thesis.lyx 96 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056
  1. #LyX 2.3 created this file. For more info see http://www.lyx.org/
  2. \lyxformat 544
  3. \begin_document
  4. \begin_header
  5. \save_transient_properties true
  6. \origin unavailable
  7. \textclass extbook
  8. \begin_preamble
  9. % List all used files in log output
  10. \listfiles
  11. % Add a DRAFT watermark
  12. \usepackage{draftwatermark}
  13. \SetWatermarkLightness{0.97}
  14. \SetWatermarkScale{1}
  15. % Set up required header format
  16. \usepackage{fancyhdr}
  17. \pagestyle{fancy}
  18. \renewcommand{\headrulewidth}{0pt}
  19. \rhead{}
  20. \lhead{}
  21. \rfoot{}
  22. \lfoot{}
  23. \cfoot{\thepage} % Page number bottom center
  24. % https://tex.stackexchange.com/questions/65680/automatically-bold-first-sentence-of-a-floats-caption
  25. \usepackage{xstring}
  26. \usepackage{etoolbox}
  27. \usepackage{caption}
  28. \captionsetup{labelfont=bf,tableposition=top}
  29. \makeatletter
  30. \newcommand\formatlabel[1]{%
  31. \noexpandarg
  32. \IfSubStr{#1}{.}{%
  33. \StrBefore{#1}{.}[\firstcaption]%
  34. \StrBehind{#1}{.}[\secondcaption]%
  35. \textbf{\firstcaption.} \secondcaption}{%
  36. #1}%
  37. }
  38. \patchcmd{\@caption}{#3}{\formatlabel{#3}}
  39. \makeatother
  40. \end_preamble
  41. \use_default_options true
  42. \begin_modules
  43. todonotes
  44. \end_modules
  45. \maintain_unincluded_children false
  46. \language english
  47. \language_package default
  48. \inputencoding utf8
  49. \fontencoding default
  50. \font_roman "default" "default"
  51. \font_sans "default" "default"
  52. \font_typewriter "default" "default"
  53. \font_math "auto" "auto"
  54. \font_default_family default
  55. \use_non_tex_fonts false
  56. \font_sc false
  57. \font_osf false
  58. \font_sf_scale 100 100
  59. \font_tt_scale 100 100
  60. \use_microtype false
  61. \use_dash_ligatures true
  62. \graphics default
  63. \default_output_format pdf4
  64. \output_sync 0
  65. \bibtex_command default
  66. \index_command default
  67. \paperfontsize 12
  68. \spacing double
  69. \use_hyperref true
  70. \pdf_bookmarks true
  71. \pdf_bookmarksnumbered false
  72. \pdf_bookmarksopen false
  73. \pdf_bookmarksopenlevel 1
  74. \pdf_breaklinks false
  75. \pdf_pdfborder false
  76. \pdf_colorlinks false
  77. \pdf_backref false
  78. \pdf_pdfusetitle true
  79. \papersize letterpaper
  80. \use_geometry true
  81. \use_package amsmath 1
  82. \use_package amssymb 1
  83. \use_package cancel 1
  84. \use_package esint 1
  85. \use_package mathdots 1
  86. \use_package mathtools 1
  87. \use_package mhchem 1
  88. \use_package stackrel 1
  89. \use_package stmaryrd 1
  90. \use_package undertilde 1
  91. \cite_engine basic
  92. \cite_engine_type default
  93. \biblio_style plain
  94. \use_bibtopic false
  95. \use_indices false
  96. \paperorientation portrait
  97. \suppress_date false
  98. \justification true
  99. \use_refstyle 1
  100. \use_minted 0
  101. \index Index
  102. \shortcut idx
  103. \color #008000
  104. \end_index
  105. \leftmargin 1.5in
  106. \topmargin 1in
  107. \rightmargin 1in
  108. \bottommargin 1in
  109. \secnumdepth 3
  110. \tocdepth 3
  111. \paragraph_separation indent
  112. \paragraph_indentation default
  113. \is_math_indent 0
  114. \math_numbering_side default
  115. \quotes_style english
  116. \dynamic_quotes 0
  117. \papercolumns 1
  118. \papersides 2
  119. \paperpagestyle default
  120. \tracking_changes false
  121. \output_changes false
  122. \html_math_output 0
  123. \html_css_as_file 0
  124. \html_be_strict false
  125. \end_header
  126. \begin_body
  127. \begin_layout Title
  128. Bioinformatic analysis of complex, high-throughput genomic and epigenomic
  129. data in the context of immunology and transplant rejection
  130. \end_layout
  131. \begin_layout Author
  132. A thesis presented
  133. \begin_inset Newline newline
  134. \end_inset
  135. by
  136. \begin_inset Newline newline
  137. \end_inset
  138. Ryan C.
  139. Thompson
  140. \begin_inset Newline newline
  141. \end_inset
  142. to
  143. \begin_inset Newline newline
  144. \end_inset
  145. The Scripps Research Institute Graduate Program
  146. \begin_inset Newline newline
  147. \end_inset
  148. in partial fulfillment of the requirements for the degree of
  149. \begin_inset Newline newline
  150. \end_inset
  151. Doctor of Philosophy in the subject of Biology
  152. \begin_inset Newline newline
  153. \end_inset
  154. for
  155. \begin_inset Newline newline
  156. \end_inset
  157. The Scripps Research Institute
  158. \begin_inset Newline newline
  159. \end_inset
  160. La Jolla, California
  161. \end_layout
  162. \begin_layout Date
  163. May 2019
  164. \end_layout
  165. \begin_layout Standard
  166. [Copyright notice]
  167. \end_layout
  168. \begin_layout Standard
  169. [Thesis acceptance form]
  170. \end_layout
  171. \begin_layout Standard
  172. [Dedication]
  173. \end_layout
  174. \begin_layout Standard
  175. [Acknowledgements]
  176. \end_layout
  177. \begin_layout Standard
  178. \begin_inset CommandInset toc
  179. LatexCommand tableofcontents
  180. \end_inset
  181. \end_layout
  182. \begin_layout Standard
  183. \begin_inset FloatList table
  184. \end_inset
  185. \end_layout
  186. \begin_layout Standard
  187. \begin_inset FloatList figure
  188. \end_inset
  189. \end_layout
  190. \begin_layout Standard
  191. [List of Abbreviations]
  192. \end_layout
  193. \begin_layout Standard
  194. \begin_inset Flex TODO Note (inline)
  195. status open
  196. \begin_layout Plain Layout
  197. Look into auto-generated nomenclature list: https://wiki.lyx.org/Tips/Nomenclature
  198. \end_layout
  199. \end_inset
  200. \end_layout
  201. \begin_layout List of TODOs
  202. \end_layout
  203. \begin_layout Standard
  204. [Abstract]
  205. \end_layout
  206. \begin_layout Chapter*
  207. Abstract
  208. \end_layout
  209. \begin_layout Chapter
  210. Introduction
  211. \end_layout
  212. \begin_layout Section
  213. Background & Significance
  214. \end_layout
  215. \begin_layout Subsection
  216. Biological motivation
  217. \end_layout
  218. \begin_layout Itemize
  219. Rejection is the major long-term threat to organ and tissue grafts
  220. \end_layout
  221. \begin_deeper
  222. \begin_layout Itemize
  223. Common mechanisms of rejection
  224. \end_layout
  225. \begin_layout Itemize
  226. Effective immune suppression requires monitoring for rejection and tuning
  227. \end_layout
  228. \begin_layout Itemize
  229. Current tests for rejection (tissue biopsy) are invasive and biased
  230. \end_layout
  231. \begin_layout Itemize
  232. A blood test based on microarrays would be less biased and invasive
  233. \end_layout
  234. \end_deeper
  235. \begin_layout Itemize
  236. Memory cells are resistant to immune suppression
  237. \end_layout
  238. \begin_deeper
  239. \begin_layout Itemize
  240. Mechanisms of resistance in memory cells are poorly understood
  241. \end_layout
  242. \begin_layout Itemize
  243. A better understanding of immune memory formation is needed
  244. \end_layout
  245. \end_deeper
  246. \begin_layout Itemize
  247. Mesenchymal stem cell infusion is a promising new treatment to prevent/delay
  248. rejection
  249. \end_layout
  250. \begin_deeper
  251. \begin_layout Itemize
  252. Demonstrated in mice, but not yet in primates
  253. \end_layout
  254. \begin_layout Itemize
  255. Mechanism currently unknown, but MSC are known to be immune modulatory
  256. \end_layout
  257. \end_deeper
  258. \begin_layout Subsection
  259. Overview of bioinformatic analysis methods
  260. \end_layout
  261. \begin_layout Standard
  262. An overview of all the methods used, including what problem they solve,
  263. what assumptions they make, and a basic description of how they work.
  264. \end_layout
  265. \begin_layout Itemize
  266. ChIP-seq Peak calling
  267. \end_layout
  268. \begin_deeper
  269. \begin_layout Itemize
  270. Cross-correlation analysis to determine fragment size
  271. \end_layout
  272. \begin_layout Itemize
  273. Broad vs narrow peaks
  274. \end_layout
  275. \begin_layout Itemize
  276. SICER for broad peaks
  277. \end_layout
  278. \begin_layout Itemize
  279. IDR for biologically reproducible peaks
  280. \end_layout
  281. \begin_layout Itemize
  282. csaw peak filtering guidelines for unbiased downstream analysis
  283. \end_layout
  284. \end_deeper
  285. \begin_layout Itemize
  286. Normalization is non-trivial and application-dependant
  287. \end_layout
  288. \begin_deeper
  289. \begin_layout Itemize
  290. Expression arrays: RMA & fRMA; why fRMA is needed
  291. \end_layout
  292. \begin_layout Itemize
  293. Methylation arrays: M-value transformation approximates normal data but
  294. induces heteroskedasticity
  295. \end_layout
  296. \begin_layout Itemize
  297. RNA-seq: normalize based on assumption that the average gene is not changing
  298. \end_layout
  299. \begin_layout Itemize
  300. ChIP-seq: complex with many considerations, dependent on experimental methods,
  301. biological system, and analysis goals
  302. \end_layout
  303. \end_deeper
  304. \begin_layout Itemize
  305. Limma: The standard linear modeling framework for genomics
  306. \end_layout
  307. \begin_deeper
  308. \begin_layout Itemize
  309. empirical Bayes variance modeling: limma's core feature
  310. \end_layout
  311. \begin_layout Itemize
  312. edgeR & DESeq2: Extend with negative bonomial GLM for RNA-seq and other
  313. count data
  314. \end_layout
  315. \begin_layout Itemize
  316. voom: Extend with precision weights to model mean-variance trend
  317. \end_layout
  318. \begin_layout Itemize
  319. arrayWeights and duplicateCorrelation to handle complex variance structures
  320. \end_layout
  321. \end_deeper
  322. \begin_layout Itemize
  323. sva and ComBat for batch correction
  324. \end_layout
  325. \begin_layout Itemize
  326. Factor analysis: PCA, MDS, MOFA
  327. \end_layout
  328. \begin_deeper
  329. \begin_layout Itemize
  330. Batch-corrected PCA is informative, but careful application is required
  331. to avoid bias
  332. \end_layout
  333. \end_deeper
  334. \begin_layout Itemize
  335. Gene set analysis: camera and SPIA
  336. \end_layout
  337. \begin_layout Section
  338. Innovation
  339. \end_layout
  340. \begin_layout Itemize
  341. MSC infusion to improve transplant outcomes (prevent/delay rejection)
  342. \end_layout
  343. \begin_deeper
  344. \begin_layout Itemize
  345. Characterize MSC response to interferon gamma
  346. \end_layout
  347. \begin_layout Itemize
  348. IFN-g is thought to stimulate their function
  349. \end_layout
  350. \begin_layout Itemize
  351. Test IFN-g treated MSC infusion as a therapy to delay graft rejection in
  352. cynomolgus monkeys
  353. \end_layout
  354. \begin_layout Itemize
  355. Monitor animals post-transplant using blood RNA-seq at serial time points
  356. \end_layout
  357. \end_deeper
  358. \begin_layout Itemize
  359. Investigate dynamics of histone marks in CD4 T-cell activation and memory
  360. \end_layout
  361. \begin_deeper
  362. \begin_layout Itemize
  363. Previous studies have looked at single snapshots of histone marks
  364. \end_layout
  365. \begin_layout Itemize
  366. Instead, look at changes in histone marks across activation and memory
  367. \end_layout
  368. \end_deeper
  369. \begin_layout Itemize
  370. High-throughput sequencing and microarray technologies
  371. \end_layout
  372. \begin_deeper
  373. \begin_layout Itemize
  374. Powerful methods for assaying gene expression and epigenetics across entire
  375. genomes
  376. \end_layout
  377. \begin_layout Itemize
  378. Proper analysis requires finding and exploiting systematic genome-wide trends
  379. \end_layout
  380. \end_deeper
  381. \begin_layout Chapter
  382. Reproducible genome-wide epigenetic analysis of H3K4 and H3K27 methylation
  383. in naive and memory CD4 T-cell activation
  384. \end_layout
  385. \begin_layout Standard
  386. \begin_inset Flex TODO Note (inline)
  387. status open
  388. \begin_layout Plain Layout
  389. Author list: Me, Sarah, Dan
  390. \end_layout
  391. \end_inset
  392. \end_layout
  393. \begin_layout Section
  394. Approach
  395. \end_layout
  396. \begin_layout Itemize
  397. CD4 T-cells are central to all adaptive immune responses and memory
  398. \end_layout
  399. \begin_layout Itemize
  400. H3K4 and H3K27 methylation are major epigenetic regulators of gene expression
  401. \end_layout
  402. \begin_layout Itemize
  403. Canonically, H3K4 is activating and H3K27 is inhibitory, but the reality
  404. is complex
  405. \end_layout
  406. \begin_layout Itemize
  407. Looking at these marks during CD4 activation and memory should reveal new
  408. mechanistic details
  409. \end_layout
  410. \begin_layout Itemize
  411. Test
  412. \begin_inset Quotes eld
  413. \end_inset
  414. poised promoter
  415. \begin_inset Quotes erd
  416. \end_inset
  417. hypothesis in which H3K4 and H3K27 are both methylated
  418. \end_layout
  419. \begin_layout Itemize
  420. Expand scope of analysis beyond simple promoter counts
  421. \end_layout
  422. \begin_deeper
  423. \begin_layout Itemize
  424. Analyze peaks genome-wide, including in intergenic regions
  425. \end_layout
  426. \begin_layout Itemize
  427. Analysis of coverage distribution shape within promoters, e.g.
  428. upstream vs downstream coverage
  429. \end_layout
  430. \end_deeper
  431. \begin_layout Section
  432. Methods
  433. \end_layout
  434. \begin_layout Itemize
  435. Re-analyze previously published CD4 ChIP-seq & RNA-seq data
  436. \begin_inset CommandInset citation
  437. LatexCommand cite
  438. key "LaMere2016,Lamere2017"
  439. literal "true"
  440. \end_inset
  441. \end_layout
  442. \begin_deeper
  443. \begin_layout Itemize
  444. Completely reimplement analysis from scratch as a reproducible workflow
  445. \end_layout
  446. \begin_layout Itemize
  447. Use newly published methods & algorithms not available during the original
  448. analysis: SICER, csaw, MOFA, ComBat, sva, GREAT, and more
  449. \end_layout
  450. \end_deeper
  451. \begin_layout Itemize
  452. SICER, IDR, csaw, & GREAT to call ChIP-seq peaks genome-wide, perform differenti
  453. al abundance analysis, and relate those peaks to gene expression
  454. \end_layout
  455. \begin_layout Itemize
  456. Promoter counts in sliding windows around each gene's highest-expressed
  457. TSS to investigate coverage distribution within promoters
  458. \end_layout
  459. \begin_layout Section
  460. Results
  461. \end_layout
  462. \begin_layout Standard
  463. \begin_inset Note Note
  464. status open
  465. \begin_layout Plain Layout
  466. Focus on what hypotheses were tested, then select figures that show how
  467. those hypotheses were tested, even if the result is a negative.
