thesis.lyx 333 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007
  1. #LyX 2.3 created this file. For more info see http://www.lyx.org/
  2. \lyxformat 544
  3. \begin_document
  4. \begin_header
  5. \save_transient_properties true
  6. \origin unavailable
  7. \textclass extbook
  8. \begin_preamble
  9. % List all used files in log output
  10. \listfiles
  11. % Add a DRAFT watermark
  12. \usepackage{draftwatermark}
  13. \usepackage{accsupp}
  14. \SetWatermarkLightness{0.97}
  15. \SetWatermarkScale{1}
  16. % Make watermark not copyable (in Adobe Reader)
  17. \SetWatermarkText{\BeginAccSupp{method=escape,ActualText={}}DRAFT\EndAccSupp{}}
  18. % Set up required header format
  19. \usepackage{fancyhdr}
  20. \pagestyle{fancy}
  21. \renewcommand{\headrulewidth}{0pt}
  22. \rhead{}
  23. \lhead{}
  24. \chead{}
  25. \rfoot{}
  26. \lfoot{}
  27. % Make page number not copyable (in Adobe Reader)
  28. \cfoot{\BeginAccSupp{method=escape,ActualText={}}\thepage\EndAccSupp{}} % Page number bottom center
  29. % Allow FloatBarrier command
  30. \usepackage{placeins}
  31. % Allow landscape pages
  32. \usepackage{pdflscape}
  33. % Allow doing things after the end of the current page
  34. % (to avoid landscape figures breaking up text)
  35. \usepackage{afterpage}
  36. % This one breaks subfigs so it's disabled
  37. % https://tex.stackexchange.com/questions/65680/automatically-bold-first-sentence-of-a-floats-caption
  38. \end_preamble
  39. \use_default_options true
  40. \begin_modules
  41. todonotes
  42. \end_modules
  43. \maintain_unincluded_children false
  44. \language english
  45. \language_package default
  46. \inputencoding utf8
  47. \fontencoding default
  48. \font_roman "default" "default"
  49. \font_sans "default" "default"
  50. \font_typewriter "default" "default"
  51. \font_math "auto" "auto"
  52. \font_default_family default
  53. \use_non_tex_fonts false
  54. \font_sc false
  55. \font_osf false
  56. \font_sf_scale 100 100
  57. \font_tt_scale 100 100
  58. \use_microtype false
  59. \use_dash_ligatures true
  60. \graphics default
  61. \default_output_format pdf4
  62. \output_sync 0
  63. \bibtex_command biber
  64. \index_command default
  65. \paperfontsize 12
  66. \spacing double
  67. \use_hyperref true
  68. \pdf_bookmarks true
  69. \pdf_bookmarksnumbered false
  70. \pdf_bookmarksopen false
  71. \pdf_bookmarksopenlevel 1
  72. \pdf_breaklinks false
  73. \pdf_pdfborder false
  74. \pdf_colorlinks false
  75. \pdf_backref false
  76. \pdf_pdfusetitle true
  77. \papersize letterpaper
  78. \use_geometry true
  79. \use_package amsmath 1
  80. \use_package amssymb 1
  81. \use_package cancel 1
  82. \use_package esint 1
  83. \use_package mathdots 1
  84. \use_package mathtools 1
  85. \use_package mhchem 1
  86. \use_package stackrel 1
  87. \use_package stmaryrd 1
  88. \use_package undertilde 1
  89. \cite_engine biblatex
  90. \cite_engine_type authoryear
  91. \biblio_style plain
  92. \biblatex_bibstyle authoryear
  93. \biblatex_citestyle numeric
  94. \use_bibtopic false
  95. \use_indices false
  96. \paperorientation portrait
  97. \suppress_date false
  98. \justification true
  99. \use_refstyle 1
  100. \use_minted 0
  101. \index Index
  102. \shortcut idx
  103. \color #008000
  104. \end_index
  105. \leftmargin 1.5in
  106. \topmargin 1in
  107. \rightmargin 1in
  108. \bottommargin 1in
  109. \secnumdepth 3
  110. \tocdepth 3
  111. \paragraph_separation indent
  112. \paragraph_indentation default
  113. \is_math_indent 0
  114. \math_numbering_side default
  115. \quotes_style english
  116. \dynamic_quotes 0
  117. \papercolumns 1
  118. \papersides 1
  119. \paperpagestyle default
  120. \tracking_changes false
  121. \output_changes false
  122. \html_math_output 0
  123. \html_css_as_file 0
  124. \html_be_strict false
  125. \end_header
  126. \begin_body
  127. \begin_layout Title
  128. Bioinformatic analysis of complex, high-throughput genomic and epigenomic
  129. data in the context of immunology and transplant rejection
  130. \end_layout
  131. \begin_layout Author
  132. A thesis presented
  133. \begin_inset Newline newline
  134. \end_inset
  135. by
  136. \begin_inset Newline newline
  137. \end_inset
  138. Ryan C.
  139. Thompson
  140. \begin_inset Newline newline
  141. \end_inset
  142. to
  143. \begin_inset Newline newline
  144. \end_inset
  145. The Scripps Research Institute Graduate Program
  146. \begin_inset Newline newline
  147. \end_inset
  148. in partial fulfillment of the requirements for the degree of
  149. \begin_inset Newline newline
  150. \end_inset
  151. Doctor of Philosophy in the subject of Biology
  152. \begin_inset Newline newline
  153. \end_inset
  154. for
  155. \begin_inset Newline newline
  156. \end_inset
  157. The Scripps Research Institute
  158. \begin_inset Newline newline
  159. \end_inset
  160. La Jolla, California
  161. \end_layout
  162. \begin_layout Date
  163. October 2019
  164. \end_layout
  165. \begin_layout Standard
  166. [Copyright notice]
  167. \end_layout
  168. \begin_layout Standard
  169. [Thesis acceptance form]
  170. \end_layout
  171. \begin_layout Standard
  172. [Dedication]
  173. \end_layout
  174. \begin_layout Standard
  175. [Acknowledgements]
  176. \end_layout
  177. \begin_layout Standard
  178. \begin_inset Flex TODO Note (inline)
  179. status open
  180. \begin_layout Plain Layout
  181. I'm looking for feedback on: Section titles; figure formatting; figure legends;
  182. typographical errors; ...
  183. \end_layout
  184. \end_inset
  185. \end_layout
  186. \begin_layout Standard
  187. \begin_inset CommandInset toc
  188. LatexCommand tableofcontents
  189. \end_inset
  190. \end_layout
  191. \begin_layout Standard
  192. \begin_inset FloatList table
  193. \end_inset
  194. \end_layout
  195. \begin_layout Standard
  196. \begin_inset FloatList figure
  197. \end_inset
  198. \end_layout
  199. \begin_layout Standard
  200. [List of Abbreviations]
  201. \end_layout
  202. \begin_layout List of TODOs
  203. \end_layout
  204. \begin_layout Standard
  205. \begin_inset Flex TODO Note (inline)
  206. status open
  207. \begin_layout Plain Layout
  208. Check all figures to make sure they fit on the page with their legends.
  209. \end_layout
  210. \end_inset
  211. \end_layout
  212. \begin_layout Standard
  213. \begin_inset Flex TODO Note (inline)
  214. status open
  215. \begin_layout Plain Layout
  216. Search and replace: naive -> naïve
  217. \end_layout
  218. \end_inset
  219. \end_layout
  220. \begin_layout Standard
  221. \begin_inset Flex TODO Note (inline)
  222. status open
  223. \begin_layout Plain Layout
  224. Look into auto-generated nomenclature list: https://wiki.lyx.org/Tips/Nomenclature.
  225. Otherwise, do a manual pass for all abbreviations at the end.
  226. Do nomenclature/abbreviations independently for each chapter.
  227. \end_layout
  228. \end_inset
  229. \end_layout
  230. \begin_layout Standard
  231. \begin_inset Flex TODO Note (inline)
  232. status open
  233. \begin_layout Plain Layout
  234. Make all descriptions consistent in terms of
  235. \begin_inset Quotes eld
  236. \end_inset
  237. we did X
  238. \begin_inset Quotes erd
  239. \end_inset
  240. vs
  241. \begin_inset Quotes eld
  242. \end_inset
  243. I did X
  244. \begin_inset Quotes erd
  245. \end_inset
  246. vs
  247. \begin_inset Quotes eld
  248. \end_inset
  249. X was done
  250. \begin_inset Quotes erd
  251. \end_inset
  252. .
  253. \end_layout
  254. \end_inset
  255. \end_layout
  256. \begin_layout Chapter*
  257. Abstract
  258. \end_layout
  259. \begin_layout Standard
  260. \begin_inset Note Note
  261. status open
  262. \begin_layout Plain Layout
  263. It is included as an integral part of the thesis and should immediately
  264. precede the introduction.
  265. \end_layout
  266. \begin_layout Plain Layout
  267. Preparing your Abstract.
  268. Your abstract (a succinct description of your work) is limited to 350 words.
  269. UMI will shorten it if they must; please do not exceed the limit.
  270. \end_layout
  271. \begin_layout Itemize
  272. Include pertinent place names, names of persons (in full), and other proper
  273. nouns.
  274. These are useful in automated retrieval.
  275. \end_layout
  276. \begin_layout Itemize
  277. Display symbols, as well as foreign words and phrases, clearly and accurately.
  278. Include transliterations for characters other than Roman and Greek letters
  279. and Arabic numerals.
  280. Include accents and diacritical marks.
  281. \end_layout
  282. \begin_layout Itemize
  283. Do not include graphs, charts, tables, or illustrations in your abstract.
  284. \end_layout
  285. \end_inset
  286. \end_layout
  287. \begin_layout Standard
  288. \begin_inset Flex TODO Note (inline)
  289. status open
  290. \begin_layout Plain Layout
  291. Obviously the abstract gets written last.
  292. \end_layout
  293. \end_inset
  294. \end_layout
  295. \begin_layout Chapter
  296. Introduction
  297. \end_layout
  298. \begin_layout Section
  299. Background & Significance
  300. \end_layout
  301. \begin_layout Subsection
  302. Biological motivation
  303. \end_layout
  304. \begin_layout Standard
  305. \begin_inset Flex TODO Note (inline)
  306. status open
  307. \begin_layout Plain Layout
  308. Rethink the subsection organization after the intro is written.
  309. \end_layout
  310. \end_inset
  311. \end_layout
  312. \begin_layout Standard
  313. \begin_inset Flex TODO Note (inline)
  314. status open
  315. \begin_layout Plain Layout
  316. Citations are needed all over the place.
  317. A lot of this is knowledge I've just absorbed from years of conversation
  318. in the Salomon lab, without ever having seen a citation for it.
  319. \end_layout
  320. \end_inset
  321. \end_layout
  322. \begin_layout Subsubsection
  323. Rejection is the major long-term threat to organ and tissue allografts
  324. \end_layout
  325. \begin_layout Standard
  326. Organ and tissue transplants are a life-saving treatment for people who
  327. have lost the function of an important organ.
  328. In some cases, it is possible to transplant a patient's own tissue from
  329. one area of their body to another, referred to as an autograft.
  330. This is common for tissues that are distributed throughout many areas of
  331. the body, such as skin and bone.
  332. However, in cases of organ failure, there is no functional self tissue
  333. remaining, and a transplant from another person – the donor – is required.
  334. This is referred to as an allograft.
  335. \end_layout
  336. \begin_layout Standard
  337. \begin_inset Flex TODO Note (inline)
  338. status open
  339. \begin_layout Plain Layout
  340. Possible citation for degree of generic variability: https://www.ncbi.nlm.nih.gov/pu
  341. bmed/22424236?dopt=Abstract
  342. \end_layout
  343. \end_inset
  344. \end_layout
  345. \begin_layout Standard
  346. \begin_inset Flex TODO Note (inline)
  347. status open
  348. \begin_layout Plain Layout
  349. How much mechanistic detail is needed here? My work doesn't really go into
  350. specific rejection mechanisms, so I think it's best to keep it basic.
  351. \end_layout
  352. \end_inset
  353. \end_layout
  354. \begin_layout Standard
  355. Because an allograft comes from a different person, it is genetically distinct
  356. from the rest of the recipient's body.
  357. Some genetic variants occur in protein coding regions, resulting in protein
  358. products that differ from the equivalent proteins in the graft recipient's
  359. own tissue.
  360. As a result, without intervention, the recipient's immune system will eventuall
  361. y identify the graft as foreign tissue and begin attacking it, eventually
  362. resulting in failure and death of the graft, a process referred to as transplan
  363. t rejection.
  364. Rejection is the most significant challenge to the long-term health of
  365. an allograft.
  366. Like any adaptive immune response, graft rejection generally occurs via
  367. two broad mechanisms: cellular immunity, in which CD8+ T-cells induce apoptosis
  368. in the graft cells; and humoral immunity, in which B-cells produce antibodies
  369. that bind to graft proteins and direct an immune response against the graft.
  370. In either case, rejection shows most of the typical hallmarks of an adaptive
  371. immune response, in particular mediation by CD4+ T-cells and formation
  372. of immune memory.
  373. \end_layout
  374. \begin_layout Subsubsection
  375. Diagnosis and treatment of allograft rejection is a major challenge
  376. \end_layout
  377. \begin_layout Standard
  378. To prevent rejection, allograft recipients are treated with immune suppression.
  379. The goal is to achieve sufficient suppression of the immune system to prevent
  380. rejection of the graft without compromising the ability of the immune system
  381. to raise a normal response against infection.
  382. As such, a delicate balance must be struck: insufficient immune suppression
  383. may lead to rejection and ultimately loss of the graft; exceissive suppression
  384. leaves the patient vulnerable to life-threatening opportunistic infections.
  385. Because every patient is different, immune suppression must be tailored
  386. for each patient.
  387. Furthermore, immune suppression must be tuned over time, as the immune
  388. system's activity is not static, nor is it held in a steady state.
  389. In order to properly adjust the dosage of immune suppression drugs, it
  390. is necessary to monitor the health of the transplant and increase the dosage
  391. if evidence of rejection is observed.
  392. \end_layout
  393. \begin_layout Standard
  394. However, diagnosis of rejection is a significant challenge.
  395. Early diagnosis is essential in order to step up immune suppression before
  396. the immune system damages the graft beyond recovery.
  397. The current gold standard test for graft rejection is a tissue biopsy,
  398. examained for visible signs of rejection by a trained histologist.
  399. When a patient shows symptoms of possible rejection, a
  400. \begin_inset Quotes eld
  401. \end_inset
  402. for cause
  403. \begin_inset Quotes erd
  404. \end_inset
  405. biopsy is performed to confirm the diagnosis, and immune suppression is
  406. adjusted as necessary.
  407. However, in many cases, the early stages of rejection are asymptomatic,
  408. known as
  409. \begin_inset Quotes eld
  410. \end_inset
  411. sub-clinical
  412. \begin_inset Quotes erd
  413. \end_inset
  414. rejection.
  415. In light of this, is is now common to perform
  416. \begin_inset Quotes eld
  417. \end_inset
  418. protocol biopsies
  419. \begin_inset Quotes erd
  420. \end_inset
  421. at specific times after transplantation of a graft, even if no symptoms
  422. of rejection are apparent, in addition to
  423. \begin_inset Quotes eld
  424. \end_inset
  425. for cause
  426. \begin_inset Quotes erd
  427. \end_inset
  428. biopsies
  429. \begin_inset CommandInset citation
  430. LatexCommand cite
  431. key "Wilkinson2006"
  432. literal "false"
  433. \end_inset
  434. .
  435. \end_layout
  436. \begin_layout Standard
  437. However, biopsies have a number of downsides that limit their effectiveness
  438. as a diagnostic tool.
  439. First, the need for manual inspection by a histologist means that diagnosis
  440. is subject to the biases of the particular histologist examining the biopsy.
  441. In marginal cases two different histologists may give two different diagnoses
  442. to the same biopsy.
  443. Second, a biopsy can only evaluate if rejection is occurring in the section
  444. of the graft from which the tissue was extracted.
  445. If rejection is only occurring in one section of the graft and the tissue
  446. is extracted from a different section, it may result in a false negative
  447. diagnosis.
  448. Most importantly, however, extraction of tissue from a graft is invasive
  449. and is treated as an injury by the body, which results in inflammation
  450. that in turn promotes increased immune system activity.
  451. Hence, the invasiveness of biopsies severely limits the frequency with
  452. which the can safely be performed.
  453. Typically protocol biopsies are not scheduled more than about once per
  454. month
  455. \begin_inset CommandInset citation
  456. LatexCommand cite
  457. key "Wilkinson2006"
  458. literal "false"
  459. \end_inset
  460. .
  461. A less invasive diagnostic test for rejection would bring manifold benefits.
  462. Such a test would enable more frequent testing and therefore earlier detection
  463. of rejection events.
  464. In addition, having a larger pool of historical data for a given patient
  465. would make it easier to evaluate when a given test is outside the normal
  466. parameters for that specific patient, rather than relying on normal ranges
  467. for the population as a whole.
  468. Lastly, more frequent tests would be a boon to the transplant research
  469. community.
  470. Beyond simply providing more data, the increased time granularity of the
  471. tests will enable studying the progression of a rejection event on the
  472. scale of days to weeks, rather than months.
  473. \end_layout
  474. \begin_layout Subsubsection
  475. Memory cells are resistant to immune suppression
  476. \end_layout
  477. \begin_layout Standard
  478. One of the defining features of the adaptive immune system is immune memory:
  479. the ability of the immune system to recognize a previously encountered
  480. foreign antigen and respond more quickly and more strongly to that antigen
  481. in subsequent encounters.
  482. When the immune system first encounters a new antigen, the lymphocytes
  483. that respond are known as naive cells – T-cells and B-cells that have never
  484. detected their target antigens before.
  485. Once activated by their specific antigen presented by an antigen-presenting
  486. cell in the proper co-stimulatory context, naive cells differentiate into
  487. effector cells that carry out their respective functions in targeting and
  488. destroying the source of the foreign antigen.
  489. The requirement for co-stimulation is an important feature of naive cells
  490. that limits
  491. \begin_inset Quotes eld
  492. \end_inset
  493. false positive
  494. \begin_inset Quotes erd
  495. \end_inset
  496. immune responses, because antigen-presenting cells usually only express
  497. the proper co-stimulation after detecting evidence of an infection, such
  498. as the presence of common bacterial cell components or inflamed tissue.
  499. Most effector cells die after the foreign antigen is cleared, but some
  500. remain and differentiate into memory cells.
  501. Like naive cells, memory cells respond to detection of their specific antigen
  502. by differentiating into effector cells, ready to fight an infection.
  503. However, unlike naive cells, memory cells do not require the same degree
  504. of co-stimulatory signaling for activation, and once activated, they proliferat
  505. e and differentiate into effector cells more quickly than naive cells do.
  506. \end_layout
  507. \begin_layout Standard
  508. In the context of a pathogenic infection, immune memory is a major advantage,
  509. allowing an organism to rapidly fight off a previously encountered pathogen
  510. much more quickly and effectively than the first time it was encountered.
  511. However, if effector cells that recognize an antigen from an allograft
  512. are allowed to differentiate into memory cells, suppressing rejection of
  513. the graft becomes much more difficult.
  514. Many immune suppression drugs work by interfering with the co-stimulation
  515. that naive cells require in order to mount an immune response.
  516. Since memory cells do not require this co-stimulation, these drugs are
  517. not effective at suppressing an immune response that is mediated by memory
  518. cells.
  519. Secondly, because memory cells are able to mount a stronger and faster
  520. response to an antigen, all else being equal they require stronger immune
  521. suppression than naive cells to prevent an immune response.
  522. However, immune suppression affects the entire immune system, not just
  523. cells recognizing a specific antigen, so increasing the dosage of immune
  524. suppression drugs also increases the risk of complications from a compromised
  525. immune system, such as opportunistic infections.
  526. While the differences in cell surface markers between naive and memory
  527. cells have been fairly well characterized, the internal regulatory mechanisms
  528. that allow memory cells to respond more quickly and without co-stimulation
  529. are still poorly understood.
  530. In order to develop immune suppression that either prevents the formation
  531. of memory cells or works more effectively against memory cells, the mechanisms
  532. of immune memory formation and regulation must be better understood.
  533. \end_layout
  534. \begin_layout Subsection
  535. Overview of bioinformatic analysis methods
  536. \end_layout
  537. \begin_layout Standard
  538. The studies presented in this work all involve the analysis of high-throughput
  539. genomic and epigenomic data.
  540. These data present many unique analysis challenges, and a wide array of
  541. software tools are available to analyze them.
  542. This section presents an overview of the methods used, including what problems
  543. they solve, what assumptions they make, and a basic description of how
  544. they work.
  545. \end_layout
  546. \begin_layout Standard
  547. \begin_inset Flex TODO Note (inline)
  548. status open
  549. \begin_layout Plain Layout
  550. Many of these points may also be addressed in the approach/methods sections
  551. of the following chapters? Redundant?
  552. \end_layout
  553. \end_inset
  554. \end_layout
  555. \begin_layout Subsubsection
  556. Limma: The standard linear modeling framework for genomics
  557. \end_layout
  558. \begin_layout Standard
  559. Linear models are a generalization of the
  560. \begin_inset Formula $t$
  561. \end_inset
  562. -test and ANOVA to arbitrarily complex experimental designs.
  563. In a typical linear model, there is one dependent variable observation
  564. per sample.
  565. For example, in a linear model of height as a function of age and sex,
  566. there is one height measurement per person.
  567. However, when analyzing genomic data, each sample consists of observations
  568. of thousands of dependent variables.
  569. For example, in an RNA-seq experiment, the dependent variables may be the
  570. count of RNA-seq reads for each annotated gene.
  571. In abstract terms, each dependent variable being measured is referred to
  572. as a feature.
  573. The simplest approach to analyzing such data would be to fit the same model
  574. independently to each feature.
  575. However, this is undesirable for most genomics data sets.
  576. Genomics assays like high-throughput sequencing are expensive, and often
  577. generating the samples is also quite expensive and time-consuming.
  578. This expense limits the sample sizes typically employed in genomics experiments
  579. , and as a result the statistical power of each individual feature's linear
  580. model is likewise limited.
  581. However, because thousands of features from the same samples are analyzed
  582. together, there is an opportunity to improve the statistical power of the
  583. analysis by exploiting shared patterns of variation across features.
  584. This is the core feature of limma, a linear modeling framework designed
  585. for genomic data.
  586. Limma is typically used to analyze expression microarray data, and more
  587. recently RNA-seq data, but it can also be used to analyze any other data
  588. for which linear modeling is appropriate.
  589. \end_layout
  590. \begin_layout Standard
  591. The central challenge when fitting a linear model is to estimate the variance
  592. of the data accurately.
  593. This quantity is the most difficult to estimate when sample sizes are small.
  594. A single shared variance could be estimated for all of the features together,
  595. and this estimate would be very stable, in contrast to the individual feature
  596. variance estimates.
  597. However, this would require the assumption that every feature is equally
  598. variable, which is known to be false for most genomic data sets.
  599. Limma offers a compromise between these two extremes by using a method
  600. called empirical Bayes moderation to
  601. \begin_inset Quotes eld
  602. \end_inset
  603. squeeze
  604. \begin_inset Quotes erd
  605. \end_inset
  606. the distribution of estimated variances toward a single common value that
  607. represents the variance of an average feature in the data
  608. \begin_inset CommandInset citation
  609. LatexCommand cite
  610. key "Smyth2004"
  611. literal "false"
  612. \end_inset
  613. .
  614. While the individual feature variance estimates are not stable, the common
  615. variance estiamate for the entire data set is quite stable, so using a
  616. combination of the two yields a variance estimate for each feature with
  617. greater precision than the individual feature varaiances.
  618. The trade-off for this improvement is that squeezing each estimated variance
  619. toward the common value introduces some bias – the variance will be underestima
  620. ted for features with high variance and overestimated for features with
  621. low variance.
  622. Essentially, limma assumes that extreme variances are less common than
  623. variances close to the common value.
  624. The variance estimates from this empirical Bayes procedure are shown empiricall
  625. y to yield greater statistical power than either the individual feature
  626. variances or the single common value.
  627. \end_layout
  628. \begin_layout Standard
  629. On top of this core framework, limma also implements many other enhancements
  630. that, further relax the assumptions of the model and extend the scope of
  631. what kinds of data it can analyze.
  632. Instead of squeezing toward a single common variance value, limma can model
  633. the common variance as a function of a covariate, such as average expression
  634. \begin_inset CommandInset citation
  635. LatexCommand cite
  636. key "Law2013"
  637. literal "false"
  638. \end_inset
  639. .
  640. This is essential for RNA-seq data, where higher gene counts yield more
  641. precise expression measurements and therefore smaller variances than low-count
  642. genes.
  643. While linear models typically assume that all samples have equal variance,
  644. limma is able to relax this assumption by identifying and down-weighting
  645. samples the diverge more strongly from the lienar model across many features
  646. \begin_inset CommandInset citation
  647. LatexCommand cite
  648. key "Ritchie2006,Liu2015"
  649. literal "false"
  650. \end_inset
  651. .
  652. In addition, limma is also able to fit simple mixed models incorporating
  653. one random effect in addition to the fixed effects represented by an ordinary
  654. linear model
  655. \begin_inset CommandInset citation
  656. LatexCommand cite
  657. key "Smyth2005a"
  658. literal "false"
  659. \end_inset
  660. .
  661. Once again, limma shares information between features to obtain a robust
  662. estimate for the random effect correlation.
  663. \end_layout
  664. \begin_layout Subsubsection
  665. edgeR provides limma-like analysis features for count data
  666. \end_layout
  667. \begin_layout Standard
  668. Although limma can be applied to read counts from RNA-seq data, it is less
  669. suitable for counts from ChIP-seq data, which tend to be much smaller and
  670. therefore violate the assumption of a normal distribution more severely.
  671. For all count-based data, the edgeR package works similarly to limma, but
  672. uses a generalized linear model instead of a linear model.
  673. The most important difference is that the GLM in edgeR models the counts
  674. directly using a negative binomial distribution rather than modeling the
  675. normalized log counts using a normal distribution
  676. \begin_inset CommandInset citation
  677. LatexCommand cite
  678. key "Chen2014,McCarthy2012,Robinson2010a"
  679. literal "false"
  680. \end_inset
  681. .
  682. The negative binomial is a good fit for count data because it can be derived
  683. as a gamma-distributed mixture of Poisson distributions.
  684. The Poisson distribution accurately represents the distribution of counts
  685. expected for a given gene abundance, and the gamma distribution is then
  686. used to represent the variation in gene abundance between biological replicates.
  687. For this reason, the square root of the dispersion paramter of the negative
  688. binomial is sometimes referred to as the biological coefficient of variation,
  689. since it represents the variability that was present in the samples prior
  690. to the Poisson
  691. \begin_inset Quotes eld
  692. \end_inset
  693. noise
  694. \begin_inset Quotes erd
  695. \end_inset
  696. that was generated by the random sampling of reads in proportion to feature
  697. abundances.
  698. The choice of a gamma distribution is arbitrary and motivated by mathematical
  699. convenience, since a gamma-Poisson mixture yields the numerically tractable
  700. negative binomial distribution.
  701. Thus, edgeR assumes
  702. \emph on
  703. a prioi
  704. \emph default
  705. that the variation in abundances between replicates follows a gamma distribution.
  706. For differential abundance testing, edgeR offers a likelihood ratio test,
  707. but more recently recommends a quasi-likelihood test that properly factors
  708. the uncertainty in variance estimation into the statistical significance
  709. for each feature
  710. \begin_inset CommandInset citation
  711. LatexCommand cite
  712. key "Lund2012"
  713. literal "false"
  714. \end_inset
  715. .
  716. \end_layout
  717. \begin_layout Subsubsection
  718. ChIP-seq Peak calling
  719. \end_layout
  720. \begin_layout Standard
  721. Unlike RNA-seq data, in which gene annotations provide a well-defined set
  722. of genomic regions in which to count reads, ChIP-seq data can potentially
  723. occur anywhere in the genome.
  724. However, most genome regions will not contain significant ChIP-seq read
  725. coverage, and analyzing every position in the entire genome is statistically
  726. and computationally infeasible, so it is necesary to identify regions of
  727. interest inside which ChIP-seq reads will be counted and analyzed.
  728. One option is to define a set of interesting regions
  729. \emph on
  730. a priori
  731. \emph default
  732. , for example by defining a promoter region for each annotated gene.
  733. However, it is also possible to use the ChIP-seq data itself to identify
  734. regions with ChIP-seq read coverage significantly above the background
  735. level, known as peaks.
  736. \end_layout
  737. \begin_layout Standard
  738. There are generally two kinds of peaks that can be identified: narrow peaks
  739. and broadly enriched regions.
  740. Proteins like transcription factors that bind specific sites in the genome
  741. typically show most of their read coverage at these specific sites and
  742. very little coverage anywhere else.
  743. Because the footprint of the protein is consistent wherever it binds, each
  744. peak has a consistent size, typically tens to hundreds of base pairs.
  745. Algorithms like MACS exploit this pattern to identify specific loci at
  746. which such
  747. \begin_inset Quotes eld
  748. \end_inset
  749. narrow peaks
  750. \begin_inset Quotes erd
  751. \end_inset
  752. occur by looking for the characteristic peak shape in the ChIP-seq coverage
  753. rising above the surrounding background coverage
  754. \begin_inset CommandInset citation
  755. LatexCommand cite
  756. key "Zhang2008"
  757. literal "false"
  758. \end_inset
  759. .
  760. In contrast, some proteins, chief among them histones, do not bind only
  761. at a small number of specific sites, but rather bind potentailly almost
  762. everywhere in the entire genome.
  763. When looking at histone marks, adjacent histones tend to be similarly marked,
  764. and a given mark may be present on an arbitrary number of consecutive histones
  765. along the genome.
  766. Hence, there is no consistent
  767. \begin_inset Quotes eld
  768. \end_inset
  769. footprint size
  770. \begin_inset Quotes erd
  771. \end_inset
  772. for ChIP-seq peaks based on histone marks, and peaks typically span many
  773. histones.
  774. Hence, typical peaks span many hundreds or even thousands of base pairs.
  775. Instead of identifying specific loci of strong enrichment, algorithms like
  776. SICER assume that peaks are represented in the ChIP-seq data by modest
  777. enrichment above background occurring across broad regions, and they attempt
  778. to identify the extent of those regions
  779. \begin_inset CommandInset citation
  780. LatexCommand cite
  781. key "Zang2009"
  782. literal "false"
  783. \end_inset
  784. .
  785. In all cases, better results are obtained if the local background coverage
  786. level can be estimated from ChIP-seq input samples, since various biases
  787. can result in uneven background coverage.
  788. \end_layout
  789. \begin_layout Standard
  790. Regardless of the type of peak identified, it is important to identify peaks
  791. that occur consistently across biological replicates.
  792. The ENCODE project has developed a method called irreproducible discovery
  793. rate for this purpose
  794. \begin_inset CommandInset citation
  795. LatexCommand cite
  796. key "Li2006"
  797. literal "false"
  798. \end_inset
  799. .
  800. The IDR is defined as the probability that a peak identified in one biological
  801. replicate will
  802. \emph on
  803. not
  804. \emph default
  805. also be identified in a second replicate.
  806. Where the more familiar false discovery rate measures the degree of corresponde
  807. nce between a data-derived ranked list and the true list of significant
  808. features, IDR instead measures the degree of correspondence between two
  809. ranked lists derived from different data.
  810. IDR assumes that the highest-ranked features are
  811. \begin_inset Quotes eld
  812. \end_inset
  813. signal
  814. \begin_inset Quotes erd
  815. \end_inset
  816. peaks that tend to be listed in the same order in both lists, while the
  817. lowest-ranked features are essentially noise peaks, listed in random order
  818. with no correspondence between the lists.
  819. IDR attempts to locate the
  820. \begin_inset Quotes eld
  821. \end_inset
  822. crossover point
  823. \begin_inset Quotes erd
  824. \end_inset
  825. between the signal and the noise by determining how for down the list the
  826. correspondence between feature ranks breaks down.
  827. \end_layout
  828. \begin_layout Standard
  829. In addition to other considerations, if called peaks are to be used as regions
  830. of interest for differential abundance analysis, then care must be taken
  831. to call peaks in a way that is blind to differential abundance between
  832. experimental conditions, or else the statistical significance calculations
  833. for differential abundance will overstate their confidence in the results.
  834. The csaw package provides guidelines for calling peaks in this way: peaks
  835. are called based on a combination of all ChIP-seq reads from all experimental
  836. conditions, so that the identified peaks are based on the average abundance
  837. across all conditions, which is independent of any differential abundance
  838. between condtions
  839. \begin_inset CommandInset citation
  840. LatexCommand cite
  841. key "Lun2015a"
  842. literal "false"
  843. \end_inset
  844. .
  845. \end_layout
  846. \begin_layout Subsubsection
  847. Normalization of high-throughput data is non-trivial and application-dependant
  848. \end_layout
  849. \begin_layout Standard
  850. High-throughput data sets invariable require some kind of normalization
  851. before further analysis can be conducted.
  852. In general, the goal of normalization is to remove effects in the data
  853. that are caused by technical factors that have nothing to do with the biology
  854. being studied.
  855. \end_layout
  856. \begin_layout Standard
  857. For Affymetrix expression arrays, the standard normalization algorithm used
  858. in most analyses is Robust Multichip Average (RMA).
  859. RMA is designed with the assumption that some fraction of probes on each
  860. array will be artifactual and takes advantage of the fact that each gene
  861. is represented by multiple probes by implementing normalization and summarizati
  862. on steps that are robust against outlier probes.
  863. However, RMA uses the probe intensities of all arrays in the data set in
  864. the normalization of each individual array, meaning that the normalized
  865. expression values in each array depend on every array in the data set,
  866. and will necessarily change each time an array is added or removed from
  867. the data set.
  868. If this is undesirable, frozen RMA implements a variant of RMA where the
  869. relevant distributional parameters are learned from a large reference set
  870. of diverse public array data sets and then
  871. \begin_inset Quotes eld
  872. \end_inset
  873. frozen
  874. \begin_inset Quotes erd
  875. \end_inset
  876. , so that each array is effectively normalized against this frozen reference
  877. set rather than the other arrays in the data set under study.
  878. \end_layout
  879. \begin_layout Standard
  880. In contrast, high-throughput sequencing data present very different normalizatio
  881. n challenges.
  882. The simplest case is RNA-seq in which read counts are obtained for a set
  883. of gene annotations, yielding a matrix of counts with rows representing
  884. genes and columns representing samples.
  885. Because RNA-seq approximates a process of sampling from a population with
  886. replacement, each gene's count is only interpretable as a fraction of the
  887. total reads for that sample.
  888. For that reason, RNA-seq abundances are often reported as counts per million
  889. (CPM).
  890. Furthermore, if the abundance of a single gene increases, then in order
  891. for its fraction of the total reads to increase, all other genes' fractions
  892. must decrease to accomodate it.
  893. This effect is known as composition bias, and it is an artifact of the
  894. read sampling process that has nothing to do with the biology of the samples
  895. and must therefore be normalized out.
  896. The most commonly used methods to normalize for composition bias in RNA-seq
  897. data seek to equalize the average gene abundance across samples, under
  898. the assumption that the average gene is likely not changing
  899. \begin_inset CommandInset citation
  900. LatexCommand cite
  901. key "Robinson2010,Anders2010"
  902. literal "false"
  903. \end_inset
  904. .
  905. \end_layout
  906. \begin_layout Standard
  907. In ChIP-seq data, normalization is not as straightforward.
  908. The csaw package implements several different normalization strategies
  909. and provides guidance on when to use each one
  910. \begin_inset CommandInset citation
  911. LatexCommand cite
  912. key "Lun2015a"
  913. literal "false"
  914. \end_inset
  915. .
  916. Briefly, a typical ChIP-seq sample has a bimodal distribution of read counts:
  917. a low-abundance mode representing background regions and a high-abundance
  918. mode representing signal regions.
  919. This offers two potential normalization targets: equalizing background
  920. coverage or equalizing signal coverage.
  921. If the experiment is well controlled and ChIP efficiency is known to be
  922. consistent across all samples, then normalizing the background coverage
  923. to be equal across all samples is a reasonable strategy.
  924. If this is not a safe assumption, then the preferred strategy is to normalize
  925. the signal regions in a way similar to RNA-seq data by assuming that the
  926. average signal region is not changing abundance between samples.
  927. Beyond this, if a ChIP-seq experiment has a more complicated structure
  928. that doesn't show the typical bimodal count distribution, it may be necessary
  929. to implement a normalization as a smooth function of abundance.
  930. However, this strategy makes a much stronger assumption about the data:
  931. that the average log fold change is zero across all abundance levels.
  932. Hence, the simpler scaling normalziations based on background or signal
  933. regions are generally preferred whenever possible.
  934. \end_layout
  935. \begin_layout Subsubsection
  936. ComBat and SVA for correction of known and unknown batch effects
  937. \end_layout
  938. \begin_layout Standard
  939. In addition to well-understood effects that can be easily normalized out,
  940. a data set often contains confounding biological effects that must be accounted
  941. for in the modeling step.
  942. For instance, in an experiment with pre-treatment and post-treatment samples
  943. of cells from several different donors, donor variability represents a
  944. known batch effect.
  945. The most straightforward correction for known batches is to estimate the
  946. mean for each batch independently and subtract out the differences, so
  947. that all batches have identical means for each feature.
  948. However, as with variance estimation, estimating the differences in batch
  949. means is not necessarily robust at the feature level, so the ComBat method
  950. adds empirical Bayes squeezing of the batch mean differences toward a common
  951. value, analogous to limma's empirical Bayes squeezing of feature variance
  952. estimates
  953. \begin_inset CommandInset citation
  954. LatexCommand cite
  955. key "Johnson2007"
  956. literal "false"
  957. \end_inset
  958. .
  959. Effectively, ComBat assumes that modest differences between batch means
  960. are real batch effects, but extreme differences between batch means are
  961. more likely to be the result of outlier observations that happen to line
  962. up with the batches rather than a genuine batch effect.
  963. The result is a batch correction that is more robust against outliers than
  964. simple subtraction of mean differences subtraction.
  965. \end_layout
  966. \begin_layout Standard
  967. In some data sets, unknown batch effects may be present due to inherent
  968. variability in in the data, either caused by technical or biological effects.
  969. Examples of unknown batch effects include variations in enrichment efficiency
  970. between ChIP-seq samples, variations in populations of different cell types,
  971. and the effects of uncontrolled environmental factors on gene expression
  972. in humans or live animals.
  973. In an ordinary linear model context, unknown batch effects cannot be inferred
  974. and must be treated as random noise.
  975. However, in high-throughput experiments, once again information can be
  976. shared across features to identify patterns of un-modeled variation that
  977. are repeated in many features.
  978. One attractive strategy would be to perform singular value decomposition
  979. (SVD) on the matrix os linear model residuals (which contain all the un-modeled
  980. variation in the data) and take the first few singular vectors as batch
  981. effects.
  982. While this can be effective, it makes the unreasonable assumption that
  983. all batch effects are uncorrelated with any of the effects being modeled.
  984. Surrogate variable analysis (SVA) starts with this approach, but takes
  985. some additional steps to identify batch effects in the full data that are
  986. both highly correlated with the singular vectors in the residuals and least
  987. correlated with the effects of interest
  988. \begin_inset CommandInset citation
  989. LatexCommand cite
  990. key "Leek2007"
  991. literal "false"
  992. \end_inset
  993. .
  994. Since the final batch effects are estimated from the full data, moderate
  995. correlations between the batch effects and effects of interest are allowed,
  996. which gives SVA much more freedom to estimate the true extent of the batch
  997. effects compared to simple residual SVD.
  998. Once the surrogate variables are estimated, they can be included as coefficient
  999. s in the linear model in a similar fashion to known batch effects in order
  1000. to subtract out their effects on each feature's abundance.
  1001. \end_layout
  1002. \begin_layout Subsubsection
  1003. Factor analysis: PCA, MDS, MOFA
  1004. \end_layout
  1005. \begin_layout Standard
  1006. \begin_inset Flex TODO Note (inline)
  1007. status open
  1008. \begin_layout Plain Layout
  1009. Not sure if this merits a subsection here.
  1010. \end_layout
  1011. \end_inset
  1012. \end_layout
  1013. \begin_layout Itemize
  1014. Batch-corrected PCA is informative, but careful application is required
  1015. to avoid bias
  1016. \end_layout
  1017. \begin_layout Section
  1018. Innovation
  1019. \end_layout
  1020. \begin_layout Standard
  1021. \begin_inset Flex TODO Note (inline)
  1022. status open
  1023. \begin_layout Plain Layout
  1024. Is this entire section redundant with the Approach sections of each chapter?
  1025. I'm not really sure what to write here.
  1026. \end_layout
  1027. \end_inset
  1028. \end_layout
  1029. \begin_layout Subsection
  1030. MSC infusion to improve transplant outcomes (prevent/delay rejection)
  1031. \end_layout
  1032. \begin_layout Standard
  1033. \begin_inset Flex TODO Note (inline)
  1034. status open
  1035. \begin_layout Plain Layout
  1036. Do I still talk about this? It's the motivation for chapter 4, but I don't
  1037. actually present any work related to MSCs.
  1038. \end_layout
  1039. \end_inset
  1040. \end_layout
  1041. \begin_layout Itemize
  1042. Demonstrated in mice, but not yet in primates
  1043. \end_layout
  1044. \begin_layout Itemize
  1045. Mechanism currently unknown, but MSC are known to be immune modulatory
  1046. \end_layout
  1047. \begin_layout Itemize
  1048. Characterize MSC response to interferon gamma
  1049. \end_layout
  1050. \begin_layout Itemize
  1051. IFN-g is thought to stimulate their function
  1052. \end_layout
  1053. \begin_layout Itemize
  1054. Test IFN-g treated MSC infusion as a therapy to delay graft rejection in
  1055. cynomolgus monkeys
  1056. \end_layout
  1057. \begin_layout Itemize
  1058. Monitor animals post-transplant using blood RNA-seq at serial time points
  1059. \end_layout
  1060. \begin_layout Subsection
  1061. Investigate dynamics of histone marks in CD4 T-cell activation and memory
  1062. \end_layout
  1063. \begin_layout Itemize
  1064. Previous studies have looked at single snapshots of histone marks
  1065. \end_layout
  1066. \begin_layout Itemize
  1067. Instead, look at changes in histone marks across activation and memory
  1068. \end_layout
  1069. \begin_layout Subsection
  1070. High-throughput sequencing and microarray technologies
  1071. \end_layout
  1072. \begin_layout Itemize
  1073. Powerful methods for assaying gene expression and epigenetics across entire
  1074. genomes
  1075. \end_layout
  1076. \begin_layout Itemize
  1077. Proper analysis requires finding and exploiting systematic genome-wide trends
  1078. \end_layout
  1079. \begin_layout Chapter
  1080. Reproducible genome-wide epigenetic analysis of H3K4 and H3K27 methylation
  1081. in naive and memory CD4 T-cell activation
  1082. \end_layout
  1083. \begin_layout Standard
  1084. \begin_inset Flex TODO Note (inline)
  1085. status open
  1086. \begin_layout Plain Layout
  1087. Chapter author list: Me, Sarah, Dan
  1088. \end_layout
  1089. \end_inset
  1090. \end_layout
  1091. \begin_layout Standard
  1092. \begin_inset Flex TODO Note (inline)
  1093. status open
  1094. \begin_layout Plain Layout
  1095. Need better section titles throughout the entire chapter
  1096. \end_layout
  1097. \end_inset
  1098. \end_layout
  1099. \begin_layout Section
  1100. Approach
  1101. \end_layout
  1102. \begin_layout Standard
  1103. \begin_inset Flex TODO Note (inline)
  1104. status open
  1105. \begin_layout Plain Layout
  1106. Check on the exact correct way to write
  1107. \begin_inset Quotes eld
  1108. \end_inset
  1109. CD4 T-cell
  1110. \begin_inset Quotes erd
  1111. \end_inset
  1112. .
  1113. I think there might be a plus sign somwehere in there now? Also, maybe
  1114. figure out a reasonable way to abbreviate
  1115. \begin_inset Quotes eld
  1116. \end_inset
  1117. naive CD4 T-cells
  1118. \begin_inset Quotes erd
  1119. \end_inset
  1120. and
  1121. \begin_inset Quotes eld
  1122. \end_inset
  1123. memory CD4 T-cells
  1124. \begin_inset Quotes erd
  1125. \end_inset
  1126. .
  1127. \end_layout
  1128. \end_inset
  1129. \end_layout
  1130. \begin_layout Standard
  1131. \begin_inset Flex TODO Note (inline)
  1132. status open
  1133. \begin_layout Plain Layout
  1134. Is it ok to just copy a bunch of citations from the intros to Sarah's papers?
  1135. That feels like cheating somehow.
  1136. \end_layout
  1137. \end_inset
  1138. \end_layout
  1139. \begin_layout Standard
  1140. CD4 T-cells are central to all adaptive immune responses, as well as immune
  1141. memory [CITE?].
  1142. After an infection is cleared, a subset of the naive CD4 T-cells that responded
  1143. to that infection differentiate into memory CD4 T-cells, which are responsible
  1144. for responding to the same pathogen in the future.
  1145. Memory CD4 T-cells are functionally distinct, able to respond to an infection
  1146. more quickly and without the co-stimulation requried by naive CD4 T-cells.
  1147. However, the molecular mechanisms underlying this functional distinction
  1148. are not well-understood.
  1149. Epigenetic regulation via histone modification is thought to play an important
  1150. role, but while many studies have looked at static snapshots of histone
  1151. methylation in T-cells, few studies have looked at the dynamics of histone
  1152. regulation after T-cell activation, nor the differences in histone methylation
  1153. between naive and memory T-cells.
  1154. H3K4me2, H3K4me3 and H3K27me3 are three histone marks thought to be major
  1155. epigenetic regulators of gene expression.
  1156. The goal of the present study is to investigate the role of these histone
  1157. marks in CD4 T-cell activation kinetics and memory differentiation.
  1158. In static snapshots, H3K4me2 and H3K4me3 are often observed in the promoters
  1159. of highly transcribed genes, while H3K27me3 is more often observed in promoters
  1160. of inactive genes with little to no transcription occurring.
  1161. As a result, the two H3K4 marks have been characterized as
  1162. \begin_inset Quotes eld
  1163. \end_inset
  1164. activating
  1165. \begin_inset Quotes erd
  1166. \end_inset
  1167. marks, while H3K27me3 has been characterized as
  1168. \begin_inset Quotes eld
  1169. \end_inset
  1170. deactivating
  1171. \begin_inset Quotes erd
  1172. \end_inset
  1173. .
  1174. Despite these characterizations, the actual causal relationship between
  1175. these histone modifications and gene transcription is complex and likely
  1176. involves positive and negative feedback loops between the two.
  1177. \end_layout
  1178. \begin_layout Standard
  1179. In order to investigate the relationship between gene expression and these
  1180. histone modifications in the context of naive and memory CD4 T-cell activation,
  1181. a previously published data set of combined RNA-seq and ChIP-seq data was
  1182. re-analyzed using up-to-date methods designed to address the specific analysis
  1183. challenges posed by this data set.
  1184. The data set contains naive and memory CD4 T-cell samples in a time course
  1185. before and after activation.
  1186. Like the original analysis, this analysis looks at the dynamics of these
  1187. marks histone marks and compare them to gene expression dynamics at the
  1188. same time points during activation, as well as comapre them between naive
  1189. and memory cells, in hope of discovering evidence of new mechanistic details
  1190. in the interplay between them.
  1191. The original analysis of this data treated each gene promoter as a monolithinc
  1192. unit and mostly assumed that ChIP-seq reads or peaks occuring anywhere
  1193. within a promoter were equivalent, regardless of where they occurred relative
  1194. to the gene structure.
  1195. For an initial analysis of the data, this was a necessary simplifying assumptio
  1196. n.
  1197. The current analysis aims to relax this assumption, first by directly analyzing
  1198. ChIP-seq peaks for differential modification, and second by taking a mor
  1199. granular look at the ChIP-seq read coverage within promoter regions to
  1200. ask whether the location of histone modifications relative to the gene's
  1201. TSS is an important factor, as opposed to simple proximity.
  1202. \end_layout
  1203. \begin_layout Section
  1204. Methods
  1205. \end_layout
  1206. \begin_layout Standard
  1207. \begin_inset Flex TODO Note (inline)
  1208. status open
  1209. \begin_layout Plain Layout
  1210. Look up some more details from the papers (e.g.
  1211. activation method).
  1212. \end_layout
  1213. \end_inset
  1214. \end_layout
  1215. \begin_layout Standard
  1216. A reproducible workflow was written to analyze the raw ChIP-seq and RNA-seq
  1217. data from previous studies
  1218. \begin_inset CommandInset citation
  1219. LatexCommand cite
  1220. key "gh-cd4-csaw,LaMere2016,LaMere2017"
  1221. literal "true"
  1222. \end_inset
  1223. .
  1224. Briefly, this data consists of RNA-seq and ChIP-seq from CD4 T-cells cultured
  1225. from 4 donors.
  1226. From each donor, naive and memory CD4 T-cells were isolated separately.
  1227. Then cultures of both cells were activated [how?], and samples were taken
  1228. at 4 time points: Day 0 (pre-activation), Day 1 (early activation), Day
  1229. 5 (peak activation), and Day 14 (post-activation).
