thesis.lyx 130 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595
  1. #LyX 2.3 created this file. For more info see http://www.lyx.org/
  2. \lyxformat 544
  3. \begin_document
  4. \begin_header
  5. \save_transient_properties true
  6. \origin unavailable
  7. \textclass extbook
  8. \begin_preamble
  9. % List all used files in log output
  10. \listfiles
  11. % Add a DRAFT watermark
  12. \usepackage{draftwatermark}
  13. \SetWatermarkLightness{0.97}
  14. \SetWatermarkScale{1}
  15. % Set up required header format
  16. \usepackage{fancyhdr}
  17. \pagestyle{fancy}
  18. \renewcommand{\headrulewidth}{0pt}
  19. \rhead{}
  20. \lhead{}
  21. \rfoot{}
  22. \lfoot{}
  23. \cfoot{\thepage} % Page number bottom center
  24. % https://tex.stackexchange.com/questions/65680/automatically-bold-first-sentence-of-a-floats-caption
  25. \usepackage{xstring}
  26. \usepackage{etoolbox}
  27. \usepackage{caption}
  28. \captionsetup{labelfont=bf,tableposition=top}
  29. \makeatletter
  30. \newcommand\formatlabel[1]{%
  31. \noexpandarg
  32. \IfSubStr{#1}{.}{%
  33. \StrBefore{#1}{.}[\firstcaption]%
  34. \StrBehind{#1}{.}[\secondcaption]%
  35. \textbf{\firstcaption.} \secondcaption}{%
  36. #1}%
  37. }
  38. \patchcmd{\@caption}{#3}{\formatlabel{#3}}
  39. \makeatother
  40. \end_preamble
  41. \use_default_options true
  42. \begin_modules
  43. todonotes
  44. \end_modules
  45. \maintain_unincluded_children false
  46. \language english
  47. \language_package default
  48. \inputencoding utf8
  49. \fontencoding default
  50. \font_roman "default" "default"
  51. \font_sans "default" "default"
  52. \font_typewriter "default" "default"
  53. \font_math "auto" "auto"
  54. \font_default_family default
  55. \use_non_tex_fonts false
  56. \font_sc false
  57. \font_osf false
  58. \font_sf_scale 100 100
  59. \font_tt_scale 100 100
  60. \use_microtype false
  61. \use_dash_ligatures true
  62. \graphics default
  63. \default_output_format pdf4
  64. \output_sync 0
  65. \bibtex_command default
  66. \index_command default
  67. \paperfontsize 12
  68. \spacing double
  69. \use_hyperref true
  70. \pdf_bookmarks true
  71. \pdf_bookmarksnumbered false
  72. \pdf_bookmarksopen false
  73. \pdf_bookmarksopenlevel 1
  74. \pdf_breaklinks false
  75. \pdf_pdfborder false
  76. \pdf_colorlinks false
  77. \pdf_backref false
  78. \pdf_pdfusetitle true
  79. \papersize letterpaper
  80. \use_geometry true
  81. \use_package amsmath 1
  82. \use_package amssymb 1
  83. \use_package cancel 1
  84. \use_package esint 1
  85. \use_package mathdots 1
  86. \use_package mathtools 1
  87. \use_package mhchem 1
  88. \use_package stackrel 1
  89. \use_package stmaryrd 1
  90. \use_package undertilde 1
  91. \cite_engine basic
  92. \cite_engine_type default
  93. \biblio_style plain
  94. \use_bibtopic false
  95. \use_indices false
  96. \paperorientation portrait
  97. \suppress_date false
  98. \justification true
  99. \use_refstyle 1
  100. \use_minted 0
  101. \index Index
  102. \shortcut idx
  103. \color #008000
  104. \end_index
  105. \leftmargin 1.5in
  106. \topmargin 1in
  107. \rightmargin 1in
  108. \bottommargin 1in
  109. \secnumdepth 3
  110. \tocdepth 3
  111. \paragraph_separation indent
  112. \paragraph_indentation default
  113. \is_math_indent 0
  114. \math_numbering_side default
  115. \quotes_style english
  116. \dynamic_quotes 0
  117. \papercolumns 1
  118. \papersides 2
  119. \paperpagestyle default
  120. \tracking_changes false
  121. \output_changes false
  122. \html_math_output 0
  123. \html_css_as_file 0
  124. \html_be_strict false
  125. \end_header
  126. \begin_body
  127. \begin_layout Title
  128. Bioinformatic analysis of complex, high-throughput genomic and epigenomic
  129. data in the context of immunology and transplant rejection
  130. \end_layout
  131. \begin_layout Author
  132. A thesis presented
  133. \begin_inset Newline newline
  134. \end_inset
  135. by
  136. \begin_inset Newline newline
  137. \end_inset
  138. Ryan C.
  139. Thompson
  140. \begin_inset Newline newline
  141. \end_inset
  142. to
  143. \begin_inset Newline newline
  144. \end_inset
  145. The Scripps Research Institute Graduate Program
  146. \begin_inset Newline newline
  147. \end_inset
  148. in partial fulfillment of the requirements for the degree of
  149. \begin_inset Newline newline
  150. \end_inset
  151. Doctor of Philosophy in the subject of Biology
  152. \begin_inset Newline newline
  153. \end_inset
  154. for
  155. \begin_inset Newline newline
  156. \end_inset
  157. The Scripps Research Institute
  158. \begin_inset Newline newline
  159. \end_inset
  160. La Jolla, California
  161. \end_layout
  162. \begin_layout Date
  163. May 2019
  164. \end_layout
  165. \begin_layout Standard
  166. [Copyright notice]
  167. \end_layout
  168. \begin_layout Standard
  169. [Thesis acceptance form]
  170. \end_layout
  171. \begin_layout Standard
  172. [Dedication]
  173. \end_layout
  174. \begin_layout Standard
  175. [Acknowledgements]
  176. \end_layout
  177. \begin_layout Standard
  178. \begin_inset CommandInset toc
  179. LatexCommand tableofcontents
  180. \end_inset
  181. \end_layout
  182. \begin_layout Standard
  183. \begin_inset FloatList table
  184. \end_inset
  185. \end_layout
  186. \begin_layout Standard
  187. \begin_inset FloatList figure
  188. \end_inset
  189. \end_layout
  190. \begin_layout Standard
  191. [List of Abbreviations]
  192. \end_layout
  193. \begin_layout Standard
  194. \begin_inset Flex TODO Note (inline)
  195. status open
  196. \begin_layout Plain Layout
  197. Look into auto-generated nomenclature list: https://wiki.lyx.org/Tips/Nomenclature
  198. \end_layout
  199. \end_inset
  200. \end_layout
  201. \begin_layout List of TODOs
  202. \end_layout
  203. \begin_layout Standard
  204. [Abstract]
  205. \end_layout
  206. \begin_layout Chapter*
  207. Abstract
  208. \end_layout
  209. \begin_layout Chapter
  210. Introduction
  211. \end_layout
  212. \begin_layout Section
  213. Background & Significance
  214. \end_layout
  215. \begin_layout Subsection
  216. Biological motivation
  217. \end_layout
  218. \begin_layout Itemize
  219. Rejection is the major long-term threat to organ and tissue grafts
  220. \end_layout
  221. \begin_deeper
  222. \begin_layout Itemize
  223. Common mechanisms of rejection
  224. \end_layout
  225. \begin_layout Itemize
  226. Effective immune suppression requires monitoring for rejection and tuning
  227. \end_layout
  228. \begin_layout Itemize
  229. Current tests for rejection (tissue biopsy) are invasive and biased
  230. \end_layout
  231. \begin_layout Itemize
  232. A blood test based on microarrays would be less biased and invasive
  233. \end_layout
  234. \end_deeper
  235. \begin_layout Itemize
  236. Memory cells are resistant to immune suppression
  237. \end_layout
  238. \begin_deeper
  239. \begin_layout Itemize
  240. Mechanisms of resistance in memory cells are poorly understood
  241. \end_layout
  242. \begin_layout Itemize
  243. A better understanding of immune memory formation is needed
  244. \end_layout
  245. \end_deeper
  246. \begin_layout Itemize
  247. Mesenchymal stem cell infusion is a promising new treatment to prevent/delay
  248. rejection
  249. \end_layout
  250. \begin_deeper
  251. \begin_layout Itemize
  252. Demonstrated in mice, but not yet in primates
  253. \end_layout
  254. \begin_layout Itemize
  255. Mechanism currently unknown, but MSC are known to be immune modulatory
  256. \end_layout
  257. \end_deeper
  258. \begin_layout Subsection
  259. Overview of bioinformatic analysis methods
  260. \end_layout
  261. \begin_layout Standard
  262. An overview of all the methods used, including what problem they solve,
  263. what assumptions they make, and a basic description of how they work.
  264. \end_layout
  265. \begin_layout Itemize
  266. ChIP-seq Peak calling
  267. \end_layout
  268. \begin_deeper
  269. \begin_layout Itemize
  270. Cross-correlation analysis to determine fragment size
  271. \end_layout
  272. \begin_layout Itemize
  273. Broad vs narrow peaks
  274. \end_layout
  275. \begin_layout Itemize
  276. SICER for broad peaks
  277. \end_layout
  278. \begin_layout Itemize
  279. IDR for biologically reproducible peaks
  280. \end_layout
  281. \begin_layout Itemize
  282. csaw peak filtering guidelines for unbiased downstream analysis
  283. \end_layout
  284. \end_deeper
  285. \begin_layout Itemize
  286. Normalization is non-trivial and application-dependant
  287. \end_layout
  288. \begin_deeper
  289. \begin_layout Itemize
  290. Expression arrays: RMA & fRMA; why fRMA is needed
  291. \end_layout
  292. \begin_layout Itemize
  293. Methylation arrays: M-value transformation approximates normal data but
  294. induces heteroskedasticity
  295. \end_layout
  296. \begin_layout Itemize
  297. RNA-seq: normalize based on assumption that the average gene is not changing
  298. \end_layout
  299. \begin_layout Itemize
  300. ChIP-seq: complex with many considerations, dependent on experimental methods,
  301. biological system, and analysis goals
  302. \end_layout
  303. \end_deeper
  304. \begin_layout Itemize
  305. Limma: The standard linear modeling framework for genomics
  306. \end_layout
  307. \begin_deeper
  308. \begin_layout Itemize
  309. empirical Bayes variance modeling: limma's core feature
  310. \end_layout
  311. \begin_layout Itemize
  312. edgeR & DESeq2: Extend with negative bonomial GLM for RNA-seq and other
  313. count data
  314. \end_layout
  315. \begin_layout Itemize
  316. voom: Extend with precision weights to model mean-variance trend
  317. \end_layout
  318. \begin_layout Itemize
  319. arrayWeights and duplicateCorrelation to handle complex variance structures
  320. \end_layout
  321. \end_deeper
  322. \begin_layout Itemize
  323. sva and ComBat for batch correction
  324. \end_layout
  325. \begin_layout Itemize
  326. Factor analysis: PCA, MDS, MOFA
  327. \end_layout
  328. \begin_deeper
  329. \begin_layout Itemize
  330. Batch-corrected PCA is informative, but careful application is required
  331. to avoid bias
  332. \end_layout
  333. \end_deeper
  334. \begin_layout Itemize
  335. Gene set analysis: camera and SPIA
  336. \end_layout
  337. \begin_layout Section
  338. Innovation
  339. \end_layout
  340. \begin_layout Itemize
  341. MSC infusion to improve transplant outcomes (prevent/delay rejection)
  342. \end_layout
  343. \begin_deeper
  344. \begin_layout Itemize
  345. Characterize MSC response to interferon gamma
  346. \end_layout
  347. \begin_layout Itemize
  348. IFN-g is thought to stimulate their function
  349. \end_layout
  350. \begin_layout Itemize
  351. Test IFN-g treated MSC infusion as a therapy to delay graft rejection in
  352. cynomolgus monkeys
  353. \end_layout
  354. \begin_layout Itemize
  355. Monitor animals post-transplant using blood RNA-seq at serial time points
  356. \end_layout
  357. \end_deeper
  358. \begin_layout Itemize
  359. Investigate dynamics of histone marks in CD4 T-cell activation and memory
  360. \end_layout
  361. \begin_deeper
  362. \begin_layout Itemize
  363. Previous studies have looked at single snapshots of histone marks
  364. \end_layout
  365. \begin_layout Itemize
  366. Instead, look at changes in histone marks across activation and memory
  367. \end_layout
  368. \end_deeper
  369. \begin_layout Itemize
  370. High-throughput sequencing and microarray technologies
  371. \end_layout
  372. \begin_deeper
  373. \begin_layout Itemize
  374. Powerful methods for assaying gene expression and epigenetics across entire
  375. genomes
  376. \end_layout
  377. \begin_layout Itemize
  378. Proper analysis requires finding and exploiting systematic genome-wide trends
  379. \end_layout
  380. \end_deeper
  381. \begin_layout Chapter
  382. Reproducible genome-wide epigenetic analysis of H3K4 and H3K27 methylation
  383. in naive and memory CD4 T-cell activation
  384. \end_layout
  385. \begin_layout Standard
  386. \begin_inset Flex TODO Note (inline)
  387. status open
  388. \begin_layout Plain Layout
  389. Author list: Me, Sarah, Dan
  390. \end_layout
  391. \end_inset
  392. \end_layout
  393. \begin_layout Section
  394. Approach
  395. \end_layout
  396. \begin_layout Itemize
  397. CD4 T-cells are central to all adaptive immune responses and memory
  398. \end_layout
  399. \begin_layout Itemize
  400. H3K4 and H3K27 methylation are major epigenetic regulators of gene expression
  401. \end_layout
  402. \begin_layout Itemize
  403. Canonically, H3K4 is activating and H3K27 is inhibitory, but the reality
  404. is complex
  405. \end_layout
  406. \begin_layout Itemize
  407. Looking at these marks during CD4 activation and memory should reveal new
  408. mechanistic details
  409. \end_layout
  410. \begin_layout Itemize
  411. Test
  412. \begin_inset Quotes eld
  413. \end_inset
  414. poised promoter
  415. \begin_inset Quotes erd
  416. \end_inset
  417. hypothesis in which H3K4 and H3K27 are both methylated
  418. \end_layout
  419. \begin_layout Itemize
  420. Expand scope of analysis beyond simple promoter counts
  421. \end_layout
  422. \begin_deeper
  423. \begin_layout Itemize
  424. Analyze peaks genome-wide, including in intergenic regions
  425. \end_layout
  426. \begin_layout Itemize
  427. Analysis of coverage distribution shape within promoters, e.g.
  428. upstream vs downstream coverage
  429. \end_layout
  430. \end_deeper
  431. \begin_layout Section
  432. Methods
  433. \end_layout
  434. \begin_layout Itemize
  435. Re-analyze previously published CD4 ChIP-seq & RNA-seq data
  436. \begin_inset CommandInset citation
  437. LatexCommand cite
  438. key "LaMere2016,Lamere2017"
  439. literal "true"
  440. \end_inset
  441. \end_layout
  442. \begin_deeper
  443. \begin_layout Itemize
  444. Completely reimplement analysis from scratch as a reproducible workflow
  445. \end_layout
  446. \begin_layout Itemize
  447. Use newly published methods & algorithms not available during the original
  448. analysis: SICER, csaw, MOFA, ComBat, sva, GREAT, and more
  449. \end_layout
  450. \end_deeper
  451. \begin_layout Itemize
  452. SICER, IDR, csaw, & GREAT to call ChIP-seq peaks genome-wide, perform differenti
  453. al abundance analysis, and relate those peaks to gene expression
  454. \end_layout
  455. \begin_layout Itemize
  456. Promoter counts in sliding windows around each gene's highest-expressed
  457. TSS to investigate coverage distribution within promoters
  458. \end_layout
  459. \begin_layout Section
  460. Results
  461. \end_layout
  462. \begin_layout Standard
  463. \begin_inset Note Note
  464. status open
  465. \begin_layout Plain Layout
  466. Focus on what hypotheses were tested, then select figures that show how
  467. those hypotheses were tested, even if the result is a negative.
  468. \end_layout
  469. \end_inset
  470. \end_layout
  471. \begin_layout Subsection
  472. H3K4 and H3K27 methylation occur in broad regions and are enriched near
  473. promoters
  474. \end_layout
  475. \begin_layout Itemize
  476. Figures comparing MACS (non-broad peak caller) to SICER/epic (broad peak
  477. caller)
  478. \end_layout
  479. \begin_deeper
  480. \begin_layout Itemize
  481. Compare peak sizes and number of called peaks
  482. \end_layout
  483. \begin_layout Itemize
  484. Show representative IDR consistency plots for both
  485. \end_layout
  486. \end_deeper
  487. \begin_layout Itemize
  488. IDR analysis shows that SICER-called peaks are much more reproducible between
  489. biological replicates
  490. \end_layout
  491. \begin_layout Itemize
  492. Each histone mark is enriched within a certain radius of gene TSS positions,
  493. but that radius is different for each mark (figure)
  494. \end_layout
  495. \begin_layout Subsection
  496. RNA-seq has a large confounding batch effect
  497. \end_layout
  498. \begin_layout Itemize
  499. RNA-seq batch effect can be partially corrected, but still induces uncorrectable
  500. biases in downstream analysis
  501. \end_layout
  502. \begin_deeper
  503. \begin_layout Itemize
  504. Figure showing MDS plot before & after ComBat
  505. \end_layout
  506. \begin_layout Itemize
  507. Figure relating sample weights to batches, cell types, time points, etc.,
  508. showing that one batch is significantly worse quality
  509. \end_layout
  510. \begin_layout Itemize
  511. Figures showing p-value histograms for within-batch and cross-batch contrasts,
  512. showing that cross-batch contrasts have attenuated signal, as do comparisons
  513. within the bad batch
  514. \end_layout
  515. \end_deeper
  516. \begin_layout Subsection
  517. ChIP-seq must be corrected for hidden confounding factors
  518. \end_layout
  519. \begin_layout Itemize
  520. Figures showing pre- and post-SVA MDS plots for each histone mark
  521. \end_layout
  522. \begin_layout Itemize
  523. Figures showing BCV plots with and without SVA for each histone mark
  524. \end_layout
  525. \begin_layout Subsection
  526. H3K4 and H3K27 promoter methylation has broadly the expected correlation
  527. with gene expression
  528. \end_layout
  529. \begin_layout Itemize
  530. H3K4 is correlated with higher expression, and H3K27 is correlated with
  531. lower expression genome-wide
  532. \end_layout
  533. \begin_layout Itemize
  534. Figures showing these correlations: box/violin plots of expression distributions
  535. with every combination of peak presence/absence in promoter
  536. \end_layout
  537. \begin_layout Itemize
  538. Appropriate statistical tests showing significant differences in expected
  539. directions
  540. \end_layout
  541. \begin_layout Subsection
  542. MOFA recovers biologically relevant variation from blind analysis by correlating
  543. across datasets
  544. \end_layout
  545. \begin_layout Itemize
  546. MOFA
  547. \begin_inset CommandInset citation
  548. LatexCommand cite
  549. key "Argelaguet2018"
  550. literal "false"
  551. \end_inset
  552. successfully separates biologically relevant patterns of variation from
  553. technical confounding factors without knowing the sample labels, by finding
  554. latent factors that explain variation across multiple data sets.
