thesis.lyx 337 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089
  1. #LyX 2.3 created this file. For more info see http://www.lyx.org/
  2. \lyxformat 544
  3. \begin_document
  4. \begin_header
  5. \save_transient_properties true
  6. \origin unavailable
  7. \textclass extbook
  8. \begin_preamble
  9. % List all used files in log output
  10. \listfiles
  11. % Add a DRAFT watermark
  12. \usepackage{draftwatermark}
  13. \usepackage{accsupp}
  14. \SetWatermarkLightness{0.97}
  15. \SetWatermarkScale{1}
  16. % Make watermark not copyable (in Adobe Reader)
  17. \SetWatermarkText{\BeginAccSupp{method=escape,ActualText={}}DRAFT\EndAccSupp{}}
  18. % Set up required header format
  19. \usepackage{fancyhdr}
  20. \pagestyle{fancy}
  21. \renewcommand{\headrulewidth}{0pt}
  22. \rhead{}
  23. \lhead{}
  24. \chead{}
  25. \rfoot{}
  26. \lfoot{}
  27. % Make page number not copyable (in Adobe Reader)
  28. \cfoot{\BeginAccSupp{method=escape,ActualText={}}\thepage\EndAccSupp{}} % Page number bottom center
  29. % Allow FloatBarrier command
  30. \usepackage{placeins}
  31. % Allow landscape pages
  32. \usepackage{pdflscape}
  33. % Allow doing things after the end of the current page
  34. % (to avoid landscape figures breaking up text)
  35. \usepackage{afterpage}
  36. % This one breaks subfigs so it's disabled
  37. % https://tex.stackexchange.com/questions/65680/automatically-bold-first-sentence-of-a-floats-caption
  38. \end_preamble
  39. \use_default_options true
  40. \begin_modules
  41. todonotes
  42. \end_modules
  43. \maintain_unincluded_children false
  44. \language english
  45. \language_package default
  46. \inputencoding utf8
  47. \fontencoding default
  48. \font_roman "default" "default"
  49. \font_sans "default" "default"
  50. \font_typewriter "default" "default"
  51. \font_math "auto" "auto"
  52. \font_default_family default
  53. \use_non_tex_fonts false
  54. \font_sc false
  55. \font_osf false
  56. \font_sf_scale 100 100
  57. \font_tt_scale 100 100
  58. \use_microtype false
  59. \use_dash_ligatures true
  60. \graphics default
  61. \default_output_format pdf4
  62. \output_sync 0
  63. \bibtex_command biber
  64. \index_command default
  65. \paperfontsize 12
  66. \spacing double
  67. \use_hyperref true
  68. \pdf_bookmarks true
  69. \pdf_bookmarksnumbered false
  70. \pdf_bookmarksopen false
  71. \pdf_bookmarksopenlevel 1
  72. \pdf_breaklinks false
  73. \pdf_pdfborder false
  74. \pdf_colorlinks false
  75. \pdf_backref false
  76. \pdf_pdfusetitle true
  77. \papersize letterpaper
  78. \use_geometry true
  79. \use_package amsmath 1
  80. \use_package amssymb 1
  81. \use_package cancel 1
  82. \use_package esint 1
  83. \use_package mathdots 1
  84. \use_package mathtools 1
  85. \use_package mhchem 1
  86. \use_package stackrel 1
  87. \use_package stmaryrd 1
  88. \use_package undertilde 1
  89. \cite_engine biblatex
  90. \cite_engine_type authoryear
  91. \biblio_style plain
  92. \biblatex_bibstyle authoryear
  93. \biblatex_citestyle numeric
  94. \use_bibtopic false
  95. \use_indices false
  96. \paperorientation portrait
  97. \suppress_date false
  98. \justification true
  99. \use_refstyle 1
  100. \use_minted 0
  101. \index Index
  102. \shortcut idx
  103. \color #008000
  104. \end_index
  105. \leftmargin 1.5in
  106. \topmargin 1in
  107. \rightmargin 1in
  108. \bottommargin 1in
  109. \secnumdepth 3
  110. \tocdepth 3
  111. \paragraph_separation indent
  112. \paragraph_indentation default
  113. \is_math_indent 0
  114. \math_numbering_side default
  115. \quotes_style english
  116. \dynamic_quotes 0
  117. \papercolumns 1
  118. \papersides 1
  119. \paperpagestyle default
  120. \tracking_changes false
  121. \output_changes false
  122. \html_math_output 0
  123. \html_css_as_file 0
  124. \html_be_strict false
  125. \end_header
  126. \begin_body
  127. \begin_layout Title
  128. Bioinformatic analysis of complex, high-throughput genomic and epigenomic
  129. data in the context of immunology and transplant rejection
  130. \end_layout
  131. \begin_layout Author
  132. A thesis presented
  133. \begin_inset Newline newline
  134. \end_inset
  135. by
  136. \begin_inset Newline newline
  137. \end_inset
  138. Ryan C.
  139. Thompson
  140. \begin_inset Newline newline
  141. \end_inset
  142. to
  143. \begin_inset Newline newline
  144. \end_inset
  145. The Scripps Research Institute Graduate Program
  146. \begin_inset Newline newline
  147. \end_inset
  148. in partial fulfillment of the requirements for the degree of
  149. \begin_inset Newline newline
  150. \end_inset
  151. Doctor of Philosophy in the subject of Biology
  152. \begin_inset Newline newline
  153. \end_inset
  154. for
  155. \begin_inset Newline newline
  156. \end_inset
  157. The Scripps Research Institute
  158. \begin_inset Newline newline
  159. \end_inset
  160. La Jolla, California
  161. \end_layout
  162. \begin_layout Date
  163. October 2019
  164. \end_layout
  165. \begin_layout Standard
  166. [Copyright notice]
  167. \end_layout
  168. \begin_layout Standard
  169. [Thesis acceptance form]
  170. \end_layout
  171. \begin_layout Standard
  172. [Dedication]
  173. \end_layout
  174. \begin_layout Standard
  175. [Acknowledgements]
  176. \end_layout
  177. \begin_layout Standard
  178. \begin_inset CommandInset toc
  179. LatexCommand tableofcontents
  180. \end_inset
  181. \end_layout
  182. \begin_layout Standard
  183. \begin_inset FloatList table
  184. \end_inset
  185. \end_layout
  186. \begin_layout Standard
  187. \begin_inset FloatList figure
  188. \end_inset
  189. \end_layout
  190. \begin_layout Standard
  191. [List of Abbreviations]
  192. \end_layout
  193. \begin_layout List of TODOs
  194. \end_layout
  195. \begin_layout Standard
  196. \begin_inset Flex TODO Note (inline)
  197. status open
  198. \begin_layout Plain Layout
  199. Check all figures to make sure they fit on the page with their legends.
  200. \end_layout
  201. \end_inset
  202. \end_layout
  203. \begin_layout Standard
  204. \begin_inset Flex TODO Note (inline)
  205. status open
  206. \begin_layout Plain Layout
  207. Search and replace: naive -> naïve
  208. \end_layout
  209. \end_inset
  210. \end_layout
  211. \begin_layout Standard
  212. \begin_inset Flex TODO Note (inline)
  213. status open
  214. \begin_layout Plain Layout
  215. Look into auto-generated nomenclature list: https://wiki.lyx.org/Tips/Nomenclature.
  216. Otherwise, do a manual pass for all abbreviations at the end.
  217. Do nomenclature/abbreviations independently for each chapter.
  218. \end_layout
  219. \end_inset
  220. \end_layout
  221. \begin_layout Standard
  222. \begin_inset Flex TODO Note (inline)
  223. status open
  224. \begin_layout Plain Layout
  225. Make all descriptions consistent in terms of
  226. \begin_inset Quotes eld
  227. \end_inset
  228. we did X
  229. \begin_inset Quotes erd
  230. \end_inset
  231. vs
  232. \begin_inset Quotes eld
  233. \end_inset
  234. I did X
  235. \begin_inset Quotes erd
  236. \end_inset
  237. vs
  238. \begin_inset Quotes eld
  239. \end_inset
  240. X was done
  241. \begin_inset Quotes erd
  242. \end_inset
  243. .
  244. \end_layout
  245. \end_inset
  246. \end_layout
  247. \begin_layout Chapter*
  248. Abstract
  249. \end_layout
  250. \begin_layout Standard
  251. \begin_inset Note Note
  252. status open
  253. \begin_layout Plain Layout
  254. It is included as an integral part of the thesis and should immediately
  255. precede the introduction.
  256. \end_layout
  257. \begin_layout Plain Layout
  258. Preparing your Abstract.
  259. Your abstract (a succinct description of your work) is limited to 350 words.
  260. UMI will shorten it if they must; please do not exceed the limit.
  261. \end_layout
  262. \begin_layout Itemize
  263. Include pertinent place names, names of persons (in full), and other proper
  264. nouns.
  265. These are useful in automated retrieval.
  266. \end_layout
  267. \begin_layout Itemize
  268. Display symbols, as well as foreign words and phrases, clearly and accurately.
  269. Include transliterations for characters other than Roman and Greek letters
  270. and Arabic numerals.
  271. Include accents and diacritical marks.
  272. \end_layout
  273. \begin_layout Itemize
  274. Do not include graphs, charts, tables, or illustrations in your abstract.
  275. \end_layout
  276. \end_inset
  277. \end_layout
  278. \begin_layout Standard
  279. \begin_inset Flex TODO Note (inline)
  280. status open
  281. \begin_layout Plain Layout
  282. Obviously the abstract gets written last.
  283. \end_layout
  284. \end_inset
  285. \end_layout
  286. \begin_layout Chapter*
  287. Notes to draft readers
  288. \end_layout
  289. \begin_layout Standard
  290. Thank you so much for agreeing to read my thesis and give me feedback on
  291. it.
  292. What you are currently reading is a rough draft, in need of many revisions.
  293. You can always find the latest version at
  294. \begin_inset CommandInset href
  295. LatexCommand href
  296. target "https://mneme.dedyn.io/~ryan/Thesis/thesis.pdf"
  297. literal "false"
  298. \end_inset
  299. .
  300. the PDF at this link is updated periodically with my latest revisions,
  301. but you can just download the current version and give me feedback on that.
  302. Don't worry about keeping up with the updates.
  303. \end_layout
  304. \begin_layout Standard
  305. As for what feedback I'm looking for, first of all, don't waste your time
  306. marking spelling mistakes and such.
  307. I haven't run a spell checker on it yet, so let me worry about that.
  308. However, if you see any glaring formatting issues, such as a figure being
  309. too large and getting cut off at the edge of the page, please note them.
  310. In addition, if any of the text in the figures is too small, please note
  311. that as well.
  312. \end_layout
  313. \begin_layout Standard
  314. Beyond that, what I'm mainly interested in is feedback on the content.
  315. For example: does the introduction flow logically, and does it provide
  316. enough background to understand the other chapters? Does each chapter make
  317. it clear what work and analyses I have done? Do the figures clearly communicate
  318. the results I'm trying to show? Do you feel that the claims in the results
  319. and discussion sections are well-supported? There's no need to suggest
  320. improvements; just note areas that you feel need improvement.
  321. Additionally, while I am well aware that Chapter 1 (the introduction) contains
  322. many un-cited claims, all the other chapters (2,3, and 4)
  323. \emph on
  324. should
  325. \emph default
  326. be fully cited.
  327. So if you notice any un-cited claims in those chapters, please flag them
  328. for my attention.
  329. Similarly, if you discover any factual errors, please note them as well.
  330. \end_layout
  331. \begin_layout Standard
  332. You can provide your feedback in whatever way is most convenient to you.
  333. You could mark up this PDF with highlights and notes, then send it back
  334. to me.
  335. Or you could collect your comments in a separate text file and send that
  336. to me, or whatever else you like.
  337. However, if you send me your feedback in a separate document, please note
  338. a section/figure/table number for each comment, and
  339. \emph on
  340. also
  341. \emph default
  342. send me the exact PDF that you read so I can reference it while reading
  343. your comments, since as mentioned above, the current version I'm working
  344. on will have changed by that point (which might include shuffling sections
  345. and figures around, changing their numbers).
  346. One last thing: you'll see a bunch of text in orange boxes throughout the
  347. PDF.
  348. These are notes to myself about things that need to be fixed later, so
  349. if you see a problem noted in an orange box, that means I'm already aware
  350. of it, and there's no need to comment on it.
  351. \end_layout
  352. \begin_layout Standard
  353. My thesis is due Thursday, October 10th, so in order to be useful to me,
  354. I'll need your feedback at least a few days before that, ideally by Monday,
  355. October 7th.
  356. If you have limited time and are unable to get through the whole thesis,
  357. please focus your effors on Chapters 1 and 2, since those are the roughest
  358. and most in need of revision.
  359. Chapter 3 is fairly short and straightforward, and Chapter 4 is an adaptation
  360. of a paper that's already been through a few rounds of revision, so they
  361. should be a lot tighter.
  362. If you can't spare any time between now and then, or if something unexpected
  363. comes up, I understand.
  364. Just let me know.
  365. \end_layout
  366. \begin_layout Standard
  367. Thanks again for your help, and happy reading!
  368. \end_layout
  369. \begin_layout Chapter
  370. Introduction
  371. \end_layout
  372. \begin_layout Section
  373. Background & Significance
  374. \end_layout
  375. \begin_layout Subsection
  376. Biological motivation
  377. \end_layout
  378. \begin_layout Standard
  379. \begin_inset Flex TODO Note (inline)
  380. status open
  381. \begin_layout Plain Layout
  382. Rethink the subsection organization after the intro is written.
  383. \end_layout
  384. \end_inset
  385. \end_layout
  386. \begin_layout Standard
  387. \begin_inset Flex TODO Note (inline)
  388. status open
  389. \begin_layout Plain Layout
  390. Citations are needed all over the place.
  391. A lot of this is knowledge I've just absorbed from years of conversation
  392. in the Salomon lab, without ever having seen a citation for it.
  393. \end_layout
  394. \end_inset
  395. \end_layout
  396. \begin_layout Subsubsection
  397. Rejection is the major long-term threat to organ and tissue allografts
  398. \end_layout
  399. \begin_layout Standard
  400. Organ and tissue transplants are a life-saving treatment for people who
  401. have lost the function of an important organ.
  402. In some cases, it is possible to transplant a patient's own tissue from
  403. one area of their body to another, referred to as an autograft.
  404. This is common for tissues that are distributed throughout many areas of
  405. the body, such as skin and bone.
  406. However, in cases of organ failure, there is no functional self tissue
  407. remaining, and a transplant from another person – the donor – is required.
  408. This is referred to as an allograft.
  409. \end_layout
  410. \begin_layout Standard
  411. \begin_inset Flex TODO Note (inline)
  412. status open
  413. \begin_layout Plain Layout
  414. Possible citation for degree of generic variability: https://www.ncbi.nlm.nih.gov/pu
  415. bmed/22424236?dopt=Abstract
  416. \end_layout
  417. \end_inset
  418. \end_layout
  419. \begin_layout Standard
  420. \begin_inset Flex TODO Note (inline)
  421. status open
  422. \begin_layout Plain Layout
  423. How much mechanistic detail is needed here? My work doesn't really go into
  424. specific rejection mechanisms, so I think it's best to keep it basic.
  425. \end_layout
  426. \end_inset
  427. \end_layout
  428. \begin_layout Standard
  429. Because an allograft comes from a different person, it is genetically distinct
  430. from the rest of the recipient's body.
  431. Some genetic variants occur in protein coding regions, resulting in protein
  432. products that differ from the equivalent proteins in the graft recipient's
  433. own tissue.
  434. As a result, without intervention, the recipient's immune system will eventuall
  435. y identify the graft as foreign tissue and begin attacking it, eventually
  436. resulting in failure and death of the graft, a process referred to as transplan
  437. t rejection.
  438. Rejection is the most significant challenge to the long-term health of
  439. an allograft.
  440. Like any adaptive immune response, graft rejection generally occurs via
  441. two broad mechanisms: cellular immunity, in which CD8+ T-cells induce apoptosis
  442. in the graft cells; and humoral immunity, in which B-cells produce antibodies
  443. that bind to graft proteins and direct an immune response against the graft.
  444. In either case, rejection shows most of the typical hallmarks of an adaptive
  445. immune response, in particular mediation by CD4+ T-cells and formation
  446. of immune memory.
  447. \end_layout
  448. \begin_layout Subsubsection
  449. Diagnosis and treatment of allograft rejection is a major challenge
  450. \end_layout
  451. \begin_layout Standard
  452. To prevent rejection, allograft recipients are treated with immune suppression.
  453. The goal is to achieve sufficient suppression of the immune system to prevent
  454. rejection of the graft without compromising the ability of the immune system
  455. to raise a normal response against infection.
  456. As such, a delicate balance must be struck: insufficient immune suppression
  457. may lead to rejection and ultimately loss of the graft; exceissive suppression
  458. leaves the patient vulnerable to life-threatening opportunistic infections.
  459. Because every patient is different, immune suppression must be tailored
  460. for each patient.
  461. Furthermore, immune suppression must be tuned over time, as the immune
  462. system's activity is not static, nor is it held in a steady state.
  463. In order to properly adjust the dosage of immune suppression drugs, it
  464. is necessary to monitor the health of the transplant and increase the dosage
  465. if evidence of rejection is observed.
  466. \end_layout
  467. \begin_layout Standard
  468. However, diagnosis of rejection is a significant challenge.
  469. Early diagnosis is essential in order to step up immune suppression before
  470. the immune system damages the graft beyond recovery.
  471. The current gold standard test for graft rejection is a tissue biopsy,
  472. examained for visible signs of rejection by a trained histologist.
  473. When a patient shows symptoms of possible rejection, a
  474. \begin_inset Quotes eld
  475. \end_inset
  476. for cause
  477. \begin_inset Quotes erd
  478. \end_inset
  479. biopsy is performed to confirm the diagnosis, and immune suppression is
  480. adjusted as necessary.
  481. However, in many cases, the early stages of rejection are asymptomatic,
  482. known as
  483. \begin_inset Quotes eld
  484. \end_inset
  485. sub-clinical
  486. \begin_inset Quotes erd
  487. \end_inset
  488. rejection.
  489. In light of this, is is now common to perform
  490. \begin_inset Quotes eld
  491. \end_inset
  492. protocol biopsies
  493. \begin_inset Quotes erd
  494. \end_inset
  495. at specific times after transplantation of a graft, even if no symptoms
  496. of rejection are apparent, in addition to
  497. \begin_inset Quotes eld
  498. \end_inset
  499. for cause
  500. \begin_inset Quotes erd
  501. \end_inset
  502. biopsies
  503. \begin_inset CommandInset citation
  504. LatexCommand cite
  505. key "Wilkinson2006"
  506. literal "false"
  507. \end_inset
  508. .
  509. \end_layout
  510. \begin_layout Standard
  511. However, biopsies have a number of downsides that limit their effectiveness
  512. as a diagnostic tool.
  513. First, the need for manual inspection by a histologist means that diagnosis
  514. is subject to the biases of the particular histologist examining the biopsy.
  515. In marginal cases two different histologists may give two different diagnoses
  516. to the same biopsy.
  517. Second, a biopsy can only evaluate if rejection is occurring in the section
  518. of the graft from which the tissue was extracted.
  519. If rejection is only occurring in one section of the graft and the tissue
  520. is extracted from a different section, it may result in a false negative
  521. diagnosis.
  522. Most importantly, however, extraction of tissue from a graft is invasive
  523. and is treated as an injury by the body, which results in inflammation
  524. that in turn promotes increased immune system activity.
  525. Hence, the invasiveness of biopsies severely limits the frequency with
  526. which the can safely be performed.
  527. Typically protocol biopsies are not scheduled more than about once per
  528. month
  529. \begin_inset CommandInset citation
  530. LatexCommand cite
  531. key "Wilkinson2006"
  532. literal "false"
  533. \end_inset
  534. .
  535. A less invasive diagnostic test for rejection would bring manifold benefits.
  536. Such a test would enable more frequent testing and therefore earlier detection
  537. of rejection events.
  538. In addition, having a larger pool of historical data for a given patient
  539. would make it easier to evaluate when a given test is outside the normal
  540. parameters for that specific patient, rather than relying on normal ranges
  541. for the population as a whole.
  542. Lastly, more frequent tests would be a boon to the transplant research
  543. community.
  544. Beyond simply providing more data, the increased time granularity of the
  545. tests will enable studying the progression of a rejection event on the
  546. scale of days to weeks, rather than months.
  547. \end_layout
  548. \begin_layout Subsubsection
  549. Memory cells are resistant to immune suppression
  550. \end_layout
  551. \begin_layout Standard
  552. One of the defining features of the adaptive immune system is immune memory:
  553. the ability of the immune system to recognize a previously encountered
  554. foreign antigen and respond more quickly and more strongly to that antigen
  555. in subsequent encounters.
  556. When the immune system first encounters a new antigen, the lymphocytes
  557. that respond are known as naive cells – T-cells and B-cells that have never
  558. detected their target antigens before.
  559. Once activated by their specific antigen presented by an antigen-presenting
  560. cell in the proper co-stimulatory context, naive cells differentiate into
  561. effector cells that carry out their respective functions in targeting and
  562. destroying the source of the foreign antigen.
  563. The requirement for co-stimulation is an important feature of naive cells
  564. that limits
  565. \begin_inset Quotes eld
  566. \end_inset
  567. false positive
  568. \begin_inset Quotes erd
  569. \end_inset
  570. immune responses, because antigen-presenting cells usually only express
  571. the proper co-stimulation after detecting evidence of an infection, such
  572. as the presence of common bacterial cell components or inflamed tissue.
  573. Most effector cells die after the foreign antigen is cleared, but some
  574. remain and differentiate into memory cells.
  575. Like naive cells, memory cells respond to detection of their specific antigen
  576. by differentiating into effector cells, ready to fight an infection.
  577. However, unlike naive cells, memory cells do not require the same degree
  578. of co-stimulatory signaling for activation, and once activated, they proliferat
  579. e and differentiate into effector cells more quickly than naive cells do.
  580. \end_layout
  581. \begin_layout Standard
  582. In the context of a pathogenic infection, immune memory is a major advantage,
  583. allowing an organism to rapidly fight off a previously encountered pathogen
  584. much more quickly and effectively than the first time it was encountered.
  585. However, if effector cells that recognize an antigen from an allograft
  586. are allowed to differentiate into memory cells, suppressing rejection of
  587. the graft becomes much more difficult.
  588. Many immune suppression drugs work by interfering with the co-stimulation
  589. that naive cells require in order to mount an immune response.
  590. Since memory cells do not require this co-stimulation, these drugs are
  591. not effective at suppressing an immune response that is mediated by memory
  592. cells.
  593. Secondly, because memory cells are able to mount a stronger and faster
  594. response to an antigen, all else being equal they require stronger immune
  595. suppression than naive cells to prevent an immune response.
  596. However, immune suppression affects the entire immune system, not just
  597. cells recognizing a specific antigen, so increasing the dosage of immune
  598. suppression drugs also increases the risk of complications from a compromised
  599. immune system, such as opportunistic infections.
  600. While the differences in cell surface markers between naive and memory
  601. cells have been fairly well characterized, the internal regulatory mechanisms
  602. that allow memory cells to respond more quickly and without co-stimulation
  603. are still poorly understood.
  604. In order to develop immune suppression that either prevents the formation
  605. of memory cells or works more effectively against memory cells, the mechanisms
  606. of immune memory formation and regulation must be better understood.
  607. \end_layout
  608. \begin_layout Subsection
  609. Overview of bioinformatic analysis methods
  610. \end_layout
  611. \begin_layout Standard
  612. The studies presented in this work all involve the analysis of high-throughput
  613. genomic and epigenomic data.
  614. These data present many unique analysis challenges, and a wide array of
  615. software tools are available to analyze them.
  616. This section presents an overview of the methods used, including what problems
  617. they solve, what assumptions they make, and a basic description of how
  618. they work.
  619. \end_layout
  620. \begin_layout Standard
  621. \begin_inset Flex TODO Note (inline)
  622. status open
  623. \begin_layout Plain Layout
  624. Many of these points may also be addressed in the approach/methods sections
  625. of the following chapters? Redundant?
  626. \end_layout
  627. \end_inset
  628. \end_layout
  629. \begin_layout Subsubsection
  630. Limma: The standard linear modeling framework for genomics
  631. \end_layout
  632. \begin_layout Standard
  633. Linear models are a generalization of the
  634. \begin_inset Formula $t$
  635. \end_inset
  636. -test and ANOVA to arbitrarily complex experimental designs.
  637. In a typical linear model, there is one dependent variable observation
  638. per sample.
  639. For example, in a linear model of height as a function of age and sex,
  640. there is one height measurement per person.
  641. However, when analyzing genomic data, each sample consists of observations
  642. of thousands of dependent variables.
  643. For example, in an RNA-seq experiment, the dependent variables may be the
  644. count of RNA-seq reads for each annotated gene.
  645. In abstract terms, each dependent variable being measured is referred to
  646. as a feature.
  647. The simplest approach to analyzing such data would be to fit the same model
  648. independently to each feature.
  649. However, this is undesirable for most genomics data sets.
  650. Genomics assays like high-throughput sequencing are expensive, and often
  651. generating the samples is also quite expensive and time-consuming.
  652. This expense limits the sample sizes typically employed in genomics experiments
  653. , and as a result the statistical power of each individual feature's linear
  654. model is likewise limited.
  655. However, because thousands of features from the same samples are analyzed
  656. together, there is an opportunity to improve the statistical power of the
  657. analysis by exploiting shared patterns of variation across features.
  658. This is the core feature of limma, a linear modeling framework designed
  659. for genomic data.
  660. Limma is typically used to analyze expression microarray data, and more
  661. recently RNA-seq data, but it can also be used to analyze any other data
  662. for which linear modeling is appropriate.
  663. \end_layout
  664. \begin_layout Standard
  665. The central challenge when fitting a linear model is to estimate the variance
  666. of the data accurately.
  667. This quantity is the most difficult to estimate when sample sizes are small.
  668. A single shared variance could be estimated for all of the features together,
  669. and this estimate would be very stable, in contrast to the individual feature
  670. variance estimates.
  671. However, this would require the assumption that every feature is equally
  672. variable, which is known to be false for most genomic data sets.
  673. Limma offers a compromise between these two extremes by using a method
  674. called empirical Bayes moderation to
  675. \begin_inset Quotes eld
  676. \end_inset
  677. squeeze
  678. \begin_inset Quotes erd
  679. \end_inset
  680. the distribution of estimated variances toward a single common value that
  681. represents the variance of an average feature in the data
  682. \begin_inset CommandInset citation
  683. LatexCommand cite
  684. key "Smyth2004"
  685. literal "false"
  686. \end_inset
  687. .
  688. While the individual feature variance estimates are not stable, the common
  689. variance estiamate for the entire data set is quite stable, so using a
  690. combination of the two yields a variance estimate for each feature with
  691. greater precision than the individual feature varaiances.
  692. The trade-off for this improvement is that squeezing each estimated variance
  693. toward the common value introduces some bias – the variance will be underestima
  694. ted for features with high variance and overestimated for features with
  695. low variance.
  696. Essentially, limma assumes that extreme variances are less common than
  697. variances close to the common value.
  698. The variance estimates from this empirical Bayes procedure are shown empiricall
  699. y to yield greater statistical power than either the individual feature
  700. variances or the single common value.
  701. \end_layout
  702. \begin_layout Standard
  703. On top of this core framework, limma also implements many other enhancements
  704. that, further relax the assumptions of the model and extend the scope of
  705. what kinds of data it can analyze.
  706. Instead of squeezing toward a single common variance value, limma can model
  707. the common variance as a function of a covariate, such as average expression
  708. \begin_inset CommandInset citation
  709. LatexCommand cite
  710. key "Law2013"
  711. literal "false"
  712. \end_inset
  713. .
  714. This is essential for RNA-seq data, where higher gene counts yield more
  715. precise expression measurements and therefore smaller variances than low-count
  716. genes.
  717. While linear models typically assume that all samples have equal variance,
  718. limma is able to relax this assumption by identifying and down-weighting
  719. samples the diverge more strongly from the lienar model across many features
  720. \begin_inset CommandInset citation
  721. LatexCommand cite
  722. key "Ritchie2006,Liu2015"
  723. literal "false"
  724. \end_inset
  725. .
  726. In addition, limma is also able to fit simple mixed models incorporating
  727. one random effect in addition to the fixed effects represented by an ordinary
  728. linear model
  729. \begin_inset CommandInset citation
  730. LatexCommand cite
  731. key "Smyth2005a"
  732. literal "false"
  733. \end_inset
  734. .
  735. Once again, limma shares information between features to obtain a robust
  736. estimate for the random effect correlation.
  737. \end_layout
  738. \begin_layout Subsubsection
  739. edgeR provides limma-like analysis features for count data
  740. \end_layout
  741. \begin_layout Standard
  742. Although limma can be applied to read counts from RNA-seq data, it is less
  743. suitable for counts from ChIP-seq data, which tend to be much smaller and
  744. therefore violate the assumption of a normal distribution more severely.
  745. For all count-based data, the edgeR package works similarly to limma, but
  746. uses a generalized linear model instead of a linear model.
  747. The most important difference is that the GLM in edgeR models the counts
  748. directly using a negative binomial distribution rather than modeling the
  749. normalized log counts using a normal distribution
  750. \begin_inset CommandInset citation
  751. LatexCommand cite
  752. key "Chen2014,McCarthy2012,Robinson2010a"
  753. literal "false"
  754. \end_inset
  755. .
  756. The negative binomial is a good fit for count data because it can be derived
  757. as a gamma-distributed mixture of Poisson distributions.
  758. The Poisson distribution accurately represents the distribution of counts
  759. expected for a given gene abundance, and the gamma distribution is then
  760. used to represent the variation in gene abundance between biological replicates.
  761. For this reason, the square root of the dispersion paramter of the negative
  762. binomial is sometimes referred to as the biological coefficient of variation,
  763. since it represents the variability that was present in the samples prior
  764. to the Poisson
  765. \begin_inset Quotes eld
  766. \end_inset
  767. noise
  768. \begin_inset Quotes erd
  769. \end_inset
  770. that was generated by the random sampling of reads in proportion to feature
  771. abundances.
  772. The choice of a gamma distribution is arbitrary and motivated by mathematical
  773. convenience, since a gamma-Poisson mixture yields the numerically tractable
  774. negative binomial distribution.
  775. Thus, edgeR assumes
  776. \emph on
  777. a prioi
  778. \emph default
  779. that the variation in abundances between replicates follows a gamma distribution.
  780. For differential abundance testing, edgeR offers a likelihood ratio test,
  781. but more recently recommends a quasi-likelihood test that properly factors
  782. the uncertainty in variance estimation into the statistical significance
  783. for each feature
  784. \begin_inset CommandInset citation
  785. LatexCommand cite
  786. key "Lund2012"
  787. literal "false"
  788. \end_inset
  789. .
  790. \end_layout
  791. \begin_layout Subsubsection
  792. ChIP-seq Peak calling
  793. \end_layout
  794. \begin_layout Standard
  795. Unlike RNA-seq data, in which gene annotations provide a well-defined set
  796. of genomic regions in which to count reads, ChIP-seq data can potentially
  797. occur anywhere in the genome.
  798. However, most genome regions will not contain significant ChIP-seq read
  799. coverage, and analyzing every position in the entire genome is statistically
  800. and computationally infeasible, so it is necesary to identify regions of
  801. interest inside which ChIP-seq reads will be counted and analyzed.
  802. One option is to define a set of interesting regions
  803. \emph on
  804. a priori
  805. \emph default
  806. , for example by defining a promoter region for each annotated gene.
  807. However, it is also possible to use the ChIP-seq data itself to identify
  808. regions with ChIP-seq read coverage significantly above the background
  809. level, known as peaks.
  810. \end_layout
  811. \begin_layout Standard
  812. There are generally two kinds of peaks that can be identified: narrow peaks
  813. and broadly enriched regions.
  814. Proteins like transcription factors that bind specific sites in the genome
  815. typically show most of their read coverage at these specific sites and
  816. very little coverage anywhere else.
  817. Because the footprint of the protein is consistent wherever it binds, each
  818. peak has a consistent size, typically tens to hundreds of base pairs.
  819. Algorithms like MACS exploit this pattern to identify specific loci at
  820. which such
  821. \begin_inset Quotes eld
  822. \end_inset
  823. narrow peaks
  824. \begin_inset Quotes erd
  825. \end_inset
  826. occur by looking for the characteristic peak shape in the ChIP-seq coverage
  827. rising above the surrounding background coverage
  828. \begin_inset CommandInset citation
  829. LatexCommand cite
  830. key "Zhang2008"
  831. literal "false"
  832. \end_inset
  833. .
  834. In contrast, some proteins, chief among them histones, do not bind only
  835. at a small number of specific sites, but rather bind potentailly almost
  836. everywhere in the entire genome.
  837. When looking at histone marks, adjacent histones tend to be similarly marked,
  838. and a given mark may be present on an arbitrary number of consecutive histones
  839. along the genome.
  840. Hence, there is no consistent
  841. \begin_inset Quotes eld
  842. \end_inset
  843. footprint size
  844. \begin_inset Quotes erd
  845. \end_inset
  846. for ChIP-seq peaks based on histone marks, and peaks typically span many
  847. histones.
  848. Hence, typical peaks span many hundreds or even thousands of base pairs.
  849. Instead of identifying specific loci of strong enrichment, algorithms like
  850. SICER assume that peaks are represented in the ChIP-seq data by modest
  851. enrichment above background occurring across broad regions, and they attempt
  852. to identify the extent of those regions
  853. \begin_inset CommandInset citation
  854. LatexCommand cite
  855. key "Zang2009"
  856. literal "false"
  857. \end_inset
  858. .
  859. In all cases, better results are obtained if the local background coverage
  860. level can be estimated from ChIP-seq input samples, since various biases
  861. can result in uneven background coverage.
  862. \end_layout
  863. \begin_layout Standard
  864. Regardless of the type of peak identified, it is important to identify peaks
  865. that occur consistently across biological replicates.
  866. The ENCODE project has developed a method called irreproducible discovery
  867. rate for this purpose
  868. \begin_inset CommandInset citation
  869. LatexCommand cite
  870. key "Li2006"
  871. literal "false"
  872. \end_inset
  873. .
  874. The IDR is defined as the probability that a peak identified in one biological
  875. replicate will
  876. \emph on
  877. not
  878. \emph default
  879. also be identified in a second replicate.
  880. Where the more familiar false discovery rate measures the degree of corresponde
  881. nce between a data-derived ranked list and the true list of significant
  882. features, IDR instead measures the degree of correspondence between two
  883. ranked lists derived from different data.
  884. IDR assumes that the highest-ranked features are
  885. \begin_inset Quotes eld
  886. \end_inset
  887. signal
  888. \begin_inset Quotes erd
  889. \end_inset
  890. peaks that tend to be listed in the same order in both lists, while the
  891. lowest-ranked features are essentially noise peaks, listed in random order
  892. with no correspondence between the lists.
  893. IDR attempts to locate the
  894. \begin_inset Quotes eld
  895. \end_inset
  896. crossover point
  897. \begin_inset Quotes erd
  898. \end_inset
  899. between the signal and the noise by determining how for down the list the
  900. correspondence between feature ranks breaks down.
  901. \end_layout
  902. \begin_layout Standard
  903. In addition to other considerations, if called peaks are to be used as regions
  904. of interest for differential abundance analysis, then care must be taken
  905. to call peaks in a way that is blind to differential abundance between
  906. experimental conditions, or else the statistical significance calculations
  907. for differential abundance will overstate their confidence in the results.
  908. The csaw package provides guidelines for calling peaks in this way: peaks
  909. are called based on a combination of all ChIP-seq reads from all experimental
  910. conditions, so that the identified peaks are based on the average abundance
  911. across all conditions, which is independent of any differential abundance
  912. between condtions
  913. \begin_inset CommandInset citation
  914. LatexCommand cite
  915. key "Lun2015a"
  916. literal "false"
  917. \end_inset
  918. .
  919. \end_layout
  920. \begin_layout Subsubsection
  921. Normalization of high-throughput data is non-trivial and application-dependant
  922. \end_layout
  923. \begin_layout Standard
  924. High-throughput data sets invariable require some kind of normalization
  925. before further analysis can be conducted.
  926. In general, the goal of normalization is to remove effects in the data
  927. that are caused by technical factors that have nothing to do with the biology
  928. being studied.
  929. \end_layout
  930. \begin_layout Standard
  931. For Affymetrix expression arrays, the standard normalization algorithm used
  932. in most analyses is Robust Multichip Average (RMA).
  933. RMA is designed with the assumption that some fraction of probes on each
  934. array will be artifactual and takes advantage of the fact that each gene
  935. is represented by multiple probes by implementing normalization and summarizati
  936. on steps that are robust against outlier probes.
  937. However, RMA uses the probe intensities of all arrays in the data set in
  938. the normalization of each individual array, meaning that the normalized
  939. expression values in each array depend on every array in the data set,
  940. and will necessarily change each time an array is added or removed from
  941. the data set.
  942. If this is undesirable, frozen RMA implements a variant of RMA where the
  943. relevant distributional parameters are learned from a large reference set
  944. of diverse public array data sets and then
  945. \begin_inset Quotes eld
  946. \end_inset
  947. frozen
  948. \begin_inset Quotes erd
  949. \end_inset
  950. , so that each array is effectively normalized against this frozen reference
  951. set rather than the other arrays in the data set under study.
  952. \end_layout
  953. \begin_layout Standard
  954. In contrast, high-throughput sequencing data present very different normalizatio
  955. n challenges.
  956. The simplest case is RNA-seq in which read counts are obtained for a set
  957. of gene annotations, yielding a matrix of counts with rows representing
  958. genes and columns representing samples.
  959. Because RNA-seq approximates a process of sampling from a population with
  960. replacement, each gene's count is only interpretable as a fraction of the
  961. total reads for that sample.
  962. For that reason, RNA-seq abundances are often reported as counts per million
  963. (CPM).
  964. Furthermore, if the abundance of a single gene increases, then in order
  965. for its fraction of the total reads to increase, all other genes' fractions
  966. must decrease to accomodate it.
  967. This effect is known as composition bias, and it is an artifact of the
  968. read sampling process that has nothing to do with the biology of the samples
  969. and must therefore be normalized out.
