thesis.lyx 321 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714
  1. #LyX 2.3 created this file. For more info see http://www.lyx.org/
  2. \lyxformat 544
  3. \begin_document
  4. \begin_header
  5. \save_transient_properties true
  6. \origin unavailable
  7. \textclass extbook
  8. \begin_preamble
  9. % List all used files in log output
  10. \listfiles
  11. % Add a DRAFT watermark
  12. \usepackage{draftwatermark}
  13. \SetWatermarkLightness{0.97}
  14. \SetWatermarkScale{1}
  15. % Set up required header format
  16. \usepackage{fancyhdr}
  17. \pagestyle{fancy}
  18. \renewcommand{\headrulewidth}{0pt}
  19. \rhead{}
  20. \lhead{}
  21. \rfoot{}
  22. \lfoot{}
  23. \cfoot{\thepage} % Page number bottom center
  24. % Allow FloatBarrier command
  25. \usepackage{placeins}
  26. % Allow landscape pages
  27. \usepackage{pdflscape}
  28. % Allow doing things after the end of the current page
  29. % (to avoid landscape figures breaking up text)
  30. \usepackage{afterpage}
  31. % This one breaks subfigs so it's disabled
  32. % https://tex.stackexchange.com/questions/65680/automatically-bold-first-sentence-of-a-floats-caption
  33. \end_preamble
  34. \use_default_options true
  35. \begin_modules
  36. todonotes
  37. \end_modules
  38. \maintain_unincluded_children false
  39. \language english
  40. \language_package default
  41. \inputencoding utf8
  42. \fontencoding default
  43. \font_roman "default" "default"
  44. \font_sans "default" "default"
  45. \font_typewriter "default" "default"
  46. \font_math "auto" "auto"
  47. \font_default_family default
  48. \use_non_tex_fonts false
  49. \font_sc false
  50. \font_osf false
  51. \font_sf_scale 100 100
  52. \font_tt_scale 100 100
  53. \use_microtype false
  54. \use_dash_ligatures true
  55. \graphics default
  56. \default_output_format pdf4
  57. \output_sync 0
  58. \bibtex_command biber
  59. \index_command default
  60. \paperfontsize 12
  61. \spacing double
  62. \use_hyperref true
  63. \pdf_bookmarks true
  64. \pdf_bookmarksnumbered false
  65. \pdf_bookmarksopen false
  66. \pdf_bookmarksopenlevel 1
  67. \pdf_breaklinks false
  68. \pdf_pdfborder false
  69. \pdf_colorlinks false
  70. \pdf_backref false
  71. \pdf_pdfusetitle true
  72. \papersize letterpaper
  73. \use_geometry true
  74. \use_package amsmath 1
  75. \use_package amssymb 1
  76. \use_package cancel 1
  77. \use_package esint 1
  78. \use_package mathdots 1
  79. \use_package mathtools 1
  80. \use_package mhchem 1
  81. \use_package stackrel 1
  82. \use_package stmaryrd 1
  83. \use_package undertilde 1
  84. \cite_engine biblatex
  85. \cite_engine_type authoryear
  86. \biblio_style plain
  87. \biblatex_bibstyle authoryear
  88. \biblatex_citestyle numeric
  89. \use_bibtopic false
  90. \use_indices false
  91. \paperorientation portrait
  92. \suppress_date false
  93. \justification true
  94. \use_refstyle 1
  95. \use_minted 0
  96. \index Index
  97. \shortcut idx
  98. \color #008000
  99. \end_index
  100. \leftmargin 1.5in
  101. \topmargin 1in
  102. \rightmargin 1in
  103. \bottommargin 1in
  104. \secnumdepth 3
  105. \tocdepth 3
  106. \paragraph_separation indent
  107. \paragraph_indentation default
  108. \is_math_indent 0
  109. \math_numbering_side default
  110. \quotes_style english
  111. \dynamic_quotes 0
  112. \papercolumns 1
  113. \papersides 1
  114. \paperpagestyle default
  115. \tracking_changes false
  116. \output_changes false
  117. \html_math_output 0
  118. \html_css_as_file 0
  119. \html_be_strict false
  120. \end_header
  121. \begin_body
  122. \begin_layout Title
  123. Bioinformatic analysis of complex, high-throughput genomic and epigenomic
  124. data in the context of immunology and transplant rejection
  125. \end_layout
  126. \begin_layout Author
  127. A thesis presented
  128. \begin_inset Newline newline
  129. \end_inset
  130. by
  131. \begin_inset Newline newline
  132. \end_inset
  133. Ryan C.
  134. Thompson
  135. \begin_inset Newline newline
  136. \end_inset
  137. to
  138. \begin_inset Newline newline
  139. \end_inset
  140. The Scripps Research Institute Graduate Program
  141. \begin_inset Newline newline
  142. \end_inset
  143. in partial fulfillment of the requirements for the degree of
  144. \begin_inset Newline newline
  145. \end_inset
  146. Doctor of Philosophy in the subject of Biology
  147. \begin_inset Newline newline
  148. \end_inset
  149. for
  150. \begin_inset Newline newline
  151. \end_inset
  152. The Scripps Research Institute
  153. \begin_inset Newline newline
  154. \end_inset
  155. La Jolla, California
  156. \end_layout
  157. \begin_layout Date
  158. October 2019
  159. \end_layout
  160. \begin_layout Standard
  161. [Copyright notice]
  162. \end_layout
  163. \begin_layout Standard
  164. [Thesis acceptance form]
  165. \end_layout
  166. \begin_layout Standard
  167. [Dedication]
  168. \end_layout
  169. \begin_layout Standard
  170. [Acknowledgements]
  171. \end_layout
  172. \begin_layout Standard
  173. \begin_inset Flex TODO Note (inline)
  174. status open
  175. \begin_layout Plain Layout
  176. I'm looking for feedback on: Section titles; figure formatting; figure legends;
  177. typographical errors; ...
  178. \end_layout
  179. \end_inset
  180. \end_layout
  181. \begin_layout Standard
  182. \begin_inset CommandInset toc
  183. LatexCommand tableofcontents
  184. \end_inset
  185. \end_layout
  186. \begin_layout Standard
  187. \begin_inset FloatList table
  188. \end_inset
  189. \end_layout
  190. \begin_layout Standard
  191. \begin_inset FloatList figure
  192. \end_inset
  193. \end_layout
  194. \begin_layout Standard
  195. [List of Abbreviations]
  196. \end_layout
  197. \begin_layout List of TODOs
  198. \end_layout
  199. \begin_layout Standard
  200. \begin_inset Flex TODO Note (inline)
  201. status open
  202. \begin_layout Plain Layout
  203. Check all figures to make sure they fit on the page with their legends.
  204. \end_layout
  205. \end_inset
  206. \end_layout
  207. \begin_layout Standard
  208. \begin_inset Flex TODO Note (inline)
  209. status open
  210. \begin_layout Plain Layout
  211. Search and replace: naive -> naïve
  212. \end_layout
  213. \end_inset
  214. \end_layout
  215. \begin_layout Standard
  216. \begin_inset Flex TODO Note (inline)
  217. status open
  218. \begin_layout Plain Layout
  219. Look into auto-generated nomenclature list: https://wiki.lyx.org/Tips/Nomenclature.
  220. Otherwise, do a manual pass for all abbreviations at the end.
  221. Do nomenclature/abbreviations independently for each chapter.
  222. \end_layout
  223. \end_inset
  224. \end_layout
  225. \begin_layout Standard
  226. \begin_inset Flex TODO Note (inline)
  227. status open
  228. \begin_layout Plain Layout
  229. Make all descriptions consistent in terms of
  230. \begin_inset Quotes eld
  231. \end_inset
  232. we did X
  233. \begin_inset Quotes erd
  234. \end_inset
  235. vs
  236. \begin_inset Quotes eld
  237. \end_inset
  238. I did X
  239. \begin_inset Quotes erd
  240. \end_inset
  241. vs
  242. \begin_inset Quotes eld
  243. \end_inset
  244. X was done
  245. \begin_inset Quotes erd
  246. \end_inset
  247. .
  248. \end_layout
  249. \end_inset
  250. \end_layout
  251. \begin_layout Chapter*
  252. Abstract
  253. \end_layout
  254. \begin_layout Standard
  255. \begin_inset Note Note
  256. status open
  257. \begin_layout Plain Layout
  258. It is included as an integral part of the thesis and should immediately
  259. precede the introduction.
  260. \end_layout
  261. \begin_layout Plain Layout
  262. Preparing your Abstract.
  263. Your abstract (a succinct description of your work) is limited to 350 words.
  264. UMI will shorten it if they must; please do not exceed the limit.
  265. \end_layout
  266. \begin_layout Itemize
  267. Include pertinent place names, names of persons (in full), and other proper
  268. nouns.
  269. These are useful in automated retrieval.
  270. \end_layout
  271. \begin_layout Itemize
  272. Display symbols, as well as foreign words and phrases, clearly and accurately.
  273. Include transliterations for characters other than Roman and Greek letters
  274. and Arabic numerals.
  275. Include accents and diacritical marks.
  276. \end_layout
  277. \begin_layout Itemize
  278. Do not include graphs, charts, tables, or illustrations in your abstract.
  279. \end_layout
  280. \end_inset
  281. \end_layout
  282. \begin_layout Standard
  283. \begin_inset Flex TODO Note (inline)
  284. status open
  285. \begin_layout Plain Layout
  286. Obviously the abstract gets written last.
  287. \end_layout
  288. \end_inset
  289. \end_layout
  290. \begin_layout Chapter
  291. Introduction
  292. \end_layout
  293. \begin_layout Section
  294. Background & Significance
  295. \end_layout
  296. \begin_layout Subsection
  297. Biological motivation
  298. \end_layout
  299. \begin_layout Standard
  300. \begin_inset Flex TODO Note (inline)
  301. status open
  302. \begin_layout Plain Layout
  303. Rethink the subsection organization after the intro is written.
  304. \end_layout
  305. \end_inset
  306. \end_layout
  307. \begin_layout Standard
  308. \begin_inset Flex TODO Note (inline)
  309. status open
  310. \begin_layout Plain Layout
  311. Citations are needed all over the place.
  312. A lot of this is knowledge I've just absorbed from years of conversation
  313. in the Salomon lab, without ever having seen a citation for it.
  314. \end_layout
  315. \end_inset
  316. \end_layout
  317. \begin_layout Subsubsection
  318. Rejection is the major long-term threat to organ and tissue allografts
  319. \end_layout
  320. \begin_layout Standard
  321. Organ and tissue transplants are a life-saving treatment for people who
  322. have lost the function of an important organ.
  323. In some cases, it is possible to transplant a patient's own tissue from
  324. one area of their body to another, referred to as an autograft.
  325. This is common for tissues that are distributed throughout many areas of
  326. the body, such as skin and bone.
  327. However, in cases of organ failure, there is no functional self tissue
  328. remaining, and a transplant from another person – the donor – is required.
  329. This is referred to as an allograft.
  330. \end_layout
  331. \begin_layout Standard
  332. \begin_inset Flex TODO Note (inline)
  333. status open
  334. \begin_layout Plain Layout
  335. Possible citation for degree of generic variability: https://www.ncbi.nlm.nih.gov/pu
  336. bmed/22424236?dopt=Abstract
  337. \end_layout
  338. \end_inset
  339. \end_layout
  340. \begin_layout Standard
  341. \begin_inset Flex TODO Note (inline)
  342. status open
  343. \begin_layout Plain Layout
  344. How much mechanistic detail is needed here? My work doesn't really go into
  345. specific rejection mechanisms, so I think it's best to keep it basic.
  346. \end_layout
  347. \end_inset
  348. \end_layout
  349. \begin_layout Standard
  350. Because an allograft comes from a different person, it is genetically distinct
  351. from the rest of the recipient's body.
  352. Some genetic variants occur in protein coding regions, resulting in protein
  353. products that differ from the equivalent proteins in the graft recipient's
  354. own tissue.
  355. As a result, without intervention, the recipient's immune system will eventuall
  356. y identify the graft as foreign tissue and begin attacking it, eventually
  357. resulting in failure and death of the graft, a process referred to as transplan
  358. t rejection.
  359. Rejection is the most significant challenge to the long-term health of
  360. an allograft.
  361. Like any adaptive immune response, graft rejection generally occurs via
  362. two broad mechanisms: cellular immunity, in which CD8+ T-cells induce apoptosis
  363. in the graft cells; and humoral immunity, in which B-cells produce antibodies
  364. that bind to graft proteins and direct an immune response against the graft.
  365. In either case, rejection shows most of the typical hallmarks of an adaptive
  366. immune response, in particular mediation by CD4+ T-cells and formation
  367. of immune memory.
  368. \end_layout
  369. \begin_layout Subsubsection
  370. Diagnosis and treatment of allograft rejection is a major challenge
  371. \end_layout
  372. \begin_layout Standard
  373. To prevent rejection, allograft recipients are treated with immune suppression.
  374. The goal is to achieve sufficient suppression of the immune system to prevent
  375. rejection of the graft without compromising the ability of the immune system
  376. to raise a normal response against infection.
  377. As such, a delicate balance must be struck: insufficient immune suppression
  378. may lead to rejection and ultimately loss of the graft; exceissive suppression
  379. leaves the patient vulnerable to life-threatening opportunistic infections.
  380. Because every patient is different, immune suppression must be tailored
  381. for each patient.
  382. Furthermore, immune suppression must be tuned over time, as the immune
  383. system's activity is not static, nor is it held in a steady state.
  384. In order to properly adjust the dosage of immune suppression drugs, it
  385. is necessary to monitor the health of the transplant and increase the dosage
  386. if evidence of rejection is observed.
  387. \end_layout
  388. \begin_layout Standard
  389. However, diagnosis of rejection is a significant challenge.
  390. Early diagnosis is essential in order to step up immune suppression before
  391. the immune system damages the graft beyond recovery.
  392. The current gold standard test for graft rejection is a tissue biopsy,
  393. examained for visible signs of rejection by a trained histologist.
  394. When a patient shows symptoms of possible rejection, a
  395. \begin_inset Quotes eld
  396. \end_inset
  397. for cause
  398. \begin_inset Quotes erd
  399. \end_inset
  400. biopsy is performed to confirm the diagnosis, and immune suppression is
  401. adjusted as necessary.
  402. However, in many cases, the early stages of rejection are asymptomatic,
  403. known as
  404. \begin_inset Quotes eld
  405. \end_inset
  406. sub-clinical
  407. \begin_inset Quotes erd
  408. \end_inset
  409. rejection.
  410. In light of this, is is now common to perform
  411. \begin_inset Quotes eld
  412. \end_inset
  413. protocol biopsies
  414. \begin_inset Quotes erd
  415. \end_inset
  416. at specific times after transplantation of a graft, even if no symptoms
  417. of rejection are apparent, in addition to
  418. \begin_inset Quotes eld
  419. \end_inset
  420. for cause
  421. \begin_inset Quotes erd
  422. \end_inset
  423. biopsies
  424. \begin_inset CommandInset citation
  425. LatexCommand cite
  426. key "Wilkinson2006"
  427. literal "false"
  428. \end_inset
  429. .
  430. \end_layout
  431. \begin_layout Standard
  432. However, biopsies have a number of downsides that limit their effectiveness
  433. as a diagnostic tool.
  434. First, the need for manual inspection by a histologist means that diagnosis
  435. is subject to the biases of the particular histologist examining the biopsy.
  436. In marginal cases two different histologists may give two different diagnoses
  437. to the same biopsy.
  438. Second, a biopsy can only evaluate if rejection is occurring in the section
  439. of the graft from which the tissue was extracted.
  440. If rejection is only occurring in one section of the graft and the tissue
  441. is extracted from a different section, it may result in a false negative
  442. diagnosis.
  443. Most importantly, however, extraction of tissue from a graft is invasive
  444. and is treated as an injury by the body, which results in inflammation
  445. that in turn promotes increased immune system activity.
  446. Hence, the invasiveness of biopsies severely limits the frequency with
  447. which the can safely be performed.
  448. Typically protocol biopsies are not scheduled more than about once per
  449. month
  450. \begin_inset CommandInset citation
  451. LatexCommand cite
  452. key "Wilkinson2006"
  453. literal "false"
  454. \end_inset
  455. .
  456. A less invasive diagnostic test for rejection would bring manifold benefits.
  457. Such a test would enable more frequent testing and therefore earlier detection
  458. of rejection events.
  459. In addition, having a larger pool of historical data for a given patient
  460. would make it easier to evaluate when a given test is outside the normal
  461. parameters for that specific patient, rather than relying on normal ranges
  462. for the population as a whole.
  463. Lastly, more frequent tests would be a boon to the transplant research
  464. community.
  465. Beyond simply providing more data, the increased time granularity of the
  466. tests will enable studying the progression of a rejection event on the
  467. scale of days to weeks, rather than months.
  468. \end_layout
  469. \begin_layout Subsubsection
  470. Memory cells are resistant to immune suppression
  471. \end_layout
  472. \begin_layout Standard
  473. One of the defining features of the adaptive immune system is immune memory:
  474. the ability of the immune system to recognize a previously encountered
  475. foreign antigen and respond more quickly and more strongly to that antigen
  476. in subsequent encounters.
  477. When the immune system first encounters a new antigen, the lymphocytes
  478. that respond are known as naive cells – T-cells and B-cells that have never
  479. detected their target antigens before.
  480. Once activated by their specific antigen presented by an antigen-presenting
  481. cell in the proper co-stimulatory context, naive cells differentiate into
  482. effector cells that carry out their respective functions in targeting and
  483. destroying the source of the foreign antigen.
  484. The requirement for co-stimulation is an important feature of naive cells
  485. that limits
  486. \begin_inset Quotes eld
  487. \end_inset
  488. false positive
  489. \begin_inset Quotes erd
  490. \end_inset
  491. immune responses, because antigen-presenting cells usually only express
  492. the proper co-stimulation after detecting evidence of an infection, such
  493. as the presence of common bacterial cell components or inflamed tissue.
  494. Most effector cells die after the foreign antigen is cleared, but some
  495. remain and differentiate into memory cells.
  496. Like naive cells, memory cells respond to detection of their specific antigen
  497. by differentiating into effector cells, ready to fight an infection.
  498. However, unlike naive cells, memory cells do not require the same degree
  499. of co-stimulatory signaling for activation, and once activated, they proliferat
  500. e and differentiate into effector cells more quickly than naive cells do.
  501. \end_layout
  502. \begin_layout Standard
  503. In the context of a pathogenic infection, immune memory is a major advantage,
  504. allowing an organism to rapidly fight off a previously encountered pathogen
  505. much more quickly and effectively than the first time it was encountered.
  506. However, if effector cells that recognize an antigen from an allograft
  507. are allowed to differentiate into memory cells, suppressing rejection of
  508. the graft becomes much more difficult.
  509. Many immune suppression drugs work by interfering with the co-stimulation
  510. that naive cells require in order to mount an immune response.
  511. Since memory cells do not require this co-stimulation, these drugs are
  512. not effective at suppressing an immune response that is mediated by memory
  513. cells.
  514. Secondly, because memory cells are able to mount a stronger and faster
  515. response to an antigen, all else being equal they require stronger immune
  516. suppression than naive cells to prevent an immune response.
  517. However, immune suppression affects the entire immune system, not just
  518. cells recognizing a specific antigen, so increasing the dosage of immune
  519. suppression drugs also increases the risk of complications from a compromised
  520. immune system, such as opportunistic infections.
  521. While the differences in cell surface markers between naive and memory
  522. cells have been fairly well characterized, the internal regulatory mechanisms
  523. that allow memory cells to respond more quickly and without co-stimulation
  524. are still poorly understood.
  525. In order to develop immune suppression that either prevents the formation
  526. of memory cells or works more effectively against memory cells, the mechanisms
  527. of immune memory formation and regulation must be better understood.
  528. \end_layout
  529. \begin_layout Subsection
  530. Overview of bioinformatic analysis methods
  531. \end_layout
  532. \begin_layout Standard
  533. The studies presented in this work all involve the analysis of high-throughput
  534. genomic and epigenomic data.
  535. These data present many unique analysis challenges, and a wide array of
  536. software tools are available to analyze them.
  537. This section presents an overview of the methods used, including what problems
  538. they solve, what assumptions they make, and a basic description of how
  539. they work.
  540. \end_layout
  541. \begin_layout Standard
  542. \begin_inset Flex TODO Note (inline)
  543. status open
  544. \begin_layout Plain Layout
  545. Many of these points may also be addressed in the approach/methods sections
  546. of the following chapters? Redundant?
  547. \end_layout
  548. \end_inset
  549. \end_layout
  550. \begin_layout Subsubsection
  551. Limma: The standard linear modeling framework for genomics
  552. \end_layout
  553. \begin_layout Standard
  554. Linear models are a generalization of the
  555. \begin_inset Formula $t$
  556. \end_inset
  557. -test and ANOVA to arbitrarily complex experimental designs.
  558. In a typical linear model, there is one dependent variable observation
  559. per sample.
  560. For example, in a linear model of height as a function of age and sex,
  561. there is one height measurement per person.
  562. However, when analyzing genomic data, each sample consists of observations
  563. of thousands of dependent variables.
  564. For example, in an RNA-seq experiment, the dependent variables may be the
  565. count of RNA-seq reads for each annotated gene.
  566. In abstract terms, each dependent variable being measured is referred to
  567. as a feature.
  568. The simplest approach to analyzing such data would be to fit the same model
  569. independently to each feature.
  570. However, this is undesirable for most genomics data sets.
  571. Genomics assays like high-throughput sequencing are expensive, and often
  572. generating the samples is also quite expensive and time-consuming.
  573. This expense limits the sample sizes typically employed in genomics experiments
  574. , and as a result the statistical power of each individual feature's linear
  575. model is likewise limited.
  576. However, because thousands of features from the same samples are analyzed
  577. together, there is an opportunity to improve the statistical power of the
  578. analysis by exploiting shared patterns of variation across features.
  579. This is the core feature of limma, a linear modeling framework designed
  580. for genomic data.
  581. Limma is typically used to analyze expression microarray data, and more
  582. recently RNA-seq data, but it can also be used to analyze any other data
  583. for which linear modeling is appropriate.
  584. \end_layout
  585. \begin_layout Standard
  586. The central challenge when fitting a linear model is to estimate the variance
  587. of the data accurately.
  588. This quantity is the most difficult to estimate when sample sizes are small.
  589. A single shared variance could be estimated for all of the features together,
  590. and this estimate would be very stable, in contrast to the individual feature
  591. variance estimates.
  592. However, this would require the assumption that every feature is equally
  593. variable, which is known to be false for most genomic data sets.
  594. Limma offers a compromise between these two extremes by using a method
  595. called empirical Bayes moderation to
  596. \begin_inset Quotes eld
  597. \end_inset
  598. squeeze
  599. \begin_inset Quotes erd
  600. \end_inset
  601. the distribution of estimated variances toward a single common value that
  602. represents the variance of an average feature in the data
  603. \begin_inset CommandInset citation
  604. LatexCommand cite
  605. key "Smyth2004"
  606. literal "false"
  607. \end_inset
  608. .
  609. While the individual feature variance estimates are not stable, the common
  610. variance estiamate for the entire data set is quite stable, so using a
  611. combination of the two yields a variance estimate for each feature with
  612. greater precision than the individual feature varaiances.
  613. The trade-off for this improvement is that squeezing each estimated variance
  614. toward the common value introduces some bias – the variance will be underestima
  615. ted for features with high variance and overestimated for features with
  616. low variance.
  617. Essentially, limma assumes that extreme variances are less common than
  618. variances close to the common value.
  619. The variance estimates from this empirical Bayes procedure are shown empiricall
  620. y to yield greater statistical power than either the individual feature
  621. variances or the single common value.
  622. \end_layout
  623. \begin_layout Standard
  624. On top of this core framework, limma also implements many other enhancements
  625. that, further relax the assumptions of the model and extend the scope of
  626. what kinds of data it can analyze.
  627. Instead of squeezing toward a single common variance value, limma can model
  628. the common variance as a function of a covariate, such as average expression
  629. \begin_inset CommandInset citation
  630. LatexCommand cite
  631. key "Law2013"
  632. literal "false"
  633. \end_inset
  634. .
  635. This is essential for RNA-seq data, where higher gene counts yield more
  636. precise expression measurements and therefore smaller variances than low-count
  637. genes.
  638. While linear models typically assume that all samples have equal variance,
  639. limma is able to relax this assumption by identifying and down-weighting
  640. samples the diverge more strongly from the lienar model across many features
  641. \begin_inset CommandInset citation
  642. LatexCommand cite
  643. key "Ritchie2006,Liu2015"
  644. literal "false"
  645. \end_inset
  646. .
  647. In addition, limma is also able to fit simple mixed models incorporating
  648. one random effect in addition to the fixed effects represented by an ordinary
  649. linear model
  650. \begin_inset CommandInset citation
  651. LatexCommand cite
  652. key "Smyth2005a"
  653. literal "false"
  654. \end_inset
  655. .
  656. Once again, limma shares information between features to obtain a robust
  657. estimate for the random effect correlation.
  658. \end_layout
  659. \begin_layout Subsubsection
  660. edgeR provides limma-like analysis features for count data
  661. \end_layout
  662. \begin_layout Standard
  663. Although limma can be applied to read counts from RNA-seq data, it is less
  664. suitable for counts from ChIP-seq data, which tend to be much smaller and
  665. therefore violate the assumption of a normal distribution more severely.
  666. For all count-based data, the edgeR package works similarly to limma, but
  667. uses a generalized linear model instead of a linear model.
  668. The most important difference is that the GLM in edgeR models the counts
  669. directly using a negative binomial distribution rather than modeling the
  670. normalized log counts using a normal distribution
  671. \begin_inset CommandInset citation
  672. LatexCommand cite
  673. key "Chen2014,McCarthy2012,Robinson2010a"
  674. literal "false"
  675. \end_inset
  676. .
  677. The negative binomial is a good fit for count data because it can be derived
  678. as a gamma-distributed mixture of Poisson distributions.
  679. The Poisson distribution accurately represents the distribution of counts
  680. expected for a given gene abundance, and the gamma distribution is then
  681. used to represent the variation in gene abundance between biological replicates.
  682. For this reason, the square root of the dispersion paramter of the negative
  683. binomial is sometimes referred to as the biological coefficient of variation,
  684. since it represents the variability that was present in the samples prior
  685. to the Poisson
  686. \begin_inset Quotes eld
  687. \end_inset
  688. noise
  689. \begin_inset Quotes erd
  690. \end_inset
  691. that was generated by the random sampling of reads in proportion to feature
  692. abundances.
  693. The choice of a gamma distribution is arbitrary and motivated by mathematical
  694. convenience, since a gamma-Poisson mixture yields the numerically tractable
  695. negative binomial distribution.
  696. Thus, edgeR assumes
  697. \emph on
  698. a prioi
  699. \emph default
  700. that the variation in abundances between replicates follows a gamma distribution.
  701. For differential abundance testing, edgeR offers a likelihood ratio test,
  702. but more recently recommends a quasi-likelihood test that properly factors
  703. the uncertainty in variance estimation into the statistical significance
  704. for each feature
  705. \begin_inset CommandInset citation
  706. LatexCommand cite
  707. key "Lund2012"
  708. literal "false"
  709. \end_inset
  710. .
  711. \end_layout
  712. \begin_layout Subsubsection
  713. ChIP-seq Peak calling
  714. \end_layout
  715. \begin_layout Itemize
  716. Cross-correlation analysis to determine fragment size
  717. \end_layout
  718. \begin_layout Itemize
  719. Broad vs narrow peaks
  720. \end_layout
  721. \begin_layout Itemize
  722. MACS for narrow, SICER for broad peaks
  723. \end_layout
  724. \begin_layout Itemize
  725. IDR for biologically reproducible peaks
  726. \end_layout
  727. \begin_layout Itemize
  728. csaw peak filtering guidelines for unbiased downstream analysis
  729. \end_layout
  730. \begin_layout Subsubsection
  731. Normalization is non-trivial and application-dependant
  732. \end_layout
  733. \begin_layout Itemize
  734. Expression arrays: RMA & fRMA; why fRMA is needed
  735. \end_layout
  736. \begin_layout Itemize
  737. Methylation arrays: M-value transformation approximates normal data but
  738. induces heteroskedasticity
  739. \end_layout
  740. \begin_layout Itemize
  741. RNA-seq: normalize based on assumption that the average gene is not changing
  742. \end_layout
  743. \begin_layout Itemize
  744. ChIP-seq: complex with many considerations, dependent on experimental methods,
  745. biological system, and analysis goals
  746. \end_layout
  747. \begin_layout Subsubsection
  748. sva and ComBat for batch correction
  749. \end_layout
  750. \begin_layout Subsubsection
  751. Factor analysis: PCA, MDS, MOFA
  752. \end_layout
  753. \begin_layout Itemize
  754. Batch-corrected PCA is informative, but careful application is required
  755. to avoid bias
  756. \end_layout
  757. \begin_layout Section
  758. Innovation
  759. \end_layout
  760. \begin_layout Standard
  761. \begin_inset Flex TODO Note (inline)
  762. status open
  763. \begin_layout Plain Layout
  764. Is this entire section redundant with the Approach sections of each chapter?
  765. I'm not really sure what to write here.
  766. \end_layout
  767. \end_inset
  768. \end_layout
  769. \begin_layout Subsection
  770. MSC infusion to improve transplant outcomes (prevent/delay rejection)
  771. \end_layout
  772. \begin_layout Standard
  773. \begin_inset Flex TODO Note (inline)
  774. status open
  775. \begin_layout Plain Layout
  776. Do I still talk about this? It's the motivation for chapter 4, but I don't
  777. actually present any work related to MSCs.
  778. \end_layout
  779. \end_inset
  780. \end_layout
  781. \begin_layout Itemize
  782. Demonstrated in mice, but not yet in primates
  783. \end_layout
  784. \begin_layout Itemize
  785. Mechanism currently unknown, but MSC are known to be immune modulatory
  786. \end_layout
  787. \begin_layout Itemize
  788. Characterize MSC response to interferon gamma
  789. \end_layout
  790. \begin_layout Itemize
  791. IFN-g is thought to stimulate their function
  792. \end_layout
  793. \begin_layout Itemize
  794. Test IFN-g treated MSC infusion as a therapy to delay graft rejection in
  795. cynomolgus monkeys
  796. \end_layout
  797. \begin_layout Itemize
  798. Monitor animals post-transplant using blood RNA-seq at serial time points
  799. \end_layout
  800. \begin_layout Subsection
  801. Investigate dynamics of histone marks in CD4 T-cell activation and memory
  802. \end_layout
  803. \begin_layout Itemize
  804. Previous studies have looked at single snapshots of histone marks
  805. \end_layout
  806. \begin_layout Itemize
  807. Instead, look at changes in histone marks across activation and memory
  808. \end_layout
  809. \begin_layout Subsection
  810. High-throughput sequencing and microarray technologies
  811. \end_layout
  812. \begin_layout Itemize
  813. Powerful methods for assaying gene expression and epigenetics across entire
  814. genomes
  815. \end_layout
  816. \begin_layout Itemize
  817. Proper analysis requires finding and exploiting systematic genome-wide trends
  818. \end_layout
  819. \begin_layout Chapter
  820. Reproducible genome-wide epigenetic analysis of H3K4 and H3K27 methylation
  821. in naive and memory CD4 T-cell activation
  822. \end_layout
  823. \begin_layout Standard
  824. \begin_inset Flex TODO Note (inline)
  825. status open
  826. \begin_layout Plain Layout
  827. Chapter author list: Me, Sarah, Dan
  828. \end_layout
  829. \end_inset
  830. \end_layout
  831. \begin_layout Standard
  832. \begin_inset Flex TODO Note (inline)
  833. status open
  834. \begin_layout Plain Layout
  835. Need better section titles throughout the entire chapter
  836. \end_layout
  837. \end_inset
  838. \end_layout
  839. \begin_layout Section
  840. Approach
  841. \end_layout
  842. \begin_layout Standard
  843. \begin_inset Flex TODO Note (inline)
  844. status open
  845. \begin_layout Plain Layout
  846. Check on the exact correct way to write
  847. \begin_inset Quotes eld
  848. \end_inset
  849. CD4 T-cell
  850. \begin_inset Quotes erd
  851. \end_inset
  852. .
  853. I think there might be a plus sign somwehere in there now? Also, maybe
  854. figure out a reasonable way to abbreviate
  855. \begin_inset Quotes eld
  856. \end_inset
  857. naive CD4 T-cells
  858. \begin_inset Quotes erd
  859. \end_inset
  860. and
  861. \begin_inset Quotes eld
  862. \end_inset
  863. memory CD4 T-cells
  864. \begin_inset Quotes erd
  865. \end_inset
  866. .
  867. \end_layout
  868. \end_inset
  869. \end_layout
  870. \begin_layout Standard
  871. \begin_inset Flex TODO Note (inline)
  872. status open
  873. \begin_layout Plain Layout
  874. Is it ok to just copy a bunch of citations from the intros to Sarah's papers?
  875. That feels like cheating somehow.
  876. \end_layout
  877. \end_inset
  878. \end_layout
  879. \begin_layout Standard
  880. CD4 T-cells are central to all adaptive immune responses, as well as immune
  881. memory [CITE?].
  882. After an infection is cleared, a subset of the naive CD4 T-cells that responded
  883. to that infection differentiate into memory CD4 T-cells, which are responsible
  884. for responding to the same pathogen in the future.
  885. Memory CD4 T-cells are functionally distinct, able to respond to an infection
  886. more quickly and without the co-stimulation requried by naive CD4 T-cells.
  887. However, the molecular mechanisms underlying this functional distinction
  888. are not well-understood.
  889. Epigenetic regulation via histone modification is thought to play an important
  890. role, but while many studies have looked at static snapshots of histone
  891. methylation in T-cells, few studies have looked at the dynamics of histone
  892. regulation after T-cell activation, nor the differences in histone methylation
  893. between naive and memory T-cells.
  894. H3K4me2, H3K4me3 and H3K27me3 are three histone marks thought to be major
  895. epigenetic regulators of gene expression.
  896. The goal of the present study is to investigate the role of these histone
  897. marks in CD4 T-cell activation kinetics and memory differentiation.
  898. In static snapshots, H3K4me2 and H3K4me3 are often observed in the promoters
  899. of highly transcribed genes, while H3K27me3 is more often observed in promoters
  900. of inactive genes with little to no transcription occurring.
  901. As a result, the two H3K4 marks have been characterized as
  902. \begin_inset Quotes eld
  903. \end_inset
  904. activating
  905. \begin_inset Quotes erd
  906. \end_inset
  907. marks, while H3K27me3 has been characterized as
  908. \begin_inset Quotes eld
  909. \end_inset
  910. deactivating
  911. \begin_inset Quotes erd
  912. \end_inset
  913. .
  914. Despite these characterizations, the actual causal relationship between
  915. these histone modifications and gene transcription is complex and likely
  916. involves positive and negative feedback loops between the two.
  917. \end_layout
  918. \begin_layout Standard
  919. In order to investigate the relationship between gene expression and these
  920. histone modifications in the context of naive and memory CD4 T-cell activation,
  921. a previously published data set of combined RNA-seq and ChIP-seq data was
  922. re-analyzed using up-to-date methods designed to address the specific analysis
  923. challenges posed by this data set.
  924. The data set contains naive and memory CD4 T-cell samples in a time course
  925. before and after activation.
  926. Like the original analysis, this analysis looks at the dynamics of these
  927. marks histone marks and compare them to gene expression dynamics at the
  928. same time points during activation, as well as comapre them between naive
  929. and memory cells, in hope of discovering evidence of new mechanistic details
  930. in the interplay between them.
  931. The original analysis of this data treated each gene promoter as a monolithinc
  932. unit and mostly assumed that ChIP-seq reads or peaks occuring anywhere
  933. within a promoter were equivalent, regardless of where they occurred relative
  934. to the gene structure.
  935. For an initial analysis of the data, this was a necessary simplifying assumptio
  936. n.
  937. The current analysis aims to relax this assumption, first by directly analyzing
  938. ChIP-seq peaks for differential modification, and second by taking a mor
  939. granular look at the ChIP-seq read coverage within promoter regions to
  940. ask whether the location of histone modifications relative to the gene's
  941. TSS is an important factor, as opposed to simple proximity.
  942. \end_layout
  943. \begin_layout Section
  944. Methods
  945. \end_layout
  946. \begin_layout Standard
  947. \begin_inset Flex TODO Note (inline)
  948. status open
  949. \begin_layout Plain Layout
  950. Look up some more details from the papers (e.g.
  951. activation method).
  952. \end_layout
  953. \end_inset
  954. \end_layout
  955. \begin_layout Standard
  956. A reproducible workflow was written to analyze the raw ChIP-seq and RNA-seq
  957. data from previous studies
  958. \begin_inset CommandInset citation
  959. LatexCommand cite
  960. key "gh-cd4-csaw,LaMere2016,LaMere2017"
  961. literal "true"
  962. \end_inset
  963. .
  964. Briefly, this data consists of RNA-seq and ChIP-seq from CD4 T-cells cultured
  965. from 4 donors.
  966. From each donor, naive and memory CD4 T-cells were isolated separately.
  967. Then cultures of both cells were activated [how?], and samples were taken
  968. at 4 time points: Day 0 (pre-activation), Day 1 (early activation), Day
  969. 5 (peak activation), and Day 14 (post-activation).
  970. For each combination of cell type and time point, RNA was isolated and
  971. sequenced, and ChIP-seq was performed for each of 3 histone marks: H3K4me2,
  972. H3K4me3, and H3K27me3.
  973. The ChIP-seq input DNA was also sequenced for each sample.
  974. The result was 32 samples for each assay.
  975. \end_layout
  976. \begin_layout Subsection
  977. RNA-seq differential expression analysis
  978. \end_layout
  979. \begin_layout Standard
  980. \begin_inset Note Note
  981. status collapsed
  982. \begin_layout Plain Layout
  983. \begin_inset Float figure
  984. wide false
  985. sideways false
  986. status open
  987. \begin_layout Plain Layout
  988. \align center
  989. \begin_inset Float figure
  990. wide false
  991. sideways false
  992. status collapsed
  993. \begin_layout Plain Layout
  994. \align center
  995. \begin_inset Graphics
  996. filename graphics/CD4-csaw/rnaseq-compare/ensmebl-vs-entrez-star-CROP.png
  997. lyxscale 25
  998. width 35col%
  999. groupId rna-comp-subfig
  1000. \end_inset
  1001. \end_layout
  1002. \begin_layout Plain Layout
  1003. \begin_inset Caption Standard
  1004. \begin_layout Plain Layout
  1005. STAR quantification, Entrez vs Ensembl gene annotation
  1006. \end_layout
  1007. \end_inset
  1008. \end_layout
  1009. \end_inset
  1010. \begin_inset space \qquad{}
  1011. \end_inset
  1012. \begin_inset Float figure
  1013. wide false
  1014. sideways false
  1015. status collapsed
  1016. \begin_layout Plain Layout
  1017. \align center
  1018. \begin_inset Graphics
  1019. filename graphics/CD4-csaw/rnaseq-compare/ensmebl-vs-entrez-shoal-CROP.png
  1020. lyxscale 25
  1021. width 35col%
  1022. groupId rna-comp-subfig
  1023. \end_inset
  1024. \end_layout
  1025. \begin_layout Plain Layout
  1026. \begin_inset Caption Standard
  1027. \begin_layout Plain Layout
  1028. Salmon+Shoal quantification, Entrez vs Ensembl gene annotation
  1029. \end_layout
  1030. \end_inset
  1031. \end_layout
  1032. \end_inset
  1033. \end_layout
  1034. \begin_layout Plain Layout
  1035. \align center
  1036. \begin_inset Float figure
  1037. wide false
  1038. sideways false
  1039. status collapsed
  1040. \begin_layout Plain Layout
  1041. \align center
  1042. \begin_inset Graphics
  1043. filename graphics/CD4-csaw/rnaseq-compare/star-vs-hisat2-CROP.png
  1044. lyxscale 25
  1045. width 35col%
  1046. groupId rna-comp-subfig
  1047. \end_inset
  1048. \end_layout
  1049. \begin_layout Plain Layout
  1050. \begin_inset Caption Standard
  1051. \begin_layout Plain Layout
  1052. STAR vs HISAT2 quantification, Ensembl gene annotation
  1053. \end_layout
  1054. \end_inset
  1055. \end_layout
  1056. \end_inset
  1057. \begin_inset space \qquad{}
  1058. \end_inset
  1059. \begin_inset Float figure
  1060. wide false
  1061. sideways false
  1062. status collapsed
  1063. \begin_layout Plain Layout
  1064. \align center
  1065. \begin_inset Graphics
  1066. filename graphics/CD4-csaw/rnaseq-compare/star-vs-salmon-CROP.png
  1067. lyxscale 25
  1068. width 35col%
  1069. groupId rna-comp-subfig
  1070. \end_inset
  1071. \end_layout
  1072. \begin_layout Plain Layout
  1073. \begin_inset Caption Standard
  1074. \begin_layout Plain Layout
  1075. Salomn vs STAR quantification, Ensembl gene annotation
  1076. \end_layout
  1077. \end_inset
  1078. \end_layout
  1079. \end_inset
  1080. \end_layout
  1081. \begin_layout Plain Layout
  1082. \align center
  1083. \begin_inset Float figure
  1084. wide false
  1085. sideways false
  1086. status collapsed
  1087. \begin_layout Plain Layout
  1088. \align center
  1089. \begin_inset Graphics
  1090. filename graphics/CD4-csaw/rnaseq-compare/salmon-vs-kallisto-CROP.png
  1091. lyxscale 25
  1092. width 35col%
  1093. groupId rna-comp-subfig
  1094. \end_inset
  1095. \end_layout
  1096. \begin_layout Plain Layout
  1097. \begin_inset Caption Standard
  1098. \begin_layout Plain Layout
  1099. Salmon vs Kallisto quantification, Ensembl gene annotation
  1100. \end_layout
  1101. \end_inset
  1102. \end_layout
  1103. \end_inset
  1104. \begin_inset space \qquad{}
  1105. \end_inset
  1106. \begin_inset Float figure
  1107. wide false
  1108. sideways false
  1109. status collapsed
  1110. \begin_layout Plain Layout
  1111. \align center
  1112. \begin_inset Graphics
  1113. filename graphics/CD4-csaw/rnaseq-compare/salmon-vs-shoal-CROP.png
  1114. lyxscale 25
  1115. width 35col%
  1116. groupId rna-comp-subfig
  1117. \end_inset
  1118. \end_layout
  1119. \begin_layout Plain Layout
  1120. \begin_inset Caption Standard
  1121. \begin_layout Plain Layout
  1122. Salmon+Shoal vs Salmon alone, Ensembl gene annotation
  1123. \end_layout
  1124. \end_inset
  1125. \end_layout
  1126. \end_inset
  1127. \end_layout
  1128. \begin_layout Plain Layout
  1129. \begin_inset Caption Standard
  1130. \begin_layout Plain Layout
  1131. \begin_inset CommandInset label
  1132. LatexCommand label
  1133. name "fig:RNA-norm-comp"
  1134. \end_inset
  1135. RNA-seq comparisons
  1136. \end_layout
  1137. \end_inset
  1138. \end_layout
  1139. \end_inset
  1140. \end_layout
  1141. \end_inset
  1142. \end_layout
  1143. \begin_layout Standard
  1144. Sequence reads were retrieved from the Sequence Read Archive (SRA)
  1145. \begin_inset CommandInset citation
  1146. LatexCommand cite
  1147. key "Leinonen2011"
  1148. literal "false"
  1149. \end_inset
  1150. .
  1151. Five different alignment and quantification methods were tested for the
  1152. RNA-seq data
  1153. \begin_inset CommandInset citation
  1154. LatexCommand cite
  1155. key "Dobin2012,Kim2019,Liao2014,Pimentel2016,Patro2017,gh-shoal,gh-hg38-ref"
  1156. literal "false"
  1157. \end_inset
  1158. .
  1159. Each quantification was tested with both Ensembl transcripts and UCSC known
  1160. gene annotations [CITE? Also which versions of each?].
  1161. Comparisons of downstream results from each combination of quantification
  1162. method and reference revealed that all quantifications gave broadly similar
  1163. results for most genes, so shoal with the Ensembl annotation was chosen
  1164. as the method theoretically most likely to partially mitigate some of the
  1165. batch effect in the data.
  1166. \end_layout
  1167. \begin_layout Standard
  1168. \begin_inset Float figure
  1169. wide false
  1170. sideways false
  1171. status collapsed
  1172. \begin_layout Plain Layout
  1173. \align center
  1174. \begin_inset Float figure
  1175. wide false
  1176. sideways false
  1177. status open
  1178. \begin_layout Plain Layout
  1179. \align center
  1180. \begin_inset Graphics
  1181. filename graphics/CD4-csaw/RNA-seq/PCA-no-batchsub-CROP.png
  1182. lyxscale 25
  1183. width 75col%
  1184. groupId rna-pca-subfig
  1185. \end_inset
  1186. \end_layout
  1187. \begin_layout Plain Layout
  1188. \begin_inset Caption Standard
  1189. \begin_layout Plain Layout
  1190. \series bold
  1191. \begin_inset CommandInset label
  1192. LatexCommand label
  1193. name "fig:RNA-PCA-no-batchsub"
  1194. \end_inset
  1195. Before batch correction
  1196. \end_layout
  1197. \end_inset
  1198. \end_layout
  1199. \end_inset
  1200. \end_layout
  1201. \begin_layout Plain Layout
  1202. \align center
  1203. \begin_inset Float figure
  1204. wide false
  1205. sideways false
  1206. status open
  1207. \begin_layout Plain Layout
  1208. \align center
  1209. \begin_inset Graphics
  1210. filename graphics/CD4-csaw/RNA-seq/PCA-combat-batchsub-CROP.png
  1211. lyxscale 25
  1212. width 75col%
  1213. groupId rna-pca-subfig
  1214. \end_inset
  1215. \end_layout
  1216. \begin_layout Plain Layout
  1217. \begin_inset Caption Standard
  1218. \begin_layout Plain Layout
  1219. \series bold
  1220. \begin_inset CommandInset label
  1221. LatexCommand label
  1222. name "fig:RNA-PCA-ComBat-batchsub"
  1223. \end_inset
  1224. After batch correction with ComBat
  1225. \end_layout
  1226. \end_inset
  1227. \end_layout
  1228. \end_inset
  1229. \end_layout
  1230. \begin_layout Plain Layout
  1231. \begin_inset Caption Standard
  1232. \begin_layout Plain Layout
  1233. \series bold
  1234. \begin_inset CommandInset label
  1235. LatexCommand label
  1236. name "fig:RNA-PCA"
  1237. \end_inset
  1238. PCoA plots of RNA-seq data showing effect of batch correction.
  1239. \end_layout
  1240. \end_inset
  1241. \end_layout
  1242. \end_inset
  1243. \end_layout
  1244. \begin_layout Standard
  1245. Due to an error in sample preparation, the RNA from the samples for days
  1246. 0 and 5 were sequenced using a different kit than those for days 1 and
  1247. 14.
  1248. This induced a substantial batch effect in the data due to differences
  1249. in sequencing biases between the two kits, and this batch effect is unfortunate
  1250. ly confounded with the time point variable (Figure
  1251. \begin_inset CommandInset ref
  1252. LatexCommand ref
  1253. reference "fig:RNA-PCA-no-batchsub"
  1254. plural "false"
  1255. caps "false"
  1256. noprefix "false"
  1257. \end_inset
  1258. ).
  1259. To do the best possible analysis with this data, this batch effect was
  1260. subtracted out from the data using ComBat
  1261. \begin_inset CommandInset citation
  1262. LatexCommand cite
  1263. key "Johnson2007"
  1264. literal "false"
  1265. \end_inset
  1266. , ignoring the time point variable due to the confounding with the batch
  1267. variable.
  1268. The result is a marked improvement, but the unavoidable counfounding with
  1269. time point means that certain real patterns of gene expression will be
  1270. indistinguishable from the batch effect and subtracted out as a result.
  1271. Specifically, any
  1272. \begin_inset Quotes eld
  1273. \end_inset
  1274. zig-zag
  1275. \begin_inset Quotes erd
  1276. \end_inset
  1277. pattern, such as a gene whose expression goes up on day 1, down on day
  1278. 5, and back up again on day 14, will be attenuated or eliminated entirely.
  1279. In the context of a T-cell activation time course, it is unlikely that
  1280. many genes of interest will follow such an expression pattern, so this
  1281. loss was deemed an acceptable cost for correcting the batch effect.