  555. \end_layout
  556. \begin_deeper
  557. \begin_layout Itemize
  558. Figure: show percent-variance-explained plot from MOFA and PCA-like plots
  559. for the relevant latent factors
  560. \end_layout
  561. \begin_layout Itemize
  562. MOFA analysis also shows that batch effect correction can't get much better
  563. than it already is (Figure comparing blind MOFA batch correction to ComBat
  564. correction)
  565. \end_layout
  566. \end_deeper
  567. \begin_layout Subsection
  568. Naive-to-memory convergence observed in H3K4 and RNA-seq data, not in H3K27me3
  569. \end_layout
  570. \begin_layout Itemize
  571. H3K4 and RNA-seq data show clear evidence of naive convergence with memory
  572. between days 1 and 5 (MDS plot figure, also compare with last figure from
  573. \begin_inset CommandInset citation
  574. LatexCommand cite
  575. key "LaMere2016"
  576. literal "false"
  577. \end_inset
  578. )
  579. \end_layout
  580. \begin_layout Standard
  581. \begin_inset Flex TODO Note (inline)
  582. status open
  583. \begin_layout Plain Layout
  584. Note that Sarah has granted permission to use her figures
  585. \end_layout
  586. \end_inset
  587. \end_layout
  588. \begin_layout Itemize
  589. Table of numbers of genes different between N & M at each time point, showing
  590. dwindling differences at later time points, consistent with convergence
  591. \end_layout
  592. \begin_layout Itemize
  593. Similar figure for H3K27me3 showing lack of convergence
  594. \end_layout
  595. \begin_layout Subsection
  596. Effect of promoter coverage upstream vs downstream of TSS
  597. \end_layout
  598. \begin_layout Itemize
  599. H3K4me peaks seem to correlate with increased expression as long as they
  600. are anywhere near the TSS
  601. \end_layout
  602. \begin_layout Itemize
  603. H3K27me3 peaks can have different correlations to gene expression depending
  604. on their position relative to TSS (e.g.
  605. upstream vs downstream) Results consistent with
  606. \begin_inset CommandInset citation
  607. LatexCommand cite
  608. key "Young2011"
  609. literal "false"
  610. \end_inset
  611. \end_layout
  612. \begin_layout Section
  613. Discussion
  614. \end_layout
  615. \begin_layout Itemize
  616. "Promoter radius" is not constant and must be defined empirically for a
  617. given data set
  618. \end_layout
  619. \begin_layout Itemize
  620. MOFA shows great promise for accelerating discovery of major biological
  621. effects in multi-omics datasets
  622. \end_layout
  623. \begin_deeper
  624. \begin_layout Itemize
  625. MOFA was added to this analysis late and played primarily a confirmatory
  626. role, but it was able to confirm earlier conclusions with much less prior
  627. information (no sample labels) and much less analyst effort
  628. \end_layout
  629. \begin_layout Itemize
  630. MOFA confirmed that the already-implemented batch correction in the RNA-seq
  631. data was already performing as well as possible given the limitations of
  632. the data
  633. \end_layout
  634. \end_deeper
  635. \begin_layout Itemize
  636. Naive-to-memory convergence implies that naive cells are differentiating
  637. into memory cells, and that gene expression and H3K4 methylation are involved
  638. in this differentiation while H3K27me3 is less involved
  639. \end_layout
  640. \begin_layout Itemize
  641. H3K27me3, canonically regarded as a deactivating mark, seems to have a more
  642. complex
  643. \end_layout
  644. \begin_layout Itemize
  645. Discuss advantages of developing using a reproducible workflow
  646. \end_layout
  647. \begin_layout Chapter
  648. Improving array-based analyses of transplant rejection by optimizing data
  649. preprocessing
  650. \end_layout
  651. \begin_layout Standard
  652. \begin_inset Note Note
  653. status open
  654. \begin_layout Plain Layout
  655. Author list: Me, Sunil, Tom, Padma, Dan
  656. \end_layout
  657. \end_inset
  658. \end_layout
  659. \begin_layout Section
  660. Approach
  661. \end_layout
  662. \begin_layout Subsection
  663. Proper pre-processing is essential for array data
  664. \end_layout
  665. \begin_layout Standard
  666. \begin_inset Flex TODO Note (inline)
  667. status open
  668. \begin_layout Plain Layout
  669. This section could probably use some citations
  670. \end_layout
  671. \end_inset
  672. \end_layout
  673. \begin_layout Standard
  674. Microarrays, bead ararys, and similar assays produce raw data in the form
  675. of fluorescence intensity measurements, with the each intensity measurement
  676. proportional to the abundance of some fluorescently-labelled target DNA
  677. or RNA sequence that base pairs to a specific probe sequence.
  678. However, these measurements for each probe are also affected my many technical
  679. confounding factors, such as the concentration of target material, strength
  680. of off-target binding, and the sensitivity of the imaging sensor.
  681. Some array designs also use multiple probe sequences for each target.
  682. Hence, extensive pre-processing of array data is necessary to normalize
  683. out the effects of these technical factors and summarize the information
  684. from multiple probes to arrive at a single usable estimate of abundance
  685. or other relevant quantity, such as a ratio of two abundances, for each
  686. target.
  687. \end_layout
  688. \begin_layout Standard
  689. The choice of pre-processing algorithms used in the analysis of an array
  690. data set can have a large effect on the results of that analysis.
  691. However, despite their importance, these steps are often neglected or rushed
  692. in order to get to the more scientifically interesting analysis steps involving
  693. the actual biology of the system under study.
  694. Hence, it is often possible to achieve substantial gains in statistical
  695. power, model goodness-of-fit, or other relevant performance measures, by
  696. checking the assumptions made by each preprocessing step and choosing specific
  697. normalization methods tailored to the specific goals of the current analysis.
  698. \end_layout
  699. \begin_layout Subsection
  700. Normalization for clinical microarray classifiers must be single-channel
  701. \end_layout
  702. \begin_layout Subsubsection
  703. Standard normalization methods are unsuitable for clinical application
  704. \end_layout
  705. \begin_layout Standard
  706. As the cost of performing microarray assays falls, there is increasing interest
  707. in using genomic assays for diagnostic purposes, such as distinguishing
  708. healthy transplants (TX) from transplants undergoing acute rejection (AR)
  709. or acute dysfunction with no rejection (ADNR).
  710. However, the the standard normalization algorithm used for microarray data,
  711. Robust Multi-chip Average (RMA)
  712. \begin_inset CommandInset citation
  713. LatexCommand cite
  714. key "Irizarry2003a"
  715. literal "false"
  716. \end_inset
  717. , is not applicable in a clinical setting.
  718. Two of the steps in RMA, quantile normalization and probe summarization
  719. by median polish, depend on every array in the data set being normalized.
  720. This means that adding or removing any arrays from a data set changes the
  721. normalized values for all arrays, and data sets that have been normalized
  722. separately cannot be compared to each other.
  723. Hence, when using RMA, any arrays to be analyzed together must also be
  724. normalized together, and the set of arrays included in the data set must
  725. be held constant throughout an analysis.
  726. \end_layout
  727. \begin_layout Standard
  728. These limitations present serious impediments to the use of arrays as a
  729. diagnostic tool.
  730. When training a classifier, the samples to be classified must not be involved
  731. in any step of the training process, lest their inclusion bias the training
  732. process.
  733. Once a classifier is deployed in a clinical setting, the samples to be
  734. classified will not even
  735. \emph on
  736. exist
  737. \emph default
  738. at the time of training, so including them would be impossible even if
  739. it were statistically justifiable.
  740. Therefore, any machine learning application for microarrays demands that
  741. the normalized expression values computed for an array must depend only
  742. on information contained within that array.
  743. This would ensure that each array's normalization is independent of every
  744. other array, and that arrays normalized separately can still be compared
  745. to each other without bias.
  746. Such a normalization is commonly referred to as
  747. \begin_inset Quotes eld
  748. \end_inset
  749. single-channel normalization
  750. \begin_inset Quotes erd
  751. \end_inset
  752. .
  753. \end_layout
  754. \begin_layout Subsubsection
  755. Several strategies are available to meet clinical normalization requirements
  756. \end_layout
  757. \begin_layout Standard
  758. Frozen RMA (fRMA) addresses these concerns by replacing the quantile normalizati
  759. on and median polish with alternatives that do not introduce inter-array
  760. dependence, allowing each array to be normalized independently of all others
  761. \begin_inset CommandInset citation
  762. LatexCommand cite
  763. key "McCall2010"
  764. literal "false"
  765. \end_inset
  766. .
  767. Quantile normalization is performed against a pre-generated set of quantiles
  768. learned from a collection of 850 publically available arrays sampled from
  769. a wide variety of tissues in the Gene Expression Omnibus (GEO).
  770. Each array's probe intensity distribution is normalized against these pre-gener
  771. ated quantiles.
  772. The median polish step is replaced with a robust weighted average of probe
  773. intensities, using inverse variance weights learned from the same public
  774. GEO data.
  775. The result is a normalization that satisfies the requirements mentioned
  776. above: each array is normalized independently of all others, and any two
  777. normalized arrays can be compared directly to each other.
  778. \end_layout
  779. \begin_layout Standard
  780. One important limitation of fRMA is that it requires a separate reference
  781. data set from which to learn the parameters (reference quantiles and probe
  782. weights) that will be used to normalize each array.
  783. These parameters are specific to a given array platform, and pre-generated
  784. parameters are only provided for the most common platforms, such as Affymetrix
  785. hgu133plus2.
  786. For a less common platform, such as hthgu133pluspm, is is necessary to
  787. learn custom parameters from in-house data before fRMA can be used to normalize
  788. samples on that platform
  789. \begin_inset CommandInset citation
  790. LatexCommand cite
  791. key "McCall2011"
  792. literal "false"
  793. \end_inset
  794. .
  795. \end_layout
  796. \begin_layout Standard
  797. One other option is the aptly-named Single Channel Array Normalization (SCAN),
  798. which adapts a normalization method originally designed for tiling arrays
  799. \begin_inset CommandInset citation
  800. LatexCommand cite
  801. key "Piccolo2012"
  802. literal "false"
  803. \end_inset
  804. .
  805. SCAN is truly single-channel in that it does not require a set of normalization
  806. paramters estimated from an external set of reference samples like fRMA
  807. does.
  808. \end_layout
  809. \begin_layout Subsection
  810. Heteroskedasticity must be accounted for in methylation array data
  811. \end_layout
  812. \begin_layout Subsubsection
  813. Methylation array preprocessing induces heteroskedasticity
  814. \end_layout
  815. \begin_layout Standard
  816. DNA methylation arrays are a relatively new kind of assay that uses microarrays
  817. to measure the degree of methylation on cytosines in specific regions arrayed
  818. across the genome.
  819. First, bisulfite treatment converts all unmethylated cytosines to uracil
  820. (which then become thymine after amplication) while leaving methylated
  821. cytosines unaffected.
  822. Then, each target region is interrogated with two probes: one binds to
  823. the original genomic sequence and interrogates the level of methylated
  824. DNA, and the other binds to the same sequence with all cytosines replaced
  825. by thymidines and interrogates the level of unmethylated DNA.
  826. \end_layout
  827. \begin_layout Standard
  828. \begin_inset Float figure
  829. wide false
  830. sideways false
  831. status collapsed
  832. \begin_layout Plain Layout
  833. \align center
  834. \begin_inset Graphics
  835. filename graphics/methylvoom/sigmoid.pdf
  836. \end_inset
  837. \end_layout
  838. \begin_layout Plain Layout
  839. \begin_inset Caption Standard
  840. \begin_layout Plain Layout
  841. \begin_inset CommandInset label
  842. LatexCommand label
  843. name "fig:Sigmoid-beta-m-mapping"
  844. \end_inset
  845. \series bold
  846. Sigmoid shape of the mapping between β and M values
  847. \end_layout
  848. \end_inset
  849. \end_layout
  850. \end_inset
  851. \end_layout
  852. \begin_layout Standard
  853. After normalization, these two probe intensities are summarized in one of
  854. two ways, each with advantages and disadvantages.
  855. β
  856. \series bold
  857. \series default
  858. values, interpreted as fraction of DNA copies methylated, range from 0 to
  859. 1.
  860. β
  861. \series bold
  862. \series default
  863. values are conceptually easy to interpret, but the constrained range makes
  864. them unsuitable for linear modeling, and their error distributions are
  865. highly non-normal, which also frustrates linear modeling.
  866. M-values, interpreted as the log ratio of methylated to unmethylated copies,
  867. are computed by mapping the beta values from
  868. \begin_inset Formula $[0,1]$
  869. \end_inset
  870. onto
  871. \begin_inset Formula $(-\infty,+\infty)$
  872. \end_inset
  873. using a sigmoid curve (Figure
  874. \begin_inset CommandInset ref
  875. LatexCommand ref
  876. reference "fig:Sigmoid-beta-m-mapping"
  877. plural "false"
  878. caps "false"
  879. noprefix "false"
  880. \end_inset
  881. ).
  882. This transformation results in values with better statistical perperties:
  883. the unconstrained range is suitable for linear modeling, and the error
  884. distributions are more normal.
  885. Hence, most linear modeling and other statistical testing on methylation
  886. arrays is performed using M-values.
  887. \end_layout
  888. \begin_layout Standard
  889. However, the steep slope of the sigmoid transformation near 0 and 1 tends
  890. to over-exaggerate small differences in β values near those extremes, which
  891. in turn amplifies the error in those values, leading to a U-shaped trend
  892. in the mean-variance curve: extreme values have higher variances than values
  893. near the middle.
  894. This mean-variance dependency must be accounted for when fitting the linear
  895. model for differential methylation, or else the variance will be systematically
  896. overestimated for probes with moderate M-values and underestimated for
  897. probes with extreme M-values.
  898. \end_layout
  899. \begin_layout Subsubsection
  900. The voom method for RNA-seq data can model M-value heteroskedasticity
  901. \end_layout
  902. \begin_layout Standard
  903. RNA-seq read count data are also known to show heteroskedasticity, and the
  904. voom method was developed for modeling this heteroskedasticity by estimating
  905. the mean-variance trend in the data and using this trend to assign precision
  906. weights to each observation
  907. \begin_inset CommandInset citation
  908. LatexCommand cite
  909. key "Law2013"
  910. literal "false"
  911. \end_inset
  912. .
  913. While methylation array data are not derived from counts and have a very
  914. different mean-variance relationship from that of typical RNA-seq data,
  915. the voom method makes no specific assumptions on the shape of the mean-variance
  916. relationship - it only assumes that the relationship is smooth enough to
  917. model using a lowess curve.
  918. Hence, the method is sufficiently general to model the mean-variance relationsh
  919. ip in methylation array data.
  920. However, the standard implementation of voom assumes that the input is
  921. given in raw read counts, and it must be adapted to run on methylation
  922. M-values.
  923. \end_layout
  924. \begin_layout Section
  925. Methods
  926. \end_layout
  927. \begin_layout Subsection
  928. Evaluation of classifier performance with different normalization methods
  929. \end_layout
  930. \begin_layout Standard
  931. For testing different expression microarray normalizations, a data set of
  932. 157 hgu133plus2 arrays was used, consisting of blood samples from kidney
  933. transplant patients whose grafts had been graded as TX, AR, or ADNR via
  934. biopsy and histology (46 TX, 69 AR, 42 ADNR)
  935. \begin_inset CommandInset citation
  936. LatexCommand cite
  937. key "Kurian2014"
  938. literal "true"
  939. \end_inset
  940. .
  941. Additionally, an external validation set of 75 samples was gathered from
  942. public GEO data (37 TX, 38 AR, no ADNR).
  943. \end_layout
  944. \begin_layout Standard
  945. \begin_inset Flex TODO Note (inline)
  946. status collapsed
  947. \begin_layout Plain Layout
  948. Find appropriate GEO identifiers if possible.
  949. Kurian 2014 says GSE15296, but this seems to be different data.
  950. I also need to look up the GEO accession for the external validation set.
  951. \end_layout
  952. \end_inset
  953. \end_layout
  954. \begin_layout Standard
  955. To evaluate the effect of each normalization on classifier performance,
  956. the same classifier training and validation procedure was used after each
  957. normalization method.
  958. The PAM package was used to train a nearest shrunken centroid classifier
  959. on the training set and select the appropriate threshold for centroid shrinking.
  960. Then the trained classifier was used to predict the class probabilities
  961. of each validation sample.
  962. From these class probabilities, ROC curves and area-under-curve (AUC) values
  963. were generated
  964. \begin_inset CommandInset citation
  965. LatexCommand cite
  966. key "Turck2011"
  967. literal "false"
  968. \end_inset
  969. .
  970. Each normalization was tested on two different sets of training and validation
  971. samples.
  972. For internal validation, the 115 TX and AR arrays in the internal set were
  973. split at random into two equal sized sets, one for training and one for
  974. validation, each containing the same numbers of TX and AR samples as the
  975. other set.
  976. For external validation, the full set of 115 TX and AR samples were used
  977. as a training set, and the 75 external TX and AR samples were used as the
  978. validation set.
  979. Thus, 2 ROC curves and AUC values were generated for each normalization
  980. method: one internal and one external.
  981. Because the external validation set contains no ADNR samples, only classificati
  982. on of TX and AR samples was considered.
  983. The ADNR samples were included during normalization but excluded from all
  984. classifier training and validation.
  985. This ensures that the performance on internal and external validation sets
  986. is directly comparable, since both are performing the same task: distinguising
  987. TX from AR.
  988. \end_layout
  989. \begin_layout Standard
  990. \begin_inset Flex TODO Note (inline)
  991. status collapsed
  992. \begin_layout Plain Layout
  993. Summarize the get.best.threshold algorithm for PAM threshold selection
  994. \end_layout
  995. \end_inset
  996. \end_layout
  997. \begin_layout Standard
  998. Six different normalization strategies were evaluated.
  999. First, 2 well-known non-single-channel normalization methods were considered:
  1000. RMA and dChip
  1001. \begin_inset CommandInset citation
  1002. LatexCommand cite
  1003. key "Li2001,Irizarry2003a"
  1004. literal "false"
  1005. \end_inset
  1006. .
  1007. Since RMA produces expression values on a log2 scale and dChip does not,
  1008. the values from dChip were log2 transformed after normalization.
  1009. Next, RMA and dChip followed by Global Rank-invariant Set Normalization
  1010. (GRSN) were tested
  1011. \begin_inset CommandInset citation
  1012. LatexCommand cite
  1013. key "Pelz2008"
  1014. literal "false"
  1015. \end_inset
  1016. .
  1017. Post-processing with GRSN does not turn RMA or dChip into single-channel
  1018. methods, but it may help mitigate batch effects and is therefore useful
  1019. as a benchmark.
  1020. Lastly, the two single-channel normalization methods, fRMA and SCAN, were
  1021. tested
  1022. \begin_inset CommandInset citation
  1023. LatexCommand cite
  1024. key "McCall2010,Piccolo2012"
  1025. literal "false"
  1026. \end_inset
  1027. .
  1028. When evaluting internal validation performance, only the 157 internal samples
  1029. were normalized; when evaluating external validation performance, all 157
  1030. internal samples and 75 external samples were normalized together.
  1031. \end_layout
  1032. \begin_layout Standard
  1033. For demonstrating the problem with separate normalization of training and
  1034. validation data, one additional normalization was performed: the internal
  1035. and external sets were each normalized separately using RMA, and the normalized
  1036. data for each set were combined into a single set with no further attempts
  1037. at normalizing between the two sets.
  1038. The represents approximately how RMA would have to be used in a clinical
  1039. setting, where the samples to be classified are not available at the time
  1040. the classifier is trained.
  1041. \end_layout
  1042. \begin_layout Subsection
  1043. Generating custom fRMA vectors for hthgu133pluspm array platform
  1044. \end_layout
  1045. \begin_layout Standard
  1046. In order to enable fRMA normalization for the hthgu133pluspm array platform,
  1047. custom fRMA normalization vectors were trained using the frmaTools package
  1048. \begin_inset CommandInset citation
  1049. LatexCommand cite
  1050. key "McCall2011"
  1051. literal "false"
  1052. \end_inset
  1053. .
  1054. Separate vectors were created for two types of samples: kidney graft biopsy
  1055. samples and blood samples from graft recipients.
  1056. For training, a 341 kidney biopsy samples from 2 data sets and 965 blood
  1057. samples from 5 data sets were used as the reference set.
  1058. Arrays were groups into batches based on unique combinations of sample
  1059. type (blood or biopsy), diagnosis (TX, AR, etc.), data set, and scan date.
  1060. Thus, each batch represents arrays of the same kind that were run together
  1061. on the same day.