  1230. For each combination of cell type and time point, RNA was isolated and
  1231. sequenced, and ChIP-seq was performed for each of 3 histone marks: H3K4me2,
  1232. H3K4me3, and H3K27me3.
  1233. The ChIP-seq input DNA was also sequenced for each sample.
  1234. The result was 32 samples for each assay.
  1235. \end_layout
  1236. \begin_layout Subsection
  1237. RNA-seq differential expression analysis
  1238. \end_layout
  1239. \begin_layout Standard
  1240. \begin_inset Note Note
  1241. status collapsed
  1242. \begin_layout Plain Layout
  1243. \begin_inset Float figure
  1244. wide false
  1245. sideways false
  1246. status open
  1247. \begin_layout Plain Layout
  1248. \align center
  1249. \begin_inset Float figure
  1250. wide false
  1251. sideways false
  1252. status collapsed
  1253. \begin_layout Plain Layout
  1254. \align center
  1255. \begin_inset Graphics
  1256. filename graphics/CD4-csaw/rnaseq-compare/ensmebl-vs-entrez-star-CROP.png
  1257. lyxscale 25
  1258. width 35col%
  1259. groupId rna-comp-subfig
  1260. \end_inset
  1261. \end_layout
  1262. \begin_layout Plain Layout
  1263. \begin_inset Caption Standard
  1264. \begin_layout Plain Layout
  1265. STAR quantification, Entrez vs Ensembl gene annotation
  1266. \end_layout
  1267. \end_inset
  1268. \end_layout
  1269. \end_inset
  1270. \begin_inset space \qquad{}
  1271. \end_inset
  1272. \begin_inset Float figure
  1273. wide false
  1274. sideways false
  1275. status collapsed
  1276. \begin_layout Plain Layout
  1277. \align center
  1278. \begin_inset Graphics
  1279. filename graphics/CD4-csaw/rnaseq-compare/ensmebl-vs-entrez-shoal-CROP.png
  1280. lyxscale 25
  1281. width 35col%
  1282. groupId rna-comp-subfig
  1283. \end_inset
  1284. \end_layout
  1285. \begin_layout Plain Layout
  1286. \begin_inset Caption Standard
  1287. \begin_layout Plain Layout
  1288. Salmon+Shoal quantification, Entrez vs Ensembl gene annotation
  1289. \end_layout
  1290. \end_inset
  1291. \end_layout
  1292. \end_inset
  1293. \end_layout
  1294. \begin_layout Plain Layout
  1295. \align center
  1296. \begin_inset Float figure
  1297. wide false
  1298. sideways false
  1299. status collapsed
  1300. \begin_layout Plain Layout
  1301. \align center
  1302. \begin_inset Graphics
  1303. filename graphics/CD4-csaw/rnaseq-compare/star-vs-hisat2-CROP.png
  1304. lyxscale 25
  1305. width 35col%
  1306. groupId rna-comp-subfig
  1307. \end_inset
  1308. \end_layout
  1309. \begin_layout Plain Layout
  1310. \begin_inset Caption Standard
  1311. \begin_layout Plain Layout
  1312. STAR vs HISAT2 quantification, Ensembl gene annotation
  1313. \end_layout
  1314. \end_inset
  1315. \end_layout
  1316. \end_inset
  1317. \begin_inset space \qquad{}
  1318. \end_inset
  1319. \begin_inset Float figure
  1320. wide false
  1321. sideways false
  1322. status collapsed
  1323. \begin_layout Plain Layout
  1324. \align center
  1325. \begin_inset Graphics
  1326. filename graphics/CD4-csaw/rnaseq-compare/star-vs-salmon-CROP.png
  1327. lyxscale 25
  1328. width 35col%
  1329. groupId rna-comp-subfig
  1330. \end_inset
  1331. \end_layout
  1332. \begin_layout Plain Layout
  1333. \begin_inset Caption Standard
  1334. \begin_layout Plain Layout
  1335. Salomn vs STAR quantification, Ensembl gene annotation
  1336. \end_layout
  1337. \end_inset
  1338. \end_layout
  1339. \end_inset
  1340. \end_layout
  1341. \begin_layout Plain Layout
  1342. \align center
  1343. \begin_inset Float figure
  1344. wide false
  1345. sideways false
  1346. status collapsed
  1347. \begin_layout Plain Layout
  1348. \align center
  1349. \begin_inset Graphics
  1350. filename graphics/CD4-csaw/rnaseq-compare/salmon-vs-kallisto-CROP.png
  1351. lyxscale 25
  1352. width 35col%
  1353. groupId rna-comp-subfig
  1354. \end_inset
  1355. \end_layout
  1356. \begin_layout Plain Layout
  1357. \begin_inset Caption Standard
  1358. \begin_layout Plain Layout
  1359. Salmon vs Kallisto quantification, Ensembl gene annotation
  1360. \end_layout
  1361. \end_inset
  1362. \end_layout
  1363. \end_inset
  1364. \begin_inset space \qquad{}
  1365. \end_inset
  1366. \begin_inset Float figure
  1367. wide false
  1368. sideways false
  1369. status collapsed
  1370. \begin_layout Plain Layout
  1371. \align center
  1372. \begin_inset Graphics
  1373. filename graphics/CD4-csaw/rnaseq-compare/salmon-vs-shoal-CROP.png
  1374. lyxscale 25
  1375. width 35col%
  1376. groupId rna-comp-subfig
  1377. \end_inset
  1378. \end_layout
  1379. \begin_layout Plain Layout
  1380. \begin_inset Caption Standard
  1381. \begin_layout Plain Layout
  1382. Salmon+Shoal vs Salmon alone, Ensembl gene annotation
  1383. \end_layout
  1384. \end_inset
  1385. \end_layout
  1386. \end_inset
  1387. \end_layout
  1388. \begin_layout Plain Layout
  1389. \begin_inset Caption Standard
  1390. \begin_layout Plain Layout
  1391. \begin_inset CommandInset label
  1392. LatexCommand label
  1393. name "fig:RNA-norm-comp"
  1394. \end_inset
  1395. RNA-seq comparisons
  1396. \end_layout
  1397. \end_inset
  1398. \end_layout
  1399. \end_inset
  1400. \end_layout
  1401. \end_inset
  1402. \end_layout
  1403. \begin_layout Standard
  1404. Sequence reads were retrieved from the Sequence Read Archive (SRA)
  1405. \begin_inset CommandInset citation
  1406. LatexCommand cite
  1407. key "Leinonen2011"
  1408. literal "false"
  1409. \end_inset
  1410. .
  1411. Five different alignment and quantification methods were tested for the
  1412. RNA-seq data
  1413. \begin_inset CommandInset citation
  1414. LatexCommand cite
  1415. key "Dobin2012,Kim2019,Liao2014,Pimentel2016,Patro2017,gh-shoal,gh-hg38-ref"
  1416. literal "false"
  1417. \end_inset
  1418. .
  1419. Each quantification was tested with both Ensembl transcripts and UCSC known
  1420. gene annotations [CITE? Also which versions of each?].
  1421. Comparisons of downstream results from each combination of quantification
  1422. method and reference revealed that all quantifications gave broadly similar
  1423. results for most genes, so shoal with the Ensembl annotation was chosen
  1424. as the method theoretically most likely to partially mitigate some of the
  1425. batch effect in the data.
  1426. \end_layout
  1427. \begin_layout Standard
  1428. \begin_inset Float figure
  1429. wide false
  1430. sideways false
  1431. status collapsed
  1432. \begin_layout Plain Layout
  1433. \align center
  1434. \begin_inset Float figure
  1435. wide false
  1436. sideways false
  1437. status open
  1438. \begin_layout Plain Layout
  1439. \align center
  1440. \begin_inset Graphics
  1441. filename graphics/CD4-csaw/RNA-seq/PCA-no-batchsub-CROP.png
  1442. lyxscale 25
  1443. width 75col%
  1444. groupId rna-pca-subfig
  1445. \end_inset
  1446. \end_layout
  1447. \begin_layout Plain Layout
  1448. \begin_inset Caption Standard
  1449. \begin_layout Plain Layout
  1450. \series bold
  1451. \begin_inset CommandInset label
  1452. LatexCommand label
  1453. name "fig:RNA-PCA-no-batchsub"
  1454. \end_inset
  1455. Before batch correction
  1456. \end_layout
  1457. \end_inset
  1458. \end_layout
  1459. \end_inset
  1460. \end_layout
  1461. \begin_layout Plain Layout
  1462. \align center
  1463. \begin_inset Float figure
  1464. wide false
  1465. sideways false
  1466. status open
  1467. \begin_layout Plain Layout
  1468. \align center
  1469. \begin_inset Graphics
  1470. filename graphics/CD4-csaw/RNA-seq/PCA-combat-batchsub-CROP.png
  1471. lyxscale 25
  1472. width 75col%
  1473. groupId rna-pca-subfig
  1474. \end_inset
  1475. \end_layout
  1476. \begin_layout Plain Layout
  1477. \begin_inset Caption Standard
  1478. \begin_layout Plain Layout
  1479. \series bold
  1480. \begin_inset CommandInset label
  1481. LatexCommand label
  1482. name "fig:RNA-PCA-ComBat-batchsub"
  1483. \end_inset
  1484. After batch correction with ComBat
  1485. \end_layout
  1486. \end_inset
  1487. \end_layout
  1488. \end_inset
  1489. \end_layout
  1490. \begin_layout Plain Layout
  1491. \begin_inset Caption Standard
  1492. \begin_layout Plain Layout
  1493. \series bold
  1494. \begin_inset CommandInset label
  1495. LatexCommand label
  1496. name "fig:RNA-PCA"
  1497. \end_inset
  1498. PCoA plots of RNA-seq data showing effect of batch correction.
  1499. \end_layout
  1500. \end_inset
  1501. \end_layout
  1502. \end_inset
  1503. \end_layout
  1504. \begin_layout Standard
  1505. Due to an error in sample preparation, the RNA from the samples for days
  1506. 0 and 5 were sequenced using a different kit than those for days 1 and
  1507. 14.
  1508. This induced a substantial batch effect in the data due to differences
  1509. in sequencing biases between the two kits, and this batch effect is unfortunate
  1510. ly confounded with the time point variable (Figure
  1511. \begin_inset CommandInset ref
  1512. LatexCommand ref
  1513. reference "fig:RNA-PCA-no-batchsub"
  1514. plural "false"
  1515. caps "false"
  1516. noprefix "false"
  1517. \end_inset
  1518. ).
  1519. To do the best possible analysis with this data, this batch effect was
  1520. subtracted out from the data using ComBat
  1521. \begin_inset CommandInset citation
  1522. LatexCommand cite
  1523. key "Johnson2007"
  1524. literal "false"
  1525. \end_inset
  1526. , ignoring the time point variable due to the confounding with the batch
  1527. variable.
  1528. The result is a marked improvement, but the unavoidable counfounding with
  1529. time point means that certain real patterns of gene expression will be
  1530. indistinguishable from the batch effect and subtracted out as a result.
  1531. Specifically, any
  1532. \begin_inset Quotes eld
  1533. \end_inset
  1534. zig-zag
  1535. \begin_inset Quotes erd
  1536. \end_inset
  1537. pattern, such as a gene whose expression goes up on day 1, down on day
  1538. 5, and back up again on day 14, will be attenuated or eliminated entirely.
  1539. In the context of a T-cell activation time course, it is unlikely that
  1540. many genes of interest will follow such an expression pattern, so this
  1541. loss was deemed an acceptable cost for correcting the batch effect.
  1542. \end_layout
  1543. \begin_layout Standard
  1544. \begin_inset Float figure
  1545. wide false
  1546. sideways false
  1547. status collapsed
  1548. \begin_layout Plain Layout
  1549. \begin_inset Flex TODO Note (inline)
  1550. status open
  1551. \begin_layout Plain Layout
  1552. Just take the top row
  1553. \end_layout
  1554. \end_inset
  1555. \end_layout
  1556. \begin_layout Plain Layout
  1557. \align center
  1558. \begin_inset Graphics
  1559. filename graphics/CD4-csaw/RNA-seq/weights-vs-covars-CROP.png
  1560. lyxscale 25
  1561. width 100col%
  1562. groupId colwidth-raster
  1563. \end_inset
  1564. \end_layout
  1565. \begin_layout Plain Layout
  1566. \begin_inset Caption Standard
  1567. \begin_layout Plain Layout
  1568. \series bold
  1569. \begin_inset CommandInset label
  1570. LatexCommand label
  1571. name "fig:RNA-seq-weights-vs-covars"
  1572. \end_inset
  1573. RNA-seq sample weights, grouped by experimental and technical covariates.
  1574. \end_layout
  1575. \end_inset
  1576. \end_layout
  1577. \end_inset
  1578. \end_layout
  1579. \begin_layout Standard
  1580. However, removing the systematic component of the batch effect still leaves
  1581. the noise component.
  1582. The gene quantifications from the first batch are substantially noisier
  1583. than those in the second batch.
  1584. This analysis corrected for this by using limma's sample weighting method
  1585. to assign lower weights to the noisy samples of batch 1
  1586. \begin_inset CommandInset citation
  1587. LatexCommand cite
  1588. key "Ritchie2006,Liu2015"
  1589. literal "false"
  1590. \end_inset
  1591. .
  1592. The resulting analysis gives an accurate assessment of statistical significance
  1593. for all comparisons, which unfortuantely means a loss of statistical power
  1594. for comparisons involving samples in batch 1.
  1595. \end_layout
  1596. \begin_layout Standard
  1597. In any case, the RNA-seq counts were first normalized using trimmed mean
  1598. of M-values
  1599. \begin_inset CommandInset citation
  1600. LatexCommand cite
  1601. key "Robinson2010"
  1602. literal "false"
  1603. \end_inset
  1604. , converted to normalized logCPM with quality weights using voomWithQualityWeigh
  1605. ts
  1606. \begin_inset CommandInset citation
  1607. LatexCommand cite
  1608. key "Law2013,Liu2015"
  1609. literal "false"
  1610. \end_inset
  1611. , and batch-corrected at this point using ComBat.
  1612. A linear model was fit to the batch-corrected, quality-weighted data for
  1613. each gene using limma, and each gene was tested for differential expression
  1614. using limma's empirical Bayes moderated
  1615. \begin_inset Formula $t$
  1616. \end_inset
  1617. -test
  1618. \begin_inset CommandInset citation
  1619. LatexCommand cite
  1620. key "Smyth2005,Law2013,Phipson2013"
  1621. literal "false"
  1622. \end_inset
  1623. .
  1624. \end_layout
  1625. \begin_layout Subsection
  1626. ChIP-seq differential modification analysis
  1627. \end_layout
  1628. \begin_layout Standard
  1629. \begin_inset Float figure
  1630. wide false
  1631. sideways false
  1632. status collapsed
  1633. \begin_layout Plain Layout
  1634. \align center
  1635. \begin_inset Float figure
  1636. wide false
  1637. sideways false
  1638. status open
  1639. \begin_layout Plain Layout
  1640. \align center
  1641. \begin_inset Graphics
  1642. filename graphics/CD4-csaw/csaw/CCF-plots-noBL-PAGE2-CROP.pdf
  1643. lyxscale 50
  1644. height 40theight%
  1645. groupId ccf-subfig
  1646. \end_inset
  1647. \end_layout
  1648. \begin_layout Plain Layout
  1649. \begin_inset Caption Standard
  1650. \begin_layout Plain Layout
  1651. \series bold
  1652. \begin_inset CommandInset label
  1653. LatexCommand label
  1654. name "fig:CCF-without-blacklist"
  1655. \end_inset
  1656. Cross-correlation plots without removing blacklisted reads.
  1657. \series default
  1658. Without blacklisting, many artifactual peaks are visible in the cross-correlatio
  1659. ns of the ChIP-seq samples, and the peak at the true fragment size (147
  1660. \begin_inset space ~
  1661. \end_inset
  1662. bp) is frequently overshadowed by the artifactual peak at the read length
  1663. (100
  1664. \begin_inset space ~
  1665. \end_inset
  1666. bp).
  1667. \end_layout
  1668. \end_inset
  1669. \end_layout
  1670. \end_inset
  1671. \end_layout
  1672. \begin_layout Plain Layout
  1673. \align center
  1674. \begin_inset Float figure
  1675. wide false
  1676. sideways false
  1677. status open
  1678. \begin_layout Plain Layout
  1679. \align center
  1680. \begin_inset Graphics
  1681. filename graphics/CD4-csaw/csaw/CCF-plots-PAGE2-CROP.pdf
  1682. lyxscale 50
  1683. height 40theight%
  1684. groupId ccf-subfig
  1685. \end_inset
  1686. \end_layout
  1687. \begin_layout Plain Layout
  1688. \begin_inset Caption Standard
  1689. \begin_layout Plain Layout
  1690. \series bold
  1691. \begin_inset CommandInset label
  1692. LatexCommand label
  1693. name "fig:CCF-with-blacklist"
  1694. \end_inset
  1695. Cross-correlation plots with blacklisted reads removed.
  1696. \series default
  1697. After blacklisting, most ChIP-seq samples have clean-looking periodic cross-cor
  1698. relation plots, with the largest peak around 147
  1699. \begin_inset space ~
  1700. \end_inset
  1701. bp, the expected size for a fragment of DNA from a single nucleosome, and
  1702. little to no peak at the read length, 100
  1703. \begin_inset space ~
  1704. \end_inset
  1705. bp.
  1706. \end_layout
  1707. \end_inset
  1708. \end_layout
  1709. \end_inset
  1710. \end_layout
  1711. \begin_layout Plain Layout
  1712. \begin_inset Caption Standard
  1713. \begin_layout Plain Layout
  1714. \series bold
  1715. \begin_inset CommandInset label
  1716. LatexCommand label
  1717. name "fig:CCF-master"
  1718. \end_inset
  1719. Strand cross-correlation plots for ChIP-seq data, before and after blacklisting.
  1720. \end_layout
  1721. \end_inset
  1722. \end_layout
  1723. \end_inset
  1724. \end_layout
  1725. \begin_layout Standard
  1726. \begin_inset Note Note
  1727. status open
  1728. \begin_layout Plain Layout
  1729. \begin_inset Float figure
  1730. wide false
  1731. sideways false
  1732. status collapsed
  1733. \begin_layout Plain Layout
  1734. \align center
  1735. \begin_inset Graphics
  1736. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-sample-MAplot-bins-CROP.png
  1737. lyxscale 25
  1738. width 100col%
  1739. groupId colwidth-raster
  1740. \end_inset
  1741. \end_layout
  1742. \begin_layout Plain Layout
  1743. \begin_inset Caption Standard
  1744. \begin_layout Plain Layout
  1745. \series bold
  1746. \begin_inset CommandInset label
  1747. LatexCommand label
  1748. name "fig:MA-plot-bigbins"
  1749. \end_inset
  1750. MA plot of H3K4me2 read counts in 10kb bins for two arbitrary samples.
  1751. \end_layout
  1752. \end_inset
  1753. \end_layout
  1754. \end_inset
  1755. \end_layout
  1756. \end_inset
  1757. \end_layout
  1758. \begin_layout Standard
  1759. \begin_inset Flex TODO Note (inline)
  1760. status open
  1761. \begin_layout Plain Layout
  1762. Be consistent about use of
  1763. \begin_inset Quotes eld
  1764. \end_inset
  1765. differential binding
  1766. \begin_inset Quotes erd
  1767. \end_inset
  1768. vs
  1769. \begin_inset Quotes eld
  1770. \end_inset
  1771. differential modification
  1772. \begin_inset Quotes erd
  1773. \end_inset
  1774. throughout this chapter.
  1775. The latter is usually preferred.
  1776. \end_layout
  1777. \end_inset
  1778. \end_layout
  1779. \begin_layout Standard
  1780. Sequence reads were retrieved from SRA
  1781. \begin_inset CommandInset citation
  1782. LatexCommand cite
  1783. key "Leinonen2011"
  1784. literal "false"
  1785. \end_inset
  1786. .
  1787. ChIP-seq (and input) reads were aligned to GRCh38 genome assembly using
  1788. Bowtie 2
  1789. \begin_inset CommandInset citation
  1790. LatexCommand cite
  1791. key "Langmead2012,Schneider2017,gh-hg38-ref"
  1792. literal "false"
  1793. \end_inset
  1794. .
  1795. Artifact regions were annotated using a custom implementation of the GreyListCh
  1796. IP algorithm, and these
  1797. \begin_inset Quotes eld
  1798. \end_inset
  1799. greylists
  1800. \begin_inset Quotes erd
  1801. \end_inset
  1802. were merged with the published ENCODE blacklists
  1803. \begin_inset CommandInset citation
  1804. LatexCommand cite
  1805. key "greylistchip,Amemiya2019,Dunham2012,gh-cd4-csaw"
  1806. literal "false"
  1807. \end_inset
  1808. .
  1809. Any read or called peak overlapping one of these regions was regarded as
  1810. artifactual and excluded from downstream analyses.
  1811. Figure
  1812. \begin_inset CommandInset ref
  1813. LatexCommand ref
  1814. reference "fig:CCF-master"
  1815. plural "false"
  1816. caps "false"
  1817. noprefix "false"
  1818. \end_inset
  1819. shows the improvement after blacklisting in the strand cross-correlation
  1820. plots, a common quality control plot for ChIP-seq data.
  1821. Peaks were called using epic, an implementation of the SICER algorithm
  1822. \begin_inset CommandInset citation
  1823. LatexCommand cite
  1824. key "Zang2009,gh-epic"
  1825. literal "false"
  1826. \end_inset
  1827. .
  1828. Peaks were also called separately using MACS, but MACS was determined to
  1829. be a poor fit for the data, and these peak calls are not used in any further
  1830. analyses
  1831. \begin_inset CommandInset citation
  1832. LatexCommand cite
  1833. key "Zhang2008"
  1834. literal "false"
  1835. \end_inset
  1836. .
  1837. Consensus peaks were determined by applying the irreproducible discovery
  1838. rate (IDR) framework
  1839. \begin_inset CommandInset citation
  1840. LatexCommand cite
  1841. key "Li2006,gh-idr"
  1842. literal "false"
  1843. \end_inset
  1844. to find peaks consistently called in the same locations across all 4 donors.
  1845. \end_layout
  1846. \begin_layout Standard
  1847. Promoters were defined by computing the distance from each annotated TSS
  1848. to the nearest called peak and examining the distribution of distances,
  1849. observing that peaks for each histone mark were enriched within a certain
  1850. distance of the TSS.
  1851. For H3K4me2 and H3K4me3, this distance was about 1
  1852. \begin_inset space ~
  1853. \end_inset
  1854. kb, while for H3K27me3 it was 2.5
  1855. \begin_inset space ~
  1856. \end_inset
  1857. kb.
  1858. These distances were used as an
  1859. \begin_inset Quotes eld
  1860. \end_inset
  1861. effective promoter radius
  1862. \begin_inset Quotes erd
  1863. \end_inset
  1864. for each mark.
  1865. The promoter region for each gene was defined as the region of the genome
  1866. within this distance upstream or downstream of the gene's annotated TSS.
  1867. For genes with multiple annotated TSSs, a promoter region was defined for
  1868. each TSS individually, and any promoters that overlapped (due to multiple
  1869. TSSs being closer than 2 times the radius) were merged into one large promoter.
  1870. Thus, some genes had multiple promoters defined, which were each analyzed
  1871. separately for differential modification.
  1872. \end_layout
  1873. \begin_layout Standard
  1874. \begin_inset Float figure
  1875. wide false
  1876. sideways false
  1877. status collapsed
  1878. \begin_layout Plain Layout
  1879. \begin_inset Float figure
  1880. wide false
  1881. sideways false
  1882. status collapsed
  1883. \begin_layout Plain Layout
  1884. \align center
  1885. \begin_inset Graphics
  1886. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-PCA-raw-CROP.png
  1887. lyxscale 25
  1888. width 45col%
  1889. groupId pcoa-subfig
  1890. \end_inset
  1891. \end_layout
  1892. \begin_layout Plain Layout
  1893. \begin_inset Caption Standard
  1894. \begin_layout Plain Layout
  1895. \series bold
  1896. \begin_inset CommandInset label
  1897. LatexCommand label
  1898. name "fig:PCoA-H3K4me2-bad"
  1899. \end_inset
  1900. H3K4me2, no correction
  1901. \end_layout
  1902. \end_inset
  1903. \end_layout
  1904. \end_inset
  1905. \begin_inset space \hfill{}
  1906. \end_inset
  1907. \begin_inset Float figure
  1908. wide false
  1909. sideways false
  1910. status collapsed
  1911. \begin_layout Plain Layout
  1912. \align center
  1913. \begin_inset Graphics
  1914. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-PCA-SVsub-CROP.png
  1915. lyxscale 25
  1916. width 45col%
  1917. groupId pcoa-subfig
  1918. \end_inset
  1919. \end_layout
  1920. \begin_layout Plain Layout
  1921. \begin_inset Caption Standard
  1922. \begin_layout Plain Layout
  1923. \series bold
  1924. \begin_inset CommandInset label
  1925. LatexCommand label
  1926. name "fig:PCoA-H3K4me2-good"
  1927. \end_inset
  1928. H3K4me2, SVs subtracted
  1929. \end_layout
  1930. \end_inset
  1931. \end_layout
  1932. \end_inset
  1933. \end_layout
  1934. \begin_layout Plain Layout
  1935. \begin_inset Float figure
  1936. wide false
  1937. sideways false
  1938. status collapsed
  1939. \begin_layout Plain Layout
  1940. \align center
  1941. \begin_inset Graphics
  1942. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-PCA-raw-CROP.png
  1943. lyxscale 25
  1944. width 45col%
  1945. groupId pcoa-subfig
  1946. \end_inset
  1947. \end_layout
  1948. \begin_layout Plain Layout
  1949. \begin_inset Caption Standard
  1950. \begin_layout Plain Layout
  1951. \series bold
  1952. \begin_inset CommandInset label
  1953. LatexCommand label
  1954. name "fig:PCoA-H3K4me3-bad"
  1955. \end_inset
  1956. H3K4me3, no correction
  1957. \end_layout
  1958. \end_inset
  1959. \end_layout
  1960. \end_inset
  1961. \begin_inset space \hfill{}
  1962. \end_inset
  1963. \begin_inset Float figure
  1964. wide false
  1965. sideways false
  1966. status collapsed
  1967. \begin_layout Plain Layout
  1968. \align center
  1969. \begin_inset Graphics
  1970. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-PCA-SVsub-CROP.png
  1971. lyxscale 25
  1972. width 45col%
  1973. groupId pcoa-subfig
  1974. \end_inset
  1975. \end_layout
  1976. \begin_layout Plain Layout
  1977. \begin_inset Caption Standard
  1978. \begin_layout Plain Layout
  1979. \series bold
  1980. \begin_inset CommandInset label
  1981. LatexCommand label
  1982. name "fig:PCoA-H3K4me3-good"
  1983. \end_inset
  1984. H3K4me3, SVs subtracted
  1985. \end_layout
  1986. \end_inset
  1987. \end_layout
  1988. \end_inset
  1989. \end_layout
  1990. \begin_layout Plain Layout
  1991. \begin_inset Float figure
  1992. wide false
  1993. sideways false
  1994. status collapsed
  1995. \begin_layout Plain Layout
  1996. \align center
  1997. \begin_inset Graphics
  1998. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-PCA-raw-CROP.png
  1999. lyxscale 25
  2000. width 45col%
  2001. groupId pcoa-subfig
  2002. \end_inset
  2003. \end_layout
  2004. \begin_layout Plain Layout
  2005. \begin_inset Caption Standard
  2006. \begin_layout Plain Layout
  2007. \series bold
  2008. \begin_inset CommandInset label
  2009. LatexCommand label
  2010. name "fig:PCoA-H3K27me3-bad"
  2011. \end_inset
  2012. H3K27me3, no correction
  2013. \end_layout
  2014. \end_inset
  2015. \end_layout
  2016. \end_inset
  2017. \begin_inset space \hfill{}
  2018. \end_inset
  2019. \begin_inset Float figure
  2020. wide false
  2021. sideways false
  2022. status collapsed
  2023. \begin_layout Plain Layout
  2024. \align center
  2025. \begin_inset Graphics
  2026. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-PCA-SVsub-CROP.png
  2027. lyxscale 25
  2028. width 45col%
  2029. groupId pcoa-subfig
  2030. \end_inset
  2031. \end_layout
  2032. \begin_layout Plain Layout
  2033. \begin_inset Caption Standard
  2034. \begin_layout Plain Layout
  2035. \series bold
  2036. \begin_inset CommandInset label
  2037. LatexCommand label
  2038. name "fig:PCoA-H3K27me3-good"
  2039. \end_inset
  2040. H3K27me3, SVs subtracted
  2041. \end_layout
  2042. \end_inset
  2043. \end_layout
  2044. \end_inset
  2045. \end_layout
  2046. \begin_layout Plain Layout
  2047. \begin_inset Caption Standard
  2048. \begin_layout Plain Layout
  2049. \series bold
  2050. \begin_inset CommandInset label
  2051. LatexCommand label
  2052. name "fig:PCoA-ChIP"
  2053. \end_inset
  2054. PCoA plots of ChIP-seq sliding window data, before and after subtracting
  2055. surrogate variables (SVs).
  2056. \end_layout
  2057. \end_inset
  2058. \end_layout
  2059. \end_inset
  2060. \end_layout
  2061. \begin_layout Standard
  2062. Reads in promoters, peaks, and sliding windows across the genome were counted
  2063. and normalized using csaw and analyzed for differential modification using
  2064. edgeR
  2065. \begin_inset CommandInset citation
  2066. LatexCommand cite
  2067. key "Lun2014,Lun2015a,Lund2012,Phipson2016"
  2068. literal "false"
  2069. \end_inset
  2070. .
  2071. Unobserved confounding factors in the ChIP-seq data were corrected using
  2072. SVA
  2073. \begin_inset CommandInset citation
  2074. LatexCommand cite
  2075. key "Leek2007,Leek2014"
  2076. literal "false"
  2077. \end_inset
  2078. .
  2079. Principal coordinate plots of the promoter count data for each histone
  2080. mark before and after subtracting surrogate variable effects are shown
  2081. in Figure
  2082. \begin_inset CommandInset ref
  2083. LatexCommand ref
  2084. reference "fig:PCoA-ChIP"
  2085. plural "false"
  2086. caps "false"
  2087. noprefix "false"
  2088. \end_inset
  2089. .
  2090. \end_layout
  2091. \begin_layout Standard
  2092. To investigate whether the location of a peak within the promoter region
  2093. was important,
  2094. \begin_inset Quotes eld
  2095. \end_inset
  2096. relative coverage profiles
  2097. \begin_inset Quotes erd
  2098. \end_inset
  2099. were generated.
  2100. First, 500-bp sliding windows were tiled around each annotated TSS: one
  2101. window centered on the TSS itself, and 10 windows each upstream and downstream,
  2102. thus covering a 10.5-kb region centered on the TSS with 21 windows.
  2103. Reads in each window for each TSS were counted in each sample, and the
  2104. counts were normalized and converted to log CPM as in the differential
  2105. modification analysis.
  2106. Then, the logCPM values within each promoter were normalized to an average
  2107. of zero, such that each window's normalized abundance now represents the
  2108. relative read depth of that window compared to all other windows in the
  2109. same promoter.
  2110. The normalized abundance values for each window in a promoter are collectively
  2111. referred to as that promoter's
  2112. \begin_inset Quotes eld
  2113. \end_inset
  2114. relative coverage profile
  2115. \begin_inset Quotes erd
  2116. \end_inset
  2117. .
  2118. \end_layout
  2119. \begin_layout Subsection
  2120. MOFA recovers biologically relevant variation from blind analysis by correlating
  2121. across datasets
  2122. \end_layout
  2123. \begin_layout Standard
  2124. \begin_inset ERT
  2125. status open
  2126. \begin_layout Plain Layout
  2127. \backslash
  2128. afterpage{
  2129. \end_layout
  2130. \begin_layout Plain Layout
  2131. \backslash
  2132. begin{landscape}
  2133. \end_layout
  2134. \end_inset
  2135. \end_layout
  2136. \begin_layout Standard
  2137. \begin_inset Float figure
  2138. wide false
  2139. sideways false
  2140. status open
  2141. \begin_layout Plain Layout
  2142. \begin_inset Float figure
  2143. wide false
  2144. sideways false
  2145. status open
  2146. \begin_layout Plain Layout
  2147. \align center
  2148. \begin_inset Graphics
  2149. filename graphics/CD4-csaw/MOFA-varExplaiend-matrix-CROP.png
  2150. lyxscale 25
  2151. width 45col%
  2152. groupId mofa-subfig
  2153. \end_inset
  2154. \end_layout
  2155. \begin_layout Plain Layout
  2156. \begin_inset Caption Standard
  2157. \begin_layout Plain Layout
  2158. \series bold
  2159. \begin_inset CommandInset label
  2160. LatexCommand label
  2161. name "fig:mofa-varexplained"
  2162. \end_inset
  2163. Variance explained in each data set by each latent factor estimated by MOFA.
  2164. \series default
  2165. For each latent factor (LF) learned by MOFA, the variance explained by
  2166. that factor in each data set (
  2167. \begin_inset Quotes eld
  2168. \end_inset
  2169. view
  2170. \begin_inset Quotes erd
  2171. \end_inset
  2172. ) is shown by the shading of the cells in the lower section.
  2173. The upper section shows the total fraction of each data set's variance
  2174. that is explained by all LFs combined.
  2175. \end_layout
  2176. \end_inset
  2177. \end_layout
  2178. \end_inset
  2179. \begin_inset space \hfill{}
  2180. \end_inset
  2181. \begin_inset Float figure
  2182. wide false
  2183. sideways false
  2184. status open
  2185. \begin_layout Plain Layout
  2186. \align center
  2187. \begin_inset Graphics
  2188. filename graphics/CD4-csaw/MOFA-LF-scatter-CROP.png
  2189. lyxscale 25
  2190. width 45col%
  2191. groupId mofa-subfig
  2192. \end_inset
  2193. \end_layout
  2194. \begin_layout Plain Layout
  2195. \begin_inset Caption Standard
  2196. \begin_layout Plain Layout
  2197. \series bold
  2198. \begin_inset CommandInset label
  2199. LatexCommand label
  2200. name "fig:mofa-lf-scatter"
  2201. \end_inset
  2202. Scatter plots of specific pairs of MOFA latent factors.
  2203. \series default
  2204. LFs 1, 4, and 5 explain substantial variation in all data sets, so they
  2205. are plotted against each other in order to reveal patterns of variation
  2206. that are shared across all data sets.
  2207. \end_layout
  2208. \end_inset
  2209. \end_layout
  2210. \end_inset
  2211. \end_layout
  2212. \begin_layout Plain Layout
  2213. \begin_inset Caption Standard
  2214. \begin_layout Plain Layout
  2215. \series bold
  2216. \begin_inset CommandInset label
  2217. LatexCommand label
  2218. name "fig:MOFA-master"
  2219. \end_inset
  2220. MOFA latent factors separate technical confounders from
  2221. \end_layout
  2222. \end_inset
  2223. \end_layout
  2224. \end_inset
  2225. \end_layout
  2226. \begin_layout Standard
  2227. \begin_inset ERT
  2228. status open
  2229. \begin_layout Plain Layout
  2230. \backslash
  2231. end{landscape}
  2232. \end_layout
  2233. \begin_layout Plain Layout
  2234. }
  2235. \end_layout
  2236. \end_inset
  2237. \end_layout
  2238. \begin_layout Standard
  2239. MOFA was run on all the ChIP-seq windows overlapping consensus peaks for
  2240. each histone mark, as well as the RNA-seq data, in order to identify patterns
  2241. of coordinated variation across all data sets
  2242. \begin_inset CommandInset citation
  2243. LatexCommand cite
  2244. key "Argelaguet2018"
  2245. literal "false"
  2246. \end_inset
  2247. .
  2248. The results are summarized in Figure
  2249. \begin_inset CommandInset ref
  2250. LatexCommand ref
  2251. reference "fig:MOFA-master"
  2252. plural "false"
  2253. caps "false"
  2254. noprefix "false"
  2255. \end_inset
  2256. .
  2257. Latent factors 1, 4, and 5 were determined to explain the most variation
  2258. consistently across all data sets (Fgure
  2259. \begin_inset CommandInset ref
  2260. LatexCommand ref
  2261. reference "fig:mofa-varexplained"
  2262. plural "false"
  2263. caps "false"
  2264. noprefix "false"
  2265. \end_inset
  2266. ), and scatter plots of these factors show that they also correlate best
  2267. with the experimental factors (Figure
  2268. \begin_inset CommandInset ref
  2269. LatexCommand ref
  2270. reference "fig:mofa-lf-scatter"
  2271. plural "false"
  2272. caps "false"
  2273. noprefix "false"
  2274. \end_inset
  2275. ).
  2276. Latent factor 2 captures the batch effect in the RNA-seq data.
  2277. Removing the effect of LF2 using MOFA theoretically yields a batch correction
  2278. that does not depend on knowing the experimental factors.
  2279. When this was attempted, the resulting batch correction was comparable
  2280. to ComBat (see Figure
  2281. \begin_inset CommandInset ref
  2282. LatexCommand ref
  2283. reference "fig:RNA-PCA-ComBat-batchsub"
  2284. plural "false"
  2285. caps "false"
  2286. noprefix "false"
  2287. \end_inset
  2288. ), indicating that the ComBat-based batch correction has little room for
  2289. improvement given the problems with the data set.
  2290. \end_layout
  2291. \begin_layout Standard
  2292. \begin_inset Note Note
  2293. status collapsed
  2294. \begin_layout Plain Layout
  2295. \begin_inset Float figure
  2296. wide false
  2297. sideways false
  2298. status open
  2299. \begin_layout Plain Layout
  2300. \align center
  2301. \begin_inset Graphics
  2302. filename graphics/CD4-csaw/MOFA-batch-correct-CROP.png
  2303. lyxscale 25
  2304. width 100col%
  2305. groupId colwidth-raster
  2306. \end_inset
  2307. \end_layout
  2308. \begin_layout Plain Layout
  2309. \begin_inset Caption Standard
  2310. \begin_layout Plain Layout
  2311. \series bold
  2312. \begin_inset CommandInset label
  2313. LatexCommand label
  2314. name "fig:mofa-batchsub"
  2315. \end_inset
  2316. Result of RNA-seq batch-correction using MOFA latent factors
  2317. \end_layout
  2318. \end_inset
  2319. \end_layout
  2320. \end_inset
  2321. \end_layout
  2322. \end_inset
  2323. \end_layout
  2324. \begin_layout Section
  2325. Results
  2326. \end_layout
  2327. \begin_layout Standard
  2328. \begin_inset Flex TODO Note (inline)
  2329. status open
  2330. \begin_layout Plain Layout
  2331. Focus on what hypotheses were tested, then select figures that show how
  2332. those hypotheses were tested, even if the result is a negative.
  2333. Not every interesting result needs to be in here.
  2334. Chapter should tell a story.
  2335. \end_layout
  2336. \end_inset
  2337. \end_layout
  2338. \begin_layout Standard
  2339. \begin_inset Flex TODO Note (inline)
  2340. status open
  2341. \begin_layout Plain Layout
  2342. Maybe reorder these sections to do RNA-seq, then ChIP-seq, then combined
  2343. analyses?
  2344. \end_layout
  2345. \end_inset
  2346. \end_layout
  2347. \begin_layout Subsection
  2348. Interpretation of RNA-seq analysis is limited by a major confounding factor
  2349. \end_layout
  2350. \begin_layout Standard
  2351. \begin_inset Float table
  2352. wide false
  2353. sideways false
  2354. status collapsed
  2355. \begin_layout Plain Layout
  2356. \align center
  2357. \begin_inset Tabular
  2358. <lyxtabular version="3" rows="11" columns="3">
  2359. <features tabularvalignment="middle">
  2360. <column alignment="center" valignment="top">
  2361. <column alignment="center" valignment="top">
  2362. <column alignment="center" valignment="top">
  2363. <row>
  2364. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2365. \begin_inset Text
  2366. \begin_layout Plain Layout
  2367. Test
  2368. \end_layout
  2369. \end_inset
  2370. </cell>
  2371. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2372. \begin_inset Text
  2373. \begin_layout Plain Layout
  2374. Est.
  2375. non-null
  2376. \end_layout
  2377. \end_inset
  2378. </cell>
  2379. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2380. \begin_inset Text
  2381. \begin_layout Plain Layout
  2382. \begin_inset Formula $\mathrm{FDR}\le10\%$
  2383. \end_inset
  2384. \end_layout
  2385. \end_inset
  2386. </cell>
  2387. </row>
  2388. <row>
  2389. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2390. \begin_inset Text
  2391. \begin_layout Plain Layout
  2392. Naive Day 0 vs Day 1
  2393. \end_layout
  2394. \end_inset
  2395. </cell>
  2396. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2397. \begin_inset Text
  2398. \begin_layout Plain Layout
  2399. 5992
  2400. \end_layout
  2401. \end_inset
  2402. </cell>
  2403. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2404. \begin_inset Text
  2405. \begin_layout Plain Layout
  2406. 1613
  2407. \end_layout
  2408. \end_inset
  2409. </cell>
  2410. </row>
  2411. <row>
  2412. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2413. \begin_inset Text
  2414. \begin_layout Plain Layout
  2415. Naive Day 0 vs Day 5
  2416. \end_layout
  2417. \end_inset
  2418. </cell>
  2419. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2420. \begin_inset Text
  2421. \begin_layout Plain Layout
  2422. 3038
  2423. \end_layout
  2424. \end_inset
  2425. </cell>
  2426. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2427. \begin_inset Text
  2428. \begin_layout Plain Layout
  2429. 32
  2430. \end_layout
  2431. \end_inset
  2432. </cell>
  2433. </row>
  2434. <row>
  2435. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2436. \begin_inset Text
  2437. \begin_layout Plain Layout
  2438. Naive Day 0 vs Day 14
  2439. \end_layout
  2440. \end_inset
  2441. </cell>
  2442. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2443. \begin_inset Text
  2444. \begin_layout Plain Layout
  2445. 1870
  2446. \end_layout
  2447. \end_inset
  2448. </cell>
  2449. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2450. \begin_inset Text
  2451. \begin_layout Plain Layout
  2452. 190
  2453. \end_layout
  2454. \end_inset
  2455. </cell>
  2456. </row>
  2457. <row>
  2458. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2459. \begin_inset Text
  2460. \begin_layout Plain Layout
  2461. Memory Day 0 vs Day 1
  2462. \end_layout
  2463. \end_inset
  2464. </cell>
  2465. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2466. \begin_inset Text
  2467. \begin_layout Plain Layout
  2468. 3195
  2469. \end_layout
  2470. \end_inset
  2471. </cell>
  2472. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2473. \begin_inset Text
  2474. \begin_layout Plain Layout
  2475. 411
  2476. \end_layout
  2477. \end_inset
  2478. </cell>
  2479. </row>
  2480. <row>
  2481. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2482. \begin_inset Text
  2483. \begin_layout Plain Layout
  2484. Memory Day 0 vs Day 5
  2485. \end_layout
  2486. \end_inset
  2487. </cell>
  2488. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2489. \begin_inset Text
  2490. \begin_layout Plain Layout
  2491. 2688
  2492. \end_layout
  2493. \end_inset
  2494. </cell>
  2495. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2496. \begin_inset Text
  2497. \begin_layout Plain Layout
  2498. 18
  2499. \end_layout
  2500. \end_inset
  2501. </cell>
  2502. </row>
  2503. <row>
  2504. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2505. \begin_inset Text
  2506. \begin_layout Plain Layout
  2507. Memory Day 0 vs Day 14
  2508. \end_layout
  2509. \end_inset
  2510. </cell>
  2511. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2512. \begin_inset Text
  2513. \begin_layout Plain Layout
  2514. 1911
  2515. \end_layout
  2516. \end_inset
  2517. </cell>
  2518. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2519. \begin_inset Text
  2520. \begin_layout Plain Layout
  2521. 227
  2522. \end_layout
  2523. \end_inset
  2524. </cell>
  2525. </row>
  2526. <row>
  2527. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2528. \begin_inset Text
  2529. \begin_layout Plain Layout
  2530. Day 0 Naive vs Memory
  2531. \end_layout
  2532. \end_inset
  2533. </cell>
  2534. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2535. \begin_inset Text
  2536. \begin_layout Plain Layout
  2537. 0
  2538. \end_layout
  2539. \end_inset
  2540. </cell>
  2541. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2542. \begin_inset Text
  2543. \begin_layout Plain Layout
  2544. 2
  2545. \end_layout
  2546. \end_inset
  2547. </cell>
  2548. </row>
  2549. <row>
  2550. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2551. \begin_inset Text
  2552. \begin_layout Plain Layout
  2553. Day 1 Naive vs Memory
  2554. \end_layout
  2555. \end_inset
  2556. </cell>
  2557. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2558. \begin_inset Text
  2559. \begin_layout Plain Layout
  2560. 9167
  2561. \end_layout
  2562. \end_inset
  2563. </cell>
  2564. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2565. \begin_inset Text
  2566. \begin_layout Plain Layout
  2567. 5532
  2568. \end_layout
  2569. \end_inset
  2570. </cell>
  2571. </row>
  2572. <row>
  2573. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2574. \begin_inset Text
  2575. \begin_layout Plain Layout
  2576. Day 5 Naive vs Memory
  2577. \end_layout
  2578. \end_inset
  2579. </cell>
  2580. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2581. \begin_inset Text
  2582. \begin_layout Plain Layout
  2583. 0
  2584. \end_layout
  2585. \end_inset
  2586. </cell>
  2587. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2588. \begin_inset Text
  2589. \begin_layout Plain Layout
  2590. 0
  2591. \end_layout
  2592. \end_inset
  2593. </cell>
  2594. </row>
  2595. <row>
  2596. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2597. \begin_inset Text
  2598. \begin_layout Plain Layout
  2599. Day 14 Naive vs Memory
  2600. \end_layout
  2601. \end_inset
  2602. </cell>
  2603. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2604. \begin_inset Text
  2605. \begin_layout Plain Layout
  2606. 6446
  2607. \end_layout
  2608. \end_inset
  2609. </cell>
  2610. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2611. \begin_inset Text
  2612. \begin_layout Plain Layout
  2613. 2319
  2614. \end_layout
  2615. \end_inset
  2616. </cell>
  2617. </row>
  2618. </lyxtabular>
  2619. \end_inset
  2620. \end_layout
  2621. \begin_layout Plain Layout
  2622. \begin_inset Caption Standard
  2623. \begin_layout Plain Layout
  2624. \series bold
  2625. \begin_inset CommandInset label
  2626. LatexCommand label
  2627. name "tab:Estimated-and-detected-rnaseq"
  2628. \end_inset
  2629. Estimated and detected differentially expressed genes.
  2630. \series default
  2631. \begin_inset Quotes eld
  2632. \end_inset
  2633. Test
  2634. \begin_inset Quotes erd
  2635. \end_inset
  2636. : Which sample groups were compared;
  2637. \begin_inset Quotes eld
  2638. \end_inset
  2639. Est non-null
  2640. \begin_inset Quotes erd
  2641. \end_inset
  2642. : Estimated number of differentially expressed genes, using the method of
  2643. averaging local FDR values
  2644. \begin_inset CommandInset citation
  2645. LatexCommand cite
  2646. key "Phipson2013Thesis"
  2647. literal "false"
  2648. \end_inset
  2649. ;
  2650. \begin_inset Quotes eld
  2651. \end_inset
  2652. \begin_inset Formula $\mathrm{FDR}\le10\%$
  2653. \end_inset
  2654. \begin_inset Quotes erd
  2655. \end_inset
  2656. : Number of significantly differentially expressed genes at an FDR threshold
  2657. of 10%.
  2658. The total number of genes tested was 16707.
  2659. \end_layout
  2660. \end_inset
  2661. \end_layout
  2662. \end_inset
  2663. \end_layout
  2664. \begin_layout Standard
  2665. \begin_inset Float figure
  2666. wide false
  2667. sideways false
  2668. status collapsed
  2669. \begin_layout Plain Layout
  2670. \align center
  2671. \begin_inset Graphics
  2672. filename graphics/CD4-csaw/RNA-seq/PCA-final-12-CROP.png
  2673. lyxscale 25
  2674. width 100col%
  2675. groupId colwidth-raster
  2676. \end_inset
  2677. \end_layout
  2678. \begin_layout Plain Layout
  2679. \begin_inset Caption Standard
  2680. \begin_layout Plain Layout
  2681. \series bold
  2682. \begin_inset CommandInset label
  2683. LatexCommand label
  2684. name "fig:rna-pca-final"
  2685. \end_inset
  2686. PCoA plot of RNA-seq samples after ComBat batch correction.
  2687. \series default
  2688. Each point represents an individual sample.
  2689. Samples with the same combination of cell type and time point are encircled
  2690. with a shaded region to aid in visual identification of the sample groups.
  2691. Samples with of same cell type from the same donor are connected by lines
  2692. to indicate the
  2693. \begin_inset Quotes eld
  2694. \end_inset
  2695. trajectory
  2696. \begin_inset Quotes erd
  2697. \end_inset
  2698. of each donor's cells over time in PCoA space.
  2699. \end_layout
  2700. \end_inset
  2701. \end_layout
  2702. \begin_layout Plain Layout
  2703. \end_layout
  2704. \end_inset
  2705. \end_layout
  2706. \begin_layout Standard
  2707. Genes called present in the RNA-seq data were tested for differential expression
  2708. between all time points and cell types.
  2709. The counts of differentially expressed genes are shown in Table
  2710. \begin_inset CommandInset ref
  2711. LatexCommand ref
  2712. reference "tab:Estimated-and-detected-rnaseq"
  2713. plural "false"
  2714. caps "false"
  2715. noprefix "false"
  2716. \end_inset
  2717. .
  2718. Notably, all the results for Day 0 and Day 5 have substantially fewer genes
  2719. called differentially expressed than any of the results for other time
  2720. points.
  2721. This is an unfortunate result of the difference in sample quality between
  2722. the two batches of RNA-seq data.
  2723. All the samples in Batch 1, which includes all the samples from Days 0
  2724. and 5, have substantially more variability than the samples in Batch 2,
  2725. which includes the other time points.
  2726. This is reflected in the substantially higher weights assigned to Batch
  2727. 2 (Figure
  2728. \begin_inset CommandInset ref
  2729. LatexCommand ref
  2730. reference "fig:RNA-seq-weights-vs-covars"
  2731. plural "false"
  2732. caps "false"
  2733. noprefix "false"
  2734. \end_inset
  2735. ).
  2736. The batch effect has both a systematic component and a random noise component.
  2737. While the systematic component was subtracted out using ComBat (Figure
  2738. \begin_inset CommandInset ref
  2739. LatexCommand ref
  2740. reference "fig:RNA-PCA"
  2741. plural "false"
  2742. caps "false"
  2743. noprefix "false"
  2744. \end_inset
  2745. ), no such correction is possible for the noise component: Batch 1 simply
  2746. has substantially more random noise in it, which reduces the statistical
  2747. power for any differential expression tests involving samples in that batch.
  2748. \end_layout
  2749. \begin_layout Standard
  2750. Despite the difficulty in detecting specific differentially expressed genes,
  2751. there is still evidence that differential expression is present for these
  2752. time points.
  2753. In Figure
  2754. \begin_inset CommandInset ref
  2755. LatexCommand ref
  2756. reference "fig:rna-pca-final"
  2757. plural "false"
  2758. caps "false"
  2759. noprefix "false"
  2760. \end_inset
  2761. , there is a clear separation between naive and memory samples at Day 0,
  2762. despite the fact that only 2 genes were significantly differentially expressed
  2763. for this comparison.
