thesis.lyx 87 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812
  1. #LyX 2.3 created this file. For more info see http://www.lyx.org/
  2. \lyxformat 544
  3. \begin_document
  4. \begin_header
  5. \save_transient_properties true
  6. \origin unavailable
  7. \textclass extbook
  8. \begin_preamble
  9. % List all used files in log output
  10. \listfiles
  11. % Add a DRAFT watermark
  12. \usepackage{draftwatermark}
  13. \SetWatermarkLightness{0.97}
  14. \SetWatermarkScale{1}
  15. % Set up required header format
  16. \usepackage{fancyhdr}
  17. \pagestyle{fancy}
  18. \renewcommand{\headrulewidth}{0pt}
  19. \rhead{}
  20. \lhead{}
  21. \rfoot{}
  22. \lfoot{}
  23. \cfoot{\thepage} % Page number bottom center
  24. % https://tex.stackexchange.com/questions/65680/automatically-bold-first-sentence-of-a-floats-caption
  25. \usepackage{xstring}
  26. \usepackage{etoolbox}
  27. \usepackage{caption}
  28. \captionsetup{labelfont=bf,tableposition=top}
  29. \makeatletter
  30. \newcommand\formatlabel[1]{%
  31. \noexpandarg
  32. \IfSubStr{#1}{.}{%
  33. \StrBefore{#1}{.}[\firstcaption]%
  34. \StrBehind{#1}{.}[\secondcaption]%
  35. \textbf{\firstcaption.} \secondcaption}{%
  36. #1}%
  37. }
  38. \patchcmd{\@caption}{#3}{\formatlabel{#3}}
  39. \makeatother
  40. \end_preamble
  41. \use_default_options true
  42. \begin_modules
  43. todonotes
  44. \end_modules
  45. \maintain_unincluded_children false
  46. \language english
  47. \language_package default
  48. \inputencoding utf8
  49. \fontencoding default
  50. \font_roman "default" "default"
  51. \font_sans "default" "default"
  52. \font_typewriter "default" "default"
  53. \font_math "auto" "auto"
  54. \font_default_family default
  55. \use_non_tex_fonts false
  56. \font_sc false
  57. \font_osf false
  58. \font_sf_scale 100 100
  59. \font_tt_scale 100 100
  60. \use_microtype false
  61. \use_dash_ligatures true
  62. \graphics default
  63. \default_output_format pdf4
  64. \output_sync 0
  65. \bibtex_command default
  66. \index_command default
  67. \paperfontsize 12
  68. \spacing double
  69. \use_hyperref true
  70. \pdf_bookmarks true
  71. \pdf_bookmarksnumbered false
  72. \pdf_bookmarksopen false
  73. \pdf_bookmarksopenlevel 1
  74. \pdf_breaklinks false
  75. \pdf_pdfborder false
  76. \pdf_colorlinks false
  77. \pdf_backref false
  78. \pdf_pdfusetitle true
  79. \papersize letterpaper
  80. \use_geometry true
  81. \use_package amsmath 1
  82. \use_package amssymb 1
  83. \use_package cancel 1
  84. \use_package esint 1
  85. \use_package mathdots 1
  86. \use_package mathtools 1
  87. \use_package mhchem 1
  88. \use_package stackrel 1
  89. \use_package stmaryrd 1
  90. \use_package undertilde 1
  91. \cite_engine basic
  92. \cite_engine_type default
  93. \biblio_style plain
  94. \use_bibtopic false
  95. \use_indices false
  96. \paperorientation portrait
  97. \suppress_date false
  98. \justification true
  99. \use_refstyle 1
  100. \use_minted 0
  101. \index Index
  102. \shortcut idx
  103. \color #008000
  104. \end_index
  105. \leftmargin 1.5in
  106. \topmargin 1in
  107. \rightmargin 1in
  108. \bottommargin 1in
  109. \secnumdepth 3
  110. \tocdepth 3
  111. \paragraph_separation indent
  112. \paragraph_indentation default
  113. \is_math_indent 0
  114. \math_numbering_side default
  115. \quotes_style english
  116. \dynamic_quotes 0
  117. \papercolumns 1
  118. \papersides 2
  119. \paperpagestyle default
  120. \tracking_changes false
  121. \output_changes false
  122. \html_math_output 0
  123. \html_css_as_file 0
  124. \html_be_strict false
  125. \end_header
  126. \begin_body
  127. \begin_layout Title
  128. Bioinformatic analysis of complex, high-throughput genomic and epigenomic
  129. data in the context of immunology and transplant rejection
  130. \end_layout
  131. \begin_layout Author
  132. A thesis presented
  133. \begin_inset Newline newline
  134. \end_inset
  135. by
  136. \begin_inset Newline newline
  137. \end_inset
  138. Ryan C.
  139. Thompson
  140. \begin_inset Newline newline
  141. \end_inset
  142. to
  143. \begin_inset Newline newline
  144. \end_inset
  145. The Scripps Research Institute Graduate Program
  146. \begin_inset Newline newline
  147. \end_inset
  148. in partial fulfillment of the requirements for the degree of
  149. \begin_inset Newline newline
  150. \end_inset
  151. Doctor of Philosophy in the subject of Biology
  152. \begin_inset Newline newline
  153. \end_inset
  154. for
  155. \begin_inset Newline newline
  156. \end_inset
  157. The Scripps Research Institute
  158. \begin_inset Newline newline
  159. \end_inset
  160. La Jolla, California
  161. \end_layout
  162. \begin_layout Date
  163. May 2019
  164. \end_layout
  165. \begin_layout Standard
  166. [Copyright notice]
  167. \end_layout
  168. \begin_layout Standard
  169. [Thesis acceptance form]
  170. \end_layout
  171. \begin_layout Standard
  172. [Dedication]
  173. \end_layout
  174. \begin_layout Standard
  175. [Acknowledgements]
  176. \end_layout
  177. \begin_layout Standard
  178. \begin_inset CommandInset toc
  179. LatexCommand tableofcontents
  180. \end_inset
  181. \end_layout
  182. \begin_layout Standard
  183. \begin_inset FloatList table
  184. \end_inset
  185. \end_layout
  186. \begin_layout Standard
  187. \begin_inset FloatList figure
  188. \end_inset
  189. \end_layout
  190. \begin_layout Standard
  191. [List of Abbreviations]
  192. \end_layout
  193. \begin_layout Standard
  194. \begin_inset Flex TODO Note (inline)
  195. status open
  196. \begin_layout Plain Layout
  197. Look into auto-generated nomenclature list: https://wiki.lyx.org/Tips/Nomenclature
  198. \end_layout
  199. \end_inset
  200. \end_layout
  201. \begin_layout List of TODOs
  202. \end_layout
  203. \begin_layout Standard
  204. [Abstract]
  205. \end_layout
  206. \begin_layout Chapter*
  207. Abstract
  208. \end_layout
  209. \begin_layout Chapter
  210. Introduction
  211. \end_layout
  212. \begin_layout Section
  213. Background & Significance
  214. \end_layout
  215. \begin_layout Subsection
  216. Biological motivation
  217. \end_layout
  218. \begin_layout Itemize
  219. Rejection is the major long-term threat to organ and tissue grafts
  220. \end_layout
  221. \begin_deeper
  222. \begin_layout Itemize
  223. Common mechanisms of rejection
  224. \end_layout
  225. \begin_layout Itemize
  226. Effective immune suppression requires monitoring for rejection and tuning
  227. \end_layout
  228. \begin_layout Itemize
  229. Current tests for rejection (tissue biopsy) are invasive and biased
  230. \end_layout
  231. \begin_layout Itemize
  232. A blood test based on microarrays would be less biased and invasive
  233. \end_layout
  234. \end_deeper
  235. \begin_layout Itemize
  236. Memory cells are resistant to immune suppression
  237. \end_layout
  238. \begin_deeper
  239. \begin_layout Itemize
  240. Mechanisms of resistance in memory cells are poorly understood
  241. \end_layout
  242. \begin_layout Itemize
  243. A better understanding of immune memory formation is needed
  244. \end_layout
  245. \end_deeper
  246. \begin_layout Itemize
  247. Mesenchymal stem cell infusion is a promising new treatment to prevent/delay
  248. rejection
  249. \end_layout
  250. \begin_deeper
  251. \begin_layout Itemize
  252. Demonstrated in mice, but not yet in primates
  253. \end_layout
  254. \begin_layout Itemize
  255. Mechanism currently unknown, but MSC are known to be immune modulatory
  256. \end_layout
  257. \end_deeper
  258. \begin_layout Subsection
  259. Overview of bioinformatic analysis methods
  260. \end_layout
  261. \begin_layout Standard
  262. An overview of all the methods used, including what problem they solve,
  263. what assumptions they make, and a basic description of how they work.
  264. \end_layout
  265. \begin_layout Itemize
  266. ChIP-seq Peak calling
  267. \end_layout
  268. \begin_deeper
  269. \begin_layout Itemize
  270. Cross-correlation analysis to determine fragment size
  271. \end_layout
  272. \begin_layout Itemize
  273. Broad vs narrow peaks
  274. \end_layout
  275. \begin_layout Itemize
  276. SICER for broad peaks
  277. \end_layout
  278. \begin_layout Itemize
  279. IDR for biologically reproducible peaks
  280. \end_layout
  281. \begin_layout Itemize
  282. csaw peak filtering guidelines for unbiased downstream analysis
  283. \end_layout
  284. \end_deeper
  285. \begin_layout Itemize
  286. Normalization is non-trivial and application-dependant
  287. \end_layout
  288. \begin_deeper
  289. \begin_layout Itemize
  290. Expression arrays: RMA & fRMA; why fRMA is needed
  291. \end_layout
  292. \begin_layout Itemize
  293. Methylation arrays: M-value transformation approximates normal data but
  294. induces heteroskedasticity
  295. \end_layout
  296. \begin_layout Itemize
  297. RNA-seq: normalize based on assumption that the average gene is not changing
  298. \end_layout
  299. \begin_layout Itemize
  300. ChIP-seq: complex with many considerations, dependent on experimental methods,
  301. biological system, and analysis goals
  302. \end_layout
  303. \end_deeper
  304. \begin_layout Itemize
  305. Limma: The standard linear modeling framework for genomics
  306. \end_layout
  307. \begin_deeper
  308. \begin_layout Itemize
  309. empirical Bayes variance modeling: limma's core feature
  310. \end_layout
  311. \begin_layout Itemize
  312. edgeR & DESeq2: Extend with negative bonomial GLM for RNA-seq and other
  313. count data
  314. \end_layout
  315. \begin_layout Itemize
  316. voom: Extend with precision weights to model mean-variance trend
  317. \end_layout
  318. \begin_layout Itemize
  319. arrayWeights and duplicateCorrelation to handle complex variance structures
  320. \end_layout
  321. \end_deeper
  322. \begin_layout Itemize
  323. sva and ComBat for batch correction
  324. \end_layout
  325. \begin_layout Itemize
  326. Factor analysis: PCA, MDS, MOFA
  327. \end_layout
  328. \begin_deeper
  329. \begin_layout Itemize
  330. Batch-corrected PCA is informative, but careful application is required
  331. to avoid bias
  332. \end_layout
  333. \end_deeper
  334. \begin_layout Itemize
  335. Gene set analysis: camera and SPIA
  336. \end_layout
  337. \begin_layout Section
  338. Innovation
  339. \end_layout
  340. \begin_layout Itemize
  341. MSC infusion to improve transplant outcomes (prevent/delay rejection)
  342. \end_layout
  343. \begin_deeper
  344. \begin_layout Itemize
  345. Characterize MSC response to interferon gamma
  346. \end_layout
  347. \begin_layout Itemize
  348. IFN-g is thought to stimulate their function
  349. \end_layout
  350. \begin_layout Itemize
  351. Test IFN-g treated MSC infusion as a therapy to delay graft rejection in
  352. cynomolgus monkeys
  353. \end_layout
  354. \begin_layout Itemize
  355. Monitor animals post-transplant using blood RNA-seq at serial time points
  356. \end_layout
  357. \end_deeper
  358. \begin_layout Itemize
  359. Investigate dynamics of histone marks in CD4 T-cell activation and memory
  360. \end_layout
  361. \begin_deeper
  362. \begin_layout Itemize
  363. Previous studies have looked at single snapshots of histone marks
  364. \end_layout
  365. \begin_layout Itemize
  366. Instead, look at changes in histone marks across activation and memory
  367. \end_layout
  368. \end_deeper
  369. \begin_layout Itemize
  370. High-throughput sequencing and microarray technologies
  371. \end_layout
  372. \begin_deeper
  373. \begin_layout Itemize
  374. Powerful methods for assaying gene expression and epigenetics across entire
  375. genomes
  376. \end_layout
  377. \begin_layout Itemize
  378. Proper analysis requires finding and exploiting systematic genome-wide trends
  379. \end_layout
  380. \end_deeper
  381. \begin_layout Chapter
  382. Reproducible genome-wide epigenetic analysis of H3K4 and H3K27 methylation
  383. in naive and memory CD4 T-cell activation
  384. \end_layout
  385. \begin_layout Standard
  386. \begin_inset Flex TODO Note (inline)
