662. \shape up
  6663. \size normal
  6664. \emph off
  6665. \bar no
  6666. \strikeout off
  6667. \xout off
  6668. \uuline off
  6669. \uwave off
  6670. \noun off
  6671. \color none
  6672. 0.718
  6673. \end_layout
  6674. \end_inset
  6675. </cell>
  6676. </row>
  6677. <row>
  6678. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6679. \begin_inset Text
  6680. \begin_layout Plain Layout
  6681. \family roman
  6682. \series medium
  6683. \shape up
  6684. \size normal
  6685. \emph off
  6686. \bar no
  6687. \strikeout off
  6688. \xout off
  6689. \uuline off
  6690. \uwave off
  6691. \noun off
  6692. \color none
  6693. SCAN
  6694. \end_layout
  6695. \end_inset
  6696. </cell>
  6697. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6698. \begin_inset Text
  6699. \begin_layout Plain Layout
  6700. Yes
  6701. \end_layout
  6702. \end_inset
  6703. </cell>
  6704. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6705. \begin_inset Text
  6706. \begin_layout Plain Layout
  6707. \family roman
  6708. \series medium
  6709. \shape up
  6710. \size normal
  6711. \emph off
  6712. \bar no
  6713. \strikeout off
  6714. \xout off
  6715. \uuline off
  6716. \uwave off
  6717. \noun off
  6718. \color none
  6719. 0.853
  6720. \end_layout
  6721. \end_inset
  6722. </cell>
  6723. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  6724. \begin_inset Text
  6725. \begin_layout Plain Layout
  6726. \family roman
  6727. \series medium
  6728. \shape up
  6729. \size normal
  6730. \emph off
  6731. \bar no
  6732. \strikeout off
  6733. \xout off
  6734. \uuline off
  6735. \uwave off
  6736. \noun off
  6737. \color none
  6738. 0.689
  6739. \end_layout
  6740. \end_inset
  6741. </cell>
  6742. </row>
  6743. </lyxtabular>
  6744. \end_inset
  6745. \end_layout
  6746. \begin_layout Plain Layout
  6747. \begin_inset Caption Standard
  6748. \begin_layout Plain Layout
  6749. \begin_inset CommandInset label
  6750. LatexCommand label
  6751. name "tab:AUC-PAM"
  6752. \end_inset
  6753. \series bold
  6754. ROC curve AUC values for internal and external validation with 6 different
  6755. normalization strategies.
  6756. \series default
  6757. These AUC values correspond to the ROC curves in Figure
  6758. \begin_inset CommandInset ref
  6759. LatexCommand ref
  6760. reference "fig:ROC-PAM-main"
  6761. plural "false"
  6762. caps "false"
  6763. noprefix "false"
  6764. \end_inset
  6765. .
  6766. \end_layout
  6767. \end_inset
  6768. \end_layout
  6769. \end_inset
  6770. \end_layout
  6771. \begin_layout Standard
  6772. For internal validation, the 6 methods' AUC values ranged from 0.816 to 0.891,
  6773. as shown in Table
  6774. \begin_inset CommandInset ref
  6775. LatexCommand ref
  6776. reference "tab:AUC-PAM"
  6777. plural "false"
  6778. caps "false"
  6779. noprefix "false"
  6780. \end_inset
  6781. .
  6782. Among the non-single-channel normalizations, dChip outperformed RMA, while
  6783. GRSN reduced the AUC values for both dChip and RMA.
  6784. Both single-channel methods, fRMA and SCAN, slightly outperformed RMA,
  6785. with fRMA ahead of SCAN.
  6786. However, the difference between RMA and fRMA is still quite small.
  6787. Figure
  6788. \begin_inset CommandInset ref
  6789. LatexCommand ref
  6790. reference "fig:ROC-PAM-int"
  6791. plural "false"
  6792. caps "false"
  6793. noprefix "false"
  6794. \end_inset
  6795. shows that the ROC curves for RMA, dChip, and fRMA look very similar and
  6796. relatively smooth, while both GRSN curves and the curve for SCAN have a
  6797. more jagged appearance.
  6798. \end_layout
  6799. \begin_layout Standard
  6800. For external validation, as expected, all the AUC values are lower than
  6801. the internal validations, ranging from 0.642 to 0.750 (Table
  6802. \begin_inset CommandInset ref
  6803. LatexCommand ref
  6804. reference "tab:AUC-PAM"
  6805. plural "false"
  6806. caps "false"
  6807. noprefix "false"
  6808. \end_inset
  6809. ).
  6810. With or without GRSN, RMA shows its dominance over dChip in this more challengi
  6811. ng test.
  6812. Unlike in the internal validation, GRSN actually improves the classifier
  6813. performance for RMA, although it does not for dChip.
  6814. Once again, both single-channel methods perform about on par with RMA,
  6815. with fRMA performing slightly better and SCAN performing a bit worse.
  6816. Figure
  6817. \begin_inset CommandInset ref
  6818. LatexCommand ref
  6819. reference "fig:ROC-PAM-ext"
  6820. plural "false"
  6821. caps "false"
  6822. noprefix "false"
  6823. \end_inset
  6824. shows the ROC curves for the external validation test.
  6825. As expected, none of them are as clean-looking as the internal validation
  6826. ROC curves.
  6827. The curves for RMA, RMA+GRSN, and fRMA all look similar, while the other
  6828. curves look more divergent.
  6829. \end_layout
  6830. \begin_layout Subsection
  6831. fRMA with custom-generated vectors enables single-channel normalization
  6832. on hthgu133pluspm platform
  6833. \end_layout
  6834. \begin_layout Standard
  6835. \begin_inset Float figure
  6836. wide false
  6837. sideways false
  6838. status open
  6839. \begin_layout Plain Layout
  6840. \align center
  6841. \begin_inset Float figure
  6842. placement tb
  6843. wide false
  6844. sideways false
  6845. status collapsed
  6846. \begin_layout Plain Layout
  6847. \align center
  6848. \begin_inset Graphics
  6849. filename graphics/frma-pax-bx/batchsize_batches.pdf
  6850. lyxscale 50
  6851. height 35theight%
  6852. groupId frmatools-subfig
  6853. \end_inset
  6854. \end_layout
  6855. \begin_layout Plain Layout
  6856. \begin_inset Caption Standard
  6857. \begin_layout Plain Layout
  6858. \begin_inset CommandInset label
  6859. LatexCommand label
  6860. name "fig:batch-size-batches"
  6861. \end_inset
  6862. \series bold
  6863. Number of batches usable in fRMA probe weight learning as a function of
  6864. batch size.
  6865. \end_layout
  6866. \end_inset
  6867. \end_layout
  6868. \end_inset
  6869. \end_layout
  6870. \begin_layout Plain Layout
  6871. \align center
  6872. \begin_inset Float figure
  6873. placement tb
  6874. wide false
  6875. sideways false
  6876. status collapsed
  6877. \begin_layout Plain Layout
  6878. \align center
  6879. \begin_inset Graphics
  6880. filename graphics/frma-pax-bx/batchsize_samples.pdf
  6881. lyxscale 50
  6882. height 35theight%
  6883. groupId frmatools-subfig
  6884. \end_inset
  6885. \end_layout
  6886. \begin_layout Plain Layout
  6887. \begin_inset Caption Standard
  6888. \begin_layout Plain Layout
  6889. \begin_inset CommandInset label
  6890. LatexCommand label
  6891. name "fig:batch-size-samples"
  6892. \end_inset
  6893. \series bold
  6894. Number of samples usable in fRMA probe weight learning as a function of
  6895. batch size.
  6896. \end_layout
  6897. \end_inset
  6898. \end_layout
  6899. \end_inset
  6900. \end_layout
  6901. \begin_layout Plain Layout
  6902. \begin_inset Caption Standard
  6903. \begin_layout Plain Layout
  6904. \series bold
  6905. \begin_inset CommandInset label
  6906. LatexCommand label
  6907. name "fig:frmatools-batch-size"
  6908. \end_inset
  6909. Effect of batch size selection on number of batches and number of samples
  6910. included in fRMA probe weight learning.
  6911. \series default
  6912. For batch sizes ranging from 3 to 15, the number of batches (a) and samples
  6913. (b) included in probe weight training were plotted for biopsy (BX) and
  6914. blood (PAX) samples.
  6915. The selected batch size, 5, is marked with a dotted vertical line.
  6916. \end_layout
  6917. \end_inset
  6918. \end_layout
  6919. \end_inset
  6920. \end_layout
  6921. \begin_layout Standard
  6922. In order to enable use of fRMA to normalize hthgu133pluspm, a custom set
  6923. of fRMA vectors was created.
  6924. First, an appropriate batch size was chosen by looking at the number of
  6925. batches and number of samples included as a function of batch size (Figure
  6926. \begin_inset CommandInset ref
  6927. LatexCommand ref
  6928. reference "fig:frmatools-batch-size"
  6929. plural "false"
  6930. caps "false"
  6931. noprefix "false"
  6932. \end_inset
  6933. ).
  6934. For a given batch size, all batches with fewer samples that the chosen
  6935. size must be ignored during training, while larger batches must be randomly
  6936. downsampled to the chosen size.
  6937. Hence, the number of samples included for a given batch size equals the
  6938. batch size times the number of batches with at least that many samples.
  6939. From Figure
  6940. \begin_inset CommandInset ref
  6941. LatexCommand ref
  6942. reference "fig:batch-size-samples"
  6943. plural "false"
  6944. caps "false"
  6945. noprefix "false"
  6946. \end_inset
  6947. , it is apparent that that a batch size of 8 maximizes the number of samples
  6948. included in training.
  6949. Increasing the batch size beyond this causes too many smaller batches to
  6950. be excluded, reducing the total number of samples for both tissue types.
  6951. However, a batch size of 8 is not necessarily optimal.
  6952. The article introducing frmaTools concluded that it was highly advantageous
  6953. to use a smaller batch size in order to include more batches, even at the
  6954. expense of including fewer total samples in training
  6955. \begin_inset CommandInset citation
  6956. LatexCommand cite
  6957. key "McCall2011"
  6958. literal "false"
  6959. \end_inset
  6960. .
  6961. To strike an appropriate balance between more batches and more samples,
  6962. a batch size of 5 was chosen.
  6963. For both blood and biopsy samples, this increased the number of batches
  6964. included by 10, with only a modest reduction in the number of samples compared
  6965. to a batch size of 8.
  6966. With a batch size of 5, 26 batches of biopsy samples and 46 batches of
  6967. blood samples were available.
  6968. \end_layout
  6969. \begin_layout Standard
  6970. \begin_inset Float figure
  6971. wide false
  6972. sideways false
  6973. status collapsed
  6974. \begin_layout Plain Layout
  6975. \begin_inset Float figure
  6976. wide false
  6977. sideways false
  6978. status open
  6979. \begin_layout Plain Layout
  6980. \align center
  6981. \begin_inset Graphics
  6982. filename graphics/frma-pax-bx/M-BX-violin.pdf
  6983. lyxscale 40
  6984. width 45col%
  6985. groupId m-violin
  6986. \end_inset
  6987. \end_layout
  6988. \begin_layout Plain Layout
  6989. \begin_inset Caption Standard
  6990. \begin_layout Plain Layout
  6991. \begin_inset CommandInset label
  6992. LatexCommand label
  6993. name "fig:m-bx-violin"
  6994. \end_inset
  6995. \series bold
  6996. Violin plot of inter-normalization log ratios for biopsy samples.
  6997. \end_layout
  6998. \end_inset
  6999. \end_layout
  7000. \end_inset
  7001. \begin_inset space \hfill{}
  7002. \end_inset
  7003. \begin_inset Float figure
  7004. wide false
  7005. sideways false
  7006. status collapsed
  7007. \begin_layout Plain Layout
  7008. \align center
  7009. \begin_inset Graphics
  7010. filename graphics/frma-pax-bx/M-PAX-violin.pdf
  7011. lyxscale 40
  7012. width 45col%
  7013. groupId m-violin
  7014. \end_inset
  7015. \end_layout
  7016. \begin_layout Plain Layout
  7017. \begin_inset Caption Standard
  7018. \begin_layout Plain Layout
  7019. \begin_inset CommandInset label
  7020. LatexCommand label
  7021. name "fig:m-pax-violin"
  7022. \end_inset
  7023. \series bold
  7024. Violin plot of inter-normalization log ratios for blood samples.
  7025. \end_layout
  7026. \end_inset
  7027. \end_layout
  7028. \end_inset
  7029. \end_layout
  7030. \begin_layout Plain Layout
  7031. \begin_inset Caption Standard
  7032. \begin_layout Plain Layout
  7033. \begin_inset CommandInset label
  7034. LatexCommand label
  7035. name "fig:frma-violin"
  7036. \end_inset
  7037. \series bold
  7038. Violin plot of log ratios between normalizations for 20 biopsy samples.
  7039. \series default
  7040. Each of 20 randomly selected samples was normalized with RMA and with 5
  7041. different sets of fRMA vectors.
  7042. The distribution of log ratios between normalized expression values, aggregated
  7043. across all 20 arrays, was plotted for each pair of normalizations.
  7044. \end_layout
  7045. \end_inset
  7046. \end_layout
  7047. \end_inset
  7048. \end_layout
  7049. \begin_layout Standard
  7050. Since fRMA training requires equal-size batches, larger batches are downsampled
  7051. randomly.
  7052. This introduces a nondeterministic step in the generation of normalization
  7053. vectors.
  7054. To show that this randomness does not substantially change the outcome,
  7055. the random downsampling and subsequent vector learning was repeated 5 times,
  7056. with a different random seed each time.
  7057. 20 samples were selected at random as a test set and normalized with each
  7058. of the 5 sets of fRMA normalization vectors as well as ordinary RMA, and
  7059. the normalized expression values were compared across normalizations.
  7060. Figure
  7061. \begin_inset CommandInset ref
  7062. LatexCommand ref
  7063. reference "fig:m-bx-violin"
  7064. plural "false"
  7065. caps "false"
  7066. noprefix "false"
  7067. \end_inset
  7068. shows a summary of these comparisons for biopsy samples.
  7069. Comparing RMA to each of the 5 fRMA normalizations, the distribution of
  7070. log ratios is somewhat wide, indicating that the normalizations disagree
  7071. on the expression values of a fair number of probe sets.
  7072. In contrast, comparisons of fRMA against fRMA, the vast mojority of probe
  7073. sets have very small log ratios, indicating a very high agreement between
  7074. the normalized values generated by the two normalizations.
  7075. This shows that the fRMA normalization's behavior is not very sensitive
  7076. to the random downsampling of larger batches during training.
  7077. \end_layout
  7078. \begin_layout Standard
  7079. \begin_inset Float figure
  7080. wide false
  7081. sideways false
  7082. status open
  7083. \begin_layout Plain Layout
  7084. \align center
  7085. \begin_inset Float figure
  7086. wide false
  7087. sideways false
  7088. status collapsed
  7089. \begin_layout Plain Layout
  7090. \align center
  7091. \begin_inset Graphics
  7092. filename graphics/frma-pax-bx/MA-BX-RMA.fRMA-RASTER.png
  7093. lyxscale 10
  7094. width 45col%
  7095. groupId ma-frma
  7096. \end_inset
  7097. \end_layout
  7098. \begin_layout Plain Layout
  7099. \begin_inset Caption Standard
  7100. \begin_layout Plain Layout
  7101. \begin_inset CommandInset label
  7102. LatexCommand label
  7103. name "fig:ma-bx-rma-frma"
  7104. \end_inset
  7105. RMA vs.
  7106. fRMA for biopsy samples.
  7107. \end_layout
  7108. \end_inset
  7109. \end_layout
  7110. \end_inset
  7111. \begin_inset space \hfill{}
  7112. \end_inset
  7113. \begin_inset Float figure
  7114. wide false
  7115. sideways false
  7116. status collapsed
  7117. \begin_layout Plain Layout
  7118. \align center
  7119. \begin_inset Graphics
  7120. filename graphics/frma-pax-bx/MA-BX-fRMA.fRMA-RASTER.png
  7121. lyxscale 10
  7122. width 45col%
  7123. groupId ma-frma
  7124. \end_inset
  7125. \end_layout
  7126. \begin_layout Plain Layout
  7127. \begin_inset Caption Standard
  7128. \begin_layout Plain Layout
  7129. \begin_inset CommandInset label
  7130. LatexCommand label
  7131. name "fig:ma-bx-frma-frma"
  7132. \end_inset
  7133. fRMA vs fRMA for biopsy samples.
  7134. \end_layout
  7135. \end_inset
  7136. \end_layout
  7137. \end_inset
  7138. \end_layout
  7139. \begin_layout Plain Layout
  7140. \align center
  7141. \begin_inset Float figure
  7142. wide false
  7143. sideways false
  7144. status collapsed
  7145. \begin_layout Plain Layout
  7146. \align center
  7147. \begin_inset Graphics
  7148. filename graphics/frma-pax-bx/MA-PAX-RMA.fRMA-RASTER.png
  7149. lyxscale 10
  7150. width 45col%
  7151. groupId ma-frma
  7152. \end_inset
  7153. \end_layout
  7154. \begin_layout Plain Layout
  7155. \begin_inset Caption Standard
  7156. \begin_layout Plain Layout
  7157. \begin_inset CommandInset label
  7158. LatexCommand label
  7159. name "fig:MA-PAX-rma-frma"
  7160. \end_inset
  7161. RMA vs.
  7162. fRMA for blood samples.
  7163. \end_layout
  7164. \end_inset
  7165. \end_layout
  7166. \end_inset
  7167. \begin_inset space \hfill{}
  7168. \end_inset
  7169. \begin_inset Float figure
  7170. wide false
  7171. sideways false
  7172. status collapsed
  7173. \begin_layout Plain Layout
  7174. \align center
  7175. \begin_inset Graphics
  7176. filename graphics/frma-pax-bx/MA-PAX-fRMA.fRMA-RASTER.png
  7177. lyxscale 10
  7178. width 45col%
  7179. groupId ma-frma
  7180. \end_inset
  7181. \end_layout
  7182. \begin_layout Plain Layout
  7183. \begin_inset Caption Standard
  7184. \begin_layout Plain Layout
  7185. \begin_inset CommandInset label
  7186. LatexCommand label
  7187. name "fig:MA-PAX-frma-frma"
  7188. \end_inset
  7189. fRMA vs fRMA for blood samples.
  7190. \end_layout
  7191. \end_inset
  7192. \end_layout
  7193. \end_inset
  7194. \end_layout
  7195. \begin_layout Plain Layout
  7196. \begin_inset Caption Standard
  7197. \begin_layout Plain Layout
  7198. \series bold
  7199. \begin_inset CommandInset label
  7200. LatexCommand label
  7201. name "fig:Representative-MA-plots"
  7202. \end_inset
  7203. Representative MA plots comparing RMA and custom fRMA normalizations.
  7204. \series default
  7205. For each plot, 20 samples were normalized using 2 different normalizations,
  7206. and then averages (A) and log ratios (M) were plotted between the two different
  7207. normalizations for every probe.
  7208. For the
  7209. \begin_inset Quotes eld
  7210. \end_inset
  7211. fRMA vs fRMA
  7212. \begin_inset Quotes erd
  7213. \end_inset
  7214. plots (b & d), two different fRMA normalizations using vectors from two
  7215. independent batch samplings were compared.