  970. The most commonly used methods to normalize for composition bias in RNA-seq
  971. data seek to equalize the average gene abundance across samples, under
  972. the assumption that the average gene is likely not changing
  973. \begin_inset CommandInset citation
  974. LatexCommand cite
  975. key "Robinson2010,Anders2010"
  976. literal "false"
  977. \end_inset
  978. .
  979. \end_layout
  980. \begin_layout Standard
  981. In ChIP-seq data, normalization is not as straightforward.
  982. The csaw package implements several different normalization strategies
  983. and provides guidance on when to use each one
  984. \begin_inset CommandInset citation
  985. LatexCommand cite
  986. key "Lun2015a"
  987. literal "false"
  988. \end_inset
  989. .
  990. Briefly, a typical ChIP-seq sample has a bimodal distribution of read counts:
  991. a low-abundance mode representing background regions and a high-abundance
  992. mode representing signal regions.
  993. This offers two potential normalization targets: equalizing background
  994. coverage or equalizing signal coverage.
  995. If the experiment is well controlled and ChIP efficiency is known to be
  996. consistent across all samples, then normalizing the background coverage
  997. to be equal across all samples is a reasonable strategy.
  998. If this is not a safe assumption, then the preferred strategy is to normalize
  999. the signal regions in a way similar to RNA-seq data by assuming that the
  1000. average signal region is not changing abundance between samples.
  1001. Beyond this, if a ChIP-seq experiment has a more complicated structure
  1002. that doesn't show the typical bimodal count distribution, it may be necessary
  1003. to implement a normalization as a smooth function of abundance.
  1004. However, this strategy makes a much stronger assumption about the data:
  1005. that the average log fold change is zero across all abundance levels.
  1006. Hence, the simpler scaling normalziations based on background or signal
  1007. regions are generally preferred whenever possible.
  1008. \end_layout
  1009. \begin_layout Subsubsection
  1010. ComBat and SVA for correction of known and unknown batch effects
  1011. \end_layout
  1012. \begin_layout Standard
  1013. In addition to well-understood effects that can be easily normalized out,
  1014. a data set often contains confounding biological effects that must be accounted
  1015. for in the modeling step.
  1016. For instance, in an experiment with pre-treatment and post-treatment samples
  1017. of cells from several different donors, donor variability represents a
  1018. known batch effect.
  1019. The most straightforward correction for known batches is to estimate the
  1020. mean for each batch independently and subtract out the differences, so
  1021. that all batches have identical means for each feature.
  1022. However, as with variance estimation, estimating the differences in batch
  1023. means is not necessarily robust at the feature level, so the ComBat method
  1024. adds empirical Bayes squeezing of the batch mean differences toward a common
  1025. value, analogous to limma's empirical Bayes squeezing of feature variance
  1026. estimates
  1027. \begin_inset CommandInset citation
  1028. LatexCommand cite
  1029. key "Johnson2007"
  1030. literal "false"
  1031. \end_inset
  1032. .
  1033. Effectively, ComBat assumes that modest differences between batch means
  1034. are real batch effects, but extreme differences between batch means are
  1035. more likely to be the result of outlier observations that happen to line
  1036. up with the batches rather than a genuine batch effect.
  1037. The result is a batch correction that is more robust against outliers than
  1038. simple subtraction of mean differences subtraction.
  1039. \end_layout
  1040. \begin_layout Standard
  1041. In some data sets, unknown batch effects may be present due to inherent
  1042. variability in in the data, either caused by technical or biological effects.
  1043. Examples of unknown batch effects include variations in enrichment efficiency
  1044. between ChIP-seq samples, variations in populations of different cell types,
  1045. and the effects of uncontrolled environmental factors on gene expression
  1046. in humans or live animals.
  1047. In an ordinary linear model context, unknown batch effects cannot be inferred
  1048. and must be treated as random noise.
  1049. However, in high-throughput experiments, once again information can be
  1050. shared across features to identify patterns of un-modeled variation that
  1051. are repeated in many features.
  1052. One attractive strategy would be to perform singular value decomposition
  1053. (SVD) on the matrix os linear model residuals (which contain all the un-modeled
  1054. variation in the data) and take the first few singular vectors as batch
  1055. effects.
  1056. While this can be effective, it makes the unreasonable assumption that
  1057. all batch effects are uncorrelated with any of the effects being modeled.
  1058. Surrogate variable analysis (SVA) starts with this approach, but takes
  1059. some additional steps to identify batch effects in the full data that are
  1060. both highly correlated with the singular vectors in the residuals and least
  1061. correlated with the effects of interest
  1062. \begin_inset CommandInset citation
  1063. LatexCommand cite
  1064. key "Leek2007"
  1065. literal "false"
  1066. \end_inset
  1067. .
  1068. Since the final batch effects are estimated from the full data, moderate
  1069. correlations between the batch effects and effects of interest are allowed,
  1070. which gives SVA much more freedom to estimate the true extent of the batch
  1071. effects compared to simple residual SVD.
  1072. Once the surrogate variables are estimated, they can be included as coefficient
  1073. s in the linear model in a similar fashion to known batch effects in order
  1074. to subtract out their effects on each feature's abundance.
  1075. \end_layout
  1076. \begin_layout Subsubsection
  1077. Factor analysis: PCA, MDS, MOFA
  1078. \end_layout
  1079. \begin_layout Standard
  1080. \begin_inset Flex TODO Note (inline)
  1081. status open
  1082. \begin_layout Plain Layout
  1083. Not sure if this merits a subsection here.
  1084. \end_layout
  1085. \end_inset
  1086. \end_layout
  1087. \begin_layout Itemize
  1088. Batch-corrected PCA is informative, but careful application is required
  1089. to avoid bias
  1090. \end_layout
  1091. \begin_layout Section
  1092. Innovation
  1093. \end_layout
  1094. \begin_layout Standard
  1095. \begin_inset Flex TODO Note (inline)
  1096. status open
  1097. \begin_layout Plain Layout
  1098. Is this entire section redundant with the Approach sections of each chapter?
  1099. I'm not really sure what to write here.
  1100. \end_layout
  1101. \end_inset
  1102. \end_layout
  1103. \begin_layout Subsection
  1104. MSC infusion to improve transplant outcomes (prevent/delay rejection)
  1105. \end_layout
  1106. \begin_layout Standard
  1107. \begin_inset Flex TODO Note (inline)
  1108. status open
  1109. \begin_layout Plain Layout
  1110. Do I still talk about this? It's the motivation for chapter 4, but I don't
  1111. actually present any work related to MSCs.
  1112. \end_layout
  1113. \end_inset
  1114. \end_layout
  1115. \begin_layout Itemize
  1116. Demonstrated in mice, but not yet in primates
  1117. \end_layout
  1118. \begin_layout Itemize
  1119. Mechanism currently unknown, but MSC are known to be immune modulatory
  1120. \end_layout
  1121. \begin_layout Itemize
  1122. Characterize MSC response to interferon gamma
  1123. \end_layout
  1124. \begin_layout Itemize
  1125. IFN-g is thought to stimulate their function
  1126. \end_layout
  1127. \begin_layout Itemize
  1128. Test IFN-g treated MSC infusion as a therapy to delay graft rejection in
  1129. cynomolgus monkeys
  1130. \end_layout
  1131. \begin_layout Itemize
  1132. Monitor animals post-transplant using blood RNA-seq at serial time points
  1133. \end_layout
  1134. \begin_layout Subsection
  1135. Investigate dynamics of histone marks in CD4 T-cell activation and memory
  1136. \end_layout
  1137. \begin_layout Itemize
  1138. Previous studies have looked at single snapshots of histone marks
  1139. \end_layout
  1140. \begin_layout Itemize
  1141. Instead, look at changes in histone marks across activation and memory
  1142. \end_layout
  1143. \begin_layout Subsection
  1144. High-throughput sequencing and microarray technologies
  1145. \end_layout
  1146. \begin_layout Itemize
  1147. Powerful methods for assaying gene expression and epigenetics across entire
  1148. genomes
  1149. \end_layout
  1150. \begin_layout Itemize
  1151. Proper analysis requires finding and exploiting systematic genome-wide trends
  1152. \end_layout
  1153. \begin_layout Chapter
  1154. Reproducible genome-wide epigenetic analysis of H3K4 and H3K27 methylation
  1155. in naive and memory CD4 T-cell activation
  1156. \end_layout
  1157. \begin_layout Standard
  1158. \begin_inset Flex TODO Note (inline)
  1159. status open
  1160. \begin_layout Plain Layout
  1161. Chapter author list: Me, Sarah, Dan
  1162. \end_layout
  1163. \end_inset
  1164. \end_layout
  1165. \begin_layout Standard
  1166. \begin_inset Flex TODO Note (inline)
  1167. status open
  1168. \begin_layout Plain Layout
  1169. Need better section titles throughout the entire chapter
  1170. \end_layout
  1171. \end_inset
  1172. \end_layout
  1173. \begin_layout Section
  1174. Approach
  1175. \end_layout
  1176. \begin_layout Standard
  1177. \begin_inset Flex TODO Note (inline)
  1178. status open
  1179. \begin_layout Plain Layout
  1180. Check on the exact correct way to write
  1181. \begin_inset Quotes eld
  1182. \end_inset
  1183. CD4 T-cell
  1184. \begin_inset Quotes erd
  1185. \end_inset
  1186. .
  1187. I think there might be a plus sign somwehere in there now? Also, maybe
  1188. figure out a reasonable way to abbreviate
  1189. \begin_inset Quotes eld
  1190. \end_inset
  1191. naive CD4 T-cells
  1192. \begin_inset Quotes erd
  1193. \end_inset
  1194. and
  1195. \begin_inset Quotes eld
  1196. \end_inset
  1197. memory CD4 T-cells
  1198. \begin_inset Quotes erd
  1199. \end_inset
  1200. .
  1201. \end_layout
  1202. \end_inset
  1203. \end_layout
  1204. \begin_layout Standard
  1205. \begin_inset Flex TODO Note (inline)
  1206. status open
  1207. \begin_layout Plain Layout
  1208. Is it ok to just copy a bunch of citations from the intros to Sarah's papers?
  1209. That feels like cheating somehow.
  1210. \end_layout
  1211. \end_inset
  1212. \end_layout
  1213. \begin_layout Standard
  1214. CD4 T-cells are central to all adaptive immune responses, as well as immune
  1215. memory [CITE?].
  1216. After an infection is cleared, a subset of the naive CD4 T-cells that responded
  1217. to that infection differentiate into memory CD4 T-cells, which are responsible
  1218. for responding to the same pathogen in the future.
  1219. Memory CD4 T-cells are functionally distinct, able to respond to an infection
  1220. more quickly and without the co-stimulation requried by naive CD4 T-cells.
  1221. However, the molecular mechanisms underlying this functional distinction
  1222. are not well-understood.
  1223. Epigenetic regulation via histone modification is thought to play an important
  1224. role, but while many studies have looked at static snapshots of histone
  1225. methylation in T-cells, few studies have looked at the dynamics of histone
  1226. regulation after T-cell activation, nor the differences in histone methylation
  1227. between naive and memory T-cells.
  1228. H3K4me2, H3K4me3 and H3K27me3 are three histone marks thought to be major
  1229. epigenetic regulators of gene expression.
  1230. The goal of the present study is to investigate the role of these histone
  1231. marks in CD4 T-cell activation kinetics and memory differentiation.
  1232. In static snapshots, H3K4me2 and H3K4me3 are often observed in the promoters
  1233. of highly transcribed genes, while H3K27me3 is more often observed in promoters
  1234. of inactive genes with little to no transcription occurring.
  1235. As a result, the two H3K4 marks have been characterized as
  1236. \begin_inset Quotes eld
  1237. \end_inset
  1238. activating
  1239. \begin_inset Quotes erd
  1240. \end_inset
  1241. marks, while H3K27me3 has been characterized as
  1242. \begin_inset Quotes eld
  1243. \end_inset
  1244. deactivating
  1245. \begin_inset Quotes erd
  1246. \end_inset
  1247. .
  1248. Despite these characterizations, the actual causal relationship between
  1249. these histone modifications and gene transcription is complex and likely
  1250. involves positive and negative feedback loops between the two.
  1251. \end_layout
  1252. \begin_layout Standard
  1253. In order to investigate the relationship between gene expression and these
  1254. histone modifications in the context of naive and memory CD4 T-cell activation,
  1255. a previously published data set of combined RNA-seq and ChIP-seq data was
  1256. re-analyzed using up-to-date methods designed to address the specific analysis
  1257. challenges posed by this data set.
  1258. The data set contains naive and memory CD4 T-cell samples in a time course
  1259. before and after activation.
  1260. Like the original analysis, this analysis looks at the dynamics of these
  1261. marks histone marks and compare them to gene expression dynamics at the
  1262. same time points during activation, as well as comapre them between naive
  1263. and memory cells, in hope of discovering evidence of new mechanistic details
  1264. in the interplay between them.
  1265. The original analysis of this data treated each gene promoter as a monolithinc
  1266. unit and mostly assumed that ChIP-seq reads or peaks occuring anywhere
  1267. within a promoter were equivalent, regardless of where they occurred relative
  1268. to the gene structure.
  1269. For an initial analysis of the data, this was a necessary simplifying assumptio
  1270. n.
  1271. The current analysis aims to relax this assumption, first by directly analyzing
  1272. ChIP-seq peaks for differential modification, and second by taking a mor
  1273. granular look at the ChIP-seq read coverage within promoter regions to
  1274. ask whether the location of histone modifications relative to the gene's
  1275. TSS is an important factor, as opposed to simple proximity.
  1276. \end_layout
  1277. \begin_layout Section
  1278. Methods
  1279. \end_layout
  1280. \begin_layout Standard
  1281. \begin_inset Flex TODO Note (inline)
  1282. status open
  1283. \begin_layout Plain Layout
  1284. Look up some more details from the papers (e.g.
  1285. activation method).
  1286. \end_layout
  1287. \end_inset
  1288. \end_layout
  1289. \begin_layout Standard
  1290. A reproducible workflow was written to analyze the raw ChIP-seq and RNA-seq
  1291. data from previous studies
  1292. \begin_inset CommandInset citation
  1293. LatexCommand cite
  1294. key "gh-cd4-csaw,LaMere2016,LaMere2017"
  1295. literal "true"
  1296. \end_inset
  1297. .
  1298. Briefly, this data consists of RNA-seq and ChIP-seq from CD4 T-cells cultured
  1299. from 4 donors.
  1300. From each donor, naive and memory CD4 T-cells were isolated separately.
  1301. Then cultures of both cells were activated [how?], and samples were taken
  1302. at 4 time points: Day 0 (pre-activation), Day 1 (early activation), Day
  1303. 5 (peak activation), and Day 14 (post-activation).
  1304. For each combination of cell type and time point, RNA was isolated and
  1305. sequenced, and ChIP-seq was performed for each of 3 histone marks: H3K4me2,
  1306. H3K4me3, and H3K27me3.
  1307. The ChIP-seq input DNA was also sequenced for each sample.
  1308. The result was 32 samples for each assay.
  1309. \end_layout
  1310. \begin_layout Subsection
  1311. RNA-seq differential expression analysis
  1312. \end_layout
  1313. \begin_layout Standard
  1314. \begin_inset Note Note
  1315. status collapsed
  1316. \begin_layout Plain Layout
  1317. \begin_inset Float figure
  1318. wide false
  1319. sideways false
  1320. status open
  1321. \begin_layout Plain Layout
  1322. \align center
  1323. \begin_inset Float figure
  1324. wide false
  1325. sideways false
  1326. status collapsed
  1327. \begin_layout Plain Layout
  1328. \align center
  1329. \begin_inset Graphics
  1330. filename graphics/CD4-csaw/rnaseq-compare/ensmebl-vs-entrez-star-CROP.png
  1331. lyxscale 25
  1332. width 35col%
  1333. groupId rna-comp-subfig
  1334. \end_inset
  1335. \end_layout
  1336. \begin_layout Plain Layout
  1337. \begin_inset Caption Standard
  1338. \begin_layout Plain Layout
  1339. STAR quantification, Entrez vs Ensembl gene annotation
  1340. \end_layout
  1341. \end_inset
  1342. \end_layout
  1343. \end_inset
  1344. \begin_inset space \qquad{}
  1345. \end_inset
  1346. \begin_inset Float figure
  1347. wide false
  1348. sideways false
  1349. status collapsed
  1350. \begin_layout Plain Layout
  1351. \align center
  1352. \begin_inset Graphics
  1353. filename graphics/CD4-csaw/rnaseq-compare/ensmebl-vs-entrez-shoal-CROP.png
  1354. lyxscale 25
  1355. width 35col%
  1356. groupId rna-comp-subfig
  1357. \end_inset
  1358. \end_layout
  1359. \begin_layout Plain Layout
  1360. \begin_inset Caption Standard
  1361. \begin_layout Plain Layout
  1362. Salmon+Shoal quantification, Entrez vs Ensembl gene annotation
  1363. \end_layout
  1364. \end_inset
  1365. \end_layout
  1366. \end_inset
  1367. \end_layout
  1368. \begin_layout Plain Layout
  1369. \align center
  1370. \begin_inset Float figure
  1371. wide false
  1372. sideways false
  1373. status collapsed
  1374. \begin_layout Plain Layout
  1375. \align center
  1376. \begin_inset Graphics
  1377. filename graphics/CD4-csaw/rnaseq-compare/star-vs-hisat2-CROP.png
  1378. lyxscale 25
  1379. width 35col%
  1380. groupId rna-comp-subfig
  1381. \end_inset
  1382. \end_layout
  1383. \begin_layout Plain Layout
  1384. \begin_inset Caption Standard
  1385. \begin_layout Plain Layout
  1386. STAR vs HISAT2 quantification, Ensembl gene annotation
  1387. \end_layout
  1388. \end_inset
  1389. \end_layout
  1390. \end_inset
  1391. \begin_inset space \qquad{}
  1392. \end_inset
  1393. \begin_inset Float figure
  1394. wide false
  1395. sideways false
  1396. status collapsed
  1397. \begin_layout Plain Layout
  1398. \align center
  1399. \begin_inset Graphics
  1400. filename graphics/CD4-csaw/rnaseq-compare/star-vs-salmon-CROP.png
  1401. lyxscale 25
  1402. width 35col%
  1403. groupId rna-comp-subfig
  1404. \end_inset
  1405. \end_layout
  1406. \begin_layout Plain Layout
  1407. \begin_inset Caption Standard
  1408. \begin_layout Plain Layout
  1409. Salomn vs STAR quantification, Ensembl gene annotation
  1410. \end_layout
  1411. \end_inset
  1412. \end_layout
  1413. \end_inset
  1414. \end_layout
  1415. \begin_layout Plain Layout
  1416. \align center
  1417. \begin_inset Float figure
  1418. wide false
  1419. sideways false
  1420. status collapsed
  1421. \begin_layout Plain Layout
  1422. \align center
  1423. \begin_inset Graphics
  1424. filename graphics/CD4-csaw/rnaseq-compare/salmon-vs-kallisto-CROP.png
  1425. lyxscale 25
  1426. width 35col%
  1427. groupId rna-comp-subfig
  1428. \end_inset
  1429. \end_layout
  1430. \begin_layout Plain Layout
  1431. \begin_inset Caption Standard
  1432. \begin_layout Plain Layout
  1433. Salmon vs Kallisto quantification, Ensembl gene annotation
  1434. \end_layout
  1435. \end_inset
  1436. \end_layout
  1437. \end_inset
  1438. \begin_inset space \qquad{}
  1439. \end_inset
  1440. \begin_inset Float figure
  1441. wide false
  1442. sideways false
  1443. status collapsed
  1444. \begin_layout Plain Layout
  1445. \align center
  1446. \begin_inset Graphics
  1447. filename graphics/CD4-csaw/rnaseq-compare/salmon-vs-shoal-CROP.png
  1448. lyxscale 25
  1449. width 35col%
  1450. groupId rna-comp-subfig
  1451. \end_inset
  1452. \end_layout
  1453. \begin_layout Plain Layout
  1454. \begin_inset Caption Standard
  1455. \begin_layout Plain Layout
  1456. Salmon+Shoal vs Salmon alone, Ensembl gene annotation
  1457. \end_layout
  1458. \end_inset
  1459. \end_layout
  1460. \end_inset
  1461. \end_layout
  1462. \begin_layout Plain Layout
  1463. \begin_inset Caption Standard
  1464. \begin_layout Plain Layout
  1465. \begin_inset CommandInset label
  1466. LatexCommand label
  1467. name "fig:RNA-norm-comp"
  1468. \end_inset
  1469. RNA-seq comparisons
  1470. \end_layout
  1471. \end_inset
  1472. \end_layout
  1473. \end_inset
  1474. \end_layout
  1475. \end_inset
  1476. \end_layout
  1477. \begin_layout Standard
  1478. Sequence reads were retrieved from the Sequence Read Archive (SRA)
  1479. \begin_inset CommandInset citation
  1480. LatexCommand cite
  1481. key "Leinonen2011"
  1482. literal "false"
  1483. \end_inset
  1484. .
  1485. Five different alignment and quantification methods were tested for the
  1486. RNA-seq data
  1487. \begin_inset CommandInset citation
  1488. LatexCommand cite
  1489. key "Dobin2012,Kim2019,Liao2014,Pimentel2016,Patro2017,gh-shoal,gh-hg38-ref"
  1490. literal "false"
  1491. \end_inset
  1492. .
  1493. Each quantification was tested with both Ensembl transcripts and UCSC known
  1494. gene annotations [CITE? Also which versions of each?].
  1495. Comparisons of downstream results from each combination of quantification
  1496. method and reference revealed that all quantifications gave broadly similar
  1497. results for most genes, so shoal with the Ensembl annotation was chosen
  1498. as the method theoretically most likely to partially mitigate some of the
  1499. batch effect in the data.
  1500. \end_layout
  1501. \begin_layout Standard
  1502. \begin_inset Float figure
  1503. wide false
  1504. sideways false
  1505. status collapsed
  1506. \begin_layout Plain Layout
  1507. \align center
  1508. \begin_inset Float figure
  1509. wide false
  1510. sideways false
  1511. status open
  1512. \begin_layout Plain Layout
  1513. \align center
  1514. \begin_inset Graphics
  1515. filename graphics/CD4-csaw/RNA-seq/PCA-no-batchsub-CROP.png
  1516. lyxscale 25
  1517. width 75col%
  1518. groupId rna-pca-subfig
  1519. \end_inset
  1520. \end_layout
  1521. \begin_layout Plain Layout
  1522. \begin_inset Caption Standard
  1523. \begin_layout Plain Layout
  1524. \series bold
  1525. \begin_inset CommandInset label
  1526. LatexCommand label
  1527. name "fig:RNA-PCA-no-batchsub"
  1528. \end_inset
  1529. Before batch correction
  1530. \end_layout
  1531. \end_inset
  1532. \end_layout
  1533. \end_inset
  1534. \end_layout
  1535. \begin_layout Plain Layout
  1536. \align center
  1537. \begin_inset Float figure
  1538. wide false
  1539. sideways false
  1540. status open
  1541. \begin_layout Plain Layout
  1542. \align center
  1543. \begin_inset Graphics
  1544. filename graphics/CD4-csaw/RNA-seq/PCA-combat-batchsub-CROP.png
  1545. lyxscale 25
  1546. width 75col%
  1547. groupId rna-pca-subfig
  1548. \end_inset
  1549. \end_layout
  1550. \begin_layout Plain Layout
  1551. \begin_inset Caption Standard
  1552. \begin_layout Plain Layout
  1553. \series bold
  1554. \begin_inset CommandInset label
  1555. LatexCommand label
  1556. name "fig:RNA-PCA-ComBat-batchsub"
  1557. \end_inset
  1558. After batch correction with ComBat
  1559. \end_layout
  1560. \end_inset
  1561. \end_layout
  1562. \end_inset
  1563. \end_layout
  1564. \begin_layout Plain Layout
  1565. \begin_inset Caption Standard
  1566. \begin_layout Plain Layout
  1567. \series bold
  1568. \begin_inset CommandInset label
  1569. LatexCommand label
  1570. name "fig:RNA-PCA"
  1571. \end_inset
  1572. PCoA plots of RNA-seq data showing effect of batch correction.
  1573. \end_layout
  1574. \end_inset
  1575. \end_layout
  1576. \end_inset
  1577. \end_layout
  1578. \begin_layout Standard
  1579. Due to an error in sample preparation, the RNA from the samples for days
  1580. 0 and 5 were sequenced using a different kit than those for days 1 and
  1581. 14.
  1582. This induced a substantial batch effect in the data due to differences
  1583. in sequencing biases between the two kits, and this batch effect is unfortunate
  1584. ly confounded with the time point variable (Figure
  1585. \begin_inset CommandInset ref
  1586. LatexCommand ref
  1587. reference "fig:RNA-PCA-no-batchsub"
  1588. plural "false"
  1589. caps "false"
  1590. noprefix "false"
  1591. \end_inset
  1592. ).
  1593. To do the best possible analysis with this data, this batch effect was
  1594. subtracted out from the data using ComBat
  1595. \begin_inset CommandInset citation
  1596. LatexCommand cite
  1597. key "Johnson2007"
  1598. literal "false"
  1599. \end_inset
  1600. , ignoring the time point variable due to the confounding with the batch
  1601. variable.
  1602. The result is a marked improvement, but the unavoidable counfounding with
  1603. time point means that certain real patterns of gene expression will be
  1604. indistinguishable from the batch effect and subtracted out as a result.
  1605. Specifically, any
  1606. \begin_inset Quotes eld
  1607. \end_inset
  1608. zig-zag
  1609. \begin_inset Quotes erd
  1610. \end_inset
  1611. pattern, such as a gene whose expression goes up on day 1, down on day
  1612. 5, and back up again on day 14, will be attenuated or eliminated entirely.
  1613. In the context of a T-cell activation time course, it is unlikely that
  1614. many genes of interest will follow such an expression pattern, so this
  1615. loss was deemed an acceptable cost for correcting the batch effect.
  1616. \end_layout
  1617. \begin_layout Standard
  1618. \begin_inset Float figure
  1619. wide false
  1620. sideways false
  1621. status collapsed
  1622. \begin_layout Plain Layout
  1623. \begin_inset Flex TODO Note (inline)
  1624. status open
  1625. \begin_layout Plain Layout
  1626. Just take the top row
  1627. \end_layout
  1628. \end_inset
  1629. \end_layout
  1630. \begin_layout Plain Layout
  1631. \align center
  1632. \begin_inset Graphics
  1633. filename graphics/CD4-csaw/RNA-seq/weights-vs-covars-CROP.png
  1634. lyxscale 25
  1635. width 100col%
  1636. groupId colwidth-raster
  1637. \end_inset
  1638. \end_layout
  1639. \begin_layout Plain Layout
  1640. \begin_inset Caption Standard
  1641. \begin_layout Plain Layout
  1642. \series bold
  1643. \begin_inset CommandInset label
  1644. LatexCommand label
  1645. name "fig:RNA-seq-weights-vs-covars"
  1646. \end_inset
  1647. RNA-seq sample weights, grouped by experimental and technical covariates.
  1648. \end_layout
  1649. \end_inset
  1650. \end_layout
  1651. \end_inset
  1652. \end_layout
  1653. \begin_layout Standard
  1654. However, removing the systematic component of the batch effect still leaves
  1655. the noise component.
  1656. The gene quantifications from the first batch are substantially noisier
  1657. than those in the second batch.
  1658. This analysis corrected for this by using limma's sample weighting method
  1659. to assign lower weights to the noisy samples of batch 1
  1660. \begin_inset CommandInset citation
  1661. LatexCommand cite
  1662. key "Ritchie2006,Liu2015"
  1663. literal "false"
  1664. \end_inset
  1665. .
  1666. The resulting analysis gives an accurate assessment of statistical significance
  1667. for all comparisons, which unfortuantely means a loss of statistical power
  1668. for comparisons involving samples in batch 1.
  1669. \end_layout
  1670. \begin_layout Standard
  1671. In any case, the RNA-seq counts were first normalized using trimmed mean
  1672. of M-values
  1673. \begin_inset CommandInset citation
  1674. LatexCommand cite
  1675. key "Robinson2010"
  1676. literal "false"
  1677. \end_inset
  1678. , converted to normalized logCPM with quality weights using voomWithQualityWeigh
  1679. ts
  1680. \begin_inset CommandInset citation
  1681. LatexCommand cite
  1682. key "Law2013,Liu2015"
  1683. literal "false"
  1684. \end_inset
  1685. , and batch-corrected at this point using ComBat.
  1686. A linear model was fit to the batch-corrected, quality-weighted data for
  1687. each gene using limma, and each gene was tested for differential expression
  1688. using limma's empirical Bayes moderated
  1689. \begin_inset Formula $t$
  1690. \end_inset
  1691. -test
  1692. \begin_inset CommandInset citation
  1693. LatexCommand cite
  1694. key "Smyth2005,Law2013,Phipson2013"
  1695. literal "false"
  1696. \end_inset
  1697. .
  1698. \end_layout
  1699. \begin_layout Subsection
  1700. ChIP-seq differential modification analysis
  1701. \end_layout
  1702. \begin_layout Standard
  1703. \begin_inset Float figure
  1704. wide false
  1705. sideways false
  1706. status collapsed
  1707. \begin_layout Plain Layout
  1708. \align center
  1709. \begin_inset Float figure
  1710. wide false
  1711. sideways false
  1712. status open
  1713. \begin_layout Plain Layout
  1714. \align center
  1715. \begin_inset Graphics
  1716. filename graphics/CD4-csaw/csaw/CCF-plots-noBL-PAGE2-CROP.pdf
  1717. lyxscale 50
  1718. height 40theight%
  1719. groupId ccf-subfig
  1720. \end_inset
  1721. \end_layout
  1722. \begin_layout Plain Layout
  1723. \begin_inset Caption Standard
  1724. \begin_layout Plain Layout
  1725. \series bold
  1726. \begin_inset CommandInset label
  1727. LatexCommand label
  1728. name "fig:CCF-without-blacklist"
  1729. \end_inset
  1730. Cross-correlation plots without removing blacklisted reads.
  1731. \series default
  1732. Without blacklisting, many artifactual peaks are visible in the cross-correlatio
  1733. ns of the ChIP-seq samples, and the peak at the true fragment size (147
  1734. \begin_inset space ~
  1735. \end_inset
  1736. bp) is frequently overshadowed by the artifactual peak at the read length
  1737. (100
  1738. \begin_inset space ~
  1739. \end_inset
  1740. bp).
  1741. \end_layout
  1742. \end_inset
  1743. \end_layout
  1744. \end_inset
  1745. \end_layout
  1746. \begin_layout Plain Layout
  1747. \align center
  1748. \begin_inset Float figure
  1749. wide false
  1750. sideways false
  1751. status open
  1752. \begin_layout Plain Layout
  1753. \align center
  1754. \begin_inset Graphics
  1755. filename graphics/CD4-csaw/csaw/CCF-plots-PAGE2-CROP.pdf
  1756. lyxscale 50
  1757. height 40theight%
  1758. groupId ccf-subfig
  1759. \end_inset
  1760. \end_layout
  1761. \begin_layout Plain Layout
  1762. \begin_inset Caption Standard
  1763. \begin_layout Plain Layout
  1764. \series bold
  1765. \begin_inset CommandInset label
  1766. LatexCommand label
  1767. name "fig:CCF-with-blacklist"
  1768. \end_inset
  1769. Cross-correlation plots with blacklisted reads removed.
  1770. \series default
  1771. After blacklisting, most ChIP-seq samples have clean-looking periodic cross-cor
  1772. relation plots, with the largest peak around 147
  1773. \begin_inset space ~
  1774. \end_inset
  1775. bp, the expected size for a fragment of DNA from a single nucleosome, and
  1776. little to no peak at the read length, 100
  1777. \begin_inset space ~
  1778. \end_inset
  1779. bp.
  1780. \end_layout
  1781. \end_inset
  1782. \end_layout
  1783. \end_inset
  1784. \end_layout
  1785. \begin_layout Plain Layout
  1786. \begin_inset Caption Standard
  1787. \begin_layout Plain Layout
  1788. \series bold
  1789. \begin_inset CommandInset label
  1790. LatexCommand label
  1791. name "fig:CCF-master"
  1792. \end_inset
  1793. Strand cross-correlation plots for ChIP-seq data, before and after blacklisting.
  1794. \end_layout
  1795. \end_inset
  1796. \end_layout
  1797. \end_inset
  1798. \end_layout
  1799. \begin_layout Standard
  1800. \begin_inset Note Note
  1801. status open
  1802. \begin_layout Plain Layout
  1803. \begin_inset Float figure
  1804. wide false
  1805. sideways false
  1806. status collapsed
  1807. \begin_layout Plain Layout
  1808. \align center
  1809. \begin_inset Graphics
  1810. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-sample-MAplot-bins-CROP.png
  1811. lyxscale 25
  1812. width 100col%
  1813. groupId colwidth-raster
  1814. \end_inset
  1815. \end_layout
  1816. \begin_layout Plain Layout
  1817. \begin_inset Caption Standard
  1818. \begin_layout Plain Layout
  1819. \series bold
  1820. \begin_inset CommandInset label
  1821. LatexCommand label
  1822. name "fig:MA-plot-bigbins"
  1823. \end_inset
  1824. MA plot of H3K4me2 read counts in 10kb bins for two arbitrary samples.
  1825. \end_layout
  1826. \end_inset
  1827. \end_layout
  1828. \end_inset
  1829. \end_layout
  1830. \end_inset
  1831. \end_layout
  1832. \begin_layout Standard
  1833. \begin_inset Flex TODO Note (inline)
  1834. status open
  1835. \begin_layout Plain Layout
  1836. Be consistent about use of
  1837. \begin_inset Quotes eld
  1838. \end_inset
  1839. differential binding
  1840. \begin_inset Quotes erd
  1841. \end_inset
  1842. vs
  1843. \begin_inset Quotes eld
  1844. \end_inset
  1845. differential modification
  1846. \begin_inset Quotes erd
  1847. \end_inset
  1848. throughout this chapter.
  1849. The latter is usually preferred.
  1850. \end_layout
  1851. \end_inset
  1852. \end_layout
  1853. \begin_layout Standard
  1854. Sequence reads were retrieved from SRA
  1855. \begin_inset CommandInset citation
  1856. LatexCommand cite
  1857. key "Leinonen2011"
  1858. literal "false"
  1859. \end_inset
  1860. .
  1861. ChIP-seq (and input) reads were aligned to GRCh38 genome assembly using
  1862. Bowtie 2
  1863. \begin_inset CommandInset citation
  1864. LatexCommand cite
  1865. key "Langmead2012,Schneider2017,gh-hg38-ref"
  1866. literal "false"
  1867. \end_inset
  1868. .
  1869. Artifact regions were annotated using a custom implementation of the GreyListCh
  1870. IP algorithm, and these
  1871. \begin_inset Quotes eld
  1872. \end_inset
  1873. greylists
  1874. \begin_inset Quotes erd
  1875. \end_inset
  1876. were merged with the published ENCODE blacklists
  1877. \begin_inset CommandInset citation
  1878. LatexCommand cite
  1879. key "greylistchip,Amemiya2019,Dunham2012,gh-cd4-csaw"
  1880. literal "false"
  1881. \end_inset
  1882. .
  1883. Any read or called peak overlapping one of these regions was regarded as
  1884. artifactual and excluded from downstream analyses.
  1885. Figure
  1886. \begin_inset CommandInset ref
  1887. LatexCommand ref
  1888. reference "fig:CCF-master"
  1889. plural "false"
  1890. caps "false"
  1891. noprefix "false"
  1892. \end_inset
  1893. shows the improvement after blacklisting in the strand cross-correlation
  1894. plots, a common quality control plot for ChIP-seq data.
  1895. Peaks were called using epic, an implementation of the SICER algorithm
  1896. \begin_inset CommandInset citation
  1897. LatexCommand cite
  1898. key "Zang2009,gh-epic"
  1899. literal "false"
  1900. \end_inset
  1901. .
  1902. Peaks were also called separately using MACS, but MACS was determined to
  1903. be a poor fit for the data, and these peak calls are not used in any further
  1904. analyses
  1905. \begin_inset CommandInset citation
  1906. LatexCommand cite
  1907. key "Zhang2008"
  1908. literal "false"
  1909. \end_inset
  1910. .
  1911. Consensus peaks were determined by applying the irreproducible discovery
  1912. rate (IDR) framework
  1913. \begin_inset CommandInset citation
  1914. LatexCommand cite
  1915. key "Li2006,gh-idr"
  1916. literal "false"
  1917. \end_inset
  1918. to find peaks consistently called in the same locations across all 4 donors.
  1919. \end_layout
  1920. \begin_layout Standard
  1921. Promoters were defined by computing the distance from each annotated TSS
  1922. to the nearest called peak and examining the distribution of distances,
  1923. observing that peaks for each histone mark were enriched within a certain
  1924. distance of the TSS.
  1925. For H3K4me2 and H3K4me3, this distance was about 1
  1926. \begin_inset space ~
  1927. \end_inset
  1928. kb, while for H3K27me3 it was 2.5
  1929. \begin_inset space ~
  1930. \end_inset
  1931. kb.
  1932. These distances were used as an
  1933. \begin_inset Quotes eld
  1934. \end_inset
  1935. effective promoter radius
  1936. \begin_inset Quotes erd
  1937. \end_inset
  1938. for each mark.
  1939. The promoter region for each gene was defined as the region of the genome
  1940. within this distance upstream or downstream of the gene's annotated TSS.
  1941. For genes with multiple annotated TSSs, a promoter region was defined for
  1942. each TSS individually, and any promoters that overlapped (due to multiple
  1943. TSSs being closer than 2 times the radius) were merged into one large promoter.
  1944. Thus, some genes had multiple promoters defined, which were each analyzed
  1945. separately for differential modification.
