thesis.lyx 170 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449
  1. #LyX 2.3 created this file. For more info see http://www.lyx.org/
  2. \lyxformat 544
  3. \begin_document
  4. \begin_header
  5. \save_transient_properties true
  6. \origin unavailable
  7. \textclass extbook
  8. \begin_preamble
  9. % List all used files in log output
  10. \listfiles
  11. % Add a DRAFT watermark
  12. \usepackage{draftwatermark}
  13. \SetWatermarkLightness{0.97}
  14. \SetWatermarkScale{1}
  15. % Set up required header format
  16. \usepackage{fancyhdr}
  17. \pagestyle{fancy}
  18. \renewcommand{\headrulewidth}{0pt}
  19. \rhead{}
  20. \lhead{}
  21. \rfoot{}
  22. \lfoot{}
  23. \cfoot{\thepage} % Page number bottom center
  24. % https://tex.stackexchange.com/questions/65680/automatically-bold-first-sentence-of-a-floats-caption
  25. \usepackage{xstring}
  26. \usepackage{etoolbox}
  27. \usepackage{caption}
  28. \captionsetup{labelfont=bf,tableposition=top}
  29. \makeatletter
  30. \newcommand\formatlabel[1]{%
  31. \noexpandarg
  32. \IfSubStr{#1}{.}{%
  33. \StrBefore{#1}{.}[\firstcaption]%
  34. \StrBehind{#1}{.}[\secondcaption]%
  35. \textbf{\firstcaption.} \secondcaption}{%
  36. #1}%
  37. }
  38. \patchcmd{\@caption}{#3}{\formatlabel{#3}}
  39. \makeatother
  40. % Allow FloatBarrier command
  41. \usepackage{placeins}
  42. \end_preamble
  43. \use_default_options true
  44. \begin_modules
  45. todonotes
  46. \end_modules
  47. \maintain_unincluded_children false
  48. \language english
  49. \language_package default
  50. \inputencoding utf8
  51. \fontencoding default
  52. \font_roman "default" "default"
  53. \font_sans "default" "default"
  54. \font_typewriter "default" "default"
  55. \font_math "auto" "auto"
  56. \font_default_family default
  57. \use_non_tex_fonts false
  58. \font_sc false
  59. \font_osf false
  60. \font_sf_scale 100 100
  61. \font_tt_scale 100 100
  62. \use_microtype false
  63. \use_dash_ligatures true
  64. \graphics default
  65. \default_output_format pdf4
  66. \output_sync 0
  67. \bibtex_command default
  68. \index_command default
  69. \paperfontsize 12
  70. \spacing double
  71. \use_hyperref true
  72. \pdf_bookmarks true
  73. \pdf_bookmarksnumbered false
  74. \pdf_bookmarksopen false
  75. \pdf_bookmarksopenlevel 1
  76. \pdf_breaklinks false
  77. \pdf_pdfborder false
  78. \pdf_colorlinks false
  79. \pdf_backref false
  80. \pdf_pdfusetitle true
  81. \papersize letterpaper
  82. \use_geometry true
  83. \use_package amsmath 1
  84. \use_package amssymb 1
  85. \use_package cancel 1
  86. \use_package esint 1
  87. \use_package mathdots 1
  88. \use_package mathtools 1
  89. \use_package mhchem 1
  90. \use_package stackrel 1
  91. \use_package stmaryrd 1
  92. \use_package undertilde 1
  93. \cite_engine basic
  94. \cite_engine_type default
  95. \biblio_style plain
  96. \use_bibtopic false
  97. \use_indices false
  98. \paperorientation portrait
  99. \suppress_date false
  100. \justification true
  101. \use_refstyle 1
  102. \use_minted 0
  103. \index Index
  104. \shortcut idx
  105. \color #008000
  106. \end_index
  107. \leftmargin 1.5in
  108. \topmargin 1in
  109. \rightmargin 1in
  110. \bottommargin 1in
  111. \secnumdepth 3
  112. \tocdepth 3
  113. \paragraph_separation indent
  114. \paragraph_indentation default
  115. \is_math_indent 0
  116. \math_numbering_side default
  117. \quotes_style english
  118. \dynamic_quotes 0
  119. \papercolumns 1
  120. \papersides 2
  121. \paperpagestyle default
  122. \tracking_changes false
  123. \output_changes false
  124. \html_math_output 0
  125. \html_css_as_file 0
  126. \html_be_strict false
  127. \end_header
  128. \begin_body
  129. \begin_layout Title
  130. Bioinformatic analysis of complex, high-throughput genomic and epigenomic
  131. data in the context of immunology and transplant rejection
  132. \end_layout
  133. \begin_layout Author
  134. A thesis presented
  135. \begin_inset Newline newline
  136. \end_inset
  137. by
  138. \begin_inset Newline newline
  139. \end_inset
  140. Ryan C.
  141. Thompson
  142. \begin_inset Newline newline
  143. \end_inset
  144. to
  145. \begin_inset Newline newline
  146. \end_inset
  147. The Scripps Research Institute Graduate Program
  148. \begin_inset Newline newline
  149. \end_inset
  150. in partial fulfillment of the requirements for the degree of
  151. \begin_inset Newline newline
  152. \end_inset
  153. Doctor of Philosophy in the subject of Biology
  154. \begin_inset Newline newline
  155. \end_inset
  156. for
  157. \begin_inset Newline newline
  158. \end_inset
  159. The Scripps Research Institute
  160. \begin_inset Newline newline
  161. \end_inset
  162. La Jolla, California
  163. \end_layout
  164. \begin_layout Date
  165. May 2019
  166. \end_layout
  167. \begin_layout Standard
  168. [Copyright notice]
  169. \end_layout
  170. \begin_layout Standard
  171. [Thesis acceptance form]
  172. \end_layout
  173. \begin_layout Standard
  174. [Dedication]
  175. \end_layout
  176. \begin_layout Standard
  177. [Acknowledgements]
  178. \end_layout
  179. \begin_layout Standard
  180. \begin_inset CommandInset toc
  181. LatexCommand tableofcontents
  182. \end_inset
  183. \end_layout
  184. \begin_layout Standard
  185. \begin_inset FloatList table
  186. \end_inset
  187. \end_layout
  188. \begin_layout Standard
  189. \begin_inset FloatList figure
  190. \end_inset
  191. \end_layout
  192. \begin_layout Standard
  193. [List of Abbreviations]
  194. \end_layout
  195. \begin_layout Standard
  196. \begin_inset Flex TODO Note (inline)
  197. status open
  198. \begin_layout Plain Layout
  199. Look into auto-generated nomenclature list: https://wiki.lyx.org/Tips/Nomenclature
  200. \end_layout
  201. \end_inset
  202. \end_layout
  203. \begin_layout List of TODOs
  204. \end_layout
  205. \begin_layout Standard
  206. [Abstract]
  207. \end_layout
  208. \begin_layout Chapter*
  209. Abstract
  210. \end_layout
  211. \begin_layout Chapter
  212. Introduction
  213. \end_layout
  214. \begin_layout Section
  215. Background & Significance
  216. \end_layout
  217. \begin_layout Subsection
  218. Biological motivation
  219. \end_layout
  220. \begin_layout Itemize
  221. Rejection is the major long-term threat to organ and tissue grafts
  222. \end_layout
  223. \begin_deeper
  224. \begin_layout Itemize
  225. Common mechanisms of rejection
  226. \end_layout
  227. \begin_layout Itemize
  228. Effective immune suppression requires monitoring for rejection and tuning
  229. \end_layout
  230. \begin_layout Itemize
  231. Current tests for rejection (tissue biopsy) are invasive and biased
  232. \end_layout
  233. \begin_layout Itemize
  234. A blood test based on microarrays would be less biased and invasive
  235. \end_layout
  236. \end_deeper
  237. \begin_layout Itemize
  238. Memory cells are resistant to immune suppression
  239. \end_layout
  240. \begin_deeper
  241. \begin_layout Itemize
  242. Mechanisms of resistance in memory cells are poorly understood
  243. \end_layout
  244. \begin_layout Itemize
  245. A better understanding of immune memory formation is needed
  246. \end_layout
  247. \end_deeper
  248. \begin_layout Itemize
  249. Mesenchymal stem cell infusion is a promising new treatment to prevent/delay
  250. rejection
  251. \end_layout
  252. \begin_deeper
  253. \begin_layout Itemize
  254. Demonstrated in mice, but not yet in primates
  255. \end_layout
  256. \begin_layout Itemize
  257. Mechanism currently unknown, but MSC are known to be immune modulatory
  258. \end_layout
  259. \end_deeper
  260. \begin_layout Subsection
  261. Overview of bioinformatic analysis methods
  262. \end_layout
  263. \begin_layout Standard
  264. An overview of all the methods used, including what problem they solve,
  265. what assumptions they make, and a basic description of how they work.
  266. \end_layout
  267. \begin_layout Itemize
  268. ChIP-seq Peak calling
  269. \end_layout
  270. \begin_deeper
  271. \begin_layout Itemize
  272. Cross-correlation analysis to determine fragment size
  273. \end_layout
  274. \begin_layout Itemize
  275. Broad vs narrow peaks
  276. \end_layout
  277. \begin_layout Itemize
  278. SICER for broad peaks
  279. \end_layout
  280. \begin_layout Itemize
  281. IDR for biologically reproducible peaks
  282. \end_layout
  283. \begin_layout Itemize
  284. csaw peak filtering guidelines for unbiased downstream analysis
  285. \end_layout
  286. \end_deeper
  287. \begin_layout Itemize
  288. Normalization is non-trivial and application-dependant
  289. \end_layout
  290. \begin_deeper
  291. \begin_layout Itemize
  292. Expression arrays: RMA & fRMA; why fRMA is needed
  293. \end_layout
  294. \begin_layout Itemize
  295. Methylation arrays: M-value transformation approximates normal data but
  296. induces heteroskedasticity
  297. \end_layout
  298. \begin_layout Itemize
  299. RNA-seq: normalize based on assumption that the average gene is not changing
  300. \end_layout
  301. \begin_layout Itemize
  302. ChIP-seq: complex with many considerations, dependent on experimental methods,
  303. biological system, and analysis goals
  304. \end_layout
  305. \end_deeper
  306. \begin_layout Itemize
  307. Limma: The standard linear modeling framework for genomics
  308. \end_layout
  309. \begin_deeper
  310. \begin_layout Itemize
  311. empirical Bayes variance modeling: limma's core feature
  312. \end_layout
  313. \begin_layout Itemize
  314. edgeR & DESeq2: Extend with negative bonomial GLM for RNA-seq and other
  315. count data
  316. \end_layout
  317. \begin_layout Itemize
  318. voom: Extend with precision weights to model mean-variance trend
  319. \end_layout
  320. \begin_layout Itemize
  321. arrayWeights and duplicateCorrelation to handle complex variance structures
  322. \end_layout
  323. \end_deeper
  324. \begin_layout Itemize
  325. sva and ComBat for batch correction
  326. \end_layout
  327. \begin_layout Itemize
  328. Factor analysis: PCA, MDS, MOFA
  329. \end_layout
  330. \begin_deeper
  331. \begin_layout Itemize
  332. Batch-corrected PCA is informative, but careful application is required
  333. to avoid bias
  334. \end_layout
  335. \end_deeper
  336. \begin_layout Itemize
  337. Gene set analysis: camera and SPIA
  338. \end_layout
  339. \begin_layout Section
  340. Innovation
  341. \end_layout
  342. \begin_layout Itemize
  343. MSC infusion to improve transplant outcomes (prevent/delay rejection)
  344. \end_layout
  345. \begin_deeper
  346. \begin_layout Itemize
  347. Characterize MSC response to interferon gamma
  348. \end_layout
  349. \begin_layout Itemize
  350. IFN-g is thought to stimulate their function
  351. \end_layout
  352. \begin_layout Itemize
  353. Test IFN-g treated MSC infusion as a therapy to delay graft rejection in
  354. cynomolgus monkeys
  355. \end_layout
  356. \begin_layout Itemize
  357. Monitor animals post-transplant using blood RNA-seq at serial time points
  358. \end_layout
  359. \end_deeper
  360. \begin_layout Itemize
  361. Investigate dynamics of histone marks in CD4 T-cell activation and memory
  362. \end_layout
  363. \begin_deeper
  364. \begin_layout Itemize
  365. Previous studies have looked at single snapshots of histone marks
  366. \end_layout
  367. \begin_layout Itemize
  368. Instead, look at changes in histone marks across activation and memory
  369. \end_layout
  370. \end_deeper
  371. \begin_layout Itemize
  372. High-throughput sequencing and microarray technologies
  373. \end_layout
  374. \begin_deeper
  375. \begin_layout Itemize
  376. Powerful methods for assaying gene expression and epigenetics across entire
  377. genomes
  378. \end_layout
  379. \begin_layout Itemize
  380. Proper analysis requires finding and exploiting systematic genome-wide trends
  381. \end_layout
  382. \end_deeper
  383. \begin_layout Chapter
  384. Reproducible genome-wide epigenetic analysis of H3K4 and H3K27 methylation
  385. in naive and memory CD4 T-cell activation
  386. \end_layout
  387. \begin_layout Standard
  388. \begin_inset Flex TODO Note (inline)
  389. status open
  390. \begin_layout Plain Layout
  391. Author list: Me, Sarah, Dan
  392. \end_layout
  393. \end_inset
  394. \end_layout
  395. \begin_layout Section
  396. Approach
  397. \end_layout
  398. \begin_layout Itemize
  399. CD4 T-cells are central to all adaptive immune responses and memory
  400. \end_layout
  401. \begin_layout Itemize
  402. H3K4 and H3K27 methylation are major epigenetic regulators of gene expression
  403. \end_layout
  404. \begin_layout Itemize
  405. Canonically, H3K4 is activating and H3K27 is inhibitory, but the reality
  406. is complex
  407. \end_layout
  408. \begin_layout Itemize
  409. Looking at these marks during CD4 activation and memory should reveal new
  410. mechanistic details
  411. \end_layout
  412. \begin_layout Itemize
  413. Test
  414. \begin_inset Quotes eld
  415. \end_inset
  416. poised promoter
  417. \begin_inset Quotes erd
  418. \end_inset
  419. hypothesis in which H3K4 and H3K27 are both methylated
  420. \end_layout
  421. \begin_layout Itemize
  422. Expand scope of analysis beyond simple promoter counts
  423. \end_layout
  424. \begin_deeper
  425. \begin_layout Itemize
  426. Analyze peaks genome-wide, including in intergenic regions
  427. \end_layout
  428. \begin_layout Itemize
  429. Analysis of coverage distribution shape within promoters, e.g.
  430. upstream vs downstream coverage
  431. \end_layout
  432. \end_deeper
  433. \begin_layout Section
  434. Methods
  435. \end_layout
  436. \begin_layout Standard
  437. \begin_inset Float figure
  438. wide false
  439. sideways true
  440. status open
  441. \begin_layout Plain Layout
  442. \align center
  443. \begin_inset Graphics
  444. filename graphics/CD4-csaw/rulegraphs/rulegraph-all.pdf
  445. width 100theight%
  446. \end_inset
  447. \end_layout
  448. \begin_layout Plain Layout
  449. \begin_inset Caption Standard
  450. \begin_layout Plain Layout
  451. \begin_inset CommandInset label
  452. LatexCommand label
  453. name "fig:rulegraph"
  454. \end_inset
  455. \series bold
  456. Dependency graph of steps in reproducible workflow
  457. \end_layout
  458. \end_inset
  459. \end_layout
  460. \end_inset
  461. \end_layout
  462. \begin_layout Standard
  463. A reproducible workflow
  464. \begin_inset CommandInset citation
  465. LatexCommand cite
  466. key "gh-cd4-csaw"
  467. literal "false"
  468. \end_inset
  469. was written to analyze the raw ChIP-seq and RNA-seq data from previous
  470. studies
  471. \begin_inset CommandInset citation
  472. LatexCommand cite
  473. key "LaMere2016,LaMere2017"
  474. literal "true"
  475. \end_inset
  476. .
  477. Briefly, this data consists of RNA-seq and ChIP-seq from CD4 T-cells cultured
  478. from 4 donors.
  479. From each donor, naive and memory CD4 T-cells were isolated separately.
  480. Then cultures of both cells were activated [how?], and samples were taken
  481. at 4 time points: Day 0 (pre-activation), Day 1 (early activation), Day
  482. 5 (peak activation), and Day 14 (post-activation).
  483. For each combination of cell type and time point, RNA was isolated, and
  484. ChIP-seq was performed for each of 3 histone marks: H3K4me2, H3K4me3, and
  485. H3K27me3.
  486. The ChIP-seq input was also sequenced for each sample.
  487. The result was 32 samples for each assay.
  488. \end_layout
  489. \begin_layout Standard
  490. Sequence reads were retrieved from the Sequence Read Archive (SRA)
  491. \begin_inset CommandInset citation
  492. LatexCommand cite
  493. key "Leinonen2011"
  494. literal "false"
  495. \end_inset
  496. .
  497. ChIP-seq (and input) reads were aligned to CRCh38 genome assembly using
  498. Bowtie 2
  499. \begin_inset CommandInset citation
  500. LatexCommand cite
  501. key "Langmead2012,Schneider2017,gh-hg38-ref"
  502. literal "false"
  503. \end_inset
  504. .
  505. Artifact regions were annotated using a custom implementation of the GreyListCh
  506. IP algorithm, and these
  507. \begin_inset Quotes eld
  508. \end_inset
  509. greylists
  510. \begin_inset Quotes erd
  511. \end_inset
  512. were merged with the ENCODE blacklist
  513. \begin_inset CommandInset citation
  514. LatexCommand cite
  515. key "greylistchip,Amemiya2019,Dunham2012"
  516. literal "false"
  517. \end_inset
  518. .
  519. Any read or peak overlapping one of these regions was regarded as artifactual
  520. and excluded from downstream analyses.
  521. \end_layout
  522. \begin_layout Standard
  523. Peaks are called using epic, an implementation of the SICER algorithm
  524. \begin_inset CommandInset citation
  525. LatexCommand cite
  526. key "Zang2009,gh-epic"
  527. literal "false"
  528. \end_inset
  529. .
  530. Peaks are also called separately using MACS, but MACS was determined to
  531. be a poor fit for the data, and these peak calls are not used further
  532. \begin_inset CommandInset citation
  533. LatexCommand cite
  534. key "Zhang2008"
  535. literal "false"
  536. \end_inset
  537. .
  538. \end_layout
  539. \begin_layout Itemize
  540. Re-analyze previously published CD4 ChIP-seq & RNA-seq data
  541. \end_layout
  542. \begin_deeper
  543. \begin_layout Itemize
  544. Completely reimplement analysis from scratch as a reproducible workflow
  545. \end_layout
  546. \begin_layout Itemize
  547. Use newly published methods & algorithms not available during the original
  548. analysis: SICER, csaw, MOFA, ComBat, sva, GREAT, and more
  549. \end_layout
  550. \end_deeper
  551. \begin_layout Itemize
  552. SICER, IDR, csaw, & GREAT to call ChIP-seq peaks genome-wide, perform differenti
  553. al abundance analysis, and relate those peaks to gene expression
  554. \end_layout
  555. \begin_layout Itemize
  556. Promoter counts in sliding windows around each gene's highest-expressed
  557. TSS to investigate coverage distribution within promoters
  558. \end_layout
  559. \begin_layout Section
  560. Results
  561. \end_layout
  562. \begin_layout Standard
  563. \begin_inset Note Note
  564. status open
  565. \begin_layout Plain Layout
  566. Focus on what hypotheses were tested, then select figures that show how
  567. those hypotheses were tested, even if the result is a negative.
  568. \end_layout
  569. \end_inset
  570. \end_layout
  571. \begin_layout Subsection
  572. H3K4 and H3K27 methylation occur in broad regions and are enriched near
  573. promoters
  574. \end_layout
  575. \begin_layout Itemize
  576. Figures comparing MACS (non-broad peak caller) to SICER/epic (broad peak
  577. caller)
  578. \end_layout
  579. \begin_deeper
  580. \begin_layout Itemize
  581. Compare peak sizes and number of called peaks
  582. \end_layout
  583. \begin_layout Itemize
  584. Show representative IDR consistency plots for both
  585. \end_layout
  586. \end_deeper
  587. \begin_layout Itemize
  588. IDR analysis shows that SICER-called peaks are much more reproducible between
  589. biological replicates
  590. \end_layout
  591. \begin_layout Itemize
  592. Each histone mark is enriched within a certain radius of gene TSS positions,
  593. but that radius is different for each mark (figure)
  594. \end_layout
  595. \begin_layout Subsection
  596. RNA-seq has a large confounding batch effect
  597. \end_layout
  598. \begin_layout Itemize
  599. RNA-seq batch effect can be partially corrected, but still induces uncorrectable
  600. biases in downstream analysis
  601. \end_layout
  602. \begin_deeper
  603. \begin_layout Itemize
  604. Figure showing MDS plot before & after ComBat
  605. \end_layout
  606. \begin_layout Itemize
  607. Figure relating sample weights to batches, cell types, time points, etc.,
  608. showing that one batch is significantly worse quality
  609. \end_layout
  610. \begin_layout Itemize
  611. Figures showing p-value histograms for within-batch and cross-batch contrasts,
  612. showing that cross-batch contrasts have attenuated signal, as do comparisons
  613. within the bad batch
  614. \end_layout
  615. \end_deeper
  616. \begin_layout Subsection
  617. ChIP-seq must be corrected for hidden confounding factors
  618. \end_layout
  619. \begin_layout Itemize
  620. Figures showing pre- and post-SVA MDS plots for each histone mark
  621. \end_layout
  622. \begin_layout Itemize
  623. Figures showing BCV plots with and without SVA for each histone mark
  624. \end_layout
  625. \begin_layout Subsection
  626. H3K4 and H3K27 promoter methylation has broadly the expected correlation
  627. with gene expression
  628. \end_layout
  629. \begin_layout Itemize
  630. H3K4 is correlated with higher expression, and H3K27 is correlated with
  631. lower expression genome-wide
  632. \end_layout
  633. \begin_layout Itemize
  634. Figures showing these correlations: box/violin plots of expression distributions
  635. with every combination of peak presence/absence in promoter
  636. \end_layout
  637. \begin_layout Itemize
  638. Appropriate statistical tests showing significant differences in expected
  639. directions
  640. \end_layout
  641. \begin_layout Subsection
  642. MOFA recovers biologically relevant variation from blind analysis by correlating
  643. across datasets
  644. \end_layout
  645. \begin_layout Itemize
  646. MOFA
  647. \begin_inset CommandInset citation
  648. LatexCommand cite
  649. key "Argelaguet2018"
  650. literal "false"
  651. \end_inset
  652. successfully separates biologically relevant patterns of variation from
  653. technical confounding factors without knowing the sample labels, by finding
  654. latent factors that explain variation across multiple data sets.
  655. \end_layout
  656. \begin_deeper
  657. \begin_layout Itemize
  658. Figure: show percent-variance-explained plot from MOFA and PCA-like plots
  659. for the relevant latent factors
  660. \end_layout
  661. \begin_layout Itemize
  662. MOFA analysis also shows that batch effect correction can't get much better
  663. than it already is (Figure comparing blind MOFA batch correction to ComBat
  664. correction)
  665. \end_layout
  666. \end_deeper
  667. \begin_layout Subsection
  668. Naive-to-memory convergence observed in H3K4 and RNA-seq data, not in H3K27me3
  669. \end_layout
  670. \begin_layout Itemize
  671. H3K4 and RNA-seq data show clear evidence of naive convergence with memory
  672. between days 1 and 5 (MDS plot figure, also compare with last figure from
  673. \begin_inset CommandInset citation
  674. LatexCommand cite
  675. key "LaMere2016"
  676. literal "false"
  677. \end_inset
  678. )
  679. \end_layout
  680. \begin_layout Standard
  681. \begin_inset Flex TODO Note (inline)
  682. status open
  683. \begin_layout Plain Layout
  684. Note that Sarah has granted permission to use her figures
  685. \end_layout
  686. \end_inset
  687. \end_layout
  688. \begin_layout Itemize
  689. Table of numbers of genes different between N & M at each time point, showing
  690. dwindling differences at later time points, consistent with convergence
  691. \end_layout
  692. \begin_layout Itemize
  693. Similar figure for H3K27me3 showing lack of convergence
  694. \end_layout
  695. \begin_layout Subsection
  696. Effect of promoter coverage upstream vs downstream of TSS
  697. \end_layout
  698. \begin_layout Itemize
  699. H3K4me peaks seem to correlate with increased expression as long as they
  700. are anywhere near the TSS
  701. \end_layout
  702. \begin_layout Itemize
  703. H3K27me3 peaks can have different correlations to gene expression depending
  704. on their position relative to TSS (e.g.