  7216. Density of points is represented by blue shading, and individual outlier
  7217. points are plotted.
  7218. \end_layout
  7219. \end_inset
  7220. \end_layout
  7221. \end_inset
  7222. \end_layout
  7223. \begin_layout Standard
  7224. Figure
  7225. \begin_inset CommandInset ref
  7226. LatexCommand ref
  7227. reference "fig:ma-bx-rma-frma"
  7228. plural "false"
  7229. caps "false"
  7230. noprefix "false"
  7231. \end_inset
  7232. shows an MA plot of the RMA-normalized values against the fRMA-normalized
  7233. values for the same probe sets and arrays, corresponding to the first row
  7234. of Figure
  7235. \begin_inset CommandInset ref
  7236. LatexCommand ref
  7237. reference "fig:m-bx-violin"
  7238. plural "false"
  7239. caps "false"
  7240. noprefix "false"
  7241. \end_inset
  7242. .
  7243. This MA plot shows that not only is there a wide distribution of M-values,
  7244. but the trend of M-values is dependent on the average normalized intensity.
  7245. This is expected, since the overall trend represents the differences in
  7246. the quantile normalization step.
  7247. When running RMA, only the quantiles for these specific 20 arrays are used,
  7248. while for fRMA the quantile distribution is taking from all arrays used
  7249. in training.
  7250. Figure
  7251. \begin_inset CommandInset ref
  7252. LatexCommand ref
  7253. reference "fig:ma-bx-frma-frma"
  7254. plural "false"
  7255. caps "false"
  7256. noprefix "false"
  7257. \end_inset
  7258. shows a similar MA plot comparing 2 different fRMA normalizations, correspondin
  7259. g to the 6th row of Figure
  7260. \begin_inset CommandInset ref
  7261. LatexCommand ref
  7262. reference "fig:m-bx-violin"
  7263. plural "false"
  7264. caps "false"
  7265. noprefix "false"
  7266. \end_inset
  7267. .
  7268. The MA plot is very tightly centered around zero with no visible trend.
  7269. Figures
  7270. \begin_inset CommandInset ref
  7271. LatexCommand ref
  7272. reference "fig:m-pax-violin"
  7273. plural "false"
  7274. caps "false"
  7275. noprefix "false"
  7276. \end_inset
  7277. ,
  7278. \begin_inset CommandInset ref
  7279. LatexCommand ref
  7280. reference "fig:MA-PAX-rma-frma"
  7281. plural "false"
  7282. caps "false"
  7283. noprefix "false"
  7284. \end_inset
  7285. , and
  7286. \begin_inset CommandInset ref
  7287. LatexCommand ref
  7288. reference "fig:ma-bx-frma-frma"
  7289. plural "false"
  7290. caps "false"
  7291. noprefix "false"
  7292. \end_inset
  7293. show exactly the same information for the blood samples, once again comparing
  7294. the normalized expression values between normalizations for all probe sets
  7295. across 20 randomly selected test arrays.
  7296. Once again, there is a wider distribution of log ratios between RMA-normalized
  7297. values and fRMA-normalized, and a much tighter distribution when comparing
  7298. different fRMA normalizations to each other, indicating that the fRMA training
  7299. process is robust to random batch downsampling for the blood samples as
  7300. well.
  7301. \end_layout
  7302. \begin_layout Subsection
  7303. SVA, voom, and array weights improve model fit for methylation array data
  7304. \end_layout
  7305. \begin_layout Standard
  7306. \begin_inset ERT
  7307. status open
  7308. \begin_layout Plain Layout
  7309. \backslash
  7310. afterpage{
  7311. \end_layout
  7312. \begin_layout Plain Layout
  7313. \backslash
  7314. begin{landscape}
  7315. \end_layout
  7316. \end_inset
  7317. \end_layout
  7318. \begin_layout Standard
  7319. \begin_inset Float figure
  7320. wide false
  7321. sideways false
  7322. status open
  7323. \begin_layout Plain Layout
  7324. \begin_inset Flex TODO Note (inline)
  7325. status open
  7326. \begin_layout Plain Layout
  7327. Fix axis labels:
  7328. \begin_inset Quotes eld
  7329. \end_inset
  7330. log2 M-value
  7331. \begin_inset Quotes erd
  7332. \end_inset
  7333. is redundant because M-values are already log scale
  7334. \end_layout
  7335. \end_inset
  7336. \end_layout
  7337. \begin_layout Plain Layout
  7338. \begin_inset Float figure
  7339. wide false
  7340. sideways false
  7341. status collapsed
  7342. \begin_layout Plain Layout
  7343. \align center
  7344. \begin_inset Graphics
  7345. filename graphics/methylvoom/unadj.dupcor/meanvar-trends-PAGE1-CROP-RASTER.png
  7346. lyxscale 15
  7347. width 30col%
  7348. groupId voomaw-subfig
  7349. \end_inset
  7350. \end_layout
  7351. \begin_layout Plain Layout
  7352. \begin_inset Caption Standard
  7353. \begin_layout Plain Layout
  7354. \begin_inset CommandInset label
  7355. LatexCommand label
  7356. name "fig:meanvar-basic"
  7357. \end_inset
  7358. Mean-variance trend for analysis A.
  7359. \end_layout
  7360. \end_inset
  7361. \end_layout
  7362. \end_inset
  7363. \begin_inset space \hfill{}
  7364. \end_inset
  7365. \begin_inset Float figure
  7366. wide false
  7367. sideways false
  7368. status collapsed
  7369. \begin_layout Plain Layout
  7370. \align center
  7371. \begin_inset Graphics
  7372. filename graphics/methylvoom/unadj.dupcor.sva.aw/meanvar-trends-PAGE1-CROP-RASTER.png
  7373. lyxscale 15
  7374. width 30col%
  7375. groupId voomaw-subfig
  7376. \end_inset
  7377. \end_layout
  7378. \begin_layout Plain Layout
  7379. \begin_inset Caption Standard
  7380. \begin_layout Plain Layout
  7381. \begin_inset CommandInset label
  7382. LatexCommand label
  7383. name "fig:meanvar-sva-aw"
  7384. \end_inset
  7385. Mean-variance trend for analysis B.
  7386. \end_layout
  7387. \end_inset
  7388. \end_layout
  7389. \end_inset
  7390. \begin_inset space \hfill{}
  7391. \end_inset
  7392. \begin_inset Float figure
  7393. wide false
  7394. sideways false
  7395. status collapsed
  7396. \begin_layout Plain Layout
  7397. \align center
  7398. \begin_inset Graphics
  7399. filename graphics/methylvoom/unadj.dupcor.sva.voomaw/meanvar-trends-PAGE2-CROP-RASTER.png
  7400. lyxscale 15
  7401. width 30col%
  7402. groupId voomaw-subfig
  7403. \end_inset
  7404. \end_layout
  7405. \begin_layout Plain Layout
  7406. \begin_inset Caption Standard
  7407. \begin_layout Plain Layout
  7408. \begin_inset CommandInset label
  7409. LatexCommand label
  7410. name "fig:meanvar-sva-voomaw"
  7411. \end_inset
  7412. Mean-variance trend after voom modeling in analysis C.
  7413. \end_layout
  7414. \end_inset
  7415. \end_layout
  7416. \end_inset
  7417. \end_layout
  7418. \begin_layout Plain Layout
  7419. \begin_inset Caption Standard
  7420. \begin_layout Plain Layout
  7421. \series bold
  7422. Mean-variance trend modeling in methylation array data.
  7423. \series default
  7424. The estimated log2(standard deviation) for each probe is plotted against
  7425. the probe's average M-value across all samples as a black point, with some
  7426. transparency to make overplotting more visible, since there are about 450,000
  7427. points.
  7428. Density of points is also indicated by the dark blue contour lines.
  7429. The prior variance trend estimated by eBayes is shown in light blue, while
  7430. the lowess trend of the points is shown in red.
  7431. \end_layout
  7432. \end_inset
  7433. \end_layout
  7434. \end_inset
  7435. \end_layout
  7436. \begin_layout Standard
  7437. \begin_inset ERT
  7438. status open
  7439. \begin_layout Plain Layout
  7440. \backslash
  7441. end{landscape}
  7442. \end_layout
  7443. \begin_layout Plain Layout
  7444. }
  7445. \end_layout
  7446. \end_inset
  7447. \end_layout
  7448. \begin_layout Standard
  7449. Figure
  7450. \begin_inset CommandInset ref
  7451. LatexCommand ref
  7452. reference "fig:meanvar-basic"
  7453. plural "false"
  7454. caps "false"
  7455. noprefix "false"
  7456. \end_inset
  7457. shows the relationship between the mean M-value and the standard deviation
  7458. calculated for each probe in the methylation array data set.
  7459. A few features of the data are apparent.
  7460. First, the data are very strongly bimodal, with peaks in the density around
  7461. M-values of +4 and -4.
  7462. These modes correspond to methylation sites that are nearly 100% methylated
  7463. and nearly 100% unmethylated, respectively.
  7464. The strong bomodality indicates that a majority of probes interrogate sites
  7465. that fall into one of these two categories.
  7466. The points in between these modes represent sites that are either partially
  7467. methylated in many samples, or are fully methylated in some samples and
  7468. fully unmethylated in other samples, or some combination.
  7469. The next visible feature of the data is the W-shaped variance trend.
  7470. The upticks in the variance trend on either side are expected, based on
  7471. the sigmoid transformation exaggerating small differences at extreme M-values
  7472. (Figure
  7473. \begin_inset CommandInset ref
  7474. LatexCommand ref
  7475. reference "fig:Sigmoid-beta-m-mapping"
  7476. plural "false"
  7477. caps "false"
  7478. noprefix "false"
  7479. \end_inset
  7480. ).
  7481. However, the uptick in the center is interesting: it indicates that sites
  7482. that are not constitutitively methylated or unmethylated have a higher
  7483. variance.
  7484. This could be a genuine biological effect, or it could be spurious noise
  7485. that is only observable at sites with varying methylation.
  7486. \end_layout
  7487. \begin_layout Standard
  7488. In Figure
  7489. \begin_inset CommandInset ref
  7490. LatexCommand ref
  7491. reference "fig:meanvar-sva-aw"
  7492. plural "false"
  7493. caps "false"
  7494. noprefix "false"
  7495. \end_inset
  7496. , we see the mean-variance trend for the same methylation array data, this
  7497. time with surrogate variables and sample quality weights estimated from
  7498. the data and included in the model.
  7499. As expected, the overall average variance is smaller, since the surrogate
  7500. variables account for some of the variance.
  7501. In addition, the uptick in variance in the middle of the M-value range
  7502. has disappeared, turning the W shape into a wide U shape.
  7503. This indicates that the excess variance in the probes with intermediate
  7504. M-values was explained by systematic variations not correlated with known
  7505. covariates, and these variations were modeled by the surrogate variables.
  7506. The result is a nearly flat variance trend for the entire intermediate
  7507. M-value range from about -3 to +3.
  7508. Note that this corresponds closely to the range within which the M-value
  7509. transformation shown in Figure
  7510. \begin_inset CommandInset ref
  7511. LatexCommand ref
  7512. reference "fig:Sigmoid-beta-m-mapping"
  7513. plural "false"
  7514. caps "false"
  7515. noprefix "false"
  7516. \end_inset
  7517. is nearly linear.
  7518. In contrast, the excess variance at the extremes (greater than +3 and less
  7519. than -3) was not
  7520. \begin_inset Quotes eld
  7521. \end_inset
  7522. absorbed
  7523. \begin_inset Quotes erd
  7524. \end_inset
  7525. by the surrogate variables and remains in the plot, indicating that this
  7526. variation has no systematic component: probes with extreme M-values are
  7527. uniformly more variable across all samples, as expected.
  7528. \end_layout
  7529. \begin_layout Standard
  7530. Figure
  7531. \begin_inset CommandInset ref
  7532. LatexCommand ref
  7533. reference "fig:meanvar-sva-voomaw"
  7534. plural "false"
  7535. caps "false"
  7536. noprefix "false"
  7537. \end_inset
  7538. shows the mean-variance trend after fitting the model with the observation
  7539. weights assigned by voom based on the mean-variance trend shown in Figure
  7540. \begin_inset CommandInset ref
  7541. LatexCommand ref
  7542. reference "fig:meanvar-sva-aw"
  7543. plural "false"
  7544. caps "false"
  7545. noprefix "false"
  7546. \end_inset
  7547. .
  7548. As expected, the weights exactly counteract the trend in the data, resulting
  7549. in a nearly flat trend centered vertically at 1 (i.e.
  7550. 0 on the log scale).
  7551. This shows that the observations with extreme M-values have been appropriately
  7552. down-weighted to account for the fact that the noise in those observations
  7553. has been amplified by the non-linear M-value transformation.
  7554. In turn, this gives relatively more weight to observervations in the middle
  7555. region, which are more likely to correspond to probes measuring interesting
  7556. biology (not constitutively methylated or unmethylated).
  7557. \end_layout
  7558. \begin_layout Standard
  7559. \begin_inset Float table
  7560. wide false
  7561. sideways false
  7562. status open
  7563. \begin_layout Plain Layout
  7564. \align center
  7565. \begin_inset Tabular
  7566. <lyxtabular version="3" rows="5" columns="3">
  7567. <features tabularvalignment="middle">
  7568. <column alignment="center" valignment="top">
  7569. <column alignment="center" valignment="top">
  7570. <column alignment="center" valignment="top">
  7571. <row>
  7572. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  7573. \begin_inset Text
  7574. \begin_layout Plain Layout
  7575. Covariate
  7576. \end_layout
  7577. \end_inset
  7578. </cell>
  7579. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  7580. \begin_inset Text
  7581. \begin_layout Plain Layout
  7582. Test used
  7583. \end_layout
  7584. \end_inset
  7585. </cell>
  7586. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  7587. \begin_inset Text
  7588. \begin_layout Plain Layout
  7589. p-value
  7590. \end_layout
  7591. \end_inset
  7592. </cell>
  7593. </row>
  7594. <row>
  7595. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7596. \begin_inset Text
  7597. \begin_layout Plain Layout
  7598. Transplant Status
  7599. \end_layout
  7600. \end_inset
  7601. </cell>
  7602. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7603. \begin_inset Text
  7604. \begin_layout Plain Layout
  7605. F-test
  7606. \end_layout
  7607. \end_inset
  7608. </cell>
  7609. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  7610. \begin_inset Text
  7611. \begin_layout Plain Layout
  7612. 0.404
  7613. \end_layout
  7614. \end_inset
  7615. </cell>
  7616. </row>
  7617. <row>
  7618. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7619. \begin_inset Text
  7620. \begin_layout Plain Layout
  7621. Diabetes Diagnosis
  7622. \end_layout
  7623. \end_inset
  7624. </cell>
  7625. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7626. \begin_inset Text
  7627. \begin_layout Plain Layout
  7628. \emph on
  7629. t
  7630. \emph default
  7631. -test
  7632. \end_layout
  7633. \end_inset
  7634. </cell>
  7635. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  7636. \begin_inset Text
  7637. \begin_layout Plain Layout
  7638. 0.00106
  7639. \end_layout
  7640. \end_inset
  7641. </cell>
  7642. </row>
  7643. <row>
  7644. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7645. \begin_inset Text
  7646. \begin_layout Plain Layout
  7647. Sex
  7648. \end_layout
  7649. \end_inset
  7650. </cell>
  7651. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7652. \begin_inset Text
  7653. \begin_layout Plain Layout
  7654. \emph on
  7655. t
  7656. \emph default
  7657. -test
  7658. \end_layout
  7659. \end_inset
  7660. </cell>
  7661. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  7662. \begin_inset Text
  7663. \begin_layout Plain Layout
  7664. 0.148
  7665. \end_layout
  7666. \end_inset
  7667. </cell>
  7668. </row>
  7669. <row>
  7670. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  7671. \begin_inset Text
  7672. \begin_layout Plain Layout
  7673. Age
  7674. \end_layout
  7675. \end_inset
  7676. </cell>
  7677. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  7678. \begin_inset Text
  7679. \begin_layout Plain Layout
  7680. linear regression
  7681. \end_layout
  7682. \end_inset
  7683. </cell>
  7684. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  7685. \begin_inset Text
  7686. \begin_layout Plain Layout
  7687. 0.212
  7688. \end_layout
  7689. \end_inset
  7690. </cell>
  7691. </row>
  7692. </lyxtabular>
  7693. \end_inset
  7694. \end_layout
  7695. \begin_layout Plain Layout
  7696. \begin_inset Caption Standard
  7697. \begin_layout Plain Layout
  7698. \series bold
  7699. \begin_inset CommandInset label
  7700. LatexCommand label
  7701. name "tab:weight-covariate-tests"
  7702. \end_inset
  7703. Association of sample weights with clinical covariates in methylation array
  7704. data.
  7705. \series default
  7706. Computed sample quality log weights were tested for significant association
  7707. with each of the variables in the model (1st column).
  7708. An appropriate test was selected for each variable based on whether the
  7709. variable had 2 categories (
  7710. \emph on
  7711. t
  7712. \emph default
  7713. -test), had more than 2 categories (F-test), or was numeric (linear regression).
  7714. The test selected is shown in the 2nd column.
  7715. P-values for association with the log weights are shown in the 3rd column.
  7716. No multiple testing adjustment was performed for these p-values.
  7717. \end_layout
  7718. \end_inset
  7719. \end_layout
  7720. \end_inset
  7721. \end_layout
  7722. \begin_layout Standard
  7723. \begin_inset Float figure
  7724. wide false
  7725. sideways false
  7726. status open
  7727. \begin_layout Plain Layout
  7728. \begin_inset Flex TODO Note (inline)
  7729. status open
  7730. \begin_layout Plain Layout
  7731. Redo the sample weight boxplot with notches, and remove fill colors
  7732. \end_layout
  7733. \end_inset
  7734. \end_layout
  7735. \begin_layout Plain Layout
  7736. \align center
  7737. \begin_inset Graphics
  7738. filename graphics/methylvoom/unadj.dupcor.sva.voomaw/sample-weights-PAGE3-CROP.pdf
  7739. lyxscale 50
  7740. width 60col%
  7741. groupId colwidth
  7742. \end_inset
  7743. \end_layout
  7744. \begin_layout Plain Layout
  7745. \begin_inset Caption Standard
  7746. \begin_layout Plain Layout
  7747. \begin_inset CommandInset label
  7748. LatexCommand label
  7749. name "fig:diabetes-sample-weights"
  7750. \end_inset
  7751. \series bold
  7752. Box-and-whiskers plot of sample quality weights grouped by diabetes diagnosis.
  7753. \series default
  7754. Samples were grouped based on diabetes diagnosis, and the distribution of
  7755. sample quality weights for each diagnosis was plotted as a box-and-whiskers
  7756. plot
  7757. \begin_inset CommandInset citation
  7758. LatexCommand cite
  7759. key "McGill1978"
  7760. literal "false"
  7761. \end_inset
  7762. .
