thesis.lyx 96 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055
  1. #LyX 2.3 created this file. For more info see http://www.lyx.org/
  2. \lyxformat 544
  3. \begin_document
  4. \begin_header
  5. \save_transient_properties true
  6. \origin unavailable
  7. \textclass extbook
  8. \begin_preamble
  9. % List all used files in log output
  10. \listfiles
  11. % Add a DRAFT watermark
  12. \usepackage{draftwatermark}
  13. \SetWatermarkLightness{0.97}
  14. \SetWatermarkScale{1}
  15. % Set up required header format
  16. \usepackage{fancyhdr}
  17. \pagestyle{fancy}
  18. \renewcommand{\headrulewidth}{0pt}
  19. \rhead{}
  20. \lhead{}
  21. \rfoot{}
  22. \lfoot{}
  23. \cfoot{\thepage} % Page number bottom center
  24. % https://tex.stackexchange.com/questions/65680/automatically-bold-first-sentence-of-a-floats-caption
  25. \usepackage{xstring}
  26. \usepackage{etoolbox}
  27. \usepackage{caption}
  28. \captionsetup{labelfont=bf,tableposition=top}
  29. \makeatletter
  30. \newcommand\formatlabel[1]{%
  31. \noexpandarg
  32. \IfSubStr{#1}{.}{%
  33. \StrBefore{#1}{.}[\firstcaption]%
  34. \StrBehind{#1}{.}[\secondcaption]%
  35. \textbf{\firstcaption.} \secondcaption}{%
  36. #1}%
  37. }
  38. \patchcmd{\@caption}{#3}{\formatlabel{#3}}
  39. \makeatother
  40. \end_preamble
  41. \use_default_options true
  42. \begin_modules
  43. todonotes
  44. \end_modules
  45. \maintain_unincluded_children false
  46. \language english
  47. \language_package default
  48. \inputencoding utf8
  49. \fontencoding default
  50. \font_roman "default" "default"
  51. \font_sans "default" "default"
  52. \font_typewriter "default" "default"
  53. \font_math "auto" "auto"
  54. \font_default_family default
  55. \use_non_tex_fonts false
  56. \font_sc false
  57. \font_osf false
  58. \font_sf_scale 100 100
  59. \font_tt_scale 100 100
  60. \use_microtype false
  61. \use_dash_ligatures true
  62. \graphics default
  63. \default_output_format pdf4
  64. \output_sync 0
  65. \bibtex_command default
  66. \index_command default
  67. \paperfontsize 12
  68. \spacing double
  69. \use_hyperref true
  70. \pdf_bookmarks true
  71. \pdf_bookmarksnumbered false
  72. \pdf_bookmarksopen false
  73. \pdf_bookmarksopenlevel 1
  74. \pdf_breaklinks false
  75. \pdf_pdfborder false
  76. \pdf_colorlinks false
  77. \pdf_backref false
  78. \pdf_pdfusetitle true
  79. \papersize letterpaper
  80. \use_geometry true
  81. \use_package amsmath 1
  82. \use_package amssymb 1
  83. \use_package cancel 1
  84. \use_package esint 1
  85. \use_package mathdots 1
  86. \use_package mathtools 1
  87. \use_package mhchem 1
  88. \use_package stackrel 1
  89. \use_package stmaryrd 1
  90. \use_package undertilde 1
  91. \cite_engine basic
  92. \cite_engine_type default
  93. \biblio_style plain
  94. \use_bibtopic false
  95. \use_indices false
  96. \paperorientation portrait
  97. \suppress_date false
  98. \justification true
  99. \use_refstyle 1
  100. \use_minted 0
  101. \index Index
  102. \shortcut idx
  103. \color #008000
  104. \end_index
  105. \leftmargin 1.5in
  106. \topmargin 1in
  107. \rightmargin 1in
  108. \bottommargin 1in
  109. \secnumdepth 3
  110. \tocdepth 3
  111. \paragraph_separation indent
  112. \paragraph_indentation default
  113. \is_math_indent 0
  114. \math_numbering_side default
  115. \quotes_style english
  116. \dynamic_quotes 0
  117. \papercolumns 1
  118. \papersides 2
  119. \paperpagestyle default
  120. \tracking_changes false
  121. \output_changes false
  122. \html_math_output 0
  123. \html_css_as_file 0
  124. \html_be_strict false
  125. \end_header
  126. \begin_body
  127. \begin_layout Title
  128. Bioinformatic analysis of complex, high-throughput genomic and epigenomic
  129. data in the context of immunology and transplant rejection
  130. \end_layout
  131. \begin_layout Author
  132. A thesis presented
  133. \begin_inset Newline newline
  134. \end_inset
  135. by
  136. \begin_inset Newline newline
  137. \end_inset
  138. Ryan C.
  139. Thompson
  140. \begin_inset Newline newline
  141. \end_inset
  142. to
  143. \begin_inset Newline newline
  144. \end_inset
  145. The Scripps Research Institute Graduate Program
  146. \begin_inset Newline newline
  147. \end_inset
  148. in partial fulfillment of the requirements for the degree of
  149. \begin_inset Newline newline
  150. \end_inset
  151. Doctor of Philosophy in the subject of Biology
  152. \begin_inset Newline newline
  153. \end_inset
  154. for
  155. \begin_inset Newline newline
  156. \end_inset
  157. The Scripps Research Institute
  158. \begin_inset Newline newline
  159. \end_inset
  160. La Jolla, California
  161. \end_layout
  162. \begin_layout Date
  163. May 2019
  164. \end_layout
  165. \begin_layout Standard
  166. [Copyright notice]
  167. \end_layout
  168. \begin_layout Standard
  169. [Thesis acceptance form]
  170. \end_layout
  171. \begin_layout Standard
  172. [Dedication]
  173. \end_layout
  174. \begin_layout Standard
  175. [Acknowledgements]
  176. \end_layout
  177. \begin_layout Standard
  178. \begin_inset CommandInset toc
  179. LatexCommand tableofcontents
  180. \end_inset
  181. \end_layout
  182. \begin_layout Standard
  183. \begin_inset FloatList table
  184. \end_inset
  185. \end_layout
  186. \begin_layout Standard
  187. \begin_inset FloatList figure
  188. \end_inset
  189. \end_layout
  190. \begin_layout Standard
  191. [List of Abbreviations]
  192. \end_layout
  193. \begin_layout Standard
  194. \begin_inset Flex TODO Note (inline)
  195. status open
  196. \begin_layout Plain Layout
  197. Look into auto-generated nomenclature list: https://wiki.lyx.org/Tips/Nomenclature
  198. \end_layout
  199. \end_inset
  200. \end_layout
  201. \begin_layout List of TODOs
  202. \end_layout
  203. \begin_layout Standard
  204. [Abstract]
  205. \end_layout
  206. \begin_layout Chapter*
  207. Abstract
  208. \end_layout
  209. \begin_layout Chapter
  210. Introduction
  211. \end_layout
  212. \begin_layout Section
  213. Background & Significance
  214. \end_layout
  215. \begin_layout Subsection
  216. Biological motivation
  217. \end_layout
  218. \begin_layout Itemize
  219. Rejection is the major long-term threat to organ and tissue grafts
  220. \end_layout
  221. \begin_deeper
  222. \begin_layout Itemize
  223. Common mechanisms of rejection
  224. \end_layout
  225. \begin_layout Itemize
  226. Effective immune suppression requires monitoring for rejection and tuning
  227. \end_layout
  228. \begin_layout Itemize
  229. Current tests for rejection (tissue biopsy) are invasive and biased
  230. \end_layout
  231. \begin_layout Itemize
  232. A blood test based on microarrays would be less biased and invasive
  233. \end_layout
  234. \end_deeper
  235. \begin_layout Itemize
  236. Memory cells are resistant to immune suppression
  237. \end_layout
  238. \begin_deeper
  239. \begin_layout Itemize
  240. Mechanisms of resistance in memory cells are poorly understood
  241. \end_layout
  242. \begin_layout Itemize
  243. A better understanding of immune memory formation is needed
  244. \end_layout
  245. \end_deeper
  246. \begin_layout Itemize
  247. Mesenchymal stem cell infusion is a promising new treatment to prevent/delay
  248. rejection
  249. \end_layout
  250. \begin_deeper
  251. \begin_layout Itemize
  252. Demonstrated in mice, but not yet in primates
  253. \end_layout
  254. \begin_layout Itemize
  255. Mechanism currently unknown, but MSC are known to be immune modulatory
  256. \end_layout
  257. \end_deeper
  258. \begin_layout Subsection
  259. Overview of bioinformatic analysis methods
  260. \end_layout
  261. \begin_layout Standard
  262. An overview of all the methods used, including what problem they solve,
  263. what assumptions they make, and a basic description of how they work.
  264. \end_layout
  265. \begin_layout Itemize
  266. ChIP-seq Peak calling
  267. \end_layout
  268. \begin_deeper
  269. \begin_layout Itemize
  270. Cross-correlation analysis to determine fragment size
  271. \end_layout
  272. \begin_layout Itemize
  273. Broad vs narrow peaks
  274. \end_layout
  275. \begin_layout Itemize
  276. SICER for broad peaks
  277. \end_layout
  278. \begin_layout Itemize
  279. IDR for biologically reproducible peaks
  280. \end_layout
  281. \begin_layout Itemize
  282. csaw peak filtering guidelines for unbiased downstream analysis
  283. \end_layout
  284. \end_deeper
  285. \begin_layout Itemize
  286. Normalization is non-trivial and application-dependant
  287. \end_layout
  288. \begin_deeper
  289. \begin_layout Itemize
  290. Expression arrays: RMA & fRMA; why fRMA is needed
  291. \end_layout
  292. \begin_layout Itemize
  293. Methylation arrays: M-value transformation approximates normal data but
  294. induces heteroskedasticity
  295. \end_layout
  296. \begin_layout Itemize
  297. RNA-seq: normalize based on assumption that the average gene is not changing
  298. \end_layout
  299. \begin_layout Itemize
  300. ChIP-seq: complex with many considerations, dependent on experimental methods,
  301. biological system, and analysis goals
  302. \end_layout
  303. \end_deeper
  304. \begin_layout Itemize
  305. Limma: The standard linear modeling framework for genomics
  306. \end_layout
  307. \begin_deeper
  308. \begin_layout Itemize
  309. empirical Bayes variance modeling: limma's core feature
  310. \end_layout
  311. \begin_layout Itemize
  312. edgeR & DESeq2: Extend with negative bonomial GLM for RNA-seq and other
  313. count data
  314. \end_layout
  315. \begin_layout Itemize
  316. voom: Extend with precision weights to model mean-variance trend
  317. \end_layout
  318. \begin_layout Itemize
  319. arrayWeights and duplicateCorrelation to handle complex variance structures
  320. \end_layout
  321. \end_deeper
  322. \begin_layout Itemize
  323. sva and ComBat for batch correction
  324. \end_layout
  325. \begin_layout Itemize
  326. Factor analysis: PCA, MDS, MOFA
  327. \end_layout
  328. \begin_deeper
  329. \begin_layout Itemize
  330. Batch-corrected PCA is informative, but careful application is required
  331. to avoid bias
  332. \end_layout
  333. \end_deeper
  334. \begin_layout Itemize
  335. Gene set analysis: camera and SPIA
  336. \end_layout
  337. \begin_layout Section
  338. Innovation
  339. \end_layout
  340. \begin_layout Itemize
  341. MSC infusion to improve transplant outcomes (prevent/delay rejection)
  342. \end_layout
  343. \begin_deeper
  344. \begin_layout Itemize
  345. Characterize MSC response to interferon gamma
  346. \end_layout
  347. \begin_layout Itemize
  348. IFN-g is thought to stimulate their function
  349. \end_layout
  350. \begin_layout Itemize
  351. Test IFN-g treated MSC infusion as a therapy to delay graft rejection in
  352. cynomolgus monkeys
  353. \end_layout
  354. \begin_layout Itemize
  355. Monitor animals post-transplant using blood RNA-seq at serial time points
  356. \end_layout
  357. \end_deeper
  358. \begin_layout Itemize
  359. Investigate dynamics of histone marks in CD4 T-cell activation and memory
  360. \end_layout
  361. \begin_deeper
  362. \begin_layout Itemize
  363. Previous studies have looked at single snapshots of histone marks
  364. \end_layout
  365. \begin_layout Itemize
  366. Instead, look at changes in histone marks across activation and memory
  367. \end_layout
  368. \end_deeper
  369. \begin_layout Itemize
  370. High-throughput sequencing and microarray technologies
  371. \end_layout
  372. \begin_deeper
  373. \begin_layout Itemize
  374. Powerful methods for assaying gene expression and epigenetics across entire
  375. genomes
  376. \end_layout
  377. \begin_layout Itemize
  378. Proper analysis requires finding and exploiting systematic genome-wide trends
  379. \end_layout
  380. \end_deeper
  381. \begin_layout Chapter
  382. Reproducible genome-wide epigenetic analysis of H3K4 and H3K27 methylation
  383. in naive and memory CD4 T-cell activation
  384. \end_layout
  385. \begin_layout Standard
  386. \begin_inset Flex TODO Note (inline)
  387. status open
  388. \begin_layout Plain Layout
  389. Author list: Me, Sarah, Dan
  390. \end_layout
  391. \end_inset
  392. \end_layout
  393. \begin_layout Section
  394. Approach
  395. \end_layout
  396. \begin_layout Itemize
  397. CD4 T-cells are central to all adaptive immune responses and memory
  398. \end_layout
  399. \begin_layout Itemize
  400. H3K4 and H3K27 methylation are major epigenetic regulators of gene expression
  401. \end_layout
  402. \begin_layout Itemize
  403. Canonically, H3K4 is activating and H3K27 is inhibitory, but the reality
  404. is complex
  405. \end_layout
  406. \begin_layout Itemize
  407. Looking at these marks during CD4 activation and memory should reveal new
  408. mechanistic details
  409. \end_layout
  410. \begin_layout Itemize
  411. Test
  412. \begin_inset Quotes eld
  413. \end_inset
  414. poised promoter
  415. \begin_inset Quotes erd
  416. \end_inset
  417. hypothesis in which H3K4 and H3K27 are both methylated
  418. \end_layout
  419. \begin_layout Itemize
  420. Expand scope of analysis beyond simple promoter counts
  421. \end_layout
  422. \begin_deeper
  423. \begin_layout Itemize
  424. Analyze peaks genome-wide, including in intergenic regions
  425. \end_layout
  426. \begin_layout Itemize
  427. Analysis of coverage distribution shape within promoters, e.g.
  428. upstream vs downstream coverage
  429. \end_layout
  430. \end_deeper
  431. \begin_layout Section
  432. Methods
  433. \end_layout
  434. \begin_layout Itemize
  435. Re-analyze previously published CD4 ChIP-seq & RNA-seq data
  436. \begin_inset CommandInset citation
  437. LatexCommand cite
  438. key "LaMere2016,Lamere2017"
  439. literal "true"
  440. \end_inset
  441. \end_layout
  442. \begin_deeper
  443. \begin_layout Itemize
  444. Completely reimplement analysis from scratch as a reproducible workflow
  445. \end_layout
  446. \begin_layout Itemize
  447. Use newly published methods & algorithms not available during the original
  448. analysis: SICER, csaw, MOFA, ComBat, sva, GREAT, and more
  449. \end_layout
  450. \end_deeper
  451. \begin_layout Itemize
  452. SICER, IDR, csaw, & GREAT to call ChIP-seq peaks genome-wide, perform differenti
  453. al abundance analysis, and relate those peaks to gene expression
  454. \end_layout
  455. \begin_layout Itemize
  456. Promoter counts in sliding windows around each gene's highest-expressed
  457. TSS to investigate coverage distribution within promoters
  458. \end_layout
  459. \begin_layout Section
  460. Results
  461. \end_layout
  462. \begin_layout Standard
  463. \begin_inset Note Note
  464. status open
  465. \begin_layout Plain Layout
  466. Focus on what hypotheses were tested, then select figures that show how
  467. those hypotheses were tested, even if the result is a negative.