  468. \end_layout
  469. \end_inset
  470. \end_layout
  471. \begin_layout Subsection
  472. H3K4 and H3K27 methylation occur in broad regions and are enriched near
  473. promoters
  474. \end_layout
  475. \begin_layout Itemize
  476. Figures comparing MACS (non-broad peak caller) to SICER/epic (broad peak
  477. caller)
  478. \end_layout
  479. \begin_deeper
  480. \begin_layout Itemize
  481. Compare peak sizes and number of called peaks
  482. \end_layout
  483. \begin_layout Itemize
  484. Show representative IDR consistency plots for both
  485. \end_layout
  486. \end_deeper
  487. \begin_layout Itemize
  488. IDR analysis shows that SICER-called peaks are much more reproducible between
  489. biological replicates
  490. \end_layout
  491. \begin_layout Itemize
  492. Each histone mark is enriched within a certain radius of gene TSS positions,
  493. but that radius is different for each mark (figure)
  494. \end_layout
  495. \begin_layout Subsection
  496. RNA-seq has a large confounding batch effect
  497. \end_layout
  498. \begin_layout Itemize
  499. RNA-seq batch effect can be partially corrected, but still induces uncorrectable
  500. biases in downstream analysis
  501. \end_layout
  502. \begin_deeper
  503. \begin_layout Itemize
  504. Figure showing MDS plot before & after ComBat
  505. \end_layout
  506. \begin_layout Itemize
  507. Figure relating sample weights to batches, cell types, time points, etc.,
  508. showing that one batch is significantly worse quality
  509. \end_layout
  510. \begin_layout Itemize
  511. Figures showing p-value histograms for within-batch and cross-batch contrasts,
  512. showing that cross-batch contrasts have attenuated signal, as do comparisons
  513. within the bad batch
  514. \end_layout
  515. \end_deeper
  516. \begin_layout Subsection
  517. ChIP-seq must be corrected for hidden confounding factors
  518. \end_layout
  519. \begin_layout Itemize
  520. Figures showing pre- and post-SVA MDS plots for each histone mark
  521. \end_layout
  522. \begin_layout Itemize
  523. Figures showing BCV plots with and without SVA for each histone mark
  524. \end_layout
  525. \begin_layout Subsection
  526. H3K4 and H3K27 promoter methylation has broadly the expected correlation
  527. with gene expression
  528. \end_layout
  529. \begin_layout Itemize
  530. H3K4 is correlated with higher expression, and H3K27 is correlated with
  531. lower expression genome-wide
  532. \end_layout
  533. \begin_layout Itemize
  534. Figures showing these correlations: box/violin plots of expression distributions
  535. with every combination of peak presence/absence in promoter
  536. \end_layout
  537. \begin_layout Itemize
  538. Appropriate statistical tests showing significant differences in expected
  539. directions
  540. \end_layout
  541. \begin_layout Subsection
  542. MOFA recovers biologically relevant variation from blind analysis by correlating
  543. across datasets
  544. \end_layout
  545. \begin_layout Itemize
  546. MOFA
  547. \begin_inset CommandInset citation
  548. LatexCommand cite
  549. key "Argelaguet2018"
  550. literal "false"
  551. \end_inset
  552. successfully separates biologically relevant patterns of variation from
  553. technical confounding factors without knowing the sample labels, by finding
  554. latent factors that explain variation across multiple data sets.
  555. \end_layout
  556. \begin_deeper
  557. \begin_layout Itemize
  558. Figure: show percent-variance-explained plot from MOFA and PCA-like plots
  559. for the relevant latent factors
  560. \end_layout
  561. \begin_layout Itemize
  562. MOFA analysis also shows that batch effect correction can't get much better
  563. than it already is (Figure comparing blind MOFA batch correction to ComBat
  564. correction)
  565. \end_layout
  566. \end_deeper
  567. \begin_layout Subsection
  568. Naive-to-memory convergence observed in H3K4 and RNA-seq data, not in H3K27me3
  569. \end_layout
  570. \begin_layout Itemize
  571. H3K4 and RNA-seq data show clear evidence of naive convergence with memory
  572. between days 1 and 5 (MDS plot figure, also compare with last figure from
  573. \begin_inset CommandInset citation
  574. LatexCommand cite
  575. key "LaMere2016"
  576. literal "false"
  577. \end_inset
  578. )
  579. \end_layout
  580. \begin_layout Standard
  581. \begin_inset Flex TODO Note (inline)
  582. status open
  583. \begin_layout Plain Layout
  584. Get explicit permission from Sarah to include the figure
  585. \end_layout
  586. \end_inset
  587. \end_layout
  588. \begin_layout Itemize
  589. Table of numbers of genes different between N & M at each time point, showing
  590. dwindling differences at later time points, consistent with convergence
  591. \end_layout
  592. \begin_layout Itemize
  593. Similar figure for H3K27me3 showing lack of convergence
  594. \end_layout
  595. \begin_layout Subsection
  596. Effect of promoter coverage upstream vs downstream of TSS
  597. \end_layout
  598. \begin_layout Itemize
  599. H3K4me peaks seem to correlate with increased expression as long as they
  600. are anywhere near the TSS
  601. \end_layout
  602. \begin_layout Itemize
  603. H3K27me3 peaks can have different correlations to gene expression depending
  604. on their position relative to TSS (e.g.
  605. upstream vs downstream) Results consistent with
  606. \begin_inset CommandInset citation
  607. LatexCommand cite
  608. key "Young2011"
  609. literal "false"
  610. \end_inset
  611. \end_layout
  612. \begin_layout Section
  613. Discussion
  614. \end_layout
  615. \begin_layout Itemize
  616. "Promoter radius" is not constant and must be defined empirically for a
  617. given data set
  618. \end_layout
  619. \begin_layout Itemize
  620. MOFA shows great promise for accelerating discovery of major biological
  621. effects in multi-omics datasets
  622. \end_layout
  623. \begin_deeper
  624. \begin_layout Itemize
  625. MOFA was added to this analysis late and played primarily a confirmatory
  626. role, but it was able to confirm earlier conclusions with much less prior
  627. information (no sample labels) and much less analyst effort
  628. \end_layout
  629. \begin_layout Itemize
  630. MOFA confirmed that the already-implemented batch correction in the RNA-seq
  631. data was already performing as well as possible given the limitations of
  632. the data
  633. \end_layout
  634. \end_deeper
  635. \begin_layout Itemize
  636. Naive-to-memory convergence implies that naive cells are differentiating
  637. into memory cells, and that gene expression and H3K4 methylation are involved
  638. in this differentiation while H3K27me3 is less involved
  639. \end_layout
  640. \begin_layout Itemize
  641. H3K27me3, canonically regarded as a deactivating mark, seems to have a more
  642. complex
  643. \end_layout
  644. \begin_layout Itemize
  645. Discuss advantages of developing using a reproducible workflow
  646. \end_layout
  647. \begin_layout Chapter
  648. Improving array-based analyses of transplant rejection by optimizing data
  649. preprocessing
  650. \end_layout
  651. \begin_layout Standard
  652. \begin_inset Note Note
  653. status open
  654. \begin_layout Plain Layout
  655. Author list: Me, Sunil, Tom, Padma, Dan
  656. \end_layout
  657. \end_inset
  658. \end_layout
  659. \begin_layout Section
  660. Approach
  661. \end_layout
  662. \begin_layout Subsection
  663. Proper pre-processing is essential for array data
  664. \end_layout
  665. \begin_layout Standard
  666. \begin_inset Flex TODO Note (inline)
  667. status open
  668. \begin_layout Plain Layout
  669. This section could probably use some citations
  670. \end_layout
  671. \end_inset
  672. \end_layout
  673. \begin_layout Standard
  674. Microarrays, bead ararys, and similar assays produce raw data in the form
  675. of fluorescence intensity measurements, with the each intensity measurement
  676. proportional to the abundance of some fluorescently-labelled target DNA
  677. or RNA sequence that base pairs to a specific probe sequence.
  678. However, these measurements for each probe are also affected my many technical
  679. confounding factors, such as the concentration of target material, strength
  680. of off-target binding, and the sensitivity of the imaging sensor.
  681. Some array designs also use multiple probe sequences for each target.
  682. Hence, extensive pre-processing of array data is necessary to normalize
  683. out the effects of these technical factors and summarize the information
  684. from multiple probes to arrive at a single usable estimate of abundance
  685. or other relevant quantity, such as a ratio of two abundances, for each
  686. target.
  687. \end_layout
  688. \begin_layout Standard
  689. The choice of pre-processing algorithms used in the analysis of an array
  690. data set can have a large effect on the results of that analysis.
  691. However, despite their importance, these steps are often neglected or rushed
  692. in order to get to the more scientifically interesting analysis steps involving
  693. the actual biology of the system under study.
  694. Hence, it is often possible to achieve substantial gains in statistical
  695. power, model goodness-of-fit, or other relevant performance measures, by
  696. checking the assumptions made by each preprocessing step and choosing specific
  697. normalization methods tailored to the specific goals of the current analysis.
  698. \end_layout
  699. \begin_layout Subsection
  700. Frozen RMA for clinical microarray classifiers
  701. \end_layout
  702. \begin_layout Subsubsection
  703. Standard normalization methods are unsuitable for clinical application
  704. \end_layout
  705. \begin_layout Standard
  706. As the cost of performing microarray assays falls, there is increasing interest
  707. in using genomic assays for diagnostic purposes, such as distinguishing
  708. healthy transplants (TX) from transplants undergoing acute rejection (AR)
  709. or acute dysfunction with no rejection (ADNR).
  710. However, the the standard normalization algorithm used for microarray data,
  711. Robust Multi-chip Average (RMA)
  712. \begin_inset CommandInset citation
  713. LatexCommand cite
  714. key "Irizarry2003a"
  715. literal "false"
  716. \end_inset
  717. , is not applicable in a clinical setting.
  718. Two of the steps in RMA, quantile normalization and probe summarization
  719. by median polish, depend on every array in the data set being normalized.
  720. This means that adding or removing any arrays from a data set changes the
  721. normalized values for all arrays, and data sets that have been normalized
  722. separately cannot be compared to each other.
  723. Hence, when using RMA, any arrays to be analyzed together must also be
  724. normalized together, and the set of arrays included in the data set must
  725. be held constant throughout an analysis.
  726. \end_layout
  727. \begin_layout Standard
  728. These limitations present serious impediments to the use of arrays as a
  729. diagnostic tool.
  730. When training a classifier, the samples to be classified must not be involved
  731. in any step of the training process, lest their inclusion bias the training
  732. process.
  733. Once a classifier is deployed in a clinical setting, the samples to be
  734. classified will not even
  735. \emph on
  736. exist
  737. \emph default
  738. at the time of training, so including them would be impossible even if
  739. it were statistically justifiable.
  740. Therefore, any machine learning application for microarrays demands that
  741. the normalized expression values computed for an array must depend only
  742. on information contained within that array.
  743. This would ensure that each array's normalization is independent of every
  744. other array, and that arrays normalized separately can still be compared
  745. to each other without bias.
  746. \end_layout
  747. \begin_layout Subsubsection
  748. Frozen RMA satisfies clinical normalization requirements
  749. \end_layout
  750. \begin_layout Standard
  751. Frozen RMA (fRMA) addresses these concerns by replacing the quantile normalizati
  752. on and median polish with alternatives that do not introduce inter-array
  753. dependence, allowing each array to be normalized independently of all others
  754. \begin_inset CommandInset citation
  755. LatexCommand cite
  756. key "McCall2010"
  757. literal "false"
  758. \end_inset
  759. .
  760. Quantile normalization is performed against a pre-generated set of quantiles
  761. learned from a collection of 850 publically available arrays sampled from
  762. a wide variety of tissues in the Gene Expression Omnibus (GEO).
  763. Each array's probe intensity distribution is normalized against these pre-gener
  764. ated quantiles.
  765. The median polish step is replaced with a robust weighted average of probe
  766. intensities, using inverse variance weights learned from the same public
  767. GEO data.
  768. The result is a normalization that satisfies the requirements mentioned
  769. above: each array is normalized independently of all others, and any two
  770. normalized arrays can be compared directly to each other.
  771. \end_layout
  772. \begin_layout Standard
  773. One important limitation of fRMA is that it requires a separate reference
  774. data set from which to learn the parameters (reference quantiles and probe
  775. weights) that will be used to normalize each array.
  776. These parameters are specific to a given array platform, and pre-generated
  777. parameters are only provided for the most common platforms, such as Affymetrix
  778. hgu133plus2.
  779. For a less common platform, such as hthgu133pluspm, is is necessary to
  780. learn custom parameters from in-house data before fRMA can be used to normalize
  781. samples on that platform
  782. \begin_inset CommandInset citation
  783. LatexCommand cite
  784. key "HudsonK.&RemediosC.2010"
  785. literal "false"
  786. \end_inset
  787. .
  788. \end_layout
  789. \begin_layout Subsection
  790. Adapting voom to model heteroskedasticity in methylation array data
  791. \end_layout
  792. \begin_layout Subsubsection
  793. Methylation array preprocessing induces heteroskedasticity
  794. \end_layout
  795. \begin_layout Standard
  796. DNA methylation arrays are a relatively new kind of assay that uses microarrays
  797. to measure the degree of methylation on cytosines in specific regions arrayed
  798. across the genome.
  799. First, bisulfite treatment converts all unmethylated cytosines to uracil
  800. (which then become thymine after amplication) while leaving methylated
  801. cytosines unaffected.