  1062. For estimating the probe inverse variance weights, frmaTools requires equal-siz
  1063. ed batches, which means a batch size must be chosen, and then batches smaller
  1064. than that size must be ignored, while batches larger than the chosen size
  1065. must be downsampled.
  1066. This downsampling is performed randomly, so the sampling process is repeated
  1067. 5 times and the resulting normalizations are compared to each other.
  1068. \end_layout
  1069. \begin_layout Standard
  1070. To evaluate the consistency of the generated normalization vectors, the
  1071. 5 fRMA vector sets generated from 5 random batch samplings were each used
  1072. to normalize the same 20 randomly selected samples from each tissue.
  1073. Then the normalized expression values for each probe on each array were
  1074. compared across all normalizations.
  1075. Each fRMA normalization was also compared against the normalized expression
  1076. values obtained by normalizing the same 20 samples with ordinary RMA.
  1077. \end_layout
  1078. \begin_layout Subsection
  1079. Modeling methylation array M-value heteroskedasticy in linear models with
  1080. modified voom implementation
  1081. \end_layout
  1082. \begin_layout Standard
  1083. \begin_inset Flex TODO Note (inline)
  1084. status open
  1085. \begin_layout Plain Layout
  1086. Put code on Github and reference it.
  1087. \end_layout
  1088. \end_inset
  1089. \end_layout
  1090. \begin_layout Standard
  1091. To investigate the whether DNA methylation could be used to distinguish
  1092. between healthy and dysfunctional transplants, a data set of 78 Illumina
  1093. 450k methylation arrays from human kidney graft biopsies was analyzed for
  1094. differential metylation between 4 transplant statuses: healthy transplant
  1095. (TX), transplants undergoing acute rejection (AR), acute dysfunction with
  1096. no rejection (ADNR), and chronic allograpft nephropathy (CAN).
  1097. The data consisted of 33 TX, 9 AR, 8 ADNR, and 28 CAN samples.
  1098. The uneven group sizes are a result of taking the biopsy samples before
  1099. the eventual fate of the transplant was known.
  1100. Each sample was additionally annotated with a donor ID (anonymized), Sex,
  1101. Age, Ethnicity, Creatinine Level, and Diabetes diagnosois (all samples
  1102. in this data set came from patients with either Type 1 or Type 2 diabetes).
  1103. \end_layout
  1104. \begin_layout Standard
  1105. The intensity data were first normalized using subset-quantile within array
  1106. normalization (SWAN)
  1107. \begin_inset CommandInset citation
  1108. LatexCommand cite
  1109. key "Maksimovic2012"
  1110. literal "false"
  1111. \end_inset
  1112. , then converted to intensity ratios (beta values)
  1113. \begin_inset CommandInset citation
  1114. LatexCommand cite
  1115. key "Aryee2014"
  1116. literal "false"
  1117. \end_inset
  1118. .
  1119. Any probes binding to loci that overlapped annotated SNPs were dropped,
  1120. and the annotated sex of each sample was verified against the sex inferred
  1121. from the ratio of median probe intensities for the X and Y chromosomes.
  1122. Then, the ratios were transformed to M-values.
  1123. \end_layout
  1124. \begin_layout Standard
  1125. From the M-values, a series of parallel analyses was performed, each adding
  1126. an additional step into the model fit to accomodate a feature of the data.
  1127. First, a
  1128. \begin_inset Quotes eld
  1129. \end_inset
  1130. basic
  1131. \begin_inset Quotes erd
  1132. \end_inset
  1133. linear modeling analysis was performed, compensating for known features
  1134. of the data using existing tools.
  1135. A design matrix was prepared including terms for the factor of interest
  1136. as well as the known biological confounders: sex, age, ethnicity, and diabetes.
  1137. Since some samples came from the same patients at differen times, the intra-pat
  1138. ient correlation was modeled as a random effect, estimating a shared correlation
  1139. value across all probes
  1140. \begin_inset CommandInset citation
  1141. LatexCommand cite
  1142. key "Smyth2005a"
  1143. literal "false"
  1144. \end_inset
  1145. .
  1146. Then the linear model was fit, and the variance was modeled using empirical
  1147. Bayes squeezing toward the mean-variance trend
  1148. \begin_inset CommandInset citation
  1149. LatexCommand cite
  1150. key "Ritchie2015"
  1151. literal "false"
  1152. \end_inset
  1153. .
  1154. Finally, t-tests or F-tests were performed a appropriate for each test:
  1155. t-tests for single contrasts, and F-tests for multiple contrasts.
  1156. \end_layout
  1157. \begin_layout Standard
  1158. For the second analysis, surrogate variable analysis (SVA) was used to infer
  1159. additional unobserved sources of heterogeneity in the data
  1160. \begin_inset CommandInset citation
  1161. LatexCommand cite
  1162. key "Leek2007"
  1163. literal "false"
  1164. \end_inset
  1165. .
  1166. These surrogate variables were added to the design matrix before fitting
  1167. the linear model.
  1168. For the third analysis, SVA was used, and in addition sample quality weights
  1169. were estimated from the data and used during linear modeling to down-weight
  1170. the controbution of highly variable arrays while increasing the weight
  1171. to arrays with lower variability
  1172. \begin_inset CommandInset citation
  1173. LatexCommand cite
  1174. key "Ritchie2006"
  1175. literal "false"
  1176. \end_inset
  1177. .
  1178. Lastly, the voom method was adapted to run on methylation array data and
  1179. used to model the mean-variance trend as individual observation weights
  1180. \begin_inset CommandInset citation
  1181. LatexCommand cite
  1182. key "Law2013"
  1183. literal "false"
  1184. \end_inset
  1185. , which were combined with the sample weights
  1186. \begin_inset CommandInset citation
  1187. LatexCommand cite
  1188. key "Liu2015"
  1189. literal "false"
  1190. \end_inset
  1191. .
  1192. Each time weights were used, they were estimated once before estimating
  1193. the random effect correlation value, and then the weights were re-estimated
  1194. taking the random effect into account.
  1195. \end_layout
  1196. \begin_layout Section
  1197. Results
  1198. \end_layout
  1199. \begin_layout Standard
  1200. \begin_inset Flex TODO Note (inline)
  1201. status open
  1202. \begin_layout Plain Layout
  1203. Improve subsection titles in this section
  1204. \end_layout
  1205. \end_inset
  1206. \end_layout
  1207. \begin_layout Subsection
  1208. fRMA eliminates unwanted dependence of classifier training on normalization
  1209. strategy caused by RMA
  1210. \end_layout
  1211. \begin_layout Subsubsection
  1212. Separate normalization with RMA introduces unwanted biases in classification
  1213. \end_layout
  1214. \begin_layout Standard
  1215. \begin_inset Float figure
  1216. wide false
  1217. sideways false
  1218. status open
  1219. \begin_layout Plain Layout
  1220. \align center
  1221. \begin_inset Graphics
  1222. filename graphics/PAM/predplot.pdf
  1223. width 100col%
  1224. groupId colwidth
  1225. \end_inset
  1226. \end_layout
  1227. \begin_layout Plain Layout
  1228. \begin_inset Caption Standard
  1229. \begin_layout Plain Layout
  1230. \begin_inset CommandInset label
  1231. LatexCommand label
  1232. name "fig:Classifier-probabilities-RMA"
  1233. \end_inset
  1234. \series bold
  1235. Classifier probabilities on validation samples when normalized with RMA
  1236. together vs.
  1237. separately.
  1238. \end_layout
  1239. \end_inset
  1240. \end_layout
  1241. \end_inset
  1242. \end_layout
  1243. \begin_layout Standard
  1244. To demonstrate the problem with non-single-channel methods, we considered
  1245. the problem of training a classifier to distinguish TX from AR using the
  1246. samples from the internal set as training data, evaluating performance
  1247. on the external set.
  1248. First, training and evaluation were performed after normalizing all array
  1249. samples together as a single set using RMA, and second, the internal samples
  1250. were normalized separately from the external samples and the training and
  1251. evaluation were repeated.
  1252. For each sample in the validation set, the classifier probabilities from
  1253. both classifiers were plotted against each other (Fig.
  1254. \begin_inset CommandInset ref
  1255. LatexCommand ref
  1256. reference "fig:Classifier-probabilities-RMA"
  1257. plural "false"
  1258. caps "false"
  1259. noprefix "false"
  1260. \end_inset
  1261. ).
  1262. As expected, separate normalization biases the classifier probabilities,
  1263. resulting in several misclassifications.
  1264. In this case, the bias from separate normalization causes the classifier
  1265. to assign a lower probability of AR to every sample.
  1266. \end_layout
  1267. \begin_layout Subsubsection
  1268. fRMA and SCAN achieve maintain classification performance while eliminating
  1269. dependence on normalization strategy
  1270. \end_layout
  1271. \begin_layout Standard
  1272. \begin_inset Float figure
  1273. wide false
  1274. sideways false
  1275. status collapsed
  1276. \begin_layout Plain Layout
  1277. \align center
  1278. \begin_inset Graphics
  1279. filename graphics/PAM/ROC-TXvsAR-internal.pdf
  1280. width 100col%
  1281. groupId colwidth
  1282. \end_inset
  1283. \end_layout
  1284. \begin_layout Plain Layout
  1285. \begin_inset Caption Standard
  1286. \begin_layout Plain Layout
  1287. \begin_inset CommandInset label
  1288. LatexCommand label
  1289. name "fig:ROC-PAM-int"
  1290. \end_inset
  1291. ROC curves for PAM on internal validation data using different normalization
  1292. strategies
  1293. \end_layout
  1294. \end_inset
  1295. \end_layout
  1296. \end_inset
  1297. \end_layout
  1298. \begin_layout Standard
  1299. \begin_inset Float table
  1300. wide false
  1301. sideways false
  1302. status collapsed
  1303. \begin_layout Plain Layout
  1304. \align center
  1305. \begin_inset Tabular
  1306. <lyxtabular version="3" rows="7" columns="4">
  1307. <features tabularvalignment="middle">
  1308. <column alignment="center" valignment="top">
  1309. <column alignment="center" valignment="top">
  1310. <column alignment="center" valignment="top">
  1311. <column alignment="center" valignment="top">
  1312. <row>
  1313. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1314. \begin_inset Text
  1315. \begin_layout Plain Layout
  1316. \family roman
  1317. \series medium
  1318. \shape up
  1319. \size normal
  1320. \emph off
  1321. \bar no
  1322. \strikeout off
  1323. \xout off
  1324. \uuline off
  1325. \uwave off
  1326. \noun off
  1327. \color none
  1328. Normalization
  1329. \end_layout
  1330. \end_inset
  1331. </cell>
  1332. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1333. \begin_inset Text
  1334. \begin_layout Plain Layout
  1335. Single-channel?
  1336. \end_layout
  1337. \end_inset
  1338. </cell>
  1339. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1340. \begin_inset Text
  1341. \begin_layout Plain Layout
  1342. \family roman
  1343. \series medium
  1344. \shape up
  1345. \size normal
  1346. \emph off
  1347. \bar no
  1348. \strikeout off
  1349. \xout off
  1350. \uuline off
  1351. \uwave off
  1352. \noun off
  1353. \color none
  1354. Internal Val.
  1355. AUC
  1356. \end_layout
  1357. \end_inset
  1358. </cell>
  1359. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  1360. \begin_inset Text
  1361. \begin_layout Plain Layout
  1362. External Val.
  1363. AUC
  1364. \end_layout
  1365. \end_inset
  1366. </cell>
  1367. </row>
  1368. <row>
  1369. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1370. \begin_inset Text
  1371. \begin_layout Plain Layout
  1372. \family roman
  1373. \series medium
  1374. \shape up
  1375. \size normal
  1376. \emph off
  1377. \bar no
  1378. \strikeout off
  1379. \xout off
  1380. \uuline off
  1381. \uwave off
  1382. \noun off
  1383. \color none
  1384. RMA
  1385. \end_layout
  1386. \end_inset
  1387. </cell>
  1388. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1389. \begin_inset Text
  1390. \begin_layout Plain Layout
  1391. No
  1392. \end_layout
  1393. \end_inset
  1394. </cell>
  1395. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1396. \begin_inset Text
  1397. \begin_layout Plain Layout
  1398. \family roman
  1399. \series medium
  1400. \shape up
  1401. \size normal
  1402. \emph off
  1403. \bar no
  1404. \strikeout off
  1405. \xout off
  1406. \uuline off
  1407. \uwave off
  1408. \noun off
  1409. \color none
  1410. 0.852
  1411. \end_layout
  1412. \end_inset
  1413. </cell>
  1414. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  1415. \begin_inset Text
  1416. \begin_layout Plain Layout
  1417. \family roman
  1418. \series medium
  1419. \shape up
  1420. \size normal
  1421. \emph off
  1422. \bar no
  1423. \strikeout off
  1424. \xout off
  1425. \uuline off
  1426. \uwave off
  1427. \noun off
  1428. \color none
  1429. 0.713
  1430. \end_layout
  1431. \end_inset
  1432. </cell>
  1433. </row>
  1434. <row>
  1435. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1436. \begin_inset Text
  1437. \begin_layout Plain Layout
  1438. \family roman
  1439. \series medium
  1440. \shape up
  1441. \size normal
  1442. \emph off
  1443. \bar no
  1444. \strikeout off
  1445. \xout off
  1446. \uuline off
  1447. \uwave off
  1448. \noun off
  1449. \color none
  1450. dChip
  1451. \end_layout
  1452. \end_inset
  1453. </cell>
  1454. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1455. \begin_inset Text
  1456. \begin_layout Plain Layout
  1457. No
  1458. \end_layout
  1459. \end_inset
  1460. </cell>
  1461. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1462. \begin_inset Text
  1463. \begin_layout Plain Layout
  1464. \family roman
  1465. \series medium
  1466. \shape up
  1467. \size normal
  1468. \emph off
  1469. \bar no
  1470. \strikeout off
  1471. \xout off
  1472. \uuline off
  1473. \uwave off
  1474. \noun off
  1475. \color none
  1476. 0.891
  1477. \end_layout
  1478. \end_inset
  1479. </cell>
  1480. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  1481. \begin_inset Text
  1482. \begin_layout Plain Layout
  1483. \family roman
  1484. \series medium
  1485. \shape up
  1486. \size normal
  1487. \emph off
  1488. \bar no
  1489. \strikeout off
  1490. \xout off
  1491. \uuline off
  1492. \uwave off
  1493. \noun off
  1494. \color none
  1495. 0.657
  1496. \end_layout
  1497. \end_inset
  1498. </cell>
  1499. </row>
  1500. <row>
  1501. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1502. \begin_inset Text
  1503. \begin_layout Plain Layout
  1504. \family roman
  1505. \series medium
  1506. \shape up
  1507. \size normal
  1508. \emph off
  1509. \bar no
  1510. \strikeout off
  1511. \xout off
  1512. \uuline off
  1513. \uwave off
  1514. \noun off
  1515. \color none
  1516. RMA + GRSN
  1517. \end_layout
  1518. \end_inset
  1519. </cell>
  1520. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1521. \begin_inset Text
  1522. \begin_layout Plain Layout
  1523. No
  1524. \end_layout
  1525. \end_inset
  1526. </cell>
  1527. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1528. \begin_inset Text
  1529. \begin_layout Plain Layout
  1530. \family roman
  1531. \series medium
  1532. \shape up
  1533. \size normal
  1534. \emph off
  1535. \bar no
  1536. \strikeout off
  1537. \xout off
  1538. \uuline off
  1539. \uwave off
  1540. \noun off
  1541. \color none
  1542. 0.816
  1543. \end_layout
  1544. \end_inset
  1545. </cell>
  1546. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  1547. \begin_inset Text
  1548. \begin_layout Plain Layout
  1549. \family roman
  1550. \series medium
  1551. \shape up
  1552. \size normal
  1553. \emph off
  1554. \bar no
  1555. \strikeout off
  1556. \xout off
  1557. \uuline off
  1558. \uwave off
  1559. \noun off
  1560. \color none
  1561. 0.750
  1562. \end_layout
  1563. \end_inset
  1564. </cell>
  1565. </row>
  1566. <row>
  1567. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1568. \begin_inset Text
  1569. \begin_layout Plain Layout
  1570. \family roman
  1571. \series medium
  1572. \shape up
  1573. \size normal
  1574. \emph off
  1575. \bar no
  1576. \strikeout off
  1577. \xout off
  1578. \uuline off
  1579. \uwave off
  1580. \noun off
  1581. \color none
  1582. dChip + GRSN
  1583. \end_layout
  1584. \end_inset
  1585. </cell>
  1586. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1587. \begin_inset Text
  1588. \begin_layout Plain Layout
  1589. No
  1590. \end_layout
  1591. \end_inset
  1592. </cell>
  1593. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1594. \begin_inset Text
  1595. \begin_layout Plain Layout
  1596. \family roman
  1597. \series medium
  1598. \shape up
  1599. \size normal
  1600. \emph off
  1601. \bar no
  1602. \strikeout off
  1603. \xout off
  1604. \uuline off
  1605. \uwave off
  1606. \noun off
  1607. \color none
  1608. 0.875
  1609. \end_layout
  1610. \end_inset
  1611. </cell>
  1612. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  1613. \begin_inset Text
  1614. \begin_layout Plain Layout
  1615. \family roman
  1616. \series medium
  1617. \shape up
  1618. \size normal
  1619. \emph off
  1620. \bar no
  1621. \strikeout off
  1622. \xout off
  1623. \uuline off
  1624. \uwave off
  1625. \noun off
  1626. \color none
  1627. 0.642
  1628. \end_layout
  1629. \end_inset
  1630. </cell>
  1631. </row>
  1632. <row>
  1633. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1634. \begin_inset Text
  1635. \begin_layout Plain Layout
  1636. \family roman
  1637. \series medium
  1638. \shape up
  1639. \size normal
  1640. \emph off
  1641. \bar no
  1642. \strikeout off
  1643. \xout off
  1644. \uuline off
  1645. \uwave off
  1646. \noun off
  1647. \color none
  1648. fRMA
  1649. \end_layout
  1650. \end_inset
  1651. </cell>
  1652. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1653. \begin_inset Text
  1654. \begin_layout Plain Layout
  1655. Yes
  1656. \end_layout
  1657. \end_inset
  1658. </cell>
  1659. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1660. \begin_inset Text
  1661. \begin_layout Plain Layout
  1662. \family roman
  1663. \series medium
  1664. \shape up
  1665. \size normal
  1666. \emph off
  1667. \bar no
  1668. \strikeout off
  1669. \xout off
  1670. \uuline off
  1671. \uwave off
  1672. \noun off
  1673. \color none
  1674. 0.863
  1675. \end_layout
  1676. \end_inset
  1677. </cell>
  1678. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  1679. \begin_inset Text
  1680. \begin_layout Plain Layout
  1681. \family roman
  1682. \series medium
  1683. \shape up
  1684. \size normal
  1685. \emph off
  1686. \bar no
  1687. \strikeout off
  1688. \xout off
  1689. \uuline off
  1690. \uwave off
  1691. \noun off
  1692. \color none
  1693. 0.718
  1694. \end_layout
  1695. \end_inset
  1696. </cell>
  1697. </row>
  1698. <row>
  1699. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1700. \begin_inset Text
  1701. \begin_layout Plain Layout
  1702. \family roman
  1703. \series medium
  1704. \shape up
  1705. \size normal
  1706. \emph off
  1707. \bar no
  1708. \strikeout off
  1709. \xout off
  1710. \uuline off
  1711. \uwave off
  1712. \noun off
  1713. \color none
  1714. SCAN
  1715. \end_layout
  1716. \end_inset
  1717. </cell>
  1718. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1719. \begin_inset Text
  1720. \begin_layout Plain Layout
  1721. Yes
  1722. \end_layout
  1723. \end_inset
  1724. </cell>
  1725. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1726. \begin_inset Text
  1727. \begin_layout Plain Layout
  1728. \family roman
  1729. \series medium
  1730. \shape up
  1731. \size normal
  1732. \emph off
  1733. \bar no
  1734. \strikeout off
  1735. \xout off
  1736. \uuline off
  1737. \uwave off
  1738. \noun off
  1739. \color none
  1740. 0.853
  1741. \end_layout
  1742. \end_inset
  1743. </cell>
  1744. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  1745. \begin_inset Text
  1746. \begin_layout Plain Layout
  1747. \family roman
  1748. \series medium
  1749. \shape up
  1750. \size normal
  1751. \emph off
  1752. \bar no
  1753. \strikeout off
  1754. \xout off
  1755. \uuline off
  1756. \uwave off
  1757. \noun off
  1758. \color none
  1759. 0.689
  1760. \end_layout
  1761. \end_inset
  1762. </cell>
  1763. </row>
  1764. </lyxtabular>
  1765. \end_inset
  1766. \end_layout
  1767. \begin_layout Plain Layout
  1768. \begin_inset Caption Standard
  1769. \begin_layout Plain Layout
  1770. \begin_inset CommandInset label
  1771. LatexCommand label
  1772. name "tab:AUC-PAM"
  1773. \end_inset
  1774. \series bold
  1775. AUC values for internal and external validation with 6 different normalization
  1776. strategies.