  468. \end_layout
  469. \end_inset
  470. \end_layout
  471. \begin_layout Subsection
  472. H3K4 and H3K27 methylation occur in broad regions and are enriched near
  473. promoters
  474. \end_layout
  475. \begin_layout Itemize
  476. Figures comparing MACS (non-broad peak caller) to SICER/epic (broad peak
  477. caller)
  478. \end_layout
  479. \begin_deeper
  480. \begin_layout Itemize
  481. Compare peak sizes and number of called peaks
  482. \end_layout
  483. \begin_layout Itemize
  484. Show representative IDR consistency plots for both
  485. \end_layout
  486. \end_deeper
  487. \begin_layout Itemize
  488. IDR analysis shows that SICER-called peaks are much more reproducible between
  489. biological replicates
  490. \end_layout
  491. \begin_layout Itemize
  492. Each histone mark is enriched within a certain radius of gene TSS positions,
  493. but that radius is different for each mark (figure)
  494. \end_layout
  495. \begin_layout Subsection
  496. RNA-seq has a large confounding batch effect
  497. \end_layout
  498. \begin_layout Itemize
  499. RNA-seq batch effect can be partially corrected, but still induces uncorrectable
  500. biases in downstream analysis
  501. \end_layout
  502. \begin_deeper
  503. \begin_layout Itemize
  504. Figure showing MDS plot before & after ComBat
  505. \end_layout
  506. \begin_layout Itemize
  507. Figure relating sample weights to batches, cell types, time points, etc.,
  508. showing that one batch is significantly worse quality
  509. \end_layout
  510. \begin_layout Itemize
  511. Figures showing p-value histograms for within-batch and cross-batch contrasts,
  512. showing that cross-batch contrasts have attenuated signal, as do comparisons
  513. within the bad batch
  514. \end_layout
  515. \end_deeper
  516. \begin_layout Subsection
  517. ChIP-seq must be corrected for hidden confounding factors
  518. \end_layout
  519. \begin_layout Itemize
  520. Figures showing pre- and post-SVA MDS plots for each histone mark
  521. \end_layout
  522. \begin_layout Itemize
  523. Figures showing BCV plots with and without SVA for each histone mark
  524. \end_layout
  525. \begin_layout Subsection
  526. H3K4 and H3K27 promoter methylation has broadly the expected correlation
  527. with gene expression
  528. \end_layout
  529. \begin_layout Itemize
  530. H3K4 is correlated with higher expression, and H3K27 is correlated with
  531. lower expression genome-wide
  532. \end_layout
  533. \begin_layout Itemize
  534. Figures showing these correlations: box/violin plots of expression distributions
  535. with every combination of peak presence/absence in promoter
  536. \end_layout
  537. \begin_layout Itemize
  538. Appropriate statistical tests showing significant differences in expected
  539. directions
  540. \end_layout
  541. \begin_layout Subsection
  542. MOFA recovers biologically relevant variation from blind analysis by correlating
  543. across datasets
  544. \end_layout
  545. \begin_layout Itemize
  546. MOFA
  547. \begin_inset CommandInset citation
  548. LatexCommand cite
  549. key "Argelaguet2018"
  550. literal "false"
  551. \end_inset
  552. successfully separates biologically relevant patterns of variation from
  553. technical confounding factors without knowing the sample labels, by finding
  554. latent factors that explain variation across multiple data sets.
  555. \end_layout
  556. \begin_deeper
  557. \begin_layout Itemize
  558. Figure: show percent-variance-explained plot from MOFA and PCA-like plots
  559. for the relevant latent factors
  560. \end_layout
  561. \begin_layout Itemize
  562. MOFA analysis also shows that batch effect correction can't get much better
  563. than it already is (Figure comparing blind MOFA batch correction to ComBat
  564. correction)
  565. \end_layout
  566. \end_deeper
  567. \begin_layout Subsection
  568. Naive-to-memory convergence observed in H3K4 and RNA-seq data, not in H3K27me3
  569. \end_layout
  570. \begin_layout Itemize
  571. H3K4 and RNA-seq data show clear evidence of naive convergence with memory
  572. between days 1 and 5 (MDS plot figure, also compare with last figure from
  573. \begin_inset CommandInset citation
  574. LatexCommand cite
  575. key "LaMere2016"
  576. literal "false"
  577. \end_inset
  578. )
  579. \end_layout
  580. \begin_layout Standard
  581. \begin_inset Flex TODO Note (inline)
  582. status open
  583. \begin_layout Plain Layout
  584. Get explicit permission from Sarah to include the figure
  585. \end_layout
  586. \end_inset
  587. \end_layout
  588. \begin_layout Itemize
  589. Table of numbers of genes different between N & M at each time point, showing
  590. dwindling differences at later time points, consistent with convergence
  591. \end_layout
  592. \begin_layout Itemize
  593. Similar figure for H3K27me3 showing lack of convergence
  594. \end_layout
  595. \begin_layout Subsection
  596. Effect of promoter coverage upstream vs downstream of TSS
  597. \end_layout
  598. \begin_layout Itemize
  599. H3K4me peaks seem to correlate with increased expression as long as they
  600. are anywhere near the TSS
  601. \end_layout
  602. \begin_layout Itemize
  603. H3K27me3 peaks can have different correlations to gene expression depending
  604. on their position relative to TSS (e.g.
  605. upstream vs downstream) Results consistent with
  606. \begin_inset CommandInset citation
  607. LatexCommand cite
  608. key "Young2011"
  609. literal "false"
  610. \end_inset
  611. \end_layout
  612. \begin_layout Section
  613. Discussion
  614. \end_layout
  615. \begin_layout Itemize
  616. "Promoter radius" is not constant and must be defined empirically for a
  617. given data set
  618. \end_layout
  619. \begin_layout Itemize
  620. MOFA shows great promise for accelerating discovery of major biological
  621. effects in multi-omics datasets
  622. \end_layout
  623. \begin_deeper
  624. \begin_layout Itemize
  625. MOFA was added to this analysis late and played primarily a confirmatory
  626. role, but it was able to confirm earlier conclusions with much less prior
  627. information (no sample labels) and much less analyst effort
  628. \end_layout
  629. \begin_layout Itemize
  630. MOFA confirmed that the already-implemented batch correction in the RNA-seq
  631. data was already performing as well as possible given the limitations of
  632. the data
  633. \end_layout
  634. \end_deeper
  635. \begin_layout Itemize
  636. Naive-to-memory convergence implies that naive cells are differentiating
  637. into memory cells, and that gene expression and H3K4 methylation are involved
  638. in this differentiation while H3K27me3 is less involved
  639. \end_layout
  640. \begin_layout Itemize
  641. H3K27me3, canonically regarded as a deactivating mark, seems to have a more
  642. complex
  643. \end_layout
  644. \begin_layout Itemize
  645. Discuss advantages of developing using a reproducible workflow
  646. \end_layout
  647. \begin_layout Chapter
  648. Improving array-based analyses of transplant rejection by optimizing data
  649. preprocessing
  650. \end_layout
  651. \begin_layout Standard
  652. \begin_inset Note Note
  653. status open
  654. \begin_layout Plain Layout
  655. Author list: Me, Sunil, Tom, Padma, Dan
  656. \end_layout
  657. \end_inset
  658. \end_layout
  659. \begin_layout Section
  660. Approach
  661. \end_layout
  662. \begin_layout Subsection
  663. Proper pre-processing is essential for array data
  664. \end_layout
  665. \begin_layout Standard
  666. \begin_inset Flex TODO Note (inline)
  667. status open
  668. \begin_layout Plain Layout
  669. This section could probably use some citations
  670. \end_layout
  671. \end_inset
  672. \end_layout
  673. \begin_layout Standard
  674. Microarrays, bead ararys, and similar assays produce raw data in the form
  675. of fluorescence intensity measurements, with the each intensity measurement
  676. proportional to the abundance of some fluorescently-labelled target DNA
  677. or RNA sequence that base pairs to a specific probe sequence.
  678. However, these measurements for each probe are also affected my many technical
  679. confounding factors, such as the concentration of target material, strength
  680. of off-target binding, and the sensitivity of the imaging sensor.
  681. Some array designs also use multiple probe sequences for each target.
  682. Hence, extensive pre-processing of array data is necessary to normalize
  683. out the effects of these technical factors and summarize the information
  684. from multiple probes to arrive at a single usable estimate of abundance
  685. or other relevant quantity, such as a ratio of two abundances, for each
  686. target.
  687. \end_layout
  688. \begin_layout Standard
  689. The choice of pre-processing algorithms used in the analysis of an array
  690. data set can have a large effect on the results of that analysis.
  691. However, despite their importance, these steps are often neglected or rushed
  692. in order to get to the more scientifically interesting analysis steps involving
  693. the actual biology of the system under study.
  694. Hence, it is often possible to achieve substantial gains in statistical
  695. power, model goodness-of-fit, or other relevant performance measures, by
  696. checking the assumptions made by each preprocessing step and choosing specific
  697. normalization methods tailored to the specific goals of the current analysis.
  698. \end_layout
  699. \begin_layout Subsection
  700. Frozen RMA for clinical microarray classifiers
  701. \end_layout
  702. \begin_layout Subsubsection
  703. Standard normalization methods are unsuitable for clinical application
  704. \end_layout
  705. \begin_layout Standard
  706. As the cost of performing microarray assays falls, there is increasing interest
  707. in using genomic assays for diagnostic purposes, such as distinguishing
  708. healthy transplants (TX) from transplants undergoing acute rejection (AR)
  709. or acute dysfunction with no rejection (ADNR).
  710. However, the the standard normalization algorithm used for microarray data,
  711. Robust Multi-chip Average (RMA)
  712. \begin_inset CommandInset citation
  713. LatexCommand cite
  714. key "Irizarry2003a"
  715. literal "false"
  716. \end_inset
  717. , is not applicable in a clinical setting.
  718. Two of the steps in RMA, quantile normalization and probe summarization
  719. by median polish, depend on every array in the data set being normalized.
  720. This means that adding or removing any arrays from a data set changes the
  721. normalized values for all arrays, and data sets that have been normalized
  722. separately cannot be compared to each other.
  723. Hence, when using RMA, any arrays to be analyzed together must also be
  724. normalized together, and the set of arrays included in the data set must
  725. be held constant throughout an analysis.
  726. \end_layout
  727. \begin_layout Standard
  728. These limitations present serious impediments to the use of arrays as a
  729. diagnostic tool.
  730. When training a classifier, the samples to be classified must not be involved
  731. in any step of the training process, lest their inclusion bias the training
  732. process.
  733. Once a classifier is deployed in a clinical setting, the samples to be
  734. classified will not even
  735. \emph on
  736. exist
  737. \emph default
  738. at the time of training, so including them would be impossible even if
  739. it were statistically justifiable.
  740. Therefore, any machine learning application for microarrays demands that
  741. the normalized expression values computed for an array must depend only
  742. on information contained within that array.
  743. This would ensure that each array's normalization is independent of every
  744. other array, and that arrays normalized separately can still be compared
  745. to each other without bias.
  746. \end_layout
  747. \begin_layout Subsubsection
  748. Frozen RMA satisfies clinical normalization requirements
  749. \end_layout
  750. \begin_layout Standard
  751. Frozen RMA (fRMA) addresses these concerns by replacing the quantile normalizati
  752. on and median polish with alternatives that do not introduce inter-array
  753. dependence, allowing each array to be normalized independently of all others
  754. \begin_inset CommandInset citation
  755. LatexCommand cite
  756. key "McCall2010"
  757. literal "false"
  758. \end_inset
  759. .
  760. Quantile normalization is performed against a pre-generated set of quantiles
  761. learned from a collection of 850 publically available arrays sampled from
  762. a wide variety of tissues in the Gene Expression Omnibus (GEO).
  763. Each array's probe intensity distribution is normalized against these pre-gener
  764. ated quantiles.
  765. The median polish step is replaced with a robust weighted average of probe
  766. intensities, using inverse variance weights learned from the same public
  767. GEO data.
  768. The result is a normalization that satisfies the requirements mentioned
  769. above: each array is normalized independently of all others, and any two
  770. normalized arrays can be compared directly to each other.
  771. \end_layout
  772. \begin_layout Standard
  773. One important limitation of fRMA is that it requires a separate reference
  774. data set from which to learn the parameters (reference quantiles and probe
  775. weights) that will be used to normalize each array.
  776. These parameters are specific to a given array platform, and pre-generated
  777. parameters are only provided for the most common platforms, such as Affymetrix
  778. hgu133plus2.
  779. For a less common platform, such as hthgu133pluspm, is is necessary to
  780. learn custom parameters from in-house data before fRMA can be used to normalize
  781. samples on that platform
  782. \begin_inset CommandInset citation
  783. LatexCommand cite
  784. key "HudsonK.&RemediosC.2010"
  785. literal "false"
  786. \end_inset
  787. .
  788. \end_layout
  789. \begin_layout Subsection
  790. Adapting voom to model heteroskedasticity in methylation array data
  791. \end_layout
  792. \begin_layout Subsubsection
  793. Methylation array preprocessing induces heteroskedasticity
  794. \end_layout
  795. \begin_layout Standard
  796. DNA methylation arrays are a relatively new kind of assay that uses microarrays
  797. to measure the degree of methylation on cytosines in specific regions arrayed
  798. across the genome.
  799. First, bisulfite treatment converts all unmethylated cytosines to uracil
  800. (which then become thymine after amplication) while leaving methylated
  801. cytosines unaffected.