  802. Then, each target region is interrogated with two probes: one binds to
  803. the original genomic sequence and interrogates the level of methylated
  804. DNA, and the other binds to the sequence with all Cs replaced by Ts and
  805. interrogates the level of unmethylated DNA.
  806. \end_layout
  807. \begin_layout Standard
  808. \begin_inset Float figure
  809. wide false
  810. sideways false
  811. status collapsed
  812. \begin_layout Plain Layout
  813. \begin_inset Graphics
  814. filename graphics/methylvoom/sigmoid.pdf
  815. \end_inset
  816. \end_layout
  817. \begin_layout Plain Layout
  818. \begin_inset Caption Standard
  819. \begin_layout Plain Layout
  820. \begin_inset CommandInset label
  821. LatexCommand label
  822. name "fig:Sigmoid-beta-m-mapping"
  823. \end_inset
  824. \series bold
  825. Sigmoid shape of the mapping between β and M values
  826. \end_layout
  827. \end_inset
  828. \end_layout
  829. \end_inset
  830. \end_layout
  831. \begin_layout Standard
  832. After normalization, these two probe intensities are summarized in one of
  833. two ways, each with advantages and disadvantages.
  834. β
  835. \series bold
  836. \series default
  837. values, interpreted as fraction of DNA copies methylated, range from 0 to
  838. 1.
  839. β
  840. \series bold
  841. \series default
  842. values are conceptually easy to interpret, but the constrained range makes
  843. them unsuitable for linear modeling, and their error distributions are
  844. highly non-normal, which also frustrates linear modeling.
  845. M-values, interpreted as the log ratio of methylated to unmethylated copies,
  846. are computed by mapping the beta values from
  847. \begin_inset Formula $[0,1]$
  848. \end_inset
  849. onto
  850. \begin_inset Formula $(-\infty,+\infty)$
  851. \end_inset
  852. using a sigmoid curve (Figure
  853. \begin_inset CommandInset ref
  854. LatexCommand ref
  855. reference "fig:Sigmoid-beta-m-mapping"
  856. plural "false"
  857. caps "false"
  858. noprefix "false"
  859. \end_inset
  860. ).
  861. This transformation results in values with better statistical perperties:
  862. the unconstrained range is suitable for linear modeling, and the error
  863. distributions are more normal.
  864. Hence, most linear modeling and other statistical testing on methylation
  865. arrays is performed using M-values.
  866. \end_layout
  867. \begin_layout Standard
  868. However, the steep slope of the sigmoid transformation near 0 and 1 tends
  869. to over-exaggerate small differences in β values near those extremes, which
  870. in turn amplifies the error in those values, leading to a U-shaped trend
  871. in the mean-variance curve: extreme values have higher variances than values
  872. near the middle.
  873. This mean-variance dependency must be accounted for when fitting the linear
  874. model for differential methylation, or else the variance will be systematically
  875. overestimated for probes with moderate M-values and underestimated for
  876. probes with extreme M-values.
  877. \end_layout
  878. \begin_layout Subsubsection
  879. The voom method for RNA-seq data can model M-value heteroskedasticity
  880. \end_layout
  881. \begin_layout Standard
  882. RNA-seq read count data are also known to show heteroskedasticity, and the
  883. voom method was developed for modeling this heteroskedasticity by estimating
  884. the mean-variance trend in the data and using this trend to assign precision
  885. weights to each observation
  886. \begin_inset CommandInset citation
  887. LatexCommand cite
  888. key "Law2013"
  889. literal "false"
  890. \end_inset
  891. .
  892. While methylation array data are not derived from counts and have a very
  893. different mean-variance relationship from that of typical RNA-seq data,
  894. the voom method makes no specific assumptions on the shape of the mean-variance
  895. relationship - it only assumes that the relationship is smooth enough to
  896. model using a lowess curve.
  897. Hence, the method is sufficiently general to model the mean-variance relationsh
  898. ip in methylation array data.
  899. However, the standard implementation of voom assumes that the input is
  900. given in raw read counts, and it must be adapted to run on methylation
  901. M-values.
  902. \end_layout
  903. \begin_layout Standard
  904. \begin_inset Flex TODO Note (inline)
  905. status open
  906. \begin_layout Plain Layout
  907. Put code on Github and reference it
  908. \end_layout
  909. \end_inset
  910. \end_layout
  911. \begin_layout Section
  912. Methods
  913. \end_layout
  914. \begin_layout Subsection
  915. fRMA
  916. \end_layout
  917. \begin_layout Itemize
  918. Expression array normalization for detecting acute rejection
  919. \end_layout
  920. \begin_layout Itemize
  921. Use frozen RMA, a single-channel variant of RMA
  922. \end_layout
  923. \begin_layout Itemize
  924. Generate custom fRMA normalization vectors for each tissue (biopsy, blood)
  925. \end_layout
  926. \begin_layout Subsubsection
  927. Methylation arrays
  928. \end_layout
  929. \begin_layout Itemize
  930. Methylation arrays for differential methylation in rejection vs.
  931. healthy transplant
  932. \end_layout
  933. \begin_layout Itemize
  934. Adapt voom method originally designed for RNA-seq to model mean-variance
  935. dependence
  936. \end_layout
  937. \begin_layout Itemize
  938. Use sample precision weighting, duplicateCorrelation, and sva to adjust
  939. for other confounding factors
  940. \end_layout
  941. \begin_layout Section
  942. Results
  943. \end_layout
  944. \begin_layout Standard
  945. \begin_inset Flex TODO Note (inline)
  946. status open
  947. \begin_layout Plain Layout
  948. Improve subsection titles in this section
  949. \end_layout
  950. \end_inset
  951. \end_layout
  952. \begin_layout Subsection
  953. fRMA eliminates unwanted dependence of classifier training on normalization
  954. strategy caused by RMA
  955. \end_layout
  956. \begin_layout Subsubsection
  957. Separate normalization with RMA introduces unwanted biases in classification
  958. \end_layout
  959. \begin_layout Standard
  960. \begin_inset Float figure
  961. wide false
  962. sideways false
  963. status collapsed
  964. \begin_layout Plain Layout
  965. \begin_inset Graphics
  966. filename graphics/PAM/predplot.pdf
  967. \end_inset
  968. \end_layout
  969. \begin_layout Plain Layout
  970. \begin_inset Caption Standard
  971. \begin_layout Plain Layout
  972. \begin_inset CommandInset label
  973. LatexCommand label
  974. name "fig:Classifier-probabilities-RMA"
  975. \end_inset
  976. \series bold
  977. Classifier probabilities on validation samples when normalized with RMA
  978. together vs.
  979. separately.
  980. \end_layout
  981. \end_inset
  982. \end_layout
  983. \end_inset
  984. \end_layout
  985. \begin_layout Standard
  986. The initial data set for testing fRMA consisted of 157 hgu133plus2 arrays,
  987. split into a training set (23 TX, 35 AR, 21 ADNR) and a validation set
  988. (23 TX, 34 AR, 21 ADNR), along with an external validation set gathered
  989. from public GEO data (37 TX, 38 AR, no ADNR), all on standard hgu133plus2
  990. Affy arrays
  991. \begin_inset CommandInset citation
  992. LatexCommand cite
  993. key "Kurian2014"
  994. literal "true"
  995. \end_inset
  996. .
  997. \begin_inset Flex TODO Note (inline)
  998. status open
  999. \begin_layout Plain Layout
  1000. Find out if PAX or BX
  1001. \end_layout
  1002. \end_inset
  1003. To demonstrate the problem, we considered the problem of training a classifier
  1004. to distinguish TX from AR using the TX and AR samples from the training
  1005. set and validation set as training data, evaluating performance on the
  1006. external validation set.
  1007. First, training and evaluation were performed after normalizing all array
  1008. samples together as a single set using RMA, and second, the internal samples
  1009. were normalized separately from the external samples and the training and
  1010. evaluation were repeated.
  1011. For each sample in the validation set, the classifier probabilities from
  1012. both classifiers were plotted against each other (Fig.
  1013. \begin_inset CommandInset ref
  1014. LatexCommand ref
  1015. reference "fig:Classifier-probabilities-RMA"
  1016. plural "false"
  1017. caps "false"
  1018. noprefix "false"
  1019. \end_inset
  1020. ).
  1021. As expected, separate normalization biases the classifier probabilities,
  1022. resulting in several misclassifications.
  1023. In this case, the bias from separate normalization causes the classifier
  1024. to assign a lower probability of AR to every sample.
  1025. Because it is not feasible to normalize all samples together in a clinical
  1026. context, this shows that an alternative to RMA is required.
  1027. \end_layout
  1028. \begin_layout Subsubsection
  1029. fRMA achieves equal classification performance while eliminating dependence
  1030. on normalization strategy
  1031. \end_layout
  1032. \begin_layout Standard
  1033. \begin_inset Float figure
  1034. wide false
  1035. sideways false
  1036. status open
  1037. \begin_layout Plain Layout
  1038. \begin_inset Graphics
  1039. filename graphics/PAM/external-roc-frma.pdf
  1040. \end_inset
  1041. \end_layout
  1042. \begin_layout Plain Layout
  1043. \begin_inset Caption Standard
  1044. \begin_layout Plain Layout
  1045. \begin_inset CommandInset label
  1046. LatexCommand label
  1047. name "fig:ROC-curve-PAM"
  1048. \end_inset
  1049. ROC curve for PAM on external validation data, normalizing with RMA and
  1050. fRMA
  1051. \end_layout
  1052. \end_inset
  1053. \end_layout
  1054. \end_inset
  1055. \end_layout
  1056. \begin_layout Itemize
  1057. fRMA eliminates this issue by normalizing each sample independently to the
  1058. same quantile distribution and summarizing probes using the same weights.
  1059. \end_layout
  1060. \begin_layout Itemize
  1061. Classifier performance on validation set is identical for
  1062. \begin_inset Quotes eld
  1063. \end_inset
  1064. RMA together
  1065. \begin_inset Quotes erd
  1066. \end_inset
  1067. and fRMA, so switching to clinically applicable normalization does not
  1068. sacrifice accuracy
  1069. \end_layout
  1070. \begin_layout Standard
  1071. \begin_inset Flex TODO Note (inline)
  1072. status open
  1073. \begin_layout Plain Layout
  1074. Check the published paper for any other possibly relevant figures to include
  1075. here.
  1076. \end_layout
  1077. \end_inset
  1078. \end_layout
  1079. \begin_layout Subsection
  1080. fRMA with custom-generated vectors
  1081. \end_layout
  1082. \begin_layout Itemize
  1083. Non-standard platform hthgu133pluspm - no pre-built fRMA vectors available,
  1084. so custom vectors must be learned from in-house data
  1085. \end_layout
  1086. \begin_layout Standard
  1087. \begin_inset Float figure
  1088. wide false
  1089. sideways false
  1090. status open
  1091. \begin_layout Plain Layout
  1092. \begin_inset Graphics
  1093. filename graphics/frma-pax-bx/batchsize_batches.pdf
  1094. \end_inset
  1095. \end_layout
  1096. \begin_layout Plain Layout
  1097. \begin_inset Caption Standard
  1098. \begin_layout Plain Layout
  1099. \begin_inset CommandInset label
  1100. LatexCommand label
  1101. name "fig:batch-size-batches"
  1102. \end_inset
  1103. Effect of batch size selection on number of batches included in fRMA probe
  1104. weight learning
  1105. \end_layout
  1106. \end_inset
  1107. \end_layout
  1108. \end_inset
  1109. \end_layout
  1110. \begin_layout Standard
  1111. \begin_inset Float figure
  1112. wide false
  1113. sideways false
  1114. status open
  1115. \begin_layout Plain Layout
  1116. \begin_inset Graphics
  1117. filename graphics/frma-pax-bx/batchsize_samples.pdf
  1118. \end_inset
  1119. \end_layout
  1120. \begin_layout Plain Layout
  1121. \begin_inset Caption Standard
  1122. \begin_layout Plain Layout
  1123. \begin_inset CommandInset label
  1124. LatexCommand label
  1125. name "fig:batch-size-samples"
  1126. \end_inset
  1127. Effect of batch size selection on number of samples included in fRMA probe
  1128. weight learning
  1129. \end_layout
  1130. \end_inset
  1131. \end_layout
  1132. \end_inset
  1133. \end_layout
  1134. \begin_layout Itemize
  1135. Large body of data available for training fRMA: 341 kidney graft biopsy
  1136. samples, 965 blood samples from graft recipients
  1137. \end_layout
  1138. \begin_deeper
  1139. \begin_layout Itemize
  1140. But not all samples can be used (see trade-off figure)
  1141. \end_layout
  1142. \begin_layout Itemize
  1143. Figure showing trade-off between more samples per group and fewer groups
  1144. with that may samples, to justify choice of number of samples per group
  1145. \end_layout
  1146. \begin_layout Itemize
  1147. pre-generated normalization vectors use ~850 samples
  1148. \begin_inset Flex TODO Note (Margin)
  1149. status collapsed
  1150. \begin_layout Plain Layout
  1151. Look up the exact numbers
  1152. \end_layout
  1153. \end_inset
  1154. \begin_inset CommandInset citation
  1155. LatexCommand cite
  1156. key "McCall2010"
  1157. literal "false"
  1158. \end_inset
  1159. , but are designed to be general across all tissues.