  387. status open
  388. \begin_layout Plain Layout
  389. Author list: Me, Sarah, Dan
  390. \end_layout
  391. \end_inset
  392. \end_layout
  393. \begin_layout Section
  394. Approach
  395. \end_layout
  396. \begin_layout Itemize
  397. CD4 T-cells are central to all adaptive immune responses and memory
  398. \end_layout
  399. \begin_layout Itemize
  400. H3K4 and H3K27 methylation are major epigenetic regulators of gene expression
  401. \end_layout
  402. \begin_layout Itemize
  403. Canonically, H3K4 is activating and H3K27 is inhibitory, but the reality
  404. is complex
  405. \end_layout
  406. \begin_layout Itemize
  407. Looking at these marks during CD4 activation and memory should reveal new
  408. mechanistic details
  409. \end_layout
  410. \begin_layout Itemize
  411. Test
  412. \begin_inset Quotes eld
  413. \end_inset
  414. poised promoter
  415. \begin_inset Quotes erd
  416. \end_inset
  417. hypothesis in which H3K4 and H3K27 are both methylated
  418. \end_layout
  419. \begin_layout Itemize
  420. Expand scope of analysis beyond simple promoter counts
  421. \end_layout
  422. \begin_deeper
  423. \begin_layout Itemize
  424. Analyze peaks genome-wide, including in intergenic regions
  425. \end_layout
  426. \begin_layout Itemize
  427. Analysis of coverage distribution shape within promoters, e.g.
  428. upstream vs downstream coverage
  429. \end_layout
  430. \end_deeper
  431. \begin_layout Section
  432. Methods
  433. \end_layout
  434. \begin_layout Itemize
  435. Re-analyze previously published CD4 ChIP-seq & RNA-seq data
  436. \begin_inset CommandInset citation
  437. LatexCommand cite
  438. key "LaMere2016,Lamere2017"
  439. literal "true"
  440. \end_inset
  441. \end_layout
  442. \begin_deeper
  443. \begin_layout Itemize
  444. Completely reimplement analysis from scratch as a reproducible workflow
  445. \end_layout
  446. \begin_layout Itemize
  447. Use newly published methods & algorithms not available during the original
  448. analysis: SICER, csaw, MOFA, ComBat, sva, GREAT, and more
  449. \end_layout
  450. \end_deeper
  451. \begin_layout Itemize
  452. SICER, IDR, csaw, & GREAT to call ChIP-seq peaks genome-wide, perform differenti
  453. al abundance analysis, and relate those peaks to gene expression
  454. \end_layout
  455. \begin_layout Itemize
  456. Promoter counts in sliding windows around each gene's highest-expressed
  457. TSS to investigate coverage distribution within promoters
  458. \end_layout
  459. \begin_layout Section
  460. Results
  461. \end_layout
  462. \begin_layout Standard
  463. \begin_inset Note Note
  464. status open
  465. \begin_layout Plain Layout
  466. Focus on what hypotheses were tested, then select figures that show how
  467. those hypotheses were tested, even if the result is a negative.
  468. \end_layout
  469. \end_inset
  470. \end_layout
  471. \begin_layout Subsection
  472. H3K4 and H3K27 methylation occur in broad regions and are enriched near
  473. promoters
  474. \end_layout
  475. \begin_layout Itemize
  476. Figures comparing MACS (non-broad peak caller) to SICER/epic (broad peak
  477. caller)
  478. \end_layout
  479. \begin_deeper
  480. \begin_layout Itemize
  481. Compare peak sizes and number of called peaks
  482. \end_layout
  483. \begin_layout Itemize
  484. Show representative IDR consistency plots for both
  485. \end_layout
  486. \end_deeper
  487. \begin_layout Itemize
  488. IDR analysis shows that SICER-called peaks are much more reproducible between
  489. biological replicates
  490. \end_layout
  491. \begin_layout Itemize
  492. Each histone mark is enriched within a certain radius of gene TSS positions,
  493. but that radius is different for each mark (figure)
  494. \end_layout
  495. \begin_layout Subsection
  496. RNA-seq has a large confounding batch effect
  497. \end_layout
  498. \begin_layout Itemize
  499. RNA-seq batch effect can be partially corrected, but still induces uncorrectable
  500. biases in downstream analysis
  501. \end_layout
  502. \begin_deeper
  503. \begin_layout Itemize
  504. Figure showing MDS plot before & after ComBat
  505. \end_layout
  506. \begin_layout Itemize
  507. Figure relating sample weights to batches, cell types, time points, etc.,
  508. showing that one batch is significantly worse quality
  509. \end_layout
  510. \begin_layout Itemize
  511. Figures showing p-value histograms for within-batch and cross-batch contrasts,
  512. showing that cross-batch contrasts have attenuated signal, as do comparisons
  513. within the bad batch
  514. \end_layout
  515. \end_deeper
  516. \begin_layout Subsection
  517. ChIP-seq must be corrected for hidden confounding factors
  518. \end_layout
  519. \begin_layout Itemize
  520. Figures showing pre- and post-SVA MDS plots for each histone mark
  521. \end_layout
  522. \begin_layout Itemize
  523. Figures showing BCV plots with and without SVA for each histone mark
  524. \end_layout
  525. \begin_layout Subsection
  526. H3K4 and H3K27 promoter methylation has broadly the expected correlation
  527. with gene expression
  528. \end_layout
  529. \begin_layout Itemize
  530. H3K4 is correlated with higher expression, and H3K27 is correlated with
  531. lower expression genome-wide
  532. \end_layout
  533. \begin_layout Itemize
  534. Figures showing these correlations: box/violin plots of expression distributions
  535. with every combination of peak presence/absence in promoter
  536. \end_layout
  537. \begin_layout Itemize
  538. Appropriate statistical tests showing significant differences in expected
  539. directions
  540. \end_layout
  541. \begin_layout Subsection
  542. MOFA recovers biologically relevant variation from blind analysis by correlating
  543. across datasets
  544. \end_layout
  545. \begin_layout Itemize
  546. MOFA
  547. \begin_inset CommandInset citation
  548. LatexCommand cite
  549. key "Argelaguet2018"
  550. literal "false"
  551. \end_inset
  552. successfully separates biologically relevant patterns of variation from
  553. technical confounding factors without knowing the sample labels, by finding
  554. latent factors that explain variation across multiple data sets.
  555. \end_layout
  556. \begin_deeper
  557. \begin_layout Itemize
  558. Figure: show percent-variance-explained plot from MOFA and PCA-like plots
  559. for the relevant latent factors
  560. \end_layout
  561. \begin_layout Itemize
  562. MOFA analysis also shows that batch effect correction can't get much better
  563. than it already is (Figure comparing blind MOFA batch correction to ComBat
  564. correction)
  565. \end_layout
  566. \end_deeper
  567. \begin_layout Subsection
  568. Naive-to-memory convergence observed in H3K4 and RNA-seq data, not in H3K27me3
  569. \end_layout
  570. \begin_layout Itemize
  571. H3K4 and RNA-seq data show clear evidence of naive convergence with memory
  572. between days 1 and 5 (MDS plot figure, also compare with last figure from
  573. \begin_inset CommandInset citation
  574. LatexCommand cite
  575. key "LaMere2016"
  576. literal "false"
  577. \end_inset
  578. )
  579. \end_layout
  580. \begin_layout Standard
  581. \begin_inset Flex TODO Note (inline)
  582. status open
  583. \begin_layout Plain Layout
  584. Get explicit permission from Sarah to include the figure
  585. \end_layout
  586. \end_inset
  587. \end_layout
  588. \begin_layout Itemize
  589. Table of numbers of genes different between N & M at each time point, showing
  590. dwindling differences at later time points, consistent with convergence
  591. \end_layout
  592. \begin_layout Itemize
  593. Similar figure for H3K27me3 showing lack of convergence
  594. \end_layout
  595. \begin_layout Subsection
  596. Effect of promoter coverage upstream vs downstream of TSS
  597. \end_layout
  598. \begin_layout Itemize
  599. H3K4me peaks seem to correlate with increased expression as long as they
  600. are anywhere near the TSS
  601. \end_layout
  602. \begin_layout Itemize
  603. H3K27me3 peaks can have different correlations to gene expression depending
  604. on their position relative to TSS (e.g.
  605. upstream vs downstream) Results consistent with
  606. \begin_inset CommandInset citation
  607. LatexCommand cite
  608. key "Young2011"
  609. literal "false"
  610. \end_inset
  611. \end_layout
  612. \begin_layout Section
  613. Discussion
  614. \end_layout
  615. \begin_layout Itemize
  616. "Promoter radius" is not constant and must be defined empirically for a
  617. given data set
  618. \end_layout
  619. \begin_layout Itemize
  620. MOFA shows great promise for accelerating discovery of major biological
  621. effects in multi-omics datasets
  622. \end_layout
  623. \begin_deeper
  624. \begin_layout Itemize
  625. MOFA was added to this analysis late and played primarily a confirmatory
  626. role, but it was able to confirm earlier conclusions with much less prior
  627. information (no sample labels) and much less analyst effort
  628. \end_layout
  629. \begin_layout Itemize
  630. MOFA confirmed that the already-implemented batch correction in the RNA-seq
  631. data was already performing as well as possible given the limitations of
  632. the data
  633. \end_layout
  634. \end_deeper
  635. \begin_layout Itemize
  636. Naive-to-memory convergence implies that naive cells are differentiating
  637. into memory cells, and that gene expression and H3K4 methylation are involved
  638. in this differentiation while H3K27me3 is less involved
  639. \end_layout
  640. \begin_layout Itemize
  641. H3K27me3, canonically regarded as a deactivating mark, seems to have a more
  642. complex
  643. \end_layout
  644. \begin_layout Itemize
  645. Discuss advantages of developing using a reproducible workflow
  646. \end_layout
  647. \begin_layout Chapter
  648. Improving array-based analyses of transplant rejection by optimizing data
  649. preprocessing
  650. \end_layout
  651. \begin_layout Standard
  652. \begin_inset Note Note
  653. status open
  654. \begin_layout Plain Layout
  655. Author list: Me, Sunil, Tom, Padma, Dan
  656. \end_layout
  657. \end_inset
  658. \end_layout
  659. \begin_layout Section
  660. Approach
  661. \end_layout
  662. \begin_layout Subsection
  663. fRMA for classifiers
  664. \end_layout
  665. \begin_layout Itemize
  666. RMA makes the normalization of every sample depend on all other samples
  667. due to the quantile normalization and median polish steps
  668. \end_layout
  669. \begin_deeper
  670. \begin_layout Itemize
  671. This makes standard RMA impractical to apply in a machine learning context,
  672. because adding in the new sample(s) to be classified changes the normalization
  673. of all samples
  674. \end_layout
  675. \end_deeper
  676. \begin_layout Itemize
  677. Machine-learning applications demand a "single-channel" normalization method
  678. \end_layout
  679. \begin_layout Itemize
  680. Frozen RMA (fRMA) addresses these concerns by replacing the quantile normalizati
  681. on and median polish with alternatives that do not introduce inter-array
  682. dependence, allowing each array to be normalized independently of all others
  683. \begin_inset CommandInset citation
  684. LatexCommand cite
  685. key "McCall2010"
  686. literal "false"
  687. \end_inset
  688. .
  689. \end_layout
  690. \begin_deeper
  691. \begin_layout Itemize
  692. Quantile normalization is performed against a pre-generated set of quantiles
  693. learned from a large collection of publically available array data in GEO
  694. \end_layout
  695. \begin_layout Itemize
  696. Median polish is replaced with a weighted average of probes, using weights
  697. learned form the same public GEO data
  698. \end_layout
  699. \begin_layout Itemize
  700. With fRMA, there is no difference between normalizaing
  701. \begin_inset Quotes eld
  702. \end_inset
  703. together
  704. \begin_inset Quotes erd
  705. \end_inset
  706. or separately, and any normalized sample can be compared to any other
  707. \end_layout
  708. \end_deeper
  709. \begin_layout Itemize
  710. frozen RMA is a good solution for common array platforms with large amounts
  711. of publically available data, but for less common platforms, ready-made
  712. normalization vectors are not provided, so custom vectors must be learned
  713. from in-house data
  714. \end_layout
  715. \begin_layout Subsection
  716. Adapting voom to model heteroskedasticity in methylation array data
  717. \end_layout
  718. \begin_layout Itemize
  719. Methylation array data preprocessing induces heteroskedasticity
  720. \end_layout
  721. \begin_deeper
  722. \begin_layout Itemize
  723. β
  724. \series bold
  725. \series default
  726. values, interpreted as fraction of copies methylated, range from 0 to 1.
  727. \end_layout
  728. \begin_layout Itemize
  729. β
  730. \series bold
  731. \series default
  732. values, with their constrained range, are highly non-normal and not suitable
  733. for linear modeling
  734. \end_layout
  735. \begin_layout Itemize
  736. M-values, interpreted as ratio of methyled to unmethylated copies, maps
  737. the beta values from
  738. \begin_inset Formula $[0,1]$
  739. \end_inset
  740. onto
  741. \begin_inset Formula $(-\infty,+\infty)$
  742. \end_inset
  743. , also transforming them to have approximately normally distributed error
  744. \end_layout
  745. \end_deeper
  746. \begin_layout Standard
  747. \begin_inset Float figure
  748. wide false
  749. sideways false
  750. status open
  751. \begin_layout Plain Layout
  752. \begin_inset Graphics
  753. filename graphics/methylvoom/sigmoid.pdf
  754. \end_inset
  755. \end_layout
  756. \begin_layout Plain Layout
  757. \begin_inset Caption Standard
  758. \begin_layout Plain Layout
  759. \begin_inset CommandInset label
  760. LatexCommand label
  761. name "fig:Sigmoid-beta-m-mapping"
  762. \end_inset
  763. \series bold
  764. Sigmoid shape of the mapping between β and M values
  765. \end_layout
  766. \end_inset
  767. \end_layout
  768. \begin_layout Plain Layout
  769. \end_layout
  770. \end_inset
  771. \end_layout
  772. \begin_layout Itemize
  773. However, the sigmoid transformation (Figure
  774. \begin_inset CommandInset ref
  775. LatexCommand ref
  776. reference "fig:Sigmoid-beta-m-mapping"
  777. plural "false"
  778. caps "false"
  779. noprefix "false"
  780. \end_inset
  781. ) over-exaggerates the variance of extreme values, leading to a U-shaped
  782. trend in the mean-variance curve
  783. \end_layout
  784. \begin_layout Itemize
  785. This mean-variance dependency must be accounted for when fitting the linear
  786. model for differential methylation
  787. \end_layout
  788. \begin_layout Itemize
  789. Voom method, originally developed for RNA-seq data, can model mean-variance
  790. dependence
  791. \end_layout
  792. \begin_deeper
  793. \begin_layout Itemize
  794. Standard implementation of voom assumes the input is read counts, and adjustment
  795. s are required to run it on M-values.