  802. Then, each target region is interrogated with two probes: one binds to
  803. the original genomic sequence and interrogates the level of methylated
  804. DNA, and the other binds to the sequence with all Cs replaced by Ts and
  805. interrogates the level of unmethylated DNA.
  806. \end_layout
  807. \begin_layout Standard
  808. \begin_inset Float figure
  809. wide false
  810. sideways false
  811. status collapsed
  812. \begin_layout Plain Layout
  813. \begin_inset Graphics
  814. filename graphics/methylvoom/sigmoid.pdf
  815. \end_inset
  816. \end_layout
  817. \begin_layout Plain Layout
  818. \begin_inset Caption Standard
  819. \begin_layout Plain Layout
  820. \begin_inset CommandInset label
  821. LatexCommand label
  822. name "fig:Sigmoid-beta-m-mapping"
  823. \end_inset
  824. \series bold
  825. Sigmoid shape of the mapping between β and M values
  826. \end_layout
  827. \end_inset
  828. \end_layout
  829. \end_inset
  830. \end_layout
  831. \begin_layout Standard
  832. After normalization, these two probe intensities are summarized in one of
  833. two ways, each with advantages and disadvantages.
  834. β
  835. \series bold
  836. \series default
  837. values, interpreted as fraction of DNA copies methylated, range from 0 to
  838. 1.
  839. β
  840. \series bold
  841. \series default
  842. values are conceptually easy to interpret, but the constrained range makes
  843. them unsuitable for linear modeling, and their error distributions are
  844. highly non-normal, which also frustrates linear modeling.
  845. M-values, interpreted as the log ratio of methylated to unmethylated copies,
  846. are computed by mapping the beta values from
  847. \begin_inset Formula $[0,1]$
  848. \end_inset
  849. onto
  850. \begin_inset Formula $(-\infty,+\infty)$
  851. \end_inset
  852. using a sigmoid curve (Figure
  853. \begin_inset CommandInset ref
  854. LatexCommand ref
  855. reference "fig:Sigmoid-beta-m-mapping"
  856. plural "false"
  857. caps "false"
  858. noprefix "false"
  859. \end_inset
  860. ).
  861. This transformation results in values with better statistical perperties:
  862. the unconstrained range is suitable for linear modeling, and the error
  863. distributions are more normal.
  864. Hence, most linear modeling and other statistical testing on methylation
  865. arrays is performed using M-values.
  866. \end_layout
  867. \begin_layout Standard
  868. However, the steep slope of the sigmoid transformation near 0 and 1 tends
  869. to over-exaggerate small differences in β values near those extremes, which
  870. in turn amplifies the error in those values, leading to a U-shaped trend
  871. in the mean-variance curve.
  872. This mean-variance dependency must be accounted for when fitting the linear
  873. model for differential methylation, or else the variance will be systematically
  874. overestimated for probes with moderate M-values and underestimated for
  875. probes with extreme M-values.
  876. \end_layout
  877. \begin_layout Subsubsection
  878. The voom method for RNA-seq data can model this heteroskedasticity
  879. \end_layout
  880. \begin_layout Standard
  881. RNA-seq read count data are also known to show heteroskedasticity, and the
  882. voom method was developed for modeling this heteroskedasticity by estimating
  883. the mean-variance trend in the data and using this trend to assign precision
  884. weights to each observation
  885. \begin_inset CommandInset citation
  886. LatexCommand cite
  887. key "Law2013"
  888. literal "false"
  889. \end_inset
  890. .
  891. While methylation array data are not derived from counts and have a very
  892. different mean-variance relationship from that of typical RNA-seq data,
  893. the voom method makes no specific assumptions on the shape of the mean-variance
  894. relationship - it only assumes that the relationship is smooth enough to
  895. model using a lowess curve.
  896. Hence, the method is sufficiently general to model the mean-variance relationsh
  897. ip in methylation array data.
  898. However, the standard implementation of voom assumes that the input is
  899. given in raw read counts, and minor adjustments are required to run it
  900. on methylation M-values.
  901. \end_layout
  902. \begin_layout Standard
  903. \begin_inset Flex TODO Note (inline)
  904. status open
  905. \begin_layout Plain Layout
  906. Put code on Github and reference it
  907. \end_layout
  908. \end_inset
  909. \end_layout
  910. \begin_layout Section
  911. Methods
  912. \end_layout
  913. \begin_layout Subsection
  914. fRMA
  915. \end_layout
  916. \begin_layout Itemize
  917. Expression array normalization for detecting acute rejection
  918. \end_layout
  919. \begin_layout Itemize
  920. Use frozen RMA, a single-channel variant of RMA
  921. \end_layout
  922. \begin_layout Itemize
  923. Generate custom fRMA normalization vectors for each tissue (biopsy, blood)
  924. \end_layout
  925. \begin_layout Subsubsection
  926. Methylation arrays
  927. \end_layout
  928. \begin_layout Itemize
  929. Methylation arrays for differential methylation in rejection vs.
  930. healthy transplant
  931. \end_layout
  932. \begin_layout Itemize
  933. Adapt voom method originally designed for RNA-seq to model mean-variance
  934. dependence
  935. \end_layout
  936. \begin_layout Itemize
  937. Use sample precision weighting, duplicateCorrelation, and sva to adjust
  938. for other confounding factors
  939. \end_layout
  940. \begin_layout Section
  941. Results
  942. \end_layout
  943. \begin_layout Standard
  944. \begin_inset Flex TODO Note (inline)
  945. status open
  946. \begin_layout Plain Layout
  947. Improve subsection titles in this section
  948. \end_layout
  949. \end_inset
  950. \end_layout
  951. \begin_layout Subsection
  952. fRMA eliminates unwanted dependence of classifier training on normalization
  953. strategy caused by RMA
  954. \end_layout
  955. \begin_layout Subsubsection
  956. Separate normalization with RMA introduces unwanted biases in classification
  957. \end_layout
  958. \begin_layout Standard
  959. \begin_inset Float figure
  960. wide false
  961. sideways false
  962. status collapsed
  963. \begin_layout Plain Layout
  964. \begin_inset Graphics
  965. filename graphics/PAM/predplot.pdf
  966. \end_inset
  967. \end_layout
  968. \begin_layout Plain Layout
  969. \begin_inset Caption Standard
  970. \begin_layout Plain Layout
  971. \begin_inset CommandInset label
  972. LatexCommand label
  973. name "fig:Classifier-probabilities-RMA"
  974. \end_inset
  975. \series bold
  976. Classifier probabilities on validation samples when normalized with RMA
  977. together vs.
  978. separately.
  979. \end_layout
  980. \end_inset
  981. \end_layout
  982. \end_inset
  983. \end_layout
  984. \begin_layout Standard
  985. The initial data set for testing fRMA consisted of 157 hgu133plus2 arrays,
  986. split into a training set (23 TX, 35 AR, 21 ADNR) and a validation set
  987. (23 TX, 34 AR, 21 ADNR), along with an external validation set gathered
  988. from public GEO data (37 TX, 38 AR, no ADNR), all on standard hgu133plus2
  989. Affy arrays
  990. \begin_inset CommandInset citation
  991. LatexCommand cite
  992. key "Kurian2014"
  993. literal "true"
  994. \end_inset
  995. .
  996. \begin_inset Flex TODO Note (inline)
  997. status open
  998. \begin_layout Plain Layout
  999. Find out if PAX or BX
  1000. \end_layout
  1001. \end_inset
  1002. To demonstrate the problem, we considered the problem of training a classifier
  1003. to distinguish TX from AR using the TX and AR samples from the training
  1004. set and validation set as training data, evaluating performance on the
  1005. external validation set.
  1006. First, training and evaluation were performed after normalizing all array
  1007. samples together as a single set using RMA, and second, the internal samples
  1008. were normalized separately from the external samples and the training and
  1009. evaluation were repeated.
  1010. For each sample in the validation set, the classifier probabilities from
  1011. both classifiers were plotted against each other (Fig.
  1012. \begin_inset CommandInset ref
  1013. LatexCommand ref
  1014. reference "fig:Classifier-probabilities-RMA"
  1015. plural "false"
  1016. caps "false"
  1017. noprefix "false"
  1018. \end_inset
  1019. ).
  1020. As expected, separate normalization biases the classifier probabilities,
  1021. resulting in several misclassifications.
  1022. In this case, the bias from separate normalization causes the classifier
  1023. to assign a lower probability of AR to every sample.
  1024. Because it is not feasible to normalize all samples together in a clinical
  1025. context, this shows that an alternative to RMA is required.
  1026. \end_layout
  1027. \begin_layout Subsubsection
  1028. fRMA achieves equal classification performance while eliminating dependence
  1029. on normalization strategy
  1030. \end_layout
  1031. \begin_layout Standard
  1032. \begin_inset Float figure
  1033. wide false
  1034. sideways false
  1035. status open
  1036. \begin_layout Plain Layout
  1037. \begin_inset Graphics
  1038. filename graphics/PAM/external-roc-frma.pdf
  1039. \end_inset
  1040. \end_layout
  1041. \begin_layout Plain Layout
  1042. \begin_inset Caption Standard
  1043. \begin_layout Plain Layout
  1044. \begin_inset CommandInset label
  1045. LatexCommand label
  1046. name "fig:ROC-curve-PAM"
  1047. \end_inset
  1048. ROC curve for PAM on external validation data, normalizing with RMA and
  1049. fRMA
  1050. \end_layout
  1051. \end_inset
  1052. \end_layout
  1053. \end_inset
  1054. \end_layout
  1055. \begin_layout Itemize
  1056. fRMA eliminates this issue by normalizing each sample independently to the
  1057. same quantile distribution and summarizing probes using the same weights.
  1058. \end_layout
  1059. \begin_layout Itemize
  1060. Classifier performance on validation set is identical for
  1061. \begin_inset Quotes eld
  1062. \end_inset
  1063. RMA together
  1064. \begin_inset Quotes erd
  1065. \end_inset
  1066. and fRMA, so switching to clinically applicable normalization does not
  1067. sacrifice accuracy
  1068. \end_layout
  1069. \begin_layout Standard
  1070. \begin_inset Flex TODO Note (inline)
  1071. status open
  1072. \begin_layout Plain Layout
  1073. Check the published paper for any other possibly relevant figures to include
  1074. here.
  1075. \end_layout
  1076. \end_inset
  1077. \end_layout
  1078. \begin_layout Subsection
  1079. fRMA with custom-generated vectors
  1080. \end_layout
  1081. \begin_layout Itemize
  1082. Non-standard platform hthgu133pluspm - no pre-built fRMA vectors available,
  1083. so custom vectors must be learned from in-house data
  1084. \end_layout
  1085. \begin_layout Standard
  1086. \begin_inset Float figure
  1087. wide false
  1088. sideways false
  1089. status open
  1090. \begin_layout Plain Layout
  1091. \begin_inset Graphics
  1092. filename graphics/frma-pax-bx/batchsize_batches.pdf
  1093. \end_inset
  1094. \end_layout
  1095. \begin_layout Plain Layout
  1096. \begin_inset Caption Standard
  1097. \begin_layout Plain Layout
  1098. \begin_inset CommandInset label
  1099. LatexCommand label
  1100. name "fig:batch-size-batches"
  1101. \end_inset
  1102. Effect of batch size selection on number of batches included in fRMA probe
  1103. weight learning
  1104. \end_layout
  1105. \end_inset
  1106. \end_layout
  1107. \end_inset
  1108. \end_layout
  1109. \begin_layout Standard
  1110. \begin_inset Float figure
  1111. wide false
  1112. sideways false
  1113. status open
  1114. \begin_layout Plain Layout
  1115. \begin_inset Graphics
  1116. filename graphics/frma-pax-bx/batchsize_samples.pdf
  1117. \end_inset
  1118. \end_layout
  1119. \begin_layout Plain Layout
  1120. \begin_inset Caption Standard
  1121. \begin_layout Plain Layout
  1122. \begin_inset CommandInset label
  1123. LatexCommand label
  1124. name "fig:batch-size-samples"
  1125. \end_inset
  1126. Effect of batch size selection on number of samples included in fRMA probe
  1127. weight learning
  1128. \end_layout
  1129. \end_inset
  1130. \end_layout
  1131. \end_inset
  1132. \end_layout
  1133. \begin_layout Itemize
  1134. Large body of data available for training fRMA: 341 kidney graft biopsy
  1135. samples, 965 blood samples from graft recipients
  1136. \end_layout
  1137. \begin_deeper
  1138. \begin_layout Itemize
  1139. But not all samples can be used (see trade-off figure)
  1140. \end_layout
  1141. \begin_layout Itemize
  1142. Figure showing trade-off between more samples per group and fewer groups
  1143. with that may samples, to justify choice of number of samples per group
  1144. \end_layout
  1145. \begin_layout Itemize
  1146. pre-generated normalization vectors use ~850 samples
  1147. \begin_inset Flex TODO Note (Margin)
  1148. status collapsed
  1149. \begin_layout Plain Layout
  1150. Look up the exact numbers
  1151. \end_layout
  1152. \end_inset
  1153. \begin_inset CommandInset citation
  1154. LatexCommand cite
  1155. key "McCall2010"
  1156. literal "false"
  1157. \end_inset
  1158. , but are designed to be general across all tissues.