  2764. Similarly, the small numbers of genes detected for the Day 0 vs Day 5 compariso
  2765. ns do not reflect the large separation between these time points in Figure
  2766. \begin_inset CommandInset ref
  2767. LatexCommand ref
  2768. reference "fig:rna-pca-final"
  2769. plural "false"
  2770. caps "false"
  2771. noprefix "false"
  2772. \end_inset
  2773. .
  2774. In addition, the MOFA latent factor plots in Figure
  2775. \begin_inset CommandInset ref
  2776. LatexCommand ref
  2777. reference "fig:mofa-lf-scatter"
  2778. plural "false"
  2779. caps "false"
  2780. noprefix "false"
  2781. \end_inset
  2782. .
  2783. This suggests that there is indeed a differential expression signal present
  2784. in the data for these comparisons, but the large variability in the Batch
  2785. 1 samples obfuscates this signal at the individual gene level.
  2786. As a result, it is impossible to make any meaningful statements about the
  2787. \begin_inset Quotes eld
  2788. \end_inset
  2789. size
  2790. \begin_inset Quotes erd
  2791. \end_inset
  2792. of the gene signature for any time point, since the number of significant
  2793. genes as well as the estimated number of differentially expressed genes
  2794. depends so strongly on the variations in sample quality in addition to
  2795. the size of the differential expression signal in the data.
  2796. Gene-set enrichment analyses are similarly impractical.
  2797. However, analyses looking at genome-wide patterns of expression are still
  2798. practical.
  2799. \end_layout
  2800. \begin_layout Subsection
  2801. H3K4 and H3K27 methylation occur in broad regions and are enriched near
  2802. promoters
  2803. \end_layout
  2804. \begin_layout Standard
  2805. \begin_inset Float table
  2806. wide false
  2807. sideways false
  2808. status collapsed
  2809. \begin_layout Plain Layout
  2810. \align center
  2811. \begin_inset Flex TODO Note (inline)
  2812. status open
  2813. \begin_layout Plain Layout
  2814. Also get
  2815. \emph on
  2816. median
  2817. \emph default
  2818. peak width and maybe other quantiles (25%, 75%)
  2819. \end_layout
  2820. \end_inset
  2821. \end_layout
  2822. \begin_layout Plain Layout
  2823. \align center
  2824. \begin_inset Tabular
  2825. <lyxtabular version="3" rows="4" columns="5">
  2826. <features tabularvalignment="middle">
  2827. <column alignment="center" valignment="top">
  2828. <column alignment="center" valignment="top">
  2829. <column alignment="center" valignment="top">
  2830. <column alignment="center" valignment="top">
  2831. <column alignment="center" valignment="top">
  2832. <row>
  2833. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2834. \begin_inset Text
  2835. \begin_layout Plain Layout
  2836. Histone Mark
  2837. \end_layout
  2838. \end_inset
  2839. </cell>
  2840. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2841. \begin_inset Text
  2842. \begin_layout Plain Layout
  2843. # Peaks
  2844. \end_layout
  2845. \end_inset
  2846. </cell>
  2847. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2848. \begin_inset Text
  2849. \begin_layout Plain Layout
  2850. Mean peak width
  2851. \end_layout
  2852. \end_inset
  2853. </cell>
  2854. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2855. \begin_inset Text
  2856. \begin_layout Plain Layout
  2857. genome coverage
  2858. \end_layout
  2859. \end_inset
  2860. </cell>
  2861. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2862. \begin_inset Text
  2863. \begin_layout Plain Layout
  2864. FRiP
  2865. \end_layout
  2866. \end_inset
  2867. </cell>
  2868. </row>
  2869. <row>
  2870. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2871. \begin_inset Text
  2872. \begin_layout Plain Layout
  2873. H3K4me2
  2874. \end_layout
  2875. \end_inset
  2876. </cell>
  2877. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2878. \begin_inset Text
  2879. \begin_layout Plain Layout
  2880. 14965
  2881. \end_layout
  2882. \end_inset
  2883. </cell>
  2884. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2885. \begin_inset Text
  2886. \begin_layout Plain Layout
  2887. 3970
  2888. \end_layout
  2889. \end_inset
  2890. </cell>
  2891. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2892. \begin_inset Text
  2893. \begin_layout Plain Layout
  2894. 1.92%
  2895. \end_layout
  2896. \end_inset
  2897. </cell>
  2898. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2899. \begin_inset Text
  2900. \begin_layout Plain Layout
  2901. 14.2%
  2902. \end_layout
  2903. \end_inset
  2904. </cell>
  2905. </row>
  2906. <row>
  2907. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2908. \begin_inset Text
  2909. \begin_layout Plain Layout
  2910. H3K4me3
  2911. \end_layout
  2912. \end_inset
  2913. </cell>
  2914. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2915. \begin_inset Text
  2916. \begin_layout Plain Layout
  2917. 6163
  2918. \end_layout
  2919. \end_inset
  2920. </cell>
  2921. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2922. \begin_inset Text
  2923. \begin_layout Plain Layout
  2924. 2946
  2925. \end_layout
  2926. \end_inset
  2927. </cell>
  2928. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2929. \begin_inset Text
  2930. \begin_layout Plain Layout
  2931. 0.588%
  2932. \end_layout
  2933. \end_inset
  2934. </cell>
  2935. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2936. \begin_inset Text
  2937. \begin_layout Plain Layout
  2938. 6.57%
  2939. \end_layout
  2940. \end_inset
  2941. </cell>
  2942. </row>
  2943. <row>
  2944. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2945. \begin_inset Text
  2946. \begin_layout Plain Layout
  2947. H3K27me3
  2948. \end_layout
  2949. \end_inset
  2950. </cell>
  2951. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2952. \begin_inset Text
  2953. \begin_layout Plain Layout
  2954. 18139
  2955. \end_layout
  2956. \end_inset
  2957. </cell>
  2958. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2959. \begin_inset Text
  2960. \begin_layout Plain Layout
  2961. 18967
  2962. \end_layout
  2963. \end_inset
  2964. </cell>
  2965. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2966. \begin_inset Text
  2967. \begin_layout Plain Layout
  2968. 11.1%
  2969. \end_layout
  2970. \end_inset
  2971. </cell>
  2972. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2973. \begin_inset Text
  2974. \begin_layout Plain Layout
  2975. 22.5%
  2976. \end_layout
  2977. \end_inset
  2978. </cell>
  2979. </row>
  2980. </lyxtabular>
  2981. \end_inset
  2982. \end_layout
  2983. \begin_layout Plain Layout
  2984. \begin_inset Caption Standard
  2985. \begin_layout Plain Layout
  2986. \series bold
  2987. \begin_inset CommandInset label
  2988. LatexCommand label
  2989. name "tab:peak-calling-summary"
  2990. \end_inset
  2991. Peak-calling summary.
  2992. \series default
  2993. For each histone mark, the number of peaks called using SICER at an IDR
  2994. threshold of ???, the mean width of those peaks, the fraction of the genome
  2995. covered by peaks, and the fraction of reads in peaks (FRiP).
  2996. \end_layout
  2997. \end_inset
  2998. \end_layout
  2999. \end_inset
  3000. \end_layout
  3001. \begin_layout Standard
  3002. Table
  3003. \begin_inset CommandInset ref
  3004. LatexCommand ref
  3005. reference "tab:peak-calling-summary"
  3006. plural "false"
  3007. caps "false"
  3008. noprefix "false"
  3009. \end_inset
  3010. gives a summary of the peak calling statistics for each histone mark.
  3011. Consistent with previous observations [CITATION NEEDED], all 3 histone
  3012. marks occur in broad regions spanning many consecutive nucleosomes, rather
  3013. than in sharp peaks as would be expected for a transcription factor or
  3014. other molecule that binds to specific sites.
  3015. This conclusion is further supported by Figure
  3016. \begin_inset CommandInset ref
  3017. LatexCommand ref
  3018. reference "fig:CCF-with-blacklist"
  3019. plural "false"
  3020. caps "false"
  3021. noprefix "false"
  3022. \end_inset
  3023. , in which a clear nucleosome-sized periodicity is visible in the cross-correlat
  3024. ion value for each sample, indicating that each time a given mark is present
  3025. on one histone, it is also likely to be found on adjacent histones as well.
  3026. H3K27me3 enrichment in particular is substantially more broad than either
  3027. H3K4 mark, with a mean peak width of almost 19,000 bp.
  3028. This is also reflected in the periodicity observed in Figure
  3029. \begin_inset CommandInset ref
  3030. LatexCommand ref
  3031. reference "fig:CCF-with-blacklist"
  3032. plural "false"
  3033. caps "false"
  3034. noprefix "false"
  3035. \end_inset
  3036. , which remains strong much farther out for H3K27me3 than the other marks,
  3037. showing H3K27me3 especially tends to be found on long runs of consecutive
  3038. histones.
  3039. \end_layout
  3040. \begin_layout Standard
  3041. \begin_inset Float figure
  3042. wide false
  3043. sideways false
  3044. status open
  3045. \begin_layout Plain Layout
  3046. \begin_inset Flex TODO Note (inline)
  3047. status open
  3048. \begin_layout Plain Layout
  3049. Ensure this figure uses the peak calls from the new analysis.
  3050. \end_layout
  3051. \end_inset
  3052. \end_layout
  3053. \begin_layout Plain Layout
  3054. \begin_inset Flex TODO Note (inline)
  3055. status open
  3056. \begin_layout Plain Layout
  3057. Need a control: shuffle all peaks and repeat, N times.
  3058. Do real vs shuffled control both in a top/bottom arrangement.
  3059. \end_layout
  3060. \end_inset
  3061. \end_layout
  3062. \begin_layout Plain Layout
  3063. \begin_inset Flex TODO Note (inline)
  3064. status open
  3065. \begin_layout Plain Layout
  3066. Consider counting TSS inside peaks as negative number indicating how far
  3067. \emph on
  3068. inside
  3069. \emph default
  3070. the peak the TSS is (i.e.
  3071. distance to nearest non-peak area).
  3072. \end_layout
  3073. \end_inset
  3074. \end_layout
  3075. \begin_layout Plain Layout
  3076. \begin_inset Flex TODO Note (inline)
  3077. status open
  3078. \begin_layout Plain Layout
  3079. The H3K4 part of this figure is included in
  3080. \begin_inset CommandInset citation
  3081. LatexCommand cite
  3082. key "LaMere2016"
  3083. literal "false"
  3084. \end_inset
  3085. as Fig.
  3086. S2.
  3087. Do I need to do anything about that?
  3088. \end_layout
  3089. \end_inset
  3090. \end_layout
  3091. \begin_layout Plain Layout
  3092. \align center
  3093. \begin_inset Graphics
  3094. filename graphics/CD4-csaw/Promoter Peak Distance Profile-PAGE1-CROP.pdf
  3095. lyxscale 50
  3096. width 80col%
  3097. \end_inset
  3098. \end_layout
  3099. \begin_layout Plain Layout
  3100. \begin_inset Caption Standard
  3101. \begin_layout Plain Layout
  3102. \series bold
  3103. \begin_inset CommandInset label
  3104. LatexCommand label
  3105. name "fig:near-promoter-peak-enrich"
  3106. \end_inset
  3107. Enrichment of peaks in promoter neighborhoods.
  3108. \series default
  3109. This plot shows the distribution of distances from each annotated transcription
  3110. start site in the genome to the nearest called peak.
  3111. Each line represents one combination of histone mark, cell type, and time
  3112. point.
  3113. Distributions are smoothed using kernel density estimation [CITE? see ggplot2
  3114. stat_density()].
  3115. Transcription start sites that occur
  3116. \emph on
  3117. within
  3118. \emph default
  3119. peaks were excluded from this plot to avoid a large spike at zero that
  3120. would overshadow the rest of the distribution.
  3121. \end_layout
  3122. \end_inset
  3123. \end_layout
  3124. \end_inset
  3125. \end_layout
  3126. \begin_layout Standard
  3127. \begin_inset Float table
  3128. wide false
  3129. sideways false
  3130. status collapsed
  3131. \begin_layout Plain Layout
  3132. \align center
  3133. \begin_inset Tabular
  3134. <lyxtabular version="3" rows="4" columns="2">
  3135. <features tabularvalignment="middle">
  3136. <column alignment="center" valignment="top">
  3137. <column alignment="center" valignment="top">
  3138. <row>
  3139. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3140. \begin_inset Text
  3141. \begin_layout Plain Layout
  3142. Histone mark
  3143. \end_layout
  3144. \end_inset
  3145. </cell>
  3146. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3147. \begin_inset Text
  3148. \begin_layout Plain Layout
  3149. Effective promoter radius
  3150. \end_layout
  3151. \end_inset
  3152. </cell>
  3153. </row>
  3154. <row>
  3155. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3156. \begin_inset Text
  3157. \begin_layout Plain Layout
  3158. H3K4me2
  3159. \end_layout
  3160. \end_inset
  3161. </cell>
  3162. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3163. \begin_inset Text
  3164. \begin_layout Plain Layout
  3165. 1 kb
  3166. \end_layout
  3167. \end_inset
  3168. </cell>
  3169. </row>
  3170. <row>
  3171. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3172. \begin_inset Text
  3173. \begin_layout Plain Layout
  3174. H3K4me3
  3175. \end_layout
  3176. \end_inset
  3177. </cell>
  3178. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3179. \begin_inset Text
  3180. \begin_layout Plain Layout
  3181. 1 kb
  3182. \end_layout
  3183. \end_inset
  3184. </cell>
  3185. </row>
  3186. <row>
  3187. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3188. \begin_inset Text
  3189. \begin_layout Plain Layout
  3190. H3K27me3
  3191. \end_layout
  3192. \end_inset
  3193. </cell>
  3194. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3195. \begin_inset Text
  3196. \begin_layout Plain Layout
  3197. 2.5 kb
  3198. \end_layout
  3199. \end_inset
  3200. </cell>
  3201. </row>
  3202. </lyxtabular>
  3203. \end_inset
  3204. \end_layout
  3205. \begin_layout Plain Layout
  3206. \begin_inset Caption Standard
  3207. \begin_layout Plain Layout
  3208. \series bold
  3209. \begin_inset CommandInset label
  3210. LatexCommand label
  3211. name "tab:effective-promoter-radius"
  3212. \end_inset
  3213. Effective promoter radius for each histone mark.
  3214. \series default
  3215. These values represent the approximate distance from transcription start
  3216. site positions within which an excess of peaks are found, as shown in Figure
  3217. \begin_inset CommandInset ref
  3218. LatexCommand ref
  3219. reference "fig:near-promoter-peak-enrich"
  3220. plural "false"
  3221. caps "false"
  3222. noprefix "false"
  3223. \end_inset
  3224. .
  3225. \end_layout
  3226. \end_inset
  3227. \end_layout
  3228. \begin_layout Plain Layout
  3229. \end_layout
  3230. \end_inset
  3231. \end_layout
  3232. \begin_layout Standard
  3233. All 3 histone marks tend to occur more often near promoter regions, as shown
  3234. in Figure
  3235. \begin_inset CommandInset ref
  3236. LatexCommand ref
  3237. reference "fig:near-promoter-peak-enrich"
  3238. plural "false"
  3239. caps "false"
  3240. noprefix "false"
  3241. \end_inset
  3242. .
  3243. The majority of each density distribution is flat, representing the background
  3244. density of peaks genome-wide.
  3245. Each distribution has a peak near zero, representing an enrichment of peaks
  3246. close transcription start site (TSS) positions relative to the remainder
  3247. of the genome.
  3248. Interestingly, the
  3249. \begin_inset Quotes eld
  3250. \end_inset
  3251. radius
  3252. \begin_inset Quotes erd
  3253. \end_inset
  3254. within which this enrichment occurs is not the same for every histone mark
  3255. (Table
  3256. \begin_inset CommandInset ref
  3257. LatexCommand ref
  3258. reference "tab:effective-promoter-radius"
  3259. plural "false"
  3260. caps "false"
  3261. noprefix "false"
  3262. \end_inset
  3263. ).
  3264. For H3K4me2 and H3K4me3, peaks are most enriched within 1
  3265. \begin_inset space ~
  3266. \end_inset
  3267. kbp of TSS positions, while for H3K27me3, enrichment is broader, extending
  3268. to 2.5
  3269. \begin_inset space ~
  3270. \end_inset
  3271. kbp.
  3272. These
  3273. \begin_inset Quotes eld
  3274. \end_inset
  3275. effective promoter radii
  3276. \begin_inset Quotes erd
  3277. \end_inset
  3278. remain approximately the same across all combinations of experimental condition
  3279. (cell type, time point, and donor), so they appear to be a property of
  3280. the histone mark itself.
  3281. Hence, these radii were used to define the promoter regions for each histone
  3282. mark in all further analyses.
  3283. \end_layout
  3284. \begin_layout Standard
  3285. \begin_inset Flex TODO Note (inline)
  3286. status open
  3287. \begin_layout Plain Layout
  3288. Consider also showing figure for distance to nearest peak center, and reference
  3289. median peak size once that is known.
  3290. \end_layout
  3291. \end_inset
  3292. \end_layout
  3293. \begin_layout Subsection
  3294. H3K4 and H3K27 promoter methylation has broadly the expected correlation
  3295. with gene expression
  3296. \end_layout
  3297. \begin_layout Standard
  3298. \begin_inset Float figure
  3299. wide false
  3300. sideways false
  3301. status collapsed
  3302. \begin_layout Plain Layout
  3303. \begin_inset Flex TODO Note (inline)
  3304. status open
  3305. \begin_layout Plain Layout
  3306. This figure is generated from the old analysis.
  3307. Eiher note that in some way or re-generate it from the new peak calls.
  3308. \end_layout
  3309. \end_inset
  3310. \end_layout
  3311. \begin_layout Plain Layout
  3312. \align center
  3313. \begin_inset Graphics
  3314. filename graphics/CD4-csaw/FPKM by Peak Violin Plots-CROP.pdf
  3315. lyxscale 50
  3316. width 100col%
  3317. \end_inset
  3318. \end_layout
  3319. \begin_layout Plain Layout
  3320. \begin_inset Caption Standard
  3321. \begin_layout Plain Layout
  3322. \series bold
  3323. \begin_inset CommandInset label
  3324. LatexCommand label
  3325. name "fig:fpkm-by-peak"
  3326. \end_inset
  3327. Expression distributions of genes with and without promoter peaks.
  3328. \end_layout
  3329. \end_inset
  3330. \end_layout
  3331. \end_inset
  3332. \end_layout
  3333. \begin_layout Standard
  3334. H3K4me2 and H3K4me2 have previously been reported as activating marks whose
  3335. presence in a gene's promoter is associated with higher gene expression,
  3336. while H3K27me3 has been reported as inactivating [CITE].
  3337. The data are consistent with this characterization: genes whose promoters
  3338. (as defined by the radii for each histone mark listed in
  3339. \begin_inset CommandInset ref
  3340. LatexCommand ref
  3341. reference "tab:effective-promoter-radius"
  3342. plural "false"
  3343. caps "false"
  3344. noprefix "false"
  3345. \end_inset
  3346. ) overlap with a H3K4me2 or H3K4me3 peak tend to have higher expression
  3347. than those that don't, while H3K27me3 is likewise associated with lower
  3348. gene expression, as shown in
  3349. \begin_inset CommandInset ref
  3350. LatexCommand ref
  3351. reference "fig:fpkm-by-peak"
  3352. plural "false"
  3353. caps "false"
  3354. noprefix "false"
  3355. \end_inset
  3356. .
  3357. This pattern holds across all combinations of cell type and time point
  3358. (Welch's
  3359. \emph on
  3360. t
  3361. \emph default
  3362. -test, all
  3363. \begin_inset Formula $p\mathrm{-values}\ll2.2\times10^{-16}$
  3364. \end_inset
  3365. ).
  3366. The difference in average log FPKM values when a peak overlaps the promoter
  3367. is about
  3368. \begin_inset Formula $+5.67$
  3369. \end_inset
  3370. for H3K4me2,
  3371. \begin_inset Formula $+5.76$
  3372. \end_inset
  3373. for H3K4me2, and
  3374. \begin_inset Formula $-4.00$
  3375. \end_inset
  3376. for H3K27me3.
  3377. \end_layout
  3378. \begin_layout Standard
  3379. \begin_inset Flex TODO Note (inline)
  3380. status open
  3381. \begin_layout Plain Layout
  3382. I also have some figures looking at interactions between marks (e.g.
  3383. what if a promoter has both H3K4me3 and H3K27me3), but I don't know if
  3384. that much detail is warranted here, since all the effects just seem approximate
  3385. ly additive anyway.
  3386. \end_layout
  3387. \end_inset
  3388. \end_layout
  3389. \begin_layout Subsection
  3390. Gene expression and promoter histone methylation patterns in naive and memory
  3391. show convergence at day 14
  3392. \end_layout
  3393. \begin_layout Standard
  3394. \begin_inset ERT
  3395. status open
  3396. \begin_layout Plain Layout
  3397. \backslash
  3398. afterpage{
  3399. \end_layout
  3400. \begin_layout Plain Layout
  3401. \backslash
  3402. begin{landscape}
  3403. \end_layout
  3404. \end_inset
  3405. \end_layout
  3406. \begin_layout Standard
  3407. \begin_inset Float table
  3408. wide false
  3409. sideways false
  3410. status open
  3411. \begin_layout Plain Layout
  3412. \align center
  3413. \begin_inset Tabular
  3414. <lyxtabular version="3" rows="6" columns="7">
  3415. <features tabularvalignment="middle">
  3416. <column alignment="center" valignment="top">
  3417. <column alignment="center" valignment="top">
  3418. <column alignment="center" valignment="top">
  3419. <column alignment="center" valignment="top">
  3420. <column alignment="center" valignment="top">
  3421. <column alignment="center" valignment="top">
  3422. <column alignment="center" valignment="top">
  3423. <row>
  3424. <cell alignment="center" valignment="top" usebox="none">
  3425. \begin_inset Text
  3426. \begin_layout Plain Layout
  3427. \end_layout
  3428. \end_inset
  3429. </cell>
  3430. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3431. \begin_inset Text
  3432. \begin_layout Plain Layout
  3433. Number of significant promoters
  3434. \end_layout
  3435. \end_inset
  3436. </cell>
  3437. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3438. \begin_inset Text
  3439. \begin_layout Plain Layout
  3440. \end_layout
  3441. \end_inset
  3442. </cell>
  3443. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3444. \begin_inset Text
  3445. \begin_layout Plain Layout
  3446. \end_layout
  3447. \end_inset
  3448. </cell>
  3449. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3450. \begin_inset Text
  3451. \begin_layout Plain Layout
  3452. Est.
  3453. differentially modified promoters
  3454. \end_layout
  3455. \end_inset
  3456. </cell>
  3457. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3458. \begin_inset Text
  3459. \begin_layout Plain Layout
  3460. \end_layout
  3461. \end_inset
  3462. </cell>
  3463. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3464. \begin_inset Text
  3465. \begin_layout Plain Layout
  3466. \end_layout
  3467. \end_inset
  3468. </cell>
  3469. </row>
  3470. <row>
  3471. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3472. \begin_inset Text
  3473. \begin_layout Plain Layout
  3474. Time Point
  3475. \end_layout
  3476. \end_inset
  3477. </cell>
  3478. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3479. \begin_inset Text
  3480. \begin_layout Plain Layout
  3481. H3K4me2
  3482. \end_layout
  3483. \end_inset
  3484. </cell>
  3485. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3486. \begin_inset Text
  3487. \begin_layout Plain Layout
  3488. H3K4me3
  3489. \end_layout
  3490. \end_inset
  3491. </cell>
  3492. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3493. \begin_inset Text
  3494. \begin_layout Plain Layout
  3495. H3K27me3
  3496. \end_layout
  3497. \end_inset
  3498. </cell>
  3499. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3500. \begin_inset Text
  3501. \begin_layout Plain Layout
  3502. H3K4me2
  3503. \end_layout
  3504. \end_inset
  3505. </cell>
  3506. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3507. \begin_inset Text
  3508. \begin_layout Plain Layout
  3509. H3K4me3
  3510. \end_layout
  3511. \end_inset
  3512. </cell>
  3513. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3514. \begin_inset Text
  3515. \begin_layout Plain Layout
  3516. H3K27me3
  3517. \end_layout
  3518. \end_inset
  3519. </cell>
  3520. </row>
  3521. <row>
  3522. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3523. \begin_inset Text
  3524. \begin_layout Plain Layout
  3525. Day 0
  3526. \end_layout
  3527. \end_inset
  3528. </cell>
  3529. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3530. \begin_inset Text
  3531. \begin_layout Plain Layout
  3532. 4553
  3533. \end_layout
  3534. \end_inset
  3535. </cell>
  3536. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3537. \begin_inset Text
  3538. \begin_layout Plain Layout
  3539. 927
  3540. \end_layout
  3541. \end_inset
  3542. </cell>
  3543. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3544. \begin_inset Text
  3545. \begin_layout Plain Layout
  3546. 6
  3547. \end_layout
  3548. \end_inset
  3549. </cell>
  3550. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3551. \begin_inset Text
  3552. \begin_layout Plain Layout
  3553. 9967
  3554. \end_layout
  3555. \end_inset
  3556. </cell>
  3557. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3558. \begin_inset Text
  3559. \begin_layout Plain Layout
  3560. 4149
  3561. \end_layout
  3562. \end_inset
  3563. </cell>
  3564. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3565. \begin_inset Text
  3566. \begin_layout Plain Layout
  3567. 2404
  3568. \end_layout
  3569. \end_inset
  3570. </cell>
  3571. </row>
  3572. <row>
  3573. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3574. \begin_inset Text
  3575. \begin_layout Plain Layout
  3576. Day 1
  3577. \end_layout
  3578. \end_inset
  3579. </cell>
  3580. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3581. \begin_inset Text
  3582. \begin_layout Plain Layout
  3583. 567
  3584. \end_layout
  3585. \end_inset
  3586. </cell>
  3587. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3588. \begin_inset Text
  3589. \begin_layout Plain Layout
  3590. 278
  3591. \end_layout
  3592. \end_inset
  3593. </cell>
  3594. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3595. \begin_inset Text
  3596. \begin_layout Plain Layout
  3597. 1570
  3598. \end_layout
  3599. \end_inset
  3600. </cell>
  3601. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3602. \begin_inset Text
  3603. \begin_layout Plain Layout
  3604. 4370
  3605. \end_layout
  3606. \end_inset
  3607. </cell>
  3608. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3609. \begin_inset Text
  3610. \begin_layout Plain Layout
  3611. 2145
  3612. \end_layout
  3613. \end_inset
  3614. </cell>
  3615. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3616. \begin_inset Text
  3617. \begin_layout Plain Layout
  3618. 6598
  3619. \end_layout
  3620. \end_inset
  3621. </cell>
  3622. </row>
  3623. <row>
  3624. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3625. \begin_inset Text
  3626. \begin_layout Plain Layout
  3627. Day 5
  3628. \end_layout
  3629. \end_inset
  3630. </cell>
  3631. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3632. \begin_inset Text
  3633. \begin_layout Plain Layout
  3634. 2313
  3635. \end_layout
  3636. \end_inset
  3637. </cell>
  3638. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3639. \begin_inset Text
  3640. \begin_layout Plain Layout
  3641. 139
  3642. \end_layout
  3643. \end_inset
  3644. </cell>
  3645. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3646. \begin_inset Text
  3647. \begin_layout Plain Layout
  3648. 490
  3649. \end_layout
  3650. \end_inset
  3651. </cell>
  3652. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3653. \begin_inset Text
  3654. \begin_layout Plain Layout
  3655. 9450
  3656. \end_layout
  3657. \end_inset
  3658. </cell>
  3659. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3660. \begin_inset Text
  3661. \begin_layout Plain Layout
  3662. 1148
  3663. \end_layout
  3664. \end_inset
  3665. </cell>
  3666. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3667. \begin_inset Text
  3668. \begin_layout Plain Layout
  3669. 4141
  3670. \end_layout
  3671. \end_inset
  3672. </cell>
  3673. </row>
  3674. <row>
  3675. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3676. \begin_inset Text
  3677. \begin_layout Plain Layout
  3678. Day 14
  3679. \end_layout
  3680. \end_inset
  3681. </cell>
  3682. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3683. \begin_inset Text
  3684. \begin_layout Plain Layout
  3685. 0
  3686. \end_layout
  3687. \end_inset
  3688. </cell>
  3689. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3690. \begin_inset Text
  3691. \begin_layout Plain Layout
  3692. 0
  3693. \end_layout
  3694. \end_inset
  3695. </cell>
  3696. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3697. \begin_inset Text
  3698. \begin_layout Plain Layout
  3699. 0
  3700. \end_layout
  3701. \end_inset
  3702. </cell>
  3703. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3704. \begin_inset Text
  3705. \begin_layout Plain Layout
  3706. 0
  3707. \end_layout
  3708. \end_inset
  3709. </cell>
  3710. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3711. \begin_inset Text
  3712. \begin_layout Plain Layout
  3713. 0
  3714. \end_layout
  3715. \end_inset
  3716. </cell>
  3717. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3718. \begin_inset Text
  3719. \begin_layout Plain Layout
  3720. 0
  3721. \end_layout
  3722. \end_inset
  3723. </cell>
  3724. </row>
  3725. </lyxtabular>
  3726. \end_inset
  3727. \end_layout
  3728. \begin_layout Plain Layout
  3729. \begin_inset Caption Standard
  3730. \begin_layout Plain Layout
  3731. \series bold
  3732. \begin_inset CommandInset label
  3733. LatexCommand label
  3734. name "tab:Number-signif-promoters"
  3735. \end_inset
  3736. Number of differentially modified promoters between naive and memory cells
  3737. at each time point after activation.
  3738. \series default
  3739. This table shows both the number of differentially modified promoters detected
  3740. at a 10% FDR threshold (left half), and the total number of differentially
  3741. modified promoters as estimated using the method of
  3742. \begin_inset CommandInset citation
  3743. LatexCommand cite
  3744. key "Phipson2013"
  3745. literal "false"
  3746. \end_inset
  3747. (right half).
  3748. \end_layout
  3749. \end_inset
  3750. \end_layout
  3751. \end_inset
  3752. \end_layout
  3753. \begin_layout Standard
  3754. \begin_inset ERT
  3755. status open
  3756. \begin_layout Plain Layout
  3757. \backslash
  3758. end{landscape}
  3759. \end_layout
  3760. \begin_layout Plain Layout
  3761. }
  3762. \end_layout
  3763. \end_inset
  3764. \end_layout
  3765. \begin_layout Standard
  3766. \begin_inset Float figure
  3767. placement p
  3768. wide false
  3769. sideways false
  3770. status open
  3771. \begin_layout Plain Layout
  3772. \align center
  3773. \begin_inset Float figure
  3774. wide false
  3775. sideways false
  3776. status open
  3777. \begin_layout Plain Layout
  3778. \align center
  3779. \begin_inset Graphics
  3780. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-promoter-PCA-group-CROP.png
  3781. lyxscale 25
  3782. width 45col%
  3783. groupId pcoa-prom-subfig
  3784. \end_inset
  3785. \end_layout
  3786. \begin_layout Plain Layout
  3787. \begin_inset Caption Standard
  3788. \begin_layout Plain Layout
  3789. \series bold
  3790. \begin_inset CommandInset label
  3791. LatexCommand label
  3792. name "fig:PCoA-H3K4me2-prom"
  3793. \end_inset
  3794. PCoA plot of H3K4me2 promoters, after subtracting surrogate variables
  3795. \end_layout
  3796. \end_inset
  3797. \end_layout
  3798. \end_inset
  3799. \begin_inset space \hfill{}
  3800. \end_inset
  3801. \begin_inset Float figure
  3802. wide false
  3803. sideways false
  3804. status open
  3805. \begin_layout Plain Layout
  3806. \align center
  3807. \begin_inset Graphics
  3808. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-promoter-PCA-group-CROP.png
  3809. lyxscale 25
  3810. width 45col%
  3811. groupId pcoa-prom-subfig
  3812. \end_inset
  3813. \end_layout
  3814. \begin_layout Plain Layout
  3815. \begin_inset Caption Standard
  3816. \begin_layout Plain Layout
  3817. \series bold
  3818. \begin_inset CommandInset label
  3819. LatexCommand label
  3820. name "fig:PCoA-H3K4me3-prom"
  3821. \end_inset
  3822. PCoA plot of H3K4me3 promoters, after subtracting surrogate variables
  3823. \end_layout
  3824. \end_inset
  3825. \end_layout
  3826. \end_inset
  3827. \end_layout
  3828. \begin_layout Plain Layout
  3829. \align center
  3830. \begin_inset Float figure
  3831. wide false
  3832. sideways false
  3833. status collapsed
  3834. \begin_layout Plain Layout
  3835. \align center
  3836. \begin_inset Graphics
  3837. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-promoter-PCA-group-CROP.png
  3838. lyxscale 25
  3839. width 45col%
  3840. groupId pcoa-prom-subfig
  3841. \end_inset
  3842. \end_layout
  3843. \begin_layout Plain Layout
  3844. \begin_inset Caption Standard
  3845. \begin_layout Plain Layout
  3846. \series bold
  3847. \begin_inset CommandInset label
  3848. LatexCommand label
  3849. name "fig:PCoA-H3K27me3-prom"
  3850. \end_inset
  3851. PCoA plot of H3K27me3 promoters, after subtracting surrogate variables
  3852. \end_layout
  3853. \end_inset
  3854. \end_layout
  3855. \end_inset
  3856. \begin_inset space \hfill{}
  3857. \end_inset
  3858. \begin_inset Float figure
  3859. wide false
  3860. sideways false
  3861. status open
  3862. \begin_layout Plain Layout
  3863. \align center
  3864. \begin_inset Graphics
  3865. filename graphics/CD4-csaw/RNA-seq/PCA-final-23-CROP.png
  3866. lyxscale 25
  3867. width 45col%
  3868. groupId pcoa-prom-subfig
  3869. \end_inset
  3870. \end_layout
  3871. \begin_layout Plain Layout
  3872. \begin_inset Caption Standard
  3873. \begin_layout Plain Layout
  3874. \series bold
  3875. \begin_inset CommandInset label
  3876. LatexCommand label
  3877. name "fig:RNA-PCA-group"
  3878. \end_inset
  3879. RNA-seq PCoA showing principal coordiantes 2 and 3.
  3880. \end_layout
  3881. \end_inset
  3882. \end_layout
  3883. \end_inset
  3884. \end_layout
  3885. \begin_layout Plain Layout
  3886. \begin_inset Caption Standard
  3887. \begin_layout Plain Layout
  3888. \series bold
  3889. \begin_inset CommandInset label
  3890. LatexCommand label
  3891. name "fig:PCoA-promoters"
  3892. \end_inset
  3893. PCoA plots for promoter ChIP-seq and expression RNA-seq data
  3894. \end_layout
  3895. \end_inset
  3896. \end_layout
  3897. \end_inset
  3898. \end_layout
  3899. \begin_layout Standard
  3900. \begin_inset Flex TODO Note (inline)
  3901. status open
  3902. \begin_layout Plain Layout
  3903. Check up on figure refs in this paragraph
  3904. \end_layout
  3905. \end_inset
  3906. \end_layout
  3907. \begin_layout Standard
  3908. We hypothesized that if naive cells had differentiated into memory cells
  3909. by Day 14, then their patterns of expression and histone modification should
  3910. converge with those of memory cells at Day 14.
  3911. Figure
  3912. \begin_inset CommandInset ref
  3913. LatexCommand ref
  3914. reference "fig:PCoA-promoters"
  3915. plural "false"
  3916. caps "false"
  3917. noprefix "false"
  3918. \end_inset
  3919. shows the patterns of variation in all 3 histone marks in the promoter
  3920. regions of the genome using principal coordinate analysis.
  3921. All 3 marks show a noticeable convergence between the naive and memory
  3922. samples at day 14, visible as an overlapping of the day 14 groups on each
  3923. plot.
  3924. This is consistent with the counts of significantly differentially modified
  3925. promoters and estimates of the total numbers of differentially modified
  3926. promoters shown in Table
  3927. \begin_inset CommandInset ref
  3928. LatexCommand ref
  3929. reference "tab:Number-signif-promoters"
  3930. plural "false"
  3931. caps "false"
  3932. noprefix "false"
  3933. \end_inset
  3934. .
  3935. For all histone marks, evidence of differential modification between naive
  3936. and memory samples was detected at every time point except day 14.
  3937. The day 14 convergence pattern is also present in the RNA-seq data (Figure
  3938. \begin_inset CommandInset ref
  3939. LatexCommand ref
  3940. reference "fig:RNA-PCA-group"
  3941. plural "false"
  3942. caps "false"
  3943. noprefix "false"
  3944. \end_inset
  3945. ), albiet in the 2nd and 3rd principal coordinates, indicating that it is
  3946. not the most dominant pattern driving gene expression.
  3947. Taken together, the data show that promoter histone methylation for these
  3948. 3 histone marks and RNA expression for naive and memory cells are most
  3949. similar at day 14, the furthest time point after activation.
  3950. MOFA was also able to capture this day 14 convergence pattern in latent
  3951. factor 5 (Figure
  3952. \begin_inset CommandInset ref
  3953. LatexCommand ref
  3954. reference "fig:mofa-lf-scatter"
  3955. plural "false"
  3956. caps "false"
  3957. noprefix "false"
  3958. \end_inset
  3959. ), which accounts for shared variation across all 3 histone marks and the
  3960. RNA-seq data, confirming that this convergence is a coordinated pattern
  3961. across all 4 data sets.
  3962. While this observation does not prove that the naive cells have differentiated
  3963. into memory cells at Day 14, it is consistent with that hypothesis.
  3964. \end_layout
  3965. \begin_layout Subsection
  3966. Effect of H3K4me2 and H3K4me3 promoter coverage upstream vs downstream of
  3967. TSS
  3968. \end_layout
  3969. \begin_layout Standard
  3970. \begin_inset Flex TODO Note (inline)
  3971. status open
  3972. \begin_layout Plain Layout
  3973. Need a better section title, for this and the next one.
  3974. \end_layout
  3975. \end_inset
  3976. \end_layout
  3977. \begin_layout Standard
  3978. \begin_inset Flex TODO Note (inline)
  3979. status open
  3980. \begin_layout Plain Layout
  3981. Make sure use of coverage/abundance/whatever is consistent.
  3982. \end_layout
  3983. \end_inset
  3984. \end_layout
  3985. \begin_layout Standard
  3986. \begin_inset Flex TODO Note (inline)
  3987. status open
  3988. \begin_layout Plain Layout
  3989. For the figures in this section and the next, the group labels are arbitrary,
  3990. so if time allows, it would be good to manually reorder them in a logical
  3991. way, e.g.
  3992. most upstream to most downstream.
  3993. If this is done, make sure to update the text with the correct group labels.
  3994. \end_layout
  3995. \end_inset
  3996. \end_layout
  3997. \begin_layout Standard
  3998. \begin_inset ERT
  3999. status open
  4000. \begin_layout Plain Layout
  4001. \backslash
  4002. afterpage{
  4003. \end_layout
  4004. \begin_layout Plain Layout
  4005. \backslash
  4006. begin{landscape}
  4007. \end_layout
  4008. \end_inset
  4009. \end_layout
  4010. \begin_layout Standard
  4011. \begin_inset Float figure
  4012. wide false
  4013. sideways false
  4014. status open
  4015. \begin_layout Plain Layout
  4016. \align center
  4017. \begin_inset Float figure
  4018. wide false
  4019. sideways false
  4020. status open
  4021. \begin_layout Plain Layout
  4022. \align center
  4023. \begin_inset Graphics
  4024. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-neighborhood-clusters-CROP.png
  4025. lyxscale 25
  4026. width 30col%
  4027. groupId covprof-subfig
  4028. \end_inset
  4029. \end_layout
  4030. \begin_layout Plain Layout
  4031. \begin_inset Caption Standard
  4032. \begin_layout Plain Layout
  4033. \series bold
  4034. \begin_inset CommandInset label
  4035. LatexCommand label
  4036. name "fig:H3K4me2-neighborhood-clusters"
  4037. \end_inset
  4038. Average relative coverage for each bin in each cluster
  4039. \end_layout
  4040. \end_inset
  4041. \end_layout
  4042. \end_inset
  4043. \begin_inset space \hfill{}
  4044. \end_inset
  4045. \begin_inset Float figure
  4046. wide false
  4047. sideways false
  4048. status open
  4049. \begin_layout Plain Layout
  4050. \align center
  4051. \begin_inset Graphics
  4052. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-neighborhood-PCA-CROP.png
  4053. lyxscale 25
  4054. width 30col%
  4055. groupId covprof-subfig
  4056. \end_inset
  4057. \end_layout
  4058. \begin_layout Plain Layout
  4059. \begin_inset Caption Standard
  4060. \begin_layout Plain Layout
  4061. \series bold
  4062. \begin_inset CommandInset label
  4063. LatexCommand label
  4064. name "fig:H3K4me2-neighborhood-pca"
  4065. \end_inset
  4066. PCA of relative coverage depth, colored by K-means cluster membership.
  4067. \end_layout
  4068. \end_inset
  4069. \end_layout
  4070. \end_inset
  4071. \begin_inset space \hfill{}
  4072. \end_inset
  4073. \begin_inset Float figure
  4074. wide false
  4075. sideways false
  4076. status open
  4077. \begin_layout Plain Layout
  4078. \align center
  4079. \begin_inset Graphics
  4080. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-neighborhood-expression-CROP.png
  4081. lyxscale 25
  4082. width 30col%
  4083. groupId covprof-subfig
  4084. \end_inset
  4085. \end_layout
  4086. \begin_layout Plain Layout
  4087. \begin_inset Caption Standard
  4088. \begin_layout Plain Layout
  4089. \series bold
  4090. \begin_inset CommandInset label
  4091. LatexCommand label
  4092. name "fig:H3K4me2-neighborhood-expression"
  4093. \end_inset
  4094. Gene expression grouped by promoter coverage clusters.
  4095. \end_layout
  4096. \end_inset
  4097. \end_layout
  4098. \end_inset
  4099. \end_layout
  4100. \begin_layout Plain Layout
  4101. \begin_inset Caption Standard
  4102. \begin_layout Plain Layout
  4103. \series bold
  4104. \begin_inset CommandInset label
  4105. LatexCommand label
  4106. name "fig:H3K4me2-neighborhood"
  4107. \end_inset
  4108. K-means clustering of promoter H3K4me2 relative coverage depth in naive
  4109. day 0 samples.
  4110. \series default
  4111. H3K4me2 ChIP-seq reads were binned into 500-bp windows tiled across each
  4112. promoter from 5
  4113. \begin_inset space ~
  4114. \end_inset
  4115. kbp upstream to 5
  4116. \begin_inset space ~
  4117. \end_inset
  4118. kbp downstream, and the logCPM values were normalized within each promoter
  4119. to an average of 0, yielding relative coverage depths.
  4120. These were then grouped using K-means clustering with
  4121. \begin_inset Formula $K=6$
  4122. \end_inset
  4123. ,
  4124. \series bold
  4125. \series default
  4126. and the average bin values were plotted for each cluster (a).
  4127. The
  4128. \begin_inset Formula $x$
  4129. \end_inset
  4130. -axis is the genomic coordinate of each bin relative to the the transcription
  4131. start site, and the
  4132. \begin_inset Formula $y$
  4133. \end_inset
  4134. -axis is the mean relative coverage depth of that bin across all promoters
  4135. in the cluster.
  4136. Each line represents the average
  4137. \begin_inset Quotes eld
  4138. \end_inset
  4139. shape
  4140. \begin_inset Quotes erd
  4141. \end_inset
  4142. of the promoter coverage for promoters in that cluster.
  4143. PCA was performed on the same data, and the first two principal components
  4144. were plotted, coloring each point by its K-means cluster identity (b).
  4145. For each cluster, the distribution of gene expression values was plotted
  4146. (c).
  4147. \end_layout
  4148. \end_inset
  4149. \end_layout
  4150. \end_inset
  4151. \end_layout
  4152. \begin_layout Standard
  4153. \begin_inset ERT
  4154. status open
  4155. \begin_layout Plain Layout
  4156. \backslash
  4157. end{landscape}
  4158. \end_layout
  4159. \begin_layout Plain Layout
  4160. }
  4161. \end_layout
  4162. \end_inset
  4163. \end_layout
  4164. \begin_layout Standard
  4165. To test whether the position of a histone mark relative to a gene's transcriptio
  4166. n start site (TSS) was important, we looked at the
  4167. \begin_inset Quotes eld
  4168. \end_inset
  4169. landscape
  4170. \begin_inset Quotes erd
  4171. \end_inset
  4172. of ChIP-seq read coverage in naive Day 0 samples within 5 kb of each gene's
  4173. TSS by binning reads into 500-bp windows tiled across each promoter LogCPM
  4174. values were calculated for the bins in each promoter and then the average
  4175. logCPM for each promoter's bins was normalized to zero, such that the values
  4176. represent coverage relative to other regions of the same promoter rather
  4177. than being proportional to absolute read count.
  4178. The promoters were then clustered based on the normalized bin abundances
  4179. using
  4180. \begin_inset Formula $k$
  4181. \end_inset
  4182. -means clustering with
  4183. \begin_inset Formula $K=6$
  4184. \end_inset
  4185. .
  4186. Different values of
  4187. \begin_inset Formula $K$
  4188. \end_inset
  4189. were also tested, but did not substantially change the interpretation of
  4190. the data.
  4191. \end_layout
  4192. \begin_layout Standard
  4193. For H3K4me2, plotting the average bin abundances for each cluster reveals
  4194. a simple pattern (Figure
  4195. \begin_inset CommandInset ref
  4196. LatexCommand ref
  4197. reference "fig:H3K4me2-neighborhood-clusters"
  4198. plural "false"
  4199. caps "false"
  4200. noprefix "false"
  4201. \end_inset
  4202. ): Cluster 5 represents a completely flat promoter coverage profile, likely
  4203. consisting of genes with no H3K4me2 methylation in the promoter.
  4204. All the other clusters represent a continuum of peak positions relative
  4205. to the TSS.
  4206. In order from must upstream to most downstream, they are Clusters 6, 4,
  4207. 3, 1, and 2.
  4208. There do not appear to be any clusters representing coverage patterns other
  4209. than lone peaks, such as coverage troughs or double peaks.
  4210. Next, all promoters were plotted in a PCA plot based on the same relative
  4211. bin abundance data, and colored based on cluster membership (Figure
  4212. \begin_inset CommandInset ref
  4213. LatexCommand ref
  4214. reference "fig:H3K4me2-neighborhood-pca"
  4215. plural "false"
  4216. caps "false"
  4217. noprefix "false"
  4218. \end_inset
  4219. ).
  4220. The PCA plot shows Cluster 5 (the
  4221. \begin_inset Quotes eld
  4222. \end_inset
  4223. no peak
  4224. \begin_inset Quotes erd
  4225. \end_inset
  4226. cluster) at the center, with the other clusters arranged in a counter-clockwise
  4227. arc around it in the order noted above, from most upstream peak to most
  4228. downstream.
  4229. Notably, the
  4230. \begin_inset Quotes eld
  4231. \end_inset
  4232. clusters
  4233. \begin_inset Quotes erd
  4234. \end_inset
  4235. form a single large
  4236. \begin_inset Quotes eld
  4237. \end_inset
  4238. cloud
  4239. \begin_inset Quotes erd
  4240. \end_inset
  4241. with no apparent separation between them, further supporting the conclusion
  4242. that these clusters represent an arbitrary partitioning of a continuous
  4243. distribution of promoter coverage landscapes.
  4244. While the clusters are a useful abstraction that aids in visualization,
  4245. they are ultimately not an accurate representation of the data.
  4246. A better representation might be something like a polar coordinate system
  4247. with the origin at the center of Cluster 5, where the radius represents
  4248. the peak height above the background and the angle represents the peak's
  4249. position upstream or downstream of the TSS.
  4250. The continuous nature of the distribution also explains why different values
  4251. of
  4252. \begin_inset Formula $K$
  4253. \end_inset
  4254. led to similar conclusions.
  4255. \end_layout
  4256. \begin_layout Standard
  4257. \begin_inset Flex TODO Note (inline)
  4258. status open
  4259. \begin_layout Plain Layout
  4260. RNA-seq values in the plots use logCPM but should really use logFPKM or
  4261. logTPM.
  4262. Fix if time allows.
  4263. \end_layout
  4264. \end_inset
  4265. \end_layout
  4266. \begin_layout Standard
  4267. \begin_inset Flex TODO Note (inline)
  4268. status open
  4269. \begin_layout Plain Layout
  4270. Should have a table of p-values on difference of means between Cluster 5
  4271. and the others.
  4272. \end_layout
  4273. \end_inset
  4274. \end_layout
  4275. \begin_layout Standard
  4276. To investigate the association between relative peak position and gene expressio
  4277. n, we plotted the Naive Day 0 expression for the genes in each cluster (Figure
  4278. \begin_inset CommandInset ref
  4279. LatexCommand ref
  4280. reference "fig:H3K4me2-neighborhood-expression"
  4281. plural "false"
  4282. caps "false"
  4283. noprefix "false"
  4284. \end_inset
  4285. ).
  4286. Most genes in Cluster 5, the
  4287. \begin_inset Quotes eld
  4288. \end_inset
  4289. no peak
  4290. \begin_inset Quotes erd
  4291. \end_inset
  4292. cluster, have low expression values.
  4293. Taking this as the
  4294. \begin_inset Quotes eld
  4295. \end_inset
  4296. baseline
  4297. \begin_inset Quotes erd
  4298. \end_inset
  4299. distribution when no H3K4me2 methylation is present, we can compare the
  4300. other clusters' distributions to determine which peak positions are associated
  4301. with elevated expression.
  4302. As might be expected, the 3 clusters representing peaks closest to the
  4303. TSS, Clusters 1, 3, and 4, show the highest average expression distributions.
  4304. Specifically, these clusters all have their highest ChIP-seq abundance
  4305. within 1kb of the TSS, consistent with the previously determined promoter
  4306. radius.
  4307. In contrast, cluster 6, which represents peaks several kb upstream of the
  4308. TSS, shows a slightly higher average expression than baseline, while Cluster
  4309. 2, which represents peaks several kb downstream, doesn't appear to show
  4310. any appreciable difference.