  1282. \end_layout
  1283. \begin_layout Standard
  1284. \begin_inset Float figure
  1285. wide false
  1286. sideways false
  1287. status collapsed
  1288. \begin_layout Plain Layout
  1289. \begin_inset Flex TODO Note (inline)
  1290. status open
  1291. \begin_layout Plain Layout
  1292. Just take the top row
  1293. \end_layout
  1294. \end_inset
  1295. \end_layout
  1296. \begin_layout Plain Layout
  1297. \align center
  1298. \begin_inset Graphics
  1299. filename graphics/CD4-csaw/RNA-seq/weights-vs-covars-CROP.png
  1300. lyxscale 25
  1301. width 100col%
  1302. groupId colwidth-raster
  1303. \end_inset
  1304. \end_layout
  1305. \begin_layout Plain Layout
  1306. \begin_inset Caption Standard
  1307. \begin_layout Plain Layout
  1308. \series bold
  1309. \begin_inset CommandInset label
  1310. LatexCommand label
  1311. name "fig:RNA-seq-weights-vs-covars"
  1312. \end_inset
  1313. RNA-seq sample weights, grouped by experimental and technical covariates.
  1314. \end_layout
  1315. \end_inset
  1316. \end_layout
  1317. \end_inset
  1318. \end_layout
  1319. \begin_layout Standard
  1320. However, removing the systematic component of the batch effect still leaves
  1321. the noise component.
  1322. The gene quantifications from the first batch are substantially noisier
  1323. than those in the second batch.
  1324. This analysis corrected for this by using limma's sample weighting method
  1325. to assign lower weights to the noisy samples of batch 1
  1326. \begin_inset CommandInset citation
  1327. LatexCommand cite
  1328. key "Ritchie2006,Liu2015"
  1329. literal "false"
  1330. \end_inset
  1331. .
  1332. The resulting analysis gives an accurate assessment of statistical significance
  1333. for all comparisons, which unfortuantely means a loss of statistical power
  1334. for comparisons involving samples in batch 1.
  1335. \end_layout
  1336. \begin_layout Standard
  1337. In any case, the RNA-seq counts were first normalized using trimmed mean
  1338. of M-values
  1339. \begin_inset CommandInset citation
  1340. LatexCommand cite
  1341. key "Robinson2010"
  1342. literal "false"
  1343. \end_inset
  1344. , converted to normalized logCPM with quality weights using voomWithQualityWeigh
  1345. ts
  1346. \begin_inset CommandInset citation
  1347. LatexCommand cite
  1348. key "Law2013,Liu2015"
  1349. literal "false"
  1350. \end_inset
  1351. , and batch-corrected at this point using ComBat.
  1352. A linear model was fit to the batch-corrected, quality-weighted data for
  1353. each gene using limma, and each gene was tested for differential expression
  1354. using limma's empirical Bayes moderated
  1355. \begin_inset Formula $t$
  1356. \end_inset
  1357. -test
  1358. \begin_inset CommandInset citation
  1359. LatexCommand cite
  1360. key "Smyth2005,Law2013,Phipson2013"
  1361. literal "false"
  1362. \end_inset
  1363. .
  1364. \end_layout
  1365. \begin_layout Subsection
  1366. ChIP-seq differential modification analysis
  1367. \end_layout
  1368. \begin_layout Standard
  1369. \begin_inset Float figure
  1370. wide false
  1371. sideways false
  1372. status collapsed
  1373. \begin_layout Plain Layout
  1374. \align center
  1375. \begin_inset Float figure
  1376. wide false
  1377. sideways false
  1378. status open
  1379. \begin_layout Plain Layout
  1380. \align center
  1381. \begin_inset Graphics
  1382. filename graphics/CD4-csaw/csaw/CCF-plots-noBL-PAGE2-CROP.pdf
  1383. lyxscale 50
  1384. height 40theight%
  1385. groupId ccf-subfig
  1386. \end_inset
  1387. \end_layout
  1388. \begin_layout Plain Layout
  1389. \begin_inset Caption Standard
  1390. \begin_layout Plain Layout
  1391. \series bold
  1392. \begin_inset CommandInset label
  1393. LatexCommand label
  1394. name "fig:CCF-without-blacklist"
  1395. \end_inset
  1396. Cross-correlation plots without removing blacklisted reads.
  1397. \series default
  1398. Without blacklisting, many artifactual peaks are visible in the cross-correlatio
  1399. ns of the ChIP-seq samples, and the peak at the true fragment size (147
  1400. \begin_inset space ~
  1401. \end_inset
  1402. bp) is frequently overshadowed by the artifactual peak at the read length
  1403. (100
  1404. \begin_inset space ~
  1405. \end_inset
  1406. bp).
  1407. \end_layout
  1408. \end_inset
  1409. \end_layout
  1410. \end_inset
  1411. \end_layout
  1412. \begin_layout Plain Layout
  1413. \align center
  1414. \begin_inset Float figure
  1415. wide false
  1416. sideways false
  1417. status open
  1418. \begin_layout Plain Layout
  1419. \align center
  1420. \begin_inset Graphics
  1421. filename graphics/CD4-csaw/csaw/CCF-plots-PAGE2-CROP.pdf
  1422. lyxscale 50
  1423. height 40theight%
  1424. groupId ccf-subfig
  1425. \end_inset
  1426. \end_layout
  1427. \begin_layout Plain Layout
  1428. \begin_inset Caption Standard
  1429. \begin_layout Plain Layout
  1430. \series bold
  1431. \begin_inset CommandInset label
  1432. LatexCommand label
  1433. name "fig:CCF-with-blacklist"
  1434. \end_inset
  1435. Cross-correlation plots with blacklisted reads removed.
  1436. \series default
  1437. After blacklisting, most ChIP-seq samples have clean-looking periodic cross-cor
  1438. relation plots, with the largest peak around 147
  1439. \begin_inset space ~
  1440. \end_inset
  1441. bp, the expected size for a fragment of DNA from a single nucleosome, and
  1442. little to no peak at the read length, 100
  1443. \begin_inset space ~
  1444. \end_inset
  1445. bp.
  1446. \end_layout
  1447. \end_inset
  1448. \end_layout
  1449. \end_inset
  1450. \end_layout
  1451. \begin_layout Plain Layout
  1452. \begin_inset Caption Standard
  1453. \begin_layout Plain Layout
  1454. \series bold
  1455. \begin_inset CommandInset label
  1456. LatexCommand label
  1457. name "fig:CCF-master"
  1458. \end_inset
  1459. Strand cross-correlation plots for ChIP-seq data, before and after blacklisting.
  1460. \end_layout
  1461. \end_inset
  1462. \end_layout
  1463. \end_inset
  1464. \end_layout
  1465. \begin_layout Standard
  1466. \begin_inset Note Note
  1467. status open
  1468. \begin_layout Plain Layout
  1469. \begin_inset Float figure
  1470. wide false
  1471. sideways false
  1472. status collapsed
  1473. \begin_layout Plain Layout
  1474. \align center
  1475. \begin_inset Graphics
  1476. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-sample-MAplot-bins-CROP.png
  1477. lyxscale 25
  1478. width 100col%
  1479. groupId colwidth-raster
  1480. \end_inset
  1481. \end_layout
  1482. \begin_layout Plain Layout
  1483. \begin_inset Caption Standard
  1484. \begin_layout Plain Layout
  1485. \series bold
  1486. \begin_inset CommandInset label
  1487. LatexCommand label
  1488. name "fig:MA-plot-bigbins"
  1489. \end_inset
  1490. MA plot of H3K4me2 read counts in 10kb bins for two arbitrary samples.
  1491. \end_layout
  1492. \end_inset
  1493. \end_layout
  1494. \end_inset
  1495. \end_layout
  1496. \end_inset
  1497. \end_layout
  1498. \begin_layout Standard
  1499. \begin_inset Flex TODO Note (inline)
  1500. status open
  1501. \begin_layout Plain Layout
  1502. Be consistent about use of
  1503. \begin_inset Quotes eld
  1504. \end_inset
  1505. differential binding
  1506. \begin_inset Quotes erd
  1507. \end_inset
  1508. vs
  1509. \begin_inset Quotes eld
  1510. \end_inset
  1511. differential modification
  1512. \begin_inset Quotes erd
  1513. \end_inset
  1514. throughout this chapter.
  1515. The latter is usually preferred.
  1516. \end_layout
  1517. \end_inset
  1518. \end_layout
  1519. \begin_layout Standard
  1520. Sequence reads were retrieved from SRA
  1521. \begin_inset CommandInset citation
  1522. LatexCommand cite
  1523. key "Leinonen2011"
  1524. literal "false"
  1525. \end_inset
  1526. .
  1527. ChIP-seq (and input) reads were aligned to GRCh38 genome assembly using
  1528. Bowtie 2
  1529. \begin_inset CommandInset citation
  1530. LatexCommand cite
  1531. key "Langmead2012,Schneider2017,gh-hg38-ref"
  1532. literal "false"
  1533. \end_inset
  1534. .
  1535. Artifact regions were annotated using a custom implementation of the GreyListCh
  1536. IP algorithm, and these
  1537. \begin_inset Quotes eld
  1538. \end_inset
  1539. greylists
  1540. \begin_inset Quotes erd
  1541. \end_inset
  1542. were merged with the published ENCODE blacklists
  1543. \begin_inset CommandInset citation
  1544. LatexCommand cite
  1545. key "greylistchip,Amemiya2019,Dunham2012,gh-cd4-csaw"
  1546. literal "false"
  1547. \end_inset
  1548. .
  1549. Any read or called peak overlapping one of these regions was regarded as
  1550. artifactual and excluded from downstream analyses.
  1551. Figure
  1552. \begin_inset CommandInset ref
  1553. LatexCommand ref
  1554. reference "fig:CCF-master"
  1555. plural "false"
  1556. caps "false"
  1557. noprefix "false"
  1558. \end_inset
  1559. shows the improvement after blacklisting in the strand cross-correlation
  1560. plots, a common quality control plot for ChIP-seq data.
  1561. Peaks were called using epic, an implementation of the SICER algorithm
  1562. \begin_inset CommandInset citation
  1563. LatexCommand cite
  1564. key "Zang2009,gh-epic"
  1565. literal "false"
  1566. \end_inset
  1567. .
  1568. Peaks were also called separately using MACS, but MACS was determined to
  1569. be a poor fit for the data, and these peak calls are not used in any further
  1570. analyses
  1571. \begin_inset CommandInset citation
  1572. LatexCommand cite
  1573. key "Zhang2008"
  1574. literal "false"
  1575. \end_inset
  1576. .
  1577. Consensus peaks were determined by applying the irreproducible discovery
  1578. rate (IDR) framework
  1579. \begin_inset CommandInset citation
  1580. LatexCommand cite
  1581. key "Li2006,gh-idr"
  1582. literal "false"
  1583. \end_inset
  1584. to find peaks consistently called in the same locations across all 4 donors.
  1585. \end_layout
  1586. \begin_layout Standard
  1587. Promoters were defined by computing the distance from each annotated TSS
  1588. to the nearest called peak and examining the distribution of distances,
  1589. observing that peaks for each histone mark were enriched within a certain
  1590. distance of the TSS.
  1591. For H3K4me2 and H3K4me3, this distance was about 1
  1592. \begin_inset space ~
  1593. \end_inset
  1594. kb, while for H3K27me3 it was 2.5
  1595. \begin_inset space ~
  1596. \end_inset
  1597. kb.
  1598. These distances were used as an
  1599. \begin_inset Quotes eld
  1600. \end_inset
  1601. effective promoter radius
  1602. \begin_inset Quotes erd
  1603. \end_inset
  1604. for each mark.
  1605. The promoter region for each gene was defined as the region of the genome
  1606. within this distance upstream or downstream of the gene's annotated TSS.
  1607. For genes with multiple annotated TSSs, a promoter region was defined for
  1608. each TSS individually, and any promoters that overlapped (due to multiple
  1609. TSSs being closer than 2 times the radius) were merged into one large promoter.
  1610. Thus, some genes had multiple promoters defined, which were each analyzed
  1611. separately for differential modification.
  1612. \end_layout
  1613. \begin_layout Standard
  1614. \begin_inset Float figure
  1615. wide false
  1616. sideways false
  1617. status collapsed
  1618. \begin_layout Plain Layout
  1619. \begin_inset Float figure
  1620. wide false
  1621. sideways false
  1622. status collapsed
  1623. \begin_layout Plain Layout
  1624. \align center
  1625. \begin_inset Graphics
  1626. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-PCA-raw-CROP.png
  1627. lyxscale 25
  1628. width 45col%
  1629. groupId pcoa-subfig
  1630. \end_inset
  1631. \end_layout
  1632. \begin_layout Plain Layout
  1633. \begin_inset Caption Standard
  1634. \begin_layout Plain Layout
  1635. \series bold
  1636. \begin_inset CommandInset label
  1637. LatexCommand label
  1638. name "fig:PCoA-H3K4me2-bad"
  1639. \end_inset
  1640. H3K4me2, no correction
  1641. \end_layout
  1642. \end_inset
  1643. \end_layout
  1644. \end_inset
  1645. \begin_inset space \hfill{}
  1646. \end_inset
  1647. \begin_inset Float figure
  1648. wide false
  1649. sideways false
  1650. status collapsed
  1651. \begin_layout Plain Layout
  1652. \align center
  1653. \begin_inset Graphics
  1654. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-PCA-SVsub-CROP.png
  1655. lyxscale 25
  1656. width 45col%
  1657. groupId pcoa-subfig
  1658. \end_inset
  1659. \end_layout
  1660. \begin_layout Plain Layout
  1661. \begin_inset Caption Standard
  1662. \begin_layout Plain Layout
  1663. \series bold
  1664. \begin_inset CommandInset label
  1665. LatexCommand label
  1666. name "fig:PCoA-H3K4me2-good"
  1667. \end_inset
  1668. H3K4me2, SVs subtracted
  1669. \end_layout
  1670. \end_inset
  1671. \end_layout
  1672. \end_inset
  1673. \end_layout
  1674. \begin_layout Plain Layout
  1675. \begin_inset Float figure
  1676. wide false
  1677. sideways false
  1678. status collapsed
  1679. \begin_layout Plain Layout
  1680. \align center
  1681. \begin_inset Graphics
  1682. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-PCA-raw-CROP.png
  1683. lyxscale 25
  1684. width 45col%
  1685. groupId pcoa-subfig
  1686. \end_inset
  1687. \end_layout
  1688. \begin_layout Plain Layout
  1689. \begin_inset Caption Standard
  1690. \begin_layout Plain Layout
  1691. \series bold
  1692. \begin_inset CommandInset label
  1693. LatexCommand label
  1694. name "fig:PCoA-H3K4me3-bad"
  1695. \end_inset
  1696. H3K4me3, no correction
  1697. \end_layout
  1698. \end_inset
  1699. \end_layout
  1700. \end_inset
  1701. \begin_inset space \hfill{}
  1702. \end_inset
  1703. \begin_inset Float figure
  1704. wide false
  1705. sideways false
  1706. status collapsed
  1707. \begin_layout Plain Layout
  1708. \align center
  1709. \begin_inset Graphics
  1710. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-PCA-SVsub-CROP.png
  1711. lyxscale 25
  1712. width 45col%
  1713. groupId pcoa-subfig
  1714. \end_inset
  1715. \end_layout
  1716. \begin_layout Plain Layout
  1717. \begin_inset Caption Standard
  1718. \begin_layout Plain Layout
  1719. \series bold
  1720. \begin_inset CommandInset label
  1721. LatexCommand label
  1722. name "fig:PCoA-H3K4me3-good"
  1723. \end_inset
  1724. H3K4me3, SVs subtracted
  1725. \end_layout
  1726. \end_inset
  1727. \end_layout
  1728. \end_inset
  1729. \end_layout
  1730. \begin_layout Plain Layout
  1731. \begin_inset Float figure
  1732. wide false
  1733. sideways false
  1734. status collapsed
  1735. \begin_layout Plain Layout
  1736. \align center
  1737. \begin_inset Graphics
  1738. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-PCA-raw-CROP.png
  1739. lyxscale 25
  1740. width 45col%
  1741. groupId pcoa-subfig
  1742. \end_inset
  1743. \end_layout
  1744. \begin_layout Plain Layout
  1745. \begin_inset Caption Standard
  1746. \begin_layout Plain Layout
  1747. \series bold
  1748. \begin_inset CommandInset label
  1749. LatexCommand label
  1750. name "fig:PCoA-H3K27me3-bad"
  1751. \end_inset
  1752. H3K27me3, no correction
  1753. \end_layout
  1754. \end_inset
  1755. \end_layout
  1756. \end_inset
  1757. \begin_inset space \hfill{}
  1758. \end_inset
  1759. \begin_inset Float figure
  1760. wide false
  1761. sideways false
  1762. status collapsed
  1763. \begin_layout Plain Layout
  1764. \align center
  1765. \begin_inset Graphics
  1766. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-PCA-SVsub-CROP.png
  1767. lyxscale 25
  1768. width 45col%
  1769. groupId pcoa-subfig
  1770. \end_inset
  1771. \end_layout
  1772. \begin_layout Plain Layout
  1773. \begin_inset Caption Standard
  1774. \begin_layout Plain Layout
  1775. \series bold
  1776. \begin_inset CommandInset label
  1777. LatexCommand label
  1778. name "fig:PCoA-H3K27me3-good"
  1779. \end_inset
  1780. H3K27me3, SVs subtracted
  1781. \end_layout
  1782. \end_inset
  1783. \end_layout
  1784. \end_inset
  1785. \end_layout
  1786. \begin_layout Plain Layout
  1787. \begin_inset Caption Standard
  1788. \begin_layout Plain Layout
  1789. \series bold
  1790. \begin_inset CommandInset label
  1791. LatexCommand label
  1792. name "fig:PCoA-ChIP"
  1793. \end_inset
  1794. PCoA plots of ChIP-seq sliding window data, before and after subtracting
  1795. surrogate variables (SVs).
  1796. \end_layout
  1797. \end_inset
  1798. \end_layout
  1799. \end_inset
  1800. \end_layout
  1801. \begin_layout Standard
  1802. Reads in promoters, peaks, and sliding windows across the genome were counted
  1803. and normalized using csaw and analyzed for differential modification using
  1804. edgeR
  1805. \begin_inset CommandInset citation
  1806. LatexCommand cite
  1807. key "Lun2014,Lun2015a,Lund2012,Phipson2016"
  1808. literal "false"
  1809. \end_inset
  1810. .
  1811. Unobserved confounding factors in the ChIP-seq data were corrected using
  1812. SVA
  1813. \begin_inset CommandInset citation
  1814. LatexCommand cite
  1815. key "Leek2007,Leek2014"
  1816. literal "false"
  1817. \end_inset
  1818. .
  1819. Principal coordinate plots of the promoter count data for each histone
  1820. mark before and after subtracting surrogate variable effects are shown
  1821. in Figure
  1822. \begin_inset CommandInset ref
  1823. LatexCommand ref
  1824. reference "fig:PCoA-ChIP"
  1825. plural "false"
  1826. caps "false"
  1827. noprefix "false"
  1828. \end_inset
  1829. .
  1830. \end_layout
  1831. \begin_layout Standard
  1832. To investigate whether the location of a peak within the promoter region
  1833. was important,
  1834. \begin_inset Quotes eld
  1835. \end_inset
  1836. relative coverage profiles
  1837. \begin_inset Quotes erd
  1838. \end_inset
  1839. were generated.
  1840. First, 500-bp sliding windows were tiled around each annotated TSS: one
  1841. window centered on the TSS itself, and 10 windows each upstream and downstream,
  1842. thus covering a 10.5-kb region centered on the TSS with 21 windows.
  1843. Reads in each window for each TSS were counted in each sample, and the
  1844. counts were normalized and converted to log CPM as in the differential
  1845. modification analysis.
  1846. Then, the logCPM values within each promoter were normalized to an average
  1847. of zero, such that each window's normalized abundance now represents the
  1848. relative read depth of that window compared to all other windows in the
  1849. same promoter.
  1850. The normalized abundance values for each window in a promoter are collectively
  1851. referred to as that promoter's
  1852. \begin_inset Quotes eld
  1853. \end_inset
  1854. relative coverage profile
  1855. \begin_inset Quotes erd
  1856. \end_inset
  1857. .
  1858. \end_layout
  1859. \begin_layout Subsection
  1860. MOFA recovers biologically relevant variation from blind analysis by correlating
  1861. across datasets
  1862. \end_layout
  1863. \begin_layout Standard
  1864. \begin_inset ERT
  1865. status open
  1866. \begin_layout Plain Layout
  1867. \backslash
  1868. afterpage{
  1869. \end_layout
  1870. \begin_layout Plain Layout
  1871. \backslash
  1872. begin{landscape}
  1873. \end_layout
  1874. \end_inset
  1875. \end_layout
  1876. \begin_layout Standard
  1877. \begin_inset Float figure
  1878. wide false
  1879. sideways false
  1880. status open
  1881. \begin_layout Plain Layout
  1882. \begin_inset Float figure
  1883. wide false
  1884. sideways false
  1885. status open
  1886. \begin_layout Plain Layout
  1887. \align center
  1888. \begin_inset Graphics
  1889. filename graphics/CD4-csaw/MOFA-varExplaiend-matrix-CROP.png
  1890. lyxscale 25
  1891. width 45col%
  1892. groupId mofa-subfig
  1893. \end_inset
  1894. \end_layout
  1895. \begin_layout Plain Layout
  1896. \begin_inset Caption Standard
  1897. \begin_layout Plain Layout
  1898. \series bold
  1899. \begin_inset CommandInset label
  1900. LatexCommand label
  1901. name "fig:mofa-varexplained"
  1902. \end_inset
  1903. Variance explained in each data set by each latent factor estimated by MOFA.
  1904. \series default
  1905. For each latent factor (LF) learned by MOFA, the variance explained by
  1906. that factor in each data set (
  1907. \begin_inset Quotes eld
  1908. \end_inset
  1909. view
  1910. \begin_inset Quotes erd
  1911. \end_inset
  1912. ) is shown by the shading of the cells in the lower section.
  1913. The upper section shows the total fraction of each data set's variance
  1914. that is explained by all LFs combined.
  1915. \end_layout
  1916. \end_inset
  1917. \end_layout
  1918. \end_inset
  1919. \begin_inset space \hfill{}
  1920. \end_inset
  1921. \begin_inset Float figure
  1922. wide false
  1923. sideways false
  1924. status open
  1925. \begin_layout Plain Layout
  1926. \align center
  1927. \begin_inset Graphics
  1928. filename graphics/CD4-csaw/MOFA-LF-scatter-CROP.png
  1929. lyxscale 25
  1930. width 45col%
  1931. groupId mofa-subfig
  1932. \end_inset
  1933. \end_layout
  1934. \begin_layout Plain Layout
  1935. \begin_inset Caption Standard
  1936. \begin_layout Plain Layout
  1937. \series bold
  1938. \begin_inset CommandInset label
  1939. LatexCommand label
  1940. name "fig:mofa-lf-scatter"
  1941. \end_inset
  1942. Scatter plots of specific pairs of MOFA latent factors.
  1943. \series default
  1944. LFs 1, 4, and 5 explain substantial variation in all data sets, so they
  1945. are plotted against each other in order to reveal patterns of variation
  1946. that are shared across all data sets.
  1947. \end_layout
  1948. \end_inset
  1949. \end_layout
  1950. \end_inset
  1951. \end_layout
  1952. \begin_layout Plain Layout
  1953. \begin_inset Caption Standard
  1954. \begin_layout Plain Layout
  1955. \series bold
  1956. \begin_inset CommandInset label
  1957. LatexCommand label
  1958. name "fig:MOFA-master"
  1959. \end_inset
  1960. MOFA latent factors separate technical confounders from
  1961. \end_layout
  1962. \end_inset
  1963. \end_layout
  1964. \end_inset
  1965. \end_layout
  1966. \begin_layout Standard
  1967. \begin_inset ERT
  1968. status open
  1969. \begin_layout Plain Layout
  1970. \backslash
  1971. end{landscape}
  1972. \end_layout
  1973. \begin_layout Plain Layout
  1974. }
  1975. \end_layout
  1976. \end_inset
  1977. \end_layout
  1978. \begin_layout Standard
  1979. MOFA was run on all the ChIP-seq windows overlapping consensus peaks for
  1980. each histone mark, as well as the RNA-seq data, in order to identify patterns
  1981. of coordinated variation across all data sets
  1982. \begin_inset CommandInset citation
  1983. LatexCommand cite
  1984. key "Argelaguet2018"
  1985. literal "false"
  1986. \end_inset
  1987. .
  1988. The results are summarized in Figure
  1989. \begin_inset CommandInset ref
  1990. LatexCommand ref
  1991. reference "fig:MOFA-master"
  1992. plural "false"
  1993. caps "false"
  1994. noprefix "false"
  1995. \end_inset
  1996. .
  1997. Latent factors 1, 4, and 5 were determined to explain the most variation
  1998. consistently across all data sets (Fgure
  1999. \begin_inset CommandInset ref
  2000. LatexCommand ref
  2001. reference "fig:mofa-varexplained"
  2002. plural "false"
  2003. caps "false"
  2004. noprefix "false"
  2005. \end_inset
  2006. ), and scatter plots of these factors show that they also correlate best
  2007. with the experimental factors (Figure
  2008. \begin_inset CommandInset ref
  2009. LatexCommand ref
  2010. reference "fig:mofa-lf-scatter"
  2011. plural "false"
  2012. caps "false"
  2013. noprefix "false"
  2014. \end_inset
  2015. ).
  2016. Latent factor 2 captures the batch effect in the RNA-seq data.
  2017. Removing the effect of LF2 using MOFA theoretically yields a batch correction
  2018. that does not depend on knowing the experimental factors.
  2019. When this was attempted, the resulting batch correction was comparable
  2020. to ComBat (see Figure
  2021. \begin_inset CommandInset ref
  2022. LatexCommand ref
  2023. reference "fig:RNA-PCA-ComBat-batchsub"
  2024. plural "false"
  2025. caps "false"
  2026. noprefix "false"
  2027. \end_inset
  2028. ), indicating that the ComBat-based batch correction has little room for
  2029. improvement given the problems with the data set.
  2030. \end_layout
  2031. \begin_layout Standard
  2032. \begin_inset Note Note
  2033. status collapsed
  2034. \begin_layout Plain Layout
  2035. \begin_inset Float figure
  2036. wide false
  2037. sideways false
  2038. status open
  2039. \begin_layout Plain Layout
  2040. \align center
  2041. \begin_inset Graphics
  2042. filename graphics/CD4-csaw/MOFA-batch-correct-CROP.png
  2043. lyxscale 25
  2044. width 100col%
  2045. groupId colwidth-raster
  2046. \end_inset
  2047. \end_layout
  2048. \begin_layout Plain Layout
  2049. \begin_inset Caption Standard
  2050. \begin_layout Plain Layout
  2051. \series bold
  2052. \begin_inset CommandInset label
  2053. LatexCommand label
  2054. name "fig:mofa-batchsub"
  2055. \end_inset
  2056. Result of RNA-seq batch-correction using MOFA latent factors
  2057. \end_layout
  2058. \end_inset
  2059. \end_layout
  2060. \end_inset
  2061. \end_layout
  2062. \end_inset
  2063. \end_layout
  2064. \begin_layout Section
  2065. Results
  2066. \end_layout
  2067. \begin_layout Standard
  2068. \begin_inset Flex TODO Note (inline)
  2069. status open
  2070. \begin_layout Plain Layout
  2071. Focus on what hypotheses were tested, then select figures that show how
  2072. those hypotheses were tested, even if the result is a negative.
  2073. Not every interesting result needs to be in here.
  2074. Chapter should tell a story.
  2075. \end_layout
  2076. \end_inset
  2077. \end_layout
  2078. \begin_layout Standard
  2079. \begin_inset Flex TODO Note (inline)
  2080. status open
  2081. \begin_layout Plain Layout
  2082. Maybe reorder these sections to do RNA-seq, then ChIP-seq, then combined
  2083. analyses?
  2084. \end_layout
  2085. \end_inset
  2086. \end_layout
  2087. \begin_layout Subsection
  2088. Interpretation of RNA-seq analysis is limited by a major confounding factor
  2089. \end_layout
  2090. \begin_layout Standard
  2091. \begin_inset Float table
  2092. wide false
  2093. sideways false
  2094. status collapsed
  2095. \begin_layout Plain Layout
  2096. \align center
  2097. \begin_inset Tabular
  2098. <lyxtabular version="3" rows="11" columns="3">
  2099. <features tabularvalignment="middle">
  2100. <column alignment="center" valignment="top">
  2101. <column alignment="center" valignment="top">
  2102. <column alignment="center" valignment="top">
  2103. <row>
  2104. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2105. \begin_inset Text
  2106. \begin_layout Plain Layout
  2107. Test
  2108. \end_layout
  2109. \end_inset
  2110. </cell>
  2111. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2112. \begin_inset Text
  2113. \begin_layout Plain Layout
  2114. Est.
  2115. non-null
  2116. \end_layout
  2117. \end_inset
  2118. </cell>
  2119. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2120. \begin_inset Text
  2121. \begin_layout Plain Layout
  2122. \begin_inset Formula $\mathrm{FDR}\le10\%$
  2123. \end_inset
  2124. \end_layout
  2125. \end_inset
  2126. </cell>
  2127. </row>
  2128. <row>
  2129. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2130. \begin_inset Text
  2131. \begin_layout Plain Layout
  2132. Naive Day 0 vs Day 1
  2133. \end_layout
  2134. \end_inset
  2135. </cell>
  2136. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2137. \begin_inset Text
  2138. \begin_layout Plain Layout
  2139. 5992
  2140. \end_layout
  2141. \end_inset
  2142. </cell>
  2143. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2144. \begin_inset Text
  2145. \begin_layout Plain Layout
  2146. 1613
  2147. \end_layout
  2148. \end_inset
  2149. </cell>
  2150. </row>
  2151. <row>
  2152. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2153. \begin_inset Text
  2154. \begin_layout Plain Layout
  2155. Naive Day 0 vs Day 5
  2156. \end_layout
  2157. \end_inset
  2158. </cell>
  2159. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2160. \begin_inset Text
  2161. \begin_layout Plain Layout
  2162. 3038
  2163. \end_layout
  2164. \end_inset
  2165. </cell>
  2166. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2167. \begin_inset Text
  2168. \begin_layout Plain Layout
  2169. 32
  2170. \end_layout
  2171. \end_inset
  2172. </cell>
  2173. </row>
  2174. <row>
  2175. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2176. \begin_inset Text
  2177. \begin_layout Plain Layout
  2178. Naive Day 0 vs Day 14
  2179. \end_layout
  2180. \end_inset
  2181. </cell>
  2182. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2183. \begin_inset Text
  2184. \begin_layout Plain Layout
  2185. 1870
  2186. \end_layout
  2187. \end_inset
  2188. </cell>
  2189. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2190. \begin_inset Text
  2191. \begin_layout Plain Layout
  2192. 190
  2193. \end_layout
  2194. \end_inset
  2195. </cell>
  2196. </row>
  2197. <row>
  2198. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2199. \begin_inset Text
  2200. \begin_layout Plain Layout
  2201. Memory Day 0 vs Day 1
  2202. \end_layout
  2203. \end_inset
  2204. </cell>
  2205. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2206. \begin_inset Text
  2207. \begin_layout Plain Layout
  2208. 3195
  2209. \end_layout
  2210. \end_inset
  2211. </cell>
  2212. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2213. \begin_inset Text
  2214. \begin_layout Plain Layout
  2215. 411
  2216. \end_layout
  2217. \end_inset
  2218. </cell>
  2219. </row>
  2220. <row>
  2221. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2222. \begin_inset Text
  2223. \begin_layout Plain Layout
  2224. Memory Day 0 vs Day 5
  2225. \end_layout
  2226. \end_inset
  2227. </cell>
  2228. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2229. \begin_inset Text
  2230. \begin_layout Plain Layout
  2231. 2688
  2232. \end_layout
  2233. \end_inset
  2234. </cell>
  2235. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2236. \begin_inset Text
  2237. \begin_layout Plain Layout
  2238. 18
  2239. \end_layout
  2240. \end_inset
  2241. </cell>
  2242. </row>
  2243. <row>
  2244. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2245. \begin_inset Text
  2246. \begin_layout Plain Layout
  2247. Memory Day 0 vs Day 14
  2248. \end_layout
  2249. \end_inset
  2250. </cell>
  2251. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2252. \begin_inset Text
  2253. \begin_layout Plain Layout
  2254. 1911
  2255. \end_layout
  2256. \end_inset
  2257. </cell>
  2258. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2259. \begin_inset Text
  2260. \begin_layout Plain Layout
  2261. 227
  2262. \end_layout
  2263. \end_inset
  2264. </cell>
  2265. </row>
  2266. <row>
  2267. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2268. \begin_inset Text
  2269. \begin_layout Plain Layout
  2270. Day 0 Naive vs Memory
  2271. \end_layout
  2272. \end_inset
  2273. </cell>
  2274. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2275. \begin_inset Text
  2276. \begin_layout Plain Layout
  2277. 0
  2278. \end_layout
  2279. \end_inset
  2280. </cell>
  2281. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2282. \begin_inset Text
  2283. \begin_layout Plain Layout
  2284. 2
  2285. \end_layout
  2286. \end_inset
  2287. </cell>
  2288. </row>
  2289. <row>
  2290. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2291. \begin_inset Text
  2292. \begin_layout Plain Layout
  2293. Day 1 Naive vs Memory
  2294. \end_layout
  2295. \end_inset
  2296. </cell>
  2297. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2298. \begin_inset Text
  2299. \begin_layout Plain Layout
  2300. 9167
  2301. \end_layout
  2302. \end_inset
  2303. </cell>
  2304. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2305. \begin_inset Text
  2306. \begin_layout Plain Layout
  2307. 5532
  2308. \end_layout
  2309. \end_inset
  2310. </cell>
  2311. </row>
  2312. <row>
  2313. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2314. \begin_inset Text
  2315. \begin_layout Plain Layout
  2316. Day 5 Naive vs Memory
  2317. \end_layout
  2318. \end_inset
  2319. </cell>
  2320. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2321. \begin_inset Text
  2322. \begin_layout Plain Layout
  2323. 0
  2324. \end_layout
  2325. \end_inset
  2326. </cell>
  2327. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2328. \begin_inset Text
  2329. \begin_layout Plain Layout
  2330. 0
  2331. \end_layout
  2332. \end_inset
  2333. </cell>
  2334. </row>
  2335. <row>
  2336. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2337. \begin_inset Text
  2338. \begin_layout Plain Layout
  2339. Day 14 Naive vs Memory
  2340. \end_layout
  2341. \end_inset
  2342. </cell>
  2343. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2344. \begin_inset Text
  2345. \begin_layout Plain Layout
  2346. 6446
  2347. \end_layout
  2348. \end_inset
  2349. </cell>
  2350. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2351. \begin_inset Text
  2352. \begin_layout Plain Layout
  2353. 2319
  2354. \end_layout
  2355. \end_inset
  2356. </cell>
  2357. </row>
  2358. </lyxtabular>
  2359. \end_inset
  2360. \end_layout
  2361. \begin_layout Plain Layout
  2362. \begin_inset Caption Standard
  2363. \begin_layout Plain Layout
  2364. \series bold
  2365. \begin_inset CommandInset label
  2366. LatexCommand label
  2367. name "tab:Estimated-and-detected-rnaseq"
  2368. \end_inset
  2369. Estimated and detected differentially expressed genes.
  2370. \series default
  2371. \begin_inset Quotes eld
  2372. \end_inset
  2373. Test
  2374. \begin_inset Quotes erd
  2375. \end_inset
  2376. : Which sample groups were compared;
  2377. \begin_inset Quotes eld
  2378. \end_inset
  2379. Est non-null
  2380. \begin_inset Quotes erd
  2381. \end_inset
  2382. : Estimated number of differentially expressed genes, using the method of
  2383. averaging local FDR values
  2384. \begin_inset CommandInset citation
  2385. LatexCommand cite
  2386. key "Phipson2013Thesis"
  2387. literal "false"
  2388. \end_inset
  2389. ;
  2390. \begin_inset Quotes eld
  2391. \end_inset
  2392. \begin_inset Formula $\mathrm{FDR}\le10\%$
  2393. \end_inset
  2394. \begin_inset Quotes erd
  2395. \end_inset
  2396. : Number of significantly differentially expressed genes at an FDR threshold
  2397. of 10%.
  2398. The total number of genes tested was 16707.
  2399. \end_layout
  2400. \end_inset
  2401. \end_layout
  2402. \end_inset
  2403. \end_layout
  2404. \begin_layout Standard
  2405. \begin_inset Float figure
  2406. wide false
  2407. sideways false
  2408. status collapsed
  2409. \begin_layout Plain Layout
  2410. \align center
  2411. \begin_inset Graphics
  2412. filename graphics/CD4-csaw/RNA-seq/PCA-final-12-CROP.png
  2413. lyxscale 25
  2414. width 100col%
  2415. groupId colwidth-raster
  2416. \end_inset
  2417. \end_layout
  2418. \begin_layout Plain Layout
  2419. \begin_inset Caption Standard
  2420. \begin_layout Plain Layout
  2421. \series bold
  2422. \begin_inset CommandInset label
  2423. LatexCommand label
  2424. name "fig:rna-pca-final"
  2425. \end_inset
  2426. PCoA plot of RNA-seq samples after ComBat batch correction.
  2427. \series default
  2428. Each point represents an individual sample.
  2429. Samples with the same combination of cell type and time point are encircled
  2430. with a shaded region to aid in visual identification of the sample groups.
  2431. Samples with of same cell type from the same donor are connected by lines
  2432. to indicate the
  2433. \begin_inset Quotes eld
  2434. \end_inset
  2435. trajectory
  2436. \begin_inset Quotes erd
  2437. \end_inset
  2438. of each donor's cells over time in PCoA space.
  2439. \end_layout
  2440. \end_inset
  2441. \end_layout
  2442. \begin_layout Plain Layout
  2443. \end_layout
  2444. \end_inset
  2445. \end_layout
  2446. \begin_layout Standard
  2447. Genes called present in the RNA-seq data were tested for differential expression
  2448. between all time points and cell types.
  2449. The counts of differentially expressed genes are shown in Table
  2450. \begin_inset CommandInset ref
  2451. LatexCommand ref
  2452. reference "tab:Estimated-and-detected-rnaseq"
  2453. plural "false"
  2454. caps "false"
  2455. noprefix "false"
  2456. \end_inset
  2457. .
  2458. Notably, all the results for Day 0 and Day 5 have substantially fewer genes
  2459. called differentially expressed than any of the results for other time
  2460. points.
  2461. This is an unfortunate result of the difference in sample quality between
  2462. the two batches of RNA-seq data.
  2463. All the samples in Batch 1, which includes all the samples from Days 0
  2464. and 5, have substantially more variability than the samples in Batch 2,
  2465. which includes the other time points.
  2466. This is reflected in the substantially higher weights assigned to Batch
  2467. 2 (Figure
  2468. \begin_inset CommandInset ref
  2469. LatexCommand ref
  2470. reference "fig:RNA-seq-weights-vs-covars"
  2471. plural "false"
  2472. caps "false"
  2473. noprefix "false"
  2474. \end_inset
  2475. ).
  2476. The batch effect has both a systematic component and a random noise component.
  2477. While the systematic component was subtracted out using ComBat (Figure
  2478. \begin_inset CommandInset ref
  2479. LatexCommand ref
  2480. reference "fig:RNA-PCA"
  2481. plural "false"
  2482. caps "false"
  2483. noprefix "false"
  2484. \end_inset
  2485. ), no such correction is possible for the noise component: Batch 1 simply
  2486. has substantially more random noise in it, which reduces the statistical
  2487. power for any differential expression tests involving samples in that batch.
  2488. \end_layout
  2489. \begin_layout Standard
  2490. Despite the difficulty in detecting specific differentially expressed genes,
  2491. there is still evidence that differential expression is present for these
  2492. time points.
  2493. In Figure
  2494. \begin_inset CommandInset ref
  2495. LatexCommand ref
  2496. reference "fig:rna-pca-final"
  2497. plural "false"
  2498. caps "false"
  2499. noprefix "false"
  2500. \end_inset
  2501. , there is a clear separation between naive and memory samples at Day 0,
  2502. despite the fact that only 2 genes were significantly differentially expressed
  2503. for this comparison.
  2504. Similarly, the small numbers of genes detected for the Day 0 vs Day 5 compariso
  2505. ns do not reflect the large separation between these time points in Figure
  2506. \begin_inset CommandInset ref
  2507. LatexCommand ref
  2508. reference "fig:rna-pca-final"
  2509. plural "false"
  2510. caps "false"
  2511. noprefix "false"
  2512. \end_inset
  2513. .
  2514. In addition, the MOFA latent factor plots in Figure
  2515. \begin_inset CommandInset ref
  2516. LatexCommand ref
  2517. reference "fig:mofa-lf-scatter"
  2518. plural "false"
  2519. caps "false"
  2520. noprefix "false"
  2521. \end_inset
  2522. .
  2523. This suggests that there is indeed a differential expression signal present
  2524. in the data for these comparisons, but the large variability in the Batch
  2525. 1 samples obfuscates this signal at the individual gene level.
  2526. As a result, it is impossible to make any meaningful statements about the
  2527. \begin_inset Quotes eld
  2528. \end_inset
  2529. size
  2530. \begin_inset Quotes erd
  2531. \end_inset
  2532. of the gene signature for any time point, since the number of significant
  2533. genes as well as the estimated number of differentially expressed genes
  2534. depends so strongly on the variations in sample quality in addition to
  2535. the size of the differential expression signal in the data.
  2536. Gene-set enrichment analyses are similarly impractical.
  2537. However, analyses looking at genome-wide patterns of expression are still
  2538. practical.
  2539. \end_layout
  2540. \begin_layout Subsection
  2541. H3K4 and H3K27 methylation occur in broad regions and are enriched near
  2542. promoters
  2543. \end_layout
  2544. \begin_layout Standard
  2545. \begin_inset Float table
  2546. wide false
  2547. sideways false
  2548. status collapsed
  2549. \begin_layout Plain Layout
  2550. \align center
  2551. \begin_inset Flex TODO Note (inline)
  2552. status open
  2553. \begin_layout Plain Layout
  2554. Also get
  2555. \emph on
  2556. median
  2557. \emph default
  2558. peak width and maybe other quantiles (25%, 75%)
  2559. \end_layout
  2560. \end_inset
  2561. \end_layout
  2562. \begin_layout Plain Layout
  2563. \align center
  2564. \begin_inset Tabular
  2565. <lyxtabular version="3" rows="4" columns="5">
  2566. <features tabularvalignment="middle">
  2567. <column alignment="center" valignment="top">
  2568. <column alignment="center" valignment="top">
  2569. <column alignment="center" valignment="top">
  2570. <column alignment="center" valignment="top">
  2571. <column alignment="center" valignment="top">
  2572. <row>
  2573. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2574. \begin_inset Text
  2575. \begin_layout Plain Layout
  2576. Histone Mark
  2577. \end_layout
  2578. \end_inset
  2579. </cell>
  2580. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2581. \begin_inset Text
  2582. \begin_layout Plain Layout
  2583. # Peaks
  2584. \end_layout
  2585. \end_inset
  2586. </cell>
  2587. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2588. \begin_inset Text
  2589. \begin_layout Plain Layout
  2590. Mean peak width
  2591. \end_layout
  2592. \end_inset
  2593. </cell>
  2594. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2595. \begin_inset Text
  2596. \begin_layout Plain Layout
  2597. genome coverage
  2598. \end_layout
  2599. \end_inset
  2600. </cell>
  2601. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2602. \begin_inset Text
  2603. \begin_layout Plain Layout
  2604. FRiP
  2605. \end_layout
  2606. \end_inset
  2607. </cell>
  2608. </row>
  2609. <row>
  2610. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2611. \begin_inset Text
  2612. \begin_layout Plain Layout
  2613. H3K4me2
  2614. \end_layout
  2615. \end_inset
  2616. </cell>
  2617. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2618. \begin_inset Text
  2619. \begin_layout Plain Layout
  2620. 14965
  2621. \end_layout
  2622. \end_inset
  2623. </cell>
  2624. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2625. \begin_inset Text
  2626. \begin_layout Plain Layout
  2627. 3970
  2628. \end_layout
  2629. \end_inset
  2630. </cell>
  2631. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2632. \begin_inset Text
  2633. \begin_layout Plain Layout
  2634. 1.92%
  2635. \end_layout
  2636. \end_inset
  2637. </cell>
  2638. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2639. \begin_inset Text
  2640. \begin_layout Plain Layout
  2641. 14.2%
  2642. \end_layout
  2643. \end_inset
  2644. </cell>
  2645. </row>
  2646. <row>
  2647. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2648. \begin_inset Text
  2649. \begin_layout Plain Layout
  2650. H3K4me3
  2651. \end_layout
  2652. \end_inset
  2653. </cell>
  2654. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2655. \begin_inset Text
  2656. \begin_layout Plain Layout
  2657. 6163
  2658. \end_layout
  2659. \end_inset
  2660. </cell>
  2661. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2662. \begin_inset Text
  2663. \begin_layout Plain Layout
  2664. 2946
  2665. \end_layout
  2666. \end_inset
  2667. </cell>
  2668. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2669. \begin_inset Text
  2670. \begin_layout Plain Layout
  2671. 0.588%
  2672. \end_layout
  2673. \end_inset
  2674. </cell>
  2675. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2676. \begin_inset Text
  2677. \begin_layout Plain Layout
  2678. 6.57%
  2679. \end_layout
  2680. \end_inset
  2681. </cell>
  2682. </row>
  2683. <row>
  2684. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2685. \begin_inset Text
  2686. \begin_layout Plain Layout
  2687. H3K27me3
  2688. \end_layout
  2689. \end_inset
  2690. </cell>
  2691. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2692. \begin_inset Text
  2693. \begin_layout Plain Layout
  2694. 18139
  2695. \end_layout
  2696. \end_inset
  2697. </cell>
  2698. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2699. \begin_inset Text
  2700. \begin_layout Plain Layout
  2701. 18967
  2702. \end_layout
  2703. \end_inset
  2704. </cell>
  2705. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2706. \begin_inset Text
  2707. \begin_layout Plain Layout
  2708. 11.1%
  2709. \end_layout
  2710. \end_inset
  2711. </cell>
  2712. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2713. \begin_inset Text
  2714. \begin_layout Plain Layout
  2715. 22.5%
  2716. \end_layout
  2717. \end_inset
  2718. </cell>
  2719. </row>
  2720. </lyxtabular>
  2721. \end_inset
  2722. \end_layout
  2723. \begin_layout Plain Layout
  2724. \begin_inset Caption Standard
  2725. \begin_layout Plain Layout
  2726. \series bold
  2727. \begin_inset CommandInset label
  2728. LatexCommand label
  2729. name "tab:peak-calling-summary"
  2730. \end_inset
  2731. Peak-calling summary.
  2732. \series default
  2733. For each histone mark, the number of peaks called using SICER at an IDR
  2734. threshold of ???, the mean width of those peaks, the fraction of the genome
  2735. covered by peaks, and the fraction of reads in peaks (FRiP).
  2736. \end_layout
  2737. \end_inset
  2738. \end_layout
  2739. \end_inset
  2740. \end_layout
  2741. \begin_layout Standard
  2742. Table
  2743. \begin_inset CommandInset ref
  2744. LatexCommand ref
  2745. reference "tab:peak-calling-summary"
  2746. plural "false"
  2747. caps "false"
  2748. noprefix "false"
  2749. \end_inset
  2750. gives a summary of the peak calling statistics for each histone mark.
  2751. Consistent with previous observations [CITATION NEEDED], all 3 histone
  2752. marks occur in broad regions spanning many consecutive nucleosomes, rather
  2753. than in sharp peaks as would be expected for a transcription factor or
  2754. other molecule that binds to specific sites.
  2755. This conclusion is further supported by Figure
  2756. \begin_inset CommandInset ref
  2757. LatexCommand ref
  2758. reference "fig:CCF-with-blacklist"
  2759. plural "false"
  2760. caps "false"
  2761. noprefix "false"
  2762. \end_inset
  2763. , in which a clear nucleosome-sized periodicity is visible in the cross-correlat
  2764. ion value for each sample, indicating that each time a given mark is present
  2765. on one histone, it is also likely to be found on adjacent histones as well.
  2766. H3K27me3 enrichment in particular is substantially more broad than either
  2767. H3K4 mark, with a mean peak width of almost 19,000 bp.
  2768. This is also reflected in the periodicity observed in Figure
  2769. \begin_inset CommandInset ref
  2770. LatexCommand ref
  2771. reference "fig:CCF-with-blacklist"
  2772. plural "false"
  2773. caps "false"
  2774. noprefix "false"
  2775. \end_inset
  2776. , which remains strong much farther out for H3K27me3 than the other marks,
  2777. showing H3K27me3 especially tends to be found on long runs of consecutive
  2778. histones.