  1159. The samples we have are suitable for tissue-specific normalization vectors.
  1160. \end_layout
  1161. \end_deeper
  1162. \begin_layout Itemize
  1163. Figure: MA plot, RMA vs fRMA, to show that the normalization is appreciably
  1164. and non-linearly different
  1165. \end_layout
  1166. \begin_layout Itemize
  1167. Figure MA plot, fRMA vs fRMA with different randomly-chosen sample subsets
  1168. to show consistency
  1169. \end_layout
  1170. \begin_layout Itemize
  1171. custom fRMA normalization improved cross-validated classifier performance
  1172. \end_layout
  1173. \begin_layout Standard
  1174. \begin_inset Flex TODO Note (inline)
  1175. status open
  1176. \begin_layout Plain Layout
  1177. Get a figure from Tom showing classifier performance improvement (compared
  1178. to all-sample RMA, I guess?), if possible
  1179. \end_layout
  1180. \end_inset
  1181. \end_layout
  1182. \begin_layout Subsection
  1183. Adapting voom to methylation array data improves model fit
  1184. \end_layout
  1185. \begin_layout Itemize
  1186. voom, precision weights, and sva improved model fit
  1187. \end_layout
  1188. \begin_deeper
  1189. \begin_layout Itemize
  1190. Also increased sensitivity for detecting differential methylation
  1191. \end_layout
  1192. \end_deeper
  1193. \begin_layout Itemize
  1194. Figure showing (a) heteroskedasticy without voom, (b) voom-modeled mean-variance
  1195. trend, and (c) homoskedastic mean-variance trend after running voom
  1196. \end_layout
  1197. \begin_layout Itemize
  1198. Figure showing sample weights and their relations to
  1199. \end_layout
  1200. \begin_layout Itemize
  1201. Figure showing MDS plot with and without SVA correction
  1202. \end_layout
  1203. \begin_layout Itemize
  1204. Figure and/or table showing improved p-value historgrams/number of significant
  1205. genes (might need to get this from Padma)
  1206. \end_layout
  1207. \begin_layout Section
  1208. Discussion
  1209. \end_layout
  1210. \begin_layout Itemize
  1211. fRMA enables classifying new samples without re-normalizing the entire data
  1212. set
  1213. \end_layout
  1214. \begin_deeper
  1215. \begin_layout Itemize
  1216. Critical for translating a classifier into clinical practice
  1217. \end_layout
  1218. \end_deeper
  1219. \begin_layout Itemize
  1220. Methods like voom designed for RNA-seq can also help with array analysis
  1221. \end_layout
  1222. \begin_layout Itemize
  1223. Extracting and modeling confounders common to many features improves model
  1224. correspondence to known biology
  1225. \end_layout
  1226. \begin_layout Chapter
  1227. Globin-blocking for more effective blood RNA-seq analysis in primate animal
  1228. model
  1229. \end_layout
  1230. \begin_layout Standard
  1231. \begin_inset Flex TODO Note (inline)
  1232. status open
  1233. \begin_layout Plain Layout
  1234. Choose between above and the paper title: Optimizing yield of deep RNA sequencin
  1235. g for gene expression profiling by globin reduction of peripheral blood
  1236. samples from cynomolgus monkeys (Macaca fascicularis).
  1237. \end_layout
  1238. \end_inset
  1239. \end_layout
  1240. \begin_layout Standard
  1241. \begin_inset Flex TODO Note (inline)
  1242. status open
  1243. \begin_layout Plain Layout
  1244. Chapter author list: https://tex.stackexchange.com/questions/156862/displaying-aut
  1245. hor-for-each-chapter-in-book Every chapter gets an author list, which may
  1246. or may not be part of a citation to a published/preprinted paper.
  1247. \end_layout
  1248. \end_inset
  1249. \end_layout
  1250. \begin_layout Standard
  1251. \begin_inset Flex TODO Note (inline)
  1252. status open
  1253. \begin_layout Plain Layout
  1254. Preprint then cite the paper
  1255. \end_layout
  1256. \end_inset
  1257. \end_layout
  1258. \begin_layout Section*
  1259. Abstract
  1260. \end_layout
  1261. \begin_layout Paragraph
  1262. Background
  1263. \end_layout
  1264. \begin_layout Standard
  1265. Primate blood contains high concentrations of globin messenger RNA.
  1266. Globin reduction is a standard technique used to improve the expression
  1267. results obtained by DNA microarrays on RNA from blood samples.
  1268. However, with whole transcriptome RNA-sequencing (RNA-seq) quickly replacing
  1269. microarrays for many applications, the impact of globin reduction for RNA-seq
  1270. has not been previously studied.
  1271. Moreover, no off-the-shelf kits are available for globin reduction in nonhuman
  1272. primates.
  1273. \end_layout
  1274. \begin_layout Paragraph
  1275. Results
  1276. \end_layout
  1277. \begin_layout Standard
  1278. Here we report a protocol for RNA-seq in primate blood samples that uses
  1279. complimentary oligonucleotides to block reverse transcription of the alpha
  1280. and beta globin genes.
  1281. In test samples from cynomolgus monkeys (Macaca fascicularis), this globin
  1282. blocking protocol approximately doubles the yield of informative (non-globin)
  1283. reads by greatly reducing the fraction of globin reads, while also improving
  1284. the consistency in sequencing depth between samples.
  1285. The increased yield enables detection of about 2000 more genes, significantly
  1286. increases the correlation in measured gene expression levels between samples,
  1287. and increases the sensitivity of differential gene expression tests.
  1288. \end_layout
  1289. \begin_layout Paragraph
  1290. Conclusions
  1291. \end_layout
  1292. \begin_layout Standard
  1293. These results show that globin blocking significantly improves the cost-effectiv
  1294. eness of mRNA sequencing in primate blood samples by doubling the yield
  1295. of useful reads, allowing detection of more genes, and improving the precision
  1296. of gene expression measurements.
  1297. Based on these results, a globin reducing or blocking protocol is recommended
  1298. for all RNA-seq studies of primate blood samples.
  1299. \end_layout
  1300. \begin_layout Section
  1301. Approach
  1302. \end_layout
  1303. \begin_layout Standard
  1304. \begin_inset Note Note
  1305. status open
  1306. \begin_layout Plain Layout
  1307. Consider putting some of this in the Intro chapter
  1308. \end_layout
  1309. \begin_layout Itemize
  1310. Cynomolgus monkeys as a model organism
  1311. \end_layout
  1312. \begin_deeper
  1313. \begin_layout Itemize
  1314. Highly related to humans
  1315. \end_layout
  1316. \begin_layout Itemize
  1317. Small size and short life cycle - good research animal
  1318. \end_layout
  1319. \begin_layout Itemize
  1320. Genomics resources still in development
  1321. \end_layout
  1322. \end_deeper
  1323. \begin_layout Itemize
  1324. Inadequacy of existing blood RNA-seq protocols
  1325. \end_layout
  1326. \begin_deeper
  1327. \begin_layout Itemize
  1328. Existing protocols use a separate globin pulldown step, slowing down processing
  1329. \end_layout
  1330. \end_deeper
  1331. \end_inset
  1332. \end_layout
  1333. \begin_layout Standard
  1334. Increasingly, researchers are turning to high-throughput mRNA sequencing
  1335. technologies (RNA-seq) in preference to expression microarrays for analysis
  1336. of gene expression
  1337. \begin_inset CommandInset citation
  1338. LatexCommand cite
  1339. key "Mutz2012"
  1340. literal "false"
  1341. \end_inset
  1342. .
  1343. The advantages are even greater for study of model organisms with no well-estab
  1344. lished array platforms available, such as the cynomolgus monkey (Macaca
  1345. fascicularis).
  1346. High fractions of globin mRNA are naturally present in mammalian peripheral
  1347. blood samples (up to 70% of total mRNA) and these are known to interfere
  1348. with the results of array-based expression profiling
  1349. \begin_inset CommandInset citation
  1350. LatexCommand cite
  1351. key "Winn2010"
  1352. literal "false"
  1353. \end_inset
  1354. .
  1355. The importance of globin reduction for RNA-seq of blood has only been evaluated
  1356. for a deepSAGE protocol on human samples
  1357. \begin_inset CommandInset citation
  1358. LatexCommand cite
  1359. key "Mastrokolias2012"
  1360. literal "false"
  1361. \end_inset
  1362. .
  1363. In the present report, we evaluated globin reduction using custom blocking
  1364. oligonucleotides for deep RNA-seq of peripheral blood samples from a nonhuman
  1365. primate, cynomolgus monkey, using the Illumina technology platform.
  1366. We demonstrate that globin reduction significantly improves the cost-effectiven
  1367. ess of RNA-seq in blood samples.
  1368. Thus, our protocol offers a significant advantage to any investigator planning
  1369. to use RNA-seq for gene expression profiling of nonhuman primate blood
  1370. samples.
  1371. Our method can be generally applied to any species by designing complementary
  1372. oligonucleotide blocking probes to the globin gene sequences of that species.
  1373. Indeed, any highly expressed but biologically uninformative transcripts
  1374. can also be blocked to further increase sequencing efficiency and value
  1375. \begin_inset CommandInset citation
  1376. LatexCommand cite
  1377. key "Arnaud2016"
  1378. literal "false"
  1379. \end_inset
  1380. .
  1381. \end_layout
  1382. \begin_layout Section
  1383. Methods
  1384. \end_layout
  1385. \begin_layout Subsection*
  1386. Sample collection
  1387. \end_layout
  1388. \begin_layout Standard
  1389. All research reported here was done under IACUC-approved protocols at the
  1390. University of Miami and complied with all applicable federal and state
  1391. regulations and ethical principles for nonhuman primate research.
  1392. Blood draws occurred between 16 April 2012 and 18 June 2015.
  1393. The experimental system involved intrahepatic pancreatic islet transplantation
  1394. into Cynomolgus monkeys with induced diabetes mellitus with or without
  1395. concomitant infusion of mesenchymal stem cells.
  1396. Blood was collected at serial time points before and after transplantation
  1397. into PAXgene Blood RNA tubes (PreAnalytiX/Qiagen, Valencia, CA) at the
  1398. precise volume:volume ratio of 2.5 ml whole blood into 6.9 ml of PAX gene
  1399. additive.
  1400. \end_layout
  1401. \begin_layout Subsection*
  1402. Globin Blocking
  1403. \end_layout
  1404. \begin_layout Standard
  1405. Four oligonucleotides were designed to hybridize to the 3’ end of the transcript
  1406. s for Cynomolgus HBA1, HBA2 and HBB, with two hybridization sites for HBB
  1407. and 2 sites for HBA (the chosen sites were identical in both HBA genes).
  1408. All oligos were purchased from Sigma and were entirely composed of 2’O-Me
  1409. bases with a C3 spacer positioned at the 3’ ends to prevent any polymerase
  1410. mediated primer extension.
  1411. \end_layout
  1412. \begin_layout Quote
  1413. HBA1/2 site 1: GCCCACUCAGACUUUAUUCAAAG-C3spacer
  1414. \end_layout
  1415. \begin_layout Quote
  1416. HBA1/2 site 2: GGUGCAAGGAGGGGAGGAG-C3spacer
  1417. \end_layout
  1418. \begin_layout Quote
  1419. HBB site 1: AAUGAAAAUAAAUGUUUUUUAUUAG-C3spacer
  1420. \end_layout
  1421. \begin_layout Quote
  1422. HBB site 2: CUCAAGGCCCUUCAUAAUAUCCC-C3spacer
  1423. \end_layout
  1424. \begin_layout Subsection*
  1425. RNA-seq Library Preparation
  1426. \end_layout
  1427. \begin_layout Standard
  1428. Sequencing libraries were prepared with 200ng total RNA from each sample.
  1429. Polyadenylated mRNA was selected from 200 ng aliquots of cynomologus blood-deri
  1430. ved total RNA using Ambion Dynabeads Oligo(dT)25 beads (Invitrogen) following
  1431. manufacturer’s recommended protocol.
  1432. PolyA selected RNA was then combined with 8 pmol of HBA1/2 (site 1), 8
  1433. pmol of HBA1/2 (site 2), 12 pmol of HBB (site 1) and 12 pmol of HBB (site
  1434. 2) oligonucleotides.
  1435. In addition, 20 pmol of RT primer containing a portion of the Illumina
  1436. adapter sequence (B-oligo-dTV: GAGTTCCTTGGCACCCGAGAATTCCATTTTTTTTTTTTTTTTTTTV)
  1437. and 4 µL of 5X First Strand buffer (250 mM Tris-HCl pH 8.3, 375 mM KCl,
  1438. 15mM MgCl2) were added in a total volume of 15 µL.
  1439. The RNA was fragmented by heating this cocktail for 3 minutes at 95°C and
  1440. then placed on ice.
  1441. This was followed by the addition of 2 µL 0.1 M DTT, 1 µL RNaseOUT, 1 µL
  1442. 10mM dNTPs 10% biotin-16 aminoallyl-2’- dUTP and 10% biotin-16 aminoallyl-2’-
  1443. dCTP (TriLink Biotech, San Diego, CA), 1 µL Superscript II (200U/ µL, Thermo-Fi
  1444. sher).
  1445. A second “unblocked” library was prepared in the same way for each sample
  1446. but replacing the blocking oligos with an equivalent volume of water.
  1447. The reaction was carried out at 25°C for 15 minutes and 42°C for 40 minutes,
  1448. followed by incubation at 75°C for 10 minutes to inactivate the reverse
  1449. transcriptase.
  1450. \end_layout
  1451. \begin_layout Standard
  1452. The cDNA/RNA hybrid molecules were purified using 1.8X Ampure XP beads (Agencourt
  1453. ) following supplier’s recommended protocol.
  1454. The cDNA/RNA hybrid was eluted in 25 µL of 10 mM Tris-HCl pH 8.0, and then
  1455. bound to 25 µL of M280 Magnetic Streptavidin beads washed per recommended
  1456. protocol (Thermo-Fisher).
  1457. After 30 minutes of binding, beads were washed one time in 100 µL 0.1N NaOH
  1458. to denature and remove the bound RNA, followed by two 100 µL washes with
  1459. 1X TE buffer.
  1460. \end_layout
  1461. \begin_layout Standard
  1462. Subsequent attachment of the 5-prime Illumina A adapter was performed by
  1463. on-bead random primer extension of the following sequence (A-N8 primer:
  1464. TTCAGAGTTCTACAGTCCGACGATCNNNNNNNN).
  1465. Briefly, beads were resuspended in a 20 µL reaction containing 5 µM A-N8
  1466. primer, 40mM Tris-HCl pH 7.5, 20mM MgCl2, 50mM NaCl, 0.325U/µL Sequenase
  1467. 2.0 (Affymetrix, Santa Clara, CA), 0.0025U/µL inorganic pyrophosphatase (Affymetr
  1468. ix) and 300 µM each dNTP.
  1469. Reaction was incubated at 22°C for 30 minutes, then beads were washed 2
  1470. times with 1X TE buffer (200µL).
  1471. \end_layout
  1472. \begin_layout Standard
  1473. The magnetic streptavidin beads were resuspended in 34 µL nuclease-free
  1474. water and added directly to a PCR tube.
  1475. The two Illumina protocol-specified PCR primers were added at 0.53 µM (Illumina
  1476. TruSeq Universal Primer 1 and Illumina TruSeq barcoded PCR primer 2), along
  1477. with 40 µL 2X KAPA HiFi Hotstart ReadyMix (KAPA, Willmington MA) and thermocycl
  1478. ed as follows: starting with 98°C (2 min-hold); 15 cycles of 98°C, 20sec;
  1479. 60°C, 30sec; 72°C, 30sec; and finished with a 72°C (2 min-hold).
  1480. \end_layout
  1481. \begin_layout Standard
  1482. PCR products were purified with 1X Ampure Beads following manufacturer’s
  1483. recommended protocol.
  1484. Libraries were then analyzed using the Agilent TapeStation and quantitation
  1485. of desired size range was performed by “smear analysis”.
  1486. Samples were pooled in equimolar batches of 16 samples.
  1487. Pooled libraries were size selected on 2% agarose gels (E-Gel EX Agarose
  1488. Gels; Thermo-Fisher).
  1489. Products were cut between 250 and 350 bp (corresponding to insert sizes
  1490. of 130 to 230 bps).