  705. upstream vs downstream) Results consistent with
  706. \begin_inset CommandInset citation
  707. LatexCommand cite
  708. key "Young2011"
  709. literal "false"
  710. \end_inset
  711. \end_layout
  712. \begin_layout Section
  713. Discussion
  714. \end_layout
  715. \begin_layout Itemize
  716. "Promoter radius" is not constant and must be defined empirically for a
  717. given data set
  718. \end_layout
  719. \begin_layout Itemize
  720. MOFA shows great promise for accelerating discovery of major biological
  721. effects in multi-omics datasets
  722. \end_layout
  723. \begin_deeper
  724. \begin_layout Itemize
  725. MOFA was added to this analysis late and played primarily a confirmatory
  726. role, but it was able to confirm earlier conclusions with much less prior
  727. information (no sample labels) and much less analyst effort
  728. \end_layout
  729. \begin_layout Itemize
  730. MOFA confirmed that the already-implemented batch correction in the RNA-seq
  731. data was already performing as well as possible given the limitations of
  732. the data
  733. \end_layout
  734. \end_deeper
  735. \begin_layout Itemize
  736. Naive-to-memory convergence implies that naive cells are differentiating
  737. into memory cells, and that gene expression and H3K4 methylation are involved
  738. in this differentiation while H3K27me3 is less involved
  739. \end_layout
  740. \begin_layout Itemize
  741. H3K27me3, canonically regarded as a deactivating mark, seems to have a more
  742. complex
  743. \end_layout
  744. \begin_layout Itemize
  745. Discuss advantages of developing using a reproducible workflow
  746. \end_layout
  747. \begin_layout Chapter
  748. Improving array-based analyses of transplant rejection by optimizing data
  749. preprocessing
  750. \end_layout
  751. \begin_layout Standard
  752. \begin_inset Note Note
  753. status open
  754. \begin_layout Plain Layout
  755. Author list: Me, Sunil, Tom, Padma, Dan
  756. \end_layout
  757. \end_inset
  758. \end_layout
  759. \begin_layout Section
  760. Approach
  761. \end_layout
  762. \begin_layout Subsection
  763. Proper pre-processing is essential for array data
  764. \end_layout
  765. \begin_layout Standard
  766. \begin_inset Flex TODO Note (inline)
  767. status open
  768. \begin_layout Plain Layout
  769. This section could probably use some citations
  770. \end_layout
  771. \end_inset
  772. \end_layout
  773. \begin_layout Standard
  774. Microarrays, bead ararys, and similar assays produce raw data in the form
  775. of fluorescence intensity measurements, with the each intensity measurement
  776. proportional to the abundance of some fluorescently-labelled target DNA
  777. or RNA sequence that base pairs to a specific probe sequence.
  778. However, these measurements for each probe are also affected my many technical
  779. confounding factors, such as the concentration of target material, strength
  780. of off-target binding, and the sensitivity of the imaging sensor.
  781. Some array designs also use multiple probe sequences for each target.
  782. Hence, extensive pre-processing of array data is necessary to normalize
  783. out the effects of these technical factors and summarize the information
  784. from multiple probes to arrive at a single usable estimate of abundance
  785. or other relevant quantity, such as a ratio of two abundances, for each
  786. target.
  787. \end_layout
  788. \begin_layout Standard
  789. The choice of pre-processing algorithms used in the analysis of an array
  790. data set can have a large effect on the results of that analysis.
  791. However, despite their importance, these steps are often neglected or rushed
  792. in order to get to the more scientifically interesting analysis steps involving
  793. the actual biology of the system under study.
  794. Hence, it is often possible to achieve substantial gains in statistical
  795. power, model goodness-of-fit, or other relevant performance measures, by
  796. checking the assumptions made by each preprocessing step and choosing specific
  797. normalization methods tailored to the specific goals of the current analysis.
  798. \end_layout
  799. \begin_layout Subsection
  800. Normalization for clinical microarray classifiers must be single-channel
  801. \end_layout
  802. \begin_layout Subsubsection
  803. Standard normalization methods are unsuitable for clinical application
  804. \end_layout
  805. \begin_layout Standard
  806. As the cost of performing microarray assays falls, there is increasing interest
  807. in using genomic assays for diagnostic purposes, such as distinguishing
  808. healthy transplants (TX) from transplants undergoing acute rejection (AR)
  809. or acute dysfunction with no rejection (ADNR).
  810. However, the the standard normalization algorithm used for microarray data,
  811. Robust Multi-chip Average (RMA)
  812. \begin_inset CommandInset citation
  813. LatexCommand cite
  814. key "Irizarry2003a"
  815. literal "false"
  816. \end_inset
  817. , is not applicable in a clinical setting.
  818. Two of the steps in RMA, quantile normalization and probe summarization
  819. by median polish, depend on every array in the data set being normalized.
  820. This means that adding or removing any arrays from a data set changes the
  821. normalized values for all arrays, and data sets that have been normalized
  822. separately cannot be compared to each other.
  823. Hence, when using RMA, any arrays to be analyzed together must also be
  824. normalized together, and the set of arrays included in the data set must
  825. be held constant throughout an analysis.
  826. \end_layout
  827. \begin_layout Standard
  828. These limitations present serious impediments to the use of arrays as a
  829. diagnostic tool.
  830. When training a classifier, the samples to be classified must not be involved
  831. in any step of the training process, lest their inclusion bias the training
  832. process.
  833. Once a classifier is deployed in a clinical setting, the samples to be
  834. classified will not even
  835. \emph on
  836. exist
  837. \emph default
  838. at the time of training, so including them would be impossible even if
  839. it were statistically justifiable.
  840. Therefore, any machine learning application for microarrays demands that
  841. the normalized expression values computed for an array must depend only
  842. on information contained within that array.
  843. This would ensure that each array's normalization is independent of every
  844. other array, and that arrays normalized separately can still be compared
  845. to each other without bias.
  846. Such a normalization is commonly referred to as
  847. \begin_inset Quotes eld
  848. \end_inset
  849. single-channel normalization
  850. \begin_inset Quotes erd
  851. \end_inset
  852. .
  853. \end_layout
  854. \begin_layout Subsubsection
  855. Several strategies are available to meet clinical normalization requirements
  856. \end_layout
  857. \begin_layout Standard
  858. Frozen RMA (fRMA) addresses these concerns by replacing the quantile normalizati
  859. on and median polish with alternatives that do not introduce inter-array
  860. dependence, allowing each array to be normalized independently of all others
  861. \begin_inset CommandInset citation
  862. LatexCommand cite
  863. key "McCall2010"
  864. literal "false"
  865. \end_inset
  866. .
  867. Quantile normalization is performed against a pre-generated set of quantiles
  868. learned from a collection of 850 publically available arrays sampled from
  869. a wide variety of tissues in the Gene Expression Omnibus (GEO).
  870. Each array's probe intensity distribution is normalized against these pre-gener
  871. ated quantiles.
  872. The median polish step is replaced with a robust weighted average of probe
  873. intensities, using inverse variance weights learned from the same public
  874. GEO data.
  875. The result is a normalization that satisfies the requirements mentioned
  876. above: each array is normalized independently of all others, and any two
  877. normalized arrays can be compared directly to each other.
  878. \end_layout
  879. \begin_layout Standard
  880. One important limitation of fRMA is that it requires a separate reference
  881. data set from which to learn the parameters (reference quantiles and probe
  882. weights) that will be used to normalize each array.
  883. These parameters are specific to a given array platform, and pre-generated
  884. parameters are only provided for the most common platforms, such as Affymetrix
  885. hgu133plus2.
  886. For a less common platform, such as hthgu133pluspm, is is necessary to
  887. learn custom parameters from in-house data before fRMA can be used to normalize
  888. samples on that platform
  889. \begin_inset CommandInset citation
  890. LatexCommand cite
  891. key "McCall2011"
  892. literal "false"
  893. \end_inset
  894. .
  895. \end_layout
  896. \begin_layout Standard
  897. One other option is the aptly-named Single Channel Array Normalization (SCAN),
  898. which adapts a normalization method originally designed for tiling arrays
  899. \begin_inset CommandInset citation
  900. LatexCommand cite
  901. key "Piccolo2012"
  902. literal "false"
  903. \end_inset
  904. .
  905. SCAN is truly single-channel in that it does not require a set of normalization
  906. paramters estimated from an external set of reference samples like fRMA
  907. does.
  908. \end_layout
  909. \begin_layout Subsection
  910. Heteroskedasticity must be accounted for in methylation array data
  911. \end_layout
  912. \begin_layout Subsubsection
  913. Methylation array preprocessing induces heteroskedasticity
  914. \end_layout
  915. \begin_layout Standard
  916. DNA methylation arrays are a relatively new kind of assay that uses microarrays
  917. to measure the degree of methylation on cytosines in specific regions arrayed
  918. across the genome.
  919. First, bisulfite treatment converts all unmethylated cytosines to uracil
  920. (which then become thymine after amplication) while leaving methylated
  921. cytosines unaffected.
  922. Then, each target region is interrogated with two probes: one binds to
  923. the original genomic sequence and interrogates the level of methylated
  924. DNA, and the other binds to the same sequence with all cytosines replaced
  925. by thymidines and interrogates the level of unmethylated DNA.
  926. \end_layout
  927. \begin_layout Standard
  928. \begin_inset Float figure
  929. wide false
  930. sideways false
  931. status collapsed
  932. \begin_layout Plain Layout
  933. \align center
  934. \begin_inset Graphics
  935. filename graphics/methylvoom/sigmoid.pdf
  936. \end_inset
  937. \end_layout
  938. \begin_layout Plain Layout
  939. \begin_inset Caption Standard
  940. \begin_layout Plain Layout
  941. \begin_inset CommandInset label
  942. LatexCommand label
  943. name "fig:Sigmoid-beta-m-mapping"
  944. \end_inset
  945. \series bold
  946. Sigmoid shape of the mapping between β and M values
  947. \end_layout
  948. \end_inset
  949. \end_layout
  950. \end_inset
  951. \end_layout
  952. \begin_layout Standard
  953. After normalization, these two probe intensities are summarized in one of
  954. two ways, each with advantages and disadvantages.
  955. β
  956. \series bold
  957. \series default
  958. values, interpreted as fraction of DNA copies methylated, range from 0 to
  959. 1.
  960. β
  961. \series bold
  962. \series default
  963. values are conceptually easy to interpret, but the constrained range makes
  964. them unsuitable for linear modeling, and their error distributions are
  965. highly non-normal, which also frustrates linear modeling.
  966. M-values, interpreted as the log ratio of methylated to unmethylated copies,
  967. are computed by mapping the beta values from
  968. \begin_inset Formula $[0,1]$
  969. \end_inset
  970. onto
  971. \begin_inset Formula $(-\infty,+\infty)$
  972. \end_inset
  973. using a sigmoid curve (Figure
  974. \begin_inset CommandInset ref
  975. LatexCommand ref
  976. reference "fig:Sigmoid-beta-m-mapping"
  977. plural "false"
  978. caps "false"
  979. noprefix "false"
  980. \end_inset
  981. ).
  982. This transformation results in values with better statistical perperties:
  983. the unconstrained range is suitable for linear modeling, and the error
  984. distributions are more normal.
  985. Hence, most linear modeling and other statistical testing on methylation
  986. arrays is performed using M-values.
  987. \end_layout
  988. \begin_layout Standard
  989. However, the steep slope of the sigmoid transformation near 0 and 1 tends
  990. to over-exaggerate small differences in β values near those extremes, which
  991. in turn amplifies the error in those values, leading to a U-shaped trend
  992. in the mean-variance curve: extreme values have higher variances than values
  993. near the middle.
  994. This mean-variance dependency must be accounted for when fitting the linear
  995. model for differential methylation, or else the variance will be systematically
  996. overestimated for probes with moderate M-values and underestimated for
  997. probes with extreme M-values.
  998. \end_layout
  999. \begin_layout Subsubsection
  1000. The voom method for RNA-seq data can model M-value heteroskedasticity
  1001. \end_layout
  1002. \begin_layout Standard
  1003. RNA-seq read count data are also known to show heteroskedasticity, and the
  1004. voom method was developed for modeling this heteroskedasticity by estimating
  1005. the mean-variance trend in the data and using this trend to assign precision
  1006. weights to each observation
  1007. \begin_inset CommandInset citation
  1008. LatexCommand cite
  1009. key "Law2013"
  1010. literal "false"
  1011. \end_inset
  1012. .
  1013. While methylation array data are not derived from counts and have a very
  1014. different mean-variance relationship from that of typical RNA-seq data,
  1015. the voom method makes no specific assumptions on the shape of the mean-variance
  1016. relationship - it only assumes that the relationship is smooth enough to
  1017. model using a lowess curve.
  1018. Hence, the method is sufficiently general to model the mean-variance relationsh
  1019. ip in methylation array data.
  1020. However, the standard implementation of voom assumes that the input is
  1021. given in raw read counts, and it must be adapted to run on methylation
  1022. M-values.
  1023. \end_layout
  1024. \begin_layout Section
  1025. Methods
  1026. \end_layout
  1027. \begin_layout Subsection
  1028. Evaluation of classifier performance with different normalization methods
  1029. \end_layout
  1030. \begin_layout Standard
  1031. For testing different expression microarray normalizations, a data set of
  1032. 157 hgu133plus2 arrays was used, consisting of blood samples from kidney
  1033. transplant patients whose grafts had been graded as TX, AR, or ADNR via
  1034. biopsy and histology (46 TX, 69 AR, 42 ADNR)
  1035. \begin_inset CommandInset citation
  1036. LatexCommand cite
  1037. key "Kurian2014"
  1038. literal "true"
  1039. \end_inset
  1040. .
  1041. Additionally, an external validation set of 75 samples was gathered from
  1042. public GEO data (37 TX, 38 AR, no ADNR).
  1043. \end_layout
  1044. \begin_layout Standard
  1045. \begin_inset Flex TODO Note (inline)
  1046. status collapsed
  1047. \begin_layout Plain Layout
  1048. Find appropriate GEO identifiers if possible.
  1049. Kurian 2014 says GSE15296, but this seems to be different data.
  1050. I also need to look up the GEO accession for the external validation set.
  1051. \end_layout
  1052. \end_inset
  1053. \end_layout
  1054. \begin_layout Standard
  1055. To evaluate the effect of each normalization on classifier performance,
  1056. the same classifier training and validation procedure was used after each
  1057. normalization method.
  1058. The PAM package was used to train a nearest shrunken centroid classifier
  1059. on the training set and select the appropriate threshold for centroid shrinking.
  1060. Then the trained classifier was used to predict the class probabilities
  1061. of each validation sample.
  1062. From these class probabilities, ROC curves and area-under-curve (AUC) values
  1063. were generated
  1064. \begin_inset CommandInset citation
  1065. LatexCommand cite
  1066. key "Turck2011"
  1067. literal "false"
  1068. \end_inset
  1069. .
  1070. Each normalization was tested on two different sets of training and validation
  1071. samples.
  1072. For internal validation, the 115 TX and AR arrays in the internal set were
  1073. split at random into two equal sized sets, one for training and one for
  1074. validation, each containing the same numbers of TX and AR samples as the
  1075. other set.
  1076. For external validation, the full set of 115 TX and AR samples were used
  1077. as a training set, and the 75 external TX and AR samples were used as the
  1078. validation set.
  1079. Thus, 2 ROC curves and AUC values were generated for each normalization
  1080. method: one internal and one external.
  1081. Because the external validation set contains no ADNR samples, only classificati
  1082. on of TX and AR samples was considered.
  1083. The ADNR samples were included during normalization but excluded from all
  1084. classifier training and validation.
  1085. This ensures that the performance on internal and external validation sets
  1086. is directly comparable, since both are performing the same task: distinguising
  1087. TX from AR.
  1088. \end_layout
  1089. \begin_layout Standard
  1090. \begin_inset Flex TODO Note (inline)
  1091. status collapsed
  1092. \begin_layout Plain Layout
  1093. Summarize the get.best.threshold algorithm for PAM threshold selection
  1094. \end_layout
  1095. \end_inset
  1096. \end_layout
  1097. \begin_layout Standard
  1098. Six different normalization strategies were evaluated.
  1099. First, 2 well-known non-single-channel normalization methods were considered:
  1100. RMA and dChip
  1101. \begin_inset CommandInset citation
  1102. LatexCommand cite
  1103. key "Li2001,Irizarry2003a"
  1104. literal "false"
  1105. \end_inset
  1106. .
  1107. Since RMA produces expression values on a log2 scale and dChip does not,
  1108. the values from dChip were log2 transformed after normalization.
  1109. Next, RMA and dChip followed by Global Rank-invariant Set Normalization
  1110. (GRSN) were tested
  1111. \begin_inset CommandInset citation
  1112. LatexCommand cite
  1113. key "Pelz2008"
  1114. literal "false"
  1115. \end_inset
  1116. .
  1117. Post-processing with GRSN does not turn RMA or dChip into single-channel
  1118. methods, but it may help mitigate batch effects and is therefore useful
  1119. as a benchmark.
  1120. Lastly, the two single-channel normalization methods, fRMA and SCAN, were
  1121. tested
  1122. \begin_inset CommandInset citation
  1123. LatexCommand cite
  1124. key "McCall2010,Piccolo2012"
  1125. literal "false"
  1126. \end_inset
  1127. .
  1128. When evaluting internal validation performance, only the 157 internal samples
  1129. were normalized; when evaluating external validation performance, all 157
  1130. internal samples and 75 external samples were normalized together.
  1131. \end_layout
  1132. \begin_layout Standard
  1133. For demonstrating the problem with separate normalization of training and
  1134. validation data, one additional normalization was performed: the internal
  1135. and external sets were each normalized separately using RMA, and the normalized
  1136. data for each set were combined into a single set with no further attempts
  1137. at normalizing between the two sets.
  1138. The represents approximately how RMA would have to be used in a clinical
  1139. setting, where the samples to be classified are not available at the time
  1140. the classifier is trained.
  1141. \end_layout
  1142. \begin_layout Subsection
  1143. Generating custom fRMA vectors for hthgu133pluspm array platform
  1144. \end_layout
  1145. \begin_layout Standard
  1146. In order to enable fRMA normalization for the hthgu133pluspm array platform,
  1147. custom fRMA normalization vectors were trained using the frmaTools package
  1148. \begin_inset CommandInset citation
  1149. LatexCommand cite
  1150. key "McCall2011"
  1151. literal "false"
  1152. \end_inset
  1153. .
  1154. Separate vectors were created for two types of samples: kidney graft biopsy
  1155. samples and blood samples from graft recipients.
  1156. For training, a 341 kidney biopsy samples from 2 data sets and 965 blood
  1157. samples from 5 data sets were used as the reference set.
  1158. Arrays were groups into batches based on unique combinations of sample
  1159. type (blood or biopsy), diagnosis (TX, AR, etc.), data set, and scan date.
  1160. Thus, each batch represents arrays of the same kind that were run together
  1161. on the same day.
  1162. For estimating the probe inverse variance weights, frmaTools requires equal-siz
  1163. ed batches, which means a batch size must be chosen, and then batches smaller
  1164. than that size must be ignored, while batches larger than the chosen size
  1165. must be downsampled.
  1166. This downsampling is performed randomly, so the sampling process is repeated
  1167. 5 times and the resulting normalizations are compared to each other.
  1168. \end_layout
  1169. \begin_layout Standard
  1170. To evaluate the consistency of the generated normalization vectors, the
  1171. 5 fRMA vector sets generated from 5 random batch samplings were each used
  1172. to normalize the same 20 randomly selected samples from each tissue.
  1173. Then the normalized expression values for each probe on each array were
  1174. compared across all normalizations.
  1175. Each fRMA normalization was also compared against the normalized expression
  1176. values obtained by normalizing the same 20 samples with ordinary RMA.
  1177. \end_layout
  1178. \begin_layout Subsection
  1179. Modeling methylation array M-value heteroskedasticy in linear models with
  1180. modified voom implementation
  1181. \end_layout
  1182. \begin_layout Standard
  1183. \begin_inset Flex TODO Note (inline)
  1184. status open
  1185. \begin_layout Plain Layout
  1186. Put code on Github and reference it.
  1187. \end_layout
  1188. \end_inset
  1189. \end_layout
  1190. \begin_layout Standard
  1191. To investigate the whether DNA methylation could be used to distinguish
  1192. between healthy and dysfunctional transplants, a data set of 78 Illumina
  1193. 450k methylation arrays from human kidney graft biopsies was analyzed for
  1194. differential metylation between 4 transplant statuses: healthy transplant
  1195. (TX), transplants undergoing acute rejection (AR), acute dysfunction with
  1196. no rejection (ADNR), and chronic allograpft nephropathy (CAN).
  1197. The data consisted of 33 TX, 9 AR, 8 ADNR, and 28 CAN samples.
  1198. The uneven group sizes are a result of taking the biopsy samples before
  1199. the eventual fate of the transplant was known.
  1200. Each sample was additionally annotated with a donor ID (anonymized), Sex,
  1201. Age, Ethnicity, Creatinine Level, and Diabetes diagnosois (all samples
  1202. in this data set came from patients with either Type 1 or Type 2 diabetes).
  1203. \end_layout
  1204. \begin_layout Standard
  1205. The intensity data were first normalized using subset-quantile within array
  1206. normalization (SWAN)
  1207. \begin_inset CommandInset citation
  1208. LatexCommand cite
  1209. key "Maksimovic2012"
  1210. literal "false"
  1211. \end_inset
  1212. , then converted to intensity ratios (beta values)
  1213. \begin_inset CommandInset citation
  1214. LatexCommand cite
  1215. key "Aryee2014"
  1216. literal "false"
  1217. \end_inset
  1218. .
  1219. Any probes binding to loci that overlapped annotated SNPs were dropped,
  1220. and the annotated sex of each sample was verified against the sex inferred
  1221. from the ratio of median probe intensities for the X and Y chromosomes.
  1222. Then, the ratios were transformed to M-values.
  1223. \end_layout
  1224. \begin_layout Standard
  1225. \begin_inset Float table
  1226. wide false
  1227. sideways false
  1228. status collapsed
  1229. \begin_layout Plain Layout
  1230. \begin_inset Tabular
  1231. <lyxtabular version="3" rows="4" columns="6">
  1232. <features tabularvalignment="middle">
  1233. <column alignment="center" valignment="top">
  1234. <column alignment="center" valignment="top">
  1235. <column alignment="center" valignment="top">
  1236. <column alignment="center" valignment="top">
  1237. <column alignment="center" valignment="top">
  1238. <column alignment="center" valignment="top">
  1239. <row>
  1240. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1241. \begin_inset Text
  1242. \begin_layout Plain Layout
  1243. Analysis
  1244. \end_layout
  1245. \end_inset
  1246. </cell>
  1247. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1248. \begin_inset Text
  1249. \begin_layout Plain Layout
  1250. patient random effect
  1251. \end_layout
  1252. \end_inset
  1253. </cell>
  1254. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1255. \begin_inset Text
  1256. \begin_layout Plain Layout
  1257. empirical Bayes
  1258. \end_layout
  1259. \end_inset
  1260. </cell>
  1261. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1262. \begin_inset Text
  1263. \begin_layout Plain Layout
  1264. SVA
  1265. \end_layout
  1266. \end_inset
  1267. </cell>
  1268. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1269. \begin_inset Text
  1270. \begin_layout Plain Layout
  1271. sample weights
  1272. \end_layout
  1273. \end_inset
  1274. </cell>
  1275. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  1276. \begin_inset Text
  1277. \begin_layout Plain Layout
  1278. voom
  1279. \end_layout
  1280. \end_inset
  1281. </cell>
  1282. </row>
  1283. <row>
  1284. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1285. \begin_inset Text
  1286. \begin_layout Plain Layout
  1287. A
  1288. \end_layout
  1289. \end_inset
  1290. </cell>
  1291. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1292. \begin_inset Text
  1293. \begin_layout Plain Layout
  1294. Yes
  1295. \end_layout
  1296. \end_inset
  1297. </cell>
  1298. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1299. \begin_inset Text
  1300. \begin_layout Plain Layout
  1301. Yes
  1302. \end_layout
  1303. \end_inset
  1304. </cell>
  1305. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1306. \begin_inset Text
  1307. \begin_layout Plain Layout
  1308. No
  1309. \end_layout
  1310. \end_inset
  1311. </cell>
  1312. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1313. \begin_inset Text
  1314. \begin_layout Plain Layout
  1315. No
  1316. \end_layout
  1317. \end_inset
  1318. </cell>
  1319. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  1320. \begin_inset Text
  1321. \begin_layout Plain Layout
  1322. No
  1323. \end_layout
  1324. \end_inset
  1325. </cell>
  1326. </row>
  1327. <row>
  1328. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1329. \begin_inset Text
  1330. \begin_layout Plain Layout
  1331. B
  1332. \end_layout
  1333. \end_inset
  1334. </cell>
  1335. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1336. \begin_inset Text
  1337. \begin_layout Plain Layout
  1338. Yes
  1339. \end_layout
  1340. \end_inset
  1341. </cell>
  1342. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1343. \begin_inset Text
  1344. \begin_layout Plain Layout
  1345. Yes
  1346. \end_layout
  1347. \end_inset
  1348. </cell>
  1349. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1350. \begin_inset Text
  1351. \begin_layout Plain Layout
  1352. Yes
  1353. \end_layout
  1354. \end_inset
  1355. </cell>
  1356. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1357. \begin_inset Text
  1358. \begin_layout Plain Layout
  1359. Yes
  1360. \end_layout
  1361. \end_inset
  1362. </cell>
  1363. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  1364. \begin_inset Text
  1365. \begin_layout Plain Layout
  1366. No
  1367. \end_layout
  1368. \end_inset
  1369. </cell>
  1370. </row>
  1371. <row>
  1372. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1373. \begin_inset Text
  1374. \begin_layout Plain Layout
  1375. C
  1376. \end_layout
  1377. \end_inset
  1378. </cell>
  1379. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1380. \begin_inset Text
  1381. \begin_layout Plain Layout
  1382. Yes
  1383. \end_layout
  1384. \end_inset
  1385. </cell>
  1386. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1387. \begin_inset Text
  1388. \begin_layout Plain Layout
  1389. Yes
  1390. \end_layout
  1391. \end_inset
  1392. </cell>
  1393. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1394. \begin_inset Text
  1395. \begin_layout Plain Layout
  1396. Yes
  1397. \end_layout
  1398. \end_inset
  1399. </cell>
  1400. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1401. \begin_inset Text
  1402. \begin_layout Plain Layout
  1403. Yes
  1404. \end_layout
  1405. \end_inset
  1406. </cell>
  1407. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  1408. \begin_inset Text
  1409. \begin_layout Plain Layout
  1410. Yes
  1411. \end_layout
  1412. \end_inset
  1413. </cell>
  1414. </row>
  1415. </lyxtabular>
  1416. \end_inset
  1417. \end_layout
  1418. \begin_layout Plain Layout
  1419. \begin_inset Caption Standard
  1420. \begin_layout Plain Layout
  1421. \series bold
  1422. \begin_inset CommandInset label
  1423. LatexCommand label
  1424. name "tab:Summary-of-meth-analysis"
  1425. \end_inset
  1426. Summary of analysis variants for methylation array data.
  1427. \series default
  1428. Each analysis included a different set of steps to adjust or account for
  1429. various systematic features of the data.