  796. \end_layout
  797. \begin_layout Itemize
  798. \begin_inset Flex TODO Note (inline)
  799. status open
  800. \begin_layout Plain Layout
  801. Put code on Github and reference it
  802. \end_layout
  803. \end_inset
  804. \end_layout
  805. \end_deeper
  806. \begin_layout Itemize
  807. Other methods, such as duplicateCorrelation and arrayWeights, are also applicabl
  808. e with no need for custom adaptation
  809. \end_layout
  810. \begin_layout Section
  811. Methods
  812. \end_layout
  813. \begin_layout Subsection
  814. fRMA
  815. \end_layout
  816. \begin_layout Itemize
  817. Expression array normalization for detecting acute rejection
  818. \end_layout
  819. \begin_layout Itemize
  820. Use frozen RMA, a single-channel variant of RMA
  821. \end_layout
  822. \begin_layout Itemize
  823. Generate custom fRMA normalization vectors for each tissue (biopsy, blood)
  824. \end_layout
  825. \begin_layout Subsubsection
  826. Methylation arrays
  827. \end_layout
  828. \begin_layout Itemize
  829. Methylation arrays for differential methylation in rejection vs.
  830. healthy transplant
  831. \end_layout
  832. \begin_layout Itemize
  833. Adapt voom method originally designed for RNA-seq to model mean-variance
  834. dependence
  835. \end_layout
  836. \begin_layout Itemize
  837. Use sample precision weighting, duplicateCorrelation, and sva to adjust
  838. for other confounding factors
  839. \end_layout
  840. \begin_layout Section
  841. Results
  842. \end_layout
  843. \begin_layout Standard
  844. \begin_inset Flex TODO Note (inline)
  845. status open
  846. \begin_layout Plain Layout
  847. Improve subsection titles in this section
  848. \end_layout
  849. \end_inset
  850. \end_layout
  851. \begin_layout Subsection
  852. fRMA eliminates unwanted dependence of classifier training on normalization
  853. strategy caused by RMA
  854. \end_layout
  855. \begin_layout Itemize
  856. Data set consists of training set (23 TX, 35 AR, 21 ADNR), validation set
  857. (23 TX, 34 AR, 21 ADNR), and external validation set gathered from public
  858. GEO data (37 TX, 38 AR, no ADNR), all on standard hgu133plus2 Affy arrays
  859. \begin_inset CommandInset citation
  860. LatexCommand cite
  861. key "Kurian2014"
  862. literal "true"
  863. \end_inset
  864. \end_layout
  865. \begin_layout Standard
  866. \begin_inset Float figure
  867. wide false
  868. sideways false
  869. status open
  870. \begin_layout Plain Layout
  871. \begin_inset Graphics
  872. filename graphics/PAM/predplot.pdf
  873. \end_inset
  874. \end_layout
  875. \begin_layout Plain Layout
  876. \begin_inset Caption Standard
  877. \begin_layout Plain Layout
  878. \begin_inset CommandInset label
  879. LatexCommand label
  880. name "fig:Classifier-probabilities-RMA"
  881. \end_inset
  882. \series bold
  883. Classifier probabilities on validation samples when normalized with RMA
  884. together vs.
  885. separately.
  886. \end_layout
  887. \end_inset
  888. \end_layout
  889. \begin_layout Plain Layout
  890. \end_layout
  891. \end_inset
  892. \end_layout
  893. \begin_layout Itemize
  894. When validation samples are normalized separately from training samples,
  895. the classifier becomes biased relative to normalizing all samples together
  896. (Fig.
  897. \begin_inset CommandInset ref
  898. LatexCommand ref
  899. reference "fig:Classifier-probabilities-RMA"
  900. plural "false"
  901. caps "false"
  902. noprefix "false"
  903. \end_inset
  904. )
  905. \end_layout
  906. \begin_layout Itemize
  907. Normalizing all samples together is not feasible in a clinical context,
  908. so ordinary RMA is unsuitable
  909. \end_layout
  910. \begin_layout Itemize
  911. fRMA eliminates this issue by normalizing each sample independently to the
  912. same quantile distribution and summarizing probes using the same weights.
  913. \end_layout
  914. \begin_layout Itemize
  915. Classifier performance on validation set is identical for
  916. \begin_inset Quotes eld
  917. \end_inset
  918. RMA together
  919. \begin_inset Quotes erd
  920. \end_inset
  921. and fRMA, so switching to clinically applicable normalization does not
  922. sacrifice accuracy
  923. \end_layout
  924. \begin_layout Standard
  925. \begin_inset Flex TODO Note (inline)
  926. status open
  927. \begin_layout Plain Layout
  928. Check the published paper for any other possibly relevant figures to include
  929. here.
  930. \end_layout
  931. \end_inset
  932. \end_layout
  933. \begin_layout Subsection
  934. fRMA with custom-generated vectors
  935. \end_layout
  936. \begin_layout Itemize
  937. Non-standard platform hthgu133pluspm - no pre-built fRMA vectors available,
  938. so custom vectors must be learned from in-house data
  939. \end_layout
  940. \begin_layout Itemize
  941. Large body of data available for training fRMA: 341 kidney graft biopsy
  942. samples, 965 blood samples from graft recipients
  943. \end_layout
  944. \begin_deeper
  945. \begin_layout Itemize
  946. But not all samples can be used (see trade-off figure)
  947. \end_layout
  948. \begin_layout Itemize
  949. Figure showing trade-off between more samples per group and fewer groups
  950. with that may samples, to justify choice of number of samples per group
  951. \end_layout
  952. \begin_layout Itemize
  953. pre-generated normalization vectors use ~850 samples
  954. \begin_inset Flex TODO Note (Margin)
  955. status collapsed
  956. \begin_layout Plain Layout
  957. Look up the exact numbers
  958. \end_layout
  959. \end_inset
  960. \begin_inset CommandInset citation
  961. LatexCommand cite
  962. key "McCall2010"
  963. literal "false"
  964. \end_inset
  965. , but are designed to be general across all tissues.
  966. The samples we have are suitable for tissue-specific normalization vectors.
  967. \end_layout
  968. \end_deeper
  969. \begin_layout Itemize
  970. Figure: MA plot, RMA vs fRMA, to show that the normalization is appreciably
  971. and non-linearly different
  972. \end_layout
  973. \begin_layout Itemize
  974. Figure MA plot, fRMA vs fRMA with different randomly-chosen sample subsets
  975. to show consistency
  976. \end_layout
  977. \begin_layout Itemize
  978. custom fRMA normalization improved cross-validated classifier performance
  979. \end_layout
  980. \begin_layout Standard
  981. \begin_inset Flex TODO Note (inline)
  982. status open
  983. \begin_layout Plain Layout
  984. Get a figure from Tom showing classifier performance improvement (compared
  985. to all-sample RMA, I guess?), if possible
  986. \end_layout
  987. \end_inset
  988. \end_layout
  989. \begin_layout Subsection
  990. Adapting voom to methylation array data improves model fit
  991. \end_layout
  992. \begin_layout Itemize
  993. voom, precision weights, and sva improved model fit
  994. \end_layout
  995. \begin_deeper
  996. \begin_layout Itemize
  997. Also increased sensitivity for detecting differential methylation
  998. \end_layout
  999. \end_deeper
  1000. \begin_layout Itemize
  1001. Figure showing (a) heteroskedasticy without voom, (b) voom-modeled mean-variance
  1002. trend, and (c) homoskedastic mean-variance trend after running voom
  1003. \end_layout
  1004. \begin_layout Itemize
  1005. Figure showing sample weights and their relations to
  1006. \end_layout
  1007. \begin_layout Itemize
  1008. Figure showing MDS plot with and without SVA correction
  1009. \end_layout
  1010. \begin_layout Itemize
  1011. Figure and/or table showing improved p-value historgrams/number of significant
  1012. genes (might need to get this from Padma)
  1013. \end_layout
  1014. \begin_layout Section
  1015. Discussion
  1016. \end_layout
  1017. \begin_layout Itemize
  1018. fRMA enables classifying new samples without re-normalizing the entire data
  1019. set
  1020. \end_layout
  1021. \begin_deeper
  1022. \begin_layout Itemize
  1023. Critical for translating a classifier into clinical practice
  1024. \end_layout
  1025. \end_deeper
  1026. \begin_layout Itemize
  1027. Methods like voom designed for RNA-seq can also help with array analysis
  1028. \end_layout
  1029. \begin_layout Itemize
  1030. Extracting and modeling confounders common to many features improves model
  1031. correspondence to known biology
  1032. \end_layout
  1033. \begin_layout Chapter
  1034. Globin-blocking for more effective blood RNA-seq analysis in primate animal
  1035. model
  1036. \end_layout
  1037. \begin_layout Standard
  1038. \begin_inset Flex TODO Note (inline)
  1039. status open
  1040. \begin_layout Plain Layout
  1041. Choose between above and the paper title: Optimizing yield of deep RNA sequencin
  1042. g for gene expression profiling by globin reduction of peripheral blood
  1043. samples from cynomolgus monkeys (Macaca fascicularis).
  1044. \end_layout
  1045. \end_inset
  1046. \end_layout
  1047. \begin_layout Standard
  1048. \begin_inset Flex TODO Note (inline)
  1049. status open
  1050. \begin_layout Plain Layout
  1051. Chapter author list: https://tex.stackexchange.com/questions/156862/displaying-aut
  1052. hor-for-each-chapter-in-book Every chapter gets an author list, which may
  1053. or may not be part of a citation to a published/preprinted paper.
  1054. \end_layout
  1055. \end_inset
  1056. \end_layout
  1057. \begin_layout Standard
  1058. \begin_inset Flex TODO Note (inline)
  1059. status open
  1060. \begin_layout Plain Layout
  1061. Preprint then cite the paper
  1062. \end_layout
  1063. \end_inset
  1064. \end_layout
  1065. \begin_layout Section*
  1066. Abstract
  1067. \end_layout
  1068. \begin_layout Paragraph
  1069. Background
  1070. \end_layout
  1071. \begin_layout Standard
  1072. Primate blood contains high concentrations of globin messenger RNA.
  1073. Globin reduction is a standard technique used to improve the expression
  1074. results obtained by DNA microarrays on RNA from blood samples.
  1075. However, with whole transcriptome RNA-sequencing (RNA-seq) quickly replacing
  1076. microarrays for many applications, the impact of globin reduction for RNA-seq
  1077. has not been previously studied.
  1078. Moreover, no off-the-shelf kits are available for globin reduction in nonhuman
  1079. primates.
  1080. \end_layout
  1081. \begin_layout Paragraph
  1082. Results
  1083. \end_layout
  1084. \begin_layout Standard
  1085. Here we report a protocol for RNA-seq in primate blood samples that uses
  1086. complimentary oligonucleotides to block reverse transcription of the alpha
  1087. and beta globin genes.
  1088. In test samples from cynomolgus monkeys (Macaca fascicularis), this globin
  1089. blocking protocol approximately doubles the yield of informative (non-globin)
  1090. reads by greatly reducing the fraction of globin reads, while also improving
  1091. the consistency in sequencing depth between samples.
  1092. The increased yield enables detection of about 2000 more genes, significantly
  1093. increases the correlation in measured gene expression levels between samples,
  1094. and increases the sensitivity of differential gene expression tests.
  1095. \end_layout
  1096. \begin_layout Paragraph
  1097. Conclusions
  1098. \end_layout
  1099. \begin_layout Standard
  1100. These results show that globin blocking significantly improves the cost-effectiv
  1101. eness of mRNA sequencing in primate blood samples by doubling the yield
  1102. of useful reads, allowing detection of more genes, and improving the precision
  1103. of gene expression measurements.
  1104. Based on these results, a globin reducing or blocking protocol is recommended
  1105. for all RNA-seq studies of primate blood samples.
  1106. \end_layout
  1107. \begin_layout Section
  1108. Approach
  1109. \end_layout
  1110. \begin_layout Standard
  1111. \begin_inset Note Note
  1112. status open
  1113. \begin_layout Plain Layout
  1114. Consider putting some of this in the Intro chapter
  1115. \end_layout
  1116. \begin_layout Itemize
  1117. Cynomolgus monkeys as a model organism
  1118. \end_layout
  1119. \begin_deeper
  1120. \begin_layout Itemize
  1121. Highly related to humans
  1122. \end_layout
  1123. \begin_layout Itemize
  1124. Small size and short life cycle - good research animal
  1125. \end_layout
  1126. \begin_layout Itemize
  1127. Genomics resources still in development
  1128. \end_layout
  1129. \end_deeper
  1130. \begin_layout Itemize
  1131. Inadequacy of existing blood RNA-seq protocols
  1132. \end_layout
  1133. \begin_deeper
  1134. \begin_layout Itemize
  1135. Existing protocols use a separate globin pulldown step, slowing down processing
  1136. \end_layout
  1137. \end_deeper
  1138. \end_inset
  1139. \end_layout
  1140. \begin_layout Standard
  1141. Increasingly, researchers are turning to high-throughput mRNA sequencing
  1142. technologies (RNA-seq) in preference to expression microarrays for analysis
  1143. of gene expression
  1144. \begin_inset CommandInset citation
  1145. LatexCommand cite
  1146. key "Mutz2012"
  1147. literal "false"
  1148. \end_inset
  1149. .