  1491. Finished library pools were then sequenced on the Illumina NextSeq500 instrumen
  1492. t with 75 base read lengths.
  1493. \end_layout
  1494. \begin_layout Subsection*
  1495. Read alignment and counting
  1496. \end_layout
  1497. \begin_layout Standard
  1498. Reads were aligned to the cynomolgus genome using STAR
  1499. \begin_inset CommandInset citation
  1500. LatexCommand cite
  1501. key "Dobin2013,Wilson2013"
  1502. literal "false"
  1503. \end_inset
  1504. .
  1505. Counts of uniquely mapped reads were obtained for every gene in each sample
  1506. with the “featureCounts” function from the Rsubread package, using each
  1507. of the three possibilities for the “strandSpecific” option: sense, antisense,
  1508. and unstranded
  1509. \begin_inset CommandInset citation
  1510. LatexCommand cite
  1511. key "Liao2014"
  1512. literal "false"
  1513. \end_inset
  1514. .
  1515. A few artifacts in the cynomolgus genome annotation complicated read counting.
  1516. First, no ortholog is annotated for alpha globin in the cynomolgus genome,
  1517. presumably because the human genome has two alpha globin genes with nearly
  1518. identical sequences, making the orthology relationship ambiguous.
  1519. However, two loci in the cynomolgus genome are as “hemoglobin subunit alpha-lik
  1520. e” (LOC102136192 and LOC102136846).
  1521. LOC102136192 is annotated as a pseudogene while LOC102136846 is annotated
  1522. as protein-coding.
  1523. Our globin reduction protocol was designed to include blocking of these
  1524. two genes.
  1525. Indeed, these two genes have almost the same read counts in each library
  1526. as the properly-annotated HBB gene and much larger counts than any other
  1527. gene in the unblocked libraries, giving confidence that reads derived from
  1528. the real alpha globin are mapping to both genes.
  1529. Thus, reads from both of these loci were counted as alpha globin reads
  1530. in all further analyses.
  1531. The second artifact is a small, uncharacterized non-coding RNA gene (LOC1021365
  1532. 91), which overlaps the HBA-like gene (LOC102136192) on the opposite strand.
  1533. If counting is not performed in stranded mode (or if a non-strand-specific
  1534. sequencing protocol is used), many reads mapping to the globin gene will
  1535. be discarded as ambiguous due to their overlap with this ncRNA gene, resulting
  1536. in significant undercounting of globin reads.
  1537. Therefore, stranded sense counts were used for all further analysis in
  1538. the present study to insure that we accurately accounted for globin transcript
  1539. reduction.
  1540. However, we note that stranded reads are not necessary for RNA-seq using
  1541. our protocol in standard practice.
  1542. \end_layout
  1543. \begin_layout Subsection*
  1544. Normalization and Exploratory Data Analysis
  1545. \end_layout
  1546. \begin_layout Standard
  1547. Libraries were normalized by computing scaling factors using the edgeR package’s
  1548. Trimmed Mean of M-values method
  1549. \begin_inset CommandInset citation
  1550. LatexCommand cite
  1551. key "Robinson2010"
  1552. literal "false"
  1553. \end_inset
  1554. .
  1555. Log2 counts per million values (logCPM) were calculated using the cpm function
  1556. in edgeR for individual samples and aveLogCPM function for averages across
  1557. groups of samples, using those functions’ default prior count values to
  1558. avoid taking the logarithm of 0.
  1559. Genes were considered “present” if their average normalized logCPM values
  1560. across all libraries were at least -1.
  1561. Normalizing for gene length was unnecessary because the sequencing protocol
  1562. is 3’-biased and hence the expected read count for each gene is related
  1563. to the transcript’s copy number but not its length.
  1564. \end_layout
  1565. \begin_layout Standard
  1566. In order to assess the effect of blocking on reproducibility, Pearson and
  1567. Spearman correlation coefficients were computed between the logCPM values
  1568. for every pair of libraries within the globin-blocked (GB) and unblocked
  1569. (non-GB) groups, and edgeR's “estimateDisp” function was used to compute
  1570. negative binomial dispersions separately for the two groups
  1571. \begin_inset CommandInset citation
  1572. LatexCommand cite
  1573. key "Chen2014"
  1574. literal "false"
  1575. \end_inset
  1576. .
  1577. \end_layout
  1578. \begin_layout Subsection*
  1579. Differential Expression Analysis
  1580. \end_layout
  1581. \begin_layout Standard
  1582. All tests for differential gene expression were performed using edgeR, by
  1583. first fitting a negative binomial generalized linear model to the counts
  1584. and normalization factors and then performing a quasi-likelihood F-test
  1585. with robust estimation of outlier gene dispersions
  1586. \begin_inset CommandInset citation
  1587. LatexCommand cite
  1588. key "Lund2012,Phipson2016"
  1589. literal "false"
  1590. \end_inset
  1591. .
  1592. To investigate the effects of globin blocking on each gene, an additive
  1593. model was fit to the full data with coefficients for globin blocking and
  1594. SampleID.
  1595. To test the effect of globin blocking on detection of differentially expressed
  1596. genes, the GB samples and non-GB samples were each analyzed independently
  1597. as follows: for each animal with both a pre-transplant and a post-transplant
  1598. time point in the data set, the pre-transplant sample and the earliest
  1599. post-transplant sample were selected, and all others were excluded, yielding
  1600. a pre-/post-transplant pair of samples for each animal (N=7 animals with
  1601. paired samples).
  1602. These samples were analyzed for pre-transplant vs.
  1603. post-transplant differential gene expression while controlling for inter-animal
  1604. variation using an additive model with coefficients for transplant and
  1605. animal ID.
  1606. In all analyses, p-values were adjusted using the Benjamini-Hochberg procedure
  1607. for FDR correction
  1608. \begin_inset CommandInset citation
  1609. LatexCommand cite
  1610. key "Benjamini1995"
  1611. literal "false"
  1612. \end_inset
  1613. .
  1614. \end_layout
  1615. \begin_layout Standard
  1616. \begin_inset Note Note
  1617. status open
  1618. \begin_layout Itemize
  1619. New blood RNA-seq protocol to block reverse transcription of globin genes
  1620. \end_layout
  1621. \begin_layout Itemize
  1622. Blood RNA-seq time course after transplants with/without MSC infusion
  1623. \end_layout
  1624. \end_inset
  1625. \end_layout
  1626. \begin_layout Section
  1627. Results
  1628. \end_layout
  1629. \begin_layout Subsection*
  1630. Globin blocking yields a larger and more consistent fraction of useful reads
  1631. \end_layout
  1632. \begin_layout Standard
  1633. The objective of the present study was to validate a new protocol for deep
  1634. RNA-seq of whole blood drawn into PaxGene tubes from cynomolgus monkeys
  1635. undergoing islet transplantation, with particular focus on minimizing the
  1636. loss of useful sequencing space to uninformative globin reads.
  1637. The details of the analysis with respect to transplant outcomes and the
  1638. impact of mesenchymal stem cell treatment will be reported in a separate
  1639. manuscript (in preparation).
  1640. To focus on the efficacy of our globin blocking protocol, 37 blood samples,
  1641. 16 from pre-transplant and 21 from post-transplant time points, were each
  1642. prepped once with and once without globin blocking oligos, and were then
  1643. sequenced on an Illumina NextSeq500 instrument.
  1644. The number of reads aligning to each gene in the cynomolgus genome was
  1645. counted.
  1646. Table 1 summarizes the distribution of read fractions among the GB and
  1647. non-GB libraries.
  1648. In the libraries with no globin blocking, globin reads made up an average
  1649. of 44.6% of total input reads, while reads assigned to all other genes made
  1650. up an average of 26.3%.
  1651. The remaining reads either aligned to intergenic regions (that include
  1652. long non-coding RNAs) or did not align with any annotated transcripts in
  1653. the current build of the cynomolgus genome.
  1654. In the GB libraries, globin reads made up only 3.48% and reads assigned
  1655. to all other genes increased to 50.4%.
  1656. Thus, globin blocking resulted in a 92.2% reduction in globin reads and
  1657. a 91.6% increase in yield of useful non-globin reads.
  1658. \end_layout
  1659. \begin_layout Standard
  1660. This reduction is not quite as efficient as the previous analysis showed
  1661. for human samples by DeepSAGE (<0.4% globin reads after globin reduction)
  1662. \begin_inset CommandInset citation
  1663. LatexCommand cite
  1664. key "Mastrokolias2012"
  1665. literal "false"
  1666. \end_inset
  1667. .
  1668. Nonetheless, this degree of globin reduction is sufficient to nearly double
  1669. the yield of useful reads.
  1670. Thus, globin blocking cuts the required sequencing effort (and costs) to
  1671. achieve a target coverage depth by almost 50%.
  1672. Consistent with this near doubling of yield, the average difference in
  1673. un-normalized logCPM across all genes between the GB libraries and non-GB
  1674. libraries is approximately 1 (mean = 1.01, median = 1.08), an overall 2-fold
  1675. increase.
  1676. Un-normalized values are used here because the TMM normalization correctly
  1677. identifies this 2-fold difference as biologically irrelevant and removes
  1678. it.
  1679. \end_layout
  1680. \begin_layout Standard
  1681. \begin_inset Float figure
  1682. wide false
  1683. sideways false
  1684. status open
  1685. \begin_layout Plain Layout
  1686. \align center
  1687. \begin_inset Graphics
  1688. filename graphics/Globin Paper/figure1 - globin-fractions.pdf
  1689. \end_inset
  1690. \end_layout
  1691. \begin_layout Plain Layout
  1692. \begin_inset Caption Standard
  1693. \begin_layout Plain Layout
  1694. \series bold
  1695. \begin_inset Argument 1
  1696. status collapsed
  1697. \begin_layout Plain Layout
  1698. Fraction of genic reads in each sample aligned to non-globin genes, with
  1699. and without globin blocking (GB).
  1700. \end_layout
  1701. \end_inset
  1702. \begin_inset CommandInset label
  1703. LatexCommand label
  1704. name "fig:Fraction-of-genic-reads"
  1705. \end_inset
  1706. Fraction of genic reads in each sample aligned to non-globin genes, with
  1707. and without globin blocking (GB).
  1708. \series default
  1709. All reads in each sequencing library were aligned to the cyno genome, and
  1710. the number of reads uniquely aligning to each gene was counted.
  1711. For each sample, counts were summed separately for all globin genes and
  1712. for the remainder of the genes (non-globin genes), and the fraction of
  1713. genic reads aligned to non-globin genes was computed.
  1714. Each point represents an individual sample.
  1715. Gray + signs indicate the means for globin-blocked libraries and unblocked
  1716. libraries.
  1717. The overall distribution for each group is represented as a notched box
  1718. plots.