  2779. \end_layout
  2780. \begin_layout Standard
  2781. \begin_inset Float figure
  2782. wide false
  2783. sideways false
  2784. status open
  2785. \begin_layout Plain Layout
  2786. \begin_inset Flex TODO Note (inline)
  2787. status open
  2788. \begin_layout Plain Layout
  2789. Ensure this figure uses the peak calls from the new analysis.
  2790. \end_layout
  2791. \end_inset
  2792. \end_layout
  2793. \begin_layout Plain Layout
  2794. \begin_inset Flex TODO Note (inline)
  2795. status open
  2796. \begin_layout Plain Layout
  2797. Need a control: shuffle all peaks and repeat, N times.
  2798. Do real vs shuffled control both in a top/bottom arrangement.
  2799. \end_layout
  2800. \end_inset
  2801. \end_layout
  2802. \begin_layout Plain Layout
  2803. \begin_inset Flex TODO Note (inline)
  2804. status open
  2805. \begin_layout Plain Layout
  2806. Consider counting TSS inside peaks as negative number indicating how far
  2807. \emph on
  2808. inside
  2809. \emph default
  2810. the peak the TSS is (i.e.
  2811. distance to nearest non-peak area).
  2812. \end_layout
  2813. \end_inset
  2814. \end_layout
  2815. \begin_layout Plain Layout
  2816. \begin_inset Flex TODO Note (inline)
  2817. status open
  2818. \begin_layout Plain Layout
  2819. The H3K4 part of this figure is included in
  2820. \begin_inset CommandInset citation
  2821. LatexCommand cite
  2822. key "LaMere2016"
  2823. literal "false"
  2824. \end_inset
  2825. as Fig.
  2826. S2.
  2827. Do I need to do anything about that?
  2828. \end_layout
  2829. \end_inset
  2830. \end_layout
  2831. \begin_layout Plain Layout
  2832. \align center
  2833. \begin_inset Graphics
  2834. filename graphics/CD4-csaw/Promoter Peak Distance Profile-PAGE1-CROP.pdf
  2835. lyxscale 50
  2836. width 80col%
  2837. \end_inset
  2838. \end_layout
  2839. \begin_layout Plain Layout
  2840. \begin_inset Caption Standard
  2841. \begin_layout Plain Layout
  2842. \series bold
  2843. \begin_inset CommandInset label
  2844. LatexCommand label
  2845. name "fig:near-promoter-peak-enrich"
  2846. \end_inset
  2847. Enrichment of peaks in promoter neighborhoods.
  2848. \series default
  2849. This plot shows the distribution of distances from each annotated transcription
  2850. start site in the genome to the nearest called peak.
  2851. Each line represents one combination of histone mark, cell type, and time
  2852. point.
  2853. Distributions are smoothed using kernel density estimation [CITE? see ggplot2
  2854. stat_density()].
  2855. Transcription start sites that occur
  2856. \emph on
  2857. within
  2858. \emph default
  2859. peaks were excluded from this plot to avoid a large spike at zero that
  2860. would overshadow the rest of the distribution.
  2861. \end_layout
  2862. \end_inset
  2863. \end_layout
  2864. \end_inset
  2865. \end_layout
  2866. \begin_layout Standard
  2867. \begin_inset Float table
  2868. wide false
  2869. sideways false
  2870. status collapsed
  2871. \begin_layout Plain Layout
  2872. \align center
  2873. \begin_inset Tabular
  2874. <lyxtabular version="3" rows="4" columns="2">
  2875. <features tabularvalignment="middle">
  2876. <column alignment="center" valignment="top">
  2877. <column alignment="center" valignment="top">
  2878. <row>
  2879. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2880. \begin_inset Text
  2881. \begin_layout Plain Layout
  2882. Histone mark
  2883. \end_layout
  2884. \end_inset
  2885. </cell>
  2886. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2887. \begin_inset Text
  2888. \begin_layout Plain Layout
  2889. Effective promoter radius
  2890. \end_layout
  2891. \end_inset
  2892. </cell>
  2893. </row>
  2894. <row>
  2895. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2896. \begin_inset Text
  2897. \begin_layout Plain Layout
  2898. H3K4me2
  2899. \end_layout
  2900. \end_inset
  2901. </cell>
  2902. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2903. \begin_inset Text
  2904. \begin_layout Plain Layout
  2905. 1 kb
  2906. \end_layout
  2907. \end_inset
  2908. </cell>
  2909. </row>
  2910. <row>
  2911. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2912. \begin_inset Text
  2913. \begin_layout Plain Layout
  2914. H3K4me3
  2915. \end_layout
  2916. \end_inset
  2917. </cell>
  2918. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2919. \begin_inset Text
  2920. \begin_layout Plain Layout
  2921. 1 kb
  2922. \end_layout
  2923. \end_inset
  2924. </cell>
  2925. </row>
  2926. <row>
  2927. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2928. \begin_inset Text
  2929. \begin_layout Plain Layout
  2930. H3K27me3
  2931. \end_layout
  2932. \end_inset
  2933. </cell>
  2934. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2935. \begin_inset Text
  2936. \begin_layout Plain Layout
  2937. 2.5 kb
  2938. \end_layout
  2939. \end_inset
  2940. </cell>
  2941. </row>
  2942. </lyxtabular>
  2943. \end_inset
  2944. \end_layout
  2945. \begin_layout Plain Layout
  2946. \begin_inset Caption Standard
  2947. \begin_layout Plain Layout
  2948. \series bold
  2949. \begin_inset CommandInset label
  2950. LatexCommand label
  2951. name "tab:effective-promoter-radius"
  2952. \end_inset
  2953. Effective promoter radius for each histone mark.
  2954. \series default
  2955. These values represent the approximate distance from transcription start
  2956. site positions within which an excess of peaks are found, as shown in Figure
  2957. \begin_inset CommandInset ref
  2958. LatexCommand ref
  2959. reference "fig:near-promoter-peak-enrich"
  2960. plural "false"
  2961. caps "false"
  2962. noprefix "false"
  2963. \end_inset
  2964. .
  2965. \end_layout
  2966. \end_inset
  2967. \end_layout
  2968. \begin_layout Plain Layout
  2969. \end_layout
  2970. \end_inset
  2971. \end_layout
  2972. \begin_layout Standard
  2973. All 3 histone marks tend to occur more often near promoter regions, as shown
  2974. in Figure
  2975. \begin_inset CommandInset ref
  2976. LatexCommand ref
  2977. reference "fig:near-promoter-peak-enrich"
  2978. plural "false"
  2979. caps "false"
  2980. noprefix "false"
  2981. \end_inset
  2982. .
  2983. The majority of each density distribution is flat, representing the background
  2984. density of peaks genome-wide.
  2985. Each distribution has a peak near zero, representing an enrichment of peaks
  2986. close transcription start site (TSS) positions relative to the remainder
  2987. of the genome.
  2988. Interestingly, the
  2989. \begin_inset Quotes eld
  2990. \end_inset
  2991. radius
  2992. \begin_inset Quotes erd
  2993. \end_inset
  2994. within which this enrichment occurs is not the same for every histone mark
  2995. (Table
  2996. \begin_inset CommandInset ref
  2997. LatexCommand ref
  2998. reference "tab:effective-promoter-radius"
  2999. plural "false"
  3000. caps "false"
  3001. noprefix "false"
  3002. \end_inset
  3003. ).
  3004. For H3K4me2 and H3K4me3, peaks are most enriched within 1
  3005. \begin_inset space ~
  3006. \end_inset
  3007. kbp of TSS positions, while for H3K27me3, enrichment is broader, extending
  3008. to 2.5
  3009. \begin_inset space ~
  3010. \end_inset
  3011. kbp.
  3012. These
  3013. \begin_inset Quotes eld
  3014. \end_inset
  3015. effective promoter radii
  3016. \begin_inset Quotes erd
  3017. \end_inset
  3018. remain approximately the same across all combinations of experimental condition
  3019. (cell type, time point, and donor), so they appear to be a property of
  3020. the histone mark itself.
  3021. Hence, these radii were used to define the promoter regions for each histone
  3022. mark in all further analyses.
  3023. \end_layout
  3024. \begin_layout Standard
  3025. \begin_inset Flex TODO Note (inline)
  3026. status open
  3027. \begin_layout Plain Layout
  3028. Consider also showing figure for distance to nearest peak center, and reference
  3029. median peak size once that is known.
  3030. \end_layout
  3031. \end_inset
  3032. \end_layout
  3033. \begin_layout Subsection
  3034. H3K4 and H3K27 promoter methylation has broadly the expected correlation
  3035. with gene expression
  3036. \end_layout
  3037. \begin_layout Standard
  3038. \begin_inset Float figure
  3039. wide false
  3040. sideways false
  3041. status collapsed
  3042. \begin_layout Plain Layout
  3043. \begin_inset Flex TODO Note (inline)
  3044. status open
  3045. \begin_layout Plain Layout
  3046. This figure is generated from the old analysis.
  3047. Eiher note that in some way or re-generate it from the new peak calls.
  3048. \end_layout
  3049. \end_inset
  3050. \end_layout
  3051. \begin_layout Plain Layout
  3052. \align center
  3053. \begin_inset Graphics
  3054. filename graphics/CD4-csaw/FPKM by Peak Violin Plots-CROP.pdf
  3055. lyxscale 50
  3056. width 100col%
  3057. \end_inset
  3058. \end_layout
  3059. \begin_layout Plain Layout
  3060. \begin_inset Caption Standard
  3061. \begin_layout Plain Layout
  3062. \series bold
  3063. \begin_inset CommandInset label
  3064. LatexCommand label
  3065. name "fig:fpkm-by-peak"
  3066. \end_inset
  3067. Expression distributions of genes with and without promoter peaks.
  3068. \end_layout
  3069. \end_inset
  3070. \end_layout
  3071. \end_inset
  3072. \end_layout
  3073. \begin_layout Standard
  3074. H3K4me2 and H3K4me2 have previously been reported as activating marks whose
  3075. presence in a gene's promoter is associated with higher gene expression,
  3076. while H3K27me3 has been reported as inactivating [CITE].
  3077. The data are consistent with this characterization: genes whose promoters
  3078. (as defined by the radii for each histone mark listed in
  3079. \begin_inset CommandInset ref
  3080. LatexCommand ref
  3081. reference "tab:effective-promoter-radius"
  3082. plural "false"
  3083. caps "false"
  3084. noprefix "false"
  3085. \end_inset
  3086. ) overlap with a H3K4me2 or H3K4me3 peak tend to have higher expression
  3087. than those that don't, while H3K27me3 is likewise associated with lower
  3088. gene expression, as shown in
  3089. \begin_inset CommandInset ref
  3090. LatexCommand ref
  3091. reference "fig:fpkm-by-peak"
  3092. plural "false"
  3093. caps "false"
  3094. noprefix "false"
  3095. \end_inset
  3096. .
  3097. This pattern holds across all combinations of cell type and time point
  3098. (Welch's
  3099. \emph on
  3100. t
  3101. \emph default
  3102. -test, all
  3103. \begin_inset Formula $p\mathrm{-values}\ll2.2\times10^{-16}$
  3104. \end_inset
  3105. ).
  3106. The difference in average log FPKM values when a peak overlaps the promoter
  3107. is about
  3108. \begin_inset Formula $+5.67$
  3109. \end_inset
  3110. for H3K4me2,
  3111. \begin_inset Formula $+5.76$
  3112. \end_inset
  3113. for H3K4me2, and
  3114. \begin_inset Formula $-4.00$
  3115. \end_inset
  3116. for H3K27me3.
  3117. \end_layout
  3118. \begin_layout Standard
  3119. \begin_inset Flex TODO Note (inline)
  3120. status open
  3121. \begin_layout Plain Layout
  3122. I also have some figures looking at interactions between marks (e.g.
  3123. what if a promoter has both H3K4me3 and H3K27me3), but I don't know if
  3124. that much detail is warranted here, since all the effects just seem approximate
  3125. ly additive anyway.
  3126. \end_layout
  3127. \end_inset
  3128. \end_layout
  3129. \begin_layout Subsection
  3130. Gene expression and promoter histone methylation patterns in naive and memory
  3131. show convergence at day 14
  3132. \end_layout
  3133. \begin_layout Standard
  3134. \begin_inset ERT
  3135. status open
  3136. \begin_layout Plain Layout
  3137. \backslash
  3138. afterpage{
  3139. \end_layout
  3140. \begin_layout Plain Layout
  3141. \backslash
  3142. begin{landscape}
  3143. \end_layout
  3144. \end_inset
  3145. \end_layout
  3146. \begin_layout Standard
  3147. \begin_inset Float table
  3148. wide false
  3149. sideways false
  3150. status open
  3151. \begin_layout Plain Layout
  3152. \align center
  3153. \begin_inset Tabular
  3154. <lyxtabular version="3" rows="6" columns="7">
  3155. <features tabularvalignment="middle">
  3156. <column alignment="center" valignment="top">
  3157. <column alignment="center" valignment="top">
  3158. <column alignment="center" valignment="top">
  3159. <column alignment="center" valignment="top">
  3160. <column alignment="center" valignment="top">
  3161. <column alignment="center" valignment="top">
  3162. <column alignment="center" valignment="top">
  3163. <row>
  3164. <cell alignment="center" valignment="top" usebox="none">
  3165. \begin_inset Text
  3166. \begin_layout Plain Layout
  3167. \end_layout
  3168. \end_inset
  3169. </cell>
  3170. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3171. \begin_inset Text
  3172. \begin_layout Plain Layout
  3173. Number of significant promoters
  3174. \end_layout
  3175. \end_inset
  3176. </cell>
  3177. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3178. \begin_inset Text
  3179. \begin_layout Plain Layout
  3180. \end_layout
  3181. \end_inset
  3182. </cell>
  3183. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3184. \begin_inset Text
  3185. \begin_layout Plain Layout
  3186. \end_layout
  3187. \end_inset
  3188. </cell>
  3189. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3190. \begin_inset Text
  3191. \begin_layout Plain Layout
  3192. Est.
  3193. differentially modified promoters
  3194. \end_layout
  3195. \end_inset
  3196. </cell>
  3197. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3198. \begin_inset Text
  3199. \begin_layout Plain Layout
  3200. \end_layout
  3201. \end_inset
  3202. </cell>
  3203. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3204. \begin_inset Text
  3205. \begin_layout Plain Layout
  3206. \end_layout
  3207. \end_inset
  3208. </cell>
  3209. </row>
  3210. <row>
  3211. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3212. \begin_inset Text
  3213. \begin_layout Plain Layout
  3214. Time Point
  3215. \end_layout
  3216. \end_inset
  3217. </cell>
  3218. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3219. \begin_inset Text
  3220. \begin_layout Plain Layout
  3221. H3K4me2
  3222. \end_layout
  3223. \end_inset
  3224. </cell>
  3225. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3226. \begin_inset Text
  3227. \begin_layout Plain Layout
  3228. H3K4me3
  3229. \end_layout
  3230. \end_inset
  3231. </cell>
  3232. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3233. \begin_inset Text
  3234. \begin_layout Plain Layout
  3235. H3K27me3
  3236. \end_layout
  3237. \end_inset
  3238. </cell>
  3239. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3240. \begin_inset Text
  3241. \begin_layout Plain Layout
  3242. H3K4me2
  3243. \end_layout
  3244. \end_inset
  3245. </cell>
  3246. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3247. \begin_inset Text
  3248. \begin_layout Plain Layout
  3249. H3K4me3
  3250. \end_layout
  3251. \end_inset
  3252. </cell>
  3253. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3254. \begin_inset Text
  3255. \begin_layout Plain Layout
  3256. H3K27me3
  3257. \end_layout
  3258. \end_inset
  3259. </cell>
  3260. </row>
  3261. <row>
  3262. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3263. \begin_inset Text
  3264. \begin_layout Plain Layout
  3265. Day 0
  3266. \end_layout
  3267. \end_inset
  3268. </cell>
  3269. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3270. \begin_inset Text
  3271. \begin_layout Plain Layout
  3272. 4553
  3273. \end_layout
  3274. \end_inset
  3275. </cell>
  3276. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3277. \begin_inset Text
  3278. \begin_layout Plain Layout
  3279. 927
  3280. \end_layout
  3281. \end_inset
  3282. </cell>
  3283. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3284. \begin_inset Text
  3285. \begin_layout Plain Layout
  3286. 6
  3287. \end_layout
  3288. \end_inset
  3289. </cell>
  3290. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3291. \begin_inset Text
  3292. \begin_layout Plain Layout
  3293. 9967
  3294. \end_layout
  3295. \end_inset
  3296. </cell>
  3297. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3298. \begin_inset Text
  3299. \begin_layout Plain Layout
  3300. 4149
  3301. \end_layout
  3302. \end_inset
  3303. </cell>
  3304. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3305. \begin_inset Text
  3306. \begin_layout Plain Layout
  3307. 2404
  3308. \end_layout
  3309. \end_inset
  3310. </cell>
  3311. </row>
  3312. <row>
  3313. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3314. \begin_inset Text
  3315. \begin_layout Plain Layout
  3316. Day 1
  3317. \end_layout
  3318. \end_inset
  3319. </cell>
  3320. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3321. \begin_inset Text
  3322. \begin_layout Plain Layout
  3323. 567
  3324. \end_layout
  3325. \end_inset
  3326. </cell>
  3327. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3328. \begin_inset Text
  3329. \begin_layout Plain Layout
  3330. 278
  3331. \end_layout
  3332. \end_inset
  3333. </cell>
  3334. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3335. \begin_inset Text
  3336. \begin_layout Plain Layout
  3337. 1570
  3338. \end_layout
  3339. \end_inset
  3340. </cell>
  3341. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3342. \begin_inset Text
  3343. \begin_layout Plain Layout
  3344. 4370
  3345. \end_layout
  3346. \end_inset
  3347. </cell>
  3348. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3349. \begin_inset Text
  3350. \begin_layout Plain Layout
  3351. 2145
  3352. \end_layout
  3353. \end_inset
  3354. </cell>
  3355. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3356. \begin_inset Text
  3357. \begin_layout Plain Layout
  3358. 6598
  3359. \end_layout
  3360. \end_inset
  3361. </cell>
  3362. </row>
  3363. <row>
  3364. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3365. \begin_inset Text
  3366. \begin_layout Plain Layout
  3367. Day 5
  3368. \end_layout
  3369. \end_inset
  3370. </cell>
  3371. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3372. \begin_inset Text
  3373. \begin_layout Plain Layout
  3374. 2313
  3375. \end_layout
  3376. \end_inset
  3377. </cell>
  3378. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3379. \begin_inset Text
  3380. \begin_layout Plain Layout
  3381. 139
  3382. \end_layout
  3383. \end_inset
  3384. </cell>
  3385. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3386. \begin_inset Text
  3387. \begin_layout Plain Layout
  3388. 490
  3389. \end_layout
  3390. \end_inset
  3391. </cell>
  3392. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3393. \begin_inset Text
  3394. \begin_layout Plain Layout
  3395. 9450
  3396. \end_layout
  3397. \end_inset
  3398. </cell>
  3399. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3400. \begin_inset Text
  3401. \begin_layout Plain Layout
  3402. 1148
  3403. \end_layout
  3404. \end_inset
  3405. </cell>
  3406. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3407. \begin_inset Text
  3408. \begin_layout Plain Layout
  3409. 4141
  3410. \end_layout
  3411. \end_inset
  3412. </cell>
  3413. </row>
  3414. <row>
  3415. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3416. \begin_inset Text
  3417. \begin_layout Plain Layout
  3418. Day 14
  3419. \end_layout
  3420. \end_inset
  3421. </cell>
  3422. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3423. \begin_inset Text
  3424. \begin_layout Plain Layout
  3425. 0
  3426. \end_layout
  3427. \end_inset
  3428. </cell>
  3429. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3430. \begin_inset Text
  3431. \begin_layout Plain Layout
  3432. 0
  3433. \end_layout
  3434. \end_inset
  3435. </cell>
  3436. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3437. \begin_inset Text
  3438. \begin_layout Plain Layout
  3439. 0
  3440. \end_layout
  3441. \end_inset
  3442. </cell>
  3443. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3444. \begin_inset Text
  3445. \begin_layout Plain Layout
  3446. 0
  3447. \end_layout
  3448. \end_inset
  3449. </cell>
  3450. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3451. \begin_inset Text
  3452. \begin_layout Plain Layout
  3453. 0
  3454. \end_layout
  3455. \end_inset
  3456. </cell>
  3457. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3458. \begin_inset Text
  3459. \begin_layout Plain Layout
  3460. 0
  3461. \end_layout
  3462. \end_inset
  3463. </cell>
  3464. </row>
  3465. </lyxtabular>
  3466. \end_inset
  3467. \end_layout
  3468. \begin_layout Plain Layout
  3469. \begin_inset Caption Standard
  3470. \begin_layout Plain Layout
  3471. \series bold
  3472. \begin_inset CommandInset label
  3473. LatexCommand label
  3474. name "tab:Number-signif-promoters"
  3475. \end_inset
  3476. Number of differentially modified promoters between naive and memory cells
  3477. at each time point after activation.
  3478. \series default
  3479. This table shows both the number of differentially modified promoters detected
  3480. at a 10% FDR threshold (left half), and the total number of differentially
  3481. modified promoters as estimated using the method of
  3482. \begin_inset CommandInset citation
  3483. LatexCommand cite
  3484. key "Phipson2013"
  3485. literal "false"
  3486. \end_inset
  3487. (right half).
  3488. \end_layout
  3489. \end_inset
  3490. \end_layout
  3491. \end_inset
  3492. \end_layout
  3493. \begin_layout Standard
  3494. \begin_inset ERT
  3495. status open
  3496. \begin_layout Plain Layout
  3497. \backslash
  3498. end{landscape}
  3499. \end_layout
  3500. \begin_layout Plain Layout
  3501. }
  3502. \end_layout
  3503. \end_inset
  3504. \end_layout
  3505. \begin_layout Standard
  3506. \begin_inset Float figure
  3507. placement p
  3508. wide false
  3509. sideways false
  3510. status open
  3511. \begin_layout Plain Layout
  3512. \align center
  3513. \begin_inset Float figure
  3514. wide false
  3515. sideways false
  3516. status open
  3517. \begin_layout Plain Layout
  3518. \align center
  3519. \begin_inset Graphics
  3520. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-promoter-PCA-group-CROP.png
  3521. lyxscale 25
  3522. width 45col%
  3523. groupId pcoa-prom-subfig
  3524. \end_inset
  3525. \end_layout
  3526. \begin_layout Plain Layout
  3527. \begin_inset Caption Standard
  3528. \begin_layout Plain Layout
  3529. \series bold
  3530. \begin_inset CommandInset label
  3531. LatexCommand label
  3532. name "fig:PCoA-H3K4me2-prom"
  3533. \end_inset
  3534. PCoA plot of H3K4me2 promoters, after subtracting surrogate variables
  3535. \end_layout
  3536. \end_inset
  3537. \end_layout
  3538. \end_inset
  3539. \begin_inset space \hfill{}
  3540. \end_inset
  3541. \begin_inset Float figure
  3542. wide false
  3543. sideways false
  3544. status open
  3545. \begin_layout Plain Layout
  3546. \align center
  3547. \begin_inset Graphics
  3548. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-promoter-PCA-group-CROP.png
  3549. lyxscale 25
  3550. width 45col%
  3551. groupId pcoa-prom-subfig
  3552. \end_inset
  3553. \end_layout
  3554. \begin_layout Plain Layout
  3555. \begin_inset Caption Standard
  3556. \begin_layout Plain Layout
  3557. \series bold
  3558. \begin_inset CommandInset label
  3559. LatexCommand label
  3560. name "fig:PCoA-H3K4me3-prom"
  3561. \end_inset
  3562. PCoA plot of H3K4me3 promoters, after subtracting surrogate variables
  3563. \end_layout
  3564. \end_inset
  3565. \end_layout
  3566. \end_inset
  3567. \end_layout
  3568. \begin_layout Plain Layout
  3569. \align center
  3570. \begin_inset Float figure
  3571. wide false
  3572. sideways false
  3573. status collapsed
  3574. \begin_layout Plain Layout
  3575. \align center
  3576. \begin_inset Graphics
  3577. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-promoter-PCA-group-CROP.png
  3578. lyxscale 25
  3579. width 45col%
  3580. groupId pcoa-prom-subfig
  3581. \end_inset
  3582. \end_layout
  3583. \begin_layout Plain Layout
  3584. \begin_inset Caption Standard
  3585. \begin_layout Plain Layout
  3586. \series bold
  3587. \begin_inset CommandInset label
  3588. LatexCommand label
  3589. name "fig:PCoA-H3K27me3-prom"
  3590. \end_inset
  3591. PCoA plot of H3K27me3 promoters, after subtracting surrogate variables
  3592. \end_layout
  3593. \end_inset
  3594. \end_layout
  3595. \end_inset
  3596. \begin_inset space \hfill{}
  3597. \end_inset
  3598. \begin_inset Float figure
  3599. wide false
  3600. sideways false
  3601. status open
  3602. \begin_layout Plain Layout
  3603. \align center
  3604. \begin_inset Graphics
  3605. filename graphics/CD4-csaw/RNA-seq/PCA-final-23-CROP.png
  3606. lyxscale 25
  3607. width 45col%
  3608. groupId pcoa-prom-subfig
  3609. \end_inset
  3610. \end_layout
  3611. \begin_layout Plain Layout
  3612. \begin_inset Caption Standard
  3613. \begin_layout Plain Layout
  3614. \series bold
  3615. \begin_inset CommandInset label
  3616. LatexCommand label
  3617. name "fig:RNA-PCA-group"
  3618. \end_inset
  3619. RNA-seq PCoA showing principal coordiantes 2 and 3.
  3620. \end_layout
  3621. \end_inset
  3622. \end_layout
  3623. \end_inset
  3624. \end_layout
  3625. \begin_layout Plain Layout
  3626. \begin_inset Caption Standard
  3627. \begin_layout Plain Layout
  3628. \series bold
  3629. \begin_inset CommandInset label
  3630. LatexCommand label
  3631. name "fig:PCoA-promoters"
  3632. \end_inset
  3633. PCoA plots for promoter ChIP-seq and expression RNA-seq data
  3634. \end_layout
  3635. \end_inset
  3636. \end_layout
  3637. \end_inset
  3638. \end_layout
  3639. \begin_layout Standard
  3640. \begin_inset Flex TODO Note (inline)
  3641. status open
  3642. \begin_layout Plain Layout
  3643. Check up on figure refs in this paragraph
  3644. \end_layout
  3645. \end_inset
  3646. \end_layout
  3647. \begin_layout Standard
  3648. We hypothesized that if naive cells had differentiated into memory cells
  3649. by Day 14, then their patterns of expression and histone modification should
  3650. converge with those of memory cells at Day 14.
  3651. Figure
  3652. \begin_inset CommandInset ref
  3653. LatexCommand ref
  3654. reference "fig:PCoA-promoters"
  3655. plural "false"
  3656. caps "false"
  3657. noprefix "false"
  3658. \end_inset
  3659. shows the patterns of variation in all 3 histone marks in the promoter
  3660. regions of the genome using principal coordinate analysis.
  3661. All 3 marks show a noticeable convergence between the naive and memory
  3662. samples at day 14, visible as an overlapping of the day 14 groups on each
  3663. plot.
  3664. This is consistent with the counts of significantly differentially modified
  3665. promoters and estimates of the total numbers of differentially modified
  3666. promoters shown in Table
  3667. \begin_inset CommandInset ref
  3668. LatexCommand ref
  3669. reference "tab:Number-signif-promoters"
  3670. plural "false"
  3671. caps "false"
  3672. noprefix "false"
  3673. \end_inset
  3674. .
  3675. For all histone marks, evidence of differential modification between naive
  3676. and memory samples was detected at every time point except day 14.
  3677. The day 14 convergence pattern is also present in the RNA-seq data (Figure
  3678. \begin_inset CommandInset ref
  3679. LatexCommand ref
  3680. reference "fig:RNA-PCA-group"
  3681. plural "false"
  3682. caps "false"
  3683. noprefix "false"
  3684. \end_inset
  3685. ), albiet in the 2nd and 3rd principal coordinates, indicating that it is
  3686. not the most dominant pattern driving gene expression.
  3687. Taken together, the data show that promoter histone methylation for these
  3688. 3 histone marks and RNA expression for naive and memory cells are most
  3689. similar at day 14, the furthest time point after activation.
  3690. MOFA was also able to capture this day 14 convergence pattern in latent
  3691. factor 5 (Figure
  3692. \begin_inset CommandInset ref
  3693. LatexCommand ref
  3694. reference "fig:mofa-lf-scatter"
  3695. plural "false"
  3696. caps "false"
  3697. noprefix "false"
  3698. \end_inset
  3699. ), which accounts for shared variation across all 3 histone marks and the
  3700. RNA-seq data, confirming that this convergence is a coordinated pattern
  3701. across all 4 data sets.
  3702. While this observation does not prove that the naive cells have differentiated
  3703. into memory cells at Day 14, it is consistent with that hypothesis.
  3704. \end_layout
  3705. \begin_layout Subsection
  3706. Effect of H3K4me2 and H3K4me3 promoter coverage upstream vs downstream of
  3707. TSS
  3708. \end_layout
  3709. \begin_layout Standard
  3710. \begin_inset Flex TODO Note (inline)
  3711. status open
  3712. \begin_layout Plain Layout
  3713. Need a better section title, for this and the next one.
  3714. \end_layout
  3715. \end_inset
  3716. \end_layout
  3717. \begin_layout Standard
  3718. \begin_inset Flex TODO Note (inline)
  3719. status open
  3720. \begin_layout Plain Layout
  3721. Make sure use of coverage/abundance/whatever is consistent.
  3722. \end_layout
  3723. \end_inset
  3724. \end_layout
  3725. \begin_layout Standard
  3726. \begin_inset Flex TODO Note (inline)
  3727. status open
  3728. \begin_layout Plain Layout
  3729. For the figures in this section and the next, the group labels are arbitrary,
  3730. so if time allows, it would be good to manually reorder them in a logical
  3731. way, e.g.
  3732. most upstream to most downstream.
  3733. If this is done, make sure to update the text with the correct group labels.
  3734. \end_layout
  3735. \end_inset
  3736. \end_layout
  3737. \begin_layout Standard
  3738. \begin_inset ERT
  3739. status open
  3740. \begin_layout Plain Layout
  3741. \backslash
  3742. afterpage{
  3743. \end_layout
  3744. \begin_layout Plain Layout
  3745. \backslash
  3746. begin{landscape}
  3747. \end_layout
  3748. \end_inset
  3749. \end_layout
  3750. \begin_layout Standard
  3751. \begin_inset Float figure
  3752. wide false
  3753. sideways false
  3754. status open
  3755. \begin_layout Plain Layout
  3756. \align center
  3757. \begin_inset Float figure
  3758. wide false
  3759. sideways false
  3760. status open
  3761. \begin_layout Plain Layout
  3762. \align center
  3763. \begin_inset Graphics
  3764. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-neighborhood-clusters-CROP.png
  3765. lyxscale 25
  3766. width 30col%
  3767. groupId covprof-subfig
  3768. \end_inset
  3769. \end_layout
  3770. \begin_layout Plain Layout
  3771. \begin_inset Caption Standard
  3772. \begin_layout Plain Layout
  3773. \series bold
  3774. \begin_inset CommandInset label
  3775. LatexCommand label
  3776. name "fig:H3K4me2-neighborhood-clusters"
  3777. \end_inset
  3778. Average relative coverage for each bin in each cluster
  3779. \end_layout
  3780. \end_inset
  3781. \end_layout
  3782. \end_inset
  3783. \begin_inset space \hfill{}
  3784. \end_inset
  3785. \begin_inset Float figure
  3786. wide false
  3787. sideways false
  3788. status open
  3789. \begin_layout Plain Layout
  3790. \align center
  3791. \begin_inset Graphics
  3792. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-neighborhood-PCA-CROP.png
  3793. lyxscale 25
  3794. width 30col%
  3795. groupId covprof-subfig
  3796. \end_inset
  3797. \end_layout
  3798. \begin_layout Plain Layout
  3799. \begin_inset Caption Standard
  3800. \begin_layout Plain Layout
  3801. \series bold
  3802. \begin_inset CommandInset label
  3803. LatexCommand label
  3804. name "fig:H3K4me2-neighborhood-pca"
  3805. \end_inset
  3806. PCA of relative coverage depth, colored by K-means cluster membership.
  3807. \end_layout
  3808. \end_inset
  3809. \end_layout
  3810. \end_inset
  3811. \begin_inset space \hfill{}
  3812. \end_inset
  3813. \begin_inset Float figure
  3814. wide false
  3815. sideways false
  3816. status open
  3817. \begin_layout Plain Layout
  3818. \align center
  3819. \begin_inset Graphics
  3820. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-neighborhood-expression-CROP.png
  3821. lyxscale 25
  3822. width 30col%
  3823. groupId covprof-subfig
  3824. \end_inset
  3825. \end_layout
  3826. \begin_layout Plain Layout
  3827. \begin_inset Caption Standard
  3828. \begin_layout Plain Layout
  3829. \series bold
  3830. \begin_inset CommandInset label
  3831. LatexCommand label
  3832. name "fig:H3K4me2-neighborhood-expression"
  3833. \end_inset
  3834. Gene expression grouped by promoter coverage clusters.
  3835. \end_layout
  3836. \end_inset
  3837. \end_layout
  3838. \end_inset
  3839. \end_layout
  3840. \begin_layout Plain Layout
  3841. \begin_inset Caption Standard
  3842. \begin_layout Plain Layout
  3843. \series bold
  3844. \begin_inset CommandInset label
  3845. LatexCommand label
  3846. name "fig:H3K4me2-neighborhood"
  3847. \end_inset
  3848. K-means clustering of promoter H3K4me2 relative coverage depth in naive
  3849. day 0 samples.
  3850. \series default
  3851. H3K4me2 ChIP-seq reads were binned into 500-bp windows tiled across each
  3852. promoter from 5
  3853. \begin_inset space ~
  3854. \end_inset
  3855. kbp upstream to 5
  3856. \begin_inset space ~
  3857. \end_inset
  3858. kbp downstream, and the logCPM values were normalized within each promoter
  3859. to an average of 0, yielding relative coverage depths.
  3860. These were then grouped using K-means clustering with
  3861. \begin_inset Formula $K=6$
  3862. \end_inset
  3863. ,
  3864. \series bold
  3865. \series default
  3866. and the average bin values were plotted for each cluster (a).
  3867. The
  3868. \begin_inset Formula $x$
  3869. \end_inset
  3870. -axis is the genomic coordinate of each bin relative to the the transcription
  3871. start site, and the
  3872. \begin_inset Formula $y$
  3873. \end_inset
  3874. -axis is the mean relative coverage depth of that bin across all promoters
  3875. in the cluster.
  3876. Each line represents the average
  3877. \begin_inset Quotes eld
  3878. \end_inset
  3879. shape
  3880. \begin_inset Quotes erd
  3881. \end_inset
  3882. of the promoter coverage for promoters in that cluster.
  3883. PCA was performed on the same data, and the first two principal components
  3884. were plotted, coloring each point by its K-means cluster identity (b).
  3885. For each cluster, the distribution of gene expression values was plotted
  3886. (c).
  3887. \end_layout
  3888. \end_inset
  3889. \end_layout
  3890. \end_inset
  3891. \end_layout
  3892. \begin_layout Standard
  3893. \begin_inset ERT
  3894. status open
  3895. \begin_layout Plain Layout
  3896. \backslash
  3897. end{landscape}
  3898. \end_layout
  3899. \begin_layout Plain Layout
  3900. }
  3901. \end_layout
  3902. \end_inset
  3903. \end_layout
  3904. \begin_layout Standard
  3905. To test whether the position of a histone mark relative to a gene's transcriptio
  3906. n start site (TSS) was important, we looked at the
  3907. \begin_inset Quotes eld
  3908. \end_inset
  3909. landscape
  3910. \begin_inset Quotes erd
  3911. \end_inset
  3912. of ChIP-seq read coverage in naive Day 0 samples within 5 kb of each gene's
  3913. TSS by binning reads into 500-bp windows tiled across each promoter LogCPM
  3914. values were calculated for the bins in each promoter and then the average
  3915. logCPM for each promoter's bins was normalized to zero, such that the values
  3916. represent coverage relative to other regions of the same promoter rather
  3917. than being proportional to absolute read count.
  3918. The promoters were then clustered based on the normalized bin abundances
  3919. using
  3920. \begin_inset Formula $k$
  3921. \end_inset
  3922. -means clustering with
  3923. \begin_inset Formula $K=6$
  3924. \end_inset
  3925. .
  3926. Different values of
  3927. \begin_inset Formula $K$
  3928. \end_inset
  3929. were also tested, but did not substantially change the interpretation of
  3930. the data.
  3931. \end_layout
  3932. \begin_layout Standard
  3933. For H3K4me2, plotting the average bin abundances for each cluster reveals
  3934. a simple pattern (Figure
  3935. \begin_inset CommandInset ref
  3936. LatexCommand ref
  3937. reference "fig:H3K4me2-neighborhood-clusters"
  3938. plural "false"
  3939. caps "false"
  3940. noprefix "false"
  3941. \end_inset
  3942. ): Cluster 5 represents a completely flat promoter coverage profile, likely
  3943. consisting of genes with no H3K4me2 methylation in the promoter.
  3944. All the other clusters represent a continuum of peak positions relative
  3945. to the TSS.
  3946. In order from must upstream to most downstream, they are Clusters 6, 4,
  3947. 3, 1, and 2.
  3948. There do not appear to be any clusters representing coverage patterns other
  3949. than lone peaks, such as coverage troughs or double peaks.
  3950. Next, all promoters were plotted in a PCA plot based on the same relative
  3951. bin abundance data, and colored based on cluster membership (Figure
  3952. \begin_inset CommandInset ref
  3953. LatexCommand ref
  3954. reference "fig:H3K4me2-neighborhood-pca"
  3955. plural "false"
  3956. caps "false"
  3957. noprefix "false"
  3958. \end_inset
  3959. ).
  3960. The PCA plot shows Cluster 5 (the
  3961. \begin_inset Quotes eld
  3962. \end_inset
  3963. no peak
  3964. \begin_inset Quotes erd
  3965. \end_inset
  3966. cluster) at the center, with the other clusters arranged in a counter-clockwise
  3967. arc around it in the order noted above, from most upstream peak to most
  3968. downstream.
  3969. Notably, the
  3970. \begin_inset Quotes eld
  3971. \end_inset
  3972. clusters
  3973. \begin_inset Quotes erd
  3974. \end_inset
  3975. form a single large
  3976. \begin_inset Quotes eld
  3977. \end_inset
  3978. cloud
  3979. \begin_inset Quotes erd
  3980. \end_inset
  3981. with no apparent separation between them, further supporting the conclusion
  3982. that these clusters represent an arbitrary partitioning of a continuous
  3983. distribution of promoter coverage landscapes.
  3984. While the clusters are a useful abstraction that aids in visualization,
  3985. they are ultimately not an accurate representation of the data.
  3986. A better representation might be something like a polar coordinate system
  3987. with the origin at the center of Cluster 5, where the radius represents
  3988. the peak height above the background and the angle represents the peak's
  3989. position upstream or downstream of the TSS.
  3990. The continuous nature of the distribution also explains why different values
  3991. of
  3992. \begin_inset Formula $K$
  3993. \end_inset
  3994. led to similar conclusions.
  3995. \end_layout
  3996. \begin_layout Standard
  3997. \begin_inset Flex TODO Note (inline)
  3998. status open
  3999. \begin_layout Plain Layout
  4000. RNA-seq values in the plots use logCPM but should really use logFPKM or
  4001. logTPM.
  4002. Fix if time allows.
  4003. \end_layout
  4004. \end_inset
  4005. \end_layout
  4006. \begin_layout Standard
  4007. \begin_inset Flex TODO Note (inline)
  4008. status open
  4009. \begin_layout Plain Layout
  4010. Should have a table of p-values on difference of means between Cluster 5
  4011. and the others.
  4012. \end_layout
  4013. \end_inset
  4014. \end_layout
  4015. \begin_layout Standard
  4016. To investigate the association between relative peak position and gene expressio
  4017. n, we plotted the Naive Day 0 expression for the genes in each cluster (Figure
  4018. \begin_inset CommandInset ref
  4019. LatexCommand ref
  4020. reference "fig:H3K4me2-neighborhood-expression"
  4021. plural "false"
  4022. caps "false"
  4023. noprefix "false"
  4024. \end_inset
  4025. ).
  4026. Most genes in Cluster 5, the
  4027. \begin_inset Quotes eld
  4028. \end_inset
  4029. no peak
  4030. \begin_inset Quotes erd
  4031. \end_inset
  4032. cluster, have low expression values.
  4033. Taking this as the
  4034. \begin_inset Quotes eld
  4035. \end_inset
  4036. baseline
  4037. \begin_inset Quotes erd
  4038. \end_inset
  4039. distribution when no H3K4me2 methylation is present, we can compare the
  4040. other clusters' distributions to determine which peak positions are associated
  4041. with elevated expression.
  4042. As might be expected, the 3 clusters representing peaks closest to the
  4043. TSS, Clusters 1, 3, and 4, show the highest average expression distributions.
  4044. Specifically, these clusters all have their highest ChIP-seq abundance
  4045. within 1kb of the TSS, consistent with the previously determined promoter
  4046. radius.
  4047. In contrast, cluster 6, which represents peaks several kb upstream of the
  4048. TSS, shows a slightly higher average expression than baseline, while Cluster
  4049. 2, which represents peaks several kb downstream, doesn't appear to show
  4050. any appreciable difference.
  4051. Interestingly, the cluster with the highest average expression is Cluster
  4052. 1, which represents peaks about 1 kb downstream of the TSS, rather than
  4053. Cluster 3, which represents peaks centered directly at the TSS.
  4054. This suggests that conceptualizing the promoter as a region centered on
  4055. the TSS with a certain
  4056. \begin_inset Quotes eld
  4057. \end_inset
  4058. radius
  4059. \begin_inset Quotes erd
  4060. \end_inset
  4061. may be an oversimplification – a peak that is a specific distance from
  4062. the TSS may have a different degree of influence depending on whether it
  4063. is upstream or downstream of the TSS.
  4064. \end_layout
  4065. \begin_layout Standard
  4066. \begin_inset ERT
  4067. status open
  4068. \begin_layout Plain Layout
  4069. \backslash
  4070. afterpage{
  4071. \end_layout
  4072. \begin_layout Plain Layout
  4073. \backslash
  4074. begin{landscape}
  4075. \end_layout
  4076. \end_inset
  4077. \end_layout
  4078. \begin_layout Standard
  4079. \begin_inset Float figure
  4080. wide false
  4081. sideways false
  4082. status open
  4083. \begin_layout Plain Layout
  4084. \align center
  4085. \begin_inset Float figure
  4086. wide false
  4087. sideways false
  4088. status open
  4089. \begin_layout Plain Layout
  4090. \align center
  4091. \begin_inset Graphics
  4092. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-neighborhood-clusters-CROP.png
  4093. lyxscale 25
  4094. width 30col%
  4095. groupId covprof-subfig
  4096. \end_inset
  4097. \end_layout
  4098. \begin_layout Plain Layout
  4099. \begin_inset Caption Standard
  4100. \begin_layout Plain Layout
  4101. \series bold
  4102. \begin_inset CommandInset label
  4103. LatexCommand label
  4104. name "fig:H3K4me3-neighborhood-clusters"
  4105. \end_inset
  4106. Average relative coverage for each bin in each cluster
  4107. \end_layout
  4108. \end_inset
  4109. \end_layout
  4110. \end_inset
  4111. \begin_inset space \hfill{}
  4112. \end_inset
  4113. \begin_inset Float figure
  4114. wide false
  4115. sideways false
  4116. status open
  4117. \begin_layout Plain Layout
  4118. \align center
  4119. \begin_inset Graphics
  4120. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-neighborhood-PCA-CROP.png
  4121. lyxscale 25
  4122. width 30col%
  4123. groupId covprof-subfig
  4124. \end_inset
  4125. \end_layout
  4126. \begin_layout Plain Layout
  4127. \begin_inset Caption Standard
  4128. \begin_layout Plain Layout
  4129. \series bold
  4130. \begin_inset CommandInset label
  4131. LatexCommand label
  4132. name "fig:H3K4me3-neighborhood-pca"
  4133. \end_inset
  4134. PCA of relative coverage depth, colored by K-means cluster membership.
  4135. \end_layout
  4136. \end_inset
  4137. \end_layout
  4138. \end_inset
  4139. \begin_inset space \hfill{}
  4140. \end_inset
  4141. \begin_inset Float figure
  4142. wide false
  4143. sideways false
  4144. status open
  4145. \begin_layout Plain Layout
  4146. \align center
  4147. \begin_inset Graphics
  4148. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-neighborhood-expression-CROP.png
  4149. lyxscale 25
  4150. width 30col%
  4151. groupId covprof-subfig
  4152. \end_inset
  4153. \end_layout
  4154. \begin_layout Plain Layout
  4155. \begin_inset Caption Standard
  4156. \begin_layout Plain Layout
  4157. \series bold
  4158. \begin_inset CommandInset label
  4159. LatexCommand label
  4160. name "fig:H3K4me3-neighborhood-expression"
  4161. \end_inset
  4162. Gene expression grouped by promoter coverage clusters.
  4163. \end_layout
  4164. \end_inset
  4165. \end_layout
  4166. \end_inset
  4167. \end_layout
  4168. \begin_layout Plain Layout
  4169. \begin_inset Caption Standard
  4170. \begin_layout Plain Layout
  4171. \series bold
  4172. \begin_inset CommandInset label
  4173. LatexCommand label
  4174. name "fig:H3K4me3-neighborhood"
  4175. \end_inset
  4176. K-means clustering of promoter H3K4me3 relative coverage depth in naive
  4177. day 0 samples.
  4178. \series default
  4179. H3K4me2 ChIP-seq reads were binned into 500-bp windows tiled across each
  4180. promoter from 5
  4181. \begin_inset space ~
  4182. \end_inset
  4183. kbp upstream to 5
  4184. \begin_inset space ~
  4185. \end_inset
  4186. kbp downstream, and the logCPM values were normalized within each promoter
  4187. to an average of 0, yielding relative coverage depths.
  4188. These were then grouped using K-means clustering with
  4189. \begin_inset Formula $K=6$
  4190. \end_inset
  4191. ,
  4192. \series bold
  4193. \series default
  4194. and the average bin values were plotted for each cluster (a).
  4195. The
  4196. \begin_inset Formula $x$
  4197. \end_inset
  4198. -axis is the genomic coordinate of each bin relative to the the transcription
  4199. start site, and the
  4200. \begin_inset Formula $y$
  4201. \end_inset
  4202. -axis is the mean relative coverage depth of that bin across all promoters
  4203. in the cluster.
  4204. Each line represents the average
  4205. \begin_inset Quotes eld
  4206. \end_inset
  4207. shape
  4208. \begin_inset Quotes erd
  4209. \end_inset
  4210. of the promoter coverage for promoters in that cluster.
  4211. PCA was performed on the same data, and the first two principal components
  4212. were plotted, coloring each point by its K-means cluster identity (b).
  4213. For each cluster, the distribution of gene expression values was plotted
  4214. (c).
  4215. \end_layout
  4216. \end_inset
  4217. \end_layout
  4218. \end_inset
  4219. \end_layout
  4220. \begin_layout Standard
  4221. \begin_inset ERT
  4222. status open
  4223. \begin_layout Plain Layout
  4224. \backslash
  4225. end{landscape}
  4226. \end_layout
  4227. \begin_layout Plain Layout
  4228. }
  4229. \end_layout
  4230. \end_inset
  4231. \end_layout
  4232. \begin_layout Standard
  4233. \begin_inset Flex TODO Note (inline)
  4234. status open
  4235. \begin_layout Plain Layout
  4236. Is there more to say here?
  4237. \end_layout
  4238. \end_inset
  4239. \end_layout
  4240. \begin_layout Standard
  4241. All observations described above for H3K4me2 ChIP-seq also appear to hold
  4242. for H3K4me3 as well (Figure
  4243. \begin_inset CommandInset ref
  4244. LatexCommand ref
  4245. reference "fig:H3K4me3-neighborhood"
  4246. plural "false"
  4247. caps "false"
  4248. noprefix "false"
  4249. \end_inset
  4250. ).
  4251. This is expected, since there is a high correlation between the positions
  4252. where both histone marks occur.