  1430. See the text for a more detailed explanation of each step.
  1431. \end_layout
  1432. \end_inset
  1433. \end_layout
  1434. \end_inset
  1435. \end_layout
  1436. \begin_layout Standard
  1437. From the M-values, a series of parallel analyses was performed, each adding
  1438. additional steps into the model fit to accomodate a feature of the data
  1439. (see Table
  1440. \begin_inset CommandInset ref
  1441. LatexCommand ref
  1442. reference "tab:Summary-of-meth-analysis"
  1443. plural "false"
  1444. caps "false"
  1445. noprefix "false"
  1446. \end_inset
  1447. ).
  1448. For analysis A, a
  1449. \begin_inset Quotes eld
  1450. \end_inset
  1451. basic
  1452. \begin_inset Quotes erd
  1453. \end_inset
  1454. linear modeling analysis was performed, compensating for known confounders
  1455. by including terms for the factor of interest (transplant status) as well
  1456. as the known biological confounders: sex, age, ethnicity, and diabetes.
  1457. Since some samples came from the same patients at different times, the
  1458. intra-patient correlation was modeled as a random effect, estimating a
  1459. shared correlation value across all probes
  1460. \begin_inset CommandInset citation
  1461. LatexCommand cite
  1462. key "Smyth2005a"
  1463. literal "false"
  1464. \end_inset
  1465. .
  1466. Then the linear model was fit, and the variance was modeled using empirical
  1467. Bayes squeezing toward the mean-variance trend
  1468. \begin_inset CommandInset citation
  1469. LatexCommand cite
  1470. key "Ritchie2015"
  1471. literal "false"
  1472. \end_inset
  1473. .
  1474. Finally, t-tests or F-tests were performed as appropriate for each test:
  1475. t-tests for single contrasts, and F-tests for multiple contrasts.
  1476. P-values were corrected for multiple testing using the Benjamini-Hochberg
  1477. procedure for FDR control
  1478. \begin_inset CommandInset citation
  1479. LatexCommand cite
  1480. key "Benjamini1995"
  1481. literal "false"
  1482. \end_inset
  1483. .
  1484. \end_layout
  1485. \begin_layout Standard
  1486. For the analysis B, surrogate variable analysis (SVA) was used to infer
  1487. additional unobserved sources of heterogeneity in the data
  1488. \begin_inset CommandInset citation
  1489. LatexCommand cite
  1490. key "Leek2007"
  1491. literal "false"
  1492. \end_inset
  1493. .
  1494. These surrogate variables were added to the design matrix before fitting
  1495. the linear model.
  1496. In addition, sample quality weights were estimated from the data and used
  1497. during linear modeling to down-weight the contribution of highly variable
  1498. arrays while increasing the weight to arrays with lower variability
  1499. \begin_inset CommandInset citation
  1500. LatexCommand cite
  1501. key "Ritchie2006"
  1502. literal "false"
  1503. \end_inset
  1504. .
  1505. The remainder of the analysis proceeded as in analysis A.
  1506. For analysis C, the voom method was adapted to run on methylation array
  1507. data and used to model and correct for the mean-variance trend using individual
  1508. observation weights
  1509. \begin_inset CommandInset citation
  1510. LatexCommand cite
  1511. key "Law2013"
  1512. literal "false"
  1513. \end_inset
  1514. , which were combined with the sample weights
  1515. \begin_inset CommandInset citation
  1516. LatexCommand cite
  1517. key "Liu2015"
  1518. literal "false"
  1519. \end_inset
  1520. .
  1521. Each time weights were used, they were estimated once before estimating
  1522. the random effect correlation value, and then the weights were re-estimated
  1523. taking the random effect into account.
  1524. The remainder of the analysis proceeded as in analysis B.
  1525. \end_layout
  1526. \begin_layout Section
  1527. Results
  1528. \end_layout
  1529. \begin_layout Standard
  1530. \begin_inset Flex TODO Note (inline)
  1531. status open
  1532. \begin_layout Plain Layout
  1533. Improve subsection titles in this section
  1534. \end_layout
  1535. \end_inset
  1536. \end_layout
  1537. \begin_layout Subsection
  1538. fRMA eliminates unwanted dependence of classifier training on normalization
  1539. strategy caused by RMA
  1540. \end_layout
  1541. \begin_layout Standard
  1542. \begin_inset Flex TODO Note (inline)
  1543. status open
  1544. \begin_layout Plain Layout
  1545. Write figure legends
  1546. \end_layout
  1547. \end_inset
  1548. \end_layout
  1549. \begin_layout Subsubsection
  1550. Separate normalization with RMA introduces unwanted biases in classification
  1551. \end_layout
  1552. \begin_layout Standard
  1553. \begin_inset Float figure
  1554. wide false
  1555. sideways false
  1556. status collapsed
  1557. \begin_layout Plain Layout
  1558. \align center
  1559. \begin_inset Graphics
  1560. filename graphics/PAM/predplot.pdf
  1561. width 100col%
  1562. groupId colwidth
  1563. \end_inset
  1564. \end_layout
  1565. \begin_layout Plain Layout
  1566. \begin_inset Caption Standard
  1567. \begin_layout Plain Layout
  1568. \begin_inset CommandInset label
  1569. LatexCommand label
  1570. name "fig:Classifier-probabilities-RMA"
  1571. \end_inset
  1572. \series bold
  1573. Classifier probabilities on validation samples when normalized with RMA
  1574. together vs.
  1575. separately.
  1576. \end_layout
  1577. \end_inset
  1578. \end_layout
  1579. \end_inset
  1580. \end_layout
  1581. \begin_layout Standard
  1582. To demonstrate the problem with non-single-channel normalization methods,
  1583. we considered the problem of training a classifier to distinguish TX from
  1584. AR using the samples from the internal set as training data, evaluating
  1585. performance on the external set.
  1586. First, training and evaluation were performed after normalizing all array
  1587. samples together as a single set using RMA, and second, the internal samples
  1588. were normalized separately from the external samples and the training and
  1589. evaluation were repeated.
  1590. For each sample in the validation set, the classifier probabilities from
  1591. both classifiers were plotted against each other (Fig.
  1592. \begin_inset CommandInset ref
  1593. LatexCommand ref
  1594. reference "fig:Classifier-probabilities-RMA"
  1595. plural "false"
  1596. caps "false"
  1597. noprefix "false"
  1598. \end_inset
  1599. ).
  1600. As expected, separate normalization biases the classifier probabilities,
  1601. resulting in several misclassifications.
  1602. In this case, the bias from separate normalization causes the classifier
  1603. to assign a lower probability of AR to every sample.
  1604. \end_layout
  1605. \begin_layout Subsubsection
  1606. fRMA and SCAN achieve maintain classification performance while eliminating
  1607. dependence on normalization strategy
  1608. \end_layout
  1609. \begin_layout Standard
  1610. \begin_inset Float figure
  1611. placement tb
  1612. wide false
  1613. sideways false
  1614. status collapsed
  1615. \begin_layout Plain Layout
  1616. \align center
  1617. \begin_inset Graphics
  1618. filename graphics/PAM/ROC-TXvsAR-internal.pdf
  1619. width 100col%
  1620. groupId colwidth
  1621. \end_inset
  1622. \end_layout
  1623. \begin_layout Plain Layout
  1624. \begin_inset Caption Standard
  1625. \begin_layout Plain Layout
  1626. \series bold
  1627. \begin_inset CommandInset label
  1628. LatexCommand label
  1629. name "fig:ROC-PAM-int"
  1630. \end_inset
  1631. ROC curves for PAM on internal validation data using different normalization
  1632. strategies
  1633. \end_layout
  1634. \end_inset
  1635. \end_layout
  1636. \end_inset
  1637. \end_layout
  1638. \begin_layout Standard
  1639. \begin_inset Float table
  1640. wide false
  1641. sideways false
  1642. status collapsed
  1643. \begin_layout Plain Layout
  1644. \align center
  1645. \begin_inset Tabular
  1646. <lyxtabular version="3" rows="7" columns="4">
  1647. <features tabularvalignment="middle">
  1648. <column alignment="center" valignment="top">
  1649. <column alignment="center" valignment="top">
  1650. <column alignment="center" valignment="top">
  1651. <column alignment="center" valignment="top">
  1652. <row>
  1653. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1654. \begin_inset Text
  1655. \begin_layout Plain Layout
  1656. \family roman
  1657. \series medium
  1658. \shape up
  1659. \size normal
  1660. \emph off
  1661. \bar no
  1662. \strikeout off
  1663. \xout off
  1664. \uuline off
  1665. \uwave off
  1666. \noun off
  1667. \color none
  1668. Normalization
  1669. \end_layout
  1670. \end_inset
  1671. </cell>
  1672. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1673. \begin_inset Text
  1674. \begin_layout Plain Layout
  1675. Single-channel?
  1676. \end_layout
  1677. \end_inset
  1678. </cell>
  1679. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1680. \begin_inset Text
  1681. \begin_layout Plain Layout
  1682. \family roman
  1683. \series medium
  1684. \shape up
  1685. \size normal
  1686. \emph off
  1687. \bar no
  1688. \strikeout off
  1689. \xout off
  1690. \uuline off
  1691. \uwave off
  1692. \noun off
  1693. \color none
  1694. Internal Val.
  1695. AUC
  1696. \end_layout
  1697. \end_inset
  1698. </cell>
  1699. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  1700. \begin_inset Text
  1701. \begin_layout Plain Layout
  1702. External Val.
  1703. AUC
  1704. \end_layout
  1705. \end_inset
  1706. </cell>
  1707. </row>
  1708. <row>
  1709. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1710. \begin_inset Text
  1711. \begin_layout Plain Layout
  1712. \family roman
  1713. \series medium
  1714. \shape up
  1715. \size normal
  1716. \emph off
  1717. \bar no
  1718. \strikeout off
  1719. \xout off
  1720. \uuline off
  1721. \uwave off
  1722. \noun off
  1723. \color none
  1724. RMA
  1725. \end_layout
  1726. \end_inset
  1727. </cell>
  1728. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1729. \begin_inset Text
  1730. \begin_layout Plain Layout
  1731. No
  1732. \end_layout
  1733. \end_inset
  1734. </cell>
  1735. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1736. \begin_inset Text
  1737. \begin_layout Plain Layout
  1738. \family roman
  1739. \series medium
  1740. \shape up
  1741. \size normal
  1742. \emph off
  1743. \bar no
  1744. \strikeout off
  1745. \xout off
  1746. \uuline off
  1747. \uwave off
  1748. \noun off
  1749. \color none
  1750. 0.852
  1751. \end_layout
  1752. \end_inset
  1753. </cell>
  1754. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  1755. \begin_inset Text
  1756. \begin_layout Plain Layout
  1757. \family roman
  1758. \series medium
  1759. \shape up
  1760. \size normal
  1761. \emph off
  1762. \bar no
  1763. \strikeout off
  1764. \xout off
  1765. \uuline off
  1766. \uwave off
  1767. \noun off
  1768. \color none
  1769. 0.713
  1770. \end_layout
  1771. \end_inset
  1772. </cell>
  1773. </row>
  1774. <row>
  1775. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1776. \begin_inset Text
  1777. \begin_layout Plain Layout
  1778. \family roman
  1779. \series medium
  1780. \shape up
  1781. \size normal
  1782. \emph off
  1783. \bar no
  1784. \strikeout off
  1785. \xout off
  1786. \uuline off
  1787. \uwave off
  1788. \noun off
  1789. \color none
  1790. dChip
  1791. \end_layout
  1792. \end_inset
  1793. </cell>
  1794. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1795. \begin_inset Text
  1796. \begin_layout Plain Layout
  1797. No
  1798. \end_layout
  1799. \end_inset
  1800. </cell>
  1801. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1802. \begin_inset Text
  1803. \begin_layout Plain Layout
  1804. \family roman
  1805. \series medium
  1806. \shape up
  1807. \size normal
  1808. \emph off
  1809. \bar no
  1810. \strikeout off
  1811. \xout off
  1812. \uuline off
  1813. \uwave off
  1814. \noun off
  1815. \color none
  1816. 0.891
  1817. \end_layout
  1818. \end_inset
  1819. </cell>
  1820. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  1821. \begin_inset Text
  1822. \begin_layout Plain Layout
  1823. \family roman
  1824. \series medium
  1825. \shape up
  1826. \size normal
  1827. \emph off
  1828. \bar no
  1829. \strikeout off
  1830. \xout off
  1831. \uuline off
  1832. \uwave off
  1833. \noun off
  1834. \color none
  1835. 0.657
  1836. \end_layout
  1837. \end_inset
  1838. </cell>
  1839. </row>
  1840. <row>
  1841. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1842. \begin_inset Text
  1843. \begin_layout Plain Layout
  1844. \family roman
  1845. \series medium
  1846. \shape up
  1847. \size normal
  1848. \emph off
  1849. \bar no
  1850. \strikeout off
  1851. \xout off
  1852. \uuline off
  1853. \uwave off
  1854. \noun off
  1855. \color none
  1856. RMA + GRSN
  1857. \end_layout
  1858. \end_inset
  1859. </cell>
  1860. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1861. \begin_inset Text
  1862. \begin_layout Plain Layout
  1863. No
  1864. \end_layout
  1865. \end_inset
  1866. </cell>
  1867. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1868. \begin_inset Text
  1869. \begin_layout Plain Layout
  1870. \family roman
  1871. \series medium
  1872. \shape up
  1873. \size normal
  1874. \emph off
  1875. \bar no
  1876. \strikeout off
  1877. \xout off
  1878. \uuline off
  1879. \uwave off
  1880. \noun off
  1881. \color none
  1882. 0.816
  1883. \end_layout
  1884. \end_inset
  1885. </cell>
  1886. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  1887. \begin_inset Text
  1888. \begin_layout Plain Layout
  1889. \family roman
  1890. \series medium
  1891. \shape up
  1892. \size normal
  1893. \emph off
  1894. \bar no
  1895. \strikeout off
  1896. \xout off
  1897. \uuline off
  1898. \uwave off
  1899. \noun off
  1900. \color none
  1901. 0.750
  1902. \end_layout
  1903. \end_inset
  1904. </cell>
  1905. </row>
  1906. <row>
  1907. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1908. \begin_inset Text
  1909. \begin_layout Plain Layout
  1910. \family roman
  1911. \series medium
  1912. \shape up
  1913. \size normal
  1914. \emph off
  1915. \bar no
  1916. \strikeout off
  1917. \xout off
  1918. \uuline off
  1919. \uwave off
  1920. \noun off
  1921. \color none
  1922. dChip + GRSN
  1923. \end_layout
  1924. \end_inset
  1925. </cell>
  1926. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1927. \begin_inset Text
  1928. \begin_layout Plain Layout
  1929. No
  1930. \end_layout
  1931. \end_inset
  1932. </cell>
  1933. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1934. \begin_inset Text
  1935. \begin_layout Plain Layout
  1936. \family roman
  1937. \series medium
  1938. \shape up
  1939. \size normal
  1940. \emph off
  1941. \bar no
  1942. \strikeout off
  1943. \xout off
  1944. \uuline off
  1945. \uwave off
  1946. \noun off
  1947. \color none
  1948. 0.875
  1949. \end_layout
  1950. \end_inset
  1951. </cell>
  1952. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  1953. \begin_inset Text
  1954. \begin_layout Plain Layout
  1955. \family roman
  1956. \series medium
  1957. \shape up
  1958. \size normal
  1959. \emph off
  1960. \bar no
  1961. \strikeout off
  1962. \xout off
  1963. \uuline off
  1964. \uwave off
  1965. \noun off
  1966. \color none
  1967. 0.642
  1968. \end_layout
  1969. \end_inset
  1970. </cell>
  1971. </row>
  1972. <row>
  1973. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1974. \begin_inset Text
  1975. \begin_layout Plain Layout
  1976. \family roman
  1977. \series medium
  1978. \shape up
  1979. \size normal
  1980. \emph off
  1981. \bar no
  1982. \strikeout off
  1983. \xout off
  1984. \uuline off
  1985. \uwave off
  1986. \noun off
  1987. \color none
  1988. fRMA
  1989. \end_layout
  1990. \end_inset
  1991. </cell>
  1992. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1993. \begin_inset Text
  1994. \begin_layout Plain Layout
  1995. Yes
  1996. \end_layout
  1997. \end_inset
  1998. </cell>
  1999. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2000. \begin_inset Text
  2001. \begin_layout Plain Layout
  2002. \family roman
  2003. \series medium
  2004. \shape up
  2005. \size normal
  2006. \emph off
  2007. \bar no
  2008. \strikeout off
  2009. \xout off
  2010. \uuline off
  2011. \uwave off
  2012. \noun off
  2013. \color none
  2014. 0.863
  2015. \end_layout
  2016. \end_inset
  2017. </cell>
  2018. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2019. \begin_inset Text
  2020. \begin_layout Plain Layout
  2021. \family roman
  2022. \series medium
  2023. \shape up
  2024. \size normal
  2025. \emph off
  2026. \bar no
  2027. \strikeout off
  2028. \xout off
  2029. \uuline off
  2030. \uwave off
  2031. \noun off
  2032. \color none
  2033. 0.718
  2034. \end_layout
  2035. \end_inset
  2036. </cell>
  2037. </row>
  2038. <row>
  2039. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2040. \begin_inset Text
  2041. \begin_layout Plain Layout
  2042. \family roman
  2043. \series medium
  2044. \shape up
  2045. \size normal
  2046. \emph off
  2047. \bar no
  2048. \strikeout off
  2049. \xout off
  2050. \uuline off
  2051. \uwave off
  2052. \noun off
  2053. \color none
  2054. SCAN
  2055. \end_layout
  2056. \end_inset
  2057. </cell>
  2058. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2059. \begin_inset Text
  2060. \begin_layout Plain Layout
  2061. Yes
  2062. \end_layout
  2063. \end_inset
  2064. </cell>
  2065. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2066. \begin_inset Text
  2067. \begin_layout Plain Layout
  2068. \family roman
  2069. \series medium
  2070. \shape up
  2071. \size normal
  2072. \emph off
  2073. \bar no
  2074. \strikeout off
  2075. \xout off
  2076. \uuline off
  2077. \uwave off
  2078. \noun off
  2079. \color none
  2080. 0.853
  2081. \end_layout
  2082. \end_inset
  2083. </cell>
  2084. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2085. \begin_inset Text
  2086. \begin_layout Plain Layout
  2087. \family roman
  2088. \series medium
  2089. \shape up
  2090. \size normal
  2091. \emph off
  2092. \bar no
  2093. \strikeout off
  2094. \xout off
  2095. \uuline off
  2096. \uwave off
  2097. \noun off
  2098. \color none
  2099. 0.689
  2100. \end_layout
  2101. \end_inset
  2102. </cell>
  2103. </row>
  2104. </lyxtabular>
  2105. \end_inset
  2106. \end_layout
  2107. \begin_layout Plain Layout
  2108. \begin_inset Caption Standard
  2109. \begin_layout Plain Layout
  2110. \begin_inset CommandInset label
  2111. LatexCommand label
  2112. name "tab:AUC-PAM"
  2113. \end_inset
  2114. \series bold
  2115. AUC values for internal and external validation with 6 different normalization
  2116. strategies.
  2117. \series default
  2118. Only fRMA and SCAN are single-channel normalizations.
  2119. The other 4 normalizations are for comparison.
  2120. \end_layout
  2121. \end_inset
  2122. \end_layout
  2123. \end_inset
  2124. \end_layout
  2125. \begin_layout Standard
  2126. For internal validation, the 6 methods' AUC values ranged from 0.816 to 0.891,
  2127. as shown in Table
  2128. \begin_inset CommandInset ref
  2129. LatexCommand ref
  2130. reference "tab:AUC-PAM"
  2131. plural "false"
  2132. caps "false"
  2133. noprefix "false"
  2134. \end_inset
  2135. .
  2136. Among the non-single-channel normalizations, dChip outperformed RMA, while
  2137. GRSN reduced the AUC values for both dChip and RMA.
  2138. Both single-channel methods, fRMA and SCAN, slightly outperformed RMA,
  2139. with fRMA ahead of SCAN.
  2140. However, the difference between RMA and fRMA is still quite small.
  2141. Figure
  2142. \begin_inset CommandInset ref
  2143. LatexCommand ref
  2144. reference "fig:ROC-PAM-int"
  2145. plural "false"
  2146. caps "false"
  2147. noprefix "false"
  2148. \end_inset
  2149. shows that the ROC curves for RMA, dChip, and fRMA look very similar and
  2150. relatively smooth, while both GRSN curves and the curve for SCAN have a
  2151. more jagged appearance.
  2152. \end_layout
  2153. \begin_layout Standard
  2154. \begin_inset Float figure
  2155. placement tb
  2156. wide false
  2157. sideways false
  2158. status collapsed
  2159. \begin_layout Plain Layout
  2160. \align center
  2161. \begin_inset Graphics
  2162. filename graphics/PAM/ROC-TXvsAR-external.pdf
  2163. width 100col%
  2164. groupId colwidth
  2165. \end_inset
  2166. \end_layout
  2167. \begin_layout Plain Layout
  2168. \begin_inset Caption Standard
  2169. \begin_layout Plain Layout
  2170. \series bold
  2171. \begin_inset CommandInset label
  2172. LatexCommand label
  2173. name "fig:ROC-PAM-ext"
  2174. \end_inset
  2175. ROC curve for PAM on external validation data using different normalization
  2176. strategies
  2177. \end_layout
  2178. \end_inset
  2179. \end_layout
  2180. \end_inset
  2181. \end_layout
  2182. \begin_layout Standard
  2183. For external validation, as expected, all the AUC values are lower than
  2184. the internal validations, ranging from 0.642 to 0.750 (Table
  2185. \begin_inset CommandInset ref
  2186. LatexCommand ref
  2187. reference "tab:AUC-PAM"
  2188. plural "false"
  2189. caps "false"
  2190. noprefix "false"
  2191. \end_inset
  2192. ).
  2193. With or without GRSN, RMA shows its dominance over dChip in this more challengi
  2194. ng test.
  2195. Unlike in the internal validation, GRSN actually improves the classifier
  2196. performance for RMA, although it does not for dChip.
  2197. Once again, both single-channel methods perform about on par with RMA,
  2198. with fRMA performing slightly better and SCAN performing a bit worse.
  2199. Figure
  2200. \begin_inset CommandInset ref
  2201. LatexCommand ref
  2202. reference "fig:ROC-PAM-ext"
  2203. plural "false"
  2204. caps "false"
  2205. noprefix "false"
  2206. \end_inset
  2207. shows the ROC curves for the external validation test.
  2208. As expected, none of them are as clean-looking as the internal validation
  2209. ROC curves.
  2210. The curves for RMA, RMA+GRSN, and fRMA all look similar, while the other
  2211. curves look more divergent.
  2212. \end_layout
  2213. \begin_layout Standard
  2214. \begin_inset ERT
  2215. status collapsed
  2216. \begin_layout Plain Layout
  2217. \backslash
  2218. FloatBarrier
  2219. \end_layout
  2220. \end_inset
  2221. \end_layout
  2222. \begin_layout Subsection
  2223. fRMA with custom-generated vectors enables normalization on hthgu133pluspm
  2224. \end_layout
  2225. \begin_layout Standard
  2226. \begin_inset Float figure
  2227. placement tb
  2228. wide false
  2229. sideways false
  2230. status collapsed
  2231. \begin_layout Plain Layout
  2232. \align center
  2233. \begin_inset Graphics
  2234. filename graphics/frma-pax-bx/batchsize_batches.pdf
  2235. \end_inset
  2236. \end_layout
  2237. \begin_layout Plain Layout
  2238. \begin_inset Caption Standard
  2239. \begin_layout Plain Layout
  2240. \begin_inset CommandInset label
  2241. LatexCommand label
  2242. name "fig:batch-size-batches"
  2243. \end_inset
  2244. \series bold
  2245. Effect of batch size selection on number of batches included in fRMA probe
  2246. weight learning.
  2247. \series default
  2248. For batch sizes ranging from 3 to 15, the number of batches with at least
  2249. that many samples was plotted for biopsy (BX) and blood (PAX) samples.
  2250. The selected batch size, 5, is marked with a dotted vertical line.
  2251. \end_layout
  2252. \end_inset
  2253. \end_layout
  2254. \end_inset
  2255. \end_layout
  2256. \begin_layout Standard
  2257. \begin_inset Float figure
  2258. placement tb
  2259. wide false
  2260. sideways false
  2261. status collapsed
  2262. \begin_layout Plain Layout
  2263. \align center
  2264. \begin_inset Graphics
  2265. filename graphics/frma-pax-bx/batchsize_samples.pdf
  2266. \end_inset
  2267. \end_layout
  2268. \begin_layout Plain Layout
  2269. \begin_inset Caption Standard
  2270. \begin_layout Plain Layout
  2271. \begin_inset CommandInset label
  2272. LatexCommand label
  2273. name "fig:batch-size-samples"
  2274. \end_inset
  2275. \series bold
  2276. Effect of batch size selection on number of samples included in fRMA probe
  2277. weight learning.