  1719. Points are randomly spread vertically to avoid excessive overlapping.
  1720. \end_layout
  1721. \end_inset
  1722. \end_layout
  1723. \begin_layout Plain Layout
  1724. \end_layout
  1725. \end_inset
  1726. \end_layout
  1727. \begin_layout Standard
  1728. \begin_inset Float table
  1729. placement p
  1730. wide false
  1731. sideways true
  1732. status open
  1733. \begin_layout Plain Layout
  1734. \align center
  1735. \begin_inset Tabular
  1736. <lyxtabular version="3" rows="4" columns="7">
  1737. <features tabularvalignment="middle">
  1738. <column alignment="center" valignment="top">
  1739. <column alignment="center" valignment="top">
  1740. <column alignment="center" valignment="top">
  1741. <column alignment="center" valignment="top">
  1742. <column alignment="center" valignment="top">
  1743. <column alignment="center" valignment="top">
  1744. <column alignment="center" valignment="top">
  1745. <row>
  1746. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1747. \begin_inset Text
  1748. \begin_layout Plain Layout
  1749. \end_layout
  1750. \end_inset
  1751. </cell>
  1752. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1753. \begin_inset Text
  1754. \begin_layout Plain Layout
  1755. \family roman
  1756. \series medium
  1757. \shape up
  1758. \size normal
  1759. \emph off
  1760. \bar no
  1761. \strikeout off
  1762. \xout off
  1763. \uuline off
  1764. \uwave off
  1765. \noun off
  1766. \color none
  1767. Percent of Total Reads
  1768. \end_layout
  1769. \end_inset
  1770. </cell>
  1771. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1772. \begin_inset Text
  1773. \begin_layout Plain Layout
  1774. \end_layout
  1775. \end_inset
  1776. </cell>
  1777. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1778. \begin_inset Text
  1779. \begin_layout Plain Layout
  1780. \end_layout
  1781. \end_inset
  1782. </cell>
  1783. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1784. \begin_inset Text
  1785. \begin_layout Plain Layout
  1786. \end_layout
  1787. \end_inset
  1788. </cell>
  1789. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  1790. \begin_inset Text
  1791. \begin_layout Plain Layout
  1792. \family roman
  1793. \series medium
  1794. \shape up
  1795. \size normal
  1796. \emph off
  1797. \bar no
  1798. \strikeout off
  1799. \xout off
  1800. \uuline off
  1801. \uwave off
  1802. \noun off
  1803. \color none
  1804. Percent of Genic Reads
  1805. \end_layout
  1806. \end_inset
  1807. </cell>
  1808. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  1809. \begin_inset Text
  1810. \begin_layout Plain Layout
  1811. \end_layout
  1812. \end_inset
  1813. </cell>
  1814. </row>
  1815. <row>
  1816. <cell alignment="center" valignment="top" bottomline="true" leftline="true" usebox="none">
  1817. \begin_inset Text
  1818. \begin_layout Plain Layout
  1819. GB
  1820. \end_layout
  1821. \end_inset
  1822. </cell>
  1823. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1824. \begin_inset Text
  1825. \begin_layout Plain Layout
  1826. \family roman
  1827. \series medium
  1828. \shape up
  1829. \size normal
  1830. \emph off
  1831. \bar no
  1832. \strikeout off
  1833. \xout off
  1834. \uuline off
  1835. \uwave off
  1836. \noun off
  1837. \color none
  1838. Non-globin Reads
  1839. \end_layout
  1840. \end_inset
  1841. </cell>
  1842. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1843. \begin_inset Text
  1844. \begin_layout Plain Layout
  1845. \family roman
  1846. \series medium
  1847. \shape up
  1848. \size normal
  1849. \emph off
  1850. \bar no
  1851. \strikeout off
  1852. \xout off
  1853. \uuline off
  1854. \uwave off
  1855. \noun off
  1856. \color none
  1857. Globin Reads
  1858. \end_layout
  1859. \end_inset
  1860. </cell>
  1861. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1862. \begin_inset Text
  1863. \begin_layout Plain Layout
  1864. \family roman
  1865. \series medium
  1866. \shape up
  1867. \size normal
  1868. \emph off
  1869. \bar no
  1870. \strikeout off
  1871. \xout off
  1872. \uuline off
  1873. \uwave off
  1874. \noun off
  1875. \color none
  1876. All Genic Reads
  1877. \end_layout
  1878. \end_inset
  1879. </cell>
  1880. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1881. \begin_inset Text
  1882. \begin_layout Plain Layout
  1883. \family roman
  1884. \series medium
  1885. \shape up
  1886. \size normal
  1887. \emph off
  1888. \bar no
  1889. \strikeout off
  1890. \xout off
  1891. \uuline off
  1892. \uwave off
  1893. \noun off
  1894. \color none
  1895. All Aligned Reads
  1896. \end_layout
  1897. \end_inset
  1898. </cell>
  1899. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1900. \begin_inset Text
  1901. \begin_layout Plain Layout
  1902. \family roman
  1903. \series medium
  1904. \shape up
  1905. \size normal
  1906. \emph off
  1907. \bar no
  1908. \strikeout off
  1909. \xout off
  1910. \uuline off
  1911. \uwave off
  1912. \noun off
  1913. \color none
  1914. Non-globin Reads
  1915. \end_layout
  1916. \end_inset
  1917. </cell>
  1918. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  1919. \begin_inset Text
  1920. \begin_layout Plain Layout
  1921. \family roman
  1922. \series medium
  1923. \shape up
  1924. \size normal
  1925. \emph off
  1926. \bar no
  1927. \strikeout off
  1928. \xout off
  1929. \uuline off
  1930. \uwave off
  1931. \noun off
  1932. \color none
  1933. Globin Reads
  1934. \end_layout
  1935. \end_inset
  1936. </cell>
  1937. </row>
  1938. <row>
  1939. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1940. \begin_inset Text
  1941. \begin_layout Plain Layout
  1942. \family roman
  1943. \series medium
  1944. \shape up
  1945. \size normal
  1946. \emph off
  1947. \bar no
  1948. \strikeout off
  1949. \xout off
  1950. \uuline off
  1951. \uwave off
  1952. \noun off
  1953. \color none
  1954. Yes
  1955. \end_layout
  1956. \end_inset
  1957. </cell>
  1958. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1959. \begin_inset Text
  1960. \begin_layout Plain Layout
  1961. \family roman
  1962. \series medium
  1963. \shape up
  1964. \size normal
  1965. \emph off
  1966. \bar no
  1967. \strikeout off
  1968. \xout off
  1969. \uuline off
  1970. \uwave off
  1971. \noun off
  1972. \color none
  1973. 50.4% ± 6.82
  1974. \end_layout
  1975. \end_inset
  1976. </cell>
  1977. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1978. \begin_inset Text
  1979. \begin_layout Plain Layout
  1980. \family roman
  1981. \series medium
  1982. \shape up
  1983. \size normal
  1984. \emph off
  1985. \bar no
  1986. \strikeout off
  1987. \xout off
  1988. \uuline off
  1989. \uwave off
  1990. \noun off
  1991. \color none
  1992. 3.48% ± 2.94
  1993. \end_layout
  1994. \end_inset
  1995. </cell>
  1996. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1997. \begin_inset Text
  1998. \begin_layout Plain Layout
  1999. \family roman
  2000. \series medium
  2001. \shape up
  2002. \size normal
  2003. \emph off
  2004. \bar no
  2005. \strikeout off
  2006. \xout off
  2007. \uuline off
  2008. \uwave off
  2009. \noun off
  2010. \color none
  2011. 53.9% ± 6.81
  2012. \end_layout
  2013. \end_inset
  2014. </cell>
  2015. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2016. \begin_inset Text
  2017. \begin_layout Plain Layout
  2018. \family roman
  2019. \series medium
  2020. \shape up
  2021. \size normal
  2022. \emph off
  2023. \bar no
  2024. \strikeout off
  2025. \xout off
  2026. \uuline off
  2027. \uwave off
  2028. \noun off
  2029. \color none
  2030. 89.7% ± 2.40
  2031. \end_layout
  2032. \end_inset
  2033. </cell>
  2034. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2035. \begin_inset Text
  2036. \begin_layout Plain Layout
  2037. \family roman
  2038. \series medium
  2039. \shape up
  2040. \size normal
  2041. \emph off
  2042. \bar no
  2043. \strikeout off
  2044. \xout off
  2045. \uuline off
  2046. \uwave off
  2047. \noun off
  2048. \color none
  2049. 93.5% ± 5.25
  2050. \end_layout
  2051. \end_inset
  2052. </cell>
  2053. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2054. \begin_inset Text
  2055. \begin_layout Plain Layout
  2056. \family roman
  2057. \series medium
  2058. \shape up
  2059. \size normal
  2060. \emph off
  2061. \bar no
  2062. \strikeout off
  2063. \xout off
  2064. \uuline off
  2065. \uwave off
  2066. \noun off
  2067. \color none
  2068. 6.49% ± 5.25
  2069. \end_layout
  2070. \end_inset
  2071. </cell>
  2072. </row>
  2073. <row>
  2074. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2075. \begin_inset Text
  2076. \begin_layout Plain Layout
  2077. \family roman
  2078. \series medium
  2079. \shape up
  2080. \size normal
  2081. \emph off
  2082. \bar no
  2083. \strikeout off
  2084. \xout off
  2085. \uuline off
  2086. \uwave off
  2087. \noun off
  2088. \color none
  2089. No
  2090. \end_layout
  2091. \end_inset
  2092. </cell>
  2093. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2094. \begin_inset Text
  2095. \begin_layout Plain Layout
  2096. \family roman
  2097. \series medium
  2098. \shape up
  2099. \size normal
  2100. \emph off
  2101. \bar no
  2102. \strikeout off
  2103. \xout off
  2104. \uuline off
  2105. \uwave off
  2106. \noun off
  2107. \color none
  2108. 26.3% ± 8.95
  2109. \end_layout
  2110. \end_inset
  2111. </cell>
  2112. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2113. \begin_inset Text
  2114. \begin_layout Plain Layout
  2115. \family roman
  2116. \series medium
  2117. \shape up
  2118. \size normal
  2119. \emph off
  2120. \bar no
  2121. \strikeout off
  2122. \xout off
  2123. \uuline off
  2124. \uwave off
  2125. \noun off
  2126. \color none
  2127. 44.6% ± 16.6
  2128. \end_layout
  2129. \end_inset
  2130. </cell>
  2131. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2132. \begin_inset Text
  2133. \begin_layout Plain Layout
  2134. \family roman
  2135. \series medium
  2136. \shape up
  2137. \size normal
  2138. \emph off
  2139. \bar no
  2140. \strikeout off
  2141. \xout off
  2142. \uuline off
  2143. \uwave off
  2144. \noun off
  2145. \color none
  2146. 70.1% ± 9.38
  2147. \end_layout
  2148. \end_inset
  2149. </cell>
  2150. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2151. \begin_inset Text
  2152. \begin_layout Plain Layout
  2153. \family roman
  2154. \series medium
  2155. \shape up
  2156. \size normal
  2157. \emph off
  2158. \bar no
  2159. \strikeout off
  2160. \xout off
  2161. \uuline off
  2162. \uwave off
  2163. \noun off
  2164. \color none
  2165. 90.7% ± 5.16
  2166. \end_layout
  2167. \end_inset
  2168. </cell>
  2169. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2170. \begin_inset Text
  2171. \begin_layout Plain Layout
  2172. \family roman
  2173. \series medium
  2174. \shape up
  2175. \size normal
  2176. \emph off
  2177. \bar no
  2178. \strikeout off
  2179. \xout off
  2180. \uuline off
  2181. \uwave off
  2182. \noun off
  2183. \color none
  2184. 38.8% ± 17.1
  2185. \end_layout
  2186. \end_inset
  2187. </cell>
  2188. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2189. \begin_inset Text
  2190. \begin_layout Plain Layout
  2191. \family roman
  2192. \series medium
  2193. \shape up
  2194. \size normal
  2195. \emph off
  2196. \bar no
  2197. \strikeout off
  2198. \xout off
  2199. \uuline off
  2200. \uwave off
  2201. \noun off
  2202. \color none
  2203. 61.2% ± 17.1
  2204. \end_layout
  2205. \end_inset
  2206. </cell>
  2207. </row>
  2208. </lyxtabular>
  2209. \end_inset
  2210. \end_layout
  2211. \begin_layout Plain Layout
  2212. \begin_inset Caption Standard
  2213. \begin_layout Plain Layout
  2214. \series bold
  2215. \begin_inset Argument 1
  2216. status collapsed
  2217. \begin_layout Plain Layout
  2218. Fractions of reads mapping to genomic features in GB and non-GB samples.
  2219. \end_layout
  2220. \end_inset
  2221. \begin_inset CommandInset label
  2222. LatexCommand label
  2223. name "tab:Fractions-of-reads"
  2224. \end_inset
  2225. Fractions of reads mapping to genomic features in GB and non-GB samples.
  2226. \series default
  2227. All values are given as mean ± standard deviation.
  2228. \end_layout
  2229. \end_inset
  2230. \end_layout
  2231. \begin_layout Plain Layout
  2232. \end_layout
  2233. \end_inset
  2234. \end_layout
  2235. \begin_layout Standard
  2236. Another important aspect is that the standard deviations in Table
  2237. \begin_inset CommandInset ref
  2238. LatexCommand ref
  2239. reference "tab:Fractions-of-reads"
  2240. plural "false"
  2241. caps "false"
  2242. noprefix "false"
  2243. \end_inset
  2244. are uniformly smaller in the GB samples than the non-GB ones, indicating
  2245. much greater consistency of yield.
  2246. This is best seen in the percentage of non-globin reads as a fraction of
  2247. total reads aligned to annotated genes (genic reads).
  2248. For the non-GB samples, this measure ranges from 10.9% to 80.9%, while for
  2249. the GB samples it ranges from 81.9% to 99.9% (Figure
  2250. \begin_inset CommandInset ref
  2251. LatexCommand ref
  2252. reference "fig:Fraction-of-genic-reads"
  2253. plural "false"
  2254. caps "false"
  2255. noprefix "false"
  2256. \end_inset
  2257. ).
  2258. This means that for applications where it is critical that each sample
  2259. achieve a specified minimum coverage in order to provide useful information,
  2260. it would be necessary to budget up to 10 times the sequencing depth per
  2261. sample without globin blocking, even though the average yield improvement
  2262. for globin blocking is only 2-fold, because every sample has a chance of
  2263. being 90% globin and 10% useful reads.
  2264. Hence, the more consistent behavior of GB samples makes planning an experiment
  2265. easier and more efficient because it eliminates the need to over-sequence
  2266. every sample in order to guard against the worst case of a high-globin
  2267. fraction.
  2268. \end_layout
  2269. \begin_layout Subsection*
  2270. Globin blocking lowers the noise floor and allows detection of about 2000
  2271. more genes
  2272. \end_layout
  2273. \begin_layout Standard
  2274. \begin_inset Flex TODO Note (inline)
  2275. status open
  2276. \begin_layout Plain Layout
  2277. Remove redundant titles from figures
  2278. \end_layout
  2279. \end_inset
  2280. \end_layout
  2281. \begin_layout Standard
  2282. \begin_inset Float figure
  2283. wide false
  2284. sideways false
  2285. status open
  2286. \begin_layout Plain Layout
  2287. \align center
  2288. \begin_inset Graphics
  2289. filename graphics/Globin Paper/figure2 - aveLogCPM-colored.pdf
  2290. \end_inset
  2291. \end_layout
  2292. \begin_layout Plain Layout
  2293. \begin_inset Caption Standard
  2294. \begin_layout Plain Layout
  2295. \series bold
  2296. \begin_inset Argument 1
  2297. status collapsed
  2298. \begin_layout Plain Layout
  2299. Distributions of average group gene abundances when normalized separately
  2300. or together.
  2301. \end_layout
  2302. \end_inset
  2303. \begin_inset CommandInset label
  2304. LatexCommand label
  2305. name "fig:logcpm-dists"
  2306. \end_inset
  2307. Distributions of average group gene abundances when normalized separately
  2308. or together.
  2309. \series default
  2310. All reads in each sequencing library were aligned to the cyno genome, and
  2311. the number of reads uniquely aligning to each gene was counted.
  2312. Genes with zero counts in all libraries were discarded.
  2313. Libraries were normalized using the TMM method.
  2314. Libraries were split into globin-blocked (GB) and non-GB groups and the
  2315. average abundance for each gene in both groups, measured in log2 counts
  2316. per million reads counted, was computed using the aveLogCPM function.
  2317. The distribution of average gene logCPM values was plotted for both groups
  2318. using a kernel density plot to approximate a continuous distribution.
  2319. The logCPM GB distributions are marked in red, non-GB in blue.
  2320. The black vertical line denotes the chosen detection threshold of -1.
  2321. Top panel: Libraries were split into GB and non-GB groups first and normalized
  2322. separately.
  2323. Bottom panel: Libraries were all normalized together first and then split
  2324. into groups.
  2325. \end_layout
  2326. \end_inset
  2327. \end_layout
  2328. \begin_layout Plain Layout
  2329. \end_layout
  2330. \end_inset
  2331. \end_layout
  2332. \begin_layout Standard
  2333. Since globin blocking yields more usable sequencing depth, it should also
  2334. allow detection of more genes at any given threshold.
  2335. When we looked at the distribution of average normalized logCPM values
  2336. across all libraries for genes with at least one read assigned to them,
  2337. we observed the expected bimodal distribution, with a high-abundance "signal"
  2338. peak representing detected genes and a low-abundance "noise" peak representing
  2339. genes whose read count did not rise above the noise floor (Figure
  2340. \begin_inset CommandInset ref
  2341. LatexCommand ref
  2342. reference "fig:logcpm-dists"
  2343. plural "false"
  2344. caps "false"
  2345. noprefix "false"
  2346. \end_inset
  2347. ).
  2348. Consistent with the 2-fold increase in raw counts assigned to non-globin
  2349. genes, the signal peak for GB samples is shifted to the right relative
  2350. to the non-GB signal peak.
  2351. When all the samples are normalized together, this difference is normalized
  2352. out, lining up the signal peaks, and this reveals that, as expected, the
  2353. noise floor for the GB samples is about 2-fold lower.
  2354. This greater separation between signal and noise peaks in the GB samples
  2355. means that low-expression genes should be more easily detected and more
  2356. precisely quantified than in the non-GB samples.