  4253. \end_layout
  4254. \begin_layout Subsection
  4255. Promoter coverage H3K27me3
  4256. \end_layout
  4257. \begin_layout Standard
  4258. \begin_inset ERT
  4259. status open
  4260. \begin_layout Plain Layout
  4261. \backslash
  4262. afterpage{
  4263. \end_layout
  4264. \begin_layout Plain Layout
  4265. \backslash
  4266. begin{landscape}
  4267. \end_layout
  4268. \end_inset
  4269. \end_layout
  4270. \begin_layout Standard
  4271. \begin_inset Float figure
  4272. wide false
  4273. sideways false
  4274. status collapsed
  4275. \begin_layout Plain Layout
  4276. \align center
  4277. \begin_inset Float figure
  4278. wide false
  4279. sideways false
  4280. status open
  4281. \begin_layout Plain Layout
  4282. \align center
  4283. \begin_inset Graphics
  4284. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-neighborhood-clusters-CROP.png
  4285. lyxscale 25
  4286. width 30col%
  4287. groupId covprof-subfig
  4288. \end_inset
  4289. \end_layout
  4290. \begin_layout Plain Layout
  4291. \begin_inset Caption Standard
  4292. \begin_layout Plain Layout
  4293. \series bold
  4294. \begin_inset CommandInset label
  4295. LatexCommand label
  4296. name "fig:H3K27me3-neighborhood-clusters"
  4297. \end_inset
  4298. Average relative coverage for each bin in each cluster
  4299. \end_layout
  4300. \end_inset
  4301. \end_layout
  4302. \end_inset
  4303. \begin_inset space \hfill{}
  4304. \end_inset
  4305. \begin_inset Float figure
  4306. wide false
  4307. sideways false
  4308. status open
  4309. \begin_layout Plain Layout
  4310. \align center
  4311. \begin_inset Graphics
  4312. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-neighborhood-PCA-CROP.png
  4313. lyxscale 25
  4314. width 30col%
  4315. groupId covprof-subfig
  4316. \end_inset
  4317. \end_layout
  4318. \begin_layout Plain Layout
  4319. \begin_inset Caption Standard
  4320. \begin_layout Plain Layout
  4321. \series bold
  4322. \begin_inset CommandInset label
  4323. LatexCommand label
  4324. name "fig:H3K27me3-neighborhood-pca"
  4325. \end_inset
  4326. PCA of relative coverage depth, colored by K-means cluster membership.
  4327. \series default
  4328. Note that Cluster 6 is hidden behind all the other clusters.
  4329. \end_layout
  4330. \end_inset
  4331. \end_layout
  4332. \end_inset
  4333. \begin_inset space \hfill{}
  4334. \end_inset
  4335. \begin_inset Float figure
  4336. wide false
  4337. sideways false
  4338. status open
  4339. \begin_layout Plain Layout
  4340. \align center
  4341. \begin_inset Graphics
  4342. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-neighborhood-expression-CROP.png
  4343. lyxscale 25
  4344. width 30col%
  4345. groupId covprof-subfig
  4346. \end_inset
  4347. \end_layout
  4348. \begin_layout Plain Layout
  4349. \begin_inset Caption Standard
  4350. \begin_layout Plain Layout
  4351. \series bold
  4352. \begin_inset CommandInset label
  4353. LatexCommand label
  4354. name "fig:H3K27me3-neighborhood-expression"
  4355. \end_inset
  4356. Gene expression grouped by promoter coverage clusters.
  4357. \end_layout
  4358. \end_inset
  4359. \end_layout
  4360. \end_inset
  4361. \end_layout
  4362. \begin_layout Plain Layout
  4363. \begin_inset Flex TODO Note (inline)
  4364. status open
  4365. \begin_layout Plain Layout
  4366. Repeated figure legends are kind of an issue here.
  4367. What to do?
  4368. \end_layout
  4369. \end_inset
  4370. \end_layout
  4371. \begin_layout Plain Layout
  4372. \begin_inset Caption Standard
  4373. \begin_layout Plain Layout
  4374. \series bold
  4375. \begin_inset CommandInset label
  4376. LatexCommand label
  4377. name "fig:H3K27me3-neighborhood"
  4378. \end_inset
  4379. K-means clustering of promoter H3K27me3 relative coverage depth in naive
  4380. day 0 samples.
  4381. \series default
  4382. H3K27me3 ChIP-seq reads were binned into 500-bp windows tiled across each
  4383. promoter from 5
  4384. \begin_inset space ~
  4385. \end_inset
  4386. kbp upstream to 5
  4387. \begin_inset space ~
  4388. \end_inset
  4389. kbp downstream, and the logCPM values were normalized within each promoter
  4390. to an average of 0, yielding relative coverage depths.
  4391. These were then grouped using
  4392. \begin_inset Formula $k$
  4393. \end_inset
  4394. -means clustering with
  4395. \begin_inset Formula $K=6$
  4396. \end_inset
  4397. ,
  4398. \series bold
  4399. \series default
  4400. and the average bin values were plotted for each cluster (a).
  4401. The
  4402. \begin_inset Formula $x$
  4403. \end_inset
  4404. -axis is the genomic coordinate of each bin relative to the the transcription
  4405. start site, and the
  4406. \begin_inset Formula $y$
  4407. \end_inset
  4408. -axis is the mean relative coverage depth of that bin across all promoters
  4409. in the cluster.
  4410. Each line represents the average
  4411. \begin_inset Quotes eld
  4412. \end_inset
  4413. shape
  4414. \begin_inset Quotes erd
  4415. \end_inset
  4416. of the promoter coverage for promoters in that cluster.
  4417. PCA was performed on the same data, and the first two principal components
  4418. were plotted, coloring each point by its K-means cluster identity (b).
  4419. For each cluster, the distribution of gene expression values was plotted
  4420. (c).
  4421. \end_layout
  4422. \end_inset
  4423. \end_layout
  4424. \end_inset
  4425. \end_layout
  4426. \begin_layout Standard
  4427. \begin_inset ERT
  4428. status open
  4429. \begin_layout Plain Layout
  4430. \backslash
  4431. end{landscape}
  4432. \end_layout
  4433. \begin_layout Plain Layout
  4434. }
  4435. \end_layout
  4436. \end_inset
  4437. \end_layout
  4438. \begin_layout Standard
  4439. \begin_inset Flex TODO Note (inline)
  4440. status open
  4441. \begin_layout Plain Layout
  4442. Should maybe re-explain what was done or refer back to the previous section.
  4443. \end_layout
  4444. \end_inset
  4445. \end_layout
  4446. \begin_layout Standard
  4447. Unlike both H3K4 marks, whose main patterns of variation appear directly
  4448. related to the size and position of a single peak within the promoter,
  4449. the patterns of H3K27me3 methylation in promoters are more complex (Figure
  4450. \begin_inset CommandInset ref
  4451. LatexCommand ref
  4452. reference "fig:H3K27me3-neighborhood"
  4453. plural "false"
  4454. caps "false"
  4455. noprefix "false"
  4456. \end_inset
  4457. ).
  4458. Once again looking at the relative coverage in a 500-bp wide bins in a
  4459. 5kb radius around each TSS, promoters were clustered based on the normalized
  4460. relative coverage values in each bin using
  4461. \begin_inset Formula $k$
  4462. \end_inset
  4463. -means clustering with
  4464. \begin_inset Formula $K=6$
  4465. \end_inset
  4466. (Figure
  4467. \begin_inset CommandInset ref
  4468. LatexCommand ref
  4469. reference "fig:H3K27me3-neighborhood-clusters"
  4470. plural "false"
  4471. caps "false"
  4472. noprefix "false"
  4473. \end_inset
  4474. ).
  4475. This time, 3
  4476. \begin_inset Quotes eld
  4477. \end_inset
  4478. axes
  4479. \begin_inset Quotes erd
  4480. \end_inset
  4481. of variation can be observed, each represented by 2 clusters with opposing
  4482. patterns.
  4483. The first axis is greater upstream coverage (Cluster 1) vs.
  4484. greater downstream coverage (Cluster 3); the second axis is the coverage
  4485. at the TSS itself: peak (Cluster 4) or trough (Cluster 2); lastly, the
  4486. third axis represents a trough upstream of the TSS (Cluster 5) vs.
  4487. downstream of the TSS (Cluster 6).
  4488. Referring to these opposing pairs of clusters as axes of variation is justified
  4489. , because they correspond precisely to the first 3 principal components
  4490. in the PCA plot of the relative coverage values (Figure
  4491. \begin_inset CommandInset ref
  4492. LatexCommand ref
  4493. reference "fig:H3K27me3-neighborhood-pca"
  4494. plural "false"
  4495. caps "false"
  4496. noprefix "false"
  4497. \end_inset
  4498. ).
  4499. The PCA plot reveals that as in the case of H3K4me2, all the
  4500. \begin_inset Quotes eld
  4501. \end_inset
  4502. clusters
  4503. \begin_inset Quotes erd
  4504. \end_inset
  4505. are really just sections of a single connected cloud rather than discrete
  4506. clusters.
  4507. The cloud is approximately ellipsoid-shaped, with each PC being an axis
  4508. of the ellipse, and each cluster consisting of a pyrimidal section of the
  4509. ellipsoid.
  4510. \end_layout
  4511. \begin_layout Standard
  4512. In Figure
  4513. \begin_inset CommandInset ref
  4514. LatexCommand ref
  4515. reference "fig:H3K27me3-neighborhood-expression"
  4516. plural "false"
  4517. caps "false"
  4518. noprefix "false"
  4519. \end_inset
  4520. , we can see that Clusters 1 and 2 are the only clusters with higher gene
  4521. expression than the others.
  4522. For Cluster 2, this is expected, since this cluster represents genes with
  4523. depletion of H3K27me3 near the promoter.
  4524. Hence, elevated expression in cluster 2 is consistent with the conventional
  4525. view of H3K27me3 as a deactivating mark.
  4526. However, Cluster 1, the cluster with the most elevated gene expression,
  4527. represents genes with elevated coverage upstream of the TSS, or equivalently,
  4528. decreased coverage downstream, inside the gene body.
  4529. The opposite pattern, in which H3K27me3 is more abundant within the gene
  4530. body and less abundance in the upstream promoter region, does not show
  4531. any elevation in gene expression.
  4532. As with H3K4me2, this shows that the location of H3K27 trimethylation relative
  4533. to the TSS is potentially an important factor beyond simple proximity.
  4534. \end_layout
  4535. \begin_layout Standard
  4536. \begin_inset Flex TODO Note (inline)
  4537. status open
  4538. \begin_layout Plain Layout
  4539. Show the figures where the negative result ended this line of inquiry.
  4540. I need to debug some errors resulting from an R upgrade to do this.
  4541. \end_layout
  4542. \end_inset
  4543. \end_layout
  4544. \begin_layout Subsection
  4545. Defined pattern analysis
  4546. \end_layout
  4547. \begin_layout Standard
  4548. \begin_inset Flex TODO Note (inline)
  4549. status open
  4550. \begin_layout Plain Layout
  4551. This was where I defined interesting expression patterns and then looked
  4552. at initial relative promoter coverage for each expression pattern.
  4553. Negative result.
  4554. I forgot about this until recently.
  4555. Worth including? Remember to also write methods.
  4556. \end_layout
  4557. \end_inset
  4558. \end_layout
  4559. \begin_layout Subsection
  4560. Promoter CpG islands?
  4561. \end_layout
  4562. \begin_layout Standard
  4563. \begin_inset Flex TODO Note (inline)
  4564. status collapsed
  4565. \begin_layout Plain Layout
  4566. I forgot until recently about the work I did on this.
  4567. Worth including? Remember to also write methods.
  4568. \end_layout
  4569. \end_inset
  4570. \end_layout
  4571. \begin_layout Section
  4572. Discussion
  4573. \end_layout
  4574. \begin_layout Standard
  4575. \begin_inset Flex TODO Note (inline)
  4576. status open
  4577. \begin_layout Plain Layout
  4578. Write better section headers
  4579. \end_layout
  4580. \end_inset
  4581. \end_layout
  4582. \begin_layout Subsection
  4583. Effective promoter radius
  4584. \end_layout
  4585. \begin_layout Standard
  4586. Figure
  4587. \begin_inset CommandInset ref
  4588. LatexCommand ref
  4589. reference "fig:near-promoter-peak-enrich"
  4590. plural "false"
  4591. caps "false"
  4592. noprefix "false"
  4593. \end_inset
  4594. shows that H3K4me2, H3K4me3, and H3K27me3 are all enriched near promoters,
  4595. relative to the rest of the genome, consistent with their conventionally
  4596. understood role in regulating gene transcription.
  4597. Interestingly, the radius within this enrichment occurs is not the same
  4598. for each histone mark.
  4599. H3K4me2 and H3K4me3 are enriched within a 1
  4600. \begin_inset space \thinspace{}
  4601. \end_inset
  4602. kb radius, while H3K27me3 is enriched within 2.5
  4603. \begin_inset space \thinspace{}
  4604. \end_inset
  4605. kb.
  4606. Notably, the determined promoter radius was consistent across all experimental
  4607. conditions, varying only between different histone marks.
  4608. This suggests that the conventional
  4609. \begin_inset Quotes eld
  4610. \end_inset
  4611. one size fits all
  4612. \begin_inset Quotes erd
  4613. \end_inset
  4614. approach of defining a single promoter region for each gene (or each TSS)
  4615. and using that same promoter region for analyzing all types of genomic
  4616. data within an experiment may not be appropriate, and a better approach
  4617. may be to use a separate promoter radius for each kind of data, with each
  4618. radius being derived from the data itself.
  4619. Furthermore, the apparent assymetry of upstream and downstream promoter
  4620. histone modification with respect to gene expression, seen in Figures
  4621. \begin_inset CommandInset ref
  4622. LatexCommand ref
  4623. reference "fig:H3K4me2-neighborhood"
  4624. plural "false"
  4625. caps "false"
  4626. noprefix "false"
  4627. \end_inset
  4628. ,
  4629. \begin_inset CommandInset ref
  4630. LatexCommand ref
  4631. reference "fig:H3K4me3-neighborhood"
  4632. plural "false"
  4633. caps "false"
  4634. noprefix "false"
  4635. \end_inset
  4636. , and
  4637. \begin_inset CommandInset ref
  4638. LatexCommand ref
  4639. reference "fig:H3K27me3-neighborhood"
  4640. plural "false"
  4641. caps "false"
  4642. noprefix "false"
  4643. \end_inset
  4644. , shows that even the concept of a promoter
  4645. \begin_inset Quotes eld
  4646. \end_inset
  4647. radius
  4648. \begin_inset Quotes erd
  4649. \end_inset
  4650. is likely an oversimplification.
  4651. At a minimum, nearby enrichment of peaks should be evaluated separately
  4652. for both upstream and downstream peaks, and an appropriate
  4653. \begin_inset Quotes eld
  4654. \end_inset
  4655. radius
  4656. \begin_inset Quotes erd
  4657. \end_inset
  4658. should be selected for each direction.
  4659. \end_layout
  4660. \begin_layout Standard
  4661. Figures
  4662. \begin_inset CommandInset ref
  4663. LatexCommand ref
  4664. reference "fig:H3K4me2-neighborhood"
  4665. plural "false"
  4666. caps "false"
  4667. noprefix "false"
  4668. \end_inset
  4669. and
  4670. \begin_inset CommandInset ref
  4671. LatexCommand ref
  4672. reference "fig:H3K4me3-neighborhood"
  4673. plural "false"
  4674. caps "false"
  4675. noprefix "false"
  4676. \end_inset
  4677. show that the determined promoter radius of 1
  4678. \begin_inset space ~
  4679. \end_inset
  4680. kb is approximately consistent with the distance from the TSS at which enrichmen
  4681. t of H3K4 methylationis correlates with increased expression, showing that
  4682. this radius, which was determined by a simple analysis of measuring the
  4683. distance from each TSS to the nearest peak, also has functional significance.
  4684. For H3K27me3, the correlation between histone modification near the promoter
  4685. and gene expression is more complex, involving non-peak variations such
  4686. as troughs in coverage at the TSS and asymmetric coverage upstream and
  4687. downstream, so it is difficult in this case to evaluate whether the 2.5
  4688. \begin_inset space ~
  4689. \end_inset
  4690. kb radius determined from TSS-to-peak distances is functionally significant.
  4691. However, the two patterns of coverage associated with elevated expression
  4692. levels both have interesting features within this radius.
  4693. \end_layout
  4694. \begin_layout Standard
  4695. \begin_inset Flex TODO Note (inline)
  4696. status open
  4697. \begin_layout Plain Layout
  4698. My instinct is to say
  4699. \begin_inset Quotes eld
  4700. \end_inset
  4701. further study is needed
  4702. \begin_inset Quotes erd
  4703. \end_inset
  4704. here, but that goes in Chapter 5, right?
  4705. \end_layout
  4706. \end_inset
  4707. \end_layout
  4708. \begin_layout Subsection
  4709. Convergence
  4710. \end_layout
  4711. \begin_layout Standard
  4712. \begin_inset Flex TODO Note (inline)
  4713. status open
  4714. \begin_layout Plain Layout
  4715. Look up some more references for these histone marks being involved in memory
  4716. differentiation.
  4717. (Ask Sarah)
  4718. \end_layout
  4719. \end_inset
  4720. \end_layout
  4721. \begin_layout Standard
  4722. We have observed that all 3 histone marks and the gene expression data all
  4723. exhibit evidence of convergence in abundance between naive and memory cells
  4724. by day 14 after activation (Figure
  4725. \begin_inset CommandInset ref
  4726. LatexCommand ref
  4727. reference "fig:PCoA-promoters"
  4728. plural "false"
  4729. caps "false"
  4730. noprefix "false"
  4731. \end_inset
  4732. , Table
  4733. \begin_inset CommandInset ref
  4734. LatexCommand ref
  4735. reference "tab:Number-signif-promoters"
  4736. plural "false"
  4737. caps "false"
  4738. noprefix "false"
  4739. \end_inset
  4740. ).
  4741. The MOFA latent factor scatter plots (Figure
  4742. \begin_inset CommandInset ref
  4743. LatexCommand ref
  4744. reference "fig:mofa-lf-scatter"
  4745. plural "false"
  4746. caps "false"
  4747. noprefix "false"
  4748. \end_inset
  4749. ) show that this pattern of convergence is captured in latent factor 5.
  4750. Like all the latent factors in this plot, this factor explains a substantial
  4751. portion of the variance in all 4 data sets, indicating a coordinated pattern
  4752. of variation shared across all histone marks and gene expression.
  4753. This, of course, is consistent with the expectation that any naive CD4
  4754. T-cells remaining at day 14 should have differentiated into memory cells
  4755. by that time, and should therefore have a genomic state similar to memory
  4756. cells.
  4757. This convergence is evidence that these histone marks all play an important
  4758. role in the naive-to-memory differentiation process.
  4759. A histone mark that was not involved in naive-to-memory differentiation
  4760. would not be expected to converge in this way after activation.
  4761. \end_layout
  4762. \begin_layout Standard
  4763. \begin_inset Float figure
  4764. wide false
  4765. sideways false
  4766. status collapsed
  4767. \begin_layout Plain Layout
  4768. \align center
  4769. \begin_inset Graphics
  4770. filename graphics/CD4-csaw/LaMere2016_fig8.pdf
  4771. lyxscale 50
  4772. width 60col%
  4773. groupId colwidth
  4774. \end_inset
  4775. \end_layout
  4776. \begin_layout Plain Layout
  4777. \begin_inset Caption Standard
  4778. \begin_layout Plain Layout
  4779. \series bold
  4780. \begin_inset CommandInset label
  4781. LatexCommand label
  4782. name "fig:Lamere2016-Fig8"
  4783. \end_inset
  4784. Lamere 2016 Figure 8
  4785. \begin_inset CommandInset citation
  4786. LatexCommand cite
  4787. key "LaMere2016"
  4788. literal "false"
  4789. \end_inset
  4790. ,
  4791. \begin_inset Quotes eld
  4792. \end_inset
  4793. Model for the role of H3K4 methylation during CD4 T-cell activation.
  4794. \begin_inset Quotes erd
  4795. \end_inset
  4796. \series default
  4797. Reproduced with permission.
  4798. \end_layout
  4799. \end_inset
  4800. \end_layout
  4801. \end_inset
  4802. \end_layout
  4803. \begin_layout Standard
  4804. In H3K4me2, H3K4me3, and RNA-seq, this convergence appears to be in progress
  4805. already by Day 5, shown by the smaller distance between naive and memory
  4806. cells at day 5 along the
  4807. \begin_inset Formula $y$
  4808. \end_inset
  4809. -axes in Figures
  4810. \begin_inset CommandInset ref
  4811. LatexCommand ref
  4812. reference "fig:PCoA-H3K4me2-prom"
  4813. plural "false"
  4814. caps "false"
  4815. noprefix "false"
  4816. \end_inset
  4817. ,
  4818. \begin_inset CommandInset ref
  4819. LatexCommand ref
  4820. reference "fig:PCoA-H3K4me3-prom"
  4821. plural "false"
  4822. caps "false"
  4823. noprefix "false"
  4824. \end_inset
  4825. , and
  4826. \begin_inset CommandInset ref
  4827. LatexCommand ref
  4828. reference "fig:RNA-PCA-group"
  4829. plural "false"
  4830. caps "false"
  4831. noprefix "false"
  4832. \end_inset
  4833. .
  4834. This agrees with the model proposed by Sarah Lamere based on an prior analysis
  4835. of the same data, shown in Figure
  4836. \begin_inset CommandInset ref
  4837. LatexCommand ref
  4838. reference "fig:Lamere2016-Fig8"
  4839. plural "false"
  4840. caps "false"
  4841. noprefix "false"
  4842. \end_inset
  4843. , which shows the pattern of H3K4 methylation and expression for naive cells
  4844. and memory cells converging at day 5.
  4845. This model was developed without the benefit of the PCoA plots in Figure
  4846. \begin_inset CommandInset ref
  4847. LatexCommand ref
  4848. reference "fig:PCoA-promoters"
  4849. plural "false"
  4850. caps "false"
  4851. noprefix "false"
  4852. \end_inset
  4853. , which have been corrected for confounding factors by ComBat and SVA.
  4854. This shows that proper batch correction assists in extracting meaningful
  4855. patterns in the data while eliminating systematic sources of irrelevant
  4856. variation in the data, allowing simple automated procedures like PCoA to
  4857. reveal interesting behaviors in the data that were previously only detectable
  4858. by a detailed manual analysis.
  4859. \end_layout
  4860. \begin_layout Standard
  4861. While the ideal comparison to demonstrate this convergence would be naive
  4862. cells at day 14 to memory cells at day 0, this is not feasible in this
  4863. experimental system, since neither naive nor memory cells are able to fully
  4864. return to their pre-activation state, as shown by the lack of overlap between
  4865. days 0 and 14 for either naive or memory cells in Figure
  4866. \begin_inset CommandInset ref
  4867. LatexCommand ref
  4868. reference "fig:PCoA-promoters"
  4869. plural "false"
  4870. caps "false"
  4871. noprefix "false"
  4872. \end_inset
  4873. .
  4874. \end_layout
  4875. \begin_layout Subsection
  4876. Positional
  4877. \end_layout
  4878. \begin_layout Standard
  4879. When looking at patterns in the relative coverage of each histone mark near
  4880. the TSS of each gene, several interesting patterns were apparent.
  4881. For H3K4me2 and H3K4me3, the pattern was straightforward: the consistent
  4882. pattern across all promoters was a single peak a few kb wide, with the
  4883. main axis of variation being the position of this peak relative to the
  4884. TSS (Figures
  4885. \begin_inset CommandInset ref
  4886. LatexCommand ref
  4887. reference "fig:H3K4me2-neighborhood"
  4888. plural "false"
  4889. caps "false"
  4890. noprefix "false"
  4891. \end_inset
  4892. &
  4893. \begin_inset CommandInset ref
  4894. LatexCommand ref
  4895. reference "fig:H3K4me3-neighborhood"
  4896. plural "false"
  4897. caps "false"
  4898. noprefix "false"
  4899. \end_inset
  4900. ).
  4901. There were no obvious
  4902. \begin_inset Quotes eld
  4903. \end_inset
  4904. preferred
  4905. \begin_inset Quotes erd
  4906. \end_inset
  4907. positions, but rather a continuous distribution of relative positions ranging
  4908. all across the promoter region.
  4909. The association with gene expression was also straightforward: peaks closer
  4910. to the TSS were more strongly associated with elevated gene expression.
  4911. Coverage downstream of the TSS appears to be more strongly associated with
  4912. elevated expression than coverage the same distance upstream, indicating
  4913. that the
  4914. \begin_inset Quotes eld
  4915. \end_inset
  4916. effective promoter region
  4917. \begin_inset Quotes erd
  4918. \end_inset
  4919. for H3K4me2 and H3K4me3 may be centered downstream of the TSS.
  4920. \end_layout
  4921. \begin_layout Standard
  4922. The relative promoter coverage for H3K27me3 had a more complex pattern,
  4923. with two specific patterns of promoter coverage associated with elevated
  4924. expression: a sharp depletion of H3K27me3 around the TSS relative to the
  4925. surrounding area, and a depletion of H3K27me3 downstream of the TSS relative
  4926. to upstream (Figure
  4927. \begin_inset CommandInset ref
  4928. LatexCommand ref
  4929. reference "fig:H3K27me3-neighborhood"
  4930. plural "false"
  4931. caps "false"
  4932. noprefix "false"
  4933. \end_inset
  4934. ).
  4935. A previous study found that H3K27me3 depletion within the gene body was
  4936. associated with elevated gene expression in 4 different cell types in mice
  4937. \begin_inset CommandInset citation
  4938. LatexCommand cite
  4939. key "Young2011"
  4940. literal "false"
  4941. \end_inset
  4942. .
  4943. This is consistent with the second pattern described here.
  4944. This study also reported that a spike in coverage at the TSS was associated
  4945. with
  4946. \emph on
  4947. lower
  4948. \emph default
  4949. expression, which is indirectly consistent with the first pattern described
  4950. here, in the sense that it associates lower H3K27me3 levels near the TSS
  4951. with higher expression.
  4952. \end_layout
  4953. \begin_layout Subsection
  4954. Workflow
  4955. \end_layout
  4956. \begin_layout Standard
  4957. \begin_inset ERT
  4958. status open
  4959. \begin_layout Plain Layout
  4960. \backslash
  4961. afterpage{
  4962. \end_layout
  4963. \begin_layout Plain Layout
  4964. \backslash
  4965. begin{landscape}
  4966. \end_layout
  4967. \end_inset
  4968. \end_layout
  4969. \begin_layout Standard
  4970. \begin_inset Float figure
  4971. wide false
  4972. sideways false
  4973. status open
  4974. \begin_layout Plain Layout
  4975. \align center
  4976. \begin_inset Graphics
  4977. filename graphics/CD4-csaw/rulegraphs/rulegraph-all.pdf
  4978. lyxscale 50
  4979. width 100col%
  4980. height 95theight%
  4981. \end_inset
  4982. \end_layout
  4983. \begin_layout Plain Layout
  4984. \begin_inset Caption Standard
  4985. \begin_layout Plain Layout
  4986. \begin_inset CommandInset label
  4987. LatexCommand label
  4988. name "fig:rulegraph"
  4989. \end_inset
  4990. \series bold
  4991. Dependency graph of steps in reproducible workflow.
  4992. \end_layout
  4993. \end_inset
  4994. \end_layout
  4995. \end_inset
  4996. \end_layout
  4997. \begin_layout Standard
  4998. \begin_inset ERT
  4999. status open
  5000. \begin_layout Plain Layout
  5001. \backslash
  5002. end{landscape}
  5003. \end_layout
  5004. \begin_layout Plain Layout
  5005. }
  5006. \end_layout
  5007. \end_inset
  5008. \end_layout
  5009. \begin_layout Standard
  5010. The analyses described in this chapter were organized into a reproducible
  5011. workflow using the Snakemake workflow management system.
  5012. As shown in Figure
  5013. \begin_inset CommandInset ref
  5014. LatexCommand ref
  5015. reference "fig:rulegraph"
  5016. plural "false"
  5017. caps "false"
  5018. noprefix "false"
  5019. \end_inset
  5020. , the workflow includes many steps with complex dependencies between them.
  5021. For example, the step that counts the number of ChIP-seq reads in 500
  5022. \begin_inset space ~
  5023. \end_inset
  5024. bp windows in each promoter (the starting point for Figures
  5025. \begin_inset CommandInset ref
  5026. LatexCommand ref
  5027. reference "fig:H3K4me2-neighborhood"
  5028. plural "false"
  5029. caps "false"
  5030. noprefix "false"
  5031. \end_inset
  5032. ,
  5033. \begin_inset CommandInset ref
  5034. LatexCommand ref
  5035. reference "fig:H3K4me3-neighborhood"
  5036. plural "false"
  5037. caps "false"
  5038. noprefix "false"
  5039. \end_inset
  5040. , and
  5041. \begin_inset CommandInset ref
  5042. LatexCommand ref
  5043. reference "fig:H3K27me3-neighborhood"
  5044. plural "false"
  5045. caps "false"
  5046. noprefix "false"
  5047. \end_inset
  5048. ), named
  5049. \begin_inset Formula $\texttt{chipseq\_count\_tss\_neighborhoods}$
  5050. \end_inset
  5051. , depends on the RNA-seq abundance estimates in order to select the most-used
  5052. TSS for each gene, the aligned ChIP-seq reads, the index for those reads,
  5053. and the blacklist of regions to be excluded from ChIP-seq analysis.
  5054. Each step declares its inputs and outputs, and Snakemake uses these to
  5055. determine the dependencies between steps.
  5056. Each step is marked as depending on all the steps whose outputs match its
  5057. inputs, generating the workflow graph in Figure
  5058. \begin_inset CommandInset ref
  5059. LatexCommand ref
  5060. reference "fig:rulegraph"
  5061. plural "false"
  5062. caps "false"
  5063. noprefix "false"
  5064. \end_inset
  5065. , which Snakemake uses to determine order in which to execute each step
  5066. so that each step is executed only after all of the steps it depends on
  5067. have completed, thereby automating the entire workflow from start to finish.
  5068. \end_layout
  5069. \begin_layout Standard
  5070. In addition to simply making it easier to organize the steps in the analysis,
  5071. structuring the analysis as a workflow allowed for some analysis strategies
  5072. that would not have been practical otherwise.
  5073. For example, 5 different RNA-seq quantification methods were tested against
  5074. two different reference transcriptome annotations for a total of 10 different
  5075. quantifications of the same RNA-seq data.
  5076. These were then compared against each other in the exploratory data analysis
  5077. step, to determine that the results were not very sensitive to either the
  5078. choice of quantification method or the choice of annotation.
  5079. This was possible with a single script for the exploratory data analysis,
  5080. because Snakemake was able to automate running this script for every combinatio
  5081. n of method and reference.
  5082. In a similar manner, two different peak calling methods were tested against
  5083. each other, and in this case it was determined that SICER was unambiguously
  5084. superior to MACS for all histone marks studied.
  5085. By enabling these types of comparisons, structuring the analysis as an
  5086. automated workflow allowed important analysis decisions to be made in a
  5087. data-driven way, by running every reasonable option through the downstream
  5088. steps, seeing the consequences of choosing each option, and deciding accordingl
  5089. y.
  5090. \end_layout
  5091. \begin_layout Subsection
  5092. Data quality issues limit conclusions
  5093. \end_layout
  5094. \begin_layout Standard
  5095. \begin_inset Flex TODO Note (inline)
  5096. status open
  5097. \begin_layout Plain Layout
  5098. Is this needed?
  5099. \end_layout
  5100. \end_inset
  5101. \end_layout
  5102. \begin_layout Section
  5103. Future Directions
  5104. \end_layout
  5105. \begin_layout Standard
  5106. The analysis of RNA-seq and ChIP-seq in CD4 T-cells in Chapter 2 is in many
  5107. ways a preliminary study that suggests a multitude of new avenues of investigat
  5108. ion.
  5109. Here we consider a selection of such avenues.
  5110. \end_layout
  5111. \begin_layout Subsection
  5112. Negative results
  5113. \end_layout
  5114. \begin_layout Standard
  5115. Two additional analyses were conducted beyond those reported in the results.
  5116. First, we searched for evidence that the presence or absence of a CpG island
  5117. in the promoter was correlated with increases or decreases in gene expression
  5118. or any histone mark in any of the tested contrasts.
  5119. Second, we searched for evidence that the relative ChIP-seq coverage profiles
  5120. prior to activations could predict the change in expression of a gene after
  5121. activation.
  5122. Neither analysis turned up any clear positive results.
  5123. \end_layout
  5124. \begin_layout Subsection
  5125. Improve on the idea of an effective promoter radius
  5126. \end_layout
  5127. \begin_layout Standard
  5128. This study introduced the concept of an
  5129. \begin_inset Quotes eld
  5130. \end_inset
  5131. effective promoter radius
  5132. \begin_inset Quotes erd
  5133. \end_inset
  5134. specific to each histone mark based on distince from the TSS within which
  5135. an excess of peaks was called for that mark.
  5136. This concept was then used to guide further analyses throughout the study.
  5137. However, while the effective promoter radius was useful in those analyses,
  5138. it is both limited in theory and shown in practice to be a possible oversimplif
  5139. ication.
  5140. First, the effective promoter radii used in this study were chosen based
  5141. on manual inspection of the TSS-to-peak distance distributions in Figure
  5142. \begin_inset CommandInset ref
  5143. LatexCommand ref
  5144. reference "fig:near-promoter-peak-enrich"
  5145. plural "false"
  5146. caps "false"
  5147. noprefix "false"
  5148. \end_inset
  5149. , selecting round numbers of analyst convenience (Table
  5150. \begin_inset CommandInset ref
  5151. LatexCommand ref
  5152. reference "tab:effective-promoter-radius"
  5153. plural "false"
  5154. caps "false"
  5155. noprefix "false"
  5156. \end_inset
  5157. ).
  5158. It would be better to define an algorithm that selects a more precise radius
  5159. based on the features of the graph.
  5160. One possible way to do this would be to randomly rearrange the called peaks
  5161. throughout the genome many (while preserving the distribution of peak widths)
  5162. and re-generate the same plot as in Figure
  5163. \begin_inset CommandInset ref
  5164. LatexCommand ref
  5165. reference "fig:near-promoter-peak-enrich"
  5166. plural "false"
  5167. caps "false"
  5168. noprefix "false"
  5169. \end_inset
  5170. .
  5171. This would yield a better
  5172. \begin_inset Quotes eld
  5173. \end_inset
  5174. background
  5175. \begin_inset Quotes erd
  5176. \end_inset
  5177. distribution that demonstrates the degree of near-TSS enrichment that would
  5178. be expected by random chance.
  5179. The effective promoter radius could be defined as the point where the true
  5180. distribution diverges from the randomized background distribution.
  5181. \end_layout
  5182. \begin_layout Standard
  5183. Furthermore, the above definition of effective promoter radius has the significa
  5184. nt limitation of being based on the peak calling method.
  5185. It is thus very sensitive to the choice of peak caller and significance
  5186. threshold for calling peaks, as well as the degree of saturation in the
  5187. sequencing.
  5188. Calling peaks from ChIP-seq samples with insufficient coverage depth, with
  5189. the wrong peak caller, or with a different significance threshold could
  5190. give a drastically different number of called peaks, and hence a drastically
  5191. different distribution of peak-to-TSS distances.
  5192. To address this, it is desirable to develop a better method of determining
  5193. the effective promoter radius that relies only on the distribution of read
  5194. coverage around the TSS, independent of the peak calling.
  5195. Furthermore, as demonstrated by the upstream-downstream asymmetries observed
  5196. in Figures
  5197. \begin_inset CommandInset ref
  5198. LatexCommand ref
  5199. reference "fig:H3K4me2-neighborhood"
  5200. plural "false"
  5201. caps "false"
  5202. noprefix "false"
  5203. \end_inset
  5204. ,
  5205. \begin_inset CommandInset ref
  5206. LatexCommand ref
  5207. reference "fig:H3K4me3-neighborhood"
  5208. plural "false"
  5209. caps "false"
  5210. noprefix "false"
  5211. \end_inset
  5212. , and
  5213. \begin_inset CommandInset ref
  5214. LatexCommand ref
  5215. reference "fig:H3K27me3-neighborhood"
  5216. plural "false"
  5217. caps "false"
  5218. noprefix "false"
  5219. \end_inset
  5220. , this definition should determine a different radius for the upstream and
  5221. downstream directions.
  5222. At this point, it may be better to rename this concept
  5223. \begin_inset Quotes eld
  5224. \end_inset
  5225. effective promoter extent
  5226. \begin_inset Quotes erd
  5227. \end_inset
  5228. and avoid the word
  5229. \begin_inset Quotes eld
  5230. \end_inset
  5231. radius
  5232. \begin_inset Quotes erd
  5233. \end_inset
  5234. , since a radius implies a symmetry about the TSS that is not supported
  5235. by the data.
  5236. \end_layout
  5237. \begin_layout Standard
  5238. Beyond improving the definition of effective promoter extent, functional
  5239. validation is necessary to show that this measure of near-TSS enrichment
  5240. has biological meaning.
  5241. Figures
  5242. \begin_inset CommandInset ref
  5243. LatexCommand ref
  5244. reference "fig:H3K4me2-neighborhood"
  5245. plural "false"
  5246. caps "false"
  5247. noprefix "false"
  5248. \end_inset
  5249. and
  5250. \begin_inset CommandInset ref
  5251. LatexCommand ref
  5252. reference "fig:H3K4me3-neighborhood"
  5253. plural "false"
  5254. caps "false"
  5255. noprefix "false"
  5256. \end_inset
  5257. already provide a very limited functional validation of the chosen promoter
  5258. extents for H3K4me2 and H3K4me3 by showing that spikes in coverage within
  5259. this region are most strongly correlated with elevated gene expression.
  5260. However, there are other ways to show functional relevance of the promoter
  5261. extent.
  5262. For example, correlations could be computed between read counts in peaks
  5263. nearby gene promoters and the expression level of those genes, and these
  5264. correlations could be plotted against the distance of the peak upstream
  5265. or downstream of the gene's TSS.
  5266. If the promoter extent truly defines a
  5267. \begin_inset Quotes eld
  5268. \end_inset
  5269. sphere of influence
  5270. \begin_inset Quotes erd
  5271. \end_inset
  5272. within which a histone mark is involved with the regulation of a gene,
  5273. then the correlations for peaks within this extent should be significantly
  5274. higher than those further upstream or downstream.
  5275. Peaks within these extents may also be more likely to show differential
  5276. modification than those outside genic regions of the genome.
  5277. \end_layout
  5278. \begin_layout Subsection
  5279. Design experiments to focus on post-activation convergence of naive & memory
  5280. cells
  5281. \end_layout
  5282. \begin_layout Standard
  5283. In this study, a convergence between naive and memory cells was observed
  5284. in both the pattern of gene expression and in epigenetic state of the 3
  5285. histone marks studied, consistent with the hypothesis that any naive cells
  5286. remaining 14 days after activation have differentiated into memory cells,
  5287. and that both gene expression and these histone marks are involved in this
  5288. differentiation.
  5289. However, the current study was not designed with this specific hypothesis
  5290. in mind, and it therefore has some deficiencies with regard to testing
  5291. it.
  5292. The memory CD4 samples at day 14 do not resemble the memory samples at
  5293. day 0, indicating that in the specific model of activation used for this
  5294. experiment, the cells are not guaranteed to return to their original pre-activa
  5295. tion state, or perhaps this process takes substantially longer than 14 days.
  5296. This is a challenge for the convergence hypothesis because the ideal comparison
  5297. to prove that naive cells are converging to a resting memory state would
  5298. be to compare the final naive time point to the Day 0 memory samples, but
  5299. this comparison is only meaningful if memory cells generally return to
  5300. the same
  5301. \begin_inset Quotes eld
  5302. \end_inset
  5303. resting
  5304. \begin_inset Quotes erd
  5305. \end_inset
  5306. state that they started at.
  5307. \end_layout
  5308. \begin_layout Standard
  5309. To better study the convergence hypothesis, a new experiment should be designed
  5310. using a model system for T-cell activation that is known to allow cells
  5311. to return as closely as possible to their pre-activation state.
  5312. Alternatively, if it is not possible to find or design such a model system,
  5313. the same cell cultures could be activated serially multiple times, and
  5314. sequenced after each activation cycle right before the next activation.
  5315. It is likely that several activations in the same model system will settle
  5316. into a cylical pattern, converging to a consistent
  5317. \begin_inset Quotes eld
  5318. \end_inset
  5319. resting
  5320. \begin_inset Quotes erd
  5321. \end_inset
  5322. state after each activation, even if this state is different from the initial
  5323. resting state at Day 0.
  5324. If so, it will be possible to compare the final states of both naive and
  5325. memory cells to show that they converge despite different initial conditions.
  5326. \end_layout
  5327. \begin_layout Standard
  5328. In addition, if naive-to-memory convergence is a general pattern, it should
  5329. also be detectable in other epigenetic marks, including other histone marks
  5330. and DNA methylation.
  5331. An experiment should be designed studying a large number of epigenetic
  5332. marks known or suspected to be involved in regulation of gene expression,
  5333. assaying all of these at the same pre- and post-activation time points.
  5334. Multi-dataset factor analysis methods like MOFA can then be used to identify
  5335. coordinated patterns of regulation shared across many epigenetic marks.
  5336. If possible, some
  5337. \begin_inset Quotes eld
  5338. \end_inset
  5339. negative control
  5340. \begin_inset Quotes erd
  5341. \end_inset
  5342. marks should be included that are known
  5343. \emph on
  5344. not
  5345. \emph default
  5346. to be involved in T-cell activation or memory formation.
  5347. Of course, CD4 T-cells are not the only adaptive immune cells with memory.
  5348. A similar study could be designed for CD8 T-cells, B-cells, and even specific
  5349. subsets of CD4 T-cells.
  5350. \end_layout
  5351. \begin_layout Subsection
  5352. Follow up on hints of interesting patterns in promoter relative coverage
  5353. profiles
  5354. \end_layout
  5355. \begin_layout Standard
  5356. \begin_inset Flex TODO Note (inline)
  5357. status open
  5358. \begin_layout Plain Layout
  5359. I think I might need to write up the negative results for the Promoter CpG
  5360. and defined pattern analysis before writing this section.
  5361. \end_layout
  5362. \end_inset
  5363. \end_layout
  5364. \begin_layout Itemize
  5365. Also find better normalizations: maybe borrow from MACS/SICER background
  5366. correction methods?
  5367. \end_layout
  5368. \begin_layout Itemize
  5369. For H3K4, define polar coordinates based on PC1 & 2: R = peak size, Theta
  5370. = peak position.
  5371. Then correlate with expression.
  5372. \end_layout
  5373. \begin_layout Itemize
  5374. Current analysis only at Day 0.
  5375. Need to study across time points.
  5376. \end_layout
  5377. \begin_layout Itemize
  5378. Integrating data across so many dimensions is a significant analysis challenge
  5379. \end_layout
  5380. \begin_layout Subsection
  5381. Investigate causes of high correlation between mutually exclusive histone
  5382. marks
  5383. \end_layout
  5384. \begin_layout Standard
  5385. The high correlation between coverage depth observed between H3K4me2 and
  5386. H3K4me3 is both expected and unexpected.
  5387. Since both marks are associated with elevated gene transcription, a positive
  5388. correlation between them is not surprising.
  5389. However, these two marks represent different post-translational modifications
  5390. of the
  5391. \emph on
  5392. same
  5393. \emph default
  5394. lysine residue on the histone H3 polypeptide, which means that they cannot
  5395. both be present on the same H3 subunit.
  5396. Thus, the high correlation between them has several potential explanations.
  5397. One possible reason is cell population heterogeneity: perhaps some genomic
  5398. loci are frequently marked with H3K4me2 in some cells, while in other cells
  5399. the same loci are marked with H3K4me3.
  5400. Another possibility is allele-specific modifications: the loci are marked
  5401. in each diploid cell with H3K4me2 on one allele and H3K4me3 on the other
  5402. allele.
  5403. Lastly, since each histone octamer contains 2 H3 subunits, it is possible
  5404. that having one H3K4me2 mark and one H3K4me3 mark on a given histone octamer
  5405. represents a distinct epigenetic state with a different function than either
  5406. double H3K4me2 or double H3K4me3.
  5407. \end_layout
  5408. \begin_layout Standard
  5409. These three hypotheses could be disentangled by single-cell ChIP-seq.
  5410. If the correlation between these two histone marks persists even within
  5411. the reads for each individual cell, then cell population heterogeneity
  5412. cannot explain the correlation.
  5413. Allele-specific modification can be tested for by looking at the correlation
  5414. between read coverage of the two histone marks at heterozygous loci.
  5415. If the correlation between read counts for opposite loci is low, then this
  5416. is consistent with allele-specific modification.
  5417. Finally if the modifications do not separate by either cell or allele,
  5418. the colocation of these two marks is most likely occurring at the level
  5419. of individual histones, with the heterogenously modified histone representing
  5420. a distinct state.
  5421. \end_layout
  5422. \begin_layout Standard
  5423. However, another experiment would be required to show direct evidence of
  5424. such a heterogeneously modified state.
  5425. Specifically a
  5426. \begin_inset Quotes eld
  5427. \end_inset
  5428. double ChIP
  5429. \begin_inset Quotes erd
  5430. \end_inset
  5431. experiment would need to be performed, where the input DNA is first subjected
  5432. to an immunoprecipitation pulldown from the anti-H3K4me2 antibody, and
  5433. then the enriched material is collected, with proteins still bound, and
  5434. immunoprecipitated
  5435. \emph on
  5436. again
  5437. \emph default
  5438. using the anti-H3K4me3 antibody.
  5439. If this yields significant numbers of non-artifactual reads in the same
  5440. regions as the individual pulldowns of the two marks, this is strong evidence
  5441. that the two marks are occurring on opposite H3 subunits of the same histones.
  5442. \end_layout
  5443. \begin_layout Standard
  5444. \begin_inset Flex TODO Note (inline)
  5445. status open
  5446. \begin_layout Plain Layout
  5447. Try to see if double ChIP-seq is actually feasible, and if not, come up
  5448. with some other idea for directly detecting the mixed mod state.
  5449. Oh! Actually ChIP-seq isn't required, only double ChIP followed by quantificati
  5450. on.
  5451. That's one possible angle.
  5452. \end_layout
  5453. \end_inset
  5454. \end_layout
  5455. \begin_layout Chapter
  5456. Improving array-based diagnostics for transplant rejection by optimizing
  5457. data preprocessing
  5458. \end_layout
  5459. \begin_layout Standard
  5460. \begin_inset Note Note
  5461. status open
  5462. \begin_layout Plain Layout
  5463. Chapter author list: Me, Sunil, Tom, Padma, Dan
  5464. \end_layout
  5465. \end_inset
  5466. \end_layout
  5467. \begin_layout Section
  5468. Approach
  5469. \end_layout
  5470. \begin_layout Subsection
  5471. Proper pre-processing is essential for array data
  5472. \end_layout
  5473. \begin_layout Standard
  5474. \begin_inset Flex TODO Note (inline)
  5475. status open
  5476. \begin_layout Plain Layout
  5477. This section could probably use some citations
  5478. \end_layout
  5479. \end_inset
  5480. \end_layout
  5481. \begin_layout Standard
  5482. Microarrays, bead arrays, and similar assays produce raw data in the form
  5483. of fluorescence intensity measurements, with the each intensity measurement
  5484. proportional to the abundance of some fluorescently-labelled target DNA
  5485. or RNA sequence that base pairs to a specific probe sequence.
  5486. However, these measurements for each probe are also affected my many technical
  5487. confounding factors, such as the concentration of target material, strength
  5488. of off-target binding, and the sensitivity of the imaging sensor.
  5489. Some array designs also use multiple probe sequences for each target.
  5490. Hence, extensive pre-processing of array data is necessary to normalize
  5491. out the effects of these technical factors and summarize the information
  5492. from multiple probes to arrive at a single usable estimate of abundance
  5493. or other relevant quantity, such as a ratio of two abundances, for each
  5494. target.
  5495. \end_layout
  5496. \begin_layout Standard
  5497. The choice of pre-processing algorithms used in the analysis of an array
  5498. data set can have a large effect on the results of that analysis.
  5499. However, despite their importance, these steps are often neglected or rushed
  5500. in order to get to the more scientifically interesting analysis steps involving
  5501. the actual biology of the system under study.
  5502. Hence, it is often possible to achieve substantial gains in statistical
  5503. power, model goodness-of-fit, or other relevant performance measures, by
  5504. checking the assumptions made by each preprocessing step and choosing specific
  5505. normalization methods tailored to the specific goals of the current analysis.
  5506. \end_layout
  5507. \begin_layout Subsection
  5508. Clinical diagnostic applications for microarrays require single-channel
  5509. normalization
  5510. \end_layout
  5511. \begin_layout Standard
  5512. As the cost of performing microarray assays falls, there is increasing interest
  5513. in using genomic assays for diagnostic purposes, such as distinguishing
  5514. healthy transplants (TX) from transplants undergoing acute rejection (AR)
  5515. or acute dysfunction with no rejection (ADNR).
  5516. However, the the standard normalization algorithm used for microarray data,
  5517. Robust Multi-chip Average (RMA)
  5518. \begin_inset CommandInset citation
  5519. LatexCommand cite
  5520. key "Irizarry2003a"
  5521. literal "false"
  5522. \end_inset
  5523. , is not applicable in a clinical setting.
  5524. Two of the steps in RMA, quantile normalization and probe summarization
  5525. by median polish, depend on every array in the data set being normalized.