  7763. \end_layout
  7764. \end_inset
  7765. \end_layout
  7766. \begin_layout Plain Layout
  7767. \end_layout
  7768. \end_inset
  7769. \end_layout
  7770. \begin_layout Standard
  7771. To determine whether any of the known experimental factors had an impact
  7772. on data quality, the sample quality weights estimated from the data were
  7773. tested for association with each of the experimental factors (Table
  7774. \begin_inset CommandInset ref
  7775. LatexCommand ref
  7776. reference "tab:weight-covariate-tests"
  7777. plural "false"
  7778. caps "false"
  7779. noprefix "false"
  7780. \end_inset
  7781. ).
  7782. Diabetes diagnosis was found to have a potentially significant association
  7783. with the sample weights, with a t-test p-value of
  7784. \begin_inset Formula $1.06\times10^{-3}$
  7785. \end_inset
  7786. .
  7787. Figure
  7788. \begin_inset CommandInset ref
  7789. LatexCommand ref
  7790. reference "fig:diabetes-sample-weights"
  7791. plural "false"
  7792. caps "false"
  7793. noprefix "false"
  7794. \end_inset
  7795. shows the distribution of sample weights grouped by diabetes diagnosis.
  7796. The samples from patients with Type 2 diabetes were assigned significantly
  7797. lower weights than those from patients with Type 1 diabetes.
  7798. This indicates that the type 2 diabetes samples had an overall higher variance
  7799. on average across all probes.
  7800. \end_layout
  7801. \begin_layout Standard
  7802. \begin_inset Float table
  7803. wide false
  7804. sideways false
  7805. status open
  7806. \begin_layout Plain Layout
  7807. \align center
  7808. \begin_inset Flex TODO Note (inline)
  7809. status open
  7810. \begin_layout Plain Layout
  7811. Consider transposing these tables
  7812. \end_layout
  7813. \end_inset
  7814. \end_layout
  7815. \begin_layout Plain Layout
  7816. \begin_inset Float table
  7817. wide false
  7818. sideways false
  7819. status open
  7820. \begin_layout Plain Layout
  7821. \align center
  7822. \begin_inset Tabular
  7823. <lyxtabular version="3" rows="5" columns="4">
  7824. <features tabularvalignment="middle">
  7825. <column alignment="center" valignment="top">
  7826. <column alignment="center" valignment="top">
  7827. <column alignment="center" valignment="top">
  7828. <column alignment="center" valignment="top">
  7829. <row>
  7830. <cell alignment="center" valignment="top" usebox="none">
  7831. \begin_inset Text
  7832. \begin_layout Plain Layout
  7833. \end_layout
  7834. \end_inset
  7835. </cell>
  7836. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  7837. \begin_inset Text
  7838. \begin_layout Plain Layout
  7839. Analysis
  7840. \end_layout
  7841. \end_inset
  7842. </cell>
  7843. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7844. \begin_inset Text
  7845. \begin_layout Plain Layout
  7846. \end_layout
  7847. \end_inset
  7848. </cell>
  7849. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  7850. \begin_inset Text
  7851. \begin_layout Plain Layout
  7852. \end_layout
  7853. \end_inset
  7854. </cell>
  7855. </row>
  7856. <row>
  7857. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  7858. \begin_inset Text
  7859. \begin_layout Plain Layout
  7860. Contrast
  7861. \end_layout
  7862. \end_inset
  7863. </cell>
  7864. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  7865. \begin_inset Text
  7866. \begin_layout Plain Layout
  7867. A
  7868. \end_layout
  7869. \end_inset
  7870. </cell>
  7871. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  7872. \begin_inset Text
  7873. \begin_layout Plain Layout
  7874. B
  7875. \end_layout
  7876. \end_inset
  7877. </cell>
  7878. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  7879. \begin_inset Text
  7880. \begin_layout Plain Layout
  7881. C
  7882. \end_layout
  7883. \end_inset
  7884. </cell>
  7885. </row>
  7886. <row>
  7887. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7888. \begin_inset Text
  7889. \begin_layout Plain Layout
  7890. TX vs AR
  7891. \end_layout
  7892. \end_inset
  7893. </cell>
  7894. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7895. \begin_inset Text
  7896. \begin_layout Plain Layout
  7897. 0
  7898. \end_layout
  7899. \end_inset
  7900. </cell>
  7901. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7902. \begin_inset Text
  7903. \begin_layout Plain Layout
  7904. 25
  7905. \end_layout
  7906. \end_inset
  7907. </cell>
  7908. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  7909. \begin_inset Text
  7910. \begin_layout Plain Layout
  7911. 22
  7912. \end_layout
  7913. \end_inset
  7914. </cell>
  7915. </row>
  7916. <row>
  7917. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7918. \begin_inset Text
  7919. \begin_layout Plain Layout
  7920. TX vs ADNR
  7921. \end_layout
  7922. \end_inset
  7923. </cell>
  7924. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7925. \begin_inset Text
  7926. \begin_layout Plain Layout
  7927. 7
  7928. \end_layout
  7929. \end_inset
  7930. </cell>
  7931. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7932. \begin_inset Text
  7933. \begin_layout Plain Layout
  7934. 338
  7935. \end_layout
  7936. \end_inset
  7937. </cell>
  7938. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  7939. \begin_inset Text
  7940. \begin_layout Plain Layout
  7941. 369
  7942. \end_layout
  7943. \end_inset
  7944. </cell>
  7945. </row>
  7946. <row>
  7947. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  7948. \begin_inset Text
  7949. \begin_layout Plain Layout
  7950. TX vs CAN
  7951. \end_layout
  7952. \end_inset
  7953. </cell>
  7954. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  7955. \begin_inset Text
  7956. \begin_layout Plain Layout
  7957. 0
  7958. \end_layout
  7959. \end_inset
  7960. </cell>
  7961. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  7962. \begin_inset Text
  7963. \begin_layout Plain Layout
  7964. 231
  7965. \end_layout
  7966. \end_inset
  7967. </cell>
  7968. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  7969. \begin_inset Text
  7970. \begin_layout Plain Layout
  7971. 278
  7972. \end_layout
  7973. \end_inset
  7974. </cell>
  7975. </row>
  7976. </lyxtabular>
  7977. \end_inset
  7978. \end_layout
  7979. \begin_layout Plain Layout
  7980. \begin_inset Caption Standard
  7981. \begin_layout Plain Layout
  7982. \begin_inset CommandInset label
  7983. LatexCommand label
  7984. name "tab:methyl-num-signif"
  7985. \end_inset
  7986. Number of probes significant at 10% FDR.
  7987. \end_layout
  7988. \end_inset
  7989. \end_layout
  7990. \end_inset
  7991. \begin_inset space \hfill{}
  7992. \end_inset
  7993. \begin_inset Float table
  7994. wide false
  7995. sideways false
  7996. status open
  7997. \begin_layout Plain Layout
  7998. \align center
  7999. \begin_inset Tabular
  8000. <lyxtabular version="3" rows="5" columns="4">
  8001. <features tabularvalignment="middle">
  8002. <column alignment="center" valignment="top">
  8003. <column alignment="center" valignment="top">
  8004. <column alignment="center" valignment="top">
  8005. <column alignment="center" valignment="top">
  8006. <row>
  8007. <cell alignment="center" valignment="top" usebox="none">
  8008. \begin_inset Text
  8009. \begin_layout Plain Layout
  8010. \end_layout
  8011. \end_inset
  8012. </cell>
  8013. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8014. \begin_inset Text
  8015. \begin_layout Plain Layout
  8016. Analysis
  8017. \end_layout
  8018. \end_inset
  8019. </cell>
  8020. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8021. \begin_inset Text
  8022. \begin_layout Plain Layout
  8023. \end_layout
  8024. \end_inset
  8025. </cell>
  8026. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8027. \begin_inset Text
  8028. \begin_layout Plain Layout
  8029. \end_layout
  8030. \end_inset
  8031. </cell>
  8032. </row>
  8033. <row>
  8034. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8035. \begin_inset Text
  8036. \begin_layout Plain Layout
  8037. Contrast
  8038. \end_layout
  8039. \end_inset
  8040. </cell>
  8041. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8042. \begin_inset Text
  8043. \begin_layout Plain Layout
  8044. A
  8045. \end_layout
  8046. \end_inset
  8047. </cell>
  8048. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8049. \begin_inset Text
  8050. \begin_layout Plain Layout
  8051. B
  8052. \end_layout
  8053. \end_inset
  8054. </cell>
  8055. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  8056. \begin_inset Text
  8057. \begin_layout Plain Layout
  8058. C
  8059. \end_layout
  8060. \end_inset
  8061. </cell>
  8062. </row>
  8063. <row>
  8064. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8065. \begin_inset Text
  8066. \begin_layout Plain Layout
  8067. TX vs AR
  8068. \end_layout
  8069. \end_inset
  8070. </cell>
  8071. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8072. \begin_inset Text
  8073. \begin_layout Plain Layout
  8074. 0
  8075. \end_layout
  8076. \end_inset
  8077. </cell>
  8078. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8079. \begin_inset Text
  8080. \begin_layout Plain Layout
  8081. 10,063
  8082. \end_layout
  8083. \end_inset
  8084. </cell>
  8085. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8086. \begin_inset Text
  8087. \begin_layout Plain Layout
  8088. 11,225
  8089. \end_layout
  8090. \end_inset
  8091. </cell>
  8092. </row>
  8093. <row>
  8094. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8095. \begin_inset Text
  8096. \begin_layout Plain Layout
  8097. TX vs ADNR
  8098. \end_layout
  8099. \end_inset
  8100. </cell>
  8101. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8102. \begin_inset Text
  8103. \begin_layout Plain Layout
  8104. 27
  8105. \end_layout
  8106. \end_inset
  8107. </cell>
  8108. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8109. \begin_inset Text
  8110. \begin_layout Plain Layout
  8111. 12,674
  8112. \end_layout
  8113. \end_inset
  8114. </cell>
  8115. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8116. \begin_inset Text
  8117. \begin_layout Plain Layout
  8118. 13,086
  8119. \end_layout
  8120. \end_inset
  8121. </cell>
  8122. </row>
  8123. <row>
  8124. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8125. \begin_inset Text
  8126. \begin_layout Plain Layout
  8127. TX vs CAN
  8128. \end_layout
  8129. \end_inset
  8130. </cell>
  8131. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8132. \begin_inset Text
  8133. \begin_layout Plain Layout
  8134. 966
  8135. \end_layout
  8136. \end_inset
  8137. </cell>
  8138. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8139. \begin_inset Text
  8140. \begin_layout Plain Layout
  8141. 20,039
  8142. \end_layout
  8143. \end_inset
  8144. </cell>
  8145. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  8146. \begin_inset Text
  8147. \begin_layout Plain Layout
  8148. 20,955
  8149. \end_layout
  8150. \end_inset
  8151. </cell>
  8152. </row>
  8153. </lyxtabular>
  8154. \end_inset
  8155. \end_layout
  8156. \begin_layout Plain Layout
  8157. \begin_inset Caption Standard
  8158. \begin_layout Plain Layout
  8159. \begin_inset CommandInset label
  8160. LatexCommand label
  8161. name "tab:methyl-est-nonnull"
  8162. \end_inset
  8163. Estimated number of non-null tests, using the method of averaging local
  8164. FDR values
  8165. \begin_inset CommandInset citation
  8166. LatexCommand cite
  8167. key "Phipson2013Thesis"
  8168. literal "false"
  8169. \end_inset
  8170. .
  8171. \end_layout
  8172. \end_inset
  8173. \end_layout
  8174. \end_inset
  8175. \end_layout
  8176. \begin_layout Plain Layout
  8177. \begin_inset Caption Standard
  8178. \begin_layout Plain Layout
  8179. \series bold
  8180. Estimates of degree of differential methylation in for each contrast in
  8181. each analysis.
  8182. \series default
  8183. For each of the analyses in Table
  8184. \begin_inset CommandInset ref
  8185. LatexCommand ref
  8186. reference "tab:Summary-of-meth-analysis"
  8187. plural "false"
  8188. caps "false"
  8189. noprefix "false"
  8190. \end_inset
  8191. , these tables show the number of probes called significantly differentially
  8192. methylated at a threshold of 10% FDR for each comparison between TX and
  8193. the other 3 transplant statuses (a) and the estimated total number of probes
  8194. that are differentially methylated (b).
  8195. \end_layout
  8196. \end_inset
  8197. \end_layout
  8198. \end_inset
  8199. \end_layout
  8200. \begin_layout Standard
  8201. \begin_inset Float figure
  8202. wide false
  8203. sideways false
  8204. status open
  8205. \begin_layout Plain Layout
  8206. \align center
  8207. \series bold
  8208. \begin_inset Float figure
  8209. wide false
  8210. sideways false
  8211. status collapsed
  8212. \begin_layout Plain Layout
  8213. \align center
  8214. \begin_inset Graphics
  8215. filename graphics/methylvoom/unadj.dupcor/pval-histograms-PAGE1.pdf
  8216. lyxscale 33
  8217. width 30col%
  8218. groupId meth-pval-hist
  8219. \end_inset
  8220. \end_layout
  8221. \begin_layout Plain Layout
  8222. \series bold
  8223. \begin_inset Caption Standard
  8224. \begin_layout Plain Layout
  8225. AR vs.
  8226. TX, Analysis A
  8227. \end_layout
  8228. \end_inset
  8229. \end_layout
  8230. \begin_layout Plain Layout
  8231. \end_layout
  8232. \end_inset
  8233. \begin_inset space \hfill{}
  8234. \end_inset
  8235. \begin_inset Float figure
  8236. wide false
  8237. sideways false
  8238. status collapsed
  8239. \begin_layout Plain Layout
  8240. \align center
  8241. \begin_inset Graphics
  8242. filename graphics/methylvoom/unadj.dupcor/pval-histograms-PAGE2.pdf
  8243. lyxscale 33
  8244. width 30col%
  8245. groupId meth-pval-hist
  8246. \end_inset
  8247. \end_layout
  8248. \begin_layout Plain Layout
  8249. \series bold
  8250. \begin_inset Caption Standard
  8251. \begin_layout Plain Layout
  8252. ADNR vs.
  8253. TX, Analysis A
  8254. \end_layout
  8255. \end_inset
  8256. \end_layout
  8257. \end_inset
  8258. \begin_inset space \hfill{}
  8259. \end_inset
  8260. \begin_inset Float figure
  8261. wide false
  8262. sideways false
  8263. status collapsed
  8264. \begin_layout Plain Layout
  8265. \align center
  8266. \begin_inset Graphics
  8267. filename graphics/methylvoom/unadj.dupcor/pval-histograms-PAGE3.pdf
  8268. lyxscale 33
  8269. width 30col%
  8270. groupId meth-pval-hist
  8271. \end_inset
  8272. \end_layout
  8273. \begin_layout Plain Layout
  8274. \series bold
  8275. \begin_inset Caption Standard
  8276. \begin_layout Plain Layout
  8277. CAN vs.
  8278. TX, Analysis A
  8279. \end_layout
  8280. \end_inset
  8281. \end_layout
  8282. \end_inset
  8283. \end_layout
  8284. \begin_layout Plain Layout
  8285. \align center
  8286. \series bold
  8287. \begin_inset Float figure
  8288. wide false
  8289. sideways false
  8290. status collapsed
  8291. \begin_layout Plain Layout
  8292. \align center
  8293. \begin_inset Graphics
  8294. filename graphics/methylvoom/unadj.dupcor.sva.aw/pval-histograms-PAGE1.pdf
  8295. lyxscale 33
  8296. width 30col%
  8297. groupId meth-pval-hist
  8298. \end_inset
  8299. \end_layout
  8300. \begin_layout Plain Layout
  8301. \series bold
  8302. \begin_inset Caption Standard
  8303. \begin_layout Plain Layout
  8304. AR vs.
  8305. TX, Analysis B
  8306. \end_layout
  8307. \end_inset
  8308. \end_layout
  8309. \end_inset
  8310. \begin_inset space \hfill{}
  8311. \end_inset
  8312. \begin_inset Float figure
  8313. wide false
  8314. sideways false
  8315. status collapsed
  8316. \begin_layout Plain Layout
  8317. \align center
  8318. \begin_inset Graphics
  8319. filename graphics/methylvoom/unadj.dupcor.sva.aw/pval-histograms-PAGE2.pdf
  8320. lyxscale 33
  8321. width 30col%
  8322. groupId meth-pval-hist
  8323. \end_inset
  8324. \end_layout
  8325. \begin_layout Plain Layout
  8326. \series bold
  8327. \begin_inset Caption Standard
  8328. \begin_layout Plain Layout
  8329. ADNR vs.
  8330. TX, Analysis B
  8331. \end_layout
  8332. \end_inset
  8333. \end_layout
  8334. \end_inset
  8335. \begin_inset space \hfill{}
  8336. \end_inset
  8337. \begin_inset Float figure
  8338. wide false
  8339. sideways false
  8340. status collapsed
  8341. \begin_layout Plain Layout
  8342. \align center
  8343. \begin_inset Graphics
  8344. filename graphics/methylvoom/unadj.dupcor.sva.aw/pval-histograms-PAGE3.pdf
  8345. lyxscale 33
  8346. width 30col%
  8347. groupId meth-pval-hist
  8348. \end_inset
  8349. \end_layout
  8350. \begin_layout Plain Layout
  8351. \series bold
  8352. \begin_inset Caption Standard
  8353. \begin_layout Plain Layout
  8354. CAN vs.
  8355. TX, Analysis B
  8356. \end_layout
  8357. \end_inset
  8358. \end_layout
  8359. \end_inset
  8360. \end_layout
  8361. \begin_layout Plain Layout
  8362. \align center
  8363. \series bold
  8364. \begin_inset Float figure
  8365. wide false
  8366. sideways false
  8367. status collapsed
  8368. \begin_layout Plain Layout
  8369. \align center
  8370. \begin_inset Graphics
  8371. filename graphics/methylvoom/unadj.dupcor.sva.voomaw/pval-histograms-PAGE1.pdf
  8372. lyxscale 33
  8373. width 30col%
  8374. groupId meth-pval-hist
  8375. \end_inset
  8376. \end_layout
  8377. \begin_layout Plain Layout
  8378. \series bold
  8379. \begin_inset Caption Standard
  8380. \begin_layout Plain Layout
  8381. AR vs.
  8382. TX, Analysis C
  8383. \end_layout
  8384. \end_inset
  8385. \end_layout
  8386. \end_inset
  8387. \begin_inset space \hfill{}
  8388. \end_inset
  8389. \begin_inset Float figure
  8390. wide false
  8391. sideways false
  8392. status collapsed
  8393. \begin_layout Plain Layout
  8394. \align center
  8395. \begin_inset Graphics
  8396. filename graphics/methylvoom/unadj.dupcor.sva.voomaw/pval-histograms-PAGE2.pdf
  8397. lyxscale 33
  8398. width 30col%
  8399. groupId meth-pval-hist
  8400. \end_inset
  8401. \end_layout
  8402. \begin_layout Plain Layout
  8403. \series bold
  8404. \begin_inset Caption Standard
  8405. \begin_layout Plain Layout
  8406. ADNR vs.
  8407. TX, Analysis C
  8408. \end_layout
  8409. \end_inset
  8410. \end_layout
  8411. \end_inset
  8412. \begin_inset space \hfill{}
  8413. \end_inset
  8414. \begin_inset Float figure
  8415. wide false
  8416. sideways false
  8417. status collapsed
  8418. \begin_layout Plain Layout
  8419. \align center
  8420. \begin_inset Graphics
  8421. filename graphics/methylvoom/unadj.dupcor.sva.voomaw/pval-histograms-PAGE3.pdf
  8422. lyxscale 33
  8423. width 30col%
  8424. groupId meth-pval-hist
  8425. \end_inset
  8426. \end_layout
  8427. \begin_layout Plain Layout
  8428. \series bold
  8429. \begin_inset Caption Standard
  8430. \begin_layout Plain Layout
  8431. CAN vs.
  8432. TX, Analysis C
  8433. \end_layout
  8434. \end_inset
  8435. \end_layout
  8436. \end_inset
  8437. \end_layout
  8438. \begin_layout Plain Layout
  8439. \begin_inset Caption Standard
  8440. \begin_layout Plain Layout
  8441. \series bold
  8442. \begin_inset CommandInset label
  8443. LatexCommand label
  8444. name "fig:meth-p-value-histograms"
  8445. \end_inset
  8446. Probe p-value histograms for each contrast in each analysis.
  8447. \series default
  8448. For each differential methylation test of interest, the distribution of
  8449. p-values across all probes is plotted as a histogram.