  2357. \end_layout
  2358. \begin_layout Standard
  2359. \begin_inset Float figure
  2360. wide false
  2361. sideways false
  2362. status open
  2363. \begin_layout Plain Layout
  2364. \align center
  2365. \begin_inset Graphics
  2366. filename graphics/Globin Paper/figure3 - detection.pdf
  2367. \end_inset
  2368. \end_layout
  2369. \begin_layout Plain Layout
  2370. \begin_inset Caption Standard
  2371. \begin_layout Plain Layout
  2372. \series bold
  2373. \begin_inset Argument 1
  2374. status collapsed
  2375. \begin_layout Plain Layout
  2376. Gene detections as a function of abundance thresholds in globin-blocked
  2377. (GB) and non-GB samples.
  2378. \end_layout
  2379. \end_inset
  2380. \begin_inset CommandInset label
  2381. LatexCommand label
  2382. name "fig:Gene-detections"
  2383. \end_inset
  2384. Gene detections as a function of abundance thresholds in globin-blocked
  2385. (GB) and non-GB samples.
  2386. \series default
  2387. Average abundance (logCPM,
  2388. \begin_inset Formula $\log_{2}$
  2389. \end_inset
  2390. counts per million reads counted) was computed by separate group normalization
  2391. as described in Figure
  2392. \begin_inset CommandInset ref
  2393. LatexCommand ref
  2394. reference "fig:logcpm-dists"
  2395. plural "false"
  2396. caps "false"
  2397. noprefix "false"
  2398. \end_inset
  2399. for both the GB and non-GB groups, as well as for all samples considered
  2400. as one large group.
  2401. For each every integer threshold from -2 to 3, the number of genes detected
  2402. at or above that logCPM threshold was plotted for each group.
  2403. \end_layout
  2404. \end_inset
  2405. \end_layout
  2406. \begin_layout Plain Layout
  2407. \end_layout
  2408. \end_inset
  2409. \end_layout
  2410. \begin_layout Standard
  2411. Based on these distributions, we selected a detection threshold of -1, which
  2412. is approximately the leftmost edge of the trough between the signal and
  2413. noise peaks.
  2414. This represents the most liberal possible detection threshold that doesn't
  2415. call substantial numbers of noise genes as detected.
  2416. Among the full dataset, 13429 genes were detected at this threshold, and
  2417. 22276 were not.
  2418. When considering the GB libraries and non-GB libraries separately and re-comput
  2419. ing normalization factors independently within each group, 14535 genes were
  2420. detected in the GB libraries while only 12460 were detected in the non-GB
  2421. libraries.
  2422. Thus, GB allowed the detection of 2000 extra genes that were buried under
  2423. the noise floor without GB.
  2424. This pattern of at least 2000 additional genes detected with GB was also
  2425. consistent across a wide range of possible detection thresholds, from -2
  2426. to 3 (see Figure
  2427. \begin_inset CommandInset ref
  2428. LatexCommand ref
  2429. reference "fig:Gene-detections"
  2430. plural "false"
  2431. caps "false"
  2432. noprefix "false"
  2433. \end_inset
  2434. ).
  2435. \end_layout
  2436. \begin_layout Subsection*
  2437. Globin blocking does not add significant additional noise or decrease sample
  2438. quality
  2439. \end_layout
  2440. \begin_layout Standard
  2441. One potential worry is that the globin blocking protocol could perturb the
  2442. levels of non-globin genes.
  2443. There are two kinds of possible perturbations: systematic and random.
  2444. The former is not a major concern for detection of differential expression,
  2445. since a 2-fold change in every sample has no effect on the relative fold
  2446. change between samples.
  2447. In contrast, random perturbations would increase the noise and obscure
  2448. the signal in the dataset, reducing the capacity to detect differential
  2449. expression.
  2450. \end_layout
  2451. \begin_layout Standard
  2452. \begin_inset Float figure
  2453. wide false
  2454. sideways false
  2455. status open
  2456. \begin_layout Plain Layout
  2457. \align center
  2458. \begin_inset Graphics
  2459. filename graphics/Globin Paper/figure4 - maplot-colored.pdf
  2460. \end_inset
  2461. \end_layout
  2462. \begin_layout Plain Layout
  2463. \begin_inset Caption Standard
  2464. \begin_layout Plain Layout
  2465. \begin_inset Argument 1
  2466. status collapsed
  2467. \begin_layout Plain Layout
  2468. MA plot showing effects of globin blocking on each gene's abundance.
  2469. \end_layout
  2470. \end_inset
  2471. \begin_inset CommandInset label
  2472. LatexCommand label
  2473. name "fig:MA-plot"
  2474. \end_inset
  2475. \series bold
  2476. MA plot showing effects of globin blocking on each gene's abundance.
  2477. \series default
  2478. All libraries were normalized together as described in Figure
  2479. \begin_inset CommandInset ref
  2480. LatexCommand ref
  2481. reference "fig:logcpm-dists"
  2482. plural "false"
  2483. caps "false"
  2484. noprefix "false"
  2485. \end_inset
  2486. , and genes with an average logCPM below -1 were filtered out.
  2487. Each remaining gene was tested for differential abundance with respect
  2488. to globin blocking (GB) using edgeR’s quasi-likelihod F-test, fitting a
  2489. negative binomial generalized linear model to table of read counts in each
  2490. library.
  2491. For each gene, edgeR reported average abundance (logCPM),
  2492. \begin_inset Formula $\log_{2}$
  2493. \end_inset
  2494. fold change (logFC), p-value, and Benjamini-Hochberg adjusted false discovery
  2495. rate (FDR).
  2496. Each gene's logFC was plotted against its logCPM, colored by FDR.
  2497. Red points are significant at ≤10% FDR, and blue are not significant at
  2498. that threshold.
  2499. The alpha and beta globin genes targeted for blocking are marked with large
  2500. triangles, while all other genes are represented as small points.
  2501. \end_layout
  2502. \end_inset
  2503. \end_layout
  2504. \begin_layout Plain Layout
  2505. \end_layout
  2506. \end_inset
  2507. \end_layout
  2508. \begin_layout Standard
  2509. \begin_inset Flex TODO Note (inline)
  2510. status open
  2511. \begin_layout Plain Layout
  2512. Standardize on
  2513. \begin_inset Quotes eld
  2514. \end_inset
  2515. log2
  2516. \begin_inset Quotes erd
  2517. \end_inset
  2518. notation
  2519. \end_layout
  2520. \end_inset
  2521. \end_layout
  2522. \begin_layout Standard
  2523. The data do indeed show small systematic perturbations in gene levels (Figure
  2524. \begin_inset CommandInset ref
  2525. LatexCommand ref
  2526. reference "fig:MA-plot"
  2527. plural "false"
  2528. caps "false"
  2529. noprefix "false"
  2530. \end_inset
  2531. ).
  2532. Other than the 3 designated alpha and beta globin genes, two other genes
  2533. stand out as having especially large negative log fold changes: HBD and
  2534. LOC1021365.
  2535. HBD, delta globin, is most likely targeted by the blocking oligos due to
  2536. high sequence homology with the other globin genes.
  2537. LOC1021365 is the aforementioned ncRNA that is reverse-complementary to
  2538. one of the alpha-like genes and that would be expected to be removed during
  2539. the globin blocking step.
  2540. All other genes appear in a cluster centered vertically at 0, and the vast
  2541. majority of genes in this cluster show an absolute log2(FC) of 0.5 or less.
  2542. Nevertheless, many of these small perturbations are still statistically
  2543. significant, indicating that the globin blocking oligos likely cause very
  2544. small but non-zero systematic perturbations in measured gene expression
  2545. levels.
  2546. \end_layout
  2547. \begin_layout Standard
  2548. \begin_inset Float figure
  2549. wide false
  2550. sideways false
  2551. status open
  2552. \begin_layout Plain Layout
  2553. \align center
  2554. \begin_inset Graphics
  2555. filename graphics/Globin Paper/figure5 - corrplot.pdf
  2556. \end_inset
  2557. \end_layout
  2558. \begin_layout Plain Layout
  2559. \begin_inset Caption Standard
  2560. \begin_layout Plain Layout
  2561. \series bold
  2562. \begin_inset Argument 1
  2563. status collapsed
  2564. \begin_layout Plain Layout
  2565. Comparison of inter-sample gene abundance correlations with and without
  2566. globin blocking.
  2567. \end_layout
  2568. \end_inset
  2569. \begin_inset CommandInset label
  2570. LatexCommand label
  2571. name "fig:gene-abundance-correlations"
  2572. \end_inset
  2573. Comparison of inter-sample gene abundance correlations with and without
  2574. globin blocking (GB).
  2575. \series default
  2576. All libraries were normalized together as described in Figure 2, and genes
  2577. with an average abundance (logCPM, log2 counts per million reads counted)
  2578. less than -1 were filtered out.
  2579. Each gene’s logCPM was computed in each library using the edgeR cpm function.
  2580. For each pair of biological samples, the Pearson correlation between those
  2581. samples' GB libraries was plotted against the correlation between the same
  2582. samples’ non-GB libraries.
  2583. Each point represents an unique pair of samples.
  2584. The solid gray line shows a quantile-quantile plot of distribution of GB
  2585. correlations vs.
  2586. that of non-GB correlations.
  2587. The thin dashed line is the identity line, provided for reference.
  2588. \end_layout
  2589. \end_inset
  2590. \end_layout
  2591. \begin_layout Plain Layout
  2592. \end_layout
  2593. \end_inset
  2594. \end_layout
  2595. \begin_layout Standard
  2596. To evaluate the possibility of globin blocking causing random perturbations
  2597. and reducing sample quality, we computed the Pearson correlation between
  2598. logCPM values for every pair of samples with and without GB and plotted
  2599. them against each other (Figure
  2600. \begin_inset CommandInset ref
  2601. LatexCommand ref
  2602. reference "fig:gene-abundance-correlations"
  2603. plural "false"
  2604. caps "false"
  2605. noprefix "false"
  2606. \end_inset
  2607. ).
  2608. The plot indicated that the GB libraries have higher sample-to-sample correlati
  2609. ons than the non-GB libraries.
  2610. Parametric and nonparametric tests for differences between the correlations
  2611. with and without GB both confirmed that this difference was highly significant
  2612. (2-sided paired t-test: t = 37.2, df = 665, P ≪ 2.2e-16; 2-sided Wilcoxon
  2613. sign-rank test: V = 2195, P ≪ 2.2e-16).
  2614. Performing the same tests on the Spearman correlations gave the same conclusion
  2615. (t-test: t = 26.8, df = 665, P ≪ 2.2e-16; sign-rank test: V = 8781, P ≪ 2.2e-16).
  2616. The edgeR package was used to compute the overall biological coefficient
  2617. of variation (BCV) for GB and non-GB libraries, and found that globin blocking
  2618. resulted in a negligible increase in the BCV (0.417 with GB vs.
  2619. 0.400 without).
  2620. The near equality of the BCVs for both sets indicates that the higher correlati
  2621. ons in the GB libraries are most likely a result of the increased yield
  2622. of useful reads, which reduces the contribution of Poisson counting uncertainty
  2623. to the overall variance of the logCPM values
  2624. \begin_inset CommandInset citation
  2625. LatexCommand cite
  2626. key "McCarthy2012"
  2627. literal "false"
  2628. \end_inset
  2629. .
  2630. This improves the precision of expression measurements and more than offsets
  2631. the negligible increase in BCV.