  5526. This means that adding or removing any arrays from a data set changes the
  5527. normalized values for all arrays, and data sets that have been normalized
  5528. separately cannot be compared to each other.
  5529. Hence, when using RMA, any arrays to be analyzed together must also be
  5530. normalized together, and the set of arrays included in the data set must
  5531. be held constant throughout an analysis.
  5532. \end_layout
  5533. \begin_layout Standard
  5534. These limitations present serious impediments to the use of arrays as a
  5535. diagnostic tool.
  5536. When training a classifier, the samples to be classified must not be involved
  5537. in any step of the training process, lest their inclusion bias the training
  5538. process.
  5539. Once a classifier is deployed in a clinical setting, the samples to be
  5540. classified will not even
  5541. \emph on
  5542. exist
  5543. \emph default
  5544. at the time of training, so including them would be impossible even if
  5545. it were statistically justifiable.
  5546. Therefore, any machine learning application for microarrays demands that
  5547. the normalized expression values computed for an array must depend only
  5548. on information contained within that array.
  5549. This would ensure that each array's normalization is independent of every
  5550. other array, and that arrays normalized separately can still be compared
  5551. to each other without bias.
  5552. Such a normalization is commonly referred to as
  5553. \begin_inset Quotes eld
  5554. \end_inset
  5555. single-channel normalization
  5556. \begin_inset Quotes erd
  5557. \end_inset
  5558. .
  5559. \end_layout
  5560. \begin_layout Standard
  5561. Frozen RMA (fRMA) addresses these concerns by replacing the quantile normalizati
  5562. on and median polish with alternatives that do not introduce inter-array
  5563. dependence, allowing each array to be normalized independently of all others
  5564. \begin_inset CommandInset citation
  5565. LatexCommand cite
  5566. key "McCall2010"
  5567. literal "false"
  5568. \end_inset
  5569. .
  5570. Quantile normalization is performed against a pre-generated set of quantiles
  5571. learned from a collection of 850 publically available arrays sampled from
  5572. a wide variety of tissues in the Gene Expression Omnibus (GEO).
  5573. Each array's probe intensity distribution is normalized against these pre-gener
  5574. ated quantiles.
  5575. The median polish step is replaced with a robust weighted average of probe
  5576. intensities, using inverse variance weights learned from the same public
  5577. GEO data.
  5578. The result is a normalization that satisfies the requirements mentioned
  5579. above: each array is normalized independently of all others, and any two
  5580. normalized arrays can be compared directly to each other.
  5581. \end_layout
  5582. \begin_layout Standard
  5583. One important limitation of fRMA is that it requires a separate reference
  5584. data set from which to learn the parameters (reference quantiles and probe
  5585. weights) that will be used to normalize each array.
  5586. These parameters are specific to a given array platform, and pre-generated
  5587. parameters are only provided for the most common platforms, such as Affymetrix
  5588. hgu133plus2.
  5589. For a less common platform, such as hthgu133pluspm, is is necessary to
  5590. learn custom parameters from in-house data before fRMA can be used to normalize
  5591. samples on that platform
  5592. \begin_inset CommandInset citation
  5593. LatexCommand cite
  5594. key "McCall2011"
  5595. literal "false"
  5596. \end_inset
  5597. .
  5598. \end_layout
  5599. \begin_layout Standard
  5600. One other option is the aptly-named Single Channel Array Normalization (SCAN),
  5601. which adapts a normalization method originally designed for tiling arrays
  5602. \begin_inset CommandInset citation
  5603. LatexCommand cite
  5604. key "Piccolo2012"
  5605. literal "false"
  5606. \end_inset
  5607. .
  5608. SCAN is truly single-channel in that it does not require a set of normalization
  5609. paramters estimated from an external set of reference samples like fRMA
  5610. does.
  5611. \end_layout
  5612. \begin_layout Subsection
  5613. Heteroskedasticity must be accounted for in methylation array data
  5614. \end_layout
  5615. \begin_layout Standard
  5616. DNA methylation arrays are a relatively new kind of assay that uses microarrays
  5617. to measure the degree of methylation on cytosines in specific regions arrayed
  5618. across the genome.
  5619. First, bisulfite treatment converts all unmethylated cytosines to uracil
  5620. (which then become thymine after amplication) while leaving methylated
  5621. cytosines unaffected.
  5622. Then, each target region is interrogated with two probes: one binds to
  5623. the original genomic sequence and interrogates the level of methylated
  5624. DNA, and the other binds to the same sequence with all cytosines replaced
  5625. by thymidines and interrogates the level of unmethylated DNA.
  5626. \end_layout
  5627. \begin_layout Standard
  5628. \begin_inset Float figure
  5629. wide false
  5630. sideways false
  5631. status collapsed
  5632. \begin_layout Plain Layout
  5633. \align center
  5634. \begin_inset Graphics
  5635. filename graphics/methylvoom/sigmoid.pdf
  5636. lyxscale 50
  5637. width 60col%
  5638. groupId colwidth
  5639. \end_inset
  5640. \end_layout
  5641. \begin_layout Plain Layout
  5642. \begin_inset Caption Standard
  5643. \begin_layout Plain Layout
  5644. \begin_inset CommandInset label
  5645. LatexCommand label
  5646. name "fig:Sigmoid-beta-m-mapping"
  5647. \end_inset
  5648. \series bold
  5649. Sigmoid shape of the mapping between β and M values
  5650. \end_layout
  5651. \end_inset
  5652. \end_layout
  5653. \end_inset
  5654. \end_layout
  5655. \begin_layout Standard
  5656. After normalization, these two probe intensities are summarized in one of
  5657. two ways, each with advantages and disadvantages.
  5658. β
  5659. \series bold
  5660. \series default
  5661. values, interpreted as fraction of DNA copies methylated, range from 0 to
  5662. 1.
  5663. β
  5664. \series bold
  5665. \series default
  5666. values are conceptually easy to interpret, but the constrained range makes
  5667. them unsuitable for linear modeling, and their error distributions are
  5668. highly non-normal, which also frustrates linear modeling.
  5669. M-values, interpreted as the log ratio of methylated to unmethylated copies,
  5670. are computed by mapping the beta values from
  5671. \begin_inset Formula $[0,1]$
  5672. \end_inset
  5673. onto
  5674. \begin_inset Formula $(-\infty,+\infty)$
  5675. \end_inset
  5676. using a sigmoid curve (Figure
  5677. \begin_inset CommandInset ref
  5678. LatexCommand ref
  5679. reference "fig:Sigmoid-beta-m-mapping"
  5680. plural "false"
  5681. caps "false"
  5682. noprefix "false"
  5683. \end_inset
  5684. ).
  5685. This transformation results in values with better statistical perperties:
  5686. the unconstrained range is suitable for linear modeling, and the error
  5687. distributions are more normal.
  5688. Hence, most linear modeling and other statistical testing on methylation
  5689. arrays is performed using M-values.
  5690. \end_layout
  5691. \begin_layout Standard
  5692. However, the steep slope of the sigmoid transformation near 0 and 1 tends
  5693. to over-exaggerate small differences in β values near those extremes, which
  5694. in turn amplifies the error in those values, leading to a U-shaped trend
  5695. in the mean-variance curve: extreme values have higher variances than values
  5696. near the middle.
  5697. This mean-variance dependency must be accounted for when fitting the linear
  5698. model for differential methylation, or else the variance will be systematically
  5699. overestimated for probes with moderate M-values and underestimated for
  5700. probes with extreme M-values.
  5701. This is particularly undesirable for methylation data because the intermediate
  5702. M-values are the ones of most interest, since they are more likely to represent
  5703. areas of varying methylation, whereas extreme M-values typically represent
  5704. complete methylation or complete lack of methylation.
  5705. \end_layout
  5706. \begin_layout Standard
  5707. RNA-seq read count data are also known to show heteroskedasticity, and the
  5708. voom method was introduced for modeling this heteroskedasticity by estimating
  5709. the mean-variance trend in the data and using this trend to assign precision
  5710. weights to each observation
  5711. \begin_inset CommandInset citation
  5712. LatexCommand cite
  5713. key "Law2013"
  5714. literal "false"
  5715. \end_inset
  5716. .
  5717. While methylation array data are not derived from counts and have a very
  5718. different mean-variance relationship from that of typical RNA-seq data,
  5719. the voom method makes no specific assumptions on the shape of the mean-variance
  5720. relationship – it only assumes that the relationship can be modeled as
  5721. a smooth curve.
  5722. Hence, the method is sufficiently general to model the mean-variance relationsh
  5723. ip in methylation array data.
  5724. However, the standard implementation of voom assumes that the input is
  5725. given in raw read counts, and it must be adapted to run on methylation
  5726. M-values.
  5727. \end_layout
  5728. \begin_layout Section
  5729. Methods
  5730. \end_layout
  5731. \begin_layout Subsection
  5732. Evaluation of classifier performance with different normalization methods
  5733. \end_layout
  5734. \begin_layout Standard
  5735. For testing different expression microarray normalizations, a data set of
  5736. 157 hgu133plus2 arrays was used, consisting of blood samples from kidney
  5737. transplant patients whose grafts had been graded as TX, AR, or ADNR via
  5738. biopsy and histology (46 TX, 69 AR, 42 ADNR)
  5739. \begin_inset CommandInset citation
  5740. LatexCommand cite
  5741. key "Kurian2014"
  5742. literal "true"
  5743. \end_inset
  5744. .
  5745. Additionally, an external validation set of 75 samples was gathered from
  5746. public GEO data (37 TX, 38 AR, no ADNR).
  5747. \end_layout
  5748. \begin_layout Standard
  5749. \begin_inset Flex TODO Note (inline)
  5750. status open
  5751. \begin_layout Plain Layout
  5752. Find appropriate GEO identifiers if possible.
  5753. Kurian 2014 says GSE15296, but this seems to be different data.
  5754. I also need to look up the GEO accession for the external validation set.
  5755. \end_layout
  5756. \end_inset
  5757. \end_layout
  5758. \begin_layout Standard
  5759. To evaluate the effect of each normalization on classifier performance,
  5760. the same classifier training and validation procedure was used after each
  5761. normalization method.
  5762. The PAM package was used to train a nearest shrunken centroid classifier
  5763. on the training set and select the appropriate threshold for centroid shrinking.
  5764. Then the trained classifier was used to predict the class probabilities
  5765. of each validation sample.
  5766. From these class probabilities, ROC curves and area-under-curve (AUC) values
  5767. were generated
  5768. \begin_inset CommandInset citation
  5769. LatexCommand cite
  5770. key "Turck2011"
  5771. literal "false"
  5772. \end_inset
  5773. .
  5774. Each normalization was tested on two different sets of training and validation
  5775. samples.
  5776. For internal validation, the 115 TX and AR arrays in the internal set were
  5777. split at random into two equal sized sets, one for training and one for
  5778. validation, each containing the same numbers of TX and AR samples as the
  5779. other set.
  5780. For external validation, the full set of 115 TX and AR samples were used
  5781. as a training set, and the 75 external TX and AR samples were used as the
  5782. validation set.
  5783. Thus, 2 ROC curves and AUC values were generated for each normalization
  5784. method: one internal and one external.
  5785. Because the external validation set contains no ADNR samples, only classificati
  5786. on of TX and AR samples was considered.
  5787. The ADNR samples were included during normalization but excluded from all
  5788. classifier training and validation.
  5789. This ensures that the performance on internal and external validation sets
  5790. is directly comparable, since both are performing the same task: distinguising
  5791. TX from AR.
  5792. \end_layout
  5793. \begin_layout Standard
  5794. \begin_inset Flex TODO Note (inline)
  5795. status open
  5796. \begin_layout Plain Layout
  5797. Summarize the get.best.threshold algorithm for PAM threshold selection, or
  5798. just put the code online?
  5799. \end_layout
  5800. \end_inset
  5801. \end_layout
  5802. \begin_layout Standard
  5803. Six different normalization strategies were evaluated.
  5804. First, 2 well-known non-single-channel normalization methods were considered:
  5805. RMA and dChip
  5806. \begin_inset CommandInset citation
  5807. LatexCommand cite
  5808. key "Li2001,Irizarry2003a"
  5809. literal "false"
  5810. \end_inset
  5811. .
  5812. Since RMA produces expression values on a log2 scale and dChip does not,
  5813. the values from dChip were log2 transformed after normalization.
  5814. Next, RMA and dChip followed by Global Rank-invariant Set Normalization
  5815. (GRSN) were tested
  5816. \begin_inset CommandInset citation
  5817. LatexCommand cite
  5818. key "Pelz2008"
  5819. literal "false"
  5820. \end_inset
  5821. .
  5822. Post-processing with GRSN does not turn RMA or dChip into single-channel
  5823. methods, but it may help mitigate batch effects and is therefore useful
  5824. as a benchmark.
  5825. Lastly, the two single-channel normalization methods, fRMA and SCAN, were
  5826. tested
  5827. \begin_inset CommandInset citation
  5828. LatexCommand cite
  5829. key "McCall2010,Piccolo2012"
  5830. literal "false"
  5831. \end_inset
  5832. .
  5833. When evaluting internal validation performance, only the 157 internal samples
  5834. were normalized; when evaluating external validation performance, all 157
  5835. internal samples and 75 external samples were normalized together.
  5836. \end_layout
  5837. \begin_layout Standard
  5838. For demonstrating the problem with separate normalization of training and
  5839. validation data, one additional normalization was performed: the internal
  5840. and external sets were each normalized separately using RMA, and the normalized
  5841. data for each set were combined into a single set with no further attempts
  5842. at normalizing between the two sets.
  5843. The represents approximately how RMA would have to be used in a clinical
  5844. setting, where the samples to be classified are not available at the time
  5845. the classifier is trained.
  5846. \end_layout
  5847. \begin_layout Subsection
  5848. Generating custom fRMA vectors for hthgu133pluspm array platform
  5849. \end_layout
  5850. \begin_layout Standard
  5851. In order to enable fRMA normalization for the hthgu133pluspm array platform,
  5852. custom fRMA normalization vectors were trained using the frmaTools package
  5853. \begin_inset CommandInset citation
  5854. LatexCommand cite
  5855. key "McCall2011"
  5856. literal "false"
  5857. \end_inset
  5858. .
  5859. Separate vectors were created for two types of samples: kidney graft biopsy
  5860. samples and blood samples from graft recipients.
  5861. For training, a 341 kidney biopsy samples from 2 data sets and 965 blood
  5862. samples from 5 data sets were used as the reference set.
  5863. Arrays were groups into batches based on unique combinations of sample
  5864. type (blood or biopsy), diagnosis (TX, AR, etc.), data set, and scan date.
  5865. Thus, each batch represents arrays of the same kind that were run together
  5866. on the same day.
  5867. For estimating the probe inverse variance weights, frmaTools requires equal-siz
  5868. ed batches, which means a batch size must be chosen, and then batches smaller
  5869. than that size must be ignored, while batches larger than the chosen size
  5870. must be downsampled.
  5871. This downsampling is performed randomly, so the sampling process is repeated
  5872. 5 times and the resulting normalizations are compared to each other.
  5873. \end_layout
  5874. \begin_layout Standard
  5875. To evaluate the consistency of the generated normalization vectors, the
  5876. 5 fRMA vector sets generated from 5 random batch samplings were each used
  5877. to normalize the same 20 randomly selected samples from each tissue.
  5878. Then the normalized expression values for each probe on each array were
  5879. compared across all normalizations.
  5880. Each fRMA normalization was also compared against the normalized expression
  5881. values obtained by normalizing the same 20 samples with ordinary RMA.
  5882. \end_layout
  5883. \begin_layout Subsection
  5884. Modeling methylation array M-value heteroskedasticy in linear models with
  5885. modified voom implementation
  5886. \end_layout
  5887. \begin_layout Standard
  5888. \begin_inset Flex TODO Note (inline)
  5889. status open
  5890. \begin_layout Plain Layout
  5891. Put code on Github and reference it.
  5892. \end_layout
  5893. \end_inset
  5894. \end_layout
  5895. \begin_layout Standard
  5896. To investigate the whether DNA methylation could be used to distinguish
  5897. between healthy and dysfunctional transplants, a data set of 78 Illumina
  5898. 450k methylation arrays from human kidney graft biopsies was analyzed for
  5899. differential metylation between 4 transplant statuses: healthy transplant
  5900. (TX), transplants undergoing acute rejection (AR), acute dysfunction with
  5901. no rejection (ADNR), and chronic allograpft nephropathy (CAN).
  5902. The data consisted of 33 TX, 9 AR, 8 ADNR, and 28 CAN samples.
  5903. The uneven group sizes are a result of taking the biopsy samples before
  5904. the eventual fate of the transplant was known.
  5905. Each sample was additionally annotated with a donor ID (anonymized), Sex,
  5906. Age, Ethnicity, Creatinine Level, and Diabetes diagnosois (all samples
  5907. in this data set came from patients with either Type 1 or Type 2 diabetes).
  5908. \end_layout
  5909. \begin_layout Standard
  5910. The intensity data were first normalized using subset-quantile within array
  5911. normalization (SWAN)
  5912. \begin_inset CommandInset citation
  5913. LatexCommand cite
  5914. key "Maksimovic2012"
  5915. literal "false"
  5916. \end_inset
  5917. , then converted to intensity ratios (beta values)
  5918. \begin_inset CommandInset citation
  5919. LatexCommand cite
  5920. key "Aryee2014"
  5921. literal "false"
  5922. \end_inset
  5923. .
  5924. Any probes binding to loci that overlapped annotated SNPs were dropped,
  5925. and the annotated sex of each sample was verified against the sex inferred
  5926. from the ratio of median probe intensities for the X and Y chromosomes.
  5927. Then, the ratios were transformed to M-values.
  5928. \end_layout
  5929. \begin_layout Standard
  5930. \begin_inset Float table
  5931. wide false
  5932. sideways false
  5933. status open
  5934. \begin_layout Plain Layout
  5935. \align center
  5936. \begin_inset Tabular
  5937. <lyxtabular version="3" rows="4" columns="6">
  5938. <features tabularvalignment="middle">
  5939. <column alignment="center" valignment="top">
  5940. <column alignment="center" valignment="top">
  5941. <column alignment="center" valignment="top">
  5942. <column alignment="center" valignment="top">
  5943. <column alignment="center" valignment="top">
  5944. <column alignment="center" valignment="top">
  5945. <row>
  5946. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  5947. \begin_inset Text
  5948. \begin_layout Plain Layout
  5949. Analysis
  5950. \end_layout
  5951. \end_inset
  5952. </cell>
  5953. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  5954. \begin_inset Text
  5955. \begin_layout Plain Layout
  5956. random effect
  5957. \end_layout
  5958. \end_inset
  5959. </cell>
  5960. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  5961. \begin_inset Text
  5962. \begin_layout Plain Layout
  5963. eBayes
  5964. \end_layout
  5965. \end_inset
  5966. </cell>
  5967. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  5968. \begin_inset Text
  5969. \begin_layout Plain Layout
  5970. SVA
  5971. \end_layout
  5972. \end_inset
  5973. </cell>
  5974. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  5975. \begin_inset Text
  5976. \begin_layout Plain Layout
  5977. weights
  5978. \end_layout
  5979. \end_inset
  5980. </cell>
  5981. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  5982. \begin_inset Text
  5983. \begin_layout Plain Layout
  5984. voom
  5985. \end_layout
  5986. \end_inset
  5987. </cell>
  5988. </row>
  5989. <row>
  5990. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  5991. \begin_inset Text
  5992. \begin_layout Plain Layout
  5993. A
  5994. \end_layout
  5995. \end_inset
  5996. </cell>
  5997. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  5998. \begin_inset Text
  5999. \begin_layout Plain Layout
  6000. Yes
  6001. \end_layout
  6002. \end_inset
  6003. </cell>
  6004. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6005. \begin_inset Text
  6006. \begin_layout Plain Layout
  6007. Yes
  6008. \end_layout
  6009. \end_inset
  6010. </cell>
  6011. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6012. \begin_inset Text
  6013. \begin_layout Plain Layout
  6014. No
  6015. \end_layout
  6016. \end_inset
  6017. </cell>
  6018. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6019. \begin_inset Text
  6020. \begin_layout Plain Layout
  6021. No
  6022. \end_layout
  6023. \end_inset
  6024. </cell>
  6025. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  6026. \begin_inset Text
  6027. \begin_layout Plain Layout
  6028. No
  6029. \end_layout
  6030. \end_inset
  6031. </cell>
  6032. </row>
  6033. <row>
  6034. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6035. \begin_inset Text
  6036. \begin_layout Plain Layout
  6037. B
  6038. \end_layout
  6039. \end_inset
  6040. </cell>
  6041. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6042. \begin_inset Text
  6043. \begin_layout Plain Layout
  6044. Yes
  6045. \end_layout
  6046. \end_inset
  6047. </cell>
  6048. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6049. \begin_inset Text
  6050. \begin_layout Plain Layout
  6051. Yes
  6052. \end_layout
  6053. \end_inset
  6054. </cell>
  6055. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6056. \begin_inset Text
  6057. \begin_layout Plain Layout
  6058. Yes
  6059. \end_layout
  6060. \end_inset
  6061. </cell>
  6062. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6063. \begin_inset Text
  6064. \begin_layout Plain Layout
  6065. Yes
  6066. \end_layout
  6067. \end_inset
  6068. </cell>
  6069. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  6070. \begin_inset Text
  6071. \begin_layout Plain Layout
  6072. No
  6073. \end_layout
  6074. \end_inset
  6075. </cell>
  6076. </row>
  6077. <row>
  6078. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6079. \begin_inset Text
  6080. \begin_layout Plain Layout
  6081. C
  6082. \end_layout
  6083. \end_inset
  6084. </cell>
  6085. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6086. \begin_inset Text
  6087. \begin_layout Plain Layout
  6088. Yes
  6089. \end_layout
  6090. \end_inset
  6091. </cell>
  6092. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6093. \begin_inset Text
  6094. \begin_layout Plain Layout
  6095. Yes
  6096. \end_layout
  6097. \end_inset
  6098. </cell>
  6099. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6100. \begin_inset Text
  6101. \begin_layout Plain Layout
  6102. Yes
  6103. \end_layout
  6104. \end_inset
  6105. </cell>
  6106. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6107. \begin_inset Text
  6108. \begin_layout Plain Layout
  6109. Yes
  6110. \end_layout
  6111. \end_inset
  6112. </cell>
  6113. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  6114. \begin_inset Text
  6115. \begin_layout Plain Layout
  6116. Yes
  6117. \end_layout
  6118. \end_inset
  6119. </cell>
  6120. </row>
  6121. </lyxtabular>
  6122. \end_inset
  6123. \end_layout
  6124. \begin_layout Plain Layout
  6125. \begin_inset Caption Standard
  6126. \begin_layout Plain Layout
  6127. \series bold
  6128. \begin_inset CommandInset label
  6129. LatexCommand label
  6130. name "tab:Summary-of-meth-analysis"
  6131. \end_inset
  6132. Summary of analysis variants for methylation array data.
  6133. \series default
  6134. Each analysis included a different set of steps to adjust or account for
  6135. various systematic features of the data.
  6136. Random effect: The model included a random effect accounting for correlation
  6137. between samples from the same patient
  6138. \begin_inset CommandInset citation
  6139. LatexCommand cite
  6140. key "Smyth2005a"
  6141. literal "false"
  6142. \end_inset
  6143. ; eBayes: Empirical bayes squeezing of per-probe variances toward the mean-varia
  6144. nce trend
  6145. \begin_inset CommandInset citation
  6146. LatexCommand cite
  6147. key "Ritchie2015"
  6148. literal "false"
  6149. \end_inset
  6150. ; SVA: Surrogate variable analysis to account for unobserved confounders
  6151. \begin_inset CommandInset citation
  6152. LatexCommand cite
  6153. key "Leek2007"
  6154. literal "false"
  6155. \end_inset
  6156. ; Weights: Estimate sample weights to account for differences in sample
  6157. quality
  6158. \begin_inset CommandInset citation
  6159. LatexCommand cite
  6160. key "Liu2015,Ritchie2006"
  6161. literal "false"
  6162. \end_inset
  6163. ; voom: Use mean-variance trend to assign individual sample weights
  6164. \begin_inset CommandInset citation
  6165. LatexCommand cite
  6166. key "Law2013"
  6167. literal "false"
  6168. \end_inset
  6169. .
  6170. See the text for a more detailed explanation of each step.
  6171. \end_layout
  6172. \end_inset
  6173. \end_layout
  6174. \end_inset
  6175. \end_layout
  6176. \begin_layout Standard
  6177. From the M-values, a series of parallel analyses was performed, each adding
  6178. additional steps into the model fit to accomodate a feature of the data
  6179. (see Table
  6180. \begin_inset CommandInset ref
  6181. LatexCommand ref
  6182. reference "tab:Summary-of-meth-analysis"
  6183. plural "false"
  6184. caps "false"
  6185. noprefix "false"
  6186. \end_inset
  6187. ).
  6188. For analysis A, a
  6189. \begin_inset Quotes eld
  6190. \end_inset
  6191. basic
  6192. \begin_inset Quotes erd
  6193. \end_inset
  6194. linear modeling analysis was performed, compensating for known confounders
  6195. by including terms for the factor of interest (transplant status) as well
  6196. as the known biological confounders: sex, age, ethnicity, and diabetes.
  6197. Since some samples came from the same patients at different times, the
  6198. intra-patient correlation was modeled as a random effect, estimating a
  6199. shared correlation value across all probes
  6200. \begin_inset CommandInset citation
  6201. LatexCommand cite
  6202. key "Smyth2005a"
  6203. literal "false"
  6204. \end_inset
  6205. .
  6206. Then the linear model was fit, and the variance was modeled using empirical
  6207. Bayes squeezing toward the mean-variance trend
  6208. \begin_inset CommandInset citation
  6209. LatexCommand cite
  6210. key "Ritchie2015"
  6211. literal "false"
  6212. \end_inset
  6213. .
  6214. Finally, t-tests or F-tests were performed as appropriate for each test:
  6215. t-tests for single contrasts, and F-tests for multiple contrasts.
  6216. P-values were corrected for multiple testing using the Benjamini-Hochberg
  6217. procedure for FDR control
  6218. \begin_inset CommandInset citation
  6219. LatexCommand cite
  6220. key "Benjamini1995"
  6221. literal "false"
  6222. \end_inset
  6223. .
  6224. \end_layout
  6225. \begin_layout Standard
  6226. For the analysis B, surrogate variable analysis (SVA) was used to infer
  6227. additional unobserved sources of heterogeneity in the data
  6228. \begin_inset CommandInset citation
  6229. LatexCommand cite
  6230. key "Leek2007"
  6231. literal "false"
  6232. \end_inset
  6233. .
  6234. These surrogate variables were added to the design matrix before fitting
  6235. the linear model.
  6236. In addition, sample quality weights were estimated from the data and used
  6237. during linear modeling to down-weight the contribution of highly variable
  6238. arrays while increasing the weight to arrays with lower variability
  6239. \begin_inset CommandInset citation
  6240. LatexCommand cite
  6241. key "Ritchie2006"
  6242. literal "false"
  6243. \end_inset
  6244. .
  6245. The remainder of the analysis proceeded as in analysis A.
  6246. For analysis C, the voom method was adapted to run on methylation array
  6247. data and used to model and correct for the mean-variance trend using individual
  6248. observation weights
  6249. \begin_inset CommandInset citation
  6250. LatexCommand cite
  6251. key "Law2013"
  6252. literal "false"
  6253. \end_inset
  6254. , which were combined with the sample weights
  6255. \begin_inset CommandInset citation
  6256. LatexCommand cite
  6257. key "Liu2015,Ritchie2006"
  6258. literal "false"
  6259. \end_inset
  6260. .
  6261. Each time weights were used, they were estimated once before estimating
  6262. the random effect correlation value, and then the weights were re-estimated
  6263. taking the random effect into account.
  6264. The remainder of the analysis proceeded as in analysis B.
  6265. \end_layout
  6266. \begin_layout Section
  6267. Results
  6268. \end_layout
  6269. \begin_layout Standard
  6270. \begin_inset Flex TODO Note (inline)
  6271. status open
  6272. \begin_layout Plain Layout
  6273. Improve subsection titles in this section.
  6274. \end_layout
  6275. \end_inset
  6276. \end_layout
  6277. \begin_layout Standard
  6278. \begin_inset Flex TODO Note (inline)
  6279. status open
  6280. \begin_layout Plain Layout
  6281. Reconsider subsection organization?
  6282. \end_layout
  6283. \end_inset
  6284. \end_layout
  6285. \begin_layout Subsection
  6286. Separate normalization with RMA introduces unwanted biases in classification
  6287. \end_layout
  6288. \begin_layout Standard
  6289. \begin_inset Float figure
  6290. wide false
  6291. sideways false
  6292. status open
  6293. \begin_layout Plain Layout
  6294. \align center
  6295. \begin_inset Graphics
  6296. filename graphics/PAM/predplot.pdf
  6297. lyxscale 50
  6298. width 60col%
  6299. groupId colwidth
  6300. \end_inset
  6301. \end_layout
  6302. \begin_layout Plain Layout
  6303. \begin_inset Caption Standard
  6304. \begin_layout Plain Layout
  6305. \begin_inset CommandInset label
  6306. LatexCommand label
  6307. name "fig:Classifier-probabilities-RMA"
  6308. \end_inset
  6309. \series bold
  6310. Classifier probabilities on validation samples when normalized with RMA
  6311. together vs.
  6312. separately.
  6313. \series default
  6314. The PAM classifier algorithm was trained on the training set of arrays to
  6315. distinguish AR from TX and then used to assign class probabilities to the
  6316. validation set.
  6317. The process was performed after normalizing all samples together and after
  6318. normalizing the training and test sets separately, and the class probabilities
  6319. assigned to each sample in the validation set were plotted against each
  6320. other (PP(AR), posterior probability of being AR).
  6321. The color of each point indicates the true classification of that sample.
  6322. \end_layout
  6323. \end_inset
  6324. \end_layout
  6325. \end_inset
  6326. \end_layout
  6327. \begin_layout Standard
  6328. To demonstrate the problem with non-single-channel normalization methods,
  6329. we considered the problem of training a classifier to distinguish TX from
  6330. AR using the samples from the internal set as training data, evaluating
  6331. performance on the external set.
  6332. First, training and evaluation were performed after normalizing all array
  6333. samples together as a single set using RMA, and second, the internal samples
  6334. were normalized separately from the external samples and the training and
  6335. evaluation were repeated.
  6336. For each sample in the validation set, the classifier probabilities from
  6337. both classifiers were plotted against each other (Fig.
  6338. \begin_inset CommandInset ref
  6339. LatexCommand ref
  6340. reference "fig:Classifier-probabilities-RMA"
  6341. plural "false"
  6342. caps "false"
  6343. noprefix "false"
  6344. \end_inset
  6345. ).
  6346. As expected, separate normalization biases the classifier probabilities,
  6347. resulting in several misclassifications.
  6348. In this case, the bias from separate normalization causes the classifier
  6349. to assign a lower probability of AR to every sample.
  6350. \end_layout
  6351. \begin_layout Subsection
  6352. fRMA and SCAN maintain classification performance while eliminating dependence
  6353. on normalization strategy
  6354. \end_layout
  6355. \begin_layout Standard
  6356. \begin_inset Float figure
  6357. wide false
  6358. sideways false
  6359. status open
  6360. \begin_layout Plain Layout
  6361. \align center
  6362. \begin_inset Float figure
  6363. placement tb
  6364. wide false
  6365. sideways false
  6366. status open
  6367. \begin_layout Plain Layout
  6368. \align center
  6369. \begin_inset Graphics
  6370. filename graphics/PAM/ROC-TXvsAR-internal.pdf
  6371. lyxscale 50
  6372. height 40theight%
  6373. groupId roc-pam
  6374. \end_inset
  6375. \end_layout
  6376. \begin_layout Plain Layout
  6377. \begin_inset Caption Standard
  6378. \begin_layout Plain Layout
  6379. \begin_inset CommandInset label
  6380. LatexCommand label
  6381. name "fig:ROC-PAM-int"
  6382. \end_inset
  6383. ROC curves for PAM on internal validation data
  6384. \end_layout
  6385. \end_inset
  6386. \end_layout
  6387. \end_inset
  6388. \end_layout
  6389. \begin_layout Plain Layout
  6390. \align center
  6391. \begin_inset Float figure
  6392. placement tb
  6393. wide false
  6394. sideways false
  6395. status open
  6396. \begin_layout Plain Layout
  6397. \align center
  6398. \begin_inset Graphics
  6399. filename graphics/PAM/ROC-TXvsAR-external.pdf
  6400. lyxscale 50
  6401. height 40theight%
  6402. groupId roc-pam
  6403. \end_inset
  6404. \end_layout
  6405. \begin_layout Plain Layout
  6406. \begin_inset Caption Standard
  6407. \begin_layout Plain Layout
  6408. \begin_inset CommandInset label
  6409. LatexCommand label
  6410. name "fig:ROC-PAM-ext"
  6411. \end_inset
  6412. ROC curves for PAM on external validation data
  6413. \end_layout
  6414. \end_inset
  6415. \end_layout
  6416. \end_inset
  6417. \end_layout
  6418. \begin_layout Plain Layout
  6419. \begin_inset Caption Standard
  6420. \begin_layout Plain Layout
  6421. \series bold
  6422. \begin_inset CommandInset label
  6423. LatexCommand label
  6424. name "fig:ROC-PAM-main"
  6425. \end_inset
  6426. ROC curves for PAM using different normalization strategies.
  6427. \series default
  6428. ROC curves were generated for PAM classification of AR vs TX after 6 different
  6429. normalization strategies applied to the same data sets.
  6430. Only fRMA and SCAN are single-channel normalizations.
  6431. The other normalizations are for comparison.
  6432. \end_layout
  6433. \end_inset
  6434. \end_layout
  6435. \end_inset
  6436. \end_layout
  6437. \begin_layout Standard
  6438. \begin_inset Float table
  6439. wide false
  6440. sideways false
  6441. status open
  6442. \begin_layout Plain Layout
  6443. \align center
  6444. \begin_inset Tabular
  6445. <lyxtabular version="3" rows="7" columns="4">
  6446. <features tabularvalignment="middle">
  6447. <column alignment="center" valignment="top">
  6448. <column alignment="center" valignment="top">
  6449. <column alignment="center" valignment="top">
  6450. <column alignment="center" valignment="top">
  6451. <row>
  6452. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6453. \begin_inset Text
  6454. \begin_layout Plain Layout
  6455. \family roman
  6456. \series medium
  6457. \shape up
  6458. \size normal
  6459. \emph off
  6460. \bar no
  6461. \strikeout off
  6462. \xout off
  6463. \uuline off
  6464. \uwave off
  6465. \noun off
  6466. \color none
  6467. Normalization
  6468. \end_layout
  6469. \end_inset
  6470. </cell>
  6471. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6472. \begin_inset Text
  6473. \begin_layout Plain Layout
  6474. Single-channel?
  6475. \end_layout
  6476. \end_inset
  6477. </cell>
  6478. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6479. \begin_inset Text
  6480. \begin_layout Plain Layout
  6481. \family roman
  6482. \series medium
  6483. \shape up
  6484. \size normal
  6485. \emph off
  6486. \bar no
  6487. \strikeout off
  6488. \xout off
  6489. \uuline off
  6490. \uwave off
  6491. \noun off
  6492. \color none
  6493. Internal Val.
  6494. AUC
  6495. \end_layout
  6496. \end_inset
  6497. </cell>
  6498. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  6499. \begin_inset Text
  6500. \begin_layout Plain Layout
  6501. External Val.
  6502. AUC
  6503. \end_layout
  6504. \end_inset
  6505. </cell>
  6506. </row>
  6507. <row>
  6508. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6509. \begin_inset Text
  6510. \begin_layout Plain Layout
  6511. \family roman
  6512. \series medium
  6513. \shape up
  6514. \size normal
  6515. \emph off
  6516. \bar no
  6517. \strikeout off
  6518. \xout off
  6519. \uuline off
  6520. \uwave off
  6521. \noun off
  6522. \color none
  6523. RMA
  6524. \end_layout
  6525. \end_inset
  6526. </cell>
  6527. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6528. \begin_inset Text
  6529. \begin_layout Plain Layout
  6530. No
  6531. \end_layout
  6532. \end_inset
  6533. </cell>
  6534. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6535. \begin_inset Text
  6536. \begin_layout Plain Layout
  6537. \family roman
  6538. \series medium
  6539. \shape up
  6540. \size normal
  6541. \emph off
  6542. \bar no
  6543. \strikeout off
  6544. \xout off
  6545. \uuline off
  6546. \uwave off
  6547. \noun off
  6548. \color none
  6549. 0.852
  6550. \end_layout
  6551. \end_inset
  6552. </cell>
  6553. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  6554. \begin_inset Text
  6555. \begin_layout Plain Layout
  6556. \family roman
  6557. \series medium
  6558. \shape up
  6559. \size normal
  6560. \emph off
  6561. \bar no
  6562. \strikeout off
  6563. \xout off
  6564. \uuline off
  6565. \uwave off
  6566. \noun off
  6567. \color none
  6568. 0.713
  6569. \end_layout
  6570. \end_inset
  6571. </cell>
  6572. </row>
  6573. <row>
  6574. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6575. \begin_inset Text
  6576. \begin_layout Plain Layout
  6577. \family roman
  6578. \series medium
  6579. \shape up
  6580. \size normal
  6581. \emph off
  6582. \bar no
  6583. \strikeout off
  6584. \xout off
  6585. \uuline off
  6586. \uwave off
  6587. \noun off
  6588. \color none
  6589. dChip
  6590. \end_layout
  6591. \end_inset
  6592. </cell>
  6593. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6594. \begin_inset Text
  6595. \begin_layout Plain Layout
  6596. No
  6597. \end_layout
  6598. \end_inset
  6599. </cell>
  6600. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6601. \begin_inset Text
  6602. \begin_layout Plain Layout
  6603. \family roman
  6604. \series medium
  6605. \shape up
  6606. \size normal
  6607. \emph off
  6608. \bar no
  6609. \strikeout off
  6610. \xout off
  6611. \uuline off
  6612. \uwave off
  6613. \noun off
  6614. \color none
  6615. 0.891
  6616. \end_layout
  6617. \end_inset
  6618. </cell>
  6619. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  6620. \begin_inset Text
  6621. \begin_layout Plain Layout
  6622. \family roman
  6623. \series medium
  6624. \shape up
  6625. \size normal
  6626. \emph off
  6627. \bar no
  6628. \strikeout off
  6629. \xout off
  6630. \uuline off
  6631. \uwave off
  6632. \noun off
  6633. \color none
  6634. 0.657
  6635. \end_layout
  6636. \end_inset
  6637. </cell>
  6638. </row>
  6639. <row>
  6640. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6641. \begin_inset Text
  6642. \begin_layout Plain Layout
  6643. \family roman
  6644. \series medium
  6645. \shape up
  6646. \size normal
  6647. \emph off
  6648. \bar no
  6649. \strikeout off
  6650. \xout off
  6651. \uuline off
  6652. \uwave off
  6653. \noun off
  6654. \color none
  6655. RMA + GRSN
  6656. \end_layout
  6657. \end_inset
  6658. </cell>
  6659. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6660. \begin_inset Text
  6661. \begin_layout Plain Layout
  6662. No
  6663. \end_layout
  6664. \end_inset
  6665. </cell>
  6666. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6667. \begin_inset Text
  6668. \begin_layout Plain Layout
  6669. \family roman
  6670. \series medium
  6671. \shape up
  6672. \size normal
  6673. \emph off
  6674. \bar no
  6675. \strikeout off
  6676. \xout off
  6677. \uuline off
  6678. \uwave off
  6679. \noun off
  6680. \color none
  6681. 0.816
  6682. \end_layout
  6683. \end_inset
  6684. </cell>
  6685. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  6686. \begin_inset Text
  6687. \begin_layout Plain Layout
  6688. \family roman
  6689. \series medium
  6690. \shape up
  6691. \size normal
  6692. \emph off
  6693. \bar no
  6694. \strikeout off
  6695. \xout off
  6696. \uuline off
  6697. \uwave off
  6698. \noun off
  6699. \color none
  6700. 0.750
  6701. \end_layout
  6702. \end_inset
  6703. </cell>
  6704. </row>
  6705. <row>
  6706. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6707. \begin_inset Text
  6708. \begin_layout Plain Layout
  6709. \family roman
  6710. \series medium
  6711. \shape up
  6712. \size normal
  6713. \emph off
  6714. \bar no
  6715. \strikeout off
  6716. \xout off
  6717. \uuline off
  6718. \uwave off
  6719. \noun off
  6720. \color none
  6721. dChip + GRSN
  6722. \end_layout
  6723. \end_inset
  6724. </cell>
  6725. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6726. \begin_inset Text
  6727. \begin_layout Plain Layout
  6728. No
  6729. \end_layout
  6730. \end_inset
  6731. </cell>
  6732. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6733. \begin_inset Text
  6734. \begin_layout Plain Layout
  6735. \family roman
  6736. \series medium
  6737. \shape up
  6738. \size normal
  6739. \emph off
  6740. \bar no
  6741. \strikeout off
  6742. \xout off
  6743. \uuline off
  6744. \uwave off
  6745. \noun off
  6746. \color none
  6747. 0.875
  6748. \end_layout
  6749. \end_inset
  6750. </cell>
  6751. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  6752. \begin_inset Text
  6753. \begin_layout Plain Layout
  6754. \family roman
  6755. \series medium
  6756. \shape up
  6757. \size normal
  6758. \emph off
  6759. \bar no
  6760. \strikeout off
  6761. \xout off
  6762. \uuline off
  6763. \uwave off
  6764. \noun off
  6765. \color none
  6766. 0.642
  6767. \end_layout
  6768. \end_inset
  6769. </cell>
  6770. </row>
  6771. <row>
  6772. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6773. \begin_inset Text
  6774. \begin_layout Plain Layout
  6775. \family roman
  6776. \series medium
  6777. \shape up
  6778. \size normal
  6779. \emph off
  6780. \bar no
  6781. \strikeout off
  6782. \xout off
  6783. \uuline off
  6784. \uwave off
  6785. \noun off
  6786. \color none
  6787. fRMA
  6788. \end_layout
  6789. \end_inset
  6790. </cell>
  6791. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6792. \begin_inset Text
  6793. \begin_layout Plain Layout
  6794. Yes
  6795. \end_layout
  6796. \end_inset
  6797. </cell>
  6798. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6799. \begin_inset Text
  6800. \begin_layout Plain Layout
  6801. \family roman
  6802. \series medium
  6803. \shape up
  6804. \size normal
  6805. \emph off
  6806. \bar no
  6807. \strikeout off
  6808. \xout off
  6809. \uuline off
  6810. \uwave off
  6811. \noun off
  6812. \color none
  6813. 0.863
  6814. \end_layout
  6815. \end_inset
  6816. </cell>
  6817. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  6818. \begin_inset Text
  6819. \begin_layout Plain Layout
  6820. \family roman
  6821. \series medium
  6822. \shape up
  6823. \size normal
  6824. \emph off
  6825. \bar no
  6826. \strikeout off
  6827. \xout off
  6828. \uuline off
  6829. \uwave off
  6830. \noun off
  6831. \color none
  6832. 0.718
  6833. \end_layout
  6834. \end_inset
  6835. </cell>
  6836. </row>
  6837. <row>
  6838. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6839. \begin_inset Text
  6840. \begin_layout Plain Layout
  6841. \family roman
  6842. \series medium
  6843. \shape up
  6844. \size normal
  6845. \emph off
  6846. \bar no
  6847. \strikeout off
  6848. \xout off
  6849. \uuline off
  6850. \uwave off
  6851. \noun off
  6852. \color none
  6853. SCAN
  6854. \end_layout
  6855. \end_inset
  6856. </cell>
  6857. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6858. \begin_inset Text
  6859. \begin_layout Plain Layout
  6860. Yes
  6861. \end_layout
  6862. \end_inset
  6863. </cell>
  6864. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6865. \begin_inset Text
  6866. \begin_layout Plain Layout
  6867. \family roman
  6868. \series medium
  6869. \shape up
  6870. \size normal
  6871. \emph off
  6872. \bar no
  6873. \strikeout off
  6874. \xout off
  6875. \uuline off
  6876. \uwave off
  6877. \noun off
  6878. \color none
  6879. 0.853
  6880. \end_layout
  6881. \end_inset
  6882. </cell>
  6883. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  6884. \begin_inset Text
  6885. \begin_layout Plain Layout
  6886. \family roman
  6887. \series medium
  6888. \shape up
  6889. \size normal
  6890. \emph off
  6891. \bar no
  6892. \strikeout off
  6893. \xout off
  6894. \uuline off
  6895. \uwave off
  6896. \noun off
  6897. \color none
  6898. 0.689
  6899. \end_layout
  6900. \end_inset
  6901. </cell>
  6902. </row>
  6903. </lyxtabular>
  6904. \end_inset
  6905. \end_layout
  6906. \begin_layout Plain Layout
  6907. \begin_inset Caption Standard
  6908. \begin_layout Plain Layout
  6909. \begin_inset CommandInset label
  6910. LatexCommand label
  6911. name "tab:AUC-PAM"
  6912. \end_inset
  6913. \series bold
  6914. ROC curve AUC values for internal and external validation with 6 different
  6915. normalization strategies.
  6916. \series default
  6917. These AUC values correspond to the ROC curves in Figure
  6918. \begin_inset CommandInset ref
  6919. LatexCommand ref
  6920. reference "fig:ROC-PAM-main"
  6921. plural "false"
  6922. caps "false"
  6923. noprefix "false"
  6924. \end_inset
  6925. .
  6926. \end_layout
  6927. \end_inset
  6928. \end_layout
  6929. \end_inset
  6930. \end_layout
  6931. \begin_layout Standard
  6932. For internal validation, the 6 methods' AUC values ranged from 0.816 to 0.891,
  6933. as shown in Table
  6934. \begin_inset CommandInset ref
  6935. LatexCommand ref
  6936. reference "tab:AUC-PAM"
  6937. plural "false"
  6938. caps "false"
  6939. noprefix "false"
  6940. \end_inset
  6941. .
  6942. Among the non-single-channel normalizations, dChip outperformed RMA, while
  6943. GRSN reduced the AUC values for both dChip and RMA.
  6944. Both single-channel methods, fRMA and SCAN, slightly outperformed RMA,
  6945. with fRMA ahead of SCAN.
  6946. However, the difference between RMA and fRMA is still quite small.
  6947. Figure
  6948. \begin_inset CommandInset ref
  6949. LatexCommand ref
  6950. reference "fig:ROC-PAM-int"
  6951. plural "false"
  6952. caps "false"
  6953. noprefix "false"
  6954. \end_inset
  6955. shows that the ROC curves for RMA, dChip, and fRMA look very similar and
  6956. relatively smooth, while both GRSN curves and the curve for SCAN have a
  6957. more jagged appearance.
  6958. \end_layout
  6959. \begin_layout Standard
  6960. For external validation, as expected, all the AUC values are lower than
  6961. the internal validations, ranging from 0.642 to 0.750 (Table
  6962. \begin_inset CommandInset ref
  6963. LatexCommand ref
  6964. reference "tab:AUC-PAM"
  6965. plural "false"
  6966. caps "false"
  6967. noprefix "false"
  6968. \end_inset
  6969. ).
  6970. With or without GRSN, RMA shows its dominance over dChip in this more challengi
  6971. ng test.
  6972. Unlike in the internal validation, GRSN actually improves the classifier
  6973. performance for RMA, although it does not for dChip.
  6974. Once again, both single-channel methods perform about on par with RMA,
  6975. with fRMA performing slightly better and SCAN performing a bit worse.
  6976. Figure
  6977. \begin_inset CommandInset ref
  6978. LatexCommand ref
  6979. reference "fig:ROC-PAM-ext"
  6980. plural "false"
  6981. caps "false"
  6982. noprefix "false"
  6983. \end_inset
  6984. shows the ROC curves for the external validation test.
  6985. As expected, none of them are as clean-looking as the internal validation
  6986. ROC curves.
  6987. The curves for RMA, RMA+GRSN, and fRMA all look similar, while the other
  6988. curves look more divergent.
  6989. \end_layout
  6990. \begin_layout Subsection
  6991. fRMA with custom-generated vectors enables single-channel normalization
  6992. on hthgu133pluspm platform
  6993. \end_layout
  6994. \begin_layout Standard
  6995. \begin_inset Float figure
  6996. wide false
  6997. sideways false
  6998. status open
  6999. \begin_layout Plain Layout
  7000. \align center
  7001. \begin_inset Float figure
  7002. placement tb
  7003. wide false
  7004. sideways false
  7005. status collapsed
  7006. \begin_layout Plain Layout
  7007. \align center
  7008. \begin_inset Graphics
  7009. filename graphics/frma-pax-bx/batchsize_batches.pdf
  7010. lyxscale 50
  7011. height 35theight%
  7012. groupId frmatools-subfig
  7013. \end_inset
  7014. \end_layout
  7015. \begin_layout Plain Layout
  7016. \begin_inset Caption Standard
  7017. \begin_layout Plain Layout
  7018. \begin_inset CommandInset label
  7019. LatexCommand label
  7020. name "fig:batch-size-batches"
  7021. \end_inset
  7022. \series bold
  7023. Number of batches usable in fRMA probe weight learning as a function of
  7024. batch size.