  8450. The red solid line indicates the density that would be expected under the
  8451. null hypothesis for all probes (a
  8452. \begin_inset Formula $\mathrm{Uniform}(0,1)$
  8453. \end_inset
  8454. distribution), while the blue dotted line indicates the fraction of p-values
  8455. that actually follow the null hypothesis (
  8456. \begin_inset Formula $\hat{\pi}_{0}$
  8457. \end_inset
  8458. ) estimated using the method of averaging local FDR values
  8459. \begin_inset CommandInset citation
  8460. LatexCommand cite
  8461. key "Phipson2013Thesis"
  8462. literal "false"
  8463. \end_inset
  8464. .
  8465. the blue line is only shown in each plot if the estimate of
  8466. \begin_inset Formula $\hat{\pi}_{0}$
  8467. \end_inset
  8468. for that p-value distribution is different from 1.
  8469. \end_layout
  8470. \end_inset
  8471. \end_layout
  8472. \end_inset
  8473. \end_layout
  8474. \begin_layout Standard
  8475. Table
  8476. \begin_inset CommandInset ref
  8477. LatexCommand ref
  8478. reference "tab:methyl-num-signif"
  8479. plural "false"
  8480. caps "false"
  8481. noprefix "false"
  8482. \end_inset
  8483. shows the number of significantly differentially methylated probes reported
  8484. by each analysis for each comparison of interest at an FDR of 10%.
  8485. As expected, the more elaborate analyses, B and C, report more significant
  8486. probes than the more basic analysis A, consistent with the conclusions
  8487. above that the data contain hidden systematic variations that must be modeled.
  8488. Table
  8489. \begin_inset CommandInset ref
  8490. LatexCommand ref
  8491. reference "tab:methyl-est-nonnull"
  8492. plural "false"
  8493. caps "false"
  8494. noprefix "false"
  8495. \end_inset
  8496. shows the estimated number differentially methylated probes for each test
  8497. from each analysis.
  8498. This was computed by estimating the proportion of null hypotheses that
  8499. were true using the method of
  8500. \begin_inset CommandInset citation
  8501. LatexCommand cite
  8502. key "Phipson2013Thesis"
  8503. literal "false"
  8504. \end_inset
  8505. and subtracting that fraction from the total number of probes, yielding
  8506. an estimate of the number of null hypotheses that are false based on the
  8507. distribution of p-values across the entire dataset.
  8508. Note that this does not identify which null hypotheses should be rejected
  8509. (i.e.
  8510. which probes are significant); it only estimates the true number of such
  8511. probes.
  8512. Once again, analyses B and C result it much larger estimates for the number
  8513. of differentially methylated probes.
  8514. In this case, analysis C, the only analysis that includes voom, estimates
  8515. the largest number of differentially methylated probes for all 3 contrasts.
  8516. If the assumptions of all the methods employed hold, then this represents
  8517. a gain in statistical power over the simpler analysis A.
  8518. Figure
  8519. \begin_inset CommandInset ref
  8520. LatexCommand ref
  8521. reference "fig:meth-p-value-histograms"
  8522. plural "false"
  8523. caps "false"
  8524. noprefix "false"
  8525. \end_inset
  8526. shows the p-value distributions for each test, from which the numbers in
  8527. Table
  8528. \begin_inset CommandInset ref
  8529. LatexCommand ref
  8530. reference "tab:methyl-est-nonnull"
  8531. plural "false"
  8532. caps "false"
  8533. noprefix "false"
  8534. \end_inset
  8535. were generated.
  8536. The distributions for analysis A all have a dip in density near zero, which
  8537. is a strong sign of a poor model fit.
  8538. The histograms for analyses B and C are more well-behaved, with a uniform
  8539. component stretching all the way from 0 to 1 representing the probes for
  8540. which the null hypotheses is true (no differential methylation), and a
  8541. zero-biased component representing the probes for which the null hypothesis
  8542. is false (differentially methylated).
  8543. These histograms do not indicate any major issues with the model fit.
  8544. \end_layout
  8545. \begin_layout Standard
  8546. \begin_inset Flex TODO Note (inline)
  8547. status open
  8548. \begin_layout Plain Layout
  8549. If time allows, maybe generate the PCA plots before/after SVA effect subtraction
  8550. ?
  8551. \end_layout
  8552. \end_inset
  8553. \end_layout
  8554. \begin_layout Section
  8555. Discussion
  8556. \end_layout
  8557. \begin_layout Subsection
  8558. fRMA achieves clinically applicable normalization without sacrificing classifica
  8559. tion performance
  8560. \end_layout
  8561. \begin_layout Standard
  8562. As shown in Figure
  8563. \begin_inset CommandInset ref
  8564. LatexCommand ref
  8565. reference "fig:Classifier-probabilities-RMA"
  8566. plural "false"
  8567. caps "false"
  8568. noprefix "false"
  8569. \end_inset
  8570. , improper normalization, particularly separate normalization of training
  8571. and test samples, leads to unwanted biases in classification.
  8572. In a controlled experimental context, it is always possible to correct
  8573. this issue by normalizing all experimental samples together.
  8574. However, because it is not feasible to normalize all samples together in
  8575. a clinical context, a single-channel normalization is required is required.
  8576. \end_layout
  8577. \begin_layout Standard
  8578. The major concern in using a single-channel normalization is that non-single-cha
  8579. nnel methods can share information between arrays to improve the normalization,
  8580. and single-channel methods risk sacrificing the gains in normalization
  8581. accuracy that come from this information sharing.
  8582. In the case of RMA, this information sharing is accomplished through quantile
  8583. normalization and median polish steps.
  8584. The need for information sharing in quantile normalization can easily be
  8585. removed by learning a fixed set of quantiles from external data and normalizing
  8586. each array to these fixed quantiles, instead of the quantiles of the data
  8587. itself.
  8588. As long as the fixed quantiles are reasonable, the result will be similar
  8589. to standard RMA.
  8590. However, there is no analogous way to eliminate cross-array information
  8591. sharing in the median polish step, so fRMA replaces this with a weighted
  8592. average of probes on each array, with the weights learned from external
  8593. data.
  8594. This step of fRMA has the greatest potential to diverge from RMA un undesirable
  8595. ways.
  8596. \end_layout
  8597. \begin_layout Standard
  8598. However, when run on real data, fRMA performed at least as well as RMA in
  8599. both the internal validation and external validation tests.
  8600. This shows that fRMA can be used to normalize individual clinical samples
  8601. in a class prediction context without sacrificing the classifier performance
  8602. that would be obtained by using the more well-established RMA for normalization.
  8603. The other single-channel normalization method considered, SCAN, showed
  8604. some loss of AUC in the external validation test.
  8605. Based on these results, fRMA is the preferred normalization for clinical
  8606. samples in a class prediction context.
  8607. \end_layout
  8608. \begin_layout Subsection
  8609. Robust fRMA vectors can be generated for new array platforms
  8610. \end_layout
  8611. \begin_layout Standard
  8612. \begin_inset Flex TODO Note (inline)
  8613. status open
  8614. \begin_layout Plain Layout
  8615. Look up the exact numbers, do a find & replace for
  8616. \begin_inset Quotes eld
  8617. \end_inset
  8618. 850
  8619. \begin_inset Quotes erd
  8620. \end_inset
  8621. \end_layout
  8622. \end_inset
  8623. \end_layout
  8624. \begin_layout Standard
  8625. The published fRMA normalization vectors for the hgu133plus2 platform were
  8626. generated from a set of about 850 samples chosen from a wide range of tissues,
  8627. which the authors determined was sufficient to generate a robust set of
  8628. normalization vectors that could be applied across all tissues
  8629. \begin_inset CommandInset citation
  8630. LatexCommand cite
  8631. key "McCall2010"
  8632. literal "false"
  8633. \end_inset
  8634. .
  8635. Since we only had hthgu133pluspm for 2 tissues of interest, our needs were
  8636. more modest.
  8637. Even using only 130 samples in 26 batches of 5 samples each for kidney
  8638. biopsies, we were able to train a robust set of fRMA normalization vectors
  8639. that were not meaningfully affected by the random selection of 5 samples
  8640. from each batch.
  8641. As expected, the training process was just as robust for the blood samples
  8642. with 230 samples in 46 batches of 5 samples each.
  8643. Because these vectors were each generated using training samples from a
  8644. single tissue, they are not suitable for general use, unlike the vectors
  8645. provided with fRMA itself.
  8646. They are purpose-built for normalizing a specific type of sample on a specific
  8647. platform.
  8648. This is a mostly acceptable limitation in the context of developing a machine
  8649. learning classifier for diagnosing a disease based on samples of a specific
  8650. tissue.
  8651. \end_layout
  8652. \begin_layout Standard
  8653. \begin_inset Flex TODO Note (inline)
  8654. status open
  8655. \begin_layout Plain Layout
  8656. Talk about how these vectors can be used for any data from these tissues
  8657. on this platform even though they were custom made for this data set.
  8658. \end_layout
  8659. \end_inset
  8660. \end_layout
  8661. \begin_layout Standard
  8662. \begin_inset Flex TODO Note (inline)
  8663. status open
  8664. \begin_layout Plain Layout
  8665. How to bring up that these custom vectors were used in another project by
  8666. someone else that was never published?
  8667. \end_layout
  8668. \end_inset
  8669. \end_layout
  8670. \begin_layout Subsection
  8671. Methylation array data can be successfully analyzed using existing techniques,
  8672. but machine learning poses additional challenges
  8673. \end_layout
  8674. \begin_layout Standard
  8675. Both analysis strategies B and C both yield a reasonable analysis, with
  8676. a mean-variance trend that matches the expected behavior for the non-linear
  8677. M-value transformation (Figure
  8678. \begin_inset CommandInset ref
  8679. LatexCommand ref
  8680. reference "fig:meanvar-sva-aw"
  8681. plural "false"
  8682. caps "false"
  8683. noprefix "false"
  8684. \end_inset
  8685. ) and well-behaved p-value distributions (Figure
  8686. \begin_inset CommandInset ref
  8687. LatexCommand ref
  8688. reference "fig:meth-p-value-histograms"
  8689. plural "false"
  8690. caps "false"
  8691. noprefix "false"
  8692. \end_inset
  8693. ).
  8694. These two analyses also yield similar numbers of significant probes (Table
  8695. \begin_inset CommandInset ref
  8696. LatexCommand ref
  8697. reference "tab:methyl-num-signif"
  8698. plural "false"
  8699. caps "false"
  8700. noprefix "false"
  8701. \end_inset
  8702. ) and similar estimates of the number of differentially methylated probes
  8703. (Table
  8704. \begin_inset CommandInset ref
  8705. LatexCommand ref
  8706. reference "tab:methyl-est-nonnull"
  8707. plural "false"
  8708. caps "false"
  8709. noprefix "false"
  8710. \end_inset
  8711. ).
  8712. The main difference between these two analyses is the method used to account
  8713. for the mean-variance trend.
  8714. In analysis B, the trend is estimated and applied at the probe level: each
  8715. probe's estimated variance is squeezed toward the trend using an empirical
  8716. Bayes procedure (Figure
  8717. \begin_inset CommandInset ref
  8718. LatexCommand ref
  8719. reference "fig:meanvar-sva-aw"
  8720. plural "false"
  8721. caps "false"
  8722. noprefix "false"
  8723. \end_inset
  8724. ).
  8725. In analysis C, the trend is still estimated at the probe level, but instead
  8726. of estimating a single variance value shared across all observations for
  8727. a given probe, the voom method computes an initial estiamte of the variance
  8728. for each observation individually based on where its model-fitted M-value
  8729. falls on the trend line and then assigns inverse-variance weights to model
  8730. the difference in variance between observations.
  8731. An overall variance is still estimated for each probe using the same empirical
  8732. Bayes method, but now the residual trend is flat (Figure
  8733. \begin_inset CommandInset ref
  8734. LatexCommand ref
  8735. reference "fig:meanvar-sva-voomaw"
  8736. plural "false"
  8737. caps "false"
  8738. noprefix "false"
  8739. \end_inset
  8740. ), indicating that the mean-variance trend is adequately modeled by scaling
  8741. the estimated variance for each observation using the weights computed
  8742. by voom.
  8743. \end_layout
  8744. \begin_layout Standard
  8745. The difference between the standard empirical Bayes trended variance modeling
  8746. (analysis B) and voom (analysis C) is analogous to the difference between
  8747. a t-test with equal variance and a t-test with unequal variance, except
  8748. that the unequal group variances used in the latter test are estimated
  8749. based on the mean-variance trend from all the probes rather than the data
  8750. for the specific probe being tested, thus stabilizing the group variance
  8751. estimates by sharing information between probes.
  8752. Allowing voom to model the variance using observation weights in this manner
  8753. allows the linear model fit to concentrate statistical power where it will
  8754. do the most good.
  8755. For example, if a particular probe's M-values are always at the extreme
  8756. of the M-value range (e.g.
  8757. less than -4) for ADNR samples, but the M-values for that probe in TX and
  8758. CAN samples are within the flat region of the mean-variance trend (between
  8759. -3 and +3), voom is able to down-weight the contribution of the high-variance
  8760. M-values from the ADNR samples in order to gain more statistical power
  8761. while testing for differential methylation between TX and CAN.
  8762. In contrast, modeling the mean-variance trend only at the probe level would
  8763. combine the high-variance ADNR samples and lower-variance samples from
  8764. other conditions and estimate an intermediate variance for this probe.
  8765. In practice, analysis B shows that this approach is adequate, but the voom
  8766. approach in analysis C is at least as good on all model fit criteria and
  8767. yields a larger estimate for the number of differentially methylated genes,
  8768. \emph on
  8769. and
  8770. \emph default
  8771. it matches up better with the theoretical
  8772. \end_layout
  8773. \begin_layout Standard
  8774. The significant association of diebetes diagnosis with sample quality is
  8775. interesting.
  8776. The samples with Type 2 diabetes tended to have more variation, averaged
  8777. across all probes, than those with Type 1 diabetes.
  8778. This is consistent with the consensus that type 2 disbetes and the associated
  8779. metabolic syndrome represent a broad dysregulation of the body's endocrine
  8780. signalling related to metabolism [citation needed].
  8781. This dysregulation could easily manifest as a greater degree of variation
  8782. in the DNA methylation patterns of affected tissues.
  8783. In contrast, Type 1 disbetes has a more specific cause and effect, so a
  8784. less variable methylation signature is expected.
  8785. \end_layout
  8786. \begin_layout Standard
  8787. This preliminary anlaysis suggests that some degree of differential methylation
  8788. exists between TX and each of the three types of transplant disfunction
  8789. studied.
  8790. Hence, it may be feasible to train a classifier to diagnose transplant
  8791. disfunction from DNA methylation array data.
  8792. However, the major importance of both SVA and sample quality weighting
  8793. for proper modeling of this data poses significant challenges for any attempt
  8794. at a machine learning on data of similar quality.
  8795. While these are easily used in a modeling context with full sample information,
  8796. neither of these methods is directly applicable in a machine learning context,
  8797. where the diagnosis is not known ahead of time.
  8798. If a machine learning approach for methylation-based diagnosis is to be
  8799. pursued, it will either require machine-learning-friendly methods to address
  8800. the same systematic trends in the data that SVA and sample quality weighting
  8801. address, or it will require higher quality data with substantially less
  8802. systematic perturbation of the data.
  8803. \end_layout
  8804. \begin_layout Section
  8805. Future Directions
  8806. \end_layout
  8807. \begin_layout Standard
  8808. \begin_inset Flex TODO Note (inline)
  8809. status open
  8810. \begin_layout Plain Layout
  8811. Some work was already being done with the existing fRMA vectors.
  8812. Do I mention that here?
  8813. \end_layout
  8814. \end_inset
  8815. \end_layout
  8816. \begin_layout Subsection
  8817. Improving fRMA to allow training from batches of unequal size
  8818. \end_layout
  8819. \begin_layout Standard
  8820. Because the tools for building fRMA normalization vectors require equal-size
  8821. batches, many samples must be discarded from the training data.
  8822. This is undesirable for a few reasons.
  8823. First, more data is simply better, all other things being equal.
  8824. In this case,
  8825. \begin_inset Quotes eld
  8826. \end_inset
  8827. better
  8828. \begin_inset Quotes erd
  8829. \end_inset
  8830. means a more precise estimate of normalization parameters.
  8831. In addition, the samples to be discarded must be chosen arbitrarily, which
  8832. introduces an unnecessary element of randomness into the estimation process.
  8833. While the randomness can be made deterministic by setting a consistent
  8834. random seed, the need for equal size batches also introduces a need for
  8835. the analyst to decide on the appropriate trade-off between batch size and
  8836. the number of batches.
  8837. This introduces an unnecessary and undesirable
  8838. \begin_inset Quotes eld
  8839. \end_inset
  8840. researcher degree of freedom
  8841. \begin_inset Quotes erd
  8842. \end_inset
  8843. into the analysis, since the generated normalization vectors now depend
  8844. on the choice of batch size based on vague selection criteria and instinct,
  8845. which can unintentionally inproduce bias if the researcher chooses a batch
  8846. size based on what seems to yield the most favorable downstream results
  8847. \begin_inset CommandInset citation
  8848. LatexCommand cite
  8849. key "Simmons2011"
  8850. literal "false"
  8851. \end_inset
  8852. .
  8853. \end_layout
  8854. \begin_layout Standard
  8855. Fortunately, the requirement for equal-size batches is not inherent to the
  8856. fRMA algorithm but rather a limitation of the implementation in the frmaTools
  8857. package.
  8858. In personal communication, the package's author, Matthew McCall, has indicated
  8859. that with some work, it should be possible to improve the implementation
  8860. to work with batches of unequal sizes.
  8861. The current implementation ignores the batch size when calculating with-batch
  8862. and between-batch residual variances, since the batch size constant cancels
  8863. out later in the calculations as long as all batches are of equal size.
  8864. Hence, the calculations of these parameters would need to be modified to
  8865. remove this optimization and properly calculate the variances using the
  8866. full formula.