  4311. Interestingly, the cluster with the highest average expression is Cluster
  4312. 1, which represents peaks about 1 kb downstream of the TSS, rather than
  4313. Cluster 3, which represents peaks centered directly at the TSS.
  4314. This suggests that conceptualizing the promoter as a region centered on
  4315. the TSS with a certain
  4316. \begin_inset Quotes eld
  4317. \end_inset
  4318. radius
  4319. \begin_inset Quotes erd
  4320. \end_inset
  4321. may be an oversimplification – a peak that is a specific distance from
  4322. the TSS may have a different degree of influence depending on whether it
  4323. is upstream or downstream of the TSS.
  4324. \end_layout
  4325. \begin_layout Standard
  4326. \begin_inset ERT
  4327. status open
  4328. \begin_layout Plain Layout
  4329. \backslash
  4330. afterpage{
  4331. \end_layout
  4332. \begin_layout Plain Layout
  4333. \backslash
  4334. begin{landscape}
  4335. \end_layout
  4336. \end_inset
  4337. \end_layout
  4338. \begin_layout Standard
  4339. \begin_inset Float figure
  4340. wide false
  4341. sideways false
  4342. status open
  4343. \begin_layout Plain Layout
  4344. \align center
  4345. \begin_inset Float figure
  4346. wide false
  4347. sideways false
  4348. status open
  4349. \begin_layout Plain Layout
  4350. \align center
  4351. \begin_inset Graphics
  4352. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-neighborhood-clusters-CROP.png
  4353. lyxscale 25
  4354. width 30col%
  4355. groupId covprof-subfig
  4356. \end_inset
  4357. \end_layout
  4358. \begin_layout Plain Layout
  4359. \begin_inset Caption Standard
  4360. \begin_layout Plain Layout
  4361. \series bold
  4362. \begin_inset CommandInset label
  4363. LatexCommand label
  4364. name "fig:H3K4me3-neighborhood-clusters"
  4365. \end_inset
  4366. Average relative coverage for each bin in each cluster
  4367. \end_layout
  4368. \end_inset
  4369. \end_layout
  4370. \end_inset
  4371. \begin_inset space \hfill{}
  4372. \end_inset
  4373. \begin_inset Float figure
  4374. wide false
  4375. sideways false
  4376. status open
  4377. \begin_layout Plain Layout
  4378. \align center
  4379. \begin_inset Graphics
  4380. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-neighborhood-PCA-CROP.png
  4381. lyxscale 25
  4382. width 30col%
  4383. groupId covprof-subfig
  4384. \end_inset
  4385. \end_layout
  4386. \begin_layout Plain Layout
  4387. \begin_inset Caption Standard
  4388. \begin_layout Plain Layout
  4389. \series bold
  4390. \begin_inset CommandInset label
  4391. LatexCommand label
  4392. name "fig:H3K4me3-neighborhood-pca"
  4393. \end_inset
  4394. PCA of relative coverage depth, colored by K-means cluster membership.
  4395. \end_layout
  4396. \end_inset
  4397. \end_layout
  4398. \end_inset
  4399. \begin_inset space \hfill{}
  4400. \end_inset
  4401. \begin_inset Float figure
  4402. wide false
  4403. sideways false
  4404. status open
  4405. \begin_layout Plain Layout
  4406. \align center
  4407. \begin_inset Graphics
  4408. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-neighborhood-expression-CROP.png
  4409. lyxscale 25
  4410. width 30col%
  4411. groupId covprof-subfig
  4412. \end_inset
  4413. \end_layout
  4414. \begin_layout Plain Layout
  4415. \begin_inset Caption Standard
  4416. \begin_layout Plain Layout
  4417. \series bold
  4418. \begin_inset CommandInset label
  4419. LatexCommand label
  4420. name "fig:H3K4me3-neighborhood-expression"
  4421. \end_inset
  4422. Gene expression grouped by promoter coverage clusters.
  4423. \end_layout
  4424. \end_inset
  4425. \end_layout
  4426. \end_inset
  4427. \end_layout
  4428. \begin_layout Plain Layout
  4429. \begin_inset Caption Standard
  4430. \begin_layout Plain Layout
  4431. \series bold
  4432. \begin_inset CommandInset label
  4433. LatexCommand label
  4434. name "fig:H3K4me3-neighborhood"
  4435. \end_inset
  4436. K-means clustering of promoter H3K4me3 relative coverage depth in naive
  4437. day 0 samples.
  4438. \series default
  4439. H3K4me2 ChIP-seq reads were binned into 500-bp windows tiled across each
  4440. promoter from 5
  4441. \begin_inset space ~
  4442. \end_inset
  4443. kbp upstream to 5
  4444. \begin_inset space ~
  4445. \end_inset
  4446. kbp downstream, and the logCPM values were normalized within each promoter
  4447. to an average of 0, yielding relative coverage depths.
  4448. These were then grouped using K-means clustering with
  4449. \begin_inset Formula $K=6$
  4450. \end_inset
  4451. ,
  4452. \series bold
  4453. \series default
  4454. and the average bin values were plotted for each cluster (a).
  4455. The
  4456. \begin_inset Formula $x$
  4457. \end_inset
  4458. -axis is the genomic coordinate of each bin relative to the the transcription
  4459. start site, and the
  4460. \begin_inset Formula $y$
  4461. \end_inset
  4462. -axis is the mean relative coverage depth of that bin across all promoters
  4463. in the cluster.
  4464. Each line represents the average
  4465. \begin_inset Quotes eld
  4466. \end_inset
  4467. shape
  4468. \begin_inset Quotes erd
  4469. \end_inset
  4470. of the promoter coverage for promoters in that cluster.
  4471. PCA was performed on the same data, and the first two principal components
  4472. were plotted, coloring each point by its K-means cluster identity (b).
  4473. For each cluster, the distribution of gene expression values was plotted
  4474. (c).
  4475. \end_layout
  4476. \end_inset
  4477. \end_layout
  4478. \end_inset
  4479. \end_layout
  4480. \begin_layout Standard
  4481. \begin_inset ERT
  4482. status open
  4483. \begin_layout Plain Layout
  4484. \backslash
  4485. end{landscape}
  4486. \end_layout
  4487. \begin_layout Plain Layout
  4488. }
  4489. \end_layout
  4490. \end_inset
  4491. \end_layout
  4492. \begin_layout Standard
  4493. \begin_inset Flex TODO Note (inline)
  4494. status open
  4495. \begin_layout Plain Layout
  4496. Is there more to say here?
  4497. \end_layout
  4498. \end_inset
  4499. \end_layout
  4500. \begin_layout Standard
  4501. All observations described above for H3K4me2 ChIP-seq also appear to hold
  4502. for H3K4me3 as well (Figure
  4503. \begin_inset CommandInset ref
  4504. LatexCommand ref
  4505. reference "fig:H3K4me3-neighborhood"
  4506. plural "false"
  4507. caps "false"
  4508. noprefix "false"
  4509. \end_inset
  4510. ).
  4511. This is expected, since there is a high correlation between the positions
  4512. where both histone marks occur.
  4513. \end_layout
  4514. \begin_layout Subsection
  4515. Promoter coverage H3K27me3
  4516. \end_layout
  4517. \begin_layout Standard
  4518. \begin_inset ERT
  4519. status open
  4520. \begin_layout Plain Layout
  4521. \backslash
  4522. afterpage{
  4523. \end_layout
  4524. \begin_layout Plain Layout
  4525. \backslash
  4526. begin{landscape}
  4527. \end_layout
  4528. \end_inset
  4529. \end_layout
  4530. \begin_layout Standard
  4531. \begin_inset Float figure
  4532. wide false
  4533. sideways false
  4534. status collapsed
  4535. \begin_layout Plain Layout
  4536. \align center
  4537. \begin_inset Float figure
  4538. wide false
  4539. sideways false
  4540. status open
  4541. \begin_layout Plain Layout
  4542. \align center
  4543. \begin_inset Graphics
  4544. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-neighborhood-clusters-CROP.png
  4545. lyxscale 25
  4546. width 30col%
  4547. groupId covprof-subfig
  4548. \end_inset
  4549. \end_layout
  4550. \begin_layout Plain Layout
  4551. \begin_inset Caption Standard
  4552. \begin_layout Plain Layout
  4553. \series bold
  4554. \begin_inset CommandInset label
  4555. LatexCommand label
  4556. name "fig:H3K27me3-neighborhood-clusters"
  4557. \end_inset
  4558. Average relative coverage for each bin in each cluster
  4559. \end_layout
  4560. \end_inset
  4561. \end_layout
  4562. \end_inset
  4563. \begin_inset space \hfill{}
  4564. \end_inset
  4565. \begin_inset Float figure
  4566. wide false
  4567. sideways false
  4568. status open
  4569. \begin_layout Plain Layout
  4570. \align center
  4571. \begin_inset Graphics
  4572. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-neighborhood-PCA-CROP.png
  4573. lyxscale 25
  4574. width 30col%
  4575. groupId covprof-subfig
  4576. \end_inset
  4577. \end_layout
  4578. \begin_layout Plain Layout
  4579. \begin_inset Caption Standard
  4580. \begin_layout Plain Layout
  4581. \series bold
  4582. \begin_inset CommandInset label
  4583. LatexCommand label
  4584. name "fig:H3K27me3-neighborhood-pca"
  4585. \end_inset
  4586. PCA of relative coverage depth, colored by K-means cluster membership.
  4587. \series default
  4588. Note that Cluster 6 is hidden behind all the other clusters.
  4589. \end_layout
  4590. \end_inset
  4591. \end_layout
  4592. \end_inset
  4593. \begin_inset space \hfill{}
  4594. \end_inset
  4595. \begin_inset Float figure
  4596. wide false
  4597. sideways false
  4598. status open
  4599. \begin_layout Plain Layout
  4600. \align center
  4601. \begin_inset Graphics
  4602. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-neighborhood-expression-CROP.png
  4603. lyxscale 25
  4604. width 30col%
  4605. groupId covprof-subfig
  4606. \end_inset
  4607. \end_layout
  4608. \begin_layout Plain Layout
  4609. \begin_inset Caption Standard
  4610. \begin_layout Plain Layout
  4611. \series bold
  4612. \begin_inset CommandInset label
  4613. LatexCommand label
  4614. name "fig:H3K27me3-neighborhood-expression"
  4615. \end_inset
  4616. Gene expression grouped by promoter coverage clusters.
  4617. \end_layout
  4618. \end_inset
  4619. \end_layout
  4620. \end_inset
  4621. \end_layout
  4622. \begin_layout Plain Layout
  4623. \begin_inset Flex TODO Note (inline)
  4624. status open
  4625. \begin_layout Plain Layout
  4626. Repeated figure legends are kind of an issue here.
  4627. What to do?
  4628. \end_layout
  4629. \end_inset
  4630. \end_layout
  4631. \begin_layout Plain Layout
  4632. \begin_inset Caption Standard
  4633. \begin_layout Plain Layout
  4634. \series bold
  4635. \begin_inset CommandInset label
  4636. LatexCommand label
  4637. name "fig:H3K27me3-neighborhood"
  4638. \end_inset
  4639. K-means clustering of promoter H3K27me3 relative coverage depth in naive
  4640. day 0 samples.
  4641. \series default
  4642. H3K27me3 ChIP-seq reads were binned into 500-bp windows tiled across each
  4643. promoter from 5
  4644. \begin_inset space ~
  4645. \end_inset
  4646. kbp upstream to 5
  4647. \begin_inset space ~
  4648. \end_inset
  4649. kbp downstream, and the logCPM values were normalized within each promoter
  4650. to an average of 0, yielding relative coverage depths.
  4651. These were then grouped using
  4652. \begin_inset Formula $k$
  4653. \end_inset
  4654. -means clustering with
  4655. \begin_inset Formula $K=6$
  4656. \end_inset
  4657. ,
  4658. \series bold
  4659. \series default
  4660. and the average bin values were plotted for each cluster (a).
  4661. The
  4662. \begin_inset Formula $x$
  4663. \end_inset
  4664. -axis is the genomic coordinate of each bin relative to the the transcription
  4665. start site, and the
  4666. \begin_inset Formula $y$
  4667. \end_inset
  4668. -axis is the mean relative coverage depth of that bin across all promoters
  4669. in the cluster.
  4670. Each line represents the average
  4671. \begin_inset Quotes eld
  4672. \end_inset
  4673. shape
  4674. \begin_inset Quotes erd
  4675. \end_inset
  4676. of the promoter coverage for promoters in that cluster.
  4677. PCA was performed on the same data, and the first two principal components
  4678. were plotted, coloring each point by its K-means cluster identity (b).
  4679. For each cluster, the distribution of gene expression values was plotted
  4680. (c).
  4681. \end_layout
  4682. \end_inset
  4683. \end_layout
  4684. \end_inset
  4685. \end_layout
  4686. \begin_layout Standard
  4687. \begin_inset ERT
  4688. status open
  4689. \begin_layout Plain Layout
  4690. \backslash
  4691. end{landscape}
  4692. \end_layout
  4693. \begin_layout Plain Layout
  4694. }
  4695. \end_layout
  4696. \end_inset
  4697. \end_layout
  4698. \begin_layout Standard
  4699. \begin_inset Flex TODO Note (inline)
  4700. status open
  4701. \begin_layout Plain Layout
  4702. Should maybe re-explain what was done or refer back to the previous section.
  4703. \end_layout
  4704. \end_inset
  4705. \end_layout
  4706. \begin_layout Standard
  4707. Unlike both H3K4 marks, whose main patterns of variation appear directly
  4708. related to the size and position of a single peak within the promoter,
  4709. the patterns of H3K27me3 methylation in promoters are more complex (Figure
  4710. \begin_inset CommandInset ref
  4711. LatexCommand ref
  4712. reference "fig:H3K27me3-neighborhood"
  4713. plural "false"
  4714. caps "false"
  4715. noprefix "false"
  4716. \end_inset
  4717. ).
  4718. Once again looking at the relative coverage in a 500-bp wide bins in a
  4719. 5kb radius around each TSS, promoters were clustered based on the normalized
  4720. relative coverage values in each bin using
  4721. \begin_inset Formula $k$
  4722. \end_inset
  4723. -means clustering with
  4724. \begin_inset Formula $K=6$
  4725. \end_inset
  4726. (Figure
  4727. \begin_inset CommandInset ref
  4728. LatexCommand ref
  4729. reference "fig:H3K27me3-neighborhood-clusters"
  4730. plural "false"
  4731. caps "false"
  4732. noprefix "false"
  4733. \end_inset
  4734. ).
  4735. This time, 3
  4736. \begin_inset Quotes eld
  4737. \end_inset
  4738. axes
  4739. \begin_inset Quotes erd
  4740. \end_inset
  4741. of variation can be observed, each represented by 2 clusters with opposing
  4742. patterns.
  4743. The first axis is greater upstream coverage (Cluster 1) vs.
  4744. greater downstream coverage (Cluster 3); the second axis is the coverage
  4745. at the TSS itself: peak (Cluster 4) or trough (Cluster 2); lastly, the
  4746. third axis represents a trough upstream of the TSS (Cluster 5) vs.
  4747. downstream of the TSS (Cluster 6).
  4748. Referring to these opposing pairs of clusters as axes of variation is justified
  4749. , because they correspond precisely to the first 3 principal components
  4750. in the PCA plot of the relative coverage values (Figure
  4751. \begin_inset CommandInset ref
  4752. LatexCommand ref
  4753. reference "fig:H3K27me3-neighborhood-pca"
  4754. plural "false"
  4755. caps "false"
  4756. noprefix "false"
  4757. \end_inset
  4758. ).
  4759. The PCA plot reveals that as in the case of H3K4me2, all the
  4760. \begin_inset Quotes eld
  4761. \end_inset
  4762. clusters
  4763. \begin_inset Quotes erd
  4764. \end_inset
  4765. are really just sections of a single connected cloud rather than discrete
  4766. clusters.
  4767. The cloud is approximately ellipsoid-shaped, with each PC being an axis
  4768. of the ellipse, and each cluster consisting of a pyrimidal section of the
  4769. ellipsoid.
  4770. \end_layout
  4771. \begin_layout Standard
  4772. In Figure
  4773. \begin_inset CommandInset ref
  4774. LatexCommand ref
  4775. reference "fig:H3K27me3-neighborhood-expression"
  4776. plural "false"
  4777. caps "false"
  4778. noprefix "false"
  4779. \end_inset
  4780. , we can see that Clusters 1 and 2 are the only clusters with higher gene
  4781. expression than the others.
  4782. For Cluster 2, this is expected, since this cluster represents genes with
  4783. depletion of H3K27me3 near the promoter.
  4784. Hence, elevated expression in cluster 2 is consistent with the conventional
  4785. view of H3K27me3 as a deactivating mark.
  4786. However, Cluster 1, the cluster with the most elevated gene expression,
  4787. represents genes with elevated coverage upstream of the TSS, or equivalently,
  4788. decreased coverage downstream, inside the gene body.
  4789. The opposite pattern, in which H3K27me3 is more abundant within the gene
  4790. body and less abundance in the upstream promoter region, does not show
  4791. any elevation in gene expression.
  4792. As with H3K4me2, this shows that the location of H3K27 trimethylation relative
  4793. to the TSS is potentially an important factor beyond simple proximity.
  4794. \end_layout
  4795. \begin_layout Standard
  4796. \begin_inset Flex TODO Note (inline)
  4797. status open
  4798. \begin_layout Plain Layout
  4799. Show the figures where the negative result ended this line of inquiry.
  4800. I need to debug some errors resulting from an R upgrade to do this.
  4801. \end_layout
  4802. \end_inset
  4803. \end_layout
  4804. \begin_layout Subsection
  4805. Defined pattern analysis
  4806. \end_layout
  4807. \begin_layout Standard
  4808. \begin_inset Flex TODO Note (inline)
  4809. status open
  4810. \begin_layout Plain Layout
  4811. This was where I defined interesting expression patterns and then looked
  4812. at initial relative promoter coverage for each expression pattern.
  4813. Negative result.
  4814. I forgot about this until recently.
  4815. Worth including? Remember to also write methods.
  4816. \end_layout
  4817. \end_inset
  4818. \end_layout
  4819. \begin_layout Subsection
  4820. Promoter CpG islands?
  4821. \end_layout
  4822. \begin_layout Standard
  4823. \begin_inset Flex TODO Note (inline)
  4824. status collapsed
  4825. \begin_layout Plain Layout
  4826. I forgot until recently about the work I did on this.
  4827. Worth including? Remember to also write methods.
  4828. \end_layout
  4829. \end_inset
  4830. \end_layout
  4831. \begin_layout Section
  4832. Discussion
  4833. \end_layout
  4834. \begin_layout Standard
  4835. \begin_inset Flex TODO Note (inline)
  4836. status open
  4837. \begin_layout Plain Layout
  4838. Write better section headers
  4839. \end_layout
  4840. \end_inset
  4841. \end_layout
  4842. \begin_layout Subsection
  4843. Effective promoter radius
  4844. \end_layout
  4845. \begin_layout Standard
  4846. Figure
  4847. \begin_inset CommandInset ref
  4848. LatexCommand ref
  4849. reference "fig:near-promoter-peak-enrich"
  4850. plural "false"
  4851. caps "false"
  4852. noprefix "false"
  4853. \end_inset
  4854. shows that H3K4me2, H3K4me3, and H3K27me3 are all enriched near promoters,
  4855. relative to the rest of the genome, consistent with their conventionally
  4856. understood role in regulating gene transcription.
  4857. Interestingly, the radius within this enrichment occurs is not the same
  4858. for each histone mark.
  4859. H3K4me2 and H3K4me3 are enriched within a 1
  4860. \begin_inset space \thinspace{}
  4861. \end_inset
  4862. kb radius, while H3K27me3 is enriched within 2.5
  4863. \begin_inset space \thinspace{}
  4864. \end_inset
  4865. kb.
  4866. Notably, the determined promoter radius was consistent across all experimental
  4867. conditions, varying only between different histone marks.
  4868. This suggests that the conventional
  4869. \begin_inset Quotes eld
  4870. \end_inset
  4871. one size fits all
  4872. \begin_inset Quotes erd
  4873. \end_inset
  4874. approach of defining a single promoter region for each gene (or each TSS)
  4875. and using that same promoter region for analyzing all types of genomic
  4876. data within an experiment may not be appropriate, and a better approach
  4877. may be to use a separate promoter radius for each kind of data, with each
  4878. radius being derived from the data itself.
  4879. Furthermore, the apparent assymetry of upstream and downstream promoter
  4880. histone modification with respect to gene expression, seen in Figures
  4881. \begin_inset CommandInset ref
  4882. LatexCommand ref
  4883. reference "fig:H3K4me2-neighborhood"
  4884. plural "false"
  4885. caps "false"
  4886. noprefix "false"
  4887. \end_inset
  4888. ,
  4889. \begin_inset CommandInset ref
  4890. LatexCommand ref
  4891. reference "fig:H3K4me3-neighborhood"
  4892. plural "false"
  4893. caps "false"
  4894. noprefix "false"
  4895. \end_inset
  4896. , and
  4897. \begin_inset CommandInset ref
  4898. LatexCommand ref
  4899. reference "fig:H3K27me3-neighborhood"
  4900. plural "false"
  4901. caps "false"
  4902. noprefix "false"
  4903. \end_inset
  4904. , shows that even the concept of a promoter
  4905. \begin_inset Quotes eld
  4906. \end_inset
  4907. radius
  4908. \begin_inset Quotes erd
  4909. \end_inset
  4910. is likely an oversimplification.
  4911. At a minimum, nearby enrichment of peaks should be evaluated separately
  4912. for both upstream and downstream peaks, and an appropriate
  4913. \begin_inset Quotes eld
  4914. \end_inset
  4915. radius
  4916. \begin_inset Quotes erd
  4917. \end_inset
  4918. should be selected for each direction.
  4919. \end_layout
  4920. \begin_layout Standard
  4921. Figures
  4922. \begin_inset CommandInset ref
  4923. LatexCommand ref
  4924. reference "fig:H3K4me2-neighborhood"
  4925. plural "false"
  4926. caps "false"
  4927. noprefix "false"
  4928. \end_inset
  4929. and
  4930. \begin_inset CommandInset ref
  4931. LatexCommand ref
  4932. reference "fig:H3K4me3-neighborhood"
  4933. plural "false"
  4934. caps "false"
  4935. noprefix "false"
  4936. \end_inset
  4937. show that the determined promoter radius of 1
  4938. \begin_inset space ~
  4939. \end_inset
  4940. kb is approximately consistent with the distance from the TSS at which enrichmen
  4941. t of H3K4 methylationis correlates with increased expression, showing that
  4942. this radius, which was determined by a simple analysis of measuring the
  4943. distance from each TSS to the nearest peak, also has functional significance.
  4944. For H3K27me3, the correlation between histone modification near the promoter
  4945. and gene expression is more complex, involving non-peak variations such
  4946. as troughs in coverage at the TSS and asymmetric coverage upstream and
  4947. downstream, so it is difficult in this case to evaluate whether the 2.5
  4948. \begin_inset space ~
  4949. \end_inset
  4950. kb radius determined from TSS-to-peak distances is functionally significant.
  4951. However, the two patterns of coverage associated with elevated expression
  4952. levels both have interesting features within this radius.
  4953. \end_layout
  4954. \begin_layout Standard
  4955. \begin_inset Flex TODO Note (inline)
  4956. status open
  4957. \begin_layout Plain Layout
  4958. My instinct is to say
  4959. \begin_inset Quotes eld
  4960. \end_inset
  4961. further study is needed
  4962. \begin_inset Quotes erd
  4963. \end_inset
  4964. here, but that goes in Chapter 5, right?
  4965. \end_layout
  4966. \end_inset
  4967. \end_layout
  4968. \begin_layout Subsection
  4969. Convergence
  4970. \end_layout
  4971. \begin_layout Standard
  4972. \begin_inset Flex TODO Note (inline)
  4973. status open
  4974. \begin_layout Plain Layout
  4975. Look up some more references for these histone marks being involved in memory
  4976. differentiation.
  4977. (Ask Sarah)
  4978. \end_layout
  4979. \end_inset
  4980. \end_layout
  4981. \begin_layout Standard
  4982. We have observed that all 3 histone marks and the gene expression data all
  4983. exhibit evidence of convergence in abundance between naive and memory cells
  4984. by day 14 after activation (Figure
  4985. \begin_inset CommandInset ref
  4986. LatexCommand ref
  4987. reference "fig:PCoA-promoters"
  4988. plural "false"
  4989. caps "false"
  4990. noprefix "false"
  4991. \end_inset
  4992. , Table
  4993. \begin_inset CommandInset ref
  4994. LatexCommand ref
  4995. reference "tab:Number-signif-promoters"
  4996. plural "false"
  4997. caps "false"
  4998. noprefix "false"
  4999. \end_inset
  5000. ).
  5001. The MOFA latent factor scatter plots (Figure
  5002. \begin_inset CommandInset ref
  5003. LatexCommand ref
  5004. reference "fig:mofa-lf-scatter"
  5005. plural "false"
  5006. caps "false"
  5007. noprefix "false"
  5008. \end_inset
  5009. ) show that this pattern of convergence is captured in latent factor 5.
  5010. Like all the latent factors in this plot, this factor explains a substantial
  5011. portion of the variance in all 4 data sets, indicating a coordinated pattern
  5012. of variation shared across all histone marks and gene expression.
  5013. This, of course, is consistent with the expectation that any naive CD4
  5014. T-cells remaining at day 14 should have differentiated into memory cells
  5015. by that time, and should therefore have a genomic state similar to memory
  5016. cells.
  5017. This convergence is evidence that these histone marks all play an important
  5018. role in the naive-to-memory differentiation process.
  5019. A histone mark that was not involved in naive-to-memory differentiation
  5020. would not be expected to converge in this way after activation.
  5021. \end_layout
  5022. \begin_layout Standard
  5023. \begin_inset Float figure
  5024. wide false
  5025. sideways false
  5026. status collapsed
  5027. \begin_layout Plain Layout
  5028. \align center
  5029. \begin_inset Graphics
  5030. filename graphics/CD4-csaw/LaMere2016_fig8.pdf
  5031. lyxscale 50
  5032. width 60col%
  5033. groupId colwidth
  5034. \end_inset
  5035. \end_layout
  5036. \begin_layout Plain Layout
  5037. \begin_inset Caption Standard
  5038. \begin_layout Plain Layout
  5039. \series bold
  5040. \begin_inset CommandInset label
  5041. LatexCommand label
  5042. name "fig:Lamere2016-Fig8"
  5043. \end_inset
  5044. Lamere 2016 Figure 8
  5045. \begin_inset CommandInset citation
  5046. LatexCommand cite
  5047. key "LaMere2016"
  5048. literal "false"
  5049. \end_inset
  5050. ,
  5051. \begin_inset Quotes eld
  5052. \end_inset
  5053. Model for the role of H3K4 methylation during CD4 T-cell activation.
  5054. \begin_inset Quotes erd
  5055. \end_inset
  5056. \series default
  5057. Reproduced with permission.
  5058. \end_layout
  5059. \end_inset
  5060. \end_layout
  5061. \end_inset
  5062. \end_layout
  5063. \begin_layout Standard
  5064. In H3K4me2, H3K4me3, and RNA-seq, this convergence appears to be in progress
  5065. already by Day 5, shown by the smaller distance between naive and memory
  5066. cells at day 5 along the
  5067. \begin_inset Formula $y$
  5068. \end_inset
  5069. -axes in Figures
  5070. \begin_inset CommandInset ref
  5071. LatexCommand ref
  5072. reference "fig:PCoA-H3K4me2-prom"
  5073. plural "false"
  5074. caps "false"
  5075. noprefix "false"
  5076. \end_inset
  5077. ,
  5078. \begin_inset CommandInset ref
  5079. LatexCommand ref
  5080. reference "fig:PCoA-H3K4me3-prom"
  5081. plural "false"
  5082. caps "false"
  5083. noprefix "false"
  5084. \end_inset
  5085. , and
  5086. \begin_inset CommandInset ref
  5087. LatexCommand ref
  5088. reference "fig:RNA-PCA-group"
  5089. plural "false"
  5090. caps "false"
  5091. noprefix "false"
  5092. \end_inset
  5093. .
  5094. This agrees with the model proposed by Sarah Lamere based on an prior analysis
  5095. of the same data, shown in Figure
  5096. \begin_inset CommandInset ref
  5097. LatexCommand ref
  5098. reference "fig:Lamere2016-Fig8"
  5099. plural "false"
  5100. caps "false"
  5101. noprefix "false"
  5102. \end_inset
  5103. , which shows the pattern of H3K4 methylation and expression for naive cells
  5104. and memory cells converging at day 5.
  5105. This model was developed without the benefit of the PCoA plots in Figure
  5106. \begin_inset CommandInset ref
  5107. LatexCommand ref
  5108. reference "fig:PCoA-promoters"
  5109. plural "false"
  5110. caps "false"
  5111. noprefix "false"
  5112. \end_inset
  5113. , which have been corrected for confounding factors by ComBat and SVA.
  5114. This shows that proper batch correction assists in extracting meaningful
  5115. patterns in the data while eliminating systematic sources of irrelevant
  5116. variation in the data, allowing simple automated procedures like PCoA to
  5117. reveal interesting behaviors in the data that were previously only detectable
  5118. by a detailed manual analysis.
  5119. \end_layout
  5120. \begin_layout Standard
  5121. While the ideal comparison to demonstrate this convergence would be naive
  5122. cells at day 14 to memory cells at day 0, this is not feasible in this
  5123. experimental system, since neither naive nor memory cells are able to fully
  5124. return to their pre-activation state, as shown by the lack of overlap between
  5125. days 0 and 14 for either naive or memory cells in Figure
  5126. \begin_inset CommandInset ref
  5127. LatexCommand ref
  5128. reference "fig:PCoA-promoters"
  5129. plural "false"
  5130. caps "false"
  5131. noprefix "false"
  5132. \end_inset
  5133. .
  5134. \end_layout
  5135. \begin_layout Subsection
  5136. Positional
  5137. \end_layout
  5138. \begin_layout Standard
  5139. When looking at patterns in the relative coverage of each histone mark near
  5140. the TSS of each gene, several interesting patterns were apparent.
  5141. For H3K4me2 and H3K4me3, the pattern was straightforward: the consistent
  5142. pattern across all promoters was a single peak a few kb wide, with the
  5143. main axis of variation being the position of this peak relative to the
  5144. TSS (Figures
  5145. \begin_inset CommandInset ref
  5146. LatexCommand ref
  5147. reference "fig:H3K4me2-neighborhood"
  5148. plural "false"
  5149. caps "false"
  5150. noprefix "false"
  5151. \end_inset
  5152. &
  5153. \begin_inset CommandInset ref
  5154. LatexCommand ref
  5155. reference "fig:H3K4me3-neighborhood"
  5156. plural "false"
  5157. caps "false"
  5158. noprefix "false"
  5159. \end_inset
  5160. ).
  5161. There were no obvious
  5162. \begin_inset Quotes eld
  5163. \end_inset
  5164. preferred
  5165. \begin_inset Quotes erd
  5166. \end_inset
  5167. positions, but rather a continuous distribution of relative positions ranging
  5168. all across the promoter region.
  5169. The association with gene expression was also straightforward: peaks closer
  5170. to the TSS were more strongly associated with elevated gene expression.
  5171. Coverage downstream of the TSS appears to be more strongly associated with
  5172. elevated expression than coverage the same distance upstream, indicating
  5173. that the
  5174. \begin_inset Quotes eld
  5175. \end_inset
  5176. effective promoter region
  5177. \begin_inset Quotes erd
  5178. \end_inset
  5179. for H3K4me2 and H3K4me3 may be centered downstream of the TSS.
  5180. \end_layout
  5181. \begin_layout Standard
  5182. The relative promoter coverage for H3K27me3 had a more complex pattern,
  5183. with two specific patterns of promoter coverage associated with elevated
  5184. expression: a sharp depletion of H3K27me3 around the TSS relative to the
  5185. surrounding area, and a depletion of H3K27me3 downstream of the TSS relative
  5186. to upstream (Figure
  5187. \begin_inset CommandInset ref
  5188. LatexCommand ref
  5189. reference "fig:H3K27me3-neighborhood"
  5190. plural "false"
  5191. caps "false"
  5192. noprefix "false"
  5193. \end_inset
  5194. ).
  5195. A previous study found that H3K27me3 depletion within the gene body was
  5196. associated with elevated gene expression in 4 different cell types in mice
  5197. \begin_inset CommandInset citation
  5198. LatexCommand cite
  5199. key "Young2011"
  5200. literal "false"
  5201. \end_inset
  5202. .
  5203. This is consistent with the second pattern described here.
  5204. This study also reported that a spike in coverage at the TSS was associated
  5205. with
  5206. \emph on
  5207. lower
  5208. \emph default
  5209. expression, which is indirectly consistent with the first pattern described
  5210. here, in the sense that it associates lower H3K27me3 levels near the TSS
  5211. with higher expression.
  5212. \end_layout
  5213. \begin_layout Subsection
  5214. Workflow
  5215. \end_layout
  5216. \begin_layout Standard
  5217. \begin_inset ERT
  5218. status open
  5219. \begin_layout Plain Layout
  5220. \backslash
  5221. afterpage{
  5222. \end_layout
  5223. \begin_layout Plain Layout
  5224. \backslash
  5225. begin{landscape}
  5226. \end_layout
  5227. \end_inset
  5228. \end_layout
  5229. \begin_layout Standard
  5230. \begin_inset Float figure
  5231. wide false
  5232. sideways false
  5233. status open
  5234. \begin_layout Plain Layout
  5235. \align center
  5236. \begin_inset Graphics
  5237. filename graphics/CD4-csaw/rulegraphs/rulegraph-all.pdf
  5238. lyxscale 50
  5239. width 100col%
  5240. height 95theight%
  5241. \end_inset
  5242. \end_layout
  5243. \begin_layout Plain Layout
  5244. \begin_inset Caption Standard
  5245. \begin_layout Plain Layout
  5246. \begin_inset CommandInset label
  5247. LatexCommand label
  5248. name "fig:rulegraph"
  5249. \end_inset
  5250. \series bold
  5251. Dependency graph of steps in reproducible workflow.
  5252. \end_layout
  5253. \end_inset
  5254. \end_layout
  5255. \end_inset
  5256. \end_layout
  5257. \begin_layout Standard
  5258. \begin_inset ERT
  5259. status open
  5260. \begin_layout Plain Layout
  5261. \backslash
  5262. end{landscape}
  5263. \end_layout
  5264. \begin_layout Plain Layout
  5265. }
  5266. \end_layout
  5267. \end_inset
  5268. \end_layout
  5269. \begin_layout Standard
  5270. The analyses described in this chapter were organized into a reproducible
  5271. workflow using the Snakemake workflow management system.
  5272. As shown in Figure
  5273. \begin_inset CommandInset ref
  5274. LatexCommand ref
  5275. reference "fig:rulegraph"
  5276. plural "false"
  5277. caps "false"
  5278. noprefix "false"
  5279. \end_inset
  5280. , the workflow includes many steps with complex dependencies between them.
  5281. For example, the step that counts the number of ChIP-seq reads in 500
  5282. \begin_inset space ~
  5283. \end_inset
  5284. bp windows in each promoter (the starting point for Figures
  5285. \begin_inset CommandInset ref
  5286. LatexCommand ref
  5287. reference "fig:H3K4me2-neighborhood"
  5288. plural "false"
  5289. caps "false"
  5290. noprefix "false"
  5291. \end_inset
  5292. ,
  5293. \begin_inset CommandInset ref
  5294. LatexCommand ref
  5295. reference "fig:H3K4me3-neighborhood"
  5296. plural "false"
  5297. caps "false"
  5298. noprefix "false"
  5299. \end_inset
  5300. , and
  5301. \begin_inset CommandInset ref
  5302. LatexCommand ref
  5303. reference "fig:H3K27me3-neighborhood"
  5304. plural "false"
  5305. caps "false"
  5306. noprefix "false"
  5307. \end_inset
  5308. ), named
  5309. \begin_inset Formula $\texttt{chipseq\_count\_tss\_neighborhoods}$
  5310. \end_inset
  5311. , depends on the RNA-seq abundance estimates in order to select the most-used
  5312. TSS for each gene, the aligned ChIP-seq reads, the index for those reads,
  5313. and the blacklist of regions to be excluded from ChIP-seq analysis.
  5314. Each step declares its inputs and outputs, and Snakemake uses these to
  5315. determine the dependencies between steps.
  5316. Each step is marked as depending on all the steps whose outputs match its
  5317. inputs, generating the workflow graph in Figure
  5318. \begin_inset CommandInset ref
  5319. LatexCommand ref
  5320. reference "fig:rulegraph"
  5321. plural "false"
  5322. caps "false"
  5323. noprefix "false"
  5324. \end_inset
  5325. , which Snakemake uses to determine order in which to execute each step
  5326. so that each step is executed only after all of the steps it depends on
  5327. have completed, thereby automating the entire workflow from start to finish.
  5328. \end_layout
  5329. \begin_layout Standard
  5330. In addition to simply making it easier to organize the steps in the analysis,
  5331. structuring the analysis as a workflow allowed for some analysis strategies
  5332. that would not have been practical otherwise.
  5333. For example, 5 different RNA-seq quantification methods were tested against
  5334. two different reference transcriptome annotations for a total of 10 different
  5335. quantifications of the same RNA-seq data.
  5336. These were then compared against each other in the exploratory data analysis
  5337. step, to determine that the results were not very sensitive to either the
  5338. choice of quantification method or the choice of annotation.
  5339. This was possible with a single script for the exploratory data analysis,
  5340. because Snakemake was able to automate running this script for every combinatio
  5341. n of method and reference.
  5342. In a similar manner, two different peak calling methods were tested against
  5343. each other, and in this case it was determined that SICER was unambiguously
  5344. superior to MACS for all histone marks studied.
  5345. By enabling these types of comparisons, structuring the analysis as an
  5346. automated workflow allowed important analysis decisions to be made in a
  5347. data-driven way, by running every reasonable option through the downstream
  5348. steps, seeing the consequences of choosing each option, and deciding accordingl
  5349. y.
  5350. \end_layout
  5351. \begin_layout Subsection
  5352. Data quality issues limit conclusions
  5353. \end_layout
  5354. \begin_layout Standard
  5355. \begin_inset Flex TODO Note (inline)
  5356. status open
  5357. \begin_layout Plain Layout
  5358. Is this needed?
  5359. \end_layout
  5360. \end_inset
  5361. \end_layout
  5362. \begin_layout Section
  5363. Future Directions
  5364. \end_layout
  5365. \begin_layout Standard
  5366. The analysis of RNA-seq and ChIP-seq in CD4 T-cells in Chapter 2 is in many
  5367. ways a preliminary study that suggests a multitude of new avenues of investigat
  5368. ion.
  5369. Here we consider a selection of such avenues.
  5370. \end_layout
  5371. \begin_layout Subsection
  5372. Negative results
  5373. \end_layout
  5374. \begin_layout Standard
  5375. Two additional analyses were conducted beyond those reported in the results.
  5376. First, we searched for evidence that the presence or absence of a CpG island
  5377. in the promoter was correlated with increases or decreases in gene expression
  5378. or any histone mark in any of the tested contrasts.
  5379. Second, we searched for evidence that the relative ChIP-seq coverage profiles
  5380. prior to activations could predict the change in expression of a gene after
  5381. activation.
  5382. Neither analysis turned up any clear positive results.
  5383. \end_layout
  5384. \begin_layout Subsection
  5385. Improve on the idea of an effective promoter radius
  5386. \end_layout
  5387. \begin_layout Standard
  5388. This study introduced the concept of an
  5389. \begin_inset Quotes eld
  5390. \end_inset
  5391. effective promoter radius
  5392. \begin_inset Quotes erd
  5393. \end_inset
  5394. specific to each histone mark based on distince from the TSS within which
  5395. an excess of peaks was called for that mark.
  5396. This concept was then used to guide further analyses throughout the study.
  5397. However, while the effective promoter radius was useful in those analyses,
  5398. it is both limited in theory and shown in practice to be a possible oversimplif
  5399. ication.
  5400. First, the effective promoter radii used in this study were chosen based
  5401. on manual inspection of the TSS-to-peak distance distributions in Figure
  5402. \begin_inset CommandInset ref
  5403. LatexCommand ref
  5404. reference "fig:near-promoter-peak-enrich"
  5405. plural "false"
  5406. caps "false"
  5407. noprefix "false"
  5408. \end_inset
  5409. , selecting round numbers of analyst convenience (Table
  5410. \begin_inset CommandInset ref
  5411. LatexCommand ref
  5412. reference "tab:effective-promoter-radius"
  5413. plural "false"
  5414. caps "false"
  5415. noprefix "false"
  5416. \end_inset
  5417. ).
  5418. It would be better to define an algorithm that selects a more precise radius
  5419. based on the features of the graph.
  5420. One possible way to do this would be to randomly rearrange the called peaks
  5421. throughout the genome many (while preserving the distribution of peak widths)
  5422. and re-generate the same plot as in Figure
  5423. \begin_inset CommandInset ref
  5424. LatexCommand ref
  5425. reference "fig:near-promoter-peak-enrich"
  5426. plural "false"
  5427. caps "false"
  5428. noprefix "false"
  5429. \end_inset
  5430. .
  5431. This would yield a better
  5432. \begin_inset Quotes eld
  5433. \end_inset
  5434. background
  5435. \begin_inset Quotes erd
  5436. \end_inset
  5437. distribution that demonstrates the degree of near-TSS enrichment that would
  5438. be expected by random chance.
  5439. The effective promoter radius could be defined as the point where the true
  5440. distribution diverges from the randomized background distribution.
  5441. \end_layout
  5442. \begin_layout Standard
  5443. Furthermore, the above definition of effective promoter radius has the significa
  5444. nt limitation of being based on the peak calling method.
  5445. It is thus very sensitive to the choice of peak caller and significance
  5446. threshold for calling peaks, as well as the degree of saturation in the
  5447. sequencing.
  5448. Calling peaks from ChIP-seq samples with insufficient coverage depth, with
  5449. the wrong peak caller, or with a different significance threshold could
  5450. give a drastically different number of called peaks, and hence a drastically
  5451. different distribution of peak-to-TSS distances.
  5452. To address this, it is desirable to develop a better method of determining
  5453. the effective promoter radius that relies only on the distribution of read
  5454. coverage around the TSS, independent of the peak calling.
  5455. Furthermore, as demonstrated by the upstream-downstream asymmetries observed
  5456. in Figures
  5457. \begin_inset CommandInset ref
  5458. LatexCommand ref
  5459. reference "fig:H3K4me2-neighborhood"
  5460. plural "false"
  5461. caps "false"
  5462. noprefix "false"
  5463. \end_inset
  5464. ,
  5465. \begin_inset CommandInset ref
  5466. LatexCommand ref
  5467. reference "fig:H3K4me3-neighborhood"
  5468. plural "false"
  5469. caps "false"
  5470. noprefix "false"
  5471. \end_inset
  5472. , and
  5473. \begin_inset CommandInset ref
  5474. LatexCommand ref
  5475. reference "fig:H3K27me3-neighborhood"
  5476. plural "false"
  5477. caps "false"
  5478. noprefix "false"
  5479. \end_inset
  5480. , this definition should determine a different radius for the upstream and
  5481. downstream directions.
  5482. At this point, it may be better to rename this concept
  5483. \begin_inset Quotes eld
  5484. \end_inset
  5485. effective promoter extent
  5486. \begin_inset Quotes erd
  5487. \end_inset
  5488. and avoid the word
  5489. \begin_inset Quotes eld
  5490. \end_inset
  5491. radius
  5492. \begin_inset Quotes erd
  5493. \end_inset
  5494. , since a radius implies a symmetry about the TSS that is not supported
  5495. by the data.
  5496. \end_layout
  5497. \begin_layout Standard
  5498. Beyond improving the definition of effective promoter extent, functional
  5499. validation is necessary to show that this measure of near-TSS enrichment
  5500. has biological meaning.
  5501. Figures
  5502. \begin_inset CommandInset ref
  5503. LatexCommand ref
  5504. reference "fig:H3K4me2-neighborhood"
  5505. plural "false"
  5506. caps "false"
  5507. noprefix "false"
  5508. \end_inset
  5509. and
  5510. \begin_inset CommandInset ref
  5511. LatexCommand ref
  5512. reference "fig:H3K4me3-neighborhood"
  5513. plural "false"
  5514. caps "false"
  5515. noprefix "false"
  5516. \end_inset
  5517. already provide a very limited functional validation of the chosen promoter
  5518. extents for H3K4me2 and H3K4me3 by showing that spikes in coverage within
  5519. this region are most strongly correlated with elevated gene expression.
  5520. However, there are other ways to show functional relevance of the promoter
  5521. extent.
  5522. For example, correlations could be computed between read counts in peaks
  5523. nearby gene promoters and the expression level of those genes, and these
  5524. correlations could be plotted against the distance of the peak upstream
  5525. or downstream of the gene's TSS.
  5526. If the promoter extent truly defines a
  5527. \begin_inset Quotes eld
  5528. \end_inset
  5529. sphere of influence
  5530. \begin_inset Quotes erd
  5531. \end_inset
  5532. within which a histone mark is involved with the regulation of a gene,
  5533. then the correlations for peaks within this extent should be significantly
  5534. higher than those further upstream or downstream.
  5535. Peaks within these extents may also be more likely to show differential
  5536. modification than those outside genic regions of the genome.
  5537. \end_layout
  5538. \begin_layout Subsection
  5539. Design experiments to focus on post-activation convergence of naive & memory
  5540. cells
  5541. \end_layout
  5542. \begin_layout Standard
  5543. In this study, a convergence between naive and memory cells was observed
  5544. in both the pattern of gene expression and in epigenetic state of the 3
  5545. histone marks studied, consistent with the hypothesis that any naive cells
  5546. remaining 14 days after activation have differentiated into memory cells,
  5547. and that both gene expression and these histone marks are involved in this
  5548. differentiation.
  5549. However, the current study was not designed with this specific hypothesis
  5550. in mind, and it therefore has some deficiencies with regard to testing
  5551. it.
  5552. The memory CD4 samples at day 14 do not resemble the memory samples at
  5553. day 0, indicating that in the specific model of activation used for this
  5554. experiment, the cells are not guaranteed to return to their original pre-activa
  5555. tion state, or perhaps this process takes substantially longer than 14 days.
  5556. This is a challenge for the convergence hypothesis because the ideal comparison
  5557. to prove that naive cells are converging to a resting memory state would
  5558. be to compare the final naive time point to the Day 0 memory samples, but
  5559. this comparison is only meaningful if memory cells generally return to
  5560. the same
  5561. \begin_inset Quotes eld
  5562. \end_inset
  5563. resting
  5564. \begin_inset Quotes erd
  5565. \end_inset
  5566. state that they started at.
  5567. \end_layout
  5568. \begin_layout Standard
  5569. To better study the convergence hypothesis, a new experiment should be designed
  5570. using a model system for T-cell activation that is known to allow cells
  5571. to return as closely as possible to their pre-activation state.
  5572. Alternatively, if it is not possible to find or design such a model system,
  5573. the same cell cultures could be activated serially multiple times, and
  5574. sequenced after each activation cycle right before the next activation.
  5575. It is likely that several activations in the same model system will settle
  5576. into a cylical pattern, converging to a consistent
  5577. \begin_inset Quotes eld
  5578. \end_inset
  5579. resting
  5580. \begin_inset Quotes erd
  5581. \end_inset
  5582. state after each activation, even if this state is different from the initial
  5583. resting state at Day 0.
  5584. If so, it will be possible to compare the final states of both naive and
  5585. memory cells to show that they converge despite different initial conditions.
  5586. \end_layout
  5587. \begin_layout Standard
  5588. In addition, if naive-to-memory convergence is a general pattern, it should
  5589. also be detectable in other epigenetic marks, including other histone marks
  5590. and DNA methylation.
  5591. An experiment should be designed studying a large number of epigenetic
  5592. marks known or suspected to be involved in regulation of gene expression,
  5593. assaying all of these at the same pre- and post-activation time points.
  5594. Multi-dataset factor analysis methods like MOFA can then be used to identify
  5595. coordinated patterns of regulation shared across many epigenetic marks.
  5596. If possible, some
  5597. \begin_inset Quotes eld
  5598. \end_inset
  5599. negative control
  5600. \begin_inset Quotes erd
  5601. \end_inset
  5602. marks should be included that are known
  5603. \emph on
  5604. not
  5605. \emph default
  5606. to be involved in T-cell activation or memory formation.
  5607. Of course, CD4 T-cells are not the only adaptive immune cells with memory.
  5608. A similar study could be designed for CD8 T-cells, B-cells, and even specific
  5609. subsets of CD4 T-cells.
  5610. \end_layout
  5611. \begin_layout Subsection
  5612. Follow up on hints of interesting patterns in promoter relative coverage
  5613. profiles
  5614. \end_layout
  5615. \begin_layout Standard
  5616. \begin_inset Flex TODO Note (inline)
  5617. status open
  5618. \begin_layout Plain Layout
  5619. I think I might need to write up the negative results for the Promoter CpG
  5620. and defined pattern analysis before writing this section.
  5621. \end_layout
  5622. \end_inset
  5623. \end_layout
  5624. \begin_layout Itemize
  5625. Also find better normalizations: maybe borrow from MACS/SICER background
  5626. correction methods?
  5627. \end_layout
  5628. \begin_layout Itemize
  5629. For H3K4, define polar coordinates based on PC1 & 2: R = peak size, Theta
  5630. = peak position.
  5631. Then correlate with expression.
  5632. \end_layout
  5633. \begin_layout Itemize
  5634. Current analysis only at Day 0.
  5635. Need to study across time points.
  5636. \end_layout
  5637. \begin_layout Itemize
  5638. Integrating data across so many dimensions is a significant analysis challenge
  5639. \end_layout
  5640. \begin_layout Subsection
  5641. Investigate causes of high correlation between mutually exclusive histone
  5642. marks
  5643. \end_layout
  5644. \begin_layout Standard
  5645. The high correlation between coverage depth observed between H3K4me2 and
  5646. H3K4me3 is both expected and unexpected.
  5647. Since both marks are associated with elevated gene transcription, a positive
  5648. correlation between them is not surprising.
  5649. However, these two marks represent different post-translational modifications
  5650. of the
  5651. \emph on
  5652. same
  5653. \emph default
  5654. lysine residue on the histone H3 polypeptide, which means that they cannot
  5655. both be present on the same H3 subunit.