  1946. \end_layout
  1947. \begin_layout Standard
  1948. \begin_inset Float figure
  1949. wide false
  1950. sideways false
  1951. status collapsed
  1952. \begin_layout Plain Layout
  1953. \begin_inset Float figure
  1954. wide false
  1955. sideways false
  1956. status collapsed
  1957. \begin_layout Plain Layout
  1958. \align center
  1959. \begin_inset Graphics
  1960. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-PCA-raw-CROP.png
  1961. lyxscale 25
  1962. width 45col%
  1963. groupId pcoa-subfig
  1964. \end_inset
  1965. \end_layout
  1966. \begin_layout Plain Layout
  1967. \begin_inset Caption Standard
  1968. \begin_layout Plain Layout
  1969. \series bold
  1970. \begin_inset CommandInset label
  1971. LatexCommand label
  1972. name "fig:PCoA-H3K4me2-bad"
  1973. \end_inset
  1974. H3K4me2, no correction
  1975. \end_layout
  1976. \end_inset
  1977. \end_layout
  1978. \end_inset
  1979. \begin_inset space \hfill{}
  1980. \end_inset
  1981. \begin_inset Float figure
  1982. wide false
  1983. sideways false
  1984. status collapsed
  1985. \begin_layout Plain Layout
  1986. \align center
  1987. \begin_inset Graphics
  1988. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-PCA-SVsub-CROP.png
  1989. lyxscale 25
  1990. width 45col%
  1991. groupId pcoa-subfig
  1992. \end_inset
  1993. \end_layout
  1994. \begin_layout Plain Layout
  1995. \begin_inset Caption Standard
  1996. \begin_layout Plain Layout
  1997. \series bold
  1998. \begin_inset CommandInset label
  1999. LatexCommand label
  2000. name "fig:PCoA-H3K4me2-good"
  2001. \end_inset
  2002. H3K4me2, SVs subtracted
  2003. \end_layout
  2004. \end_inset
  2005. \end_layout
  2006. \end_inset
  2007. \end_layout
  2008. \begin_layout Plain Layout
  2009. \begin_inset Float figure
  2010. wide false
  2011. sideways false
  2012. status collapsed
  2013. \begin_layout Plain Layout
  2014. \align center
  2015. \begin_inset Graphics
  2016. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-PCA-raw-CROP.png
  2017. lyxscale 25
  2018. width 45col%
  2019. groupId pcoa-subfig
  2020. \end_inset
  2021. \end_layout
  2022. \begin_layout Plain Layout
  2023. \begin_inset Caption Standard
  2024. \begin_layout Plain Layout
  2025. \series bold
  2026. \begin_inset CommandInset label
  2027. LatexCommand label
  2028. name "fig:PCoA-H3K4me3-bad"
  2029. \end_inset
  2030. H3K4me3, no correction
  2031. \end_layout
  2032. \end_inset
  2033. \end_layout
  2034. \end_inset
  2035. \begin_inset space \hfill{}
  2036. \end_inset
  2037. \begin_inset Float figure
  2038. wide false
  2039. sideways false
  2040. status collapsed
  2041. \begin_layout Plain Layout
  2042. \align center
  2043. \begin_inset Graphics
  2044. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-PCA-SVsub-CROP.png
  2045. lyxscale 25
  2046. width 45col%
  2047. groupId pcoa-subfig
  2048. \end_inset
  2049. \end_layout
  2050. \begin_layout Plain Layout
  2051. \begin_inset Caption Standard
  2052. \begin_layout Plain Layout
  2053. \series bold
  2054. \begin_inset CommandInset label
  2055. LatexCommand label
  2056. name "fig:PCoA-H3K4me3-good"
  2057. \end_inset
  2058. H3K4me3, SVs subtracted
  2059. \end_layout
  2060. \end_inset
  2061. \end_layout
  2062. \end_inset
  2063. \end_layout
  2064. \begin_layout Plain Layout
  2065. \begin_inset Float figure
  2066. wide false
  2067. sideways false
  2068. status collapsed
  2069. \begin_layout Plain Layout
  2070. \align center
  2071. \begin_inset Graphics
  2072. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-PCA-raw-CROP.png
  2073. lyxscale 25
  2074. width 45col%
  2075. groupId pcoa-subfig
  2076. \end_inset
  2077. \end_layout
  2078. \begin_layout Plain Layout
  2079. \begin_inset Caption Standard
  2080. \begin_layout Plain Layout
  2081. \series bold
  2082. \begin_inset CommandInset label
  2083. LatexCommand label
  2084. name "fig:PCoA-H3K27me3-bad"
  2085. \end_inset
  2086. H3K27me3, no correction
  2087. \end_layout
  2088. \end_inset
  2089. \end_layout
  2090. \end_inset
  2091. \begin_inset space \hfill{}
  2092. \end_inset
  2093. \begin_inset Float figure
  2094. wide false
  2095. sideways false
  2096. status collapsed
  2097. \begin_layout Plain Layout
  2098. \align center
  2099. \begin_inset Graphics
  2100. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-PCA-SVsub-CROP.png
  2101. lyxscale 25
  2102. width 45col%
  2103. groupId pcoa-subfig
  2104. \end_inset
  2105. \end_layout
  2106. \begin_layout Plain Layout
  2107. \begin_inset Caption Standard
  2108. \begin_layout Plain Layout
  2109. \series bold
  2110. \begin_inset CommandInset label
  2111. LatexCommand label
  2112. name "fig:PCoA-H3K27me3-good"
  2113. \end_inset
  2114. H3K27me3, SVs subtracted
  2115. \end_layout
  2116. \end_inset
  2117. \end_layout
  2118. \end_inset
  2119. \end_layout
  2120. \begin_layout Plain Layout
  2121. \begin_inset Caption Standard
  2122. \begin_layout Plain Layout
  2123. \series bold
  2124. \begin_inset CommandInset label
  2125. LatexCommand label
  2126. name "fig:PCoA-ChIP"
  2127. \end_inset
  2128. PCoA plots of ChIP-seq sliding window data, before and after subtracting
  2129. surrogate variables (SVs).
  2130. \end_layout
  2131. \end_inset
  2132. \end_layout
  2133. \end_inset
  2134. \end_layout
  2135. \begin_layout Standard
  2136. Reads in promoters, peaks, and sliding windows across the genome were counted
  2137. and normalized using csaw and analyzed for differential modification using
  2138. edgeR
  2139. \begin_inset CommandInset citation
  2140. LatexCommand cite
  2141. key "Lun2014,Lun2015a,Lund2012,Phipson2016"
  2142. literal "false"
  2143. \end_inset
  2144. .
  2145. Unobserved confounding factors in the ChIP-seq data were corrected using
  2146. SVA
  2147. \begin_inset CommandInset citation
  2148. LatexCommand cite
  2149. key "Leek2007,Leek2014"
  2150. literal "false"
  2151. \end_inset
  2152. .
  2153. Principal coordinate plots of the promoter count data for each histone
  2154. mark before and after subtracting surrogate variable effects are shown
  2155. in Figure
  2156. \begin_inset CommandInset ref
  2157. LatexCommand ref
  2158. reference "fig:PCoA-ChIP"
  2159. plural "false"
  2160. caps "false"
  2161. noprefix "false"
  2162. \end_inset
  2163. .
  2164. \end_layout
  2165. \begin_layout Standard
  2166. To investigate whether the location of a peak within the promoter region
  2167. was important,
  2168. \begin_inset Quotes eld
  2169. \end_inset
  2170. relative coverage profiles
  2171. \begin_inset Quotes erd
  2172. \end_inset
  2173. were generated.
  2174. First, 500-bp sliding windows were tiled around each annotated TSS: one
  2175. window centered on the TSS itself, and 10 windows each upstream and downstream,
  2176. thus covering a 10.5-kb region centered on the TSS with 21 windows.
  2177. Reads in each window for each TSS were counted in each sample, and the
  2178. counts were normalized and converted to log CPM as in the differential
  2179. modification analysis.
  2180. Then, the logCPM values within each promoter were normalized to an average
  2181. of zero, such that each window's normalized abundance now represents the
  2182. relative read depth of that window compared to all other windows in the
  2183. same promoter.
  2184. The normalized abundance values for each window in a promoter are collectively
  2185. referred to as that promoter's
  2186. \begin_inset Quotes eld
  2187. \end_inset
  2188. relative coverage profile
  2189. \begin_inset Quotes erd
  2190. \end_inset
  2191. .
  2192. \end_layout
  2193. \begin_layout Subsection
  2194. MOFA recovers biologically relevant variation from blind analysis by correlating
  2195. across datasets
  2196. \end_layout
  2197. \begin_layout Standard
  2198. \begin_inset ERT
  2199. status open
  2200. \begin_layout Plain Layout
  2201. \backslash
  2202. afterpage{
  2203. \end_layout
  2204. \begin_layout Plain Layout
  2205. \backslash
  2206. begin{landscape}
  2207. \end_layout
  2208. \end_inset
  2209. \end_layout
  2210. \begin_layout Standard
  2211. \begin_inset Float figure
  2212. wide false
  2213. sideways false
  2214. status open
  2215. \begin_layout Plain Layout
  2216. \begin_inset Float figure
  2217. wide false
  2218. sideways false
  2219. status open
  2220. \begin_layout Plain Layout
  2221. \align center
  2222. \begin_inset Graphics
  2223. filename graphics/CD4-csaw/MOFA-varExplaiend-matrix-CROP.png
  2224. lyxscale 25
  2225. width 45col%
  2226. groupId mofa-subfig
  2227. \end_inset
  2228. \end_layout
  2229. \begin_layout Plain Layout
  2230. \begin_inset Caption Standard
  2231. \begin_layout Plain Layout
  2232. \series bold
  2233. \begin_inset CommandInset label
  2234. LatexCommand label
  2235. name "fig:mofa-varexplained"
  2236. \end_inset
  2237. Variance explained in each data set by each latent factor estimated by MOFA.
  2238. \series default
  2239. For each latent factor (LF) learned by MOFA, the variance explained by
  2240. that factor in each data set (
  2241. \begin_inset Quotes eld
  2242. \end_inset
  2243. view
  2244. \begin_inset Quotes erd
  2245. \end_inset
  2246. ) is shown by the shading of the cells in the lower section.
  2247. The upper section shows the total fraction of each data set's variance
  2248. that is explained by all LFs combined.
  2249. \end_layout
  2250. \end_inset
  2251. \end_layout
  2252. \end_inset
  2253. \begin_inset space \hfill{}
  2254. \end_inset
  2255. \begin_inset Float figure
  2256. wide false
  2257. sideways false
  2258. status open
  2259. \begin_layout Plain Layout
  2260. \align center
  2261. \begin_inset Graphics
  2262. filename graphics/CD4-csaw/MOFA-LF-scatter-CROP.png
  2263. lyxscale 25
  2264. width 45col%
  2265. groupId mofa-subfig
  2266. \end_inset
  2267. \end_layout
  2268. \begin_layout Plain Layout
  2269. \begin_inset Caption Standard
  2270. \begin_layout Plain Layout
  2271. \series bold
  2272. \begin_inset CommandInset label
  2273. LatexCommand label
  2274. name "fig:mofa-lf-scatter"
  2275. \end_inset
  2276. Scatter plots of specific pairs of MOFA latent factors.
  2277. \series default
  2278. LFs 1, 4, and 5 explain substantial variation in all data sets, so they
  2279. are plotted against each other in order to reveal patterns of variation
  2280. that are shared across all data sets.
  2281. \end_layout
  2282. \end_inset
  2283. \end_layout
  2284. \end_inset
  2285. \end_layout
  2286. \begin_layout Plain Layout
  2287. \begin_inset Caption Standard
  2288. \begin_layout Plain Layout
  2289. \series bold
  2290. \begin_inset CommandInset label
  2291. LatexCommand label
  2292. name "fig:MOFA-master"
  2293. \end_inset
  2294. MOFA latent factors separate technical confounders from
  2295. \end_layout
  2296. \end_inset
  2297. \end_layout
  2298. \end_inset
  2299. \end_layout
  2300. \begin_layout Standard
  2301. \begin_inset ERT
  2302. status open
  2303. \begin_layout Plain Layout
  2304. \backslash
  2305. end{landscape}
  2306. \end_layout
  2307. \begin_layout Plain Layout
  2308. }
  2309. \end_layout
  2310. \end_inset
  2311. \end_layout
  2312. \begin_layout Standard
  2313. MOFA was run on all the ChIP-seq windows overlapping consensus peaks for
  2314. each histone mark, as well as the RNA-seq data, in order to identify patterns
  2315. of coordinated variation across all data sets
  2316. \begin_inset CommandInset citation
  2317. LatexCommand cite
  2318. key "Argelaguet2018"
  2319. literal "false"
  2320. \end_inset
  2321. .
  2322. The results are summarized in Figure
  2323. \begin_inset CommandInset ref
  2324. LatexCommand ref
  2325. reference "fig:MOFA-master"
  2326. plural "false"
  2327. caps "false"
  2328. noprefix "false"
  2329. \end_inset
  2330. .
  2331. Latent factors 1, 4, and 5 were determined to explain the most variation
  2332. consistently across all data sets (Fgure
  2333. \begin_inset CommandInset ref
  2334. LatexCommand ref
  2335. reference "fig:mofa-varexplained"
  2336. plural "false"
  2337. caps "false"
  2338. noprefix "false"
  2339. \end_inset
  2340. ), and scatter plots of these factors show that they also correlate best
  2341. with the experimental factors (Figure
  2342. \begin_inset CommandInset ref
  2343. LatexCommand ref
  2344. reference "fig:mofa-lf-scatter"
  2345. plural "false"
  2346. caps "false"
  2347. noprefix "false"
  2348. \end_inset
  2349. ).
  2350. Latent factor 2 captures the batch effect in the RNA-seq data.
  2351. Removing the effect of LF2 using MOFA theoretically yields a batch correction
  2352. that does not depend on knowing the experimental factors.
  2353. When this was attempted, the resulting batch correction was comparable
  2354. to ComBat (see Figure
  2355. \begin_inset CommandInset ref
  2356. LatexCommand ref
  2357. reference "fig:RNA-PCA-ComBat-batchsub"
  2358. plural "false"
  2359. caps "false"
  2360. noprefix "false"
  2361. \end_inset
  2362. ), indicating that the ComBat-based batch correction has little room for
  2363. improvement given the problems with the data set.
  2364. \end_layout
  2365. \begin_layout Standard
  2366. \begin_inset Note Note
  2367. status collapsed
  2368. \begin_layout Plain Layout
  2369. \begin_inset Float figure
  2370. wide false
  2371. sideways false
  2372. status open
  2373. \begin_layout Plain Layout
  2374. \align center
  2375. \begin_inset Graphics
  2376. filename graphics/CD4-csaw/MOFA-batch-correct-CROP.png
  2377. lyxscale 25
  2378. width 100col%
  2379. groupId colwidth-raster
  2380. \end_inset
  2381. \end_layout
  2382. \begin_layout Plain Layout
  2383. \begin_inset Caption Standard
  2384. \begin_layout Plain Layout
  2385. \series bold
  2386. \begin_inset CommandInset label
  2387. LatexCommand label
  2388. name "fig:mofa-batchsub"
  2389. \end_inset
  2390. Result of RNA-seq batch-correction using MOFA latent factors
  2391. \end_layout
  2392. \end_inset
  2393. \end_layout
  2394. \end_inset
  2395. \end_layout
  2396. \end_inset
  2397. \end_layout
  2398. \begin_layout Section
  2399. Results
  2400. \end_layout
  2401. \begin_layout Standard
  2402. \begin_inset Flex TODO Note (inline)
  2403. status open
  2404. \begin_layout Plain Layout
  2405. Focus on what hypotheses were tested, then select figures that show how
  2406. those hypotheses were tested, even if the result is a negative.
  2407. Not every interesting result needs to be in here.
  2408. Chapter should tell a story.
  2409. \end_layout
  2410. \end_inset
  2411. \end_layout
  2412. \begin_layout Standard
  2413. \begin_inset Flex TODO Note (inline)
  2414. status open
  2415. \begin_layout Plain Layout
  2416. Maybe reorder these sections to do RNA-seq, then ChIP-seq, then combined
  2417. analyses?
  2418. \end_layout
  2419. \end_inset
  2420. \end_layout
  2421. \begin_layout Subsection
  2422. Interpretation of RNA-seq analysis is limited by a major confounding factor
  2423. \end_layout
  2424. \begin_layout Standard
  2425. \begin_inset Float table
  2426. wide false
  2427. sideways false
  2428. status collapsed
  2429. \begin_layout Plain Layout
  2430. \align center
  2431. \begin_inset Tabular
  2432. <lyxtabular version="3" rows="11" columns="3">
  2433. <features tabularvalignment="middle">
  2434. <column alignment="center" valignment="top">
  2435. <column alignment="center" valignment="top">
  2436. <column alignment="center" valignment="top">
  2437. <row>
  2438. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2439. \begin_inset Text
  2440. \begin_layout Plain Layout
  2441. Test
  2442. \end_layout
  2443. \end_inset
  2444. </cell>
  2445. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2446. \begin_inset Text
  2447. \begin_layout Plain Layout
  2448. Est.
  2449. non-null
  2450. \end_layout
  2451. \end_inset
  2452. </cell>
  2453. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2454. \begin_inset Text
  2455. \begin_layout Plain Layout
  2456. \begin_inset Formula $\mathrm{FDR}\le10\%$
  2457. \end_inset
  2458. \end_layout
  2459. \end_inset
  2460. </cell>
  2461. </row>
  2462. <row>
  2463. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2464. \begin_inset Text
  2465. \begin_layout Plain Layout
  2466. Naive Day 0 vs Day 1
  2467. \end_layout
  2468. \end_inset
  2469. </cell>
  2470. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2471. \begin_inset Text
  2472. \begin_layout Plain Layout
  2473. 5992
  2474. \end_layout
  2475. \end_inset
  2476. </cell>
  2477. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2478. \begin_inset Text
  2479. \begin_layout Plain Layout
  2480. 1613
  2481. \end_layout
  2482. \end_inset
  2483. </cell>
  2484. </row>
  2485. <row>
  2486. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2487. \begin_inset Text
  2488. \begin_layout Plain Layout
  2489. Naive Day 0 vs Day 5
  2490. \end_layout
  2491. \end_inset
  2492. </cell>
  2493. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2494. \begin_inset Text
  2495. \begin_layout Plain Layout
  2496. 3038
  2497. \end_layout
  2498. \end_inset
  2499. </cell>
  2500. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2501. \begin_inset Text
  2502. \begin_layout Plain Layout
  2503. 32
  2504. \end_layout
  2505. \end_inset
  2506. </cell>
  2507. </row>
  2508. <row>
  2509. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2510. \begin_inset Text
  2511. \begin_layout Plain Layout
  2512. Naive Day 0 vs Day 14
  2513. \end_layout
  2514. \end_inset
  2515. </cell>
  2516. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2517. \begin_inset Text
  2518. \begin_layout Plain Layout
  2519. 1870
  2520. \end_layout
  2521. \end_inset
  2522. </cell>
  2523. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2524. \begin_inset Text
  2525. \begin_layout Plain Layout
  2526. 190
  2527. \end_layout
  2528. \end_inset
  2529. </cell>
  2530. </row>
  2531. <row>
  2532. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2533. \begin_inset Text
  2534. \begin_layout Plain Layout
  2535. Memory Day 0 vs Day 1
  2536. \end_layout
  2537. \end_inset
  2538. </cell>
  2539. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2540. \begin_inset Text
  2541. \begin_layout Plain Layout
  2542. 3195
  2543. \end_layout
  2544. \end_inset
  2545. </cell>
  2546. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2547. \begin_inset Text
  2548. \begin_layout Plain Layout
  2549. 411
  2550. \end_layout
  2551. \end_inset
  2552. </cell>
  2553. </row>
  2554. <row>
  2555. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2556. \begin_inset Text
  2557. \begin_layout Plain Layout
  2558. Memory Day 0 vs Day 5
  2559. \end_layout
  2560. \end_inset
  2561. </cell>
  2562. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2563. \begin_inset Text
  2564. \begin_layout Plain Layout
  2565. 2688
  2566. \end_layout
  2567. \end_inset
  2568. </cell>
  2569. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2570. \begin_inset Text
  2571. \begin_layout Plain Layout
  2572. 18
  2573. \end_layout
  2574. \end_inset
  2575. </cell>
  2576. </row>
  2577. <row>
  2578. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2579. \begin_inset Text
  2580. \begin_layout Plain Layout
  2581. Memory Day 0 vs Day 14
  2582. \end_layout
  2583. \end_inset
  2584. </cell>
  2585. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2586. \begin_inset Text
  2587. \begin_layout Plain Layout
  2588. 1911
  2589. \end_layout
  2590. \end_inset
  2591. </cell>
  2592. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2593. \begin_inset Text
  2594. \begin_layout Plain Layout
  2595. 227
  2596. \end_layout
  2597. \end_inset
  2598. </cell>
  2599. </row>
  2600. <row>
  2601. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2602. \begin_inset Text
  2603. \begin_layout Plain Layout
  2604. Day 0 Naive vs Memory
  2605. \end_layout
  2606. \end_inset
  2607. </cell>
  2608. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2609. \begin_inset Text
  2610. \begin_layout Plain Layout
  2611. 0
  2612. \end_layout
  2613. \end_inset
  2614. </cell>
  2615. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2616. \begin_inset Text
  2617. \begin_layout Plain Layout
  2618. 2
  2619. \end_layout
  2620. \end_inset
  2621. </cell>
  2622. </row>
  2623. <row>
  2624. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2625. \begin_inset Text
  2626. \begin_layout Plain Layout
  2627. Day 1 Naive vs Memory
  2628. \end_layout
  2629. \end_inset
  2630. </cell>
  2631. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2632. \begin_inset Text
  2633. \begin_layout Plain Layout
  2634. 9167
  2635. \end_layout
  2636. \end_inset
  2637. </cell>
  2638. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2639. \begin_inset Text
  2640. \begin_layout Plain Layout
  2641. 5532
  2642. \end_layout
  2643. \end_inset
  2644. </cell>
  2645. </row>
  2646. <row>
  2647. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2648. \begin_inset Text
  2649. \begin_layout Plain Layout
  2650. Day 5 Naive vs Memory
  2651. \end_layout
  2652. \end_inset
  2653. </cell>
  2654. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2655. \begin_inset Text
  2656. \begin_layout Plain Layout
  2657. 0
  2658. \end_layout
  2659. \end_inset
  2660. </cell>
  2661. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2662. \begin_inset Text
  2663. \begin_layout Plain Layout
  2664. 0
  2665. \end_layout
  2666. \end_inset
  2667. </cell>
  2668. </row>
  2669. <row>
  2670. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2671. \begin_inset Text
  2672. \begin_layout Plain Layout
  2673. Day 14 Naive vs Memory
  2674. \end_layout
  2675. \end_inset
  2676. </cell>
  2677. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2678. \begin_inset Text
  2679. \begin_layout Plain Layout
  2680. 6446
  2681. \end_layout
  2682. \end_inset
  2683. </cell>
  2684. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2685. \begin_inset Text
  2686. \begin_layout Plain Layout
  2687. 2319
  2688. \end_layout
  2689. \end_inset
  2690. </cell>
  2691. </row>
  2692. </lyxtabular>
  2693. \end_inset
  2694. \end_layout
  2695. \begin_layout Plain Layout
  2696. \begin_inset Caption Standard
  2697. \begin_layout Plain Layout
  2698. \series bold
  2699. \begin_inset CommandInset label
  2700. LatexCommand label
  2701. name "tab:Estimated-and-detected-rnaseq"
  2702. \end_inset
  2703. Estimated and detected differentially expressed genes.
  2704. \series default
  2705. \begin_inset Quotes eld
  2706. \end_inset
  2707. Test
  2708. \begin_inset Quotes erd
  2709. \end_inset
  2710. : Which sample groups were compared;
  2711. \begin_inset Quotes eld
  2712. \end_inset
  2713. Est non-null
  2714. \begin_inset Quotes erd
  2715. \end_inset
  2716. : Estimated number of differentially expressed genes, using the method of
  2717. averaging local FDR values
  2718. \begin_inset CommandInset citation
  2719. LatexCommand cite
  2720. key "Phipson2013Thesis"
  2721. literal "false"
  2722. \end_inset
  2723. ;
  2724. \begin_inset Quotes eld
  2725. \end_inset
  2726. \begin_inset Formula $\mathrm{FDR}\le10\%$
  2727. \end_inset
  2728. \begin_inset Quotes erd
  2729. \end_inset
  2730. : Number of significantly differentially expressed genes at an FDR threshold
  2731. of 10%.
  2732. The total number of genes tested was 16707.
  2733. \end_layout
  2734. \end_inset
  2735. \end_layout
  2736. \end_inset
  2737. \end_layout
  2738. \begin_layout Standard
  2739. \begin_inset Float figure
  2740. wide false
  2741. sideways false
  2742. status collapsed
  2743. \begin_layout Plain Layout
  2744. \align center
  2745. \begin_inset Graphics
  2746. filename graphics/CD4-csaw/RNA-seq/PCA-final-12-CROP.png
  2747. lyxscale 25
  2748. width 100col%
  2749. groupId colwidth-raster
  2750. \end_inset
  2751. \end_layout
  2752. \begin_layout Plain Layout
  2753. \begin_inset Caption Standard
  2754. \begin_layout Plain Layout
  2755. \series bold
  2756. \begin_inset CommandInset label
  2757. LatexCommand label
  2758. name "fig:rna-pca-final"
  2759. \end_inset
  2760. PCoA plot of RNA-seq samples after ComBat batch correction.
  2761. \series default
  2762. Each point represents an individual sample.
  2763. Samples with the same combination of cell type and time point are encircled
  2764. with a shaded region to aid in visual identification of the sample groups.
  2765. Samples with of same cell type from the same donor are connected by lines
  2766. to indicate the
  2767. \begin_inset Quotes eld
  2768. \end_inset
  2769. trajectory
  2770. \begin_inset Quotes erd
  2771. \end_inset
  2772. of each donor's cells over time in PCoA space.
  2773. \end_layout
  2774. \end_inset
  2775. \end_layout
  2776. \begin_layout Plain Layout
  2777. \end_layout
  2778. \end_inset
  2779. \end_layout
  2780. \begin_layout Standard
  2781. Genes called present in the RNA-seq data were tested for differential expression
  2782. between all time points and cell types.
  2783. The counts of differentially expressed genes are shown in Table
  2784. \begin_inset CommandInset ref
  2785. LatexCommand ref
  2786. reference "tab:Estimated-and-detected-rnaseq"
  2787. plural "false"
  2788. caps "false"
  2789. noprefix "false"
  2790. \end_inset
  2791. .
  2792. Notably, all the results for Day 0 and Day 5 have substantially fewer genes
  2793. called differentially expressed than any of the results for other time
  2794. points.
  2795. This is an unfortunate result of the difference in sample quality between
  2796. the two batches of RNA-seq data.
  2797. All the samples in Batch 1, which includes all the samples from Days 0
  2798. and 5, have substantially more variability than the samples in Batch 2,
  2799. which includes the other time points.
  2800. This is reflected in the substantially higher weights assigned to Batch
  2801. 2 (Figure
  2802. \begin_inset CommandInset ref
  2803. LatexCommand ref
  2804. reference "fig:RNA-seq-weights-vs-covars"
  2805. plural "false"
  2806. caps "false"
  2807. noprefix "false"
  2808. \end_inset
  2809. ).
  2810. The batch effect has both a systematic component and a random noise component.
  2811. While the systematic component was subtracted out using ComBat (Figure
  2812. \begin_inset CommandInset ref
  2813. LatexCommand ref
  2814. reference "fig:RNA-PCA"
  2815. plural "false"
  2816. caps "false"
  2817. noprefix "false"
  2818. \end_inset
  2819. ), no such correction is possible for the noise component: Batch 1 simply
  2820. has substantially more random noise in it, which reduces the statistical
  2821. power for any differential expression tests involving samples in that batch.
  2822. \end_layout
  2823. \begin_layout Standard
  2824. Despite the difficulty in detecting specific differentially expressed genes,
  2825. there is still evidence that differential expression is present for these
  2826. time points.
  2827. In Figure
  2828. \begin_inset CommandInset ref
  2829. LatexCommand ref
  2830. reference "fig:rna-pca-final"
  2831. plural "false"
  2832. caps "false"
  2833. noprefix "false"
  2834. \end_inset
  2835. , there is a clear separation between naive and memory samples at Day 0,
  2836. despite the fact that only 2 genes were significantly differentially expressed
  2837. for this comparison.
  2838. Similarly, the small numbers of genes detected for the Day 0 vs Day 5 compariso
  2839. ns do not reflect the large separation between these time points in Figure
  2840. \begin_inset CommandInset ref
  2841. LatexCommand ref
  2842. reference "fig:rna-pca-final"
  2843. plural "false"
  2844. caps "false"
  2845. noprefix "false"
  2846. \end_inset
  2847. .
  2848. In addition, the MOFA latent factor plots in Figure
  2849. \begin_inset CommandInset ref
  2850. LatexCommand ref
  2851. reference "fig:mofa-lf-scatter"
  2852. plural "false"
  2853. caps "false"
  2854. noprefix "false"
  2855. \end_inset
  2856. .
  2857. This suggests that there is indeed a differential expression signal present
  2858. in the data for these comparisons, but the large variability in the Batch
  2859. 1 samples obfuscates this signal at the individual gene level.
  2860. As a result, it is impossible to make any meaningful statements about the
  2861. \begin_inset Quotes eld
  2862. \end_inset
  2863. size
  2864. \begin_inset Quotes erd
  2865. \end_inset
  2866. of the gene signature for any time point, since the number of significant
  2867. genes as well as the estimated number of differentially expressed genes
  2868. depends so strongly on the variations in sample quality in addition to
  2869. the size of the differential expression signal in the data.
  2870. Gene-set enrichment analyses are similarly impractical.
  2871. However, analyses looking at genome-wide patterns of expression are still
  2872. practical.
  2873. \end_layout
  2874. \begin_layout Subsection
  2875. H3K4 and H3K27 methylation occur in broad regions and are enriched near
  2876. promoters
  2877. \end_layout
  2878. \begin_layout Standard
  2879. \begin_inset Float table
  2880. wide false
  2881. sideways false
  2882. status collapsed
  2883. \begin_layout Plain Layout
  2884. \align center
  2885. \begin_inset Flex TODO Note (inline)
  2886. status open
  2887. \begin_layout Plain Layout
  2888. Also get
  2889. \emph on
  2890. median
  2891. \emph default
  2892. peak width and maybe other quantiles (25%, 75%)
  2893. \end_layout
  2894. \end_inset
  2895. \end_layout
  2896. \begin_layout Plain Layout
  2897. \align center
  2898. \begin_inset Tabular
  2899. <lyxtabular version="3" rows="4" columns="5">
  2900. <features tabularvalignment="middle">
  2901. <column alignment="center" valignment="top">
  2902. <column alignment="center" valignment="top">
  2903. <column alignment="center" valignment="top">
  2904. <column alignment="center" valignment="top">
  2905. <column alignment="center" valignment="top">
  2906. <row>
  2907. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2908. \begin_inset Text
  2909. \begin_layout Plain Layout
  2910. Histone Mark
  2911. \end_layout
  2912. \end_inset
  2913. </cell>
  2914. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2915. \begin_inset Text
  2916. \begin_layout Plain Layout
  2917. # Peaks
  2918. \end_layout
  2919. \end_inset
  2920. </cell>
  2921. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2922. \begin_inset Text
  2923. \begin_layout Plain Layout
  2924. Mean peak width
  2925. \end_layout
  2926. \end_inset
  2927. </cell>
  2928. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2929. \begin_inset Text
  2930. \begin_layout Plain Layout
  2931. genome coverage
  2932. \end_layout
  2933. \end_inset
  2934. </cell>
  2935. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2936. \begin_inset Text
  2937. \begin_layout Plain Layout
  2938. FRiP
  2939. \end_layout
  2940. \end_inset
  2941. </cell>
  2942. </row>
  2943. <row>
  2944. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2945. \begin_inset Text
  2946. \begin_layout Plain Layout
  2947. H3K4me2
  2948. \end_layout
  2949. \end_inset
  2950. </cell>
  2951. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2952. \begin_inset Text
  2953. \begin_layout Plain Layout
  2954. 14965
  2955. \end_layout
  2956. \end_inset
  2957. </cell>
  2958. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2959. \begin_inset Text
  2960. \begin_layout Plain Layout
  2961. 3970
  2962. \end_layout
  2963. \end_inset
  2964. </cell>
  2965. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2966. \begin_inset Text
  2967. \begin_layout Plain Layout
  2968. 1.92%
  2969. \end_layout
  2970. \end_inset
  2971. </cell>
  2972. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2973. \begin_inset Text
  2974. \begin_layout Plain Layout
  2975. 14.2%
  2976. \end_layout
  2977. \end_inset
  2978. </cell>
  2979. </row>
  2980. <row>
  2981. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2982. \begin_inset Text
  2983. \begin_layout Plain Layout
  2984. H3K4me3
  2985. \end_layout
  2986. \end_inset
  2987. </cell>
  2988. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2989. \begin_inset Text
  2990. \begin_layout Plain Layout
  2991. 6163
  2992. \end_layout
  2993. \end_inset
  2994. </cell>
  2995. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2996. \begin_inset Text
  2997. \begin_layout Plain Layout
  2998. 2946
  2999. \end_layout
  3000. \end_inset
  3001. </cell>
  3002. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3003. \begin_inset Text
  3004. \begin_layout Plain Layout
  3005. 0.588%
  3006. \end_layout
  3007. \end_inset
  3008. </cell>
  3009. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3010. \begin_inset Text
  3011. \begin_layout Plain Layout
  3012. 6.57%
  3013. \end_layout
  3014. \end_inset
  3015. </cell>
  3016. </row>
  3017. <row>
  3018. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3019. \begin_inset Text
  3020. \begin_layout Plain Layout
  3021. H3K27me3
  3022. \end_layout
  3023. \end_inset
  3024. </cell>
  3025. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3026. \begin_inset Text
  3027. \begin_layout Plain Layout
  3028. 18139
  3029. \end_layout
  3030. \end_inset
  3031. </cell>
  3032. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3033. \begin_inset Text
  3034. \begin_layout Plain Layout
  3035. 18967
  3036. \end_layout
  3037. \end_inset
  3038. </cell>
  3039. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3040. \begin_inset Text
  3041. \begin_layout Plain Layout
  3042. 11.1%
  3043. \end_layout
  3044. \end_inset
  3045. </cell>
  3046. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3047. \begin_inset Text
  3048. \begin_layout Plain Layout
  3049. 22.5%
  3050. \end_layout
  3051. \end_inset
  3052. </cell>
  3053. </row>
  3054. </lyxtabular>
  3055. \end_inset
  3056. \end_layout
  3057. \begin_layout Plain Layout
  3058. \begin_inset Caption Standard
  3059. \begin_layout Plain Layout
  3060. \series bold
  3061. \begin_inset CommandInset label
  3062. LatexCommand label
  3063. name "tab:peak-calling-summary"
  3064. \end_inset
  3065. Peak-calling summary.
  3066. \series default
  3067. For each histone mark, the number of peaks called using SICER at an IDR
  3068. threshold of ???, the mean width of those peaks, the fraction of the genome
  3069. covered by peaks, and the fraction of reads in peaks (FRiP).
  3070. \end_layout
  3071. \end_inset
  3072. \end_layout
  3073. \end_inset
  3074. \end_layout
  3075. \begin_layout Standard
  3076. Table
  3077. \begin_inset CommandInset ref
  3078. LatexCommand ref
  3079. reference "tab:peak-calling-summary"
  3080. plural "false"
  3081. caps "false"
  3082. noprefix "false"
  3083. \end_inset
  3084. gives a summary of the peak calling statistics for each histone mark.
  3085. Consistent with previous observations [CITATION NEEDED], all 3 histone
  3086. marks occur in broad regions spanning many consecutive nucleosomes, rather
  3087. than in sharp peaks as would be expected for a transcription factor or
  3088. other molecule that binds to specific sites.
  3089. This conclusion is further supported by Figure
  3090. \begin_inset CommandInset ref
  3091. LatexCommand ref
  3092. reference "fig:CCF-with-blacklist"
  3093. plural "false"
  3094. caps "false"
  3095. noprefix "false"
  3096. \end_inset
  3097. , in which a clear nucleosome-sized periodicity is visible in the cross-correlat
  3098. ion value for each sample, indicating that each time a given mark is present
  3099. on one histone, it is also likely to be found on adjacent histones as well.
  3100. H3K27me3 enrichment in particular is substantially more broad than either
  3101. H3K4 mark, with a mean peak width of almost 19,000 bp.
  3102. This is also reflected in the periodicity observed in Figure
  3103. \begin_inset CommandInset ref
  3104. LatexCommand ref
  3105. reference "fig:CCF-with-blacklist"
  3106. plural "false"
  3107. caps "false"
  3108. noprefix "false"
  3109. \end_inset
  3110. , which remains strong much farther out for H3K27me3 than the other marks,
  3111. showing H3K27me3 especially tends to be found on long runs of consecutive
  3112. histones.
  3113. \end_layout
  3114. \begin_layout Standard
  3115. \begin_inset Float figure
  3116. wide false
  3117. sideways false
  3118. status open
  3119. \begin_layout Plain Layout
  3120. \begin_inset Flex TODO Note (inline)
  3121. status open
  3122. \begin_layout Plain Layout
  3123. Ensure this figure uses the peak calls from the new analysis.
  3124. \end_layout
  3125. \end_inset
  3126. \end_layout
  3127. \begin_layout Plain Layout
  3128. \begin_inset Flex TODO Note (inline)
  3129. status open
  3130. \begin_layout Plain Layout
  3131. Need a control: shuffle all peaks and repeat, N times.
  3132. Do real vs shuffled control both in a top/bottom arrangement.
  3133. \end_layout
  3134. \end_inset
  3135. \end_layout
  3136. \begin_layout Plain Layout
  3137. \begin_inset Flex TODO Note (inline)
  3138. status open
  3139. \begin_layout Plain Layout
  3140. Consider counting TSS inside peaks as negative number indicating how far
  3141. \emph on
  3142. inside
  3143. \emph default
  3144. the peak the TSS is (i.e.
  3145. distance to nearest non-peak area).
  3146. \end_layout
  3147. \end_inset
  3148. \end_layout
  3149. \begin_layout Plain Layout
  3150. \begin_inset Flex TODO Note (inline)
  3151. status open
  3152. \begin_layout Plain Layout
  3153. The H3K4 part of this figure is included in
  3154. \begin_inset CommandInset citation
  3155. LatexCommand cite
  3156. key "LaMere2016"
  3157. literal "false"
  3158. \end_inset
  3159. as Fig.