  8867. Once this modification is made, a new strategy would need to be developed
  8868. for assessing the stability of parameter estimates, since the random subsamplin
  8869. g step is eliminated, meaning that different subsamplings can no longer
  8870. be compared as in Figures
  8871. \begin_inset CommandInset ref
  8872. LatexCommand ref
  8873. reference "fig:frma-violin"
  8874. plural "false"
  8875. caps "false"
  8876. noprefix "false"
  8877. \end_inset
  8878. and
  8879. \begin_inset CommandInset ref
  8880. LatexCommand ref
  8881. reference "fig:Representative-MA-plots"
  8882. plural "false"
  8883. caps "false"
  8884. noprefix "false"
  8885. \end_inset
  8886. .
  8887. Bootstrap resampling is likely a good candidate here: sample many training
  8888. sets of equal size from the existing training set with replacement, estimate
  8889. parameters from each resampled training set, and compare the estimated
  8890. parameters between bootstraps in order to quantify the variability in each
  8891. parameter's estimation.
  8892. \end_layout
  8893. \begin_layout Subsection
  8894. Developing methylation arrays as a diagnostic tool for kidney transplant
  8895. rejection
  8896. \end_layout
  8897. \begin_layout Standard
  8898. The current study has showed that DNA methylation, as assayed by Illumina
  8899. 450k methylation arrays, has some potential for diagnosing transplant dysfuncti
  8900. ons, including rejection.
  8901. However, very few probes could be confidently identified as differentially
  8902. methylated between healthy and dysfunctional transplants.
  8903. One likely explanation for this is the predominant influence of unobserved
  8904. confounding factors.
  8905. SVA can model and correct for such factors, but the correction can never
  8906. be perfect, so some degree of unwanted systematic variation will always
  8907. remain after SVA correction.
  8908. If the effect size of the confounding factors was similar to that of the
  8909. factor of interest (in this case, transplant status), this would be an
  8910. acceptable limitation, since removing most of the confounding factors'
  8911. effects would allow the main effect to stand out.
  8912. However, in this data set, the confounding factors have a much larger effect
  8913. size than transplant status, which means that the small degree of remaining
  8914. variation not removed by SVA can still swamp the effect of interest, making
  8915. it difficult to detect.
  8916. This is, of course, a major issue when the end goal is to develop a classifier
  8917. to diagnose transplant rejection from methylation data, since batch-correction
  8918. methods like SVA that work in a linear modeling context cannot be applied
  8919. in a machine learning context.
  8920. \end_layout
  8921. \begin_layout Standard
  8922. Currently, the source of these unwanted systematic variations in the data
  8923. is unknown.
  8924. The best solution would be to determine the cause of the variation and
  8925. eliminate it, thereby eliminating the need to model and remove that variation.
  8926. However, if this proves impractical, another option is to use SVA to identify
  8927. probes that are highly associated with the surrogate variables that describe
  8928. the unwanted variation in the data.
  8929. These probes could be discarded prior to classifier training, in order
  8930. to maximize the chance that the training algorithm will be able to identify
  8931. highly predictive probes from those remaining.
  8932. Lastly, it is possible that some of this unwanted variation is a result
  8933. of the array-based assay being used and would be eliminated by switching
  8934. to assaying DNA methylation using bisulphite sequencing.
  8935. However, this carries the risk that the sequencing assay will have its
  8936. own set of biases that must be corrected for in a different way.
  8937. \end_layout
  8938. \begin_layout Chapter
  8939. Globin-blocking for more effective blood RNA-seq analysis in primate animal
  8940. model
  8941. \end_layout
  8942. \begin_layout Standard
  8943. \begin_inset Flex TODO Note (inline)
  8944. status open
  8945. \begin_layout Plain Layout
  8946. Choose between above and the paper title: Optimizing yield of deep RNA sequencin
  8947. g for gene expression profiling by globin reduction of peripheral blood
  8948. samples from cynomolgus monkeys (Macaca fascicularis).
  8949. \end_layout
  8950. \end_inset
  8951. \end_layout
  8952. \begin_layout Standard
  8953. \begin_inset Flex TODO Note (inline)
  8954. status open
  8955. \begin_layout Plain Layout
  8956. Chapter author list: https://tex.stackexchange.com/questions/156862/displaying-aut
  8957. hor-for-each-chapter-in-book Every chapter gets an author list, which may
  8958. or may not be part of a citation to a published/preprinted paper.
  8959. \end_layout
  8960. \end_inset
  8961. \end_layout
  8962. \begin_layout Standard
  8963. \begin_inset Flex TODO Note (inline)
  8964. status open
  8965. \begin_layout Plain Layout
  8966. Preprint then cite the paper
  8967. \end_layout
  8968. \end_inset
  8969. \end_layout
  8970. \begin_layout Section*
  8971. Abstract
  8972. \end_layout
  8973. \begin_layout Paragraph
  8974. Background
  8975. \end_layout
  8976. \begin_layout Standard
  8977. Primate blood contains high concentrations of globin messenger RNA.
  8978. Globin reduction is a standard technique used to improve the expression
  8979. results obtained by DNA microarrays on RNA from blood samples.
  8980. However, with whole transcriptome RNA-sequencing (RNA-seq) quickly replacing
  8981. microarrays for many applications, the impact of globin reduction for RNA-seq
  8982. has not been previously studied.
  8983. Moreover, no off-the-shelf kits are available for globin reduction in nonhuman
  8984. primates.
  8985. \end_layout
  8986. \begin_layout Paragraph
  8987. Results
  8988. \end_layout
  8989. \begin_layout Standard
  8990. Here we report a protocol for RNA-seq in primate blood samples that uses
  8991. complimentary oligonucleotides to block reverse transcription of the alpha
  8992. and beta globin genes.
  8993. In test samples from cynomolgus monkeys (Macaca fascicularis), this globin
  8994. blocking protocol approximately doubles the yield of informative (non-globin)
  8995. reads by greatly reducing the fraction of globin reads, while also improving
  8996. the consistency in sequencing depth between samples.
  8997. The increased yield enables detection of about 2000 more genes, significantly
  8998. increases the correlation in measured gene expression levels between samples,
  8999. and increases the sensitivity of differential gene expression tests.
  9000. \end_layout
  9001. \begin_layout Paragraph
  9002. Conclusions
  9003. \end_layout
  9004. \begin_layout Standard
  9005. These results show that globin blocking significantly improves the cost-effectiv
  9006. eness of mRNA sequencing in primate blood samples by doubling the yield
  9007. of useful reads, allowing detection of more genes, and improving the precision
  9008. of gene expression measurements.
  9009. Based on these results, a globin reducing or blocking protocol is recommended
  9010. for all RNA-seq studies of primate blood samples.
  9011. \end_layout
  9012. \begin_layout Section
  9013. Approach
  9014. \end_layout
  9015. \begin_layout Standard
  9016. \begin_inset Note Note
  9017. status open
  9018. \begin_layout Plain Layout
  9019. Consider putting some of this in the Intro chapter
  9020. \end_layout
  9021. \begin_layout Itemize
  9022. Cynomolgus monkeys as a model organism
  9023. \end_layout
  9024. \begin_deeper
  9025. \begin_layout Itemize
  9026. Highly related to humans
  9027. \end_layout
  9028. \begin_layout Itemize
  9029. Small size and short life cycle - good research animal
  9030. \end_layout
  9031. \begin_layout Itemize
  9032. Genomics resources still in development
  9033. \end_layout
  9034. \end_deeper
  9035. \begin_layout Itemize
  9036. Inadequacy of existing blood RNA-seq protocols
  9037. \end_layout
  9038. \begin_deeper
  9039. \begin_layout Itemize
  9040. Existing protocols use a separate globin pulldown step, slowing down processing
  9041. \end_layout
  9042. \end_deeper
  9043. \end_inset
  9044. \end_layout
  9045. \begin_layout Standard
  9046. Increasingly, researchers are turning to high-throughput mRNA sequencing
  9047. technologies (RNA-seq) in preference to expression microarrays for analysis
  9048. of gene expression
  9049. \begin_inset CommandInset citation
  9050. LatexCommand cite
  9051. key "Mutz2012"
  9052. literal "false"
  9053. \end_inset
  9054. .
  9055. The advantages are even greater for study of model organisms with no well-estab
  9056. lished array platforms available, such as the cynomolgus monkey (Macaca
  9057. fascicularis).
  9058. High fractions of globin mRNA are naturally present in mammalian peripheral
  9059. blood samples (up to 70% of total mRNA) and these are known to interfere
  9060. with the results of array-based expression profiling
  9061. \begin_inset CommandInset citation
  9062. LatexCommand cite
  9063. key "Winn2010"
  9064. literal "false"
  9065. \end_inset
  9066. .
  9067. The importance of globin reduction for RNA-seq of blood has only been evaluated
  9068. for a deepSAGE protocol on human samples
  9069. \begin_inset CommandInset citation
  9070. LatexCommand cite
  9071. key "Mastrokolias2012"
  9072. literal "false"
  9073. \end_inset
  9074. .
  9075. In the present report, we evaluated globin reduction using custom blocking
  9076. oligonucleotides for deep RNA-seq of peripheral blood samples from a nonhuman
  9077. primate, cynomolgus monkey, using the Illumina technology platform.
  9078. We demonstrate that globin reduction significantly improves the cost-effectiven
  9079. ess of RNA-seq in blood samples.
  9080. Thus, our protocol offers a significant advantage to any investigator planning
  9081. to use RNA-seq for gene expression profiling of nonhuman primate blood
  9082. samples.
  9083. Our method can be generally applied to any species by designing complementary
  9084. oligonucleotide blocking probes to the globin gene sequences of that species.
  9085. Indeed, any highly expressed but biologically uninformative transcripts
  9086. can also be blocked to further increase sequencing efficiency and value
  9087. \begin_inset CommandInset citation
  9088. LatexCommand cite
  9089. key "Arnaud2016"
  9090. literal "false"
  9091. \end_inset
  9092. .
  9093. \end_layout
  9094. \begin_layout Section
  9095. Methods
  9096. \end_layout
  9097. \begin_layout Subsection
  9098. Sample collection
  9099. \end_layout
  9100. \begin_layout Standard
  9101. All research reported here was done under IACUC-approved protocols at the
  9102. University of Miami and complied with all applicable federal and state
  9103. regulations and ethical principles for nonhuman primate research.
  9104. Blood draws occurred between 16 April 2012 and 18 June 2015.
  9105. The experimental system involved intrahepatic pancreatic islet transplantation
  9106. into Cynomolgus monkeys with induced diabetes mellitus with or without
  9107. concomitant infusion of mesenchymal stem cells.
  9108. Blood was collected at serial time points before and after transplantation
  9109. into PAXgene Blood RNA tubes (PreAnalytiX/Qiagen, Valencia, CA) at the
  9110. precise volume:volume ratio of 2.5 ml whole blood into 6.9 ml of PAX gene
  9111. additive.
  9112. \end_layout
  9113. \begin_layout Subsection
  9114. Globin Blocking
  9115. \end_layout
  9116. \begin_layout Standard
  9117. Four oligonucleotides were designed to hybridize to the 3’ end of the transcript
  9118. s for Cynomolgus HBA1, HBA2 and HBB, with two hybridization sites for HBB
  9119. and 2 sites for HBA (the chosen sites were identical in both HBA genes).
  9120. All oligos were purchased from Sigma and were entirely composed of 2’O-Me
  9121. bases with a C3 spacer positioned at the 3’ ends to prevent any polymerase
  9122. mediated primer extension.
  9123. \end_layout
  9124. \begin_layout Quote
  9125. HBA1/2 site 1: GCCCACUCAGACUUUAUUCAAAG-C3spacer
  9126. \end_layout
  9127. \begin_layout Quote
  9128. HBA1/2 site 2: GGUGCAAGGAGGGGAGGAG-C3spacer
  9129. \end_layout
  9130. \begin_layout Quote
  9131. HBB site 1: AAUGAAAAUAAAUGUUUUUUAUUAG-C3spacer
  9132. \end_layout
  9133. \begin_layout Quote
  9134. HBB site 2: CUCAAGGCCCUUCAUAAUAUCCC-C3spacer
  9135. \end_layout
  9136. \begin_layout Subsection
  9137. RNA-seq Library Preparation
  9138. \end_layout
  9139. \begin_layout Standard
  9140. Sequencing libraries were prepared with 200ng total RNA from each sample.
  9141. Polyadenylated mRNA was selected from 200 ng aliquots of cynomologus blood-deri
  9142. ved total RNA using Ambion Dynabeads Oligo(dT)25 beads (Invitrogen) following
  9143. manufacturer’s recommended protocol.
  9144. PolyA selected RNA was then combined with 8 pmol of HBA1/2 (site 1), 8
  9145. pmol of HBA1/2 (site 2), 12 pmol of HBB (site 1) and 12 pmol of HBB (site
  9146. 2) oligonucleotides.
  9147. In addition, 20 pmol of RT primer containing a portion of the Illumina
  9148. adapter sequence (B-oligo-dTV: GAGTTCCTTGGCACCCGAGAATTCCATTTTTTTTTTTTTTTTTTTV)
  9149. and 4 µL of 5X First Strand buffer (250 mM Tris-HCl pH 8.3, 375 mM KCl,
  9150. 15mM MgCl2) were added in a total volume of 15 µL.
  9151. The RNA was fragmented by heating this cocktail for 3 minutes at 95°C and
  9152. then placed on ice.
  9153. This was followed by the addition of 2 µL 0.1 M DTT, 1 µL RNaseOUT, 1 µL
  9154. 10mM dNTPs 10% biotin-16 aminoallyl-2’- dUTP and 10% biotin-16 aminoallyl-2’-
  9155. dCTP (TriLink Biotech, San Diego, CA), 1 µL Superscript II (200U/ µL, Thermo-Fi
  9156. sher).
  9157. A second “unblocked” library was prepared in the same way for each sample
  9158. but replacing the blocking oligos with an equivalent volume of water.
  9159. The reaction was carried out at 25°C for 15 minutes and 42°C for 40 minutes,
  9160. followed by incubation at 75°C for 10 minutes to inactivate the reverse
  9161. transcriptase.
  9162. \end_layout
  9163. \begin_layout Standard
  9164. The cDNA/RNA hybrid molecules were purified using 1.8X Ampure XP beads (Agencourt
  9165. ) following supplier’s recommended protocol.
  9166. The cDNA/RNA hybrid was eluted in 25 µL of 10 mM Tris-HCl pH 8.0, and then
  9167. bound to 25 µL of M280 Magnetic Streptavidin beads washed per recommended
  9168. protocol (Thermo-Fisher).
  9169. After 30 minutes of binding, beads were washed one time in 100 µL 0.1N NaOH
  9170. to denature and remove the bound RNA, followed by two 100 µL washes with
  9171. 1X TE buffer.
  9172. \end_layout
  9173. \begin_layout Standard
  9174. Subsequent attachment of the 5-prime Illumina A adapter was performed by
  9175. on-bead random primer extension of the following sequence (A-N8 primer:
  9176. TTCAGAGTTCTACAGTCCGACGATCNNNNNNNN).
  9177. Briefly, beads were resuspended in a 20 µL reaction containing 5 µM A-N8
  9178. primer, 40mM Tris-HCl pH 7.5, 20mM MgCl2, 50mM NaCl, 0.325U/µL Sequenase
  9179. 2.0 (Affymetrix, Santa Clara, CA), 0.0025U/µL inorganic pyrophosphatase (Affymetr
  9180. ix) and 300 µM each dNTP.
  9181. Reaction was incubated at 22°C for 30 minutes, then beads were washed 2
  9182. times with 1X TE buffer (200µL).
  9183. \end_layout
  9184. \begin_layout Standard
  9185. The magnetic streptavidin beads were resuspended in 34 µL nuclease-free
  9186. water and added directly to a PCR tube.
  9187. The two Illumina protocol-specified PCR primers were added at 0.53 µM (Illumina
  9188. TruSeq Universal Primer 1 and Illumina TruSeq barcoded PCR primer 2), along
  9189. with 40 µL 2X KAPA HiFi Hotstart ReadyMix (KAPA, Willmington MA) and thermocycl
  9190. ed as follows: starting with 98°C (2 min-hold); 15 cycles of 98°C, 20sec;
  9191. 60°C, 30sec; 72°C, 30sec; and finished with a 72°C (2 min-hold).
  9192. \end_layout
  9193. \begin_layout Standard
  9194. PCR products were purified with 1X Ampure Beads following manufacturer’s
  9195. recommended protocol.
  9196. Libraries were then analyzed using the Agilent TapeStation and quantitation
  9197. of desired size range was performed by “smear analysis”.
  9198. Samples were pooled in equimolar batches of 16 samples.
  9199. Pooled libraries were size selected on 2% agarose gels (E-Gel EX Agarose
  9200. Gels; Thermo-Fisher).
  9201. Products were cut between 250 and 350 bp (corresponding to insert sizes
  9202. of 130 to 230 bps).
  9203. Finished library pools were then sequenced on the Illumina NextSeq500 instrumen
  9204. t with 75 base read lengths.
  9205. \end_layout
  9206. \begin_layout Subsection
  9207. Read alignment and counting
  9208. \end_layout
  9209. \begin_layout Standard
  9210. Reads were aligned to the cynomolgus genome using STAR
  9211. \begin_inset CommandInset citation
  9212. LatexCommand cite
  9213. key "Dobin2013,Wilson2013"
  9214. literal "false"
  9215. \end_inset
  9216. .
  9217. Counts of uniquely mapped reads were obtained for every gene in each sample
  9218. with the “featureCounts” function from the Rsubread package, using each
  9219. of the three possibilities for the “strandSpecific” option: sense, antisense,
  9220. and unstranded
  9221. \begin_inset CommandInset citation
  9222. LatexCommand cite
  9223. key "Liao2014"
  9224. literal "false"
  9225. \end_inset
  9226. .
  9227. A few artifacts in the cynomolgus genome annotation complicated read counting.
  9228. First, no ortholog is annotated for alpha globin in the cynomolgus genome,
  9229. presumably because the human genome has two alpha globin genes with nearly
  9230. identical sequences, making the orthology relationship ambiguous.
  9231. However, two loci in the cynomolgus genome are as “hemoglobin subunit alpha-lik
  9232. e” (LOC102136192 and LOC102136846).
  9233. LOC102136192 is annotated as a pseudogene while LOC102136846 is annotated
  9234. as protein-coding.
  9235. Our globin reduction protocol was designed to include blocking of these
  9236. two genes.
  9237. Indeed, these two genes have almost the same read counts in each library
  9238. as the properly-annotated HBB gene and much larger counts than any other
  9239. gene in the unblocked libraries, giving confidence that reads derived from
  9240. the real alpha globin are mapping to both genes.
  9241. Thus, reads from both of these loci were counted as alpha globin reads
  9242. in all further analyses.
  9243. The second artifact is a small, uncharacterized non-coding RNA gene (LOC1021365
  9244. 91), which overlaps the HBA-like gene (LOC102136192) on the opposite strand.
  9245. If counting is not performed in stranded mode (or if a non-strand-specific
  9246. sequencing protocol is used), many reads mapping to the globin gene will
  9247. be discarded as ambiguous due to their overlap with this ncRNA gene, resulting
  9248. in significant undercounting of globin reads.