  1150. The advantages are even greater for study of model organisms with no well-estab
  1151. lished array platforms available, such as the cynomolgus monkey (Macaca
  1152. fascicularis).
  1153. High fractions of globin mRNA are naturally present in mammalian peripheral
  1154. blood samples (up to 70% of total mRNA) and these are known to interfere
  1155. with the results of array-based expression profiling
  1156. \begin_inset CommandInset citation
  1157. LatexCommand cite
  1158. key "Winn2010"
  1159. literal "false"
  1160. \end_inset
  1161. .
  1162. The importance of globin reduction for RNA-seq of blood has only been evaluated
  1163. for a deepSAGE protocol on human samples
  1164. \begin_inset CommandInset citation
  1165. LatexCommand cite
  1166. key "Mastrokolias2012"
  1167. literal "false"
  1168. \end_inset
  1169. .
  1170. In the present report, we evaluated globin reduction using custom blocking
  1171. oligonucleotides for deep RNA-seq of peripheral blood samples from a nonhuman
  1172. primate, cynomolgus monkey, using the Illumina technology platform.
  1173. We demonstrate that globin reduction significantly improves the cost-effectiven
  1174. ess of RNA-seq in blood samples.
  1175. Thus, our protocol offers a significant advantage to any investigator planning
  1176. to use RNA-seq for gene expression profiling of nonhuman primate blood
  1177. samples.
  1178. Our method can be generally applied to any species by designing complementary
  1179. oligonucleotide blocking probes to the globin gene sequences of that species.
  1180. Indeed, any highly expressed but biologically uninformative transcripts
  1181. can also be blocked to further increase sequencing efficiency and value
  1182. \begin_inset CommandInset citation
  1183. LatexCommand cite
  1184. key "Arnaud2016"
  1185. literal "false"
  1186. \end_inset
  1187. .
  1188. \end_layout
  1189. \begin_layout Section
  1190. Methods
  1191. \end_layout
  1192. \begin_layout Subsection*
  1193. Sample collection
  1194. \end_layout
  1195. \begin_layout Standard
  1196. All research reported here was done under IACUC-approved protocols at the
  1197. University of Miami and complied with all applicable federal and state
  1198. regulations and ethical principles for nonhuman primate research.
  1199. Blood draws occurred between 16 April 2012 and 18 June 2015.
  1200. The experimental system involved intrahepatic pancreatic islet transplantation
  1201. into Cynomolgus monkeys with induced diabetes mellitus with or without
  1202. concomitant infusion of mesenchymal stem cells.
  1203. Blood was collected at serial time points before and after transplantation
  1204. into PAXgene Blood RNA tubes (PreAnalytiX/Qiagen, Valencia, CA) at the
  1205. precise volume:volume ratio of 2.5 ml whole blood into 6.9 ml of PAX gene
  1206. additive.
  1207. \end_layout
  1208. \begin_layout Subsection*
  1209. Globin Blocking
  1210. \end_layout
  1211. \begin_layout Standard
  1212. Four oligonucleotides were designed to hybridize to the 3’ end of the transcript
  1213. s for Cynomolgus HBA1, HBA2 and HBB, with two hybridization sites for HBB
  1214. and 2 sites for HBA (the chosen sites were identical in both HBA genes).
  1215. All oligos were purchased from Sigma and were entirely composed of 2’O-Me
  1216. bases with a C3 spacer positioned at the 3’ ends to prevent any polymerase
  1217. mediated primer extension.
  1218. \end_layout
  1219. \begin_layout Quote
  1220. HBA1/2 site 1: GCCCACUCAGACUUUAUUCAAAG-C3spacer
  1221. \end_layout
  1222. \begin_layout Quote
  1223. HBA1/2 site 2: GGUGCAAGGAGGGGAGGAG-C3spacer
  1224. \end_layout
  1225. \begin_layout Quote
  1226. HBB site 1: AAUGAAAAUAAAUGUUUUUUAUUAG-C3spacer
  1227. \end_layout
  1228. \begin_layout Quote
  1229. HBB site 2: CUCAAGGCCCUUCAUAAUAUCCC-C3spacer
  1230. \end_layout
  1231. \begin_layout Subsection*
  1232. RNA-seq Library Preparation
  1233. \end_layout
  1234. \begin_layout Standard
  1235. Sequencing libraries were prepared with 200ng total RNA from each sample.
  1236. Polyadenylated mRNA was selected from 200 ng aliquots of cynomologus blood-deri
  1237. ved total RNA using Ambion Dynabeads Oligo(dT)25 beads (Invitrogen) following
  1238. manufacturer’s recommended protocol.
  1239. PolyA selected RNA was then combined with 8 pmol of HBA1/2 (site 1), 8
  1240. pmol of HBA1/2 (site 2), 12 pmol of HBB (site 1) and 12 pmol of HBB (site
  1241. 2) oligonucleotides.
  1242. In addition, 20 pmol of RT primer containing a portion of the Illumina
  1243. adapter sequence (B-oligo-dTV: GAGTTCCTTGGCACCCGAGAATTCCATTTTTTTTTTTTTTTTTTTV)
  1244. and 4 µL of 5X First Strand buffer (250 mM Tris-HCl pH 8.3, 375 mM KCl,
  1245. 15mM MgCl2) were added in a total volume of 15 µL.
  1246. The RNA was fragmented by heating this cocktail for 3 minutes at 95°C and
  1247. then placed on ice.
  1248. This was followed by the addition of 2 µL 0.1 M DTT, 1 µL RNaseOUT, 1 µL
  1249. 10mM dNTPs 10% biotin-16 aminoallyl-2’- dUTP and 10% biotin-16 aminoallyl-2’-
  1250. dCTP (TriLink Biotech, San Diego, CA), 1 µL Superscript II (200U/ µL, Thermo-Fi
  1251. sher).
  1252. A second “unblocked” library was prepared in the same way for each sample
  1253. but replacing the blocking oligos with an equivalent volume of water.
  1254. The reaction was carried out at 25°C for 15 minutes and 42°C for 40 minutes,
  1255. followed by incubation at 75°C for 10 minutes to inactivate the reverse
  1256. transcriptase.
  1257. \end_layout
  1258. \begin_layout Standard
  1259. The cDNA/RNA hybrid molecules were purified using 1.8X Ampure XP beads (Agencourt
  1260. ) following supplier’s recommended protocol.
  1261. The cDNA/RNA hybrid was eluted in 25 µL of 10 mM Tris-HCl pH 8.0, and then
  1262. bound to 25 µL of M280 Magnetic Streptavidin beads washed per recommended
  1263. protocol (Thermo-Fisher).
  1264. After 30 minutes of binding, beads were washed one time in 100 µL 0.1N NaOH
  1265. to denature and remove the bound RNA, followed by two 100 µL washes with
  1266. 1X TE buffer.
  1267. \end_layout
  1268. \begin_layout Standard
  1269. Subsequent attachment of the 5-prime Illumina A adapter was performed by
  1270. on-bead random primer extension of the following sequence (A-N8 primer:
  1271. TTCAGAGTTCTACAGTCCGACGATCNNNNNNNN).
  1272. Briefly, beads were resuspended in a 20 µL reaction containing 5 µM A-N8
  1273. primer, 40mM Tris-HCl pH 7.5, 20mM MgCl2, 50mM NaCl, 0.325U/µL Sequenase
  1274. 2.0 (Affymetrix, Santa Clara, CA), 0.0025U/µL inorganic pyrophosphatase (Affymetr
  1275. ix) and 300 µM each dNTP.
  1276. Reaction was incubated at 22°C for 30 minutes, then beads were washed 2
  1277. times with 1X TE buffer (200µL).
  1278. \end_layout
  1279. \begin_layout Standard
  1280. The magnetic streptavidin beads were resuspended in 34 µL nuclease-free
  1281. water and added directly to a PCR tube.
  1282. The two Illumina protocol-specified PCR primers were added at 0.53 µM (Illumina
  1283. TruSeq Universal Primer 1 and Illumina TruSeq barcoded PCR primer 2), along
  1284. with 40 µL 2X KAPA HiFi Hotstart ReadyMix (KAPA, Willmington MA) and thermocycl
  1285. ed as follows: starting with 98°C (2 min-hold); 15 cycles of 98°C, 20sec;
  1286. 60°C, 30sec; 72°C, 30sec; and finished with a 72°C (2 min-hold).
  1287. \end_layout
  1288. \begin_layout Standard
  1289. PCR products were purified with 1X Ampure Beads following manufacturer’s
  1290. recommended protocol.
  1291. Libraries were then analyzed using the Agilent TapeStation and quantitation
  1292. of desired size range was performed by “smear analysis”.
  1293. Samples were pooled in equimolar batches of 16 samples.
  1294. Pooled libraries were size selected on 2% agarose gels (E-Gel EX Agarose
  1295. Gels; Thermo-Fisher).
  1296. Products were cut between 250 and 350 bp (corresponding to insert sizes
  1297. of 130 to 230 bps).
  1298. Finished library pools were then sequenced on the Illumina NextSeq500 instrumen
  1299. t with 75 base read lengths.
  1300. \end_layout
  1301. \begin_layout Subsection*
  1302. Read alignment and counting
  1303. \end_layout
  1304. \begin_layout Standard
  1305. Reads were aligned to the cynomolgus genome using STAR
  1306. \begin_inset CommandInset citation
  1307. LatexCommand cite
  1308. key "Dobin2013,Wilson2013"
  1309. literal "false"
  1310. \end_inset
  1311. .
  1312. Counts of uniquely mapped reads were obtained for every gene in each sample
  1313. with the “featureCounts” function from the Rsubread package, using each
  1314. of the three possibilities for the “strandSpecific” option: sense, antisense,
  1315. and unstranded
  1316. \begin_inset CommandInset citation
  1317. LatexCommand cite
  1318. key "Liao2014"
  1319. literal "false"
  1320. \end_inset
  1321. .
  1322. A few artifacts in the cynomolgus genome annotation complicated read counting.
  1323. First, no ortholog is annotated for alpha globin in the cynomolgus genome,
  1324. presumably because the human genome has two alpha globin genes with nearly
  1325. identical sequences, making the orthology relationship ambiguous.
  1326. However, two loci in the cynomolgus genome are as “hemoglobin subunit alpha-lik
  1327. e” (LOC102136192 and LOC102136846).
  1328. LOC102136192 is annotated as a pseudogene while LOC102136846 is annotated
  1329. as protein-coding.
  1330. Our globin reduction protocol was designed to include blocking of these
  1331. two genes.
  1332. Indeed, these two genes have almost the same read counts in each library
  1333. as the properly-annotated HBB gene and much larger counts than any other
  1334. gene in the unblocked libraries, giving confidence that reads derived from
  1335. the real alpha globin are mapping to both genes.
  1336. Thus, reads from both of these loci were counted as alpha globin reads
  1337. in all further analyses.
  1338. The second artifact is a small, uncharacterized non-coding RNA gene (LOC1021365
  1339. 91), which overlaps the HBA-like gene (LOC102136192) on the opposite strand.
  1340. If counting is not performed in stranded mode (or if a non-strand-specific
  1341. sequencing protocol is used), many reads mapping to the globin gene will
  1342. be discarded as ambiguous due to their overlap with this ncRNA gene, resulting
  1343. in significant undercounting of globin reads.
  1344. Therefore, stranded sense counts were used for all further analysis in
  1345. the present study to insure that we accurately accounted for globin transcript
  1346. reduction.
  1347. However, we note that stranded reads are not necessary for RNA-seq using
  1348. our protocol in standard practice.
  1349. \end_layout
  1350. \begin_layout Subsection*
  1351. Normalization and Exploratory Data Analysis
  1352. \end_layout
  1353. \begin_layout Standard
  1354. Libraries were normalized by computing scaling factors using the edgeR package’s
  1355. Trimmed Mean of M-values method
  1356. \begin_inset CommandInset citation
  1357. LatexCommand cite
  1358. key "Robinson2010"
  1359. literal "false"
  1360. \end_inset
  1361. .
  1362. Log2 counts per million values (logCPM) were calculated using the cpm function
  1363. in edgeR for individual samples and aveLogCPM function for averages across
  1364. groups of samples, using those functions’ default prior count values to
  1365. avoid taking the logarithm of 0.
  1366. Genes were considered “present” if their average normalized logCPM values
  1367. across all libraries were at least -1.
  1368. Normalizing for gene length was unnecessary because the sequencing protocol
  1369. is 3’-biased and hence the expected read count for each gene is related
  1370. to the transcript’s copy number but not its length.
  1371. \end_layout
  1372. \begin_layout Standard
  1373. In order to assess the effect of blocking on reproducibility, Pearson and
  1374. Spearman correlation coefficients were computed between the logCPM values
  1375. for every pair of libraries within the globin-blocked (GB) and unblocked
  1376. (non-GB) groups, and edgeR's “estimateDisp” function was used to compute
  1377. negative binomial dispersions separately for the two groups
  1378. \begin_inset CommandInset citation
  1379. LatexCommand cite
  1380. key "Chen2014"
  1381. literal "false"
  1382. \end_inset
  1383. .