  3160. S2.
  3161. Do I need to do anything about that?
  3162. \end_layout
  3163. \end_inset
  3164. \end_layout
  3165. \begin_layout Plain Layout
  3166. \align center
  3167. \begin_inset Graphics
  3168. filename graphics/CD4-csaw/Promoter Peak Distance Profile-PAGE1-CROP.pdf
  3169. lyxscale 50
  3170. width 80col%
  3171. \end_inset
  3172. \end_layout
  3173. \begin_layout Plain Layout
  3174. \begin_inset Caption Standard
  3175. \begin_layout Plain Layout
  3176. \series bold
  3177. \begin_inset CommandInset label
  3178. LatexCommand label
  3179. name "fig:near-promoter-peak-enrich"
  3180. \end_inset
  3181. Enrichment of peaks in promoter neighborhoods.
  3182. \series default
  3183. This plot shows the distribution of distances from each annotated transcription
  3184. start site in the genome to the nearest called peak.
  3185. Each line represents one combination of histone mark, cell type, and time
  3186. point.
  3187. Distributions are smoothed using kernel density estimation [CITE? see ggplot2
  3188. stat_density()].
  3189. Transcription start sites that occur
  3190. \emph on
  3191. within
  3192. \emph default
  3193. peaks were excluded from this plot to avoid a large spike at zero that
  3194. would overshadow the rest of the distribution.
  3195. \end_layout
  3196. \end_inset
  3197. \end_layout
  3198. \end_inset
  3199. \end_layout
  3200. \begin_layout Standard
  3201. \begin_inset Float table
  3202. wide false
  3203. sideways false
  3204. status collapsed
  3205. \begin_layout Plain Layout
  3206. \align center
  3207. \begin_inset Tabular
  3208. <lyxtabular version="3" rows="4" columns="2">
  3209. <features tabularvalignment="middle">
  3210. <column alignment="center" valignment="top">
  3211. <column alignment="center" valignment="top">
  3212. <row>
  3213. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3214. \begin_inset Text
  3215. \begin_layout Plain Layout
  3216. Histone mark
  3217. \end_layout
  3218. \end_inset
  3219. </cell>
  3220. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3221. \begin_inset Text
  3222. \begin_layout Plain Layout
  3223. Effective promoter radius
  3224. \end_layout
  3225. \end_inset
  3226. </cell>
  3227. </row>
  3228. <row>
  3229. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3230. \begin_inset Text
  3231. \begin_layout Plain Layout
  3232. H3K4me2
  3233. \end_layout
  3234. \end_inset
  3235. </cell>
  3236. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3237. \begin_inset Text
  3238. \begin_layout Plain Layout
  3239. 1 kb
  3240. \end_layout
  3241. \end_inset
  3242. </cell>
  3243. </row>
  3244. <row>
  3245. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3246. \begin_inset Text
  3247. \begin_layout Plain Layout
  3248. H3K4me3
  3249. \end_layout
  3250. \end_inset
  3251. </cell>
  3252. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3253. \begin_inset Text
  3254. \begin_layout Plain Layout
  3255. 1 kb
  3256. \end_layout
  3257. \end_inset
  3258. </cell>
  3259. </row>
  3260. <row>
  3261. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3262. \begin_inset Text
  3263. \begin_layout Plain Layout
  3264. H3K27me3
  3265. \end_layout
  3266. \end_inset
  3267. </cell>
  3268. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3269. \begin_inset Text
  3270. \begin_layout Plain Layout
  3271. 2.5 kb
  3272. \end_layout
  3273. \end_inset
  3274. </cell>
  3275. </row>
  3276. </lyxtabular>
  3277. \end_inset
  3278. \end_layout
  3279. \begin_layout Plain Layout
  3280. \begin_inset Caption Standard
  3281. \begin_layout Plain Layout
  3282. \series bold
  3283. \begin_inset CommandInset label
  3284. LatexCommand label
  3285. name "tab:effective-promoter-radius"
  3286. \end_inset
  3287. Effective promoter radius for each histone mark.
  3288. \series default
  3289. These values represent the approximate distance from transcription start
  3290. site positions within which an excess of peaks are found, as shown in Figure
  3291. \begin_inset CommandInset ref
  3292. LatexCommand ref
  3293. reference "fig:near-promoter-peak-enrich"
  3294. plural "false"
  3295. caps "false"
  3296. noprefix "false"
  3297. \end_inset
  3298. .
  3299. \end_layout
  3300. \end_inset
  3301. \end_layout
  3302. \begin_layout Plain Layout
  3303. \end_layout
  3304. \end_inset
  3305. \end_layout
  3306. \begin_layout Standard
  3307. All 3 histone marks tend to occur more often near promoter regions, as shown
  3308. in Figure
  3309. \begin_inset CommandInset ref
  3310. LatexCommand ref
  3311. reference "fig:near-promoter-peak-enrich"
  3312. plural "false"
  3313. caps "false"
  3314. noprefix "false"
  3315. \end_inset
  3316. .
  3317. The majority of each density distribution is flat, representing the background
  3318. density of peaks genome-wide.
  3319. Each distribution has a peak near zero, representing an enrichment of peaks
  3320. close transcription start site (TSS) positions relative to the remainder
  3321. of the genome.
  3322. Interestingly, the
  3323. \begin_inset Quotes eld
  3324. \end_inset
  3325. radius
  3326. \begin_inset Quotes erd
  3327. \end_inset
  3328. within which this enrichment occurs is not the same for every histone mark
  3329. (Table
  3330. \begin_inset CommandInset ref
  3331. LatexCommand ref
  3332. reference "tab:effective-promoter-radius"
  3333. plural "false"
  3334. caps "false"
  3335. noprefix "false"
  3336. \end_inset
  3337. ).
  3338. For H3K4me2 and H3K4me3, peaks are most enriched within 1
  3339. \begin_inset space ~
  3340. \end_inset
  3341. kbp of TSS positions, while for H3K27me3, enrichment is broader, extending
  3342. to 2.5
  3343. \begin_inset space ~
  3344. \end_inset
  3345. kbp.
  3346. These
  3347. \begin_inset Quotes eld
  3348. \end_inset
  3349. effective promoter radii
  3350. \begin_inset Quotes erd
  3351. \end_inset
  3352. remain approximately the same across all combinations of experimental condition
  3353. (cell type, time point, and donor), so they appear to be a property of
  3354. the histone mark itself.
  3355. Hence, these radii were used to define the promoter regions for each histone
  3356. mark in all further analyses.
  3357. \end_layout
  3358. \begin_layout Standard
  3359. \begin_inset Flex TODO Note (inline)
  3360. status open
  3361. \begin_layout Plain Layout
  3362. Consider also showing figure for distance to nearest peak center, and reference
  3363. median peak size once that is known.
  3364. \end_layout
  3365. \end_inset
  3366. \end_layout
  3367. \begin_layout Subsection
  3368. H3K4 and H3K27 promoter methylation has broadly the expected correlation
  3369. with gene expression
  3370. \end_layout
  3371. \begin_layout Standard
  3372. \begin_inset Float figure
  3373. wide false
  3374. sideways false
  3375. status collapsed
  3376. \begin_layout Plain Layout
  3377. \begin_inset Flex TODO Note (inline)
  3378. status open
  3379. \begin_layout Plain Layout
  3380. This figure is generated from the old analysis.
  3381. Eiher note that in some way or re-generate it from the new peak calls.
  3382. \end_layout
  3383. \end_inset
  3384. \end_layout
  3385. \begin_layout Plain Layout
  3386. \align center
  3387. \begin_inset Graphics
  3388. filename graphics/CD4-csaw/FPKM by Peak Violin Plots-CROP.pdf
  3389. lyxscale 50
  3390. width 100col%
  3391. \end_inset
  3392. \end_layout
  3393. \begin_layout Plain Layout
  3394. \begin_inset Caption Standard
  3395. \begin_layout Plain Layout
  3396. \series bold
  3397. \begin_inset CommandInset label
  3398. LatexCommand label
  3399. name "fig:fpkm-by-peak"
  3400. \end_inset
  3401. Expression distributions of genes with and without promoter peaks.
  3402. \end_layout
  3403. \end_inset
  3404. \end_layout
  3405. \end_inset
  3406. \end_layout
  3407. \begin_layout Standard
  3408. H3K4me2 and H3K4me2 have previously been reported as activating marks whose
  3409. presence in a gene's promoter is associated with higher gene expression,
  3410. while H3K27me3 has been reported as inactivating [CITE].
  3411. The data are consistent with this characterization: genes whose promoters
  3412. (as defined by the radii for each histone mark listed in
  3413. \begin_inset CommandInset ref
  3414. LatexCommand ref
  3415. reference "tab:effective-promoter-radius"
  3416. plural "false"
  3417. caps "false"
  3418. noprefix "false"
  3419. \end_inset
  3420. ) overlap with a H3K4me2 or H3K4me3 peak tend to have higher expression
  3421. than those that don't, while H3K27me3 is likewise associated with lower
  3422. gene expression, as shown in
  3423. \begin_inset CommandInset ref
  3424. LatexCommand ref
  3425. reference "fig:fpkm-by-peak"
  3426. plural "false"
  3427. caps "false"
  3428. noprefix "false"
  3429. \end_inset
  3430. .
  3431. This pattern holds across all combinations of cell type and time point
  3432. (Welch's
  3433. \emph on
  3434. t
  3435. \emph default
  3436. -test, all
  3437. \begin_inset Formula $p\mathrm{-values}\ll2.2\times10^{-16}$
  3438. \end_inset
  3439. ).
  3440. The difference in average log FPKM values when a peak overlaps the promoter
  3441. is about
  3442. \begin_inset Formula $+5.67$
  3443. \end_inset
  3444. for H3K4me2,
  3445. \begin_inset Formula $+5.76$
  3446. \end_inset
  3447. for H3K4me2, and
  3448. \begin_inset Formula $-4.00$
  3449. \end_inset
  3450. for H3K27me3.
  3451. \end_layout
  3452. \begin_layout Standard
  3453. \begin_inset Flex TODO Note (inline)
  3454. status open
  3455. \begin_layout Plain Layout
  3456. I also have some figures looking at interactions between marks (e.g.
  3457. what if a promoter has both H3K4me3 and H3K27me3), but I don't know if
  3458. that much detail is warranted here, since all the effects just seem approximate
  3459. ly additive anyway.
  3460. \end_layout
  3461. \end_inset
  3462. \end_layout
  3463. \begin_layout Subsection
  3464. Gene expression and promoter histone methylation patterns in naive and memory
  3465. show convergence at day 14
  3466. \end_layout
  3467. \begin_layout Standard
  3468. \begin_inset ERT
  3469. status open
  3470. \begin_layout Plain Layout
  3471. \backslash
  3472. afterpage{
  3473. \end_layout
  3474. \begin_layout Plain Layout
  3475. \backslash
  3476. begin{landscape}
  3477. \end_layout
  3478. \end_inset
  3479. \end_layout
  3480. \begin_layout Standard
  3481. \begin_inset Float table
  3482. wide false
  3483. sideways false
  3484. status open
  3485. \begin_layout Plain Layout
  3486. \align center
  3487. \begin_inset Tabular
  3488. <lyxtabular version="3" rows="6" columns="7">
  3489. <features tabularvalignment="middle">
  3490. <column alignment="center" valignment="top">
  3491. <column alignment="center" valignment="top">
  3492. <column alignment="center" valignment="top">
  3493. <column alignment="center" valignment="top">
  3494. <column alignment="center" valignment="top">
  3495. <column alignment="center" valignment="top">
  3496. <column alignment="center" valignment="top">
  3497. <row>
  3498. <cell alignment="center" valignment="top" usebox="none">
  3499. \begin_inset Text
  3500. \begin_layout Plain Layout
  3501. \end_layout
  3502. \end_inset
  3503. </cell>
  3504. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3505. \begin_inset Text
  3506. \begin_layout Plain Layout
  3507. Number of significant promoters
  3508. \end_layout
  3509. \end_inset
  3510. </cell>
  3511. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3512. \begin_inset Text
  3513. \begin_layout Plain Layout
  3514. \end_layout
  3515. \end_inset
  3516. </cell>
  3517. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3518. \begin_inset Text
  3519. \begin_layout Plain Layout
  3520. \end_layout
  3521. \end_inset
  3522. </cell>
  3523. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3524. \begin_inset Text
  3525. \begin_layout Plain Layout
  3526. Est.
  3527. differentially modified promoters
  3528. \end_layout
  3529. \end_inset
  3530. </cell>
  3531. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3532. \begin_inset Text
  3533. \begin_layout Plain Layout
  3534. \end_layout
  3535. \end_inset
  3536. </cell>
  3537. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3538. \begin_inset Text
  3539. \begin_layout Plain Layout
  3540. \end_layout
  3541. \end_inset
  3542. </cell>
  3543. </row>
  3544. <row>
  3545. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3546. \begin_inset Text
  3547. \begin_layout Plain Layout
  3548. Time Point
  3549. \end_layout
  3550. \end_inset
  3551. </cell>
  3552. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3553. \begin_inset Text
  3554. \begin_layout Plain Layout
  3555. H3K4me2
  3556. \end_layout
  3557. \end_inset
  3558. </cell>
  3559. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3560. \begin_inset Text
  3561. \begin_layout Plain Layout
  3562. H3K4me3
  3563. \end_layout
  3564. \end_inset
  3565. </cell>
  3566. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3567. \begin_inset Text
  3568. \begin_layout Plain Layout
  3569. H3K27me3
  3570. \end_layout
  3571. \end_inset
  3572. </cell>
  3573. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3574. \begin_inset Text
  3575. \begin_layout Plain Layout
  3576. H3K4me2
  3577. \end_layout
  3578. \end_inset
  3579. </cell>
  3580. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3581. \begin_inset Text
  3582. \begin_layout Plain Layout
  3583. H3K4me3
  3584. \end_layout
  3585. \end_inset
  3586. </cell>
  3587. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3588. \begin_inset Text
  3589. \begin_layout Plain Layout
  3590. H3K27me3
  3591. \end_layout
  3592. \end_inset
  3593. </cell>
  3594. </row>
  3595. <row>
  3596. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3597. \begin_inset Text
  3598. \begin_layout Plain Layout
  3599. Day 0
  3600. \end_layout
  3601. \end_inset
  3602. </cell>
  3603. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3604. \begin_inset Text
  3605. \begin_layout Plain Layout
  3606. 4553
  3607. \end_layout
  3608. \end_inset
  3609. </cell>
  3610. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3611. \begin_inset Text
  3612. \begin_layout Plain Layout
  3613. 927
  3614. \end_layout
  3615. \end_inset
  3616. </cell>
  3617. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3618. \begin_inset Text
  3619. \begin_layout Plain Layout
  3620. 6
  3621. \end_layout
  3622. \end_inset
  3623. </cell>
  3624. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3625. \begin_inset Text
  3626. \begin_layout Plain Layout
  3627. 9967
  3628. \end_layout
  3629. \end_inset
  3630. </cell>
  3631. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3632. \begin_inset Text
  3633. \begin_layout Plain Layout
  3634. 4149
  3635. \end_layout
  3636. \end_inset
  3637. </cell>
  3638. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3639. \begin_inset Text
  3640. \begin_layout Plain Layout
  3641. 2404
  3642. \end_layout
  3643. \end_inset
  3644. </cell>
  3645. </row>
  3646. <row>
  3647. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3648. \begin_inset Text
  3649. \begin_layout Plain Layout
  3650. Day 1
  3651. \end_layout
  3652. \end_inset
  3653. </cell>
  3654. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3655. \begin_inset Text
  3656. \begin_layout Plain Layout
  3657. 567
  3658. \end_layout
  3659. \end_inset
  3660. </cell>
  3661. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3662. \begin_inset Text
  3663. \begin_layout Plain Layout
  3664. 278
  3665. \end_layout
  3666. \end_inset
  3667. </cell>
  3668. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3669. \begin_inset Text
  3670. \begin_layout Plain Layout
  3671. 1570
  3672. \end_layout
  3673. \end_inset
  3674. </cell>
  3675. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3676. \begin_inset Text
  3677. \begin_layout Plain Layout
  3678. 4370
  3679. \end_layout
  3680. \end_inset
  3681. </cell>
  3682. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3683. \begin_inset Text
  3684. \begin_layout Plain Layout
  3685. 2145
  3686. \end_layout
  3687. \end_inset
  3688. </cell>
  3689. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3690. \begin_inset Text
  3691. \begin_layout Plain Layout
  3692. 6598
  3693. \end_layout
  3694. \end_inset
  3695. </cell>
  3696. </row>
  3697. <row>
  3698. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3699. \begin_inset Text
  3700. \begin_layout Plain Layout
  3701. Day 5
  3702. \end_layout
  3703. \end_inset
  3704. </cell>
  3705. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3706. \begin_inset Text
  3707. \begin_layout Plain Layout
  3708. 2313
  3709. \end_layout
  3710. \end_inset
  3711. </cell>
  3712. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3713. \begin_inset Text
  3714. \begin_layout Plain Layout
  3715. 139
  3716. \end_layout
  3717. \end_inset
  3718. </cell>
  3719. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3720. \begin_inset Text
  3721. \begin_layout Plain Layout
  3722. 490
  3723. \end_layout
  3724. \end_inset
  3725. </cell>
  3726. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3727. \begin_inset Text
  3728. \begin_layout Plain Layout
  3729. 9450
  3730. \end_layout
  3731. \end_inset
  3732. </cell>
  3733. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3734. \begin_inset Text
  3735. \begin_layout Plain Layout
  3736. 1148
  3737. \end_layout
  3738. \end_inset
  3739. </cell>
  3740. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3741. \begin_inset Text
  3742. \begin_layout Plain Layout
  3743. 4141
  3744. \end_layout
  3745. \end_inset
  3746. </cell>
  3747. </row>
  3748. <row>
  3749. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3750. \begin_inset Text
  3751. \begin_layout Plain Layout
  3752. Day 14
  3753. \end_layout
  3754. \end_inset
  3755. </cell>
  3756. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3757. \begin_inset Text
  3758. \begin_layout Plain Layout
  3759. 0
  3760. \end_layout
  3761. \end_inset
  3762. </cell>
  3763. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3764. \begin_inset Text
  3765. \begin_layout Plain Layout
  3766. 0
  3767. \end_layout
  3768. \end_inset
  3769. </cell>
  3770. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3771. \begin_inset Text
  3772. \begin_layout Plain Layout
  3773. 0
  3774. \end_layout
  3775. \end_inset
  3776. </cell>
  3777. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3778. \begin_inset Text
  3779. \begin_layout Plain Layout
  3780. 0
  3781. \end_layout
  3782. \end_inset
  3783. </cell>
  3784. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3785. \begin_inset Text
  3786. \begin_layout Plain Layout
  3787. 0
  3788. \end_layout
  3789. \end_inset
  3790. </cell>
  3791. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3792. \begin_inset Text
  3793. \begin_layout Plain Layout
  3794. 0
  3795. \end_layout
  3796. \end_inset
  3797. </cell>
  3798. </row>
  3799. </lyxtabular>
  3800. \end_inset
  3801. \end_layout
  3802. \begin_layout Plain Layout
  3803. \begin_inset Caption Standard
  3804. \begin_layout Plain Layout
  3805. \series bold
  3806. \begin_inset CommandInset label
  3807. LatexCommand label
  3808. name "tab:Number-signif-promoters"
  3809. \end_inset
  3810. Number of differentially modified promoters between naive and memory cells
  3811. at each time point after activation.
  3812. \series default
  3813. This table shows both the number of differentially modified promoters detected
  3814. at a 10% FDR threshold (left half), and the total number of differentially
  3815. modified promoters as estimated using the method of
  3816. \begin_inset CommandInset citation
  3817. LatexCommand cite
  3818. key "Phipson2013"
  3819. literal "false"
  3820. \end_inset
  3821. (right half).
  3822. \end_layout
  3823. \end_inset
  3824. \end_layout
  3825. \end_inset
  3826. \end_layout
  3827. \begin_layout Standard
  3828. \begin_inset ERT
  3829. status open
  3830. \begin_layout Plain Layout
  3831. \backslash
  3832. end{landscape}
  3833. \end_layout
  3834. \begin_layout Plain Layout
  3835. }
  3836. \end_layout
  3837. \end_inset
  3838. \end_layout
  3839. \begin_layout Standard
  3840. \begin_inset Float figure
  3841. placement p
  3842. wide false
  3843. sideways false
  3844. status open
  3845. \begin_layout Plain Layout
  3846. \align center
  3847. \begin_inset Float figure
  3848. wide false
  3849. sideways false
  3850. status open
  3851. \begin_layout Plain Layout
  3852. \align center
  3853. \begin_inset Graphics
  3854. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-promoter-PCA-group-CROP.png
  3855. lyxscale 25
  3856. width 45col%
  3857. groupId pcoa-prom-subfig
  3858. \end_inset
  3859. \end_layout
  3860. \begin_layout Plain Layout
  3861. \begin_inset Caption Standard
  3862. \begin_layout Plain Layout
  3863. \series bold
  3864. \begin_inset CommandInset label
  3865. LatexCommand label
  3866. name "fig:PCoA-H3K4me2-prom"
  3867. \end_inset
  3868. PCoA plot of H3K4me2 promoters, after subtracting surrogate variables
  3869. \end_layout
  3870. \end_inset
  3871. \end_layout
  3872. \end_inset
  3873. \begin_inset space \hfill{}
  3874. \end_inset
  3875. \begin_inset Float figure
  3876. wide false
  3877. sideways false
  3878. status open
  3879. \begin_layout Plain Layout
  3880. \align center
  3881. \begin_inset Graphics
  3882. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-promoter-PCA-group-CROP.png
  3883. lyxscale 25
  3884. width 45col%
  3885. groupId pcoa-prom-subfig
  3886. \end_inset
  3887. \end_layout
  3888. \begin_layout Plain Layout
  3889. \begin_inset Caption Standard
  3890. \begin_layout Plain Layout
  3891. \series bold
  3892. \begin_inset CommandInset label
  3893. LatexCommand label
  3894. name "fig:PCoA-H3K4me3-prom"
  3895. \end_inset
  3896. PCoA plot of H3K4me3 promoters, after subtracting surrogate variables
  3897. \end_layout
  3898. \end_inset
  3899. \end_layout
  3900. \end_inset
  3901. \end_layout
  3902. \begin_layout Plain Layout
  3903. \align center
  3904. \begin_inset Float figure
  3905. wide false
  3906. sideways false
  3907. status collapsed
  3908. \begin_layout Plain Layout
  3909. \align center
  3910. \begin_inset Graphics
  3911. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-promoter-PCA-group-CROP.png
  3912. lyxscale 25
  3913. width 45col%
  3914. groupId pcoa-prom-subfig
  3915. \end_inset
  3916. \end_layout
  3917. \begin_layout Plain Layout
  3918. \begin_inset Caption Standard
  3919. \begin_layout Plain Layout
  3920. \series bold
  3921. \begin_inset CommandInset label
  3922. LatexCommand label
  3923. name "fig:PCoA-H3K27me3-prom"
  3924. \end_inset
  3925. PCoA plot of H3K27me3 promoters, after subtracting surrogate variables
  3926. \end_layout
  3927. \end_inset
  3928. \end_layout
  3929. \end_inset
  3930. \begin_inset space \hfill{}
  3931. \end_inset
  3932. \begin_inset Float figure
  3933. wide false
  3934. sideways false
  3935. status open
  3936. \begin_layout Plain Layout
  3937. \align center
  3938. \begin_inset Graphics
  3939. filename graphics/CD4-csaw/RNA-seq/PCA-final-23-CROP.png
  3940. lyxscale 25
  3941. width 45col%
  3942. groupId pcoa-prom-subfig
  3943. \end_inset
  3944. \end_layout
  3945. \begin_layout Plain Layout
  3946. \begin_inset Caption Standard
  3947. \begin_layout Plain Layout
  3948. \series bold
  3949. \begin_inset CommandInset label
  3950. LatexCommand label
  3951. name "fig:RNA-PCA-group"
  3952. \end_inset
  3953. RNA-seq PCoA showing principal coordiantes 2 and 3.
  3954. \end_layout
  3955. \end_inset
  3956. \end_layout
  3957. \end_inset
  3958. \end_layout
  3959. \begin_layout Plain Layout
  3960. \begin_inset Caption Standard
  3961. \begin_layout Plain Layout
  3962. \series bold
  3963. \begin_inset CommandInset label
  3964. LatexCommand label
  3965. name "fig:PCoA-promoters"
  3966. \end_inset
  3967. PCoA plots for promoter ChIP-seq and expression RNA-seq data
  3968. \end_layout
  3969. \end_inset
  3970. \end_layout
  3971. \end_inset
  3972. \end_layout
  3973. \begin_layout Standard
  3974. \begin_inset Flex TODO Note (inline)
  3975. status open
  3976. \begin_layout Plain Layout
  3977. Check up on figure refs in this paragraph
  3978. \end_layout
  3979. \end_inset
  3980. \end_layout
  3981. \begin_layout Standard
  3982. We hypothesized that if naive cells had differentiated into memory cells
  3983. by Day 14, then their patterns of expression and histone modification should
  3984. converge with those of memory cells at Day 14.
  3985. Figure
  3986. \begin_inset CommandInset ref
  3987. LatexCommand ref
  3988. reference "fig:PCoA-promoters"
  3989. plural "false"
  3990. caps "false"
  3991. noprefix "false"
  3992. \end_inset
  3993. shows the patterns of variation in all 3 histone marks in the promoter
  3994. regions of the genome using principal coordinate analysis.
  3995. All 3 marks show a noticeable convergence between the naive and memory
  3996. samples at day 14, visible as an overlapping of the day 14 groups on each
  3997. plot.
  3998. This is consistent with the counts of significantly differentially modified
  3999. promoters and estimates of the total numbers of differentially modified
  4000. promoters shown in Table
  4001. \begin_inset CommandInset ref
  4002. LatexCommand ref
  4003. reference "tab:Number-signif-promoters"
  4004. plural "false"
  4005. caps "false"
  4006. noprefix "false"
  4007. \end_inset
  4008. .
  4009. For all histone marks, evidence of differential modification between naive
  4010. and memory samples was detected at every time point except day 14.
  4011. The day 14 convergence pattern is also present in the RNA-seq data (Figure
  4012. \begin_inset CommandInset ref
  4013. LatexCommand ref
  4014. reference "fig:RNA-PCA-group"
  4015. plural "false"
  4016. caps "false"
  4017. noprefix "false"
  4018. \end_inset
  4019. ), albiet in the 2nd and 3rd principal coordinates, indicating that it is
  4020. not the most dominant pattern driving gene expression.
  4021. Taken together, the data show that promoter histone methylation for these
  4022. 3 histone marks and RNA expression for naive and memory cells are most
  4023. similar at day 14, the furthest time point after activation.
  4024. MOFA was also able to capture this day 14 convergence pattern in latent
  4025. factor 5 (Figure
  4026. \begin_inset CommandInset ref
  4027. LatexCommand ref
  4028. reference "fig:mofa-lf-scatter"
  4029. plural "false"
  4030. caps "false"
  4031. noprefix "false"
  4032. \end_inset
  4033. ), which accounts for shared variation across all 3 histone marks and the
  4034. RNA-seq data, confirming that this convergence is a coordinated pattern
  4035. across all 4 data sets.
  4036. While this observation does not prove that the naive cells have differentiated
  4037. into memory cells at Day 14, it is consistent with that hypothesis.
  4038. \end_layout
  4039. \begin_layout Subsection
  4040. Effect of H3K4me2 and H3K4me3 promoter coverage upstream vs downstream of
  4041. TSS
  4042. \end_layout
  4043. \begin_layout Standard
  4044. \begin_inset Flex TODO Note (inline)
  4045. status open
  4046. \begin_layout Plain Layout
  4047. Need a better section title, for this and the next one.
  4048. \end_layout
  4049. \end_inset
  4050. \end_layout
  4051. \begin_layout Standard
  4052. \begin_inset Flex TODO Note (inline)
  4053. status open
  4054. \begin_layout Plain Layout
  4055. Make sure use of coverage/abundance/whatever is consistent.
  4056. \end_layout
  4057. \end_inset
  4058. \end_layout
  4059. \begin_layout Standard
  4060. \begin_inset Flex TODO Note (inline)
  4061. status open
  4062. \begin_layout Plain Layout
  4063. For the figures in this section and the next, the group labels are arbitrary,
  4064. so if time allows, it would be good to manually reorder them in a logical
  4065. way, e.g.
  4066. most upstream to most downstream.
  4067. If this is done, make sure to update the text with the correct group labels.
  4068. \end_layout
  4069. \end_inset
  4070. \end_layout
  4071. \begin_layout Standard
  4072. \begin_inset ERT
  4073. status open
  4074. \begin_layout Plain Layout
  4075. \backslash
  4076. afterpage{
  4077. \end_layout
  4078. \begin_layout Plain Layout
  4079. \backslash
  4080. begin{landscape}
  4081. \end_layout
  4082. \end_inset
  4083. \end_layout
  4084. \begin_layout Standard
  4085. \begin_inset Float figure
  4086. wide false
  4087. sideways false
  4088. status open
  4089. \begin_layout Plain Layout
  4090. \align center
  4091. \begin_inset Float figure
  4092. wide false
  4093. sideways false
  4094. status open
  4095. \begin_layout Plain Layout
  4096. \align center
  4097. \begin_inset Graphics
  4098. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-neighborhood-clusters-CROP.png
  4099. lyxscale 25
  4100. width 30col%
  4101. groupId covprof-subfig
  4102. \end_inset
  4103. \end_layout
  4104. \begin_layout Plain Layout
  4105. \begin_inset Caption Standard
  4106. \begin_layout Plain Layout
  4107. \series bold
  4108. \begin_inset CommandInset label
  4109. LatexCommand label
  4110. name "fig:H3K4me2-neighborhood-clusters"
  4111. \end_inset
  4112. Average relative coverage for each bin in each cluster
  4113. \end_layout
  4114. \end_inset
  4115. \end_layout
  4116. \end_inset
  4117. \begin_inset space \hfill{}
  4118. \end_inset
  4119. \begin_inset Float figure
  4120. wide false
  4121. sideways false
  4122. status open
  4123. \begin_layout Plain Layout
  4124. \align center
  4125. \begin_inset Graphics
  4126. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-neighborhood-PCA-CROP.png
  4127. lyxscale 25
  4128. width 30col%
  4129. groupId covprof-subfig
  4130. \end_inset
  4131. \end_layout
  4132. \begin_layout Plain Layout
  4133. \begin_inset Caption Standard
  4134. \begin_layout Plain Layout
  4135. \series bold
  4136. \begin_inset CommandInset label
  4137. LatexCommand label
  4138. name "fig:H3K4me2-neighborhood-pca"
  4139. \end_inset
  4140. PCA of relative coverage depth, colored by K-means cluster membership.
  4141. \end_layout
  4142. \end_inset
  4143. \end_layout
  4144. \end_inset
  4145. \begin_inset space \hfill{}
  4146. \end_inset
  4147. \begin_inset Float figure
  4148. wide false
  4149. sideways false
  4150. status open
  4151. \begin_layout Plain Layout
  4152. \align center
  4153. \begin_inset Graphics
  4154. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-neighborhood-expression-CROP.png
  4155. lyxscale 25
  4156. width 30col%
  4157. groupId covprof-subfig
  4158. \end_inset
  4159. \end_layout
  4160. \begin_layout Plain Layout
  4161. \begin_inset Caption Standard
  4162. \begin_layout Plain Layout
  4163. \series bold
  4164. \begin_inset CommandInset label
  4165. LatexCommand label
  4166. name "fig:H3K4me2-neighborhood-expression"
  4167. \end_inset
  4168. Gene expression grouped by promoter coverage clusters.
  4169. \end_layout
  4170. \end_inset
  4171. \end_layout
  4172. \end_inset
  4173. \end_layout
  4174. \begin_layout Plain Layout
  4175. \begin_inset Caption Standard
  4176. \begin_layout Plain Layout
  4177. \series bold
  4178. \begin_inset CommandInset label
  4179. LatexCommand label
  4180. name "fig:H3K4me2-neighborhood"
  4181. \end_inset
  4182. K-means clustering of promoter H3K4me2 relative coverage depth in naive
  4183. day 0 samples.
  4184. \series default
  4185. H3K4me2 ChIP-seq reads were binned into 500-bp windows tiled across each
  4186. promoter from 5
  4187. \begin_inset space ~
  4188. \end_inset
  4189. kbp upstream to 5
  4190. \begin_inset space ~
  4191. \end_inset
  4192. kbp downstream, and the logCPM values were normalized within each promoter
  4193. to an average of 0, yielding relative coverage depths.
  4194. These were then grouped using K-means clustering with
  4195. \begin_inset Formula $K=6$
  4196. \end_inset
  4197. ,
  4198. \series bold
  4199. \series default
  4200. and the average bin values were plotted for each cluster (a).
  4201. The
  4202. \begin_inset Formula $x$
  4203. \end_inset
  4204. -axis is the genomic coordinate of each bin relative to the the transcription
  4205. start site, and the
  4206. \begin_inset Formula $y$
  4207. \end_inset
  4208. -axis is the mean relative coverage depth of that bin across all promoters
  4209. in the cluster.
  4210. Each line represents the average
  4211. \begin_inset Quotes eld
  4212. \end_inset
  4213. shape
  4214. \begin_inset Quotes erd
  4215. \end_inset
  4216. of the promoter coverage for promoters in that cluster.
  4217. PCA was performed on the same data, and the first two principal components
  4218. were plotted, coloring each point by its K-means cluster identity (b).
  4219. For each cluster, the distribution of gene expression values was plotted
  4220. (c).
  4221. \end_layout
  4222. \end_inset
  4223. \end_layout
  4224. \end_inset
  4225. \end_layout
  4226. \begin_layout Standard
  4227. \begin_inset ERT
  4228. status open
  4229. \begin_layout Plain Layout
  4230. \backslash
  4231. end{landscape}
  4232. \end_layout
  4233. \begin_layout Plain Layout
  4234. }
  4235. \end_layout
  4236. \end_inset
  4237. \end_layout
  4238. \begin_layout Standard
  4239. To test whether the position of a histone mark relative to a gene's transcriptio
  4240. n start site (TSS) was important, we looked at the
  4241. \begin_inset Quotes eld
  4242. \end_inset
  4243. landscape
  4244. \begin_inset Quotes erd
  4245. \end_inset
  4246. of ChIP-seq read coverage in naive Day 0 samples within 5 kb of each gene's
  4247. TSS by binning reads into 500-bp windows tiled across each promoter LogCPM
  4248. values were calculated for the bins in each promoter and then the average
  4249. logCPM for each promoter's bins was normalized to zero, such that the values
  4250. represent coverage relative to other regions of the same promoter rather
  4251. than being proportional to absolute read count.
  4252. The promoters were then clustered based on the normalized bin abundances
  4253. using
  4254. \begin_inset Formula $k$
  4255. \end_inset
  4256. -means clustering with
  4257. \begin_inset Formula $K=6$
  4258. \end_inset
  4259. .
  4260. Different values of
  4261. \begin_inset Formula $K$
  4262. \end_inset
  4263. were also tested, but did not substantially change the interpretation of
  4264. the data.
  4265. \end_layout
  4266. \begin_layout Standard
  4267. For H3K4me2, plotting the average bin abundances for each cluster reveals
  4268. a simple pattern (Figure
  4269. \begin_inset CommandInset ref
  4270. LatexCommand ref
  4271. reference "fig:H3K4me2-neighborhood-clusters"
  4272. plural "false"
  4273. caps "false"
  4274. noprefix "false"
  4275. \end_inset
  4276. ): Cluster 5 represents a completely flat promoter coverage profile, likely
  4277. consisting of genes with no H3K4me2 methylation in the promoter.
  4278. All the other clusters represent a continuum of peak positions relative
  4279. to the TSS.
  4280. In order from must upstream to most downstream, they are Clusters 6, 4,
  4281. 3, 1, and 2.
  4282. There do not appear to be any clusters representing coverage patterns other
  4283. than lone peaks, such as coverage troughs or double peaks.
  4284. Next, all promoters were plotted in a PCA plot based on the same relative
  4285. bin abundance data, and colored based on cluster membership (Figure
  4286. \begin_inset CommandInset ref
  4287. LatexCommand ref
  4288. reference "fig:H3K4me2-neighborhood-pca"
  4289. plural "false"
  4290. caps "false"
  4291. noprefix "false"
  4292. \end_inset
  4293. ).
  4294. The PCA plot shows Cluster 5 (the
  4295. \begin_inset Quotes eld
  4296. \end_inset
  4297. no peak
  4298. \begin_inset Quotes erd
  4299. \end_inset
  4300. cluster) at the center, with the other clusters arranged in a counter-clockwise
  4301. arc around it in the order noted above, from most upstream peak to most
  4302. downstream.
  4303. Notably, the
  4304. \begin_inset Quotes eld
  4305. \end_inset
  4306. clusters
  4307. \begin_inset Quotes erd
  4308. \end_inset
  4309. form a single large
  4310. \begin_inset Quotes eld
  4311. \end_inset
  4312. cloud
  4313. \begin_inset Quotes erd
  4314. \end_inset
  4315. with no apparent separation between them, further supporting the conclusion
  4316. that these clusters represent an arbitrary partitioning of a continuous
  4317. distribution of promoter coverage landscapes.
  4318. While the clusters are a useful abstraction that aids in visualization,
  4319. they are ultimately not an accurate representation of the data.
  4320. A better representation might be something like a polar coordinate system
  4321. with the origin at the center of Cluster 5, where the radius represents
  4322. the peak height above the background and the angle represents the peak's
  4323. position upstream or downstream of the TSS.
  4324. The continuous nature of the distribution also explains why different values
  4325. of
  4326. \begin_inset Formula $K$
  4327. \end_inset
  4328. led to similar conclusions.
  4329. \end_layout
  4330. \begin_layout Standard
  4331. \begin_inset Flex TODO Note (inline)
  4332. status open
  4333. \begin_layout Plain Layout
  4334. RNA-seq values in the plots use logCPM but should really use logFPKM or
  4335. logTPM.
  4336. Fix if time allows.
  4337. \end_layout
  4338. \end_inset
  4339. \end_layout
  4340. \begin_layout Standard
  4341. \begin_inset Flex TODO Note (inline)
  4342. status open
  4343. \begin_layout Plain Layout
  4344. Should have a table of p-values on difference of means between Cluster 5
  4345. and the others.