  5656. Thus, the high correlation between them has several potential explanations.
  5657. One possible reason is cell population heterogeneity: perhaps some genomic
  5658. loci are frequently marked with H3K4me2 in some cells, while in other cells
  5659. the same loci are marked with H3K4me3.
  5660. Another possibility is allele-specific modifications: the loci are marked
  5661. in each diploid cell with H3K4me2 on one allele and H3K4me3 on the other
  5662. allele.
  5663. Lastly, since each histone octamer contains 2 H3 subunits, it is possible
  5664. that having one H3K4me2 mark and one H3K4me3 mark on a given histone octamer
  5665. represents a distinct epigenetic state with a different function than either
  5666. double H3K4me2 or double H3K4me3.
  5667. \end_layout
  5668. \begin_layout Standard
  5669. These three hypotheses could be disentangled by single-cell ChIP-seq.
  5670. If the correlation between these two histone marks persists even within
  5671. the reads for each individual cell, then cell population heterogeneity
  5672. cannot explain the correlation.
  5673. Allele-specific modification can be tested for by looking at the correlation
  5674. between read coverage of the two histone marks at heterozygous loci.
  5675. If the correlation between read counts for opposite loci is low, then this
  5676. is consistent with allele-specific modification.
  5677. Finally if the modifications do not separate by either cell or allele,
  5678. the colocation of these two marks is most likely occurring at the level
  5679. of individual histones, with the heterogenously modified histone representing
  5680. a distinct state.
  5681. \end_layout
  5682. \begin_layout Standard
  5683. However, another experiment would be required to show direct evidence of
  5684. such a heterogeneously modified state.
  5685. Specifically a
  5686. \begin_inset Quotes eld
  5687. \end_inset
  5688. double ChIP
  5689. \begin_inset Quotes erd
  5690. \end_inset
  5691. experiment would need to be performed, where the input DNA is first subjected
  5692. to an immunoprecipitation pulldown from the anti-H3K4me2 antibody, and
  5693. then the enriched material is collected, with proteins still bound, and
  5694. immunoprecipitated
  5695. \emph on
  5696. again
  5697. \emph default
  5698. using the anti-H3K4me3 antibody.
  5699. If this yields significant numbers of non-artifactual reads in the same
  5700. regions as the individual pulldowns of the two marks, this is strong evidence
  5701. that the two marks are occurring on opposite H3 subunits of the same histones.
  5702. \end_layout
  5703. \begin_layout Standard
  5704. \begin_inset Flex TODO Note (inline)
  5705. status open
  5706. \begin_layout Plain Layout
  5707. Try to see if double ChIP-seq is actually feasible, and if not, come up
  5708. with some other idea for directly detecting the mixed mod state.
  5709. Oh! Actually ChIP-seq isn't required, only double ChIP followed by quantificati
  5710. on.
  5711. That's one possible angle.
  5712. \end_layout
  5713. \end_inset
  5714. \end_layout
  5715. \begin_layout Chapter
  5716. Improving array-based diagnostics for transplant rejection by optimizing
  5717. data preprocessing
  5718. \end_layout
  5719. \begin_layout Standard
  5720. \begin_inset Note Note
  5721. status open
  5722. \begin_layout Plain Layout
  5723. Chapter author list: Me, Sunil, Tom, Padma, Dan
  5724. \end_layout
  5725. \end_inset
  5726. \end_layout
  5727. \begin_layout Section
  5728. Approach
  5729. \end_layout
  5730. \begin_layout Subsection
  5731. Proper pre-processing is essential for array data
  5732. \end_layout
  5733. \begin_layout Standard
  5734. \begin_inset Flex TODO Note (inline)
  5735. status open
  5736. \begin_layout Plain Layout
  5737. This section could probably use some citations
  5738. \end_layout
  5739. \end_inset
  5740. \end_layout
  5741. \begin_layout Standard
  5742. Microarrays, bead arrays, and similar assays produce raw data in the form
  5743. of fluorescence intensity measurements, with the each intensity measurement
  5744. proportional to the abundance of some fluorescently-labelled target DNA
  5745. or RNA sequence that base pairs to a specific probe sequence.
  5746. However, these measurements for each probe are also affected my many technical
  5747. confounding factors, such as the concentration of target material, strength
  5748. of off-target binding, and the sensitivity of the imaging sensor.
  5749. Some array designs also use multiple probe sequences for each target.
  5750. Hence, extensive pre-processing of array data is necessary to normalize
  5751. out the effects of these technical factors and summarize the information
  5752. from multiple probes to arrive at a single usable estimate of abundance
  5753. or other relevant quantity, such as a ratio of two abundances, for each
  5754. target.
  5755. \end_layout
  5756. \begin_layout Standard
  5757. The choice of pre-processing algorithms used in the analysis of an array
  5758. data set can have a large effect on the results of that analysis.
  5759. However, despite their importance, these steps are often neglected or rushed
  5760. in order to get to the more scientifically interesting analysis steps involving
  5761. the actual biology of the system under study.
  5762. Hence, it is often possible to achieve substantial gains in statistical
  5763. power, model goodness-of-fit, or other relevant performance measures, by
  5764. checking the assumptions made by each preprocessing step and choosing specific
  5765. normalization methods tailored to the specific goals of the current analysis.
  5766. \end_layout
  5767. \begin_layout Subsection
  5768. Clinical diagnostic applications for microarrays require single-channel
  5769. normalization
  5770. \end_layout
  5771. \begin_layout Standard
  5772. As the cost of performing microarray assays falls, there is increasing interest
  5773. in using genomic assays for diagnostic purposes, such as distinguishing
  5774. healthy transplants (TX) from transplants undergoing acute rejection (AR)
  5775. or acute dysfunction with no rejection (ADNR).
  5776. However, the the standard normalization algorithm used for microarray data,
  5777. Robust Multi-chip Average (RMA)
  5778. \begin_inset CommandInset citation
  5779. LatexCommand cite
  5780. key "Irizarry2003a"
  5781. literal "false"
  5782. \end_inset
  5783. , is not applicable in a clinical setting.
  5784. Two of the steps in RMA, quantile normalization and probe summarization
  5785. by median polish, depend on every array in the data set being normalized.
  5786. This means that adding or removing any arrays from a data set changes the
  5787. normalized values for all arrays, and data sets that have been normalized
  5788. separately cannot be compared to each other.
  5789. Hence, when using RMA, any arrays to be analyzed together must also be
  5790. normalized together, and the set of arrays included in the data set must
  5791. be held constant throughout an analysis.
  5792. \end_layout
  5793. \begin_layout Standard
  5794. These limitations present serious impediments to the use of arrays as a
  5795. diagnostic tool.
  5796. When training a classifier, the samples to be classified must not be involved
  5797. in any step of the training process, lest their inclusion bias the training
  5798. process.
  5799. Once a classifier is deployed in a clinical setting, the samples to be
  5800. classified will not even
  5801. \emph on
  5802. exist
  5803. \emph default
  5804. at the time of training, so including them would be impossible even if
  5805. it were statistically justifiable.
  5806. Therefore, any machine learning application for microarrays demands that
  5807. the normalized expression values computed for an array must depend only
  5808. on information contained within that array.
  5809. This would ensure that each array's normalization is independent of every
  5810. other array, and that arrays normalized separately can still be compared
  5811. to each other without bias.
  5812. Such a normalization is commonly referred to as
  5813. \begin_inset Quotes eld
  5814. \end_inset
  5815. single-channel normalization
  5816. \begin_inset Quotes erd
  5817. \end_inset
  5818. .
  5819. \end_layout
  5820. \begin_layout Standard
  5821. Frozen RMA (fRMA) addresses these concerns by replacing the quantile normalizati
  5822. on and median polish with alternatives that do not introduce inter-array
  5823. dependence, allowing each array to be normalized independently of all others
  5824. \begin_inset CommandInset citation
  5825. LatexCommand cite
  5826. key "McCall2010"
  5827. literal "false"
  5828. \end_inset
  5829. .
  5830. Quantile normalization is performed against a pre-generated set of quantiles
  5831. learned from a collection of 850 publically available arrays sampled from
  5832. a wide variety of tissues in the Gene Expression Omnibus (GEO).
  5833. Each array's probe intensity distribution is normalized against these pre-gener
  5834. ated quantiles.
  5835. The median polish step is replaced with a robust weighted average of probe
  5836. intensities, using inverse variance weights learned from the same public
  5837. GEO data.
  5838. The result is a normalization that satisfies the requirements mentioned
  5839. above: each array is normalized independently of all others, and any two
  5840. normalized arrays can be compared directly to each other.
  5841. \end_layout
  5842. \begin_layout Standard
  5843. One important limitation of fRMA is that it requires a separate reference
  5844. data set from which to learn the parameters (reference quantiles and probe
  5845. weights) that will be used to normalize each array.
  5846. These parameters are specific to a given array platform, and pre-generated
  5847. parameters are only provided for the most common platforms, such as Affymetrix
  5848. hgu133plus2.
  5849. For a less common platform, such as hthgu133pluspm, is is necessary to
  5850. learn custom parameters from in-house data before fRMA can be used to normalize
  5851. samples on that platform
  5852. \begin_inset CommandInset citation
  5853. LatexCommand cite
  5854. key "McCall2011"
  5855. literal "false"
  5856. \end_inset
  5857. .
  5858. \end_layout
  5859. \begin_layout Standard
  5860. One other option is the aptly-named Single Channel Array Normalization (SCAN),
  5861. which adapts a normalization method originally designed for tiling arrays
  5862. \begin_inset CommandInset citation
  5863. LatexCommand cite
  5864. key "Piccolo2012"
  5865. literal "false"
  5866. \end_inset
  5867. .
  5868. SCAN is truly single-channel in that it does not require a set of normalization
  5869. paramters estimated from an external set of reference samples like fRMA
  5870. does.
  5871. \end_layout
  5872. \begin_layout Subsection
  5873. Heteroskedasticity must be accounted for in methylation array data
  5874. \end_layout
  5875. \begin_layout Standard
  5876. DNA methylation arrays are a relatively new kind of assay that uses microarrays
  5877. to measure the degree of methylation on cytosines in specific regions arrayed
  5878. across the genome.
  5879. First, bisulfite treatment converts all unmethylated cytosines to uracil
  5880. (which then become thymine after amplication) while leaving methylated
  5881. cytosines unaffected.
  5882. Then, each target region is interrogated with two probes: one binds to
  5883. the original genomic sequence and interrogates the level of methylated
  5884. DNA, and the other binds to the same sequence with all cytosines replaced
  5885. by thymidines and interrogates the level of unmethylated DNA.
  5886. \end_layout
  5887. \begin_layout Standard
  5888. \begin_inset Float figure
  5889. wide false
  5890. sideways false
  5891. status collapsed
  5892. \begin_layout Plain Layout
  5893. \align center
  5894. \begin_inset Graphics
  5895. filename graphics/methylvoom/sigmoid.pdf
  5896. lyxscale 50
  5897. width 60col%
  5898. groupId colwidth
  5899. \end_inset
  5900. \end_layout
  5901. \begin_layout Plain Layout
  5902. \begin_inset Caption Standard
  5903. \begin_layout Plain Layout
  5904. \begin_inset CommandInset label
  5905. LatexCommand label
  5906. name "fig:Sigmoid-beta-m-mapping"
  5907. \end_inset
  5908. \series bold
  5909. Sigmoid shape of the mapping between β and M values
  5910. \end_layout
  5911. \end_inset
  5912. \end_layout
  5913. \end_inset
  5914. \end_layout
  5915. \begin_layout Standard
  5916. After normalization, these two probe intensities are summarized in one of
  5917. two ways, each with advantages and disadvantages.
  5918. β
  5919. \series bold
  5920. \series default
  5921. values, interpreted as fraction of DNA copies methylated, range from 0 to
  5922. 1.
  5923. β
  5924. \series bold
  5925. \series default
  5926. values are conceptually easy to interpret, but the constrained range makes
  5927. them unsuitable for linear modeling, and their error distributions are
  5928. highly non-normal, which also frustrates linear modeling.
  5929. M-values, interpreted as the log ratio of methylated to unmethylated copies,
  5930. are computed by mapping the beta values from
  5931. \begin_inset Formula $[0,1]$
  5932. \end_inset
  5933. onto
  5934. \begin_inset Formula $(-\infty,+\infty)$
  5935. \end_inset
  5936. using a sigmoid curve (Figure
  5937. \begin_inset CommandInset ref
  5938. LatexCommand ref
  5939. reference "fig:Sigmoid-beta-m-mapping"
  5940. plural "false"
  5941. caps "false"
  5942. noprefix "false"
  5943. \end_inset
  5944. ).
  5945. This transformation results in values with better statistical perperties:
  5946. the unconstrained range is suitable for linear modeling, and the error
  5947. distributions are more normal.
  5948. Hence, most linear modeling and other statistical testing on methylation
  5949. arrays is performed using M-values.
  5950. \end_layout
  5951. \begin_layout Standard
  5952. However, the steep slope of the sigmoid transformation near 0 and 1 tends
  5953. to over-exaggerate small differences in β values near those extremes, which
  5954. in turn amplifies the error in those values, leading to a U-shaped trend
  5955. in the mean-variance curve: extreme values have higher variances than values
  5956. near the middle.
  5957. This mean-variance dependency must be accounted for when fitting the linear
  5958. model for differential methylation, or else the variance will be systematically
  5959. overestimated for probes with moderate M-values and underestimated for
  5960. probes with extreme M-values.
  5961. This is particularly undesirable for methylation data because the intermediate
  5962. M-values are the ones of most interest, since they are more likely to represent
  5963. areas of varying methylation, whereas extreme M-values typically represent
  5964. complete methylation or complete lack of methylation.
  5965. \end_layout
  5966. \begin_layout Standard
  5967. RNA-seq read count data are also known to show heteroskedasticity, and the
  5968. voom method was introduced for modeling this heteroskedasticity by estimating
  5969. the mean-variance trend in the data and using this trend to assign precision
  5970. weights to each observation
  5971. \begin_inset CommandInset citation
  5972. LatexCommand cite
  5973. key "Law2013"
  5974. literal "false"
  5975. \end_inset
  5976. .
  5977. While methylation array data are not derived from counts and have a very
  5978. different mean-variance relationship from that of typical RNA-seq data,
  5979. the voom method makes no specific assumptions on the shape of the mean-variance
  5980. relationship – it only assumes that the relationship can be modeled as
  5981. a smooth curve.
  5982. Hence, the method is sufficiently general to model the mean-variance relationsh
  5983. ip in methylation array data.
  5984. However, the standard implementation of voom assumes that the input is
  5985. given in raw read counts, and it must be adapted to run on methylation
  5986. M-values.
  5987. \end_layout
  5988. \begin_layout Section
  5989. Methods
  5990. \end_layout
  5991. \begin_layout Subsection
  5992. Evaluation of classifier performance with different normalization methods
  5993. \end_layout
  5994. \begin_layout Standard
  5995. For testing different expression microarray normalizations, a data set of
  5996. 157 hgu133plus2 arrays was used, consisting of blood samples from kidney
  5997. transplant patients whose grafts had been graded as TX, AR, or ADNR via
  5998. biopsy and histology (46 TX, 69 AR, 42 ADNR)
  5999. \begin_inset CommandInset citation
  6000. LatexCommand cite
  6001. key "Kurian2014"
  6002. literal "true"
  6003. \end_inset
  6004. .
  6005. Additionally, an external validation set of 75 samples was gathered from
  6006. public GEO data (37 TX, 38 AR, no ADNR).
  6007. \end_layout
  6008. \begin_layout Standard
  6009. \begin_inset Flex TODO Note (inline)
  6010. status open
  6011. \begin_layout Plain Layout
  6012. Find appropriate GEO identifiers if possible.
  6013. Kurian 2014 says GSE15296, but this seems to be different data.
  6014. I also need to look up the GEO accession for the external validation set.
  6015. \end_layout
  6016. \end_inset
  6017. \end_layout
  6018. \begin_layout Standard
  6019. To evaluate the effect of each normalization on classifier performance,
  6020. the same classifier training and validation procedure was used after each
  6021. normalization method.
  6022. The PAM package was used to train a nearest shrunken centroid classifier
  6023. on the training set and select the appropriate threshold for centroid shrinking.
  6024. Then the trained classifier was used to predict the class probabilities
  6025. of each validation sample.
  6026. From these class probabilities, ROC curves and area-under-curve (AUC) values
  6027. were generated
  6028. \begin_inset CommandInset citation
  6029. LatexCommand cite
  6030. key "Turck2011"
  6031. literal "false"
  6032. \end_inset
  6033. .
  6034. Each normalization was tested on two different sets of training and validation
  6035. samples.
  6036. For internal validation, the 115 TX and AR arrays in the internal set were
  6037. split at random into two equal sized sets, one for training and one for
  6038. validation, each containing the same numbers of TX and AR samples as the
  6039. other set.
  6040. For external validation, the full set of 115 TX and AR samples were used
  6041. as a training set, and the 75 external TX and AR samples were used as the
  6042. validation set.
  6043. Thus, 2 ROC curves and AUC values were generated for each normalization
  6044. method: one internal and one external.
  6045. Because the external validation set contains no ADNR samples, only classificati
  6046. on of TX and AR samples was considered.
  6047. The ADNR samples were included during normalization but excluded from all
  6048. classifier training and validation.
  6049. This ensures that the performance on internal and external validation sets
  6050. is directly comparable, since both are performing the same task: distinguising
  6051. TX from AR.
  6052. \end_layout
  6053. \begin_layout Standard
  6054. \begin_inset Flex TODO Note (inline)
  6055. status open
  6056. \begin_layout Plain Layout
  6057. Summarize the get.best.threshold algorithm for PAM threshold selection, or
  6058. just put the code online?
  6059. \end_layout
  6060. \end_inset
  6061. \end_layout
  6062. \begin_layout Standard
  6063. Six different normalization strategies were evaluated.
  6064. First, 2 well-known non-single-channel normalization methods were considered:
  6065. RMA and dChip
  6066. \begin_inset CommandInset citation
  6067. LatexCommand cite
  6068. key "Li2001,Irizarry2003a"
  6069. literal "false"
  6070. \end_inset
  6071. .
  6072. Since RMA produces expression values on a log2 scale and dChip does not,
  6073. the values from dChip were log2 transformed after normalization.
  6074. Next, RMA and dChip followed by Global Rank-invariant Set Normalization
  6075. (GRSN) were tested
  6076. \begin_inset CommandInset citation
  6077. LatexCommand cite
  6078. key "Pelz2008"
  6079. literal "false"
  6080. \end_inset
  6081. .
  6082. Post-processing with GRSN does not turn RMA or dChip into single-channel
  6083. methods, but it may help mitigate batch effects and is therefore useful
  6084. as a benchmark.
  6085. Lastly, the two single-channel normalization methods, fRMA and SCAN, were
  6086. tested
  6087. \begin_inset CommandInset citation
  6088. LatexCommand cite
  6089. key "McCall2010,Piccolo2012"
  6090. literal "false"
  6091. \end_inset
  6092. .
  6093. When evaluting internal validation performance, only the 157 internal samples
  6094. were normalized; when evaluating external validation performance, all 157
  6095. internal samples and 75 external samples were normalized together.
  6096. \end_layout
  6097. \begin_layout Standard
  6098. For demonstrating the problem with separate normalization of training and
  6099. validation data, one additional normalization was performed: the internal
  6100. and external sets were each normalized separately using RMA, and the normalized
  6101. data for each set were combined into a single set with no further attempts
  6102. at normalizing between the two sets.
  6103. The represents approximately how RMA would have to be used in a clinical
  6104. setting, where the samples to be classified are not available at the time
  6105. the classifier is trained.
  6106. \end_layout
  6107. \begin_layout Subsection
  6108. Generating custom fRMA vectors for hthgu133pluspm array platform
  6109. \end_layout
  6110. \begin_layout Standard
  6111. In order to enable fRMA normalization for the hthgu133pluspm array platform,
  6112. custom fRMA normalization vectors were trained using the frmaTools package
  6113. \begin_inset CommandInset citation
  6114. LatexCommand cite
  6115. key "McCall2011"
  6116. literal "false"
  6117. \end_inset
  6118. .
  6119. Separate vectors were created for two types of samples: kidney graft biopsy
  6120. samples and blood samples from graft recipients.
  6121. For training, a 341 kidney biopsy samples from 2 data sets and 965 blood
  6122. samples from 5 data sets were used as the reference set.
  6123. Arrays were groups into batches based on unique combinations of sample
  6124. type (blood or biopsy), diagnosis (TX, AR, etc.), data set, and scan date.
  6125. Thus, each batch represents arrays of the same kind that were run together
  6126. on the same day.
  6127. For estimating the probe inverse variance weights, frmaTools requires equal-siz
  6128. ed batches, which means a batch size must be chosen, and then batches smaller
  6129. than that size must be ignored, while batches larger than the chosen size
  6130. must be downsampled.
  6131. This downsampling is performed randomly, so the sampling process is repeated
  6132. 5 times and the resulting normalizations are compared to each other.
  6133. \end_layout
  6134. \begin_layout Standard
  6135. To evaluate the consistency of the generated normalization vectors, the
  6136. 5 fRMA vector sets generated from 5 random batch samplings were each used
  6137. to normalize the same 20 randomly selected samples from each tissue.
  6138. Then the normalized expression values for each probe on each array were
  6139. compared across all normalizations.
  6140. Each fRMA normalization was also compared against the normalized expression
  6141. values obtained by normalizing the same 20 samples with ordinary RMA.
  6142. \end_layout
  6143. \begin_layout Subsection
  6144. Modeling methylation array M-value heteroskedasticy in linear models with
  6145. modified voom implementation
  6146. \end_layout
  6147. \begin_layout Standard
  6148. \begin_inset Flex TODO Note (inline)
  6149. status open
  6150. \begin_layout Plain Layout
  6151. Put code on Github and reference it.
  6152. \end_layout
  6153. \end_inset
  6154. \end_layout
  6155. \begin_layout Standard
  6156. To investigate the whether DNA methylation could be used to distinguish
  6157. between healthy and dysfunctional transplants, a data set of 78 Illumina
  6158. 450k methylation arrays from human kidney graft biopsies was analyzed for
  6159. differential metylation between 4 transplant statuses: healthy transplant
  6160. (TX), transplants undergoing acute rejection (AR), acute dysfunction with
  6161. no rejection (ADNR), and chronic allograpft nephropathy (CAN).
  6162. The data consisted of 33 TX, 9 AR, 8 ADNR, and 28 CAN samples.
  6163. The uneven group sizes are a result of taking the biopsy samples before
  6164. the eventual fate of the transplant was known.
  6165. Each sample was additionally annotated with a donor ID (anonymized), Sex,
  6166. Age, Ethnicity, Creatinine Level, and Diabetes diagnosois (all samples
  6167. in this data set came from patients with either Type 1 or Type 2 diabetes).
  6168. \end_layout
  6169. \begin_layout Standard
  6170. The intensity data were first normalized using subset-quantile within array
  6171. normalization (SWAN)
  6172. \begin_inset CommandInset citation
  6173. LatexCommand cite
  6174. key "Maksimovic2012"
  6175. literal "false"
  6176. \end_inset
  6177. , then converted to intensity ratios (beta values)
  6178. \begin_inset CommandInset citation
  6179. LatexCommand cite
  6180. key "Aryee2014"
  6181. literal "false"
  6182. \end_inset
  6183. .
  6184. Any probes binding to loci that overlapped annotated SNPs were dropped,
  6185. and the annotated sex of each sample was verified against the sex inferred
  6186. from the ratio of median probe intensities for the X and Y chromosomes.
  6187. Then, the ratios were transformed to M-values.
  6188. \end_layout
  6189. \begin_layout Standard
  6190. \begin_inset Float table
  6191. wide false
  6192. sideways false
  6193. status open
  6194. \begin_layout Plain Layout
  6195. \align center
  6196. \begin_inset Tabular
  6197. <lyxtabular version="3" rows="4" columns="6">
  6198. <features tabularvalignment="middle">
  6199. <column alignment="center" valignment="top">
  6200. <column alignment="center" valignment="top">
  6201. <column alignment="center" valignment="top">
  6202. <column alignment="center" valignment="top">
  6203. <column alignment="center" valignment="top">
  6204. <column alignment="center" valignment="top">
  6205. <row>
  6206. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6207. \begin_inset Text
  6208. \begin_layout Plain Layout
  6209. Analysis
  6210. \end_layout
  6211. \end_inset
  6212. </cell>
  6213. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6214. \begin_inset Text
  6215. \begin_layout Plain Layout
  6216. random effect
  6217. \end_layout
  6218. \end_inset
  6219. </cell>
  6220. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6221. \begin_inset Text
  6222. \begin_layout Plain Layout
  6223. eBayes
  6224. \end_layout
  6225. \end_inset
  6226. </cell>
  6227. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6228. \begin_inset Text
  6229. \begin_layout Plain Layout
  6230. SVA
  6231. \end_layout
  6232. \end_inset
  6233. </cell>
  6234. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6235. \begin_inset Text
  6236. \begin_layout Plain Layout
  6237. weights
  6238. \end_layout
  6239. \end_inset
  6240. </cell>
  6241. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  6242. \begin_inset Text
  6243. \begin_layout Plain Layout
  6244. voom
  6245. \end_layout
  6246. \end_inset
  6247. </cell>
  6248. </row>
  6249. <row>
  6250. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6251. \begin_inset Text
  6252. \begin_layout Plain Layout
  6253. A
  6254. \end_layout
  6255. \end_inset
  6256. </cell>
  6257. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6258. \begin_inset Text
  6259. \begin_layout Plain Layout
  6260. Yes
  6261. \end_layout
  6262. \end_inset
  6263. </cell>
  6264. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6265. \begin_inset Text
  6266. \begin_layout Plain Layout
  6267. Yes
  6268. \end_layout
  6269. \end_inset
  6270. </cell>
  6271. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6272. \begin_inset Text
  6273. \begin_layout Plain Layout
  6274. No
  6275. \end_layout
  6276. \end_inset
  6277. </cell>
  6278. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6279. \begin_inset Text
  6280. \begin_layout Plain Layout
  6281. No
  6282. \end_layout
  6283. \end_inset
  6284. </cell>
  6285. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  6286. \begin_inset Text
  6287. \begin_layout Plain Layout
  6288. No
  6289. \end_layout
  6290. \end_inset
  6291. </cell>
  6292. </row>
  6293. <row>
  6294. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6295. \begin_inset Text
  6296. \begin_layout Plain Layout
  6297. B
  6298. \end_layout
  6299. \end_inset
  6300. </cell>
  6301. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6302. \begin_inset Text
  6303. \begin_layout Plain Layout
  6304. Yes
  6305. \end_layout
  6306. \end_inset
  6307. </cell>
  6308. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6309. \begin_inset Text
  6310. \begin_layout Plain Layout
  6311. Yes
  6312. \end_layout
  6313. \end_inset
  6314. </cell>
  6315. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6316. \begin_inset Text
  6317. \begin_layout Plain Layout
  6318. Yes
  6319. \end_layout
  6320. \end_inset
  6321. </cell>
  6322. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6323. \begin_inset Text
  6324. \begin_layout Plain Layout
  6325. Yes
  6326. \end_layout
  6327. \end_inset
  6328. </cell>
  6329. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  6330. \begin_inset Text
  6331. \begin_layout Plain Layout
  6332. No
  6333. \end_layout
  6334. \end_inset
  6335. </cell>
  6336. </row>
  6337. <row>
  6338. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6339. \begin_inset Text
  6340. \begin_layout Plain Layout
  6341. C
  6342. \end_layout
  6343. \end_inset
  6344. </cell>
  6345. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6346. \begin_inset Text
  6347. \begin_layout Plain Layout
  6348. Yes
  6349. \end_layout
  6350. \end_inset
  6351. </cell>
  6352. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6353. \begin_inset Text
  6354. \begin_layout Plain Layout
  6355. Yes
  6356. \end_layout
  6357. \end_inset
  6358. </cell>
  6359. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6360. \begin_inset Text
  6361. \begin_layout Plain Layout
  6362. Yes
  6363. \end_layout
  6364. \end_inset
  6365. </cell>
  6366. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6367. \begin_inset Text
  6368. \begin_layout Plain Layout
  6369. Yes
  6370. \end_layout
  6371. \end_inset
  6372. </cell>
  6373. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  6374. \begin_inset Text
  6375. \begin_layout Plain Layout
  6376. Yes
  6377. \end_layout
  6378. \end_inset
  6379. </cell>
  6380. </row>
  6381. </lyxtabular>
  6382. \end_inset
  6383. \end_layout
  6384. \begin_layout Plain Layout
  6385. \begin_inset Caption Standard
  6386. \begin_layout Plain Layout
  6387. \series bold
  6388. \begin_inset CommandInset label
  6389. LatexCommand label
  6390. name "tab:Summary-of-meth-analysis"
  6391. \end_inset
  6392. Summary of analysis variants for methylation array data.
  6393. \series default
  6394. Each analysis included a different set of steps to adjust or account for
  6395. various systematic features of the data.
  6396. Random effect: The model included a random effect accounting for correlation
  6397. between samples from the same patient
  6398. \begin_inset CommandInset citation
  6399. LatexCommand cite
  6400. key "Smyth2005a"
  6401. literal "false"
  6402. \end_inset
  6403. ; eBayes: Empirical bayes squeezing of per-probe variances toward the mean-varia
  6404. nce trend
  6405. \begin_inset CommandInset citation
  6406. LatexCommand cite
  6407. key "Ritchie2015"
  6408. literal "false"
  6409. \end_inset
  6410. ; SVA: Surrogate variable analysis to account for unobserved confounders
  6411. \begin_inset CommandInset citation
  6412. LatexCommand cite
  6413. key "Leek2007"
  6414. literal "false"
  6415. \end_inset
  6416. ; Weights: Estimate sample weights to account for differences in sample
  6417. quality
  6418. \begin_inset CommandInset citation
  6419. LatexCommand cite
  6420. key "Liu2015,Ritchie2006"
  6421. literal "false"
  6422. \end_inset
  6423. ; voom: Use mean-variance trend to assign individual sample weights
  6424. \begin_inset CommandInset citation
  6425. LatexCommand cite
  6426. key "Law2013"
  6427. literal "false"
  6428. \end_inset
  6429. .
  6430. See the text for a more detailed explanation of each step.
  6431. \end_layout
  6432. \end_inset
  6433. \end_layout
  6434. \end_inset
  6435. \end_layout
  6436. \begin_layout Standard
  6437. From the M-values, a series of parallel analyses was performed, each adding
  6438. additional steps into the model fit to accomodate a feature of the data
  6439. (see Table
  6440. \begin_inset CommandInset ref
  6441. LatexCommand ref
  6442. reference "tab:Summary-of-meth-analysis"
  6443. plural "false"
  6444. caps "false"
  6445. noprefix "false"
  6446. \end_inset
  6447. ).
  6448. For analysis A, a
  6449. \begin_inset Quotes eld
  6450. \end_inset
  6451. basic
  6452. \begin_inset Quotes erd
  6453. \end_inset
  6454. linear modeling analysis was performed, compensating for known confounders
  6455. by including terms for the factor of interest (transplant status) as well
  6456. as the known biological confounders: sex, age, ethnicity, and diabetes.
  6457. Since some samples came from the same patients at different times, the
  6458. intra-patient correlation was modeled as a random effect, estimating a
  6459. shared correlation value across all probes
  6460. \begin_inset CommandInset citation
  6461. LatexCommand cite
  6462. key "Smyth2005a"
  6463. literal "false"
  6464. \end_inset
  6465. .
  6466. Then the linear model was fit, and the variance was modeled using empirical
  6467. Bayes squeezing toward the mean-variance trend
  6468. \begin_inset CommandInset citation
  6469. LatexCommand cite
  6470. key "Ritchie2015"
  6471. literal "false"
  6472. \end_inset
  6473. .
  6474. Finally, t-tests or F-tests were performed as appropriate for each test:
  6475. t-tests for single contrasts, and F-tests for multiple contrasts.
  6476. P-values were corrected for multiple testing using the Benjamini-Hochberg
  6477. procedure for FDR control
  6478. \begin_inset CommandInset citation
  6479. LatexCommand cite
  6480. key "Benjamini1995"
  6481. literal "false"
  6482. \end_inset
  6483. .
  6484. \end_layout
  6485. \begin_layout Standard
  6486. For the analysis B, surrogate variable analysis (SVA) was used to infer
  6487. additional unobserved sources of heterogeneity in the data
  6488. \begin_inset CommandInset citation
  6489. LatexCommand cite
  6490. key "Leek2007"
  6491. literal "false"
  6492. \end_inset
  6493. .
  6494. These surrogate variables were added to the design matrix before fitting
  6495. the linear model.
  6496. In addition, sample quality weights were estimated from the data and used
  6497. during linear modeling to down-weight the contribution of highly variable
  6498. arrays while increasing the weight to arrays with lower variability
  6499. \begin_inset CommandInset citation
  6500. LatexCommand cite
  6501. key "Ritchie2006"
  6502. literal "false"
  6503. \end_inset
  6504. .
  6505. The remainder of the analysis proceeded as in analysis A.
  6506. For analysis C, the voom method was adapted to run on methylation array
  6507. data and used to model and correct for the mean-variance trend using individual
  6508. observation weights
  6509. \begin_inset CommandInset citation
  6510. LatexCommand cite
  6511. key "Law2013"
  6512. literal "false"
  6513. \end_inset
  6514. , which were combined with the sample weights
  6515. \begin_inset CommandInset citation
  6516. LatexCommand cite
  6517. key "Liu2015,Ritchie2006"
  6518. literal "false"
  6519. \end_inset
  6520. .
  6521. Each time weights were used, they were estimated once before estimating
  6522. the random effect correlation value, and then the weights were re-estimated
  6523. taking the random effect into account.
  6524. The remainder of the analysis proceeded as in analysis B.
  6525. \end_layout
  6526. \begin_layout Section
  6527. Results
  6528. \end_layout
  6529. \begin_layout Standard
  6530. \begin_inset Flex TODO Note (inline)
  6531. status open
  6532. \begin_layout Plain Layout
  6533. Improve subsection titles in this section.
  6534. \end_layout
  6535. \end_inset
  6536. \end_layout
  6537. \begin_layout Standard
  6538. \begin_inset Flex TODO Note (inline)
  6539. status open
  6540. \begin_layout Plain Layout
  6541. Reconsider subsection organization?
  6542. \end_layout
  6543. \end_inset
  6544. \end_layout
  6545. \begin_layout Subsection
  6546. Separate normalization with RMA introduces unwanted biases in classification
  6547. \end_layout
  6548. \begin_layout Standard
  6549. \begin_inset Float figure
  6550. wide false
  6551. sideways false
  6552. status open
  6553. \begin_layout Plain Layout
  6554. \align center
  6555. \begin_inset Graphics
  6556. filename graphics/PAM/predplot.pdf
  6557. lyxscale 50
  6558. width 60col%
  6559. groupId colwidth
  6560. \end_inset
  6561. \end_layout
  6562. \begin_layout Plain Layout
  6563. \begin_inset Caption Standard
  6564. \begin_layout Plain Layout
  6565. \begin_inset CommandInset label
  6566. LatexCommand label
  6567. name "fig:Classifier-probabilities-RMA"
  6568. \end_inset
  6569. \series bold
  6570. Classifier probabilities on validation samples when normalized with RMA
  6571. together vs.
  6572. separately.
  6573. \series default
  6574. The PAM classifier algorithm was trained on the training set of arrays to
  6575. distinguish AR from TX and then used to assign class probabilities to the
  6576. validation set.
  6577. The process was performed after normalizing all samples together and after
  6578. normalizing the training and test sets separately, and the class probabilities
  6579. assigned to each sample in the validation set were plotted against each
  6580. other (PP(AR), posterior probability of being AR).
  6581. The color of each point indicates the true classification of that sample.
  6582. \end_layout
  6583. \end_inset
  6584. \end_layout
  6585. \end_inset
  6586. \end_layout
  6587. \begin_layout Standard
  6588. To demonstrate the problem with non-single-channel normalization methods,
  6589. we considered the problem of training a classifier to distinguish TX from
  6590. AR using the samples from the internal set as training data, evaluating
  6591. performance on the external set.
  6592. First, training and evaluation were performed after normalizing all array
  6593. samples together as a single set using RMA, and second, the internal samples
  6594. were normalized separately from the external samples and the training and
  6595. evaluation were repeated.
  6596. For each sample in the validation set, the classifier probabilities from
  6597. both classifiers were plotted against each other (Fig.
  6598. \begin_inset CommandInset ref
  6599. LatexCommand ref
  6600. reference "fig:Classifier-probabilities-RMA"
  6601. plural "false"
  6602. caps "false"
  6603. noprefix "false"
  6604. \end_inset
  6605. ).
  6606. As expected, separate normalization biases the classifier probabilities,
  6607. resulting in several misclassifications.
  6608. In this case, the bias from separate normalization causes the classifier
  6609. to assign a lower probability of AR to every sample.
  6610. \end_layout
  6611. \begin_layout Subsection
  6612. fRMA and SCAN maintain classification performance while eliminating dependence
  6613. on normalization strategy
  6614. \end_layout
  6615. \begin_layout Standard
  6616. \begin_inset Float figure
  6617. wide false
  6618. sideways false
  6619. status open
  6620. \begin_layout Plain Layout
  6621. \align center
  6622. \begin_inset Float figure
  6623. placement tb
  6624. wide false
  6625. sideways false
  6626. status open
  6627. \begin_layout Plain Layout
  6628. \align center
  6629. \begin_inset Graphics
  6630. filename graphics/PAM/ROC-TXvsAR-internal.pdf
  6631. lyxscale 50
  6632. height 40theight%
  6633. groupId roc-pam
  6634. \end_inset
  6635. \end_layout
  6636. \begin_layout Plain Layout
  6637. \begin_inset Caption Standard
  6638. \begin_layout Plain Layout
  6639. \begin_inset CommandInset label
  6640. LatexCommand label
  6641. name "fig:ROC-PAM-int"
  6642. \end_inset
  6643. ROC curves for PAM on internal validation data
  6644. \end_layout
  6645. \end_inset
  6646. \end_layout
  6647. \end_inset
  6648. \end_layout
  6649. \begin_layout Plain Layout
  6650. \align center
  6651. \begin_inset Float figure
  6652. placement tb
  6653. wide false
  6654. sideways false
  6655. status open
  6656. \begin_layout Plain Layout
  6657. \align center
  6658. \begin_inset Graphics
  6659. filename graphics/PAM/ROC-TXvsAR-external.pdf
  6660. lyxscale 50
  6661. height 40theight%
  6662. groupId roc-pam
  6663. \end_inset
  6664. \end_layout
  6665. \begin_layout Plain Layout
  6666. \begin_inset Caption Standard
  6667. \begin_layout Plain Layout
  6668. \begin_inset CommandInset label
  6669. LatexCommand label
  6670. name "fig:ROC-PAM-ext"
  6671. \end_inset
  6672. ROC curves for PAM on external validation data
  6673. \end_layout
  6674. \end_inset
  6675. \end_layout
  6676. \end_inset
  6677. \end_layout
  6678. \begin_layout Plain Layout
  6679. \begin_inset Caption Standard
  6680. \begin_layout Plain Layout
  6681. \series bold
  6682. \begin_inset CommandInset label
  6683. LatexCommand label
  6684. name "fig:ROC-PAM-main"
  6685. \end_inset
  6686. ROC curves for PAM using different normalization strategies.
  6687. \series default
  6688. ROC curves were generated for PAM classification of AR vs TX after 6 different
  6689. normalization strategies applied to the same data sets.
  6690. Only fRMA and SCAN are single-channel normalizations.
  6691. The other normalizations are for comparison.
  6692. \end_layout
  6693. \end_inset
  6694. \end_layout
  6695. \end_inset
  6696. \end_layout
  6697. \begin_layout Standard
  6698. \begin_inset Float table
  6699. wide false
  6700. sideways false
  6701. status open
  6702. \begin_layout Plain Layout
  6703. \align center
  6704. \begin_inset Tabular
  6705. <lyxtabular version="3" rows="7" columns="4">
  6706. <features tabularvalignment="middle">
  6707. <column alignment="center" valignment="top">
  6708. <column alignment="center" valignment="top">
  6709. <column alignment="center" valignment="top">
  6710. <column alignment="center" valignment="top">
  6711. <row>
  6712. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6713. \begin_inset Text
  6714. \begin_layout Plain Layout
  6715. \family roman
  6716. \series medium
  6717. \shape up
  6718. \size normal
  6719. \emph off
  6720. \bar no
  6721. \strikeout off
  6722. \xout off
  6723. \uuline off
  6724. \uwave off
  6725. \noun off
  6726. \color none
  6727. Normalization
  6728. \end_layout
  6729. \end_inset
  6730. </cell>
  6731. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6732. \begin_inset Text
  6733. \begin_layout Plain Layout
  6734. Single-channel?
  6735. \end_layout
  6736. \end_inset
  6737. </cell>
  6738. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6739. \begin_inset Text
  6740. \begin_layout Plain Layout
  6741. \family roman
  6742. \series medium
  6743. \shape up
  6744. \size normal
  6745. \emph off
  6746. \bar no
  6747. \strikeout off
  6748. \xout off
  6749. \uuline off
  6750. \uwave off
  6751. \noun off
  6752. \color none
  6753. Internal Val.
  6754. AUC
  6755. \end_layout
  6756. \end_inset
  6757. </cell>
  6758. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  6759. \begin_inset Text
  6760. \begin_layout Plain Layout
  6761. External Val.
  6762. AUC
  6763. \end_layout
  6764. \end_inset
  6765. </cell>
  6766. </row>
  6767. <row>
  6768. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6769. \begin_inset Text
  6770. \begin_layout Plain Layout
  6771. \family roman
  6772. \series medium
  6773. \shape up
  6774. \size normal
  6775. \emph off
  6776. \bar no
  6777. \strikeout off
  6778. \xout off
  6779. \uuline off
  6780. \uwave off
  6781. \noun off
  6782. \color none
  6783. RMA
  6784. \end_layout
  6785. \end_inset
  6786. </cell>
  6787. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6788. \begin_inset Text
  6789. \begin_layout Plain Layout
  6790. No
  6791. \end_layout
  6792. \end_inset
  6793. </cell>
  6794. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6795. \begin_inset Text
  6796. \begin_layout Plain Layout
  6797. \family roman
  6798. \series medium
  6799. \shape up
  6800. \size normal
  6801. \emph off
  6802. \bar no
  6803. \strikeout off
  6804. \xout off
  6805. \uuline off
  6806. \uwave off
  6807. \noun off
  6808. \color none
  6809. 0.852
  6810. \end_layout
  6811. \end_inset
  6812. </cell>
  6813. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  6814. \begin_inset Text
  6815. \begin_layout Plain Layout
  6816. \family roman
  6817. \series medium
  6818. \shape up
  6819. \size normal
  6820. \emph off
  6821. \bar no
  6822. \strikeout off
  6823. \xout off
  6824. \uuline off
  6825. \uwave off
  6826. \noun off
  6827. \color none
  6828. 0.713
  6829. \end_layout
  6830. \end_inset
  6831. </cell>
  6832. </row>
  6833. <row>
  6834. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6835. \begin_inset Text
  6836. \begin_layout Plain Layout
  6837. \family roman
  6838. \series medium
  6839. \shape up
  6840. \size normal
  6841. \emph off
  6842. \bar no
  6843. \strikeout off
  6844. \xout off
  6845. \uuline off
  6846. \uwave off
  6847. \noun off
  6848. \color none
  6849. dChip
  6850. \end_layout
  6851. \end_inset
  6852. </cell>
  6853. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6854. \begin_inset Text
  6855. \begin_layout Plain Layout
  6856. No
  6857. \end_layout
  6858. \end_inset
  6859. </cell>
  6860. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6861. \begin_inset Text
  6862. \begin_layout Plain Layout
  6863. \family roman
  6864. \series medium
  6865. \shape up
  6866. \size normal
  6867. \emph off
  6868. \bar no
  6869. \strikeout off
  6870. \xout off
  6871. \uuline off
  6872. \uwave off
  6873. \noun off
  6874. \color none
  6875. 0.891
  6876. \end_layout
  6877. \end_inset
  6878. </cell>
  6879. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  6880. \begin_inset Text
  6881. \begin_layout Plain Layout
  6882. \family roman
  6883. \series medium
  6884. \shape up
  6885. \size normal
  6886. \emph off
  6887. \bar no
  6888. \strikeout off
  6889. \xout off
  6890. \uuline off
  6891. \uwave off
  6892. \noun off
  6893. \color none
  6894. 0.657
  6895. \end_layout
  6896. \end_inset
  6897. </cell>
  6898. </row>
  6899. <row>
  6900. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6901. \begin_inset Text
  6902. \begin_layout Plain Layout
  6903. \family roman
  6904. \series medium
  6905. \shape up
  6906. \size normal
  6907. \emph off
  6908. \bar no
  6909. \strikeout off
  6910. \xout off
  6911. \uuline off
  6912. \uwave off
  6913. \noun off
  6914. \color none
  6915. RMA + GRSN
  6916. \end_layout
  6917. \end_inset
  6918. </cell>
  6919. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6920. \begin_inset Text
  6921. \begin_layout Plain Layout
  6922. No
  6923. \end_layout
  6924. \end_inset
  6925. </cell>
  6926. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6927. \begin_inset Text
  6928. \begin_layout Plain Layout
  6929. \family roman
  6930. \series medium
  6931. \shape up
  6932. \size normal
  6933. \emph off
  6934. \bar no
  6935. \strikeout off
  6936. \xout off
  6937. \uuline off
  6938. \uwave off
  6939. \noun off
  6940. \color none
  6941. 0.816
  6942. \end_layout
  6943. \end_inset
  6944. </cell>
  6945. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  6946. \begin_inset Text
  6947. \begin_layout Plain Layout
  6948. \family roman
  6949. \series medium
  6950. \shape up
  6951. \size normal
  6952. \emph off
  6953. \bar no
  6954. \strikeout off
  6955. \xout off
  6956. \uuline off
  6957. \uwave off
  6958. \noun off
  6959. \color none
  6960. 0.750
  6961. \end_layout
  6962. \end_inset
  6963. </cell>
  6964. </row>
  6965. <row>
  6966. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6967. \begin_inset Text
  6968. \begin_layout Plain Layout
  6969. \family roman
  6970. \series medium
  6971. \shape up
  6972. \size normal
  6973. \emph off
  6974. \bar no
  6975. \strikeout off
  6976. \xout off
  6977. \uuline off
  6978. \uwave off
  6979. \noun off
  6980. \color none
  6981. dChip + GRSN
  6982. \end_layout
  6983. \end_inset
  6984. </cell>
  6985. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6986. \begin_inset Text
  6987. \begin_layout Plain Layout
  6988. No
  6989. \end_layout
  6990. \end_inset
  6991. </cell>
  6992. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6993. \begin_inset Text
  6994. \begin_layout Plain Layout
  6995. \family roman
  6996. \series medium
  6997. \shape up
  6998. \size normal
  6999. \emph off
  7000. \bar no
  7001. \strikeout off
  7002. \xout off
  7003. \uuline off
  7004. \uwave off
  7005. \noun off
  7006. \color none
  7007. 0.875
  7008. \end_layout
  7009. \end_inset
  7010. </cell>
  7011. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  7012. \begin_inset Text
  7013. \begin_layout Plain Layout
  7014. \family roman
  7015. \series medium
  7016. \shape up
  7017. \size normal
  7018. \emph off
  7019. \bar no
  7020. \strikeout off
  7021. \xout off
  7022. \uuline off
  7023. \uwave off
  7024. \noun off
  7025. \color none
  7026. 0.642
  7027. \end_layout
  7028. \end_inset
  7029. </cell>
  7030. </row>
  7031. <row>
  7032. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7033. \begin_inset Text
  7034. \begin_layout Plain Layout
  7035. \family roman
  7036. \series medium
  7037. \shape up
  7038. \size normal
  7039. \emph off
  7040. \bar no
  7041. \strikeout off
  7042. \xout off
  7043. \uuline off
  7044. \uwave off
  7045. \noun off
  7046. \color none
  7047. fRMA
  7048. \end_layout
  7049. \end_inset
  7050. </cell>
  7051. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7052. \begin_inset Text
  7053. \begin_layout Plain Layout
  7054. Yes
  7055. \end_layout
  7056. \end_inset
  7057. </cell>
  7058. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7059. \begin_inset Text
  7060. \begin_layout Plain Layout
  7061. \family roman
  7062. \series medium
  7063. \shape up
  7064. \size normal
  7065. \emph off
  7066. \bar no
  7067. \strikeout off
  7068. \xout off
  7069. \uuline off
  7070. \uwave off
  7071. \noun off
  7072. \color none
  7073. 0.863
  7074. \end_layout
  7075. \end_inset
  7076. </cell>
  7077. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  7078. \begin_inset Text
  7079. \begin_layout Plain Layout
  7080. \family roman
  7081. \series medium
  7082. \shape up
  7083. \size normal
  7084. \emph off
  7085. \bar no
  7086. \strikeout off
  7087. \xout off
  7088. \uuline off
  7089. \uwave off
  7090. \noun off
  7091. \color none
  7092. 0.718
  7093. \end_layout
  7094. \end_inset
  7095. </cell>
  7096. </row>
  7097. <row>
  7098. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  7099. \begin_inset Text
  7100. \begin_layout Plain Layout
  7101. \family roman
  7102. \series medium
  7103. \shape up
  7104. \size normal
  7105. \emph off
  7106. \bar no
  7107. \strikeout off
  7108. \xout off
  7109. \uuline off
  7110. \uwave off
  7111. \noun off
  7112. \color none
  7113. SCAN
  7114. \end_layout
  7115. \end_inset
  7116. </cell>
  7117. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  7118. \begin_inset Text
  7119. \begin_layout Plain Layout
  7120. Yes
  7121. \end_layout
  7122. \end_inset
  7123. </cell>
  7124. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  7125. \begin_inset Text
  7126. \begin_layout Plain Layout
  7127. \family roman
  7128. \series medium
  7129. \shape up
  7130. \size normal
  7131. \emph off
  7132. \bar no
  7133. \strikeout off
  7134. \xout off
  7135. \uuline off
  7136. \uwave off
  7137. \noun off
  7138. \color none
  7139. 0.853
  7140. \end_layout
  7141. \end_inset
  7142. </cell>
  7143. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  7144. \begin_inset Text
  7145. \begin_layout Plain Layout
  7146. \family roman
  7147. \series medium
  7148. \shape up
  7149. \size normal
  7150. \emph off
  7151. \bar no
  7152. \strikeout off
  7153. \xout off
  7154. \uuline off
  7155. \uwave off
  7156. \noun off
  7157. \color none
  7158. 0.689
  7159. \end_layout
  7160. \end_inset
  7161. </cell>
  7162. </row>
  7163. </lyxtabular>
  7164. \end_inset
  7165. \end_layout
  7166. \begin_layout Plain Layout
  7167. \begin_inset Caption Standard
  7168. \begin_layout Plain Layout
  7169. \begin_inset CommandInset label
  7170. LatexCommand label
  7171. name "tab:AUC-PAM"
  7172. \end_inset
  7173. \series bold
  7174. ROC curve AUC values for internal and external validation with 6 different
  7175. normalization strategies.