  1384. \end_layout
  1385. \begin_layout Subsection*
  1386. Differential Expression Analysis
  1387. \end_layout
  1388. \begin_layout Standard
  1389. All tests for differential gene expression were performed using edgeR, by
  1390. first fitting a negative binomial generalized linear model to the counts
  1391. and normalization factors and then performing a quasi-likelihood F-test
  1392. with robust estimation of outlier gene dispersions
  1393. \begin_inset CommandInset citation
  1394. LatexCommand cite
  1395. key "Lund2012,Phipson2016"
  1396. literal "false"
  1397. \end_inset
  1398. .
  1399. To investigate the effects of globin blocking on each gene, an additive
  1400. model was fit to the full data with coefficients for globin blocking and
  1401. SampleID.
  1402. To test the effect of globin blocking on detection of differentially expressed
  1403. genes, the GB samples and non-GB samples were each analyzed independently
  1404. as follows: for each animal with both a pre-transplant and a post-transplant
  1405. time point in the data set, the pre-transplant sample and the earliest
  1406. post-transplant sample were selected, and all others were excluded, yielding
  1407. a pre-/post-transplant pair of samples for each animal (N=7 animals with
  1408. paired samples).
  1409. These samples were analyzed for pre-transplant vs.
  1410. post-transplant differential gene expression while controlling for inter-animal
  1411. variation using an additive model with coefficients for transplant and
  1412. animal ID.
  1413. In all analyses, p-values were adjusted using the Benjamini-Hochberg procedure
  1414. for FDR correction
  1415. \begin_inset CommandInset citation
  1416. LatexCommand cite
  1417. key "Benjamini1995"
  1418. literal "false"
  1419. \end_inset
  1420. .
  1421. \end_layout
  1422. \begin_layout Standard
  1423. \begin_inset Note Note
  1424. status open
  1425. \begin_layout Itemize
  1426. New blood RNA-seq protocol to block reverse transcription of globin genes
  1427. \end_layout
  1428. \begin_layout Itemize
  1429. Blood RNA-seq time course after transplants with/without MSC infusion
  1430. \end_layout
  1431. \end_inset
  1432. \end_layout
  1433. \begin_layout Section
  1434. Results
  1435. \end_layout
  1436. \begin_layout Subsection*
  1437. Globin blocking yields a larger and more consistent fraction of useful reads
  1438. \end_layout
  1439. \begin_layout Standard
  1440. The objective of the present study was to validate a new protocol for deep
  1441. RNA-seq of whole blood drawn into PaxGene tubes from cynomolgus monkeys
  1442. undergoing islet transplantation, with particular focus on minimizing the
  1443. loss of useful sequencing space to uninformative globin reads.
  1444. The details of the analysis with respect to transplant outcomes and the
  1445. impact of mesenchymal stem cell treatment will be reported in a separate
  1446. manuscript (in preparation).
  1447. To focus on the efficacy of our globin blocking protocol, 37 blood samples,
  1448. 16 from pre-transplant and 21 from post-transplant time points, were each
  1449. prepped once with and once without globin blocking oligos, and were then
  1450. sequenced on an Illumina NextSeq500 instrument.
  1451. The number of reads aligning to each gene in the cynomolgus genome was
  1452. counted.
  1453. Table 1 summarizes the distribution of read fractions among the GB and
  1454. non-GB libraries.
  1455. In the libraries with no globin blocking, globin reads made up an average
  1456. of 44.6% of total input reads, while reads assigned to all other genes made
  1457. up an average of 26.3%.
  1458. The remaining reads either aligned to intergenic regions (that include
  1459. long non-coding RNAs) or did not align with any annotated transcripts in
  1460. the current build of the cynomolgus genome.
  1461. In the GB libraries, globin reads made up only 3.48% and reads assigned
  1462. to all other genes increased to 50.4%.
  1463. Thus, globin blocking resulted in a 92.2% reduction in globin reads and
  1464. a 91.6% increase in yield of useful non-globin reads.
  1465. \end_layout
  1466. \begin_layout Standard
  1467. This reduction is not quite as efficient as the previous analysis showed
  1468. for human samples by DeepSAGE (<0.4% globin reads after globin reduction)
  1469. \begin_inset CommandInset citation
  1470. LatexCommand cite
  1471. key "Mastrokolias2012"
  1472. literal "false"
  1473. \end_inset
  1474. .
  1475. Nonetheless, this degree of globin reduction is sufficient to nearly double
  1476. the yield of useful reads.
  1477. Thus, globin blocking cuts the required sequencing effort (and costs) to
  1478. achieve a target coverage depth by almost 50%.
  1479. Consistent with this near doubling of yield, the average difference in
  1480. un-normalized logCPM across all genes between the GB libraries and non-GB
  1481. libraries is approximately 1 (mean = 1.01, median = 1.08), an overall 2-fold
  1482. increase.
  1483. Un-normalized values are used here because the TMM normalization correctly
  1484. identifies this 2-fold difference as biologically irrelevant and removes
  1485. it.
  1486. \end_layout
  1487. \begin_layout Standard
  1488. \begin_inset Float figure
  1489. wide false
  1490. sideways false
  1491. status open
  1492. \begin_layout Plain Layout
  1493. \align center
  1494. \begin_inset Graphics
  1495. filename graphics/Globin Paper/figure1 - globin-fractions.pdf
  1496. \end_inset
  1497. \end_layout
  1498. \begin_layout Plain Layout
  1499. \begin_inset Caption Standard
  1500. \begin_layout Plain Layout
  1501. \series bold
  1502. \begin_inset Argument 1
  1503. status collapsed
  1504. \begin_layout Plain Layout
  1505. Fraction of genic reads in each sample aligned to non-globin genes, with
  1506. and without globin blocking (GB).
  1507. \end_layout
  1508. \end_inset
  1509. \begin_inset CommandInset label
  1510. LatexCommand label
  1511. name "fig:Fraction-of-genic-reads"
  1512. \end_inset
  1513. Fraction of genic reads in each sample aligned to non-globin genes, with
  1514. and without globin blocking (GB).
  1515. \series default
  1516. All reads in each sequencing library were aligned to the cyno genome, and
  1517. the number of reads uniquely aligning to each gene was counted.
  1518. For each sample, counts were summed separately for all globin genes and
  1519. for the remainder of the genes (non-globin genes), and the fraction of
  1520. genic reads aligned to non-globin genes was computed.
  1521. Each point represents an individual sample.
  1522. Gray + signs indicate the means for globin-blocked libraries and unblocked
  1523. libraries.
  1524. The overall distribution for each group is represented as a notched box
  1525. plots.
  1526. Points are randomly spread vertically to avoid excessive overlapping.
  1527. \end_layout
  1528. \end_inset
  1529. \end_layout
  1530. \begin_layout Plain Layout
  1531. \end_layout
  1532. \end_inset
  1533. \end_layout
  1534. \begin_layout Standard
  1535. \begin_inset Float table
  1536. placement p
  1537. wide false
  1538. sideways true
  1539. status open
  1540. \begin_layout Plain Layout
  1541. \align center
  1542. \begin_inset Tabular
  1543. <lyxtabular version="3" rows="4" columns="7">
  1544. <features tabularvalignment="middle">
  1545. <column alignment="center" valignment="top">
  1546. <column alignment="center" valignment="top">
  1547. <column alignment="center" valignment="top">
  1548. <column alignment="center" valignment="top">
  1549. <column alignment="center" valignment="top">
  1550. <column alignment="center" valignment="top">
  1551. <column alignment="center" valignment="top">
  1552. <row>
  1553. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1554. \begin_inset Text
  1555. \begin_layout Plain Layout
  1556. \end_layout
  1557. \end_inset
  1558. </cell>
  1559. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1560. \begin_inset Text
  1561. \begin_layout Plain Layout
  1562. \family roman
  1563. \series medium
  1564. \shape up
  1565. \size normal
  1566. \emph off
  1567. \bar no
  1568. \strikeout off
  1569. \xout off
  1570. \uuline off
  1571. \uwave off
  1572. \noun off
  1573. \color none
  1574. Percent of Total Reads
  1575. \end_layout
  1576. \end_inset
  1577. </cell>
  1578. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1579. \begin_inset Text
  1580. \begin_layout Plain Layout
  1581. \end_layout
  1582. \end_inset
  1583. </cell>
  1584. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1585. \begin_inset Text
  1586. \begin_layout Plain Layout
  1587. \end_layout
  1588. \end_inset
  1589. </cell>
  1590. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1591. \begin_inset Text
  1592. \begin_layout Plain Layout
  1593. \end_layout
  1594. \end_inset
  1595. </cell>
  1596. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  1597. \begin_inset Text
  1598. \begin_layout Plain Layout
  1599. \family roman
  1600. \series medium
  1601. \shape up
  1602. \size normal
  1603. \emph off
  1604. \bar no
  1605. \strikeout off
  1606. \xout off
  1607. \uuline off
  1608. \uwave off
  1609. \noun off
  1610. \color none
  1611. Percent of Genic Reads
  1612. \end_layout
  1613. \end_inset
  1614. </cell>
  1615. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  1616. \begin_inset Text
  1617. \begin_layout Plain Layout
  1618. \end_layout
  1619. \end_inset
  1620. </cell>
  1621. </row>
  1622. <row>
  1623. <cell alignment="center" valignment="top" bottomline="true" leftline="true" usebox="none">
  1624. \begin_inset Text
  1625. \begin_layout Plain Layout
  1626. GB
  1627. \end_layout
  1628. \end_inset
  1629. </cell>
  1630. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1631. \begin_inset Text
  1632. \begin_layout Plain Layout
  1633. \family roman
  1634. \series medium
  1635. \shape up
  1636. \size normal
  1637. \emph off
  1638. \bar no
  1639. \strikeout off
  1640. \xout off
  1641. \uuline off
  1642. \uwave off
  1643. \noun off
  1644. \color none
  1645. Non-globin Reads
  1646. \end_layout
  1647. \end_inset
  1648. </cell>
  1649. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1650. \begin_inset Text
  1651. \begin_layout Plain Layout
  1652. \family roman
  1653. \series medium
  1654. \shape up
  1655. \size normal
  1656. \emph off
  1657. \bar no
  1658. \strikeout off
  1659. \xout off
  1660. \uuline off
  1661. \uwave off
  1662. \noun off
  1663. \color none
  1664. Globin Reads
  1665. \end_layout
  1666. \end_inset
  1667. </cell>
  1668. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1669. \begin_inset Text
  1670. \begin_layout Plain Layout
  1671. \family roman
  1672. \series medium
  1673. \shape up
  1674. \size normal
  1675. \emph off
  1676. \bar no
  1677. \strikeout off
  1678. \xout off
  1679. \uuline off
  1680. \uwave off
  1681. \noun off
  1682. \color none
  1683. All Genic Reads
  1684. \end_layout
  1685. \end_inset
  1686. </cell>
  1687. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1688. \begin_inset Text
  1689. \begin_layout Plain Layout
  1690. \family roman
  1691. \series medium
  1692. \shape up
  1693. \size normal
  1694. \emph off
  1695. \bar no
  1696. \strikeout off
  1697. \xout off
  1698. \uuline off
  1699. \uwave off
  1700. \noun off
  1701. \color none
  1702. All Aligned Reads
  1703. \end_layout
  1704. \end_inset
  1705. </cell>
  1706. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1707. \begin_inset Text
  1708. \begin_layout Plain Layout
  1709. \family roman
  1710. \series medium
  1711. \shape up
  1712. \size normal
  1713. \emph off
  1714. \bar no
  1715. \strikeout off
  1716. \xout off
  1717. \uuline off
  1718. \uwave off
  1719. \noun off
  1720. \color none
  1721. Non-globin Reads
  1722. \end_layout
  1723. \end_inset
  1724. </cell>
  1725. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  1726. \begin_inset Text
  1727. \begin_layout Plain Layout
  1728. \family roman
  1729. \series medium
  1730. \shape up
  1731. \size normal
  1732. \emph off
  1733. \bar no
  1734. \strikeout off
  1735. \xout off
  1736. \uuline off
  1737. \uwave off
  1738. \noun off
  1739. \color none
  1740. Globin Reads
  1741. \end_layout
  1742. \end_inset
  1743. </cell>
  1744. </row>
  1745. <row>
  1746. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1747. \begin_inset Text
  1748. \begin_layout Plain Layout
  1749. \family roman
  1750. \series medium
  1751. \shape up
  1752. \size normal
  1753. \emph off
  1754. \bar no
  1755. \strikeout off
  1756. \xout off
  1757. \uuline off
  1758. \uwave off
  1759. \noun off
  1760. \color none
  1761. Yes
  1762. \end_layout
  1763. \end_inset
  1764. </cell>
  1765. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1766. \begin_inset Text
  1767. \begin_layout Plain Layout
  1768. \family roman
  1769. \series medium
  1770. \shape up
  1771. \size normal
  1772. \emph off
  1773. \bar no
  1774. \strikeout off
  1775. \xout off
  1776. \uuline off
  1777. \uwave off
  1778. \noun off
  1779. \color none
  1780. 50.4% ± 6.82
  1781. \end_layout
  1782. \end_inset
  1783. </cell>
  1784. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1785. \begin_inset Text
  1786. \begin_layout Plain Layout
  1787. \family roman
  1788. \series medium
  1789. \shape up
  1790. \size normal
  1791. \emph off
  1792. \bar no
  1793. \strikeout off
  1794. \xout off
  1795. \uuline off
  1796. \uwave off
  1797. \noun off
  1798. \color none
  1799. 3.48% ± 2.94
  1800. \end_layout
  1801. \end_inset
  1802. </cell>