  4346. \end_layout
  4347. \end_inset
  4348. \end_layout
  4349. \begin_layout Standard
  4350. To investigate the association between relative peak position and gene expressio
  4351. n, we plotted the Naive Day 0 expression for the genes in each cluster (Figure
  4352. \begin_inset CommandInset ref
  4353. LatexCommand ref
  4354. reference "fig:H3K4me2-neighborhood-expression"
  4355. plural "false"
  4356. caps "false"
  4357. noprefix "false"
  4358. \end_inset
  4359. ).
  4360. Most genes in Cluster 5, the
  4361. \begin_inset Quotes eld
  4362. \end_inset
  4363. no peak
  4364. \begin_inset Quotes erd
  4365. \end_inset
  4366. cluster, have low expression values.
  4367. Taking this as the
  4368. \begin_inset Quotes eld
  4369. \end_inset
  4370. baseline
  4371. \begin_inset Quotes erd
  4372. \end_inset
  4373. distribution when no H3K4me2 methylation is present, we can compare the
  4374. other clusters' distributions to determine which peak positions are associated
  4375. with elevated expression.
  4376. As might be expected, the 3 clusters representing peaks closest to the
  4377. TSS, Clusters 1, 3, and 4, show the highest average expression distributions.
  4378. Specifically, these clusters all have their highest ChIP-seq abundance
  4379. within 1kb of the TSS, consistent with the previously determined promoter
  4380. radius.
  4381. In contrast, cluster 6, which represents peaks several kb upstream of the
  4382. TSS, shows a slightly higher average expression than baseline, while Cluster
  4383. 2, which represents peaks several kb downstream, doesn't appear to show
  4384. any appreciable difference.
  4385. Interestingly, the cluster with the highest average expression is Cluster
  4386. 1, which represents peaks about 1 kb downstream of the TSS, rather than
  4387. Cluster 3, which represents peaks centered directly at the TSS.
  4388. This suggests that conceptualizing the promoter as a region centered on
  4389. the TSS with a certain
  4390. \begin_inset Quotes eld
  4391. \end_inset
  4392. radius
  4393. \begin_inset Quotes erd
  4394. \end_inset
  4395. may be an oversimplification – a peak that is a specific distance from
  4396. the TSS may have a different degree of influence depending on whether it
  4397. is upstream or downstream of the TSS.
  4398. \end_layout
  4399. \begin_layout Standard
  4400. \begin_inset ERT
  4401. status open
  4402. \begin_layout Plain Layout
  4403. \backslash
  4404. afterpage{
  4405. \end_layout
  4406. \begin_layout Plain Layout
  4407. \backslash
  4408. begin{landscape}
  4409. \end_layout
  4410. \end_inset
  4411. \end_layout
  4412. \begin_layout Standard
  4413. \begin_inset Float figure
  4414. wide false
  4415. sideways false
  4416. status open
  4417. \begin_layout Plain Layout
  4418. \align center
  4419. \begin_inset Float figure
  4420. wide false
  4421. sideways false
  4422. status open
  4423. \begin_layout Plain Layout
  4424. \align center
  4425. \begin_inset Graphics
  4426. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-neighborhood-clusters-CROP.png
  4427. lyxscale 25
  4428. width 30col%
  4429. groupId covprof-subfig
  4430. \end_inset
  4431. \end_layout
  4432. \begin_layout Plain Layout
  4433. \begin_inset Caption Standard
  4434. \begin_layout Plain Layout
  4435. \series bold
  4436. \begin_inset CommandInset label
  4437. LatexCommand label
  4438. name "fig:H3K4me3-neighborhood-clusters"
  4439. \end_inset
  4440. Average relative coverage for each bin in each cluster
  4441. \end_layout
  4442. \end_inset
  4443. \end_layout
  4444. \end_inset
  4445. \begin_inset space \hfill{}
  4446. \end_inset
  4447. \begin_inset Float figure
  4448. wide false
  4449. sideways false
  4450. status open
  4451. \begin_layout Plain Layout
  4452. \align center
  4453. \begin_inset Graphics
  4454. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-neighborhood-PCA-CROP.png
  4455. lyxscale 25
  4456. width 30col%
  4457. groupId covprof-subfig
  4458. \end_inset
  4459. \end_layout
  4460. \begin_layout Plain Layout
  4461. \begin_inset Caption Standard
  4462. \begin_layout Plain Layout
  4463. \series bold
  4464. \begin_inset CommandInset label
  4465. LatexCommand label
  4466. name "fig:H3K4me3-neighborhood-pca"
  4467. \end_inset
  4468. PCA of relative coverage depth, colored by K-means cluster membership.
  4469. \end_layout
  4470. \end_inset
  4471. \end_layout
  4472. \end_inset
  4473. \begin_inset space \hfill{}
  4474. \end_inset
  4475. \begin_inset Float figure
  4476. wide false
  4477. sideways false
  4478. status open
  4479. \begin_layout Plain Layout
  4480. \align center
  4481. \begin_inset Graphics
  4482. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-neighborhood-expression-CROP.png
  4483. lyxscale 25
  4484. width 30col%
  4485. groupId covprof-subfig
  4486. \end_inset
  4487. \end_layout
  4488. \begin_layout Plain Layout
  4489. \begin_inset Caption Standard
  4490. \begin_layout Plain Layout
  4491. \series bold
  4492. \begin_inset CommandInset label
  4493. LatexCommand label
  4494. name "fig:H3K4me3-neighborhood-expression"
  4495. \end_inset
  4496. Gene expression grouped by promoter coverage clusters.
  4497. \end_layout
  4498. \end_inset
  4499. \end_layout
  4500. \end_inset
  4501. \end_layout
  4502. \begin_layout Plain Layout
  4503. \begin_inset Caption Standard
  4504. \begin_layout Plain Layout
  4505. \series bold
  4506. \begin_inset CommandInset label
  4507. LatexCommand label
  4508. name "fig:H3K4me3-neighborhood"
  4509. \end_inset
  4510. K-means clustering of promoter H3K4me3 relative coverage depth in naive
  4511. day 0 samples.
  4512. \series default
  4513. H3K4me2 ChIP-seq reads were binned into 500-bp windows tiled across each
  4514. promoter from 5
  4515. \begin_inset space ~
  4516. \end_inset
  4517. kbp upstream to 5
  4518. \begin_inset space ~
  4519. \end_inset
  4520. kbp downstream, and the logCPM values were normalized within each promoter
  4521. to an average of 0, yielding relative coverage depths.
  4522. These were then grouped using K-means clustering with
  4523. \begin_inset Formula $K=6$
  4524. \end_inset
  4525. ,
  4526. \series bold
  4527. \series default
  4528. and the average bin values were plotted for each cluster (a).
  4529. The
  4530. \begin_inset Formula $x$
  4531. \end_inset
  4532. -axis is the genomic coordinate of each bin relative to the the transcription
  4533. start site, and the
  4534. \begin_inset Formula $y$
  4535. \end_inset
  4536. -axis is the mean relative coverage depth of that bin across all promoters
  4537. in the cluster.
  4538. Each line represents the average
  4539. \begin_inset Quotes eld
  4540. \end_inset
  4541. shape
  4542. \begin_inset Quotes erd
  4543. \end_inset
  4544. of the promoter coverage for promoters in that cluster.
  4545. PCA was performed on the same data, and the first two principal components
  4546. were plotted, coloring each point by its K-means cluster identity (b).
  4547. For each cluster, the distribution of gene expression values was plotted
  4548. (c).
  4549. \end_layout
  4550. \end_inset
  4551. \end_layout
  4552. \end_inset
  4553. \end_layout
  4554. \begin_layout Standard
  4555. \begin_inset ERT
  4556. status open
  4557. \begin_layout Plain Layout
  4558. \backslash
  4559. end{landscape}
  4560. \end_layout
  4561. \begin_layout Plain Layout
  4562. }
  4563. \end_layout
  4564. \end_inset
  4565. \end_layout
  4566. \begin_layout Standard
  4567. \begin_inset Flex TODO Note (inline)
  4568. status open
  4569. \begin_layout Plain Layout
  4570. Is there more to say here?
  4571. \end_layout
  4572. \end_inset
  4573. \end_layout
  4574. \begin_layout Standard
  4575. All observations described above for H3K4me2 ChIP-seq also appear to hold
  4576. for H3K4me3 as well (Figure
  4577. \begin_inset CommandInset ref
  4578. LatexCommand ref
  4579. reference "fig:H3K4me3-neighborhood"
  4580. plural "false"
  4581. caps "false"
  4582. noprefix "false"
  4583. \end_inset
  4584. ).
  4585. This is expected, since there is a high correlation between the positions
  4586. where both histone marks occur.
  4587. \end_layout
  4588. \begin_layout Subsection
  4589. Promoter coverage H3K27me3
  4590. \end_layout
  4591. \begin_layout Standard
  4592. \begin_inset ERT
  4593. status open
  4594. \begin_layout Plain Layout
  4595. \backslash
  4596. afterpage{
  4597. \end_layout
  4598. \begin_layout Plain Layout
  4599. \backslash
  4600. begin{landscape}
  4601. \end_layout
  4602. \end_inset
  4603. \end_layout
  4604. \begin_layout Standard
  4605. \begin_inset Float figure
  4606. wide false
  4607. sideways false
  4608. status collapsed
  4609. \begin_layout Plain Layout
  4610. \align center
  4611. \begin_inset Float figure
  4612. wide false
  4613. sideways false
  4614. status open
  4615. \begin_layout Plain Layout
  4616. \align center
  4617. \begin_inset Graphics
  4618. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-neighborhood-clusters-CROP.png
  4619. lyxscale 25
  4620. width 30col%
  4621. groupId covprof-subfig
  4622. \end_inset
  4623. \end_layout
  4624. \begin_layout Plain Layout
  4625. \begin_inset Caption Standard
  4626. \begin_layout Plain Layout
  4627. \series bold
  4628. \begin_inset CommandInset label
  4629. LatexCommand label
  4630. name "fig:H3K27me3-neighborhood-clusters"
  4631. \end_inset
  4632. Average relative coverage for each bin in each cluster
  4633. \end_layout
  4634. \end_inset
  4635. \end_layout
  4636. \end_inset
  4637. \begin_inset space \hfill{}
  4638. \end_inset
  4639. \begin_inset Float figure
  4640. wide false
  4641. sideways false
  4642. status open
  4643. \begin_layout Plain Layout
  4644. \align center
  4645. \begin_inset Graphics
  4646. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-neighborhood-PCA-CROP.png
  4647. lyxscale 25
  4648. width 30col%
  4649. groupId covprof-subfig
  4650. \end_inset
  4651. \end_layout
  4652. \begin_layout Plain Layout
  4653. \begin_inset Caption Standard
  4654. \begin_layout Plain Layout
  4655. \series bold
  4656. \begin_inset CommandInset label
  4657. LatexCommand label
  4658. name "fig:H3K27me3-neighborhood-pca"
  4659. \end_inset
  4660. PCA of relative coverage depth, colored by K-means cluster membership.
  4661. \series default
  4662. Note that Cluster 6 is hidden behind all the other clusters.
  4663. \end_layout
  4664. \end_inset
  4665. \end_layout
  4666. \end_inset
  4667. \begin_inset space \hfill{}
  4668. \end_inset
  4669. \begin_inset Float figure
  4670. wide false
  4671. sideways false
  4672. status open
  4673. \begin_layout Plain Layout
  4674. \align center
  4675. \begin_inset Graphics
  4676. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-neighborhood-expression-CROP.png
  4677. lyxscale 25
  4678. width 30col%
  4679. groupId covprof-subfig
  4680. \end_inset
  4681. \end_layout
  4682. \begin_layout Plain Layout
  4683. \begin_inset Caption Standard
  4684. \begin_layout Plain Layout
  4685. \series bold
  4686. \begin_inset CommandInset label
  4687. LatexCommand label
  4688. name "fig:H3K27me3-neighborhood-expression"
  4689. \end_inset
  4690. Gene expression grouped by promoter coverage clusters.
  4691. \end_layout
  4692. \end_inset
  4693. \end_layout
  4694. \end_inset
  4695. \end_layout
  4696. \begin_layout Plain Layout
  4697. \begin_inset Flex TODO Note (inline)
  4698. status open
  4699. \begin_layout Plain Layout
  4700. Repeated figure legends are kind of an issue here.
  4701. What to do?
  4702. \end_layout
  4703. \end_inset
  4704. \end_layout
  4705. \begin_layout Plain Layout
  4706. \begin_inset Caption Standard
  4707. \begin_layout Plain Layout
  4708. \series bold
  4709. \begin_inset CommandInset label
  4710. LatexCommand label
  4711. name "fig:H3K27me3-neighborhood"
  4712. \end_inset
  4713. K-means clustering of promoter H3K27me3 relative coverage depth in naive
  4714. day 0 samples.
  4715. \series default
  4716. H3K27me3 ChIP-seq reads were binned into 500-bp windows tiled across each
  4717. promoter from 5
  4718. \begin_inset space ~
  4719. \end_inset
  4720. kbp upstream to 5
  4721. \begin_inset space ~
  4722. \end_inset
  4723. kbp downstream, and the logCPM values were normalized within each promoter
  4724. to an average of 0, yielding relative coverage depths.
  4725. These were then grouped using
  4726. \begin_inset Formula $k$
  4727. \end_inset
  4728. -means clustering with
  4729. \begin_inset Formula $K=6$
  4730. \end_inset
  4731. ,
  4732. \series bold
  4733. \series default
  4734. and the average bin values were plotted for each cluster (a).
  4735. The
  4736. \begin_inset Formula $x$
  4737. \end_inset
  4738. -axis is the genomic coordinate of each bin relative to the the transcription
  4739. start site, and the
  4740. \begin_inset Formula $y$
  4741. \end_inset
  4742. -axis is the mean relative coverage depth of that bin across all promoters
  4743. in the cluster.
  4744. Each line represents the average
  4745. \begin_inset Quotes eld
  4746. \end_inset
  4747. shape
  4748. \begin_inset Quotes erd
  4749. \end_inset
  4750. of the promoter coverage for promoters in that cluster.
  4751. PCA was performed on the same data, and the first two principal components
  4752. were plotted, coloring each point by its K-means cluster identity (b).
  4753. For each cluster, the distribution of gene expression values was plotted
  4754. (c).
  4755. \end_layout
  4756. \end_inset
  4757. \end_layout
  4758. \end_inset
  4759. \end_layout
  4760. \begin_layout Standard
  4761. \begin_inset ERT
  4762. status open
  4763. \begin_layout Plain Layout
  4764. \backslash
  4765. end{landscape}
  4766. \end_layout
  4767. \begin_layout Plain Layout
  4768. }
  4769. \end_layout
  4770. \end_inset
  4771. \end_layout
  4772. \begin_layout Standard
  4773. \begin_inset Flex TODO Note (inline)
  4774. status open
  4775. \begin_layout Plain Layout
  4776. Should maybe re-explain what was done or refer back to the previous section.
  4777. \end_layout
  4778. \end_inset
  4779. \end_layout
  4780. \begin_layout Standard
  4781. Unlike both H3K4 marks, whose main patterns of variation appear directly
  4782. related to the size and position of a single peak within the promoter,
  4783. the patterns of H3K27me3 methylation in promoters are more complex (Figure
  4784. \begin_inset CommandInset ref
  4785. LatexCommand ref
  4786. reference "fig:H3K27me3-neighborhood"
  4787. plural "false"
  4788. caps "false"
  4789. noprefix "false"
  4790. \end_inset
  4791. ).
  4792. Once again looking at the relative coverage in a 500-bp wide bins in a
  4793. 5kb radius around each TSS, promoters were clustered based on the normalized
  4794. relative coverage values in each bin using
  4795. \begin_inset Formula $k$
  4796. \end_inset
  4797. -means clustering with
  4798. \begin_inset Formula $K=6$
  4799. \end_inset
  4800. (Figure
  4801. \begin_inset CommandInset ref
  4802. LatexCommand ref
  4803. reference "fig:H3K27me3-neighborhood-clusters"
  4804. plural "false"
  4805. caps "false"
  4806. noprefix "false"
  4807. \end_inset
  4808. ).
  4809. This time, 3
  4810. \begin_inset Quotes eld
  4811. \end_inset
  4812. axes
  4813. \begin_inset Quotes erd
  4814. \end_inset
  4815. of variation can be observed, each represented by 2 clusters with opposing
  4816. patterns.
  4817. The first axis is greater upstream coverage (Cluster 1) vs.
  4818. greater downstream coverage (Cluster 3); the second axis is the coverage
  4819. at the TSS itself: peak (Cluster 4) or trough (Cluster 2); lastly, the
  4820. third axis represents a trough upstream of the TSS (Cluster 5) vs.
  4821. downstream of the TSS (Cluster 6).
  4822. Referring to these opposing pairs of clusters as axes of variation is justified
  4823. , because they correspond precisely to the first 3 principal components
  4824. in the PCA plot of the relative coverage values (Figure
  4825. \begin_inset CommandInset ref
  4826. LatexCommand ref
  4827. reference "fig:H3K27me3-neighborhood-pca"
  4828. plural "false"
  4829. caps "false"
  4830. noprefix "false"
  4831. \end_inset
  4832. ).
  4833. The PCA plot reveals that as in the case of H3K4me2, all the
  4834. \begin_inset Quotes eld
  4835. \end_inset
  4836. clusters
  4837. \begin_inset Quotes erd
  4838. \end_inset
  4839. are really just sections of a single connected cloud rather than discrete
  4840. clusters.
  4841. The cloud is approximately ellipsoid-shaped, with each PC being an axis
  4842. of the ellipse, and each cluster consisting of a pyrimidal section of the
  4843. ellipsoid.
  4844. \end_layout
  4845. \begin_layout Standard
  4846. In Figure
  4847. \begin_inset CommandInset ref
  4848. LatexCommand ref
  4849. reference "fig:H3K27me3-neighborhood-expression"
  4850. plural "false"
  4851. caps "false"
  4852. noprefix "false"
  4853. \end_inset
  4854. , we can see that Clusters 1 and 2 are the only clusters with higher gene
  4855. expression than the others.
  4856. For Cluster 2, this is expected, since this cluster represents genes with
  4857. depletion of H3K27me3 near the promoter.
  4858. Hence, elevated expression in cluster 2 is consistent with the conventional
  4859. view of H3K27me3 as a deactivating mark.
  4860. However, Cluster 1, the cluster with the most elevated gene expression,
  4861. represents genes with elevated coverage upstream of the TSS, or equivalently,
  4862. decreased coverage downstream, inside the gene body.
  4863. The opposite pattern, in which H3K27me3 is more abundant within the gene
  4864. body and less abundance in the upstream promoter region, does not show
  4865. any elevation in gene expression.
  4866. As with H3K4me2, this shows that the location of H3K27 trimethylation relative
  4867. to the TSS is potentially an important factor beyond simple proximity.
  4868. \end_layout
  4869. \begin_layout Standard
  4870. \begin_inset Flex TODO Note (inline)
  4871. status open
  4872. \begin_layout Plain Layout
  4873. Show the figures where the negative result ended this line of inquiry.
  4874. I need to debug some errors resulting from an R upgrade to do this.
  4875. \end_layout
  4876. \end_inset
  4877. \end_layout
  4878. \begin_layout Subsection
  4879. Defined pattern analysis
  4880. \end_layout
  4881. \begin_layout Standard
  4882. \begin_inset Flex TODO Note (inline)
  4883. status open
  4884. \begin_layout Plain Layout
  4885. This was where I defined interesting expression patterns and then looked
  4886. at initial relative promoter coverage for each expression pattern.
  4887. Negative result.
  4888. I forgot about this until recently.
  4889. Worth including? Remember to also write methods.
  4890. \end_layout
  4891. \end_inset
  4892. \end_layout
  4893. \begin_layout Subsection
  4894. Promoter CpG islands?
  4895. \end_layout
  4896. \begin_layout Standard
  4897. \begin_inset Flex TODO Note (inline)
  4898. status collapsed
  4899. \begin_layout Plain Layout
  4900. I forgot until recently about the work I did on this.
  4901. Worth including? Remember to also write methods.
  4902. \end_layout
  4903. \end_inset
  4904. \end_layout
  4905. \begin_layout Section
  4906. Discussion
  4907. \end_layout
  4908. \begin_layout Standard
  4909. \begin_inset Flex TODO Note (inline)
  4910. status open
  4911. \begin_layout Plain Layout
  4912. Write better section headers
  4913. \end_layout
  4914. \end_inset
  4915. \end_layout
  4916. \begin_layout Subsection
  4917. Effective promoter radius
  4918. \end_layout
  4919. \begin_layout Standard
  4920. Figure
  4921. \begin_inset CommandInset ref
  4922. LatexCommand ref
  4923. reference "fig:near-promoter-peak-enrich"
  4924. plural "false"
  4925. caps "false"
  4926. noprefix "false"
  4927. \end_inset
  4928. shows that H3K4me2, H3K4me3, and H3K27me3 are all enriched near promoters,
  4929. relative to the rest of the genome, consistent with their conventionally
  4930. understood role in regulating gene transcription.
  4931. Interestingly, the radius within this enrichment occurs is not the same
  4932. for each histone mark.
  4933. H3K4me2 and H3K4me3 are enriched within a 1
  4934. \begin_inset space \thinspace{}
  4935. \end_inset
  4936. kb radius, while H3K27me3 is enriched within 2.5
  4937. \begin_inset space \thinspace{}
  4938. \end_inset
  4939. kb.
  4940. Notably, the determined promoter radius was consistent across all experimental
  4941. conditions, varying only between different histone marks.
  4942. This suggests that the conventional
  4943. \begin_inset Quotes eld
  4944. \end_inset
  4945. one size fits all
  4946. \begin_inset Quotes erd
  4947. \end_inset
  4948. approach of defining a single promoter region for each gene (or each TSS)
  4949. and using that same promoter region for analyzing all types of genomic
  4950. data within an experiment may not be appropriate, and a better approach
  4951. may be to use a separate promoter radius for each kind of data, with each
  4952. radius being derived from the data itself.
  4953. Furthermore, the apparent assymetry of upstream and downstream promoter
  4954. histone modification with respect to gene expression, seen in Figures
  4955. \begin_inset CommandInset ref
  4956. LatexCommand ref
  4957. reference "fig:H3K4me2-neighborhood"
  4958. plural "false"
  4959. caps "false"
  4960. noprefix "false"
  4961. \end_inset
  4962. ,
  4963. \begin_inset CommandInset ref
  4964. LatexCommand ref
  4965. reference "fig:H3K4me3-neighborhood"
  4966. plural "false"
  4967. caps "false"
  4968. noprefix "false"
  4969. \end_inset
  4970. , and
  4971. \begin_inset CommandInset ref
  4972. LatexCommand ref
  4973. reference "fig:H3K27me3-neighborhood"
  4974. plural "false"
  4975. caps "false"
  4976. noprefix "false"
  4977. \end_inset
  4978. , shows that even the concept of a promoter
  4979. \begin_inset Quotes eld
  4980. \end_inset
  4981. radius
  4982. \begin_inset Quotes erd
  4983. \end_inset
  4984. is likely an oversimplification.
  4985. At a minimum, nearby enrichment of peaks should be evaluated separately
  4986. for both upstream and downstream peaks, and an appropriate
  4987. \begin_inset Quotes eld
  4988. \end_inset
  4989. radius
  4990. \begin_inset Quotes erd
  4991. \end_inset
  4992. should be selected for each direction.
  4993. \end_layout
  4994. \begin_layout Standard
  4995. Figures
  4996. \begin_inset CommandInset ref
  4997. LatexCommand ref
  4998. reference "fig:H3K4me2-neighborhood"
  4999. plural "false"
  5000. caps "false"
  5001. noprefix "false"
  5002. \end_inset
  5003. and
  5004. \begin_inset CommandInset ref
  5005. LatexCommand ref
  5006. reference "fig:H3K4me3-neighborhood"
  5007. plural "false"
  5008. caps "false"
  5009. noprefix "false"
  5010. \end_inset
  5011. show that the determined promoter radius of 1
  5012. \begin_inset space ~
  5013. \end_inset
  5014. kb is approximately consistent with the distance from the TSS at which enrichmen
  5015. t of H3K4 methylationis correlates with increased expression, showing that
  5016. this radius, which was determined by a simple analysis of measuring the
  5017. distance from each TSS to the nearest peak, also has functional significance.
  5018. For H3K27me3, the correlation between histone modification near the promoter
  5019. and gene expression is more complex, involving non-peak variations such
  5020. as troughs in coverage at the TSS and asymmetric coverage upstream and
  5021. downstream, so it is difficult in this case to evaluate whether the 2.5
  5022. \begin_inset space ~
  5023. \end_inset
  5024. kb radius determined from TSS-to-peak distances is functionally significant.
  5025. However, the two patterns of coverage associated with elevated expression
  5026. levels both have interesting features within this radius.
  5027. \end_layout
  5028. \begin_layout Standard
  5029. \begin_inset Flex TODO Note (inline)
  5030. status open
  5031. \begin_layout Plain Layout
  5032. My instinct is to say
  5033. \begin_inset Quotes eld
  5034. \end_inset
  5035. further study is needed
  5036. \begin_inset Quotes erd
  5037. \end_inset
  5038. here, but that goes in Chapter 5, right?
  5039. \end_layout
  5040. \end_inset
  5041. \end_layout
  5042. \begin_layout Subsection
  5043. Convergence
  5044. \end_layout
  5045. \begin_layout Standard
  5046. \begin_inset Flex TODO Note (inline)
  5047. status open
  5048. \begin_layout Plain Layout
  5049. Look up some more references for these histone marks being involved in memory
  5050. differentiation.
  5051. (Ask Sarah)
  5052. \end_layout
  5053. \end_inset
  5054. \end_layout
  5055. \begin_layout Standard
  5056. We have observed that all 3 histone marks and the gene expression data all
  5057. exhibit evidence of convergence in abundance between naive and memory cells
  5058. by day 14 after activation (Figure
  5059. \begin_inset CommandInset ref
  5060. LatexCommand ref
  5061. reference "fig:PCoA-promoters"
  5062. plural "false"
  5063. caps "false"
  5064. noprefix "false"
  5065. \end_inset
  5066. , Table
  5067. \begin_inset CommandInset ref
  5068. LatexCommand ref
  5069. reference "tab:Number-signif-promoters"
  5070. plural "false"
  5071. caps "false"
  5072. noprefix "false"
  5073. \end_inset
  5074. ).
  5075. The MOFA latent factor scatter plots (Figure
  5076. \begin_inset CommandInset ref
  5077. LatexCommand ref
  5078. reference "fig:mofa-lf-scatter"
  5079. plural "false"
  5080. caps "false"
  5081. noprefix "false"
  5082. \end_inset
  5083. ) show that this pattern of convergence is captured in latent factor 5.
  5084. Like all the latent factors in this plot, this factor explains a substantial
  5085. portion of the variance in all 4 data sets, indicating a coordinated pattern
  5086. of variation shared across all histone marks and gene expression.
  5087. This, of course, is consistent with the expectation that any naive CD4
  5088. T-cells remaining at day 14 should have differentiated into memory cells
  5089. by that time, and should therefore have a genomic state similar to memory
  5090. cells.
  5091. This convergence is evidence that these histone marks all play an important
  5092. role in the naive-to-memory differentiation process.
  5093. A histone mark that was not involved in naive-to-memory differentiation
  5094. would not be expected to converge in this way after activation.
  5095. \end_layout
  5096. \begin_layout Standard
  5097. \begin_inset Float figure
  5098. wide false
  5099. sideways false
  5100. status collapsed
  5101. \begin_layout Plain Layout
  5102. \align center
  5103. \begin_inset Graphics
  5104. filename graphics/CD4-csaw/LaMere2016_fig8.pdf
  5105. lyxscale 50
  5106. width 60col%
  5107. groupId colwidth
  5108. \end_inset
  5109. \end_layout
  5110. \begin_layout Plain Layout
  5111. \begin_inset Caption Standard
  5112. \begin_layout Plain Layout
  5113. \series bold
  5114. \begin_inset CommandInset label
  5115. LatexCommand label
  5116. name "fig:Lamere2016-Fig8"
  5117. \end_inset
  5118. Lamere 2016 Figure 8
  5119. \begin_inset CommandInset citation
  5120. LatexCommand cite
  5121. key "LaMere2016"
  5122. literal "false"
  5123. \end_inset
  5124. ,
  5125. \begin_inset Quotes eld
  5126. \end_inset
  5127. Model for the role of H3K4 methylation during CD4 T-cell activation.
  5128. \begin_inset Quotes erd
  5129. \end_inset
  5130. \series default
  5131. Reproduced with permission.
  5132. \end_layout
  5133. \end_inset
  5134. \end_layout
  5135. \end_inset
  5136. \end_layout
  5137. \begin_layout Standard
  5138. In H3K4me2, H3K4me3, and RNA-seq, this convergence appears to be in progress
  5139. already by Day 5, shown by the smaller distance between naive and memory
  5140. cells at day 5 along the
  5141. \begin_inset Formula $y$
  5142. \end_inset
  5143. -axes in Figures
  5144. \begin_inset CommandInset ref
  5145. LatexCommand ref
  5146. reference "fig:PCoA-H3K4me2-prom"
  5147. plural "false"
  5148. caps "false"
  5149. noprefix "false"
  5150. \end_inset
  5151. ,
  5152. \begin_inset CommandInset ref
  5153. LatexCommand ref
  5154. reference "fig:PCoA-H3K4me3-prom"
  5155. plural "false"
  5156. caps "false"
  5157. noprefix "false"
  5158. \end_inset
  5159. , and
  5160. \begin_inset CommandInset ref
  5161. LatexCommand ref
  5162. reference "fig:RNA-PCA-group"
  5163. plural "false"
  5164. caps "false"
  5165. noprefix "false"
  5166. \end_inset
  5167. .
  5168. This agrees with the model proposed by Sarah Lamere based on an prior analysis
  5169. of the same data, shown in Figure
  5170. \begin_inset CommandInset ref
  5171. LatexCommand ref
  5172. reference "fig:Lamere2016-Fig8"
  5173. plural "false"
  5174. caps "false"
  5175. noprefix "false"
  5176. \end_inset
  5177. , which shows the pattern of H3K4 methylation and expression for naive cells
  5178. and memory cells converging at day 5.
  5179. This model was developed without the benefit of the PCoA plots in Figure
  5180. \begin_inset CommandInset ref
  5181. LatexCommand ref
  5182. reference "fig:PCoA-promoters"
  5183. plural "false"
  5184. caps "false"
  5185. noprefix "false"
  5186. \end_inset
  5187. , which have been corrected for confounding factors by ComBat and SVA.
  5188. This shows that proper batch correction assists in extracting meaningful
  5189. patterns in the data while eliminating systematic sources of irrelevant
  5190. variation in the data, allowing simple automated procedures like PCoA to
  5191. reveal interesting behaviors in the data that were previously only detectable
  5192. by a detailed manual analysis.
  5193. \end_layout
  5194. \begin_layout Standard
  5195. While the ideal comparison to demonstrate this convergence would be naive
  5196. cells at day 14 to memory cells at day 0, this is not feasible in this
  5197. experimental system, since neither naive nor memory cells are able to fully
  5198. return to their pre-activation state, as shown by the lack of overlap between
  5199. days 0 and 14 for either naive or memory cells in Figure
  5200. \begin_inset CommandInset ref
  5201. LatexCommand ref
  5202. reference "fig:PCoA-promoters"
  5203. plural "false"
  5204. caps "false"
  5205. noprefix "false"
  5206. \end_inset
  5207. .
  5208. \end_layout
  5209. \begin_layout Subsection
  5210. Positional
  5211. \end_layout
  5212. \begin_layout Standard
  5213. When looking at patterns in the relative coverage of each histone mark near
  5214. the TSS of each gene, several interesting patterns were apparent.
  5215. For H3K4me2 and H3K4me3, the pattern was straightforward: the consistent
  5216. pattern across all promoters was a single peak a few kb wide, with the
  5217. main axis of variation being the position of this peak relative to the
  5218. TSS (Figures
  5219. \begin_inset CommandInset ref
  5220. LatexCommand ref
  5221. reference "fig:H3K4me2-neighborhood"
  5222. plural "false"
  5223. caps "false"
  5224. noprefix "false"
  5225. \end_inset
  5226. &
  5227. \begin_inset CommandInset ref
  5228. LatexCommand ref
  5229. reference "fig:H3K4me3-neighborhood"
  5230. plural "false"
  5231. caps "false"
  5232. noprefix "false"
  5233. \end_inset
  5234. ).
  5235. There were no obvious
  5236. \begin_inset Quotes eld
  5237. \end_inset
  5238. preferred
  5239. \begin_inset Quotes erd
  5240. \end_inset
  5241. positions, but rather a continuous distribution of relative positions ranging
  5242. all across the promoter region.
  5243. The association with gene expression was also straightforward: peaks closer
  5244. to the TSS were more strongly associated with elevated gene expression.
  5245. Coverage downstream of the TSS appears to be more strongly associated with
  5246. elevated expression than coverage the same distance upstream, indicating
  5247. that the
  5248. \begin_inset Quotes eld
  5249. \end_inset
  5250. effective promoter region
  5251. \begin_inset Quotes erd
  5252. \end_inset
  5253. for H3K4me2 and H3K4me3 may be centered downstream of the TSS.
  5254. \end_layout
  5255. \begin_layout Standard
  5256. The relative promoter coverage for H3K27me3 had a more complex pattern,
  5257. with two specific patterns of promoter coverage associated with elevated
  5258. expression: a sharp depletion of H3K27me3 around the TSS relative to the
  5259. surrounding area, and a depletion of H3K27me3 downstream of the TSS relative
  5260. to upstream (Figure
  5261. \begin_inset CommandInset ref
  5262. LatexCommand ref
  5263. reference "fig:H3K27me3-neighborhood"
  5264. plural "false"
  5265. caps "false"
  5266. noprefix "false"
  5267. \end_inset
  5268. ).
  5269. A previous study found that H3K27me3 depletion within the gene body was
  5270. associated with elevated gene expression in 4 different cell types in mice
  5271. \begin_inset CommandInset citation
  5272. LatexCommand cite
  5273. key "Young2011"
  5274. literal "false"
  5275. \end_inset
  5276. .
  5277. This is consistent with the second pattern described here.
  5278. This study also reported that a spike in coverage at the TSS was associated
  5279. with
  5280. \emph on
  5281. lower
  5282. \emph default
  5283. expression, which is indirectly consistent with the first pattern described
  5284. here, in the sense that it associates lower H3K27me3 levels near the TSS
  5285. with higher expression.
  5286. \end_layout
  5287. \begin_layout Subsection
  5288. Workflow
  5289. \end_layout
  5290. \begin_layout Standard
  5291. \begin_inset ERT
  5292. status open
  5293. \begin_layout Plain Layout
  5294. \backslash
  5295. afterpage{
  5296. \end_layout
  5297. \begin_layout Plain Layout
  5298. \backslash
  5299. begin{landscape}
  5300. \end_layout
  5301. \end_inset
  5302. \end_layout
  5303. \begin_layout Standard
  5304. \begin_inset Float figure
  5305. wide false
  5306. sideways false
  5307. status open
  5308. \begin_layout Plain Layout
  5309. \align center
  5310. \begin_inset Graphics
  5311. filename graphics/CD4-csaw/rulegraphs/rulegraph-all.pdf
  5312. lyxscale 50
  5313. width 100col%
  5314. height 95theight%
  5315. \end_inset
  5316. \end_layout
  5317. \begin_layout Plain Layout
  5318. \begin_inset Caption Standard
  5319. \begin_layout Plain Layout
  5320. \begin_inset CommandInset label
  5321. LatexCommand label
  5322. name "fig:rulegraph"
  5323. \end_inset
  5324. \series bold
  5325. Dependency graph of steps in reproducible workflow.
  5326. \end_layout
  5327. \end_inset
  5328. \end_layout
  5329. \end_inset
  5330. \end_layout
  5331. \begin_layout Standard
  5332. \begin_inset ERT
  5333. status open
  5334. \begin_layout Plain Layout
  5335. \backslash
  5336. end{landscape}
  5337. \end_layout
  5338. \begin_layout Plain Layout
  5339. }
  5340. \end_layout
  5341. \end_inset
  5342. \end_layout
  5343. \begin_layout Standard
  5344. The analyses described in this chapter were organized into a reproducible
  5345. workflow using the Snakemake workflow management system.
  5346. As shown in Figure
  5347. \begin_inset CommandInset ref
  5348. LatexCommand ref
  5349. reference "fig:rulegraph"
  5350. plural "false"
  5351. caps "false"
  5352. noprefix "false"
  5353. \end_inset
  5354. , the workflow includes many steps with complex dependencies between them.
  5355. For example, the step that counts the number of ChIP-seq reads in 500
  5356. \begin_inset space ~
  5357. \end_inset
  5358. bp windows in each promoter (the starting point for Figures
  5359. \begin_inset CommandInset ref
  5360. LatexCommand ref
  5361. reference "fig:H3K4me2-neighborhood"
  5362. plural "false"
  5363. caps "false"
  5364. noprefix "false"
  5365. \end_inset
  5366. ,
  5367. \begin_inset CommandInset ref
  5368. LatexCommand ref
  5369. reference "fig:H3K4me3-neighborhood"
  5370. plural "false"
  5371. caps "false"
  5372. noprefix "false"
  5373. \end_inset
  5374. , and
  5375. \begin_inset CommandInset ref
  5376. LatexCommand ref
  5377. reference "fig:H3K27me3-neighborhood"
  5378. plural "false"
  5379. caps "false"
  5380. noprefix "false"
  5381. \end_inset
  5382. ), named
  5383. \begin_inset Formula $\texttt{chipseq\_count\_tss\_neighborhoods}$
  5384. \end_inset
  5385. , depends on the RNA-seq abundance estimates in order to select the most-used
  5386. TSS for each gene, the aligned ChIP-seq reads, the index for those reads,
  5387. and the blacklist of regions to be excluded from ChIP-seq analysis.
  5388. Each step declares its inputs and outputs, and Snakemake uses these to
  5389. determine the dependencies between steps.
  5390. Each step is marked as depending on all the steps whose outputs match its
  5391. inputs, generating the workflow graph in Figure
  5392. \begin_inset CommandInset ref
  5393. LatexCommand ref
  5394. reference "fig:rulegraph"
  5395. plural "false"
  5396. caps "false"
  5397. noprefix "false"
  5398. \end_inset
  5399. , which Snakemake uses to determine order in which to execute each step
  5400. so that each step is executed only after all of the steps it depends on
  5401. have completed, thereby automating the entire workflow from start to finish.