  2278. \series default
  2279. For batch sizes ranging from 3 to 15, the number of samples included in
  2280. probe weight training was plotted for biopsy (BX) and blood (PAX) samples.
  2281. The selected batch size, 5, is marked with a dotted vertical line.
  2282. \end_layout
  2283. \end_inset
  2284. \end_layout
  2285. \end_inset
  2286. \end_layout
  2287. \begin_layout Standard
  2288. In order to enable use of fRMA to normalize hthgu133pluspm, a custom set
  2289. of fRMA vectors was created.
  2290. First, an appropriate batch size was chosen by looking at the number of
  2291. batches and number of samples included as a function of batch size (Figures
  2292. \begin_inset CommandInset ref
  2293. LatexCommand ref
  2294. reference "fig:batch-size-batches"
  2295. plural "false"
  2296. caps "false"
  2297. noprefix "false"
  2298. \end_inset
  2299. and
  2300. \begin_inset CommandInset ref
  2301. LatexCommand ref
  2302. reference "fig:batch-size-samples"
  2303. plural "false"
  2304. caps "false"
  2305. noprefix "false"
  2306. \end_inset
  2307. , respectively).
  2308. For a given batch size, all batches with fewer samples that the chosen
  2309. size must be ignored during training, while larger batches must be randomly
  2310. downsampled to the chosen size.
  2311. Hence, the number of samples included for a given batch size equals the
  2312. batch size times the number of batches with at least that many samples.
  2313. From Figure
  2314. \begin_inset CommandInset ref
  2315. LatexCommand ref
  2316. reference "fig:batch-size-samples"
  2317. plural "false"
  2318. caps "false"
  2319. noprefix "false"
  2320. \end_inset
  2321. , it is apparent that that a batch size of 8 maximizes the number of samples
  2322. included in training.
  2323. Increasing the batch size beyond this causes too many smaller batches to
  2324. be excluded, reducing the total number of samples for both tissue types.
  2325. However, a batch size of 8 is not necessarily optimal.
  2326. The article introducing frmaTools concluded that it was highly advantageous
  2327. to use a smaller batch size in order to include more batches, even at the
  2328. expense of including fewer total samples in training
  2329. \begin_inset CommandInset citation
  2330. LatexCommand cite
  2331. key "McCall2011"
  2332. literal "false"
  2333. \end_inset
  2334. .
  2335. To strike an appropriate balance between more batches and more samples,
  2336. a batch size of 5 was chosen.
  2337. For both blood and biopsy samples, this increased the number of batches
  2338. included by 10, with only a modest reduction in the number of samples compared
  2339. to a batch size of 8.
  2340. With a batch size of 5, 26 batches of biopsy samples and 46 batches of
  2341. blood samples were available.
  2342. \end_layout
  2343. \begin_layout Standard
  2344. \begin_inset Float figure
  2345. wide false
  2346. sideways false
  2347. status collapsed
  2348. \begin_layout Plain Layout
  2349. \align center
  2350. \begin_inset Graphics
  2351. filename graphics/frma-pax-bx/M-BX-violin.pdf
  2352. lyxscale 40
  2353. height 80theight%
  2354. groupId m-violin
  2355. \end_inset
  2356. \end_layout
  2357. \begin_layout Plain Layout
  2358. \begin_inset Caption Standard
  2359. \begin_layout Plain Layout
  2360. \begin_inset CommandInset label
  2361. LatexCommand label
  2362. name "fig:m-bx-violin"
  2363. \end_inset
  2364. \series bold
  2365. Violin plot of log ratios between normalizations for 20 biopsy samples.
  2366. \series default
  2367. Each of 20 randomly selected biopsy samples was normalized with RMA and
  2368. with 5 different sets of fRMA vectors.
  2369. This shows the distribution of log ratios between normalized expression
  2370. values, aggregated across all 20 arrays.
  2371. \end_layout
  2372. \end_inset
  2373. \end_layout
  2374. \end_inset
  2375. \end_layout
  2376. \begin_layout Standard
  2377. Since fRMA training requires equal-size batches, larger batches are downsampled
  2378. randomly.
  2379. This introduces a nondeterministic step in the generation of normalization
  2380. vectors.
  2381. To show that this randomness does not substantially change the outcome,
  2382. the random downsampling and subsequent vector learning was repeated 5 times,
  2383. with a different random seed each time.
  2384. 20 samples were selected at random as a test set and normalized with each
  2385. of the 5 sets of fRMA normalization vectors as well as ordinary RMA, and
  2386. the normalized expression values were compared across normalizations.
  2387. Figure
  2388. \begin_inset CommandInset ref
  2389. LatexCommand ref
  2390. reference "fig:m-bx-violin"
  2391. plural "false"
  2392. caps "false"
  2393. noprefix "false"
  2394. \end_inset
  2395. shows a summary of these comparisons for biopsy samples.
  2396. Comparing RMA to each of the 5 fRMA normalizations, the distribution of
  2397. log ratios is somewhat wide, indicating that the normalizations disagree
  2398. on the expression values of a fair number of probe sets.
  2399. In contrast, comparisons of fRMA against fRMA, the vast mojority of probe
  2400. sets have very small log ratios, indicating a very high agreement between
  2401. the normalized values generated by the two normalizations.
  2402. This shows that the fRMA normalization's behavior is not very sensitive
  2403. to the random downsampling of larger batches during training.
  2404. \end_layout
  2405. \begin_layout Standard
  2406. \begin_inset Float figure
  2407. wide false
  2408. sideways false
  2409. status collapsed
  2410. \begin_layout Plain Layout
  2411. \align center
  2412. \begin_inset Graphics
  2413. filename graphics/frma-pax-bx/MA-BX-RMA.fRMA.pdf
  2414. lyxscale 50
  2415. width 100text%
  2416. groupId ma-frma
  2417. \end_inset
  2418. \end_layout
  2419. \begin_layout Plain Layout
  2420. \begin_inset Caption Standard
  2421. \begin_layout Plain Layout
  2422. \begin_inset CommandInset label
  2423. LatexCommand label
  2424. name "fig:ma-bx-rma-frma"
  2425. \end_inset
  2426. \series bold
  2427. Representative MA plot comparing RMA against fRMA for 20 biopsy samples.
  2428. \series default
  2429. Averages and log ratios were computed for every probe in each of 20 biopsy
  2430. samples between RMA normalization and fRMA.
  2431. Density of points is represented by darkness of shading, and individual
  2432. outlier points are plotted.
  2433. \end_layout
  2434. \end_inset
  2435. \end_layout
  2436. \end_inset
  2437. \end_layout
  2438. \begin_layout Standard
  2439. \begin_inset Float figure
  2440. wide false
  2441. sideways false
  2442. status collapsed
  2443. \begin_layout Plain Layout
  2444. \align center
  2445. \begin_inset Graphics
  2446. filename graphics/frma-pax-bx/MA-BX-fRMA.fRMA.pdf
  2447. lyxscale 50
  2448. width 100text%
  2449. groupId ma-frma
  2450. \end_inset
  2451. \end_layout
  2452. \begin_layout Plain Layout
  2453. \begin_inset Caption Standard
  2454. \begin_layout Plain Layout
  2455. \begin_inset CommandInset label
  2456. LatexCommand label
  2457. name "fig:ma-bx-frma-frma"
  2458. \end_inset
  2459. \series bold
  2460. Representative MA plot comparing different fRMA vectors for 20 biopsy samples.
  2461. \series default
  2462. Averages and log ratios were computed for every probe in each of 20 biopsy
  2463. samples between fRMA normalizations using vectors from two different batch
  2464. samplings.
  2465. Density of points is represented by darkness of shading, and individual
  2466. outlier points are plotted.
  2467. \end_layout
  2468. \end_inset
  2469. \end_layout
  2470. \end_inset
  2471. \end_layout
  2472. \begin_layout Standard
  2473. Figure
  2474. \begin_inset CommandInset ref
  2475. LatexCommand ref
  2476. reference "fig:ma-bx-rma-frma"
  2477. plural "false"
  2478. caps "false"
  2479. noprefix "false"
  2480. \end_inset
  2481. shows an MA plot of the RMA-normalized values against the fRMA-normalized
  2482. values for the same probe sets and arrays, corresponding to the first row
  2483. of Figure
  2484. \begin_inset CommandInset ref
  2485. LatexCommand ref
  2486. reference "fig:m-bx-violin"
  2487. plural "false"
  2488. caps "false"
  2489. noprefix "false"
  2490. \end_inset
  2491. .
  2492. This MA plot shows that not only is there a wide distribution of M-values,
  2493. but the trend of M-values is dependent on the average normalized intensity.
  2494. This is expected, since the overall trend represents the differences in
  2495. the quantile normalization step.
  2496. When running RMA, only the quantiles for these specific 20 arrays are used,
  2497. while for fRMA the quantile distribution is taking from all arrays used
  2498. in training.
  2499. Figure
  2500. \begin_inset CommandInset ref
  2501. LatexCommand ref
  2502. reference "fig:ma-bx-frma-frma"
  2503. plural "false"
  2504. caps "false"
  2505. noprefix "false"
  2506. \end_inset
  2507. shows a similar MA plot comparing 2 different fRMA normalizations, correspondin
  2508. g to the 6th row of Figure
  2509. \begin_inset CommandInset ref
  2510. LatexCommand ref
  2511. reference "fig:m-bx-violin"
  2512. plural "false"
  2513. caps "false"
  2514. noprefix "false"
  2515. \end_inset
  2516. .
  2517. The MA plot is very tightly centered around zero with no visible trend.
  2518. Figures
  2519. \begin_inset CommandInset ref
  2520. LatexCommand ref
  2521. reference "fig:m-pax-violin"
  2522. plural "false"
  2523. caps "false"
  2524. noprefix "false"
  2525. \end_inset
  2526. ,
  2527. \begin_inset CommandInset ref
  2528. LatexCommand ref
  2529. reference "fig:MA-PAX-rma-frma"
  2530. plural "false"
  2531. caps "false"
  2532. noprefix "false"
  2533. \end_inset
  2534. , and
  2535. \begin_inset CommandInset ref
  2536. LatexCommand ref
  2537. reference "fig:ma-bx-frma-frma"
  2538. plural "false"
  2539. caps "false"
  2540. noprefix "false"
  2541. \end_inset
  2542. show exactly the same information for the blood samples, once again comparing
  2543. the normalized expression values between normalizations for all probe sets
  2544. across 20 randomly selected test arrays.
  2545. Once again, there is a wider distribution of log ratios between RMA-normalized
  2546. values and fRMA-normalized, and a much tighter distribution when comparing
  2547. different fRMA normalizations to each other, indicating that the fRMA training
  2548. process is robust to random batch downsampling for the blood samples as
  2549. well.
  2550. \end_layout
  2551. \begin_layout Standard
  2552. \begin_inset Float figure
  2553. wide false
  2554. sideways false
  2555. status collapsed
  2556. \begin_layout Plain Layout
  2557. \align center
  2558. \begin_inset Graphics
  2559. filename graphics/frma-pax-bx/M-PAX-violin.pdf
  2560. lyxscale 40
  2561. height 80theight%
  2562. groupId m-violin
  2563. \end_inset
  2564. \end_layout
  2565. \begin_layout Plain Layout
  2566. \begin_inset Caption Standard
  2567. \begin_layout Plain Layout
  2568. \begin_inset CommandInset label
  2569. LatexCommand label
  2570. name "fig:m-pax-violin"
  2571. \end_inset
  2572. \series bold
  2573. Violin plot of log ratios between normalizations for 20 blood samples.
  2574. \series default
  2575. Each of 20 randomly selected blood samples was normalized with RMA and with
  2576. 5 different sets of fRMA vectors.
  2577. This shows the distribution of log ratios between normalized expression
  2578. values, aggregated across all 20 arrays.
  2579. \end_layout
  2580. \end_inset
  2581. \end_layout
  2582. \end_inset
  2583. \end_layout
  2584. \begin_layout Standard
  2585. \begin_inset Float figure
  2586. wide false
  2587. sideways false
  2588. status collapsed
  2589. \begin_layout Plain Layout
  2590. \align center
  2591. \begin_inset Graphics
  2592. filename graphics/frma-pax-bx/MA-PAX-RMA.fRMA.pdf
  2593. lyxscale 50
  2594. width 100text%
  2595. groupId ma-frma
  2596. \end_inset
  2597. \end_layout
  2598. \begin_layout Plain Layout
  2599. \begin_inset Caption Standard
  2600. \begin_layout Plain Layout
  2601. \begin_inset CommandInset label
  2602. LatexCommand label
  2603. name "fig:MA-PAX-rma-frma"
  2604. \end_inset
  2605. \series bold
  2606. Representative MA plot comparing RMA against fRMA for 20 blood samples.
  2607. \series default
  2608. Averages and log ratios were computed for every probe in each of 20 blood
  2609. samples between RMA normalization and fRMA.
  2610. Density of points is represented by darkness of shading, and individual
  2611. outlier points are plotted.
  2612. \end_layout
  2613. \end_inset
  2614. \end_layout
  2615. \begin_layout Plain Layout
  2616. \end_layout
  2617. \end_inset
  2618. \end_layout
  2619. \begin_layout Standard
  2620. \begin_inset Float figure
  2621. wide false
  2622. sideways false
  2623. status collapsed
  2624. \begin_layout Plain Layout
  2625. \align center
  2626. \begin_inset Graphics
  2627. filename graphics/frma-pax-bx/MA-PAX-fRMA.fRMA.pdf
  2628. lyxscale 50
  2629. width 100text%
  2630. groupId ma-frma
  2631. \end_inset
  2632. \end_layout
  2633. \begin_layout Plain Layout
  2634. \begin_inset Caption Standard
  2635. \begin_layout Plain Layout
  2636. \begin_inset CommandInset label
  2637. LatexCommand label
  2638. name "fig:MA-PAX-frma-frma"
  2639. \end_inset
  2640. \series bold
  2641. Representative MA plot comparing different fRMA vectors for 20 blood samples.
  2642. \series default
  2643. Averages and log ratios were computed for every probe in each of 20 blood
  2644. samples between fRMA normalizations using vectors from two different batch
  2645. samplings.
  2646. Density of points is represented by darkness of shading, and individual
  2647. outlier points are plotted.
  2648. \end_layout
  2649. \end_inset
  2650. \end_layout
  2651. \end_inset
  2652. \end_layout
  2653. \begin_layout Standard
  2654. \begin_inset ERT
  2655. status collapsed
  2656. \begin_layout Plain Layout
  2657. \backslash
  2658. FloatBarrier
  2659. \end_layout
  2660. \end_inset
  2661. \end_layout
  2662. \begin_layout Subsection
  2663. SVA, voom, and array weights improve model fit for methylation array data
  2664. \end_layout
  2665. \begin_layout Standard
  2666. \begin_inset Float figure
  2667. wide false
  2668. sideways false
  2669. status collapsed
  2670. \begin_layout Plain Layout
  2671. \align center
  2672. \begin_inset Flex TODO Note (inline)
  2673. status open
  2674. \begin_layout Plain Layout
  2675. Fix axis labels:
  2676. \begin_inset Quotes eld
  2677. \end_inset
  2678. log2 M-value
  2679. \begin_inset Quotes erd
  2680. \end_inset
  2681. is redundant because M-values are already log scale
  2682. \end_layout
  2683. \end_inset
  2684. \end_layout
  2685. \begin_layout Plain Layout
  2686. \align center
  2687. \begin_inset Graphics
  2688. filename graphics/methylvoom/unadj.dupcor/meanvar-trends-PAGE1-CROP-RASTER.png
  2689. lyxscale 15
  2690. width 100col%
  2691. groupId raster-600ppi
  2692. \end_inset
  2693. \end_layout
  2694. \begin_layout Plain Layout
  2695. \begin_inset Caption Standard
  2696. \begin_layout Plain Layout
  2697. \series bold
  2698. \begin_inset CommandInset label
  2699. LatexCommand label
  2700. name "fig:meanvar-basic"
  2701. \end_inset
  2702. Mean-variance trend for analysis A.
  2703. \series default
  2704. The log2(standard deviation) for each probe is plotted against the probe's
  2705. average M-value across all samples as a black point, with some transparency
  2706. to make overplotting more visible, since there are about 450,000 points.
  2707. Density of points is also indicated by the dark blue contour lines.
  2708. The prior variance trend estimated by eBayes is shown in light blue, while
  2709. the lowess trend of the points is shown in red.
  2710. \end_layout
  2711. \end_inset
  2712. \end_layout
  2713. \end_inset
  2714. \end_layout
  2715. \begin_layout Standard
  2716. Figure
  2717. \begin_inset CommandInset ref
  2718. LatexCommand ref
  2719. reference "fig:meanvar-basic"
  2720. plural "false"
  2721. caps "false"
  2722. noprefix "false"
  2723. \end_inset
  2724. shows the relationship between the mean M-value and the standard deviation
  2725. calculated for each probe in the methylation array data set.
  2726. A few features of the data are apparent.
  2727. First, the data are very strongly bimodal, with peaks in the density around
  2728. M-values of +4 and -4.
  2729. These modes correspond to methylation sites that are nearly 100% methylated
  2730. and nearly 100% unmethylated, respectively.
  2731. The strong bomodality indicates that a majority of probes interrogate sites
  2732. that fall into one of these two categories.
  2733. The points in between these modes represent sites that are either partially
  2734. methylated in many samples, or are fully methylated in some samples and
  2735. fully unmethylated in other samples, or some combination.
  2736. The next visible feature of the data is the W-shaped variance trend.
  2737. The upticks in the variance trend on either side are expected, based on
  2738. the sigmoid transformation exaggerating small differences at extreme M-values
  2739. (Figure
  2740. \begin_inset CommandInset ref
  2741. LatexCommand ref
  2742. reference "fig:Sigmoid-beta-m-mapping"
  2743. plural "false"
  2744. caps "false"
  2745. noprefix "false"
  2746. \end_inset
  2747. ).
  2748. However, the uptick in the center is interesting: it indicates that sites
  2749. that are not constitutitively methylated or unmethylated have a higher
  2750. variance.
  2751. This could be a genuine biological effect, or it could be spurious noise
  2752. that is only observable at sites with varying methylation.
  2753. \end_layout
  2754. \begin_layout Standard
  2755. \begin_inset Float figure
  2756. wide false
  2757. sideways false
  2758. status open
  2759. \begin_layout Plain Layout
  2760. \begin_inset Graphics
  2761. filename graphics/methylvoom/unadj.dupcor.sva.aw/meanvar-trends-PAGE1-CROP-RASTER.png
  2762. lyxscale 15
  2763. width 100col%
  2764. groupId raster-600ppi
  2765. \end_inset
  2766. \end_layout
  2767. \begin_layout Plain Layout
  2768. \begin_inset Caption Standard
  2769. \begin_layout Plain Layout
  2770. \series bold
  2771. \begin_inset CommandInset label
  2772. LatexCommand label
  2773. name "fig:meanvar-sva-aw"
  2774. \end_inset
  2775. Mean-variance trend for analysis B.
  2776. \series default
  2777. Interpretation is as in Figure
  2778. \begin_inset CommandInset ref
  2779. LatexCommand ref
  2780. reference "fig:meanvar-basic"
  2781. plural "false"
  2782. caps "false"
  2783. noprefix "false"
  2784. \end_inset
  2785. .
  2786. \end_layout
  2787. \end_inset
  2788. \end_layout
  2789. \end_inset
  2790. \end_layout
  2791. \begin_layout Standard
  2792. In Figure
  2793. \begin_inset CommandInset ref
  2794. LatexCommand ref
  2795. reference "fig:meanvar-sva-aw"
  2796. plural "false"
  2797. caps "false"
  2798. noprefix "false"
  2799. \end_inset
  2800. , we see the mean-variance trend for the same methylation array data, this
  2801. time with surrogate variables and sample quality weights estimated from
  2802. the data and included in the model.
  2803. As expected, the overall average variance is smaller, since the surrogate
  2804. variables account for some of the variance.
  2805. In addition, the uptick in variance in the middle of the M-value range
  2806. has disappeared, turning the W shape into a wide U shape.
  2807. This indicates that the excess variance in the probes with intermediate
  2808. M-values was explained by systematic variations not correlated with known
  2809. covariates, and these variations were modeled by the surrogate variables.
  2810. The result is a nearly flat variance trend for the entire intermediate
  2811. M-value range from about -3 to +3.
  2812. In contrast, the excess variance at the extremes was not
  2813. \begin_inset Quotes eld
  2814. \end_inset
  2815. absorbed
  2816. \begin_inset Quotes erd
  2817. \end_inset
  2818. by the surrogate variables and remains in the plot, indicating that this
  2819. variation has no systematic component: probes with extreme M-values are
  2820. uniformly more variable across all samples, as expected.
  2821. \end_layout
  2822. \begin_layout Standard
  2823. \begin_inset Float figure
  2824. wide false
  2825. sideways false
  2826. status collapsed
  2827. \begin_layout Plain Layout
  2828. \begin_inset Graphics
  2829. filename graphics/methylvoom/unadj.dupcor.sva.voomaw/meanvar-trends-PAGE2-CROP-RASTER.png
  2830. lyxscale 15
  2831. width 100col%
  2832. groupId raster-600ppi
  2833. \end_inset
  2834. \end_layout
  2835. \begin_layout Plain Layout
  2836. \begin_inset Caption Standard
  2837. \begin_layout Plain Layout
  2838. \series bold
  2839. \begin_inset CommandInset label
  2840. LatexCommand label
  2841. name "fig:meanvar-sva-voomaw"
  2842. \end_inset
  2843. Mean-variance trend after voom modeling in analysis C.
  2844. \series default
  2845. Interpretation is as in Figure
  2846. \begin_inset CommandInset ref
  2847. LatexCommand ref
  2848. reference "fig:meanvar-basic"
  2849. plural "false"
  2850. caps "false"
  2851. noprefix "false"
  2852. \end_inset
  2853. .
  2854. \end_layout
  2855. \end_inset
  2856. \end_layout
  2857. \end_inset
  2858. \end_layout
  2859. \begin_layout Standard
  2860. Figure
  2861. \begin_inset CommandInset ref
  2862. LatexCommand ref
  2863. reference "fig:meanvar-sva-voomaw"
  2864. plural "false"
  2865. caps "false"
  2866. noprefix "false"
  2867. \end_inset
  2868. shows the mean-variance trend after fitting the model with the observation
  2869. weights assigned by voom based on the mean-variance trend shown in Figure
  2870. \begin_inset CommandInset ref
  2871. LatexCommand ref
  2872. reference "fig:meanvar-sva-aw"
  2873. plural "false"
  2874. caps "false"
  2875. noprefix "false"
  2876. \end_inset
  2877. .
  2878. As expected, the weights exactly counteract the trend in the data, resulting
  2879. in a nearly flat trend centered vertically at 1 (i.e.
  2880. 0 on the log scale).
  2881. This shows that the observations with extreme M-values have been appropriately
  2882. down-weighted to account for the fact that the noise in those observations
  2883. has been amplified by the non-linear M-value transformation.
  2884. In turn, this gives relatively more weight to observervations in the middle
  2885. region, which are more likely to correspond to probes measuring interesting
  2886. biology (not constitutively methylated or unmethylated).
  2887. \end_layout
  2888. \begin_layout Standard
  2889. \begin_inset Float table
  2890. wide false
  2891. sideways false
  2892. status collapsed
  2893. \begin_layout Plain Layout
  2894. \align center
  2895. \begin_inset Tabular
  2896. <lyxtabular version="3" rows="5" columns="3">
  2897. <features tabularvalignment="middle">
  2898. <column alignment="center" valignment="top">
  2899. <column alignment="center" valignment="top">
  2900. <column alignment="center" valignment="top">
  2901. <row>
  2902. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2903. \begin_inset Text
  2904. \begin_layout Plain Layout
  2905. Covariate
  2906. \end_layout
  2907. \end_inset
  2908. </cell>
  2909. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2910. \begin_inset Text
  2911. \begin_layout Plain Layout
  2912. Test used
  2913. \end_layout
  2914. \end_inset
  2915. </cell>
  2916. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2917. \begin_inset Text
  2918. \begin_layout Plain Layout
  2919. p-value
  2920. \end_layout
  2921. \end_inset
  2922. </cell>
  2923. </row>
  2924. <row>
  2925. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2926. \begin_inset Text
  2927. \begin_layout Plain Layout
  2928. Transplant Status
  2929. \end_layout
  2930. \end_inset
  2931. </cell>
  2932. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2933. \begin_inset Text
  2934. \begin_layout Plain Layout
  2935. F-test
  2936. \end_layout
  2937. \end_inset
  2938. </cell>
  2939. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2940. \begin_inset Text
  2941. \begin_layout Plain Layout
  2942. 0.404
  2943. \end_layout
  2944. \end_inset
  2945. </cell>
  2946. </row>
  2947. <row>
  2948. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2949. \begin_inset Text
  2950. \begin_layout Plain Layout
  2951. Diabetes Diagnosis
  2952. \end_layout
  2953. \end_inset
  2954. </cell>
  2955. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2956. \begin_inset Text
  2957. \begin_layout Plain Layout
  2958. t-test
  2959. \end_layout
  2960. \end_inset
  2961. </cell>
  2962. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2963. \begin_inset Text
  2964. \begin_layout Plain Layout
  2965. 0.00106
  2966. \end_layout
  2967. \end_inset
  2968. </cell>
  2969. </row>
  2970. <row>
  2971. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2972. \begin_inset Text
  2973. \begin_layout Plain Layout
  2974. Sex
  2975. \end_layout
  2976. \end_inset
  2977. </cell>
  2978. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2979. \begin_inset Text
  2980. \begin_layout Plain Layout
  2981. t-test
  2982. \end_layout
  2983. \end_inset
  2984. </cell>
  2985. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2986. \begin_inset Text
  2987. \begin_layout Plain Layout
  2988. 0.148
  2989. \end_layout
  2990. \end_inset
  2991. </cell>
  2992. </row>
  2993. <row>
  2994. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2995. \begin_inset Text
  2996. \begin_layout Plain Layout
  2997. Age
  2998. \end_layout
  2999. \end_inset
  3000. </cell>
  3001. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3002. \begin_inset Text
  3003. \begin_layout Plain Layout
  3004. linear regression
  3005. \end_layout
  3006. \end_inset
  3007. </cell>
  3008. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3009. \begin_inset Text
  3010. \begin_layout Plain Layout
  3011. 0.212
  3012. \end_layout
  3013. \end_inset
  3014. </cell>
  3015. </row>
  3016. </lyxtabular>
  3017. \end_inset
  3018. \end_layout
  3019. \begin_layout Plain Layout
  3020. \begin_inset Caption Standard
  3021. \begin_layout Plain Layout
  3022. \series bold
  3023. \begin_inset CommandInset label
  3024. LatexCommand label
  3025. name "tab:weight-covariate-tests"
  3026. \end_inset
  3027. Association of sample weights with clinical covariates in methylation array
  3028. data.