  1803. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1804. \begin_inset Text
  1805. \begin_layout Plain Layout
  1806. \family roman
  1807. \series medium
  1808. \shape up
  1809. \size normal
  1810. \emph off
  1811. \bar no
  1812. \strikeout off
  1813. \xout off
  1814. \uuline off
  1815. \uwave off
  1816. \noun off
  1817. \color none
  1818. 53.9% ± 6.81
  1819. \end_layout
  1820. \end_inset
  1821. </cell>
  1822. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1823. \begin_inset Text
  1824. \begin_layout Plain Layout
  1825. \family roman
  1826. \series medium
  1827. \shape up
  1828. \size normal
  1829. \emph off
  1830. \bar no
  1831. \strikeout off
  1832. \xout off
  1833. \uuline off
  1834. \uwave off
  1835. \noun off
  1836. \color none
  1837. 89.7% ± 2.40
  1838. \end_layout
  1839. \end_inset
  1840. </cell>
  1841. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1842. \begin_inset Text
  1843. \begin_layout Plain Layout
  1844. \family roman
  1845. \series medium
  1846. \shape up
  1847. \size normal
  1848. \emph off
  1849. \bar no
  1850. \strikeout off
  1851. \xout off
  1852. \uuline off
  1853. \uwave off
  1854. \noun off
  1855. \color none
  1856. 93.5% ± 5.25
  1857. \end_layout
  1858. \end_inset
  1859. </cell>
  1860. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  1861. \begin_inset Text
  1862. \begin_layout Plain Layout
  1863. \family roman
  1864. \series medium
  1865. \shape up
  1866. \size normal
  1867. \emph off
  1868. \bar no
  1869. \strikeout off
  1870. \xout off
  1871. \uuline off
  1872. \uwave off
  1873. \noun off
  1874. \color none
  1875. 6.49% ± 5.25
  1876. \end_layout
  1877. \end_inset
  1878. </cell>
  1879. </row>
  1880. <row>
  1881. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1882. \begin_inset Text
  1883. \begin_layout Plain Layout
  1884. \family roman
  1885. \series medium
  1886. \shape up
  1887. \size normal
  1888. \emph off
  1889. \bar no
  1890. \strikeout off
  1891. \xout off
  1892. \uuline off
  1893. \uwave off
  1894. \noun off
  1895. \color none
  1896. No
  1897. \end_layout
  1898. \end_inset
  1899. </cell>
  1900. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1901. \begin_inset Text
  1902. \begin_layout Plain Layout
  1903. \family roman
  1904. \series medium
  1905. \shape up
  1906. \size normal
  1907. \emph off
  1908. \bar no
  1909. \strikeout off
  1910. \xout off
  1911. \uuline off
  1912. \uwave off
  1913. \noun off
  1914. \color none
  1915. 26.3% ± 8.95
  1916. \end_layout
  1917. \end_inset
  1918. </cell>
  1919. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1920. \begin_inset Text
  1921. \begin_layout Plain Layout
  1922. \family roman
  1923. \series medium
  1924. \shape up
  1925. \size normal
  1926. \emph off
  1927. \bar no
  1928. \strikeout off
  1929. \xout off
  1930. \uuline off
  1931. \uwave off
  1932. \noun off
  1933. \color none
  1934. 44.6% ± 16.6
  1935. \end_layout
  1936. \end_inset
  1937. </cell>
  1938. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1939. \begin_inset Text
  1940. \begin_layout Plain Layout
  1941. \family roman
  1942. \series medium
  1943. \shape up
  1944. \size normal
  1945. \emph off
  1946. \bar no
  1947. \strikeout off
  1948. \xout off
  1949. \uuline off
  1950. \uwave off
  1951. \noun off
  1952. \color none
  1953. 70.1% ± 9.38
  1954. \end_layout
  1955. \end_inset
  1956. </cell>
  1957. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1958. \begin_inset Text
  1959. \begin_layout Plain Layout
  1960. \family roman
  1961. \series medium
  1962. \shape up
  1963. \size normal
  1964. \emph off
  1965. \bar no
  1966. \strikeout off
  1967. \xout off
  1968. \uuline off
  1969. \uwave off
  1970. \noun off
  1971. \color none
  1972. 90.7% ± 5.16
  1973. \end_layout
  1974. \end_inset
  1975. </cell>
  1976. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1977. \begin_inset Text
  1978. \begin_layout Plain Layout
  1979. \family roman
  1980. \series medium
  1981. \shape up
  1982. \size normal
  1983. \emph off
  1984. \bar no
  1985. \strikeout off
  1986. \xout off
  1987. \uuline off
  1988. \uwave off
  1989. \noun off
  1990. \color none
  1991. 38.8% ± 17.1
  1992. \end_layout
  1993. \end_inset
  1994. </cell>
  1995. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  1996. \begin_inset Text
  1997. \begin_layout Plain Layout
  1998. \family roman
  1999. \series medium
  2000. \shape up
  2001. \size normal
  2002. \emph off
  2003. \bar no
  2004. \strikeout off
  2005. \xout off
  2006. \uuline off
  2007. \uwave off
  2008. \noun off
  2009. \color none
  2010. 61.2% ± 17.1
  2011. \end_layout
  2012. \end_inset
  2013. </cell>
  2014. </row>
  2015. </lyxtabular>
  2016. \end_inset
  2017. \end_layout
  2018. \begin_layout Plain Layout
  2019. \begin_inset Caption Standard
  2020. \begin_layout Plain Layout
  2021. \series bold
  2022. \begin_inset Argument 1
  2023. status collapsed
  2024. \begin_layout Plain Layout
  2025. Fractions of reads mapping to genomic features in GB and non-GB samples.
  2026. \end_layout
  2027. \end_inset
  2028. \begin_inset CommandInset label
  2029. LatexCommand label
  2030. name "tab:Fractions-of-reads"
  2031. \end_inset
  2032. Fractions of reads mapping to genomic features in GB and non-GB samples.
  2033. \series default
  2034. All values are given as mean ± standard deviation.
  2035. \end_layout
  2036. \end_inset
  2037. \end_layout
  2038. \begin_layout Plain Layout
  2039. \end_layout
  2040. \end_inset
  2041. \end_layout
  2042. \begin_layout Standard
  2043. Another important aspect is that the standard deviations in Table
  2044. \begin_inset CommandInset ref
  2045. LatexCommand ref
  2046. reference "tab:Fractions-of-reads"
  2047. plural "false"
  2048. caps "false"
  2049. noprefix "false"
  2050. \end_inset
  2051. are uniformly smaller in the GB samples than the non-GB ones, indicating
  2052. much greater consistency of yield.
  2053. This is best seen in the percentage of non-globin reads as a fraction of
  2054. total reads aligned to annotated genes (genic reads).
  2055. For the non-GB samples, this measure ranges from 10.9% to 80.9%, while for
  2056. the GB samples it ranges from 81.9% to 99.9% (Figure
  2057. \begin_inset CommandInset ref
  2058. LatexCommand ref
  2059. reference "fig:Fraction-of-genic-reads"
  2060. plural "false"
  2061. caps "false"
  2062. noprefix "false"
  2063. \end_inset
  2064. ).
  2065. This means that for applications where it is critical that each sample
  2066. achieve a specified minimum coverage in order to provide useful information,
  2067. it would be necessary to budget up to 10 times the sequencing depth per
  2068. sample without globin blocking, even though the average yield improvement
  2069. for globin blocking is only 2-fold, because every sample has a chance of
  2070. being 90% globin and 10% useful reads.
  2071. Hence, the more consistent behavior of GB samples makes planning an experiment
  2072. easier and more efficient because it eliminates the need to over-sequence
  2073. every sample in order to guard against the worst case of a high-globin
  2074. fraction.
  2075. \end_layout
  2076. \begin_layout Subsection*
  2077. Globin blocking lowers the noise floor and allows detection of about 2000
  2078. more genes
  2079. \end_layout
  2080. \begin_layout Standard
  2081. \begin_inset Flex TODO Note (inline)
  2082. status open
  2083. \begin_layout Plain Layout
  2084. Remove redundant titles from figures
  2085. \end_layout
  2086. \end_inset
  2087. \end_layout
  2088. \begin_layout Standard
  2089. \begin_inset Float figure
  2090. wide false
  2091. sideways false
  2092. status open
  2093. \begin_layout Plain Layout
  2094. \align center
  2095. \begin_inset Graphics
  2096. filename graphics/Globin Paper/figure2 - aveLogCPM-colored.pdf
  2097. \end_inset
  2098. \end_layout
  2099. \begin_layout Plain Layout
  2100. \begin_inset Caption Standard
  2101. \begin_layout Plain Layout
  2102. \series bold
  2103. \begin_inset Argument 1
  2104. status collapsed
  2105. \begin_layout Plain Layout
  2106. Distributions of average group gene abundances when normalized separately
  2107. or together.
  2108. \end_layout
  2109. \end_inset
  2110. \begin_inset CommandInset label
  2111. LatexCommand label
  2112. name "fig:logcpm-dists"
  2113. \end_inset
  2114. Distributions of average group gene abundances when normalized separately
  2115. or together.
  2116. \series default
  2117. All reads in each sequencing library were aligned to the cyno genome, and
  2118. the number of reads uniquely aligning to each gene was counted.
  2119. Genes with zero counts in all libraries were discarded.
  2120. Libraries were normalized using the TMM method.
  2121. Libraries were split into globin-blocked (GB) and non-GB groups and the
  2122. average abundance for each gene in both groups, measured in log2 counts
  2123. per million reads counted, was computed using the aveLogCPM function.
  2124. The distribution of average gene logCPM values was plotted for both groups
  2125. using a kernel density plot to approximate a continuous distribution.
  2126. The logCPM GB distributions are marked in red, non-GB in blue.
  2127. The black vertical line denotes the chosen detection threshold of -1.
  2128. Top panel: Libraries were split into GB and non-GB groups first and normalized
  2129. separately.
  2130. Bottom panel: Libraries were all normalized together first and then split
  2131. into groups.
  2132. \end_layout
  2133. \end_inset
  2134. \end_layout
  2135. \begin_layout Plain Layout
  2136. \end_layout
  2137. \end_inset
  2138. \end_layout
  2139. \begin_layout Standard
  2140. Since globin blocking yields more usable sequencing depth, it should also
  2141. allow detection of more genes at any given threshold.
  2142. When we looked at the distribution of average normalized logCPM values
  2143. across all libraries for genes with at least one read assigned to them,
  2144. we observed the expected bimodal distribution, with a high-abundance "signal"
  2145. peak representing detected genes and a low-abundance "noise" peak representing
  2146. genes whose read count did not rise above the noise floor (Figure
  2147. \begin_inset CommandInset ref
  2148. LatexCommand ref
  2149. reference "fig:logcpm-dists"
  2150. plural "false"
  2151. caps "false"
  2152. noprefix "false"
  2153. \end_inset
  2154. ).
  2155. Consistent with the 2-fold increase in raw counts assigned to non-globin
  2156. genes, the signal peak for GB samples is shifted to the right relative
  2157. to the non-GB signal peak.
  2158. When all the samples are normalized together, this difference is normalized
  2159. out, lining up the signal peaks, and this reveals that, as expected, the
  2160. noise floor for the GB samples is about 2-fold lower.
  2161. This greater separation between signal and noise peaks in the GB samples
  2162. means that low-expression genes should be more easily detected and more
  2163. precisely quantified than in the non-GB samples.
  2164. \end_layout
  2165. \begin_layout Standard
  2166. \begin_inset Float figure
  2167. wide false
  2168. sideways false
  2169. status open
  2170. \begin_layout Plain Layout
  2171. \align center
  2172. \begin_inset Graphics
  2173. filename graphics/Globin Paper/figure3 - detection.pdf
  2174. \end_inset
  2175. \end_layout
  2176. \begin_layout Plain Layout
  2177. \begin_inset Caption Standard
  2178. \begin_layout Plain Layout
  2179. \series bold
  2180. \begin_inset Argument 1
  2181. status collapsed
  2182. \begin_layout Plain Layout
  2183. Gene detections as a function of abundance thresholds in globin-blocked
  2184. (GB) and non-GB samples.
  2185. \end_layout
  2186. \end_inset
  2187. \begin_inset CommandInset label
  2188. LatexCommand label
  2189. name "fig:Gene-detections"
  2190. \end_inset
  2191. Gene detections as a function of abundance thresholds in globin-blocked
  2192. (GB) and non-GB samples.
  2193. \series default
  2194. Average abundance (logCPM,
  2195. \begin_inset Formula $\log_{2}$
  2196. \end_inset
  2197. counts per million reads counted) was computed by separate group normalization
  2198. as described in Figure
  2199. \begin_inset CommandInset ref
  2200. LatexCommand ref
  2201. reference "fig:logcpm-dists"
  2202. plural "false"
  2203. caps "false"
  2204. noprefix "false"
  2205. \end_inset
  2206. for both the GB and non-GB groups, as well as for all samples considered
  2207. as one large group.
  2208. For each every integer threshold from -2 to 3, the number of genes detected
  2209. at or above that logCPM threshold was plotted for each group.
  2210. \end_layout
  2211. \end_inset
  2212. \end_layout
  2213. \begin_layout Plain Layout
  2214. \end_layout
  2215. \end_inset
  2216. \end_layout
  2217. \begin_layout Standard
  2218. Based on these distributions, we selected a detection threshold of -1, which
  2219. is approximately the leftmost edge of the trough between the signal and
  2220. noise peaks.
  2221. This represents the most liberal possible detection threshold that doesn't
  2222. call substantial numbers of noise genes as detected.
  2223. Among the full dataset, 13429 genes were detected at this threshold, and
  2224. 22276 were not.
  2225. When considering the GB libraries and non-GB libraries separately and re-comput
  2226. ing normalization factors independently within each group, 14535 genes were
  2227. detected in the GB libraries while only 12460 were detected in the non-GB
  2228. libraries.