  5402. \end_layout
  5403. \begin_layout Standard
  5404. In addition to simply making it easier to organize the steps in the analysis,
  5405. structuring the analysis as a workflow allowed for some analysis strategies
  5406. that would not have been practical otherwise.
  5407. For example, 5 different RNA-seq quantification methods were tested against
  5408. two different reference transcriptome annotations for a total of 10 different
  5409. quantifications of the same RNA-seq data.
  5410. These were then compared against each other in the exploratory data analysis
  5411. step, to determine that the results were not very sensitive to either the
  5412. choice of quantification method or the choice of annotation.
  5413. This was possible with a single script for the exploratory data analysis,
  5414. because Snakemake was able to automate running this script for every combinatio
  5415. n of method and reference.
  5416. In a similar manner, two different peak calling methods were tested against
  5417. each other, and in this case it was determined that SICER was unambiguously
  5418. superior to MACS for all histone marks studied.
  5419. By enabling these types of comparisons, structuring the analysis as an
  5420. automated workflow allowed important analysis decisions to be made in a
  5421. data-driven way, by running every reasonable option through the downstream
  5422. steps, seeing the consequences of choosing each option, and deciding accordingl
  5423. y.
  5424. \end_layout
  5425. \begin_layout Subsection
  5426. Data quality issues limit conclusions
  5427. \end_layout
  5428. \begin_layout Standard
  5429. \begin_inset Flex TODO Note (inline)
  5430. status open
  5431. \begin_layout Plain Layout
  5432. Is this needed?
  5433. \end_layout
  5434. \end_inset
  5435. \end_layout
  5436. \begin_layout Section
  5437. Future Directions
  5438. \end_layout
  5439. \begin_layout Standard
  5440. The analysis of RNA-seq and ChIP-seq in CD4 T-cells in Chapter 2 is in many
  5441. ways a preliminary study that suggests a multitude of new avenues of investigat
  5442. ion.
  5443. Here we consider a selection of such avenues.
  5444. \end_layout
  5445. \begin_layout Subsection
  5446. Negative results
  5447. \end_layout
  5448. \begin_layout Standard
  5449. Two additional analyses were conducted beyond those reported in the results.
  5450. First, we searched for evidence that the presence or absence of a CpG island
  5451. in the promoter was correlated with increases or decreases in gene expression
  5452. or any histone mark in any of the tested contrasts.
  5453. Second, we searched for evidence that the relative ChIP-seq coverage profiles
  5454. prior to activations could predict the change in expression of a gene after
  5455. activation.
  5456. Neither analysis turned up any clear positive results.
  5457. \end_layout
  5458. \begin_layout Subsection
  5459. Improve on the idea of an effective promoter radius
  5460. \end_layout
  5461. \begin_layout Standard
  5462. This study introduced the concept of an
  5463. \begin_inset Quotes eld
  5464. \end_inset
  5465. effective promoter radius
  5466. \begin_inset Quotes erd
  5467. \end_inset
  5468. specific to each histone mark based on distince from the TSS within which
  5469. an excess of peaks was called for that mark.
  5470. This concept was then used to guide further analyses throughout the study.
  5471. However, while the effective promoter radius was useful in those analyses,
  5472. it is both limited in theory and shown in practice to be a possible oversimplif
  5473. ication.
  5474. First, the effective promoter radii used in this study were chosen based
  5475. on manual inspection of the TSS-to-peak distance distributions in Figure
  5476. \begin_inset CommandInset ref
  5477. LatexCommand ref
  5478. reference "fig:near-promoter-peak-enrich"
  5479. plural "false"
  5480. caps "false"
  5481. noprefix "false"
  5482. \end_inset
  5483. , selecting round numbers of analyst convenience (Table
  5484. \begin_inset CommandInset ref
  5485. LatexCommand ref
  5486. reference "tab:effective-promoter-radius"
  5487. plural "false"
  5488. caps "false"
  5489. noprefix "false"
  5490. \end_inset
  5491. ).
  5492. It would be better to define an algorithm that selects a more precise radius
  5493. based on the features of the graph.
  5494. One possible way to do this would be to randomly rearrange the called peaks
  5495. throughout the genome many (while preserving the distribution of peak widths)
  5496. and re-generate the same plot as in Figure
  5497. \begin_inset CommandInset ref
  5498. LatexCommand ref
  5499. reference "fig:near-promoter-peak-enrich"
  5500. plural "false"
  5501. caps "false"
  5502. noprefix "false"
  5503. \end_inset
  5504. .
  5505. This would yield a better
  5506. \begin_inset Quotes eld
  5507. \end_inset
  5508. background
  5509. \begin_inset Quotes erd
  5510. \end_inset
  5511. distribution that demonstrates the degree of near-TSS enrichment that would
  5512. be expected by random chance.
  5513. The effective promoter radius could be defined as the point where the true
  5514. distribution diverges from the randomized background distribution.
  5515. \end_layout
  5516. \begin_layout Standard
  5517. Furthermore, the above definition of effective promoter radius has the significa
  5518. nt limitation of being based on the peak calling method.
  5519. It is thus very sensitive to the choice of peak caller and significance
  5520. threshold for calling peaks, as well as the degree of saturation in the
  5521. sequencing.
  5522. Calling peaks from ChIP-seq samples with insufficient coverage depth, with
  5523. the wrong peak caller, or with a different significance threshold could
  5524. give a drastically different number of called peaks, and hence a drastically
  5525. different distribution of peak-to-TSS distances.
  5526. To address this, it is desirable to develop a better method of determining
  5527. the effective promoter radius that relies only on the distribution of read
  5528. coverage around the TSS, independent of the peak calling.
  5529. Furthermore, as demonstrated by the upstream-downstream asymmetries observed
  5530. in Figures
  5531. \begin_inset CommandInset ref
  5532. LatexCommand ref
  5533. reference "fig:H3K4me2-neighborhood"
  5534. plural "false"
  5535. caps "false"
  5536. noprefix "false"
  5537. \end_inset
  5538. ,
  5539. \begin_inset CommandInset ref
  5540. LatexCommand ref
  5541. reference "fig:H3K4me3-neighborhood"
  5542. plural "false"
  5543. caps "false"
  5544. noprefix "false"
  5545. \end_inset
  5546. , and
  5547. \begin_inset CommandInset ref
  5548. LatexCommand ref
  5549. reference "fig:H3K27me3-neighborhood"
  5550. plural "false"
  5551. caps "false"
  5552. noprefix "false"
  5553. \end_inset
  5554. , this definition should determine a different radius for the upstream and
  5555. downstream directions.
  5556. At this point, it may be better to rename this concept
  5557. \begin_inset Quotes eld
  5558. \end_inset
  5559. effective promoter extent
  5560. \begin_inset Quotes erd
  5561. \end_inset
  5562. and avoid the word
  5563. \begin_inset Quotes eld
  5564. \end_inset
  5565. radius
  5566. \begin_inset Quotes erd
  5567. \end_inset
  5568. , since a radius implies a symmetry about the TSS that is not supported
  5569. by the data.
  5570. \end_layout
  5571. \begin_layout Standard
  5572. Beyond improving the definition of effective promoter extent, functional
  5573. validation is necessary to show that this measure of near-TSS enrichment
  5574. has biological meaning.
  5575. Figures
  5576. \begin_inset CommandInset ref
  5577. LatexCommand ref
  5578. reference "fig:H3K4me2-neighborhood"
  5579. plural "false"
  5580. caps "false"
  5581. noprefix "false"
  5582. \end_inset
  5583. and
  5584. \begin_inset CommandInset ref
  5585. LatexCommand ref
  5586. reference "fig:H3K4me3-neighborhood"
  5587. plural "false"
  5588. caps "false"
  5589. noprefix "false"
  5590. \end_inset
  5591. already provide a very limited functional validation of the chosen promoter
  5592. extents for H3K4me2 and H3K4me3 by showing that spikes in coverage within
  5593. this region are most strongly correlated with elevated gene expression.
  5594. However, there are other ways to show functional relevance of the promoter
  5595. extent.
  5596. For example, correlations could be computed between read counts in peaks
  5597. nearby gene promoters and the expression level of those genes, and these
  5598. correlations could be plotted against the distance of the peak upstream
  5599. or downstream of the gene's TSS.
  5600. If the promoter extent truly defines a
  5601. \begin_inset Quotes eld
  5602. \end_inset
  5603. sphere of influence
  5604. \begin_inset Quotes erd
  5605. \end_inset
  5606. within which a histone mark is involved with the regulation of a gene,
  5607. then the correlations for peaks within this extent should be significantly
  5608. higher than those further upstream or downstream.
  5609. Peaks within these extents may also be more likely to show differential
  5610. modification than those outside genic regions of the genome.
  5611. \end_layout
  5612. \begin_layout Subsection
  5613. Design experiments to focus on post-activation convergence of naive & memory
  5614. cells
  5615. \end_layout
  5616. \begin_layout Standard
  5617. In this study, a convergence between naive and memory cells was observed
  5618. in both the pattern of gene expression and in epigenetic state of the 3
  5619. histone marks studied, consistent with the hypothesis that any naive cells
  5620. remaining 14 days after activation have differentiated into memory cells,
  5621. and that both gene expression and these histone marks are involved in this
  5622. differentiation.
  5623. However, the current study was not designed with this specific hypothesis
  5624. in mind, and it therefore has some deficiencies with regard to testing
  5625. it.
  5626. The memory CD4 samples at day 14 do not resemble the memory samples at
  5627. day 0, indicating that in the specific model of activation used for this
  5628. experiment, the cells are not guaranteed to return to their original pre-activa
  5629. tion state, or perhaps this process takes substantially longer than 14 days.
  5630. This is a challenge for the convergence hypothesis because the ideal comparison
  5631. to prove that naive cells are converging to a resting memory state would
  5632. be to compare the final naive time point to the Day 0 memory samples, but
  5633. this comparison is only meaningful if memory cells generally return to
  5634. the same
  5635. \begin_inset Quotes eld
  5636. \end_inset
  5637. resting
  5638. \begin_inset Quotes erd
  5639. \end_inset
  5640. state that they started at.
  5641. \end_layout
  5642. \begin_layout Standard
  5643. To better study the convergence hypothesis, a new experiment should be designed
  5644. using a model system for T-cell activation that is known to allow cells
  5645. to return as closely as possible to their pre-activation state.
  5646. Alternatively, if it is not possible to find or design such a model system,
  5647. the same cell cultures could be activated serially multiple times, and
  5648. sequenced after each activation cycle right before the next activation.
  5649. It is likely that several activations in the same model system will settle
  5650. into a cylical pattern, converging to a consistent
  5651. \begin_inset Quotes eld
  5652. \end_inset
  5653. resting
  5654. \begin_inset Quotes erd
  5655. \end_inset
  5656. state after each activation, even if this state is different from the initial
  5657. resting state at Day 0.
  5658. If so, it will be possible to compare the final states of both naive and
  5659. memory cells to show that they converge despite different initial conditions.
  5660. \end_layout
  5661. \begin_layout Standard
  5662. In addition, if naive-to-memory convergence is a general pattern, it should
  5663. also be detectable in other epigenetic marks, including other histone marks
  5664. and DNA methylation.
  5665. An experiment should be designed studying a large number of epigenetic
  5666. marks known or suspected to be involved in regulation of gene expression,
  5667. assaying all of these at the same pre- and post-activation time points.
  5668. Multi-dataset factor analysis methods like MOFA can then be used to identify
  5669. coordinated patterns of regulation shared across many epigenetic marks.
  5670. If possible, some
  5671. \begin_inset Quotes eld
  5672. \end_inset
  5673. negative control
  5674. \begin_inset Quotes erd
  5675. \end_inset
  5676. marks should be included that are known
  5677. \emph on
  5678. not
  5679. \emph default
  5680. to be involved in T-cell activation or memory formation.
  5681. Of course, CD4 T-cells are not the only adaptive immune cells with memory.
  5682. A similar study could be designed for CD8 T-cells, B-cells, and even specific
  5683. subsets of CD4 T-cells.
  5684. \end_layout
  5685. \begin_layout Subsection
  5686. Follow up on hints of interesting patterns in promoter relative coverage
  5687. profiles
  5688. \end_layout
  5689. \begin_layout Standard
  5690. \begin_inset Flex TODO Note (inline)
  5691. status open
  5692. \begin_layout Plain Layout
  5693. I think I might need to write up the negative results for the Promoter CpG
  5694. and defined pattern analysis before writing this section.
  5695. \end_layout
  5696. \end_inset
  5697. \end_layout
  5698. \begin_layout Itemize
  5699. Also find better normalizations: maybe borrow from MACS/SICER background
  5700. correction methods?
  5701. \end_layout
  5702. \begin_layout Itemize
  5703. For H3K4, define polar coordinates based on PC1 & 2: R = peak size, Theta
  5704. = peak position.
  5705. Then correlate with expression.
  5706. \end_layout
  5707. \begin_layout Itemize
  5708. Current analysis only at Day 0.
  5709. Need to study across time points.
  5710. \end_layout
  5711. \begin_layout Itemize
  5712. Integrating data across so many dimensions is a significant analysis challenge
  5713. \end_layout
  5714. \begin_layout Subsection
  5715. Investigate causes of high correlation between mutually exclusive histone
  5716. marks
  5717. \end_layout
  5718. \begin_layout Standard
  5719. The high correlation between coverage depth observed between H3K4me2 and
  5720. H3K4me3 is both expected and unexpected.
  5721. Since both marks are associated with elevated gene transcription, a positive
  5722. correlation between them is not surprising.
  5723. However, these two marks represent different post-translational modifications
  5724. of the
  5725. \emph on
  5726. same
  5727. \emph default
  5728. lysine residue on the histone H3 polypeptide, which means that they cannot
  5729. both be present on the same H3 subunit.
  5730. Thus, the high correlation between them has several potential explanations.
  5731. One possible reason is cell population heterogeneity: perhaps some genomic
  5732. loci are frequently marked with H3K4me2 in some cells, while in other cells
  5733. the same loci are marked with H3K4me3.
  5734. Another possibility is allele-specific modifications: the loci are marked
  5735. in each diploid cell with H3K4me2 on one allele and H3K4me3 on the other
  5736. allele.
  5737. Lastly, since each histone octamer contains 2 H3 subunits, it is possible
  5738. that having one H3K4me2 mark and one H3K4me3 mark on a given histone octamer
  5739. represents a distinct epigenetic state with a different function than either
  5740. double H3K4me2 or double H3K4me3.
  5741. \end_layout
  5742. \begin_layout Standard
  5743. These three hypotheses could be disentangled by single-cell ChIP-seq.
  5744. If the correlation between these two histone marks persists even within
  5745. the reads for each individual cell, then cell population heterogeneity
  5746. cannot explain the correlation.
  5747. Allele-specific modification can be tested for by looking at the correlation
  5748. between read coverage of the two histone marks at heterozygous loci.
  5749. If the correlation between read counts for opposite loci is low, then this
  5750. is consistent with allele-specific modification.
  5751. Finally if the modifications do not separate by either cell or allele,
  5752. the colocation of these two marks is most likely occurring at the level
  5753. of individual histones, with the heterogenously modified histone representing
  5754. a distinct state.
  5755. \end_layout
  5756. \begin_layout Standard
  5757. However, another experiment would be required to show direct evidence of
  5758. such a heterogeneously modified state.
  5759. Specifically a
  5760. \begin_inset Quotes eld
  5761. \end_inset
  5762. double ChIP
  5763. \begin_inset Quotes erd
  5764. \end_inset
  5765. experiment would need to be performed, where the input DNA is first subjected
  5766. to an immunoprecipitation pulldown from the anti-H3K4me2 antibody, and
  5767. then the enriched material is collected, with proteins still bound, and
  5768. immunoprecipitated
  5769. \emph on
  5770. again
  5771. \emph default
  5772. using the anti-H3K4me3 antibody.
  5773. If this yields significant numbers of non-artifactual reads in the same
  5774. regions as the individual pulldowns of the two marks, this is strong evidence
  5775. that the two marks are occurring on opposite H3 subunits of the same histones.
  5776. \end_layout
  5777. \begin_layout Standard
  5778. \begin_inset Flex TODO Note (inline)
  5779. status open
  5780. \begin_layout Plain Layout
  5781. Try to see if double ChIP-seq is actually feasible, and if not, come up
  5782. with some other idea for directly detecting the mixed mod state.
  5783. Oh! Actually ChIP-seq isn't required, only double ChIP followed by quantificati
  5784. on.
  5785. That's one possible angle.
  5786. \end_layout
  5787. \end_inset
  5788. \end_layout
  5789. \begin_layout Chapter
  5790. Improving array-based diagnostics for transplant rejection by optimizing
  5791. data preprocessing
  5792. \end_layout
  5793. \begin_layout Standard
  5794. \begin_inset Note Note
  5795. status open
  5796. \begin_layout Plain Layout
  5797. Chapter author list: Me, Sunil, Tom, Padma, Dan
  5798. \end_layout
  5799. \end_inset
  5800. \end_layout
  5801. \begin_layout Section
  5802. Approach
  5803. \end_layout
  5804. \begin_layout Subsection
  5805. Proper pre-processing is essential for array data
  5806. \end_layout
  5807. \begin_layout Standard
  5808. \begin_inset Flex TODO Note (inline)
  5809. status open
  5810. \begin_layout Plain Layout
  5811. This section could probably use some citations
  5812. \end_layout
  5813. \end_inset
  5814. \end_layout
  5815. \begin_layout Standard
  5816. Microarrays, bead arrays, and similar assays produce raw data in the form
  5817. of fluorescence intensity measurements, with the each intensity measurement
  5818. proportional to the abundance of some fluorescently-labelled target DNA
  5819. or RNA sequence that base pairs to a specific probe sequence.
  5820. However, these measurements for each probe are also affected my many technical
  5821. confounding factors, such as the concentration of target material, strength
  5822. of off-target binding, and the sensitivity of the imaging sensor.
  5823. Some array designs also use multiple probe sequences for each target.
  5824. Hence, extensive pre-processing of array data is necessary to normalize
  5825. out the effects of these technical factors and summarize the information
  5826. from multiple probes to arrive at a single usable estimate of abundance
  5827. or other relevant quantity, such as a ratio of two abundances, for each
  5828. target.
  5829. \end_layout
  5830. \begin_layout Standard
  5831. The choice of pre-processing algorithms used in the analysis of an array
  5832. data set can have a large effect on the results of that analysis.
  5833. However, despite their importance, these steps are often neglected or rushed
  5834. in order to get to the more scientifically interesting analysis steps involving
  5835. the actual biology of the system under study.
  5836. Hence, it is often possible to achieve substantial gains in statistical
  5837. power, model goodness-of-fit, or other relevant performance measures, by
  5838. checking the assumptions made by each preprocessing step and choosing specific
  5839. normalization methods tailored to the specific goals of the current analysis.
  5840. \end_layout
  5841. \begin_layout Subsection
  5842. Clinical diagnostic applications for microarrays require single-channel
  5843. normalization
  5844. \end_layout
  5845. \begin_layout Standard
  5846. As the cost of performing microarray assays falls, there is increasing interest
  5847. in using genomic assays for diagnostic purposes, such as distinguishing
  5848. healthy transplants (TX) from transplants undergoing acute rejection (AR)
  5849. or acute dysfunction with no rejection (ADNR).
  5850. However, the the standard normalization algorithm used for microarray data,
  5851. Robust Multi-chip Average (RMA)
  5852. \begin_inset CommandInset citation
  5853. LatexCommand cite
  5854. key "Irizarry2003a"
  5855. literal "false"
  5856. \end_inset
  5857. , is not applicable in a clinical setting.
  5858. Two of the steps in RMA, quantile normalization and probe summarization
  5859. by median polish, depend on every array in the data set being normalized.
  5860. This means that adding or removing any arrays from a data set changes the
  5861. normalized values for all arrays, and data sets that have been normalized
  5862. separately cannot be compared to each other.
  5863. Hence, when using RMA, any arrays to be analyzed together must also be
  5864. normalized together, and the set of arrays included in the data set must
  5865. be held constant throughout an analysis.
  5866. \end_layout
  5867. \begin_layout Standard
  5868. These limitations present serious impediments to the use of arrays as a
  5869. diagnostic tool.
  5870. When training a classifier, the samples to be classified must not be involved
  5871. in any step of the training process, lest their inclusion bias the training
  5872. process.
  5873. Once a classifier is deployed in a clinical setting, the samples to be
  5874. classified will not even
  5875. \emph on
  5876. exist
  5877. \emph default
  5878. at the time of training, so including them would be impossible even if
  5879. it were statistically justifiable.
  5880. Therefore, any machine learning application for microarrays demands that
  5881. the normalized expression values computed for an array must depend only
  5882. on information contained within that array.
  5883. This would ensure that each array's normalization is independent of every
  5884. other array, and that arrays normalized separately can still be compared
  5885. to each other without bias.
  5886. Such a normalization is commonly referred to as
  5887. \begin_inset Quotes eld
  5888. \end_inset
  5889. single-channel normalization
  5890. \begin_inset Quotes erd
  5891. \end_inset
  5892. .
  5893. \end_layout
  5894. \begin_layout Standard
  5895. Frozen RMA (fRMA) addresses these concerns by replacing the quantile normalizati
  5896. on and median polish with alternatives that do not introduce inter-array
  5897. dependence, allowing each array to be normalized independently of all others
  5898. \begin_inset CommandInset citation
  5899. LatexCommand cite
  5900. key "McCall2010"
  5901. literal "false"
  5902. \end_inset
  5903. .
  5904. Quantile normalization is performed against a pre-generated set of quantiles
  5905. learned from a collection of 850 publically available arrays sampled from
  5906. a wide variety of tissues in the Gene Expression Omnibus (GEO).
  5907. Each array's probe intensity distribution is normalized against these pre-gener
  5908. ated quantiles.
  5909. The median polish step is replaced with a robust weighted average of probe
  5910. intensities, using inverse variance weights learned from the same public
  5911. GEO data.
  5912. The result is a normalization that satisfies the requirements mentioned
  5913. above: each array is normalized independently of all others, and any two
  5914. normalized arrays can be compared directly to each other.
  5915. \end_layout
  5916. \begin_layout Standard
  5917. One important limitation of fRMA is that it requires a separate reference
  5918. data set from which to learn the parameters (reference quantiles and probe
  5919. weights) that will be used to normalize each array.
  5920. These parameters are specific to a given array platform, and pre-generated
  5921. parameters are only provided for the most common platforms, such as Affymetrix
  5922. hgu133plus2.
  5923. For a less common platform, such as hthgu133pluspm, is is necessary to
  5924. learn custom parameters from in-house data before fRMA can be used to normalize
  5925. samples on that platform
  5926. \begin_inset CommandInset citation
  5927. LatexCommand cite
  5928. key "McCall2011"
  5929. literal "false"
  5930. \end_inset
  5931. .
  5932. \end_layout
  5933. \begin_layout Standard
  5934. One other option is the aptly-named Single Channel Array Normalization (SCAN),
  5935. which adapts a normalization method originally designed for tiling arrays
  5936. \begin_inset CommandInset citation
  5937. LatexCommand cite
  5938. key "Piccolo2012"
  5939. literal "false"
  5940. \end_inset
  5941. .
  5942. SCAN is truly single-channel in that it does not require a set of normalization
  5943. paramters estimated from an external set of reference samples like fRMA
  5944. does.
  5945. \end_layout
  5946. \begin_layout Subsection
  5947. Heteroskedasticity must be accounted for in methylation array data
  5948. \end_layout
  5949. \begin_layout Standard
  5950. DNA methylation arrays are a relatively new kind of assay that uses microarrays
  5951. to measure the degree of methylation on cytosines in specific regions arrayed
  5952. across the genome.
  5953. First, bisulfite treatment converts all unmethylated cytosines to uracil
  5954. (which then become thymine after amplication) while leaving methylated
  5955. cytosines unaffected.
  5956. Then, each target region is interrogated with two probes: one binds to
  5957. the original genomic sequence and interrogates the level of methylated
  5958. DNA, and the other binds to the same sequence with all cytosines replaced
  5959. by thymidines and interrogates the level of unmethylated DNA.
  5960. \end_layout
  5961. \begin_layout Standard
  5962. \begin_inset Float figure
  5963. wide false
  5964. sideways false
  5965. status collapsed
  5966. \begin_layout Plain Layout
  5967. \align center
  5968. \begin_inset Graphics
  5969. filename graphics/methylvoom/sigmoid.pdf
  5970. lyxscale 50
  5971. width 60col%
  5972. groupId colwidth
  5973. \end_inset
  5974. \end_layout
  5975. \begin_layout Plain Layout
  5976. \begin_inset Caption Standard
  5977. \begin_layout Plain Layout
  5978. \begin_inset CommandInset label
  5979. LatexCommand label
  5980. name "fig:Sigmoid-beta-m-mapping"
  5981. \end_inset
  5982. \series bold
  5983. Sigmoid shape of the mapping between β and M values
  5984. \end_layout
  5985. \end_inset
  5986. \end_layout
  5987. \end_inset
  5988. \end_layout
  5989. \begin_layout Standard
  5990. After normalization, these two probe intensities are summarized in one of
  5991. two ways, each with advantages and disadvantages.
  5992. β
  5993. \series bold
  5994. \series default
  5995. values, interpreted as fraction of DNA copies methylated, range from 0 to
  5996. 1.
  5997. β
  5998. \series bold
  5999. \series default
  6000. values are conceptually easy to interpret, but the constrained range makes
  6001. them unsuitable for linear modeling, and their error distributions are
  6002. highly non-normal, which also frustrates linear modeling.
  6003. M-values, interpreted as the log ratio of methylated to unmethylated copies,
  6004. are computed by mapping the beta values from
  6005. \begin_inset Formula $[0,1]$
  6006. \end_inset
  6007. onto
  6008. \begin_inset Formula $(-\infty,+\infty)$
  6009. \end_inset
  6010. using a sigmoid curve (Figure
  6011. \begin_inset CommandInset ref
  6012. LatexCommand ref
  6013. reference "fig:Sigmoid-beta-m-mapping"
  6014. plural "false"
  6015. caps "false"
  6016. noprefix "false"
  6017. \end_inset
  6018. ).
  6019. This transformation results in values with better statistical perperties:
  6020. the unconstrained range is suitable for linear modeling, and the error
  6021. distributions are more normal.
  6022. Hence, most linear modeling and other statistical testing on methylation
  6023. arrays is performed using M-values.
  6024. \end_layout
  6025. \begin_layout Standard
  6026. However, the steep slope of the sigmoid transformation near 0 and 1 tends
  6027. to over-exaggerate small differences in β values near those extremes, which
  6028. in turn amplifies the error in those values, leading to a U-shaped trend
  6029. in the mean-variance curve: extreme values have higher variances than values
  6030. near the middle.
  6031. This mean-variance dependency must be accounted for when fitting the linear
  6032. model for differential methylation, or else the variance will be systematically
  6033. overestimated for probes with moderate M-values and underestimated for
  6034. probes with extreme M-values.
  6035. This is particularly undesirable for methylation data because the intermediate
  6036. M-values are the ones of most interest, since they are more likely to represent
  6037. areas of varying methylation, whereas extreme M-values typically represent
  6038. complete methylation or complete lack of methylation.
  6039. \end_layout
  6040. \begin_layout Standard
  6041. RNA-seq read count data are also known to show heteroskedasticity, and the
  6042. voom method was introduced for modeling this heteroskedasticity by estimating
  6043. the mean-variance trend in the data and using this trend to assign precision
  6044. weights to each observation
  6045. \begin_inset CommandInset citation
  6046. LatexCommand cite
  6047. key "Law2013"
  6048. literal "false"
  6049. \end_inset
  6050. .
  6051. While methylation array data are not derived from counts and have a very
  6052. different mean-variance relationship from that of typical RNA-seq data,
  6053. the voom method makes no specific assumptions on the shape of the mean-variance
  6054. relationship – it only assumes that the relationship can be modeled as
  6055. a smooth curve.
  6056. Hence, the method is sufficiently general to model the mean-variance relationsh
  6057. ip in methylation array data.
  6058. However, the standard implementation of voom assumes that the input is
  6059. given in raw read counts, and it must be adapted to run on methylation
  6060. M-values.
  6061. \end_layout
  6062. \begin_layout Section
  6063. Methods
  6064. \end_layout
  6065. \begin_layout Subsection
  6066. Evaluation of classifier performance with different normalization methods
  6067. \end_layout
  6068. \begin_layout Standard
  6069. For testing different expression microarray normalizations, a data set of
  6070. 157 hgu133plus2 arrays was used, consisting of blood samples from kidney
  6071. transplant patients whose grafts had been graded as TX, AR, or ADNR via
  6072. biopsy and histology (46 TX, 69 AR, 42 ADNR)
  6073. \begin_inset CommandInset citation
  6074. LatexCommand cite
  6075. key "Kurian2014"
  6076. literal "true"
  6077. \end_inset
  6078. .
  6079. Additionally, an external validation set of 75 samples was gathered from
  6080. public GEO data (37 TX, 38 AR, no ADNR).
  6081. \end_layout
  6082. \begin_layout Standard
  6083. \begin_inset Flex TODO Note (inline)
  6084. status open
  6085. \begin_layout Plain Layout
  6086. Find appropriate GEO identifiers if possible.
  6087. Kurian 2014 says GSE15296, but this seems to be different data.
  6088. I also need to look up the GEO accession for the external validation set.
  6089. \end_layout
  6090. \end_inset
  6091. \end_layout
  6092. \begin_layout Standard
  6093. To evaluate the effect of each normalization on classifier performance,
  6094. the same classifier training and validation procedure was used after each
  6095. normalization method.
  6096. The PAM package was used to train a nearest shrunken centroid classifier
  6097. on the training set and select the appropriate threshold for centroid shrinking.
  6098. Then the trained classifier was used to predict the class probabilities
  6099. of each validation sample.
  6100. From these class probabilities, ROC curves and area-under-curve (AUC) values
  6101. were generated
  6102. \begin_inset CommandInset citation
  6103. LatexCommand cite
  6104. key "Turck2011"
  6105. literal "false"
  6106. \end_inset
  6107. .
  6108. Each normalization was tested on two different sets of training and validation
  6109. samples.
  6110. For internal validation, the 115 TX and AR arrays in the internal set were
  6111. split at random into two equal sized sets, one for training and one for
  6112. validation, each containing the same numbers of TX and AR samples as the
  6113. other set.
  6114. For external validation, the full set of 115 TX and AR samples were used
  6115. as a training set, and the 75 external TX and AR samples were used as the
  6116. validation set.
  6117. Thus, 2 ROC curves and AUC values were generated for each normalization
  6118. method: one internal and one external.
  6119. Because the external validation set contains no ADNR samples, only classificati
  6120. on of TX and AR samples was considered.
  6121. The ADNR samples were included during normalization but excluded from all
  6122. classifier training and validation.
  6123. This ensures that the performance on internal and external validation sets
  6124. is directly comparable, since both are performing the same task: distinguising
  6125. TX from AR.
  6126. \end_layout
  6127. \begin_layout Standard
  6128. \begin_inset Flex TODO Note (inline)
  6129. status open
  6130. \begin_layout Plain Layout
  6131. Summarize the get.best.threshold algorithm for PAM threshold selection, or
  6132. just put the code online?
  6133. \end_layout
  6134. \end_inset
  6135. \end_layout
  6136. \begin_layout Standard
  6137. Six different normalization strategies were evaluated.
  6138. First, 2 well-known non-single-channel normalization methods were considered:
  6139. RMA and dChip
  6140. \begin_inset CommandInset citation
  6141. LatexCommand cite
  6142. key "Li2001,Irizarry2003a"
  6143. literal "false"
  6144. \end_inset
  6145. .
  6146. Since RMA produces expression values on a log2 scale and dChip does not,
  6147. the values from dChip were log2 transformed after normalization.
  6148. Next, RMA and dChip followed by Global Rank-invariant Set Normalization
  6149. (GRSN) were tested
  6150. \begin_inset CommandInset citation
  6151. LatexCommand cite
  6152. key "Pelz2008"
  6153. literal "false"
  6154. \end_inset
  6155. .
  6156. Post-processing with GRSN does not turn RMA or dChip into single-channel
  6157. methods, but it may help mitigate batch effects and is therefore useful
  6158. as a benchmark.
  6159. Lastly, the two single-channel normalization methods, fRMA and SCAN, were
  6160. tested
  6161. \begin_inset CommandInset citation
  6162. LatexCommand cite
  6163. key "McCall2010,Piccolo2012"
  6164. literal "false"
  6165. \end_inset
  6166. .
  6167. When evaluting internal validation performance, only the 157 internal samples
  6168. were normalized; when evaluating external validation performance, all 157
  6169. internal samples and 75 external samples were normalized together.
  6170. \end_layout
  6171. \begin_layout Standard
  6172. For demonstrating the problem with separate normalization of training and
  6173. validation data, one additional normalization was performed: the internal
  6174. and external sets were each normalized separately using RMA, and the normalized
  6175. data for each set were combined into a single set with no further attempts
  6176. at normalizing between the two sets.
  6177. The represents approximately how RMA would have to be used in a clinical
  6178. setting, where the samples to be classified are not available at the time
  6179. the classifier is trained.
  6180. \end_layout
  6181. \begin_layout Subsection
  6182. Generating custom fRMA vectors for hthgu133pluspm array platform
  6183. \end_layout
  6184. \begin_layout Standard
  6185. In order to enable fRMA normalization for the hthgu133pluspm array platform,
  6186. custom fRMA normalization vectors were trained using the frmaTools package
  6187. \begin_inset CommandInset citation
  6188. LatexCommand cite
  6189. key "McCall2011"
  6190. literal "false"
  6191. \end_inset
  6192. .
  6193. Separate vectors were created for two types of samples: kidney graft biopsy
  6194. samples and blood samples from graft recipients.
  6195. For training, a 341 kidney biopsy samples from 2 data sets and 965 blood
  6196. samples from 5 data sets were used as the reference set.
  6197. Arrays were groups into batches based on unique combinations of sample
  6198. type (blood or biopsy), diagnosis (TX, AR, etc.), data set, and scan date.
  6199. Thus, each batch represents arrays of the same kind that were run together
  6200. on the same day.
  6201. For estimating the probe inverse variance weights, frmaTools requires equal-siz
  6202. ed batches, which means a batch size must be chosen, and then batches smaller
  6203. than that size must be ignored, while batches larger than the chosen size
  6204. must be downsampled.
  6205. This downsampling is performed randomly, so the sampling process is repeated
  6206. 5 times and the resulting normalizations are compared to each other.
  6207. \end_layout
  6208. \begin_layout Standard
  6209. To evaluate the consistency of the generated normalization vectors, the
  6210. 5 fRMA vector sets generated from 5 random batch samplings were each used
  6211. to normalize the same 20 randomly selected samples from each tissue.
  6212. Then the normalized expression values for each probe on each array were
  6213. compared across all normalizations.
  6214. Each fRMA normalization was also compared against the normalized expression
  6215. values obtained by normalizing the same 20 samples with ordinary RMA.
  6216. \end_layout
  6217. \begin_layout Subsection
  6218. Modeling methylation array M-value heteroskedasticy in linear models with
  6219. modified voom implementation
  6220. \end_layout
  6221. \begin_layout Standard
  6222. \begin_inset Flex TODO Note (inline)
  6223. status open
  6224. \begin_layout Plain Layout
  6225. Put code on Github and reference it.
  6226. \end_layout
  6227. \end_inset
  6228. \end_layout
  6229. \begin_layout Standard
  6230. To investigate the whether DNA methylation could be used to distinguish
  6231. between healthy and dysfunctional transplants, a data set of 78 Illumina
  6232. 450k methylation arrays from human kidney graft biopsies was analyzed for
  6233. differential metylation between 4 transplant statuses: healthy transplant
  6234. (TX), transplants undergoing acute rejection (AR), acute dysfunction with
  6235. no rejection (ADNR), and chronic allograpft nephropathy (CAN).
  6236. The data consisted of 33 TX, 9 AR, 8 ADNR, and 28 CAN samples.
  6237. The uneven group sizes are a result of taking the biopsy samples before
  6238. the eventual fate of the transplant was known.
  6239. Each sample was additionally annotated with a donor ID (anonymized), Sex,
  6240. Age, Ethnicity, Creatinine Level, and Diabetes diagnosois (all samples
  6241. in this data set came from patients with either Type 1 or Type 2 diabetes).
  6242. \end_layout
  6243. \begin_layout Standard
  6244. The intensity data were first normalized using subset-quantile within array
  6245. normalization (SWAN)
  6246. \begin_inset CommandInset citation
  6247. LatexCommand cite
  6248. key "Maksimovic2012"
  6249. literal "false"
  6250. \end_inset
  6251. , then converted to intensity ratios (beta values)
  6252. \begin_inset CommandInset citation
  6253. LatexCommand cite
  6254. key "Aryee2014"
  6255. literal "false"
  6256. \end_inset
  6257. .
  6258. Any probes binding to loci that overlapped annotated SNPs were dropped,
  6259. and the annotated sex of each sample was verified against the sex inferred
  6260. from the ratio of median probe intensities for the X and Y chromosomes.