  3029. \series default
  3030. Computed sample quality log weights were tested for significant association
  3031. with each of the variables in the model (1st column).
  3032. An appropriate test was selected for each variable (2nd column).
  3033. P-values for significant association are shown in the 3rd column.
  3034. \end_layout
  3035. \end_inset
  3036. \end_layout
  3037. \end_inset
  3038. \end_layout
  3039. \begin_layout Standard
  3040. \begin_inset Flex TODO Note (inline)
  3041. status open
  3042. \begin_layout Plain Layout
  3043. Redo the sample weight boxplot with notches and without fill colors (and
  3044. update the legend)
  3045. \end_layout
  3046. \end_inset
  3047. \end_layout
  3048. \begin_layout Standard
  3049. \begin_inset Float figure
  3050. wide false
  3051. sideways false
  3052. status collapsed
  3053. \begin_layout Plain Layout
  3054. \begin_inset Graphics
  3055. filename graphics/methylvoom/unadj.dupcor.sva.voomaw/sample-weights-PAGE3-CROP.pdf
  3056. \end_inset
  3057. \end_layout
  3058. \begin_layout Plain Layout
  3059. \begin_inset Caption Standard
  3060. \begin_layout Plain Layout
  3061. \begin_inset CommandInset label
  3062. LatexCommand label
  3063. name "fig:diabetes-sample-weights"
  3064. \end_inset
  3065. \series bold
  3066. Boxplot of sample quality weights grouped by diabetes diagnosis.
  3067. \series default
  3068. Sample were grouped based on diabetes diagnosis, and the distribution of
  3069. sample quality weights for each diagnosis was plotted.
  3070. \end_layout
  3071. \end_inset
  3072. \end_layout
  3073. \begin_layout Plain Layout
  3074. \end_layout
  3075. \end_inset
  3076. \end_layout
  3077. \begin_layout Standard
  3078. To determine whether any of the known experimental factors had an impact
  3079. on data quality, the sample quality weights estimated from the data were
  3080. tested for association with each of the experimental factors (Table
  3081. \begin_inset CommandInset ref
  3082. LatexCommand ref
  3083. reference "tab:weight-covariate-tests"
  3084. plural "false"
  3085. caps "false"
  3086. noprefix "false"
  3087. \end_inset
  3088. ).
  3089. Diabetes diagnosis was found to have a potentially significant association
  3090. with the sample weights, with a t-test p-value of
  3091. \begin_inset Formula $1.06\times10^{-3}$
  3092. \end_inset
  3093. .
  3094. Figure
  3095. \begin_inset CommandInset ref
  3096. LatexCommand ref
  3097. reference "fig:diabetes-sample-weights"
  3098. plural "false"
  3099. caps "false"
  3100. noprefix "false"
  3101. \end_inset
  3102. shows the distribution of sample weights grouped by diabetes diagnosis.
  3103. The samples from patients with Type 2 diabetes were assigned significantly
  3104. lower weights than those from patients with Type 1 diabetes.
  3105. This indicates that the type 2 diabetes samples had an overall higher variance
  3106. on average across all probes.
  3107. \end_layout
  3108. \begin_layout Standard
  3109. \begin_inset Float table
  3110. wide false
  3111. sideways false
  3112. status collapsed
  3113. \begin_layout Plain Layout
  3114. \align center
  3115. \begin_inset Flex TODO Note (inline)
  3116. status open
  3117. \begin_layout Plain Layout
  3118. Consider transposing this table and the next one
  3119. \end_layout
  3120. \end_inset
  3121. \end_layout
  3122. \begin_layout Plain Layout
  3123. \align center
  3124. \begin_inset Tabular
  3125. <lyxtabular version="3" rows="5" columns="4">
  3126. <features tabularvalignment="middle">
  3127. <column alignment="center" valignment="top">
  3128. <column alignment="center" valignment="top">
  3129. <column alignment="center" valignment="top">
  3130. <column alignment="center" valignment="top">
  3131. <row>
  3132. <cell alignment="center" valignment="top" usebox="none">
  3133. \begin_inset Text
  3134. \begin_layout Plain Layout
  3135. \end_layout
  3136. \end_inset
  3137. </cell>
  3138. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3139. \begin_inset Text
  3140. \begin_layout Plain Layout
  3141. Analysis
  3142. \end_layout
  3143. \end_inset
  3144. </cell>
  3145. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3146. \begin_inset Text
  3147. \begin_layout Plain Layout
  3148. \end_layout
  3149. \end_inset
  3150. </cell>
  3151. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3152. \begin_inset Text
  3153. \begin_layout Plain Layout
  3154. \end_layout
  3155. \end_inset
  3156. </cell>
  3157. </row>
  3158. <row>
  3159. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3160. \begin_inset Text
  3161. \begin_layout Plain Layout
  3162. Contrast
  3163. \end_layout
  3164. \end_inset
  3165. </cell>
  3166. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3167. \begin_inset Text
  3168. \begin_layout Plain Layout
  3169. A
  3170. \end_layout
  3171. \end_inset
  3172. </cell>
  3173. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3174. \begin_inset Text
  3175. \begin_layout Plain Layout
  3176. B
  3177. \end_layout
  3178. \end_inset
  3179. </cell>
  3180. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3181. \begin_inset Text
  3182. \begin_layout Plain Layout
  3183. C
  3184. \end_layout
  3185. \end_inset
  3186. </cell>
  3187. </row>
  3188. <row>
  3189. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3190. \begin_inset Text
  3191. \begin_layout Plain Layout
  3192. TX vs AR
  3193. \end_layout
  3194. \end_inset
  3195. </cell>
  3196. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3197. \begin_inset Text
  3198. \begin_layout Plain Layout
  3199. 0
  3200. \end_layout
  3201. \end_inset
  3202. </cell>
  3203. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3204. \begin_inset Text
  3205. \begin_layout Plain Layout
  3206. 25
  3207. \end_layout
  3208. \end_inset
  3209. </cell>
  3210. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3211. \begin_inset Text
  3212. \begin_layout Plain Layout
  3213. 22
  3214. \end_layout
  3215. \end_inset
  3216. </cell>
  3217. </row>
  3218. <row>
  3219. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3220. \begin_inset Text
  3221. \begin_layout Plain Layout
  3222. TX vs ADNR
  3223. \end_layout
  3224. \end_inset
  3225. </cell>
  3226. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3227. \begin_inset Text
  3228. \begin_layout Plain Layout
  3229. 7
  3230. \end_layout
  3231. \end_inset
  3232. </cell>
  3233. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3234. \begin_inset Text
  3235. \begin_layout Plain Layout
  3236. 338
  3237. \end_layout
  3238. \end_inset
  3239. </cell>
  3240. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3241. \begin_inset Text
  3242. \begin_layout Plain Layout
  3243. 369
  3244. \end_layout
  3245. \end_inset
  3246. </cell>
  3247. </row>
  3248. <row>
  3249. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3250. \begin_inset Text
  3251. \begin_layout Plain Layout
  3252. TX vs CAN
  3253. \end_layout
  3254. \end_inset
  3255. </cell>
  3256. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3257. \begin_inset Text
  3258. \begin_layout Plain Layout
  3259. 0
  3260. \end_layout
  3261. \end_inset
  3262. </cell>
  3263. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3264. \begin_inset Text
  3265. \begin_layout Plain Layout
  3266. 231
  3267. \end_layout
  3268. \end_inset
  3269. </cell>
  3270. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3271. \begin_inset Text
  3272. \begin_layout Plain Layout
  3273. 278
  3274. \end_layout
  3275. \end_inset
  3276. </cell>
  3277. </row>
  3278. </lyxtabular>
  3279. \end_inset
  3280. \end_layout
  3281. \begin_layout Plain Layout
  3282. \begin_inset Caption Standard
  3283. \begin_layout Plain Layout
  3284. \begin_inset CommandInset label
  3285. LatexCommand label
  3286. name "tab:methyl-num-signif"
  3287. \end_inset
  3288. \series bold
  3289. Number of probes significant at 10% FDR for each contrast in each analysis.
  3290. \series default
  3291. For each of the analyses in Table
  3292. \begin_inset CommandInset ref
  3293. LatexCommand ref
  3294. reference "tab:Summary-of-meth-analysis"
  3295. plural "false"
  3296. caps "false"
  3297. noprefix "false"
  3298. \end_inset
  3299. , the table shows the number of probes called significantly differentially
  3300. methylated at a threshold of 10% FDR for each comparison between TX and
  3301. the other 3 transplant statuses.
  3302. \end_layout
  3303. \end_inset
  3304. \end_layout
  3305. \end_inset
  3306. \end_layout
  3307. \begin_layout Standard
  3308. \begin_inset Float table
  3309. wide false
  3310. sideways false
  3311. status collapsed
  3312. \begin_layout Plain Layout
  3313. \align center
  3314. \begin_inset Tabular
  3315. <lyxtabular version="3" rows="5" columns="4">
  3316. <features tabularvalignment="middle">
  3317. <column alignment="center" valignment="top">
  3318. <column alignment="center" valignment="top">
  3319. <column alignment="center" valignment="top">
  3320. <column alignment="center" valignment="top">
  3321. <row>
  3322. <cell alignment="center" valignment="top" usebox="none">
  3323. \begin_inset Text
  3324. \begin_layout Plain Layout
  3325. \end_layout
  3326. \end_inset
  3327. </cell>
  3328. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3329. \begin_inset Text
  3330. \begin_layout Plain Layout
  3331. Analysis
  3332. \end_layout
  3333. \end_inset
  3334. </cell>
  3335. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3336. \begin_inset Text
  3337. \begin_layout Plain Layout
  3338. \end_layout
  3339. \end_inset
  3340. </cell>
  3341. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3342. \begin_inset Text
  3343. \begin_layout Plain Layout
  3344. \end_layout
  3345. \end_inset
  3346. </cell>
  3347. </row>
  3348. <row>
  3349. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3350. \begin_inset Text
  3351. \begin_layout Plain Layout
  3352. Contrast
  3353. \end_layout
  3354. \end_inset
  3355. </cell>
  3356. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3357. \begin_inset Text
  3358. \begin_layout Plain Layout
  3359. A
  3360. \end_layout
  3361. \end_inset
  3362. </cell>
  3363. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3364. \begin_inset Text
  3365. \begin_layout Plain Layout
  3366. B
  3367. \end_layout
  3368. \end_inset
  3369. </cell>
  3370. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3371. \begin_inset Text
  3372. \begin_layout Plain Layout
  3373. C
  3374. \end_layout
  3375. \end_inset
  3376. </cell>
  3377. </row>
  3378. <row>
  3379. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3380. \begin_inset Text
  3381. \begin_layout Plain Layout
  3382. TX vs AR
  3383. \end_layout
  3384. \end_inset
  3385. </cell>
  3386. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3387. \begin_inset Text
  3388. \begin_layout Plain Layout
  3389. 0
  3390. \end_layout
  3391. \end_inset
  3392. </cell>
  3393. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3394. \begin_inset Text
  3395. \begin_layout Plain Layout
  3396. 10,063
  3397. \end_layout
  3398. \end_inset
  3399. </cell>
  3400. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3401. \begin_inset Text
  3402. \begin_layout Plain Layout
  3403. 11,225
  3404. \end_layout
  3405. \end_inset
  3406. </cell>
  3407. </row>
  3408. <row>
  3409. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3410. \begin_inset Text
  3411. \begin_layout Plain Layout
  3412. TX vs ADNR
  3413. \end_layout
  3414. \end_inset
  3415. </cell>
  3416. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3417. \begin_inset Text
  3418. \begin_layout Plain Layout
  3419. 27
  3420. \end_layout
  3421. \end_inset
  3422. </cell>
  3423. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3424. \begin_inset Text
  3425. \begin_layout Plain Layout
  3426. 12,674
  3427. \end_layout
  3428. \end_inset
  3429. </cell>
  3430. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3431. \begin_inset Text
  3432. \begin_layout Plain Layout
  3433. 13,086
  3434. \end_layout
  3435. \end_inset
  3436. </cell>
  3437. </row>
  3438. <row>
  3439. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3440. \begin_inset Text
  3441. \begin_layout Plain Layout
  3442. TX vs CAN
  3443. \end_layout
  3444. \end_inset
  3445. </cell>
  3446. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3447. \begin_inset Text
  3448. \begin_layout Plain Layout
  3449. 966
  3450. \end_layout
  3451. \end_inset
  3452. </cell>
  3453. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3454. \begin_inset Text
  3455. \begin_layout Plain Layout
  3456. 20,039
  3457. \end_layout
  3458. \end_inset
  3459. </cell>
  3460. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3461. \begin_inset Text
  3462. \begin_layout Plain Layout
  3463. 20,955
  3464. \end_layout
  3465. \end_inset
  3466. </cell>
  3467. </row>
  3468. </lyxtabular>
  3469. \end_inset
  3470. \end_layout
  3471. \begin_layout Plain Layout
  3472. \begin_inset Caption Standard
  3473. \begin_layout Plain Layout
  3474. \begin_inset CommandInset label
  3475. LatexCommand label
  3476. name "tab:methyl-est-nonnull"
  3477. \end_inset
  3478. \series bold
  3479. Estimated number of non-null tests for each contrast in each analysis.
  3480. \series default
  3481. For each of the analyses in Table
  3482. \begin_inset CommandInset ref
  3483. LatexCommand ref
  3484. reference "tab:Summary-of-meth-analysis"
  3485. plural "false"
  3486. caps "false"
  3487. noprefix "false"
  3488. \end_inset
  3489. , the table shows the number of probes estimated to be differentially methylated
  3490. between TX and the other 3 transplant statuses.
  3491. \end_layout
  3492. \end_inset
  3493. \end_layout
  3494. \end_inset
  3495. \end_layout
  3496. \begin_layout Standard
  3497. \begin_inset Float figure
  3498. wide false
  3499. sideways false
  3500. status collapsed
  3501. \begin_layout Plain Layout
  3502. \begin_inset Flex TODO Note (inline)
  3503. status open
  3504. \begin_layout Plain Layout
  3505. Re-generate p-value histograms for all relevant contrasts in a single page,
  3506. then write an appropriate legend.
  3507. \end_layout
  3508. \end_inset
  3509. \end_layout
  3510. \begin_layout Plain Layout
  3511. \align center
  3512. \series bold
  3513. [Figure goes here]
  3514. \end_layout
  3515. \begin_layout Plain Layout
  3516. \begin_inset Caption Standard
  3517. \begin_layout Plain Layout
  3518. \series bold
  3519. \begin_inset CommandInset label
  3520. LatexCommand label
  3521. name "fig:meth-p-value-histograms"
  3522. \end_inset
  3523. Probe p-value histograms for each contrast in each analysis.
  3524. \end_layout
  3525. \end_inset
  3526. \end_layout
  3527. \begin_layout Plain Layout
  3528. \end_layout
  3529. \end_inset
  3530. \end_layout
  3531. \begin_layout Standard
  3532. Table
  3533. \begin_inset CommandInset ref
  3534. LatexCommand ref
  3535. reference "tab:methyl-num-signif"
  3536. plural "false"
  3537. caps "false"
  3538. noprefix "false"
  3539. \end_inset
  3540. shows the number of significantly differentially methylated probes reported
  3541. by each analysis for each comparison of interest at an FDR of 10%.
  3542. As expected, the more elaborate analyses, B and C, report more significant
  3543. probes than the more basic analysis A, consistent with the conclusions
  3544. above that the data contain hidden systematic variations that must be modeled.
  3545. Table
  3546. \begin_inset CommandInset ref
  3547. LatexCommand ref
  3548. reference "tab:methyl-est-nonnull"
  3549. plural "false"
  3550. caps "false"
  3551. noprefix "false"
  3552. \end_inset
  3553. shows the estimated number differentially methylated probes for each test
  3554. from each analysis.
  3555. This was computed by estimating the proportion of null hypotheses that
  3556. were true using the method of
  3557. \begin_inset CommandInset citation
  3558. LatexCommand cite
  3559. key "Phipson2013"
  3560. literal "false"
  3561. \end_inset
  3562. and subtracting that fraction from the total number of probes, yielding
  3563. an estimate of the number of null hypotheses that are false based on the
  3564. distribution of p-values across the entire dataset.
  3565. Note that this does not identify which null hypotheses should be rejected
  3566. (i.e.
  3567. which probes are significant); it only estimates the true number of such
  3568. probes.
  3569. Once again, analyses B and C result it much larger estimates for the number
  3570. of differentially methylated probes.
  3571. In this case, analysis C, the only analysis that includes voom, estimates
  3572. the largest number of differentially methylated probes for all 3 contrasts.
  3573. If the assumptions of all the methods employed hold, then this represents
  3574. a gain in statistical power over the simpler analysis A.
  3575. Figure
  3576. \begin_inset CommandInset ref
  3577. LatexCommand ref
  3578. reference "fig:meth-p-value-histograms"
  3579. plural "false"
  3580. caps "false"
  3581. noprefix "false"
  3582. \end_inset
  3583. shows the p-value distributions for each test, from which the numbers in
  3584. Table
  3585. \begin_inset CommandInset ref
  3586. LatexCommand ref
  3587. reference "tab:methyl-est-nonnull"
  3588. plural "false"
  3589. caps "false"
  3590. noprefix "false"
  3591. \end_inset
  3592. were generated.
  3593. The distributions for analysis A all have a dip in density near zero, which
  3594. is a strong sign of a poor model fit.
  3595. The histograms for analyses B and C are more well-behaved, with a uniform
  3596. component stretching all the way from 0 to 1 representing the probes for
  3597. which the null hypotheses is true (no differential methylation), and a
  3598. zero-biased component representing the probes for which the null hypothesis
  3599. is false (differentially methylated).
  3600. These histograms do not indicate any major issues with the model fit.
  3601. \end_layout
  3602. \begin_layout Standard
  3603. \begin_inset Flex TODO Note (inline)
  3604. status open
  3605. \begin_layout Plain Layout
  3606. Maybe include the PCA plots before/after SVA effect subtraction?
  3607. \end_layout
  3608. \end_inset
  3609. \end_layout
  3610. \begin_layout Standard
  3611. \begin_inset ERT
  3612. status collapsed
  3613. \begin_layout Plain Layout
  3614. \backslash
  3615. FloatBarrier
  3616. \end_layout
  3617. \end_inset
  3618. \end_layout
  3619. \begin_layout Section
  3620. Discussion
  3621. \end_layout
  3622. \begin_layout Subsection
  3623. fRMA achieves clinically applicable normalization without sacrificing classifica
  3624. tion performance
  3625. \end_layout
  3626. \begin_layout Standard
  3627. As shown in Figure
  3628. \begin_inset CommandInset ref
  3629. LatexCommand ref
  3630. reference "fig:Classifier-probabilities-RMA"
  3631. plural "false"
  3632. caps "false"
  3633. noprefix "false"
  3634. \end_inset
  3635. , improper normalization, particularly separate normalization of training
  3636. and test samples, leads to unwanted biases in classification.
  3637. In a controlled experimental context, it is always possible to correct
  3638. this issue by normalizing all experimental samples together.
  3639. However, because it is not feasible to normalize all samples together in
  3640. a clinical context, a single-channel normalization is required is required.
  3641. \end_layout
  3642. \begin_layout Standard
  3643. The major concern in using a single-channel normalization is that non-single-cha
  3644. nnel methods can share information between arrays to improve the normalization,
  3645. and single-channel methods risk sacrificing the gains in normalization
  3646. accuracy that come from this information sharing.
  3647. In the case of RMA, this information sharing is accomplished through quantile
  3648. normalization and median polish steps.
  3649. The need for information sharing in quantile normalization can easily be
  3650. removed by learning a fixed set of quantiles from external data and normalizing
  3651. each array to these fixed quantiles, instead of the quantiles of the data
  3652. itself.
  3653. As long as the fixed quantiles are reasonable, the result will be similar
  3654. to standard RMA.
  3655. However, there is no analogous way to eliminate cross-array information
  3656. sharing in the median polish step, so fRMA replaces this with a weighted
  3657. average of probes on each array, with the weights learned from external
  3658. data.
  3659. This step of fRMA has the greatest potential to diverge from RMA un undesirable
  3660. ways.
  3661. \end_layout
  3662. \begin_layout Standard
  3663. However, when run on real data, fRMA performed at least as well as RMA in
  3664. both the internal validation and external validation tests.
  3665. This shows that fRMA can be used to normalize individual clinical samples
  3666. in a class prediction context without sacrificing the classifier performance
  3667. that would be obtained by using the more well-established RMA for normalization.
  3668. The other single-channel normalization method considered, SCAN, showed
  3669. some loss of AUC in the external validation test.
  3670. Based on these results, fRMA is the preferred normalization for clinical
  3671. samples in a class prediction context.
  3672. \end_layout
  3673. \begin_layout Subsection
  3674. Robust fRMA vectors can be generated for new array platforms
  3675. \end_layout
  3676. \begin_layout Standard
  3677. \begin_inset Flex TODO Note (inline)
  3678. status open
  3679. \begin_layout Plain Layout
  3680. Look up the exact numbers, do a find & replace for
  3681. \begin_inset Quotes eld
  3682. \end_inset
  3683. 850
  3684. \begin_inset Quotes erd
  3685. \end_inset
  3686. \end_layout
  3687. \end_inset
  3688. \end_layout
  3689. \begin_layout Standard
  3690. The published fRMA normalization vectors for the hgu133plus2 platform were
  3691. generated from a set of about 850 samples chosen from a wide range of tissues,
  3692. which the authors determined was sufficient to generate a robust set of
  3693. normalization vectors that could be applied across all tissues
  3694. \begin_inset CommandInset citation
  3695. LatexCommand cite
  3696. key "McCall2010"
  3697. literal "false"
  3698. \end_inset
  3699. .
  3700. Since we only had hthgu133pluspm for 2 tissues of interest, our needs were
  3701. more modest.
  3702. Even using only 130 samples in 26 batches of 5 samples each for kidney
  3703. biopsies, we were able to train a robust set of fRMA normalization vectors
  3704. that were not meaningfully affected by the random selection of 5 samples
  3705. from each batch.
  3706. As expected, the training process was just as robust for the blood samples
  3707. with 230 samples in 46 batches of 5 samples each.
  3708. Because these vectors were each generated using training samples from a
  3709. single tissue, they are not suitable for general use, unlike the vectors
  3710. provided with fRMA itself.
  3711. They are purpose-built for normalizing a specific type of sample on a specific
  3712. platform.
  3713. This is a mostly acceptable limitation in the context of developing a machine
  3714. learning classifier for diagnosing a disease based on samples of a specific
  3715. tissue.
  3716. \end_layout
  3717. \begin_layout Standard
  3718. \begin_inset Flex TODO Note (inline)
  3719. status open
  3720. \begin_layout Plain Layout
  3721. How to bring up that these custom vectors were used in another project by
  3722. someone else that was never published?
  3723. \end_layout
  3724. \end_inset
  3725. \end_layout
  3726. \begin_layout Subsection
  3727. Methylation array data can be successfully analyzed using existing techniques,
  3728. but machine learning poses additional challenges
  3729. \end_layout
  3730. \begin_layout Standard
  3731. Both analysis strategies B and C both yield a reasonable analysis, with
  3732. a mean-variance trend that matches the expected behavior for the non-linear
  3733. M-value transformation (Figure
  3734. \begin_inset CommandInset ref
  3735. LatexCommand ref
  3736. reference "fig:meanvar-sva-aw"
  3737. plural "false"
  3738. caps "false"
  3739. noprefix "false"
  3740. \end_inset
  3741. ) and well-behaved p-value distributions (Figure
  3742. \begin_inset CommandInset ref
  3743. LatexCommand ref
  3744. reference "fig:meth-p-value-histograms"
  3745. plural "false"
  3746. caps "false"
  3747. noprefix "false"
  3748. \end_inset
  3749. ).