  7025. \end_layout
  7026. \end_inset
  7027. \end_layout
  7028. \end_inset
  7029. \end_layout
  7030. \begin_layout Plain Layout
  7031. \align center
  7032. \begin_inset Float figure
  7033. placement tb
  7034. wide false
  7035. sideways false
  7036. status collapsed
  7037. \begin_layout Plain Layout
  7038. \align center
  7039. \begin_inset Graphics
  7040. filename graphics/frma-pax-bx/batchsize_samples.pdf
  7041. lyxscale 50
  7042. height 35theight%
  7043. groupId frmatools-subfig
  7044. \end_inset
  7045. \end_layout
  7046. \begin_layout Plain Layout
  7047. \begin_inset Caption Standard
  7048. \begin_layout Plain Layout
  7049. \begin_inset CommandInset label
  7050. LatexCommand label
  7051. name "fig:batch-size-samples"
  7052. \end_inset
  7053. \series bold
  7054. Number of samples usable in fRMA probe weight learning as a function of
  7055. batch size.
  7056. \end_layout
  7057. \end_inset
  7058. \end_layout
  7059. \end_inset
  7060. \end_layout
  7061. \begin_layout Plain Layout
  7062. \begin_inset Caption Standard
  7063. \begin_layout Plain Layout
  7064. \series bold
  7065. \begin_inset CommandInset label
  7066. LatexCommand label
  7067. name "fig:frmatools-batch-size"
  7068. \end_inset
  7069. Effect of batch size selection on number of batches and number of samples
  7070. included in fRMA probe weight learning.
  7071. \series default
  7072. For batch sizes ranging from 3 to 15, the number of batches (a) and samples
  7073. (b) included in probe weight training were plotted for biopsy (BX) and
  7074. blood (PAX) samples.
  7075. The selected batch size, 5, is marked with a dotted vertical line.
  7076. \end_layout
  7077. \end_inset
  7078. \end_layout
  7079. \end_inset
  7080. \end_layout
  7081. \begin_layout Standard
  7082. In order to enable use of fRMA to normalize hthgu133pluspm, a custom set
  7083. of fRMA vectors was created.
  7084. First, an appropriate batch size was chosen by looking at the number of
  7085. batches and number of samples included as a function of batch size (Figure
  7086. \begin_inset CommandInset ref
  7087. LatexCommand ref
  7088. reference "fig:frmatools-batch-size"
  7089. plural "false"
  7090. caps "false"
  7091. noprefix "false"
  7092. \end_inset
  7093. ).
  7094. For a given batch size, all batches with fewer samples that the chosen
  7095. size must be ignored during training, while larger batches must be randomly
  7096. downsampled to the chosen size.
  7097. Hence, the number of samples included for a given batch size equals the
  7098. batch size times the number of batches with at least that many samples.
  7099. From Figure
  7100. \begin_inset CommandInset ref
  7101. LatexCommand ref
  7102. reference "fig:batch-size-samples"
  7103. plural "false"
  7104. caps "false"
  7105. noprefix "false"
  7106. \end_inset
  7107. , it is apparent that that a batch size of 8 maximizes the number of samples
  7108. included in training.
  7109. Increasing the batch size beyond this causes too many smaller batches to
  7110. be excluded, reducing the total number of samples for both tissue types.
  7111. However, a batch size of 8 is not necessarily optimal.
  7112. The article introducing frmaTools concluded that it was highly advantageous
  7113. to use a smaller batch size in order to include more batches, even at the
  7114. expense of including fewer total samples in training
  7115. \begin_inset CommandInset citation
  7116. LatexCommand cite
  7117. key "McCall2011"
  7118. literal "false"
  7119. \end_inset
  7120. .
  7121. To strike an appropriate balance between more batches and more samples,
  7122. a batch size of 5 was chosen.
  7123. For both blood and biopsy samples, this increased the number of batches
  7124. included by 10, with only a modest reduction in the number of samples compared
  7125. to a batch size of 8.
  7126. With a batch size of 5, 26 batches of biopsy samples and 46 batches of
  7127. blood samples were available.
  7128. \end_layout
  7129. \begin_layout Standard
  7130. \begin_inset Float figure
  7131. wide false
  7132. sideways false
  7133. status collapsed
  7134. \begin_layout Plain Layout
  7135. \begin_inset Float figure
  7136. wide false
  7137. sideways false
  7138. status open
  7139. \begin_layout Plain Layout
  7140. \align center
  7141. \begin_inset Graphics
  7142. filename graphics/frma-pax-bx/M-BX-violin.pdf
  7143. lyxscale 40
  7144. width 45col%
  7145. groupId m-violin
  7146. \end_inset
  7147. \end_layout
  7148. \begin_layout Plain Layout
  7149. \begin_inset Caption Standard
  7150. \begin_layout Plain Layout
  7151. \begin_inset CommandInset label
  7152. LatexCommand label
  7153. name "fig:m-bx-violin"
  7154. \end_inset
  7155. \series bold
  7156. Violin plot of inter-normalization log ratios for biopsy samples.
  7157. \end_layout
  7158. \end_inset
  7159. \end_layout
  7160. \end_inset
  7161. \begin_inset space \hfill{}
  7162. \end_inset
  7163. \begin_inset Float figure
  7164. wide false
  7165. sideways false
  7166. status collapsed
  7167. \begin_layout Plain Layout
  7168. \align center
  7169. \begin_inset Graphics
  7170. filename graphics/frma-pax-bx/M-PAX-violin.pdf
  7171. lyxscale 40
  7172. width 45col%
  7173. groupId m-violin
  7174. \end_inset
  7175. \end_layout
  7176. \begin_layout Plain Layout
  7177. \begin_inset Caption Standard
  7178. \begin_layout Plain Layout
  7179. \begin_inset CommandInset label
  7180. LatexCommand label
  7181. name "fig:m-pax-violin"
  7182. \end_inset
  7183. \series bold
  7184. Violin plot of inter-normalization log ratios for blood samples.
  7185. \end_layout
  7186. \end_inset
  7187. \end_layout
  7188. \end_inset
  7189. \end_layout
  7190. \begin_layout Plain Layout
  7191. \begin_inset Caption Standard
  7192. \begin_layout Plain Layout
  7193. \begin_inset CommandInset label
  7194. LatexCommand label
  7195. name "fig:frma-violin"
  7196. \end_inset
  7197. \series bold
  7198. Violin plot of log ratios between normalizations for 20 biopsy samples.
  7199. \series default
  7200. Each of 20 randomly selected samples was normalized with RMA and with 5
  7201. different sets of fRMA vectors.
  7202. The distribution of log ratios between normalized expression values, aggregated
  7203. across all 20 arrays, was plotted for each pair of normalizations.
  7204. \end_layout
  7205. \end_inset
  7206. \end_layout
  7207. \end_inset
  7208. \end_layout
  7209. \begin_layout Standard
  7210. Since fRMA training requires equal-size batches, larger batches are downsampled
  7211. randomly.
  7212. This introduces a nondeterministic step in the generation of normalization
  7213. vectors.
  7214. To show that this randomness does not substantially change the outcome,
  7215. the random downsampling and subsequent vector learning was repeated 5 times,
  7216. with a different random seed each time.
  7217. 20 samples were selected at random as a test set and normalized with each
  7218. of the 5 sets of fRMA normalization vectors as well as ordinary RMA, and
  7219. the normalized expression values were compared across normalizations.
  7220. Figure
  7221. \begin_inset CommandInset ref
  7222. LatexCommand ref
  7223. reference "fig:m-bx-violin"
  7224. plural "false"
  7225. caps "false"
  7226. noprefix "false"
  7227. \end_inset
  7228. shows a summary of these comparisons for biopsy samples.
  7229. Comparing RMA to each of the 5 fRMA normalizations, the distribution of
  7230. log ratios is somewhat wide, indicating that the normalizations disagree
  7231. on the expression values of a fair number of probe sets.
  7232. In contrast, comparisons of fRMA against fRMA, the vast mojority of probe
  7233. sets have very small log ratios, indicating a very high agreement between
  7234. the normalized values generated by the two normalizations.
  7235. This shows that the fRMA normalization's behavior is not very sensitive
  7236. to the random downsampling of larger batches during training.
  7237. \end_layout
  7238. \begin_layout Standard
  7239. \begin_inset Float figure
  7240. wide false
  7241. sideways false
  7242. status open
  7243. \begin_layout Plain Layout
  7244. \align center
  7245. \begin_inset Float figure
  7246. wide false
  7247. sideways false
  7248. status collapsed
  7249. \begin_layout Plain Layout
  7250. \align center
  7251. \begin_inset Graphics
  7252. filename graphics/frma-pax-bx/MA-BX-RMA.fRMA-RASTER.png
  7253. lyxscale 10
  7254. width 45col%
  7255. groupId ma-frma
  7256. \end_inset
  7257. \end_layout
  7258. \begin_layout Plain Layout
  7259. \begin_inset Caption Standard
  7260. \begin_layout Plain Layout
  7261. \begin_inset CommandInset label
  7262. LatexCommand label
  7263. name "fig:ma-bx-rma-frma"
  7264. \end_inset
  7265. RMA vs.
  7266. fRMA for biopsy samples.
  7267. \end_layout
  7268. \end_inset
  7269. \end_layout
  7270. \end_inset
  7271. \begin_inset space \hfill{}
  7272. \end_inset
  7273. \begin_inset Float figure
  7274. wide false
  7275. sideways false
  7276. status collapsed
  7277. \begin_layout Plain Layout
  7278. \align center
  7279. \begin_inset Graphics
  7280. filename graphics/frma-pax-bx/MA-BX-fRMA.fRMA-RASTER.png
  7281. lyxscale 10
  7282. width 45col%
  7283. groupId ma-frma
  7284. \end_inset
  7285. \end_layout
  7286. \begin_layout Plain Layout
  7287. \begin_inset Caption Standard
  7288. \begin_layout Plain Layout
  7289. \begin_inset CommandInset label
  7290. LatexCommand label
  7291. name "fig:ma-bx-frma-frma"
  7292. \end_inset
  7293. fRMA vs fRMA for biopsy samples.
  7294. \end_layout
  7295. \end_inset
  7296. \end_layout
  7297. \end_inset
  7298. \end_layout
  7299. \begin_layout Plain Layout
  7300. \align center
  7301. \begin_inset Float figure
  7302. wide false
  7303. sideways false
  7304. status collapsed
  7305. \begin_layout Plain Layout
  7306. \align center
  7307. \begin_inset Graphics
  7308. filename graphics/frma-pax-bx/MA-PAX-RMA.fRMA-RASTER.png
  7309. lyxscale 10
  7310. width 45col%
  7311. groupId ma-frma
  7312. \end_inset
  7313. \end_layout
  7314. \begin_layout Plain Layout
  7315. \begin_inset Caption Standard
  7316. \begin_layout Plain Layout
  7317. \begin_inset CommandInset label
  7318. LatexCommand label
  7319. name "fig:MA-PAX-rma-frma"
  7320. \end_inset
  7321. RMA vs.
  7322. fRMA for blood samples.
  7323. \end_layout
  7324. \end_inset
  7325. \end_layout
  7326. \end_inset
  7327. \begin_inset space \hfill{}
  7328. \end_inset
  7329. \begin_inset Float figure
  7330. wide false
  7331. sideways false
  7332. status collapsed
  7333. \begin_layout Plain Layout
  7334. \align center
  7335. \begin_inset Graphics
  7336. filename graphics/frma-pax-bx/MA-PAX-fRMA.fRMA-RASTER.png
  7337. lyxscale 10
  7338. width 45col%
  7339. groupId ma-frma
  7340. \end_inset
  7341. \end_layout
  7342. \begin_layout Plain Layout
  7343. \begin_inset Caption Standard
  7344. \begin_layout Plain Layout
  7345. \begin_inset CommandInset label
  7346. LatexCommand label
  7347. name "fig:MA-PAX-frma-frma"
  7348. \end_inset
  7349. fRMA vs fRMA for blood samples.
  7350. \end_layout
  7351. \end_inset
  7352. \end_layout
  7353. \end_inset
  7354. \end_layout
  7355. \begin_layout Plain Layout
  7356. \begin_inset Caption Standard
  7357. \begin_layout Plain Layout
  7358. \series bold
  7359. \begin_inset CommandInset label
  7360. LatexCommand label
  7361. name "fig:Representative-MA-plots"
  7362. \end_inset
  7363. Representative MA plots comparing RMA and custom fRMA normalizations.
  7364. \series default
  7365. For each plot, 20 samples were normalized using 2 different normalizations,
  7366. and then averages (A) and log ratios (M) were plotted between the two different
  7367. normalizations for every probe.
  7368. For the
  7369. \begin_inset Quotes eld
  7370. \end_inset
  7371. fRMA vs fRMA
  7372. \begin_inset Quotes erd
  7373. \end_inset
  7374. plots (b & d), two different fRMA normalizations using vectors from two
  7375. independent batch samplings were compared.
  7376. Density of points is represented by blue shading, and individual outlier
  7377. points are plotted.
  7378. \end_layout
  7379. \end_inset
  7380. \end_layout
  7381. \end_inset
  7382. \end_layout
  7383. \begin_layout Standard
  7384. Figure
  7385. \begin_inset CommandInset ref
  7386. LatexCommand ref
  7387. reference "fig:ma-bx-rma-frma"
  7388. plural "false"
  7389. caps "false"
  7390. noprefix "false"
  7391. \end_inset
  7392. shows an MA plot of the RMA-normalized values against the fRMA-normalized
  7393. values for the same probe sets and arrays, corresponding to the first row
  7394. of Figure
  7395. \begin_inset CommandInset ref
  7396. LatexCommand ref
  7397. reference "fig:m-bx-violin"
  7398. plural "false"
  7399. caps "false"
  7400. noprefix "false"
  7401. \end_inset
  7402. .
  7403. This MA plot shows that not only is there a wide distribution of M-values,
  7404. but the trend of M-values is dependent on the average normalized intensity.
  7405. This is expected, since the overall trend represents the differences in
  7406. the quantile normalization step.
  7407. When running RMA, only the quantiles for these specific 20 arrays are used,
  7408. while for fRMA the quantile distribution is taking from all arrays used
  7409. in training.
  7410. Figure
  7411. \begin_inset CommandInset ref
  7412. LatexCommand ref
  7413. reference "fig:ma-bx-frma-frma"
  7414. plural "false"
  7415. caps "false"
  7416. noprefix "false"
  7417. \end_inset
  7418. shows a similar MA plot comparing 2 different fRMA normalizations, correspondin
  7419. g to the 6th row of Figure
  7420. \begin_inset CommandInset ref
  7421. LatexCommand ref
  7422. reference "fig:m-bx-violin"
  7423. plural "false"
  7424. caps "false"
  7425. noprefix "false"
  7426. \end_inset
  7427. .
  7428. The MA plot is very tightly centered around zero with no visible trend.
  7429. Figures
  7430. \begin_inset CommandInset ref
  7431. LatexCommand ref
  7432. reference "fig:m-pax-violin"
  7433. plural "false"
  7434. caps "false"
  7435. noprefix "false"
  7436. \end_inset
  7437. ,
  7438. \begin_inset CommandInset ref
  7439. LatexCommand ref
  7440. reference "fig:MA-PAX-rma-frma"
  7441. plural "false"
  7442. caps "false"
  7443. noprefix "false"
  7444. \end_inset
  7445. , and
  7446. \begin_inset CommandInset ref
  7447. LatexCommand ref
  7448. reference "fig:ma-bx-frma-frma"
  7449. plural "false"
  7450. caps "false"
  7451. noprefix "false"
  7452. \end_inset
  7453. show exactly the same information for the blood samples, once again comparing
  7454. the normalized expression values between normalizations for all probe sets
  7455. across 20 randomly selected test arrays.
  7456. Once again, there is a wider distribution of log ratios between RMA-normalized
  7457. values and fRMA-normalized, and a much tighter distribution when comparing
  7458. different fRMA normalizations to each other, indicating that the fRMA training
  7459. process is robust to random batch downsampling for the blood samples as
  7460. well.
  7461. \end_layout
  7462. \begin_layout Subsection
  7463. SVA, voom, and array weights improve model fit for methylation array data
  7464. \end_layout
  7465. \begin_layout Standard
  7466. \begin_inset ERT
  7467. status open
  7468. \begin_layout Plain Layout
  7469. \backslash
  7470. afterpage{
  7471. \end_layout
  7472. \begin_layout Plain Layout
  7473. \backslash
  7474. begin{landscape}
  7475. \end_layout
  7476. \end_inset
  7477. \end_layout
  7478. \begin_layout Standard
  7479. \begin_inset Float figure
  7480. wide false
  7481. sideways false
  7482. status open
  7483. \begin_layout Plain Layout
  7484. \begin_inset Flex TODO Note (inline)
  7485. status open
  7486. \begin_layout Plain Layout
  7487. Fix axis labels:
  7488. \begin_inset Quotes eld
  7489. \end_inset
  7490. log2 M-value
  7491. \begin_inset Quotes erd
  7492. \end_inset
  7493. is redundant because M-values are already log scale
  7494. \end_layout
  7495. \end_inset
  7496. \end_layout
  7497. \begin_layout Plain Layout
  7498. \begin_inset Float figure
  7499. wide false
  7500. sideways false
  7501. status collapsed
  7502. \begin_layout Plain Layout
  7503. \align center
  7504. \begin_inset Graphics
  7505. filename graphics/methylvoom/unadj.dupcor/meanvar-trends-PAGE1-CROP-RASTER.png
  7506. lyxscale 15
  7507. width 30col%
  7508. groupId voomaw-subfig
  7509. \end_inset
  7510. \end_layout
  7511. \begin_layout Plain Layout
  7512. \begin_inset Caption Standard
  7513. \begin_layout Plain Layout
  7514. \begin_inset CommandInset label
  7515. LatexCommand label
  7516. name "fig:meanvar-basic"
  7517. \end_inset
  7518. Mean-variance trend for analysis A.
  7519. \end_layout
  7520. \end_inset
  7521. \end_layout
  7522. \end_inset
  7523. \begin_inset space \hfill{}
  7524. \end_inset
  7525. \begin_inset Float figure
  7526. wide false
  7527. sideways false
  7528. status collapsed
  7529. \begin_layout Plain Layout
  7530. \align center
  7531. \begin_inset Graphics
  7532. filename graphics/methylvoom/unadj.dupcor.sva.aw/meanvar-trends-PAGE1-CROP-RASTER.png
  7533. lyxscale 15
  7534. width 30col%
  7535. groupId voomaw-subfig
  7536. \end_inset
  7537. \end_layout
  7538. \begin_layout Plain Layout
  7539. \begin_inset Caption Standard
  7540. \begin_layout Plain Layout
  7541. \begin_inset CommandInset label
  7542. LatexCommand label
  7543. name "fig:meanvar-sva-aw"
  7544. \end_inset
  7545. Mean-variance trend for analysis B.
  7546. \end_layout
  7547. \end_inset
  7548. \end_layout
  7549. \end_inset
  7550. \begin_inset space \hfill{}
  7551. \end_inset
  7552. \begin_inset Float figure
  7553. wide false
  7554. sideways false
  7555. status collapsed
  7556. \begin_layout Plain Layout
  7557. \align center
  7558. \begin_inset Graphics
  7559. filename graphics/methylvoom/unadj.dupcor.sva.voomaw/meanvar-trends-PAGE2-CROP-RASTER.png
  7560. lyxscale 15
  7561. width 30col%
  7562. groupId voomaw-subfig
  7563. \end_inset
  7564. \end_layout
  7565. \begin_layout Plain Layout
  7566. \begin_inset Caption Standard
  7567. \begin_layout Plain Layout
  7568. \begin_inset CommandInset label
  7569. LatexCommand label
  7570. name "fig:meanvar-sva-voomaw"
  7571. \end_inset
  7572. Mean-variance trend after voom modeling in analysis C.
  7573. \end_layout
  7574. \end_inset
  7575. \end_layout
  7576. \end_inset
  7577. \end_layout
  7578. \begin_layout Plain Layout
  7579. \begin_inset Caption Standard
  7580. \begin_layout Plain Layout
  7581. \series bold
  7582. Mean-variance trend modeling in methylation array data.
  7583. \series default
  7584. The estimated log2(standard deviation) for each probe is plotted against
  7585. the probe's average M-value across all samples as a black point, with some
  7586. transparency to make overplotting more visible, since there are about 450,000
  7587. points.
  7588. Density of points is also indicated by the dark blue contour lines.
  7589. The prior variance trend estimated by eBayes is shown in light blue, while
  7590. the lowess trend of the points is shown in red.
  7591. \end_layout
  7592. \end_inset
  7593. \end_layout
  7594. \end_inset
  7595. \end_layout
  7596. \begin_layout Standard
  7597. \begin_inset ERT
  7598. status open
  7599. \begin_layout Plain Layout
  7600. \backslash
  7601. end{landscape}
  7602. \end_layout
  7603. \begin_layout Plain Layout
  7604. }
  7605. \end_layout
  7606. \end_inset
  7607. \end_layout
  7608. \begin_layout Standard
  7609. Figure
  7610. \begin_inset CommandInset ref
  7611. LatexCommand ref
  7612. reference "fig:meanvar-basic"
  7613. plural "false"
  7614. caps "false"
  7615. noprefix "false"
  7616. \end_inset
  7617. shows the relationship between the mean M-value and the standard deviation
  7618. calculated for each probe in the methylation array data set.
  7619. A few features of the data are apparent.
  7620. First, the data are very strongly bimodal, with peaks in the density around
  7621. M-values of +4 and -4.
  7622. These modes correspond to methylation sites that are nearly 100% methylated
  7623. and nearly 100% unmethylated, respectively.
  7624. The strong bomodality indicates that a majority of probes interrogate sites
  7625. that fall into one of these two categories.
  7626. The points in between these modes represent sites that are either partially
  7627. methylated in many samples, or are fully methylated in some samples and
  7628. fully unmethylated in other samples, or some combination.
  7629. The next visible feature of the data is the W-shaped variance trend.
  7630. The upticks in the variance trend on either side are expected, based on
  7631. the sigmoid transformation exaggerating small differences at extreme M-values
  7632. (Figure
  7633. \begin_inset CommandInset ref
  7634. LatexCommand ref
  7635. reference "fig:Sigmoid-beta-m-mapping"
  7636. plural "false"
  7637. caps "false"
  7638. noprefix "false"
  7639. \end_inset
  7640. ).
  7641. However, the uptick in the center is interesting: it indicates that sites
  7642. that are not constitutitively methylated or unmethylated have a higher
  7643. variance.
  7644. This could be a genuine biological effect, or it could be spurious noise
  7645. that is only observable at sites with varying methylation.
  7646. \end_layout
  7647. \begin_layout Standard
  7648. In Figure
  7649. \begin_inset CommandInset ref
  7650. LatexCommand ref
  7651. reference "fig:meanvar-sva-aw"
  7652. plural "false"
  7653. caps "false"
  7654. noprefix "false"
  7655. \end_inset
  7656. , we see the mean-variance trend for the same methylation array data, this
  7657. time with surrogate variables and sample quality weights estimated from
  7658. the data and included in the model.
  7659. As expected, the overall average variance is smaller, since the surrogate
  7660. variables account for some of the variance.
  7661. In addition, the uptick in variance in the middle of the M-value range
  7662. has disappeared, turning the W shape into a wide U shape.
  7663. This indicates that the excess variance in the probes with intermediate
  7664. M-values was explained by systematic variations not correlated with known
  7665. covariates, and these variations were modeled by the surrogate variables.
  7666. The result is a nearly flat variance trend for the entire intermediate
  7667. M-value range from about -3 to +3.
  7668. Note that this corresponds closely to the range within which the M-value
  7669. transformation shown in Figure
  7670. \begin_inset CommandInset ref
  7671. LatexCommand ref
  7672. reference "fig:Sigmoid-beta-m-mapping"
  7673. plural "false"
  7674. caps "false"
  7675. noprefix "false"
  7676. \end_inset
  7677. is nearly linear.
  7678. In contrast, the excess variance at the extremes (greater than +3 and less
  7679. than -3) was not
  7680. \begin_inset Quotes eld
  7681. \end_inset
  7682. absorbed
  7683. \begin_inset Quotes erd
  7684. \end_inset
  7685. by the surrogate variables and remains in the plot, indicating that this
  7686. variation has no systematic component: probes with extreme M-values are
  7687. uniformly more variable across all samples, as expected.
  7688. \end_layout
  7689. \begin_layout Standard
  7690. Figure
  7691. \begin_inset CommandInset ref
  7692. LatexCommand ref
  7693. reference "fig:meanvar-sva-voomaw"
  7694. plural "false"
  7695. caps "false"
  7696. noprefix "false"
  7697. \end_inset
  7698. shows the mean-variance trend after fitting the model with the observation
  7699. weights assigned by voom based on the mean-variance trend shown in Figure
  7700. \begin_inset CommandInset ref
  7701. LatexCommand ref
  7702. reference "fig:meanvar-sva-aw"
  7703. plural "false"
  7704. caps "false"
  7705. noprefix "false"
  7706. \end_inset
  7707. .
  7708. As expected, the weights exactly counteract the trend in the data, resulting
  7709. in a nearly flat trend centered vertically at 1 (i.e.
  7710. 0 on the log scale).
  7711. This shows that the observations with extreme M-values have been appropriately
  7712. down-weighted to account for the fact that the noise in those observations
  7713. has been amplified by the non-linear M-value transformation.
  7714. In turn, this gives relatively more weight to observervations in the middle
  7715. region, which are more likely to correspond to probes measuring interesting
  7716. biology (not constitutively methylated or unmethylated).
  7717. \end_layout
  7718. \begin_layout Standard
  7719. \begin_inset Float table
  7720. wide false
  7721. sideways false
  7722. status open
  7723. \begin_layout Plain Layout
  7724. \align center
  7725. \begin_inset Tabular
  7726. <lyxtabular version="3" rows="5" columns="3">
  7727. <features tabularvalignment="middle">
  7728. <column alignment="center" valignment="top">
  7729. <column alignment="center" valignment="top">
  7730. <column alignment="center" valignment="top">
  7731. <row>
  7732. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  7733. \begin_inset Text
  7734. \begin_layout Plain Layout
  7735. Covariate
  7736. \end_layout
  7737. \end_inset
  7738. </cell>
  7739. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  7740. \begin_inset Text
  7741. \begin_layout Plain Layout
  7742. Test used
  7743. \end_layout
  7744. \end_inset
  7745. </cell>
  7746. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  7747. \begin_inset Text
  7748. \begin_layout Plain Layout
  7749. p-value
  7750. \end_layout
  7751. \end_inset
  7752. </cell>
  7753. </row>
  7754. <row>
  7755. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7756. \begin_inset Text
  7757. \begin_layout Plain Layout
  7758. Transplant Status
  7759. \end_layout
  7760. \end_inset
  7761. </cell>
  7762. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7763. \begin_inset Text
  7764. \begin_layout Plain Layout
  7765. F-test
  7766. \end_layout
  7767. \end_inset
  7768. </cell>
  7769. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  7770. \begin_inset Text
  7771. \begin_layout Plain Layout
  7772. 0.404
  7773. \end_layout
  7774. \end_inset
  7775. </cell>
  7776. </row>
  7777. <row>
  7778. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7779. \begin_inset Text
  7780. \begin_layout Plain Layout
  7781. Diabetes Diagnosis
  7782. \end_layout
  7783. \end_inset
  7784. </cell>
  7785. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7786. \begin_inset Text
  7787. \begin_layout Plain Layout
  7788. \emph on
  7789. t
  7790. \emph default
  7791. -test
  7792. \end_layout
  7793. \end_inset
  7794. </cell>
  7795. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  7796. \begin_inset Text
  7797. \begin_layout Plain Layout
  7798. 0.00106
  7799. \end_layout
  7800. \end_inset
  7801. </cell>
  7802. </row>
  7803. <row>
  7804. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7805. \begin_inset Text
  7806. \begin_layout Plain Layout
  7807. Sex
  7808. \end_layout
  7809. \end_inset
  7810. </cell>
  7811. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7812. \begin_inset Text
  7813. \begin_layout Plain Layout
  7814. \emph on
  7815. t
  7816. \emph default
  7817. -test
  7818. \end_layout
  7819. \end_inset
  7820. </cell>
  7821. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  7822. \begin_inset Text
  7823. \begin_layout Plain Layout
  7824. 0.148
  7825. \end_layout
  7826. \end_inset
  7827. </cell>
  7828. </row>
  7829. <row>
  7830. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  7831. \begin_inset Text
  7832. \begin_layout Plain Layout
  7833. Age
  7834. \end_layout
  7835. \end_inset
  7836. </cell>
  7837. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  7838. \begin_inset Text
  7839. \begin_layout Plain Layout
  7840. linear regression
  7841. \end_layout
  7842. \end_inset
  7843. </cell>
  7844. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  7845. \begin_inset Text
  7846. \begin_layout Plain Layout
  7847. 0.212
  7848. \end_layout
  7849. \end_inset
  7850. </cell>
  7851. </row>
  7852. </lyxtabular>
  7853. \end_inset
  7854. \end_layout
  7855. \begin_layout Plain Layout
  7856. \begin_inset Caption Standard
  7857. \begin_layout Plain Layout
  7858. \series bold
  7859. \begin_inset CommandInset label
  7860. LatexCommand label
  7861. name "tab:weight-covariate-tests"
  7862. \end_inset
  7863. Association of sample weights with clinical covariates in methylation array
  7864. data.
  7865. \series default
  7866. Computed sample quality log weights were tested for significant association
  7867. with each of the variables in the model (1st column).
  7868. An appropriate test was selected for each variable based on whether the
  7869. variable had 2 categories (
  7870. \emph on
  7871. t
  7872. \emph default
  7873. -test), had more than 2 categories (F-test), or was numeric (linear regression).
  7874. The test selected is shown in the 2nd column.
  7875. P-values for association with the log weights are shown in the 3rd column.
  7876. No multiple testing adjustment was performed for these p-values.
  7877. \end_layout
  7878. \end_inset
  7879. \end_layout
  7880. \end_inset
  7881. \end_layout
  7882. \begin_layout Standard
  7883. \begin_inset Float figure
  7884. wide false
  7885. sideways false
  7886. status open
  7887. \begin_layout Plain Layout
  7888. \begin_inset Flex TODO Note (inline)
  7889. status open
  7890. \begin_layout Plain Layout
  7891. Redo the sample weight boxplot with notches, and remove fill colors
  7892. \end_layout
  7893. \end_inset
  7894. \end_layout
  7895. \begin_layout Plain Layout
  7896. \align center
  7897. \begin_inset Graphics
  7898. filename graphics/methylvoom/unadj.dupcor.sva.voomaw/sample-weights-PAGE3-CROP.pdf
  7899. lyxscale 50
  7900. width 60col%
  7901. groupId colwidth
  7902. \end_inset
  7903. \end_layout
  7904. \begin_layout Plain Layout
  7905. \begin_inset Caption Standard
  7906. \begin_layout Plain Layout
  7907. \begin_inset CommandInset label
  7908. LatexCommand label
  7909. name "fig:diabetes-sample-weights"
  7910. \end_inset
  7911. \series bold
  7912. Box-and-whiskers plot of sample quality weights grouped by diabetes diagnosis.
  7913. \series default
  7914. Samples were grouped based on diabetes diagnosis, and the distribution of
  7915. sample quality weights for each diagnosis was plotted as a box-and-whiskers
  7916. plot
  7917. \begin_inset CommandInset citation
  7918. LatexCommand cite
  7919. key "McGill1978"
  7920. literal "false"
  7921. \end_inset
  7922. .
  7923. \end_layout
  7924. \end_inset
  7925. \end_layout
  7926. \begin_layout Plain Layout
  7927. \end_layout
  7928. \end_inset
  7929. \end_layout
  7930. \begin_layout Standard
  7931. To determine whether any of the known experimental factors had an impact
  7932. on data quality, the sample quality weights estimated from the data were
  7933. tested for association with each of the experimental factors (Table
  7934. \begin_inset CommandInset ref
  7935. LatexCommand ref
  7936. reference "tab:weight-covariate-tests"
  7937. plural "false"
  7938. caps "false"
  7939. noprefix "false"
  7940. \end_inset
  7941. ).
  7942. Diabetes diagnosis was found to have a potentially significant association
  7943. with the sample weights, with a t-test p-value of
  7944. \begin_inset Formula $1.06\times10^{-3}$
  7945. \end_inset
  7946. .
  7947. Figure
  7948. \begin_inset CommandInset ref
  7949. LatexCommand ref
  7950. reference "fig:diabetes-sample-weights"
  7951. plural "false"
  7952. caps "false"
  7953. noprefix "false"
  7954. \end_inset
  7955. shows the distribution of sample weights grouped by diabetes diagnosis.
  7956. The samples from patients with Type 2 diabetes were assigned significantly
  7957. lower weights than those from patients with Type 1 diabetes.
  7958. This indicates that the type 2 diabetes samples had an overall higher variance
  7959. on average across all probes.
  7960. \end_layout
  7961. \begin_layout Standard
  7962. \begin_inset Float table
  7963. wide false
  7964. sideways false
  7965. status open
  7966. \begin_layout Plain Layout
  7967. \align center
  7968. \begin_inset Flex TODO Note (inline)
  7969. status open
  7970. \begin_layout Plain Layout
  7971. Consider transposing these tables
  7972. \end_layout
  7973. \end_inset
  7974. \end_layout
  7975. \begin_layout Plain Layout
  7976. \begin_inset Float table
  7977. wide false
  7978. sideways false
  7979. status open
  7980. \begin_layout Plain Layout
  7981. \align center
  7982. \begin_inset Tabular
  7983. <lyxtabular version="3" rows="5" columns="4">
  7984. <features tabularvalignment="middle">
  7985. <column alignment="center" valignment="top">
  7986. <column alignment="center" valignment="top">
  7987. <column alignment="center" valignment="top">
  7988. <column alignment="center" valignment="top">
  7989. <row>
  7990. <cell alignment="center" valignment="top" usebox="none">
  7991. \begin_inset Text
  7992. \begin_layout Plain Layout
  7993. \end_layout
  7994. \end_inset
  7995. </cell>
  7996. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  7997. \begin_inset Text
  7998. \begin_layout Plain Layout
  7999. Analysis
  8000. \end_layout
  8001. \end_inset
  8002. </cell>
  8003. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8004. \begin_inset Text
  8005. \begin_layout Plain Layout
  8006. \end_layout
  8007. \end_inset
  8008. </cell>
  8009. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8010. \begin_inset Text
  8011. \begin_layout Plain Layout
  8012. \end_layout
  8013. \end_inset
  8014. </cell>
  8015. </row>
  8016. <row>
  8017. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8018. \begin_inset Text
  8019. \begin_layout Plain Layout
  8020. Contrast
  8021. \end_layout
  8022. \end_inset
  8023. </cell>
  8024. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8025. \begin_inset Text
  8026. \begin_layout Plain Layout
  8027. A
  8028. \end_layout
  8029. \end_inset
  8030. </cell>
  8031. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8032. \begin_inset Text
  8033. \begin_layout Plain Layout
  8034. B
  8035. \end_layout
  8036. \end_inset
  8037. </cell>
  8038. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  8039. \begin_inset Text
  8040. \begin_layout Plain Layout
  8041. C
  8042. \end_layout
  8043. \end_inset
  8044. </cell>
  8045. </row>
  8046. <row>
  8047. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8048. \begin_inset Text
  8049. \begin_layout Plain Layout
  8050. TX vs AR
  8051. \end_layout
  8052. \end_inset
  8053. </cell>
  8054. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8055. \begin_inset Text
  8056. \begin_layout Plain Layout
  8057. 0
  8058. \end_layout
  8059. \end_inset
  8060. </cell>
  8061. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8062. \begin_inset Text
  8063. \begin_layout Plain Layout
  8064. 25
  8065. \end_layout
  8066. \end_inset
  8067. </cell>
  8068. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8069. \begin_inset Text
  8070. \begin_layout Plain Layout
  8071. 22
  8072. \end_layout
  8073. \end_inset
  8074. </cell>
  8075. </row>
  8076. <row>
  8077. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8078. \begin_inset Text
  8079. \begin_layout Plain Layout
  8080. TX vs ADNR
  8081. \end_layout
  8082. \end_inset
  8083. </cell>
  8084. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8085. \begin_inset Text
  8086. \begin_layout Plain Layout
  8087. 7
  8088. \end_layout
  8089. \end_inset
  8090. </cell>
  8091. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8092. \begin_inset Text
  8093. \begin_layout Plain Layout
  8094. 338
  8095. \end_layout
  8096. \end_inset
  8097. </cell>
  8098. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8099. \begin_inset Text
  8100. \begin_layout Plain Layout
  8101. 369
  8102. \end_layout
  8103. \end_inset
  8104. </cell>
  8105. </row>
  8106. <row>
  8107. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8108. \begin_inset Text
  8109. \begin_layout Plain Layout
  8110. TX vs CAN
  8111. \end_layout
  8112. \end_inset
  8113. </cell>
  8114. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8115. \begin_inset Text
  8116. \begin_layout Plain Layout
  8117. 0
  8118. \end_layout
  8119. \end_inset
  8120. </cell>
  8121. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8122. \begin_inset Text
  8123. \begin_layout Plain Layout
  8124. 231
  8125. \end_layout
  8126. \end_inset
  8127. </cell>
  8128. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  8129. \begin_inset Text
  8130. \begin_layout Plain Layout
  8131. 278
  8132. \end_layout
  8133. \end_inset
  8134. </cell>
  8135. </row>
  8136. </lyxtabular>
  8137. \end_inset
  8138. \end_layout
  8139. \begin_layout Plain Layout
  8140. \begin_inset Caption Standard
  8141. \begin_layout Plain Layout
  8142. \begin_inset CommandInset label
  8143. LatexCommand label
  8144. name "tab:methyl-num-signif"
  8145. \end_inset
  8146. Number of probes significant at 10% FDR.
  8147. \end_layout
  8148. \end_inset
  8149. \end_layout
  8150. \end_inset
  8151. \begin_inset space \hfill{}
  8152. \end_inset
  8153. \begin_inset Float table
  8154. wide false
  8155. sideways false
  8156. status open
  8157. \begin_layout Plain Layout
  8158. \align center
  8159. \begin_inset Tabular
  8160. <lyxtabular version="3" rows="5" columns="4">
  8161. <features tabularvalignment="middle">
  8162. <column alignment="center" valignment="top">
  8163. <column alignment="center" valignment="top">
  8164. <column alignment="center" valignment="top">
  8165. <column alignment="center" valignment="top">
  8166. <row>
  8167. <cell alignment="center" valignment="top" usebox="none">
  8168. \begin_inset Text
  8169. \begin_layout Plain Layout
  8170. \end_layout
  8171. \end_inset
  8172. </cell>
  8173. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8174. \begin_inset Text
  8175. \begin_layout Plain Layout
  8176. Analysis
  8177. \end_layout
  8178. \end_inset
  8179. </cell>
  8180. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8181. \begin_inset Text
  8182. \begin_layout Plain Layout
  8183. \end_layout
  8184. \end_inset
  8185. </cell>
  8186. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8187. \begin_inset Text
  8188. \begin_layout Plain Layout
  8189. \end_layout
  8190. \end_inset
  8191. </cell>
  8192. </row>
  8193. <row>
  8194. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8195. \begin_inset Text
  8196. \begin_layout Plain Layout
  8197. Contrast
  8198. \end_layout
  8199. \end_inset
  8200. </cell>
  8201. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8202. \begin_inset Text
  8203. \begin_layout Plain Layout
  8204. A
  8205. \end_layout
  8206. \end_inset
  8207. </cell>
  8208. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8209. \begin_inset Text
  8210. \begin_layout Plain Layout
  8211. B
  8212. \end_layout
  8213. \end_inset
  8214. </cell>
  8215. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  8216. \begin_inset Text
  8217. \begin_layout Plain Layout
  8218. C
  8219. \end_layout
  8220. \end_inset
  8221. </cell>
  8222. </row>
  8223. <row>
  8224. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8225. \begin_inset Text
  8226. \begin_layout Plain Layout
  8227. TX vs AR
  8228. \end_layout
  8229. \end_inset
  8230. </cell>
  8231. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8232. \begin_inset Text
  8233. \begin_layout Plain Layout
  8234. 0
  8235. \end_layout
  8236. \end_inset
  8237. </cell>
  8238. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8239. \begin_inset Text
  8240. \begin_layout Plain Layout
  8241. 10,063
  8242. \end_layout
  8243. \end_inset
  8244. </cell>
  8245. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8246. \begin_inset Text
  8247. \begin_layout Plain Layout
  8248. 11,225
  8249. \end_layout
  8250. \end_inset
  8251. </cell>
  8252. </row>
  8253. <row>
  8254. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8255. \begin_inset Text
  8256. \begin_layout Plain Layout
  8257. TX vs ADNR
  8258. \end_layout
  8259. \end_inset
  8260. </cell>
  8261. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8262. \begin_inset Text
  8263. \begin_layout Plain Layout
  8264. 27
  8265. \end_layout
  8266. \end_inset
  8267. </cell>
  8268. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8269. \begin_inset Text
  8270. \begin_layout Plain Layout
  8271. 12,674
  8272. \end_layout
  8273. \end_inset
  8274. </cell>
  8275. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8276. \begin_inset Text
  8277. \begin_layout Plain Layout
  8278. 13,086
  8279. \end_layout
  8280. \end_inset
  8281. </cell>
  8282. </row>
  8283. <row>
  8284. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8285. \begin_inset Text
  8286. \begin_layout Plain Layout
  8287. TX vs CAN
  8288. \end_layout
  8289. \end_inset
  8290. </cell>
  8291. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8292. \begin_inset Text
  8293. \begin_layout Plain Layout
  8294. 966
  8295. \end_layout
  8296. \end_inset
  8297. </cell>
  8298. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8299. \begin_inset Text
  8300. \begin_layout Plain Layout
  8301. 20,039
  8302. \end_layout
  8303. \end_inset
  8304. </cell>
  8305. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  8306. \begin_inset Text
  8307. \begin_layout Plain Layout
  8308. 20,955
  8309. \end_layout
  8310. \end_inset
  8311. </cell>
  8312. </row>
  8313. </lyxtabular>
  8314. \end_inset
  8315. \end_layout
  8316. \begin_layout Plain Layout
  8317. \begin_inset Caption Standard
  8318. \begin_layout Plain Layout
  8319. \begin_inset CommandInset label
  8320. LatexCommand label
  8321. name "tab:methyl-est-nonnull"
  8322. \end_inset
  8323. Estimated number of non-null tests, using the method of averaging local
  8324. FDR values
  8325. \begin_inset CommandInset citation
  8326. LatexCommand cite
  8327. key "Phipson2013Thesis"
  8328. literal "false"
  8329. \end_inset
  8330. .
  8331. \end_layout
  8332. \end_inset
  8333. \end_layout
  8334. \end_inset
  8335. \end_layout
  8336. \begin_layout Plain Layout
  8337. \begin_inset Caption Standard
  8338. \begin_layout Plain Layout
  8339. \series bold
  8340. Estimates of degree of differential methylation in for each contrast in
  8341. each analysis.
  8342. \series default
  8343. For each of the analyses in Table
  8344. \begin_inset CommandInset ref
  8345. LatexCommand ref
  8346. reference "tab:Summary-of-meth-analysis"
  8347. plural "false"
  8348. caps "false"
  8349. noprefix "false"
  8350. \end_inset
  8351. , these tables show the number of probes called significantly differentially
  8352. methylated at a threshold of 10% FDR for each comparison between TX and
  8353. the other 3 transplant statuses (a) and the estimated total number of probes
  8354. that are differentially methylated (b).
  8355. \end_layout
  8356. \end_inset
  8357. \end_layout
  8358. \end_inset
  8359. \end_layout
  8360. \begin_layout Standard
  8361. \begin_inset Float figure
  8362. wide false
  8363. sideways false
  8364. status open
  8365. \begin_layout Plain Layout
  8366. \align center
  8367. \series bold
  8368. \begin_inset Float figure
  8369. wide false
  8370. sideways false
  8371. status collapsed
  8372. \begin_layout Plain Layout
  8373. \align center
  8374. \begin_inset Graphics
  8375. filename graphics/methylvoom/unadj.dupcor/pval-histograms-PAGE1.pdf
  8376. lyxscale 33
  8377. width 30col%
  8378. groupId meth-pval-hist
  8379. \end_inset
  8380. \end_layout
  8381. \begin_layout Plain Layout
  8382. \series bold
  8383. \begin_inset Caption Standard
  8384. \begin_layout Plain Layout
  8385. AR vs.
  8386. TX, Analysis A
  8387. \end_layout
  8388. \end_inset
  8389. \end_layout
  8390. \begin_layout Plain Layout
  8391. \end_layout
  8392. \end_inset
  8393. \begin_inset space \hfill{}
  8394. \end_inset
  8395. \begin_inset Float figure
  8396. wide false
  8397. sideways false
  8398. status collapsed
  8399. \begin_layout Plain Layout
  8400. \align center
  8401. \begin_inset Graphics
  8402. filename graphics/methylvoom/unadj.dupcor/pval-histograms-PAGE2.pdf
  8403. lyxscale 33
  8404. width 30col%
  8405. groupId meth-pval-hist
  8406. \end_inset
  8407. \end_layout
  8408. \begin_layout Plain Layout
  8409. \series bold
  8410. \begin_inset Caption Standard
  8411. \begin_layout Plain Layout
  8412. ADNR vs.
  8413. TX, Analysis A
  8414. \end_layout
  8415. \end_inset
  8416. \end_layout
  8417. \end_inset
  8418. \begin_inset space \hfill{}
  8419. \end_inset
  8420. \begin_inset Float figure
  8421. wide false
  8422. sideways false
  8423. status collapsed
  8424. \begin_layout Plain Layout
  8425. \align center
  8426. \begin_inset Graphics
  8427. filename graphics/methylvoom/unadj.dupcor/pval-histograms-PAGE3.pdf
  8428. lyxscale 33
  8429. width 30col%
  8430. groupId meth-pval-hist
  8431. \end_inset
  8432. \end_layout
  8433. \begin_layout Plain Layout
  8434. \series bold
  8435. \begin_inset Caption Standard
  8436. \begin_layout Plain Layout
  8437. CAN vs.
  8438. TX, Analysis A
  8439. \end_layout
  8440. \end_inset
  8441. \end_layout
  8442. \end_inset
  8443. \end_layout
  8444. \begin_layout Plain Layout
  8445. \align center
  8446. \series bold
  8447. \begin_inset Float figure
  8448. wide false
  8449. sideways false
  8450. status collapsed
  8451. \begin_layout Plain Layout
  8452. \align center
  8453. \begin_inset Graphics
  8454. filename graphics/methylvoom/unadj.dupcor.sva.aw/pval-histograms-PAGE1.pdf
  8455. lyxscale 33
  8456. width 30col%
  8457. groupId meth-pval-hist
  8458. \end_inset
  8459. \end_layout
  8460. \begin_layout Plain Layout
  8461. \series bold
  8462. \begin_inset Caption Standard
  8463. \begin_layout Plain Layout
  8464. AR vs.
  8465. TX, Analysis B
  8466. \end_layout
  8467. \end_inset
  8468. \end_layout
  8469. \end_inset
  8470. \begin_inset space \hfill{}
  8471. \end_inset
  8472. \begin_inset Float figure
  8473. wide false
  8474. sideways false
  8475. status collapsed
  8476. \begin_layout Plain Layout
  8477. \align center
  8478. \begin_inset Graphics
  8479. filename graphics/methylvoom/unadj.dupcor.sva.aw/pval-histograms-PAGE2.pdf
  8480. lyxscale 33
  8481. width 30col%
  8482. groupId meth-pval-hist
  8483. \end_inset
  8484. \end_layout
  8485. \begin_layout Plain Layout
  8486. \series bold
  8487. \begin_inset Caption Standard
  8488. \begin_layout Plain Layout
  8489. ADNR vs.
  8490. TX, Analysis B
  8491. \end_layout
  8492. \end_inset
  8493. \end_layout
  8494. \end_inset
  8495. \begin_inset space \hfill{}
  8496. \end_inset
  8497. \begin_inset Float figure
  8498. wide false
  8499. sideways false
  8500. status collapsed
  8501. \begin_layout Plain Layout
  8502. \align center
  8503. \begin_inset Graphics
  8504. filename graphics/methylvoom/unadj.dupcor.sva.aw/pval-histograms-PAGE3.pdf
  8505. lyxscale 33
  8506. width 30col%
  8507. groupId meth-pval-hist
  8508. \end_inset
  8509. \end_layout
  8510. \begin_layout Plain Layout
  8511. \series bold
  8512. \begin_inset Caption Standard
  8513. \begin_layout Plain Layout
  8514. CAN vs.
  8515. TX, Analysis B
  8516. \end_layout
  8517. \end_inset
  8518. \end_layout
  8519. \end_inset
  8520. \end_layout
  8521. \begin_layout Plain Layout
  8522. \align center
  8523. \series bold
  8524. \begin_inset Float figure
  8525. wide false
  8526. sideways false
  8527. status collapsed
  8528. \begin_layout Plain Layout
  8529. \align center
  8530. \begin_inset Graphics
  8531. filename graphics/methylvoom/unadj.dupcor.sva.voomaw/pval-histograms-PAGE1.pdf
  8532. lyxscale 33
  8533. width 30col%
  8534. groupId meth-pval-hist
  8535. \end_inset
  8536. \end_layout
  8537. \begin_layout Plain Layout
  8538. \series bold
  8539. \begin_inset Caption Standard
  8540. \begin_layout Plain Layout
  8541. AR vs.
  8542. TX, Analysis C
  8543. \end_layout
  8544. \end_inset
  8545. \end_layout
  8546. \end_inset
  8547. \begin_inset space \hfill{}
  8548. \end_inset
  8549. \begin_inset Float figure
  8550. wide false
  8551. sideways false
  8552. status collapsed
  8553. \begin_layout Plain Layout
  8554. \align center
  8555. \begin_inset Graphics
  8556. filename graphics/methylvoom/unadj.dupcor.sva.voomaw/pval-histograms-PAGE2.pdf
  8557. lyxscale 33
  8558. width 30col%
  8559. groupId meth-pval-hist
  8560. \end_inset
  8561. \end_layout
  8562. \begin_layout Plain Layout
  8563. \series bold
  8564. \begin_inset Caption Standard
  8565. \begin_layout Plain Layout
  8566. ADNR vs.
  8567. TX, Analysis C
  8568. \end_layout
  8569. \end_inset
  8570. \end_layout
  8571. \end_inset
  8572. \begin_inset space \hfill{}
  8573. \end_inset
  8574. \begin_inset Float figure
  8575. wide false
  8576. sideways false
  8577. status collapsed
  8578. \begin_layout Plain Layout
  8579. \align center
  8580. \begin_inset Graphics
  8581. filename graphics/methylvoom/unadj.dupcor.sva.voomaw/pval-histograms-PAGE3.pdf
  8582. lyxscale 33
  8583. width 30col%
  8584. groupId meth-pval-hist
  8585. \end_inset
  8586. \end_layout
  8587. \begin_layout Plain Layout
  8588. \series bold
  8589. \begin_inset Caption Standard
  8590. \begin_layout Plain Layout
  8591. CAN vs.
  8592. TX, Analysis C
  8593. \end_layout
  8594. \end_inset
  8595. \end_layout
  8596. \end_inset
  8597. \end_layout
  8598. \begin_layout Plain Layout
  8599. \begin_inset Caption Standard
  8600. \begin_layout Plain Layout
  8601. \series bold
  8602. \begin_inset CommandInset label
  8603. LatexCommand label
  8604. name "fig:meth-p-value-histograms"
  8605. \end_inset
  8606. Probe p-value histograms for each contrast in each analysis.
  8607. \series default
  8608. For each differential methylation test of interest, the distribution of
  8609. p-values across all probes is plotted as a histogram.