  9249. Therefore, stranded sense counts were used for all further analysis in
  9250. the present study to insure that we accurately accounted for globin transcript
  9251. reduction.
  9252. However, we note that stranded reads are not necessary for RNA-seq using
  9253. our protocol in standard practice.
  9254. \end_layout
  9255. \begin_layout Subsection
  9256. Normalization and Exploratory Data Analysis
  9257. \end_layout
  9258. \begin_layout Standard
  9259. Libraries were normalized by computing scaling factors using the edgeR package’s
  9260. Trimmed Mean of M-values method
  9261. \begin_inset CommandInset citation
  9262. LatexCommand cite
  9263. key "Robinson2010"
  9264. literal "false"
  9265. \end_inset
  9266. .
  9267. Log2 counts per million values (logCPM) were calculated using the cpm function
  9268. in edgeR for individual samples and aveLogCPM function for averages across
  9269. groups of samples, using those functions’ default prior count values to
  9270. avoid taking the logarithm of 0.
  9271. Genes were considered “present” if their average normalized logCPM values
  9272. across all libraries were at least -1.
  9273. Normalizing for gene length was unnecessary because the sequencing protocol
  9274. is 3’-biased and hence the expected read count for each gene is related
  9275. to the transcript’s copy number but not its length.
  9276. \end_layout
  9277. \begin_layout Standard
  9278. In order to assess the effect of blocking on reproducibility, Pearson and
  9279. Spearman correlation coefficients were computed between the logCPM values
  9280. for every pair of libraries within the globin-blocked (GB) and unblocked
  9281. (non-GB) groups, and edgeR's “estimateDisp” function was used to compute
  9282. negative binomial dispersions separately for the two groups
  9283. \begin_inset CommandInset citation
  9284. LatexCommand cite
  9285. key "Chen2014"
  9286. literal "false"
  9287. \end_inset
  9288. .
  9289. \end_layout
  9290. \begin_layout Subsection
  9291. Differential Expression Analysis
  9292. \end_layout
  9293. \begin_layout Standard
  9294. All tests for differential gene expression were performed using edgeR, by
  9295. first fitting a negative binomial generalized linear model to the counts
  9296. and normalization factors and then performing a quasi-likelihood F-test
  9297. with robust estimation of outlier gene dispersions
  9298. \begin_inset CommandInset citation
  9299. LatexCommand cite
  9300. key "Lund2012,Phipson2016"
  9301. literal "false"
  9302. \end_inset
  9303. .
  9304. To investigate the effects of globin blocking on each gene, an additive
  9305. model was fit to the full data with coefficients for globin blocking and
  9306. SampleID.
  9307. To test the effect of globin blocking on detection of differentially expressed
  9308. genes, the GB samples and non-GB samples were each analyzed independently
  9309. as follows: for each animal with both a pre-transplant and a post-transplant
  9310. time point in the data set, the pre-transplant sample and the earliest
  9311. post-transplant sample were selected, and all others were excluded, yielding
  9312. a pre-/post-transplant pair of samples for each animal (N=7 animals with
  9313. paired samples).
  9314. These samples were analyzed for pre-transplant vs.
  9315. post-transplant differential gene expression while controlling for inter-animal
  9316. variation using an additive model with coefficients for transplant and
  9317. animal ID.
  9318. In all analyses, p-values were adjusted using the Benjamini-Hochberg procedure
  9319. for FDR control
  9320. \begin_inset CommandInset citation
  9321. LatexCommand cite
  9322. key "Benjamini1995"
  9323. literal "false"
  9324. \end_inset
  9325. .
  9326. \end_layout
  9327. \begin_layout Standard
  9328. \begin_inset Note Note
  9329. status open
  9330. \begin_layout Itemize
  9331. New blood RNA-seq protocol to block reverse transcription of globin genes
  9332. \end_layout
  9333. \begin_layout Itemize
  9334. Blood RNA-seq time course after transplants with/without MSC infusion
  9335. \end_layout
  9336. \end_inset
  9337. \end_layout
  9338. \begin_layout Section
  9339. Results
  9340. \end_layout
  9341. \begin_layout Subsection
  9342. Globin blocking yields a larger and more consistent fraction of useful reads
  9343. \end_layout
  9344. \begin_layout Standard
  9345. \begin_inset ERT
  9346. status open
  9347. \begin_layout Plain Layout
  9348. \backslash
  9349. afterpage{
  9350. \end_layout
  9351. \begin_layout Plain Layout
  9352. \backslash
  9353. begin{landscape}
  9354. \end_layout
  9355. \end_inset
  9356. \end_layout
  9357. \begin_layout Standard
  9358. \begin_inset Float table
  9359. placement p
  9360. wide false
  9361. sideways false
  9362. status collapsed
  9363. \begin_layout Plain Layout
  9364. \align center
  9365. \begin_inset Tabular
  9366. <lyxtabular version="3" rows="4" columns="7">
  9367. <features tabularvalignment="middle">
  9368. <column alignment="center" valignment="top">
  9369. <column alignment="center" valignment="top">
  9370. <column alignment="center" valignment="top">
  9371. <column alignment="center" valignment="top">
  9372. <column alignment="center" valignment="top">
  9373. <column alignment="center" valignment="top">
  9374. <column alignment="center" valignment="top">
  9375. <row>
  9376. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  9377. \begin_inset Text
  9378. \begin_layout Plain Layout
  9379. \end_layout
  9380. \end_inset
  9381. </cell>
  9382. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  9383. \begin_inset Text
  9384. \begin_layout Plain Layout
  9385. \family roman
  9386. \series medium
  9387. \shape up
  9388. \size normal
  9389. \emph off
  9390. \bar no
  9391. \strikeout off
  9392. \xout off
  9393. \uuline off
  9394. \uwave off
  9395. \noun off
  9396. \color none
  9397. Percent of Total Reads
  9398. \end_layout
  9399. \end_inset
  9400. </cell>
  9401. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  9402. \begin_inset Text
  9403. \begin_layout Plain Layout
  9404. \end_layout
  9405. \end_inset
  9406. </cell>
  9407. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  9408. \begin_inset Text
  9409. \begin_layout Plain Layout
  9410. \end_layout
  9411. \end_inset
  9412. </cell>
  9413. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  9414. \begin_inset Text
  9415. \begin_layout Plain Layout
  9416. \end_layout
  9417. \end_inset
  9418. </cell>
  9419. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  9420. \begin_inset Text
  9421. \begin_layout Plain Layout
  9422. \family roman
  9423. \series medium
  9424. \shape up
  9425. \size normal
  9426. \emph off
  9427. \bar no
  9428. \strikeout off
  9429. \xout off
  9430. \uuline off
  9431. \uwave off
  9432. \noun off
  9433. \color none
  9434. Percent of Genic Reads
  9435. \end_layout
  9436. \end_inset
  9437. </cell>
  9438. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  9439. \begin_inset Text
  9440. \begin_layout Plain Layout
  9441. \end_layout
  9442. \end_inset
  9443. </cell>
  9444. </row>
  9445. <row>
  9446. <cell alignment="center" valignment="top" bottomline="true" leftline="true" usebox="none">
  9447. \begin_inset Text
  9448. \begin_layout Plain Layout
  9449. GB
  9450. \end_layout
  9451. \end_inset
  9452. </cell>
  9453. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  9454. \begin_inset Text
  9455. \begin_layout Plain Layout
  9456. \family roman
  9457. \series medium
  9458. \shape up
  9459. \size normal
  9460. \emph off
  9461. \bar no
  9462. \strikeout off
  9463. \xout off
  9464. \uuline off
  9465. \uwave off
  9466. \noun off
  9467. \color none
  9468. Non-globin Reads
  9469. \end_layout
  9470. \end_inset
  9471. </cell>
  9472. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  9473. \begin_inset Text
  9474. \begin_layout Plain Layout
  9475. \family roman
  9476. \series medium
  9477. \shape up
  9478. \size normal
  9479. \emph off
  9480. \bar no
  9481. \strikeout off
  9482. \xout off
  9483. \uuline off
  9484. \uwave off
  9485. \noun off
  9486. \color none
  9487. Globin Reads
  9488. \end_layout
  9489. \end_inset
  9490. </cell>
  9491. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  9492. \begin_inset Text
  9493. \begin_layout Plain Layout
  9494. \family roman
  9495. \series medium
  9496. \shape up
  9497. \size normal
  9498. \emph off
  9499. \bar no
  9500. \strikeout off
  9501. \xout off
  9502. \uuline off
  9503. \uwave off
  9504. \noun off
  9505. \color none
  9506. All Genic Reads
  9507. \end_layout
  9508. \end_inset
  9509. </cell>
  9510. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  9511. \begin_inset Text
  9512. \begin_layout Plain Layout
  9513. \family roman
  9514. \series medium
  9515. \shape up
  9516. \size normal
  9517. \emph off
  9518. \bar no
  9519. \strikeout off
  9520. \xout off
  9521. \uuline off
  9522. \uwave off
  9523. \noun off
  9524. \color none
  9525. All Aligned Reads
  9526. \end_layout
  9527. \end_inset
  9528. </cell>
  9529. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  9530. \begin_inset Text
  9531. \begin_layout Plain Layout
  9532. \family roman
  9533. \series medium
  9534. \shape up
  9535. \size normal
  9536. \emph off
  9537. \bar no
  9538. \strikeout off
  9539. \xout off
  9540. \uuline off
  9541. \uwave off
  9542. \noun off
  9543. \color none
  9544. Non-globin Reads
  9545. \end_layout
  9546. \end_inset
  9547. </cell>
  9548. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  9549. \begin_inset Text
  9550. \begin_layout Plain Layout
  9551. \family roman
  9552. \series medium
  9553. \shape up
  9554. \size normal
  9555. \emph off
  9556. \bar no
  9557. \strikeout off
  9558. \xout off
  9559. \uuline off
  9560. \uwave off
  9561. \noun off
  9562. \color none
  9563. Globin Reads
  9564. \end_layout
  9565. \end_inset
  9566. </cell>
  9567. </row>
  9568. <row>
  9569. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  9570. \begin_inset Text
  9571. \begin_layout Plain Layout
  9572. \family roman
  9573. \series medium
  9574. \shape up
  9575. \size normal
  9576. \emph off
  9577. \bar no
  9578. \strikeout off
  9579. \xout off
  9580. \uuline off
  9581. \uwave off
  9582. \noun off
  9583. \color none
  9584. Yes
  9585. \end_layout
  9586. \end_inset
  9587. </cell>
  9588. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  9589. \begin_inset Text
  9590. \begin_layout Plain Layout
  9591. \family roman
  9592. \series medium
  9593. \shape up
  9594. \size normal
  9595. \emph off
  9596. \bar no
  9597. \strikeout off
  9598. \xout off
  9599. \uuline off
  9600. \uwave off
  9601. \noun off
  9602. \color none
  9603. 50.4% ± 6.82
  9604. \end_layout
  9605. \end_inset
  9606. </cell>
  9607. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  9608. \begin_inset Text
  9609. \begin_layout Plain Layout
  9610. \family roman
  9611. \series medium
  9612. \shape up
  9613. \size normal
  9614. \emph off
  9615. \bar no
  9616. \strikeout off
  9617. \xout off
  9618. \uuline off
  9619. \uwave off
  9620. \noun off
  9621. \color none
  9622. 3.48% ± 2.94
  9623. \end_layout
  9624. \end_inset
  9625. </cell>
  9626. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  9627. \begin_inset Text
  9628. \begin_layout Plain Layout
  9629. \family roman
  9630. \series medium
  9631. \shape up
  9632. \size normal
  9633. \emph off
  9634. \bar no
  9635. \strikeout off
  9636. \xout off
  9637. \uuline off
  9638. \uwave off
  9639. \noun off
  9640. \color none
  9641. 53.9% ± 6.81
  9642. \end_layout
  9643. \end_inset
  9644. </cell>
  9645. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  9646. \begin_inset Text
  9647. \begin_layout Plain Layout
  9648. \family roman
  9649. \series medium
  9650. \shape up
  9651. \size normal
  9652. \emph off
  9653. \bar no
  9654. \strikeout off
  9655. \xout off
  9656. \uuline off
  9657. \uwave off
  9658. \noun off
  9659. \color none
  9660. 89.7% ± 2.40
  9661. \end_layout
  9662. \end_inset
  9663. </cell>
  9664. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  9665. \begin_inset Text
  9666. \begin_layout Plain Layout
  9667. \family roman
  9668. \series medium
  9669. \shape up
  9670. \size normal
  9671. \emph off
  9672. \bar no
  9673. \strikeout off
  9674. \xout off
  9675. \uuline off
  9676. \uwave off
  9677. \noun off
  9678. \color none
  9679. 93.5% ± 5.25
  9680. \end_layout
  9681. \end_inset
  9682. </cell>
  9683. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  9684. \begin_inset Text
  9685. \begin_layout Plain Layout
  9686. \family roman
  9687. \series medium
  9688. \shape up
  9689. \size normal
  9690. \emph off
  9691. \bar no
  9692. \strikeout off
  9693. \xout off
  9694. \uuline off
  9695. \uwave off
  9696. \noun off
  9697. \color none
  9698. 6.49% ± 5.25
  9699. \end_layout
  9700. \end_inset
  9701. </cell>
  9702. </row>
  9703. <row>
  9704. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  9705. \begin_inset Text
  9706. \begin_layout Plain Layout
  9707. \family roman
  9708. \series medium
  9709. \shape up
  9710. \size normal
  9711. \emph off
  9712. \bar no
  9713. \strikeout off
  9714. \xout off
  9715. \uuline off
  9716. \uwave off
  9717. \noun off
  9718. \color none
  9719. No
  9720. \end_layout
  9721. \end_inset
  9722. </cell>
  9723. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  9724. \begin_inset Text
  9725. \begin_layout Plain Layout
  9726. \family roman
  9727. \series medium
  9728. \shape up
  9729. \size normal
  9730. \emph off
  9731. \bar no
  9732. \strikeout off
  9733. \xout off
  9734. \uuline off
  9735. \uwave off
  9736. \noun off
  9737. \color none
  9738. 26.3% ± 8.95
  9739. \end_layout
  9740. \end_inset
  9741. </cell>
  9742. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  9743. \begin_inset Text
  9744. \begin_layout Plain Layout
  9745. \family roman
  9746. \series medium
  9747. \shape up
  9748. \size normal
  9749. \emph off
  9750. \bar no
  9751. \strikeout off
  9752. \xout off
  9753. \uuline off
  9754. \uwave off
  9755. \noun off
  9756. \color none
  9757. 44.6% ± 16.6
  9758. \end_layout
  9759. \end_inset
  9760. </cell>
  9761. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  9762. \begin_inset Text
  9763. \begin_layout Plain Layout
  9764. \family roman
  9765. \series medium
  9766. \shape up
  9767. \size normal
  9768. \emph off
  9769. \bar no
  9770. \strikeout off
  9771. \xout off
  9772. \uuline off
  9773. \uwave off
  9774. \noun off
  9775. \color none
  9776. 70.1% ± 9.38
  9777. \end_layout
  9778. \end_inset
  9779. </cell>
  9780. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  9781. \begin_inset Text
  9782. \begin_layout Plain Layout
  9783. \family roman
  9784. \series medium
  9785. \shape up
  9786. \size normal
  9787. \emph off
  9788. \bar no
  9789. \strikeout off
  9790. \xout off
  9791. \uuline off
  9792. \uwave off
  9793. \noun off
  9794. \color none
  9795. 90.7% ± 5.16
  9796. \end_layout
  9797. \end_inset
  9798. </cell>
  9799. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  9800. \begin_inset Text
  9801. \begin_layout Plain Layout
  9802. \family roman
  9803. \series medium
  9804. \shape up
  9805. \size normal
  9806. \emph off
  9807. \bar no
  9808. \strikeout off
  9809. \xout off
  9810. \uuline off
  9811. \uwave off
  9812. \noun off
  9813. \color none
  9814. 38.8% ± 17.1
  9815. \end_layout
  9816. \end_inset
  9817. </cell>
  9818. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  9819. \begin_inset Text
  9820. \begin_layout Plain Layout
  9821. \family roman
  9822. \series medium
  9823. \shape up
  9824. \size normal
  9825. \emph off
  9826. \bar no
  9827. \strikeout off
  9828. \xout off
  9829. \uuline off
  9830. \uwave off
  9831. \noun off
  9832. \color none
  9833. 61.2% ± 17.1
  9834. \end_layout
  9835. \end_inset
  9836. </cell>
  9837. </row>
  9838. </lyxtabular>
  9839. \end_inset
  9840. \end_layout
  9841. \begin_layout Plain Layout
  9842. \begin_inset Caption Standard
  9843. \begin_layout Plain Layout
  9844. \series bold
  9845. \begin_inset Argument 1
  9846. status collapsed
  9847. \begin_layout Plain Layout
  9848. Fractions of reads mapping to genomic features in GB and non-GB samples.
  9849. \end_layout
  9850. \end_inset
  9851. \begin_inset CommandInset label
  9852. LatexCommand label
  9853. name "tab:Fractions-of-reads"
  9854. \end_inset
  9855. Fractions of reads mapping to genomic features in GB and non-GB samples.
  9856. \series default
  9857. All values are given as mean ± standard deviation.
  9858. \end_layout
  9859. \end_inset
  9860. \end_layout
  9861. \end_inset
  9862. \end_layout
  9863. \begin_layout Standard
  9864. \begin_inset ERT
  9865. status open
  9866. \begin_layout Plain Layout
  9867. \backslash
  9868. end{landscape}
  9869. \end_layout
  9870. \begin_layout Plain Layout
  9871. }
  9872. \end_layout
  9873. \end_inset
  9874. \end_layout
  9875. \begin_layout Standard
  9876. The objective of the present study was to validate a new protocol for deep
  9877. RNA-seq of whole blood drawn into PaxGene tubes from cynomolgus monkeys
  9878. undergoing islet transplantation, with particular focus on minimizing the
  9879. loss of useful sequencing space to uninformative globin reads.
  9880. The details of the analysis with respect to transplant outcomes and the
  9881. impact of mesenchymal stem cell treatment will be reported in a separate
  9882. manuscript (in preparation).
  9883. To focus on the efficacy of our globin blocking protocol, 37 blood samples,
  9884. 16 from pre-transplant and 21 from post-transplant time points, were each
  9885. prepped once with and once without globin blocking oligos, and were then
  9886. sequenced on an Illumina NextSeq500 instrument.
  9887. The number of reads aligning to each gene in the cynomolgus genome was
  9888. counted.
  9889. Table 1 summarizes the distribution of read fractions among the GB and
  9890. non-GB libraries.
  9891. In the libraries with no globin blocking, globin reads made up an average
  9892. of 44.6% of total input reads, while reads assigned to all other genes made
  9893. up an average of 26.3%.
  9894. The remaining reads either aligned to intergenic regions (that include
  9895. long non-coding RNAs) or did not align with any annotated transcripts in
  9896. the current build of the cynomolgus genome.
  9897. In the GB libraries, globin reads made up only 3.48% and reads assigned
  9898. to all other genes increased to 50.4%.