  1777. \series default
  1778. Only fRMA and SCAN are single-channel normalizations.
  1779. The other 4 normalizations are for comparison.
  1780. \end_layout
  1781. \end_inset
  1782. \end_layout
  1783. \end_inset
  1784. \end_layout
  1785. \begin_layout Standard
  1786. For internal validation, the 6 methods' AUC values ranged from 0.816 to 0.891,
  1787. as shown in Table
  1788. \begin_inset CommandInset ref
  1789. LatexCommand ref
  1790. reference "tab:AUC-PAM"
  1791. plural "false"
  1792. caps "false"
  1793. noprefix "false"
  1794. \end_inset
  1795. .
  1796. Among the non-single-channel normalizations, dChip outperformed RMA, while
  1797. GRSN reduced the AUC values for both dChip and RMA.
  1798. Both single-channel methods, fRMA and SCAN, slightly outperformed RMA,
  1799. with fRMA ahead of SCAN.
  1800. However, the difference between RMA and fRMA is still quite small.
  1801. Figure
  1802. \begin_inset CommandInset ref
  1803. LatexCommand ref
  1804. reference "fig:ROC-PAM-int"
  1805. plural "false"
  1806. caps "false"
  1807. noprefix "false"
  1808. \end_inset
  1809. shows that the ROC curves for RMA, dChip, and fRMA look very similar and
  1810. relatively smooth, while both GRSN curves and the curve for SCAN have a
  1811. more jagged appearance.
  1812. \end_layout
  1813. \begin_layout Standard
  1814. \begin_inset Float figure
  1815. wide false
  1816. sideways false
  1817. status open
  1818. \begin_layout Plain Layout
  1819. \align center
  1820. \begin_inset Graphics
  1821. filename graphics/PAM/ROC-TXvsAR-external.pdf
  1822. width 100col%
  1823. groupId colwidth
  1824. \end_inset
  1825. \end_layout
  1826. \begin_layout Plain Layout
  1827. \begin_inset Caption Standard
  1828. \begin_layout Plain Layout
  1829. \begin_inset CommandInset label
  1830. LatexCommand label
  1831. name "fig:ROC-PAM-ext"
  1832. \end_inset
  1833. ROC curve for PAM on external validation data using different normalization
  1834. strategies
  1835. \end_layout
  1836. \end_inset
  1837. \end_layout
  1838. \end_inset
  1839. \end_layout
  1840. \begin_layout Standard
  1841. For external validation, as expected, all the AUC values are lower than
  1842. the internal validations, ranging from 0.642 to 0.750 (Table
  1843. \begin_inset CommandInset ref
  1844. LatexCommand ref
  1845. reference "tab:AUC-PAM"
  1846. plural "false"
  1847. caps "false"
  1848. noprefix "false"
  1849. \end_inset
  1850. ).
  1851. With or without GRSN, RMA shows its dominance over dChip in this more challengi
  1852. ng test.
  1853. Unlike in the internal validation, GRSN actually improves the classifier
  1854. performance for RMA, although it does not for dChip.
  1855. Once again, both single-channel methods perform about on par with RMA,
  1856. with fRMA performing slightly better and SCAN performing a bit worse.
  1857. Figure
  1858. \begin_inset CommandInset ref
  1859. LatexCommand ref
  1860. reference "fig:ROC-PAM-ext"
  1861. plural "false"
  1862. caps "false"
  1863. noprefix "false"
  1864. \end_inset
  1865. shows the ROC curves for the external validation test.
  1866. As expected, none of them are as clean-looking as the internal validation
  1867. ROC curves.
  1868. The curves for RMA, RMA+GRSN, and fRMA all look similar, while the other
  1869. curves look more divergent.
  1870. \end_layout
  1871. \begin_layout Subsection
  1872. fRMA with custom-generated vectors enables normalization on hthgu133pluspm
  1873. \end_layout
  1874. \begin_layout Standard
  1875. \begin_inset Float figure
  1876. wide false
  1877. sideways false
  1878. status open
  1879. \begin_layout Plain Layout
  1880. \align center
  1881. \begin_inset Graphics
  1882. filename graphics/frma-pax-bx/batchsize_batches.pdf
  1883. \end_inset
  1884. \end_layout
  1885. \begin_layout Plain Layout
  1886. \begin_inset Caption Standard
  1887. \begin_layout Plain Layout
  1888. \begin_inset CommandInset label
  1889. LatexCommand label
  1890. name "fig:batch-size-batches"
  1891. \end_inset
  1892. \series bold
  1893. Effect of batch size selection on number of batches included in fRMA probe
  1894. weight learning.
  1895. \series default
  1896. For batch sizes ranging from 3 to 15, the number of batches with at least
  1897. that many samples was plotted for biopsy (BX) and blood (PAX) samples.
  1898. The selected batch size, 5, is marked with a dotted vertical line.
  1899. \end_layout
  1900. \end_inset
  1901. \end_layout
  1902. \end_inset
  1903. \end_layout
  1904. \begin_layout Standard
  1905. \begin_inset Float figure
  1906. wide false
  1907. sideways false
  1908. status open
  1909. \begin_layout Plain Layout
  1910. \align center
  1911. \begin_inset Graphics
  1912. filename graphics/frma-pax-bx/batchsize_samples.pdf
  1913. \end_inset
  1914. \end_layout
  1915. \begin_layout Plain Layout
  1916. \begin_inset Caption Standard
  1917. \begin_layout Plain Layout
  1918. \begin_inset CommandInset label
  1919. LatexCommand label
  1920. name "fig:batch-size-samples"
  1921. \end_inset
  1922. \series bold
  1923. Effect of batch size selection on number of samples included in fRMA probe
  1924. weight learning.
  1925. \series default
  1926. For batch sizes ranging from 3 to 15, the number of samples included in
  1927. probe weight training was plotted for biopsy (BX) and blood (PAX) samples.
  1928. The selected batch size, 5, is marked with a dotted vertical line.
  1929. \end_layout
  1930. \end_inset
  1931. \end_layout
  1932. \end_inset
  1933. \end_layout
  1934. \begin_layout Standard
  1935. In order to enable use of fRMA to normalize hthgu133pluspm, a custom set
  1936. of fRMA vectors was created.
  1937. First, an appropriate batch size was chosen by looking at the number of
  1938. batches and number of samples included as a function of batch size (Figures
  1939. \begin_inset CommandInset ref
  1940. LatexCommand ref
  1941. reference "fig:batch-size-batches"
  1942. plural "false"
  1943. caps "false"
  1944. noprefix "false"
  1945. \end_inset
  1946. and
  1947. \begin_inset CommandInset ref
  1948. LatexCommand ref
  1949. reference "fig:batch-size-samples"
  1950. plural "false"
  1951. caps "false"
  1952. noprefix "false"
  1953. \end_inset
  1954. , respectively).
  1955. For a given batch size, all batches with fewer samples that the chosen
  1956. size must be ignored during training, while larger batches must be randomly
  1957. downsampled to the chosen size.
  1958. Hence, the number of samples included for a given batch size equals the
  1959. batch size times the number of batches with at least that many samples.
  1960. From Figure
  1961. \begin_inset CommandInset ref
  1962. LatexCommand ref
  1963. reference "fig:batch-size-samples"
  1964. plural "false"
  1965. caps "false"
  1966. noprefix "false"
  1967. \end_inset
  1968. , it is apparent that that a batch size of 8 maximizes the number of samples
  1969. included in training.
  1970. Increasing the batch size beyond this causes too many smaller batches to
  1971. be excluded, reducing the total number of samples for both tissue types.
  1972. However, a batch size of 8 is not necessarily optimal.
  1973. The article introducing frmaTools concluded that it was highly advantageous
  1974. to use a smaller batch size in order to include more batches, even at the
  1975. expense of including fewer total samples in training
  1976. \begin_inset CommandInset citation
  1977. LatexCommand cite
  1978. key "McCall2011"
  1979. literal "false"
  1980. \end_inset
  1981. .
  1982. To strike an appropriate balance between more batches and more samples,
  1983. a batch size of 5 was chosen.
  1984. For both blood and biopsy samples, this increased the number of batches
  1985. included by 10, with only a modest reduction in the number of samples compared
  1986. to a batch size of 8.
  1987. With a batch size of 5, 26 batches of biopsy samples and 46 batches of
  1988. blood samples were available.
  1989. \end_layout
  1990. \begin_layout Standard
  1991. \begin_inset Float figure
  1992. wide false
  1993. sideways false
  1994. status open
  1995. \begin_layout Plain Layout
  1996. \align center
  1997. \begin_inset Graphics
  1998. filename graphics/frma-pax-bx/M-BX-violin.pdf
  1999. lyxscale 40
  2000. height 80theight%
  2001. groupId m-violin
  2002. \end_inset
  2003. \end_layout
  2004. \begin_layout Plain Layout
  2005. \begin_inset Caption Standard
  2006. \begin_layout Plain Layout
  2007. \begin_inset CommandInset label
  2008. LatexCommand label
  2009. name "fig:m-bx-violin"
  2010. \end_inset
  2011. \series bold
  2012. Violin plot of log ratios between normalizations for 20 biopsy samples.
  2013. \series default
  2014. Each of 20 randomly selected biopsy samples was normalized with RMA and
  2015. with 5 different sets of fRMA vectors.
  2016. This shows the distribution of log ratios between normalized expression
  2017. values, aggregated across all 20 arrays.
  2018. \end_layout
  2019. \end_inset
  2020. \end_layout
  2021. \end_inset
  2022. \end_layout
  2023. \begin_layout Standard
  2024. Since fRMA training requires equal-size batches, larger batches are downsampled
  2025. randomly.
  2026. This introduces a nondeterministic step in the generation of normalization
  2027. vectors.
  2028. To show that this randomness does not substantially change the outcome,
  2029. the random downsampling and subsequent vector learning was repeated 5 times,
  2030. with a different random seed each time.
  2031. 20 samples were selected at random as a test set and normalized with each
  2032. of the 5 sets of fRMA normalization vectors as well as ordinary RMA, and
  2033. the normalized expression values were compared across normalizations.
  2034. Figure
  2035. \begin_inset CommandInset ref
  2036. LatexCommand ref
  2037. reference "fig:m-bx-violin"
  2038. plural "false"
  2039. caps "false"
  2040. noprefix "false"
  2041. \end_inset
  2042. shows a summary of these comparisons for biopsy samples.
  2043. Comparing RMA to each of the 5 fRMA normalizations, the distribution of
  2044. log ratios is somewhat wide, indicating that the normalizations disagree
  2045. on the expression values of a fair number of probe sets.
  2046. In contrast, comparisons of fRMA against fRMA, the vast mojority of probe
  2047. sets have very small log ratios, indicating a very high agreement between
  2048. the normalized values generated by the two normalizations.
  2049. This shows that the fRMA normalization's behavior is not very sensitive
  2050. to the random downsampling of larger batches during training.
  2051. \end_layout
  2052. \begin_layout Standard
  2053. \begin_inset Float figure
  2054. wide false
  2055. sideways false
  2056. status open
  2057. \begin_layout Plain Layout
  2058. \align center
  2059. \begin_inset Graphics
  2060. filename graphics/frma-pax-bx/MA-BX-RMA.fRMA.pdf
  2061. lyxscale 50
  2062. groupId ma-frma
  2063. \end_inset
  2064. \end_layout
  2065. \begin_layout Plain Layout
  2066. \begin_inset Caption Standard
  2067. \begin_layout Plain Layout
  2068. \begin_inset CommandInset label
  2069. LatexCommand label
  2070. name "fig:ma-bx-rma-frma"
  2071. \end_inset
  2072. \series bold
  2073. Representative MA plot comparing RMA against fRMA for 20 biopsy samples.
  2074. \series default
  2075. Averages and log ratios were computed for every probe in each of 20 biopsy
  2076. samples between RMA normalization and fRMA.
  2077. Density of points is represented by darkness of shading, and individual
  2078. outlier points are plotted.
  2079. \end_layout
  2080. \end_inset
  2081. \end_layout
  2082. \end_inset
  2083. \end_layout
  2084. \begin_layout Standard
  2085. \begin_inset Float figure
  2086. wide false
  2087. sideways false
  2088. status open
  2089. \begin_layout Plain Layout
  2090. \align center
  2091. \begin_inset Graphics
  2092. filename graphics/frma-pax-bx/MA-BX-fRMA.fRMA.pdf
  2093. lyxscale 50
  2094. groupId ma-frma
  2095. \end_inset
  2096. \end_layout
  2097. \begin_layout Plain Layout
  2098. \begin_inset Caption Standard
  2099. \begin_layout Plain Layout
  2100. \begin_inset CommandInset label
  2101. LatexCommand label
  2102. name "fig:ma-bx-frma-frma"
  2103. \end_inset
  2104. \series bold
  2105. Representative MA plot comparing different fRMA vectors for 20 biopsy samples.
  2106. \series default
  2107. Averages and log ratios were computed for every probe in each of 20 biopsy
  2108. samples between fRMA normalizations using vectors from two different batch
  2109. samplings.
  2110. Density of points is represented by darkness of shading, and individual
  2111. outlier points are plotted.
  2112. \end_layout
  2113. \end_inset
  2114. \end_layout
  2115. \end_inset
  2116. \end_layout
  2117. \begin_layout Standard
  2118. Figure
  2119. \begin_inset CommandInset ref
  2120. LatexCommand ref
  2121. reference "fig:ma-bx-rma-frma"
  2122. plural "false"
  2123. caps "false"
  2124. noprefix "false"
  2125. \end_inset
  2126. shows an MA plot of the RMA-normalized values against the fRMA-normalized
  2127. values for the same probe sets and arrays, corresponding to the first row
  2128. of Figure
  2129. \begin_inset CommandInset ref
  2130. LatexCommand ref
  2131. reference "fig:m-bx-violin"
  2132. plural "false"
  2133. caps "false"
  2134. noprefix "false"
  2135. \end_inset
  2136. .
  2137. This MA plot shows that not only is there a wide distribution of M-values,
  2138. but the trend of M-values is dependent on the average normalized intensity.
  2139. This is expected, since the overall trend represents the differences in
  2140. the quantile normalization step.
  2141. When running RMA, only the quantiles for these specific 20 arrays are used,
  2142. while for fRMA the quantile distribution is taking from all arrays used
  2143. in training.
  2144. Figure
  2145. \begin_inset CommandInset ref
  2146. LatexCommand ref
  2147. reference "fig:ma-bx-frma-frma"
  2148. plural "false"
  2149. caps "false"
  2150. noprefix "false"
  2151. \end_inset
  2152. shows a similar MA plot comparing 2 different fRMA normalizations, correspondin
  2153. g to the 6th row of Figure
  2154. \begin_inset CommandInset ref
  2155. LatexCommand ref
  2156. reference "fig:m-bx-violin"
  2157. plural "false"
  2158. caps "false"
  2159. noprefix "false"
  2160. \end_inset
  2161. .
  2162. The MA plot is very tightly centered around zero with no visible trend.
  2163. Figures
  2164. \begin_inset CommandInset ref
  2165. LatexCommand ref
  2166. reference "fig:m-pax-violin"
  2167. plural "false"
  2168. caps "false"
  2169. noprefix "false"
  2170. \end_inset
  2171. ,
  2172. \begin_inset CommandInset ref
  2173. LatexCommand ref
  2174. reference "fig:MA-PAX-rma-frma"
  2175. plural "false"
  2176. caps "false"
  2177. noprefix "false"
  2178. \end_inset
  2179. , and
  2180. \begin_inset CommandInset ref
  2181. LatexCommand ref
  2182. reference "fig:ma-bx-frma-frma"
  2183. plural "false"
  2184. caps "false"
  2185. noprefix "false"
  2186. \end_inset
  2187. show exactly the same information for the blood samples, once again comparing
  2188. the normalized expression values between normalizations for all probe sets
  2189. across 20 randomly selected test arrays.
  2190. Once again, there is a wider distribution of log ratios between RMA-normalized
  2191. values and fRMA-normalized, and a much tighter distribution when comparing
  2192. different fRMA normalizations to each other, indicating that the fRMA training
  2193. process is robust to random batch downsampling for the blood samples as
  2194. well.
  2195. \end_layout
  2196. \begin_layout Standard
  2197. \begin_inset Float figure
  2198. wide false
  2199. sideways false
  2200. status open
  2201. \begin_layout Plain Layout
  2202. \align center
  2203. \begin_inset Graphics
  2204. filename graphics/frma-pax-bx/M-PAX-violin.pdf
  2205. lyxscale 40
  2206. height 80theight%
  2207. groupId m-violin
  2208. \end_inset
  2209. \end_layout
  2210. \begin_layout Plain Layout
  2211. \begin_inset Caption Standard
  2212. \begin_layout Plain Layout
  2213. \begin_inset CommandInset label
  2214. LatexCommand label
  2215. name "fig:m-pax-violin"
  2216. \end_inset
  2217. \series bold
  2218. Violin plot of log ratios between normalizations for 20 blood samples.
  2219. \series default
  2220. Each of 20 randomly selected blood samples was normalized with RMA and with
  2221. 5 different sets of fRMA vectors.
  2222. This shows the distribution of log ratios between normalized expression
  2223. values, aggregated across all 20 arrays.
  2224. \end_layout
  2225. \end_inset
  2226. \end_layout
  2227. \end_inset
  2228. \end_layout
  2229. \begin_layout Standard
  2230. \begin_inset Float figure
  2231. wide false
  2232. sideways false
  2233. status open
  2234. \begin_layout Plain Layout
  2235. \align center
  2236. \begin_inset Graphics
  2237. filename graphics/frma-pax-bx/MA-PAX-RMA.fRMA.pdf
  2238. lyxscale 50
  2239. groupId ma-frma
  2240. \end_inset
  2241. \end_layout
  2242. \begin_layout Plain Layout
  2243. \begin_inset Caption Standard
  2244. \begin_layout Plain Layout
  2245. \begin_inset CommandInset label
  2246. LatexCommand label
  2247. name "fig:MA-PAX-rma-frma"
  2248. \end_inset
  2249. \series bold
  2250. Representative MA plot comparing RMA against fRMA for 20 blood samples.
  2251. \series default
  2252. Averages and log ratios were computed for every probe in each of 20 blood
  2253. samples between RMA normalization and fRMA.
  2254. Density of points is represented by darkness of shading, and individual
  2255. outlier points are plotted.