  6261. Then, the ratios were transformed to M-values.
  6262. \end_layout
  6263. \begin_layout Standard
  6264. \begin_inset Float table
  6265. wide false
  6266. sideways false
  6267. status open
  6268. \begin_layout Plain Layout
  6269. \align center
  6270. \begin_inset Tabular
  6271. <lyxtabular version="3" rows="4" columns="6">
  6272. <features tabularvalignment="middle">
  6273. <column alignment="center" valignment="top">
  6274. <column alignment="center" valignment="top">
  6275. <column alignment="center" valignment="top">
  6276. <column alignment="center" valignment="top">
  6277. <column alignment="center" valignment="top">
  6278. <column alignment="center" valignment="top">
  6279. <row>
  6280. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6281. \begin_inset Text
  6282. \begin_layout Plain Layout
  6283. Analysis
  6284. \end_layout
  6285. \end_inset
  6286. </cell>
  6287. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6288. \begin_inset Text
  6289. \begin_layout Plain Layout
  6290. random effect
  6291. \end_layout
  6292. \end_inset
  6293. </cell>
  6294. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6295. \begin_inset Text
  6296. \begin_layout Plain Layout
  6297. eBayes
  6298. \end_layout
  6299. \end_inset
  6300. </cell>
  6301. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6302. \begin_inset Text
  6303. \begin_layout Plain Layout
  6304. SVA
  6305. \end_layout
  6306. \end_inset
  6307. </cell>
  6308. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6309. \begin_inset Text
  6310. \begin_layout Plain Layout
  6311. weights
  6312. \end_layout
  6313. \end_inset
  6314. </cell>
  6315. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  6316. \begin_inset Text
  6317. \begin_layout Plain Layout
  6318. voom
  6319. \end_layout
  6320. \end_inset
  6321. </cell>
  6322. </row>
  6323. <row>
  6324. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6325. \begin_inset Text
  6326. \begin_layout Plain Layout
  6327. A
  6328. \end_layout
  6329. \end_inset
  6330. </cell>
  6331. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6332. \begin_inset Text
  6333. \begin_layout Plain Layout
  6334. Yes
  6335. \end_layout
  6336. \end_inset
  6337. </cell>
  6338. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6339. \begin_inset Text
  6340. \begin_layout Plain Layout
  6341. Yes
  6342. \end_layout
  6343. \end_inset
  6344. </cell>
  6345. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6346. \begin_inset Text
  6347. \begin_layout Plain Layout
  6348. No
  6349. \end_layout
  6350. \end_inset
  6351. </cell>
  6352. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6353. \begin_inset Text
  6354. \begin_layout Plain Layout
  6355. No
  6356. \end_layout
  6357. \end_inset
  6358. </cell>
  6359. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  6360. \begin_inset Text
  6361. \begin_layout Plain Layout
  6362. No
  6363. \end_layout
  6364. \end_inset
  6365. </cell>
  6366. </row>
  6367. <row>
  6368. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6369. \begin_inset Text
  6370. \begin_layout Plain Layout
  6371. B
  6372. \end_layout
  6373. \end_inset
  6374. </cell>
  6375. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6376. \begin_inset Text
  6377. \begin_layout Plain Layout
  6378. Yes
  6379. \end_layout
  6380. \end_inset
  6381. </cell>
  6382. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6383. \begin_inset Text
  6384. \begin_layout Plain Layout
  6385. Yes
  6386. \end_layout
  6387. \end_inset
  6388. </cell>
  6389. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6390. \begin_inset Text
  6391. \begin_layout Plain Layout
  6392. Yes
  6393. \end_layout
  6394. \end_inset
  6395. </cell>
  6396. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6397. \begin_inset Text
  6398. \begin_layout Plain Layout
  6399. Yes
  6400. \end_layout
  6401. \end_inset
  6402. </cell>
  6403. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  6404. \begin_inset Text
  6405. \begin_layout Plain Layout
  6406. No
  6407. \end_layout
  6408. \end_inset
  6409. </cell>
  6410. </row>
  6411. <row>
  6412. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6413. \begin_inset Text
  6414. \begin_layout Plain Layout
  6415. C
  6416. \end_layout
  6417. \end_inset
  6418. </cell>
  6419. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6420. \begin_inset Text
  6421. \begin_layout Plain Layout
  6422. Yes
  6423. \end_layout
  6424. \end_inset
  6425. </cell>
  6426. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6427. \begin_inset Text
  6428. \begin_layout Plain Layout
  6429. Yes
  6430. \end_layout
  6431. \end_inset
  6432. </cell>
  6433. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6434. \begin_inset Text
  6435. \begin_layout Plain Layout
  6436. Yes
  6437. \end_layout
  6438. \end_inset
  6439. </cell>
  6440. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6441. \begin_inset Text
  6442. \begin_layout Plain Layout
  6443. Yes
  6444. \end_layout
  6445. \end_inset
  6446. </cell>
  6447. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  6448. \begin_inset Text
  6449. \begin_layout Plain Layout
  6450. Yes
  6451. \end_layout
  6452. \end_inset
  6453. </cell>
  6454. </row>
  6455. </lyxtabular>
  6456. \end_inset
  6457. \end_layout
  6458. \begin_layout Plain Layout
  6459. \begin_inset Caption Standard
  6460. \begin_layout Plain Layout
  6461. \series bold
  6462. \begin_inset CommandInset label
  6463. LatexCommand label
  6464. name "tab:Summary-of-meth-analysis"
  6465. \end_inset
  6466. Summary of analysis variants for methylation array data.
  6467. \series default
  6468. Each analysis included a different set of steps to adjust or account for
  6469. various systematic features of the data.
  6470. Random effect: The model included a random effect accounting for correlation
  6471. between samples from the same patient
  6472. \begin_inset CommandInset citation
  6473. LatexCommand cite
  6474. key "Smyth2005a"
  6475. literal "false"
  6476. \end_inset
  6477. ; eBayes: Empirical bayes squeezing of per-probe variances toward the mean-varia
  6478. nce trend
  6479. \begin_inset CommandInset citation
  6480. LatexCommand cite
  6481. key "Ritchie2015"
  6482. literal "false"
  6483. \end_inset
  6484. ; SVA: Surrogate variable analysis to account for unobserved confounders
  6485. \begin_inset CommandInset citation
  6486. LatexCommand cite
  6487. key "Leek2007"
  6488. literal "false"
  6489. \end_inset
  6490. ; Weights: Estimate sample weights to account for differences in sample
  6491. quality
  6492. \begin_inset CommandInset citation
  6493. LatexCommand cite
  6494. key "Liu2015,Ritchie2006"
  6495. literal "false"
  6496. \end_inset
  6497. ; voom: Use mean-variance trend to assign individual sample weights
  6498. \begin_inset CommandInset citation
  6499. LatexCommand cite
  6500. key "Law2013"
  6501. literal "false"
  6502. \end_inset
  6503. .
  6504. See the text for a more detailed explanation of each step.
  6505. \end_layout
  6506. \end_inset
  6507. \end_layout
  6508. \end_inset
  6509. \end_layout
  6510. \begin_layout Standard
  6511. From the M-values, a series of parallel analyses was performed, each adding
  6512. additional steps into the model fit to accomodate a feature of the data
  6513. (see Table
  6514. \begin_inset CommandInset ref
  6515. LatexCommand ref
  6516. reference "tab:Summary-of-meth-analysis"
  6517. plural "false"
  6518. caps "false"
  6519. noprefix "false"
  6520. \end_inset
  6521. ).
  6522. For analysis A, a
  6523. \begin_inset Quotes eld
  6524. \end_inset
  6525. basic
  6526. \begin_inset Quotes erd
  6527. \end_inset
  6528. linear modeling analysis was performed, compensating for known confounders
  6529. by including terms for the factor of interest (transplant status) as well
  6530. as the known biological confounders: sex, age, ethnicity, and diabetes.
  6531. Since some samples came from the same patients at different times, the
  6532. intra-patient correlation was modeled as a random effect, estimating a
  6533. shared correlation value across all probes
  6534. \begin_inset CommandInset citation
  6535. LatexCommand cite
  6536. key "Smyth2005a"
  6537. literal "false"
  6538. \end_inset
  6539. .
  6540. Then the linear model was fit, and the variance was modeled using empirical
  6541. Bayes squeezing toward the mean-variance trend
  6542. \begin_inset CommandInset citation
  6543. LatexCommand cite
  6544. key "Ritchie2015"
  6545. literal "false"
  6546. \end_inset
  6547. .
  6548. Finally, t-tests or F-tests were performed as appropriate for each test:
  6549. t-tests for single contrasts, and F-tests for multiple contrasts.
  6550. P-values were corrected for multiple testing using the Benjamini-Hochberg
  6551. procedure for FDR control
  6552. \begin_inset CommandInset citation
  6553. LatexCommand cite
  6554. key "Benjamini1995"
  6555. literal "false"
  6556. \end_inset
  6557. .
  6558. \end_layout
  6559. \begin_layout Standard
  6560. For the analysis B, surrogate variable analysis (SVA) was used to infer
  6561. additional unobserved sources of heterogeneity in the data
  6562. \begin_inset CommandInset citation
  6563. LatexCommand cite
  6564. key "Leek2007"
  6565. literal "false"
  6566. \end_inset
  6567. .
  6568. These surrogate variables were added to the design matrix before fitting
  6569. the linear model.
  6570. In addition, sample quality weights were estimated from the data and used
  6571. during linear modeling to down-weight the contribution of highly variable
  6572. arrays while increasing the weight to arrays with lower variability
  6573. \begin_inset CommandInset citation
  6574. LatexCommand cite
  6575. key "Ritchie2006"
  6576. literal "false"
  6577. \end_inset
  6578. .
  6579. The remainder of the analysis proceeded as in analysis A.
  6580. For analysis C, the voom method was adapted to run on methylation array
  6581. data and used to model and correct for the mean-variance trend using individual
  6582. observation weights
  6583. \begin_inset CommandInset citation
  6584. LatexCommand cite
  6585. key "Law2013"
  6586. literal "false"
  6587. \end_inset
  6588. , which were combined with the sample weights
  6589. \begin_inset CommandInset citation
  6590. LatexCommand cite
  6591. key "Liu2015,Ritchie2006"
  6592. literal "false"
  6593. \end_inset
  6594. .
  6595. Each time weights were used, they were estimated once before estimating
  6596. the random effect correlation value, and then the weights were re-estimated
  6597. taking the random effect into account.
  6598. The remainder of the analysis proceeded as in analysis B.
  6599. \end_layout
  6600. \begin_layout Section
  6601. Results
  6602. \end_layout
  6603. \begin_layout Standard
  6604. \begin_inset Flex TODO Note (inline)
  6605. status open
  6606. \begin_layout Plain Layout
  6607. Improve subsection titles in this section.
  6608. \end_layout
  6609. \end_inset
  6610. \end_layout
  6611. \begin_layout Standard
  6612. \begin_inset Flex TODO Note (inline)
  6613. status open
  6614. \begin_layout Plain Layout
  6615. Reconsider subsection organization?
  6616. \end_layout
  6617. \end_inset
  6618. \end_layout
  6619. \begin_layout Subsection
  6620. Separate normalization with RMA introduces unwanted biases in classification
  6621. \end_layout
  6622. \begin_layout Standard
  6623. \begin_inset Float figure
  6624. wide false
  6625. sideways false
  6626. status open
  6627. \begin_layout Plain Layout
  6628. \align center
  6629. \begin_inset Graphics
  6630. filename graphics/PAM/predplot.pdf
  6631. lyxscale 50
  6632. width 60col%
  6633. groupId colwidth
  6634. \end_inset
  6635. \end_layout
  6636. \begin_layout Plain Layout
  6637. \begin_inset Caption Standard
  6638. \begin_layout Plain Layout
  6639. \begin_inset CommandInset label
  6640. LatexCommand label
  6641. name "fig:Classifier-probabilities-RMA"
  6642. \end_inset
  6643. \series bold
  6644. Classifier probabilities on validation samples when normalized with RMA
  6645. together vs.
  6646. separately.
  6647. \series default
  6648. The PAM classifier algorithm was trained on the training set of arrays to
  6649. distinguish AR from TX and then used to assign class probabilities to the
  6650. validation set.
  6651. The process was performed after normalizing all samples together and after
  6652. normalizing the training and test sets separately, and the class probabilities
  6653. assigned to each sample in the validation set were plotted against each
  6654. other (PP(AR), posterior probability of being AR).
  6655. The color of each point indicates the true classification of that sample.
  6656. \end_layout
  6657. \end_inset
  6658. \end_layout
  6659. \end_inset
  6660. \end_layout
  6661. \begin_layout Standard
  6662. To demonstrate the problem with non-single-channel normalization methods,
  6663. we considered the problem of training a classifier to distinguish TX from
  6664. AR using the samples from the internal set as training data, evaluating
  6665. performance on the external set.
  6666. First, training and evaluation were performed after normalizing all array
  6667. samples together as a single set using RMA, and second, the internal samples
  6668. were normalized separately from the external samples and the training and
  6669. evaluation were repeated.
  6670. For each sample in the validation set, the classifier probabilities from
  6671. both classifiers were plotted against each other (Fig.
  6672. \begin_inset CommandInset ref
  6673. LatexCommand ref
  6674. reference "fig:Classifier-probabilities-RMA"
  6675. plural "false"
  6676. caps "false"
  6677. noprefix "false"
  6678. \end_inset
  6679. ).
  6680. As expected, separate normalization biases the classifier probabilities,
  6681. resulting in several misclassifications.
  6682. In this case, the bias from separate normalization causes the classifier
  6683. to assign a lower probability of AR to every sample.
  6684. \end_layout
  6685. \begin_layout Subsection
  6686. fRMA and SCAN maintain classification performance while eliminating dependence
  6687. on normalization strategy
  6688. \end_layout
  6689. \begin_layout Standard
  6690. \begin_inset Float figure
  6691. wide false
  6692. sideways false
  6693. status open
  6694. \begin_layout Plain Layout
  6695. \align center
  6696. \begin_inset Float figure
  6697. placement tb
  6698. wide false
  6699. sideways false
  6700. status open
  6701. \begin_layout Plain Layout
  6702. \align center
  6703. \begin_inset Graphics
  6704. filename graphics/PAM/ROC-TXvsAR-internal.pdf
  6705. lyxscale 50
  6706. height 40theight%
  6707. groupId roc-pam
  6708. \end_inset
  6709. \end_layout
  6710. \begin_layout Plain Layout
  6711. \begin_inset Caption Standard
  6712. \begin_layout Plain Layout
  6713. \begin_inset CommandInset label
  6714. LatexCommand label
  6715. name "fig:ROC-PAM-int"
  6716. \end_inset
  6717. ROC curves for PAM on internal validation data
  6718. \end_layout
  6719. \end_inset
  6720. \end_layout
  6721. \end_inset
  6722. \end_layout
  6723. \begin_layout Plain Layout
  6724. \align center
  6725. \begin_inset Float figure
  6726. placement tb
  6727. wide false
  6728. sideways false
  6729. status open
  6730. \begin_layout Plain Layout
  6731. \align center
  6732. \begin_inset Graphics
  6733. filename graphics/PAM/ROC-TXvsAR-external.pdf
  6734. lyxscale 50
  6735. height 40theight%
  6736. groupId roc-pam
  6737. \end_inset
  6738. \end_layout
  6739. \begin_layout Plain Layout
  6740. \begin_inset Caption Standard
  6741. \begin_layout Plain Layout
  6742. \begin_inset CommandInset label
  6743. LatexCommand label
  6744. name "fig:ROC-PAM-ext"
  6745. \end_inset
  6746. ROC curves for PAM on external validation data
  6747. \end_layout
  6748. \end_inset
  6749. \end_layout
  6750. \end_inset
  6751. \end_layout
  6752. \begin_layout Plain Layout
  6753. \begin_inset Caption Standard
  6754. \begin_layout Plain Layout
  6755. \series bold
  6756. \begin_inset CommandInset label
  6757. LatexCommand label
  6758. name "fig:ROC-PAM-main"
  6759. \end_inset
  6760. ROC curves for PAM using different normalization strategies.
  6761. \series default
  6762. ROC curves were generated for PAM classification of AR vs TX after 6 different
  6763. normalization strategies applied to the same data sets.
  6764. Only fRMA and SCAN are single-channel normalizations.
  6765. The other normalizations are for comparison.
  6766. \end_layout
  6767. \end_inset
  6768. \end_layout
  6769. \end_inset
  6770. \end_layout
  6771. \begin_layout Standard
  6772. \begin_inset Float table
  6773. wide false
  6774. sideways false
  6775. status open
  6776. \begin_layout Plain Layout
  6777. \align center
  6778. \begin_inset Tabular
  6779. <lyxtabular version="3" rows="7" columns="4">
  6780. <features tabularvalignment="middle">
  6781. <column alignment="center" valignment="top">
  6782. <column alignment="center" valignment="top">
  6783. <column alignment="center" valignment="top">
  6784. <column alignment="center" valignment="top">
  6785. <row>
  6786. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6787. \begin_inset Text
  6788. \begin_layout Plain Layout
  6789. \family roman
  6790. \series medium
  6791. \shape up
  6792. \size normal
  6793. \emph off
  6794. \bar no
  6795. \strikeout off
  6796. \xout off
  6797. \uuline off
  6798. \uwave off
  6799. \noun off
  6800. \color none
  6801. Normalization
  6802. \end_layout
  6803. \end_inset
  6804. </cell>
  6805. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6806. \begin_inset Text
  6807. \begin_layout Plain Layout
  6808. Single-channel?
  6809. \end_layout
  6810. \end_inset
  6811. </cell>
  6812. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6813. \begin_inset Text
  6814. \begin_layout Plain Layout
  6815. \family roman
  6816. \series medium
  6817. \shape up
  6818. \size normal
  6819. \emph off
  6820. \bar no
  6821. \strikeout off
  6822. \xout off
  6823. \uuline off
  6824. \uwave off
  6825. \noun off
  6826. \color none
  6827. Internal Val.
  6828. AUC
  6829. \end_layout
  6830. \end_inset
  6831. </cell>
  6832. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  6833. \begin_inset Text
  6834. \begin_layout Plain Layout
  6835. External Val.
  6836. AUC
  6837. \end_layout
  6838. \end_inset
  6839. </cell>
  6840. </row>
  6841. <row>
  6842. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6843. \begin_inset Text
  6844. \begin_layout Plain Layout
  6845. \family roman
  6846. \series medium
  6847. \shape up
  6848. \size normal
  6849. \emph off
  6850. \bar no
  6851. \strikeout off
  6852. \xout off
  6853. \uuline off
  6854. \uwave off
  6855. \noun off
  6856. \color none
  6857. RMA
  6858. \end_layout
  6859. \end_inset
  6860. </cell>
  6861. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6862. \begin_inset Text
  6863. \begin_layout Plain Layout
  6864. No
  6865. \end_layout
  6866. \end_inset
  6867. </cell>
  6868. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6869. \begin_inset Text
  6870. \begin_layout Plain Layout
  6871. \family roman
  6872. \series medium
  6873. \shape up
  6874. \size normal
  6875. \emph off
  6876. \bar no
  6877. \strikeout off
  6878. \xout off
  6879. \uuline off
  6880. \uwave off
  6881. \noun off
  6882. \color none
  6883. 0.852
  6884. \end_layout
  6885. \end_inset
  6886. </cell>
  6887. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  6888. \begin_inset Text
  6889. \begin_layout Plain Layout
  6890. \family roman
  6891. \series medium
  6892. \shape up
  6893. \size normal
  6894. \emph off
  6895. \bar no
  6896. \strikeout off
  6897. \xout off
  6898. \uuline off
  6899. \uwave off
  6900. \noun off
  6901. \color none
  6902. 0.713
  6903. \end_layout
  6904. \end_inset
  6905. </cell>
  6906. </row>
  6907. <row>
  6908. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6909. \begin_inset Text
  6910. \begin_layout Plain Layout
  6911. \family roman
  6912. \series medium
  6913. \shape up
  6914. \size normal
  6915. \emph off
  6916. \bar no
  6917. \strikeout off
  6918. \xout off
  6919. \uuline off
  6920. \uwave off
  6921. \noun off
  6922. \color none
  6923. dChip
  6924. \end_layout
  6925. \end_inset
  6926. </cell>
  6927. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6928. \begin_inset Text
  6929. \begin_layout Plain Layout
  6930. No
  6931. \end_layout
  6932. \end_inset
  6933. </cell>
  6934. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6935. \begin_inset Text
  6936. \begin_layout Plain Layout
  6937. \family roman
  6938. \series medium
  6939. \shape up
  6940. \size normal
  6941. \emph off
  6942. \bar no
  6943. \strikeout off
  6944. \xout off
  6945. \uuline off
  6946. \uwave off
  6947. \noun off
  6948. \color none
  6949. 0.891
  6950. \end_layout
  6951. \end_inset
  6952. </cell>
  6953. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  6954. \begin_inset Text
  6955. \begin_layout Plain Layout
  6956. \family roman
  6957. \series medium
  6958. \shape up
  6959. \size normal
  6960. \emph off
  6961. \bar no
  6962. \strikeout off
  6963. \xout off
  6964. \uuline off
  6965. \uwave off
  6966. \noun off
  6967. \color none
  6968. 0.657
  6969. \end_layout
  6970. \end_inset
  6971. </cell>
  6972. </row>
  6973. <row>
  6974. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6975. \begin_inset Text
  6976. \begin_layout Plain Layout
  6977. \family roman
  6978. \series medium
  6979. \shape up
  6980. \size normal
  6981. \emph off
  6982. \bar no
  6983. \strikeout off
  6984. \xout off
  6985. \uuline off
  6986. \uwave off
  6987. \noun off
  6988. \color none
  6989. RMA + GRSN
  6990. \end_layout
  6991. \end_inset
  6992. </cell>
  6993. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6994. \begin_inset Text
  6995. \begin_layout Plain Layout
  6996. No
  6997. \end_layout
  6998. \end_inset
  6999. </cell>
  7000. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7001. \begin_inset Text
  7002. \begin_layout Plain Layout
  7003. \family roman
  7004. \series medium
  7005. \shape up
  7006. \size normal
  7007. \emph off
  7008. \bar no
  7009. \strikeout off
  7010. \xout off
  7011. \uuline off
  7012. \uwave off
  7013. \noun off
  7014. \color none
  7015. 0.816
  7016. \end_layout
  7017. \end_inset
  7018. </cell>
  7019. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  7020. \begin_inset Text
  7021. \begin_layout Plain Layout
  7022. \family roman
  7023. \series medium
  7024. \shape up
  7025. \size normal
  7026. \emph off
  7027. \bar no
  7028. \strikeout off
  7029. \xout off
  7030. \uuline off
  7031. \uwave off
  7032. \noun off
  7033. \color none
  7034. 0.750
  7035. \end_layout
  7036. \end_inset
  7037. </cell>
  7038. </row>
  7039. <row>
  7040. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7041. \begin_inset Text
  7042. \begin_layout Plain Layout
  7043. \family roman
  7044. \series medium
  7045. \shape up
  7046. \size normal
  7047. \emph off
  7048. \bar no
  7049. \strikeout off
  7050. \xout off
  7051. \uuline off
  7052. \uwave off
  7053. \noun off
  7054. \color none
  7055. dChip + GRSN
  7056. \end_layout
  7057. \end_inset
  7058. </cell>
  7059. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7060. \begin_inset Text
  7061. \begin_layout Plain Layout
  7062. No
  7063. \end_layout
  7064. \end_inset
  7065. </cell>
  7066. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7067. \begin_inset Text
  7068. \begin_layout Plain Layout
  7069. \family roman
  7070. \series medium
  7071. \shape up
  7072. \size normal
  7073. \emph off
  7074. \bar no
  7075. \strikeout off
  7076. \xout off
  7077. \uuline off
  7078. \uwave off
  7079. \noun off
  7080. \color none
  7081. 0.875
  7082. \end_layout
  7083. \end_inset
  7084. </cell>
  7085. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  7086. \begin_inset Text
  7087. \begin_layout Plain Layout
  7088. \family roman
  7089. \series medium
  7090. \shape up
  7091. \size normal
  7092. \emph off
  7093. \bar no
  7094. \strikeout off
  7095. \xout off
  7096. \uuline off
  7097. \uwave off
  7098. \noun off
  7099. \color none
  7100. 0.642
  7101. \end_layout
  7102. \end_inset
  7103. </cell>
  7104. </row>
  7105. <row>
  7106. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7107. \begin_inset Text
  7108. \begin_layout Plain Layout
  7109. \family roman
  7110. \series medium
  7111. \shape up
  7112. \size normal
  7113. \emph off
  7114. \bar no
  7115. \strikeout off
  7116. \xout off
  7117. \uuline off
  7118. \uwave off
  7119. \noun off
  7120. \color none
  7121. fRMA
  7122. \end_layout
  7123. \end_inset
  7124. </cell>
  7125. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7126. \begin_inset Text
  7127. \begin_layout Plain Layout
  7128. Yes
  7129. \end_layout
  7130. \end_inset
  7131. </cell>
  7132. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7133. \begin_inset Text
  7134. \begin_layout Plain Layout
  7135. \family roman
  7136. \series medium
  7137. \shape up
  7138. \size normal
  7139. \emph off
  7140. \bar no
  7141. \strikeout off
  7142. \xout off
  7143. \uuline off
  7144. \uwave off
  7145. \noun off
  7146. \color none
  7147. 0.863
  7148. \end_layout
  7149. \end_inset
  7150. </cell>
  7151. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  7152. \begin_inset Text
  7153. \begin_layout Plain Layout
  7154. \family roman
  7155. \series medium
  7156. \shape up
  7157. \size normal
  7158. \emph off
  7159. \bar no
  7160. \strikeout off
  7161. \xout off
  7162. \uuline off
  7163. \uwave off
  7164. \noun off
  7165. \color none
  7166. 0.718
  7167. \end_layout
  7168. \end_inset
  7169. </cell>
  7170. </row>
  7171. <row>
  7172. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  7173. \begin_inset Text
  7174. \begin_layout Plain Layout
  7175. \family roman
  7176. \series medium
  7177. \shape up
  7178. \size normal
  7179. \emph off
  7180. \bar no
  7181. \strikeout off
  7182. \xout off
  7183. \uuline off
  7184. \uwave off
  7185. \noun off
  7186. \color none
  7187. SCAN
  7188. \end_layout
  7189. \end_inset
  7190. </cell>
  7191. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  7192. \begin_inset Text
  7193. \begin_layout Plain Layout
  7194. Yes
  7195. \end_layout
  7196. \end_inset
  7197. </cell>
  7198. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  7199. \begin_inset Text
  7200. \begin_layout Plain Layout
  7201. \family roman
  7202. \series medium
  7203. \shape up
  7204. \size normal
  7205. \emph off
  7206. \bar no
  7207. \strikeout off
  7208. \xout off
  7209. \uuline off
  7210. \uwave off
  7211. \noun off
  7212. \color none
  7213. 0.853
  7214. \end_layout
  7215. \end_inset
  7216. </cell>
  7217. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  7218. \begin_inset Text
  7219. \begin_layout Plain Layout
  7220. \family roman
  7221. \series medium
  7222. \shape up
  7223. \size normal
  7224. \emph off
  7225. \bar no
  7226. \strikeout off
  7227. \xout off
  7228. \uuline off
  7229. \uwave off
  7230. \noun off
  7231. \color none
  7232. 0.689
  7233. \end_layout
  7234. \end_inset
  7235. </cell>
  7236. </row>
  7237. </lyxtabular>
  7238. \end_inset
  7239. \end_layout
  7240. \begin_layout Plain Layout
  7241. \begin_inset Caption Standard
  7242. \begin_layout Plain Layout
  7243. \begin_inset CommandInset label
  7244. LatexCommand label
  7245. name "tab:AUC-PAM"
  7246. \end_inset
  7247. \series bold
  7248. ROC curve AUC values for internal and external validation with 6 different
  7249. normalization strategies.
  7250. \series default
  7251. These AUC values correspond to the ROC curves in Figure
  7252. \begin_inset CommandInset ref
  7253. LatexCommand ref
  7254. reference "fig:ROC-PAM-main"
  7255. plural "false"
  7256. caps "false"
  7257. noprefix "false"
  7258. \end_inset
  7259. .
  7260. \end_layout
  7261. \end_inset
  7262. \end_layout
  7263. \end_inset
  7264. \end_layout
  7265. \begin_layout Standard
  7266. For internal validation, the 6 methods' AUC values ranged from 0.816 to 0.891,
  7267. as shown in Table
  7268. \begin_inset CommandInset ref
  7269. LatexCommand ref
  7270. reference "tab:AUC-PAM"
  7271. plural "false"
  7272. caps "false"
  7273. noprefix "false"
  7274. \end_inset
  7275. .
  7276. Among the non-single-channel normalizations, dChip outperformed RMA, while
  7277. GRSN reduced the AUC values for both dChip and RMA.
  7278. Both single-channel methods, fRMA and SCAN, slightly outperformed RMA,
  7279. with fRMA ahead of SCAN.
  7280. However, the difference between RMA and fRMA is still quite small.
  7281. Figure
  7282. \begin_inset CommandInset ref
  7283. LatexCommand ref
  7284. reference "fig:ROC-PAM-int"
  7285. plural "false"
  7286. caps "false"
  7287. noprefix "false"
  7288. \end_inset
  7289. shows that the ROC curves for RMA, dChip, and fRMA look very similar and
  7290. relatively smooth, while both GRSN curves and the curve for SCAN have a
  7291. more jagged appearance.
  7292. \end_layout
  7293. \begin_layout Standard
  7294. For external validation, as expected, all the AUC values are lower than
  7295. the internal validations, ranging from 0.642 to 0.750 (Table
  7296. \begin_inset CommandInset ref
  7297. LatexCommand ref
  7298. reference "tab:AUC-PAM"
  7299. plural "false"
  7300. caps "false"
  7301. noprefix "false"
  7302. \end_inset
  7303. ).
  7304. With or without GRSN, RMA shows its dominance over dChip in this more challengi
  7305. ng test.
  7306. Unlike in the internal validation, GRSN actually improves the classifier
  7307. performance for RMA, although it does not for dChip.
  7308. Once again, both single-channel methods perform about on par with RMA,
  7309. with fRMA performing slightly better and SCAN performing a bit worse.
  7310. Figure
  7311. \begin_inset CommandInset ref
  7312. LatexCommand ref
  7313. reference "fig:ROC-PAM-ext"
  7314. plural "false"
  7315. caps "false"
  7316. noprefix "false"
  7317. \end_inset
  7318. shows the ROC curves for the external validation test.
  7319. As expected, none of them are as clean-looking as the internal validation
  7320. ROC curves.
  7321. The curves for RMA, RMA+GRSN, and fRMA all look similar, while the other
  7322. curves look more divergent.
  7323. \end_layout
  7324. \begin_layout Subsection
  7325. fRMA with custom-generated vectors enables single-channel normalization
  7326. on hthgu133pluspm platform
  7327. \end_layout
  7328. \begin_layout Standard
  7329. \begin_inset Float figure
  7330. wide false
  7331. sideways false
  7332. status open
  7333. \begin_layout Plain Layout
  7334. \align center
  7335. \begin_inset Float figure
  7336. placement tb
  7337. wide false
  7338. sideways false
  7339. status collapsed
  7340. \begin_layout Plain Layout
  7341. \align center
  7342. \begin_inset Graphics
  7343. filename graphics/frma-pax-bx/batchsize_batches.pdf
  7344. lyxscale 50
  7345. height 35theight%
  7346. groupId frmatools-subfig
  7347. \end_inset
  7348. \end_layout
  7349. \begin_layout Plain Layout
  7350. \begin_inset Caption Standard
  7351. \begin_layout Plain Layout
  7352. \begin_inset CommandInset label
  7353. LatexCommand label
  7354. name "fig:batch-size-batches"
  7355. \end_inset
  7356. \series bold
  7357. Number of batches usable in fRMA probe weight learning as a function of
  7358. batch size.
  7359. \end_layout
  7360. \end_inset
  7361. \end_layout
  7362. \end_inset
  7363. \end_layout
  7364. \begin_layout Plain Layout
  7365. \align center
  7366. \begin_inset Float figure
  7367. placement tb
  7368. wide false
  7369. sideways false
  7370. status collapsed
  7371. \begin_layout Plain Layout
  7372. \align center
  7373. \begin_inset Graphics
  7374. filename graphics/frma-pax-bx/batchsize_samples.pdf
  7375. lyxscale 50
  7376. height 35theight%
  7377. groupId frmatools-subfig
  7378. \end_inset
  7379. \end_layout
  7380. \begin_layout Plain Layout
  7381. \begin_inset Caption Standard
  7382. \begin_layout Plain Layout
  7383. \begin_inset CommandInset label
  7384. LatexCommand label
  7385. name "fig:batch-size-samples"
  7386. \end_inset
  7387. \series bold
  7388. Number of samples usable in fRMA probe weight learning as a function of
  7389. batch size.
  7390. \end_layout
  7391. \end_inset
  7392. \end_layout
  7393. \end_inset
  7394. \end_layout
  7395. \begin_layout Plain Layout
  7396. \begin_inset Caption Standard
  7397. \begin_layout Plain Layout
  7398. \series bold
  7399. \begin_inset CommandInset label
  7400. LatexCommand label
  7401. name "fig:frmatools-batch-size"
  7402. \end_inset
  7403. Effect of batch size selection on number of batches and number of samples
  7404. included in fRMA probe weight learning.
  7405. \series default
  7406. For batch sizes ranging from 3 to 15, the number of batches (a) and samples
  7407. (b) included in probe weight training were plotted for biopsy (BX) and
  7408. blood (PAX) samples.
  7409. The selected batch size, 5, is marked with a dotted vertical line.
  7410. \end_layout
  7411. \end_inset
  7412. \end_layout
  7413. \end_inset
  7414. \end_layout
  7415. \begin_layout Standard
  7416. In order to enable use of fRMA to normalize hthgu133pluspm, a custom set
  7417. of fRMA vectors was created.
  7418. First, an appropriate batch size was chosen by looking at the number of
  7419. batches and number of samples included as a function of batch size (Figure
  7420. \begin_inset CommandInset ref
  7421. LatexCommand ref
  7422. reference "fig:frmatools-batch-size"
  7423. plural "false"
  7424. caps "false"
  7425. noprefix "false"
  7426. \end_inset
  7427. ).
  7428. For a given batch size, all batches with fewer samples that the chosen
  7429. size must be ignored during training, while larger batches must be randomly
  7430. downsampled to the chosen size.
  7431. Hence, the number of samples included for a given batch size equals the
  7432. batch size times the number of batches with at least that many samples.
  7433. From Figure
  7434. \begin_inset CommandInset ref
  7435. LatexCommand ref
  7436. reference "fig:batch-size-samples"
  7437. plural "false"
  7438. caps "false"
  7439. noprefix "false"
  7440. \end_inset
  7441. , it is apparent that that a batch size of 8 maximizes the number of samples
  7442. included in training.
  7443. Increasing the batch size beyond this causes too many smaller batches to
  7444. be excluded, reducing the total number of samples for both tissue types.
  7445. However, a batch size of 8 is not necessarily optimal.
  7446. The article introducing frmaTools concluded that it was highly advantageous
  7447. to use a smaller batch size in order to include more batches, even at the
  7448. expense of including fewer total samples in training
  7449. \begin_inset CommandInset citation
  7450. LatexCommand cite
  7451. key "McCall2011"
  7452. literal "false"
  7453. \end_inset
  7454. .
  7455. To strike an appropriate balance between more batches and more samples,
  7456. a batch size of 5 was chosen.
  7457. For both blood and biopsy samples, this increased the number of batches
  7458. included by 10, with only a modest reduction in the number of samples compared
  7459. to a batch size of 8.
  7460. With a batch size of 5, 26 batches of biopsy samples and 46 batches of
  7461. blood samples were available.
  7462. \end_layout
  7463. \begin_layout Standard
  7464. \begin_inset Float figure
  7465. wide false
  7466. sideways false
  7467. status collapsed
  7468. \begin_layout Plain Layout
  7469. \begin_inset Float figure
  7470. wide false
  7471. sideways false
  7472. status open
  7473. \begin_layout Plain Layout
  7474. \align center
  7475. \begin_inset Graphics
  7476. filename graphics/frma-pax-bx/M-BX-violin.pdf
  7477. lyxscale 40
  7478. width 45col%
  7479. groupId m-violin
  7480. \end_inset
  7481. \end_layout
  7482. \begin_layout Plain Layout
  7483. \begin_inset Caption Standard
  7484. \begin_layout Plain Layout
  7485. \begin_inset CommandInset label
  7486. LatexCommand label
  7487. name "fig:m-bx-violin"
  7488. \end_inset
  7489. \series bold
  7490. Violin plot of inter-normalization log ratios for biopsy samples.
  7491. \end_layout
  7492. \end_inset
  7493. \end_layout
  7494. \end_inset
  7495. \begin_inset space \hfill{}
  7496. \end_inset
  7497. \begin_inset Float figure
  7498. wide false
  7499. sideways false
  7500. status collapsed
  7501. \begin_layout Plain Layout
  7502. \align center
  7503. \begin_inset Graphics
  7504. filename graphics/frma-pax-bx/M-PAX-violin.pdf
  7505. lyxscale 40
  7506. width 45col%
  7507. groupId m-violin
  7508. \end_inset
  7509. \end_layout
  7510. \begin_layout Plain Layout
  7511. \begin_inset Caption Standard
  7512. \begin_layout Plain Layout
  7513. \begin_inset CommandInset label
  7514. LatexCommand label
  7515. name "fig:m-pax-violin"
  7516. \end_inset
  7517. \series bold
  7518. Violin plot of inter-normalization log ratios for blood samples.
  7519. \end_layout
  7520. \end_inset
  7521. \end_layout
  7522. \end_inset
  7523. \end_layout
  7524. \begin_layout Plain Layout
  7525. \begin_inset Caption Standard
  7526. \begin_layout Plain Layout
  7527. \begin_inset CommandInset label
  7528. LatexCommand label
  7529. name "fig:frma-violin"
  7530. \end_inset
  7531. \series bold
  7532. Violin plot of log ratios between normalizations for 20 biopsy samples.
  7533. \series default
  7534. Each of 20 randomly selected samples was normalized with RMA and with 5
  7535. different sets of fRMA vectors.
  7536. The distribution of log ratios between normalized expression values, aggregated
  7537. across all 20 arrays, was plotted for each pair of normalizations.
  7538. \end_layout
  7539. \end_inset
  7540. \end_layout
  7541. \end_inset
  7542. \end_layout
  7543. \begin_layout Standard
  7544. Since fRMA training requires equal-size batches, larger batches are downsampled
  7545. randomly.
  7546. This introduces a nondeterministic step in the generation of normalization
  7547. vectors.
  7548. To show that this randomness does not substantially change the outcome,
  7549. the random downsampling and subsequent vector learning was repeated 5 times,
  7550. with a different random seed each time.
  7551. 20 samples were selected at random as a test set and normalized with each
  7552. of the 5 sets of fRMA normalization vectors as well as ordinary RMA, and
  7553. the normalized expression values were compared across normalizations.
  7554. Figure
  7555. \begin_inset CommandInset ref
  7556. LatexCommand ref
  7557. reference "fig:m-bx-violin"
  7558. plural "false"
  7559. caps "false"
  7560. noprefix "false"
  7561. \end_inset
  7562. shows a summary of these comparisons for biopsy samples.
  7563. Comparing RMA to each of the 5 fRMA normalizations, the distribution of
  7564. log ratios is somewhat wide, indicating that the normalizations disagree
  7565. on the expression values of a fair number of probe sets.