  9899. Thus, globin blocking resulted in a 92.2% reduction in globin reads and
  9900. a 91.6% increase in yield of useful non-globin reads.
  9901. \end_layout
  9902. \begin_layout Standard
  9903. This reduction is not quite as efficient as the previous analysis showed
  9904. for human samples by DeepSAGE (<0.4% globin reads after globin reduction)
  9905. \begin_inset CommandInset citation
  9906. LatexCommand cite
  9907. key "Mastrokolias2012"
  9908. literal "false"
  9909. \end_inset
  9910. .
  9911. Nonetheless, this degree of globin reduction is sufficient to nearly double
  9912. the yield of useful reads.
  9913. Thus, globin blocking cuts the required sequencing effort (and costs) to
  9914. achieve a target coverage depth by almost 50%.
  9915. Consistent with this near doubling of yield, the average difference in
  9916. un-normalized logCPM across all genes between the GB libraries and non-GB
  9917. libraries is approximately 1 (mean = 1.01, median = 1.08), an overall 2-fold
  9918. increase.
  9919. Un-normalized values are used here because the TMM normalization correctly
  9920. identifies this 2-fold difference as biologically irrelevant and removes
  9921. it.
  9922. \end_layout
  9923. \begin_layout Standard
  9924. \begin_inset Float figure
  9925. wide false
  9926. sideways false
  9927. status collapsed
  9928. \begin_layout Plain Layout
  9929. \align center
  9930. \begin_inset Graphics
  9931. filename graphics/Globin Paper/figure1 - globin-fractions.pdf
  9932. lyxscale 50
  9933. width 75col%
  9934. \end_inset
  9935. \end_layout
  9936. \begin_layout Plain Layout
  9937. \begin_inset Caption Standard
  9938. \begin_layout Plain Layout
  9939. \series bold
  9940. \begin_inset Argument 1
  9941. status collapsed
  9942. \begin_layout Plain Layout
  9943. Fraction of genic reads in each sample aligned to non-globin genes, with
  9944. and without globin blocking (GB).
  9945. \end_layout
  9946. \end_inset
  9947. \begin_inset CommandInset label
  9948. LatexCommand label
  9949. name "fig:Fraction-of-genic-reads"
  9950. \end_inset
  9951. Fraction of genic reads in each sample aligned to non-globin genes, with
  9952. and without globin blocking (GB).
  9953. \series default
  9954. All reads in each sequencing library were aligned to the cyno genome, and
  9955. the number of reads uniquely aligning to each gene was counted.
  9956. For each sample, counts were summed separately for all globin genes and
  9957. for the remainder of the genes (non-globin genes), and the fraction of
  9958. genic reads aligned to non-globin genes was computed.
  9959. Each point represents an individual sample.
  9960. Gray + signs indicate the means for globin-blocked libraries and unblocked
  9961. libraries.
  9962. The overall distribution for each group is represented as a notched box
  9963. plots.
  9964. Points are randomly spread vertically to avoid excessive overlapping.
  9965. \end_layout
  9966. \end_inset
  9967. \end_layout
  9968. \end_inset
  9969. \end_layout
  9970. \begin_layout Standard
  9971. Another important aspect is that the standard deviations in Table
  9972. \begin_inset CommandInset ref
  9973. LatexCommand ref
  9974. reference "tab:Fractions-of-reads"
  9975. plural "false"
  9976. caps "false"
  9977. noprefix "false"
  9978. \end_inset
  9979. are uniformly smaller in the GB samples than the non-GB ones, indicating
  9980. much greater consistency of yield.
  9981. This is best seen in the percentage of non-globin reads as a fraction of
  9982. total reads aligned to annotated genes (genic reads).
  9983. For the non-GB samples, this measure ranges from 10.9% to 80.9%, while for
  9984. the GB samples it ranges from 81.9% to 99.9% (Figure
  9985. \begin_inset CommandInset ref
  9986. LatexCommand ref
  9987. reference "fig:Fraction-of-genic-reads"
  9988. plural "false"
  9989. caps "false"
  9990. noprefix "false"
  9991. \end_inset
  9992. ).
  9993. This means that for applications where it is critical that each sample
  9994. achieve a specified minimum coverage in order to provide useful information,
  9995. it would be necessary to budget up to 10 times the sequencing depth per
  9996. sample without globin blocking, even though the average yield improvement
  9997. for globin blocking is only 2-fold, because every sample has a chance of
  9998. being 90% globin and 10% useful reads.
  9999. Hence, the more consistent behavior of GB samples makes planning an experiment
  10000. easier and more efficient because it eliminates the need to over-sequence
  10001. every sample in order to guard against the worst case of a high-globin
  10002. fraction.
  10003. \end_layout
  10004. \begin_layout Subsection
  10005. Globin blocking lowers the noise floor and allows detection of about 2000
  10006. more low-expression genes
  10007. \end_layout
  10008. \begin_layout Standard
  10009. \begin_inset Flex TODO Note (inline)
  10010. status open
  10011. \begin_layout Plain Layout
  10012. Remove redundant titles from figures
  10013. \end_layout
  10014. \end_inset
  10015. \end_layout
  10016. \begin_layout Standard
  10017. \begin_inset Float figure
  10018. wide false
  10019. sideways false
  10020. status collapsed
  10021. \begin_layout Plain Layout
  10022. \align center
  10023. \begin_inset Graphics
  10024. filename graphics/Globin Paper/figure2 - aveLogCPM-colored.pdf
  10025. lyxscale 50
  10026. height 60theight%
  10027. \end_inset
  10028. \end_layout
  10029. \begin_layout Plain Layout
  10030. \begin_inset Caption Standard
  10031. \begin_layout Plain Layout
  10032. \series bold
  10033. \begin_inset Argument 1
  10034. status collapsed
  10035. \begin_layout Plain Layout
  10036. Distributions of average group gene abundances when normalized separately
  10037. or together.
  10038. \end_layout
  10039. \end_inset
  10040. \begin_inset CommandInset label
  10041. LatexCommand label
  10042. name "fig:logcpm-dists"
  10043. \end_inset
  10044. Distributions of average group gene abundances when normalized separately
  10045. or together.
  10046. \series default
  10047. All reads in each sequencing library were aligned to the cyno genome, and
  10048. the number of reads uniquely aligning to each gene was counted.
  10049. Genes with zero counts in all libraries were discarded.
  10050. Libraries were normalized using the TMM method.
  10051. Libraries were split into globin-blocked (GB) and non-GB groups and the
  10052. average abundance for each gene in both groups, measured in log2 counts
  10053. per million reads counted, was computed using the aveLogCPM function.
  10054. The distribution of average gene logCPM values was plotted for both groups
  10055. using a kernel density plot to approximate a continuous distribution.
  10056. The logCPM GB distributions are marked in red, non-GB in blue.
  10057. The black vertical line denotes the chosen detection threshold of -1.
  10058. Top panel: Libraries were split into GB and non-GB groups first and normalized
  10059. separately.
  10060. Bottom panel: Libraries were all normalized together first and then split
  10061. into groups.
  10062. \end_layout
  10063. \end_inset
  10064. \end_layout
  10065. \begin_layout Plain Layout
  10066. \end_layout
  10067. \end_inset
  10068. \end_layout
  10069. \begin_layout Standard
  10070. Since globin blocking yields more usable sequencing depth, it should also
  10071. allow detection of more genes at any given threshold.
  10072. When we looked at the distribution of average normalized logCPM values
  10073. across all libraries for genes with at least one read assigned to them,
  10074. we observed the expected bimodal distribution, with a high-abundance "signal"
  10075. peak representing detected genes and a low-abundance "noise" peak representing
  10076. genes whose read count did not rise above the noise floor (Figure
  10077. \begin_inset CommandInset ref
  10078. LatexCommand ref
  10079. reference "fig:logcpm-dists"
  10080. plural "false"
  10081. caps "false"
  10082. noprefix "false"
  10083. \end_inset
  10084. ).
  10085. Consistent with the 2-fold increase in raw counts assigned to non-globin
  10086. genes, the signal peak for GB samples is shifted to the right relative
  10087. to the non-GB signal peak.
  10088. When all the samples are normalized together, this difference is normalized
  10089. out, lining up the signal peaks, and this reveals that, as expected, the
  10090. noise floor for the GB samples is about 2-fold lower.
  10091. This greater separation between signal and noise peaks in the GB samples
  10092. means that low-expression genes should be more easily detected and more
  10093. precisely quantified than in the non-GB samples.
  10094. \end_layout
  10095. \begin_layout Standard
  10096. \begin_inset Float figure
  10097. wide false
  10098. sideways false
  10099. status collapsed
  10100. \begin_layout Plain Layout
  10101. \align center
  10102. \begin_inset Graphics
  10103. filename graphics/Globin Paper/figure3 - detection.pdf
  10104. lyxscale 50
  10105. width 70col%
  10106. \end_inset
  10107. \end_layout
  10108. \begin_layout Plain Layout
  10109. \begin_inset Caption Standard
  10110. \begin_layout Plain Layout
  10111. \series bold
  10112. \begin_inset Argument 1
  10113. status collapsed
  10114. \begin_layout Plain Layout
  10115. Gene detections as a function of abundance thresholds in globin-blocked
  10116. (GB) and non-GB samples.
  10117. \end_layout
  10118. \end_inset
  10119. \begin_inset CommandInset label
  10120. LatexCommand label
  10121. name "fig:Gene-detections"
  10122. \end_inset
  10123. Gene detections as a function of abundance thresholds in globin-blocked
  10124. (GB) and non-GB samples.
  10125. \series default
  10126. Average abundance (logCPM,
  10127. \begin_inset Formula $\log_{2}$
  10128. \end_inset
  10129. counts per million reads counted) was computed by separate group normalization
  10130. as described in Figure
  10131. \begin_inset CommandInset ref
  10132. LatexCommand ref
  10133. reference "fig:logcpm-dists"
  10134. plural "false"
  10135. caps "false"
  10136. noprefix "false"
  10137. \end_inset
  10138. for both the GB and non-GB groups, as well as for all samples considered
  10139. as one large group.
  10140. For each every integer threshold from -2 to 3, the number of genes detected
  10141. at or above that logCPM threshold was plotted for each group.
  10142. \end_layout
  10143. \end_inset
  10144. \end_layout
  10145. \begin_layout Plain Layout
  10146. \end_layout
  10147. \end_inset
  10148. \end_layout
  10149. \begin_layout Standard
  10150. Based on these distributions, we selected a detection threshold of -1, which
  10151. is approximately the leftmost edge of the trough between the signal and
  10152. noise peaks.
  10153. This represents the most liberal possible detection threshold that doesn't
  10154. call substantial numbers of noise genes as detected.
  10155. Among the full dataset, 13429 genes were detected at this threshold, and
  10156. 22276 were not.
  10157. When considering the GB libraries and non-GB libraries separately and re-comput
  10158. ing normalization factors independently within each group, 14535 genes were
  10159. detected in the GB libraries while only 12460 were detected in the non-GB
  10160. libraries.
  10161. Thus, GB allowed the detection of 2000 extra genes that were buried under
  10162. the noise floor without GB.
  10163. This pattern of at least 2000 additional genes detected with GB was also
  10164. consistent across a wide range of possible detection thresholds, from -2
  10165. to 3 (see Figure
  10166. \begin_inset CommandInset ref
  10167. LatexCommand ref
  10168. reference "fig:Gene-detections"
  10169. plural "false"
  10170. caps "false"
  10171. noprefix "false"
  10172. \end_inset
  10173. ).
  10174. \end_layout
  10175. \begin_layout Subsection
  10176. Globin blocking does not add significant additional noise or decrease sample
  10177. quality
  10178. \end_layout
  10179. \begin_layout Standard
  10180. One potential worry is that the globin blocking protocol could perturb the
  10181. levels of non-globin genes.
  10182. There are two kinds of possible perturbations: systematic and random.
  10183. The former is not a major concern for detection of differential expression,
  10184. since a 2-fold change in every sample has no effect on the relative fold
  10185. change between samples.
  10186. In contrast, random perturbations would increase the noise and obscure
  10187. the signal in the dataset, reducing the capacity to detect differential
  10188. expression.
  10189. \end_layout
  10190. \begin_layout Standard
  10191. \begin_inset Float figure
  10192. wide false
  10193. sideways false
  10194. status collapsed
  10195. \begin_layout Plain Layout
  10196. \align center
  10197. \begin_inset Graphics
  10198. filename graphics/Globin Paper/figure4 - maplot-colored.pdf
  10199. lyxscale 50
  10200. width 60col%
  10201. groupId colwidth
  10202. \end_inset
  10203. \end_layout
  10204. \begin_layout Plain Layout
  10205. \begin_inset Caption Standard
  10206. \begin_layout Plain Layout
  10207. \begin_inset Argument 1
  10208. status collapsed
  10209. \begin_layout Plain Layout
  10210. MA plot showing effects of globin blocking on each gene's abundance.
  10211. \end_layout
  10212. \end_inset
  10213. \begin_inset CommandInset label
  10214. LatexCommand label
  10215. name "fig:MA-plot"
  10216. \end_inset
  10217. \series bold
  10218. MA plot showing effects of globin blocking on each gene's abundance.
  10219. \series default
  10220. All libraries were normalized together as described in Figure
  10221. \begin_inset CommandInset ref
  10222. LatexCommand ref
  10223. reference "fig:logcpm-dists"
  10224. plural "false"
  10225. caps "false"
  10226. noprefix "false"
  10227. \end_inset
  10228. , and genes with an average logCPM below -1 were filtered out.
  10229. Each remaining gene was tested for differential abundance with respect
  10230. to globin blocking (GB) using edgeR’s quasi-likelihod F-test, fitting a
  10231. negative binomial generalized linear model to table of read counts in each
  10232. library.
  10233. For each gene, edgeR reported average abundance (logCPM),
  10234. \begin_inset Formula $\log_{2}$
  10235. \end_inset
  10236. fold change (logFC), p-value, and Benjamini-Hochberg adjusted false discovery
  10237. rate (FDR).
  10238. Each gene's logFC was plotted against its logCPM, colored by FDR.
  10239. Red points are significant at ≤10% FDR, and blue are not significant at
  10240. that threshold.
  10241. The alpha and beta globin genes targeted for blocking are marked with large
  10242. triangles, while all other genes are represented as small points.
  10243. \end_layout
  10244. \end_inset
  10245. \end_layout
  10246. \begin_layout Plain Layout
  10247. \end_layout
  10248. \end_inset
  10249. \end_layout
  10250. \begin_layout Standard
  10251. \begin_inset Flex TODO Note (inline)
  10252. status open
  10253. \begin_layout Plain Layout
  10254. Standardize on
  10255. \begin_inset Quotes eld
  10256. \end_inset
  10257. log2
  10258. \begin_inset Quotes erd
  10259. \end_inset
  10260. notation
  10261. \end_layout
  10262. \end_inset
  10263. \end_layout
  10264. \begin_layout Standard
  10265. The data do indeed show small systematic perturbations in gene levels (Figure
  10266. \begin_inset CommandInset ref
  10267. LatexCommand ref
  10268. reference "fig:MA-plot"
  10269. plural "false"
  10270. caps "false"
  10271. noprefix "false"
  10272. \end_inset
  10273. ).
  10274. Other than the 3 designated alpha and beta globin genes, two other genes
  10275. stand out as having especially large negative log fold changes: HBD and
  10276. LOC1021365.
  10277. HBD, delta globin, is most likely targeted by the blocking oligos due to
  10278. high sequence homology with the other globin genes.
  10279. LOC1021365 is the aforementioned ncRNA that is reverse-complementary to
  10280. one of the alpha-like genes and that would be expected to be removed during
  10281. the globin blocking step.
  10282. All other genes appear in a cluster centered vertically at 0, and the vast
  10283. majority of genes in this cluster show an absolute log2(FC) of 0.5 or less.
  10284. Nevertheless, many of these small perturbations are still statistically
  10285. significant, indicating that the globin blocking oligos likely cause very
  10286. small but non-zero systematic perturbations in measured gene expression
  10287. levels.
  10288. \end_layout
  10289. \begin_layout Standard
  10290. \begin_inset Float figure
  10291. wide false
  10292. sideways false
  10293. status collapsed
  10294. \begin_layout Plain Layout
  10295. \align center
  10296. \begin_inset Graphics
  10297. filename graphics/Globin Paper/figure5 - corrplot.pdf
  10298. lyxscale 50
  10299. width 70col%
  10300. \end_inset
  10301. \end_layout
  10302. \begin_layout Plain Layout
  10303. \begin_inset Caption Standard
  10304. \begin_layout Plain Layout
  10305. \series bold
  10306. \begin_inset Argument 1
  10307. status collapsed
  10308. \begin_layout Plain Layout
  10309. Comparison of inter-sample gene abundance correlations with and without
  10310. globin blocking.
  10311. \end_layout
  10312. \end_inset
  10313. \begin_inset CommandInset label
  10314. LatexCommand label
  10315. name "fig:gene-abundance-correlations"
  10316. \end_inset
  10317. Comparison of inter-sample gene abundance correlations with and without
  10318. globin blocking (GB).
  10319. \series default
  10320. All libraries were normalized together as described in Figure 2, and genes
  10321. with an average abundance (logCPM, log2 counts per million reads counted)
  10322. less than -1 were filtered out.
  10323. Each gene’s logCPM was computed in each library using the edgeR cpm function.
  10324. For each pair of biological samples, the Pearson correlation between those
  10325. samples' GB libraries was plotted against the correlation between the same
  10326. samples’ non-GB libraries.
  10327. Each point represents an unique pair of samples.
  10328. The solid gray line shows a quantile-quantile plot of distribution of GB
  10329. correlations vs.
  10330. that of non-GB correlations.
  10331. The thin dashed line is the identity line, provided for reference.
  10332. \end_layout
  10333. \end_inset
  10334. \end_layout
  10335. \begin_layout Plain Layout
  10336. \end_layout
  10337. \end_inset
  10338. \end_layout
  10339. \begin_layout Standard
  10340. To evaluate the possibility of globin blocking causing random perturbations
  10341. and reducing sample quality, we computed the Pearson correlation between
  10342. logCPM values for every pair of samples with and without GB and plotted
  10343. them against each other (Figure
  10344. \begin_inset CommandInset ref
  10345. LatexCommand ref
  10346. reference "fig:gene-abundance-correlations"
  10347. plural "false"
  10348. caps "false"
  10349. noprefix "false"
  10350. \end_inset
  10351. ).
  10352. The plot indicated that the GB libraries have higher sample-to-sample correlati
  10353. ons than the non-GB libraries.
  10354. Parametric and nonparametric tests for differences between the correlations
  10355. with and without GB both confirmed that this difference was highly significant
  10356. (2-sided paired t-test: t = 37.2, df = 665, P ≪ 2.2e-16; 2-sided Wilcoxon
  10357. sign-rank test: V = 2195, P ≪ 2.2e-16).
  10358. Performing the same tests on the Spearman correlations gave the same conclusion
  10359. (t-test: t = 26.8, df = 665, P ≪ 2.2e-16; sign-rank test: V = 8781, P ≪ 2.2e-16).
  10360. The edgeR package was used to compute the overall biological coefficient
  10361. of variation (BCV) for GB and non-GB libraries, and found that globin blocking
  10362. resulted in a negligible increase in the BCV (0.417 with GB vs.