  2632. \end_layout
  2633. \begin_layout Subsection*
  2634. More differentially expressed genes are detected with globin blocking
  2635. \end_layout
  2636. \begin_layout Standard
  2637. \begin_inset Float table
  2638. wide false
  2639. sideways false
  2640. status open
  2641. \begin_layout Plain Layout
  2642. \align center
  2643. \begin_inset Tabular
  2644. <lyxtabular version="3" rows="5" columns="5">
  2645. <features tabularvalignment="middle">
  2646. <column alignment="center" valignment="top">
  2647. <column alignment="center" valignment="top">
  2648. <column alignment="center" valignment="top">
  2649. <column alignment="center" valignment="top">
  2650. <column alignment="center" valignment="top">
  2651. <row>
  2652. <cell alignment="center" valignment="top" usebox="none">
  2653. \begin_inset Text
  2654. \begin_layout Plain Layout
  2655. \end_layout
  2656. \end_inset
  2657. </cell>
  2658. <cell alignment="center" valignment="top" usebox="none">
  2659. \begin_inset Text
  2660. \begin_layout Plain Layout
  2661. \end_layout
  2662. \end_inset
  2663. </cell>
  2664. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2665. \begin_inset Text
  2666. \begin_layout Plain Layout
  2667. \series bold
  2668. No Globin Blocking
  2669. \end_layout
  2670. \end_inset
  2671. </cell>
  2672. <cell multicolumn="2" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2673. \begin_inset Text
  2674. \begin_layout Plain Layout
  2675. \end_layout
  2676. \end_inset
  2677. </cell>
  2678. <cell multicolumn="2" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2679. \begin_inset Text
  2680. \begin_layout Plain Layout
  2681. \end_layout
  2682. \end_inset
  2683. </cell>
  2684. </row>
  2685. <row>
  2686. <cell alignment="center" valignment="top" usebox="none">
  2687. \begin_inset Text
  2688. \begin_layout Plain Layout
  2689. \end_layout
  2690. \end_inset
  2691. </cell>
  2692. <cell alignment="center" valignment="top" usebox="none">
  2693. \begin_inset Text
  2694. \begin_layout Plain Layout
  2695. \end_layout
  2696. \end_inset
  2697. </cell>
  2698. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2699. \begin_inset Text
  2700. \begin_layout Plain Layout
  2701. \series bold
  2702. Up
  2703. \end_layout
  2704. \end_inset
  2705. </cell>
  2706. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2707. \begin_inset Text
  2708. \begin_layout Plain Layout
  2709. \series bold
  2710. NS
  2711. \end_layout
  2712. \end_inset
  2713. </cell>
  2714. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2715. \begin_inset Text
  2716. \begin_layout Plain Layout
  2717. \series bold
  2718. Down
  2719. \end_layout
  2720. \end_inset
  2721. </cell>
  2722. </row>
  2723. <row>
  2724. <cell multirow="3" alignment="center" valignment="middle" topline="true" bottomline="true" leftline="true" usebox="none">
  2725. \begin_inset Text
  2726. \begin_layout Plain Layout
  2727. \series bold
  2728. Globin-Blocking
  2729. \end_layout
  2730. \end_inset
  2731. </cell>
  2732. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2733. \begin_inset Text
  2734. \begin_layout Plain Layout
  2735. \series bold
  2736. Up
  2737. \end_layout
  2738. \end_inset
  2739. </cell>
  2740. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2741. \begin_inset Text
  2742. \begin_layout Plain Layout
  2743. \family roman
  2744. \series medium
  2745. \shape up
  2746. \size normal
  2747. \emph off
  2748. \bar no
  2749. \strikeout off
  2750. \xout off
  2751. \uuline off
  2752. \uwave off
  2753. \noun off
  2754. \color none
  2755. 231
  2756. \end_layout
  2757. \end_inset
  2758. </cell>
  2759. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2760. \begin_inset Text
  2761. \begin_layout Plain Layout
  2762. \family roman
  2763. \series medium
  2764. \shape up
  2765. \size normal
  2766. \emph off
  2767. \bar no
  2768. \strikeout off
  2769. \xout off
  2770. \uuline off
  2771. \uwave off
  2772. \noun off
  2773. \color none
  2774. 515
  2775. \end_layout
  2776. \end_inset
  2777. </cell>
  2778. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2779. \begin_inset Text
  2780. \begin_layout Plain Layout
  2781. \family roman
  2782. \series medium
  2783. \shape up
  2784. \size normal
  2785. \emph off
  2786. \bar no
  2787. \strikeout off
  2788. \xout off
  2789. \uuline off
  2790. \uwave off
  2791. \noun off
  2792. \color none
  2793. 2
  2794. \end_layout
  2795. \end_inset
  2796. </cell>
  2797. </row>
  2798. <row>
  2799. <cell multirow="4" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2800. \begin_inset Text
  2801. \begin_layout Plain Layout
  2802. \end_layout
  2803. \end_inset
  2804. </cell>
  2805. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2806. \begin_inset Text
  2807. \begin_layout Plain Layout
  2808. \series bold
  2809. NS
  2810. \end_layout
  2811. \end_inset
  2812. </cell>
  2813. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2814. \begin_inset Text
  2815. \begin_layout Plain Layout
  2816. \family roman
  2817. \series medium
  2818. \shape up
  2819. \size normal
  2820. \emph off
  2821. \bar no
  2822. \strikeout off
  2823. \xout off
  2824. \uuline off
  2825. \uwave off
  2826. \noun off
  2827. \color none
  2828. 160
  2829. \end_layout
  2830. \end_inset
  2831. </cell>
  2832. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2833. \begin_inset Text
  2834. \begin_layout Plain Layout
  2835. \family roman
  2836. \series medium
  2837. \shape up
  2838. \size normal
  2839. \emph off
  2840. \bar no
  2841. \strikeout off
  2842. \xout off
  2843. \uuline off
  2844. \uwave off
  2845. \noun off
  2846. \color none
  2847. 11235
  2848. \end_layout
  2849. \end_inset
  2850. </cell>
  2851. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2852. \begin_inset Text
  2853. \begin_layout Plain Layout
  2854. \family roman
  2855. \series medium
  2856. \shape up
  2857. \size normal
  2858. \emph off
  2859. \bar no
  2860. \strikeout off
  2861. \xout off
  2862. \uuline off
  2863. \uwave off
  2864. \noun off
  2865. \color none
  2866. 136
  2867. \end_layout
  2868. \end_inset
  2869. </cell>
  2870. </row>
  2871. <row>
  2872. <cell multirow="4" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2873. \begin_inset Text
  2874. \begin_layout Plain Layout
  2875. \end_layout
  2876. \end_inset
  2877. </cell>
  2878. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2879. \begin_inset Text
  2880. \begin_layout Plain Layout
  2881. \series bold
  2882. Down
  2883. \end_layout
  2884. \end_inset
  2885. </cell>
  2886. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2887. \begin_inset Text
  2888. \begin_layout Plain Layout
  2889. \family roman
  2890. \series medium
  2891. \shape up
  2892. \size normal
  2893. \emph off
  2894. \bar no
  2895. \strikeout off
  2896. \xout off
  2897. \uuline off
  2898. \uwave off
  2899. \noun off
  2900. \color none
  2901. 0
  2902. \end_layout
  2903. \end_inset
  2904. </cell>
  2905. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2906. \begin_inset Text
  2907. \begin_layout Plain Layout
  2908. \family roman
  2909. \series medium
  2910. \shape up
  2911. \size normal
  2912. \emph off
  2913. \bar no
  2914. \strikeout off
  2915. \xout off
  2916. \uuline off
  2917. \uwave off
  2918. \noun off
  2919. \color none
  2920. 548
  2921. \end_layout
  2922. \end_inset
  2923. </cell>
  2924. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2925. \begin_inset Text
  2926. \begin_layout Plain Layout
  2927. \family roman
  2928. \series medium
  2929. \shape up
  2930. \size normal
  2931. \emph off
  2932. \bar no
  2933. \strikeout off
  2934. \xout off
  2935. \uuline off
  2936. \uwave off
  2937. \noun off
  2938. \color none
  2939. 127
  2940. \end_layout
  2941. \end_inset
  2942. </cell>
  2943. </row>
  2944. </lyxtabular>
  2945. \end_inset
  2946. \end_layout
  2947. \begin_layout Plain Layout
  2948. \begin_inset Caption Standard
  2949. \begin_layout Plain Layout
  2950. \series bold
  2951. \begin_inset Argument 1
  2952. status open
  2953. \begin_layout Plain Layout
  2954. Comparison of significantly differentially expressed genes with and without
  2955. globin blocking.
  2956. \end_layout
  2957. \end_inset
  2958. \begin_inset CommandInset label
  2959. LatexCommand label
  2960. name "tab:Comparison-of-significant"
  2961. \end_inset
  2962. Comparison of significantly differentially expressed genes with and without
  2963. globin blocking.
  2964. \series default
  2965. Up, Down: Genes significantly up/down-regulated in post-transplant samples
  2966. relative to pre-transplant samples, with a false discovery rate of 10%
  2967. or less.
  2968. NS: Non-significant genes (false discovery rate greater than 10%).
  2969. \end_layout
  2970. \end_inset
  2971. \end_layout
  2972. \begin_layout Plain Layout
  2973. \end_layout
  2974. \end_inset
  2975. \end_layout
  2976. \begin_layout Standard
  2977. To compare performance on differential gene expression tests, we took subsets
  2978. of both the GB and non-GB libraries with exactly one pre-transplant and
  2979. one post-transplant sample for each animal that had paired samples available
  2980. for analysis (N=7 animals, N=14 samples in each subset).
  2981. The same test for pre- vs.
  2982. post-transplant differential gene expression was performed on the same
  2983. 7 pairs of samples from GB libraries and non-GB libraries, in each case
  2984. using an FDR of 10% as the threshold of significance.
  2985. Out of 12954 genes that passed the detection threshold in both subsets,
  2986. 358 were called significantly differentially expressed in the same direction
  2987. in both sets; 1063 were differentially expressed in the GB set only; 296
  2988. were differentially expressed in the non-GB set only; 2 genes were called
  2989. significantly up in the GB set but significantly down in the non-GB set;
  2990. and the remaining 11235 were not called differentially expressed in either
  2991. set.
  2992. These data are summarized in Table
  2993. \begin_inset CommandInset ref
  2994. LatexCommand ref
  2995. reference "tab:Comparison-of-significant"
  2996. plural "false"
  2997. caps "false"
  2998. noprefix "false"
  2999. \end_inset
  3000. .
  3001. The differences in BCV calculated by EdgeR for these subsets of samples
  3002. were negligible (BCV = 0.302 for GB and 0.297 for non-GB).
  3003. \end_layout
  3004. \begin_layout Standard
  3005. The key point is that the GB data results in substantially more differentially
  3006. expressed calls than the non-GB data.
  3007. Since there is no gold standard for this dataset, it is impossible to be
  3008. certain whether this is due to under-calling of differential expression
  3009. in the non-GB samples or over-calling in the GB samples.
  3010. However, given that both datasets are derived from the same biological
  3011. samples and have nearly equal BCVs, it is more likely that the larger number
  3012. of DE calls in the GB samples are genuine detections that were enabled
  3013. by the higher sequencing depth and measurement precision of the GB samples.
  3014. Note that the same set of genes was considered in both subsets, so the
  3015. larger number of differentially expressed gene calls in the GB data set
  3016. reflects a greater sensitivity to detect significant differential gene
  3017. expression and not simply the larger total number of detected genes in
  3018. GB samples described earlier.
  3019. \end_layout
  3020. \begin_layout Section
  3021. Discussion
  3022. \end_layout
  3023. \begin_layout Standard
  3024. The original experience with whole blood gene expression profiling on DNA
  3025. microarrays demonstrated that the high concentration of globin transcripts
  3026. reduced the sensitivity to detect genes with relatively low expression
  3027. levels, in effect, significantly reducing the sensitivity.
  3028. To address this limitation, commercial protocols for globin reduction were
  3029. developed based on strategies to block globin transcript amplification
  3030. during labeling or physically removing globin transcripts by affinity bead
  3031. methods
  3032. \begin_inset CommandInset citation
  3033. LatexCommand cite
  3034. key "Winn2010"
  3035. literal "false"
  3036. \end_inset
  3037. .
  3038. More recently, using the latest generation of labeling protocols and arrays,
  3039. it was determined that globin reduction was no longer necessary to obtain
  3040. sufficient sensitivity to detect differential transcript expression
  3041. \begin_inset CommandInset citation
  3042. LatexCommand cite
  3043. key "NuGEN2010"
  3044. literal "false"
  3045. \end_inset
  3046. .
  3047. However, we are not aware of any publications using these currently available
  3048. protocols the with latest generation of microarrays that actually compare
  3049. the detection sensitivity with and without globin reduction.
  3050. However, in practice this has now been adopted generally primarily driven
  3051. by concerns for cost control.
  3052. The main objective of our work was to directly test the impact of globin
  3053. gene transcripts and a new globin blocking protocol for application to
  3054. the newest generation of differential gene expression profiling determined
  3055. using next generation sequencing.
  3056. \end_layout
  3057. \begin_layout Standard
  3058. The challenge of doing global gene expression profiling in cynomolgus monkeys
  3059. is that the current available arrays were never designed to comprehensively
  3060. cover this genome and have not been updated since the first assemblies
  3061. of the cynomolgus genome were published.
  3062. Therefore, we determined that the best strategy for peripheral blood profiling
  3063. was to do deep RNA-seq and inform the workflow using the latest available
  3064. genome assembly and annotation
  3065. \begin_inset CommandInset citation
  3066. LatexCommand cite
  3067. key "Wilson2013"
  3068. literal "false"
  3069. \end_inset
  3070. .
  3071. However, it was not immediately clear whether globin reduction was necessary
  3072. for RNA-seq or how much improvement in efficiency or sensitivity to detect
  3073. differential gene expression would be achieved for the added cost and work.
  3074. \end_layout
  3075. \begin_layout Standard
  3076. We only found one report that demonstrated that globin reduction significantly
  3077. improved the effective read yields for sequencing of human peripheral blood
  3078. cell RNA using a DeepSAGE protocol
  3079. \begin_inset CommandInset citation
  3080. LatexCommand cite
  3081. key "Mastrokolias2012"
  3082. literal "false"
  3083. \end_inset
  3084. .
  3085. The approach to DeepSAGE involves two different restriction enzymes that
  3086. purify and then tag small fragments of transcripts at specific locations
  3087. and thus, significantly reduces the complexity of the transcriptome.
  3088. Therefore, we could not determine how DeepSAGE results would translate
  3089. to the common strategy in the field for assaying the entire transcript
  3090. population by whole-transcriptome 3’-end RNA-seq.
  3091. Furthermore, if globin reduction is necessary, we also needed a globin
  3092. reduction method specific to cynomolgus globin sequences that would work
  3093. an organism for which no kit is available off the shelf.
  3094. \end_layout
  3095. \begin_layout Standard
  3096. As mentioned above, the addition of globin blocking oligos has a very small
  3097. impact on measured expression levels of gene expression.
  3098. However, this is a non-issue for the purposes of differential expression
  3099. testing, since a systematic change in a gene in all samples does not affect
  3100. relative expression levels between samples.
  3101. However, we must acknowledge that simple comparisons of gene expression
  3102. data obtained by GB and non-GB protocols are not possible without additional
  3103. normalization.
  3104. \end_layout
  3105. \begin_layout Standard
  3106. More importantly, globin blocking not only nearly doubles the yield of usable
  3107. reads, it also increases inter-sample correlation and sensitivity to detect
  3108. differential gene expression relative to the same set of samples profiled
  3109. without blocking.
  3110. In addition, globin blocking does not add a significant amount of random
  3111. noise to the data.
  3112. Globin blocking thus represents a cost-effective way to squeeze more data
  3113. and statistical power out of the same blood samples and the same amount
  3114. of sequencing.
  3115. In conclusion, globin reduction greatly increases the yield of useful RNA-seq
  3116. reads mapping to the rest of the genome, with minimal perturbations in
  3117. the relative levels of non-globin genes.
  3118. Based on these results, globin transcript reduction using sequence-specific,
  3119. complementary blocking oligonucleotides is recommended for all deep RNA-seq
  3120. of cynomolgus and other nonhuman primate blood samples.
  3121. \end_layout
  3122. \begin_layout Chapter
  3123. Future Directions
  3124. \end_layout
  3125. \begin_layout Itemize
  3126. Study other epigenetic marks in more contexts
  3127. \end_layout
  3128. \begin_deeper
  3129. \begin_layout Itemize
  3130. DNA methylation, histone marks, chromatin accessibility & conformation in
  3131. CD4 T-cells
  3132. \end_layout
  3133. \begin_layout Itemize
  3134. Also look at other types lymphocytes: CD8 T-cells, B-cells, NK cells
  3135. \end_layout
  3136. \end_deeper
  3137. \begin_layout Itemize
  3138. Investigate epigenetic regulation of lifespan extension in
  3139. \emph on
  3140. C.
  3141. elegans
  3142. \end_layout
  3143. \begin_deeper
  3144. \begin_layout Itemize
  3145. ChIP-seq of important transcriptional regulators to see how transcriptional
  3146. drift is prevented
  3147. \end_layout
  3148. \end_deeper
  3149. \begin_layout Standard
  3150. \begin_inset ERT
  3151. status open
  3152. \begin_layout Plain Layout
  3153. % Use "References" instead of "Bibliography"
  3154. \end_layout
  3155. \begin_layout Plain Layout
  3156. \backslash
  3157. renewcommand{
  3158. \backslash
  3159. bibname}{References}
  3160. \end_layout
  3161. \end_inset
  3162. \end_layout
  3163. \begin_layout Standard
  3164. \begin_inset Flex TODO Note (inline)
  3165. status open
  3166. \begin_layout Plain Layout
  3167. Check bib entry formatting & sort order
  3168. \end_layout
  3169. \end_inset
  3170. \end_layout
  3171. \begin_layout Standard
  3172. \begin_inset CommandInset bibtex
  3173. LatexCommand bibtex
  3174. btprint "btPrintCited"
  3175. bibfiles "refs"
  3176. options "bibtotoc,unsrt"
  3177. \end_inset
  3178. \end_layout
  3179. \end_body
  3180. \end_document