  7176. \series default
  7177. These AUC values correspond to the ROC curves in Figure
  7178. \begin_inset CommandInset ref
  7179. LatexCommand ref
  7180. reference "fig:ROC-PAM-main"
  7181. plural "false"
  7182. caps "false"
  7183. noprefix "false"
  7184. \end_inset
  7185. .
  7186. \end_layout
  7187. \end_inset
  7188. \end_layout
  7189. \end_inset
  7190. \end_layout
  7191. \begin_layout Standard
  7192. For internal validation, the 6 methods' AUC values ranged from 0.816 to 0.891,
  7193. as shown in Table
  7194. \begin_inset CommandInset ref
  7195. LatexCommand ref
  7196. reference "tab:AUC-PAM"
  7197. plural "false"
  7198. caps "false"
  7199. noprefix "false"
  7200. \end_inset
  7201. .
  7202. Among the non-single-channel normalizations, dChip outperformed RMA, while
  7203. GRSN reduced the AUC values for both dChip and RMA.
  7204. Both single-channel methods, fRMA and SCAN, slightly outperformed RMA,
  7205. with fRMA ahead of SCAN.
  7206. However, the difference between RMA and fRMA is still quite small.
  7207. Figure
  7208. \begin_inset CommandInset ref
  7209. LatexCommand ref
  7210. reference "fig:ROC-PAM-int"
  7211. plural "false"
  7212. caps "false"
  7213. noprefix "false"
  7214. \end_inset
  7215. shows that the ROC curves for RMA, dChip, and fRMA look very similar and
  7216. relatively smooth, while both GRSN curves and the curve for SCAN have a
  7217. more jagged appearance.
  7218. \end_layout
  7219. \begin_layout Standard
  7220. For external validation, as expected, all the AUC values are lower than
  7221. the internal validations, ranging from 0.642 to 0.750 (Table
  7222. \begin_inset CommandInset ref
  7223. LatexCommand ref
  7224. reference "tab:AUC-PAM"
  7225. plural "false"
  7226. caps "false"
  7227. noprefix "false"
  7228. \end_inset
  7229. ).
  7230. With or without GRSN, RMA shows its dominance over dChip in this more challengi
  7231. ng test.
  7232. Unlike in the internal validation, GRSN actually improves the classifier
  7233. performance for RMA, although it does not for dChip.
  7234. Once again, both single-channel methods perform about on par with RMA,
  7235. with fRMA performing slightly better and SCAN performing a bit worse.
  7236. Figure
  7237. \begin_inset CommandInset ref
  7238. LatexCommand ref
  7239. reference "fig:ROC-PAM-ext"
  7240. plural "false"
  7241. caps "false"
  7242. noprefix "false"
  7243. \end_inset
  7244. shows the ROC curves for the external validation test.
  7245. As expected, none of them are as clean-looking as the internal validation
  7246. ROC curves.
  7247. The curves for RMA, RMA+GRSN, and fRMA all look similar, while the other
  7248. curves look more divergent.
  7249. \end_layout
  7250. \begin_layout Subsection
  7251. fRMA with custom-generated vectors enables single-channel normalization
  7252. on hthgu133pluspm platform
  7253. \end_layout
  7254. \begin_layout Standard
  7255. \begin_inset Float figure
  7256. wide false
  7257. sideways false
  7258. status open
  7259. \begin_layout Plain Layout
  7260. \align center
  7261. \begin_inset Float figure
  7262. placement tb
  7263. wide false
  7264. sideways false
  7265. status collapsed
  7266. \begin_layout Plain Layout
  7267. \align center
  7268. \begin_inset Graphics
  7269. filename graphics/frma-pax-bx/batchsize_batches.pdf
  7270. lyxscale 50
  7271. height 35theight%
  7272. groupId frmatools-subfig
  7273. \end_inset
  7274. \end_layout
  7275. \begin_layout Plain Layout
  7276. \begin_inset Caption Standard
  7277. \begin_layout Plain Layout
  7278. \begin_inset CommandInset label
  7279. LatexCommand label
  7280. name "fig:batch-size-batches"
  7281. \end_inset
  7282. \series bold
  7283. Number of batches usable in fRMA probe weight learning as a function of
  7284. batch size.
  7285. \end_layout
  7286. \end_inset
  7287. \end_layout
  7288. \end_inset
  7289. \end_layout
  7290. \begin_layout Plain Layout
  7291. \align center
  7292. \begin_inset Float figure
  7293. placement tb
  7294. wide false
  7295. sideways false
  7296. status collapsed
  7297. \begin_layout Plain Layout
  7298. \align center
  7299. \begin_inset Graphics
  7300. filename graphics/frma-pax-bx/batchsize_samples.pdf
  7301. lyxscale 50
  7302. height 35theight%
  7303. groupId frmatools-subfig
  7304. \end_inset
  7305. \end_layout
  7306. \begin_layout Plain Layout
  7307. \begin_inset Caption Standard
  7308. \begin_layout Plain Layout
  7309. \begin_inset CommandInset label
  7310. LatexCommand label
  7311. name "fig:batch-size-samples"
  7312. \end_inset
  7313. \series bold
  7314. Number of samples usable in fRMA probe weight learning as a function of
  7315. batch size.
  7316. \end_layout
  7317. \end_inset
  7318. \end_layout
  7319. \end_inset
  7320. \end_layout
  7321. \begin_layout Plain Layout
  7322. \begin_inset Caption Standard
  7323. \begin_layout Plain Layout
  7324. \series bold
  7325. \begin_inset CommandInset label
  7326. LatexCommand label
  7327. name "fig:frmatools-batch-size"
  7328. \end_inset
  7329. Effect of batch size selection on number of batches and number of samples
  7330. included in fRMA probe weight learning.
  7331. \series default
  7332. For batch sizes ranging from 3 to 15, the number of batches (a) and samples
  7333. (b) included in probe weight training were plotted for biopsy (BX) and
  7334. blood (PAX) samples.
  7335. The selected batch size, 5, is marked with a dotted vertical line.
  7336. \end_layout
  7337. \end_inset
  7338. \end_layout
  7339. \end_inset
  7340. \end_layout
  7341. \begin_layout Standard
  7342. In order to enable use of fRMA to normalize hthgu133pluspm, a custom set
  7343. of fRMA vectors was created.
  7344. First, an appropriate batch size was chosen by looking at the number of
  7345. batches and number of samples included as a function of batch size (Figure
  7346. \begin_inset CommandInset ref
  7347. LatexCommand ref
  7348. reference "fig:frmatools-batch-size"
  7349. plural "false"
  7350. caps "false"
  7351. noprefix "false"
  7352. \end_inset
  7353. ).
  7354. For a given batch size, all batches with fewer samples that the chosen
  7355. size must be ignored during training, while larger batches must be randomly
  7356. downsampled to the chosen size.
  7357. Hence, the number of samples included for a given batch size equals the
  7358. batch size times the number of batches with at least that many samples.
  7359. From Figure
  7360. \begin_inset CommandInset ref
  7361. LatexCommand ref
  7362. reference "fig:batch-size-samples"
  7363. plural "false"
  7364. caps "false"
  7365. noprefix "false"
  7366. \end_inset
  7367. , it is apparent that that a batch size of 8 maximizes the number of samples
  7368. included in training.
  7369. Increasing the batch size beyond this causes too many smaller batches to
  7370. be excluded, reducing the total number of samples for both tissue types.
  7371. However, a batch size of 8 is not necessarily optimal.
  7372. The article introducing frmaTools concluded that it was highly advantageous
  7373. to use a smaller batch size in order to include more batches, even at the
  7374. expense of including fewer total samples in training
  7375. \begin_inset CommandInset citation
  7376. LatexCommand cite
  7377. key "McCall2011"
  7378. literal "false"
  7379. \end_inset
  7380. .
  7381. To strike an appropriate balance between more batches and more samples,
  7382. a batch size of 5 was chosen.
  7383. For both blood and biopsy samples, this increased the number of batches
  7384. included by 10, with only a modest reduction in the number of samples compared
  7385. to a batch size of 8.
  7386. With a batch size of 5, 26 batches of biopsy samples and 46 batches of
  7387. blood samples were available.
  7388. \end_layout
  7389. \begin_layout Standard
  7390. \begin_inset Float figure
  7391. wide false
  7392. sideways false
  7393. status collapsed
  7394. \begin_layout Plain Layout
  7395. \begin_inset Float figure
  7396. wide false
  7397. sideways false
  7398. status open
  7399. \begin_layout Plain Layout
  7400. \align center
  7401. \begin_inset Graphics
  7402. filename graphics/frma-pax-bx/M-BX-violin.pdf
  7403. lyxscale 40
  7404. width 45col%
  7405. groupId m-violin
  7406. \end_inset
  7407. \end_layout
  7408. \begin_layout Plain Layout
  7409. \begin_inset Caption Standard
  7410. \begin_layout Plain Layout
  7411. \begin_inset CommandInset label
  7412. LatexCommand label
  7413. name "fig:m-bx-violin"
  7414. \end_inset
  7415. \series bold
  7416. Violin plot of inter-normalization log ratios for biopsy samples.
  7417. \end_layout
  7418. \end_inset
  7419. \end_layout
  7420. \end_inset
  7421. \begin_inset space \hfill{}
  7422. \end_inset
  7423. \begin_inset Float figure
  7424. wide false
  7425. sideways false
  7426. status collapsed
  7427. \begin_layout Plain Layout
  7428. \align center
  7429. \begin_inset Graphics
  7430. filename graphics/frma-pax-bx/M-PAX-violin.pdf
  7431. lyxscale 40
  7432. width 45col%
  7433. groupId m-violin
  7434. \end_inset
  7435. \end_layout
  7436. \begin_layout Plain Layout
  7437. \begin_inset Caption Standard
  7438. \begin_layout Plain Layout
  7439. \begin_inset CommandInset label
  7440. LatexCommand label
  7441. name "fig:m-pax-violin"
  7442. \end_inset
  7443. \series bold
  7444. Violin plot of inter-normalization log ratios for blood samples.
  7445. \end_layout
  7446. \end_inset
  7447. \end_layout
  7448. \end_inset
  7449. \end_layout
  7450. \begin_layout Plain Layout
  7451. \begin_inset Caption Standard
  7452. \begin_layout Plain Layout
  7453. \begin_inset CommandInset label
  7454. LatexCommand label
  7455. name "fig:frma-violin"
  7456. \end_inset
  7457. \series bold
  7458. Violin plot of log ratios between normalizations for 20 biopsy samples.
  7459. \series default
  7460. Each of 20 randomly selected samples was normalized with RMA and with 5
  7461. different sets of fRMA vectors.
  7462. The distribution of log ratios between normalized expression values, aggregated
  7463. across all 20 arrays, was plotted for each pair of normalizations.
  7464. \end_layout
  7465. \end_inset
  7466. \end_layout
  7467. \end_inset
  7468. \end_layout
  7469. \begin_layout Standard
  7470. Since fRMA training requires equal-size batches, larger batches are downsampled
  7471. randomly.
  7472. This introduces a nondeterministic step in the generation of normalization
  7473. vectors.
  7474. To show that this randomness does not substantially change the outcome,
  7475. the random downsampling and subsequent vector learning was repeated 5 times,
  7476. with a different random seed each time.
  7477. 20 samples were selected at random as a test set and normalized with each
  7478. of the 5 sets of fRMA normalization vectors as well as ordinary RMA, and
  7479. the normalized expression values were compared across normalizations.
  7480. Figure
  7481. \begin_inset CommandInset ref
  7482. LatexCommand ref
  7483. reference "fig:m-bx-violin"
  7484. plural "false"
  7485. caps "false"
  7486. noprefix "false"
  7487. \end_inset
  7488. shows a summary of these comparisons for biopsy samples.
  7489. Comparing RMA to each of the 5 fRMA normalizations, the distribution of
  7490. log ratios is somewhat wide, indicating that the normalizations disagree
  7491. on the expression values of a fair number of probe sets.
  7492. In contrast, comparisons of fRMA against fRMA, the vast mojority of probe
  7493. sets have very small log ratios, indicating a very high agreement between
  7494. the normalized values generated by the two normalizations.
  7495. This shows that the fRMA normalization's behavior is not very sensitive
  7496. to the random downsampling of larger batches during training.
  7497. \end_layout
  7498. \begin_layout Standard
  7499. \begin_inset Float figure
  7500. wide false
  7501. sideways false
  7502. status open
  7503. \begin_layout Plain Layout
  7504. \align center
  7505. \begin_inset Float figure
  7506. wide false
  7507. sideways false
  7508. status collapsed
  7509. \begin_layout Plain Layout
  7510. \align center
  7511. \begin_inset Graphics
  7512. filename graphics/frma-pax-bx/MA-BX-RMA.fRMA-RASTER.png
  7513. lyxscale 10
  7514. width 45col%
  7515. groupId ma-frma
  7516. \end_inset
  7517. \end_layout
  7518. \begin_layout Plain Layout
  7519. \begin_inset Caption Standard
  7520. \begin_layout Plain Layout
  7521. \begin_inset CommandInset label
  7522. LatexCommand label
  7523. name "fig:ma-bx-rma-frma"
  7524. \end_inset
  7525. RMA vs.
  7526. fRMA for biopsy samples.
  7527. \end_layout
  7528. \end_inset
  7529. \end_layout
  7530. \end_inset
  7531. \begin_inset space \hfill{}
  7532. \end_inset
  7533. \begin_inset Float figure
  7534. wide false
  7535. sideways false
  7536. status collapsed
  7537. \begin_layout Plain Layout
  7538. \align center
  7539. \begin_inset Graphics
  7540. filename graphics/frma-pax-bx/MA-BX-fRMA.fRMA-RASTER.png
  7541. lyxscale 10
  7542. width 45col%
  7543. groupId ma-frma
  7544. \end_inset
  7545. \end_layout
  7546. \begin_layout Plain Layout
  7547. \begin_inset Caption Standard
  7548. \begin_layout Plain Layout
  7549. \begin_inset CommandInset label
  7550. LatexCommand label
  7551. name "fig:ma-bx-frma-frma"
  7552. \end_inset
  7553. fRMA vs fRMA for biopsy samples.
  7554. \end_layout
  7555. \end_inset
  7556. \end_layout
  7557. \end_inset
  7558. \end_layout
  7559. \begin_layout Plain Layout
  7560. \align center
  7561. \begin_inset Float figure
  7562. wide false
  7563. sideways false
  7564. status collapsed
  7565. \begin_layout Plain Layout
  7566. \align center
  7567. \begin_inset Graphics
  7568. filename graphics/frma-pax-bx/MA-PAX-RMA.fRMA-RASTER.png
  7569. lyxscale 10
  7570. width 45col%
  7571. groupId ma-frma
  7572. \end_inset
  7573. \end_layout
  7574. \begin_layout Plain Layout
  7575. \begin_inset Caption Standard
  7576. \begin_layout Plain Layout
  7577. \begin_inset CommandInset label
  7578. LatexCommand label
  7579. name "fig:MA-PAX-rma-frma"
  7580. \end_inset
  7581. RMA vs.
  7582. fRMA for blood samples.
  7583. \end_layout
  7584. \end_inset
  7585. \end_layout
  7586. \end_inset
  7587. \begin_inset space \hfill{}
  7588. \end_inset
  7589. \begin_inset Float figure
  7590. wide false
  7591. sideways false
  7592. status collapsed
  7593. \begin_layout Plain Layout
  7594. \align center
  7595. \begin_inset Graphics
  7596. filename graphics/frma-pax-bx/MA-PAX-fRMA.fRMA-RASTER.png
  7597. lyxscale 10
  7598. width 45col%
  7599. groupId ma-frma
  7600. \end_inset
  7601. \end_layout
  7602. \begin_layout Plain Layout
  7603. \begin_inset Caption Standard
  7604. \begin_layout Plain Layout
  7605. \begin_inset CommandInset label
  7606. LatexCommand label
  7607. name "fig:MA-PAX-frma-frma"
  7608. \end_inset
  7609. fRMA vs fRMA for blood samples.
  7610. \end_layout
  7611. \end_inset
  7612. \end_layout
  7613. \end_inset
  7614. \end_layout
  7615. \begin_layout Plain Layout
  7616. \begin_inset Caption Standard
  7617. \begin_layout Plain Layout
  7618. \series bold
  7619. \begin_inset CommandInset label
  7620. LatexCommand label
  7621. name "fig:Representative-MA-plots"
  7622. \end_inset
  7623. Representative MA plots comparing RMA and custom fRMA normalizations.
  7624. \series default
  7625. For each plot, 20 samples were normalized using 2 different normalizations,
  7626. and then averages (A) and log ratios (M) were plotted between the two different
  7627. normalizations for every probe.
  7628. For the
  7629. \begin_inset Quotes eld
  7630. \end_inset
  7631. fRMA vs fRMA
  7632. \begin_inset Quotes erd
  7633. \end_inset
  7634. plots (b & d), two different fRMA normalizations using vectors from two
  7635. independent batch samplings were compared.
  7636. Density of points is represented by blue shading, and individual outlier
  7637. points are plotted.
  7638. \end_layout
  7639. \end_inset
  7640. \end_layout
  7641. \end_inset
  7642. \end_layout
  7643. \begin_layout Standard
  7644. Figure
  7645. \begin_inset CommandInset ref
  7646. LatexCommand ref
  7647. reference "fig:ma-bx-rma-frma"
  7648. plural "false"
  7649. caps "false"
  7650. noprefix "false"
  7651. \end_inset
  7652. shows an MA plot of the RMA-normalized values against the fRMA-normalized
  7653. values for the same probe sets and arrays, corresponding to the first row
  7654. of Figure
  7655. \begin_inset CommandInset ref
  7656. LatexCommand ref
  7657. reference "fig:m-bx-violin"
  7658. plural "false"
  7659. caps "false"
  7660. noprefix "false"
  7661. \end_inset
  7662. .
  7663. This MA plot shows that not only is there a wide distribution of M-values,
  7664. but the trend of M-values is dependent on the average normalized intensity.
  7665. This is expected, since the overall trend represents the differences in
  7666. the quantile normalization step.
  7667. When running RMA, only the quantiles for these specific 20 arrays are used,
  7668. while for fRMA the quantile distribution is taking from all arrays used
  7669. in training.
  7670. Figure
  7671. \begin_inset CommandInset ref
  7672. LatexCommand ref
  7673. reference "fig:ma-bx-frma-frma"
  7674. plural "false"
  7675. caps "false"
  7676. noprefix "false"
  7677. \end_inset
  7678. shows a similar MA plot comparing 2 different fRMA normalizations, correspondin
  7679. g to the 6th row of Figure
  7680. \begin_inset CommandInset ref
  7681. LatexCommand ref
  7682. reference "fig:m-bx-violin"
  7683. plural "false"
  7684. caps "false"
  7685. noprefix "false"
  7686. \end_inset
  7687. .
  7688. The MA plot is very tightly centered around zero with no visible trend.
  7689. Figures
  7690. \begin_inset CommandInset ref
  7691. LatexCommand ref
  7692. reference "fig:m-pax-violin"
  7693. plural "false"
  7694. caps "false"
  7695. noprefix "false"
  7696. \end_inset
  7697. ,
  7698. \begin_inset CommandInset ref
  7699. LatexCommand ref
  7700. reference "fig:MA-PAX-rma-frma"
  7701. plural "false"
  7702. caps "false"
  7703. noprefix "false"
  7704. \end_inset
  7705. , and
  7706. \begin_inset CommandInset ref
  7707. LatexCommand ref
  7708. reference "fig:ma-bx-frma-frma"
  7709. plural "false"
  7710. caps "false"
  7711. noprefix "false"
  7712. \end_inset
  7713. show exactly the same information for the blood samples, once again comparing
  7714. the normalized expression values between normalizations for all probe sets
  7715. across 20 randomly selected test arrays.
  7716. Once again, there is a wider distribution of log ratios between RMA-normalized
  7717. values and fRMA-normalized, and a much tighter distribution when comparing
  7718. different fRMA normalizations to each other, indicating that the fRMA training
  7719. process is robust to random batch downsampling for the blood samples as
  7720. well.
  7721. \end_layout
  7722. \begin_layout Subsection
  7723. SVA, voom, and array weights improve model fit for methylation array data
  7724. \end_layout
  7725. \begin_layout Standard
  7726. \begin_inset ERT
  7727. status open
  7728. \begin_layout Plain Layout
  7729. \backslash
  7730. afterpage{
  7731. \end_layout
  7732. \begin_layout Plain Layout
  7733. \backslash
  7734. begin{landscape}
  7735. \end_layout
  7736. \end_inset
  7737. \end_layout
  7738. \begin_layout Standard
  7739. \begin_inset Float figure
  7740. wide false
  7741. sideways false
  7742. status open
  7743. \begin_layout Plain Layout
  7744. \begin_inset Flex TODO Note (inline)
  7745. status open
  7746. \begin_layout Plain Layout
  7747. Fix axis labels:
  7748. \begin_inset Quotes eld
  7749. \end_inset
  7750. log2 M-value
  7751. \begin_inset Quotes erd
  7752. \end_inset
  7753. is redundant because M-values are already log scale
  7754. \end_layout
  7755. \end_inset
  7756. \end_layout
  7757. \begin_layout Plain Layout
  7758. \begin_inset Float figure
  7759. wide false
  7760. sideways false
  7761. status collapsed
  7762. \begin_layout Plain Layout
  7763. \align center
  7764. \begin_inset Graphics
  7765. filename graphics/methylvoom/unadj.dupcor/meanvar-trends-PAGE1-CROP-RASTER.png
  7766. lyxscale 15
  7767. width 30col%
  7768. groupId voomaw-subfig
  7769. \end_inset
  7770. \end_layout
  7771. \begin_layout Plain Layout
  7772. \begin_inset Caption Standard
  7773. \begin_layout Plain Layout
  7774. \begin_inset CommandInset label
  7775. LatexCommand label
  7776. name "fig:meanvar-basic"
  7777. \end_inset
  7778. Mean-variance trend for analysis A.
  7779. \end_layout
  7780. \end_inset
  7781. \end_layout
  7782. \end_inset
  7783. \begin_inset space \hfill{}
  7784. \end_inset
  7785. \begin_inset Float figure
  7786. wide false
  7787. sideways false
  7788. status collapsed
  7789. \begin_layout Plain Layout
  7790. \align center
  7791. \begin_inset Graphics
  7792. filename graphics/methylvoom/unadj.dupcor.sva.aw/meanvar-trends-PAGE1-CROP-RASTER.png
  7793. lyxscale 15
  7794. width 30col%
  7795. groupId voomaw-subfig
  7796. \end_inset
  7797. \end_layout
  7798. \begin_layout Plain Layout
  7799. \begin_inset Caption Standard
  7800. \begin_layout Plain Layout
  7801. \begin_inset CommandInset label
  7802. LatexCommand label
  7803. name "fig:meanvar-sva-aw"
  7804. \end_inset
  7805. Mean-variance trend for analysis B.
  7806. \end_layout
  7807. \end_inset
  7808. \end_layout
  7809. \end_inset
  7810. \begin_inset space \hfill{}
  7811. \end_inset
  7812. \begin_inset Float figure
  7813. wide false
  7814. sideways false
  7815. status collapsed
  7816. \begin_layout Plain Layout
  7817. \align center
  7818. \begin_inset Graphics
  7819. filename graphics/methylvoom/unadj.dupcor.sva.voomaw/meanvar-trends-PAGE2-CROP-RASTER.png
  7820. lyxscale 15
  7821. width 30col%
  7822. groupId voomaw-subfig
  7823. \end_inset
  7824. \end_layout
  7825. \begin_layout Plain Layout
  7826. \begin_inset Caption Standard
  7827. \begin_layout Plain Layout
  7828. \begin_inset CommandInset label
  7829. LatexCommand label
  7830. name "fig:meanvar-sva-voomaw"
  7831. \end_inset
  7832. Mean-variance trend after voom modeling in analysis C.
  7833. \end_layout
  7834. \end_inset
  7835. \end_layout
  7836. \end_inset
  7837. \end_layout
  7838. \begin_layout Plain Layout
  7839. \begin_inset Caption Standard
  7840. \begin_layout Plain Layout
  7841. \series bold
  7842. Mean-variance trend modeling in methylation array data.
  7843. \series default
  7844. The estimated log2(standard deviation) for each probe is plotted against
  7845. the probe's average M-value across all samples as a black point, with some
  7846. transparency to make overplotting more visible, since there are about 450,000
  7847. points.
  7848. Density of points is also indicated by the dark blue contour lines.
  7849. The prior variance trend estimated by eBayes is shown in light blue, while
  7850. the lowess trend of the points is shown in red.
  7851. \end_layout
  7852. \end_inset
  7853. \end_layout
  7854. \end_inset
  7855. \end_layout
  7856. \begin_layout Standard
  7857. \begin_inset ERT
  7858. status open
  7859. \begin_layout Plain Layout
  7860. \backslash
  7861. end{landscape}
  7862. \end_layout
  7863. \begin_layout Plain Layout
  7864. }
  7865. \end_layout
  7866. \end_inset
  7867. \end_layout
  7868. \begin_layout Standard
  7869. Figure
  7870. \begin_inset CommandInset ref
  7871. LatexCommand ref
  7872. reference "fig:meanvar-basic"
  7873. plural "false"
  7874. caps "false"
  7875. noprefix "false"
  7876. \end_inset
  7877. shows the relationship between the mean M-value and the standard deviation
  7878. calculated for each probe in the methylation array data set.
  7879. A few features of the data are apparent.
  7880. First, the data are very strongly bimodal, with peaks in the density around
  7881. M-values of +4 and -4.
  7882. These modes correspond to methylation sites that are nearly 100% methylated
  7883. and nearly 100% unmethylated, respectively.
  7884. The strong bomodality indicates that a majority of probes interrogate sites
  7885. that fall into one of these two categories.
  7886. The points in between these modes represent sites that are either partially
  7887. methylated in many samples, or are fully methylated in some samples and
  7888. fully unmethylated in other samples, or some combination.
  7889. The next visible feature of the data is the W-shaped variance trend.
  7890. The upticks in the variance trend on either side are expected, based on
  7891. the sigmoid transformation exaggerating small differences at extreme M-values
  7892. (Figure
  7893. \begin_inset CommandInset ref
  7894. LatexCommand ref
  7895. reference "fig:Sigmoid-beta-m-mapping"
  7896. plural "false"
  7897. caps "false"
  7898. noprefix "false"
  7899. \end_inset
  7900. ).
  7901. However, the uptick in the center is interesting: it indicates that sites
  7902. that are not constitutitively methylated or unmethylated have a higher
  7903. variance.
  7904. This could be a genuine biological effect, or it could be spurious noise
  7905. that is only observable at sites with varying methylation.
  7906. \end_layout
  7907. \begin_layout Standard
  7908. In Figure
  7909. \begin_inset CommandInset ref
  7910. LatexCommand ref
  7911. reference "fig:meanvar-sva-aw"
  7912. plural "false"
  7913. caps "false"
  7914. noprefix "false"
  7915. \end_inset
  7916. , we see the mean-variance trend for the same methylation array data, this
  7917. time with surrogate variables and sample quality weights estimated from
  7918. the data and included in the model.
  7919. As expected, the overall average variance is smaller, since the surrogate
  7920. variables account for some of the variance.
  7921. In addition, the uptick in variance in the middle of the M-value range
  7922. has disappeared, turning the W shape into a wide U shape.
  7923. This indicates that the excess variance in the probes with intermediate
  7924. M-values was explained by systematic variations not correlated with known
  7925. covariates, and these variations were modeled by the surrogate variables.
  7926. The result is a nearly flat variance trend for the entire intermediate
  7927. M-value range from about -3 to +3.
  7928. Note that this corresponds closely to the range within which the M-value
  7929. transformation shown in Figure
  7930. \begin_inset CommandInset ref
  7931. LatexCommand ref
  7932. reference "fig:Sigmoid-beta-m-mapping"
  7933. plural "false"
  7934. caps "false"
  7935. noprefix "false"
  7936. \end_inset
  7937. is nearly linear.
  7938. In contrast, the excess variance at the extremes (greater than +3 and less
  7939. than -3) was not
  7940. \begin_inset Quotes eld
  7941. \end_inset
  7942. absorbed
  7943. \begin_inset Quotes erd
  7944. \end_inset
  7945. by the surrogate variables and remains in the plot, indicating that this
  7946. variation has no systematic component: probes with extreme M-values are
  7947. uniformly more variable across all samples, as expected.
  7948. \end_layout
  7949. \begin_layout Standard
  7950. Figure
  7951. \begin_inset CommandInset ref
  7952. LatexCommand ref
  7953. reference "fig:meanvar-sva-voomaw"
  7954. plural "false"
  7955. caps "false"
  7956. noprefix "false"
  7957. \end_inset
  7958. shows the mean-variance trend after fitting the model with the observation
  7959. weights assigned by voom based on the mean-variance trend shown in Figure
  7960. \begin_inset CommandInset ref
  7961. LatexCommand ref
  7962. reference "fig:meanvar-sva-aw"
  7963. plural "false"
  7964. caps "false"
  7965. noprefix "false"
  7966. \end_inset
  7967. .
  7968. As expected, the weights exactly counteract the trend in the data, resulting
  7969. in a nearly flat trend centered vertically at 1 (i.e.
  7970. 0 on the log scale).
  7971. This shows that the observations with extreme M-values have been appropriately
  7972. down-weighted to account for the fact that the noise in those observations
  7973. has been amplified by the non-linear M-value transformation.
  7974. In turn, this gives relatively more weight to observervations in the middle
  7975. region, which are more likely to correspond to probes measuring interesting
  7976. biology (not constitutively methylated or unmethylated).
  7977. \end_layout
  7978. \begin_layout Standard
  7979. \begin_inset Float table
  7980. wide false
  7981. sideways false
  7982. status open
  7983. \begin_layout Plain Layout
  7984. \align center
  7985. \begin_inset Tabular
  7986. <lyxtabular version="3" rows="5" columns="3">
  7987. <features tabularvalignment="middle">
  7988. <column alignment="center" valignment="top">
  7989. <column alignment="center" valignment="top">
  7990. <column alignment="center" valignment="top">
  7991. <row>
  7992. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  7993. \begin_inset Text
  7994. \begin_layout Plain Layout
  7995. Covariate
  7996. \end_layout
  7997. \end_inset
  7998. </cell>
  7999. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8000. \begin_inset Text
  8001. \begin_layout Plain Layout
  8002. Test used
  8003. \end_layout
  8004. \end_inset
  8005. </cell>
  8006. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  8007. \begin_inset Text
  8008. \begin_layout Plain Layout
  8009. p-value
  8010. \end_layout
  8011. \end_inset
  8012. </cell>
  8013. </row>
  8014. <row>
  8015. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8016. \begin_inset Text
  8017. \begin_layout Plain Layout
  8018. Transplant Status
  8019. \end_layout
  8020. \end_inset
  8021. </cell>
  8022. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8023. \begin_inset Text
  8024. \begin_layout Plain Layout
  8025. F-test
  8026. \end_layout
  8027. \end_inset
  8028. </cell>
  8029. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8030. \begin_inset Text
  8031. \begin_layout Plain Layout
  8032. 0.404
  8033. \end_layout
  8034. \end_inset
  8035. </cell>
  8036. </row>
  8037. <row>
  8038. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8039. \begin_inset Text
  8040. \begin_layout Plain Layout
  8041. Diabetes Diagnosis
  8042. \end_layout
  8043. \end_inset
  8044. </cell>
  8045. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8046. \begin_inset Text
  8047. \begin_layout Plain Layout
  8048. \emph on
  8049. t
  8050. \emph default
  8051. -test
  8052. \end_layout
  8053. \end_inset
  8054. </cell>
  8055. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8056. \begin_inset Text
  8057. \begin_layout Plain Layout
  8058. 0.00106
  8059. \end_layout
  8060. \end_inset
  8061. </cell>
  8062. </row>
  8063. <row>
  8064. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8065. \begin_inset Text
  8066. \begin_layout Plain Layout
  8067. Sex
  8068. \end_layout
  8069. \end_inset
  8070. </cell>
  8071. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8072. \begin_inset Text
  8073. \begin_layout Plain Layout
  8074. \emph on
  8075. t
  8076. \emph default
  8077. -test
  8078. \end_layout
  8079. \end_inset
  8080. </cell>
  8081. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8082. \begin_inset Text
  8083. \begin_layout Plain Layout
  8084. 0.148
  8085. \end_layout
  8086. \end_inset
  8087. </cell>
  8088. </row>
  8089. <row>
  8090. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8091. \begin_inset Text
  8092. \begin_layout Plain Layout
  8093. Age
  8094. \end_layout
  8095. \end_inset
  8096. </cell>
  8097. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8098. \begin_inset Text
  8099. \begin_layout Plain Layout
  8100. linear regression
  8101. \end_layout
  8102. \end_inset
  8103. </cell>
  8104. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  8105. \begin_inset Text
  8106. \begin_layout Plain Layout
  8107. 0.212
  8108. \end_layout
  8109. \end_inset
  8110. </cell>
  8111. </row>
  8112. </lyxtabular>
  8113. \end_inset
  8114. \end_layout
  8115. \begin_layout Plain Layout
  8116. \begin_inset Caption Standard
  8117. \begin_layout Plain Layout
  8118. \series bold
  8119. \begin_inset CommandInset label
  8120. LatexCommand label
  8121. name "tab:weight-covariate-tests"
  8122. \end_inset
  8123. Association of sample weights with clinical covariates in methylation array
  8124. data.
  8125. \series default
  8126. Computed sample quality log weights were tested for significant association
  8127. with each of the variables in the model (1st column).
  8128. An appropriate test was selected for each variable based on whether the
  8129. variable had 2 categories (
  8130. \emph on
  8131. t
  8132. \emph default
  8133. -test), had more than 2 categories (F-test), or was numeric (linear regression).
  8134. The test selected is shown in the 2nd column.
  8135. P-values for association with the log weights are shown in the 3rd column.
  8136. No multiple testing adjustment was performed for these p-values.
  8137. \end_layout
  8138. \end_inset
  8139. \end_layout
  8140. \end_inset
  8141. \end_layout
  8142. \begin_layout Standard
  8143. \begin_inset Float figure
  8144. wide false
  8145. sideways false
  8146. status open
  8147. \begin_layout Plain Layout
  8148. \begin_inset Flex TODO Note (inline)
  8149. status open
  8150. \begin_layout Plain Layout
  8151. Redo the sample weight boxplot with notches, and remove fill colors
  8152. \end_layout
  8153. \end_inset
  8154. \end_layout
  8155. \begin_layout Plain Layout
  8156. \align center
  8157. \begin_inset Graphics
  8158. filename graphics/methylvoom/unadj.dupcor.sva.voomaw/sample-weights-PAGE3-CROP.pdf
  8159. lyxscale 50
  8160. width 60col%
  8161. groupId colwidth
  8162. \end_inset
  8163. \end_layout
  8164. \begin_layout Plain Layout
  8165. \begin_inset Caption Standard
  8166. \begin_layout Plain Layout
  8167. \begin_inset CommandInset label
  8168. LatexCommand label
  8169. name "fig:diabetes-sample-weights"
  8170. \end_inset
  8171. \series bold
  8172. Box-and-whiskers plot of sample quality weights grouped by diabetes diagnosis.
  8173. \series default
  8174. Samples were grouped based on diabetes diagnosis, and the distribution of
  8175. sample quality weights for each diagnosis was plotted as a box-and-whiskers
  8176. plot
  8177. \begin_inset CommandInset citation
  8178. LatexCommand cite
  8179. key "McGill1978"
  8180. literal "false"
  8181. \end_inset
  8182. .
  8183. \end_layout
  8184. \end_inset
  8185. \end_layout
  8186. \begin_layout Plain Layout
  8187. \end_layout
  8188. \end_inset
  8189. \end_layout
  8190. \begin_layout Standard
  8191. To determine whether any of the known experimental factors had an impact
  8192. on data quality, the sample quality weights estimated from the data were
  8193. tested for association with each of the experimental factors (Table
  8194. \begin_inset CommandInset ref
  8195. LatexCommand ref
  8196. reference "tab:weight-covariate-tests"
  8197. plural "false"
  8198. caps "false"
  8199. noprefix "false"
  8200. \end_inset
  8201. ).
  8202. Diabetes diagnosis was found to have a potentially significant association
  8203. with the sample weights, with a t-test p-value of
  8204. \begin_inset Formula $1.06\times10^{-3}$
  8205. \end_inset
  8206. .
  8207. Figure
  8208. \begin_inset CommandInset ref
  8209. LatexCommand ref
  8210. reference "fig:diabetes-sample-weights"
  8211. plural "false"
  8212. caps "false"
  8213. noprefix "false"
  8214. \end_inset
  8215. shows the distribution of sample weights grouped by diabetes diagnosis.
  8216. The samples from patients with Type 2 diabetes were assigned significantly
  8217. lower weights than those from patients with Type 1 diabetes.
  8218. This indicates that the type 2 diabetes samples had an overall higher variance
  8219. on average across all probes.
  8220. \end_layout
  8221. \begin_layout Standard
  8222. \begin_inset Float table
  8223. wide false
  8224. sideways false
  8225. status open
  8226. \begin_layout Plain Layout
  8227. \align center
  8228. \begin_inset Flex TODO Note (inline)
  8229. status open
  8230. \begin_layout Plain Layout
  8231. Consider transposing these tables
  8232. \end_layout
  8233. \end_inset
  8234. \end_layout
  8235. \begin_layout Plain Layout
  8236. \begin_inset Float table
  8237. wide false
  8238. sideways false
  8239. status open
  8240. \begin_layout Plain Layout
  8241. \align center
  8242. \begin_inset Tabular
  8243. <lyxtabular version="3" rows="5" columns="4">
  8244. <features tabularvalignment="middle">
  8245. <column alignment="center" valignment="top">
  8246. <column alignment="center" valignment="top">
  8247. <column alignment="center" valignment="top">
  8248. <column alignment="center" valignment="top">
  8249. <row>
  8250. <cell alignment="center" valignment="top" usebox="none">
  8251. \begin_inset Text
  8252. \begin_layout Plain Layout
  8253. \end_layout
  8254. \end_inset
  8255. </cell>
  8256. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8257. \begin_inset Text
  8258. \begin_layout Plain Layout
  8259. Analysis
  8260. \end_layout
  8261. \end_inset
  8262. </cell>
  8263. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8264. \begin_inset Text
  8265. \begin_layout Plain Layout
  8266. \end_layout
  8267. \end_inset
  8268. </cell>
  8269. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8270. \begin_inset Text
  8271. \begin_layout Plain Layout
  8272. \end_layout
  8273. \end_inset
  8274. </cell>
  8275. </row>
  8276. <row>
  8277. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8278. \begin_inset Text
  8279. \begin_layout Plain Layout
  8280. Contrast
  8281. \end_layout
  8282. \end_inset
  8283. </cell>
  8284. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8285. \begin_inset Text
  8286. \begin_layout Plain Layout
  8287. A
  8288. \end_layout
  8289. \end_inset
  8290. </cell>
  8291. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8292. \begin_inset Text
  8293. \begin_layout Plain Layout
  8294. B
  8295. \end_layout
  8296. \end_inset
  8297. </cell>
  8298. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  8299. \begin_inset Text
  8300. \begin_layout Plain Layout
  8301. C
  8302. \end_layout
  8303. \end_inset
  8304. </cell>
  8305. </row>
  8306. <row>
  8307. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8308. \begin_inset Text
  8309. \begin_layout Plain Layout
  8310. TX vs AR
  8311. \end_layout
  8312. \end_inset
  8313. </cell>
  8314. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8315. \begin_inset Text
  8316. \begin_layout Plain Layout
  8317. 0
  8318. \end_layout
  8319. \end_inset
  8320. </cell>
  8321. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8322. \begin_inset Text
  8323. \begin_layout Plain Layout
  8324. 25
  8325. \end_layout
  8326. \end_inset
  8327. </cell>
  8328. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8329. \begin_inset Text
  8330. \begin_layout Plain Layout
  8331. 22
  8332. \end_layout
  8333. \end_inset
  8334. </cell>
  8335. </row>
  8336. <row>
  8337. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8338. \begin_inset Text
  8339. \begin_layout Plain Layout
  8340. TX vs ADNR
  8341. \end_layout
  8342. \end_inset
  8343. </cell>
  8344. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8345. \begin_inset Text
  8346. \begin_layout Plain Layout
  8347. 7
  8348. \end_layout
  8349. \end_inset
  8350. </cell>
  8351. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8352. \begin_inset Text
  8353. \begin_layout Plain Layout
  8354. 338
  8355. \end_layout
  8356. \end_inset
  8357. </cell>
  8358. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8359. \begin_inset Text
  8360. \begin_layout Plain Layout
  8361. 369
  8362. \end_layout
  8363. \end_inset
  8364. </cell>
  8365. </row>
  8366. <row>
  8367. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8368. \begin_inset Text
  8369. \begin_layout Plain Layout
  8370. TX vs CAN
  8371. \end_layout
  8372. \end_inset
  8373. </cell>
  8374. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8375. \begin_inset Text
  8376. \begin_layout Plain Layout
  8377. 0
  8378. \end_layout
  8379. \end_inset
  8380. </cell>
  8381. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8382. \begin_inset Text
  8383. \begin_layout Plain Layout
  8384. 231
  8385. \end_layout
  8386. \end_inset
  8387. </cell>
  8388. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  8389. \begin_inset Text
  8390. \begin_layout Plain Layout
  8391. 278
  8392. \end_layout
  8393. \end_inset
  8394. </cell>
  8395. </row>
  8396. </lyxtabular>
  8397. \end_inset
  8398. \end_layout
  8399. \begin_layout Plain Layout
  8400. \begin_inset Caption Standard
  8401. \begin_layout Plain Layout
  8402. \begin_inset CommandInset label
  8403. LatexCommand label
  8404. name "tab:methyl-num-signif"
  8405. \end_inset
  8406. Number of probes significant at 10% FDR.
  8407. \end_layout
  8408. \end_inset
  8409. \end_layout
  8410. \end_inset
  8411. \begin_inset space \hfill{}
  8412. \end_inset
  8413. \begin_inset Float table
  8414. wide false
  8415. sideways false
  8416. status open
  8417. \begin_layout Plain Layout
  8418. \align center
  8419. \begin_inset Tabular
  8420. <lyxtabular version="3" rows="5" columns="4">
  8421. <features tabularvalignment="middle">
  8422. <column alignment="center" valignment="top">
  8423. <column alignment="center" valignment="top">
  8424. <column alignment="center" valignment="top">
  8425. <column alignment="center" valignment="top">
  8426. <row>
  8427. <cell alignment="center" valignment="top" usebox="none">
  8428. \begin_inset Text
  8429. \begin_layout Plain Layout
  8430. \end_layout
  8431. \end_inset
  8432. </cell>
  8433. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8434. \begin_inset Text
  8435. \begin_layout Plain Layout
  8436. Analysis
  8437. \end_layout
  8438. \end_inset
  8439. </cell>
  8440. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8441. \begin_inset Text
  8442. \begin_layout Plain Layout
  8443. \end_layout
  8444. \end_inset
  8445. </cell>
  8446. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8447. \begin_inset Text
  8448. \begin_layout Plain Layout
  8449. \end_layout
  8450. \end_inset
  8451. </cell>
  8452. </row>
  8453. <row>
  8454. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8455. \begin_inset Text
  8456. \begin_layout Plain Layout
  8457. Contrast
  8458. \end_layout
  8459. \end_inset
  8460. </cell>
  8461. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8462. \begin_inset Text
  8463. \begin_layout Plain Layout
  8464. A
  8465. \end_layout
  8466. \end_inset
  8467. </cell>
  8468. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8469. \begin_inset Text
  8470. \begin_layout Plain Layout
  8471. B
  8472. \end_layout
  8473. \end_inset
  8474. </cell>
  8475. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  8476. \begin_inset Text
  8477. \begin_layout Plain Layout
  8478. C
  8479. \end_layout
  8480. \end_inset
  8481. </cell>
  8482. </row>
  8483. <row>
  8484. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8485. \begin_inset Text
  8486. \begin_layout Plain Layout
  8487. TX vs AR
  8488. \end_layout
  8489. \end_inset
  8490. </cell>
  8491. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8492. \begin_inset Text
  8493. \begin_layout Plain Layout
  8494. 0
  8495. \end_layout
  8496. \end_inset
  8497. </cell>
  8498. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8499. \begin_inset Text
  8500. \begin_layout Plain Layout
  8501. 10,063
  8502. \end_layout
  8503. \end_inset
  8504. </cell>
  8505. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8506. \begin_inset Text
  8507. \begin_layout Plain Layout
  8508. 11,225
  8509. \end_layout
  8510. \end_inset
  8511. </cell>
  8512. </row>
  8513. <row>
  8514. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8515. \begin_inset Text
  8516. \begin_layout Plain Layout
  8517. TX vs ADNR
  8518. \end_layout
  8519. \end_inset
  8520. </cell>
  8521. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8522. \begin_inset Text
  8523. \begin_layout Plain Layout
  8524. 27
  8525. \end_layout
  8526. \end_inset
  8527. </cell>
  8528. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8529. \begin_inset Text
  8530. \begin_layout Plain Layout
  8531. 12,674
  8532. \end_layout
  8533. \end_inset
  8534. </cell>
  8535. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8536. \begin_inset Text
  8537. \begin_layout Plain Layout
  8538. 13,086
  8539. \end_layout
  8540. \end_inset
  8541. </cell>
  8542. </row>
  8543. <row>
  8544. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8545. \begin_inset Text
  8546. \begin_layout Plain Layout
  8547. TX vs CAN
  8548. \end_layout
  8549. \end_inset
  8550. </cell>
  8551. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8552. \begin_inset Text
  8553. \begin_layout Plain Layout
  8554. 966
  8555. \end_layout
  8556. \end_inset
  8557. </cell>
  8558. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8559. \begin_inset Text
  8560. \begin_layout Plain Layout
  8561. 20,039
  8562. \end_layout
  8563. \end_inset
  8564. </cell>
  8565. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  8566. \begin_inset Text
  8567. \begin_layout Plain Layout
  8568. 20,955
  8569. \end_layout
  8570. \end_inset
  8571. </cell>
  8572. </row>
  8573. </lyxtabular>
  8574. \end_inset
  8575. \end_layout
  8576. \begin_layout Plain Layout
  8577. \begin_inset Caption Standard
  8578. \begin_layout Plain Layout
  8579. \begin_inset CommandInset label
  8580. LatexCommand label
  8581. name "tab:methyl-est-nonnull"
  8582. \end_inset
  8583. Estimated number of non-null tests, using the method of averaging local
  8584. FDR values
  8585. \begin_inset CommandInset citation
  8586. LatexCommand cite
  8587. key "Phipson2013Thesis"
  8588. literal "false"
  8589. \end_inset
  8590. .
  8591. \end_layout
  8592. \end_inset
  8593. \end_layout
  8594. \end_inset
  8595. \end_layout
  8596. \begin_layout Plain Layout
  8597. \begin_inset Caption Standard
  8598. \begin_layout Plain Layout
  8599. \series bold
  8600. Estimates of degree of differential methylation in for each contrast in
  8601. each analysis.
  8602. \series default
  8603. For each of the analyses in Table
  8604. \begin_inset CommandInset ref
  8605. LatexCommand ref
  8606. reference "tab:Summary-of-meth-analysis"
  8607. plural "false"
  8608. caps "false"
  8609. noprefix "false"
  8610. \end_inset
  8611. , these tables show the number of probes called significantly differentially
  8612. methylated at a threshold of 10% FDR for each comparison between TX and
  8613. the other 3 transplant statuses (a) and the estimated total number of probes
  8614. that are differentially methylated (b).