  10363. 0.400 without).
  10364. The near equality of the BCVs for both sets indicates that the higher correlati
  10365. ons in the GB libraries are most likely a result of the increased yield
  10366. of useful reads, which reduces the contribution of Poisson counting uncertainty
  10367. to the overall variance of the logCPM values
  10368. \begin_inset CommandInset citation
  10369. LatexCommand cite
  10370. key "McCarthy2012"
  10371. literal "false"
  10372. \end_inset
  10373. .
  10374. This improves the precision of expression measurements and more than offsets
  10375. the negligible increase in BCV.
  10376. \end_layout
  10377. \begin_layout Subsection
  10378. More differentially expressed genes are detected with globin blocking
  10379. \end_layout
  10380. \begin_layout Standard
  10381. \begin_inset Float table
  10382. wide false
  10383. sideways false
  10384. status collapsed
  10385. \begin_layout Plain Layout
  10386. \align center
  10387. \begin_inset Tabular
  10388. <lyxtabular version="3" rows="5" columns="5">
  10389. <features tabularvalignment="middle">
  10390. <column alignment="center" valignment="top">
  10391. <column alignment="center" valignment="top">
  10392. <column alignment="center" valignment="top">
  10393. <column alignment="center" valignment="top">
  10394. <column alignment="center" valignment="top">
  10395. <row>
  10396. <cell alignment="center" valignment="top" usebox="none">
  10397. \begin_inset Text
  10398. \begin_layout Plain Layout
  10399. \end_layout
  10400. \end_inset
  10401. </cell>
  10402. <cell alignment="center" valignment="top" usebox="none">
  10403. \begin_inset Text
  10404. \begin_layout Plain Layout
  10405. \end_layout
  10406. \end_inset
  10407. </cell>
  10408. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  10409. \begin_inset Text
  10410. \begin_layout Plain Layout
  10411. \series bold
  10412. No Globin Blocking
  10413. \end_layout
  10414. \end_inset
  10415. </cell>
  10416. <cell multicolumn="2" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10417. \begin_inset Text
  10418. \begin_layout Plain Layout
  10419. \end_layout
  10420. \end_inset
  10421. </cell>
  10422. <cell multicolumn="2" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  10423. \begin_inset Text
  10424. \begin_layout Plain Layout
  10425. \end_layout
  10426. \end_inset
  10427. </cell>
  10428. </row>
  10429. <row>
  10430. <cell alignment="center" valignment="top" usebox="none">
  10431. \begin_inset Text
  10432. \begin_layout Plain Layout
  10433. \end_layout
  10434. \end_inset
  10435. </cell>
  10436. <cell alignment="center" valignment="top" usebox="none">
  10437. \begin_inset Text
  10438. \begin_layout Plain Layout
  10439. \end_layout
  10440. \end_inset
  10441. </cell>
  10442. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10443. \begin_inset Text
  10444. \begin_layout Plain Layout
  10445. \series bold
  10446. Up
  10447. \end_layout
  10448. \end_inset
  10449. </cell>
  10450. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10451. \begin_inset Text
  10452. \begin_layout Plain Layout
  10453. \series bold
  10454. NS
  10455. \end_layout
  10456. \end_inset
  10457. </cell>
  10458. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  10459. \begin_inset Text
  10460. \begin_layout Plain Layout
  10461. \series bold
  10462. Down
  10463. \end_layout
  10464. \end_inset
  10465. </cell>
  10466. </row>
  10467. <row>
  10468. <cell multirow="3" alignment="center" valignment="middle" topline="true" bottomline="true" leftline="true" usebox="none">
  10469. \begin_inset Text
  10470. \begin_layout Plain Layout
  10471. \series bold
  10472. Globin-Blocking
  10473. \end_layout
  10474. \end_inset
  10475. </cell>
  10476. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10477. \begin_inset Text
  10478. \begin_layout Plain Layout
  10479. \series bold
  10480. Up
  10481. \end_layout
  10482. \end_inset
  10483. </cell>
  10484. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10485. \begin_inset Text
  10486. \begin_layout Plain Layout
  10487. \family roman
  10488. \series medium
  10489. \shape up
  10490. \size normal
  10491. \emph off
  10492. \bar no
  10493. \strikeout off
  10494. \xout off
  10495. \uuline off
  10496. \uwave off
  10497. \noun off
  10498. \color none
  10499. 231
  10500. \end_layout
  10501. \end_inset
  10502. </cell>
  10503. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10504. \begin_inset Text
  10505. \begin_layout Plain Layout
  10506. \family roman
  10507. \series medium
  10508. \shape up
  10509. \size normal
  10510. \emph off
  10511. \bar no
  10512. \strikeout off
  10513. \xout off
  10514. \uuline off
  10515. \uwave off
  10516. \noun off
  10517. \color none
  10518. 515
  10519. \end_layout
  10520. \end_inset
  10521. </cell>
  10522. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  10523. \begin_inset Text
  10524. \begin_layout Plain Layout
  10525. \family roman
  10526. \series medium
  10527. \shape up
  10528. \size normal
  10529. \emph off
  10530. \bar no
  10531. \strikeout off
  10532. \xout off
  10533. \uuline off
  10534. \uwave off
  10535. \noun off
  10536. \color none
  10537. 2
  10538. \end_layout
  10539. \end_inset
  10540. </cell>
  10541. </row>
  10542. <row>
  10543. <cell multirow="4" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10544. \begin_inset Text
  10545. \begin_layout Plain Layout
  10546. \end_layout
  10547. \end_inset
  10548. </cell>
  10549. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10550. \begin_inset Text
  10551. \begin_layout Plain Layout
  10552. \series bold
  10553. NS
  10554. \end_layout
  10555. \end_inset
  10556. </cell>
  10557. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10558. \begin_inset Text
  10559. \begin_layout Plain Layout
  10560. \family roman
  10561. \series medium
  10562. \shape up
  10563. \size normal
  10564. \emph off
  10565. \bar no
  10566. \strikeout off
  10567. \xout off
  10568. \uuline off
  10569. \uwave off
  10570. \noun off
  10571. \color none
  10572. 160
  10573. \end_layout
  10574. \end_inset
  10575. </cell>
  10576. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10577. \begin_inset Text
  10578. \begin_layout Plain Layout
  10579. \family roman
  10580. \series medium
  10581. \shape up
  10582. \size normal
  10583. \emph off
  10584. \bar no
  10585. \strikeout off
  10586. \xout off
  10587. \uuline off
  10588. \uwave off
  10589. \noun off
  10590. \color none
  10591. 11235
  10592. \end_layout
  10593. \end_inset
  10594. </cell>
  10595. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  10596. \begin_inset Text
  10597. \begin_layout Plain Layout
  10598. \family roman
  10599. \series medium
  10600. \shape up
  10601. \size normal
  10602. \emph off
  10603. \bar no
  10604. \strikeout off
  10605. \xout off
  10606. \uuline off
  10607. \uwave off
  10608. \noun off
  10609. \color none
  10610. 136
  10611. \end_layout
  10612. \end_inset
  10613. </cell>
  10614. </row>
  10615. <row>
  10616. <cell multirow="4" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10617. \begin_inset Text
  10618. \begin_layout Plain Layout
  10619. \end_layout
  10620. \end_inset
  10621. </cell>
  10622. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10623. \begin_inset Text
  10624. \begin_layout Plain Layout
  10625. \series bold
  10626. Down
  10627. \end_layout
  10628. \end_inset
  10629. </cell>
  10630. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10631. \begin_inset Text
  10632. \begin_layout Plain Layout
  10633. \family roman
  10634. \series medium
  10635. \shape up
  10636. \size normal
  10637. \emph off
  10638. \bar no
  10639. \strikeout off
  10640. \xout off
  10641. \uuline off
  10642. \uwave off
  10643. \noun off
  10644. \color none
  10645. 0
  10646. \end_layout
  10647. \end_inset
  10648. </cell>
  10649. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10650. \begin_inset Text
  10651. \begin_layout Plain Layout
  10652. \family roman
  10653. \series medium
  10654. \shape up
  10655. \size normal
  10656. \emph off
  10657. \bar no
  10658. \strikeout off
  10659. \xout off
  10660. \uuline off
  10661. \uwave off
  10662. \noun off
  10663. \color none
  10664. 548
  10665. \end_layout
  10666. \end_inset
  10667. </cell>
  10668. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  10669. \begin_inset Text
  10670. \begin_layout Plain Layout
  10671. \family roman
  10672. \series medium
  10673. \shape up
  10674. \size normal
  10675. \emph off
  10676. \bar no
  10677. \strikeout off
  10678. \xout off
  10679. \uuline off
  10680. \uwave off
  10681. \noun off
  10682. \color none
  10683. 127
  10684. \end_layout
  10685. \end_inset
  10686. </cell>
  10687. </row>
  10688. </lyxtabular>
  10689. \end_inset
  10690. \end_layout
  10691. \begin_layout Plain Layout
  10692. \begin_inset Caption Standard
  10693. \begin_layout Plain Layout
  10694. \series bold
  10695. \begin_inset Argument 1
  10696. status open
  10697. \begin_layout Plain Layout
  10698. Comparison of significantly differentially expressed genes with and without
  10699. globin blocking.
  10700. \end_layout
  10701. \end_inset
  10702. \begin_inset CommandInset label
  10703. LatexCommand label
  10704. name "tab:Comparison-of-significant"
  10705. \end_inset
  10706. Comparison of significantly differentially expressed genes with and without
  10707. globin blocking.
  10708. \series default
  10709. Up, Down: Genes significantly up/down-regulated in post-transplant samples
  10710. relative to pre-transplant samples, with a false discovery rate of 10%
  10711. or less.
  10712. NS: Non-significant genes (false discovery rate greater than 10%).
  10713. \end_layout
  10714. \end_inset
  10715. \end_layout
  10716. \begin_layout Plain Layout
  10717. \end_layout
  10718. \end_inset
  10719. \end_layout
  10720. \begin_layout Standard
  10721. To compare performance on differential gene expression tests, we took subsets
  10722. of both the GB and non-GB libraries with exactly one pre-transplant and
  10723. one post-transplant sample for each animal that had paired samples available
  10724. for analysis (N=7 animals, N=14 samples in each subset).
  10725. The same test for pre- vs.
  10726. post-transplant differential gene expression was performed on the same
  10727. 7 pairs of samples from GB libraries and non-GB libraries, in each case
  10728. using an FDR of 10% as the threshold of significance.
  10729. Out of 12954 genes that passed the detection threshold in both subsets,
  10730. 358 were called significantly differentially expressed in the same direction
  10731. in both sets; 1063 were differentially expressed in the GB set only; 296
  10732. were differentially expressed in the non-GB set only; 2 genes were called
  10733. significantly up in the GB set but significantly down in the non-GB set;
  10734. and the remaining 11235 were not called differentially expressed in either
  10735. set.
  10736. These data are summarized in Table
  10737. \begin_inset CommandInset ref
  10738. LatexCommand ref
  10739. reference "tab:Comparison-of-significant"
  10740. plural "false"
  10741. caps "false"
  10742. noprefix "false"
  10743. \end_inset
  10744. .
  10745. The differences in BCV calculated by EdgeR for these subsets of samples
  10746. were negligible (BCV = 0.302 for GB and 0.297 for non-GB).
  10747. \end_layout
  10748. \begin_layout Standard
  10749. The key point is that the GB data results in substantially more differentially
  10750. expressed calls than the non-GB data.
  10751. Since there is no gold standard for this dataset, it is impossible to be
  10752. certain whether this is due to under-calling of differential expression
  10753. in the non-GB samples or over-calling in the GB samples.
  10754. However, given that both datasets are derived from the same biological
  10755. samples and have nearly equal BCVs, it is more likely that the larger number
  10756. of DE calls in the GB samples are genuine detections that were enabled
  10757. by the higher sequencing depth and measurement precision of the GB samples.
  10758. Note that the same set of genes was considered in both subsets, so the
  10759. larger number of differentially expressed gene calls in the GB data set
  10760. reflects a greater sensitivity to detect significant differential gene
  10761. expression and not simply the larger total number of detected genes in
  10762. GB samples described earlier.
  10763. \end_layout
  10764. \begin_layout Section
  10765. Discussion
  10766. \end_layout
  10767. \begin_layout Standard
  10768. The original experience with whole blood gene expression profiling on DNA
  10769. microarrays demonstrated that the high concentration of globin transcripts
  10770. reduced the sensitivity to detect genes with relatively low expression
  10771. levels, in effect, significantly reducing the sensitivity.
  10772. To address this limitation, commercial protocols for globin reduction were
  10773. developed based on strategies to block globin transcript amplification
  10774. during labeling or physically removing globin transcripts by affinity bead
  10775. methods
  10776. \begin_inset CommandInset citation
  10777. LatexCommand cite
  10778. key "Winn2010"
  10779. literal "false"
  10780. \end_inset
  10781. .
  10782. More recently, using the latest generation of labeling protocols and arrays,
  10783. it was determined that globin reduction was no longer necessary to obtain
  10784. sufficient sensitivity to detect differential transcript expression
  10785. \begin_inset CommandInset citation
  10786. LatexCommand cite
  10787. key "NuGEN2010"
  10788. literal "false"
  10789. \end_inset
  10790. .
  10791. However, we are not aware of any publications using these currently available
  10792. protocols the with latest generation of microarrays that actually compare
  10793. the detection sensitivity with and without globin reduction.
  10794. However, in practice this has now been adopted generally primarily driven
  10795. by concerns for cost control.
  10796. The main objective of our work was to directly test the impact of globin
  10797. gene transcripts and a new globin blocking protocol for application to
  10798. the newest generation of differential gene expression profiling determined
  10799. using next generation sequencing.
  10800. \end_layout
  10801. \begin_layout Standard
  10802. The challenge of doing global gene expression profiling in cynomolgus monkeys
  10803. is that the current available arrays were never designed to comprehensively
  10804. cover this genome and have not been updated since the first assemblies
  10805. of the cynomolgus genome were published.
  10806. Therefore, we determined that the best strategy for peripheral blood profiling
  10807. was to do deep RNA-seq and inform the workflow using the latest available
  10808. genome assembly and annotation
  10809. \begin_inset CommandInset citation
  10810. LatexCommand cite
  10811. key "Wilson2013"
  10812. literal "false"
  10813. \end_inset
  10814. .
  10815. However, it was not immediately clear whether globin reduction was necessary
  10816. for RNA-seq or how much improvement in efficiency or sensitivity to detect
  10817. differential gene expression would be achieved for the added cost and work.
  10818. \end_layout
  10819. \begin_layout Standard
  10820. We only found one report that demonstrated that globin reduction significantly
  10821. improved the effective read yields for sequencing of human peripheral blood
  10822. cell RNA using a DeepSAGE protocol
  10823. \begin_inset CommandInset citation
  10824. LatexCommand cite
  10825. key "Mastrokolias2012"
  10826. literal "false"
  10827. \end_inset
  10828. .
  10829. The approach to DeepSAGE involves two different restriction enzymes that
  10830. purify and then tag small fragments of transcripts at specific locations
  10831. and thus, significantly reduces the complexity of the transcriptome.
  10832. Therefore, we could not determine how DeepSAGE results would translate
  10833. to the common strategy in the field for assaying the entire transcript
  10834. population by whole-transcriptome 3’-end RNA-seq.
  10835. Furthermore, if globin reduction is necessary, we also needed a globin
  10836. reduction method specific to cynomolgus globin sequences that would work
  10837. an organism for which no kit is available off the shelf.
  10838. \end_layout
  10839. \begin_layout Standard
  10840. As mentioned above, the addition of globin blocking oligos has a very small
  10841. impact on measured expression levels of gene expression.
  10842. However, this is a non-issue for the purposes of differential expression
  10843. testing, since a systematic change in a gene in all samples does not affect
  10844. relative expression levels between samples.
  10845. However, we must acknowledge that simple comparisons of gene expression
  10846. data obtained by GB and non-GB protocols are not possible without additional
  10847. normalization.
  10848. \end_layout
  10849. \begin_layout Standard
  10850. More importantly, globin blocking not only nearly doubles the yield of usable
  10851. reads, it also increases inter-sample correlation and sensitivity to detect
  10852. differential gene expression relative to the same set of samples profiled
  10853. without blocking.
  10854. In addition, globin blocking does not add a significant amount of random
  10855. noise to the data.
  10856. Globin blocking thus represents a cost-effective way to squeeze more data
  10857. and statistical power out of the same blood samples and the same amount
  10858. of sequencing.
  10859. In conclusion, globin reduction greatly increases the yield of useful RNA-seq
  10860. reads mapping to the rest of the genome, with minimal perturbations in
  10861. the relative levels of non-globin genes.
  10862. Based on these results, globin transcript reduction using sequence-specific,
  10863. complementary blocking oligonucleotides is recommended for all deep RNA-seq
  10864. of cynomolgus and other nonhuman primate blood samples.
  10865. \end_layout
  10866. \begin_layout Section
  10867. Future Directions
  10868. \end_layout
  10869. \begin_layout Standard
  10870. \begin_inset Flex TODO Note (inline)
  10871. status open
  10872. \begin_layout Plain Layout
  10873. I've already done a good bit of work outside just this globin blocking thing,
  10874. so I'm not sure what to put for future directions.
  10875. Does it inculde the other stuff I've done but not published?
  10876. \end_layout
  10877. \end_inset
  10878. \end_layout
  10879. \begin_layout Chapter
  10880. Future Directions
  10881. \end_layout
  10882. \begin_layout Standard
  10883. \begin_inset Flex TODO Note (inline)
  10884. status open
  10885. \begin_layout Plain Layout
  10886. If there are any chapter-independent future directions, put them here.
  10887. Otherwise, delete this section.
  10888. Check in the directions if this is OK.
  10889. \end_layout
  10890. \end_inset
  10891. \end_layout
  10892. \begin_layout Standard
  10893. \begin_inset ERT
  10894. status collapsed
  10895. \begin_layout Plain Layout
  10896. % Call it "References" instead of "Bibliography"
  10897. \end_layout
  10898. \begin_layout Plain Layout
  10899. \backslash
  10900. renewcommand{
  10901. \backslash
  10902. bibname}{References}
  10903. \end_layout
  10904. \end_inset
  10905. \end_layout
  10906. \begin_layout Standard
  10907. \begin_inset CommandInset bibtex
  10908. LatexCommand bibtex
  10909. btprint "btPrintCited"
  10910. bibfiles "code-refs,refs-PROCESSED"
  10911. options "bibtotoc,unsrt"
  10912. \end_inset
  10913. \end_layout
  10914. \begin_layout Standard
  10915. \begin_inset Flex TODO Note (inline)
  10916. status open
  10917. \begin_layout Plain Layout
  10918. Check bib entry formatting & sort order
  10919. \end_layout
  10920. \end_inset
  10921. \end_layout
  10922. \begin_layout Standard
  10923. \begin_inset Flex TODO Note (inline)
  10924. status open
  10925. \begin_layout Plain Layout
  10926. Check in-text citation format.
  10927. Probably don't just want [1], [2], etc.
  10928. \end_layout
  10929. \end_inset
  10930. \end_layout
  10931. \end_body
  10932. \end_document