  2256. \end_layout
  2257. \end_inset
  2258. \end_layout
  2259. \begin_layout Plain Layout
  2260. \end_layout
  2261. \end_inset
  2262. \end_layout
  2263. \begin_layout Standard
  2264. \begin_inset Float figure
  2265. wide false
  2266. sideways false
  2267. status open
  2268. \begin_layout Plain Layout
  2269. \align center
  2270. \begin_inset Graphics
  2271. filename graphics/frma-pax-bx/MA-PAX-fRMA.fRMA.pdf
  2272. lyxscale 50
  2273. groupId ma-frma
  2274. \end_inset
  2275. \end_layout
  2276. \begin_layout Plain Layout
  2277. \begin_inset Caption Standard
  2278. \begin_layout Plain Layout
  2279. \begin_inset CommandInset label
  2280. LatexCommand label
  2281. name "fig:MA-PAX-frma-frma"
  2282. \end_inset
  2283. \series bold
  2284. Representative MA plot comparing different fRMA vectors for 20 blood samples.
  2285. \series default
  2286. Averages and log ratios were computed for every probe in each of 20 blood
  2287. samples between fRMA normalizations using vectors from two different batch
  2288. samplings.
  2289. Density of points is represented by darkness of shading, and individual
  2290. outlier points are plotted.
  2291. \end_layout
  2292. \end_inset
  2293. \end_layout
  2294. \end_inset
  2295. \end_layout
  2296. \begin_layout Subsection
  2297. Adapting voom to methylation array data improves model fit
  2298. \end_layout
  2299. \begin_layout Itemize
  2300. voom, precision weights, and sva improved model fit
  2301. \end_layout
  2302. \begin_deeper
  2303. \begin_layout Itemize
  2304. Also increased sensitivity for detecting differential methylation
  2305. \end_layout
  2306. \end_deeper
  2307. \begin_layout Itemize
  2308. Figure showing (a) heteroskedasticy without voom, (b) voom-modeled mean-variance
  2309. trend, and (c) homoskedastic mean-variance trend after running voom
  2310. \end_layout
  2311. \begin_layout Standard
  2312. \begin_inset Float figure
  2313. wide false
  2314. sideways false
  2315. status open
  2316. \begin_layout Plain Layout
  2317. \begin_inset Graphics
  2318. filename graphics/methylvoom/unadj.naive/meanvar-trends-RASTER.png
  2319. lyxscale 15
  2320. groupId raster-600ppi
  2321. \end_inset
  2322. \end_layout
  2323. \begin_layout Plain Layout
  2324. \begin_inset Caption Standard
  2325. \begin_layout Plain Layout
  2326. \series bold
  2327. \begin_inset CommandInset label
  2328. LatexCommand label
  2329. name "fig:meanvar-naive"
  2330. \end_inset
  2331. Mean-variance trend with no adjustment
  2332. \end_layout
  2333. \end_inset
  2334. \end_layout
  2335. \end_inset
  2336. \end_layout
  2337. \begin_layout Itemize
  2338. Figure showing sample weights and their relations to
  2339. \end_layout
  2340. \begin_layout Itemize
  2341. Figure showing MDS plot with and without SVA correction
  2342. \end_layout
  2343. \begin_layout Itemize
  2344. Figure and/or table showing improved p-value historgrams/number of significant
  2345. genes (might need to get this from Padma)
  2346. \end_layout
  2347. \begin_layout Section
  2348. Discussion
  2349. \end_layout
  2350. \begin_layout Subsection
  2351. fRMA achieves clinically applicable normalization without sacrificing classifica
  2352. tion performance
  2353. \end_layout
  2354. \begin_layout Standard
  2355. As shown in Figure
  2356. \begin_inset CommandInset ref
  2357. LatexCommand ref
  2358. reference "fig:Classifier-probabilities-RMA"
  2359. plural "false"
  2360. caps "false"
  2361. noprefix "false"
  2362. \end_inset
  2363. , improper normalization, particularly separate normalization of training
  2364. and test samples, leads to unwanted biases in classification.
  2365. In a controlled experimental context, it is always possible to correct
  2366. this issue by normalizing all experimental samples together.
  2367. However, because it is not feasible to normalize all samples together in
  2368. a clinical context, a single-channel normalization is required is required.
  2369. \end_layout
  2370. \begin_layout Standard
  2371. The major concern in using a single-channel normalization is that non-single-cha
  2372. nnel methods can share information between arrays to improve the normalization,
  2373. and single-channel methods risk sacrificing the gains in normalization
  2374. accuracy that come from this information sharing.
  2375. In the case of RMA, this information sharing is accomplished through quantile
  2376. normalization and median polish steps.
  2377. The need for information sharing in quantile normalization can easily be
  2378. removed by learning a fixed set of quantiles from external data and normalizing
  2379. each array to these fixed quantiles, instead of the quantiles of the data
  2380. itself.
  2381. As long as the fixed quantiles are reasonable, the result will be similar
  2382. to standard RMA.
  2383. However, there is no analogous way to eliminate cross-array information
  2384. sharing in the median polish step, so fRMA replaces this with a weighted
  2385. average of probes on each array, with the weights learned from external
  2386. data.
  2387. This step of fRMA has the greatest potential to diverge from RMA un undesirable
  2388. ways.
  2389. \end_layout
  2390. \begin_layout Standard
  2391. However, when run on real data, fRMA performed at least as well as RMA in
  2392. both the internal validation and external validation tests.
  2393. This shows that fRMA can be used to normalize individual clinical samples
  2394. in a class prediction context without sacrificing the classifier performance
  2395. that would be obtained by using the more well-established RMA for normalization.
  2396. The other single-channel normalization method considered, SCAN, showed
  2397. some loss of AUC in the external validation test.
  2398. Based on these results, fRMA is the preferred normalization for clinical
  2399. samples in a class prediction context.
  2400. \end_layout
  2401. \begin_layout Subsection
  2402. Robust fRMA vectors can be generated for new array platforms
  2403. \end_layout
  2404. \begin_layout Standard
  2405. \begin_inset Flex TODO Note (inline)
  2406. status open
  2407. \begin_layout Plain Layout
  2408. Look up the exact numbers, do a find & replace for
  2409. \begin_inset Quotes eld
  2410. \end_inset
  2411. 850
  2412. \begin_inset Quotes erd
  2413. \end_inset
  2414. \end_layout
  2415. \end_inset
  2416. \end_layout
  2417. \begin_layout Standard
  2418. The published fRMA normalization vectors for the hgu133plus2 platform were
  2419. generated from a set of about 850 samples chosen from a wide range of tissues,
  2420. which the authors determined was sufficient to generate a robust set of
  2421. normalization vectors that could be applied across all tissues
  2422. \begin_inset CommandInset citation
  2423. LatexCommand cite
  2424. key "McCall2010"
  2425. literal "false"
  2426. \end_inset
  2427. .
  2428. Since we only had hthgu133pluspm for 2 tissues of interest, our needs were
  2429. more modest.
  2430. Even using only 130 samples in 26 batches of 5 samples each for kidney
  2431. biopsies, we were able to train a robust set of fRMA normalization vectors
  2432. that were not meaningfully affected by the random selection of 5 samples
  2433. from each batch.
  2434. As expected, the training process was just as robust for the blood samples
  2435. with 230 samples in 46 batches of 5 samples each.
  2436. Because these vectors were each generated using training samples from a
  2437. single tissue, they are not suitable for general use, unlike the vectors
  2438. provided with fRMA itself.
  2439. They are purpose-build for normalizing a specific type of sample on a specific
  2440. platform.
  2441. \end_layout
  2442. \begin_layout Subsection
  2443. voom
  2444. \end_layout
  2445. \begin_layout Itemize
  2446. Methods like voom designed for RNA-seq can also help with array analysis
  2447. \end_layout
  2448. \begin_layout Itemize
  2449. Extracting and modeling confounders common to many features improves model
  2450. correspondence to known biology
  2451. \end_layout
  2452. \begin_layout Chapter
  2453. Globin-blocking for more effective blood RNA-seq analysis in primate animal
  2454. model
  2455. \end_layout
  2456. \begin_layout Standard
  2457. \begin_inset Flex TODO Note (inline)
  2458. status open
  2459. \begin_layout Plain Layout
  2460. Choose between above and the paper title: Optimizing yield of deep RNA sequencin
  2461. g for gene expression profiling by globin reduction of peripheral blood
  2462. samples from cynomolgus monkeys (Macaca fascicularis).
  2463. \end_layout
  2464. \end_inset
  2465. \end_layout
  2466. \begin_layout Standard
  2467. \begin_inset Flex TODO Note (inline)
  2468. status open
  2469. \begin_layout Plain Layout
  2470. Chapter author list: https://tex.stackexchange.com/questions/156862/displaying-aut
  2471. hor-for-each-chapter-in-book Every chapter gets an author list, which may
  2472. or may not be part of a citation to a published/preprinted paper.
  2473. \end_layout
  2474. \end_inset
  2475. \end_layout
  2476. \begin_layout Standard
  2477. \begin_inset Flex TODO Note (inline)
  2478. status open
  2479. \begin_layout Plain Layout
  2480. Preprint then cite the paper
  2481. \end_layout
  2482. \end_inset
  2483. \end_layout
  2484. \begin_layout Section*
  2485. Abstract
  2486. \end_layout
  2487. \begin_layout Paragraph
  2488. Background
  2489. \end_layout
  2490. \begin_layout Standard
  2491. Primate blood contains high concentrations of globin messenger RNA.
  2492. Globin reduction is a standard technique used to improve the expression
  2493. results obtained by DNA microarrays on RNA from blood samples.
  2494. However, with whole transcriptome RNA-sequencing (RNA-seq) quickly replacing
  2495. microarrays for many applications, the impact of globin reduction for RNA-seq
  2496. has not been previously studied.
  2497. Moreover, no off-the-shelf kits are available for globin reduction in nonhuman
  2498. primates.
  2499. \end_layout
  2500. \begin_layout Paragraph
  2501. Results
  2502. \end_layout
  2503. \begin_layout Standard
  2504. Here we report a protocol for RNA-seq in primate blood samples that uses
  2505. complimentary oligonucleotides to block reverse transcription of the alpha
  2506. and beta globin genes.
  2507. In test samples from cynomolgus monkeys (Macaca fascicularis), this globin
  2508. blocking protocol approximately doubles the yield of informative (non-globin)
  2509. reads by greatly reducing the fraction of globin reads, while also improving
  2510. the consistency in sequencing depth between samples.
  2511. The increased yield enables detection of about 2000 more genes, significantly
  2512. increases the correlation in measured gene expression levels between samples,
  2513. and increases the sensitivity of differential gene expression tests.
  2514. \end_layout
  2515. \begin_layout Paragraph
  2516. Conclusions
  2517. \end_layout
  2518. \begin_layout Standard
  2519. These results show that globin blocking significantly improves the cost-effectiv
  2520. eness of mRNA sequencing in primate blood samples by doubling the yield
  2521. of useful reads, allowing detection of more genes, and improving the precision
  2522. of gene expression measurements.
  2523. Based on these results, a globin reducing or blocking protocol is recommended
  2524. for all RNA-seq studies of primate blood samples.
  2525. \end_layout
  2526. \begin_layout Section
  2527. Approach
  2528. \end_layout
  2529. \begin_layout Standard
  2530. \begin_inset Note Note
  2531. status open
  2532. \begin_layout Plain Layout
  2533. Consider putting some of this in the Intro chapter
  2534. \end_layout
  2535. \begin_layout Itemize
  2536. Cynomolgus monkeys as a model organism
  2537. \end_layout
  2538. \begin_deeper
  2539. \begin_layout Itemize
  2540. Highly related to humans
  2541. \end_layout
  2542. \begin_layout Itemize
  2543. Small size and short life cycle - good research animal
  2544. \end_layout
  2545. \begin_layout Itemize
  2546. Genomics resources still in development
  2547. \end_layout
  2548. \end_deeper
  2549. \begin_layout Itemize
  2550. Inadequacy of existing blood RNA-seq protocols
  2551. \end_layout
  2552. \begin_deeper
  2553. \begin_layout Itemize
  2554. Existing protocols use a separate globin pulldown step, slowing down processing
  2555. \end_layout
  2556. \end_deeper
  2557. \end_inset
  2558. \end_layout
  2559. \begin_layout Standard
  2560. Increasingly, researchers are turning to high-throughput mRNA sequencing
  2561. technologies (RNA-seq) in preference to expression microarrays for analysis
  2562. of gene expression
  2563. \begin_inset CommandInset citation
  2564. LatexCommand cite
  2565. key "Mutz2012"
  2566. literal "false"
  2567. \end_inset
  2568. .
  2569. The advantages are even greater for study of model organisms with no well-estab
  2570. lished array platforms available, such as the cynomolgus monkey (Macaca
  2571. fascicularis).
  2572. High fractions of globin mRNA are naturally present in mammalian peripheral
  2573. blood samples (up to 70% of total mRNA) and these are known to interfere
  2574. with the results of array-based expression profiling
  2575. \begin_inset CommandInset citation
  2576. LatexCommand cite
  2577. key "Winn2010"
  2578. literal "false"
  2579. \end_inset
  2580. .
  2581. The importance of globin reduction for RNA-seq of blood has only been evaluated
  2582. for a deepSAGE protocol on human samples
  2583. \begin_inset CommandInset citation
  2584. LatexCommand cite
  2585. key "Mastrokolias2012"
  2586. literal "false"
  2587. \end_inset
  2588. .
  2589. In the present report, we evaluated globin reduction using custom blocking
  2590. oligonucleotides for deep RNA-seq of peripheral blood samples from a nonhuman
  2591. primate, cynomolgus monkey, using the Illumina technology platform.
  2592. We demonstrate that globin reduction significantly improves the cost-effectiven
  2593. ess of RNA-seq in blood samples.
  2594. Thus, our protocol offers a significant advantage to any investigator planning
  2595. to use RNA-seq for gene expression profiling of nonhuman primate blood
  2596. samples.
  2597. Our method can be generally applied to any species by designing complementary
  2598. oligonucleotide blocking probes to the globin gene sequences of that species.
  2599. Indeed, any highly expressed but biologically uninformative transcripts
  2600. can also be blocked to further increase sequencing efficiency and value
  2601. \begin_inset CommandInset citation
  2602. LatexCommand cite
  2603. key "Arnaud2016"
  2604. literal "false"
  2605. \end_inset
  2606. .
  2607. \end_layout
  2608. \begin_layout Section
  2609. Methods
  2610. \end_layout
  2611. \begin_layout Subsection*
  2612. Sample collection
  2613. \end_layout
  2614. \begin_layout Standard
  2615. All research reported here was done under IACUC-approved protocols at the
  2616. University of Miami and complied with all applicable federal and state
  2617. regulations and ethical principles for nonhuman primate research.
  2618. Blood draws occurred between 16 April 2012 and 18 June 2015.
  2619. The experimental system involved intrahepatic pancreatic islet transplantation
  2620. into Cynomolgus monkeys with induced diabetes mellitus with or without
  2621. concomitant infusion of mesenchymal stem cells.
  2622. Blood was collected at serial time points before and after transplantation
  2623. into PAXgene Blood RNA tubes (PreAnalytiX/Qiagen, Valencia, CA) at the
  2624. precise volume:volume ratio of 2.5 ml whole blood into 6.9 ml of PAX gene
  2625. additive.
  2626. \end_layout
  2627. \begin_layout Subsection*
  2628. Globin Blocking
  2629. \end_layout
  2630. \begin_layout Standard
  2631. Four oligonucleotides were designed to hybridize to the 3’ end of the transcript
  2632. s for Cynomolgus HBA1, HBA2 and HBB, with two hybridization sites for HBB
  2633. and 2 sites for HBA (the chosen sites were identical in both HBA genes).
  2634. All oligos were purchased from Sigma and were entirely composed of 2’O-Me
  2635. bases with a C3 spacer positioned at the 3’ ends to prevent any polymerase
  2636. mediated primer extension.
  2637. \end_layout
  2638. \begin_layout Quote
  2639. HBA1/2 site 1: GCCCACUCAGACUUUAUUCAAAG-C3spacer
  2640. \end_layout
  2641. \begin_layout Quote
  2642. HBA1/2 site 2: GGUGCAAGGAGGGGAGGAG-C3spacer
  2643. \end_layout
  2644. \begin_layout Quote
  2645. HBB site 1: AAUGAAAAUAAAUGUUUUUUAUUAG-C3spacer
  2646. \end_layout
  2647. \begin_layout Quote
  2648. HBB site 2: CUCAAGGCCCUUCAUAAUAUCCC-C3spacer
  2649. \end_layout
  2650. \begin_layout Subsection*
  2651. RNA-seq Library Preparation
  2652. \end_layout
  2653. \begin_layout Standard
  2654. Sequencing libraries were prepared with 200ng total RNA from each sample.
  2655. Polyadenylated mRNA was selected from 200 ng aliquots of cynomologus blood-deri
  2656. ved total RNA using Ambion Dynabeads Oligo(dT)25 beads (Invitrogen) following
  2657. manufacturer’s recommended protocol.
  2658. PolyA selected RNA was then combined with 8 pmol of HBA1/2 (site 1), 8
  2659. pmol of HBA1/2 (site 2), 12 pmol of HBB (site 1) and 12 pmol of HBB (site
  2660. 2) oligonucleotides.
  2661. In addition, 20 pmol of RT primer containing a portion of the Illumina
  2662. adapter sequence (B-oligo-dTV: GAGTTCCTTGGCACCCGAGAATTCCATTTTTTTTTTTTTTTTTTTV)
  2663. and 4 µL of 5X First Strand buffer (250 mM Tris-HCl pH 8.3, 375 mM KCl,
  2664. 15mM MgCl2) were added in a total volume of 15 µL.
  2665. The RNA was fragmented by heating this cocktail for 3 minutes at 95°C and
  2666. then placed on ice.
  2667. This was followed by the addition of 2 µL 0.1 M DTT, 1 µL RNaseOUT, 1 µL
  2668. 10mM dNTPs 10% biotin-16 aminoallyl-2’- dUTP and 10% biotin-16 aminoallyl-2’-
  2669. dCTP (TriLink Biotech, San Diego, CA), 1 µL Superscript II (200U/ µL, Thermo-Fi
  2670. sher).
  2671. A second “unblocked” library was prepared in the same way for each sample
  2672. but replacing the blocking oligos with an equivalent volume of water.
  2673. The reaction was carried out at 25°C for 15 minutes and 42°C for 40 minutes,
  2674. followed by incubation at 75°C for 10 minutes to inactivate the reverse
  2675. transcriptase.
  2676. \end_layout
  2677. \begin_layout Standard
  2678. The cDNA/RNA hybrid molecules were purified using 1.8X Ampure XP beads (Agencourt
  2679. ) following supplier’s recommended protocol.
  2680. The cDNA/RNA hybrid was eluted in 25 µL of 10 mM Tris-HCl pH 8.0, and then
  2681. bound to 25 µL of M280 Magnetic Streptavidin beads washed per recommended
  2682. protocol (Thermo-Fisher).
  2683. After 30 minutes of binding, beads were washed one time in 100 µL 0.1N NaOH
  2684. to denature and remove the bound RNA, followed by two 100 µL washes with
  2685. 1X TE buffer.
  2686. \end_layout
  2687. \begin_layout Standard
  2688. Subsequent attachment of the 5-prime Illumina A adapter was performed by
  2689. on-bead random primer extension of the following sequence (A-N8 primer:
  2690. TTCAGAGTTCTACAGTCCGACGATCNNNNNNNN).
  2691. Briefly, beads were resuspended in a 20 µL reaction containing 5 µM A-N8
  2692. primer, 40mM Tris-HCl pH 7.5, 20mM MgCl2, 50mM NaCl, 0.325U/µL Sequenase
  2693. 2.0 (Affymetrix, Santa Clara, CA), 0.0025U/µL inorganic pyrophosphatase (Affymetr
  2694. ix) and 300 µM each dNTP.
  2695. Reaction was incubated at 22°C for 30 minutes, then beads were washed 2
  2696. times with 1X TE buffer (200µL).
  2697. \end_layout
  2698. \begin_layout Standard
  2699. The magnetic streptavidin beads were resuspended in 34 µL nuclease-free
  2700. water and added directly to a PCR tube.