  1160. The samples we have are suitable for tissue-specific normalization vectors.
  1161. \end_layout
  1162. \end_deeper
  1163. \begin_layout Itemize
  1164. Figure: MA plot, RMA vs fRMA, to show that the normalization is appreciably
  1165. and non-linearly different
  1166. \end_layout
  1167. \begin_layout Itemize
  1168. Figure MA plot, fRMA vs fRMA with different randomly-chosen sample subsets
  1169. to show consistency
  1170. \end_layout
  1171. \begin_layout Itemize
  1172. custom fRMA normalization improved cross-validated classifier performance
  1173. \end_layout
  1174. \begin_layout Standard
  1175. \begin_inset Flex TODO Note (inline)
  1176. status open
  1177. \begin_layout Plain Layout
  1178. Get a figure from Tom showing classifier performance improvement (compared
  1179. to all-sample RMA, I guess?), if possible
  1180. \end_layout
  1181. \end_inset
  1182. \end_layout
  1183. \begin_layout Subsection
  1184. Adapting voom to methylation array data improves model fit
  1185. \end_layout
  1186. \begin_layout Itemize
  1187. voom, precision weights, and sva improved model fit
  1188. \end_layout
  1189. \begin_deeper
  1190. \begin_layout Itemize
  1191. Also increased sensitivity for detecting differential methylation
  1192. \end_layout
  1193. \end_deeper
  1194. \begin_layout Itemize
  1195. Figure showing (a) heteroskedasticy without voom, (b) voom-modeled mean-variance
  1196. trend, and (c) homoskedastic mean-variance trend after running voom
  1197. \end_layout
  1198. \begin_layout Itemize
  1199. Figure showing sample weights and their relations to
  1200. \end_layout
  1201. \begin_layout Itemize
  1202. Figure showing MDS plot with and without SVA correction
  1203. \end_layout
  1204. \begin_layout Itemize
  1205. Figure and/or table showing improved p-value historgrams/number of significant
  1206. genes (might need to get this from Padma)
  1207. \end_layout
  1208. \begin_layout Section
  1209. Discussion
  1210. \end_layout
  1211. \begin_layout Itemize
  1212. fRMA enables classifying new samples without re-normalizing the entire data
  1213. set
  1214. \end_layout
  1215. \begin_deeper
  1216. \begin_layout Itemize
  1217. Critical for translating a classifier into clinical practice
  1218. \end_layout
  1219. \end_deeper
  1220. \begin_layout Itemize
  1221. Methods like voom designed for RNA-seq can also help with array analysis
  1222. \end_layout
  1223. \begin_layout Itemize
  1224. Extracting and modeling confounders common to many features improves model
  1225. correspondence to known biology
  1226. \end_layout
  1227. \begin_layout Chapter
  1228. Globin-blocking for more effective blood RNA-seq analysis in primate animal
  1229. model
  1230. \end_layout
  1231. \begin_layout Standard
  1232. \begin_inset Flex TODO Note (inline)
  1233. status open
  1234. \begin_layout Plain Layout
  1235. Choose between above and the paper title: Optimizing yield of deep RNA sequencin
  1236. g for gene expression profiling by globin reduction of peripheral blood
  1237. samples from cynomolgus monkeys (Macaca fascicularis).
  1238. \end_layout
  1239. \end_inset
  1240. \end_layout
  1241. \begin_layout Standard
  1242. \begin_inset Flex TODO Note (inline)
  1243. status open
  1244. \begin_layout Plain Layout
  1245. Chapter author list: https://tex.stackexchange.com/questions/156862/displaying-aut
  1246. hor-for-each-chapter-in-book Every chapter gets an author list, which may
  1247. or may not be part of a citation to a published/preprinted paper.
  1248. \end_layout
  1249. \end_inset
  1250. \end_layout
  1251. \begin_layout Standard
  1252. \begin_inset Flex TODO Note (inline)
  1253. status open
  1254. \begin_layout Plain Layout
  1255. Preprint then cite the paper
  1256. \end_layout
  1257. \end_inset
  1258. \end_layout
  1259. \begin_layout Section*
  1260. Abstract
  1261. \end_layout
  1262. \begin_layout Paragraph
  1263. Background
  1264. \end_layout
  1265. \begin_layout Standard
  1266. Primate blood contains high concentrations of globin messenger RNA.
  1267. Globin reduction is a standard technique used to improve the expression
  1268. results obtained by DNA microarrays on RNA from blood samples.
  1269. However, with whole transcriptome RNA-sequencing (RNA-seq) quickly replacing
  1270. microarrays for many applications, the impact of globin reduction for RNA-seq
  1271. has not been previously studied.
  1272. Moreover, no off-the-shelf kits are available for globin reduction in nonhuman
  1273. primates.
  1274. \end_layout
  1275. \begin_layout Paragraph
  1276. Results
  1277. \end_layout
  1278. \begin_layout Standard
  1279. Here we report a protocol for RNA-seq in primate blood samples that uses
  1280. complimentary oligonucleotides to block reverse transcription of the alpha
  1281. and beta globin genes.
  1282. In test samples from cynomolgus monkeys (Macaca fascicularis), this globin
  1283. blocking protocol approximately doubles the yield of informative (non-globin)
  1284. reads by greatly reducing the fraction of globin reads, while also improving
  1285. the consistency in sequencing depth between samples.
  1286. The increased yield enables detection of about 2000 more genes, significantly
  1287. increases the correlation in measured gene expression levels between samples,
  1288. and increases the sensitivity of differential gene expression tests.
  1289. \end_layout
  1290. \begin_layout Paragraph
  1291. Conclusions
  1292. \end_layout
  1293. \begin_layout Standard
  1294. These results show that globin blocking significantly improves the cost-effectiv
  1295. eness of mRNA sequencing in primate blood samples by doubling the yield
  1296. of useful reads, allowing detection of more genes, and improving the precision
  1297. of gene expression measurements.
  1298. Based on these results, a globin reducing or blocking protocol is recommended
  1299. for all RNA-seq studies of primate blood samples.
  1300. \end_layout
  1301. \begin_layout Section
  1302. Approach
  1303. \end_layout
  1304. \begin_layout Standard
  1305. \begin_inset Note Note
  1306. status open
  1307. \begin_layout Plain Layout
  1308. Consider putting some of this in the Intro chapter
  1309. \end_layout
  1310. \begin_layout Itemize
  1311. Cynomolgus monkeys as a model organism
  1312. \end_layout
  1313. \begin_deeper
  1314. \begin_layout Itemize
  1315. Highly related to humans
  1316. \end_layout
  1317. \begin_layout Itemize
  1318. Small size and short life cycle - good research animal
  1319. \end_layout
  1320. \begin_layout Itemize
  1321. Genomics resources still in development
  1322. \end_layout
  1323. \end_deeper
  1324. \begin_layout Itemize
  1325. Inadequacy of existing blood RNA-seq protocols
  1326. \end_layout
  1327. \begin_deeper
  1328. \begin_layout Itemize
  1329. Existing protocols use a separate globin pulldown step, slowing down processing
  1330. \end_layout
  1331. \end_deeper
  1332. \end_inset
  1333. \end_layout
  1334. \begin_layout Standard
  1335. Increasingly, researchers are turning to high-throughput mRNA sequencing
  1336. technologies (RNA-seq) in preference to expression microarrays for analysis
  1337. of gene expression
  1338. \begin_inset CommandInset citation
  1339. LatexCommand cite
  1340. key "Mutz2012"
  1341. literal "false"
  1342. \end_inset
  1343. .
  1344. The advantages are even greater for study of model organisms with no well-estab
  1345. lished array platforms available, such as the cynomolgus monkey (Macaca
  1346. fascicularis).
  1347. High fractions of globin mRNA are naturally present in mammalian peripheral
  1348. blood samples (up to 70% of total mRNA) and these are known to interfere
  1349. with the results of array-based expression profiling
  1350. \begin_inset CommandInset citation
  1351. LatexCommand cite
  1352. key "Winn2010"
  1353. literal "false"
  1354. \end_inset
  1355. .
  1356. The importance of globin reduction for RNA-seq of blood has only been evaluated
  1357. for a deepSAGE protocol on human samples
  1358. \begin_inset CommandInset citation
  1359. LatexCommand cite
  1360. key "Mastrokolias2012"
  1361. literal "false"
  1362. \end_inset
  1363. .
  1364. In the present report, we evaluated globin reduction using custom blocking
  1365. oligonucleotides for deep RNA-seq of peripheral blood samples from a nonhuman
  1366. primate, cynomolgus monkey, using the Illumina technology platform.
  1367. We demonstrate that globin reduction significantly improves the cost-effectiven
  1368. ess of RNA-seq in blood samples.
  1369. Thus, our protocol offers a significant advantage to any investigator planning
  1370. to use RNA-seq for gene expression profiling of nonhuman primate blood
  1371. samples.
  1372. Our method can be generally applied to any species by designing complementary
  1373. oligonucleotide blocking probes to the globin gene sequences of that species.
  1374. Indeed, any highly expressed but biologically uninformative transcripts
  1375. can also be blocked to further increase sequencing efficiency and value
  1376. \begin_inset CommandInset citation
  1377. LatexCommand cite
  1378. key "Arnaud2016"
  1379. literal "false"
  1380. \end_inset
  1381. .
  1382. \end_layout
  1383. \begin_layout Section
  1384. Methods
  1385. \end_layout
  1386. \begin_layout Subsection*
  1387. Sample collection
  1388. \end_layout
  1389. \begin_layout Standard
  1390. All research reported here was done under IACUC-approved protocols at the
  1391. University of Miami and complied with all applicable federal and state
  1392. regulations and ethical principles for nonhuman primate research.
  1393. Blood draws occurred between 16 April 2012 and 18 June 2015.
  1394. The experimental system involved intrahepatic pancreatic islet transplantation
  1395. into Cynomolgus monkeys with induced diabetes mellitus with or without
  1396. concomitant infusion of mesenchymal stem cells.
  1397. Blood was collected at serial time points before and after transplantation
  1398. into PAXgene Blood RNA tubes (PreAnalytiX/Qiagen, Valencia, CA) at the
  1399. precise volume:volume ratio of 2.5 ml whole blood into 6.9 ml of PAX gene
  1400. additive.
  1401. \end_layout
  1402. \begin_layout Subsection*
  1403. Globin Blocking
  1404. \end_layout
  1405. \begin_layout Standard
  1406. Four oligonucleotides were designed to hybridize to the 3’ end of the transcript
  1407. s for Cynomolgus HBA1, HBA2 and HBB, with two hybridization sites for HBB
  1408. and 2 sites for HBA (the chosen sites were identical in both HBA genes).
  1409. All oligos were purchased from Sigma and were entirely composed of 2’O-Me
  1410. bases with a C3 spacer positioned at the 3’ ends to prevent any polymerase
  1411. mediated primer extension.
  1412. \end_layout
  1413. \begin_layout Quote
  1414. HBA1/2 site 1: GCCCACUCAGACUUUAUUCAAAG-C3spacer
  1415. \end_layout
  1416. \begin_layout Quote
  1417. HBA1/2 site 2: GGUGCAAGGAGGGGAGGAG-C3spacer
  1418. \end_layout
  1419. \begin_layout Quote
  1420. HBB site 1: AAUGAAAAUAAAUGUUUUUUAUUAG-C3spacer
  1421. \end_layout
  1422. \begin_layout Quote
  1423. HBB site 2: CUCAAGGCCCUUCAUAAUAUCCC-C3spacer
  1424. \end_layout
  1425. \begin_layout Subsection*
  1426. RNA-seq Library Preparation
  1427. \end_layout
  1428. \begin_layout Standard
  1429. Sequencing libraries were prepared with 200ng total RNA from each sample.
  1430. Polyadenylated mRNA was selected from 200 ng aliquots of cynomologus blood-deri
  1431. ved total RNA using Ambion Dynabeads Oligo(dT)25 beads (Invitrogen) following
  1432. manufacturer’s recommended protocol.
  1433. PolyA selected RNA was then combined with 8 pmol of HBA1/2 (site 1), 8
  1434. pmol of HBA1/2 (site 2), 12 pmol of HBB (site 1) and 12 pmol of HBB (site
  1435. 2) oligonucleotides.
  1436. In addition, 20 pmol of RT primer containing a portion of the Illumina
  1437. adapter sequence (B-oligo-dTV: GAGTTCCTTGGCACCCGAGAATTCCATTTTTTTTTTTTTTTTTTTV)
  1438. and 4 µL of 5X First Strand buffer (250 mM Tris-HCl pH 8.3, 375 mM KCl,
  1439. 15mM MgCl2) were added in a total volume of 15 µL.
  1440. The RNA was fragmented by heating this cocktail for 3 minutes at 95°C and
  1441. then placed on ice.
  1442. This was followed by the addition of 2 µL 0.1 M DTT, 1 µL RNaseOUT, 1 µL
  1443. 10mM dNTPs 10% biotin-16 aminoallyl-2’- dUTP and 10% biotin-16 aminoallyl-2’-
  1444. dCTP (TriLink Biotech, San Diego, CA), 1 µL Superscript II (200U/ µL, Thermo-Fi
  1445. sher).
  1446. A second “unblocked” library was prepared in the same way for each sample
  1447. but replacing the blocking oligos with an equivalent volume of water.
  1448. The reaction was carried out at 25°C for 15 minutes and 42°C for 40 minutes,
  1449. followed by incubation at 75°C for 10 minutes to inactivate the reverse
  1450. transcriptase.
  1451. \end_layout
  1452. \begin_layout Standard
  1453. The cDNA/RNA hybrid molecules were purified using 1.8X Ampure XP beads (Agencourt
  1454. ) following supplier’s recommended protocol.
  1455. The cDNA/RNA hybrid was eluted in 25 µL of 10 mM Tris-HCl pH 8.0, and then
  1456. bound to 25 µL of M280 Magnetic Streptavidin beads washed per recommended
  1457. protocol (Thermo-Fisher).
  1458. After 30 minutes of binding, beads were washed one time in 100 µL 0.1N NaOH
  1459. to denature and remove the bound RNA, followed by two 100 µL washes with
  1460. 1X TE buffer.
  1461. \end_layout
  1462. \begin_layout Standard
  1463. Subsequent attachment of the 5-prime Illumina A adapter was performed by
  1464. on-bead random primer extension of the following sequence (A-N8 primer:
  1465. TTCAGAGTTCTACAGTCCGACGATCNNNNNNNN).
  1466. Briefly, beads were resuspended in a 20 µL reaction containing 5 µM A-N8
  1467. primer, 40mM Tris-HCl pH 7.5, 20mM MgCl2, 50mM NaCl, 0.325U/µL Sequenase
  1468. 2.0 (Affymetrix, Santa Clara, CA), 0.0025U/µL inorganic pyrophosphatase (Affymetr
  1469. ix) and 300 µM each dNTP.
  1470. Reaction was incubated at 22°C for 30 minutes, then beads were washed 2
  1471. times with 1X TE buffer (200µL).
  1472. \end_layout
  1473. \begin_layout Standard
  1474. The magnetic streptavidin beads were resuspended in 34 µL nuclease-free
  1475. water and added directly to a PCR tube.
  1476. The two Illumina protocol-specified PCR primers were added at 0.53 µM (Illumina
  1477. TruSeq Universal Primer 1 and Illumina TruSeq barcoded PCR primer 2), along
  1478. with 40 µL 2X KAPA HiFi Hotstart ReadyMix (KAPA, Willmington MA) and thermocycl
  1479. ed as follows: starting with 98°C (2 min-hold); 15 cycles of 98°C, 20sec;
  1480. 60°C, 30sec; 72°C, 30sec; and finished with a 72°C (2 min-hold).
  1481. \end_layout
  1482. \begin_layout Standard
  1483. PCR products were purified with 1X Ampure Beads following manufacturer’s
  1484. recommended protocol.
  1485. Libraries were then analyzed using the Agilent TapeStation and quantitation
  1486. of desired size range was performed by “smear analysis”.
  1487. Samples were pooled in equimolar batches of 16 samples.
  1488. Pooled libraries were size selected on 2% agarose gels (E-Gel EX Agarose
  1489. Gels; Thermo-Fisher).
  1490. Products were cut between 250 and 350 bp (corresponding to insert sizes
  1491. of 130 to 230 bps).