  8610. The red solid line indicates the density that would be expected under the
  8611. null hypothesis for all probes (a
  8612. \begin_inset Formula $\mathrm{Uniform}(0,1)$
  8613. \end_inset
  8614. distribution), while the blue dotted line indicates the fraction of p-values
  8615. that actually follow the null hypothesis (
  8616. \begin_inset Formula $\hat{\pi}_{0}$
  8617. \end_inset
  8618. ) estimated using the method of averaging local FDR values
  8619. \begin_inset CommandInset citation
  8620. LatexCommand cite
  8621. key "Phipson2013Thesis"
  8622. literal "false"
  8623. \end_inset
  8624. .
  8625. the blue line is only shown in each plot if the estimate of
  8626. \begin_inset Formula $\hat{\pi}_{0}$
  8627. \end_inset
  8628. for that p-value distribution is different from 1.
  8629. \end_layout
  8630. \end_inset
  8631. \end_layout
  8632. \end_inset
  8633. \end_layout
  8634. \begin_layout Standard
  8635. Table
  8636. \begin_inset CommandInset ref
  8637. LatexCommand ref
  8638. reference "tab:methyl-num-signif"
  8639. plural "false"
  8640. caps "false"
  8641. noprefix "false"
  8642. \end_inset
  8643. shows the number of significantly differentially methylated probes reported
  8644. by each analysis for each comparison of interest at an FDR of 10%.
  8645. As expected, the more elaborate analyses, B and C, report more significant
  8646. probes than the more basic analysis A, consistent with the conclusions
  8647. above that the data contain hidden systematic variations that must be modeled.
  8648. Table
  8649. \begin_inset CommandInset ref
  8650. LatexCommand ref
  8651. reference "tab:methyl-est-nonnull"
  8652. plural "false"
  8653. caps "false"
  8654. noprefix "false"
  8655. \end_inset
  8656. shows the estimated number differentially methylated probes for each test
  8657. from each analysis.
  8658. This was computed by estimating the proportion of null hypotheses that
  8659. were true using the method of
  8660. \begin_inset CommandInset citation
  8661. LatexCommand cite
  8662. key "Phipson2013Thesis"
  8663. literal "false"
  8664. \end_inset
  8665. and subtracting that fraction from the total number of probes, yielding
  8666. an estimate of the number of null hypotheses that are false based on the
  8667. distribution of p-values across the entire dataset.
  8668. Note that this does not identify which null hypotheses should be rejected
  8669. (i.e.
  8670. which probes are significant); it only estimates the true number of such
  8671. probes.
  8672. Once again, analyses B and C result it much larger estimates for the number
  8673. of differentially methylated probes.
  8674. In this case, analysis C, the only analysis that includes voom, estimates
  8675. the largest number of differentially methylated probes for all 3 contrasts.
  8676. If the assumptions of all the methods employed hold, then this represents
  8677. a gain in statistical power over the simpler analysis A.
  8678. Figure
  8679. \begin_inset CommandInset ref
  8680. LatexCommand ref
  8681. reference "fig:meth-p-value-histograms"
  8682. plural "false"
  8683. caps "false"
  8684. noprefix "false"
  8685. \end_inset
  8686. shows the p-value distributions for each test, from which the numbers in
  8687. Table
  8688. \begin_inset CommandInset ref
  8689. LatexCommand ref
  8690. reference "tab:methyl-est-nonnull"
  8691. plural "false"
  8692. caps "false"
  8693. noprefix "false"
  8694. \end_inset
  8695. were generated.
  8696. The distributions for analysis A all have a dip in density near zero, which
  8697. is a strong sign of a poor model fit.
  8698. The histograms for analyses B and C are more well-behaved, with a uniform
  8699. component stretching all the way from 0 to 1 representing the probes for
  8700. which the null hypotheses is true (no differential methylation), and a
  8701. zero-biased component representing the probes for which the null hypothesis
  8702. is false (differentially methylated).
  8703. These histograms do not indicate any major issues with the model fit.
  8704. \end_layout
  8705. \begin_layout Standard
  8706. \begin_inset Flex TODO Note (inline)
  8707. status open
  8708. \begin_layout Plain Layout
  8709. If time allows, maybe generate the PCA plots before/after SVA effect subtraction
  8710. ?
  8711. \end_layout
  8712. \end_inset
  8713. \end_layout
  8714. \begin_layout Section
  8715. Discussion
  8716. \end_layout
  8717. \begin_layout Subsection
  8718. fRMA achieves clinically applicable normalization without sacrificing classifica
  8719. tion performance
  8720. \end_layout
  8721. \begin_layout Standard
  8722. As shown in Figure
  8723. \begin_inset CommandInset ref
  8724. LatexCommand ref
  8725. reference "fig:Classifier-probabilities-RMA"
  8726. plural "false"
  8727. caps "false"
  8728. noprefix "false"
  8729. \end_inset
  8730. , improper normalization, particularly separate normalization of training
  8731. and test samples, leads to unwanted biases in classification.
  8732. In a controlled experimental context, it is always possible to correct
  8733. this issue by normalizing all experimental samples together.
  8734. However, because it is not feasible to normalize all samples together in
  8735. a clinical context, a single-channel normalization is required is required.
  8736. \end_layout
  8737. \begin_layout Standard
  8738. The major concern in using a single-channel normalization is that non-single-cha
  8739. nnel methods can share information between arrays to improve the normalization,
  8740. and single-channel methods risk sacrificing the gains in normalization
  8741. accuracy that come from this information sharing.
  8742. In the case of RMA, this information sharing is accomplished through quantile
  8743. normalization and median polish steps.
  8744. The need for information sharing in quantile normalization can easily be
  8745. removed by learning a fixed set of quantiles from external data and normalizing
  8746. each array to these fixed quantiles, instead of the quantiles of the data
  8747. itself.
  8748. As long as the fixed quantiles are reasonable, the result will be similar
  8749. to standard RMA.
  8750. However, there is no analogous way to eliminate cross-array information
  8751. sharing in the median polish step, so fRMA replaces this with a weighted
  8752. average of probes on each array, with the weights learned from external
  8753. data.
  8754. This step of fRMA has the greatest potential to diverge from RMA un undesirable
  8755. ways.
  8756. \end_layout
  8757. \begin_layout Standard
  8758. However, when run on real data, fRMA performed at least as well as RMA in
  8759. both the internal validation and external validation tests.
  8760. This shows that fRMA can be used to normalize individual clinical samples
  8761. in a class prediction context without sacrificing the classifier performance
  8762. that would be obtained by using the more well-established RMA for normalization.
  8763. The other single-channel normalization method considered, SCAN, showed
  8764. some loss of AUC in the external validation test.
  8765. Based on these results, fRMA is the preferred normalization for clinical
  8766. samples in a class prediction context.
  8767. \end_layout
  8768. \begin_layout Subsection
  8769. Robust fRMA vectors can be generated for new array platforms
  8770. \end_layout
  8771. \begin_layout Standard
  8772. \begin_inset Flex TODO Note (inline)
  8773. status open
  8774. \begin_layout Plain Layout
  8775. Look up the exact numbers, do a find & replace for
  8776. \begin_inset Quotes eld
  8777. \end_inset
  8778. 850
  8779. \begin_inset Quotes erd
  8780. \end_inset
  8781. \end_layout
  8782. \end_inset
  8783. \end_layout
  8784. \begin_layout Standard
  8785. The published fRMA normalization vectors for the hgu133plus2 platform were
  8786. generated from a set of about 850 samples chosen from a wide range of tissues,
  8787. which the authors determined was sufficient to generate a robust set of
  8788. normalization vectors that could be applied across all tissues
  8789. \begin_inset CommandInset citation
  8790. LatexCommand cite
  8791. key "McCall2010"
  8792. literal "false"
  8793. \end_inset
  8794. .
  8795. Since we only had hthgu133pluspm for 2 tissues of interest, our needs were
  8796. more modest.
  8797. Even using only 130 samples in 26 batches of 5 samples each for kidney
  8798. biopsies, we were able to train a robust set of fRMA normalization vectors
  8799. that were not meaningfully affected by the random selection of 5 samples
  8800. from each batch.
  8801. As expected, the training process was just as robust for the blood samples
  8802. with 230 samples in 46 batches of 5 samples each.
  8803. Because these vectors were each generated using training samples from a
  8804. single tissue, they are not suitable for general use, unlike the vectors
  8805. provided with fRMA itself.
  8806. They are purpose-built for normalizing a specific type of sample on a specific
  8807. platform.
  8808. This is a mostly acceptable limitation in the context of developing a machine
  8809. learning classifier for diagnosing a disease based on samples of a specific
  8810. tissue.
  8811. \end_layout
  8812. \begin_layout Standard
  8813. \begin_inset Flex TODO Note (inline)
  8814. status open
  8815. \begin_layout Plain Layout
  8816. Talk about how these vectors can be used for any data from these tissues
  8817. on this platform even though they were custom made for this data set.
  8818. \end_layout
  8819. \end_inset
  8820. \end_layout
  8821. \begin_layout Standard
  8822. \begin_inset Flex TODO Note (inline)
  8823. status open
  8824. \begin_layout Plain Layout
  8825. How to bring up that these custom vectors were used in another project by
  8826. someone else that was never published?
  8827. \end_layout
  8828. \end_inset
  8829. \end_layout
  8830. \begin_layout Subsection
  8831. Methylation array data can be successfully analyzed using existing techniques,
  8832. but machine learning poses additional challenges
  8833. \end_layout
  8834. \begin_layout Standard
  8835. Both analysis strategies B and C both yield a reasonable analysis, with
  8836. a mean-variance trend that matches the expected behavior for the non-linear
  8837. M-value transformation (Figure
  8838. \begin_inset CommandInset ref
  8839. LatexCommand ref
  8840. reference "fig:meanvar-sva-aw"
  8841. plural "false"
  8842. caps "false"
  8843. noprefix "false"
  8844. \end_inset
  8845. ) and well-behaved p-value distributions (Figure
  8846. \begin_inset CommandInset ref
  8847. LatexCommand ref
  8848. reference "fig:meth-p-value-histograms"
  8849. plural "false"
  8850. caps "false"
  8851. noprefix "false"
  8852. \end_inset
  8853. ).
  8854. These two analyses also yield similar numbers of significant probes (Table
  8855. \begin_inset CommandInset ref
  8856. LatexCommand ref
  8857. reference "tab:methyl-num-signif"
  8858. plural "false"
  8859. caps "false"
  8860. noprefix "false"
  8861. \end_inset
  8862. ) and similar estimates of the number of differentially methylated probes
  8863. (Table
  8864. \begin_inset CommandInset ref
  8865. LatexCommand ref
  8866. reference "tab:methyl-est-nonnull"
  8867. plural "false"
  8868. caps "false"
  8869. noprefix "false"
  8870. \end_inset
  8871. ).
  8872. The main difference between these two analyses is the method used to account
  8873. for the mean-variance trend.
  8874. In analysis B, the trend is estimated and applied at the probe level: each
  8875. probe's estimated variance is squeezed toward the trend using an empirical
  8876. Bayes procedure (Figure
  8877. \begin_inset CommandInset ref
  8878. LatexCommand ref
  8879. reference "fig:meanvar-sva-aw"
  8880. plural "false"
  8881. caps "false"
  8882. noprefix "false"
  8883. \end_inset
  8884. ).
  8885. In analysis C, the trend is still estimated at the probe level, but instead
  8886. of estimating a single variance value shared across all observations for
  8887. a given probe, the voom method computes an initial estiamte of the variance
  8888. for each observation individually based on where its model-fitted M-value
  8889. falls on the trend line and then assigns inverse-variance weights to model
  8890. the difference in variance between observations.
  8891. An overall variance is still estimated for each probe using the same empirical
  8892. Bayes method, but now the residual trend is flat (Figure
  8893. \begin_inset CommandInset ref
  8894. LatexCommand ref
  8895. reference "fig:meanvar-sva-voomaw"
  8896. plural "false"
  8897. caps "false"
  8898. noprefix "false"
  8899. \end_inset
  8900. ), indicating that the mean-variance trend is adequately modeled by scaling
  8901. the estimated variance for each observation using the weights computed
  8902. by voom.
  8903. \end_layout
  8904. \begin_layout Standard
  8905. The difference between the standard empirical Bayes trended variance modeling
  8906. (analysis B) and voom (analysis C) is analogous to the difference between
  8907. a t-test with equal variance and a t-test with unequal variance, except
  8908. that the unequal group variances used in the latter test are estimated
  8909. based on the mean-variance trend from all the probes rather than the data
  8910. for the specific probe being tested, thus stabilizing the group variance
  8911. estimates by sharing information between probes.
  8912. Allowing voom to model the variance using observation weights in this manner
  8913. allows the linear model fit to concentrate statistical power where it will
  8914. do the most good.
  8915. For example, if a particular probe's M-values are always at the extreme
  8916. of the M-value range (e.g.
  8917. less than -4) for ADNR samples, but the M-values for that probe in TX and
  8918. CAN samples are within the flat region of the mean-variance trend (between
  8919. -3 and +3), voom is able to down-weight the contribution of the high-variance
  8920. M-values from the ADNR samples in order to gain more statistical power
  8921. while testing for differential methylation between TX and CAN.
  8922. In contrast, modeling the mean-variance trend only at the probe level would
  8923. combine the high-variance ADNR samples and lower-variance samples from
  8924. other conditions and estimate an intermediate variance for this probe.
  8925. In practice, analysis B shows that this approach is adequate, but the voom
  8926. approach in analysis C is at least as good on all model fit criteria and
  8927. yields a larger estimate for the number of differentially methylated genes,
  8928. \emph on
  8929. and
  8930. \emph default
  8931. it matches up better with the theoretical
  8932. \end_layout
  8933. \begin_layout Standard
  8934. The significant association of diebetes diagnosis with sample quality is
  8935. interesting.
  8936. The samples with Type 2 diabetes tended to have more variation, averaged
  8937. across all probes, than those with Type 1 diabetes.
  8938. This is consistent with the consensus that type 2 disbetes and the associated
  8939. metabolic syndrome represent a broad dysregulation of the body's endocrine
  8940. signalling related to metabolism [citation needed].
  8941. This dysregulation could easily manifest as a greater degree of variation
  8942. in the DNA methylation patterns of affected tissues.
  8943. In contrast, Type 1 disbetes has a more specific cause and effect, so a
  8944. less variable methylation signature is expected.
  8945. \end_layout
  8946. \begin_layout Standard
  8947. This preliminary anlaysis suggests that some degree of differential methylation
  8948. exists between TX and each of the three types of transplant disfunction
  8949. studied.
  8950. Hence, it may be feasible to train a classifier to diagnose transplant
  8951. disfunction from DNA methylation array data.
  8952. However, the major importance of both SVA and sample quality weighting
  8953. for proper modeling of this data poses significant challenges for any attempt
  8954. at a machine learning on data of similar quality.
  8955. While these are easily used in a modeling context with full sample information,
  8956. neither of these methods is directly applicable in a machine learning context,
  8957. where the diagnosis is not known ahead of time.
  8958. If a machine learning approach for methylation-based diagnosis is to be
  8959. pursued, it will either require machine-learning-friendly methods to address
  8960. the same systematic trends in the data that SVA and sample quality weighting
  8961. address, or it will require higher quality data with substantially less
  8962. systematic perturbation of the data.
  8963. \end_layout
  8964. \begin_layout Section
  8965. Future Directions
  8966. \end_layout
  8967. \begin_layout Standard
  8968. \begin_inset Flex TODO Note (inline)
  8969. status open
  8970. \begin_layout Plain Layout
  8971. Some work was already being done with the existing fRMA vectors.
  8972. Do I mention that here?
  8973. \end_layout
  8974. \end_inset
  8975. \end_layout
  8976. \begin_layout Subsection
  8977. Improving fRMA to allow training from batches of unequal size
  8978. \end_layout
  8979. \begin_layout Standard
  8980. Because the tools for building fRMA normalization vectors require equal-size
  8981. batches, many samples must be discarded from the training data.
  8982. This is undesirable for a few reasons.
  8983. First, more data is simply better, all other things being equal.
  8984. In this case,
  8985. \begin_inset Quotes eld
  8986. \end_inset
  8987. better
  8988. \begin_inset Quotes erd
  8989. \end_inset
  8990. means a more precise estimate of normalization parameters.
  8991. In addition, the samples to be discarded must be chosen arbitrarily, which
  8992. introduces an unnecessary element of randomness into the estimation process.
  8993. While the randomness can be made deterministic by setting a consistent
  8994. random seed, the need for equal size batches also introduces a need for
  8995. the analyst to decide on the appropriate trade-off between batch size and
  8996. the number of batches.
  8997. This introduces an unnecessary and undesirable
  8998. \begin_inset Quotes eld
  8999. \end_inset
  9000. researcher degree of freedom
  9001. \begin_inset Quotes erd
  9002. \end_inset
  9003. into the analysis, since the generated normalization vectors now depend
  9004. on the choice of batch size based on vague selection criteria and instinct,
  9005. which can unintentionally inproduce bias if the researcher chooses a batch
  9006. size based on what seems to yield the most favorable downstream results
  9007. \begin_inset CommandInset citation
  9008. LatexCommand cite
  9009. key "Simmons2011"
  9010. literal "false"
  9011. \end_inset
  9012. .
  9013. \end_layout
  9014. \begin_layout Standard
  9015. Fortunately, the requirement for equal-size batches is not inherent to the
  9016. fRMA algorithm but rather a limitation of the implementation in the frmaTools
  9017. package.
  9018. In personal communication, the package's author, Matthew McCall, has indicated
  9019. that with some work, it should be possible to improve the implementation
  9020. to work with batches of unequal sizes.
  9021. The current implementation ignores the batch size when calculating with-batch
  9022. and between-batch residual variances, since the batch size constant cancels
  9023. out later in the calculations as long as all batches are of equal size.
  9024. Hence, the calculations of these parameters would need to be modified to
  9025. remove this optimization and properly calculate the variances using the
  9026. full formula.
  9027. Once this modification is made, a new strategy would need to be developed
  9028. for assessing the stability of parameter estimates, since the random subsamplin
  9029. g step is eliminated, meaning that different subsamplings can no longer
  9030. be compared as in Figures
  9031. \begin_inset CommandInset ref
  9032. LatexCommand ref
  9033. reference "fig:frma-violin"
  9034. plural "false"
  9035. caps "false"
  9036. noprefix "false"
  9037. \end_inset
  9038. and
  9039. \begin_inset CommandInset ref
  9040. LatexCommand ref
  9041. reference "fig:Representative-MA-plots"
  9042. plural "false"
  9043. caps "false"
  9044. noprefix "false"
  9045. \end_inset
  9046. .
  9047. Bootstrap resampling is likely a good candidate here: sample many training
  9048. sets of equal size from the existing training set with replacement, estimate
  9049. parameters from each resampled training set, and compare the estimated
  9050. parameters between bootstraps in order to quantify the variability in each
  9051. parameter's estimation.
  9052. \end_layout
  9053. \begin_layout Subsection
  9054. Developing methylation arrays as a diagnostic tool for kidney transplant
  9055. rejection
  9056. \end_layout
  9057. \begin_layout Standard
  9058. The current study has showed that DNA methylation, as assayed by Illumina
  9059. 450k methylation arrays, has some potential for diagnosing transplant dysfuncti
  9060. ons, including rejection.
  9061. However, very few probes could be confidently identified as differentially
  9062. methylated between healthy and dysfunctional transplants.
  9063. One likely explanation for this is the predominant influence of unobserved
  9064. confounding factors.
  9065. SVA can model and correct for such factors, but the correction can never
  9066. be perfect, so some degree of unwanted systematic variation will always
  9067. remain after SVA correction.
  9068. If the effect size of the confounding factors was similar to that of the
  9069. factor of interest (in this case, transplant status), this would be an
  9070. acceptable limitation, since removing most of the confounding factors'
  9071. effects would allow the main effect to stand out.
  9072. However, in this data set, the confounding factors have a much larger effect
  9073. size than transplant status, which means that the small degree of remaining
  9074. variation not removed by SVA can still swamp the effect of interest, making
  9075. it difficult to detect.
  9076. This is, of course, a major issue when the end goal is to develop a classifier
  9077. to diagnose transplant rejection from methylation data, since batch-correction
  9078. methods like SVA that work in a linear modeling context cannot be applied
  9079. in a machine learning context.
  9080. \end_layout
  9081. \begin_layout Standard
  9082. Currently, the source of these unwanted systematic variations in the data
  9083. is unknown.
  9084. The best solution would be to determine the cause of the variation and
  9085. eliminate it, thereby eliminating the need to model and remove that variation.
  9086. However, if this proves impractical, another option is to use SVA to identify
  9087. probes that are highly associated with the surrogate variables that describe
  9088. the unwanted variation in the data.
  9089. These probes could be discarded prior to classifier training, in order
  9090. to maximize the chance that the training algorithm will be able to identify
  9091. highly predictive probes from those remaining.
  9092. Lastly, it is possible that some of this unwanted variation is a result
  9093. of the array-based assay being used and would be eliminated by switching
  9094. to assaying DNA methylation using bisulphite sequencing.
  9095. However, this carries the risk that the sequencing assay will have its
  9096. own set of biases that must be corrected for in a different way.
  9097. \end_layout
  9098. \begin_layout Chapter
  9099. Globin-blocking for more effective blood RNA-seq analysis in primate animal
  9100. model
  9101. \end_layout
  9102. \begin_layout Standard
  9103. \begin_inset Flex TODO Note (inline)
  9104. status open
  9105. \begin_layout Plain Layout
  9106. Choose between above and the paper title: Optimizing yield of deep RNA sequencin
  9107. g for gene expression profiling by globin reduction of peripheral blood
  9108. samples from cynomolgus monkeys (Macaca fascicularis).
  9109. \end_layout
  9110. \end_inset
  9111. \end_layout
  9112. \begin_layout Standard
  9113. \begin_inset Flex TODO Note (inline)
  9114. status open
  9115. \begin_layout Plain Layout
  9116. Chapter author list: https://tex.stackexchange.com/questions/156862/displaying-aut
  9117. hor-for-each-chapter-in-book Every chapter gets an author list, which may
  9118. or may not be part of a citation to a published/preprinted paper.
  9119. \end_layout
  9120. \end_inset
  9121. \end_layout
  9122. \begin_layout Standard
  9123. \begin_inset Flex TODO Note (inline)
  9124. status open
  9125. \begin_layout Plain Layout
  9126. Preprint then cite the paper
  9127. \end_layout
  9128. \end_inset
  9129. \end_layout
  9130. \begin_layout Section*
  9131. Abstract
  9132. \end_layout
  9133. \begin_layout Paragraph
  9134. Background
  9135. \end_layout
  9136. \begin_layout Standard
  9137. Primate blood contains high concentrations of globin messenger RNA.
  9138. Globin reduction is a standard technique used to improve the expression
  9139. results obtained by DNA microarrays on RNA from blood samples.
  9140. However, with whole transcriptome RNA-sequencing (RNA-seq) quickly replacing
  9141. microarrays for many applications, the impact of globin reduction for RNA-seq
  9142. has not been previously studied.
  9143. Moreover, no off-the-shelf kits are available for globin reduction in nonhuman
  9144. primates.
  9145. \end_layout
  9146. \begin_layout Paragraph
  9147. Results
  9148. \end_layout
  9149. \begin_layout Standard
  9150. Here we report a protocol for RNA-seq in primate blood samples that uses
  9151. complimentary oligonucleotides to block reverse transcription of the alpha
  9152. and beta globin genes.
  9153. In test samples from cynomolgus monkeys (Macaca fascicularis), this globin
  9154. blocking protocol approximately doubles the yield of informative (non-globin)
  9155. reads by greatly reducing the fraction of globin reads, while also improving
  9156. the consistency in sequencing depth between samples.
  9157. The increased yield enables detection of about 2000 more genes, significantly
  9158. increases the correlation in measured gene expression levels between samples,
  9159. and increases the sensitivity of differential gene expression tests.
  9160. \end_layout
  9161. \begin_layout Paragraph
  9162. Conclusions
  9163. \end_layout
  9164. \begin_layout Standard
  9165. These results show that globin blocking significantly improves the cost-effectiv
  9166. eness of mRNA sequencing in primate blood samples by doubling the yield
  9167. of useful reads, allowing detection of more genes, and improving the precision
  9168. of gene expression measurements.
  9169. Based on these results, a globin reducing or blocking protocol is recommended
  9170. for all RNA-seq studies of primate blood samples.
  9171. \end_layout
  9172. \begin_layout Section
  9173. Approach
  9174. \end_layout
  9175. \begin_layout Standard
  9176. \begin_inset Note Note
  9177. status open
  9178. \begin_layout Plain Layout
  9179. Consider putting some of this in the Intro chapter
  9180. \end_layout
  9181. \begin_layout Itemize
  9182. Cynomolgus monkeys as a model organism
  9183. \end_layout
  9184. \begin_deeper
  9185. \begin_layout Itemize
  9186. Highly related to humans
  9187. \end_layout
  9188. \begin_layout Itemize
  9189. Small size and short life cycle - good research animal
  9190. \end_layout
  9191. \begin_layout Itemize
  9192. Genomics resources still in development
  9193. \end_layout
  9194. \end_deeper
  9195. \begin_layout Itemize
  9196. Inadequacy of existing blood RNA-seq protocols
  9197. \end_layout
  9198. \begin_deeper
  9199. \begin_layout Itemize
  9200. Existing protocols use a separate globin pulldown step, slowing down processing
  9201. \end_layout
  9202. \end_deeper
  9203. \end_inset
  9204. \end_layout
  9205. \begin_layout Standard
  9206. Increasingly, researchers are turning to high-throughput mRNA sequencing
  9207. technologies (RNA-seq) in preference to expression microarrays for analysis
  9208. of gene expression
  9209. \begin_inset CommandInset citation
  9210. LatexCommand cite
  9211. key "Mutz2012"
  9212. literal "false"
  9213. \end_inset
  9214. .
  9215. The advantages are even greater for study of model organisms with no well-estab
  9216. lished array platforms available, such as the cynomolgus monkey (Macaca
  9217. fascicularis).
  9218. High fractions of globin mRNA are naturally present in mammalian peripheral
  9219. blood samples (up to 70% of total mRNA) and these are known to interfere
  9220. with the results of array-based expression profiling
  9221. \begin_inset CommandInset citation
  9222. LatexCommand cite
  9223. key "Winn2010"
  9224. literal "false"
  9225. \end_inset
  9226. .
  9227. The importance of globin reduction for RNA-seq of blood has only been evaluated
  9228. for a deepSAGE protocol on human samples
  9229. \begin_inset CommandInset citation
  9230. LatexCommand cite
  9231. key "Mastrokolias2012"
  9232. literal "false"
  9233. \end_inset
  9234. .
  9235. In the present report, we evaluated globin reduction using custom blocking
  9236. oligonucleotides for deep RNA-seq of peripheral blood samples from a nonhuman
  9237. primate, cynomolgus monkey, using the Illumina technology platform.
  9238. We demonstrate that globin reduction significantly improves the cost-effectiven
  9239. ess of RNA-seq in blood samples.
  9240. Thus, our protocol offers a significant advantage to any investigator planning
  9241. to use RNA-seq for gene expression profiling of nonhuman primate blood
  9242. samples.
  9243. Our method can be generally applied to any species by designing complementary
  9244. oligonucleotide blocking probes to the globin gene sequences of that species.
  9245. Indeed, any highly expressed but biologically uninformative transcripts
  9246. can also be blocked to further increase sequencing efficiency and value
  9247. \begin_inset CommandInset citation
  9248. LatexCommand cite
  9249. key "Arnaud2016"
  9250. literal "false"
  9251. \end_inset
  9252. .
  9253. \end_layout
  9254. \begin_layout Section
  9255. Methods
  9256. \end_layout
  9257. \begin_layout Subsection
  9258. Sample collection
  9259. \end_layout
  9260. \begin_layout Standard
  9261. All research reported here was done under IACUC-approved protocols at the
  9262. University of Miami and complied with all applicable federal and state
  9263. regulations and ethical principles for nonhuman primate research.
  9264. Blood draws occurred between 16 April 2012 and 18 June 2015.
  9265. The experimental system involved intrahepatic pancreatic islet transplantation
  9266. into Cynomolgus monkeys with induced diabetes mellitus with or without
  9267. concomitant infusion of mesenchymal stem cells.
  9268. Blood was collected at serial time points before and after transplantation
  9269. into PAXgene Blood RNA tubes (PreAnalytiX/Qiagen, Valencia, CA) at the
  9270. precise volume:volume ratio of 2.5 ml whole blood into 6.9 ml of PAX gene
  9271. additive.
  9272. \end_layout
  9273. \begin_layout Subsection
  9274. Globin Blocking
  9275. \end_layout
  9276. \begin_layout Standard
  9277. Four oligonucleotides were designed to hybridize to the 3’ end of the transcript
  9278. s for Cynomolgus HBA1, HBA2 and HBB, with two hybridization sites for HBB
  9279. and 2 sites for HBA (the chosen sites were identical in both HBA genes).
  9280. All oligos were purchased from Sigma and were entirely composed of 2’O-Me
  9281. bases with a C3 spacer positioned at the 3’ ends to prevent any polymerase
  9282. mediated primer extension.
  9283. \end_layout
  9284. \begin_layout Quote
  9285. HBA1/2 site 1: GCCCACUCAGACUUUAUUCAAAG-C3spacer
  9286. \end_layout
  9287. \begin_layout Quote
  9288. HBA1/2 site 2: GGUGCAAGGAGGGGAGGAG-C3spacer
  9289. \end_layout
  9290. \begin_layout Quote
  9291. HBB site 1: AAUGAAAAUAAAUGUUUUUUAUUAG-C3spacer
  9292. \end_layout
  9293. \begin_layout Quote
  9294. HBB site 2: CUCAAGGCCCUUCAUAAUAUCCC-C3spacer
  9295. \end_layout
  9296. \begin_layout Subsection
  9297. RNA-seq Library Preparation
  9298. \end_layout
  9299. \begin_layout Standard
  9300. Sequencing libraries were prepared with 200ng total RNA from each sample.
  9301. Polyadenylated mRNA was selected from 200 ng aliquots of cynomologus blood-deri
  9302. ved total RNA using Ambion Dynabeads Oligo(dT)25 beads (Invitrogen) following
  9303. manufacturer’s recommended protocol.
  9304. PolyA selected RNA was then combined with 8 pmol of HBA1/2 (site 1), 8
  9305. pmol of HBA1/2 (site 2), 12 pmol of HBB (site 1) and 12 pmol of HBB (site
  9306. 2) oligonucleotides.
  9307. In addition, 20 pmol of RT primer containing a portion of the Illumina
  9308. adapter sequence (B-oligo-dTV: GAGTTCCTTGGCACCCGAGAATTCCATTTTTTTTTTTTTTTTTTTV)
  9309. and 4 µL of 5X First Strand buffer (250 mM Tris-HCl pH 8.3, 375 mM KCl,
  9310. 15mM MgCl2) were added in a total volume of 15 µL.
  9311. The RNA was fragmented by heating this cocktail for 3 minutes at 95°C and
  9312. then placed on ice.
  9313. This was followed by the addition of 2 µL 0.1 M DTT, 1 µL RNaseOUT, 1 µL
  9314. 10mM dNTPs 10% biotin-16 aminoallyl-2’- dUTP and 10% biotin-16 aminoallyl-2’-
  9315. dCTP (TriLink Biotech, San Diego, CA), 1 µL Superscript II (200U/ µL, Thermo-Fi
  9316. sher).
  9317. A second “unblocked” library was prepared in the same way for each sample
  9318. but replacing the blocking oligos with an equivalent volume of water.
  9319. The reaction was carried out at 25°C for 15 minutes and 42°C for 40 minutes,
  9320. followed by incubation at 75°C for 10 minutes to inactivate the reverse
  9321. transcriptase.
  9322. \end_layout
  9323. \begin_layout Standard
  9324. The cDNA/RNA hybrid molecules were purified using 1.8X Ampure XP beads (Agencourt
  9325. ) following supplier’s recommended protocol.
  9326. The cDNA/RNA hybrid was eluted in 25 µL of 10 mM Tris-HCl pH 8.0, and then
  9327. bound to 25 µL of M280 Magnetic Streptavidin beads washed per recommended
  9328. protocol (Thermo-Fisher).
  9329. After 30 minutes of binding, beads were washed one time in 100 µL 0.1N NaOH
  9330. to denature and remove the bound RNA, followed by two 100 µL washes with
  9331. 1X TE buffer.
  9332. \end_layout
  9333. \begin_layout Standard
  9334. Subsequent attachment of the 5-prime Illumina A adapter was performed by
  9335. on-bead random primer extension of the following sequence (A-N8 primer:
  9336. TTCAGAGTTCTACAGTCCGACGATCNNNNNNNN).
  9337. Briefly, beads were resuspended in a 20 µL reaction containing 5 µM A-N8
  9338. primer, 40mM Tris-HCl pH 7.5, 20mM MgCl2, 50mM NaCl, 0.325U/µL Sequenase
  9339. 2.0 (Affymetrix, Santa Clara, CA), 0.0025U/µL inorganic pyrophosphatase (Affymetr
  9340. ix) and 300 µM each dNTP.
  9341. Reaction was incubated at 22°C for 30 minutes, then beads were washed 2
  9342. times with 1X TE buffer (200µL).
  9343. \end_layout
  9344. \begin_layout Standard
  9345. The magnetic streptavidin beads were resuspended in 34 µL nuclease-free
  9346. water and added directly to a PCR tube.
  9347. The two Illumina protocol-specified PCR primers were added at 0.53 µM (Illumina
  9348. TruSeq Universal Primer 1 and Illumina TruSeq barcoded PCR primer 2), along
  9349. with 40 µL 2X KAPA HiFi Hotstart ReadyMix (KAPA, Willmington MA) and thermocycl
  9350. ed as follows: starting with 98°C (2 min-hold); 15 cycles of 98°C, 20sec;
  9351. 60°C, 30sec; 72°C, 30sec; and finished with a 72°C (2 min-hold).
  9352. \end_layout
  9353. \begin_layout Standard
  9354. PCR products were purified with 1X Ampure Beads following manufacturer’s
  9355. recommended protocol.
  9356. Libraries were then analyzed using the Agilent TapeStation and quantitation
  9357. of desired size range was performed by “smear analysis”.
  9358. Samples were pooled in equimolar batches of 16 samples.
  9359. Pooled libraries were size selected on 2% agarose gels (E-Gel EX Agarose
  9360. Gels; Thermo-Fisher).
  9361. Products were cut between 250 and 350 bp (corresponding to insert sizes
  9362. of 130 to 230 bps).
  9363. Finished library pools were then sequenced on the Illumina NextSeq500 instrumen
  9364. t with 75 base read lengths.
  9365. \end_layout
  9366. \begin_layout Subsection
  9367. Read alignment and counting
  9368. \end_layout
  9369. \begin_layout Standard
  9370. Reads were aligned to the cynomolgus genome using STAR
  9371. \begin_inset CommandInset citation
  9372. LatexCommand cite
  9373. key "Dobin2013,Wilson2013"
  9374. literal "false"
  9375. \end_inset
  9376. .
  9377. Counts of uniquely mapped reads were obtained for every gene in each sample
  9378. with the “featureCounts” function from the Rsubread package, using each
  9379. of the three possibilities for the “strandSpecific” option: sense, antisense,
  9380. and unstranded
  9381. \begin_inset CommandInset citation
  9382. LatexCommand cite
  9383. key "Liao2014"
  9384. literal "false"
  9385. \end_inset
  9386. .
  9387. A few artifacts in the cynomolgus genome annotation complicated read counting.
  9388. First, no ortholog is annotated for alpha globin in the cynomolgus genome,
  9389. presumably because the human genome has two alpha globin genes with nearly
  9390. identical sequences, making the orthology relationship ambiguous.
  9391. However, two loci in the cynomolgus genome are as “hemoglobin subunit alpha-lik
  9392. e” (LOC102136192 and LOC102136846).
  9393. LOC102136192 is annotated as a pseudogene while LOC102136846 is annotated
  9394. as protein-coding.
  9395. Our globin reduction protocol was designed to include blocking of these
  9396. two genes.
  9397. Indeed, these two genes have almost the same read counts in each library
  9398. as the properly-annotated HBB gene and much larger counts than any other
  9399. gene in the unblocked libraries, giving confidence that reads derived from
  9400. the real alpha globin are mapping to both genes.
  9401. Thus, reads from both of these loci were counted as alpha globin reads
  9402. in all further analyses.
  9403. The second artifact is a small, uncharacterized non-coding RNA gene (LOC1021365
  9404. 91), which overlaps the HBA-like gene (LOC102136192) on the opposite strand.
  9405. If counting is not performed in stranded mode (or if a non-strand-specific
  9406. sequencing protocol is used), many reads mapping to the globin gene will
  9407. be discarded as ambiguous due to their overlap with this ncRNA gene, resulting
  9408. in significant undercounting of globin reads.
  9409. Therefore, stranded sense counts were used for all further analysis in
  9410. the present study to insure that we accurately accounted for globin transcript
  9411. reduction.
  9412. However, we note that stranded reads are not necessary for RNA-seq using
  9413. our protocol in standard practice.
  9414. \end_layout
  9415. \begin_layout Subsection
  9416. Normalization and Exploratory Data Analysis
  9417. \end_layout
  9418. \begin_layout Standard
  9419. Libraries were normalized by computing scaling factors using the edgeR package’s
  9420. Trimmed Mean of M-values method
  9421. \begin_inset CommandInset citation
  9422. LatexCommand cite
  9423. key "Robinson2010"
  9424. literal "false"
  9425. \end_inset
  9426. .
  9427. Log2 counts per million values (logCPM) were calculated using the cpm function
  9428. in edgeR for individual samples and aveLogCPM function for averages across
  9429. groups of samples, using those functions’ default prior count values to
  9430. avoid taking the logarithm of 0.
  9431. Genes were considered “present” if their average normalized logCPM values
  9432. across all libraries were at least -1.
  9433. Normalizing for gene length was unnecessary because the sequencing protocol
  9434. is 3’-biased and hence the expected read count for each gene is related
  9435. to the transcript’s copy number but not its length.
  9436. \end_layout
  9437. \begin_layout Standard
  9438. In order to assess the effect of blocking on reproducibility, Pearson and
  9439. Spearman correlation coefficients were computed between the logCPM values
  9440. for every pair of libraries within the globin-blocked (GB) and unblocked
  9441. (non-GB) groups, and edgeR's “estimateDisp” function was used to compute
  9442. negative binomial dispersions separately for the two groups
  9443. \begin_inset CommandInset citation
  9444. LatexCommand cite
  9445. key "Chen2014"
  9446. literal "false"
  9447. \end_inset
  9448. .
  9449. \end_layout
  9450. \begin_layout Subsection
  9451. Differential Expression Analysis
  9452. \end_layout
  9453. \begin_layout Standard
  9454. All tests for differential gene expression were performed using edgeR, by
  9455. first fitting a negative binomial generalized linear model to the counts
  9456. and normalization factors and then performing a quasi-likelihood F-test
  9457. with robust estimation of outlier gene dispersions
  9458. \begin_inset CommandInset citation
  9459. LatexCommand cite
  9460. key "Lund2012,Phipson2016"
  9461. literal "false"
  9462. \end_inset
  9463. .
  9464. To investigate the effects of globin blocking on each gene, an additive
  9465. model was fit to the full data with coefficients for globin blocking and
  9466. SampleID.
  9467. To test the effect of globin blocking on detection of differentially expressed
  9468. genes, the GB samples and non-GB samples were each analyzed independently
  9469. as follows: for each animal with both a pre-transplant and a post-transplant
  9470. time point in the data set, the pre-transplant sample and the earliest
  9471. post-transplant sample were selected, and all others were excluded, yielding
  9472. a pre-/post-transplant pair of samples for each animal (N=7 animals with
  9473. paired samples).
  9474. These samples were analyzed for pre-transplant vs.
  9475. post-transplant differential gene expression while controlling for inter-animal
  9476. variation using an additive model with coefficients for transplant and
  9477. animal ID.
  9478. In all analyses, p-values were adjusted using the Benjamini-Hochberg procedure
  9479. for FDR control
  9480. \begin_inset CommandInset citation
  9481. LatexCommand cite
  9482. key "Benjamini1995"
  9483. literal "false"
  9484. \end_inset
  9485. .