  2701. The two Illumina protocol-specified PCR primers were added at 0.53 µM (Illumina
  2702. TruSeq Universal Primer 1 and Illumina TruSeq barcoded PCR primer 2), along
  2703. with 40 µL 2X KAPA HiFi Hotstart ReadyMix (KAPA, Willmington MA) and thermocycl
  2704. ed as follows: starting with 98°C (2 min-hold); 15 cycles of 98°C, 20sec;
  2705. 60°C, 30sec; 72°C, 30sec; and finished with a 72°C (2 min-hold).
  2706. \end_layout
  2707. \begin_layout Standard
  2708. PCR products were purified with 1X Ampure Beads following manufacturer’s
  2709. recommended protocol.
  2710. Libraries were then analyzed using the Agilent TapeStation and quantitation
  2711. of desired size range was performed by “smear analysis”.
  2712. Samples were pooled in equimolar batches of 16 samples.
  2713. Pooled libraries were size selected on 2% agarose gels (E-Gel EX Agarose
  2714. Gels; Thermo-Fisher).
  2715. Products were cut between 250 and 350 bp (corresponding to insert sizes
  2716. of 130 to 230 bps).
  2717. Finished library pools were then sequenced on the Illumina NextSeq500 instrumen
  2718. t with 75 base read lengths.
  2719. \end_layout
  2720. \begin_layout Subsection*
  2721. Read alignment and counting
  2722. \end_layout
  2723. \begin_layout Standard
  2724. Reads were aligned to the cynomolgus genome using STAR
  2725. \begin_inset CommandInset citation
  2726. LatexCommand cite
  2727. key "Dobin2013,Wilson2013"
  2728. literal "false"
  2729. \end_inset
  2730. .
  2731. Counts of uniquely mapped reads were obtained for every gene in each sample
  2732. with the “featureCounts” function from the Rsubread package, using each
  2733. of the three possibilities for the “strandSpecific” option: sense, antisense,
  2734. and unstranded
  2735. \begin_inset CommandInset citation
  2736. LatexCommand cite
  2737. key "Liao2014"
  2738. literal "false"
  2739. \end_inset
  2740. .
  2741. A few artifacts in the cynomolgus genome annotation complicated read counting.
  2742. First, no ortholog is annotated for alpha globin in the cynomolgus genome,
  2743. presumably because the human genome has two alpha globin genes with nearly
  2744. identical sequences, making the orthology relationship ambiguous.
  2745. However, two loci in the cynomolgus genome are as “hemoglobin subunit alpha-lik
  2746. e” (LOC102136192 and LOC102136846).
  2747. LOC102136192 is annotated as a pseudogene while LOC102136846 is annotated
  2748. as protein-coding.
  2749. Our globin reduction protocol was designed to include blocking of these
  2750. two genes.
  2751. Indeed, these two genes have almost the same read counts in each library
  2752. as the properly-annotated HBB gene and much larger counts than any other
  2753. gene in the unblocked libraries, giving confidence that reads derived from
  2754. the real alpha globin are mapping to both genes.
  2755. Thus, reads from both of these loci were counted as alpha globin reads
  2756. in all further analyses.
  2757. The second artifact is a small, uncharacterized non-coding RNA gene (LOC1021365
  2758. 91), which overlaps the HBA-like gene (LOC102136192) on the opposite strand.
  2759. If counting is not performed in stranded mode (or if a non-strand-specific
  2760. sequencing protocol is used), many reads mapping to the globin gene will
  2761. be discarded as ambiguous due to their overlap with this ncRNA gene, resulting
  2762. in significant undercounting of globin reads.
  2763. Therefore, stranded sense counts were used for all further analysis in
  2764. the present study to insure that we accurately accounted for globin transcript
  2765. reduction.
  2766. However, we note that stranded reads are not necessary for RNA-seq using
  2767. our protocol in standard practice.
  2768. \end_layout
  2769. \begin_layout Subsection*
  2770. Normalization and Exploratory Data Analysis
  2771. \end_layout
  2772. \begin_layout Standard
  2773. Libraries were normalized by computing scaling factors using the edgeR package’s
  2774. Trimmed Mean of M-values method
  2775. \begin_inset CommandInset citation
  2776. LatexCommand cite
  2777. key "Robinson2010"
  2778. literal "false"
  2779. \end_inset
  2780. .
  2781. Log2 counts per million values (logCPM) were calculated using the cpm function
  2782. in edgeR for individual samples and aveLogCPM function for averages across
  2783. groups of samples, using those functions’ default prior count values to
  2784. avoid taking the logarithm of 0.
  2785. Genes were considered “present” if their average normalized logCPM values
  2786. across all libraries were at least -1.
  2787. Normalizing for gene length was unnecessary because the sequencing protocol
  2788. is 3’-biased and hence the expected read count for each gene is related
  2789. to the transcript’s copy number but not its length.
  2790. \end_layout
  2791. \begin_layout Standard
  2792. In order to assess the effect of blocking on reproducibility, Pearson and
  2793. Spearman correlation coefficients were computed between the logCPM values
  2794. for every pair of libraries within the globin-blocked (GB) and unblocked
  2795. (non-GB) groups, and edgeR's “estimateDisp” function was used to compute
  2796. negative binomial dispersions separately for the two groups
  2797. \begin_inset CommandInset citation
  2798. LatexCommand cite
  2799. key "Chen2014"
  2800. literal "false"
  2801. \end_inset
  2802. .
  2803. \end_layout
  2804. \begin_layout Subsection*
  2805. Differential Expression Analysis
  2806. \end_layout
  2807. \begin_layout Standard
  2808. All tests for differential gene expression were performed using edgeR, by
  2809. first fitting a negative binomial generalized linear model to the counts
  2810. and normalization factors and then performing a quasi-likelihood F-test
  2811. with robust estimation of outlier gene dispersions
  2812. \begin_inset CommandInset citation
  2813. LatexCommand cite
  2814. key "Lund2012,Phipson2016"
  2815. literal "false"
  2816. \end_inset
  2817. .
  2818. To investigate the effects of globin blocking on each gene, an additive
  2819. model was fit to the full data with coefficients for globin blocking and
  2820. SampleID.
  2821. To test the effect of globin blocking on detection of differentially expressed
  2822. genes, the GB samples and non-GB samples were each analyzed independently
  2823. as follows: for each animal with both a pre-transplant and a post-transplant
  2824. time point in the data set, the pre-transplant sample and the earliest
  2825. post-transplant sample were selected, and all others were excluded, yielding
  2826. a pre-/post-transplant pair of samples for each animal (N=7 animals with
  2827. paired samples).
  2828. These samples were analyzed for pre-transplant vs.
  2829. post-transplant differential gene expression while controlling for inter-animal
  2830. variation using an additive model with coefficients for transplant and
  2831. animal ID.
  2832. In all analyses, p-values were adjusted using the Benjamini-Hochberg procedure
  2833. for FDR correction
  2834. \begin_inset CommandInset citation
  2835. LatexCommand cite
  2836. key "Benjamini1995"
  2837. literal "false"
  2838. \end_inset
  2839. .
  2840. \end_layout
  2841. \begin_layout Standard
  2842. \begin_inset Note Note
  2843. status open
  2844. \begin_layout Itemize
  2845. New blood RNA-seq protocol to block reverse transcription of globin genes
  2846. \end_layout
  2847. \begin_layout Itemize
  2848. Blood RNA-seq time course after transplants with/without MSC infusion
  2849. \end_layout
  2850. \end_inset
  2851. \end_layout
  2852. \begin_layout Section
  2853. Results
  2854. \end_layout
  2855. \begin_layout Subsection*
  2856. Globin blocking yields a larger and more consistent fraction of useful reads
  2857. \end_layout
  2858. \begin_layout Standard
  2859. The objective of the present study was to validate a new protocol for deep
  2860. RNA-seq of whole blood drawn into PaxGene tubes from cynomolgus monkeys
  2861. undergoing islet transplantation, with particular focus on minimizing the
  2862. loss of useful sequencing space to uninformative globin reads.
  2863. The details of the analysis with respect to transplant outcomes and the
  2864. impact of mesenchymal stem cell treatment will be reported in a separate
  2865. manuscript (in preparation).
  2866. To focus on the efficacy of our globin blocking protocol, 37 blood samples,
  2867. 16 from pre-transplant and 21 from post-transplant time points, were each
  2868. prepped once with and once without globin blocking oligos, and were then
  2869. sequenced on an Illumina NextSeq500 instrument.
  2870. The number of reads aligning to each gene in the cynomolgus genome was
  2871. counted.
  2872. Table 1 summarizes the distribution of read fractions among the GB and
  2873. non-GB libraries.
  2874. In the libraries with no globin blocking, globin reads made up an average
  2875. of 44.6% of total input reads, while reads assigned to all other genes made
  2876. up an average of 26.3%.
  2877. The remaining reads either aligned to intergenic regions (that include
  2878. long non-coding RNAs) or did not align with any annotated transcripts in
  2879. the current build of the cynomolgus genome.
  2880. In the GB libraries, globin reads made up only 3.48% and reads assigned
  2881. to all other genes increased to 50.4%.
  2882. Thus, globin blocking resulted in a 92.2% reduction in globin reads and
  2883. a 91.6% increase in yield of useful non-globin reads.
  2884. \end_layout
  2885. \begin_layout Standard
  2886. This reduction is not quite as efficient as the previous analysis showed
  2887. for human samples by DeepSAGE (<0.4% globin reads after globin reduction)
  2888. \begin_inset CommandInset citation
  2889. LatexCommand cite
  2890. key "Mastrokolias2012"
  2891. literal "false"
  2892. \end_inset
  2893. .
  2894. Nonetheless, this degree of globin reduction is sufficient to nearly double
  2895. the yield of useful reads.
  2896. Thus, globin blocking cuts the required sequencing effort (and costs) to
  2897. achieve a target coverage depth by almost 50%.
  2898. Consistent with this near doubling of yield, the average difference in
  2899. un-normalized logCPM across all genes between the GB libraries and non-GB
  2900. libraries is approximately 1 (mean = 1.01, median = 1.08), an overall 2-fold
  2901. increase.
  2902. Un-normalized values are used here because the TMM normalization correctly
  2903. identifies this 2-fold difference as biologically irrelevant and removes
  2904. it.
  2905. \end_layout
  2906. \begin_layout Standard
  2907. \begin_inset Float figure
  2908. wide false
  2909. sideways false
  2910. status open
  2911. \begin_layout Plain Layout
  2912. \align center
  2913. \begin_inset Graphics
  2914. filename graphics/Globin Paper/figure1 - globin-fractions.pdf
  2915. \end_inset
  2916. \end_layout
  2917. \begin_layout Plain Layout
  2918. \begin_inset Caption Standard
  2919. \begin_layout Plain Layout
  2920. \series bold
  2921. \begin_inset Argument 1
  2922. status collapsed
  2923. \begin_layout Plain Layout
  2924. Fraction of genic reads in each sample aligned to non-globin genes, with
  2925. and without globin blocking (GB).
  2926. \end_layout
  2927. \end_inset
  2928. \begin_inset CommandInset label
  2929. LatexCommand label
  2930. name "fig:Fraction-of-genic-reads"
  2931. \end_inset
  2932. Fraction of genic reads in each sample aligned to non-globin genes, with
  2933. and without globin blocking (GB).
  2934. \series default
  2935. All reads in each sequencing library were aligned to the cyno genome, and
  2936. the number of reads uniquely aligning to each gene was counted.
  2937. For each sample, counts were summed separately for all globin genes and
  2938. for the remainder of the genes (non-globin genes), and the fraction of
  2939. genic reads aligned to non-globin genes was computed.
  2940. Each point represents an individual sample.
  2941. Gray + signs indicate the means for globin-blocked libraries and unblocked
  2942. libraries.
  2943. The overall distribution for each group is represented as a notched box
  2944. plots.
  2945. Points are randomly spread vertically to avoid excessive overlapping.
  2946. \end_layout
  2947. \end_inset
  2948. \end_layout
  2949. \begin_layout Plain Layout
  2950. \end_layout
  2951. \end_inset
  2952. \end_layout
  2953. \begin_layout Standard
  2954. \begin_inset Float table
  2955. placement p
  2956. wide false
  2957. sideways true
  2958. status open
  2959. \begin_layout Plain Layout
  2960. \align center
  2961. \begin_inset Tabular
  2962. <lyxtabular version="3" rows="4" columns="7">
  2963. <features tabularvalignment="middle">
  2964. <column alignment="center" valignment="top">
  2965. <column alignment="center" valignment="top">
  2966. <column alignment="center" valignment="top">
  2967. <column alignment="center" valignment="top">
  2968. <column alignment="center" valignment="top">
  2969. <column alignment="center" valignment="top">
  2970. <column alignment="center" valignment="top">
  2971. <row>
  2972. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2973. \begin_inset Text
  2974. \begin_layout Plain Layout
  2975. \end_layout
  2976. \end_inset
  2977. </cell>
  2978. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2979. \begin_inset Text
  2980. \begin_layout Plain Layout
  2981. \family roman
  2982. \series medium
  2983. \shape up
  2984. \size normal
  2985. \emph off
  2986. \bar no
  2987. \strikeout off
  2988. \xout off
  2989. \uuline off
  2990. \uwave off
  2991. \noun off
  2992. \color none
  2993. Percent of Total Reads
  2994. \end_layout
  2995. \end_inset
  2996. </cell>
  2997. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2998. \begin_inset Text
  2999. \begin_layout Plain Layout
  3000. \end_layout
  3001. \end_inset
  3002. </cell>
  3003. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3004. \begin_inset Text
  3005. \begin_layout Plain Layout
  3006. \end_layout
  3007. \end_inset
  3008. </cell>
  3009. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3010. \begin_inset Text
  3011. \begin_layout Plain Layout
  3012. \end_layout
  3013. \end_inset
  3014. </cell>
  3015. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3016. \begin_inset Text
  3017. \begin_layout Plain Layout
  3018. \family roman
  3019. \series medium
  3020. \shape up
  3021. \size normal
  3022. \emph off
  3023. \bar no
  3024. \strikeout off
  3025. \xout off
  3026. \uuline off
  3027. \uwave off
  3028. \noun off
  3029. \color none
  3030. Percent of Genic Reads
  3031. \end_layout
  3032. \end_inset
  3033. </cell>
  3034. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3035. \begin_inset Text
  3036. \begin_layout Plain Layout
  3037. \end_layout
  3038. \end_inset
  3039. </cell>
  3040. </row>
  3041. <row>
  3042. <cell alignment="center" valignment="top" bottomline="true" leftline="true" usebox="none">
  3043. \begin_inset Text
  3044. \begin_layout Plain Layout
  3045. GB
  3046. \end_layout
  3047. \end_inset
  3048. </cell>
  3049. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3050. \begin_inset Text
  3051. \begin_layout Plain Layout
  3052. \family roman
  3053. \series medium
  3054. \shape up
  3055. \size normal
  3056. \emph off
  3057. \bar no
  3058. \strikeout off
  3059. \xout off
  3060. \uuline off
  3061. \uwave off
  3062. \noun off
  3063. \color none
  3064. Non-globin Reads
  3065. \end_layout
  3066. \end_inset
  3067. </cell>
  3068. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3069. \begin_inset Text
  3070. \begin_layout Plain Layout
  3071. \family roman
  3072. \series medium
  3073. \shape up
  3074. \size normal
  3075. \emph off
  3076. \bar no
  3077. \strikeout off
  3078. \xout off
  3079. \uuline off
  3080. \uwave off
  3081. \noun off
  3082. \color none
  3083. Globin Reads
  3084. \end_layout
  3085. \end_inset
  3086. </cell>
  3087. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3088. \begin_inset Text
  3089. \begin_layout Plain Layout
  3090. \family roman
  3091. \series medium
  3092. \shape up
  3093. \size normal
  3094. \emph off
  3095. \bar no
  3096. \strikeout off
  3097. \xout off
  3098. \uuline off
  3099. \uwave off
  3100. \noun off
  3101. \color none
  3102. All Genic Reads
  3103. \end_layout
  3104. \end_inset
  3105. </cell>
  3106. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3107. \begin_inset Text
  3108. \begin_layout Plain Layout
  3109. \family roman
  3110. \series medium
  3111. \shape up
  3112. \size normal
  3113. \emph off
  3114. \bar no
  3115. \strikeout off
  3116. \xout off
  3117. \uuline off
  3118. \uwave off
  3119. \noun off
  3120. \color none
  3121. All Aligned Reads
  3122. \end_layout
  3123. \end_inset
  3124. </cell>
  3125. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3126. \begin_inset Text
  3127. \begin_layout Plain Layout
  3128. \family roman
  3129. \series medium
  3130. \shape up
  3131. \size normal
  3132. \emph off
  3133. \bar no
  3134. \strikeout off
  3135. \xout off
  3136. \uuline off
  3137. \uwave off
  3138. \noun off
  3139. \color none
  3140. Non-globin Reads
  3141. \end_layout
  3142. \end_inset
  3143. </cell>
  3144. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3145. \begin_inset Text
  3146. \begin_layout Plain Layout
  3147. \family roman
  3148. \series medium
  3149. \shape up
  3150. \size normal
  3151. \emph off
  3152. \bar no
  3153. \strikeout off
  3154. \xout off
  3155. \uuline off
  3156. \uwave off
  3157. \noun off
  3158. \color none
  3159. Globin Reads
  3160. \end_layout
  3161. \end_inset
  3162. </cell>
  3163. </row>
  3164. <row>
  3165. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3166. \begin_inset Text
  3167. \begin_layout Plain Layout
  3168. \family roman
  3169. \series medium
  3170. \shape up
  3171. \size normal
  3172. \emph off
  3173. \bar no
  3174. \strikeout off
  3175. \xout off
  3176. \uuline off
  3177. \uwave off
  3178. \noun off
  3179. \color none
  3180. Yes
  3181. \end_layout
  3182. \end_inset
  3183. </cell>
  3184. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3185. \begin_inset Text
  3186. \begin_layout Plain Layout
  3187. \family roman
  3188. \series medium
  3189. \shape up
  3190. \size normal
  3191. \emph off
  3192. \bar no
  3193. \strikeout off
  3194. \xout off
  3195. \uuline off
  3196. \uwave off
  3197. \noun off
  3198. \color none
  3199. 50.4% ± 6.82
  3200. \end_layout
  3201. \end_inset
  3202. </cell>
  3203. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3204. \begin_inset Text
  3205. \begin_layout Plain Layout
  3206. \family roman
  3207. \series medium
  3208. \shape up
  3209. \size normal
  3210. \emph off
  3211. \bar no
  3212. \strikeout off
  3213. \xout off
  3214. \uuline off
  3215. \uwave off
  3216. \noun off
  3217. \color none
  3218. 3.48% ± 2.94
  3219. \end_layout
  3220. \end_inset
  3221. </cell>
  3222. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3223. \begin_inset Text
  3224. \begin_layout Plain Layout
  3225. \family roman
  3226. \series medium
  3227. \shape up
  3228. \size normal
  3229. \emph off
  3230. \bar no
  3231. \strikeout off
  3232. \xout off
  3233. \uuline off
  3234. \uwave off
  3235. \noun off
  3236. \color none
  3237. 53.9% ± 6.81
  3238. \end_layout
  3239. \end_inset
  3240. </cell>
  3241. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3242. \begin_inset Text
  3243. \begin_layout Plain Layout
  3244. \family roman
  3245. \series medium
  3246. \shape up
  3247. \size normal
  3248. \emph off
  3249. \bar no
  3250. \strikeout off
  3251. \xout off
  3252. \uuline off
  3253. \uwave off
  3254. \noun off
  3255. \color none
  3256. 89.7% ± 2.40
  3257. \end_layout
  3258. \end_inset
  3259. </cell>
  3260. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3261. \begin_inset Text
  3262. \begin_layout Plain Layout
  3263. \family roman
  3264. \series medium
  3265. \shape up
  3266. \size normal
  3267. \emph off
  3268. \bar no
  3269. \strikeout off
  3270. \xout off
  3271. \uuline off
  3272. \uwave off
  3273. \noun off
  3274. \color none
  3275. 93.5% ± 5.25
  3276. \end_layout
  3277. \end_inset
  3278. </cell>
  3279. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3280. \begin_inset Text
  3281. \begin_layout Plain Layout
  3282. \family roman
  3283. \series medium
  3284. \shape up
  3285. \size normal
  3286. \emph off
  3287. \bar no
  3288. \strikeout off
  3289. \xout off
  3290. \uuline off
  3291. \uwave off
  3292. \noun off
  3293. \color none
  3294. 6.49% ± 5.25
  3295. \end_layout
  3296. \end_inset
  3297. </cell>
  3298. </row>
  3299. <row>
  3300. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3301. \begin_inset Text
  3302. \begin_layout Plain Layout
  3303. \family roman
  3304. \series medium
  3305. \shape up
  3306. \size normal
  3307. \emph off
  3308. \bar no
  3309. \strikeout off
  3310. \xout off
  3311. \uuline off
  3312. \uwave off
  3313. \noun off
  3314. \color none
  3315. No
  3316. \end_layout
  3317. \end_inset
  3318. </cell>
  3319. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3320. \begin_inset Text
  3321. \begin_layout Plain Layout
  3322. \family roman
  3323. \series medium
  3324. \shape up
  3325. \size normal
  3326. \emph off
  3327. \bar no
  3328. \strikeout off
  3329. \xout off
  3330. \uuline off
  3331. \uwave off
  3332. \noun off
  3333. \color none
  3334. 26.3% ± 8.95
  3335. \end_layout
  3336. \end_inset
  3337. </cell>
  3338. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3339. \begin_inset Text
  3340. \begin_layout Plain Layout
  3341. \family roman
  3342. \series medium
  3343. \shape up
  3344. \size normal
  3345. \emph off
  3346. \bar no
  3347. \strikeout off
  3348. \xout off
  3349. \uuline off
  3350. \uwave off
  3351. \noun off
  3352. \color none
  3353. 44.6% ± 16.6
  3354. \end_layout
  3355. \end_inset
  3356. </cell>
  3357. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3358. \begin_inset Text
  3359. \begin_layout Plain Layout
  3360. \family roman
  3361. \series medium
  3362. \shape up
  3363. \size normal
  3364. \emph off
  3365. \bar no
  3366. \strikeout off
  3367. \xout off
  3368. \uuline off
  3369. \uwave off
  3370. \noun off
  3371. \color none
  3372. 70.1% ± 9.38
  3373. \end_layout
  3374. \end_inset
  3375. </cell>
  3376. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3377. \begin_inset Text
  3378. \begin_layout Plain Layout
  3379. \family roman
  3380. \series medium
  3381. \shape up
  3382. \size normal
  3383. \emph off
  3384. \bar no
  3385. \strikeout off
  3386. \xout off
  3387. \uuline off
  3388. \uwave off
  3389. \noun off
  3390. \color none
  3391. 90.7% ± 5.16
  3392. \end_layout
  3393. \end_inset
  3394. </cell>
  3395. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3396. \begin_inset Text
  3397. \begin_layout Plain Layout
  3398. \family roman
  3399. \series medium
  3400. \shape up
  3401. \size normal
  3402. \emph off
  3403. \bar no
  3404. \strikeout off
  3405. \xout off
  3406. \uuline off
  3407. \uwave off
  3408. \noun off
  3409. \color none
  3410. 38.8% ± 17.1
  3411. \end_layout
  3412. \end_inset
  3413. </cell>
  3414. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3415. \begin_inset Text