  1492. Finished library pools were then sequenced on the Illumina NextSeq500 instrumen
  1493. t with 75 base read lengths.
  1494. \end_layout
  1495. \begin_layout Subsection*
  1496. Read alignment and counting
  1497. \end_layout
  1498. \begin_layout Standard
  1499. Reads were aligned to the cynomolgus genome using STAR
  1500. \begin_inset CommandInset citation
  1501. LatexCommand cite
  1502. key "Dobin2013,Wilson2013"
  1503. literal "false"
  1504. \end_inset
  1505. .
  1506. Counts of uniquely mapped reads were obtained for every gene in each sample
  1507. with the “featureCounts” function from the Rsubread package, using each
  1508. of the three possibilities for the “strandSpecific” option: sense, antisense,
  1509. and unstranded
  1510. \begin_inset CommandInset citation
  1511. LatexCommand cite
  1512. key "Liao2014"
  1513. literal "false"
  1514. \end_inset
  1515. .
  1516. A few artifacts in the cynomolgus genome annotation complicated read counting.
  1517. First, no ortholog is annotated for alpha globin in the cynomolgus genome,
  1518. presumably because the human genome has two alpha globin genes with nearly
  1519. identical sequences, making the orthology relationship ambiguous.
  1520. However, two loci in the cynomolgus genome are as “hemoglobin subunit alpha-lik
  1521. e” (LOC102136192 and LOC102136846).
  1522. LOC102136192 is annotated as a pseudogene while LOC102136846 is annotated
  1523. as protein-coding.
  1524. Our globin reduction protocol was designed to include blocking of these
  1525. two genes.
  1526. Indeed, these two genes have almost the same read counts in each library
  1527. as the properly-annotated HBB gene and much larger counts than any other
  1528. gene in the unblocked libraries, giving confidence that reads derived from
  1529. the real alpha globin are mapping to both genes.
  1530. Thus, reads from both of these loci were counted as alpha globin reads
  1531. in all further analyses.
  1532. The second artifact is a small, uncharacterized non-coding RNA gene (LOC1021365
  1533. 91), which overlaps the HBA-like gene (LOC102136192) on the opposite strand.
  1534. If counting is not performed in stranded mode (or if a non-strand-specific
  1535. sequencing protocol is used), many reads mapping to the globin gene will
  1536. be discarded as ambiguous due to their overlap with this ncRNA gene, resulting
  1537. in significant undercounting of globin reads.
  1538. Therefore, stranded sense counts were used for all further analysis in
  1539. the present study to insure that we accurately accounted for globin transcript
  1540. reduction.
  1541. However, we note that stranded reads are not necessary for RNA-seq using
  1542. our protocol in standard practice.
  1543. \end_layout
  1544. \begin_layout Subsection*
  1545. Normalization and Exploratory Data Analysis
  1546. \end_layout
  1547. \begin_layout Standard
  1548. Libraries were normalized by computing scaling factors using the edgeR package’s
  1549. Trimmed Mean of M-values method
  1550. \begin_inset CommandInset citation
  1551. LatexCommand cite
  1552. key "Robinson2010"
  1553. literal "false"
  1554. \end_inset
  1555. .
  1556. Log2 counts per million values (logCPM) were calculated using the cpm function
  1557. in edgeR for individual samples and aveLogCPM function for averages across
  1558. groups of samples, using those functions’ default prior count values to
  1559. avoid taking the logarithm of 0.
  1560. Genes were considered “present” if their average normalized logCPM values
  1561. across all libraries were at least -1.
  1562. Normalizing for gene length was unnecessary because the sequencing protocol
  1563. is 3’-biased and hence the expected read count for each gene is related
  1564. to the transcript’s copy number but not its length.
  1565. \end_layout
  1566. \begin_layout Standard
  1567. In order to assess the effect of blocking on reproducibility, Pearson and
  1568. Spearman correlation coefficients were computed between the logCPM values
  1569. for every pair of libraries within the globin-blocked (GB) and unblocked
  1570. (non-GB) groups, and edgeR's “estimateDisp” function was used to compute
  1571. negative binomial dispersions separately for the two groups
  1572. \begin_inset CommandInset citation
  1573. LatexCommand cite
  1574. key "Chen2014"
  1575. literal "false"
  1576. \end_inset
  1577. .
  1578. \end_layout
  1579. \begin_layout Subsection*
  1580. Differential Expression Analysis
  1581. \end_layout
  1582. \begin_layout Standard
  1583. All tests for differential gene expression were performed using edgeR, by
  1584. first fitting a negative binomial generalized linear model to the counts
  1585. and normalization factors and then performing a quasi-likelihood F-test
  1586. with robust estimation of outlier gene dispersions
  1587. \begin_inset CommandInset citation
  1588. LatexCommand cite
  1589. key "Lund2012,Phipson2016"
  1590. literal "false"
  1591. \end_inset
  1592. .
  1593. To investigate the effects of globin blocking on each gene, an additive
  1594. model was fit to the full data with coefficients for globin blocking and
  1595. SampleID.
  1596. To test the effect of globin blocking on detection of differentially expressed
  1597. genes, the GB samples and non-GB samples were each analyzed independently
  1598. as follows: for each animal with both a pre-transplant and a post-transplant
  1599. time point in the data set, the pre-transplant sample and the earliest
  1600. post-transplant sample were selected, and all others were excluded, yielding
  1601. a pre-/post-transplant pair of samples for each animal (N=7 animals with
  1602. paired samples).
  1603. These samples were analyzed for pre-transplant vs.
  1604. post-transplant differential gene expression while controlling for inter-animal
  1605. variation using an additive model with coefficients for transplant and
  1606. animal ID.
  1607. In all analyses, p-values were adjusted using the Benjamini-Hochberg procedure
  1608. for FDR correction
  1609. \begin_inset CommandInset citation
  1610. LatexCommand cite
  1611. key "Benjamini1995"
  1612. literal "false"
  1613. \end_inset
  1614. .
  1615. \end_layout
  1616. \begin_layout Standard
  1617. \begin_inset Note Note
  1618. status open
  1619. \begin_layout Itemize
  1620. New blood RNA-seq protocol to block reverse transcription of globin genes
  1621. \end_layout
  1622. \begin_layout Itemize
  1623. Blood RNA-seq time course after transplants with/without MSC infusion
  1624. \end_layout
  1625. \end_inset
  1626. \end_layout
  1627. \begin_layout Section
  1628. Results
  1629. \end_layout
  1630. \begin_layout Subsection*
  1631. Globin blocking yields a larger and more consistent fraction of useful reads
  1632. \end_layout
  1633. \begin_layout Standard
  1634. The objective of the present study was to validate a new protocol for deep
  1635. RNA-seq of whole blood drawn into PaxGene tubes from cynomolgus monkeys
  1636. undergoing islet transplantation, with particular focus on minimizing the
  1637. loss of useful sequencing space to uninformative globin reads.
  1638. The details of the analysis with respect to transplant outcomes and the
  1639. impact of mesenchymal stem cell treatment will be reported in a separate
  1640. manuscript (in preparation).
  1641. To focus on the efficacy of our globin blocking protocol, 37 blood samples,
  1642. 16 from pre-transplant and 21 from post-transplant time points, were each
  1643. prepped once with and once without globin blocking oligos, and were then
  1644. sequenced on an Illumina NextSeq500 instrument.
  1645. The number of reads aligning to each gene in the cynomolgus genome was
  1646. counted.
  1647. Table 1 summarizes the distribution of read fractions among the GB and
  1648. non-GB libraries.
  1649. In the libraries with no globin blocking, globin reads made up an average
  1650. of 44.6% of total input reads, while reads assigned to all other genes made
  1651. up an average of 26.3%.
  1652. The remaining reads either aligned to intergenic regions (that include
  1653. long non-coding RNAs) or did not align with any annotated transcripts in
  1654. the current build of the cynomolgus genome.
  1655. In the GB libraries, globin reads made up only 3.48% and reads assigned
  1656. to all other genes increased to 50.4%.
  1657. Thus, globin blocking resulted in a 92.2% reduction in globin reads and
  1658. a 91.6% increase in yield of useful non-globin reads.
  1659. \end_layout
  1660. \begin_layout Standard
  1661. This reduction is not quite as efficient as the previous analysis showed
  1662. for human samples by DeepSAGE (<0.4% globin reads after globin reduction)
  1663. \begin_inset CommandInset citation
  1664. LatexCommand cite
  1665. key "Mastrokolias2012"
  1666. literal "false"
  1667. \end_inset
  1668. .
  1669. Nonetheless, this degree of globin reduction is sufficient to nearly double
  1670. the yield of useful reads.
  1671. Thus, globin blocking cuts the required sequencing effort (and costs) to
  1672. achieve a target coverage depth by almost 50%.
  1673. Consistent with this near doubling of yield, the average difference in
  1674. un-normalized logCPM across all genes between the GB libraries and non-GB
  1675. libraries is approximately 1 (mean = 1.01, median = 1.08), an overall 2-fold
  1676. increase.
  1677. Un-normalized values are used here because the TMM normalization correctly
  1678. identifies this 2-fold difference as biologically irrelevant and removes
  1679. it.
  1680. \end_layout
  1681. \begin_layout Standard
  1682. \begin_inset Float figure
  1683. wide false
  1684. sideways false
  1685. status open
  1686. \begin_layout Plain Layout
  1687. \align center
  1688. \begin_inset Graphics
  1689. filename graphics/Globin Paper/figure1 - globin-fractions.pdf
  1690. \end_inset
  1691. \end_layout
  1692. \begin_layout Plain Layout
  1693. \begin_inset Caption Standard
  1694. \begin_layout Plain Layout
  1695. \series bold
  1696. \begin_inset Argument 1
  1697. status collapsed
  1698. \begin_layout Plain Layout
  1699. Fraction of genic reads in each sample aligned to non-globin genes, with
  1700. and without globin blocking (GB).
  1701. \end_layout
  1702. \end_inset
  1703. \begin_inset CommandInset label
  1704. LatexCommand label
  1705. name "fig:Fraction-of-genic-reads"
  1706. \end_inset
  1707. Fraction of genic reads in each sample aligned to non-globin genes, with
  1708. and without globin blocking (GB).
  1709. \series default
  1710. All reads in each sequencing library were aligned to the cyno genome, and
  1711. the number of reads uniquely aligning to each gene was counted.
  1712. For each sample, counts were summed separately for all globin genes and
  1713. for the remainder of the genes (non-globin genes), and the fraction of
  1714. genic reads aligned to non-globin genes was computed.
  1715. Each point represents an individual sample.
  1716. Gray + signs indicate the means for globin-blocked libraries and unblocked
  1717. libraries.
  1718. The overall distribution for each group is represented as a notched box
  1719. plots.