  8615. \end_layout
  8616. \end_inset
  8617. \end_layout
  8618. \end_inset
  8619. \end_layout
  8620. \begin_layout Standard
  8621. \begin_inset Float figure
  8622. wide false
  8623. sideways false
  8624. status open
  8625. \begin_layout Plain Layout
  8626. \align center
  8627. \series bold
  8628. \begin_inset Float figure
  8629. wide false
  8630. sideways false
  8631. status collapsed
  8632. \begin_layout Plain Layout
  8633. \align center
  8634. \begin_inset Graphics
  8635. filename graphics/methylvoom/unadj.dupcor/pval-histograms-PAGE1.pdf
  8636. lyxscale 33
  8637. width 30col%
  8638. groupId meth-pval-hist
  8639. \end_inset
  8640. \end_layout
  8641. \begin_layout Plain Layout
  8642. \series bold
  8643. \begin_inset Caption Standard
  8644. \begin_layout Plain Layout
  8645. AR vs.
  8646. TX, Analysis A
  8647. \end_layout
  8648. \end_inset
  8649. \end_layout
  8650. \begin_layout Plain Layout
  8651. \end_layout
  8652. \end_inset
  8653. \begin_inset space \hfill{}
  8654. \end_inset
  8655. \begin_inset Float figure
  8656. wide false
  8657. sideways false
  8658. status collapsed
  8659. \begin_layout Plain Layout
  8660. \align center
  8661. \begin_inset Graphics
  8662. filename graphics/methylvoom/unadj.dupcor/pval-histograms-PAGE2.pdf
  8663. lyxscale 33
  8664. width 30col%
  8665. groupId meth-pval-hist
  8666. \end_inset
  8667. \end_layout
  8668. \begin_layout Plain Layout
  8669. \series bold
  8670. \begin_inset Caption Standard
  8671. \begin_layout Plain Layout
  8672. ADNR vs.
  8673. TX, Analysis A
  8674. \end_layout
  8675. \end_inset
  8676. \end_layout
  8677. \end_inset
  8678. \begin_inset space \hfill{}
  8679. \end_inset
  8680. \begin_inset Float figure
  8681. wide false
  8682. sideways false
  8683. status collapsed
  8684. \begin_layout Plain Layout
  8685. \align center
  8686. \begin_inset Graphics
  8687. filename graphics/methylvoom/unadj.dupcor/pval-histograms-PAGE3.pdf
  8688. lyxscale 33
  8689. width 30col%
  8690. groupId meth-pval-hist
  8691. \end_inset
  8692. \end_layout
  8693. \begin_layout Plain Layout
  8694. \series bold
  8695. \begin_inset Caption Standard
  8696. \begin_layout Plain Layout
  8697. CAN vs.
  8698. TX, Analysis A
  8699. \end_layout
  8700. \end_inset
  8701. \end_layout
  8702. \end_inset
  8703. \end_layout
  8704. \begin_layout Plain Layout
  8705. \align center
  8706. \series bold
  8707. \begin_inset Float figure
  8708. wide false
  8709. sideways false
  8710. status collapsed
  8711. \begin_layout Plain Layout
  8712. \align center
  8713. \begin_inset Graphics
  8714. filename graphics/methylvoom/unadj.dupcor.sva.aw/pval-histograms-PAGE1.pdf
  8715. lyxscale 33
  8716. width 30col%
  8717. groupId meth-pval-hist
  8718. \end_inset
  8719. \end_layout
  8720. \begin_layout Plain Layout
  8721. \series bold
  8722. \begin_inset Caption Standard
  8723. \begin_layout Plain Layout
  8724. AR vs.
  8725. TX, Analysis B
  8726. \end_layout
  8727. \end_inset
  8728. \end_layout
  8729. \end_inset
  8730. \begin_inset space \hfill{}
  8731. \end_inset
  8732. \begin_inset Float figure
  8733. wide false
  8734. sideways false
  8735. status collapsed
  8736. \begin_layout Plain Layout
  8737. \align center
  8738. \begin_inset Graphics
  8739. filename graphics/methylvoom/unadj.dupcor.sva.aw/pval-histograms-PAGE2.pdf
  8740. lyxscale 33
  8741. width 30col%
  8742. groupId meth-pval-hist
  8743. \end_inset
  8744. \end_layout
  8745. \begin_layout Plain Layout
  8746. \series bold
  8747. \begin_inset Caption Standard
  8748. \begin_layout Plain Layout
  8749. ADNR vs.
  8750. TX, Analysis B
  8751. \end_layout
  8752. \end_inset
  8753. \end_layout
  8754. \end_inset
  8755. \begin_inset space \hfill{}
  8756. \end_inset
  8757. \begin_inset Float figure
  8758. wide false
  8759. sideways false
  8760. status collapsed
  8761. \begin_layout Plain Layout
  8762. \align center
  8763. \begin_inset Graphics
  8764. filename graphics/methylvoom/unadj.dupcor.sva.aw/pval-histograms-PAGE3.pdf
  8765. lyxscale 33
  8766. width 30col%
  8767. groupId meth-pval-hist
  8768. \end_inset
  8769. \end_layout
  8770. \begin_layout Plain Layout
  8771. \series bold
  8772. \begin_inset Caption Standard
  8773. \begin_layout Plain Layout
  8774. CAN vs.
  8775. TX, Analysis B
  8776. \end_layout
  8777. \end_inset
  8778. \end_layout
  8779. \end_inset
  8780. \end_layout
  8781. \begin_layout Plain Layout
  8782. \align center
  8783. \series bold
  8784. \begin_inset Float figure
  8785. wide false
  8786. sideways false
  8787. status collapsed
  8788. \begin_layout Plain Layout
  8789. \align center
  8790. \begin_inset Graphics
  8791. filename graphics/methylvoom/unadj.dupcor.sva.voomaw/pval-histograms-PAGE1.pdf
  8792. lyxscale 33
  8793. width 30col%
  8794. groupId meth-pval-hist
  8795. \end_inset
  8796. \end_layout
  8797. \begin_layout Plain Layout
  8798. \series bold
  8799. \begin_inset Caption Standard
  8800. \begin_layout Plain Layout
  8801. AR vs.
  8802. TX, Analysis C
  8803. \end_layout
  8804. \end_inset
  8805. \end_layout
  8806. \end_inset
  8807. \begin_inset space \hfill{}
  8808. \end_inset
  8809. \begin_inset Float figure
  8810. wide false
  8811. sideways false
  8812. status collapsed
  8813. \begin_layout Plain Layout
  8814. \align center
  8815. \begin_inset Graphics
  8816. filename graphics/methylvoom/unadj.dupcor.sva.voomaw/pval-histograms-PAGE2.pdf
  8817. lyxscale 33
  8818. width 30col%
  8819. groupId meth-pval-hist
  8820. \end_inset
  8821. \end_layout
  8822. \begin_layout Plain Layout
  8823. \series bold
  8824. \begin_inset Caption Standard
  8825. \begin_layout Plain Layout
  8826. ADNR vs.
  8827. TX, Analysis C
  8828. \end_layout
  8829. \end_inset
  8830. \end_layout
  8831. \end_inset
  8832. \begin_inset space \hfill{}
  8833. \end_inset
  8834. \begin_inset Float figure
  8835. wide false
  8836. sideways false
  8837. status collapsed
  8838. \begin_layout Plain Layout
  8839. \align center
  8840. \begin_inset Graphics
  8841. filename graphics/methylvoom/unadj.dupcor.sva.voomaw/pval-histograms-PAGE3.pdf
  8842. lyxscale 33
  8843. width 30col%
  8844. groupId meth-pval-hist
  8845. \end_inset
  8846. \end_layout
  8847. \begin_layout Plain Layout
  8848. \series bold
  8849. \begin_inset Caption Standard
  8850. \begin_layout Plain Layout
  8851. CAN vs.
  8852. TX, Analysis C
  8853. \end_layout
  8854. \end_inset
  8855. \end_layout
  8856. \end_inset
  8857. \end_layout
  8858. \begin_layout Plain Layout
  8859. \begin_inset Caption Standard
  8860. \begin_layout Plain Layout
  8861. \series bold
  8862. \begin_inset CommandInset label
  8863. LatexCommand label
  8864. name "fig:meth-p-value-histograms"
  8865. \end_inset
  8866. Probe p-value histograms for each contrast in each analysis.
  8867. \series default
  8868. For each differential methylation test of interest, the distribution of
  8869. p-values across all probes is plotted as a histogram.
  8870. The red solid line indicates the density that would be expected under the
  8871. null hypothesis for all probes (a
  8872. \begin_inset Formula $\mathrm{Uniform}(0,1)$
  8873. \end_inset
  8874. distribution), while the blue dotted line indicates the fraction of p-values
  8875. that actually follow the null hypothesis (
  8876. \begin_inset Formula $\hat{\pi}_{0}$
  8877. \end_inset
  8878. ) estimated using the method of averaging local FDR values
  8879. \begin_inset CommandInset citation
  8880. LatexCommand cite
  8881. key "Phipson2013Thesis"
  8882. literal "false"
  8883. \end_inset
  8884. .
  8885. the blue line is only shown in each plot if the estimate of
  8886. \begin_inset Formula $\hat{\pi}_{0}$
  8887. \end_inset
  8888. for that p-value distribution is different from 1.
  8889. \end_layout
  8890. \end_inset
  8891. \end_layout
  8892. \end_inset
  8893. \end_layout
  8894. \begin_layout Standard
  8895. Table
  8896. \begin_inset CommandInset ref
  8897. LatexCommand ref
  8898. reference "tab:methyl-num-signif"
  8899. plural "false"
  8900. caps "false"
  8901. noprefix "false"
  8902. \end_inset
  8903. shows the number of significantly differentially methylated probes reported
  8904. by each analysis for each comparison of interest at an FDR of 10%.
  8905. As expected, the more elaborate analyses, B and C, report more significant
  8906. probes than the more basic analysis A, consistent with the conclusions
  8907. above that the data contain hidden systematic variations that must be modeled.
  8908. Table
  8909. \begin_inset CommandInset ref
  8910. LatexCommand ref
  8911. reference "tab:methyl-est-nonnull"
  8912. plural "false"
  8913. caps "false"
  8914. noprefix "false"
  8915. \end_inset
  8916. shows the estimated number differentially methylated probes for each test
  8917. from each analysis.
  8918. This was computed by estimating the proportion of null hypotheses that
  8919. were true using the method of
  8920. \begin_inset CommandInset citation
  8921. LatexCommand cite
  8922. key "Phipson2013Thesis"
  8923. literal "false"
  8924. \end_inset
  8925. and subtracting that fraction from the total number of probes, yielding
  8926. an estimate of the number of null hypotheses that are false based on the
  8927. distribution of p-values across the entire dataset.
  8928. Note that this does not identify which null hypotheses should be rejected
  8929. (i.e.
  8930. which probes are significant); it only estimates the true number of such
  8931. probes.
  8932. Once again, analyses B and C result it much larger estimates for the number
  8933. of differentially methylated probes.
  8934. In this case, analysis C, the only analysis that includes voom, estimates
  8935. the largest number of differentially methylated probes for all 3 contrasts.
  8936. If the assumptions of all the methods employed hold, then this represents
  8937. a gain in statistical power over the simpler analysis A.
  8938. Figure
  8939. \begin_inset CommandInset ref
  8940. LatexCommand ref
  8941. reference "fig:meth-p-value-histograms"
  8942. plural "false"
  8943. caps "false"
  8944. noprefix "false"
  8945. \end_inset
  8946. shows the p-value distributions for each test, from which the numbers in
  8947. Table
  8948. \begin_inset CommandInset ref
  8949. LatexCommand ref
  8950. reference "tab:methyl-est-nonnull"
  8951. plural "false"
  8952. caps "false"
  8953. noprefix "false"
  8954. \end_inset
  8955. were generated.
  8956. The distributions for analysis A all have a dip in density near zero, which
  8957. is a strong sign of a poor model fit.
  8958. The histograms for analyses B and C are more well-behaved, with a uniform
  8959. component stretching all the way from 0 to 1 representing the probes for
  8960. which the null hypotheses is true (no differential methylation), and a
  8961. zero-biased component representing the probes for which the null hypothesis
  8962. is false (differentially methylated).
  8963. These histograms do not indicate any major issues with the model fit.
  8964. \end_layout
  8965. \begin_layout Standard
  8966. \begin_inset Flex TODO Note (inline)
  8967. status open
  8968. \begin_layout Plain Layout
  8969. If time allows, maybe generate the PCA plots before/after SVA effect subtraction
  8970. ?
  8971. \end_layout
  8972. \end_inset
  8973. \end_layout
  8974. \begin_layout Section
  8975. Discussion
  8976. \end_layout
  8977. \begin_layout Subsection
  8978. fRMA achieves clinically applicable normalization without sacrificing classifica
  8979. tion performance
  8980. \end_layout
  8981. \begin_layout Standard
  8982. As shown in Figure
  8983. \begin_inset CommandInset ref
  8984. LatexCommand ref
  8985. reference "fig:Classifier-probabilities-RMA"
  8986. plural "false"
  8987. caps "false"
  8988. noprefix "false"
  8989. \end_inset
  8990. , improper normalization, particularly separate normalization of training
  8991. and test samples, leads to unwanted biases in classification.
  8992. In a controlled experimental context, it is always possible to correct
  8993. this issue by normalizing all experimental samples together.
  8994. However, because it is not feasible to normalize all samples together in
  8995. a clinical context, a single-channel normalization is required is required.
  8996. \end_layout
  8997. \begin_layout Standard
  8998. The major concern in using a single-channel normalization is that non-single-cha
  8999. nnel methods can share information between arrays to improve the normalization,
  9000. and single-channel methods risk sacrificing the gains in normalization
  9001. accuracy that come from this information sharing.
  9002. In the case of RMA, this information sharing is accomplished through quantile
  9003. normalization and median polish steps.
  9004. The need for information sharing in quantile normalization can easily be
  9005. removed by learning a fixed set of quantiles from external data and normalizing
  9006. each array to these fixed quantiles, instead of the quantiles of the data
  9007. itself.
  9008. As long as the fixed quantiles are reasonable, the result will be similar
  9009. to standard RMA.
  9010. However, there is no analogous way to eliminate cross-array information
  9011. sharing in the median polish step, so fRMA replaces this with a weighted
  9012. average of probes on each array, with the weights learned from external
  9013. data.
  9014. This step of fRMA has the greatest potential to diverge from RMA un undesirable
  9015. ways.
  9016. \end_layout
  9017. \begin_layout Standard
  9018. However, when run on real data, fRMA performed at least as well as RMA in
  9019. both the internal validation and external validation tests.
  9020. This shows that fRMA can be used to normalize individual clinical samples
  9021. in a class prediction context without sacrificing the classifier performance
  9022. that would be obtained by using the more well-established RMA for normalization.
  9023. The other single-channel normalization method considered, SCAN, showed
  9024. some loss of AUC in the external validation test.
  9025. Based on these results, fRMA is the preferred normalization for clinical
  9026. samples in a class prediction context.
  9027. \end_layout
  9028. \begin_layout Subsection
  9029. Robust fRMA vectors can be generated for new array platforms
  9030. \end_layout
  9031. \begin_layout Standard
  9032. \begin_inset Flex TODO Note (inline)
  9033. status open
  9034. \begin_layout Plain Layout
  9035. Look up the exact numbers, do a find & replace for
  9036. \begin_inset Quotes eld
  9037. \end_inset
  9038. 850
  9039. \begin_inset Quotes erd
  9040. \end_inset
  9041. \end_layout
  9042. \end_inset
  9043. \end_layout
  9044. \begin_layout Standard
  9045. The published fRMA normalization vectors for the hgu133plus2 platform were
  9046. generated from a set of about 850 samples chosen from a wide range of tissues,
  9047. which the authors determined was sufficient to generate a robust set of
  9048. normalization vectors that could be applied across all tissues
  9049. \begin_inset CommandInset citation
  9050. LatexCommand cite
  9051. key "McCall2010"
  9052. literal "false"
  9053. \end_inset
  9054. .
  9055. Since we only had hthgu133pluspm for 2 tissues of interest, our needs were
  9056. more modest.
  9057. Even using only 130 samples in 26 batches of 5 samples each for kidney
  9058. biopsies, we were able to train a robust set of fRMA normalization vectors
  9059. that were not meaningfully affected by the random selection of 5 samples
  9060. from each batch.
  9061. As expected, the training process was just as robust for the blood samples
  9062. with 230 samples in 46 batches of 5 samples each.
  9063. Because these vectors were each generated using training samples from a
  9064. single tissue, they are not suitable for general use, unlike the vectors
  9065. provided with fRMA itself.
  9066. They are purpose-built for normalizing a specific type of sample on a specific
  9067. platform.
  9068. This is a mostly acceptable limitation in the context of developing a machine
  9069. learning classifier for diagnosing a disease based on samples of a specific
  9070. tissue.
  9071. \end_layout
  9072. \begin_layout Standard
  9073. \begin_inset Flex TODO Note (inline)
  9074. status open
  9075. \begin_layout Plain Layout
  9076. Talk about how these vectors can be used for any data from these tissues
  9077. on this platform even though they were custom made for this data set.
  9078. \end_layout
  9079. \end_inset
  9080. \end_layout
  9081. \begin_layout Standard
  9082. \begin_inset Flex TODO Note (inline)
  9083. status open
  9084. \begin_layout Plain Layout
  9085. How to bring up that these custom vectors were used in another project by
  9086. someone else that was never published?
  9087. \end_layout
  9088. \end_inset
  9089. \end_layout
  9090. \begin_layout Subsection
  9091. Methylation array data can be successfully analyzed using existing techniques,
  9092. but machine learning poses additional challenges
  9093. \end_layout
  9094. \begin_layout Standard
  9095. Both analysis strategies B and C both yield a reasonable analysis, with
  9096. a mean-variance trend that matches the expected behavior for the non-linear
  9097. M-value transformation (Figure
  9098. \begin_inset CommandInset ref
  9099. LatexCommand ref
  9100. reference "fig:meanvar-sva-aw"
  9101. plural "false"
  9102. caps "false"
  9103. noprefix "false"
  9104. \end_inset
  9105. ) and well-behaved p-value distributions (Figure
  9106. \begin_inset CommandInset ref
  9107. LatexCommand ref
  9108. reference "fig:meth-p-value-histograms"
  9109. plural "false"
  9110. caps "false"
  9111. noprefix "false"
  9112. \end_inset
  9113. ).
  9114. These two analyses also yield similar numbers of significant probes (Table
  9115. \begin_inset CommandInset ref
  9116. LatexCommand ref
  9117. reference "tab:methyl-num-signif"
  9118. plural "false"
  9119. caps "false"
  9120. noprefix "false"
  9121. \end_inset
  9122. ) and similar estimates of the number of differentially methylated probes
  9123. (Table
  9124. \begin_inset CommandInset ref
  9125. LatexCommand ref
  9126. reference "tab:methyl-est-nonnull"
  9127. plural "false"
  9128. caps "false"
  9129. noprefix "false"
  9130. \end_inset
  9131. ).
  9132. The main difference between these two analyses is the method used to account
  9133. for the mean-variance trend.
  9134. In analysis B, the trend is estimated and applied at the probe level: each
  9135. probe's estimated variance is squeezed toward the trend using an empirical
  9136. Bayes procedure (Figure
  9137. \begin_inset CommandInset ref
  9138. LatexCommand ref
  9139. reference "fig:meanvar-sva-aw"
  9140. plural "false"
  9141. caps "false"
  9142. noprefix "false"
  9143. \end_inset
  9144. ).
  9145. In analysis C, the trend is still estimated at the probe level, but instead
  9146. of estimating a single variance value shared across all observations for
  9147. a given probe, the voom method computes an initial estiamte of the variance
  9148. for each observation individually based on where its model-fitted M-value
  9149. falls on the trend line and then assigns inverse-variance weights to model
  9150. the difference in variance between observations.
  9151. An overall variance is still estimated for each probe using the same empirical
  9152. Bayes method, but now the residual trend is flat (Figure
  9153. \begin_inset CommandInset ref
  9154. LatexCommand ref
  9155. reference "fig:meanvar-sva-voomaw"
  9156. plural "false"
  9157. caps "false"
  9158. noprefix "false"
  9159. \end_inset
  9160. ), indicating that the mean-variance trend is adequately modeled by scaling
  9161. the estimated variance for each observation using the weights computed
  9162. by voom.
  9163. \end_layout
  9164. \begin_layout Standard
  9165. The difference between the standard empirical Bayes trended variance modeling
  9166. (analysis B) and voom (analysis C) is analogous to the difference between
  9167. a t-test with equal variance and a t-test with unequal variance, except
  9168. that the unequal group variances used in the latter test are estimated
  9169. based on the mean-variance trend from all the probes rather than the data
  9170. for the specific probe being tested, thus stabilizing the group variance
  9171. estimates by sharing information between probes.
  9172. Allowing voom to model the variance using observation weights in this manner
  9173. allows the linear model fit to concentrate statistical power where it will
  9174. do the most good.
  9175. For example, if a particular probe's M-values are always at the extreme
  9176. of the M-value range (e.g.
  9177. less than -4) for ADNR samples, but the M-values for that probe in TX and
  9178. CAN samples are within the flat region of the mean-variance trend (between
  9179. -3 and +3), voom is able to down-weight the contribution of the high-variance
  9180. M-values from the ADNR samples in order to gain more statistical power
  9181. while testing for differential methylation between TX and CAN.
  9182. In contrast, modeling the mean-variance trend only at the probe level would
  9183. combine the high-variance ADNR samples and lower-variance samples from
  9184. other conditions and estimate an intermediate variance for this probe.
  9185. In practice, analysis B shows that this approach is adequate, but the voom
  9186. approach in analysis C is at least as good on all model fit criteria and
  9187. yields a larger estimate for the number of differentially methylated genes,
  9188. \emph on
  9189. and
  9190. \emph default
  9191. it matches up better with the theoretical
  9192. \end_layout
  9193. \begin_layout Standard
  9194. The significant association of diebetes diagnosis with sample quality is
  9195. interesting.
  9196. The samples with Type 2 diabetes tended to have more variation, averaged
  9197. across all probes, than those with Type 1 diabetes.
  9198. This is consistent with the consensus that type 2 disbetes and the associated
  9199. metabolic syndrome represent a broad dysregulation of the body's endocrine
  9200. signalling related to metabolism [citation needed].
  9201. This dysregulation could easily manifest as a greater degree of variation
  9202. in the DNA methylation patterns of affected tissues.
  9203. In contrast, Type 1 disbetes has a more specific cause and effect, so a
  9204. less variable methylation signature is expected.
  9205. \end_layout
  9206. \begin_layout Standard
  9207. This preliminary anlaysis suggests that some degree of differential methylation
  9208. exists between TX and each of the three types of transplant disfunction
  9209. studied.
  9210. Hence, it may be feasible to train a classifier to diagnose transplant
  9211. disfunction from DNA methylation array data.
  9212. However, the major importance of both SVA and sample quality weighting
  9213. for proper modeling of this data poses significant challenges for any attempt
  9214. at a machine learning on data of similar quality.
  9215. While these are easily used in a modeling context with full sample information,
  9216. neither of these methods is directly applicable in a machine learning context,
  9217. where the diagnosis is not known ahead of time.
  9218. If a machine learning approach for methylation-based diagnosis is to be
  9219. pursued, it will either require machine-learning-friendly methods to address
  9220. the same systematic trends in the data that SVA and sample quality weighting
  9221. address, or it will require higher quality data with substantially less
  9222. systematic perturbation of the data.
  9223. \end_layout
  9224. \begin_layout Section
  9225. Future Directions
  9226. \end_layout
  9227. \begin_layout Standard
  9228. \begin_inset Flex TODO Note (inline)
  9229. status open
  9230. \begin_layout Plain Layout
  9231. Some work was already being done with the existing fRMA vectors.
  9232. Do I mention that here?
  9233. \end_layout
  9234. \end_inset
  9235. \end_layout
  9236. \begin_layout Subsection
  9237. Improving fRMA to allow training from batches of unequal size
  9238. \end_layout
  9239. \begin_layout Standard
  9240. Because the tools for building fRMA normalization vectors require equal-size
  9241. batches, many samples must be discarded from the training data.
  9242. This is undesirable for a few reasons.
  9243. First, more data is simply better, all other things being equal.
  9244. In this case,
  9245. \begin_inset Quotes eld
  9246. \end_inset
  9247. better
  9248. \begin_inset Quotes erd
  9249. \end_inset
  9250. means a more precise estimate of normalization parameters.
  9251. In addition, the samples to be discarded must be chosen arbitrarily, which
  9252. introduces an unnecessary element of randomness into the estimation process.
  9253. While the randomness can be made deterministic by setting a consistent
  9254. random seed, the need for equal size batches also introduces a need for
  9255. the analyst to decide on the appropriate trade-off between batch size and
  9256. the number of batches.
  9257. This introduces an unnecessary and undesirable
  9258. \begin_inset Quotes eld
  9259. \end_inset
  9260. researcher degree of freedom
  9261. \begin_inset Quotes erd
  9262. \end_inset
  9263. into the analysis, since the generated normalization vectors now depend
  9264. on the choice of batch size based on vague selection criteria and instinct,
  9265. which can unintentionally inproduce bias if the researcher chooses a batch
  9266. size based on what seems to yield the most favorable downstream results
  9267. \begin_inset CommandInset citation
  9268. LatexCommand cite
  9269. key "Simmons2011"
  9270. literal "false"
  9271. \end_inset
  9272. .
  9273. \end_layout
  9274. \begin_layout Standard
  9275. Fortunately, the requirement for equal-size batches is not inherent to the
  9276. fRMA algorithm but rather a limitation of the implementation in the frmaTools
  9277. package.
  9278. In personal communication, the package's author, Matthew McCall, has indicated
  9279. that with some work, it should be possible to improve the implementation
  9280. to work with batches of unequal sizes.
  9281. The current implementation ignores the batch size when calculating with-batch
  9282. and between-batch residual variances, since the batch size constant cancels
  9283. out later in the calculations as long as all batches are of equal size.
  9284. Hence, the calculations of these parameters would need to be modified to
  9285. remove this optimization and properly calculate the variances using the
  9286. full formula.
  9287. Once this modification is made, a new strategy would need to be developed
  9288. for assessing the stability of parameter estimates, since the random subsamplin
  9289. g step is eliminated, meaning that different subsamplings can no longer
  9290. be compared as in Figures
  9291. \begin_inset CommandInset ref
  9292. LatexCommand ref
  9293. reference "fig:frma-violin"
  9294. plural "false"
  9295. caps "false"
  9296. noprefix "false"
  9297. \end_inset
  9298. and
  9299. \begin_inset CommandInset ref
  9300. LatexCommand ref
  9301. reference "fig:Representative-MA-plots"
  9302. plural "false"
  9303. caps "false"
  9304. noprefix "false"
  9305. \end_inset
  9306. .
  9307. Bootstrap resampling is likely a good candidate here: sample many training
  9308. sets of equal size from the existing training set with replacement, estimate
  9309. parameters from each resampled training set, and compare the estimated
  9310. parameters between bootstraps in order to quantify the variability in each
  9311. parameter's estimation.
  9312. \end_layout
  9313. \begin_layout Subsection
  9314. Developing methylation arrays as a diagnostic tool for kidney transplant
  9315. rejection
  9316. \end_layout
  9317. \begin_layout Standard
  9318. The current study has showed that DNA methylation, as assayed by Illumina
  9319. 450k methylation arrays, has some potential for diagnosing transplant dysfuncti
  9320. ons, including rejection.
  9321. However, very few probes could be confidently identified as differentially
  9322. methylated between healthy and dysfunctional transplants.
  9323. One likely explanation for this is the predominant influence of unobserved
  9324. confounding factors.
  9325. SVA can model and correct for such factors, but the correction can never
  9326. be perfect, so some degree of unwanted systematic variation will always
  9327. remain after SVA correction.
  9328. If the effect size of the confounding factors was similar to that of the
  9329. factor of interest (in this case, transplant status), this would be an
  9330. acceptable limitation, since removing most of the confounding factors'
  9331. effects would allow the main effect to stand out.
  9332. However, in this data set, the confounding factors have a much larger effect
  9333. size than transplant status, which means that the small degree of remaining
  9334. variation not removed by SVA can still swamp the effect of interest, making
  9335. it difficult to detect.
  9336. This is, of course, a major issue when the end goal is to develop a classifier
  9337. to diagnose transplant rejection from methylation data, since batch-correction
  9338. methods like SVA that work in a linear modeling context cannot be applied
  9339. in a machine learning context.
  9340. \end_layout
  9341. \begin_layout Standard
  9342. Currently, the source of these unwanted systematic variations in the data
  9343. is unknown.
  9344. The best solution would be to determine the cause of the variation and
  9345. eliminate it, thereby eliminating the need to model and remove that variation.
  9346. However, if this proves impractical, another option is to use SVA to identify
  9347. probes that are highly associated with the surrogate variables that describe
  9348. the unwanted variation in the data.
  9349. These probes could be discarded prior to classifier training, in order
  9350. to maximize the chance that the training algorithm will be able to identify
  9351. highly predictive probes from those remaining.
  9352. Lastly, it is possible that some of this unwanted variation is a result
  9353. of the array-based assay being used and would be eliminated by switching
  9354. to assaying DNA methylation using bisulphite sequencing.
  9355. However, this carries the risk that the sequencing assay will have its
  9356. own set of biases that must be corrected for in a different way.
  9357. \end_layout
  9358. \begin_layout Chapter
  9359. Globin-blocking for more effective blood RNA-seq analysis in primate animal
  9360. model
  9361. \end_layout
  9362. \begin_layout Standard
  9363. \begin_inset Flex TODO Note (inline)
  9364. status open
  9365. \begin_layout Plain Layout
  9366. Choose between above and the paper title: Optimizing yield of deep RNA sequencin
  9367. g for gene expression profiling by globin reduction of peripheral blood
  9368. samples from cynomolgus monkeys (Macaca fascicularis).
  9369. \end_layout
  9370. \end_inset
  9371. \end_layout
  9372. \begin_layout Standard
  9373. \begin_inset Flex TODO Note (inline)
  9374. status open
  9375. \begin_layout Plain Layout
  9376. Chapter author list: https://tex.stackexchange.com/questions/156862/displaying-aut
  9377. hor-for-each-chapter-in-book Every chapter gets an author list, which may
  9378. or may not be part of a citation to a published/preprinted paper.
  9379. \end_layout
  9380. \end_inset
  9381. \end_layout
  9382. \begin_layout Standard
  9383. \begin_inset Flex TODO Note (inline)
  9384. status open
  9385. \begin_layout Plain Layout
  9386. Preprint then cite the paper
  9387. \end_layout
  9388. \end_inset
  9389. \end_layout
  9390. \begin_layout Section*
  9391. Abstract
  9392. \end_layout
  9393. \begin_layout Paragraph
  9394. Background
  9395. \end_layout
  9396. \begin_layout Standard
  9397. Primate blood contains high concentrations of globin messenger RNA.
  9398. Globin reduction is a standard technique used to improve the expression
  9399. results obtained by DNA microarrays on RNA from blood samples.
  9400. However, with whole transcriptome RNA-sequencing (RNA-seq) quickly replacing
  9401. microarrays for many applications, the impact of globin reduction for RNA-seq
  9402. has not been previously studied.
  9403. Moreover, no off-the-shelf kits are available for globin reduction in nonhuman
  9404. primates.
  9405. \end_layout
  9406. \begin_layout Paragraph
  9407. Results
  9408. \end_layout
  9409. \begin_layout Standard
  9410. Here we report a protocol for RNA-seq in primate blood samples that uses
  9411. complimentary oligonucleotides to block reverse transcription of the alpha
  9412. and beta globin genes.
  9413. In test samples from cynomolgus monkeys (Macaca fascicularis), this globin
  9414. blocking protocol approximately doubles the yield of informative (non-globin)
  9415. reads by greatly reducing the fraction of globin reads, while also improving
  9416. the consistency in sequencing depth between samples.
  9417. The increased yield enables detection of about 2000 more genes, significantly
  9418. increases the correlation in measured gene expression levels between samples,
  9419. and increases the sensitivity of differential gene expression tests.
  9420. \end_layout
  9421. \begin_layout Paragraph
  9422. Conclusions
  9423. \end_layout
  9424. \begin_layout Standard
  9425. These results show that globin blocking significantly improves the cost-effectiv
  9426. eness of mRNA sequencing in primate blood samples by doubling the yield
  9427. of useful reads, allowing detection of more genes, and improving the precision
  9428. of gene expression measurements.
  9429. Based on these results, a globin reducing or blocking protocol is recommended
  9430. for all RNA-seq studies of primate blood samples.
  9431. \end_layout
  9432. \begin_layout Section
  9433. Approach
  9434. \end_layout
  9435. \begin_layout Standard
  9436. \begin_inset Note Note
  9437. status open
  9438. \begin_layout Plain Layout
  9439. Consider putting some of this in the Intro chapter
  9440. \end_layout
  9441. \begin_layout Itemize
  9442. Cynomolgus monkeys as a model organism
  9443. \end_layout
  9444. \begin_deeper
  9445. \begin_layout Itemize
  9446. Highly related to humans
  9447. \end_layout
  9448. \begin_layout Itemize
  9449. Small size and short life cycle - good research animal
  9450. \end_layout
  9451. \begin_layout Itemize
  9452. Genomics resources still in development
  9453. \end_layout
  9454. \end_deeper
  9455. \begin_layout Itemize
  9456. Inadequacy of existing blood RNA-seq protocols
  9457. \end_layout
  9458. \begin_deeper
  9459. \begin_layout Itemize
  9460. Existing protocols use a separate globin pulldown step, slowing down processing
  9461. \end_layout
  9462. \end_deeper
  9463. \end_inset
  9464. \end_layout
  9465. \begin_layout Standard
  9466. Increasingly, researchers are turning to high-throughput mRNA sequencing
  9467. technologies (RNA-seq) in preference to expression microarrays for analysis
  9468. of gene expression
  9469. \begin_inset CommandInset citation
  9470. LatexCommand cite
  9471. key "Mutz2012"
  9472. literal "false"
  9473. \end_inset
  9474. .
  9475. The advantages are even greater for study of model organisms with no well-estab
  9476. lished array platforms available, such as the cynomolgus monkey (Macaca
  9477. fascicularis).
  9478. High fractions of globin mRNA are naturally present in mammalian peripheral
  9479. blood samples (up to 70% of total mRNA) and these are known to interfere
  9480. with the results of array-based expression profiling
  9481. \begin_inset CommandInset citation
  9482. LatexCommand cite
  9483. key "Winn2010"
  9484. literal "false"
  9485. \end_inset
  9486. .
  9487. The importance of globin reduction for RNA-seq of blood has only been evaluated
  9488. for a deepSAGE protocol on human samples
  9489. \begin_inset CommandInset citation
  9490. LatexCommand cite
  9491. key "Mastrokolias2012"
  9492. literal "false"
  9493. \end_inset
  9494. .
  9495. In the present report, we evaluated globin reduction using custom blocking
  9496. oligonucleotides for deep RNA-seq of peripheral blood samples from a nonhuman
  9497. primate, cynomolgus monkey, using the Illumina technology platform.
  9498. We demonstrate that globin reduction significantly improves the cost-effectiven
  9499. ess of RNA-seq in blood samples.
  9500. Thus, our protocol offers a significant advantage to any investigator planning
  9501. to use RNA-seq for gene expression profiling of nonhuman primate blood
  9502. samples.
  9503. Our method can be generally applied to any species by designing complementary
  9504. oligonucleotide blocking probes to the globin gene sequences of that species.
  9505. Indeed, any highly expressed but biologically uninformative transcripts
  9506. can also be blocked to further increase sequencing efficiency and value
  9507. \begin_inset CommandInset citation
  9508. LatexCommand cite
  9509. key "Arnaud2016"
  9510. literal "false"
  9511. \end_inset
  9512. .
  9513. \end_layout
  9514. \begin_layout Section
  9515. Methods
  9516. \end_layout
  9517. \begin_layout Subsection
  9518. Sample collection
  9519. \end_layout
  9520. \begin_layout Standard
  9521. All research reported here was done under IACUC-approved protocols at the
  9522. University of Miami and complied with all applicable federal and state
  9523. regulations and ethical principles for nonhuman primate research.
  9524. Blood draws occurred between 16 April 2012 and 18 June 2015.
  9525. The experimental system involved intrahepatic pancreatic islet transplantation
  9526. into Cynomolgus monkeys with induced diabetes mellitus with or without
  9527. concomitant infusion of mesenchymal stem cells.
  9528. Blood was collected at serial time points before and after transplantation
  9529. into PAXgene Blood RNA tubes (PreAnalytiX/Qiagen, Valencia, CA) at the
  9530. precise volume:volume ratio of 2.5 ml whole blood into 6.9 ml of PAX gene
  9531. additive.
  9532. \end_layout
  9533. \begin_layout Subsection
  9534. Globin Blocking
  9535. \end_layout
  9536. \begin_layout Standard
  9537. Four oligonucleotides were designed to hybridize to the 3’ end of the transcript
  9538. s for Cynomolgus HBA1, HBA2 and HBB, with two hybridization sites for HBB
  9539. and 2 sites for HBA (the chosen sites were identical in both HBA genes).
  9540. All oligos were purchased from Sigma and were entirely composed of 2’O-Me
  9541. bases with a C3 spacer positioned at the 3’ ends to prevent any polymerase
  9542. mediated primer extension.
  9543. \end_layout
  9544. \begin_layout Quote
  9545. HBA1/2 site 1: GCCCACUCAGACUUUAUUCAAAG-C3spacer
  9546. \end_layout
  9547. \begin_layout Quote
  9548. HBA1/2 site 2: GGUGCAAGGAGGGGAGGAG-C3spacer
  9549. \end_layout
  9550. \begin_layout Quote
  9551. HBB site 1: AAUGAAAAUAAAUGUUUUUUAUUAG-C3spacer
  9552. \end_layout
  9553. \begin_layout Quote
  9554. HBB site 2: CUCAAGGCCCUUCAUAAUAUCCC-C3spacer
  9555. \end_layout
  9556. \begin_layout Subsection
  9557. RNA-seq Library Preparation
  9558. \end_layout
  9559. \begin_layout Standard
  9560. Sequencing libraries were prepared with 200ng total RNA from each sample.
  9561. Polyadenylated mRNA was selected from 200 ng aliquots of cynomologus blood-deri
  9562. ved total RNA using Ambion Dynabeads Oligo(dT)25 beads (Invitrogen) following
  9563. manufacturer’s recommended protocol.
  9564. PolyA selected RNA was then combined with 8 pmol of HBA1/2 (site 1), 8
  9565. pmol of HBA1/2 (site 2), 12 pmol of HBB (site 1) and 12 pmol of HBB (site
  9566. 2) oligonucleotides.
  9567. In addition, 20 pmol of RT primer containing a portion of the Illumina
  9568. adapter sequence (B-oligo-dTV: GAGTTCCTTGGCACCCGAGAATTCCATTTTTTTTTTTTTTTTTTTV)
  9569. and 4 µL of 5X First Strand buffer (250 mM Tris-HCl pH 8.3, 375 mM KCl,
  9570. 15mM MgCl2) were added in a total volume of 15 µL.
  9571. The RNA was fragmented by heating this cocktail for 3 minutes at 95°C and
  9572. then placed on ice.
  9573. This was followed by the addition of 2 µL 0.1 M DTT, 1 µL RNaseOUT, 1 µL
  9574. 10mM dNTPs 10% biotin-16 aminoallyl-2’- dUTP and 10% biotin-16 aminoallyl-2’-
  9575. dCTP (TriLink Biotech, San Diego, CA), 1 µL Superscript II (200U/ µL, Thermo-Fi
  9576. sher).
  9577. A second “unblocked” library was prepared in the same way for each sample
  9578. but replacing the blocking oligos with an equivalent volume of water.
  9579. The reaction was carried out at 25°C for 15 minutes and 42°C for 40 minutes,
  9580. followed by incubation at 75°C for 10 minutes to inactivate the reverse
  9581. transcriptase.
  9582. \end_layout
  9583. \begin_layout Standard
  9584. The cDNA/RNA hybrid molecules were purified using 1.8X Ampure XP beads (Agencourt
  9585. ) following supplier’s recommended protocol.
  9586. The cDNA/RNA hybrid was eluted in 25 µL of 10 mM Tris-HCl pH 8.0, and then
  9587. bound to 25 µL of M280 Magnetic Streptavidin beads washed per recommended
  9588. protocol (Thermo-Fisher).
  9589. After 30 minutes of binding, beads were washed one time in 100 µL 0.1N NaOH
  9590. to denature and remove the bound RNA, followed by two 100 µL washes with
  9591. 1X TE buffer.
  9592. \end_layout
  9593. \begin_layout Standard
  9594. Subsequent attachment of the 5-prime Illumina A adapter was performed by
  9595. on-bead random primer extension of the following sequence (A-N8 primer:
  9596. TTCAGAGTTCTACAGTCCGACGATCNNNNNNNN).
  9597. Briefly, beads were resuspended in a 20 µL reaction containing 5 µM A-N8
  9598. primer, 40mM Tris-HCl pH 7.5, 20mM MgCl2, 50mM NaCl, 0.325U/µL Sequenase
  9599. 2.0 (Affymetrix, Santa Clara, CA), 0.0025U/µL inorganic pyrophosphatase (Affymetr
  9600. ix) and 300 µM each dNTP.
  9601. Reaction was incubated at 22°C for 30 minutes, then beads were washed 2
  9602. times with 1X TE buffer (200µL).
  9603. \end_layout
  9604. \begin_layout Standard
  9605. The magnetic streptavidin beads were resuspended in 34 µL nuclease-free
  9606. water and added directly to a PCR tube.
  9607. The two Illumina protocol-specified PCR primers were added at 0.53 µM (Illumina
  9608. TruSeq Universal Primer 1 and Illumina TruSeq barcoded PCR primer 2), along
  9609. with 40 µL 2X KAPA HiFi Hotstart ReadyMix (KAPA, Willmington MA) and thermocycl
  9610. ed as follows: starting with 98°C (2 min-hold); 15 cycles of 98°C, 20sec;
  9611. 60°C, 30sec; 72°C, 30sec; and finished with a 72°C (2 min-hold).
  9612. \end_layout
  9613. \begin_layout Standard
  9614. PCR products were purified with 1X Ampure Beads following manufacturer’s
  9615. recommended protocol.
  9616. Libraries were then analyzed using the Agilent TapeStation and quantitation
  9617. of desired size range was performed by “smear analysis”.
  9618. Samples were pooled in equimolar batches of 16 samples.
  9619. Pooled libraries were size selected on 2% agarose gels (E-Gel EX Agarose
  9620. Gels; Thermo-Fisher).
  9621. Products were cut between 250 and 350 bp (corresponding to insert sizes
  9622. of 130 to 230 bps).
  9623. Finished library pools were then sequenced on the Illumina NextSeq500 instrumen
  9624. t with 75 base read lengths.
  9625. \end_layout
  9626. \begin_layout Subsection
  9627. Read alignment and counting
  9628. \end_layout
  9629. \begin_layout Standard
  9630. Reads were aligned to the cynomolgus genome using STAR
  9631. \begin_inset CommandInset citation
  9632. LatexCommand cite
  9633. key "Dobin2013,Wilson2013"
  9634. literal "false"
  9635. \end_inset
  9636. .
  9637. Counts of uniquely mapped reads were obtained for every gene in each sample
  9638. with the “featureCounts” function from the Rsubread package, using each
  9639. of the three possibilities for the “strandSpecific” option: sense, antisense,
  9640. and unstranded
  9641. \begin_inset CommandInset citation
  9642. LatexCommand cite
  9643. key "Liao2014"
  9644. literal "false"
  9645. \end_inset
  9646. .
  9647. A few artifacts in the cynomolgus genome annotation complicated read counting.
  9648. First, no ortholog is annotated for alpha globin in the cynomolgus genome,
  9649. presumably because the human genome has two alpha globin genes with nearly
  9650. identical sequences, making the orthology relationship ambiguous.
  9651. However, two loci in the cynomolgus genome are as “hemoglobin subunit alpha-lik
  9652. e” (LOC102136192 and LOC102136846).
  9653. LOC102136192 is annotated as a pseudogene while LOC102136846 is annotated
  9654. as protein-coding.
  9655. Our globin reduction protocol was designed to include blocking of these
  9656. two genes.
  9657. Indeed, these two genes have almost the same read counts in each library
  9658. as the properly-annotated HBB gene and much larger counts than any other
  9659. gene in the unblocked libraries, giving confidence that reads derived from
  9660. the real alpha globin are mapping to both genes.
  9661. Thus, reads from both of these loci were counted as alpha globin reads
  9662. in all further analyses.
  9663. The second artifact is a small, uncharacterized non-coding RNA gene (LOC1021365
  9664. 91), which overlaps the HBA-like gene (LOC102136192) on the opposite strand.
  9665. If counting is not performed in stranded mode (or if a non-strand-specific
  9666. sequencing protocol is used), many reads mapping to the globin gene will
  9667. be discarded as ambiguous due to their overlap with this ncRNA gene, resulting
  9668. in significant undercounting of globin reads.
  9669. Therefore, stranded sense counts were used for all further analysis in
  9670. the present study to insure that we accurately accounted for globin transcript
  9671. reduction.
  9672. However, we note that stranded reads are not necessary for RNA-seq using
  9673. our protocol in standard practice.
  9674. \end_layout
  9675. \begin_layout Subsection
  9676. Normalization and Exploratory Data Analysis
  9677. \end_layout
  9678. \begin_layout Standard
  9679. Libraries were normalized by computing scaling factors using the edgeR package’s
  9680. Trimmed Mean of M-values method
  9681. \begin_inset CommandInset citation
  9682. LatexCommand cite
  9683. key "Robinson2010"
  9684. literal "false"
  9685. \end_inset
  9686. .
  9687. Log2 counts per million values (logCPM) were calculated using the cpm function
  9688. in edgeR for individual samples and aveLogCPM function for averages across
  9689. groups of samples, using those functions’ default prior count values to
  9690. avoid taking the logarithm of 0.
  9691. Genes were considered “present” if their average normalized logCPM values
  9692. across all libraries were at least -1.
  9693. Normalizing for gene length was unnecessary because the sequencing protocol
  9694. is 3’-biased and hence the expected read count for each gene is related
  9695. to the transcript’s copy number but not its length.
  9696. \end_layout
  9697. \begin_layout Standard
  9698. In order to assess the effect of blocking on reproducibility, Pearson and
  9699. Spearman correlation coefficients were computed between the logCPM values
  9700. for every pair of libraries within the globin-blocked (GB) and unblocked
  9701. (non-GB) groups, and edgeR's “estimateDisp” function was used to compute
  9702. negative binomial dispersions separately for the two groups
  9703. \begin_inset CommandInset citation
  9704. LatexCommand cite
  9705. key "Chen2014"
  9706. literal "false"
  9707. \end_inset
  9708. .
  9709. \end_layout
  9710. \begin_layout Subsection
  9711. Differential Expression Analysis
  9712. \end_layout
  9713. \begin_layout Standard
  9714. All tests for differential gene expression were performed using edgeR, by
  9715. first fitting a negative binomial generalized linear model to the counts
  9716. and normalization factors and then performing a quasi-likelihood F-test
  9717. with robust estimation of outlier gene dispersions
  9718. \begin_inset CommandInset citation
  9719. LatexCommand cite
  9720. key "Lund2012,Phipson2016"
  9721. literal "false"
  9722. \end_inset
  9723. .
  9724. To investigate the effects of globin blocking on each gene, an additive
  9725. model was fit to the full data with coefficients for globin blocking and
  9726. SampleID.
  9727. To test the effect of globin blocking on detection of differentially expressed
  9728. genes, the GB samples and non-GB samples were each analyzed independently
  9729. as follows: for each animal with both a pre-transplant and a post-transplant
  9730. time point in the data set, the pre-transplant sample and the earliest
  9731. post-transplant sample were selected, and all others were excluded, yielding
  9732. a pre-/post-transplant pair of samples for each animal (N=7 animals with
  9733. paired samples).
  9734. These samples were analyzed for pre-transplant vs.
  9735. post-transplant differential gene expression while controlling for inter-animal
  9736. variation using an additive model with coefficients for transplant and
  9737. animal ID.
  9738. In all analyses, p-values were adjusted using the Benjamini-Hochberg procedure
  9739. for FDR control
  9740. \begin_inset CommandInset citation
  9741. LatexCommand cite
  9742. key "Benjamini1995"
  9743. literal "false"
  9744. \end_inset
  9745. .