  3416. \begin_layout Plain Layout
  3417. \family roman
  3418. \series medium
  3419. \shape up
  3420. \size normal
  3421. \emph off
  3422. \bar no
  3423. \strikeout off
  3424. \xout off
  3425. \uuline off
  3426. \uwave off
  3427. \noun off
  3428. \color none
  3429. 61.2% ± 17.1
  3430. \end_layout
  3431. \end_inset
  3432. </cell>
  3433. </row>
  3434. </lyxtabular>
  3435. \end_inset
  3436. \end_layout
  3437. \begin_layout Plain Layout
  3438. \begin_inset Caption Standard
  3439. \begin_layout Plain Layout
  3440. \series bold
  3441. \begin_inset Argument 1
  3442. status collapsed
  3443. \begin_layout Plain Layout
  3444. Fractions of reads mapping to genomic features in GB and non-GB samples.
  3445. \end_layout
  3446. \end_inset
  3447. \begin_inset CommandInset label
  3448. LatexCommand label
  3449. name "tab:Fractions-of-reads"
  3450. \end_inset
  3451. Fractions of reads mapping to genomic features in GB and non-GB samples.
  3452. \series default
  3453. All values are given as mean ± standard deviation.
  3454. \end_layout
  3455. \end_inset
  3456. \end_layout
  3457. \begin_layout Plain Layout
  3458. \end_layout
  3459. \end_inset
  3460. \end_layout
  3461. \begin_layout Standard
  3462. Another important aspect is that the standard deviations in Table
  3463. \begin_inset CommandInset ref
  3464. LatexCommand ref
  3465. reference "tab:Fractions-of-reads"
  3466. plural "false"
  3467. caps "false"
  3468. noprefix "false"
  3469. \end_inset
  3470. are uniformly smaller in the GB samples than the non-GB ones, indicating
  3471. much greater consistency of yield.
  3472. This is best seen in the percentage of non-globin reads as a fraction of
  3473. total reads aligned to annotated genes (genic reads).
  3474. For the non-GB samples, this measure ranges from 10.9% to 80.9%, while for
  3475. the GB samples it ranges from 81.9% to 99.9% (Figure
  3476. \begin_inset CommandInset ref
  3477. LatexCommand ref
  3478. reference "fig:Fraction-of-genic-reads"
  3479. plural "false"
  3480. caps "false"
  3481. noprefix "false"
  3482. \end_inset
  3483. ).
  3484. This means that for applications where it is critical that each sample
  3485. achieve a specified minimum coverage in order to provide useful information,
  3486. it would be necessary to budget up to 10 times the sequencing depth per
  3487. sample without globin blocking, even though the average yield improvement
  3488. for globin blocking is only 2-fold, because every sample has a chance of
  3489. being 90% globin and 10% useful reads.
  3490. Hence, the more consistent behavior of GB samples makes planning an experiment
  3491. easier and more efficient because it eliminates the need to over-sequence
  3492. every sample in order to guard against the worst case of a high-globin
  3493. fraction.
  3494. \end_layout
  3495. \begin_layout Subsection*
  3496. Globin blocking lowers the noise floor and allows detection of about 2000
  3497. more genes
  3498. \end_layout
  3499. \begin_layout Standard
  3500. \begin_inset Flex TODO Note (inline)
  3501. status open
  3502. \begin_layout Plain Layout
  3503. Remove redundant titles from figures
  3504. \end_layout
  3505. \end_inset
  3506. \end_layout
  3507. \begin_layout Standard
  3508. \begin_inset Float figure
  3509. wide false
  3510. sideways false
  3511. status open
  3512. \begin_layout Plain Layout
  3513. \align center
  3514. \begin_inset Graphics
  3515. filename graphics/Globin Paper/figure2 - aveLogCPM-colored.pdf
  3516. \end_inset
  3517. \end_layout
  3518. \begin_layout Plain Layout
  3519. \begin_inset Caption Standard
  3520. \begin_layout Plain Layout
  3521. \series bold
  3522. \begin_inset Argument 1
  3523. status collapsed
  3524. \begin_layout Plain Layout
  3525. Distributions of average group gene abundances when normalized separately
  3526. or together.
  3527. \end_layout
  3528. \end_inset
  3529. \begin_inset CommandInset label
  3530. LatexCommand label
  3531. name "fig:logcpm-dists"
  3532. \end_inset
  3533. Distributions of average group gene abundances when normalized separately
  3534. or together.
  3535. \series default
  3536. All reads in each sequencing library were aligned to the cyno genome, and
  3537. the number of reads uniquely aligning to each gene was counted.
  3538. Genes with zero counts in all libraries were discarded.
  3539. Libraries were normalized using the TMM method.
  3540. Libraries were split into globin-blocked (GB) and non-GB groups and the
  3541. average abundance for each gene in both groups, measured in log2 counts
  3542. per million reads counted, was computed using the aveLogCPM function.
  3543. The distribution of average gene logCPM values was plotted for both groups
  3544. using a kernel density plot to approximate a continuous distribution.
  3545. The logCPM GB distributions are marked in red, non-GB in blue.
  3546. The black vertical line denotes the chosen detection threshold of -1.
  3547. Top panel: Libraries were split into GB and non-GB groups first and normalized
  3548. separately.
  3549. Bottom panel: Libraries were all normalized together first and then split
  3550. into groups.
  3551. \end_layout
  3552. \end_inset
  3553. \end_layout
  3554. \begin_layout Plain Layout
  3555. \end_layout
  3556. \end_inset
  3557. \end_layout
  3558. \begin_layout Standard
  3559. Since globin blocking yields more usable sequencing depth, it should also
  3560. allow detection of more genes at any given threshold.
  3561. When we looked at the distribution of average normalized logCPM values
  3562. across all libraries for genes with at least one read assigned to them,
  3563. we observed the expected bimodal distribution, with a high-abundance "signal"
  3564. peak representing detected genes and a low-abundance "noise" peak representing
  3565. genes whose read count did not rise above the noise floor (Figure
  3566. \begin_inset CommandInset ref
  3567. LatexCommand ref
  3568. reference "fig:logcpm-dists"
  3569. plural "false"
  3570. caps "false"
  3571. noprefix "false"
  3572. \end_inset
  3573. ).
  3574. Consistent with the 2-fold increase in raw counts assigned to non-globin
  3575. genes, the signal peak for GB samples is shifted to the right relative
  3576. to the non-GB signal peak.
  3577. When all the samples are normalized together, this difference is normalized
  3578. out, lining up the signal peaks, and this reveals that, as expected, the
  3579. noise floor for the GB samples is about 2-fold lower.
  3580. This greater separation between signal and noise peaks in the GB samples
  3581. means that low-expression genes should be more easily detected and more
  3582. precisely quantified than in the non-GB samples.
  3583. \end_layout
  3584. \begin_layout Standard
  3585. \begin_inset Float figure
  3586. wide false
  3587. sideways false
  3588. status open
  3589. \begin_layout Plain Layout
  3590. \align center
  3591. \begin_inset Graphics
  3592. filename graphics/Globin Paper/figure3 - detection.pdf
  3593. \end_inset
  3594. \end_layout
  3595. \begin_layout Plain Layout
  3596. \begin_inset Caption Standard
  3597. \begin_layout Plain Layout
  3598. \series bold
  3599. \begin_inset Argument 1
  3600. status collapsed
  3601. \begin_layout Plain Layout
  3602. Gene detections as a function of abundance thresholds in globin-blocked
  3603. (GB) and non-GB samples.
  3604. \end_layout
  3605. \end_inset
  3606. \begin_inset CommandInset label
  3607. LatexCommand label
  3608. name "fig:Gene-detections"
  3609. \end_inset
  3610. Gene detections as a function of abundance thresholds in globin-blocked
  3611. (GB) and non-GB samples.
  3612. \series default
  3613. Average abundance (logCPM,
  3614. \begin_inset Formula $\log_{2}$
  3615. \end_inset
  3616. counts per million reads counted) was computed by separate group normalization
  3617. as described in Figure
  3618. \begin_inset CommandInset ref
  3619. LatexCommand ref
  3620. reference "fig:logcpm-dists"
  3621. plural "false"
  3622. caps "false"
  3623. noprefix "false"
  3624. \end_inset
  3625. for both the GB and non-GB groups, as well as for all samples considered
  3626. as one large group.
  3627. For each every integer threshold from -2 to 3, the number of genes detected
  3628. at or above that logCPM threshold was plotted for each group.
  3629. \end_layout
  3630. \end_inset
  3631. \end_layout
  3632. \begin_layout Plain Layout
  3633. \end_layout
  3634. \end_inset
  3635. \end_layout
  3636. \begin_layout Standard
  3637. Based on these distributions, we selected a detection threshold of -1, which
  3638. is approximately the leftmost edge of the trough between the signal and
  3639. noise peaks.
  3640. This represents the most liberal possible detection threshold that doesn't
  3641. call substantial numbers of noise genes as detected.
  3642. Among the full dataset, 13429 genes were detected at this threshold, and
  3643. 22276 were not.
  3644. When considering the GB libraries and non-GB libraries separately and re-comput
  3645. ing normalization factors independently within each group, 14535 genes were
  3646. detected in the GB libraries while only 12460 were detected in the non-GB
  3647. libraries.
  3648. Thus, GB allowed the detection of 2000 extra genes that were buried under
  3649. the noise floor without GB.
  3650. This pattern of at least 2000 additional genes detected with GB was also
  3651. consistent across a wide range of possible detection thresholds, from -2
  3652. to 3 (see Figure
  3653. \begin_inset CommandInset ref
  3654. LatexCommand ref
  3655. reference "fig:Gene-detections"
  3656. plural "false"
  3657. caps "false"
  3658. noprefix "false"
  3659. \end_inset
  3660. ).
  3661. \end_layout
  3662. \begin_layout Subsection*
  3663. Globin blocking does not add significant additional noise or decrease sample
  3664. quality
  3665. \end_layout
  3666. \begin_layout Standard
  3667. One potential worry is that the globin blocking protocol could perturb the
  3668. levels of non-globin genes.
  3669. There are two kinds of possible perturbations: systematic and random.
  3670. The former is not a major concern for detection of differential expression,
  3671. since a 2-fold change in every sample has no effect on the relative fold
  3672. change between samples.
  3673. In contrast, random perturbations would increase the noise and obscure
  3674. the signal in the dataset, reducing the capacity to detect differential
  3675. expression.
  3676. \end_layout
  3677. \begin_layout Standard
  3678. \begin_inset Float figure
  3679. wide false
  3680. sideways false
  3681. status open
  3682. \begin_layout Plain Layout
  3683. \align center
  3684. \begin_inset Graphics
  3685. filename graphics/Globin Paper/figure4 - maplot-colored.pdf
  3686. \end_inset
  3687. \end_layout
  3688. \begin_layout Plain Layout
  3689. \begin_inset Caption Standard
  3690. \begin_layout Plain Layout
  3691. \begin_inset Argument 1
  3692. status collapsed
  3693. \begin_layout Plain Layout
  3694. MA plot showing effects of globin blocking on each gene's abundance.
  3695. \end_layout
  3696. \end_inset
  3697. \begin_inset CommandInset label
  3698. LatexCommand label
  3699. name "fig:MA-plot"
  3700. \end_inset
  3701. \series bold
  3702. MA plot showing effects of globin blocking on each gene's abundance.
  3703. \series default
  3704. All libraries were normalized together as described in Figure
  3705. \begin_inset CommandInset ref
  3706. LatexCommand ref
  3707. reference "fig:logcpm-dists"
  3708. plural "false"
  3709. caps "false"
  3710. noprefix "false"
  3711. \end_inset
  3712. , and genes with an average logCPM below -1 were filtered out.
  3713. Each remaining gene was tested for differential abundance with respect
  3714. to globin blocking (GB) using edgeR’s quasi-likelihod F-test, fitting a
  3715. negative binomial generalized linear model to table of read counts in each
  3716. library.
  3717. For each gene, edgeR reported average abundance (logCPM),
  3718. \begin_inset Formula $\log_{2}$
  3719. \end_inset
  3720. fold change (logFC), p-value, and Benjamini-Hochberg adjusted false discovery
  3721. rate (FDR).
  3722. Each gene's logFC was plotted against its logCPM, colored by FDR.
  3723. Red points are significant at ≤10% FDR, and blue are not significant at
  3724. that threshold.
  3725. The alpha and beta globin genes targeted for blocking are marked with large
  3726. triangles, while all other genes are represented as small points.
  3727. \end_layout
  3728. \end_inset
  3729. \end_layout
  3730. \begin_layout Plain Layout
  3731. \end_layout
  3732. \end_inset
  3733. \end_layout
  3734. \begin_layout Standard
  3735. \begin_inset Flex TODO Note (inline)
  3736. status open
  3737. \begin_layout Plain Layout
  3738. Standardize on
  3739. \begin_inset Quotes eld
  3740. \end_inset
  3741. log2
  3742. \begin_inset Quotes erd
  3743. \end_inset
  3744. notation
  3745. \end_layout
  3746. \end_inset
  3747. \end_layout
  3748. \begin_layout Standard
  3749. The data do indeed show small systematic perturbations in gene levels (Figure
  3750. \begin_inset CommandInset ref
  3751. LatexCommand ref
  3752. reference "fig:MA-plot"
  3753. plural "false"
  3754. caps "false"
  3755. noprefix "false"
  3756. \end_inset
  3757. ).
  3758. Other than the 3 designated alpha and beta globin genes, two other genes
  3759. stand out as having especially large negative log fold changes: HBD and
  3760. LOC1021365.
  3761. HBD, delta globin, is most likely targeted by the blocking oligos due to
  3762. high sequence homology with the other globin genes.
  3763. LOC1021365 is the aforementioned ncRNA that is reverse-complementary to
  3764. one of the alpha-like genes and that would be expected to be removed during
  3765. the globin blocking step.
  3766. All other genes appear in a cluster centered vertically at 0, and the vast
  3767. majority of genes in this cluster show an absolute log2(FC) of 0.5 or less.
  3768. Nevertheless, many of these small perturbations are still statistically
  3769. significant, indicating that the globin blocking oligos likely cause very
  3770. small but non-zero systematic perturbations in measured gene expression
  3771. levels.
  3772. \end_layout
  3773. \begin_layout Standard
  3774. \begin_inset Float figure
  3775. wide false
  3776. sideways false
  3777. status open
  3778. \begin_layout Plain Layout
  3779. \align center
  3780. \begin_inset Graphics
  3781. filename graphics/Globin Paper/figure5 - corrplot.pdf
  3782. \end_inset
  3783. \end_layout
  3784. \begin_layout Plain Layout
  3785. \begin_inset Caption Standard
  3786. \begin_layout Plain Layout
  3787. \series bold
  3788. \begin_inset Argument 1
  3789. status collapsed
  3790. \begin_layout Plain Layout
  3791. Comparison of inter-sample gene abundance correlations with and without
  3792. globin blocking.
  3793. \end_layout
  3794. \end_inset
  3795. \begin_inset CommandInset label
  3796. LatexCommand label
  3797. name "fig:gene-abundance-correlations"
  3798. \end_inset
  3799. Comparison of inter-sample gene abundance correlations with and without
  3800. globin blocking (GB).
  3801. \series default
  3802. All libraries were normalized together as described in Figure 2, and genes
  3803. with an average abundance (logCPM, log2 counts per million reads counted)
  3804. less than -1 were filtered out.
  3805. Each gene’s logCPM was computed in each library using the edgeR cpm function.
  3806. For each pair of biological samples, the Pearson correlation between those
  3807. samples' GB libraries was plotted against the correlation between the same
  3808. samples’ non-GB libraries.
  3809. Each point represents an unique pair of samples.
  3810. The solid gray line shows a quantile-quantile plot of distribution of GB
  3811. correlations vs.
  3812. that of non-GB correlations.
  3813. The thin dashed line is the identity line, provided for reference.
  3814. \end_layout
  3815. \end_inset
  3816. \end_layout
  3817. \begin_layout Plain Layout
  3818. \end_layout
  3819. \end_inset
  3820. \end_layout
  3821. \begin_layout Standard
  3822. To evaluate the possibility of globin blocking causing random perturbations
  3823. and reducing sample quality, we computed the Pearson correlation between
  3824. logCPM values for every pair of samples with and without GB and plotted
  3825. them against each other (Figure
  3826. \begin_inset CommandInset ref
  3827. LatexCommand ref
  3828. reference "fig:gene-abundance-correlations"
  3829. plural "false"
  3830. caps "false"
  3831. noprefix "false"
  3832. \end_inset
  3833. ).