  1720. Points are randomly spread vertically to avoid excessive overlapping.
  1721. \end_layout
  1722. \end_inset
  1723. \end_layout
  1724. \begin_layout Plain Layout
  1725. \end_layout
  1726. \end_inset
  1727. \end_layout
  1728. \begin_layout Standard
  1729. \begin_inset Float table
  1730. placement p
  1731. wide false
  1732. sideways true
  1733. status open
  1734. \begin_layout Plain Layout
  1735. \align center
  1736. \begin_inset Tabular
  1737. <lyxtabular version="3" rows="4" columns="7">
  1738. <features tabularvalignment="middle">
  1739. <column alignment="center" valignment="top">
  1740. <column alignment="center" valignment="top">
  1741. <column alignment="center" valignment="top">
  1742. <column alignment="center" valignment="top">
  1743. <column alignment="center" valignment="top">
  1744. <column alignment="center" valignment="top">
  1745. <column alignment="center" valignment="top">
  1746. <row>
  1747. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1748. \begin_inset Text
  1749. \begin_layout Plain Layout
  1750. \end_layout
  1751. \end_inset
  1752. </cell>
  1753. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1754. \begin_inset Text
  1755. \begin_layout Plain Layout
  1756. \family roman
  1757. \series medium
  1758. \shape up
  1759. \size normal
  1760. \emph off
  1761. \bar no
  1762. \strikeout off
  1763. \xout off
  1764. \uuline off
  1765. \uwave off
  1766. \noun off
  1767. \color none
  1768. Percent of Total Reads
  1769. \end_layout
  1770. \end_inset
  1771. </cell>
  1772. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1773. \begin_inset Text
  1774. \begin_layout Plain Layout
  1775. \end_layout
  1776. \end_inset
  1777. </cell>
  1778. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1779. \begin_inset Text
  1780. \begin_layout Plain Layout
  1781. \end_layout
  1782. \end_inset
  1783. </cell>
  1784. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1785. \begin_inset Text
  1786. \begin_layout Plain Layout
  1787. \end_layout
  1788. \end_inset
  1789. </cell>
  1790. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  1791. \begin_inset Text
  1792. \begin_layout Plain Layout
  1793. \family roman
  1794. \series medium
  1795. \shape up
  1796. \size normal
  1797. \emph off
  1798. \bar no
  1799. \strikeout off
  1800. \xout off
  1801. \uuline off
  1802. \uwave off
  1803. \noun off
  1804. \color none
  1805. Percent of Genic Reads
  1806. \end_layout
  1807. \end_inset
  1808. </cell>
  1809. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  1810. \begin_inset Text
  1811. \begin_layout Plain Layout
  1812. \end_layout
  1813. \end_inset
  1814. </cell>
  1815. </row>
  1816. <row>
  1817. <cell alignment="center" valignment="top" bottomline="true" leftline="true" usebox="none">
  1818. \begin_inset Text
  1819. \begin_layout Plain Layout
  1820. GB
  1821. \end_layout
  1822. \end_inset
  1823. </cell>
  1824. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1825. \begin_inset Text
  1826. \begin_layout Plain Layout
  1827. \family roman
  1828. \series medium
  1829. \shape up
  1830. \size normal
  1831. \emph off
  1832. \bar no
  1833. \strikeout off
  1834. \xout off
  1835. \uuline off
  1836. \uwave off
  1837. \noun off
  1838. \color none
  1839. Non-globin Reads
  1840. \end_layout
  1841. \end_inset
  1842. </cell>
  1843. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1844. \begin_inset Text
  1845. \begin_layout Plain Layout
  1846. \family roman
  1847. \series medium
  1848. \shape up
  1849. \size normal
  1850. \emph off
  1851. \bar no
  1852. \strikeout off
  1853. \xout off
  1854. \uuline off
  1855. \uwave off
  1856. \noun off
  1857. \color none
  1858. Globin Reads
  1859. \end_layout
  1860. \end_inset
  1861. </cell>
  1862. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1863. \begin_inset Text
  1864. \begin_layout Plain Layout
  1865. \family roman
  1866. \series medium
  1867. \shape up
  1868. \size normal
  1869. \emph off
  1870. \bar no
  1871. \strikeout off
  1872. \xout off
  1873. \uuline off
  1874. \uwave off
  1875. \noun off
  1876. \color none
  1877. All Genic Reads
  1878. \end_layout
  1879. \end_inset
  1880. </cell>
  1881. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1882. \begin_inset Text
  1883. \begin_layout Plain Layout
  1884. \family roman
  1885. \series medium
  1886. \shape up
  1887. \size normal
  1888. \emph off
  1889. \bar no
  1890. \strikeout off
  1891. \xout off
  1892. \uuline off
  1893. \uwave off
  1894. \noun off
  1895. \color none
  1896. All Aligned Reads
  1897. \end_layout
  1898. \end_inset
  1899. </cell>
  1900. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1901. \begin_inset Text
  1902. \begin_layout Plain Layout
  1903. \family roman
  1904. \series medium
  1905. \shape up
  1906. \size normal
  1907. \emph off
  1908. \bar no
  1909. \strikeout off
  1910. \xout off
  1911. \uuline off
  1912. \uwave off
  1913. \noun off
  1914. \color none
  1915. Non-globin Reads
  1916. \end_layout
  1917. \end_inset
  1918. </cell>
  1919. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  1920. \begin_inset Text
  1921. \begin_layout Plain Layout
  1922. \family roman
  1923. \series medium
  1924. \shape up
  1925. \size normal
  1926. \emph off
  1927. \bar no
  1928. \strikeout off
  1929. \xout off
  1930. \uuline off
  1931. \uwave off
  1932. \noun off
  1933. \color none
  1934. Globin Reads
  1935. \end_layout
  1936. \end_inset
  1937. </cell>
  1938. </row>
  1939. <row>
  1940. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1941. \begin_inset Text
  1942. \begin_layout Plain Layout
  1943. \family roman
  1944. \series medium
  1945. \shape up
  1946. \size normal
  1947. \emph off
  1948. \bar no
  1949. \strikeout off
  1950. \xout off
  1951. \uuline off
  1952. \uwave off
  1953. \noun off
  1954. \color none
  1955. Yes
  1956. \end_layout
  1957. \end_inset
  1958. </cell>
  1959. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1960. \begin_inset Text
  1961. \begin_layout Plain Layout
  1962. \family roman
  1963. \series medium
  1964. \shape up
  1965. \size normal
  1966. \emph off
  1967. \bar no
  1968. \strikeout off
  1969. \xout off
  1970. \uuline off
  1971. \uwave off
  1972. \noun off
  1973. \color none
  1974. 50.4% ± 6.82
  1975. \end_layout
  1976. \end_inset
  1977. </cell>
  1978. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1979. \begin_inset Text
  1980. \begin_layout Plain Layout
  1981. \family roman
  1982. \series medium
  1983. \shape up
  1984. \size normal
  1985. \emph off
  1986. \bar no
  1987. \strikeout off
  1988. \xout off
  1989. \uuline off
  1990. \uwave off
  1991. \noun off
  1992. \color none
  1993. 3.48% ± 2.94
  1994. \end_layout
  1995. \end_inset
  1996. </cell>
  1997. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1998. \begin_inset Text
  1999. \begin_layout Plain Layout
  2000. \family roman
  2001. \series medium
  2002. \shape up
  2003. \size normal
  2004. \emph off
  2005. \bar no
  2006. \strikeout off
  2007. \xout off
  2008. \uuline off
  2009. \uwave off
  2010. \noun off
  2011. \color none
  2012. 53.9% ± 6.81
  2013. \end_layout
  2014. \end_inset
  2015. </cell>
  2016. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2017. \begin_inset Text
  2018. \begin_layout Plain Layout
  2019. \family roman
  2020. \series medium
  2021. \shape up
  2022. \size normal
  2023. \emph off
  2024. \bar no
  2025. \strikeout off
  2026. \xout off
  2027. \uuline off
  2028. \uwave off
  2029. \noun off
  2030. \color none
  2031. 89.7% ± 2.40
  2032. \end_layout
  2033. \end_inset
  2034. </cell>
  2035. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2036. \begin_inset Text
  2037. \begin_layout Plain Layout
  2038. \family roman
  2039. \series medium
  2040. \shape up
  2041. \size normal
  2042. \emph off
  2043. \bar no
  2044. \strikeout off
  2045. \xout off
  2046. \uuline off
  2047. \uwave off
  2048. \noun off
  2049. \color none
  2050. 93.5% ± 5.25
  2051. \end_layout
  2052. \end_inset
  2053. </cell>
  2054. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2055. \begin_inset Text
  2056. \begin_layout Plain Layout
  2057. \family roman
  2058. \series medium
  2059. \shape up
  2060. \size normal
  2061. \emph off
  2062. \bar no
  2063. \strikeout off
  2064. \xout off
  2065. \uuline off
  2066. \uwave off
  2067. \noun off
  2068. \color none
  2069. 6.49% ± 5.25
  2070. \end_layout
  2071. \end_inset
  2072. </cell>
  2073. </row>
  2074. <row>
  2075. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2076. \begin_inset Text
  2077. \begin_layout Plain Layout
  2078. \family roman
  2079. \series medium
  2080. \shape up
  2081. \size normal
  2082. \emph off
  2083. \bar no
  2084. \strikeout off
  2085. \xout off
  2086. \uuline off
  2087. \uwave off
  2088. \noun off
  2089. \color none
  2090. No
  2091. \end_layout
  2092. \end_inset
  2093. </cell>
  2094. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2095. \begin_inset Text
  2096. \begin_layout Plain Layout
  2097. \family roman
  2098. \series medium
  2099. \shape up
  2100. \size normal
  2101. \emph off
  2102. \bar no
  2103. \strikeout off
  2104. \xout off
  2105. \uuline off
  2106. \uwave off
  2107. \noun off
  2108. \color none
  2109. 26.3% ± 8.95
  2110. \end_layout
  2111. \end_inset
  2112. </cell>
  2113. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2114. \begin_inset Text
  2115. \begin_layout Plain Layout
  2116. \family roman
  2117. \series medium
  2118. \shape up
  2119. \size normal
  2120. \emph off
  2121. \bar no
  2122. \strikeout off
  2123. \xout off
  2124. \uuline off
  2125. \uwave off
  2126. \noun off
  2127. \color none
  2128. 44.6% ± 16.6
  2129. \end_layout
  2130. \end_inset
  2131. </cell>
  2132. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2133. \begin_inset Text
  2134. \begin_layout Plain Layout
  2135. \family roman
  2136. \series medium
  2137. \shape up
  2138. \size normal
  2139. \emph off
  2140. \bar no
  2141. \strikeout off
  2142. \xout off
  2143. \uuline off
  2144. \uwave off
  2145. \noun off
  2146. \color none
  2147. 70.1% ± 9.38
  2148. \end_layout
  2149. \end_inset
  2150. </cell>
  2151. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2152. \begin_inset Text
  2153. \begin_layout Plain Layout
  2154. \family roman
  2155. \series medium
  2156. \shape up
  2157. \size normal
  2158. \emph off
  2159. \bar no
  2160. \strikeout off
  2161. \xout off
  2162. \uuline off
  2163. \uwave off
  2164. \noun off
  2165. \color none
  2166. 90.7% ± 5.16
  2167. \end_layout
  2168. \end_inset
  2169. </cell>
  2170. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2171. \begin_inset Text
  2172. \begin_layout Plain Layout
  2173. \family roman
  2174. \series medium
  2175. \shape up
  2176. \size normal
  2177. \emph off
  2178. \bar no
  2179. \strikeout off
  2180. \xout off
  2181. \uuline off
  2182. \uwave off
  2183. \noun off
  2184. \color none
  2185. 38.8% ± 17.1
  2186. \end_layout
  2187. \end_inset
  2188. </cell>
  2189. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2190. \begin_inset Text
  2191. \begin_layout Plain Layout
  2192. \family roman
  2193. \series medium
  2194. \shape up
  2195. \size normal
  2196. \emph off
  2197. \bar no
  2198. \strikeout off
  2199. \xout off
  2200. \uuline off
  2201. \uwave off
  2202. \noun off
  2203. \color none
  2204. 61.2% ± 17.1
  2205. \end_layout
  2206. \end_inset
  2207. </cell>
  2208. </row>
  2209. </lyxtabular>
  2210. \end_inset
  2211. \end_layout
  2212. \begin_layout Plain Layout
  2213. \begin_inset Caption Standard
  2214. \begin_layout Plain Layout
  2215. \series bold
  2216. \begin_inset Argument 1
  2217. status collapsed
  2218. \begin_layout Plain Layout
  2219. Fractions of reads mapping to genomic features in GB and non-GB samples.
  2220. \end_layout
  2221. \end_inset
  2222. \begin_inset CommandInset label
  2223. LatexCommand label
  2224. name "tab:Fractions-of-reads"
  2225. \end_inset
  2226. Fractions of reads mapping to genomic features in GB and non-GB samples.
  2227. \series default
  2228. All values are given as mean ± standard deviation.
  2229. \end_layout
  2230. \end_inset
  2231. \end_layout
  2232. \begin_layout Plain Layout
  2233. \end_layout
  2234. \end_inset
  2235. \end_layout
  2236. \begin_layout Standard
  2237. Another important aspect is that the standard deviations in Table
  2238. \begin_inset CommandInset ref
  2239. LatexCommand ref
  2240. reference "tab:Fractions-of-reads"
  2241. plural "false"
  2242. caps "false"
  2243. noprefix "false"
  2244. \end_inset
  2245. are uniformly smaller in the GB samples than the non-GB ones, indicating
  2246. much greater consistency of yield.
  2247. This is best seen in the percentage of non-globin reads as a fraction of
  2248. total reads aligned to annotated genes (genic reads).
  2249. For the non-GB samples, this measure ranges from 10.9% to 80.9%, while for
  2250. the GB samples it ranges from 81.9% to 99.9% (Figure
  2251. \begin_inset CommandInset ref
  2252. LatexCommand ref
  2253. reference "fig:Fraction-of-genic-reads"
  2254. plural "false"
  2255. caps "false"
  2256. noprefix "false"
  2257. \end_inset
  2258. ).
  2259. This means that for applications where it is critical that each sample
  2260. achieve a specified minimum coverage in order to provide useful information,
  2261. it would be necessary to budget up to 10 times the sequencing depth per
  2262. sample without globin blocking, even though the average yield improvement
  2263. for globin blocking is only 2-fold, because every sample has a chance of
  2264. being 90% globin and 10% useful reads.
  2265. Hence, the more consistent behavior of GB samples makes planning an experiment
  2266. easier and more efficient because it eliminates the need to over-sequence
  2267. every sample in order to guard against the worst case of a high-globin
  2268. fraction.
  2269. \end_layout
  2270. \begin_layout Subsection*
  2271. Globin blocking lowers the noise floor and allows detection of about 2000
  2272. more genes
  2273. \end_layout
  2274. \begin_layout Standard
  2275. \begin_inset Flex TODO Note (inline)
  2276. status open
  2277. \begin_layout Plain Layout
  2278. Remove redundant titles from figures
  2279. \end_layout
  2280. \end_inset
  2281. \end_layout
  2282. \begin_layout Standard
  2283. \begin_inset Float figure
  2284. wide false
  2285. sideways false
  2286. status open
  2287. \begin_layout Plain Layout
  2288. \align center
  2289. \begin_inset Graphics
  2290. filename graphics/Globin Paper/figure2 - aveLogCPM-colored.pdf
  2291. \end_inset
  2292. \end_layout
  2293. \begin_layout Plain Layout
  2294. \begin_inset Caption Standard
  2295. \begin_layout Plain Layout
  2296. \series bold
  2297. \begin_inset Argument 1
  2298. status collapsed
  2299. \begin_layout Plain Layout
  2300. Distributions of average group gene abundances when normalized separately
  2301. or together.
  2302. \end_layout
  2303. \end_inset
  2304. \begin_inset CommandInset label
  2305. LatexCommand label
  2306. name "fig:logcpm-dists"
  2307. \end_inset
  2308. Distributions of average group gene abundances when normalized separately
  2309. or together.
  2310. \series default
  2311. All reads in each sequencing library were aligned to the cyno genome, and
  2312. the number of reads uniquely aligning to each gene was counted.
  2313. Genes with zero counts in all libraries were discarded.
  2314. Libraries were normalized using the TMM method.
  2315. Libraries were split into globin-blocked (GB) and non-GB groups and the
  2316. average abundance for each gene in both groups, measured in log2 counts
  2317. per million reads counted, was computed using the aveLogCPM function.
  2318. The distribution of average gene logCPM values was plotted for both groups
  2319. using a kernel density plot to approximate a continuous distribution.
  2320. The logCPM GB distributions are marked in red, non-GB in blue.
  2321. The black vertical line denotes the chosen detection threshold of -1.
  2322. Top panel: Libraries were split into GB and non-GB groups first and normalized
  2323. separately.
  2324. Bottom panel: Libraries were all normalized together first and then split
  2325. into groups.
  2326. \end_layout
  2327. \end_inset
  2328. \end_layout
  2329. \begin_layout Plain Layout
  2330. \end_layout
  2331. \end_inset
  2332. \end_layout
  2333. \begin_layout Standard
  2334. Since globin blocking yields more usable sequencing depth, it should also
  2335. allow detection of more genes at any given threshold.
  2336. When we looked at the distribution of average normalized logCPM values
  2337. across all libraries for genes with at least one read assigned to them,
  2338. we observed the expected bimodal distribution, with a high-abundance "signal"
  2339. peak representing detected genes and a low-abundance "noise" peak representing
  2340. genes whose read count did not rise above the noise floor (Figure
  2341. \begin_inset CommandInset ref
  2342. LatexCommand ref
  2343. reference "fig:logcpm-dists"
  2344. plural "false"
  2345. caps "false"
  2346. noprefix "false"
  2347. \end_inset
  2348. ).
  2349. Consistent with the 2-fold increase in raw counts assigned to non-globin
  2350. genes, the signal peak for GB samples is shifted to the right relative
  2351. to the non-GB signal peak.
  2352. When all the samples are normalized together, this difference is normalized
  2353. out, lining up the signal peaks, and this reveals that, as expected, the
  2354. noise floor for the GB samples is about 2-fold lower.
  2355. This greater separation between signal and noise peaks in the GB samples
  2356. means that low-expression genes should be more easily detected and more
  2357. precisely quantified than in the non-GB samples.