  3750. These two analyses also yield similar numbers of significant probes (Table
  3751. \begin_inset CommandInset ref
  3752. LatexCommand ref
  3753. reference "tab:methyl-num-signif"
  3754. plural "false"
  3755. caps "false"
  3756. noprefix "false"
  3757. \end_inset
  3758. ) and similar estimates of the number of differentially methylated probes
  3759. (Table
  3760. \begin_inset CommandInset ref
  3761. LatexCommand ref
  3762. reference "tab:methyl-est-nonnull"
  3763. plural "false"
  3764. caps "false"
  3765. noprefix "false"
  3766. \end_inset
  3767. ).
  3768. The main difference between these two analyses is the method used to account
  3769. for the mean-variance trend.
  3770. In analysis B, the trend is estimated and applied at the probe level: each
  3771. probe's estimated variance is squeezed toward the trend using an empirical
  3772. Bayes procedure (Figure
  3773. \begin_inset CommandInset ref
  3774. LatexCommand ref
  3775. reference "fig:meanvar-sva-aw"
  3776. plural "false"
  3777. caps "false"
  3778. noprefix "false"
  3779. \end_inset
  3780. ).
  3781. In analysis C, the trend is still estimated at the probe level, but instead
  3782. of estimating a single variance value shared across all observations for
  3783. a given probe, the voom method computes an initial estiamte of the variance
  3784. for each observation individually based on where its model-fitted M-value
  3785. falls on the trend line and then assigns inverse-variance weights to model
  3786. the difference in variance between observations.
  3787. An overall variance is still estimated for each probe using the same empirical
  3788. Bayes method, but now the residual trend is flat (Figure
  3789. \begin_inset CommandInset ref
  3790. LatexCommand ref
  3791. reference "fig:meanvar-sva-voomaw"
  3792. plural "false"
  3793. caps "false"
  3794. noprefix "false"
  3795. \end_inset
  3796. ), and the mean-variance trend is modeled by scaling the probe's estimated
  3797. variance for each observation using the weights computed by voom.
  3798. The difference between these two methods is analogous to the difference
  3799. between a t-test with equal variance and a t-test with unequal variance,
  3800. except that the unequal group variances used in the latter test are estimated
  3801. based on the mean-variance trend from all the probes rather than the data
  3802. for the specific probe being tested, thus stabilizing the group variance
  3803. estimates by sharing information between probes.
  3804. In practice, allowing voom to model the variance using observation weights
  3805. in this manner allows the linear model fit to concentrate statistical power
  3806. where it will do the most good.
  3807. For example, if a particular probe's M-values are always at the extreme
  3808. of the M-value range (e.g.
  3809. less than -4) for ADNR samples, but the M-values for that probe in TX and
  3810. CAN samples are within the flat region of the mean-variance trend (between
  3811. -3 and +3), voom is able to down-weight the contribution of the high-variance
  3812. M-values from the ADNR samples in order to gain more statistical power
  3813. while testing for differential methylation between TX and CAN.
  3814. In contrast, modeling the mean-variance trend only at the probe level would
  3815. combine the high-variance ADNR samples and lower-variance samples from
  3816. other conditions and estimate an intermediate variance for this probe.
  3817. In practice, analysis B shows that this approach is adequate, but the voom
  3818. approach in analysis C is at least as good on all model fit criteria and
  3819. yields a larger estimate for the number of differentially methylated genes.
  3820. \end_layout
  3821. \begin_layout Standard
  3822. The significant association of diebetes diagnosis with sample quality is
  3823. interesting.
  3824. The samples with Type 2 diabetes tended to have more variation, averaged
  3825. across all probes, than those with Type 1 diabetes.
  3826. This is consistent with the consensus that type 2 disbetes and the associated
  3827. metabolic syndrome represent a broad dysregulation of the body's endocrine
  3828. signalling related to metabolism [citation needed].
  3829. This dysregulation could easily manifest as a greater degree of variation
  3830. in the DNA methylation patterns of affected tissues.
  3831. In contrast, Type 1 disbetes has a more specific cause and effect, so a
  3832. less variable methylation signature is expected.
  3833. \end_layout
  3834. \begin_layout Standard
  3835. This preliminary anlaysis suggests that some degree of differential methylation
  3836. exists between TX and each of the three types of transplant disfunction
  3837. studied.
  3838. Hence, it may be feasible to train a classifier to diagnose transplant
  3839. disfunction from DNA methylation array data.
  3840. However, the major importance of both SVA and sample quality weighting
  3841. for proper modeling of this data poses significant challenges for any attempt
  3842. at a machine learning on data of similar quality.
  3843. While these are easily used in a modeling context with full sample information,
  3844. neither of these methods is directly applicable in a machine learning context,
  3845. where the diagnosis is not known ahead of time.
  3846. If a machine learning approach for methylation-based diagnosis is to be
  3847. pursued, it will either require machine-learning-friendly methods to address
  3848. the same systematic trends in the data that SVA and sample quality weighting
  3849. address, or it will require higher quality data with substantially less
  3850. systematic perturbation of the data.
  3851. \end_layout
  3852. \begin_layout Chapter
  3853. Globin-blocking for more effective blood RNA-seq analysis in primate animal
  3854. model
  3855. \end_layout
  3856. \begin_layout Standard
  3857. \begin_inset Flex TODO Note (inline)
  3858. status open
  3859. \begin_layout Plain Layout
  3860. Choose between above and the paper title: Optimizing yield of deep RNA sequencin
  3861. g for gene expression profiling by globin reduction of peripheral blood
  3862. samples from cynomolgus monkeys (Macaca fascicularis).
  3863. \end_layout
  3864. \end_inset
  3865. \end_layout
  3866. \begin_layout Standard
  3867. \begin_inset Flex TODO Note (inline)
  3868. status open
  3869. \begin_layout Plain Layout
  3870. Chapter author list: https://tex.stackexchange.com/questions/156862/displaying-aut
  3871. hor-for-each-chapter-in-book Every chapter gets an author list, which may
  3872. or may not be part of a citation to a published/preprinted paper.
  3873. \end_layout
  3874. \end_inset
  3875. \end_layout
  3876. \begin_layout Standard
  3877. \begin_inset Flex TODO Note (inline)
  3878. status open
  3879. \begin_layout Plain Layout
  3880. Preprint then cite the paper
  3881. \end_layout
  3882. \end_inset
  3883. \end_layout
  3884. \begin_layout Section*
  3885. Abstract
  3886. \end_layout
  3887. \begin_layout Paragraph
  3888. Background
  3889. \end_layout
  3890. \begin_layout Standard
  3891. Primate blood contains high concentrations of globin messenger RNA.
  3892. Globin reduction is a standard technique used to improve the expression
  3893. results obtained by DNA microarrays on RNA from blood samples.
  3894. However, with whole transcriptome RNA-sequencing (RNA-seq) quickly replacing
  3895. microarrays for many applications, the impact of globin reduction for RNA-seq
  3896. has not been previously studied.
  3897. Moreover, no off-the-shelf kits are available for globin reduction in nonhuman
  3898. primates.
  3899. \end_layout
  3900. \begin_layout Paragraph
  3901. Results
  3902. \end_layout
  3903. \begin_layout Standard
  3904. Here we report a protocol for RNA-seq in primate blood samples that uses
  3905. complimentary oligonucleotides to block reverse transcription of the alpha
  3906. and beta globin genes.
  3907. In test samples from cynomolgus monkeys (Macaca fascicularis), this globin
  3908. blocking protocol approximately doubles the yield of informative (non-globin)
  3909. reads by greatly reducing the fraction of globin reads, while also improving
  3910. the consistency in sequencing depth between samples.
  3911. The increased yield enables detection of about 2000 more genes, significantly
  3912. increases the correlation in measured gene expression levels between samples,
  3913. and increases the sensitivity of differential gene expression tests.
  3914. \end_layout
  3915. \begin_layout Paragraph
  3916. Conclusions
  3917. \end_layout
  3918. \begin_layout Standard
  3919. These results show that globin blocking significantly improves the cost-effectiv
  3920. eness of mRNA sequencing in primate blood samples by doubling the yield
  3921. of useful reads, allowing detection of more genes, and improving the precision
  3922. of gene expression measurements.
  3923. Based on these results, a globin reducing or blocking protocol is recommended
  3924. for all RNA-seq studies of primate blood samples.
  3925. \end_layout
  3926. \begin_layout Section
  3927. Approach
  3928. \end_layout
  3929. \begin_layout Standard
  3930. \begin_inset Note Note
  3931. status open
  3932. \begin_layout Plain Layout
  3933. Consider putting some of this in the Intro chapter
  3934. \end_layout
  3935. \begin_layout Itemize
  3936. Cynomolgus monkeys as a model organism
  3937. \end_layout
  3938. \begin_deeper
  3939. \begin_layout Itemize
  3940. Highly related to humans
  3941. \end_layout
  3942. \begin_layout Itemize
  3943. Small size and short life cycle - good research animal
  3944. \end_layout
  3945. \begin_layout Itemize
  3946. Genomics resources still in development
  3947. \end_layout
  3948. \end_deeper
  3949. \begin_layout Itemize
  3950. Inadequacy of existing blood RNA-seq protocols
  3951. \end_layout
  3952. \begin_deeper
  3953. \begin_layout Itemize
  3954. Existing protocols use a separate globin pulldown step, slowing down processing
  3955. \end_layout
  3956. \end_deeper
  3957. \end_inset
  3958. \end_layout
  3959. \begin_layout Standard
  3960. Increasingly, researchers are turning to high-throughput mRNA sequencing
  3961. technologies (RNA-seq) in preference to expression microarrays for analysis
  3962. of gene expression
  3963. \begin_inset CommandInset citation
  3964. LatexCommand cite
  3965. key "Mutz2012"
  3966. literal "false"
  3967. \end_inset
  3968. .
  3969. The advantages are even greater for study of model organisms with no well-estab
  3970. lished array platforms available, such as the cynomolgus monkey (Macaca
  3971. fascicularis).
  3972. High fractions of globin mRNA are naturally present in mammalian peripheral
  3973. blood samples (up to 70% of total mRNA) and these are known to interfere
  3974. with the results of array-based expression profiling
  3975. \begin_inset CommandInset citation
  3976. LatexCommand cite
  3977. key "Winn2010"
  3978. literal "false"
  3979. \end_inset
  3980. .
  3981. The importance of globin reduction for RNA-seq of blood has only been evaluated
  3982. for a deepSAGE protocol on human samples
  3983. \begin_inset CommandInset citation
  3984. LatexCommand cite
  3985. key "Mastrokolias2012"
  3986. literal "false"
  3987. \end_inset
  3988. .
  3989. In the present report, we evaluated globin reduction using custom blocking
  3990. oligonucleotides for deep RNA-seq of peripheral blood samples from a nonhuman
  3991. primate, cynomolgus monkey, using the Illumina technology platform.
  3992. We demonstrate that globin reduction significantly improves the cost-effectiven
  3993. ess of RNA-seq in blood samples.
  3994. Thus, our protocol offers a significant advantage to any investigator planning
  3995. to use RNA-seq for gene expression profiling of nonhuman primate blood
  3996. samples.
  3997. Our method can be generally applied to any species by designing complementary
  3998. oligonucleotide blocking probes to the globin gene sequences of that species.
  3999. Indeed, any highly expressed but biologically uninformative transcripts
  4000. can also be blocked to further increase sequencing efficiency and value
  4001. \begin_inset CommandInset citation
  4002. LatexCommand cite
  4003. key "Arnaud2016"
  4004. literal "false"
  4005. \end_inset
  4006. .
  4007. \end_layout
  4008. \begin_layout Section
  4009. Methods
  4010. \end_layout
  4011. \begin_layout Subsection
  4012. Sample collection
  4013. \end_layout
  4014. \begin_layout Standard
  4015. All research reported here was done under IACUC-approved protocols at the
  4016. University of Miami and complied with all applicable federal and state
  4017. regulations and ethical principles for nonhuman primate research.
  4018. Blood draws occurred between 16 April 2012 and 18 June 2015.
  4019. The experimental system involved intrahepatic pancreatic islet transplantation
  4020. into Cynomolgus monkeys with induced diabetes mellitus with or without
  4021. concomitant infusion of mesenchymal stem cells.
  4022. Blood was collected at serial time points before and after transplantation
  4023. into PAXgene Blood RNA tubes (PreAnalytiX/Qiagen, Valencia, CA) at the
  4024. precise volume:volume ratio of 2.5 ml whole blood into 6.9 ml of PAX gene
  4025. additive.
  4026. \end_layout
  4027. \begin_layout Subsection
  4028. Globin Blocking
  4029. \end_layout
  4030. \begin_layout Standard
  4031. Four oligonucleotides were designed to hybridize to the 3’ end of the transcript
  4032. s for Cynomolgus HBA1, HBA2 and HBB, with two hybridization sites for HBB
  4033. and 2 sites for HBA (the chosen sites were identical in both HBA genes).
  4034. All oligos were purchased from Sigma and were entirely composed of 2’O-Me
  4035. bases with a C3 spacer positioned at the 3’ ends to prevent any polymerase
  4036. mediated primer extension.
  4037. \end_layout
  4038. \begin_layout Quote
  4039. HBA1/2 site 1: GCCCACUCAGACUUUAUUCAAAG-C3spacer
  4040. \end_layout
  4041. \begin_layout Quote
  4042. HBA1/2 site 2: GGUGCAAGGAGGGGAGGAG-C3spacer
  4043. \end_layout
  4044. \begin_layout Quote
  4045. HBB site 1: AAUGAAAAUAAAUGUUUUUUAUUAG-C3spacer
  4046. \end_layout
  4047. \begin_layout Quote
  4048. HBB site 2: CUCAAGGCCCUUCAUAAUAUCCC-C3spacer
  4049. \end_layout
  4050. \begin_layout Subsection
  4051. RNA-seq Library Preparation
  4052. \end_layout
  4053. \begin_layout Standard
  4054. Sequencing libraries were prepared with 200ng total RNA from each sample.
  4055. Polyadenylated mRNA was selected from 200 ng aliquots of cynomologus blood-deri
  4056. ved total RNA using Ambion Dynabeads Oligo(dT)25 beads (Invitrogen) following
  4057. manufacturer’s recommended protocol.
  4058. PolyA selected RNA was then combined with 8 pmol of HBA1/2 (site 1), 8
  4059. pmol of HBA1/2 (site 2), 12 pmol of HBB (site 1) and 12 pmol of HBB (site
  4060. 2) oligonucleotides.
  4061. In addition, 20 pmol of RT primer containing a portion of the Illumina
  4062. adapter sequence (B-oligo-dTV: GAGTTCCTTGGCACCCGAGAATTCCATTTTTTTTTTTTTTTTTTTV)
  4063. and 4 µL of 5X First Strand buffer (250 mM Tris-HCl pH 8.3, 375 mM KCl,
  4064. 15mM MgCl2) were added in a total volume of 15 µL.
  4065. The RNA was fragmented by heating this cocktail for 3 minutes at 95°C and
  4066. then placed on ice.
  4067. This was followed by the addition of 2 µL 0.1 M DTT, 1 µL RNaseOUT, 1 µL
  4068. 10mM dNTPs 10% biotin-16 aminoallyl-2’- dUTP and 10% biotin-16 aminoallyl-2’-
  4069. dCTP (TriLink Biotech, San Diego, CA), 1 µL Superscript II (200U/ µL, Thermo-Fi
  4070. sher).
  4071. A second “unblocked” library was prepared in the same way for each sample
  4072. but replacing the blocking oligos with an equivalent volume of water.
  4073. The reaction was carried out at 25°C for 15 minutes and 42°C for 40 minutes,
  4074. followed by incubation at 75°C for 10 minutes to inactivate the reverse
  4075. transcriptase.
  4076. \end_layout
  4077. \begin_layout Standard
  4078. The cDNA/RNA hybrid molecules were purified using 1.8X Ampure XP beads (Agencourt
  4079. ) following supplier’s recommended protocol.
  4080. The cDNA/RNA hybrid was eluted in 25 µL of 10 mM Tris-HCl pH 8.0, and then
  4081. bound to 25 µL of M280 Magnetic Streptavidin beads washed per recommended
  4082. protocol (Thermo-Fisher).
  4083. After 30 minutes of binding, beads were washed one time in 100 µL 0.1N NaOH
  4084. to denature and remove the bound RNA, followed by two 100 µL washes with
  4085. 1X TE buffer.
  4086. \end_layout
  4087. \begin_layout Standard
  4088. Subsequent attachment of the 5-prime Illumina A adapter was performed by
  4089. on-bead random primer extension of the following sequence (A-N8 primer:
  4090. TTCAGAGTTCTACAGTCCGACGATCNNNNNNNN).
  4091. Briefly, beads were resuspended in a 20 µL reaction containing 5 µM A-N8
  4092. primer, 40mM Tris-HCl pH 7.5, 20mM MgCl2, 50mM NaCl, 0.325U/µL Sequenase
  4093. 2.0 (Affymetrix, Santa Clara, CA), 0.0025U/µL inorganic pyrophosphatase (Affymetr
  4094. ix) and 300 µM each dNTP.
  4095. Reaction was incubated at 22°C for 30 minutes, then beads were washed 2
  4096. times with 1X TE buffer (200µL).
  4097. \end_layout
  4098. \begin_layout Standard
  4099. The magnetic streptavidin beads were resuspended in 34 µL nuclease-free
  4100. water and added directly to a PCR tube.
  4101. The two Illumina protocol-specified PCR primers were added at 0.53 µM (Illumina
  4102. TruSeq Universal Primer 1 and Illumina TruSeq barcoded PCR primer 2), along
  4103. with 40 µL 2X KAPA HiFi Hotstart ReadyMix (KAPA, Willmington MA) and thermocycl
  4104. ed as follows: starting with 98°C (2 min-hold); 15 cycles of 98°C, 20sec;
  4105. 60°C, 30sec; 72°C, 30sec; and finished with a 72°C (2 min-hold).
  4106. \end_layout
  4107. \begin_layout Standard
  4108. PCR products were purified with 1X Ampure Beads following manufacturer’s
  4109. recommended protocol.
  4110. Libraries were then analyzed using the Agilent TapeStation and quantitation
  4111. of desired size range was performed by “smear analysis”.
  4112. Samples were pooled in equimolar batches of 16 samples.
  4113. Pooled libraries were size selected on 2% agarose gels (E-Gel EX Agarose
  4114. Gels; Thermo-Fisher).
  4115. Products were cut between 250 and 350 bp (corresponding to insert sizes
  4116. of 130 to 230 bps).
  4117. Finished library pools were then sequenced on the Illumina NextSeq500 instrumen
  4118. t with 75 base read lengths.
  4119. \end_layout
  4120. \begin_layout Subsection
  4121. Read alignment and counting
  4122. \end_layout
  4123. \begin_layout Standard
  4124. Reads were aligned to the cynomolgus genome using STAR
  4125. \begin_inset CommandInset citation
  4126. LatexCommand cite
  4127. key "Dobin2013,Wilson2013"
  4128. literal "false"
  4129. \end_inset
  4130. .
  4131. Counts of uniquely mapped reads were obtained for every gene in each sample
  4132. with the “featureCounts” function from the Rsubread package, using each
  4133. of the three possibilities for the “strandSpecific” option: sense, antisense,
  4134. and unstranded
  4135. \begin_inset CommandInset citation
  4136. LatexCommand cite
  4137. key "Liao2014"
  4138. literal "false"
  4139. \end_inset
  4140. .
  4141. A few artifacts in the cynomolgus genome annotation complicated read counting.
  4142. First, no ortholog is annotated for alpha globin in the cynomolgus genome,
  4143. presumably because the human genome has two alpha globin genes with nearly
  4144. identical sequences, making the orthology relationship ambiguous.
  4145. However, two loci in the cynomolgus genome are as “hemoglobin subunit alpha-lik
  4146. e” (LOC102136192 and LOC102136846).
  4147. LOC102136192 is annotated as a pseudogene while LOC102136846 is annotated
  4148. as protein-coding.
  4149. Our globin reduction protocol was designed to include blocking of these
  4150. two genes.
  4151. Indeed, these two genes have almost the same read counts in each library
  4152. as the properly-annotated HBB gene and much larger counts than any other
  4153. gene in the unblocked libraries, giving confidence that reads derived from
  4154. the real alpha globin are mapping to both genes.
  4155. Thus, reads from both of these loci were counted as alpha globin reads
  4156. in all further analyses.
  4157. The second artifact is a small, uncharacterized non-coding RNA gene (LOC1021365
  4158. 91), which overlaps the HBA-like gene (LOC102136192) on the opposite strand.
  4159. If counting is not performed in stranded mode (or if a non-strand-specific
  4160. sequencing protocol is used), many reads mapping to the globin gene will
  4161. be discarded as ambiguous due to their overlap with this ncRNA gene, resulting
  4162. in significant undercounting of globin reads.
  4163. Therefore, stranded sense counts were used for all further analysis in
  4164. the present study to insure that we accurately accounted for globin transcript
  4165. reduction.
  4166. However, we note that stranded reads are not necessary for RNA-seq using
  4167. our protocol in standard practice.
  4168. \end_layout
  4169. \begin_layout Subsection
  4170. Normalization and Exploratory Data Analysis
  4171. \end_layout
  4172. \begin_layout Standard
  4173. Libraries were normalized by computing scaling factors using the edgeR package’s
  4174. Trimmed Mean of M-values method
  4175. \begin_inset CommandInset citation
  4176. LatexCommand cite
  4177. key "Robinson2010"
  4178. literal "false"
  4179. \end_inset
  4180. .
  4181. Log2 counts per million values (logCPM) were calculated using the cpm function
  4182. in edgeR for individual samples and aveLogCPM function for averages across
  4183. groups of samples, using those functions’ default prior count values to
  4184. avoid taking the logarithm of 0.
  4185. Genes were considered “present” if their average normalized logCPM values
  4186. across all libraries were at least -1.
  4187. Normalizing for gene length was unnecessary because the sequencing protocol
  4188. is 3’-biased and hence the expected read count for each gene is related
  4189. to the transcript’s copy number but not its length.
  4190. \end_layout
  4191. \begin_layout Standard
  4192. In order to assess the effect of blocking on reproducibility, Pearson and
  4193. Spearman correlation coefficients were computed between the logCPM values
  4194. for every pair of libraries within the globin-blocked (GB) and unblocked
  4195. (non-GB) groups, and edgeR's “estimateDisp” function was used to compute
  4196. negative binomial dispersions separately for the two groups
  4197. \begin_inset CommandInset citation
  4198. LatexCommand cite
  4199. key "Chen2014"
  4200. literal "false"
  4201. \end_inset
  4202. .
  4203. \end_layout
  4204. \begin_layout Subsection
  4205. Differential Expression Analysis
  4206. \end_layout
  4207. \begin_layout Standard
  4208. All tests for differential gene expression were performed using edgeR, by
  4209. first fitting a negative binomial generalized linear model to the counts
  4210. and normalization factors and then performing a quasi-likelihood F-test
  4211. with robust estimation of outlier gene dispersions
  4212. \begin_inset CommandInset citation
  4213. LatexCommand cite
  4214. key "Lund2012,Phipson2016"
  4215. literal "false"
  4216. \end_inset
  4217. .
  4218. To investigate the effects of globin blocking on each gene, an additive
  4219. model was fit to the full data with coefficients for globin blocking and
  4220. SampleID.
  4221. To test the effect of globin blocking on detection of differentially expressed
  4222. genes, the GB samples and non-GB samples were each analyzed independently
  4223. as follows: for each animal with both a pre-transplant and a post-transplant
  4224. time point in the data set, the pre-transplant sample and the earliest
  4225. post-transplant sample were selected, and all others were excluded, yielding
  4226. a pre-/post-transplant pair of samples for each animal (N=7 animals with
  4227. paired samples).
  4228. These samples were analyzed for pre-transplant vs.
  4229. post-transplant differential gene expression while controlling for inter-animal
  4230. variation using an additive model with coefficients for transplant and
  4231. animal ID.
  4232. In all analyses, p-values were adjusted using the Benjamini-Hochberg procedure
  4233. for FDR control
  4234. \begin_inset CommandInset citation
  4235. LatexCommand cite
  4236. key "Benjamini1995"
  4237. literal "false"
  4238. \end_inset
  4239. .
  4240. \end_layout
  4241. \begin_layout Standard
  4242. \begin_inset Note Note
  4243. status open
  4244. \begin_layout Itemize
  4245. New blood RNA-seq protocol to block reverse transcription of globin genes
  4246. \end_layout
  4247. \begin_layout Itemize
  4248. Blood RNA-seq time course after transplants with/without MSC infusion
  4249. \end_layout
  4250. \end_inset
  4251. \end_layout
  4252. \begin_layout Section
  4253. Results
  4254. \end_layout
  4255. \begin_layout Subsection
  4256. Globin blocking yields a larger and more consistent fraction of useful reads
  4257. \end_layout
  4258. \begin_layout Standard
  4259. The objective of the present study was to validate a new protocol for deep
  4260. RNA-seq of whole blood drawn into PaxGene tubes from cynomolgus monkeys
  4261. undergoing islet transplantation, with particular focus on minimizing the
  4262. loss of useful sequencing space to uninformative globin reads.
  4263. The details of the analysis with respect to transplant outcomes and the
  4264. impact of mesenchymal stem cell treatment will be reported in a separate
  4265. manuscript (in preparation).
  4266. To focus on the efficacy of our globin blocking protocol, 37 blood samples,
  4267. 16 from pre-transplant and 21 from post-transplant time points, were each
  4268. prepped once with and once without globin blocking oligos, and were then
  4269. sequenced on an Illumina NextSeq500 instrument.
  4270. The number of reads aligning to each gene in the cynomolgus genome was
  4271. counted.
  4272. Table 1 summarizes the distribution of read fractions among the GB and
  4273. non-GB libraries.