  3834. The plot indicated that the GB libraries have higher sample-to-sample correlati
  3835. ons than the non-GB libraries.
  3836. Parametric and nonparametric tests for differences between the correlations
  3837. with and without GB both confirmed that this difference was highly significant
  3838. (2-sided paired t-test: t = 37.2, df = 665, P ≪ 2.2e-16; 2-sided Wilcoxon
  3839. sign-rank test: V = 2195, P ≪ 2.2e-16).
  3840. Performing the same tests on the Spearman correlations gave the same conclusion
  3841. (t-test: t = 26.8, df = 665, P ≪ 2.2e-16; sign-rank test: V = 8781, P ≪ 2.2e-16).
  3842. The edgeR package was used to compute the overall biological coefficient
  3843. of variation (BCV) for GB and non-GB libraries, and found that globin blocking
  3844. resulted in a negligible increase in the BCV (0.417 with GB vs.
  3845. 0.400 without).
  3846. The near equality of the BCVs for both sets indicates that the higher correlati
  3847. ons in the GB libraries are most likely a result of the increased yield
  3848. of useful reads, which reduces the contribution of Poisson counting uncertainty
  3849. to the overall variance of the logCPM values
  3850. \begin_inset CommandInset citation
  3851. LatexCommand cite
  3852. key "McCarthy2012"
  3853. literal "false"
  3854. \end_inset
  3855. .
  3856. This improves the precision of expression measurements and more than offsets
  3857. the negligible increase in BCV.
  3858. \end_layout
  3859. \begin_layout Subsection*
  3860. More differentially expressed genes are detected with globin blocking
  3861. \end_layout
  3862. \begin_layout Standard
  3863. \begin_inset Float table
  3864. wide false
  3865. sideways false
  3866. status open
  3867. \begin_layout Plain Layout
  3868. \align center
  3869. \begin_inset Tabular
  3870. <lyxtabular version="3" rows="5" columns="5">
  3871. <features tabularvalignment="middle">
  3872. <column alignment="center" valignment="top">
  3873. <column alignment="center" valignment="top">
  3874. <column alignment="center" valignment="top">
  3875. <column alignment="center" valignment="top">
  3876. <column alignment="center" valignment="top">
  3877. <row>
  3878. <cell alignment="center" valignment="top" usebox="none">
  3879. \begin_inset Text
  3880. \begin_layout Plain Layout
  3881. \end_layout
  3882. \end_inset
  3883. </cell>
  3884. <cell alignment="center" valignment="top" usebox="none">
  3885. \begin_inset Text
  3886. \begin_layout Plain Layout
  3887. \end_layout
  3888. \end_inset
  3889. </cell>
  3890. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3891. \begin_inset Text
  3892. \begin_layout Plain Layout
  3893. \series bold
  3894. No Globin Blocking
  3895. \end_layout
  3896. \end_inset
  3897. </cell>
  3898. <cell multicolumn="2" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3899. \begin_inset Text
  3900. \begin_layout Plain Layout
  3901. \end_layout
  3902. \end_inset
  3903. </cell>
  3904. <cell multicolumn="2" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3905. \begin_inset Text
  3906. \begin_layout Plain Layout
  3907. \end_layout
  3908. \end_inset
  3909. </cell>
  3910. </row>
  3911. <row>
  3912. <cell alignment="center" valignment="top" usebox="none">
  3913. \begin_inset Text
  3914. \begin_layout Plain Layout
  3915. \end_layout
  3916. \end_inset
  3917. </cell>
  3918. <cell alignment="center" valignment="top" usebox="none">
  3919. \begin_inset Text
  3920. \begin_layout Plain Layout
  3921. \end_layout
  3922. \end_inset
  3923. </cell>
  3924. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3925. \begin_inset Text
  3926. \begin_layout Plain Layout
  3927. \series bold
  3928. Up
  3929. \end_layout
  3930. \end_inset
  3931. </cell>
  3932. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3933. \begin_inset Text
  3934. \begin_layout Plain Layout
  3935. \series bold
  3936. NS
  3937. \end_layout
  3938. \end_inset
  3939. </cell>
  3940. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3941. \begin_inset Text
  3942. \begin_layout Plain Layout
  3943. \series bold
  3944. Down
  3945. \end_layout
  3946. \end_inset
  3947. </cell>
  3948. </row>
  3949. <row>
  3950. <cell multirow="3" alignment="center" valignment="middle" topline="true" bottomline="true" leftline="true" usebox="none">
  3951. \begin_inset Text
  3952. \begin_layout Plain Layout
  3953. \series bold
  3954. Globin-Blocking
  3955. \end_layout
  3956. \end_inset
  3957. </cell>
  3958. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3959. \begin_inset Text
  3960. \begin_layout Plain Layout
  3961. \series bold
  3962. Up
  3963. \end_layout
  3964. \end_inset
  3965. </cell>
  3966. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3967. \begin_inset Text
  3968. \begin_layout Plain Layout
  3969. \family roman
  3970. \series medium
  3971. \shape up
  3972. \size normal
  3973. \emph off
  3974. \bar no
  3975. \strikeout off
  3976. \xout off
  3977. \uuline off
  3978. \uwave off
  3979. \noun off
  3980. \color none
  3981. 231
  3982. \end_layout
  3983. \end_inset
  3984. </cell>
  3985. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3986. \begin_inset Text
  3987. \begin_layout Plain Layout
  3988. \family roman
  3989. \series medium
  3990. \shape up
  3991. \size normal
  3992. \emph off
  3993. \bar no
  3994. \strikeout off
  3995. \xout off
  3996. \uuline off
  3997. \uwave off
  3998. \noun off
  3999. \color none
  4000. 515
  4001. \end_layout
  4002. \end_inset
  4003. </cell>
  4004. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  4005. \begin_inset Text
  4006. \begin_layout Plain Layout
  4007. \family roman
  4008. \series medium
  4009. \shape up
  4010. \size normal
  4011. \emph off
  4012. \bar no
  4013. \strikeout off
  4014. \xout off
  4015. \uuline off
  4016. \uwave off
  4017. \noun off
  4018. \color none
  4019. 2
  4020. \end_layout
  4021. \end_inset
  4022. </cell>
  4023. </row>
  4024. <row>
  4025. <cell multirow="4" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4026. \begin_inset Text
  4027. \begin_layout Plain Layout
  4028. \end_layout
  4029. \end_inset
  4030. </cell>
  4031. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4032. \begin_inset Text
  4033. \begin_layout Plain Layout
  4034. \series bold
  4035. NS
  4036. \end_layout
  4037. \end_inset
  4038. </cell>
  4039. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4040. \begin_inset Text
  4041. \begin_layout Plain Layout
  4042. \family roman
  4043. \series medium
  4044. \shape up
  4045. \size normal
  4046. \emph off
  4047. \bar no
  4048. \strikeout off
  4049. \xout off
  4050. \uuline off
  4051. \uwave off
  4052. \noun off
  4053. \color none
  4054. 160
  4055. \end_layout
  4056. \end_inset
  4057. </cell>
  4058. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  4059. \begin_inset Text
  4060. \begin_layout Plain Layout
  4061. \family roman
  4062. \series medium
  4063. \shape up
  4064. \size normal
  4065. \emph off
  4066. \bar no
  4067. \strikeout off
  4068. \xout off
  4069. \uuline off
  4070. \uwave off
  4071. \noun off
  4072. \color none
  4073. 11235
  4074. \end_layout
  4075. \end_inset
  4076. </cell>
  4077. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  4078. \begin_inset Text
  4079. \begin_layout Plain Layout
  4080. \family roman
  4081. \series medium
  4082. \shape up
  4083. \size normal
  4084. \emph off
  4085. \bar no
  4086. \strikeout off
  4087. \xout off
  4088. \uuline off
  4089. \uwave off
  4090. \noun off
  4091. \color none
  4092. 136
  4093. \end_layout
  4094. \end_inset
  4095. </cell>
  4096. </row>
  4097. <row>
  4098. <cell multirow="4" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  4099. \begin_inset Text
  4100. \begin_layout Plain Layout
  4101. \end_layout
  4102. \end_inset
  4103. </cell>
  4104. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  4105. \begin_inset Text
  4106. \begin_layout Plain Layout
  4107. \series bold
  4108. Down
  4109. \end_layout
  4110. \end_inset
  4111. </cell>
  4112. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  4113. \begin_inset Text
  4114. \begin_layout Plain Layout
  4115. \family roman
  4116. \series medium
  4117. \shape up
  4118. \size normal
  4119. \emph off
  4120. \bar no
  4121. \strikeout off
  4122. \xout off
  4123. \uuline off
  4124. \uwave off
  4125. \noun off
  4126. \color none
  4127. 0
  4128. \end_layout
  4129. \end_inset
  4130. </cell>
  4131. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  4132. \begin_inset Text
  4133. \begin_layout Plain Layout
  4134. \family roman
  4135. \series medium
  4136. \shape up
  4137. \size normal
  4138. \emph off
  4139. \bar no
  4140. \strikeout off
  4141. \xout off
  4142. \uuline off
  4143. \uwave off
  4144. \noun off
  4145. \color none
  4146. 548
  4147. \end_layout
  4148. \end_inset
  4149. </cell>
  4150. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  4151. \begin_inset Text
  4152. \begin_layout Plain Layout
  4153. \family roman
  4154. \series medium
  4155. \shape up
  4156. \size normal
  4157. \emph off
  4158. \bar no
  4159. \strikeout off
  4160. \xout off
  4161. \uuline off
  4162. \uwave off
  4163. \noun off
  4164. \color none
  4165. 127
  4166. \end_layout
  4167. \end_inset
  4168. </cell>
  4169. </row>
  4170. </lyxtabular>
  4171. \end_inset
  4172. \end_layout
  4173. \begin_layout Plain Layout
  4174. \begin_inset Caption Standard
  4175. \begin_layout Plain Layout
  4176. \series bold
  4177. \begin_inset Argument 1
  4178. status open
  4179. \begin_layout Plain Layout
  4180. Comparison of significantly differentially expressed genes with and without
  4181. globin blocking.
  4182. \end_layout
  4183. \end_inset
  4184. \begin_inset CommandInset label
  4185. LatexCommand label
  4186. name "tab:Comparison-of-significant"
  4187. \end_inset
  4188. Comparison of significantly differentially expressed genes with and without
  4189. globin blocking.
  4190. \series default
  4191. Up, Down: Genes significantly up/down-regulated in post-transplant samples
  4192. relative to pre-transplant samples, with a false discovery rate of 10%
  4193. or less.
  4194. NS: Non-significant genes (false discovery rate greater than 10%).
  4195. \end_layout
  4196. \end_inset
  4197. \end_layout
  4198. \begin_layout Plain Layout
  4199. \end_layout
  4200. \end_inset
  4201. \end_layout
  4202. \begin_layout Standard
  4203. To compare performance on differential gene expression tests, we took subsets
  4204. of both the GB and non-GB libraries with exactly one pre-transplant and
  4205. one post-transplant sample for each animal that had paired samples available
  4206. for analysis (N=7 animals, N=14 samples in each subset).
  4207. The same test for pre- vs.
  4208. post-transplant differential gene expression was performed on the same
  4209. 7 pairs of samples from GB libraries and non-GB libraries, in each case
  4210. using an FDR of 10% as the threshold of significance.
  4211. Out of 12954 genes that passed the detection threshold in both subsets,
  4212. 358 were called significantly differentially expressed in the same direction
  4213. in both sets; 1063 were differentially expressed in the GB set only; 296
  4214. were differentially expressed in the non-GB set only; 2 genes were called
  4215. significantly up in the GB set but significantly down in the non-GB set;
  4216. and the remaining 11235 were not called differentially expressed in either
  4217. set.
  4218. These data are summarized in Table
  4219. \begin_inset CommandInset ref
  4220. LatexCommand ref
  4221. reference "tab:Comparison-of-significant"
  4222. plural "false"
  4223. caps "false"
  4224. noprefix "false"
  4225. \end_inset
  4226. .
  4227. The differences in BCV calculated by EdgeR for these subsets of samples
  4228. were negligible (BCV = 0.302 for GB and 0.297 for non-GB).
  4229. \end_layout
  4230. \begin_layout Standard
  4231. The key point is that the GB data results in substantially more differentially
  4232. expressed calls than the non-GB data.
  4233. Since there is no gold standard for this dataset, it is impossible to be
  4234. certain whether this is due to under-calling of differential expression
  4235. in the non-GB samples or over-calling in the GB samples.
  4236. However, given that both datasets are derived from the same biological
  4237. samples and have nearly equal BCVs, it is more likely that the larger number
  4238. of DE calls in the GB samples are genuine detections that were enabled
  4239. by the higher sequencing depth and measurement precision of the GB samples.
  4240. Note that the same set of genes was considered in both subsets, so the
  4241. larger number of differentially expressed gene calls in the GB data set
  4242. reflects a greater sensitivity to detect significant differential gene
  4243. expression and not simply the larger total number of detected genes in
  4244. GB samples described earlier.
  4245. \end_layout
  4246. \begin_layout Section
  4247. Discussion
  4248. \end_layout
  4249. \begin_layout Standard
  4250. The original experience with whole blood gene expression profiling on DNA
  4251. microarrays demonstrated that the high concentration of globin transcripts
  4252. reduced the sensitivity to detect genes with relatively low expression
  4253. levels, in effect, significantly reducing the sensitivity.
  4254. To address this limitation, commercial protocols for globin reduction were
  4255. developed based on strategies to block globin transcript amplification
  4256. during labeling or physically removing globin transcripts by affinity bead
  4257. methods
  4258. \begin_inset CommandInset citation
  4259. LatexCommand cite
  4260. key "Winn2010"
  4261. literal "false"
  4262. \end_inset
  4263. .
  4264. More recently, using the latest generation of labeling protocols and arrays,
  4265. it was determined that globin reduction was no longer necessary to obtain
  4266. sufficient sensitivity to detect differential transcript expression
  4267. \begin_inset CommandInset citation
  4268. LatexCommand cite
  4269. key "NuGEN2010"
  4270. literal "false"
  4271. \end_inset
  4272. .
  4273. However, we are not aware of any publications using these currently available
  4274. protocols the with latest generation of microarrays that actually compare
  4275. the detection sensitivity with and without globin reduction.
  4276. However, in practice this has now been adopted generally primarily driven
  4277. by concerns for cost control.
  4278. The main objective of our work was to directly test the impact of globin
  4279. gene transcripts and a new globin blocking protocol for application to
  4280. the newest generation of differential gene expression profiling determined
  4281. using next generation sequencing.
  4282. \end_layout
  4283. \begin_layout Standard
  4284. The challenge of doing global gene expression profiling in cynomolgus monkeys
  4285. is that the current available arrays were never designed to comprehensively
  4286. cover this genome and have not been updated since the first assemblies
  4287. of the cynomolgus genome were published.
  4288. Therefore, we determined that the best strategy for peripheral blood profiling
  4289. was to do deep RNA-seq and inform the workflow using the latest available
  4290. genome assembly and annotation
  4291. \begin_inset CommandInset citation
  4292. LatexCommand cite
  4293. key "Wilson2013"
  4294. literal "false"
  4295. \end_inset
  4296. .
  4297. However, it was not immediately clear whether globin reduction was necessary
  4298. for RNA-seq or how much improvement in efficiency or sensitivity to detect
  4299. differential gene expression would be achieved for the added cost and work.
  4300. \end_layout
  4301. \begin_layout Standard
  4302. We only found one report that demonstrated that globin reduction significantly
  4303. improved the effective read yields for sequencing of human peripheral blood
  4304. cell RNA using a DeepSAGE protocol
  4305. \begin_inset CommandInset citation
  4306. LatexCommand cite
  4307. key "Mastrokolias2012"
  4308. literal "false"
  4309. \end_inset
  4310. .
  4311. The approach to DeepSAGE involves two different restriction enzymes that
  4312. purify and then tag small fragments of transcripts at specific locations
  4313. and thus, significantly reduces the complexity of the transcriptome.
  4314. Therefore, we could not determine how DeepSAGE results would translate
  4315. to the common strategy in the field for assaying the entire transcript
  4316. population by whole-transcriptome 3’-end RNA-seq.
  4317. Furthermore, if globin reduction is necessary, we also needed a globin
  4318. reduction method specific to cynomolgus globin sequences that would work
  4319. an organism for which no kit is available off the shelf.
  4320. \end_layout
  4321. \begin_layout Standard
  4322. As mentioned above, the addition of globin blocking oligos has a very small
  4323. impact on measured expression levels of gene expression.
  4324. However, this is a non-issue for the purposes of differential expression
  4325. testing, since a systematic change in a gene in all samples does not affect
  4326. relative expression levels between samples.
  4327. However, we must acknowledge that simple comparisons of gene expression
  4328. data obtained by GB and non-GB protocols are not possible without additional
  4329. normalization.
  4330. \end_layout
  4331. \begin_layout Standard
  4332. More importantly, globin blocking not only nearly doubles the yield of usable
  4333. reads, it also increases inter-sample correlation and sensitivity to detect
  4334. differential gene expression relative to the same set of samples profiled
  4335. without blocking.
  4336. In addition, globin blocking does not add a significant amount of random
  4337. noise to the data.
  4338. Globin blocking thus represents a cost-effective way to squeeze more data
  4339. and statistical power out of the same blood samples and the same amount
  4340. of sequencing.
  4341. In conclusion, globin reduction greatly increases the yield of useful RNA-seq
  4342. reads mapping to the rest of the genome, with minimal perturbations in
  4343. the relative levels of non-globin genes.
  4344. Based on these results, globin transcript reduction using sequence-specific,
  4345. complementary blocking oligonucleotides is recommended for all deep RNA-seq
  4346. of cynomolgus and other nonhuman primate blood samples.
  4347. \end_layout
  4348. \begin_layout Chapter
  4349. Future Directions
  4350. \end_layout
  4351. \begin_layout Standard
  4352. \begin_inset Flex TODO Note (inline)
  4353. status open
  4354. \begin_layout Plain Layout
  4355. Consider per-chapter future directions.
  4356. Check instructions.
  4357. \end_layout
  4358. \end_inset
  4359. \end_layout
  4360. \begin_layout Itemize
  4361. Study other epigenetic marks in more contexts
  4362. \end_layout
  4363. \begin_deeper
  4364. \begin_layout Itemize
  4365. DNA methylation, histone marks, chromatin accessibility & conformation in
  4366. CD4 T-cells
  4367. \end_layout
  4368. \begin_layout Itemize
  4369. Also look at other types lymphocytes: CD8 T-cells, B-cells, NK cells
  4370. \end_layout
  4371. \end_deeper
  4372. \begin_layout Itemize
  4373. Use CV or bootstrap to better evaluate classifiers
  4374. \end_layout
  4375. \begin_layout Standard
  4376. \begin_inset ERT
  4377. status open
  4378. \begin_layout Plain Layout
  4379. % Use "References" instead of "Bibliography"
  4380. \end_layout
  4381. \begin_layout Plain Layout
  4382. \backslash
  4383. renewcommand{
  4384. \backslash
  4385. bibname}{References}
  4386. \end_layout
  4387. \end_inset
  4388. \end_layout
  4389. \begin_layout Standard
  4390. \begin_inset Flex TODO Note (inline)
  4391. status open
  4392. \begin_layout Plain Layout
  4393. Check bib entry formatting & sort order
  4394. \end_layout
  4395. \end_inset
  4396. \end_layout
  4397. \begin_layout Standard
  4398. \begin_inset CommandInset bibtex
  4399. LatexCommand bibtex
  4400. btprint "btPrintCited"
  4401. bibfiles "refs"
  4402. options "bibtotoc,unsrt"
  4403. \end_inset
  4404. \end_layout
  4405. \end_body
  4406. \end_document