  2358. \end_layout
  2359. \begin_layout Standard
  2360. \begin_inset Float figure
  2361. wide false
  2362. sideways false
  2363. status open
  2364. \begin_layout Plain Layout
  2365. \align center
  2366. \begin_inset Graphics
  2367. filename graphics/Globin Paper/figure3 - detection.pdf
  2368. \end_inset
  2369. \end_layout
  2370. \begin_layout Plain Layout
  2371. \begin_inset Caption Standard
  2372. \begin_layout Plain Layout
  2373. \series bold
  2374. \begin_inset Argument 1
  2375. status collapsed
  2376. \begin_layout Plain Layout
  2377. Gene detections as a function of abundance thresholds in globin-blocked
  2378. (GB) and non-GB samples.
  2379. \end_layout
  2380. \end_inset
  2381. \begin_inset CommandInset label
  2382. LatexCommand label
  2383. name "fig:Gene-detections"
  2384. \end_inset
  2385. Gene detections as a function of abundance thresholds in globin-blocked
  2386. (GB) and non-GB samples.
  2387. \series default
  2388. Average abundance (logCPM,
  2389. \begin_inset Formula $\log_{2}$
  2390. \end_inset
  2391. counts per million reads counted) was computed by separate group normalization
  2392. as described in Figure
  2393. \begin_inset CommandInset ref
  2394. LatexCommand ref
  2395. reference "fig:logcpm-dists"
  2396. plural "false"
  2397. caps "false"
  2398. noprefix "false"
  2399. \end_inset
  2400. for both the GB and non-GB groups, as well as for all samples considered
  2401. as one large group.
  2402. For each every integer threshold from -2 to 3, the number of genes detected
  2403. at or above that logCPM threshold was plotted for each group.
  2404. \end_layout
  2405. \end_inset
  2406. \end_layout
  2407. \begin_layout Plain Layout
  2408. \end_layout
  2409. \end_inset
  2410. \end_layout
  2411. \begin_layout Standard
  2412. Based on these distributions, we selected a detection threshold of -1, which
  2413. is approximately the leftmost edge of the trough between the signal and
  2414. noise peaks.
  2415. This represents the most liberal possible detection threshold that doesn't
  2416. call substantial numbers of noise genes as detected.
  2417. Among the full dataset, 13429 genes were detected at this threshold, and
  2418. 22276 were not.
  2419. When considering the GB libraries and non-GB libraries separately and re-comput
  2420. ing normalization factors independently within each group, 14535 genes were
  2421. detected in the GB libraries while only 12460 were detected in the non-GB
  2422. libraries.
  2423. Thus, GB allowed the detection of 2000 extra genes that were buried under
  2424. the noise floor without GB.
  2425. This pattern of at least 2000 additional genes detected with GB was also
  2426. consistent across a wide range of possible detection thresholds, from -2
  2427. to 3 (see Figure
  2428. \begin_inset CommandInset ref
  2429. LatexCommand ref
  2430. reference "fig:Gene-detections"
  2431. plural "false"
  2432. caps "false"
  2433. noprefix "false"
  2434. \end_inset
  2435. ).
  2436. \end_layout
  2437. \begin_layout Subsection*
  2438. Globin blocking does not add significant additional noise or decrease sample
  2439. quality
  2440. \end_layout
  2441. \begin_layout Standard
  2442. One potential worry is that the globin blocking protocol could perturb the
  2443. levels of non-globin genes.
  2444. There are two kinds of possible perturbations: systematic and random.
  2445. The former is not a major concern for detection of differential expression,
  2446. since a 2-fold change in every sample has no effect on the relative fold
  2447. change between samples.
  2448. In contrast, random perturbations would increase the noise and obscure
  2449. the signal in the dataset, reducing the capacity to detect differential
  2450. expression.
  2451. \end_layout
  2452. \begin_layout Standard
  2453. \begin_inset Float figure
  2454. wide false
  2455. sideways false
  2456. status open
  2457. \begin_layout Plain Layout
  2458. \align center
  2459. \begin_inset Graphics
  2460. filename graphics/Globin Paper/figure4 - maplot-colored.pdf
  2461. \end_inset
  2462. \end_layout
  2463. \begin_layout Plain Layout
  2464. \begin_inset Caption Standard
  2465. \begin_layout Plain Layout
  2466. \begin_inset Argument 1
  2467. status collapsed
  2468. \begin_layout Plain Layout
  2469. MA plot showing effects of globin blocking on each gene's abundance.
  2470. \end_layout
  2471. \end_inset
  2472. \begin_inset CommandInset label
  2473. LatexCommand label
  2474. name "fig:MA-plot"
  2475. \end_inset
  2476. \series bold
  2477. MA plot showing effects of globin blocking on each gene's abundance.
  2478. \series default
  2479. All libraries were normalized together as described in Figure
  2480. \begin_inset CommandInset ref
  2481. LatexCommand ref
  2482. reference "fig:logcpm-dists"
  2483. plural "false"
  2484. caps "false"
  2485. noprefix "false"
  2486. \end_inset
  2487. , and genes with an average logCPM below -1 were filtered out.
  2488. Each remaining gene was tested for differential abundance with respect
  2489. to globin blocking (GB) using edgeR’s quasi-likelihod F-test, fitting a
  2490. negative binomial generalized linear model to table of read counts in each
  2491. library.
  2492. For each gene, edgeR reported average abundance (logCPM),
  2493. \begin_inset Formula $\log_{2}$
  2494. \end_inset
  2495. fold change (logFC), p-value, and Benjamini-Hochberg adjusted false discovery
  2496. rate (FDR).
  2497. Each gene's logFC was plotted against its logCPM, colored by FDR.
  2498. Red points are significant at ≤10% FDR, and blue are not significant at
  2499. that threshold.
  2500. The alpha and beta globin genes targeted for blocking are marked with large
  2501. triangles, while all other genes are represented as small points.
  2502. \end_layout
  2503. \end_inset
  2504. \end_layout
  2505. \begin_layout Plain Layout
  2506. \end_layout
  2507. \end_inset
  2508. \end_layout
  2509. \begin_layout Standard
  2510. \begin_inset Flex TODO Note (inline)
  2511. status open
  2512. \begin_layout Plain Layout
  2513. Standardize on
  2514. \begin_inset Quotes eld
  2515. \end_inset
  2516. log2
  2517. \begin_inset Quotes erd
  2518. \end_inset
  2519. notation
  2520. \end_layout
  2521. \end_inset
  2522. \end_layout
  2523. \begin_layout Standard
  2524. The data do indeed show small systematic perturbations in gene levels (Figure
  2525. \begin_inset CommandInset ref
  2526. LatexCommand ref
  2527. reference "fig:MA-plot"
  2528. plural "false"
  2529. caps "false"
  2530. noprefix "false"
  2531. \end_inset
  2532. ).
  2533. Other than the 3 designated alpha and beta globin genes, two other genes
  2534. stand out as having especially large negative log fold changes: HBD and
  2535. LOC1021365.
  2536. HBD, delta globin, is most likely targeted by the blocking oligos due to
  2537. high sequence homology with the other globin genes.
  2538. LOC1021365 is the aforementioned ncRNA that is reverse-complementary to
  2539. one of the alpha-like genes and that would be expected to be removed during
  2540. the globin blocking step.
  2541. All other genes appear in a cluster centered vertically at 0, and the vast
  2542. majority of genes in this cluster show an absolute log2(FC) of 0.5 or less.
  2543. Nevertheless, many of these small perturbations are still statistically
  2544. significant, indicating that the globin blocking oligos likely cause very
  2545. small but non-zero systematic perturbations in measured gene expression
  2546. levels.
  2547. \end_layout
  2548. \begin_layout Standard
  2549. \begin_inset Float figure
  2550. wide false
  2551. sideways false
  2552. status open
  2553. \begin_layout Plain Layout
  2554. \align center
  2555. \begin_inset Graphics
  2556. filename graphics/Globin Paper/figure5 - corrplot.pdf
  2557. \end_inset
  2558. \end_layout
  2559. \begin_layout Plain Layout
  2560. \begin_inset Caption Standard
  2561. \begin_layout Plain Layout
  2562. \series bold
  2563. \begin_inset Argument 1
  2564. status collapsed
  2565. \begin_layout Plain Layout
  2566. Comparison of inter-sample gene abundance correlations with and without
  2567. globin blocking.
  2568. \end_layout
  2569. \end_inset
  2570. \begin_inset CommandInset label
  2571. LatexCommand label
  2572. name "fig:gene-abundance-correlations"
  2573. \end_inset
  2574. Comparison of inter-sample gene abundance correlations with and without
  2575. globin blocking (GB).
  2576. \series default
  2577. All libraries were normalized together as described in Figure 2, and genes
  2578. with an average abundance (logCPM, log2 counts per million reads counted)
  2579. less than -1 were filtered out.
  2580. Each gene’s logCPM was computed in each library using the edgeR cpm function.
  2581. For each pair of biological samples, the Pearson correlation between those
  2582. samples' GB libraries was plotted against the correlation between the same
  2583. samples’ non-GB libraries.
  2584. Each point represents an unique pair of samples.
  2585. The solid gray line shows a quantile-quantile plot of distribution of GB
  2586. correlations vs.
  2587. that of non-GB correlations.
  2588. The thin dashed line is the identity line, provided for reference.
  2589. \end_layout
  2590. \end_inset
  2591. \end_layout
  2592. \begin_layout Plain Layout
  2593. \end_layout
  2594. \end_inset
  2595. \end_layout
  2596. \begin_layout Standard
  2597. To evaluate the possibility of globin blocking causing random perturbations
  2598. and reducing sample quality, we computed the Pearson correlation between
  2599. logCPM values for every pair of samples with and without GB and plotted
  2600. them against each other (Figure
  2601. \begin_inset CommandInset ref
  2602. LatexCommand ref
  2603. reference "fig:gene-abundance-correlations"
  2604. plural "false"
  2605. caps "false"
  2606. noprefix "false"
  2607. \end_inset
  2608. ).
  2609. The plot indicated that the GB libraries have higher sample-to-sample correlati
  2610. ons than the non-GB libraries.
  2611. Parametric and nonparametric tests for differences between the correlations
  2612. with and without GB both confirmed that this difference was highly significant
  2613. (2-sided paired t-test: t = 37.2, df = 665, P ≪ 2.2e-16; 2-sided Wilcoxon
  2614. sign-rank test: V = 2195, P ≪ 2.2e-16).
  2615. Performing the same tests on the Spearman correlations gave the same conclusion
  2616. (t-test: t = 26.8, df = 665, P ≪ 2.2e-16; sign-rank test: V = 8781, P ≪ 2.2e-16).
  2617. The edgeR package was used to compute the overall biological coefficient
  2618. of variation (BCV) for GB and non-GB libraries, and found that globin blocking
  2619. resulted in a negligible increase in the BCV (0.417 with GB vs.
  2620. 0.400 without).
  2621. The near equality of the BCVs for both sets indicates that the higher correlati
  2622. ons in the GB libraries are most likely a result of the increased yield
  2623. of useful reads, which reduces the contribution of Poisson counting uncertainty
  2624. to the overall variance of the logCPM values
  2625. \begin_inset CommandInset citation
  2626. LatexCommand cite
  2627. key "McCarthy2012"
  2628. literal "false"
  2629. \end_inset
  2630. .
  2631. This improves the precision of expression measurements and more than offsets
  2632. the negligible increase in BCV.