  4274. In the libraries with no globin blocking, globin reads made up an average
  4275. of 44.6% of total input reads, while reads assigned to all other genes made
  4276. up an average of 26.3%.
  4277. The remaining reads either aligned to intergenic regions (that include
  4278. long non-coding RNAs) or did not align with any annotated transcripts in
  4279. the current build of the cynomolgus genome.
  4280. In the GB libraries, globin reads made up only 3.48% and reads assigned
  4281. to all other genes increased to 50.4%.
  4282. Thus, globin blocking resulted in a 92.2% reduction in globin reads and
  4283. a 91.6% increase in yield of useful non-globin reads.
  4284. \end_layout
  4285. \begin_layout Standard
  4286. This reduction is not quite as efficient as the previous analysis showed
  4287. for human samples by DeepSAGE (<0.4% globin reads after globin reduction)
  4288. \begin_inset CommandInset citation
  4289. LatexCommand cite
  4290. key "Mastrokolias2012"
  4291. literal "false"
  4292. \end_inset
  4293. .
  4294. Nonetheless, this degree of globin reduction is sufficient to nearly double
  4295. the yield of useful reads.
  4296. Thus, globin blocking cuts the required sequencing effort (and costs) to
  4297. achieve a target coverage depth by almost 50%.
  4298. Consistent with this near doubling of yield, the average difference in
  4299. un-normalized logCPM across all genes between the GB libraries and non-GB
  4300. libraries is approximately 1 (mean = 1.01, median = 1.08), an overall 2-fold
  4301. increase.
  4302. Un-normalized values are used here because the TMM normalization correctly
  4303. identifies this 2-fold difference as biologically irrelevant and removes
  4304. it.
  4305. \end_layout
  4306. \begin_layout Standard
  4307. \begin_inset Float figure
  4308. wide false
  4309. sideways false
  4310. status open
  4311. \begin_layout Plain Layout
  4312. \align center
  4313. \begin_inset Graphics
  4314. filename graphics/Globin Paper/figure1 - globin-fractions.pdf
  4315. \end_inset
  4316. \end_layout
  4317. \begin_layout Plain Layout
  4318. \begin_inset Caption Standard
  4319. \begin_layout Plain Layout
  4320. \series bold
  4321. \begin_inset Argument 1
  4322. status collapsed
  4323. \begin_layout Plain Layout
  4324. Fraction of genic reads in each sample aligned to non-globin genes, with
  4325. and without globin blocking (GB).
  4326. \end_layout
  4327. \end_inset
  4328. \begin_inset CommandInset label
  4329. LatexCommand label
  4330. name "fig:Fraction-of-genic-reads"
  4331. \end_inset
  4332. Fraction of genic reads in each sample aligned to non-globin genes, with
  4333. and without globin blocking (GB).
  4334. \series default
  4335. All reads in each sequencing library were aligned to the cyno genome, and
  4336. the number of reads uniquely aligning to each gene was counted.
  4337. For each sample, counts were summed separately for all globin genes and
  4338. for the remainder of the genes (non-globin genes), and the fraction of
  4339. genic reads aligned to non-globin genes was computed.
  4340. Each point represents an individual sample.
  4341. Gray + signs indicate the means for globin-blocked libraries and unblocked
  4342. libraries.
  4343. The overall distribution for each group is represented as a notched box
  4344. plots.
  4345. Points are randomly spread vertically to avoid excessive overlapping.
  4346. \end_layout
  4347. \end_inset
  4348. \end_layout
  4349. \begin_layout Plain Layout
  4350. \end_layout
  4351. \end_inset
  4352. \end_layout
  4353. \begin_layout Standard
  4354. \begin_inset Float table
  4355. placement p
  4356. wide false
  4357. sideways true
  4358. status open
  4359. \begin_layout Plain Layout
  4360. \align center
  4361. \begin_inset Tabular
  4362. <lyxtabular version="3" rows="4" columns="7">
  4363. <features tabularvalignment="middle">
  4364. <column alignment="center" valignment="top">
  4365. <column alignment="center" valignment="top">
  4366. <column alignment="center" valignment="top">
  4367. <column alignment="center" valignment="top">
  4368. <column alignment="center" valignment="top">
  4369. <column alignment="center" valignment="top">
  4370. <column alignment="center" valignment="top">
  4371. <row>
  4372. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4373. \begin_inset Text
  4374. \begin_layout Plain Layout
  4375. \end_layout
  4376. \end_inset
  4377. </cell>
  4378. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4379. \begin_inset Text
  4380. \begin_layout Plain Layout
  4381. \family roman
  4382. \series medium
  4383. \shape up
  4384. \size normal
  4385. \emph off
  4386. \bar no
  4387. \strikeout off
  4388. \xout off
  4389. \uuline off
  4390. \uwave off
  4391. \noun off
  4392. \color none
  4393. Percent of Total Reads
  4394. \end_layout
  4395. \end_inset
  4396. </cell>
  4397. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4398. \begin_inset Text
  4399. \begin_layout Plain Layout
  4400. \end_layout
  4401. \end_inset
  4402. </cell>
  4403. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4404. \begin_inset Text
  4405. \begin_layout Plain Layout
  4406. \end_layout
  4407. \end_inset
  4408. </cell>
  4409. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4410. \begin_inset Text
  4411. \begin_layout Plain Layout
  4412. \end_layout
  4413. \end_inset
  4414. </cell>
  4415. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  4416. \begin_inset Text
  4417. \begin_layout Plain Layout
  4418. \family roman
  4419. \series medium
  4420. \shape up
  4421. \size normal
  4422. \emph off
  4423. \bar no
  4424. \strikeout off
  4425. \xout off
  4426. \uuline off
  4427. \uwave off
  4428. \noun off
  4429. \color none
  4430. Percent of Genic Reads
  4431. \end_layout
  4432. \end_inset
  4433. </cell>
  4434. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  4435. \begin_inset Text
  4436. \begin_layout Plain Layout
  4437. \end_layout
  4438. \end_inset
  4439. </cell>
  4440. </row>
  4441. <row>
  4442. <cell alignment="center" valignment="top" bottomline="true" leftline="true" usebox="none">
  4443. \begin_inset Text
  4444. \begin_layout Plain Layout
  4445. GB
  4446. \end_layout
  4447. \end_inset
  4448. </cell>
  4449. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  4450. \begin_inset Text
  4451. \begin_layout Plain Layout
  4452. \family roman
  4453. \series medium
  4454. \shape up
  4455. \size normal
  4456. \emph off
  4457. \bar no
  4458. \strikeout off
  4459. \xout off
  4460. \uuline off
  4461. \uwave off
  4462. \noun off
  4463. \color none
  4464. Non-globin Reads
  4465. \end_layout
  4466. \end_inset
  4467. </cell>
  4468. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  4469. \begin_inset Text
  4470. \begin_layout Plain Layout
  4471. \family roman
  4472. \series medium
  4473. \shape up
  4474. \size normal
  4475. \emph off
  4476. \bar no
  4477. \strikeout off
  4478. \xout off
  4479. \uuline off
  4480. \uwave off
  4481. \noun off
  4482. \color none
  4483. Globin Reads
  4484. \end_layout
  4485. \end_inset
  4486. </cell>
  4487. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  4488. \begin_inset Text
  4489. \begin_layout Plain Layout
  4490. \family roman
  4491. \series medium
  4492. \shape up
  4493. \size normal
  4494. \emph off
  4495. \bar no
  4496. \strikeout off
  4497. \xout off
  4498. \uuline off
  4499. \uwave off
  4500. \noun off
  4501. \color none
  4502. All Genic Reads
  4503. \end_layout
  4504. \end_inset
  4505. </cell>
  4506. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  4507. \begin_inset Text
  4508. \begin_layout Plain Layout
  4509. \family roman
  4510. \series medium
  4511. \shape up
  4512. \size normal
  4513. \emph off
  4514. \bar no
  4515. \strikeout off
  4516. \xout off
  4517. \uuline off
  4518. \uwave off
  4519. \noun off
  4520. \color none
  4521. All Aligned Reads
  4522. \end_layout
  4523. \end_inset
  4524. </cell>
  4525. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  4526. \begin_inset Text
  4527. \begin_layout Plain Layout
  4528. \family roman
  4529. \series medium
  4530. \shape up
  4531. \size normal
  4532. \emph off
  4533. \bar no
  4534. \strikeout off
  4535. \xout off
  4536. \uuline off
  4537. \uwave off
  4538. \noun off
  4539. \color none
  4540. Non-globin Reads
  4541. \end_layout
  4542. \end_inset
  4543. </cell>
  4544. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  4545. \begin_inset Text
  4546. \begin_layout Plain Layout
  4547. \family roman
  4548. \series medium
  4549. \shape up
  4550. \size normal
  4551. \emph off
  4552. \bar no
  4553. \strikeout off
  4554. \xout off
  4555. \uuline off
  4556. \uwave off
  4557. \noun off
  4558. \color none
  4559. Globin Reads
  4560. \end_layout
  4561. \end_inset
  4562. </cell>
  4563. </row>
  4564. <row>
  4565. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4566. \begin_inset Text
  4567. \begin_layout Plain Layout
  4568. \family roman
  4569. \series medium
  4570. \shape up
  4571. \size normal
  4572. \emph off
  4573. \bar no
  4574. \strikeout off
  4575. \xout off
  4576. \uuline off
  4577. \uwave off
  4578. \noun off
  4579. \color none
  4580. Yes
  4581. \end_layout
  4582. \end_inset
  4583. </cell>
  4584. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4585. \begin_inset Text
  4586. \begin_layout Plain Layout
  4587. \family roman
  4588. \series medium
  4589. \shape up
  4590. \size normal
  4591. \emph off
  4592. \bar no
  4593. \strikeout off
  4594. \xout off
  4595. \uuline off
  4596. \uwave off
  4597. \noun off
  4598. \color none
  4599. 50.4% ± 6.82
  4600. \end_layout
  4601. \end_inset
  4602. </cell>
  4603. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4604. \begin_inset Text
  4605. \begin_layout Plain Layout
  4606. \family roman
  4607. \series medium
  4608. \shape up
  4609. \size normal
  4610. \emph off
  4611. \bar no
  4612. \strikeout off
  4613. \xout off
  4614. \uuline off
  4615. \uwave off
  4616. \noun off
  4617. \color none
  4618. 3.48% ± 2.94
  4619. \end_layout
  4620. \end_inset
  4621. </cell>
  4622. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4623. \begin_inset Text
  4624. \begin_layout Plain Layout
  4625. \family roman
  4626. \series medium
  4627. \shape up
  4628. \size normal
  4629. \emph off
  4630. \bar no
  4631. \strikeout off
  4632. \xout off
  4633. \uuline off
  4634. \uwave off
  4635. \noun off
  4636. \color none
  4637. 53.9% ± 6.81
  4638. \end_layout
  4639. \end_inset
  4640. </cell>
  4641. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4642. \begin_inset Text
  4643. \begin_layout Plain Layout
  4644. \family roman
  4645. \series medium
  4646. \shape up
  4647. \size normal
  4648. \emph off
  4649. \bar no
  4650. \strikeout off
  4651. \xout off
  4652. \uuline off
  4653. \uwave off
  4654. \noun off
  4655. \color none
  4656. 89.7% ± 2.40
  4657. \end_layout
  4658. \end_inset
  4659. </cell>
  4660. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4661. \begin_inset Text
  4662. \begin_layout Plain Layout
  4663. \family roman
  4664. \series medium
  4665. \shape up
  4666. \size normal
  4667. \emph off
  4668. \bar no
  4669. \strikeout off
  4670. \xout off
  4671. \uuline off
  4672. \uwave off
  4673. \noun off
  4674. \color none
  4675. 93.5% ± 5.25
  4676. \end_layout
  4677. \end_inset
  4678. </cell>
  4679. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  4680. \begin_inset Text
  4681. \begin_layout Plain Layout
  4682. \family roman
  4683. \series medium
  4684. \shape up
  4685. \size normal
  4686. \emph off
  4687. \bar no
  4688. \strikeout off
  4689. \xout off
  4690. \uuline off
  4691. \uwave off
  4692. \noun off
  4693. \color none
  4694. 6.49% ± 5.25
  4695. \end_layout
  4696. \end_inset
  4697. </cell>
  4698. </row>
  4699. <row>
  4700. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  4701. \begin_inset Text
  4702. \begin_layout Plain Layout
  4703. \family roman
  4704. \series medium
  4705. \shape up
  4706. \size normal
  4707. \emph off
  4708. \bar no
  4709. \strikeout off
  4710. \xout off
  4711. \uuline off
  4712. \uwave off
  4713. \noun off
  4714. \color none
  4715. No
  4716. \end_layout
  4717. \end_inset
  4718. </cell>
  4719. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  4720. \begin_inset Text
  4721. \begin_layout Plain Layout
  4722. \family roman
  4723. \series medium
  4724. \shape up
  4725. \size normal
  4726. \emph off
  4727. \bar no
  4728. \strikeout off
  4729. \xout off
  4730. \uuline off
  4731. \uwave off
  4732. \noun off
  4733. \color none
  4734. 26.3% ± 8.95
  4735. \end_layout
  4736. \end_inset
  4737. </cell>
  4738. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  4739. \begin_inset Text
  4740. \begin_layout Plain Layout
  4741. \family roman
  4742. \series medium
  4743. \shape up
  4744. \size normal
  4745. \emph off
  4746. \bar no
  4747. \strikeout off
  4748. \xout off
  4749. \uuline off
  4750. \uwave off
  4751. \noun off
  4752. \color none
  4753. 44.6% ± 16.6
  4754. \end_layout
  4755. \end_inset
  4756. </cell>
  4757. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  4758. \begin_inset Text
  4759. \begin_layout Plain Layout
  4760. \family roman
  4761. \series medium
  4762. \shape up
  4763. \size normal
  4764. \emph off
  4765. \bar no
  4766. \strikeout off
  4767. \xout off
  4768. \uuline off
  4769. \uwave off
  4770. \noun off
  4771. \color none
  4772. 70.1% ± 9.38
  4773. \end_layout
  4774. \end_inset
  4775. </cell>
  4776. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  4777. \begin_inset Text
  4778. \begin_layout Plain Layout
  4779. \family roman
  4780. \series medium
  4781. \shape up
  4782. \size normal
  4783. \emph off
  4784. \bar no
  4785. \strikeout off
  4786. \xout off
  4787. \uuline off
  4788. \uwave off
  4789. \noun off
  4790. \color none
  4791. 90.7% ± 5.16
  4792. \end_layout
  4793. \end_inset
  4794. </cell>
  4795. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  4796. \begin_inset Text
  4797. \begin_layout Plain Layout
  4798. \family roman
  4799. \series medium
  4800. \shape up
  4801. \size normal
  4802. \emph off
  4803. \bar no
  4804. \strikeout off
  4805. \xout off
  4806. \uuline off
  4807. \uwave off
  4808. \noun off
  4809. \color none
  4810. 38.8% ± 17.1
  4811. \end_layout
  4812. \end_inset
  4813. </cell>
  4814. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  4815. \begin_inset Text
  4816. \begin_layout Plain Layout
  4817. \family roman
  4818. \series medium
  4819. \shape up
  4820. \size normal
  4821. \emph off
  4822. \bar no
  4823. \strikeout off
  4824. \xout off
  4825. \uuline off
  4826. \uwave off
  4827. \noun off
  4828. \color none
  4829. 61.2% ± 17.1
  4830. \end_layout
  4831. \end_inset
  4832. </cell>
  4833. </row>
  4834. </lyxtabular>
  4835. \end_inset
  4836. \end_layout
  4837. \begin_layout Plain Layout
  4838. \begin_inset Caption Standard
  4839. \begin_layout Plain Layout
  4840. \series bold
  4841. \begin_inset Argument 1
  4842. status collapsed
  4843. \begin_layout Plain Layout
  4844. Fractions of reads mapping to genomic features in GB and non-GB samples.
  4845. \end_layout
  4846. \end_inset
  4847. \begin_inset CommandInset label
  4848. LatexCommand label
  4849. name "tab:Fractions-of-reads"
  4850. \end_inset
  4851. Fractions of reads mapping to genomic features in GB and non-GB samples.
  4852. \series default
  4853. All values are given as mean ± standard deviation.
  4854. \end_layout
  4855. \end_inset
  4856. \end_layout
  4857. \begin_layout Plain Layout
  4858. \end_layout
  4859. \end_inset
  4860. \end_layout
  4861. \begin_layout Standard
  4862. Another important aspect is that the standard deviations in Table
  4863. \begin_inset CommandInset ref
  4864. LatexCommand ref
  4865. reference "tab:Fractions-of-reads"
  4866. plural "false"
  4867. caps "false"
  4868. noprefix "false"
  4869. \end_inset
  4870. are uniformly smaller in the GB samples than the non-GB ones, indicating
  4871. much greater consistency of yield.
  4872. This is best seen in the percentage of non-globin reads as a fraction of
  4873. total reads aligned to annotated genes (genic reads).
  4874. For the non-GB samples, this measure ranges from 10.9% to 80.9%, while for
  4875. the GB samples it ranges from 81.9% to 99.9% (Figure
  4876. \begin_inset CommandInset ref
  4877. LatexCommand ref
  4878. reference "fig:Fraction-of-genic-reads"
  4879. plural "false"
  4880. caps "false"
  4881. noprefix "false"
  4882. \end_inset
  4883. ).
  4884. This means that for applications where it is critical that each sample
  4885. achieve a specified minimum coverage in order to provide useful information,
  4886. it would be necessary to budget up to 10 times the sequencing depth per
  4887. sample without globin blocking, even though the average yield improvement
  4888. for globin blocking is only 2-fold, because every sample has a chance of
  4889. being 90% globin and 10% useful reads.
  4890. Hence, the more consistent behavior of GB samples makes planning an experiment
  4891. easier and more efficient because it eliminates the need to over-sequence
  4892. every sample in order to guard against the worst case of a high-globin
  4893. fraction.
  4894. \end_layout
  4895. \begin_layout Subsection
  4896. Globin blocking lowers the noise floor and allows detection of about 2000
  4897. more genes
  4898. \end_layout
  4899. \begin_layout Standard
  4900. \begin_inset Flex TODO Note (inline)
  4901. status open
  4902. \begin_layout Plain Layout
  4903. Remove redundant titles from figures
  4904. \end_layout
  4905. \end_inset
  4906. \end_layout
  4907. \begin_layout Standard
  4908. \begin_inset Float figure
  4909. wide false
  4910. sideways false
  4911. status open
  4912. \begin_layout Plain Layout
  4913. \align center
  4914. \begin_inset Graphics
  4915. filename graphics/Globin Paper/figure2 - aveLogCPM-colored.pdf
  4916. \end_inset
  4917. \end_layout
  4918. \begin_layout Plain Layout
  4919. \begin_inset Caption Standard
  4920. \begin_layout Plain Layout
  4921. \series bold
  4922. \begin_inset Argument 1
  4923. status collapsed
  4924. \begin_layout Plain Layout
  4925. Distributions of average group gene abundances when normalized separately
  4926. or together.
  4927. \end_layout
  4928. \end_inset
  4929. \begin_inset CommandInset label
  4930. LatexCommand label
  4931. name "fig:logcpm-dists"
  4932. \end_inset
  4933. Distributions of average group gene abundances when normalized separately
  4934. or together.
  4935. \series default
  4936. All reads in each sequencing library were aligned to the cyno genome, and
  4937. the number of reads uniquely aligning to each gene was counted.
  4938. Genes with zero counts in all libraries were discarded.
  4939. Libraries were normalized using the TMM method.
  4940. Libraries were split into globin-blocked (GB) and non-GB groups and the
  4941. average abundance for each gene in both groups, measured in log2 counts
  4942. per million reads counted, was computed using the aveLogCPM function.
  4943. The distribution of average gene logCPM values was plotted for both groups
  4944. using a kernel density plot to approximate a continuous distribution.
  4945. The logCPM GB distributions are marked in red, non-GB in blue.
  4946. The black vertical line denotes the chosen detection threshold of -1.
  4947. Top panel: Libraries were split into GB and non-GB groups first and normalized
  4948. separately.
  4949. Bottom panel: Libraries were all normalized together first and then split
  4950. into groups.
  4951. \end_layout
  4952. \end_inset
  4953. \end_layout
  4954. \begin_layout Plain Layout
  4955. \end_layout
  4956. \end_inset
  4957. \end_layout
  4958. \begin_layout Standard
  4959. Since globin blocking yields more usable sequencing depth, it should also
  4960. allow detection of more genes at any given threshold.
  4961. When we looked at the distribution of average normalized logCPM values
  4962. across all libraries for genes with at least one read assigned to them,
  4963. we observed the expected bimodal distribution, with a high-abundance "signal"
  4964. peak representing detected genes and a low-abundance "noise" peak representing
  4965. genes whose read count did not rise above the noise floor (Figure
  4966. \begin_inset CommandInset ref
  4967. LatexCommand ref
  4968. reference "fig:logcpm-dists"
  4969. plural "false"
  4970. caps "false"
  4971. noprefix "false"
  4972. \end_inset
  4973. ).
  4974. Consistent with the 2-fold increase in raw counts assigned to non-globin
  4975. genes, the signal peak for GB samples is shifted to the right relative
  4976. to the non-GB signal peak.
  4977. When all the samples are normalized together, this difference is normalized
  4978. out, lining up the signal peaks, and this reveals that, as expected, the
  4979. noise floor for the GB samples is about 2-fold lower.
  4980. This greater separation between signal and noise peaks in the GB samples
  4981. means that low-expression genes should be more easily detected and more
  4982. precisely quantified than in the non-GB samples.
  4983. \end_layout
  4984. \begin_layout Standard
  4985. \begin_inset Float figure
  4986. wide false
  4987. sideways false
  4988. status open
  4989. \begin_layout Plain Layout
  4990. \align center
  4991. \begin_inset Graphics
  4992. filename graphics/Globin Paper/figure3 - detection.pdf
  4993. \end_inset
  4994. \end_layout
  4995. \begin_layout Plain Layout
  4996. \begin_inset Caption Standard
  4997. \begin_layout Plain Layout
  4998. \series bold
  4999. \begin_inset Argument 1
  5000. status collapsed
  5001. \begin_layout Plain Layout
  5002. Gene detections as a function of abundance thresholds in globin-blocked
  5003. (GB) and non-GB samples.
  5004. \end_layout
  5005. \end_inset
  5006. \begin_inset CommandInset label
  5007. LatexCommand label
  5008. name "fig:Gene-detections"
  5009. \end_inset
  5010. Gene detections as a function of abundance thresholds in globin-blocked
  5011. (GB) and non-GB samples.
  5012. \series default
  5013. Average abundance (logCPM,
  5014. \begin_inset Formula $\log_{2}$
  5015. \end_inset
  5016. counts per million reads counted) was computed by separate group normalization
  5017. as described in Figure
  5018. \begin_inset CommandInset ref
  5019. LatexCommand ref
  5020. reference "fig:logcpm-dists"
  5021. plural "false"
  5022. caps "false"
  5023. noprefix "false"
  5024. \end_inset
  5025. for both the GB and non-GB groups, as well as for all samples considered
  5026. as one large group.
  5027. For each every integer threshold from -2 to 3, the number of genes detected
  5028. at or above that logCPM threshold was plotted for each group.
  5029. \end_layout
  5030. \end_inset
  5031. \end_layout
  5032. \begin_layout Plain Layout
  5033. \end_layout
  5034. \end_inset
  5035. \end_layout
  5036. \begin_layout Standard
  5037. Based on these distributions, we selected a detection threshold of -1, which
  5038. is approximately the leftmost edge of the trough between the signal and
  5039. noise peaks.
  5040. This represents the most liberal possible detection threshold that doesn't
  5041. call substantial numbers of noise genes as detected.
  5042. Among the full dataset, 13429 genes were detected at this threshold, and
  5043. 22276 were not.
  5044. When considering the GB libraries and non-GB libraries separately and re-comput
  5045. ing normalization factors independently within each group, 14535 genes were
  5046. detected in the GB libraries while only 12460 were detected in the non-GB
  5047. libraries.
  5048. Thus, GB allowed the detection of 2000 extra genes that were buried under
  5049. the noise floor without GB.
  5050. This pattern of at least 2000 additional genes detected with GB was also
  5051. consistent across a wide range of possible detection thresholds, from -2
  5052. to 3 (see Figure
  5053. \begin_inset CommandInset ref
  5054. LatexCommand ref
  5055. reference "fig:Gene-detections"
  5056. plural "false"
  5057. caps "false"
  5058. noprefix "false"
  5059. \end_inset
  5060. ).
  5061. \end_layout
  5062. \begin_layout Subsection
  5063. Globin blocking does not add significant additional noise or decrease sample
  5064. quality
  5065. \end_layout
  5066. \begin_layout Standard
  5067. One potential worry is that the globin blocking protocol could perturb the
  5068. levels of non-globin genes.
  5069. There are two kinds of possible perturbations: systematic and random.
  5070. The former is not a major concern for detection of differential expression,
  5071. since a 2-fold change in every sample has no effect on the relative fold
  5072. change between samples.
  5073. In contrast, random perturbations would increase the noise and obscure
  5074. the signal in the dataset, reducing the capacity to detect differential
  5075. expression.