  9746. \end_layout
  9747. \begin_layout Standard
  9748. \begin_inset Note Note
  9749. status open
  9750. \begin_layout Itemize
  9751. New blood RNA-seq protocol to block reverse transcription of globin genes
  9752. \end_layout
  9753. \begin_layout Itemize
  9754. Blood RNA-seq time course after transplants with/without MSC infusion
  9755. \end_layout
  9756. \end_inset
  9757. \end_layout
  9758. \begin_layout Section
  9759. Results
  9760. \end_layout
  9761. \begin_layout Subsection
  9762. Globin blocking yields a larger and more consistent fraction of useful reads
  9763. \end_layout
  9764. \begin_layout Standard
  9765. \begin_inset ERT
  9766. status open
  9767. \begin_layout Plain Layout
  9768. \backslash
  9769. afterpage{
  9770. \end_layout
  9771. \begin_layout Plain Layout
  9772. \backslash
  9773. begin{landscape}
  9774. \end_layout
  9775. \end_inset
  9776. \end_layout
  9777. \begin_layout Standard
  9778. \begin_inset Float table
  9779. placement p
  9780. wide false
  9781. sideways false
  9782. status open
  9783. \begin_layout Plain Layout
  9784. \align center
  9785. \begin_inset Tabular
  9786. <lyxtabular version="3" rows="4" columns="7">
  9787. <features tabularvalignment="middle">
  9788. <column alignment="center" valignment="top">
  9789. <column alignment="center" valignment="top">
  9790. <column alignment="center" valignment="top">
  9791. <column alignment="center" valignment="top">
  9792. <column alignment="center" valignment="top">
  9793. <column alignment="center" valignment="top">
  9794. <column alignment="center" valignment="top">
  9795. <row>
  9796. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  9797. \begin_inset Text
  9798. \begin_layout Plain Layout
  9799. \end_layout
  9800. \end_inset
  9801. </cell>
  9802. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  9803. \begin_inset Text
  9804. \begin_layout Plain Layout
  9805. \family roman
  9806. \series medium
  9807. \shape up
  9808. \size normal
  9809. \emph off
  9810. \bar no
  9811. \strikeout off
  9812. \xout off
  9813. \uuline off
  9814. \uwave off
  9815. \noun off
  9816. \color none
  9817. Percent of Total Reads
  9818. \end_layout
  9819. \end_inset
  9820. </cell>
  9821. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  9822. \begin_inset Text
  9823. \begin_layout Plain Layout
  9824. \end_layout
  9825. \end_inset
  9826. </cell>
  9827. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  9828. \begin_inset Text
  9829. \begin_layout Plain Layout
  9830. \end_layout
  9831. \end_inset
  9832. </cell>
  9833. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  9834. \begin_inset Text
  9835. \begin_layout Plain Layout
  9836. \end_layout
  9837. \end_inset
  9838. </cell>
  9839. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  9840. \begin_inset Text
  9841. \begin_layout Plain Layout
  9842. \family roman
  9843. \series medium
  9844. \shape up
  9845. \size normal
  9846. \emph off
  9847. \bar no
  9848. \strikeout off
  9849. \xout off
  9850. \uuline off
  9851. \uwave off
  9852. \noun off
  9853. \color none
  9854. Percent of Genic Reads
  9855. \end_layout
  9856. \end_inset
  9857. </cell>
  9858. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  9859. \begin_inset Text
  9860. \begin_layout Plain Layout
  9861. \end_layout
  9862. \end_inset
  9863. </cell>
  9864. </row>
  9865. <row>
  9866. <cell alignment="center" valignment="top" bottomline="true" leftline="true" usebox="none">
  9867. \begin_inset Text
  9868. \begin_layout Plain Layout
  9869. GB
  9870. \end_layout
  9871. \end_inset
  9872. </cell>
  9873. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  9874. \begin_inset Text
  9875. \begin_layout Plain Layout
  9876. \family roman
  9877. \series medium
  9878. \shape up
  9879. \size normal
  9880. \emph off
  9881. \bar no
  9882. \strikeout off
  9883. \xout off
  9884. \uuline off
  9885. \uwave off
  9886. \noun off
  9887. \color none
  9888. Non-globin Reads
  9889. \end_layout
  9890. \end_inset
  9891. </cell>
  9892. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  9893. \begin_inset Text
  9894. \begin_layout Plain Layout
  9895. \family roman
  9896. \series medium
  9897. \shape up
  9898. \size normal
  9899. \emph off
  9900. \bar no
  9901. \strikeout off
  9902. \xout off
  9903. \uuline off
  9904. \uwave off
  9905. \noun off
  9906. \color none
  9907. Globin Reads
  9908. \end_layout
  9909. \end_inset
  9910. </cell>
  9911. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  9912. \begin_inset Text
  9913. \begin_layout Plain Layout
  9914. \family roman
  9915. \series medium
  9916. \shape up
  9917. \size normal
  9918. \emph off
  9919. \bar no
  9920. \strikeout off
  9921. \xout off
  9922. \uuline off
  9923. \uwave off
  9924. \noun off
  9925. \color none
  9926. All Genic Reads
  9927. \end_layout
  9928. \end_inset
  9929. </cell>
  9930. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  9931. \begin_inset Text
  9932. \begin_layout Plain Layout
  9933. \family roman
  9934. \series medium
  9935. \shape up
  9936. \size normal
  9937. \emph off
  9938. \bar no
  9939. \strikeout off
  9940. \xout off
  9941. \uuline off
  9942. \uwave off
  9943. \noun off
  9944. \color none
  9945. All Aligned Reads
  9946. \end_layout
  9947. \end_inset
  9948. </cell>
  9949. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  9950. \begin_inset Text
  9951. \begin_layout Plain Layout
  9952. \family roman
  9953. \series medium
  9954. \shape up
  9955. \size normal
  9956. \emph off
  9957. \bar no
  9958. \strikeout off
  9959. \xout off
  9960. \uuline off
  9961. \uwave off
  9962. \noun off
  9963. \color none
  9964. Non-globin Reads
  9965. \end_layout
  9966. \end_inset
  9967. </cell>
  9968. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  9969. \begin_inset Text
  9970. \begin_layout Plain Layout
  9971. \family roman
  9972. \series medium
  9973. \shape up
  9974. \size normal
  9975. \emph off
  9976. \bar no
  9977. \strikeout off
  9978. \xout off
  9979. \uuline off
  9980. \uwave off
  9981. \noun off
  9982. \color none
  9983. Globin Reads
  9984. \end_layout
  9985. \end_inset
  9986. </cell>
  9987. </row>
  9988. <row>
  9989. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  9990. \begin_inset Text
  9991. \begin_layout Plain Layout
  9992. \family roman
  9993. \series medium
  9994. \shape up
  9995. \size normal
  9996. \emph off
  9997. \bar no
  9998. \strikeout off
  9999. \xout off
  10000. \uuline off
  10001. \uwave off
  10002. \noun off
  10003. \color none
  10004. Yes
  10005. \end_layout
  10006. \end_inset
  10007. </cell>
  10008. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10009. \begin_inset Text
  10010. \begin_layout Plain Layout
  10011. \family roman
  10012. \series medium
  10013. \shape up
  10014. \size normal
  10015. \emph off
  10016. \bar no
  10017. \strikeout off
  10018. \xout off
  10019. \uuline off
  10020. \uwave off
  10021. \noun off
  10022. \color none
  10023. 50.4% ± 6.82
  10024. \end_layout
  10025. \end_inset
  10026. </cell>
  10027. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10028. \begin_inset Text
  10029. \begin_layout Plain Layout
  10030. \family roman
  10031. \series medium
  10032. \shape up
  10033. \size normal
  10034. \emph off
  10035. \bar no
  10036. \strikeout off
  10037. \xout off
  10038. \uuline off
  10039. \uwave off
  10040. \noun off
  10041. \color none
  10042. 3.48% ± 2.94
  10043. \end_layout
  10044. \end_inset
  10045. </cell>
  10046. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10047. \begin_inset Text
  10048. \begin_layout Plain Layout
  10049. \family roman
  10050. \series medium
  10051. \shape up
  10052. \size normal
  10053. \emph off
  10054. \bar no
  10055. \strikeout off
  10056. \xout off
  10057. \uuline off
  10058. \uwave off
  10059. \noun off
  10060. \color none
  10061. 53.9% ± 6.81
  10062. \end_layout
  10063. \end_inset
  10064. </cell>
  10065. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10066. \begin_inset Text
  10067. \begin_layout Plain Layout
  10068. \family roman
  10069. \series medium
  10070. \shape up
  10071. \size normal
  10072. \emph off
  10073. \bar no
  10074. \strikeout off
  10075. \xout off
  10076. \uuline off
  10077. \uwave off
  10078. \noun off
  10079. \color none
  10080. 89.7% ± 2.40
  10081. \end_layout
  10082. \end_inset
  10083. </cell>
  10084. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10085. \begin_inset Text
  10086. \begin_layout Plain Layout
  10087. \family roman
  10088. \series medium
  10089. \shape up
  10090. \size normal
  10091. \emph off
  10092. \bar no
  10093. \strikeout off
  10094. \xout off
  10095. \uuline off
  10096. \uwave off
  10097. \noun off
  10098. \color none
  10099. 93.5% ± 5.25
  10100. \end_layout
  10101. \end_inset
  10102. </cell>
  10103. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  10104. \begin_inset Text
  10105. \begin_layout Plain Layout
  10106. \family roman
  10107. \series medium
  10108. \shape up
  10109. \size normal
  10110. \emph off
  10111. \bar no
  10112. \strikeout off
  10113. \xout off
  10114. \uuline off
  10115. \uwave off
  10116. \noun off
  10117. \color none
  10118. 6.49% ± 5.25
  10119. \end_layout
  10120. \end_inset
  10121. </cell>
  10122. </row>
  10123. <row>
  10124. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10125. \begin_inset Text
  10126. \begin_layout Plain Layout
  10127. \family roman
  10128. \series medium
  10129. \shape up
  10130. \size normal
  10131. \emph off
  10132. \bar no
  10133. \strikeout off
  10134. \xout off
  10135. \uuline off
  10136. \uwave off
  10137. \noun off
  10138. \color none
  10139. No
  10140. \end_layout
  10141. \end_inset
  10142. </cell>
  10143. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10144. \begin_inset Text
  10145. \begin_layout Plain Layout
  10146. \family roman
  10147. \series medium
  10148. \shape up
  10149. \size normal
  10150. \emph off
  10151. \bar no
  10152. \strikeout off
  10153. \xout off
  10154. \uuline off
  10155. \uwave off
  10156. \noun off
  10157. \color none
  10158. 26.3% ± 8.95
  10159. \end_layout
  10160. \end_inset
  10161. </cell>
  10162. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10163. \begin_inset Text
  10164. \begin_layout Plain Layout
  10165. \family roman
  10166. \series medium
  10167. \shape up
  10168. \size normal
  10169. \emph off
  10170. \bar no
  10171. \strikeout off
  10172. \xout off
  10173. \uuline off
  10174. \uwave off
  10175. \noun off
  10176. \color none
  10177. 44.6% ± 16.6
  10178. \end_layout
  10179. \end_inset
  10180. </cell>
  10181. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10182. \begin_inset Text
  10183. \begin_layout Plain Layout
  10184. \family roman
  10185. \series medium
  10186. \shape up
  10187. \size normal
  10188. \emph off
  10189. \bar no
  10190. \strikeout off
  10191. \xout off
  10192. \uuline off
  10193. \uwave off
  10194. \noun off
  10195. \color none
  10196. 70.1% ± 9.38
  10197. \end_layout
  10198. \end_inset
  10199. </cell>
  10200. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10201. \begin_inset Text
  10202. \begin_layout Plain Layout
  10203. \family roman
  10204. \series medium
  10205. \shape up
  10206. \size normal
  10207. \emph off
  10208. \bar no
  10209. \strikeout off
  10210. \xout off
  10211. \uuline off
  10212. \uwave off
  10213. \noun off
  10214. \color none
  10215. 90.7% ± 5.16
  10216. \end_layout
  10217. \end_inset
  10218. </cell>
  10219. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10220. \begin_inset Text
  10221. \begin_layout Plain Layout
  10222. \family roman
  10223. \series medium
  10224. \shape up
  10225. \size normal
  10226. \emph off
  10227. \bar no
  10228. \strikeout off
  10229. \xout off
  10230. \uuline off
  10231. \uwave off
  10232. \noun off
  10233. \color none
  10234. 38.8% ± 17.1
  10235. \end_layout
  10236. \end_inset
  10237. </cell>
  10238. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  10239. \begin_inset Text
  10240. \begin_layout Plain Layout
  10241. \family roman
  10242. \series medium
  10243. \shape up
  10244. \size normal
  10245. \emph off
  10246. \bar no
  10247. \strikeout off
  10248. \xout off
  10249. \uuline off
  10250. \uwave off
  10251. \noun off
  10252. \color none
  10253. 61.2% ± 17.1
  10254. \end_layout
  10255. \end_inset
  10256. </cell>
  10257. </row>
  10258. </lyxtabular>
  10259. \end_inset
  10260. \end_layout
  10261. \begin_layout Plain Layout
  10262. \begin_inset Caption Standard
  10263. \begin_layout Plain Layout
  10264. \series bold
  10265. \begin_inset Argument 1
  10266. status collapsed
  10267. \begin_layout Plain Layout
  10268. Fractions of reads mapping to genomic features in GB and non-GB samples.
  10269. \end_layout
  10270. \end_inset
  10271. \begin_inset CommandInset label
  10272. LatexCommand label
  10273. name "tab:Fractions-of-reads"
  10274. \end_inset
  10275. Fractions of reads mapping to genomic features in GB and non-GB samples.
  10276. \series default
  10277. All values are given as mean ± standard deviation.
  10278. \end_layout
  10279. \end_inset
  10280. \end_layout
  10281. \end_inset
  10282. \end_layout
  10283. \begin_layout Standard
  10284. \begin_inset ERT
  10285. status open
  10286. \begin_layout Plain Layout
  10287. \backslash
  10288. end{landscape}
  10289. \end_layout
  10290. \begin_layout Plain Layout
  10291. }
  10292. \end_layout
  10293. \end_inset
  10294. \end_layout
  10295. \begin_layout Standard
  10296. The objective of the present study was to validate a new protocol for deep
  10297. RNA-seq of whole blood drawn into PaxGene tubes from cynomolgus monkeys
  10298. undergoing islet transplantation, with particular focus on minimizing the
  10299. loss of useful sequencing space to uninformative globin reads.
  10300. The details of the analysis with respect to transplant outcomes and the
  10301. impact of mesenchymal stem cell treatment will be reported in a separate
  10302. manuscript (in preparation).
  10303. To focus on the efficacy of our globin blocking protocol, 37 blood samples,
  10304. 16 from pre-transplant and 21 from post-transplant time points, were each
  10305. prepped once with and once without globin blocking oligos, and were then
  10306. sequenced on an Illumina NextSeq500 instrument.
  10307. The number of reads aligning to each gene in the cynomolgus genome was
  10308. counted.
  10309. Table 1 summarizes the distribution of read fractions among the GB and
  10310. non-GB libraries.
  10311. In the libraries with no globin blocking, globin reads made up an average
  10312. of 44.6% of total input reads, while reads assigned to all other genes made
  10313. up an average of 26.3%.
  10314. The remaining reads either aligned to intergenic regions (that include
  10315. long non-coding RNAs) or did not align with any annotated transcripts in
  10316. the current build of the cynomolgus genome.
  10317. In the GB libraries, globin reads made up only 3.48% and reads assigned
  10318. to all other genes increased to 50.4%.
  10319. Thus, globin blocking resulted in a 92.2% reduction in globin reads and
  10320. a 91.6% increase in yield of useful non-globin reads.
  10321. \end_layout
  10322. \begin_layout Standard
  10323. This reduction is not quite as efficient as the previous analysis showed
  10324. for human samples by DeepSAGE (<0.4% globin reads after globin reduction)
  10325. \begin_inset CommandInset citation
  10326. LatexCommand cite
  10327. key "Mastrokolias2012"
  10328. literal "false"
  10329. \end_inset
  10330. .
  10331. Nonetheless, this degree of globin reduction is sufficient to nearly double
  10332. the yield of useful reads.
  10333. Thus, globin blocking cuts the required sequencing effort (and costs) to
  10334. achieve a target coverage depth by almost 50%.
  10335. Consistent with this near doubling of yield, the average difference in
  10336. un-normalized logCPM across all genes between the GB libraries and non-GB
  10337. libraries is approximately 1 (mean = 1.01, median = 1.08), an overall 2-fold
  10338. increase.
  10339. Un-normalized values are used here because the TMM normalization correctly
  10340. identifies this 2-fold difference as biologically irrelevant and removes
  10341. it.
  10342. \end_layout
  10343. \begin_layout Standard
  10344. \begin_inset Float figure
  10345. wide false
  10346. sideways false
  10347. status collapsed
  10348. \begin_layout Plain Layout
  10349. \align center
  10350. \begin_inset Graphics
  10351. filename graphics/Globin Paper/figure1 - globin-fractions.pdf
  10352. lyxscale 50
  10353. width 75col%
  10354. \end_inset
  10355. \end_layout
  10356. \begin_layout Plain Layout
  10357. \begin_inset Caption Standard
  10358. \begin_layout Plain Layout
  10359. \series bold
  10360. \begin_inset Argument 1
  10361. status collapsed
  10362. \begin_layout Plain Layout
  10363. Fraction of genic reads in each sample aligned to non-globin genes, with
  10364. and without globin blocking (GB).
  10365. \end_layout
  10366. \end_inset
  10367. \begin_inset CommandInset label
  10368. LatexCommand label
  10369. name "fig:Fraction-of-genic-reads"
  10370. \end_inset
  10371. Fraction of genic reads in each sample aligned to non-globin genes, with
  10372. and without globin blocking (GB).
  10373. \series default
  10374. All reads in each sequencing library were aligned to the cyno genome, and
  10375. the number of reads uniquely aligning to each gene was counted.
  10376. For each sample, counts were summed separately for all globin genes and
  10377. for the remainder of the genes (non-globin genes), and the fraction of
  10378. genic reads aligned to non-globin genes was computed.
  10379. Each point represents an individual sample.
  10380. Gray + signs indicate the means for globin-blocked libraries and unblocked
  10381. libraries.
  10382. The overall distribution for each group is represented as a notched box
  10383. plots.
  10384. Points are randomly spread vertically to avoid excessive overlapping.
  10385. \end_layout
  10386. \end_inset
  10387. \end_layout
  10388. \end_inset
  10389. \end_layout
  10390. \begin_layout Standard
  10391. Another important aspect is that the standard deviations in Table
  10392. \begin_inset CommandInset ref
  10393. LatexCommand ref
  10394. reference "tab:Fractions-of-reads"
  10395. plural "false"
  10396. caps "false"
  10397. noprefix "false"
  10398. \end_inset
  10399. are uniformly smaller in the GB samples than the non-GB ones, indicating
  10400. much greater consistency of yield.
  10401. This is best seen in the percentage of non-globin reads as a fraction of
  10402. total reads aligned to annotated genes (genic reads).
  10403. For the non-GB samples, this measure ranges from 10.9% to 80.9%, while for
  10404. the GB samples it ranges from 81.9% to 99.9% (Figure
  10405. \begin_inset CommandInset ref
  10406. LatexCommand ref
  10407. reference "fig:Fraction-of-genic-reads"
  10408. plural "false"
  10409. caps "false"
  10410. noprefix "false"
  10411. \end_inset
  10412. ).
  10413. This means that for applications where it is critical that each sample
  10414. achieve a specified minimum coverage in order to provide useful information,
  10415. it would be necessary to budget up to 10 times the sequencing depth per
  10416. sample without globin blocking, even though the average yield improvement
  10417. for globin blocking is only 2-fold, because every sample has a chance of
  10418. being 90% globin and 10% useful reads.
  10419. Hence, the more consistent behavior of GB samples makes planning an experiment
  10420. easier and more efficient because it eliminates the need to over-sequence
  10421. every sample in order to guard against the worst case of a high-globin
  10422. fraction.
  10423. \end_layout
  10424. \begin_layout Subsection
  10425. Globin blocking lowers the noise floor and allows detection of about 2000
  10426. more low-expression genes
  10427. \end_layout
  10428. \begin_layout Standard
  10429. \begin_inset Flex TODO Note (inline)
  10430. status open
  10431. \begin_layout Plain Layout
  10432. Remove redundant titles from figures
  10433. \end_layout
  10434. \end_inset
  10435. \end_layout
  10436. \begin_layout Standard
  10437. \begin_inset Float figure
  10438. wide false
  10439. sideways false
  10440. status collapsed
  10441. \begin_layout Plain Layout
  10442. \align center
  10443. \begin_inset Graphics
  10444. filename graphics/Globin Paper/figure2 - aveLogCPM-colored.pdf
  10445. lyxscale 50
  10446. height 60theight%
  10447. \end_inset
  10448. \end_layout
  10449. \begin_layout Plain Layout
  10450. \begin_inset Caption Standard
  10451. \begin_layout Plain Layout
  10452. \series bold
  10453. \begin_inset Argument 1
  10454. status collapsed
  10455. \begin_layout Plain Layout
  10456. Distributions of average group gene abundances when normalized separately
  10457. or together.
  10458. \end_layout
  10459. \end_inset
  10460. \begin_inset CommandInset label
  10461. LatexCommand label
  10462. name "fig:logcpm-dists"
  10463. \end_inset
  10464. Distributions of average group gene abundances when normalized separately
  10465. or together.
  10466. \series default
  10467. All reads in each sequencing library were aligned to the cyno genome, and
  10468. the number of reads uniquely aligning to each gene was counted.
  10469. Genes with zero counts in all libraries were discarded.
  10470. Libraries were normalized using the TMM method.
  10471. Libraries were split into globin-blocked (GB) and non-GB groups and the
  10472. average abundance for each gene in both groups, measured in log2 counts
  10473. per million reads counted, was computed using the aveLogCPM function.
  10474. The distribution of average gene logCPM values was plotted for both groups
  10475. using a kernel density plot to approximate a continuous distribution.
  10476. The logCPM GB distributions are marked in red, non-GB in blue.
  10477. The black vertical line denotes the chosen detection threshold of -1.
  10478. Top panel: Libraries were split into GB and non-GB groups first and normalized
  10479. separately.
  10480. Bottom panel: Libraries were all normalized together first and then split
  10481. into groups.
  10482. \end_layout
  10483. \end_inset
  10484. \end_layout
  10485. \begin_layout Plain Layout
  10486. \end_layout
  10487. \end_inset
  10488. \end_layout
  10489. \begin_layout Standard
  10490. Since globin blocking yields more usable sequencing depth, it should also
  10491. allow detection of more genes at any given threshold.
  10492. When we looked at the distribution of average normalized logCPM values
  10493. across all libraries for genes with at least one read assigned to them,
  10494. we observed the expected bimodal distribution, with a high-abundance "signal"
  10495. peak representing detected genes and a low-abundance "noise" peak representing
  10496. genes whose read count did not rise above the noise floor (Figure
  10497. \begin_inset CommandInset ref
  10498. LatexCommand ref
  10499. reference "fig:logcpm-dists"
  10500. plural "false"
  10501. caps "false"
  10502. noprefix "false"
  10503. \end_inset
  10504. ).
  10505. Consistent with the 2-fold increase in raw counts assigned to non-globin
  10506. genes, the signal peak for GB samples is shifted to the right relative
  10507. to the non-GB signal peak.
  10508. When all the samples are normalized together, this difference is normalized
  10509. out, lining up the signal peaks, and this reveals that, as expected, the
  10510. noise floor for the GB samples is about 2-fold lower.
  10511. This greater separation between signal and noise peaks in the GB samples
  10512. means that low-expression genes should be more easily detected and more
  10513. precisely quantified than in the non-GB samples.
  10514. \end_layout
  10515. \begin_layout Standard
  10516. \begin_inset Float figure
  10517. wide false
  10518. sideways false
  10519. status collapsed
  10520. \begin_layout Plain Layout
  10521. \align center
  10522. \begin_inset Graphics
  10523. filename graphics/Globin Paper/figure3 - detection.pdf
  10524. lyxscale 50
  10525. width 70col%
  10526. \end_inset
  10527. \end_layout
  10528. \begin_layout Plain Layout
  10529. \begin_inset Caption Standard
  10530. \begin_layout Plain Layout
  10531. \series bold
  10532. \begin_inset Argument 1
  10533. status collapsed
  10534. \begin_layout Plain Layout
  10535. Gene detections as a function of abundance thresholds in globin-blocked
  10536. (GB) and non-GB samples.
  10537. \end_layout
  10538. \end_inset
  10539. \begin_inset CommandInset label
  10540. LatexCommand label
  10541. name "fig:Gene-detections"
  10542. \end_inset
  10543. Gene detections as a function of abundance thresholds in globin-blocked
  10544. (GB) and non-GB samples.
  10545. \series default
  10546. Average abundance (logCPM,
  10547. \begin_inset Formula $\log_{2}$
  10548. \end_inset
  10549. counts per million reads counted) was computed by separate group normalization
  10550. as described in Figure
  10551. \begin_inset CommandInset ref
  10552. LatexCommand ref
  10553. reference "fig:logcpm-dists"
  10554. plural "false"
  10555. caps "false"
  10556. noprefix "false"
  10557. \end_inset
  10558. for both the GB and non-GB groups, as well as for all samples considered
  10559. as one large group.
  10560. For each every integer threshold from -2 to 3, the number of genes detected
  10561. at or above that logCPM threshold was plotted for each group.
  10562. \end_layout
  10563. \end_inset
  10564. \end_layout
  10565. \begin_layout Plain Layout
  10566. \end_layout
  10567. \end_inset
  10568. \end_layout
  10569. \begin_layout Standard
  10570. Based on these distributions, we selected a detection threshold of -1, which
  10571. is approximately the leftmost edge of the trough between the signal and
  10572. noise peaks.
  10573. This represents the most liberal possible detection threshold that doesn't
  10574. call substantial numbers of noise genes as detected.
  10575. Among the full dataset, 13429 genes were detected at this threshold, and
  10576. 22276 were not.
  10577. When considering the GB libraries and non-GB libraries separately and re-comput
  10578. ing normalization factors independently within each group, 14535 genes were
  10579. detected in the GB libraries while only 12460 were detected in the non-GB
  10580. libraries.
  10581. Thus, GB allowed the detection of 2000 extra genes that were buried under
  10582. the noise floor without GB.
  10583. This pattern of at least 2000 additional genes detected with GB was also
  10584. consistent across a wide range of possible detection thresholds, from -2
  10585. to 3 (see Figure
  10586. \begin_inset CommandInset ref
  10587. LatexCommand ref
  10588. reference "fig:Gene-detections"
  10589. plural "false"
  10590. caps "false"
  10591. noprefix "false"
  10592. \end_inset
  10593. ).
  10594. \end_layout
  10595. \begin_layout Subsection
  10596. Globin blocking does not add significant additional noise or decrease sample
  10597. quality
  10598. \end_layout
  10599. \begin_layout Standard
  10600. One potential worry is that the globin blocking protocol could perturb the
  10601. levels of non-globin genes.
  10602. There are two kinds of possible perturbations: systematic and random.
  10603. The former is not a major concern for detection of differential expression,
  10604. since a 2-fold change in every sample has no effect on the relative fold
  10605. change between samples.
  10606. In contrast, random perturbations would increase the noise and obscure
  10607. the signal in the dataset, reducing the capacity to detect differential
  10608. expression.
  10609. \end_layout
  10610. \begin_layout Standard
  10611. \begin_inset Float figure
  10612. wide false
  10613. sideways false
  10614. status collapsed
  10615. \begin_layout Plain Layout
  10616. \align center
  10617. \begin_inset Graphics
  10618. filename graphics/Globin Paper/figure4 - maplot-colored.pdf
  10619. lyxscale 50
  10620. width 60col%
  10621. groupId colwidth
  10622. \end_inset
  10623. \end_layout
  10624. \begin_layout Plain Layout
  10625. \begin_inset Caption Standard
  10626. \begin_layout Plain Layout
  10627. \begin_inset Argument 1
  10628. status collapsed
  10629. \begin_layout Plain Layout
  10630. MA plot showing effects of globin blocking on each gene's abundance.
  10631. \end_layout
  10632. \end_inset
  10633. \begin_inset CommandInset label
  10634. LatexCommand label
  10635. name "fig:MA-plot"
  10636. \end_inset
  10637. \series bold
  10638. MA plot showing effects of globin blocking on each gene's abundance.
  10639. \series default
  10640. All libraries were normalized together as described in Figure
  10641. \begin_inset CommandInset ref
  10642. LatexCommand ref
  10643. reference "fig:logcpm-dists"
  10644. plural "false"
  10645. caps "false"
  10646. noprefix "false"
  10647. \end_inset
  10648. , and genes with an average logCPM below -1 were filtered out.
  10649. Each remaining gene was tested for differential abundance with respect
  10650. to globin blocking (GB) using edgeR’s quasi-likelihood F-test, fitting
  10651. a negative binomial generalized linear model to table of read counts in
  10652. each library.
  10653. For each gene, edgeR reported average abundance (logCPM),
  10654. \begin_inset Formula $\log_{2}$
  10655. \end_inset
  10656. fold change (logFC), p-value, and Benjamini-Hochberg adjusted false discovery
  10657. rate (FDR).
  10658. Each gene's logFC was plotted against its logCPM, colored by FDR.
  10659. Red points are significant at ≤10% FDR, and blue are not significant at
  10660. that threshold.
  10661. The alpha and beta globin genes targeted for blocking are marked with large
  10662. triangles, while all other genes are represented as small points.
  10663. \end_layout
  10664. \end_inset
  10665. \end_layout
  10666. \begin_layout Plain Layout
  10667. \end_layout
  10668. \end_inset
  10669. \end_layout
  10670. \begin_layout Standard
  10671. \begin_inset Flex TODO Note (inline)
  10672. status open
  10673. \begin_layout Plain Layout
  10674. Standardize on
  10675. \begin_inset Quotes eld
  10676. \end_inset
  10677. log2
  10678. \begin_inset Quotes erd
  10679. \end_inset
  10680. notation
  10681. \end_layout
  10682. \end_inset
  10683. \end_layout
  10684. \begin_layout Standard
  10685. The data do indeed show small systematic perturbations in gene levels (Figure
  10686. \begin_inset CommandInset ref
  10687. LatexCommand ref
  10688. reference "fig:MA-plot"
  10689. plural "false"
  10690. caps "false"
  10691. noprefix "false"
  10692. \end_inset
  10693. ).
  10694. Other than the 3 designated alpha and beta globin genes, two other genes
  10695. stand out as having especially large negative log fold changes: HBD and
  10696. LOC1021365.
  10697. HBD, delta globin, is most likely targeted by the blocking oligos due to
  10698. high sequence homology with the other globin genes.
  10699. LOC1021365 is the aforementioned ncRNA that is reverse-complementary to
  10700. one of the alpha-like genes and that would be expected to be removed during
  10701. the globin blocking step.
  10702. All other genes appear in a cluster centered vertically at 0, and the vast
  10703. majority of genes in this cluster show an absolute log2(FC) of 0.5 or less.
  10704. Nevertheless, many of these small perturbations are still statistically
  10705. significant, indicating that the globin blocking oligos likely cause very
  10706. small but non-zero systematic perturbations in measured gene expression
  10707. levels.
  10708. \end_layout
  10709. \begin_layout Standard
  10710. \begin_inset Float figure
  10711. wide false
  10712. sideways false
  10713. status collapsed
  10714. \begin_layout Plain Layout
  10715. \align center
  10716. \begin_inset Graphics
  10717. filename graphics/Globin Paper/figure5 - corrplot.pdf
  10718. lyxscale 50
  10719. width 70col%
  10720. \end_inset
  10721. \end_layout
  10722. \begin_layout Plain Layout
  10723. \begin_inset Caption Standard
  10724. \begin_layout Plain Layout
  10725. \series bold
  10726. \begin_inset Argument 1
  10727. status collapsed
  10728. \begin_layout Plain Layout
  10729. Comparison of inter-sample gene abundance correlations with and without
  10730. globin blocking.
  10731. \end_layout
  10732. \end_inset
  10733. \begin_inset CommandInset label
  10734. LatexCommand label
  10735. name "fig:gene-abundance-correlations"
  10736. \end_inset
  10737. Comparison of inter-sample gene abundance correlations with and without
  10738. globin blocking (GB).
  10739. \series default
  10740. All libraries were normalized together as described in Figure 2, and genes
  10741. with an average abundance (logCPM, log2 counts per million reads counted)
  10742. less than -1 were filtered out.
  10743. Each gene’s logCPM was computed in each library using the edgeR cpm function.
  10744. For each pair of biological samples, the Pearson correlation between those
  10745. samples' GB libraries was plotted against the correlation between the same
  10746. samples’ non-GB libraries.
  10747. Each point represents an unique pair of samples.
  10748. The solid gray line shows a quantile-quantile plot of distribution of GB
  10749. correlations vs.
  10750. that of non-GB correlations.
  10751. The thin dashed line is the identity line, provided for reference.
  10752. \end_layout
  10753. \end_inset
  10754. \end_layout
  10755. \begin_layout Plain Layout
  10756. \end_layout
  10757. \end_inset
  10758. \end_layout
  10759. \begin_layout Standard
  10760. To evaluate the possibility of globin blocking causing random perturbations
  10761. and reducing sample quality, we computed the Pearson correlation between
  10762. logCPM values for every pair of samples with and without GB and plotted
  10763. them against each other (Figure
  10764. \begin_inset CommandInset ref
  10765. LatexCommand ref
  10766. reference "fig:gene-abundance-correlations"
  10767. plural "false"
  10768. caps "false"
  10769. noprefix "false"
  10770. \end_inset
  10771. ).
  10772. The plot indicated that the GB libraries have higher sample-to-sample correlati
  10773. ons than the non-GB libraries.
  10774. Parametric and nonparametric tests for differences between the correlations
  10775. with and without GB both confirmed that this difference was highly significant
  10776. (2-sided paired t-test: t = 37.2, df = 665, P ≪ 2.2e-16; 2-sided Wilcoxon
  10777. sign-rank test: V = 2195, P ≪ 2.2e-16).
  10778. Performing the same tests on the Spearman correlations gave the same conclusion
  10779. (t-test: t = 26.8, df = 665, P ≪ 2.2e-16; sign-rank test: V = 8781, P ≪ 2.2e-16).
  10780. The edgeR package was used to compute the overall biological coefficient
  10781. of variation (BCV) for GB and non-GB libraries, and found that globin blocking
  10782. resulted in a negligible increase in the BCV (0.417 with GB vs.
  10783. 0.400 without).
  10784. The near equality of the BCVs for both sets indicates that the higher correlati
  10785. ons in the GB libraries are most likely a result of the increased yield
  10786. of useful reads, which reduces the contribution of Poisson counting uncertainty
  10787. to the overall variance of the logCPM values
  10788. \begin_inset CommandInset citation
  10789. LatexCommand cite
  10790. key "McCarthy2012"
  10791. literal "false"
  10792. \end_inset
  10793. .
  10794. This improves the precision of expression measurements and more than offsets
  10795. the negligible increase in BCV.
  10796. \end_layout
  10797. \begin_layout Subsection
  10798. More differentially expressed genes are detected with globin blocking
  10799. \end_layout
  10800. \begin_layout Standard
  10801. \begin_inset Float table
  10802. wide false
  10803. sideways false
  10804. status collapsed
  10805. \begin_layout Plain Layout
  10806. \align center
  10807. \begin_inset Tabular
  10808. <lyxtabular version="3" rows="5" columns="5">
  10809. <features tabularvalignment="middle">
  10810. <column alignment="center" valignment="top">
  10811. <column alignment="center" valignment="top">
  10812. <column alignment="center" valignment="top">
  10813. <column alignment="center" valignment="top">
  10814. <column alignment="center" valignment="top">
  10815. <row>
  10816. <cell alignment="center" valignment="top" usebox="none">
  10817. \begin_inset Text
  10818. \begin_layout Plain Layout
  10819. \end_layout
  10820. \end_inset
  10821. </cell>
  10822. <cell alignment="center" valignment="top" usebox="none">
  10823. \begin_inset Text
  10824. \begin_layout Plain Layout
  10825. \end_layout
  10826. \end_inset
  10827. </cell>
  10828. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  10829. \begin_inset Text
  10830. \begin_layout Plain Layout
  10831. \series bold
  10832. No Globin Blocking
  10833. \end_layout
  10834. \end_inset
  10835. </cell>
  10836. <cell multicolumn="2" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10837. \begin_inset Text
  10838. \begin_layout Plain Layout
  10839. \end_layout
  10840. \end_inset
  10841. </cell>
  10842. <cell multicolumn="2" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  10843. \begin_inset Text
  10844. \begin_layout Plain Layout
  10845. \end_layout
  10846. \end_inset
  10847. </cell>
  10848. </row>
  10849. <row>
  10850. <cell alignment="center" valignment="top" usebox="none">
  10851. \begin_inset Text
  10852. \begin_layout Plain Layout
  10853. \end_layout
  10854. \end_inset
  10855. </cell>
  10856. <cell alignment="center" valignment="top" usebox="none">
  10857. \begin_inset Text
  10858. \begin_layout Plain Layout
  10859. \end_layout
  10860. \end_inset
  10861. </cell>
  10862. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10863. \begin_inset Text
  10864. \begin_layout Plain Layout
  10865. \series bold
  10866. Up
  10867. \end_layout
  10868. \end_inset
  10869. </cell>
  10870. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10871. \begin_inset Text
  10872. \begin_layout Plain Layout
  10873. \series bold
  10874. NS
  10875. \end_layout
  10876. \end_inset
  10877. </cell>
  10878. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  10879. \begin_inset Text
  10880. \begin_layout Plain Layout
  10881. \series bold
  10882. Down
  10883. \end_layout
  10884. \end_inset
  10885. </cell>
  10886. </row>
  10887. <row>
  10888. <cell multirow="3" alignment="center" valignment="middle" topline="true" bottomline="true" leftline="true" usebox="none">
  10889. \begin_inset Text
  10890. \begin_layout Plain Layout
  10891. \series bold
  10892. Globin-Blocking
  10893. \end_layout
  10894. \end_inset
  10895. </cell>
  10896. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10897. \begin_inset Text
  10898. \begin_layout Plain Layout
  10899. \series bold
  10900. Up
  10901. \end_layout
  10902. \end_inset
  10903. </cell>
  10904. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10905. \begin_inset Text
  10906. \begin_layout Plain Layout
  10907. \family roman
  10908. \series medium
  10909. \shape up
  10910. \size normal
  10911. \emph off
  10912. \bar no
  10913. \strikeout off
  10914. \xout off
  10915. \uuline off
  10916. \uwave off
  10917. \noun off
  10918. \color none
  10919. 231
  10920. \end_layout
  10921. \end_inset
  10922. </cell>
  10923. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10924. \begin_inset Text
  10925. \begin_layout Plain Layout
  10926. \family roman
  10927. \series medium
  10928. \shape up
  10929. \size normal
  10930. \emph off
  10931. \bar no
  10932. \strikeout off
  10933. \xout off
  10934. \uuline off
  10935. \uwave off
  10936. \noun off
  10937. \color none
  10938. 515
  10939. \end_layout
  10940. \end_inset
  10941. </cell>
  10942. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  10943. \begin_inset Text
  10944. \begin_layout Plain Layout
  10945. \family roman
  10946. \series medium
  10947. \shape up
  10948. \size normal
  10949. \emph off
  10950. \bar no
  10951. \strikeout off
  10952. \xout off
  10953. \uuline off
  10954. \uwave off
  10955. \noun off
  10956. \color none
  10957. 2
  10958. \end_layout
  10959. \end_inset
  10960. </cell>
  10961. </row>
  10962. <row>
  10963. <cell multirow="4" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10964. \begin_inset Text
  10965. \begin_layout Plain Layout
  10966. \end_layout
  10967. \end_inset
  10968. </cell>
  10969. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10970. \begin_inset Text
  10971. \begin_layout Plain Layout
  10972. \series bold
  10973. NS
  10974. \end_layout
  10975. \end_inset
  10976. </cell>
  10977. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10978. \begin_inset Text
  10979. \begin_layout Plain Layout
  10980. \family roman
  10981. \series medium
  10982. \shape up
  10983. \size normal
  10984. \emph off
  10985. \bar no
  10986. \strikeout off
  10987. \xout off
  10988. \uuline off
  10989. \uwave off
  10990. \noun off
  10991. \color none
  10992. 160
  10993. \end_layout
  10994. \end_inset
  10995. </cell>
  10996. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10997. \begin_inset Text
  10998. \begin_layout Plain Layout
  10999. \family roman
  11000. \series medium
  11001. \shape up
  11002. \size normal
  11003. \emph off
  11004. \bar no
  11005. \strikeout off
  11006. \xout off
  11007. \uuline off
  11008. \uwave off
  11009. \noun off
  11010. \color none
  11011. 11235
  11012. \end_layout
  11013. \end_inset
  11014. </cell>
  11015. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  11016. \begin_inset Text
  11017. \begin_layout Plain Layout
  11018. \family roman
  11019. \series medium
  11020. \shape up
  11021. \size normal
  11022. \emph off
  11023. \bar no
  11024. \strikeout off
  11025. \xout off
  11026. \uuline off
  11027. \uwave off
  11028. \noun off
  11029. \color none
  11030. 136
  11031. \end_layout
  11032. \end_inset
  11033. </cell>
  11034. </row>
  11035. <row>
  11036. <cell multirow="4" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  11037. \begin_inset Text
  11038. \begin_layout Plain Layout
  11039. \end_layout
  11040. \end_inset
  11041. </cell>
  11042. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  11043. \begin_inset Text
  11044. \begin_layout Plain Layout
  11045. \series bold
  11046. Down
  11047. \end_layout
  11048. \end_inset
  11049. </cell>
  11050. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  11051. \begin_inset Text
  11052. \begin_layout Plain Layout
  11053. \family roman
  11054. \series medium
  11055. \shape up
  11056. \size normal
  11057. \emph off
  11058. \bar no
  11059. \strikeout off
  11060. \xout off
  11061. \uuline off
  11062. \uwave off
  11063. \noun off
  11064. \color none
  11065. 0
  11066. \end_layout
  11067. \end_inset
  11068. </cell>
  11069. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  11070. \begin_inset Text
  11071. \begin_layout Plain Layout
  11072. \family roman
  11073. \series medium
  11074. \shape up
  11075. \size normal
  11076. \emph off
  11077. \bar no
  11078. \strikeout off
  11079. \xout off
  11080. \uuline off
  11081. \uwave off
  11082. \noun off
  11083. \color none
  11084. 548
  11085. \end_layout
  11086. \end_inset
  11087. </cell>
  11088. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  11089. \begin_inset Text
  11090. \begin_layout Plain Layout
  11091. \family roman
  11092. \series medium
  11093. \shape up
  11094. \size normal
  11095. \emph off
  11096. \bar no
  11097. \strikeout off
  11098. \xout off
  11099. \uuline off
  11100. \uwave off
  11101. \noun off
  11102. \color none
  11103. 127
  11104. \end_layout
  11105. \end_inset
  11106. </cell>
  11107. </row>
  11108. </lyxtabular>
  11109. \end_inset
  11110. \end_layout
  11111. \begin_layout Plain Layout
  11112. \begin_inset Caption Standard
  11113. \begin_layout Plain Layout
  11114. \series bold
  11115. \begin_inset Argument 1
  11116. status open
  11117. \begin_layout Plain Layout
  11118. Comparison of significantly differentially expressed genes with and without
  11119. globin blocking.
  11120. \end_layout
  11121. \end_inset
  11122. \begin_inset CommandInset label
  11123. LatexCommand label
  11124. name "tab:Comparison-of-significant"
  11125. \end_inset
  11126. Comparison of significantly differentially expressed genes with and without
  11127. globin blocking.
  11128. \series default
  11129. Up, Down: Genes significantly up/down-regulated in post-transplant samples
  11130. relative to pre-transplant samples, with a false discovery rate of 10%
  11131. or less.
  11132. NS: Non-significant genes (false discovery rate greater than 10%).
  11133. \end_layout
  11134. \end_inset
  11135. \end_layout
  11136. \begin_layout Plain Layout
  11137. \end_layout
  11138. \end_inset
  11139. \end_layout
  11140. \begin_layout Standard
  11141. To compare performance on differential gene expression tests, we took subsets
  11142. of both the GB and non-GB libraries with exactly one pre-transplant and
  11143. one post-transplant sample for each animal that had paired samples available
  11144. for analysis (N=7 animals, N=14 samples in each subset).
  11145. The same test for pre- vs.
  11146. post-transplant differential gene expression was performed on the same
  11147. 7 pairs of samples from GB libraries and non-GB libraries, in each case
  11148. using an FDR of 10% as the threshold of significance.
  11149. Out of 12954 genes that passed the detection threshold in both subsets,
  11150. 358 were called significantly differentially expressed in the same direction
  11151. in both sets; 1063 were differentially expressed in the GB set only; 296
  11152. were differentially expressed in the non-GB set only; 2 genes were called
  11153. significantly up in the GB set but significantly down in the non-GB set;
  11154. and the remaining 11235 were not called differentially expressed in either
  11155. set.
  11156. These data are summarized in Table
  11157. \begin_inset CommandInset ref
  11158. LatexCommand ref
  11159. reference "tab:Comparison-of-significant"
  11160. plural "false"
  11161. caps "false"
  11162. noprefix "false"
  11163. \end_inset
  11164. .
  11165. The differences in BCV calculated by EdgeR for these subsets of samples
  11166. were negligible (BCV = 0.302 for GB and 0.297 for non-GB).
  11167. \end_layout
  11168. \begin_layout Standard
  11169. The key point is that the GB data results in substantially more differentially
  11170. expressed calls than the non-GB data.
  11171. Since there is no gold standard for this dataset, it is impossible to be
  11172. certain whether this is due to under-calling of differential expression
  11173. in the non-GB samples or over-calling in the GB samples.
  11174. However, given that both datasets are derived from the same biological
  11175. samples and have nearly equal BCVs, it is more likely that the larger number
  11176. of DE calls in the GB samples are genuine detections that were enabled
  11177. by the higher sequencing depth and measurement precision of the GB samples.
  11178. Note that the same set of genes was considered in both subsets, so the
  11179. larger number of differentially expressed gene calls in the GB data set
  11180. reflects a greater sensitivity to detect significant differential gene
  11181. expression and not simply the larger total number of detected genes in
  11182. GB samples described earlier.
  11183. \end_layout
  11184. \begin_layout Section
  11185. Discussion
  11186. \end_layout
  11187. \begin_layout Standard
  11188. The original experience with whole blood gene expression profiling on DNA
  11189. microarrays demonstrated that the high concentration of globin transcripts
  11190. reduced the sensitivity to detect genes with relatively low expression
  11191. levels, in effect, significantly reducing the sensitivity.
  11192. To address this limitation, commercial protocols for globin reduction were
  11193. developed based on strategies to block globin transcript amplification
  11194. during labeling or physically removing globin transcripts by affinity bead
  11195. methods
  11196. \begin_inset CommandInset citation
  11197. LatexCommand cite
  11198. key "Winn2010"
  11199. literal "false"
  11200. \end_inset
  11201. .
  11202. More recently, using the latest generation of labeling protocols and arrays,
  11203. it was determined that globin reduction was no longer necessary to obtain
  11204. sufficient sensitivity to detect differential transcript expression
  11205. \begin_inset CommandInset citation
  11206. LatexCommand cite
  11207. key "NuGEN2010"
  11208. literal "false"
  11209. \end_inset
  11210. .
  11211. However, we are not aware of any publications using these currently available
  11212. protocols the with latest generation of microarrays that actually compare
  11213. the detection sensitivity with and without globin reduction.
  11214. However, in practice this has now been adopted generally primarily driven
  11215. by concerns for cost control.
  11216. The main objective of our work was to directly test the impact of globin
  11217. gene transcripts and a new globin blocking protocol for application to
  11218. the newest generation of differential gene expression profiling determined
  11219. using next generation sequencing.
  11220. \end_layout
  11221. \begin_layout Standard
  11222. The challenge of doing global gene expression profiling in cynomolgus monkeys
  11223. is that the current available arrays were never designed to comprehensively
  11224. cover this genome and have not been updated since the first assemblies
  11225. of the cynomolgus genome were published.
  11226. Therefore, we determined that the best strategy for peripheral blood profiling
  11227. was to do deep RNA-seq and inform the workflow using the latest available
  11228. genome assembly and annotation
  11229. \begin_inset CommandInset citation
  11230. LatexCommand cite
  11231. key "Wilson2013"
  11232. literal "false"
  11233. \end_inset
  11234. .
  11235. However, it was not immediately clear whether globin reduction was necessary
  11236. for RNA-seq or how much improvement in efficiency or sensitivity to detect
  11237. differential gene expression would be achieved for the added cost and work.
  11238. \end_layout
  11239. \begin_layout Standard
  11240. We only found one report that demonstrated that globin reduction significantly
  11241. improved the effective read yields for sequencing of human peripheral blood
  11242. cell RNA using a DeepSAGE protocol
  11243. \begin_inset CommandInset citation
  11244. LatexCommand cite
  11245. key "Mastrokolias2012"
  11246. literal "false"
  11247. \end_inset
  11248. .
  11249. The approach to DeepSAGE involves two different restriction enzymes that
  11250. purify and then tag small fragments of transcripts at specific locations
  11251. and thus, significantly reduces the complexity of the transcriptome.
  11252. Therefore, we could not determine how DeepSAGE results would translate
  11253. to the common strategy in the field for assaying the entire transcript
  11254. population by whole-transcriptome 3’-end RNA-seq.
  11255. Furthermore, if globin reduction is necessary, we also needed a globin
  11256. reduction method specific to cynomolgus globin sequences that would work
  11257. an organism for which no kit is available off the shelf.
  11258. \end_layout
  11259. \begin_layout Standard
  11260. As mentioned above, the addition of globin blocking oligos has a very small
  11261. impact on measured expression levels of gene expression.
  11262. However, this is a non-issue for the purposes of differential expression
  11263. testing, since a systematic change in a gene in all samples does not affect
  11264. relative expression levels between samples.
  11265. However, we must acknowledge that simple comparisons of gene expression
  11266. data obtained by GB and non-GB protocols are not possible without additional
  11267. normalization.
  11268. \end_layout
  11269. \begin_layout Standard
  11270. More importantly, globin blocking not only nearly doubles the yield of usable
  11271. reads, it also increases inter-sample correlation and sensitivity to detect
  11272. differential gene expression relative to the same set of samples profiled
  11273. without blocking.
  11274. In addition, globin blocking does not add a significant amount of random
  11275. noise to the data.
  11276. Globin blocking thus represents a cost-effective way to squeeze more data
  11277. and statistical power out of the same blood samples and the same amount
  11278. of sequencing.
  11279. In conclusion, globin reduction greatly increases the yield of useful RNA-seq
  11280. reads mapping to the rest of the genome, with minimal perturbations in
  11281. the relative levels of non-globin genes.
  11282. Based on these results, globin transcript reduction using sequence-specific,
  11283. complementary blocking oligonucleotides is recommended for all deep RNA-seq
  11284. of cynomolgus and other nonhuman primate blood samples.
  11285. \end_layout
  11286. \begin_layout Section
  11287. Future Directions
  11288. \end_layout
  11289. \begin_layout Standard
  11290. One drawback of the globin blocking method presented in this analysis is
  11291. a poor yield of genic reads, only around 50%.
  11292. In a separate experiment, the reagent mixture was modified so as to address
  11293. this drawback, resulting in a method that produces an even better reduction
  11294. in globin reads without reducing the overall fraction of genic reads.
  11295. However, the data showing this improvement consists of only a few test
  11296. samples, so the larger data set analyzed above was chosen in order to demonstra
  11297. te the effectiveness of the method in reducing globin reads while preserving
  11298. the biological signal.
  11299. \end_layout
  11300. \begin_layout Standard
  11301. The motivation for developing a fast practical way to enrich for non-globin
  11302. reads in cyno blood samples was to enable a large-scale RNA-seq experiment
  11303. investigating the effects of mesenchymal stem cell infusion on blood gene
  11304. expression in cynomologus transplant recipients in a time course after
  11305. transplantation.
  11306. With the globin blocking method in place, the way is now clear for this
  11307. experiment to proceed.
  11308. \end_layout
  11309. \begin_layout Chapter
  11310. Future Directions
  11311. \end_layout
  11312. \begin_layout Standard
  11313. \begin_inset Flex TODO Note (inline)
  11314. status open
  11315. \begin_layout Plain Layout
  11316. If there are any chapter-independent future directions, put them here.
  11317. Otherwise, delete this section.
  11318. Check in the directions if this is OK.
  11319. \end_layout
  11320. \end_inset
  11321. \end_layout
  11322. \begin_layout Standard
  11323. \begin_inset ERT
  11324. status collapsed
  11325. \begin_layout Plain Layout
  11326. % Use "References" as the title of the Bibliography
  11327. \end_layout
  11328. \begin_layout Plain Layout
  11329. \backslash
  11330. renewcommand{
  11331. \backslash
  11332. bibname}{References}
  11333. \end_layout
  11334. \end_inset
  11335. \end_layout
  11336. \begin_layout Standard
  11337. \begin_inset CommandInset bibtex
  11338. LatexCommand bibtex
  11339. btprint "btPrintCited"
  11340. bibfiles "code-refs,refs-PROCESSED"
  11341. options "bibtotoc,unsrt"
  11342. \end_inset
  11343. \end_layout
  11344. \begin_layout Standard
  11345. \begin_inset Flex TODO Note (inline)
  11346. status open
  11347. \begin_layout Plain Layout
  11348. Check bib entry formatting & sort order
  11349. \end_layout
  11350. \end_inset
  11351. \end_layout
  11352. \begin_layout Standard
  11353. \begin_inset Flex TODO Note (inline)
  11354. status open
  11355. \begin_layout Plain Layout
  11356. Check in-text citation format.
  11357. Probably don't just want [1], [2], etc.
  11358. \end_layout
  11359. \end_inset
  11360. \end_layout
  11361. \end_body
  11362. \end_document