  2229. Thus, GB allowed the detection of 2000 extra genes that were buried under
  2230. the noise floor without GB.
  2231. This pattern of at least 2000 additional genes detected with GB was also
  2232. consistent across a wide range of possible detection thresholds, from -2
  2233. to 3 (see Figure
  2234. \begin_inset CommandInset ref
  2235. LatexCommand ref
  2236. reference "fig:Gene-detections"
  2237. plural "false"
  2238. caps "false"
  2239. noprefix "false"
  2240. \end_inset
  2241. ).
  2242. \end_layout
  2243. \begin_layout Subsection*
  2244. Globin blocking does not add significant additional noise or decrease sample
  2245. quality
  2246. \end_layout
  2247. \begin_layout Standard
  2248. One potential worry is that the globin blocking protocol could perturb the
  2249. levels of non-globin genes.
  2250. There are two kinds of possible perturbations: systematic and random.
  2251. The former is not a major concern for detection of differential expression,
  2252. since a 2-fold change in every sample has no effect on the relative fold
  2253. change between samples.
  2254. In contrast, random perturbations would increase the noise and obscure
  2255. the signal in the dataset, reducing the capacity to detect differential
  2256. expression.
  2257. \end_layout
  2258. \begin_layout Standard
  2259. \begin_inset Float figure
  2260. wide false
  2261. sideways false
  2262. status open
  2263. \begin_layout Plain Layout
  2264. \align center
  2265. \begin_inset Graphics
  2266. filename graphics/Globin Paper/figure4 - maplot-colored.pdf
  2267. \end_inset
  2268. \end_layout
  2269. \begin_layout Plain Layout
  2270. \begin_inset Caption Standard
  2271. \begin_layout Plain Layout
  2272. \begin_inset Argument 1
  2273. status collapsed
  2274. \begin_layout Plain Layout
  2275. MA plot showing effects of globin blocking on each gene's abundance.
  2276. \end_layout
  2277. \end_inset
  2278. \begin_inset CommandInset label
  2279. LatexCommand label
  2280. name "fig:MA-plot"
  2281. \end_inset
  2282. \series bold
  2283. MA plot showing effects of globin blocking on each gene's abundance.
  2284. \series default
  2285. All libraries were normalized together as described in Figure
  2286. \begin_inset CommandInset ref
  2287. LatexCommand ref
  2288. reference "fig:logcpm-dists"
  2289. plural "false"
  2290. caps "false"
  2291. noprefix "false"
  2292. \end_inset
  2293. , and genes with an average logCPM below -1 were filtered out.
  2294. Each remaining gene was tested for differential abundance with respect
  2295. to globin blocking (GB) using edgeR’s quasi-likelihod F-test, fitting a
  2296. negative binomial generalized linear model to table of read counts in each
  2297. library.
  2298. For each gene, edgeR reported average abundance (logCPM),
  2299. \begin_inset Formula $\log_{2}$
  2300. \end_inset
  2301. fold change (logFC), p-value, and Benjamini-Hochberg adjusted false discovery
  2302. rate (FDR).
  2303. Each gene's logFC was plotted against its logCPM, colored by FDR.
  2304. Red points are significant at ≤10% FDR, and blue are not significant at
  2305. that threshold.
  2306. The alpha and beta globin genes targeted for blocking are marked with large
  2307. triangles, while all other genes are represented as small points.
  2308. \end_layout
  2309. \end_inset
  2310. \end_layout
  2311. \begin_layout Plain Layout
  2312. \end_layout
  2313. \end_inset
  2314. \end_layout
  2315. \begin_layout Standard
  2316. \begin_inset Flex TODO Note (inline)
  2317. status open
  2318. \begin_layout Plain Layout
  2319. Standardize on
  2320. \begin_inset Quotes eld
  2321. \end_inset
  2322. log2
  2323. \begin_inset Quotes erd
  2324. \end_inset
  2325. notation
  2326. \end_layout
  2327. \end_inset
  2328. \end_layout
  2329. \begin_layout Standard
  2330. The data do indeed show small systematic perturbations in gene levels (Figure
  2331. \begin_inset CommandInset ref
  2332. LatexCommand ref
  2333. reference "fig:MA-plot"
  2334. plural "false"
  2335. caps "false"
  2336. noprefix "false"
  2337. \end_inset
  2338. ).
  2339. Other than the 3 designated alpha and beta globin genes, two other genes
  2340. stand out as having especially large negative log fold changes: HBD and
  2341. LOC1021365.
  2342. HBD, delta globin, is most likely targeted by the blocking oligos due to
  2343. high sequence homology with the other globin genes.
  2344. LOC1021365 is the aforementioned ncRNA that is reverse-complementary to
  2345. one of the alpha-like genes and that would be expected to be removed during
  2346. the globin blocking step.
  2347. All other genes appear in a cluster centered vertically at 0, and the vast
  2348. majority of genes in this cluster show an absolute log2(FC) of 0.5 or less.
  2349. Nevertheless, many of these small perturbations are still statistically
  2350. significant, indicating that the globin blocking oligos likely cause very
  2351. small but non-zero systematic perturbations in measured gene expression
  2352. levels.
  2353. \end_layout
  2354. \begin_layout Standard
  2355. \begin_inset Float figure
  2356. wide false
  2357. sideways false
  2358. status open
  2359. \begin_layout Plain Layout
  2360. \align center
  2361. \begin_inset Graphics
  2362. filename graphics/Globin Paper/figure5 - corrplot.pdf
  2363. \end_inset
  2364. \end_layout
  2365. \begin_layout Plain Layout
  2366. \begin_inset Caption Standard
  2367. \begin_layout Plain Layout
  2368. \series bold
  2369. \begin_inset Argument 1
  2370. status collapsed
  2371. \begin_layout Plain Layout
  2372. Comparison of inter-sample gene abundance correlations with and without
  2373. globin blocking.
  2374. \end_layout
  2375. \end_inset
  2376. \begin_inset CommandInset label
  2377. LatexCommand label
  2378. name "fig:gene-abundance-correlations"
  2379. \end_inset
  2380. Comparison of inter-sample gene abundance correlations with and without
  2381. globin blocking (GB).
  2382. \series default
  2383. All libraries were normalized together as described in Figure 2, and genes
  2384. with an average abundance (logCPM, log2 counts per million reads counted)
  2385. less than -1 were filtered out.
  2386. Each gene’s logCPM was computed in each library using the edgeR cpm function.
  2387. For each pair of biological samples, the Pearson correlation between those
  2388. samples' GB libraries was plotted against the correlation between the same
  2389. samples’ non-GB libraries.
  2390. Each point represents an unique pair of samples.
  2391. The solid gray line shows a quantile-quantile plot of distribution of GB
  2392. correlations vs.
  2393. that of non-GB correlations.
  2394. The thin dashed line is the identity line, provided for reference.
  2395. \end_layout
  2396. \end_inset
  2397. \end_layout
  2398. \begin_layout Plain Layout
  2399. \end_layout
  2400. \end_inset
  2401. \end_layout
  2402. \begin_layout Standard
  2403. To evaluate the possibility of globin blocking causing random perturbations
  2404. and reducing sample quality, we computed the Pearson correlation between
  2405. logCPM values for every pair of samples with and without GB and plotted
  2406. them against each other (Figure
  2407. \begin_inset CommandInset ref
  2408. LatexCommand ref
  2409. reference "fig:gene-abundance-correlations"
  2410. plural "false"
  2411. caps "false"
  2412. noprefix "false"
  2413. \end_inset
  2414. ).
  2415. The plot indicated that the GB libraries have higher sample-to-sample correlati
  2416. ons than the non-GB libraries.
  2417. Parametric and nonparametric tests for differences between the correlations
  2418. with and without GB both confirmed that this difference was highly significant
  2419. (2-sided paired t-test: t = 37.2, df = 665, P ≪ 2.2e-16; 2-sided Wilcoxon
  2420. sign-rank test: V = 2195, P ≪ 2.2e-16).
  2421. Performing the same tests on the Spearman correlations gave the same conclusion
  2422. (t-test: t = 26.8, df = 665, P ≪ 2.2e-16; sign-rank test: V = 8781, P ≪ 2.2e-16).
  2423. The edgeR package was used to compute the overall biological coefficient
  2424. of variation (BCV) for GB and non-GB libraries, and found that globin blocking
  2425. resulted in a negligible increase in the BCV (0.417 with GB vs.
  2426. 0.400 without).
  2427. The near equality of the BCVs for both sets indicates that the higher correlati
  2428. ons in the GB libraries are most likely a result of the increased yield
  2429. of useful reads, which reduces the contribution of Poisson counting uncertainty
  2430. to the overall variance of the logCPM values
  2431. \begin_inset CommandInset citation
  2432. LatexCommand cite
  2433. key "McCarthy2012"
  2434. literal "false"
  2435. \end_inset
  2436. .
  2437. This improves the precision of expression measurements and more than offsets
  2438. the negligible increase in BCV.
  2439. \end_layout
  2440. \begin_layout Subsection*
  2441. More differentially expressed genes are detected with globin blocking
  2442. \end_layout
  2443. \begin_layout Standard
  2444. \begin_inset Float table
  2445. wide false
  2446. sideways false
  2447. status open
  2448. \begin_layout Plain Layout
  2449. \align center
  2450. \begin_inset Tabular
  2451. <lyxtabular version="3" rows="5" columns="5">
  2452. <features tabularvalignment="middle">
  2453. <column alignment="center" valignment="top">
  2454. <column alignment="center" valignment="top">
  2455. <column alignment="center" valignment="top">
  2456. <column alignment="center" valignment="top">
  2457. <column alignment="center" valignment="top">
  2458. <row>
  2459. <cell alignment="center" valignment="top" usebox="none">
  2460. \begin_inset Text
  2461. \begin_layout Plain Layout
  2462. \end_layout
  2463. \end_inset
  2464. </cell>
  2465. <cell alignment="center" valignment="top" usebox="none">
  2466. \begin_inset Text
  2467. \begin_layout Plain Layout
  2468. \end_layout
  2469. \end_inset
  2470. </cell>
  2471. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2472. \begin_inset Text
  2473. \begin_layout Plain Layout
  2474. \series bold
  2475. No Globin Blocking
  2476. \end_layout
  2477. \end_inset
  2478. </cell>
  2479. <cell multicolumn="2" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2480. \begin_inset Text
  2481. \begin_layout Plain Layout
  2482. \end_layout
  2483. \end_inset
  2484. </cell>
  2485. <cell multicolumn="2" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2486. \begin_inset Text
  2487. \begin_layout Plain Layout
  2488. \end_layout
  2489. \end_inset
  2490. </cell>
  2491. </row>
  2492. <row>
  2493. <cell alignment="center" valignment="top" usebox="none">
  2494. \begin_inset Text
  2495. \begin_layout Plain Layout
  2496. \end_layout
  2497. \end_inset
  2498. </cell>
  2499. <cell alignment="center" valignment="top" usebox="none">
  2500. \begin_inset Text
  2501. \begin_layout Plain Layout
  2502. \end_layout
  2503. \end_inset
  2504. </cell>
  2505. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2506. \begin_inset Text
  2507. \begin_layout Plain Layout
  2508. \series bold
  2509. Up
  2510. \end_layout
  2511. \end_inset
  2512. </cell>
  2513. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2514. \begin_inset Text
  2515. \begin_layout Plain Layout
  2516. \series bold
  2517. NS
  2518. \end_layout
  2519. \end_inset
  2520. </cell>
  2521. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2522. \begin_inset Text
  2523. \begin_layout Plain Layout
  2524. \series bold
  2525. Down
  2526. \end_layout
  2527. \end_inset
  2528. </cell>
  2529. </row>
  2530. <row>
  2531. <cell multirow="3" alignment="center" valignment="middle" topline="true" bottomline="true" leftline="true" usebox="none">
  2532. \begin_inset Text
  2533. \begin_layout Plain Layout
  2534. \series bold
  2535. Globin-Blocking
  2536. \end_layout
  2537. \end_inset
  2538. </cell>
  2539. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2540. \begin_inset Text
  2541. \begin_layout Plain Layout
  2542. \series bold
  2543. Up
  2544. \end_layout
  2545. \end_inset
  2546. </cell>
  2547. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2548. \begin_inset Text
  2549. \begin_layout Plain Layout
  2550. \family roman
  2551. \series medium
  2552. \shape up
  2553. \size normal
  2554. \emph off
  2555. \bar no
  2556. \strikeout off
  2557. \xout off
  2558. \uuline off
  2559. \uwave off
  2560. \noun off
  2561. \color none
  2562. 231
  2563. \end_layout
  2564. \end_inset
  2565. </cell>
  2566. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2567. \begin_inset Text
  2568. \begin_layout Plain Layout
  2569. \family roman
  2570. \series medium
  2571. \shape up
  2572. \size normal
  2573. \emph off
  2574. \bar no
  2575. \strikeout off
  2576. \xout off
  2577. \uuline off
  2578. \uwave off
  2579. \noun off
  2580. \color none
  2581. 515
  2582. \end_layout
  2583. \end_inset
  2584. </cell>
  2585. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2586. \begin_inset Text
  2587. \begin_layout Plain Layout
  2588. \family roman
  2589. \series medium
  2590. \shape up
  2591. \size normal
  2592. \emph off
  2593. \bar no
  2594. \strikeout off
  2595. \xout off
  2596. \uuline off
  2597. \uwave off
  2598. \noun off
  2599. \color none
  2600. 2
  2601. \end_layout
  2602. \end_inset
  2603. </cell>
  2604. </row>
  2605. <row>
  2606. <cell multirow="4" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2607. \begin_inset Text
  2608. \begin_layout Plain Layout
  2609. \end_layout
  2610. \end_inset
  2611. </cell>
  2612. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2613. \begin_inset Text
  2614. \begin_layout Plain Layout
  2615. \series bold
  2616. NS
  2617. \end_layout
  2618. \end_inset
  2619. </cell>
  2620. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2621. \begin_inset Text
  2622. \begin_layout Plain Layout
  2623. \family roman
  2624. \series medium
  2625. \shape up
  2626. \size normal
  2627. \emph off
  2628. \bar no
  2629. \strikeout off
  2630. \xout off
  2631. \uuline off
  2632. \uwave off
  2633. \noun off
  2634. \color none
  2635. 160
  2636. \end_layout
  2637. \end_inset
  2638. </cell>
  2639. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2640. \begin_inset Text
  2641. \begin_layout Plain Layout
  2642. \family roman
  2643. \series medium
  2644. \shape up
  2645. \size normal
  2646. \emph off
  2647. \bar no
  2648. \strikeout off
  2649. \xout off
  2650. \uuline off
  2651. \uwave off
  2652. \noun off
  2653. \color none
  2654. 11235
  2655. \end_layout
  2656. \end_inset
  2657. </cell>
  2658. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2659. \begin_inset Text
  2660. \begin_layout Plain Layout
  2661. \family roman
  2662. \series medium
  2663. \shape up
  2664. \size normal
  2665. \emph off
  2666. \bar no
  2667. \strikeout off
  2668. \xout off
  2669. \uuline off
  2670. \uwave off
  2671. \noun off
  2672. \color none
  2673. 136
  2674. \end_layout
  2675. \end_inset
  2676. </cell>
  2677. </row>
  2678. <row>
  2679. <cell multirow="4" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2680. \begin_inset Text
  2681. \begin_layout Plain Layout
  2682. \end_layout
  2683. \end_inset
  2684. </cell>
  2685. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2686. \begin_inset Text
  2687. \begin_layout Plain Layout
  2688. \series bold
  2689. Down
  2690. \end_layout
  2691. \end_inset
  2692. </cell>
  2693. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2694. \begin_inset Text
  2695. \begin_layout Plain Layout
  2696. \family roman
  2697. \series medium
  2698. \shape up
  2699. \size normal
  2700. \emph off
  2701. \bar no
  2702. \strikeout off
  2703. \xout off
  2704. \uuline off
  2705. \uwave off
  2706. \noun off
  2707. \color none
  2708. 0
  2709. \end_layout
  2710. \end_inset
  2711. </cell>
  2712. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2713. \begin_inset Text
  2714. \begin_layout Plain Layout
  2715. \family roman
  2716. \series medium
  2717. \shape up
  2718. \size normal
  2719. \emph off
  2720. \bar no
  2721. \strikeout off
  2722. \xout off
  2723. \uuline off
  2724. \uwave off
  2725. \noun off
  2726. \color none
  2727. 548
  2728. \end_layout
  2729. \end_inset
  2730. </cell>
  2731. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2732. \begin_inset Text
  2733. \begin_layout Plain Layout
  2734. \family roman
  2735. \series medium
  2736. \shape up
  2737. \size normal
  2738. \emph off
  2739. \bar no
  2740. \strikeout off
  2741. \xout off
  2742. \uuline off
  2743. \uwave off
  2744. \noun off
  2745. \color none
  2746. 127
  2747. \end_layout
  2748. \end_inset
  2749. </cell>
  2750. </row>
  2751. </lyxtabular>
  2752. \end_inset
  2753. \end_layout
  2754. \begin_layout Plain Layout
  2755. \begin_inset Caption Standard
  2756. \begin_layout Plain Layout
  2757. \series bold
  2758. \begin_inset Argument 1
  2759. status open
  2760. \begin_layout Plain Layout
  2761. Comparison of significantly differentially expressed genes with and without
  2762. globin blocking.