  5076. \end_layout
  5077. \begin_layout Standard
  5078. \begin_inset Float figure
  5079. wide false
  5080. sideways false
  5081. status open
  5082. \begin_layout Plain Layout
  5083. \align center
  5084. \begin_inset Graphics
  5085. filename graphics/Globin Paper/figure4 - maplot-colored.pdf
  5086. \end_inset
  5087. \end_layout
  5088. \begin_layout Plain Layout
  5089. \begin_inset Caption Standard
  5090. \begin_layout Plain Layout
  5091. \begin_inset Argument 1
  5092. status collapsed
  5093. \begin_layout Plain Layout
  5094. MA plot showing effects of globin blocking on each gene's abundance.
  5095. \end_layout
  5096. \end_inset
  5097. \begin_inset CommandInset label
  5098. LatexCommand label
  5099. name "fig:MA-plot"
  5100. \end_inset
  5101. \series bold
  5102. MA plot showing effects of globin blocking on each gene's abundance.
  5103. \series default
  5104. All libraries were normalized together as described in Figure
  5105. \begin_inset CommandInset ref
  5106. LatexCommand ref
  5107. reference "fig:logcpm-dists"
  5108. plural "false"
  5109. caps "false"
  5110. noprefix "false"
  5111. \end_inset
  5112. , and genes with an average logCPM below -1 were filtered out.
  5113. Each remaining gene was tested for differential abundance with respect
  5114. to globin blocking (GB) using edgeR’s quasi-likelihod F-test, fitting a
  5115. negative binomial generalized linear model to table of read counts in each
  5116. library.
  5117. For each gene, edgeR reported average abundance (logCPM),
  5118. \begin_inset Formula $\log_{2}$
  5119. \end_inset
  5120. fold change (logFC), p-value, and Benjamini-Hochberg adjusted false discovery
  5121. rate (FDR).
  5122. Each gene's logFC was plotted against its logCPM, colored by FDR.
  5123. Red points are significant at ≤10% FDR, and blue are not significant at
  5124. that threshold.
  5125. The alpha and beta globin genes targeted for blocking are marked with large
  5126. triangles, while all other genes are represented as small points.
  5127. \end_layout
  5128. \end_inset
  5129. \end_layout
  5130. \begin_layout Plain Layout
  5131. \end_layout
  5132. \end_inset
  5133. \end_layout
  5134. \begin_layout Standard
  5135. \begin_inset Flex TODO Note (inline)
  5136. status open
  5137. \begin_layout Plain Layout
  5138. Standardize on
  5139. \begin_inset Quotes eld
  5140. \end_inset
  5141. log2
  5142. \begin_inset Quotes erd
  5143. \end_inset
  5144. notation
  5145. \end_layout
  5146. \end_inset
  5147. \end_layout
  5148. \begin_layout Standard
  5149. The data do indeed show small systematic perturbations in gene levels (Figure
  5150. \begin_inset CommandInset ref
  5151. LatexCommand ref
  5152. reference "fig:MA-plot"
  5153. plural "false"
  5154. caps "false"
  5155. noprefix "false"
  5156. \end_inset
  5157. ).
  5158. Other than the 3 designated alpha and beta globin genes, two other genes
  5159. stand out as having especially large negative log fold changes: HBD and
  5160. LOC1021365.
  5161. HBD, delta globin, is most likely targeted by the blocking oligos due to
  5162. high sequence homology with the other globin genes.
  5163. LOC1021365 is the aforementioned ncRNA that is reverse-complementary to
  5164. one of the alpha-like genes and that would be expected to be removed during
  5165. the globin blocking step.
  5166. All other genes appear in a cluster centered vertically at 0, and the vast
  5167. majority of genes in this cluster show an absolute log2(FC) of 0.5 or less.
  5168. Nevertheless, many of these small perturbations are still statistically
  5169. significant, indicating that the globin blocking oligos likely cause very
  5170. small but non-zero systematic perturbations in measured gene expression
  5171. levels.
  5172. \end_layout
  5173. \begin_layout Standard
  5174. \begin_inset Float figure
  5175. wide false
  5176. sideways false
  5177. status open
  5178. \begin_layout Plain Layout
  5179. \align center
  5180. \begin_inset Graphics
  5181. filename graphics/Globin Paper/figure5 - corrplot.pdf
  5182. \end_inset
  5183. \end_layout
  5184. \begin_layout Plain Layout
  5185. \begin_inset Caption Standard
  5186. \begin_layout Plain Layout
  5187. \series bold
  5188. \begin_inset Argument 1
  5189. status collapsed
  5190. \begin_layout Plain Layout
  5191. Comparison of inter-sample gene abundance correlations with and without
  5192. globin blocking.
  5193. \end_layout
  5194. \end_inset
  5195. \begin_inset CommandInset label
  5196. LatexCommand label
  5197. name "fig:gene-abundance-correlations"
  5198. \end_inset
  5199. Comparison of inter-sample gene abundance correlations with and without
  5200. globin blocking (GB).
  5201. \series default
  5202. All libraries were normalized together as described in Figure 2, and genes
  5203. with an average abundance (logCPM, log2 counts per million reads counted)
  5204. less than -1 were filtered out.
  5205. Each gene’s logCPM was computed in each library using the edgeR cpm function.
  5206. For each pair of biological samples, the Pearson correlation between those
  5207. samples' GB libraries was plotted against the correlation between the same
  5208. samples’ non-GB libraries.
  5209. Each point represents an unique pair of samples.
  5210. The solid gray line shows a quantile-quantile plot of distribution of GB
  5211. correlations vs.
  5212. that of non-GB correlations.
  5213. The thin dashed line is the identity line, provided for reference.
  5214. \end_layout
  5215. \end_inset
  5216. \end_layout
  5217. \begin_layout Plain Layout
  5218. \end_layout
  5219. \end_inset
  5220. \end_layout
  5221. \begin_layout Standard
  5222. To evaluate the possibility of globin blocking causing random perturbations
  5223. and reducing sample quality, we computed the Pearson correlation between
  5224. logCPM values for every pair of samples with and without GB and plotted
  5225. them against each other (Figure
  5226. \begin_inset CommandInset ref
  5227. LatexCommand ref
  5228. reference "fig:gene-abundance-correlations"
  5229. plural "false"
  5230. caps "false"
  5231. noprefix "false"
  5232. \end_inset
  5233. ).
  5234. The plot indicated that the GB libraries have higher sample-to-sample correlati
  5235. ons than the non-GB libraries.
  5236. Parametric and nonparametric tests for differences between the correlations
  5237. with and without GB both confirmed that this difference was highly significant
  5238. (2-sided paired t-test: t = 37.2, df = 665, P ≪ 2.2e-16; 2-sided Wilcoxon
  5239. sign-rank test: V = 2195, P ≪ 2.2e-16).
  5240. Performing the same tests on the Spearman correlations gave the same conclusion
  5241. (t-test: t = 26.8, df = 665, P ≪ 2.2e-16; sign-rank test: V = 8781, P ≪ 2.2e-16).
  5242. The edgeR package was used to compute the overall biological coefficient
  5243. of variation (BCV) for GB and non-GB libraries, and found that globin blocking
  5244. resulted in a negligible increase in the BCV (0.417 with GB vs.
  5245. 0.400 without).
  5246. The near equality of the BCVs for both sets indicates that the higher correlati
  5247. ons in the GB libraries are most likely a result of the increased yield
  5248. of useful reads, which reduces the contribution of Poisson counting uncertainty
  5249. to the overall variance of the logCPM values
  5250. \begin_inset CommandInset citation
  5251. LatexCommand cite
  5252. key "McCarthy2012"
  5253. literal "false"
  5254. \end_inset
  5255. .
  5256. This improves the precision of expression measurements and more than offsets
  5257. the negligible increase in BCV.
  5258. \end_layout
  5259. \begin_layout Subsection
  5260. More differentially expressed genes are detected with globin blocking
  5261. \end_layout
  5262. \begin_layout Standard
  5263. \begin_inset Float table
  5264. wide false
  5265. sideways false
  5266. status open
  5267. \begin_layout Plain Layout
  5268. \align center
  5269. \begin_inset Tabular
  5270. <lyxtabular version="3" rows="5" columns="5">
  5271. <features tabularvalignment="middle">
  5272. <column alignment="center" valignment="top">
  5273. <column alignment="center" valignment="top">
  5274. <column alignment="center" valignment="top">
  5275. <column alignment="center" valignment="top">
  5276. <column alignment="center" valignment="top">
  5277. <row>
  5278. <cell alignment="center" valignment="top" usebox="none">
  5279. \begin_inset Text
  5280. \begin_layout Plain Layout
  5281. \end_layout
  5282. \end_inset
  5283. </cell>
  5284. <cell alignment="center" valignment="top" usebox="none">
  5285. \begin_inset Text
  5286. \begin_layout Plain Layout
  5287. \end_layout
  5288. \end_inset
  5289. </cell>
  5290. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  5291. \begin_inset Text
  5292. \begin_layout Plain Layout
  5293. \series bold
  5294. No Globin Blocking
  5295. \end_layout
  5296. \end_inset
  5297. </cell>
  5298. <cell multicolumn="2" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  5299. \begin_inset Text
  5300. \begin_layout Plain Layout
  5301. \end_layout
  5302. \end_inset
  5303. </cell>
  5304. <cell multicolumn="2" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  5305. \begin_inset Text
  5306. \begin_layout Plain Layout
  5307. \end_layout
  5308. \end_inset
  5309. </cell>
  5310. </row>
  5311. <row>
  5312. <cell alignment="center" valignment="top" usebox="none">
  5313. \begin_inset Text
  5314. \begin_layout Plain Layout
  5315. \end_layout
  5316. \end_inset
  5317. </cell>
  5318. <cell alignment="center" valignment="top" usebox="none">
  5319. \begin_inset Text
  5320. \begin_layout Plain Layout
  5321. \end_layout
  5322. \end_inset
  5323. </cell>
  5324. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  5325. \begin_inset Text
  5326. \begin_layout Plain Layout
  5327. \series bold
  5328. Up
  5329. \end_layout
  5330. \end_inset
  5331. </cell>
  5332. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  5333. \begin_inset Text
  5334. \begin_layout Plain Layout
  5335. \series bold
  5336. NS
  5337. \end_layout
  5338. \end_inset
  5339. </cell>
  5340. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  5341. \begin_inset Text
  5342. \begin_layout Plain Layout
  5343. \series bold
  5344. Down
  5345. \end_layout
  5346. \end_inset
  5347. </cell>
  5348. </row>
  5349. <row>
  5350. <cell multirow="3" alignment="center" valignment="middle" topline="true" bottomline="true" leftline="true" usebox="none">
  5351. \begin_inset Text
  5352. \begin_layout Plain Layout
  5353. \series bold
  5354. Globin-Blocking
  5355. \end_layout
  5356. \end_inset
  5357. </cell>
  5358. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  5359. \begin_inset Text
  5360. \begin_layout Plain Layout
  5361. \series bold
  5362. Up
  5363. \end_layout
  5364. \end_inset
  5365. </cell>
  5366. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  5367. \begin_inset Text
  5368. \begin_layout Plain Layout
  5369. \family roman
  5370. \series medium
  5371. \shape up
  5372. \size normal
  5373. \emph off
  5374. \bar no
  5375. \strikeout off
  5376. \xout off
  5377. \uuline off
  5378. \uwave off
  5379. \noun off
  5380. \color none
  5381. 231
  5382. \end_layout
  5383. \end_inset
  5384. </cell>
  5385. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  5386. \begin_inset Text
  5387. \begin_layout Plain Layout
  5388. \family roman
  5389. \series medium
  5390. \shape up
  5391. \size normal
  5392. \emph off
  5393. \bar no
  5394. \strikeout off
  5395. \xout off
  5396. \uuline off
  5397. \uwave off
  5398. \noun off
  5399. \color none
  5400. 515
  5401. \end_layout
  5402. \end_inset
  5403. </cell>
  5404. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  5405. \begin_inset Text
  5406. \begin_layout Plain Layout
  5407. \family roman
  5408. \series medium
  5409. \shape up
  5410. \size normal
  5411. \emph off
  5412. \bar no
  5413. \strikeout off
  5414. \xout off
  5415. \uuline off
  5416. \uwave off
  5417. \noun off
  5418. \color none
  5419. 2
  5420. \end_layout
  5421. \end_inset
  5422. </cell>
  5423. </row>
  5424. <row>
  5425. <cell multirow="4" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  5426. \begin_inset Text
  5427. \begin_layout Plain Layout
  5428. \end_layout
  5429. \end_inset
  5430. </cell>
  5431. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  5432. \begin_inset Text
  5433. \begin_layout Plain Layout
  5434. \series bold
  5435. NS
  5436. \end_layout
  5437. \end_inset
  5438. </cell>
  5439. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  5440. \begin_inset Text
  5441. \begin_layout Plain Layout
  5442. \family roman
  5443. \series medium
  5444. \shape up
  5445. \size normal
  5446. \emph off
  5447. \bar no
  5448. \strikeout off
  5449. \xout off
  5450. \uuline off
  5451. \uwave off
  5452. \noun off
  5453. \color none
  5454. 160
  5455. \end_layout
  5456. \end_inset
  5457. </cell>
  5458. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  5459. \begin_inset Text
  5460. \begin_layout Plain Layout
  5461. \family roman
  5462. \series medium
  5463. \shape up
  5464. \size normal
  5465. \emph off
  5466. \bar no
  5467. \strikeout off
  5468. \xout off
  5469. \uuline off
  5470. \uwave off
  5471. \noun off
  5472. \color none
  5473. 11235
  5474. \end_layout
  5475. \end_inset
  5476. </cell>
  5477. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  5478. \begin_inset Text
  5479. \begin_layout Plain Layout
  5480. \family roman
  5481. \series medium
  5482. \shape up
  5483. \size normal
  5484. \emph off
  5485. \bar no
  5486. \strikeout off
  5487. \xout off
  5488. \uuline off
  5489. \uwave off
  5490. \noun off
  5491. \color none
  5492. 136
  5493. \end_layout
  5494. \end_inset
  5495. </cell>
  5496. </row>
  5497. <row>
  5498. <cell multirow="4" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  5499. \begin_inset Text
  5500. \begin_layout Plain Layout
  5501. \end_layout
  5502. \end_inset
  5503. </cell>
  5504. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  5505. \begin_inset Text
  5506. \begin_layout Plain Layout
  5507. \series bold
  5508. Down
  5509. \end_layout
  5510. \end_inset
  5511. </cell>
  5512. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  5513. \begin_inset Text
  5514. \begin_layout Plain Layout
  5515. \family roman
  5516. \series medium
  5517. \shape up
  5518. \size normal
  5519. \emph off
  5520. \bar no
  5521. \strikeout off
  5522. \xout off
  5523. \uuline off
  5524. \uwave off
  5525. \noun off
  5526. \color none
  5527. 0
  5528. \end_layout
  5529. \end_inset
  5530. </cell>
  5531. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  5532. \begin_inset Text
  5533. \begin_layout Plain Layout
  5534. \family roman
  5535. \series medium
  5536. \shape up
  5537. \size normal
  5538. \emph off
  5539. \bar no
  5540. \strikeout off
  5541. \xout off
  5542. \uuline off
  5543. \uwave off
  5544. \noun off
  5545. \color none
  5546. 548
  5547. \end_layout
  5548. \end_inset
  5549. </cell>
  5550. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  5551. \begin_inset Text
  5552. \begin_layout Plain Layout
  5553. \family roman
  5554. \series medium
  5555. \shape up
  5556. \size normal
  5557. \emph off
  5558. \bar no
  5559. \strikeout off
  5560. \xout off
  5561. \uuline off
  5562. \uwave off
  5563. \noun off
  5564. \color none
  5565. 127
  5566. \end_layout
  5567. \end_inset
  5568. </cell>
  5569. </row>
  5570. </lyxtabular>
  5571. \end_inset
  5572. \end_layout
  5573. \begin_layout Plain Layout
  5574. \begin_inset Caption Standard
  5575. \begin_layout Plain Layout
  5576. \series bold
  5577. \begin_inset Argument 1
  5578. status open
  5579. \begin_layout Plain Layout
  5580. Comparison of significantly differentially expressed genes with and without
  5581. globin blocking.
  5582. \end_layout
  5583. \end_inset
  5584. \begin_inset CommandInset label
  5585. LatexCommand label
  5586. name "tab:Comparison-of-significant"
  5587. \end_inset
  5588. Comparison of significantly differentially expressed genes with and without
  5589. globin blocking.
  5590. \series default
  5591. Up, Down: Genes significantly up/down-regulated in post-transplant samples
  5592. relative to pre-transplant samples, with a false discovery rate of 10%
  5593. or less.
  5594. NS: Non-significant genes (false discovery rate greater than 10%).
  5595. \end_layout
  5596. \end_inset
  5597. \end_layout
  5598. \begin_layout Plain Layout
  5599. \end_layout
  5600. \end_inset
  5601. \end_layout
  5602. \begin_layout Standard
  5603. To compare performance on differential gene expression tests, we took subsets
  5604. of both the GB and non-GB libraries with exactly one pre-transplant and
  5605. one post-transplant sample for each animal that had paired samples available
  5606. for analysis (N=7 animals, N=14 samples in each subset).
  5607. The same test for pre- vs.
  5608. post-transplant differential gene expression was performed on the same
  5609. 7 pairs of samples from GB libraries and non-GB libraries, in each case
  5610. using an FDR of 10% as the threshold of significance.
  5611. Out of 12954 genes that passed the detection threshold in both subsets,
  5612. 358 were called significantly differentially expressed in the same direction
  5613. in both sets; 1063 were differentially expressed in the GB set only; 296
  5614. were differentially expressed in the non-GB set only; 2 genes were called
  5615. significantly up in the GB set but significantly down in the non-GB set;
  5616. and the remaining 11235 were not called differentially expressed in either
  5617. set.
  5618. These data are summarized in Table
  5619. \begin_inset CommandInset ref
  5620. LatexCommand ref
  5621. reference "tab:Comparison-of-significant"
  5622. plural "false"
  5623. caps "false"
  5624. noprefix "false"
  5625. \end_inset
  5626. .
  5627. The differences in BCV calculated by EdgeR for these subsets of samples
  5628. were negligible (BCV = 0.302 for GB and 0.297 for non-GB).
  5629. \end_layout
  5630. \begin_layout Standard
  5631. The key point is that the GB data results in substantially more differentially
  5632. expressed calls than the non-GB data.
  5633. Since there is no gold standard for this dataset, it is impossible to be
  5634. certain whether this is due to under-calling of differential expression
  5635. in the non-GB samples or over-calling in the GB samples.
  5636. However, given that both datasets are derived from the same biological
  5637. samples and have nearly equal BCVs, it is more likely that the larger number
  5638. of DE calls in the GB samples are genuine detections that were enabled
  5639. by the higher sequencing depth and measurement precision of the GB samples.
  5640. Note that the same set of genes was considered in both subsets, so the
  5641. larger number of differentially expressed gene calls in the GB data set
  5642. reflects a greater sensitivity to detect significant differential gene
  5643. expression and not simply the larger total number of detected genes in
  5644. GB samples described earlier.
  5645. \end_layout
  5646. \begin_layout Section
  5647. Discussion
  5648. \end_layout
  5649. \begin_layout Standard
  5650. The original experience with whole blood gene expression profiling on DNA
  5651. microarrays demonstrated that the high concentration of globin transcripts
  5652. reduced the sensitivity to detect genes with relatively low expression
  5653. levels, in effect, significantly reducing the sensitivity.
  5654. To address this limitation, commercial protocols for globin reduction were
  5655. developed based on strategies to block globin transcript amplification
  5656. during labeling or physically removing globin transcripts by affinity bead
  5657. methods
  5658. \begin_inset CommandInset citation
  5659. LatexCommand cite
  5660. key "Winn2010"
  5661. literal "false"
  5662. \end_inset
  5663. .
  5664. More recently, using the latest generation of labeling protocols and arrays,
  5665. it was determined that globin reduction was no longer necessary to obtain
  5666. sufficient sensitivity to detect differential transcript expression
  5667. \begin_inset CommandInset citation
  5668. LatexCommand cite
  5669. key "NuGEN2010"
  5670. literal "false"
  5671. \end_inset
  5672. .
  5673. However, we are not aware of any publications using these currently available
  5674. protocols the with latest generation of microarrays that actually compare
  5675. the detection sensitivity with and without globin reduction.
  5676. However, in practice this has now been adopted generally primarily driven
  5677. by concerns for cost control.
  5678. The main objective of our work was to directly test the impact of globin
  5679. gene transcripts and a new globin blocking protocol for application to
  5680. the newest generation of differential gene expression profiling determined
  5681. using next generation sequencing.
  5682. \end_layout
  5683. \begin_layout Standard
  5684. The challenge of doing global gene expression profiling in cynomolgus monkeys
  5685. is that the current available arrays were never designed to comprehensively
  5686. cover this genome and have not been updated since the first assemblies
  5687. of the cynomolgus genome were published.
  5688. Therefore, we determined that the best strategy for peripheral blood profiling
  5689. was to do deep RNA-seq and inform the workflow using the latest available
  5690. genome assembly and annotation
  5691. \begin_inset CommandInset citation
  5692. LatexCommand cite
  5693. key "Wilson2013"
  5694. literal "false"
  5695. \end_inset
  5696. .
  5697. However, it was not immediately clear whether globin reduction was necessary
  5698. for RNA-seq or how much improvement in efficiency or sensitivity to detect
  5699. differential gene expression would be achieved for the added cost and work.
  5700. \end_layout
  5701. \begin_layout Standard
  5702. We only found one report that demonstrated that globin reduction significantly
  5703. improved the effective read yields for sequencing of human peripheral blood
  5704. cell RNA using a DeepSAGE protocol
  5705. \begin_inset CommandInset citation
  5706. LatexCommand cite
  5707. key "Mastrokolias2012"
  5708. literal "false"
  5709. \end_inset
  5710. .
  5711. The approach to DeepSAGE involves two different restriction enzymes that
  5712. purify and then tag small fragments of transcripts at specific locations
  5713. and thus, significantly reduces the complexity of the transcriptome.
  5714. Therefore, we could not determine how DeepSAGE results would translate
  5715. to the common strategy in the field for assaying the entire transcript
  5716. population by whole-transcriptome 3’-end RNA-seq.
  5717. Furthermore, if globin reduction is necessary, we also needed a globin
  5718. reduction method specific to cynomolgus globin sequences that would work
  5719. an organism for which no kit is available off the shelf.
  5720. \end_layout
  5721. \begin_layout Standard
  5722. As mentioned above, the addition of globin blocking oligos has a very small
  5723. impact on measured expression levels of gene expression.
  5724. However, this is a non-issue for the purposes of differential expression
  5725. testing, since a systematic change in a gene in all samples does not affect
  5726. relative expression levels between samples.
  5727. However, we must acknowledge that simple comparisons of gene expression
  5728. data obtained by GB and non-GB protocols are not possible without additional
  5729. normalization.
  5730. \end_layout
  5731. \begin_layout Standard
  5732. More importantly, globin blocking not only nearly doubles the yield of usable
  5733. reads, it also increases inter-sample correlation and sensitivity to detect
  5734. differential gene expression relative to the same set of samples profiled
  5735. without blocking.
  5736. In addition, globin blocking does not add a significant amount of random
  5737. noise to the data.
  5738. Globin blocking thus represents a cost-effective way to squeeze more data
  5739. and statistical power out of the same blood samples and the same amount
  5740. of sequencing.
  5741. In conclusion, globin reduction greatly increases the yield of useful RNA-seq
  5742. reads mapping to the rest of the genome, with minimal perturbations in
  5743. the relative levels of non-globin genes.
  5744. Based on these results, globin transcript reduction using sequence-specific,
  5745. complementary blocking oligonucleotides is recommended for all deep RNA-seq
  5746. of cynomolgus and other nonhuman primate blood samples.
  5747. \end_layout
  5748. \begin_layout Chapter
  5749. Future Directions
  5750. \end_layout
  5751. \begin_layout Standard
  5752. \begin_inset Flex TODO Note (inline)
  5753. status open
  5754. \begin_layout Plain Layout
  5755. Consider per-chapter future directions.
  5756. Check instructions.
  5757. \end_layout
  5758. \end_inset
  5759. \end_layout
  5760. \begin_layout Itemize
  5761. Study other epigenetic marks in more contexts
  5762. \end_layout
  5763. \begin_deeper
  5764. \begin_layout Itemize
  5765. DNA methylation, histone marks, chromatin accessibility & conformation in
  5766. CD4 T-cells
  5767. \end_layout
  5768. \begin_layout Itemize
  5769. Also look at other types of lymphocytes: CD8 T-cells, B-cells, NK cells
  5770. \end_layout
  5771. \end_deeper
  5772. \begin_layout Itemize
  5773. Use CV or bootstrap to better evaluate classifiers
  5774. \end_layout
  5775. \begin_layout Itemize
  5776. fRMAtools could be adapted to not require equal-sized groups
  5777. \end_layout
  5778. \begin_layout Standard
  5779. \begin_inset ERT
  5780. status open
  5781. \begin_layout Plain Layout
  5782. % Call it "References" instead of "Bibliography"
  5783. \end_layout
  5784. \begin_layout Plain Layout
  5785. \backslash
  5786. renewcommand{
  5787. \backslash
  5788. bibname}{References}
  5789. \end_layout
  5790. \end_inset
  5791. \end_layout
  5792. \begin_layout Standard
  5793. \begin_inset Flex TODO Note (inline)
  5794. status open
  5795. \begin_layout Plain Layout
  5796. Check bib entry formatting & sort order
  5797. \end_layout
  5798. \end_inset
  5799. \end_layout
  5800. \begin_layout Standard
  5801. \begin_inset CommandInset bibtex
  5802. LatexCommand bibtex
  5803. btprint "btPrintCited"
  5804. bibfiles "refs,code-refs"
  5805. options "bibtotoc,unsrt"
  5806. \end_inset
  5807. \end_layout
  5808. \end_body
  5809. \end_document