  9486. \end_layout
  9487. \begin_layout Standard
  9488. \begin_inset Note Note
  9489. status open
  9490. \begin_layout Itemize
  9491. New blood RNA-seq protocol to block reverse transcription of globin genes
  9492. \end_layout
  9493. \begin_layout Itemize
  9494. Blood RNA-seq time course after transplants with/without MSC infusion
  9495. \end_layout
  9496. \end_inset
  9497. \end_layout
  9498. \begin_layout Section
  9499. Results
  9500. \end_layout
  9501. \begin_layout Subsection
  9502. Globin blocking yields a larger and more consistent fraction of useful reads
  9503. \end_layout
  9504. \begin_layout Standard
  9505. \begin_inset ERT
  9506. status open
  9507. \begin_layout Plain Layout
  9508. \backslash
  9509. afterpage{
  9510. \end_layout
  9511. \begin_layout Plain Layout
  9512. \backslash
  9513. begin{landscape}
  9514. \end_layout
  9515. \end_inset
  9516. \end_layout
  9517. \begin_layout Standard
  9518. \begin_inset Float table
  9519. placement p
  9520. wide false
  9521. sideways false
  9522. status open
  9523. \begin_layout Plain Layout
  9524. \align center
  9525. \begin_inset Tabular
  9526. <lyxtabular version="3" rows="4" columns="7">
  9527. <features tabularvalignment="middle">
  9528. <column alignment="center" valignment="top">
  9529. <column alignment="center" valignment="top">
  9530. <column alignment="center" valignment="top">
  9531. <column alignment="center" valignment="top">
  9532. <column alignment="center" valignment="top">
  9533. <column alignment="center" valignment="top">
  9534. <column alignment="center" valignment="top">
  9535. <row>
  9536. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  9537. \begin_inset Text
  9538. \begin_layout Plain Layout
  9539. \end_layout
  9540. \end_inset
  9541. </cell>
  9542. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  9543. \begin_inset Text
  9544. \begin_layout Plain Layout
  9545. \family roman
  9546. \series medium
  9547. \shape up
  9548. \size normal
  9549. \emph off
  9550. \bar no
  9551. \strikeout off
  9552. \xout off
  9553. \uuline off
  9554. \uwave off
  9555. \noun off
  9556. \color none
  9557. Percent of Total Reads
  9558. \end_layout
  9559. \end_inset
  9560. </cell>
  9561. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  9562. \begin_inset Text
  9563. \begin_layout Plain Layout
  9564. \end_layout
  9565. \end_inset
  9566. </cell>
  9567. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  9568. \begin_inset Text
  9569. \begin_layout Plain Layout
  9570. \end_layout
  9571. \end_inset
  9572. </cell>
  9573. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  9574. \begin_inset Text
  9575. \begin_layout Plain Layout
  9576. \end_layout
  9577. \end_inset
  9578. </cell>
  9579. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  9580. \begin_inset Text
  9581. \begin_layout Plain Layout
  9582. \family roman
  9583. \series medium
  9584. \shape up
  9585. \size normal
  9586. \emph off
  9587. \bar no
  9588. \strikeout off
  9589. \xout off
  9590. \uuline off
  9591. \uwave off
  9592. \noun off
  9593. \color none
  9594. Percent of Genic Reads
  9595. \end_layout
  9596. \end_inset
  9597. </cell>
  9598. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  9599. \begin_inset Text
  9600. \begin_layout Plain Layout
  9601. \end_layout
  9602. \end_inset
  9603. </cell>
  9604. </row>
  9605. <row>
  9606. <cell alignment="center" valignment="top" bottomline="true" leftline="true" usebox="none">
  9607. \begin_inset Text
  9608. \begin_layout Plain Layout
  9609. GB
  9610. \end_layout
  9611. \end_inset
  9612. </cell>
  9613. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  9614. \begin_inset Text
  9615. \begin_layout Plain Layout
  9616. \family roman
  9617. \series medium
  9618. \shape up
  9619. \size normal
  9620. \emph off
  9621. \bar no
  9622. \strikeout off
  9623. \xout off
  9624. \uuline off
  9625. \uwave off
  9626. \noun off
  9627. \color none
  9628. Non-globin Reads
  9629. \end_layout
  9630. \end_inset
  9631. </cell>
  9632. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  9633. \begin_inset Text
  9634. \begin_layout Plain Layout
  9635. \family roman
  9636. \series medium
  9637. \shape up
  9638. \size normal
  9639. \emph off
  9640. \bar no
  9641. \strikeout off
  9642. \xout off
  9643. \uuline off
  9644. \uwave off
  9645. \noun off
  9646. \color none
  9647. Globin Reads
  9648. \end_layout
  9649. \end_inset
  9650. </cell>
  9651. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  9652. \begin_inset Text
  9653. \begin_layout Plain Layout
  9654. \family roman
  9655. \series medium
  9656. \shape up
  9657. \size normal
  9658. \emph off
  9659. \bar no
  9660. \strikeout off
  9661. \xout off
  9662. \uuline off
  9663. \uwave off
  9664. \noun off
  9665. \color none
  9666. All Genic Reads
  9667. \end_layout
  9668. \end_inset
  9669. </cell>
  9670. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  9671. \begin_inset Text
  9672. \begin_layout Plain Layout
  9673. \family roman
  9674. \series medium
  9675. \shape up
  9676. \size normal
  9677. \emph off
  9678. \bar no
  9679. \strikeout off
  9680. \xout off
  9681. \uuline off
  9682. \uwave off
  9683. \noun off
  9684. \color none
  9685. All Aligned Reads
  9686. \end_layout
  9687. \end_inset
  9688. </cell>
  9689. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  9690. \begin_inset Text
  9691. \begin_layout Plain Layout
  9692. \family roman
  9693. \series medium
  9694. \shape up
  9695. \size normal
  9696. \emph off
  9697. \bar no
  9698. \strikeout off
  9699. \xout off
  9700. \uuline off
  9701. \uwave off
  9702. \noun off
  9703. \color none
  9704. Non-globin Reads
  9705. \end_layout
  9706. \end_inset
  9707. </cell>
  9708. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  9709. \begin_inset Text
  9710. \begin_layout Plain Layout
  9711. \family roman
  9712. \series medium
  9713. \shape up
  9714. \size normal
  9715. \emph off
  9716. \bar no
  9717. \strikeout off
  9718. \xout off
  9719. \uuline off
  9720. \uwave off
  9721. \noun off
  9722. \color none
  9723. Globin Reads
  9724. \end_layout
  9725. \end_inset
  9726. </cell>
  9727. </row>
  9728. <row>
  9729. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  9730. \begin_inset Text
  9731. \begin_layout Plain Layout
  9732. \family roman
  9733. \series medium
  9734. \shape up
  9735. \size normal
  9736. \emph off
  9737. \bar no
  9738. \strikeout off
  9739. \xout off
  9740. \uuline off
  9741. \uwave off
  9742. \noun off
  9743. \color none
  9744. Yes
  9745. \end_layout
  9746. \end_inset
  9747. </cell>
  9748. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  9749. \begin_inset Text
  9750. \begin_layout Plain Layout
  9751. \family roman
  9752. \series medium
  9753. \shape up
  9754. \size normal
  9755. \emph off
  9756. \bar no
  9757. \strikeout off
  9758. \xout off
  9759. \uuline off
  9760. \uwave off
  9761. \noun off
  9762. \color none
  9763. 50.4% ± 6.82
  9764. \end_layout
  9765. \end_inset
  9766. </cell>
  9767. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  9768. \begin_inset Text
  9769. \begin_layout Plain Layout
  9770. \family roman
  9771. \series medium
  9772. \shape up
  9773. \size normal
  9774. \emph off
  9775. \bar no
  9776. \strikeout off
  9777. \xout off
  9778. \uuline off
  9779. \uwave off
  9780. \noun off
  9781. \color none
  9782. 3.48% ± 2.94
  9783. \end_layout
  9784. \end_inset
  9785. </cell>
  9786. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  9787. \begin_inset Text
  9788. \begin_layout Plain Layout
  9789. \family roman
  9790. \series medium
  9791. \shape up
  9792. \size normal
  9793. \emph off
  9794. \bar no
  9795. \strikeout off
  9796. \xout off
  9797. \uuline off
  9798. \uwave off
  9799. \noun off
  9800. \color none
  9801. 53.9% ± 6.81
  9802. \end_layout
  9803. \end_inset
  9804. </cell>
  9805. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  9806. \begin_inset Text
  9807. \begin_layout Plain Layout
  9808. \family roman
  9809. \series medium
  9810. \shape up
  9811. \size normal
  9812. \emph off
  9813. \bar no
  9814. \strikeout off
  9815. \xout off
  9816. \uuline off
  9817. \uwave off
  9818. \noun off
  9819. \color none
  9820. 89.7% ± 2.40
  9821. \end_layout
  9822. \end_inset
  9823. </cell>
  9824. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  9825. \begin_inset Text
  9826. \begin_layout Plain Layout
  9827. \family roman
  9828. \series medium
  9829. \shape up
  9830. \size normal
  9831. \emph off
  9832. \bar no
  9833. \strikeout off
  9834. \xout off
  9835. \uuline off
  9836. \uwave off
  9837. \noun off
  9838. \color none
  9839. 93.5% ± 5.25
  9840. \end_layout
  9841. \end_inset
  9842. </cell>
  9843. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  9844. \begin_inset Text
  9845. \begin_layout Plain Layout
  9846. \family roman
  9847. \series medium
  9848. \shape up
  9849. \size normal
  9850. \emph off
  9851. \bar no
  9852. \strikeout off
  9853. \xout off
  9854. \uuline off
  9855. \uwave off
  9856. \noun off
  9857. \color none
  9858. 6.49% ± 5.25
  9859. \end_layout
  9860. \end_inset
  9861. </cell>
  9862. </row>
  9863. <row>
  9864. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  9865. \begin_inset Text
  9866. \begin_layout Plain Layout
  9867. \family roman
  9868. \series medium
  9869. \shape up
  9870. \size normal
  9871. \emph off
  9872. \bar no
  9873. \strikeout off
  9874. \xout off
  9875. \uuline off
  9876. \uwave off
  9877. \noun off
  9878. \color none
  9879. No
  9880. \end_layout
  9881. \end_inset
  9882. </cell>
  9883. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  9884. \begin_inset Text
  9885. \begin_layout Plain Layout
  9886. \family roman
  9887. \series medium
  9888. \shape up
  9889. \size normal
  9890. \emph off
  9891. \bar no
  9892. \strikeout off
  9893. \xout off
  9894. \uuline off
  9895. \uwave off
  9896. \noun off
  9897. \color none
  9898. 26.3% ± 8.95
  9899. \end_layout
  9900. \end_inset
  9901. </cell>
  9902. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  9903. \begin_inset Text
  9904. \begin_layout Plain Layout
  9905. \family roman
  9906. \series medium
  9907. \shape up
  9908. \size normal
  9909. \emph off
  9910. \bar no
  9911. \strikeout off
  9912. \xout off
  9913. \uuline off
  9914. \uwave off
  9915. \noun off
  9916. \color none
  9917. 44.6% ± 16.6
  9918. \end_layout
  9919. \end_inset
  9920. </cell>
  9921. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  9922. \begin_inset Text
  9923. \begin_layout Plain Layout
  9924. \family roman
  9925. \series medium
  9926. \shape up
  9927. \size normal
  9928. \emph off
  9929. \bar no
  9930. \strikeout off
  9931. \xout off
  9932. \uuline off
  9933. \uwave off
  9934. \noun off
  9935. \color none
  9936. 70.1% ± 9.38
  9937. \end_layout
  9938. \end_inset
  9939. </cell>
  9940. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  9941. \begin_inset Text
  9942. \begin_layout Plain Layout
  9943. \family roman
  9944. \series medium
  9945. \shape up
  9946. \size normal
  9947. \emph off
  9948. \bar no
  9949. \strikeout off
  9950. \xout off
  9951. \uuline off
  9952. \uwave off
  9953. \noun off
  9954. \color none
  9955. 90.7% ± 5.16
  9956. \end_layout
  9957. \end_inset
  9958. </cell>
  9959. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  9960. \begin_inset Text
  9961. \begin_layout Plain Layout
  9962. \family roman
  9963. \series medium
  9964. \shape up
  9965. \size normal
  9966. \emph off
  9967. \bar no
  9968. \strikeout off
  9969. \xout off
  9970. \uuline off
  9971. \uwave off
  9972. \noun off
  9973. \color none
  9974. 38.8% ± 17.1
  9975. \end_layout
  9976. \end_inset
  9977. </cell>
  9978. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  9979. \begin_inset Text
  9980. \begin_layout Plain Layout
  9981. \family roman
  9982. \series medium
  9983. \shape up
  9984. \size normal
  9985. \emph off
  9986. \bar no
  9987. \strikeout off
  9988. \xout off
  9989. \uuline off
  9990. \uwave off
  9991. \noun off
  9992. \color none
  9993. 61.2% ± 17.1
  9994. \end_layout
  9995. \end_inset
  9996. </cell>
  9997. </row>
  9998. </lyxtabular>
  9999. \end_inset
  10000. \end_layout
  10001. \begin_layout Plain Layout
  10002. \begin_inset Caption Standard
  10003. \begin_layout Plain Layout
  10004. \series bold
  10005. \begin_inset Argument 1
  10006. status collapsed
  10007. \begin_layout Plain Layout
  10008. Fractions of reads mapping to genomic features in GB and non-GB samples.
  10009. \end_layout
  10010. \end_inset
  10011. \begin_inset CommandInset label
  10012. LatexCommand label
  10013. name "tab:Fractions-of-reads"
  10014. \end_inset
  10015. Fractions of reads mapping to genomic features in GB and non-GB samples.
  10016. \series default
  10017. All values are given as mean ± standard deviation.
  10018. \end_layout
  10019. \end_inset
  10020. \end_layout
  10021. \end_inset
  10022. \end_layout
  10023. \begin_layout Standard
  10024. \begin_inset ERT
  10025. status open
  10026. \begin_layout Plain Layout
  10027. \backslash
  10028. end{landscape}
  10029. \end_layout
  10030. \begin_layout Plain Layout
  10031. }
  10032. \end_layout
  10033. \end_inset
  10034. \end_layout
  10035. \begin_layout Standard
  10036. The objective of the present study was to validate a new protocol for deep
  10037. RNA-seq of whole blood drawn into PaxGene tubes from cynomolgus monkeys
  10038. undergoing islet transplantation, with particular focus on minimizing the
  10039. loss of useful sequencing space to uninformative globin reads.
  10040. The details of the analysis with respect to transplant outcomes and the
  10041. impact of mesenchymal stem cell treatment will be reported in a separate
  10042. manuscript (in preparation).
  10043. To focus on the efficacy of our globin blocking protocol, 37 blood samples,
  10044. 16 from pre-transplant and 21 from post-transplant time points, were each
  10045. prepped once with and once without globin blocking oligos, and were then
  10046. sequenced on an Illumina NextSeq500 instrument.
  10047. The number of reads aligning to each gene in the cynomolgus genome was
  10048. counted.
  10049. Table 1 summarizes the distribution of read fractions among the GB and
  10050. non-GB libraries.
  10051. In the libraries with no globin blocking, globin reads made up an average
  10052. of 44.6% of total input reads, while reads assigned to all other genes made
  10053. up an average of 26.3%.
  10054. The remaining reads either aligned to intergenic regions (that include
  10055. long non-coding RNAs) or did not align with any annotated transcripts in
  10056. the current build of the cynomolgus genome.
  10057. In the GB libraries, globin reads made up only 3.48% and reads assigned
  10058. to all other genes increased to 50.4%.
  10059. Thus, globin blocking resulted in a 92.2% reduction in globin reads and
  10060. a 91.6% increase in yield of useful non-globin reads.
  10061. \end_layout
  10062. \begin_layout Standard
  10063. This reduction is not quite as efficient as the previous analysis showed
  10064. for human samples by DeepSAGE (<0.4% globin reads after globin reduction)
  10065. \begin_inset CommandInset citation
  10066. LatexCommand cite
  10067. key "Mastrokolias2012"
  10068. literal "false"
  10069. \end_inset
  10070. .
  10071. Nonetheless, this degree of globin reduction is sufficient to nearly double
  10072. the yield of useful reads.
  10073. Thus, globin blocking cuts the required sequencing effort (and costs) to
  10074. achieve a target coverage depth by almost 50%.
  10075. Consistent with this near doubling of yield, the average difference in
  10076. un-normalized logCPM across all genes between the GB libraries and non-GB
  10077. libraries is approximately 1 (mean = 1.01, median = 1.08), an overall 2-fold
  10078. increase.
  10079. Un-normalized values are used here because the TMM normalization correctly
  10080. identifies this 2-fold difference as biologically irrelevant and removes
  10081. it.
  10082. \end_layout
  10083. \begin_layout Standard
  10084. \begin_inset Float figure
  10085. wide false
  10086. sideways false
  10087. status collapsed
  10088. \begin_layout Plain Layout
  10089. \align center
  10090. \begin_inset Graphics
  10091. filename graphics/Globin Paper/figure1 - globin-fractions.pdf
  10092. lyxscale 50
  10093. width 75col%
  10094. \end_inset
  10095. \end_layout
  10096. \begin_layout Plain Layout
  10097. \begin_inset Caption Standard
  10098. \begin_layout Plain Layout
  10099. \series bold
  10100. \begin_inset Argument 1
  10101. status collapsed
  10102. \begin_layout Plain Layout
  10103. Fraction of genic reads in each sample aligned to non-globin genes, with
  10104. and without globin blocking (GB).
  10105. \end_layout
  10106. \end_inset
  10107. \begin_inset CommandInset label
  10108. LatexCommand label
  10109. name "fig:Fraction-of-genic-reads"
  10110. \end_inset
  10111. Fraction of genic reads in each sample aligned to non-globin genes, with
  10112. and without globin blocking (GB).
  10113. \series default
  10114. All reads in each sequencing library were aligned to the cyno genome, and
  10115. the number of reads uniquely aligning to each gene was counted.
  10116. For each sample, counts were summed separately for all globin genes and
  10117. for the remainder of the genes (non-globin genes), and the fraction of
  10118. genic reads aligned to non-globin genes was computed.
  10119. Each point represents an individual sample.
  10120. Gray + signs indicate the means for globin-blocked libraries and unblocked
  10121. libraries.
  10122. The overall distribution for each group is represented as a notched box
  10123. plots.
  10124. Points are randomly spread vertically to avoid excessive overlapping.
  10125. \end_layout
  10126. \end_inset
  10127. \end_layout
  10128. \end_inset
  10129. \end_layout
  10130. \begin_layout Standard
  10131. Another important aspect is that the standard deviations in Table
  10132. \begin_inset CommandInset ref
  10133. LatexCommand ref
  10134. reference "tab:Fractions-of-reads"
  10135. plural "false"
  10136. caps "false"
  10137. noprefix "false"
  10138. \end_inset
  10139. are uniformly smaller in the GB samples than the non-GB ones, indicating
  10140. much greater consistency of yield.
  10141. This is best seen in the percentage of non-globin reads as a fraction of
  10142. total reads aligned to annotated genes (genic reads).
  10143. For the non-GB samples, this measure ranges from 10.9% to 80.9%, while for
  10144. the GB samples it ranges from 81.9% to 99.9% (Figure
  10145. \begin_inset CommandInset ref
  10146. LatexCommand ref
  10147. reference "fig:Fraction-of-genic-reads"
  10148. plural "false"
  10149. caps "false"
  10150. noprefix "false"
  10151. \end_inset
  10152. ).
  10153. This means that for applications where it is critical that each sample
  10154. achieve a specified minimum coverage in order to provide useful information,
  10155. it would be necessary to budget up to 10 times the sequencing depth per
  10156. sample without globin blocking, even though the average yield improvement
  10157. for globin blocking is only 2-fold, because every sample has a chance of
  10158. being 90% globin and 10% useful reads.
  10159. Hence, the more consistent behavior of GB samples makes planning an experiment
  10160. easier and more efficient because it eliminates the need to over-sequence
  10161. every sample in order to guard against the worst case of a high-globin
  10162. fraction.
  10163. \end_layout
  10164. \begin_layout Subsection
  10165. Globin blocking lowers the noise floor and allows detection of about 2000
  10166. more low-expression genes
  10167. \end_layout
  10168. \begin_layout Standard
  10169. \begin_inset Flex TODO Note (inline)
  10170. status open
  10171. \begin_layout Plain Layout
  10172. Remove redundant titles from figures
  10173. \end_layout
  10174. \end_inset
  10175. \end_layout
  10176. \begin_layout Standard
  10177. \begin_inset Float figure
  10178. wide false
  10179. sideways false
  10180. status collapsed
  10181. \begin_layout Plain Layout
  10182. \align center
  10183. \begin_inset Graphics
  10184. filename graphics/Globin Paper/figure2 - aveLogCPM-colored.pdf
  10185. lyxscale 50
  10186. height 60theight%
  10187. \end_inset
  10188. \end_layout
  10189. \begin_layout Plain Layout
  10190. \begin_inset Caption Standard
  10191. \begin_layout Plain Layout
  10192. \series bold
  10193. \begin_inset Argument 1
  10194. status collapsed
  10195. \begin_layout Plain Layout
  10196. Distributions of average group gene abundances when normalized separately
  10197. or together.
  10198. \end_layout
  10199. \end_inset
  10200. \begin_inset CommandInset label
  10201. LatexCommand label
  10202. name "fig:logcpm-dists"
  10203. \end_inset
  10204. Distributions of average group gene abundances when normalized separately
  10205. or together.
  10206. \series default
  10207. All reads in each sequencing library were aligned to the cyno genome, and
  10208. the number of reads uniquely aligning to each gene was counted.
  10209. Genes with zero counts in all libraries were discarded.
  10210. Libraries were normalized using the TMM method.
  10211. Libraries were split into globin-blocked (GB) and non-GB groups and the
  10212. average abundance for each gene in both groups, measured in log2 counts
  10213. per million reads counted, was computed using the aveLogCPM function.
  10214. The distribution of average gene logCPM values was plotted for both groups
  10215. using a kernel density plot to approximate a continuous distribution.
  10216. The logCPM GB distributions are marked in red, non-GB in blue.
  10217. The black vertical line denotes the chosen detection threshold of -1.
  10218. Top panel: Libraries were split into GB and non-GB groups first and normalized
  10219. separately.
  10220. Bottom panel: Libraries were all normalized together first and then split
  10221. into groups.
  10222. \end_layout
  10223. \end_inset
  10224. \end_layout
  10225. \begin_layout Plain Layout
  10226. \end_layout
  10227. \end_inset
  10228. \end_layout
  10229. \begin_layout Standard
  10230. Since globin blocking yields more usable sequencing depth, it should also
  10231. allow detection of more genes at any given threshold.
  10232. When we looked at the distribution of average normalized logCPM values
  10233. across all libraries for genes with at least one read assigned to them,
  10234. we observed the expected bimodal distribution, with a high-abundance "signal"
  10235. peak representing detected genes and a low-abundance "noise" peak representing
  10236. genes whose read count did not rise above the noise floor (Figure
  10237. \begin_inset CommandInset ref
  10238. LatexCommand ref
  10239. reference "fig:logcpm-dists"
  10240. plural "false"
  10241. caps "false"
  10242. noprefix "false"
  10243. \end_inset
  10244. ).
  10245. Consistent with the 2-fold increase in raw counts assigned to non-globin
  10246. genes, the signal peak for GB samples is shifted to the right relative
  10247. to the non-GB signal peak.
  10248. When all the samples are normalized together, this difference is normalized
  10249. out, lining up the signal peaks, and this reveals that, as expected, the
  10250. noise floor for the GB samples is about 2-fold lower.
  10251. This greater separation between signal and noise peaks in the GB samples
  10252. means that low-expression genes should be more easily detected and more
  10253. precisely quantified than in the non-GB samples.
  10254. \end_layout
  10255. \begin_layout Standard
  10256. \begin_inset Float figure
  10257. wide false
  10258. sideways false
  10259. status collapsed
  10260. \begin_layout Plain Layout
  10261. \align center
  10262. \begin_inset Graphics
  10263. filename graphics/Globin Paper/figure3 - detection.pdf
  10264. lyxscale 50
  10265. width 70col%
  10266. \end_inset
  10267. \end_layout
  10268. \begin_layout Plain Layout
  10269. \begin_inset Caption Standard
  10270. \begin_layout Plain Layout
  10271. \series bold
  10272. \begin_inset Argument 1
  10273. status collapsed
  10274. \begin_layout Plain Layout
  10275. Gene detections as a function of abundance thresholds in globin-blocked
  10276. (GB) and non-GB samples.
  10277. \end_layout
  10278. \end_inset
  10279. \begin_inset CommandInset label
  10280. LatexCommand label
  10281. name "fig:Gene-detections"
  10282. \end_inset
  10283. Gene detections as a function of abundance thresholds in globin-blocked
  10284. (GB) and non-GB samples.
  10285. \series default
  10286. Average abundance (logCPM,
  10287. \begin_inset Formula $\log_{2}$
  10288. \end_inset
  10289. counts per million reads counted) was computed by separate group normalization
  10290. as described in Figure
  10291. \begin_inset CommandInset ref
  10292. LatexCommand ref
  10293. reference "fig:logcpm-dists"
  10294. plural "false"
  10295. caps "false"
  10296. noprefix "false"
  10297. \end_inset
  10298. for both the GB and non-GB groups, as well as for all samples considered
  10299. as one large group.
  10300. For each every integer threshold from -2 to 3, the number of genes detected
  10301. at or above that logCPM threshold was plotted for each group.
  10302. \end_layout
  10303. \end_inset
  10304. \end_layout
  10305. \begin_layout Plain Layout
  10306. \end_layout
  10307. \end_inset
  10308. \end_layout
  10309. \begin_layout Standard
  10310. Based on these distributions, we selected a detection threshold of -1, which
  10311. is approximately the leftmost edge of the trough between the signal and
  10312. noise peaks.
  10313. This represents the most liberal possible detection threshold that doesn't
  10314. call substantial numbers of noise genes as detected.
  10315. Among the full dataset, 13429 genes were detected at this threshold, and
  10316. 22276 were not.
  10317. When considering the GB libraries and non-GB libraries separately and re-comput
  10318. ing normalization factors independently within each group, 14535 genes were
  10319. detected in the GB libraries while only 12460 were detected in the non-GB
  10320. libraries.
  10321. Thus, GB allowed the detection of 2000 extra genes that were buried under
  10322. the noise floor without GB.
  10323. This pattern of at least 2000 additional genes detected with GB was also
  10324. consistent across a wide range of possible detection thresholds, from -2
  10325. to 3 (see Figure
  10326. \begin_inset CommandInset ref
  10327. LatexCommand ref
  10328. reference "fig:Gene-detections"
  10329. plural "false"
  10330. caps "false"
  10331. noprefix "false"
  10332. \end_inset
  10333. ).
  10334. \end_layout
  10335. \begin_layout Subsection
  10336. Globin blocking does not add significant additional noise or decrease sample
  10337. quality
  10338. \end_layout
  10339. \begin_layout Standard
  10340. One potential worry is that the globin blocking protocol could perturb the
  10341. levels of non-globin genes.
  10342. There are two kinds of possible perturbations: systematic and random.
  10343. The former is not a major concern for detection of differential expression,
  10344. since a 2-fold change in every sample has no effect on the relative fold
  10345. change between samples.
  10346. In contrast, random perturbations would increase the noise and obscure
  10347. the signal in the dataset, reducing the capacity to detect differential
  10348. expression.
  10349. \end_layout
  10350. \begin_layout Standard
  10351. \begin_inset Float figure
  10352. wide false
  10353. sideways false
  10354. status collapsed
  10355. \begin_layout Plain Layout
  10356. \align center
  10357. \begin_inset Graphics
  10358. filename graphics/Globin Paper/figure4 - maplot-colored.pdf
  10359. lyxscale 50
  10360. width 60col%
  10361. groupId colwidth
  10362. \end_inset
  10363. \end_layout
  10364. \begin_layout Plain Layout
  10365. \begin_inset Caption Standard
  10366. \begin_layout Plain Layout
  10367. \begin_inset Argument 1
  10368. status collapsed
  10369. \begin_layout Plain Layout
  10370. MA plot showing effects of globin blocking on each gene's abundance.
  10371. \end_layout
  10372. \end_inset
  10373. \begin_inset CommandInset label
  10374. LatexCommand label
  10375. name "fig:MA-plot"
  10376. \end_inset
  10377. \series bold
  10378. MA plot showing effects of globin blocking on each gene's abundance.
  10379. \series default
  10380. All libraries were normalized together as described in Figure
  10381. \begin_inset CommandInset ref
  10382. LatexCommand ref
  10383. reference "fig:logcpm-dists"
  10384. plural "false"
  10385. caps "false"
  10386. noprefix "false"
  10387. \end_inset
  10388. , and genes with an average logCPM below -1 were filtered out.
  10389. Each remaining gene was tested for differential abundance with respect
  10390. to globin blocking (GB) using edgeR’s quasi-likelihood F-test, fitting
  10391. a negative binomial generalized linear model to table of read counts in
  10392. each library.
  10393. For each gene, edgeR reported average abundance (logCPM),
  10394. \begin_inset Formula $\log_{2}$
  10395. \end_inset
  10396. fold change (logFC), p-value, and Benjamini-Hochberg adjusted false discovery
  10397. rate (FDR).
  10398. Each gene's logFC was plotted against its logCPM, colored by FDR.
  10399. Red points are significant at ≤10% FDR, and blue are not significant at
  10400. that threshold.
  10401. The alpha and beta globin genes targeted for blocking are marked with large
  10402. triangles, while all other genes are represented as small points.
  10403. \end_layout
  10404. \end_inset
  10405. \end_layout
  10406. \begin_layout Plain Layout
  10407. \end_layout
  10408. \end_inset
  10409. \end_layout
  10410. \begin_layout Standard
  10411. \begin_inset Flex TODO Note (inline)
  10412. status open
  10413. \begin_layout Plain Layout
  10414. Standardize on
  10415. \begin_inset Quotes eld
  10416. \end_inset
  10417. log2
  10418. \begin_inset Quotes erd
  10419. \end_inset
  10420. notation
  10421. \end_layout
  10422. \end_inset
  10423. \end_layout
  10424. \begin_layout Standard
  10425. The data do indeed show small systematic perturbations in gene levels (Figure
  10426. \begin_inset CommandInset ref
  10427. LatexCommand ref
  10428. reference "fig:MA-plot"
  10429. plural "false"
  10430. caps "false"
  10431. noprefix "false"
  10432. \end_inset
  10433. ).
  10434. Other than the 3 designated alpha and beta globin genes, two other genes
  10435. stand out as having especially large negative log fold changes: HBD and
  10436. LOC1021365.
  10437. HBD, delta globin, is most likely targeted by the blocking oligos due to
  10438. high sequence homology with the other globin genes.
  10439. LOC1021365 is the aforementioned ncRNA that is reverse-complementary to
  10440. one of the alpha-like genes and that would be expected to be removed during
  10441. the globin blocking step.
  10442. All other genes appear in a cluster centered vertically at 0, and the vast
  10443. majority of genes in this cluster show an absolute log2(FC) of 0.5 or less.
  10444. Nevertheless, many of these small perturbations are still statistically
  10445. significant, indicating that the globin blocking oligos likely cause very
  10446. small but non-zero systematic perturbations in measured gene expression
  10447. levels.
  10448. \end_layout
  10449. \begin_layout Standard
  10450. \begin_inset Float figure
  10451. wide false
  10452. sideways false
  10453. status collapsed
  10454. \begin_layout Plain Layout
  10455. \align center
  10456. \begin_inset Graphics
  10457. filename graphics/Globin Paper/figure5 - corrplot.pdf
  10458. lyxscale 50
  10459. width 70col%
  10460. \end_inset
  10461. \end_layout
  10462. \begin_layout Plain Layout
  10463. \begin_inset Caption Standard
  10464. \begin_layout Plain Layout
  10465. \series bold
  10466. \begin_inset Argument 1
  10467. status collapsed
  10468. \begin_layout Plain Layout
  10469. Comparison of inter-sample gene abundance correlations with and without
  10470. globin blocking.
  10471. \end_layout
  10472. \end_inset
  10473. \begin_inset CommandInset label
  10474. LatexCommand label
  10475. name "fig:gene-abundance-correlations"
  10476. \end_inset
  10477. Comparison of inter-sample gene abundance correlations with and without
  10478. globin blocking (GB).
  10479. \series default
  10480. All libraries were normalized together as described in Figure 2, and genes
  10481. with an average abundance (logCPM, log2 counts per million reads counted)
  10482. less than -1 were filtered out.
  10483. Each gene’s logCPM was computed in each library using the edgeR cpm function.
  10484. For each pair of biological samples, the Pearson correlation between those
  10485. samples' GB libraries was plotted against the correlation between the same
  10486. samples’ non-GB libraries.
  10487. Each point represents an unique pair of samples.
  10488. The solid gray line shows a quantile-quantile plot of distribution of GB
  10489. correlations vs.
  10490. that of non-GB correlations.
  10491. The thin dashed line is the identity line, provided for reference.
  10492. \end_layout
  10493. \end_inset
  10494. \end_layout
  10495. \begin_layout Plain Layout
  10496. \end_layout
  10497. \end_inset
  10498. \end_layout
  10499. \begin_layout Standard
  10500. To evaluate the possibility of globin blocking causing random perturbations
  10501. and reducing sample quality, we computed the Pearson correlation between
  10502. logCPM values for every pair of samples with and without GB and plotted
  10503. them against each other (Figure
  10504. \begin_inset CommandInset ref
  10505. LatexCommand ref
  10506. reference "fig:gene-abundance-correlations"
  10507. plural "false"
  10508. caps "false"
  10509. noprefix "false"
  10510. \end_inset
  10511. ).
  10512. The plot indicated that the GB libraries have higher sample-to-sample correlati
  10513. ons than the non-GB libraries.
  10514. Parametric and nonparametric tests for differences between the correlations
  10515. with and without GB both confirmed that this difference was highly significant
  10516. (2-sided paired t-test: t = 37.2, df = 665, P ≪ 2.2e-16; 2-sided Wilcoxon
  10517. sign-rank test: V = 2195, P ≪ 2.2e-16).
  10518. Performing the same tests on the Spearman correlations gave the same conclusion
  10519. (t-test: t = 26.8, df = 665, P ≪ 2.2e-16; sign-rank test: V = 8781, P ≪ 2.2e-16).
  10520. The edgeR package was used to compute the overall biological coefficient
  10521. of variation (BCV) for GB and non-GB libraries, and found that globin blocking
  10522. resulted in a negligible increase in the BCV (0.417 with GB vs.
  10523. 0.400 without).
  10524. The near equality of the BCVs for both sets indicates that the higher correlati
  10525. ons in the GB libraries are most likely a result of the increased yield
  10526. of useful reads, which reduces the contribution of Poisson counting uncertainty
  10527. to the overall variance of the logCPM values
  10528. \begin_inset CommandInset citation
  10529. LatexCommand cite
  10530. key "McCarthy2012"
  10531. literal "false"
  10532. \end_inset
  10533. .
  10534. This improves the precision of expression measurements and more than offsets
  10535. the negligible increase in BCV.
  10536. \end_layout
  10537. \begin_layout Subsection
  10538. More differentially expressed genes are detected with globin blocking
  10539. \end_layout
  10540. \begin_layout Standard
  10541. \begin_inset Float table
  10542. wide false
  10543. sideways false
  10544. status collapsed
  10545. \begin_layout Plain Layout
  10546. \align center
  10547. \begin_inset Tabular
  10548. <lyxtabular version="3" rows="5" columns="5">
  10549. <features tabularvalignment="middle">
  10550. <column alignment="center" valignment="top">
  10551. <column alignment="center" valignment="top">
  10552. <column alignment="center" valignment="top">
  10553. <column alignment="center" valignment="top">
  10554. <column alignment="center" valignment="top">
  10555. <row>
  10556. <cell alignment="center" valignment="top" usebox="none">
  10557. \begin_inset Text
  10558. \begin_layout Plain Layout
  10559. \end_layout
  10560. \end_inset
  10561. </cell>
  10562. <cell alignment="center" valignment="top" usebox="none">
  10563. \begin_inset Text
  10564. \begin_layout Plain Layout
  10565. \end_layout
  10566. \end_inset
  10567. </cell>
  10568. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  10569. \begin_inset Text
  10570. \begin_layout Plain Layout
  10571. \series bold
  10572. No Globin Blocking
  10573. \end_layout
  10574. \end_inset
  10575. </cell>
  10576. <cell multicolumn="2" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10577. \begin_inset Text
  10578. \begin_layout Plain Layout
  10579. \end_layout
  10580. \end_inset
  10581. </cell>
  10582. <cell multicolumn="2" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  10583. \begin_inset Text
  10584. \begin_layout Plain Layout
  10585. \end_layout
  10586. \end_inset
  10587. </cell>
  10588. </row>
  10589. <row>
  10590. <cell alignment="center" valignment="top" usebox="none">
  10591. \begin_inset Text
  10592. \begin_layout Plain Layout
  10593. \end_layout
  10594. \end_inset
  10595. </cell>
  10596. <cell alignment="center" valignment="top" usebox="none">
  10597. \begin_inset Text
  10598. \begin_layout Plain Layout
  10599. \end_layout
  10600. \end_inset
  10601. </cell>
  10602. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10603. \begin_inset Text
  10604. \begin_layout Plain Layout
  10605. \series bold
  10606. Up
  10607. \end_layout
  10608. \end_inset
  10609. </cell>
  10610. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10611. \begin_inset Text
  10612. \begin_layout Plain Layout
  10613. \series bold
  10614. NS
  10615. \end_layout
  10616. \end_inset
  10617. </cell>
  10618. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  10619. \begin_inset Text
  10620. \begin_layout Plain Layout
  10621. \series bold
  10622. Down
  10623. \end_layout
  10624. \end_inset
  10625. </cell>
  10626. </row>
  10627. <row>
  10628. <cell multirow="3" alignment="center" valignment="middle" topline="true" bottomline="true" leftline="true" usebox="none">
  10629. \begin_inset Text
  10630. \begin_layout Plain Layout
  10631. \series bold
  10632. Globin-Blocking
  10633. \end_layout
  10634. \end_inset
  10635. </cell>
  10636. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10637. \begin_inset Text
  10638. \begin_layout Plain Layout
  10639. \series bold
  10640. Up
  10641. \end_layout
  10642. \end_inset
  10643. </cell>
  10644. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10645. \begin_inset Text
  10646. \begin_layout Plain Layout
  10647. \family roman
  10648. \series medium
  10649. \shape up
  10650. \size normal
  10651. \emph off
  10652. \bar no
  10653. \strikeout off
  10654. \xout off
  10655. \uuline off
  10656. \uwave off
  10657. \noun off
  10658. \color none
  10659. 231
  10660. \end_layout
  10661. \end_inset
  10662. </cell>
  10663. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10664. \begin_inset Text
  10665. \begin_layout Plain Layout
  10666. \family roman
  10667. \series medium
  10668. \shape up
  10669. \size normal
  10670. \emph off
  10671. \bar no
  10672. \strikeout off
  10673. \xout off
  10674. \uuline off
  10675. \uwave off
  10676. \noun off
  10677. \color none
  10678. 515
  10679. \end_layout
  10680. \end_inset
  10681. </cell>
  10682. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  10683. \begin_inset Text
  10684. \begin_layout Plain Layout
  10685. \family roman
  10686. \series medium
  10687. \shape up
  10688. \size normal
  10689. \emph off
  10690. \bar no
  10691. \strikeout off
  10692. \xout off
  10693. \uuline off
  10694. \uwave off
  10695. \noun off
  10696. \color none
  10697. 2
  10698. \end_layout
  10699. \end_inset
  10700. </cell>
  10701. </row>
  10702. <row>
  10703. <cell multirow="4" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10704. \begin_inset Text
  10705. \begin_layout Plain Layout
  10706. \end_layout
  10707. \end_inset
  10708. </cell>
  10709. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10710. \begin_inset Text
  10711. \begin_layout Plain Layout
  10712. \series bold
  10713. NS
  10714. \end_layout
  10715. \end_inset
  10716. </cell>
  10717. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10718. \begin_inset Text
  10719. \begin_layout Plain Layout
  10720. \family roman
  10721. \series medium
  10722. \shape up
  10723. \size normal
  10724. \emph off
  10725. \bar no
  10726. \strikeout off
  10727. \xout off
  10728. \uuline off
  10729. \uwave off
  10730. \noun off
  10731. \color none
  10732. 160
  10733. \end_layout
  10734. \end_inset
  10735. </cell>
  10736. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10737. \begin_inset Text
  10738. \begin_layout Plain Layout
  10739. \family roman
  10740. \series medium
  10741. \shape up
  10742. \size normal
  10743. \emph off
  10744. \bar no
  10745. \strikeout off
  10746. \xout off
  10747. \uuline off
  10748. \uwave off
  10749. \noun off
  10750. \color none
  10751. 11235
  10752. \end_layout
  10753. \end_inset
  10754. </cell>
  10755. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  10756. \begin_inset Text
  10757. \begin_layout Plain Layout
  10758. \family roman
  10759. \series medium
  10760. \shape up
  10761. \size normal
  10762. \emph off
  10763. \bar no
  10764. \strikeout off
  10765. \xout off
  10766. \uuline off
  10767. \uwave off
  10768. \noun off
  10769. \color none
  10770. 136
  10771. \end_layout
  10772. \end_inset
  10773. </cell>
  10774. </row>
  10775. <row>
  10776. <cell multirow="4" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10777. \begin_inset Text
  10778. \begin_layout Plain Layout
  10779. \end_layout
  10780. \end_inset
  10781. </cell>
  10782. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10783. \begin_inset Text
  10784. \begin_layout Plain Layout
  10785. \series bold
  10786. Down
  10787. \end_layout
  10788. \end_inset
  10789. </cell>
  10790. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10791. \begin_inset Text
  10792. \begin_layout Plain Layout
  10793. \family roman
  10794. \series medium
  10795. \shape up
  10796. \size normal
  10797. \emph off
  10798. \bar no
  10799. \strikeout off
  10800. \xout off
  10801. \uuline off
  10802. \uwave off
  10803. \noun off
  10804. \color none
  10805. 0
  10806. \end_layout
  10807. \end_inset
  10808. </cell>
  10809. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10810. \begin_inset Text
  10811. \begin_layout Plain Layout
  10812. \family roman
  10813. \series medium
  10814. \shape up
  10815. \size normal
  10816. \emph off
  10817. \bar no
  10818. \strikeout off
  10819. \xout off
  10820. \uuline off
  10821. \uwave off
  10822. \noun off
  10823. \color none
  10824. 548
  10825. \end_layout
  10826. \end_inset
  10827. </cell>
  10828. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  10829. \begin_inset Text
  10830. \begin_layout Plain Layout
  10831. \family roman
  10832. \series medium
  10833. \shape up
  10834. \size normal
  10835. \emph off
  10836. \bar no
  10837. \strikeout off
  10838. \xout off
  10839. \uuline off
  10840. \uwave off
  10841. \noun off
  10842. \color none
  10843. 127
  10844. \end_layout
  10845. \end_inset
  10846. </cell>
  10847. </row>
  10848. </lyxtabular>
  10849. \end_inset
  10850. \end_layout
  10851. \begin_layout Plain Layout
  10852. \begin_inset Caption Standard
  10853. \begin_layout Plain Layout
  10854. \series bold
  10855. \begin_inset Argument 1
  10856. status open
  10857. \begin_layout Plain Layout
  10858. Comparison of significantly differentially expressed genes with and without
  10859. globin blocking.
  10860. \end_layout
  10861. \end_inset
  10862. \begin_inset CommandInset label
  10863. LatexCommand label
  10864. name "tab:Comparison-of-significant"
  10865. \end_inset
  10866. Comparison of significantly differentially expressed genes with and without
  10867. globin blocking.
  10868. \series default
  10869. Up, Down: Genes significantly up/down-regulated in post-transplant samples
  10870. relative to pre-transplant samples, with a false discovery rate of 10%
  10871. or less.
  10872. NS: Non-significant genes (false discovery rate greater than 10%).
  10873. \end_layout
  10874. \end_inset
  10875. \end_layout
  10876. \begin_layout Plain Layout
  10877. \end_layout
  10878. \end_inset
  10879. \end_layout
  10880. \begin_layout Standard
  10881. To compare performance on differential gene expression tests, we took subsets
  10882. of both the GB and non-GB libraries with exactly one pre-transplant and
  10883. one post-transplant sample for each animal that had paired samples available
  10884. for analysis (N=7 animals, N=14 samples in each subset).
  10885. The same test for pre- vs.
  10886. post-transplant differential gene expression was performed on the same
  10887. 7 pairs of samples from GB libraries and non-GB libraries, in each case
  10888. using an FDR of 10% as the threshold of significance.
  10889. Out of 12954 genes that passed the detection threshold in both subsets,
  10890. 358 were called significantly differentially expressed in the same direction
  10891. in both sets; 1063 were differentially expressed in the GB set only; 296
  10892. were differentially expressed in the non-GB set only; 2 genes were called
  10893. significantly up in the GB set but significantly down in the non-GB set;
  10894. and the remaining 11235 were not called differentially expressed in either
  10895. set.
  10896. These data are summarized in Table
  10897. \begin_inset CommandInset ref
  10898. LatexCommand ref
  10899. reference "tab:Comparison-of-significant"
  10900. plural "false"
  10901. caps "false"
  10902. noprefix "false"
  10903. \end_inset
  10904. .
  10905. The differences in BCV calculated by EdgeR for these subsets of samples
  10906. were negligible (BCV = 0.302 for GB and 0.297 for non-GB).
  10907. \end_layout
  10908. \begin_layout Standard
  10909. The key point is that the GB data results in substantially more differentially
  10910. expressed calls than the non-GB data.
  10911. Since there is no gold standard for this dataset, it is impossible to be
  10912. certain whether this is due to under-calling of differential expression
  10913. in the non-GB samples or over-calling in the GB samples.
  10914. However, given that both datasets are derived from the same biological
  10915. samples and have nearly equal BCVs, it is more likely that the larger number
  10916. of DE calls in the GB samples are genuine detections that were enabled
  10917. by the higher sequencing depth and measurement precision of the GB samples.
  10918. Note that the same set of genes was considered in both subsets, so the
  10919. larger number of differentially expressed gene calls in the GB data set
  10920. reflects a greater sensitivity to detect significant differential gene
  10921. expression and not simply the larger total number of detected genes in
  10922. GB samples described earlier.
  10923. \end_layout
  10924. \begin_layout Section
  10925. Discussion
  10926. \end_layout
  10927. \begin_layout Standard
  10928. The original experience with whole blood gene expression profiling on DNA
  10929. microarrays demonstrated that the high concentration of globin transcripts
  10930. reduced the sensitivity to detect genes with relatively low expression
  10931. levels, in effect, significantly reducing the sensitivity.
  10932. To address this limitation, commercial protocols for globin reduction were
  10933. developed based on strategies to block globin transcript amplification
  10934. during labeling or physically removing globin transcripts by affinity bead
  10935. methods
  10936. \begin_inset CommandInset citation
  10937. LatexCommand cite
  10938. key "Winn2010"
  10939. literal "false"
  10940. \end_inset
  10941. .
  10942. More recently, using the latest generation of labeling protocols and arrays,
  10943. it was determined that globin reduction was no longer necessary to obtain
  10944. sufficient sensitivity to detect differential transcript expression
  10945. \begin_inset CommandInset citation
  10946. LatexCommand cite
  10947. key "NuGEN2010"
  10948. literal "false"
  10949. \end_inset
  10950. .
  10951. However, we are not aware of any publications using these currently available
  10952. protocols the with latest generation of microarrays that actually compare
  10953. the detection sensitivity with and without globin reduction.
  10954. However, in practice this has now been adopted generally primarily driven
  10955. by concerns for cost control.
  10956. The main objective of our work was to directly test the impact of globin
  10957. gene transcripts and a new globin blocking protocol for application to
  10958. the newest generation of differential gene expression profiling determined
  10959. using next generation sequencing.
  10960. \end_layout
  10961. \begin_layout Standard
  10962. The challenge of doing global gene expression profiling in cynomolgus monkeys
  10963. is that the current available arrays were never designed to comprehensively
  10964. cover this genome and have not been updated since the first assemblies
  10965. of the cynomolgus genome were published.
  10966. Therefore, we determined that the best strategy for peripheral blood profiling
  10967. was to do deep RNA-seq and inform the workflow using the latest available
  10968. genome assembly and annotation
  10969. \begin_inset CommandInset citation
  10970. LatexCommand cite
  10971. key "Wilson2013"
  10972. literal "false"
  10973. \end_inset
  10974. .
  10975. However, it was not immediately clear whether globin reduction was necessary
  10976. for RNA-seq or how much improvement in efficiency or sensitivity to detect
  10977. differential gene expression would be achieved for the added cost and work.
  10978. \end_layout
  10979. \begin_layout Standard
  10980. We only found one report that demonstrated that globin reduction significantly
  10981. improved the effective read yields for sequencing of human peripheral blood
  10982. cell RNA using a DeepSAGE protocol
  10983. \begin_inset CommandInset citation
  10984. LatexCommand cite
  10985. key "Mastrokolias2012"
  10986. literal "false"
  10987. \end_inset
  10988. .
  10989. The approach to DeepSAGE involves two different restriction enzymes that
  10990. purify and then tag small fragments of transcripts at specific locations
  10991. and thus, significantly reduces the complexity of the transcriptome.
  10992. Therefore, we could not determine how DeepSAGE results would translate
  10993. to the common strategy in the field for assaying the entire transcript
  10994. population by whole-transcriptome 3’-end RNA-seq.
  10995. Furthermore, if globin reduction is necessary, we also needed a globin
  10996. reduction method specific to cynomolgus globin sequences that would work
  10997. an organism for which no kit is available off the shelf.
  10998. \end_layout
  10999. \begin_layout Standard
  11000. As mentioned above, the addition of globin blocking oligos has a very small
  11001. impact on measured expression levels of gene expression.
  11002. However, this is a non-issue for the purposes of differential expression
  11003. testing, since a systematic change in a gene in all samples does not affect
  11004. relative expression levels between samples.
  11005. However, we must acknowledge that simple comparisons of gene expression
  11006. data obtained by GB and non-GB protocols are not possible without additional
  11007. normalization.
  11008. \end_layout
  11009. \begin_layout Standard
  11010. More importantly, globin blocking not only nearly doubles the yield of usable
  11011. reads, it also increases inter-sample correlation and sensitivity to detect
  11012. differential gene expression relative to the same set of samples profiled
  11013. without blocking.
  11014. In addition, globin blocking does not add a significant amount of random
  11015. noise to the data.
  11016. Globin blocking thus represents a cost-effective way to squeeze more data
  11017. and statistical power out of the same blood samples and the same amount
  11018. of sequencing.
  11019. In conclusion, globin reduction greatly increases the yield of useful RNA-seq
  11020. reads mapping to the rest of the genome, with minimal perturbations in
  11021. the relative levels of non-globin genes.
  11022. Based on these results, globin transcript reduction using sequence-specific,
  11023. complementary blocking oligonucleotides is recommended for all deep RNA-seq
  11024. of cynomolgus and other nonhuman primate blood samples.
  11025. \end_layout
  11026. \begin_layout Section
  11027. Future Directions
  11028. \end_layout
  11029. \begin_layout Standard
  11030. One drawback of the globin blocking method presented in this analysis is
  11031. a poor yield of genic reads, only around 50%.
  11032. In a separate experiment, the reagent mixture was modified so as to address
  11033. this drawback, resulting in a method that produces an even better reduction
  11034. in globin reads without reducing the overall fraction of genic reads.
  11035. However, the data showing this improvement consists of only a few test
  11036. samples, so the larger data set analyzed above was chosen in order to demonstra
  11037. te the effectiveness of the method in reducing globin reads while preserving
  11038. the biological signal.
  11039. \end_layout
  11040. \begin_layout Standard
  11041. The motivation for developing a fast practical way to enrich for non-globin
  11042. reads in cyno blood samples was to enable a large-scale RNA-seq experiment
  11043. investigating the effects of mesenchymal stem cell infusion on blood gene
  11044. expression in cynomologus transplant recipients in a time course after
  11045. transplantation.
  11046. With the globin blocking method in place, the way is now clear for this
  11047. experiment to proceed.
  11048. \end_layout
  11049. \begin_layout Chapter
  11050. Future Directions
  11051. \end_layout
  11052. \begin_layout Standard
  11053. \begin_inset Flex TODO Note (inline)
  11054. status open
  11055. \begin_layout Plain Layout
  11056. If there are any chapter-independent future directions, put them here.
  11057. Otherwise, delete this section.
  11058. Check in the directions if this is OK.
  11059. \end_layout
  11060. \end_inset
  11061. \end_layout
  11062. \begin_layout Standard
  11063. \begin_inset ERT
  11064. status collapsed
  11065. \begin_layout Plain Layout
  11066. % Use "References" as the title of the Bibliography
  11067. \end_layout
  11068. \begin_layout Plain Layout
  11069. \backslash
  11070. renewcommand{
  11071. \backslash
  11072. bibname}{References}
  11073. \end_layout
  11074. \end_inset
  11075. \end_layout
  11076. \begin_layout Standard
  11077. \begin_inset CommandInset bibtex
  11078. LatexCommand bibtex
  11079. btprint "btPrintCited"
  11080. bibfiles "code-refs,refs-PROCESSED"
  11081. options "bibtotoc,unsrt"
  11082. \end_inset
  11083. \end_layout
  11084. \begin_layout Standard
  11085. \begin_inset Flex TODO Note (inline)
  11086. status open
  11087. \begin_layout Plain Layout
  11088. Check bib entry formatting & sort order
  11089. \end_layout
  11090. \end_inset
  11091. \end_layout
  11092. \begin_layout Standard
  11093. \begin_inset Flex TODO Note (inline)
  11094. status open
  11095. \begin_layout Plain Layout
  11096. Check in-text citation format.
  11097. Probably don't just want [1], [2], etc.
  11098. \end_layout
  11099. \end_inset
  11100. \end_layout
  11101. \end_body
  11102. \end_document