  2633. \end_layout
  2634. \begin_layout Subsection*
  2635. More differentially expressed genes are detected with globin blocking
  2636. \end_layout
  2637. \begin_layout Standard
  2638. \begin_inset Float table
  2639. wide false
  2640. sideways false
  2641. status open
  2642. \begin_layout Plain Layout
  2643. \align center
  2644. \begin_inset Tabular
  2645. <lyxtabular version="3" rows="5" columns="5">
  2646. <features tabularvalignment="middle">
  2647. <column alignment="center" valignment="top">
  2648. <column alignment="center" valignment="top">
  2649. <column alignment="center" valignment="top">
  2650. <column alignment="center" valignment="top">
  2651. <column alignment="center" valignment="top">
  2652. <row>
  2653. <cell alignment="center" valignment="top" usebox="none">
  2654. \begin_inset Text
  2655. \begin_layout Plain Layout
  2656. \end_layout
  2657. \end_inset
  2658. </cell>
  2659. <cell alignment="center" valignment="top" usebox="none">
  2660. \begin_inset Text
  2661. \begin_layout Plain Layout
  2662. \end_layout
  2663. \end_inset
  2664. </cell>
  2665. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2666. \begin_inset Text
  2667. \begin_layout Plain Layout
  2668. \series bold
  2669. No Globin Blocking
  2670. \end_layout
  2671. \end_inset
  2672. </cell>
  2673. <cell multicolumn="2" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2674. \begin_inset Text
  2675. \begin_layout Plain Layout
  2676. \end_layout
  2677. \end_inset
  2678. </cell>
  2679. <cell multicolumn="2" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2680. \begin_inset Text
  2681. \begin_layout Plain Layout
  2682. \end_layout
  2683. \end_inset
  2684. </cell>
  2685. </row>
  2686. <row>
  2687. <cell alignment="center" valignment="top" usebox="none">
  2688. \begin_inset Text
  2689. \begin_layout Plain Layout
  2690. \end_layout
  2691. \end_inset
  2692. </cell>
  2693. <cell alignment="center" valignment="top" usebox="none">
  2694. \begin_inset Text
  2695. \begin_layout Plain Layout
  2696. \end_layout
  2697. \end_inset
  2698. </cell>
  2699. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2700. \begin_inset Text
  2701. \begin_layout Plain Layout
  2702. \series bold
  2703. Up
  2704. \end_layout
  2705. \end_inset
  2706. </cell>
  2707. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2708. \begin_inset Text
  2709. \begin_layout Plain Layout
  2710. \series bold
  2711. NS
  2712. \end_layout
  2713. \end_inset
  2714. </cell>
  2715. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2716. \begin_inset Text
  2717. \begin_layout Plain Layout
  2718. \series bold
  2719. Down
  2720. \end_layout
  2721. \end_inset
  2722. </cell>
  2723. </row>
  2724. <row>
  2725. <cell multirow="3" alignment="center" valignment="middle" topline="true" bottomline="true" leftline="true" usebox="none">
  2726. \begin_inset Text
  2727. \begin_layout Plain Layout
  2728. \series bold
  2729. Globin-Blocking
  2730. \end_layout
  2731. \end_inset
  2732. </cell>
  2733. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2734. \begin_inset Text
  2735. \begin_layout Plain Layout
  2736. \series bold
  2737. Up
  2738. \end_layout
  2739. \end_inset
  2740. </cell>
  2741. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2742. \begin_inset Text
  2743. \begin_layout Plain Layout
  2744. \family roman
  2745. \series medium
  2746. \shape up
  2747. \size normal
  2748. \emph off
  2749. \bar no
  2750. \strikeout off
  2751. \xout off
  2752. \uuline off
  2753. \uwave off
  2754. \noun off
  2755. \color none
  2756. 231
  2757. \end_layout
  2758. \end_inset
  2759. </cell>
  2760. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2761. \begin_inset Text
  2762. \begin_layout Plain Layout
  2763. \family roman
  2764. \series medium
  2765. \shape up
  2766. \size normal
  2767. \emph off
  2768. \bar no
  2769. \strikeout off
  2770. \xout off
  2771. \uuline off
  2772. \uwave off
  2773. \noun off
  2774. \color none
  2775. 515
  2776. \end_layout
  2777. \end_inset
  2778. </cell>
  2779. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2780. \begin_inset Text
  2781. \begin_layout Plain Layout
  2782. \family roman
  2783. \series medium
  2784. \shape up
  2785. \size normal
  2786. \emph off
  2787. \bar no
  2788. \strikeout off
  2789. \xout off
  2790. \uuline off
  2791. \uwave off
  2792. \noun off
  2793. \color none
  2794. 2
  2795. \end_layout
  2796. \end_inset
  2797. </cell>
  2798. </row>
  2799. <row>
  2800. <cell multirow="4" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2801. \begin_inset Text
  2802. \begin_layout Plain Layout
  2803. \end_layout
  2804. \end_inset
  2805. </cell>
  2806. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2807. \begin_inset Text
  2808. \begin_layout Plain Layout
  2809. \series bold
  2810. NS
  2811. \end_layout
  2812. \end_inset
  2813. </cell>
  2814. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2815. \begin_inset Text
  2816. \begin_layout Plain Layout
  2817. \family roman
  2818. \series medium
  2819. \shape up
  2820. \size normal
  2821. \emph off
  2822. \bar no
  2823. \strikeout off
  2824. \xout off
  2825. \uuline off
  2826. \uwave off
  2827. \noun off
  2828. \color none
  2829. 160
  2830. \end_layout
  2831. \end_inset
  2832. </cell>
  2833. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2834. \begin_inset Text
  2835. \begin_layout Plain Layout
  2836. \family roman
  2837. \series medium
  2838. \shape up
  2839. \size normal
  2840. \emph off
  2841. \bar no
  2842. \strikeout off
  2843. \xout off
  2844. \uuline off
  2845. \uwave off
  2846. \noun off
  2847. \color none
  2848. 11235
  2849. \end_layout
  2850. \end_inset
  2851. </cell>
  2852. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2853. \begin_inset Text
  2854. \begin_layout Plain Layout
  2855. \family roman
  2856. \series medium
  2857. \shape up
  2858. \size normal
  2859. \emph off
  2860. \bar no
  2861. \strikeout off
  2862. \xout off
  2863. \uuline off
  2864. \uwave off
  2865. \noun off
  2866. \color none
  2867. 136
  2868. \end_layout
  2869. \end_inset
  2870. </cell>
  2871. </row>
  2872. <row>
  2873. <cell multirow="4" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2874. \begin_inset Text
  2875. \begin_layout Plain Layout
  2876. \end_layout
  2877. \end_inset
  2878. </cell>
  2879. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2880. \begin_inset Text
  2881. \begin_layout Plain Layout
  2882. \series bold
  2883. Down
  2884. \end_layout
  2885. \end_inset
  2886. </cell>
  2887. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2888. \begin_inset Text
  2889. \begin_layout Plain Layout
  2890. \family roman
  2891. \series medium
  2892. \shape up
  2893. \size normal
  2894. \emph off
  2895. \bar no
  2896. \strikeout off
  2897. \xout off
  2898. \uuline off
  2899. \uwave off
  2900. \noun off
  2901. \color none
  2902. 0
  2903. \end_layout
  2904. \end_inset
  2905. </cell>
  2906. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2907. \begin_inset Text
  2908. \begin_layout Plain Layout
  2909. \family roman
  2910. \series medium
  2911. \shape up
  2912. \size normal
  2913. \emph off
  2914. \bar no
  2915. \strikeout off
  2916. \xout off
  2917. \uuline off
  2918. \uwave off
  2919. \noun off
  2920. \color none
  2921. 548
  2922. \end_layout
  2923. \end_inset
  2924. </cell>
  2925. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2926. \begin_inset Text
  2927. \begin_layout Plain Layout
  2928. \family roman
  2929. \series medium
  2930. \shape up
  2931. \size normal
  2932. \emph off
  2933. \bar no
  2934. \strikeout off
  2935. \xout off
  2936. \uuline off
  2937. \uwave off
  2938. \noun off
  2939. \color none
  2940. 127
  2941. \end_layout
  2942. \end_inset
  2943. </cell>
  2944. </row>
  2945. </lyxtabular>
  2946. \end_inset
  2947. \end_layout
  2948. \begin_layout Plain Layout
  2949. \begin_inset Caption Standard
  2950. \begin_layout Plain Layout
  2951. \series bold
  2952. \begin_inset Argument 1
  2953. status open
  2954. \begin_layout Plain Layout
  2955. Comparison of significantly differentially expressed genes with and without
  2956. globin blocking.
  2957. \end_layout
  2958. \end_inset
  2959. \begin_inset CommandInset label
  2960. LatexCommand label
  2961. name "tab:Comparison-of-significant"
  2962. \end_inset
  2963. Comparison of significantly differentially expressed genes with and without
  2964. globin blocking.
  2965. \series default
  2966. Up, Down: Genes significantly up/down-regulated in post-transplant samples
  2967. relative to pre-transplant samples, with a false discovery rate of 10%
  2968. or less.
  2969. NS: Non-significant genes (false discovery rate greater than 10%).
  2970. \end_layout
  2971. \end_inset
  2972. \end_layout
  2973. \begin_layout Plain Layout
  2974. \end_layout
  2975. \end_inset
  2976. \end_layout
  2977. \begin_layout Standard
  2978. To compare performance on differential gene expression tests, we took subsets
  2979. of both the GB and non-GB libraries with exactly one pre-transplant and
  2980. one post-transplant sample for each animal that had paired samples available
  2981. for analysis (N=7 animals, N=14 samples in each subset).
  2982. The same test for pre- vs.
  2983. post-transplant differential gene expression was performed on the same
  2984. 7 pairs of samples from GB libraries and non-GB libraries, in each case
  2985. using an FDR of 10% as the threshold of significance.
  2986. Out of 12954 genes that passed the detection threshold in both subsets,
  2987. 358 were called significantly differentially expressed in the same direction
  2988. in both sets; 1063 were differentially expressed in the GB set only; 296
  2989. were differentially expressed in the non-GB set only; 2 genes were called
  2990. significantly up in the GB set but significantly down in the non-GB set;
  2991. and the remaining 11235 were not called differentially expressed in either
  2992. set.
  2993. These data are summarized in Table
  2994. \begin_inset CommandInset ref
  2995. LatexCommand ref
  2996. reference "tab:Comparison-of-significant"
  2997. plural "false"
  2998. caps "false"
  2999. noprefix "false"
  3000. \end_inset
  3001. .
  3002. The differences in BCV calculated by EdgeR for these subsets of samples
  3003. were negligible (BCV = 0.302 for GB and 0.297 for non-GB).
  3004. \end_layout
  3005. \begin_layout Standard
  3006. The key point is that the GB data results in substantially more differentially
  3007. expressed calls than the non-GB data.
  3008. Since there is no gold standard for this dataset, it is impossible to be
  3009. certain whether this is due to under-calling of differential expression
  3010. in the non-GB samples or over-calling in the GB samples.
  3011. However, given that both datasets are derived from the same biological
  3012. samples and have nearly equal BCVs, it is more likely that the larger number
  3013. of DE calls in the GB samples are genuine detections that were enabled
  3014. by the higher sequencing depth and measurement precision of the GB samples.
  3015. Note that the same set of genes was considered in both subsets, so the
  3016. larger number of differentially expressed gene calls in the GB data set
  3017. reflects a greater sensitivity to detect significant differential gene
  3018. expression and not simply the larger total number of detected genes in
  3019. GB samples described earlier.
  3020. \end_layout
  3021. \begin_layout Section
  3022. Discussion
  3023. \end_layout
  3024. \begin_layout Standard
  3025. The original experience with whole blood gene expression profiling on DNA
  3026. microarrays demonstrated that the high concentration of globin transcripts
  3027. reduced the sensitivity to detect genes with relatively low expression
  3028. levels, in effect, significantly reducing the sensitivity.
  3029. To address this limitation, commercial protocols for globin reduction were
  3030. developed based on strategies to block globin transcript amplification
  3031. during labeling or physically removing globin transcripts by affinity bead
  3032. methods
  3033. \begin_inset CommandInset citation
  3034. LatexCommand cite
  3035. key "Winn2010"
  3036. literal "false"
  3037. \end_inset
  3038. .
  3039. More recently, using the latest generation of labeling protocols and arrays,
  3040. it was determined that globin reduction was no longer necessary to obtain
  3041. sufficient sensitivity to detect differential transcript expression
  3042. \begin_inset CommandInset citation
  3043. LatexCommand cite
  3044. key "NuGEN2010"
  3045. literal "false"
  3046. \end_inset
  3047. .
  3048. However, we are not aware of any publications using these currently available
  3049. protocols the with latest generation of microarrays that actually compare
  3050. the detection sensitivity with and without globin reduction.
  3051. However, in practice this has now been adopted generally primarily driven
  3052. by concerns for cost control.
  3053. The main objective of our work was to directly test the impact of globin
  3054. gene transcripts and a new globin blocking protocol for application to
  3055. the newest generation of differential gene expression profiling determined
  3056. using next generation sequencing.
  3057. \end_layout
  3058. \begin_layout Standard
  3059. The challenge of doing global gene expression profiling in cynomolgus monkeys
  3060. is that the current available arrays were never designed to comprehensively
  3061. cover this genome and have not been updated since the first assemblies
  3062. of the cynomolgus genome were published.
  3063. Therefore, we determined that the best strategy for peripheral blood profiling
  3064. was to do deep RNA-seq and inform the workflow using the latest available
  3065. genome assembly and annotation
  3066. \begin_inset CommandInset citation
  3067. LatexCommand cite
  3068. key "Wilson2013"
  3069. literal "false"
  3070. \end_inset
  3071. .
  3072. However, it was not immediately clear whether globin reduction was necessary
  3073. for RNA-seq or how much improvement in efficiency or sensitivity to detect
  3074. differential gene expression would be achieved for the added cost and work.
  3075. \end_layout
  3076. \begin_layout Standard
  3077. We only found one report that demonstrated that globin reduction significantly
  3078. improved the effective read yields for sequencing of human peripheral blood
  3079. cell RNA using a DeepSAGE protocol
  3080. \begin_inset CommandInset citation
  3081. LatexCommand cite
  3082. key "Mastrokolias2012"
  3083. literal "false"
  3084. \end_inset
  3085. .
  3086. The approach to DeepSAGE involves two different restriction enzymes that
  3087. purify and then tag small fragments of transcripts at specific locations
  3088. and thus, significantly reduces the complexity of the transcriptome.
  3089. Therefore, we could not determine how DeepSAGE results would translate
  3090. to the common strategy in the field for assaying the entire transcript
  3091. population by whole-transcriptome 3’-end RNA-seq.
  3092. Furthermore, if globin reduction is necessary, we also needed a globin
  3093. reduction method specific to cynomolgus globin sequences that would work
  3094. an organism for which no kit is available off the shelf.
  3095. \end_layout
  3096. \begin_layout Standard
  3097. As mentioned above, the addition of globin blocking oligos has a very small
  3098. impact on measured expression levels of gene expression.
  3099. However, this is a non-issue for the purposes of differential expression
  3100. testing, since a systematic change in a gene in all samples does not affect
  3101. relative expression levels between samples.
  3102. However, we must acknowledge that simple comparisons of gene expression
  3103. data obtained by GB and non-GB protocols are not possible without additional
  3104. normalization.
  3105. \end_layout
  3106. \begin_layout Standard
  3107. More importantly, globin blocking not only nearly doubles the yield of usable
  3108. reads, it also increases inter-sample correlation and sensitivity to detect
  3109. differential gene expression relative to the same set of samples profiled
  3110. without blocking.
  3111. In addition, globin blocking does not add a significant amount of random
  3112. noise to the data.
  3113. Globin blocking thus represents a cost-effective way to squeeze more data
  3114. and statistical power out of the same blood samples and the same amount
  3115. of sequencing.
  3116. In conclusion, globin reduction greatly increases the yield of useful RNA-seq
  3117. reads mapping to the rest of the genome, with minimal perturbations in
  3118. the relative levels of non-globin genes.
  3119. Based on these results, globin transcript reduction using sequence-specific,
  3120. complementary blocking oligonucleotides is recommended for all deep RNA-seq
  3121. of cynomolgus and other nonhuman primate blood samples.
  3122. \end_layout
  3123. \begin_layout Chapter
  3124. Future Directions
  3125. \end_layout
  3126. \begin_layout Itemize
  3127. Study other epigenetic marks in more contexts
  3128. \end_layout
  3129. \begin_deeper
  3130. \begin_layout Itemize
  3131. DNA methylation, histone marks, chromatin accessibility & conformation in
  3132. CD4 T-cells
  3133. \end_layout
  3134. \begin_layout Itemize
  3135. Also look at other types lymphocytes: CD8 T-cells, B-cells, NK cells
  3136. \end_layout
  3137. \end_deeper
  3138. \begin_layout Itemize
  3139. Investigate epigenetic regulation of lifespan extension in
  3140. \emph on
  3141. C.
  3142. elegans
  3143. \end_layout
  3144. \begin_deeper
  3145. \begin_layout Itemize
  3146. ChIP-seq of important transcriptional regulators to see how transcriptional
  3147. drift is prevented
  3148. \end_layout
  3149. \end_deeper
  3150. \begin_layout Standard
  3151. \begin_inset ERT
  3152. status open
  3153. \begin_layout Plain Layout
  3154. % Use "References" instead of "Bibliography"
  3155. \end_layout
  3156. \begin_layout Plain Layout
  3157. \backslash
  3158. renewcommand{
  3159. \backslash
  3160. bibname}{References}
  3161. \end_layout
  3162. \end_inset
  3163. \end_layout
  3164. \begin_layout Standard
  3165. \begin_inset Flex TODO Note (inline)
  3166. status open
  3167. \begin_layout Plain Layout
  3168. Check bib entry formatting & sort order
  3169. \end_layout
  3170. \end_inset
  3171. \end_layout
  3172. \begin_layout Standard
  3173. \begin_inset CommandInset bibtex
  3174. LatexCommand bibtex
  3175. btprint "btPrintCited"
  3176. bibfiles "refs"
  3177. options "bibtotoc,unsrt"
  3178. \end_inset
  3179. \end_layout
  3180. \end_body
  3181. \end_document