  2763. \end_layout
  2764. \end_inset
  2765. \begin_inset CommandInset label
  2766. LatexCommand label
  2767. name "tab:Comparison-of-significant"
  2768. \end_inset
  2769. Comparison of significantly differentially expressed genes with and without
  2770. globin blocking.
  2771. \series default
  2772. Up, Down: Genes significantly up/down-regulated in post-transplant samples
  2773. relative to pre-transplant samples, with a false discovery rate of 10%
  2774. or less.
  2775. NS: Non-significant genes (false discovery rate greater than 10%).
  2776. \end_layout
  2777. \end_inset
  2778. \end_layout
  2779. \begin_layout Plain Layout
  2780. \end_layout
  2781. \end_inset
  2782. \end_layout
  2783. \begin_layout Standard
  2784. To compare performance on differential gene expression tests, we took subsets
  2785. of both the GB and non-GB libraries with exactly one pre-transplant and
  2786. one post-transplant sample for each animal that had paired samples available
  2787. for analysis (N=7 animals, N=14 samples in each subset).
  2788. The same test for pre- vs.
  2789. post-transplant differential gene expression was performed on the same
  2790. 7 pairs of samples from GB libraries and non-GB libraries, in each case
  2791. using an FDR of 10% as the threshold of significance.
  2792. Out of 12954 genes that passed the detection threshold in both subsets,
  2793. 358 were called significantly differentially expressed in the same direction
  2794. in both sets; 1063 were differentially expressed in the GB set only; 296
  2795. were differentially expressed in the non-GB set only; 2 genes were called
  2796. significantly up in the GB set but significantly down in the non-GB set;
  2797. and the remaining 11235 were not called differentially expressed in either
  2798. set.
  2799. These data are summarized in Table
  2800. \begin_inset CommandInset ref
  2801. LatexCommand ref
  2802. reference "tab:Comparison-of-significant"
  2803. plural "false"
  2804. caps "false"
  2805. noprefix "false"
  2806. \end_inset
  2807. .
  2808. The differences in BCV calculated by EdgeR for these subsets of samples
  2809. were negligible (BCV = 0.302 for GB and 0.297 for non-GB).
  2810. \end_layout
  2811. \begin_layout Standard
  2812. The key point is that the GB data results in substantially more differentially
  2813. expressed calls than the non-GB data.
  2814. Since there is no gold standard for this dataset, it is impossible to be
  2815. certain whether this is due to under-calling of differential expression
  2816. in the non-GB samples or over-calling in the GB samples.
  2817. However, given that both datasets are derived from the same biological
  2818. samples and have nearly equal BCVs, it is more likely that the larger number
  2819. of DE calls in the GB samples are genuine detections that were enabled
  2820. by the higher sequencing depth and measurement precision of the GB samples.
  2821. Note that the same set of genes was considered in both subsets, so the
  2822. larger number of differentially expressed gene calls in the GB data set
  2823. reflects a greater sensitivity to detect significant differential gene
  2824. expression and not simply the larger total number of detected genes in
  2825. GB samples described earlier.
  2826. \end_layout
  2827. \begin_layout Section
  2828. Discussion
  2829. \end_layout
  2830. \begin_layout Standard
  2831. The original experience with whole blood gene expression profiling on DNA
  2832. microarrays demonstrated that the high concentration of globin transcripts
  2833. reduced the sensitivity to detect genes with relatively low expression
  2834. levels, in effect, significantly reducing the sensitivity.
  2835. To address this limitation, commercial protocols for globin reduction were
  2836. developed based on strategies to block globin transcript amplification
  2837. during labeling or physically removing globin transcripts by affinity bead
  2838. methods
  2839. \begin_inset CommandInset citation
  2840. LatexCommand cite
  2841. key "Winn2010"
  2842. literal "false"
  2843. \end_inset
  2844. .
  2845. More recently, using the latest generation of labeling protocols and arrays,
  2846. it was determined that globin reduction was no longer necessary to obtain
  2847. sufficient sensitivity to detect differential transcript expression
  2848. \begin_inset CommandInset citation
  2849. LatexCommand cite
  2850. key "NuGEN2010"
  2851. literal "false"
  2852. \end_inset
  2853. .
  2854. However, we are not aware of any publications using these currently available
  2855. protocols the with latest generation of microarrays that actually compare
  2856. the detection sensitivity with and without globin reduction.
  2857. However, in practice this has now been adopted generally primarily driven
  2858. by concerns for cost control.
  2859. The main objective of our work was to directly test the impact of globin
  2860. gene transcripts and a new globin blocking protocol for application to
  2861. the newest generation of differential gene expression profiling determined
  2862. using next generation sequencing.
  2863. \end_layout
  2864. \begin_layout Standard
  2865. The challenge of doing global gene expression profiling in cynomolgus monkeys
  2866. is that the current available arrays were never designed to comprehensively
  2867. cover this genome and have not been updated since the first assemblies
  2868. of the cynomolgus genome were published.
  2869. Therefore, we determined that the best strategy for peripheral blood profiling
  2870. was to do deep RNA-seq and inform the workflow using the latest available
  2871. genome assembly and annotation
  2872. \begin_inset CommandInset citation
  2873. LatexCommand cite
  2874. key "Wilson2013"
  2875. literal "false"
  2876. \end_inset
  2877. .
  2878. However, it was not immediately clear whether globin reduction was necessary
  2879. for RNA-seq or how much improvement in efficiency or sensitivity to detect
  2880. differential gene expression would be achieved for the added cost and work.
  2881. \end_layout
  2882. \begin_layout Standard
  2883. We only found one report that demonstrated that globin reduction significantly
  2884. improved the effective read yields for sequencing of human peripheral blood
  2885. cell RNA using a DeepSAGE protocol
  2886. \begin_inset CommandInset citation
  2887. LatexCommand cite
  2888. key "Mastrokolias2012"
  2889. literal "false"
  2890. \end_inset
  2891. .
  2892. The approach to DeepSAGE involves two different restriction enzymes that
  2893. purify and then tag small fragments of transcripts at specific locations
  2894. and thus, significantly reduces the complexity of the transcriptome.
  2895. Therefore, we could not determine how DeepSAGE results would translate
  2896. to the common strategy in the field for assaying the entire transcript
  2897. population by whole-transcriptome 3’-end RNA-seq.
  2898. Furthermore, if globin reduction is necessary, we also needed a globin
  2899. reduction method specific to cynomolgus globin sequences that would work
  2900. an organism for which no kit is available off the shelf.
  2901. \end_layout
  2902. \begin_layout Standard
  2903. As mentioned above, the addition of globin blocking oligos has a very small
  2904. impact on measured expression levels of gene expression.
  2905. However, this is a non-issue for the purposes of differential expression
  2906. testing, since a systematic change in a gene in all samples does not affect
  2907. relative expression levels between samples.
  2908. However, we must acknowledge that simple comparisons of gene expression
  2909. data obtained by GB and non-GB protocols are not possible without additional
  2910. normalization.
  2911. \end_layout
  2912. \begin_layout Standard
  2913. More importantly, globin blocking not only nearly doubles the yield of usable
  2914. reads, it also increases inter-sample correlation and sensitivity to detect
  2915. differential gene expression relative to the same set of samples profiled
  2916. without blocking.
  2917. In addition, globin blocking does not add a significant amount of random
  2918. noise to the data.
  2919. Globin blocking thus represents a cost-effective way to squeeze more data
  2920. and statistical power out of the same blood samples and the same amount
  2921. of sequencing.
  2922. In conclusion, globin reduction greatly increases the yield of useful RNA-seq
  2923. reads mapping to the rest of the genome, with minimal perturbations in
  2924. the relative levels of non-globin genes.
  2925. Based on these results, globin transcript reduction using sequence-specific,
  2926. complementary blocking oligonucleotides is recommended for all deep RNA-seq
  2927. of cynomolgus and other nonhuman primate blood samples.
  2928. \end_layout
  2929. \begin_layout Chapter
  2930. Future Directions
  2931. \end_layout
  2932. \begin_layout Itemize
  2933. Study other epigenetic marks in more contexts
  2934. \end_layout
  2935. \begin_deeper
  2936. \begin_layout Itemize
  2937. DNA methylation, histone marks, chromatin accessibility & conformation in
  2938. CD4 T-cells
  2939. \end_layout
  2940. \begin_layout Itemize
  2941. Also look at other types lymphocytes: CD8 T-cells, B-cells, NK cells
  2942. \end_layout
  2943. \end_deeper
  2944. \begin_layout Itemize
  2945. Investigate epigenetic regulation of lifespan extension in
  2946. \emph on
  2947. C.
  2948. elegans
  2949. \end_layout
  2950. \begin_deeper
  2951. \begin_layout Itemize
  2952. ChIP-seq of important transcriptional regulators to see how transcriptional
  2953. drift is prevented
  2954. \end_layout
  2955. \end_deeper
  2956. \begin_layout Standard
  2957. \begin_inset ERT
  2958. status open
  2959. \begin_layout Plain Layout
  2960. % Use "References" instead of "Bibliography"
  2961. \end_layout
  2962. \begin_layout Plain Layout
  2963. \backslash
  2964. renewcommand{
  2965. \backslash
  2966. bibname}{References}
  2967. \end_layout
  2968. \end_inset
  2969. \end_layout
  2970. \begin_layout Standard
  2971. \begin_inset Flex TODO Note (inline)
  2972. status open
  2973. \begin_layout Plain Layout
  2974. Check bib entry formatting & sort order
  2975. \end_layout
  2976. \end_inset
  2977. \end_layout
  2978. \begin_layout Standard
  2979. \begin_inset CommandInset bibtex
  2980. LatexCommand bibtex
  2981. btprint "btPrintCited"
  2982. bibfiles "refs"
  2983. options "bibtotoc,unsrt"
  2984. \end_inset
  2985. \end_layout
  2986. \end_body
  2987. \end_document