  7566. In contrast, comparisons of fRMA against fRMA, the vast mojority of probe
  7567. sets have very small log ratios, indicating a very high agreement between
  7568. the normalized values generated by the two normalizations.
  7569. This shows that the fRMA normalization's behavior is not very sensitive
  7570. to the random downsampling of larger batches during training.
  7571. \end_layout
  7572. \begin_layout Standard
  7573. \begin_inset Float figure
  7574. wide false
  7575. sideways false
  7576. status open
  7577. \begin_layout Plain Layout
  7578. \align center
  7579. \begin_inset Float figure
  7580. wide false
  7581. sideways false
  7582. status collapsed
  7583. \begin_layout Plain Layout
  7584. \align center
  7585. \begin_inset Graphics
  7586. filename graphics/frma-pax-bx/MA-BX-RMA.fRMA-RASTER.png
  7587. lyxscale 10
  7588. width 45col%
  7589. groupId ma-frma
  7590. \end_inset
  7591. \end_layout
  7592. \begin_layout Plain Layout
  7593. \begin_inset Caption Standard
  7594. \begin_layout Plain Layout
  7595. \begin_inset CommandInset label
  7596. LatexCommand label
  7597. name "fig:ma-bx-rma-frma"
  7598. \end_inset
  7599. RMA vs.
  7600. fRMA for biopsy samples.
  7601. \end_layout
  7602. \end_inset
  7603. \end_layout
  7604. \end_inset
  7605. \begin_inset space \hfill{}
  7606. \end_inset
  7607. \begin_inset Float figure
  7608. wide false
  7609. sideways false
  7610. status collapsed
  7611. \begin_layout Plain Layout
  7612. \align center
  7613. \begin_inset Graphics
  7614. filename graphics/frma-pax-bx/MA-BX-fRMA.fRMA-RASTER.png
  7615. lyxscale 10
  7616. width 45col%
  7617. groupId ma-frma
  7618. \end_inset
  7619. \end_layout
  7620. \begin_layout Plain Layout
  7621. \begin_inset Caption Standard
  7622. \begin_layout Plain Layout
  7623. \begin_inset CommandInset label
  7624. LatexCommand label
  7625. name "fig:ma-bx-frma-frma"
  7626. \end_inset
  7627. fRMA vs fRMA for biopsy samples.
  7628. \end_layout
  7629. \end_inset
  7630. \end_layout
  7631. \end_inset
  7632. \end_layout
  7633. \begin_layout Plain Layout
  7634. \align center
  7635. \begin_inset Float figure
  7636. wide false
  7637. sideways false
  7638. status collapsed
  7639. \begin_layout Plain Layout
  7640. \align center
  7641. \begin_inset Graphics
  7642. filename graphics/frma-pax-bx/MA-PAX-RMA.fRMA-RASTER.png
  7643. lyxscale 10
  7644. width 45col%
  7645. groupId ma-frma
  7646. \end_inset
  7647. \end_layout
  7648. \begin_layout Plain Layout
  7649. \begin_inset Caption Standard
  7650. \begin_layout Plain Layout
  7651. \begin_inset CommandInset label
  7652. LatexCommand label
  7653. name "fig:MA-PAX-rma-frma"
  7654. \end_inset
  7655. RMA vs.
  7656. fRMA for blood samples.
  7657. \end_layout
  7658. \end_inset
  7659. \end_layout
  7660. \end_inset
  7661. \begin_inset space \hfill{}
  7662. \end_inset
  7663. \begin_inset Float figure
  7664. wide false
  7665. sideways false
  7666. status collapsed
  7667. \begin_layout Plain Layout
  7668. \align center
  7669. \begin_inset Graphics
  7670. filename graphics/frma-pax-bx/MA-PAX-fRMA.fRMA-RASTER.png
  7671. lyxscale 10
  7672. width 45col%
  7673. groupId ma-frma
  7674. \end_inset
  7675. \end_layout
  7676. \begin_layout Plain Layout
  7677. \begin_inset Caption Standard
  7678. \begin_layout Plain Layout
  7679. \begin_inset CommandInset label
  7680. LatexCommand label
  7681. name "fig:MA-PAX-frma-frma"
  7682. \end_inset
  7683. fRMA vs fRMA for blood samples.
  7684. \end_layout
  7685. \end_inset
  7686. \end_layout
  7687. \end_inset
  7688. \end_layout
  7689. \begin_layout Plain Layout
  7690. \begin_inset Caption Standard
  7691. \begin_layout Plain Layout
  7692. \series bold
  7693. \begin_inset CommandInset label
  7694. LatexCommand label
  7695. name "fig:Representative-MA-plots"
  7696. \end_inset
  7697. Representative MA plots comparing RMA and custom fRMA normalizations.
  7698. \series default
  7699. For each plot, 20 samples were normalized using 2 different normalizations,
  7700. and then averages (A) and log ratios (M) were plotted between the two different
  7701. normalizations for every probe.
  7702. For the
  7703. \begin_inset Quotes eld
  7704. \end_inset
  7705. fRMA vs fRMA
  7706. \begin_inset Quotes erd
  7707. \end_inset
  7708. plots (b & d), two different fRMA normalizations using vectors from two
  7709. independent batch samplings were compared.
  7710. Density of points is represented by blue shading, and individual outlier
  7711. points are plotted.
  7712. \end_layout
  7713. \end_inset
  7714. \end_layout
  7715. \end_inset
  7716. \end_layout
  7717. \begin_layout Standard
  7718. Figure
  7719. \begin_inset CommandInset ref
  7720. LatexCommand ref
  7721. reference "fig:ma-bx-rma-frma"
  7722. plural "false"
  7723. caps "false"
  7724. noprefix "false"
  7725. \end_inset
  7726. shows an MA plot of the RMA-normalized values against the fRMA-normalized
  7727. values for the same probe sets and arrays, corresponding to the first row
  7728. of Figure
  7729. \begin_inset CommandInset ref
  7730. LatexCommand ref
  7731. reference "fig:m-bx-violin"
  7732. plural "false"
  7733. caps "false"
  7734. noprefix "false"
  7735. \end_inset
  7736. .
  7737. This MA plot shows that not only is there a wide distribution of M-values,
  7738. but the trend of M-values is dependent on the average normalized intensity.
  7739. This is expected, since the overall trend represents the differences in
  7740. the quantile normalization step.
  7741. When running RMA, only the quantiles for these specific 20 arrays are used,
  7742. while for fRMA the quantile distribution is taking from all arrays used
  7743. in training.
  7744. Figure
  7745. \begin_inset CommandInset ref
  7746. LatexCommand ref
  7747. reference "fig:ma-bx-frma-frma"
  7748. plural "false"
  7749. caps "false"
  7750. noprefix "false"
  7751. \end_inset
  7752. shows a similar MA plot comparing 2 different fRMA normalizations, correspondin
  7753. g to the 6th row of Figure
  7754. \begin_inset CommandInset ref
  7755. LatexCommand ref
  7756. reference "fig:m-bx-violin"
  7757. plural "false"
  7758. caps "false"
  7759. noprefix "false"
  7760. \end_inset
  7761. .
  7762. The MA plot is very tightly centered around zero with no visible trend.
  7763. Figures
  7764. \begin_inset CommandInset ref
  7765. LatexCommand ref
  7766. reference "fig:m-pax-violin"
  7767. plural "false"
  7768. caps "false"
  7769. noprefix "false"
  7770. \end_inset
  7771. ,
  7772. \begin_inset CommandInset ref
  7773. LatexCommand ref
  7774. reference "fig:MA-PAX-rma-frma"
  7775. plural "false"
  7776. caps "false"
  7777. noprefix "false"
  7778. \end_inset
  7779. , and
  7780. \begin_inset CommandInset ref
  7781. LatexCommand ref
  7782. reference "fig:ma-bx-frma-frma"
  7783. plural "false"
  7784. caps "false"
  7785. noprefix "false"
  7786. \end_inset
  7787. show exactly the same information for the blood samples, once again comparing
  7788. the normalized expression values between normalizations for all probe sets
  7789. across 20 randomly selected test arrays.
  7790. Once again, there is a wider distribution of log ratios between RMA-normalized
  7791. values and fRMA-normalized, and a much tighter distribution when comparing
  7792. different fRMA normalizations to each other, indicating that the fRMA training
  7793. process is robust to random batch downsampling for the blood samples as
  7794. well.
  7795. \end_layout
  7796. \begin_layout Subsection
  7797. SVA, voom, and array weights improve model fit for methylation array data
  7798. \end_layout
  7799. \begin_layout Standard
  7800. \begin_inset ERT
  7801. status open
  7802. \begin_layout Plain Layout
  7803. \backslash
  7804. afterpage{
  7805. \end_layout
  7806. \begin_layout Plain Layout
  7807. \backslash
  7808. begin{landscape}
  7809. \end_layout
  7810. \end_inset
  7811. \end_layout
  7812. \begin_layout Standard
  7813. \begin_inset Float figure
  7814. wide false
  7815. sideways false
  7816. status open
  7817. \begin_layout Plain Layout
  7818. \begin_inset Flex TODO Note (inline)
  7819. status open
  7820. \begin_layout Plain Layout
  7821. Fix axis labels:
  7822. \begin_inset Quotes eld
  7823. \end_inset
  7824. log2 M-value
  7825. \begin_inset Quotes erd
  7826. \end_inset
  7827. is redundant because M-values are already log scale
  7828. \end_layout
  7829. \end_inset
  7830. \end_layout
  7831. \begin_layout Plain Layout
  7832. \begin_inset Float figure
  7833. wide false
  7834. sideways false
  7835. status collapsed
  7836. \begin_layout Plain Layout
  7837. \align center
  7838. \begin_inset Graphics
  7839. filename graphics/methylvoom/unadj.dupcor/meanvar-trends-PAGE1-CROP-RASTER.png
  7840. lyxscale 15
  7841. width 30col%
  7842. groupId voomaw-subfig
  7843. \end_inset
  7844. \end_layout
  7845. \begin_layout Plain Layout
  7846. \begin_inset Caption Standard
  7847. \begin_layout Plain Layout
  7848. \begin_inset CommandInset label
  7849. LatexCommand label
  7850. name "fig:meanvar-basic"
  7851. \end_inset
  7852. Mean-variance trend for analysis A.
  7853. \end_layout
  7854. \end_inset
  7855. \end_layout
  7856. \end_inset
  7857. \begin_inset space \hfill{}
  7858. \end_inset
  7859. \begin_inset Float figure
  7860. wide false
  7861. sideways false
  7862. status collapsed
  7863. \begin_layout Plain Layout
  7864. \align center
  7865. \begin_inset Graphics
  7866. filename graphics/methylvoom/unadj.dupcor.sva.aw/meanvar-trends-PAGE1-CROP-RASTER.png
  7867. lyxscale 15
  7868. width 30col%
  7869. groupId voomaw-subfig
  7870. \end_inset
  7871. \end_layout
  7872. \begin_layout Plain Layout
  7873. \begin_inset Caption Standard
  7874. \begin_layout Plain Layout
  7875. \begin_inset CommandInset label
  7876. LatexCommand label
  7877. name "fig:meanvar-sva-aw"
  7878. \end_inset
  7879. Mean-variance trend for analysis B.
  7880. \end_layout
  7881. \end_inset
  7882. \end_layout
  7883. \end_inset
  7884. \begin_inset space \hfill{}
  7885. \end_inset
  7886. \begin_inset Float figure
  7887. wide false
  7888. sideways false
  7889. status collapsed
  7890. \begin_layout Plain Layout
  7891. \align center
  7892. \begin_inset Graphics
  7893. filename graphics/methylvoom/unadj.dupcor.sva.voomaw/meanvar-trends-PAGE2-CROP-RASTER.png
  7894. lyxscale 15
  7895. width 30col%
  7896. groupId voomaw-subfig
  7897. \end_inset
  7898. \end_layout
  7899. \begin_layout Plain Layout
  7900. \begin_inset Caption Standard
  7901. \begin_layout Plain Layout
  7902. \begin_inset CommandInset label
  7903. LatexCommand label
  7904. name "fig:meanvar-sva-voomaw"
  7905. \end_inset
  7906. Mean-variance trend after voom modeling in analysis C.
  7907. \end_layout
  7908. \end_inset
  7909. \end_layout
  7910. \end_inset
  7911. \end_layout
  7912. \begin_layout Plain Layout
  7913. \begin_inset Caption Standard
  7914. \begin_layout Plain Layout
  7915. \series bold
  7916. Mean-variance trend modeling in methylation array data.
  7917. \series default
  7918. The estimated log2(standard deviation) for each probe is plotted against
  7919. the probe's average M-value across all samples as a black point, with some
  7920. transparency to make overplotting more visible, since there are about 450,000
  7921. points.
  7922. Density of points is also indicated by the dark blue contour lines.
  7923. The prior variance trend estimated by eBayes is shown in light blue, while
  7924. the lowess trend of the points is shown in red.
  7925. \end_layout
  7926. \end_inset
  7927. \end_layout
  7928. \end_inset
  7929. \end_layout
  7930. \begin_layout Standard
  7931. \begin_inset ERT
  7932. status open
  7933. \begin_layout Plain Layout
  7934. \backslash
  7935. end{landscape}
  7936. \end_layout
  7937. \begin_layout Plain Layout
  7938. }
  7939. \end_layout
  7940. \end_inset
  7941. \end_layout
  7942. \begin_layout Standard
  7943. Figure
  7944. \begin_inset CommandInset ref
  7945. LatexCommand ref
  7946. reference "fig:meanvar-basic"
  7947. plural "false"
  7948. caps "false"
  7949. noprefix "false"
  7950. \end_inset
  7951. shows the relationship between the mean M-value and the standard deviation
  7952. calculated for each probe in the methylation array data set.
  7953. A few features of the data are apparent.
  7954. First, the data are very strongly bimodal, with peaks in the density around
  7955. M-values of +4 and -4.
  7956. These modes correspond to methylation sites that are nearly 100% methylated
  7957. and nearly 100% unmethylated, respectively.
  7958. The strong bomodality indicates that a majority of probes interrogate sites
  7959. that fall into one of these two categories.
  7960. The points in between these modes represent sites that are either partially
  7961. methylated in many samples, or are fully methylated in some samples and
  7962. fully unmethylated in other samples, or some combination.
  7963. The next visible feature of the data is the W-shaped variance trend.
  7964. The upticks in the variance trend on either side are expected, based on
  7965. the sigmoid transformation exaggerating small differences at extreme M-values
  7966. (Figure
  7967. \begin_inset CommandInset ref
  7968. LatexCommand ref
  7969. reference "fig:Sigmoid-beta-m-mapping"
  7970. plural "false"
  7971. caps "false"
  7972. noprefix "false"
  7973. \end_inset
  7974. ).
  7975. However, the uptick in the center is interesting: it indicates that sites
  7976. that are not constitutitively methylated or unmethylated have a higher
  7977. variance.
  7978. This could be a genuine biological effect, or it could be spurious noise
  7979. that is only observable at sites with varying methylation.
  7980. \end_layout
  7981. \begin_layout Standard
  7982. In Figure
  7983. \begin_inset CommandInset ref
  7984. LatexCommand ref
  7985. reference "fig:meanvar-sva-aw"
  7986. plural "false"
  7987. caps "false"
  7988. noprefix "false"
  7989. \end_inset
  7990. , we see the mean-variance trend for the same methylation array data, this
  7991. time with surrogate variables and sample quality weights estimated from
  7992. the data and included in the model.
  7993. As expected, the overall average variance is smaller, since the surrogate
  7994. variables account for some of the variance.
  7995. In addition, the uptick in variance in the middle of the M-value range
  7996. has disappeared, turning the W shape into a wide U shape.
  7997. This indicates that the excess variance in the probes with intermediate
  7998. M-values was explained by systematic variations not correlated with known
  7999. covariates, and these variations were modeled by the surrogate variables.
  8000. The result is a nearly flat variance trend for the entire intermediate
  8001. M-value range from about -3 to +3.
  8002. Note that this corresponds closely to the range within which the M-value
  8003. transformation shown in Figure
  8004. \begin_inset CommandInset ref
  8005. LatexCommand ref
  8006. reference "fig:Sigmoid-beta-m-mapping"
  8007. plural "false"
  8008. caps "false"
  8009. noprefix "false"
  8010. \end_inset
  8011. is nearly linear.
  8012. In contrast, the excess variance at the extremes (greater than +3 and less
  8013. than -3) was not
  8014. \begin_inset Quotes eld
  8015. \end_inset
  8016. absorbed
  8017. \begin_inset Quotes erd
  8018. \end_inset
  8019. by the surrogate variables and remains in the plot, indicating that this
  8020. variation has no systematic component: probes with extreme M-values are
  8021. uniformly more variable across all samples, as expected.
  8022. \end_layout
  8023. \begin_layout Standard
  8024. Figure
  8025. \begin_inset CommandInset ref
  8026. LatexCommand ref
  8027. reference "fig:meanvar-sva-voomaw"
  8028. plural "false"
  8029. caps "false"
  8030. noprefix "false"
  8031. \end_inset
  8032. shows the mean-variance trend after fitting the model with the observation
  8033. weights assigned by voom based on the mean-variance trend shown in Figure
  8034. \begin_inset CommandInset ref
  8035. LatexCommand ref
  8036. reference "fig:meanvar-sva-aw"
  8037. plural "false"
  8038. caps "false"
  8039. noprefix "false"
  8040. \end_inset
  8041. .
  8042. As expected, the weights exactly counteract the trend in the data, resulting
  8043. in a nearly flat trend centered vertically at 1 (i.e.
  8044. 0 on the log scale).
  8045. This shows that the observations with extreme M-values have been appropriately
  8046. down-weighted to account for the fact that the noise in those observations
  8047. has been amplified by the non-linear M-value transformation.
  8048. In turn, this gives relatively more weight to observervations in the middle
  8049. region, which are more likely to correspond to probes measuring interesting
  8050. biology (not constitutively methylated or unmethylated).
  8051. \end_layout
  8052. \begin_layout Standard
  8053. \begin_inset Float table
  8054. wide false
  8055. sideways false
  8056. status open
  8057. \begin_layout Plain Layout
  8058. \align center
  8059. \begin_inset Tabular
  8060. <lyxtabular version="3" rows="5" columns="3">
  8061. <features tabularvalignment="middle">
  8062. <column alignment="center" valignment="top">
  8063. <column alignment="center" valignment="top">
  8064. <column alignment="center" valignment="top">
  8065. <row>
  8066. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8067. \begin_inset Text
  8068. \begin_layout Plain Layout
  8069. Covariate
  8070. \end_layout
  8071. \end_inset
  8072. </cell>
  8073. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8074. \begin_inset Text
  8075. \begin_layout Plain Layout
  8076. Test used
  8077. \end_layout
  8078. \end_inset
  8079. </cell>
  8080. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  8081. \begin_inset Text
  8082. \begin_layout Plain Layout
  8083. p-value
  8084. \end_layout
  8085. \end_inset
  8086. </cell>
  8087. </row>
  8088. <row>
  8089. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8090. \begin_inset Text
  8091. \begin_layout Plain Layout
  8092. Transplant Status
  8093. \end_layout
  8094. \end_inset
  8095. </cell>
  8096. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8097. \begin_inset Text
  8098. \begin_layout Plain Layout
  8099. F-test
  8100. \end_layout
  8101. \end_inset
  8102. </cell>
  8103. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8104. \begin_inset Text
  8105. \begin_layout Plain Layout
  8106. 0.404
  8107. \end_layout
  8108. \end_inset
  8109. </cell>
  8110. </row>
  8111. <row>
  8112. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8113. \begin_inset Text
  8114. \begin_layout Plain Layout
  8115. Diabetes Diagnosis
  8116. \end_layout
  8117. \end_inset
  8118. </cell>
  8119. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8120. \begin_inset Text
  8121. \begin_layout Plain Layout
  8122. \emph on
  8123. t
  8124. \emph default
  8125. -test
  8126. \end_layout
  8127. \end_inset
  8128. </cell>
  8129. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8130. \begin_inset Text
  8131. \begin_layout Plain Layout
  8132. 0.00106
  8133. \end_layout
  8134. \end_inset
  8135. </cell>
  8136. </row>
  8137. <row>
  8138. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8139. \begin_inset Text
  8140. \begin_layout Plain Layout
  8141. Sex
  8142. \end_layout
  8143. \end_inset
  8144. </cell>
  8145. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8146. \begin_inset Text
  8147. \begin_layout Plain Layout
  8148. \emph on
  8149. t
  8150. \emph default
  8151. -test
  8152. \end_layout
  8153. \end_inset
  8154. </cell>
  8155. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8156. \begin_inset Text
  8157. \begin_layout Plain Layout
  8158. 0.148
  8159. \end_layout
  8160. \end_inset
  8161. </cell>
  8162. </row>
  8163. <row>
  8164. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8165. \begin_inset Text
  8166. \begin_layout Plain Layout
  8167. Age
  8168. \end_layout
  8169. \end_inset
  8170. </cell>
  8171. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8172. \begin_inset Text
  8173. \begin_layout Plain Layout
  8174. linear regression
  8175. \end_layout
  8176. \end_inset
  8177. </cell>
  8178. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  8179. \begin_inset Text
  8180. \begin_layout Plain Layout
  8181. 0.212
  8182. \end_layout
  8183. \end_inset
  8184. </cell>
  8185. </row>
  8186. </lyxtabular>
  8187. \end_inset
  8188. \end_layout
  8189. \begin_layout Plain Layout
  8190. \begin_inset Caption Standard
  8191. \begin_layout Plain Layout
  8192. \series bold
  8193. \begin_inset CommandInset label
  8194. LatexCommand label
  8195. name "tab:weight-covariate-tests"
  8196. \end_inset
  8197. Association of sample weights with clinical covariates in methylation array
  8198. data.
  8199. \series default
  8200. Computed sample quality log weights were tested for significant association
  8201. with each of the variables in the model (1st column).
  8202. An appropriate test was selected for each variable based on whether the
  8203. variable had 2 categories (
  8204. \emph on
  8205. t
  8206. \emph default
  8207. -test), had more than 2 categories (F-test), or was numeric (linear regression).
  8208. The test selected is shown in the 2nd column.
  8209. P-values for association with the log weights are shown in the 3rd column.
  8210. No multiple testing adjustment was performed for these p-values.
  8211. \end_layout
  8212. \end_inset
  8213. \end_layout
  8214. \end_inset
  8215. \end_layout
  8216. \begin_layout Standard
  8217. \begin_inset Float figure
  8218. wide false
  8219. sideways false
  8220. status open
  8221. \begin_layout Plain Layout
  8222. \begin_inset Flex TODO Note (inline)
  8223. status open
  8224. \begin_layout Plain Layout
  8225. Redo the sample weight boxplot with notches, and remove fill colors
  8226. \end_layout
  8227. \end_inset
  8228. \end_layout
  8229. \begin_layout Plain Layout
  8230. \align center
  8231. \begin_inset Graphics
  8232. filename graphics/methylvoom/unadj.dupcor.sva.voomaw/sample-weights-PAGE3-CROP.pdf
  8233. lyxscale 50
  8234. width 60col%
  8235. groupId colwidth
  8236. \end_inset
  8237. \end_layout
  8238. \begin_layout Plain Layout
  8239. \begin_inset Caption Standard
  8240. \begin_layout Plain Layout
  8241. \begin_inset CommandInset label
  8242. LatexCommand label
  8243. name "fig:diabetes-sample-weights"
  8244. \end_inset
  8245. \series bold
  8246. Box-and-whiskers plot of sample quality weights grouped by diabetes diagnosis.
  8247. \series default
  8248. Samples were grouped based on diabetes diagnosis, and the distribution of
  8249. sample quality weights for each diagnosis was plotted as a box-and-whiskers
  8250. plot
  8251. \begin_inset CommandInset citation
  8252. LatexCommand cite
  8253. key "McGill1978"
  8254. literal "false"
  8255. \end_inset
  8256. .
  8257. \end_layout
  8258. \end_inset
  8259. \end_layout
  8260. \begin_layout Plain Layout
  8261. \end_layout
  8262. \end_inset
  8263. \end_layout
  8264. \begin_layout Standard
  8265. To determine whether any of the known experimental factors had an impact
  8266. on data quality, the sample quality weights estimated from the data were
  8267. tested for association with each of the experimental factors (Table
  8268. \begin_inset CommandInset ref
  8269. LatexCommand ref
  8270. reference "tab:weight-covariate-tests"
  8271. plural "false"
  8272. caps "false"
  8273. noprefix "false"
  8274. \end_inset
  8275. ).
  8276. Diabetes diagnosis was found to have a potentially significant association
  8277. with the sample weights, with a t-test p-value of
  8278. \begin_inset Formula $1.06\times10^{-3}$
  8279. \end_inset
  8280. .
  8281. Figure
  8282. \begin_inset CommandInset ref
  8283. LatexCommand ref
  8284. reference "fig:diabetes-sample-weights"
  8285. plural "false"
  8286. caps "false"
  8287. noprefix "false"
  8288. \end_inset
  8289. shows the distribution of sample weights grouped by diabetes diagnosis.
  8290. The samples from patients with Type 2 diabetes were assigned significantly
  8291. lower weights than those from patients with Type 1 diabetes.
  8292. This indicates that the type 2 diabetes samples had an overall higher variance
  8293. on average across all probes.
  8294. \end_layout
  8295. \begin_layout Standard
  8296. \begin_inset Float table
  8297. wide false
  8298. sideways false
  8299. status open
  8300. \begin_layout Plain Layout
  8301. \align center
  8302. \begin_inset Flex TODO Note (inline)
  8303. status open
  8304. \begin_layout Plain Layout
  8305. Consider transposing these tables
  8306. \end_layout
  8307. \end_inset
  8308. \end_layout
  8309. \begin_layout Plain Layout
  8310. \begin_inset Float table
  8311. wide false
  8312. sideways false
  8313. status open
  8314. \begin_layout Plain Layout
  8315. \align center
  8316. \begin_inset Tabular
  8317. <lyxtabular version="3" rows="5" columns="4">
  8318. <features tabularvalignment="middle">
  8319. <column alignment="center" valignment="top">
  8320. <column alignment="center" valignment="top">
  8321. <column alignment="center" valignment="top">
  8322. <column alignment="center" valignment="top">
  8323. <row>
  8324. <cell alignment="center" valignment="top" usebox="none">
  8325. \begin_inset Text
  8326. \begin_layout Plain Layout
  8327. \end_layout
  8328. \end_inset
  8329. </cell>
  8330. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8331. \begin_inset Text
  8332. \begin_layout Plain Layout
  8333. Analysis
  8334. \end_layout
  8335. \end_inset
  8336. </cell>
  8337. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8338. \begin_inset Text
  8339. \begin_layout Plain Layout
  8340. \end_layout
  8341. \end_inset
  8342. </cell>
  8343. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8344. \begin_inset Text
  8345. \begin_layout Plain Layout
  8346. \end_layout
  8347. \end_inset
  8348. </cell>
  8349. </row>
  8350. <row>
  8351. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8352. \begin_inset Text
  8353. \begin_layout Plain Layout
  8354. Contrast
  8355. \end_layout
  8356. \end_inset
  8357. </cell>
  8358. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8359. \begin_inset Text
  8360. \begin_layout Plain Layout
  8361. A
  8362. \end_layout
  8363. \end_inset
  8364. </cell>
  8365. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8366. \begin_inset Text
  8367. \begin_layout Plain Layout
  8368. B
  8369. \end_layout
  8370. \end_inset
  8371. </cell>
  8372. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  8373. \begin_inset Text
  8374. \begin_layout Plain Layout
  8375. C
  8376. \end_layout
  8377. \end_inset
  8378. </cell>
  8379. </row>
  8380. <row>
  8381. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8382. \begin_inset Text
  8383. \begin_layout Plain Layout
  8384. TX vs AR
  8385. \end_layout
  8386. \end_inset
  8387. </cell>
  8388. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8389. \begin_inset Text
  8390. \begin_layout Plain Layout
  8391. 0
  8392. \end_layout
  8393. \end_inset
  8394. </cell>
  8395. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8396. \begin_inset Text
  8397. \begin_layout Plain Layout
  8398. 25
  8399. \end_layout
  8400. \end_inset
  8401. </cell>
  8402. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8403. \begin_inset Text
  8404. \begin_layout Plain Layout
  8405. 22
  8406. \end_layout
  8407. \end_inset
  8408. </cell>
  8409. </row>
  8410. <row>
  8411. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8412. \begin_inset Text
  8413. \begin_layout Plain Layout
  8414. TX vs ADNR
  8415. \end_layout
  8416. \end_inset
  8417. </cell>
  8418. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8419. \begin_inset Text
  8420. \begin_layout Plain Layout
  8421. 7
  8422. \end_layout
  8423. \end_inset
  8424. </cell>
  8425. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8426. \begin_inset Text
  8427. \begin_layout Plain Layout
  8428. 338
  8429. \end_layout
  8430. \end_inset
  8431. </cell>
  8432. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8433. \begin_inset Text
  8434. \begin_layout Plain Layout
  8435. 369
  8436. \end_layout
  8437. \end_inset
  8438. </cell>
  8439. </row>
  8440. <row>
  8441. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8442. \begin_inset Text
  8443. \begin_layout Plain Layout
  8444. TX vs CAN
  8445. \end_layout
  8446. \end_inset
  8447. </cell>
  8448. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8449. \begin_inset Text
  8450. \begin_layout Plain Layout
  8451. 0
  8452. \end_layout
  8453. \end_inset
  8454. </cell>
  8455. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8456. \begin_inset Text
  8457. \begin_layout Plain Layout
  8458. 231
  8459. \end_layout
  8460. \end_inset
  8461. </cell>
  8462. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  8463. \begin_inset Text
  8464. \begin_layout Plain Layout
  8465. 278
  8466. \end_layout
  8467. \end_inset
  8468. </cell>
  8469. </row>
  8470. </lyxtabular>
  8471. \end_inset
  8472. \end_layout
  8473. \begin_layout Plain Layout
  8474. \begin_inset Caption Standard
  8475. \begin_layout Plain Layout
  8476. \begin_inset CommandInset label
  8477. LatexCommand label
  8478. name "tab:methyl-num-signif"
  8479. \end_inset
  8480. Number of probes significant at 10% FDR.
  8481. \end_layout
  8482. \end_inset
  8483. \end_layout
  8484. \end_inset
  8485. \begin_inset space \hfill{}
  8486. \end_inset
  8487. \begin_inset Float table
  8488. wide false
  8489. sideways false
  8490. status open
  8491. \begin_layout Plain Layout
  8492. \align center
  8493. \begin_inset Tabular
  8494. <lyxtabular version="3" rows="5" columns="4">
  8495. <features tabularvalignment="middle">
  8496. <column alignment="center" valignment="top">
  8497. <column alignment="center" valignment="top">
  8498. <column alignment="center" valignment="top">
  8499. <column alignment="center" valignment="top">
  8500. <row>
  8501. <cell alignment="center" valignment="top" usebox="none">
  8502. \begin_inset Text
  8503. \begin_layout Plain Layout
  8504. \end_layout
  8505. \end_inset
  8506. </cell>
  8507. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8508. \begin_inset Text
  8509. \begin_layout Plain Layout
  8510. Analysis
  8511. \end_layout
  8512. \end_inset
  8513. </cell>
  8514. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8515. \begin_inset Text
  8516. \begin_layout Plain Layout
  8517. \end_layout
  8518. \end_inset
  8519. </cell>
  8520. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8521. \begin_inset Text
  8522. \begin_layout Plain Layout
  8523. \end_layout
  8524. \end_inset
  8525. </cell>
  8526. </row>
  8527. <row>
  8528. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8529. \begin_inset Text
  8530. \begin_layout Plain Layout
  8531. Contrast
  8532. \end_layout
  8533. \end_inset
  8534. </cell>
  8535. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8536. \begin_inset Text
  8537. \begin_layout Plain Layout
  8538. A
  8539. \end_layout
  8540. \end_inset
  8541. </cell>
  8542. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8543. \begin_inset Text
  8544. \begin_layout Plain Layout
  8545. B
  8546. \end_layout
  8547. \end_inset
  8548. </cell>
  8549. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  8550. \begin_inset Text
  8551. \begin_layout Plain Layout
  8552. C
  8553. \end_layout
  8554. \end_inset
  8555. </cell>
  8556. </row>
  8557. <row>
  8558. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8559. \begin_inset Text
  8560. \begin_layout Plain Layout
  8561. TX vs AR
  8562. \end_layout
  8563. \end_inset
  8564. </cell>
  8565. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8566. \begin_inset Text
  8567. \begin_layout Plain Layout
  8568. 0
  8569. \end_layout
  8570. \end_inset
  8571. </cell>
  8572. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8573. \begin_inset Text
  8574. \begin_layout Plain Layout
  8575. 10,063
  8576. \end_layout
  8577. \end_inset
  8578. </cell>
  8579. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8580. \begin_inset Text
  8581. \begin_layout Plain Layout
  8582. 11,225
  8583. \end_layout
  8584. \end_inset
  8585. </cell>
  8586. </row>
  8587. <row>
  8588. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8589. \begin_inset Text
  8590. \begin_layout Plain Layout
  8591. TX vs ADNR
  8592. \end_layout
  8593. \end_inset
  8594. </cell>
  8595. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8596. \begin_inset Text
  8597. \begin_layout Plain Layout
  8598. 27
  8599. \end_layout
  8600. \end_inset
  8601. </cell>
  8602. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8603. \begin_inset Text
  8604. \begin_layout Plain Layout
  8605. 12,674
  8606. \end_layout
  8607. \end_inset
  8608. </cell>
  8609. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8610. \begin_inset Text
  8611. \begin_layout Plain Layout
  8612. 13,086
  8613. \end_layout
  8614. \end_inset
  8615. </cell>
  8616. </row>
  8617. <row>
  8618. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8619. \begin_inset Text
  8620. \begin_layout Plain Layout
  8621. TX vs CAN
  8622. \end_layout
  8623. \end_inset
  8624. </cell>
  8625. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8626. \begin_inset Text
  8627. \begin_layout Plain Layout
  8628. 966
  8629. \end_layout
  8630. \end_inset
  8631. </cell>
  8632. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8633. \begin_inset Text
  8634. \begin_layout Plain Layout
  8635. 20,039
  8636. \end_layout
  8637. \end_inset
  8638. </cell>
  8639. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  8640. \begin_inset Text
  8641. \begin_layout Plain Layout
  8642. 20,955
  8643. \end_layout
  8644. \end_inset
  8645. </cell>
  8646. </row>
  8647. </lyxtabular>
  8648. \end_inset
  8649. \end_layout
  8650. \begin_layout Plain Layout
  8651. \begin_inset Caption Standard
  8652. \begin_layout Plain Layout
  8653. \begin_inset CommandInset label
  8654. LatexCommand label
  8655. name "tab:methyl-est-nonnull"
  8656. \end_inset
  8657. Estimated number of non-null tests, using the method of averaging local
  8658. FDR values
  8659. \begin_inset CommandInset citation
  8660. LatexCommand cite
  8661. key "Phipson2013Thesis"
  8662. literal "false"
  8663. \end_inset
  8664. .
  8665. \end_layout
  8666. \end_inset
  8667. \end_layout
  8668. \end_inset
  8669. \end_layout
  8670. \begin_layout Plain Layout
  8671. \begin_inset Caption Standard
  8672. \begin_layout Plain Layout
  8673. \series bold
  8674. Estimates of degree of differential methylation in for each contrast in
  8675. each analysis.
  8676. \series default
  8677. For each of the analyses in Table
  8678. \begin_inset CommandInset ref
  8679. LatexCommand ref
  8680. reference "tab:Summary-of-meth-analysis"
  8681. plural "false"
  8682. caps "false"
  8683. noprefix "false"
  8684. \end_inset
  8685. , these tables show the number of probes called significantly differentially
  8686. methylated at a threshold of 10% FDR for each comparison between TX and
  8687. the other 3 transplant statuses (a) and the estimated total number of probes
  8688. that are differentially methylated (b).
  8689. \end_layout
  8690. \end_inset
  8691. \end_layout
  8692. \end_inset
  8693. \end_layout
  8694. \begin_layout Standard
  8695. \begin_inset Float figure
  8696. wide false
  8697. sideways false
  8698. status open
  8699. \begin_layout Plain Layout
  8700. \align center
  8701. \series bold
  8702. \begin_inset Float figure
  8703. wide false
  8704. sideways false
  8705. status collapsed
  8706. \begin_layout Plain Layout
  8707. \align center
  8708. \begin_inset Graphics
  8709. filename graphics/methylvoom/unadj.dupcor/pval-histograms-PAGE1.pdf
  8710. lyxscale 33
  8711. width 30col%
  8712. groupId meth-pval-hist
  8713. \end_inset
  8714. \end_layout
  8715. \begin_layout Plain Layout
  8716. \series bold
  8717. \begin_inset Caption Standard
  8718. \begin_layout Plain Layout
  8719. AR vs.
  8720. TX, Analysis A
  8721. \end_layout
  8722. \end_inset
  8723. \end_layout
  8724. \begin_layout Plain Layout
  8725. \end_layout
  8726. \end_inset
  8727. \begin_inset space \hfill{}
  8728. \end_inset
  8729. \begin_inset Float figure
  8730. wide false
  8731. sideways false
  8732. status collapsed
  8733. \begin_layout Plain Layout
  8734. \align center
  8735. \begin_inset Graphics
  8736. filename graphics/methylvoom/unadj.dupcor/pval-histograms-PAGE2.pdf
  8737. lyxscale 33
  8738. width 30col%
  8739. groupId meth-pval-hist
  8740. \end_inset
  8741. \end_layout
  8742. \begin_layout Plain Layout
  8743. \series bold
  8744. \begin_inset Caption Standard
  8745. \begin_layout Plain Layout
  8746. ADNR vs.
  8747. TX, Analysis A
  8748. \end_layout
  8749. \end_inset
  8750. \end_layout
  8751. \end_inset
  8752. \begin_inset space \hfill{}
  8753. \end_inset
  8754. \begin_inset Float figure
  8755. wide false
  8756. sideways false
  8757. status collapsed
  8758. \begin_layout Plain Layout
  8759. \align center
  8760. \begin_inset Graphics
  8761. filename graphics/methylvoom/unadj.dupcor/pval-histograms-PAGE3.pdf
  8762. lyxscale 33
  8763. width 30col%
  8764. groupId meth-pval-hist
  8765. \end_inset
  8766. \end_layout
  8767. \begin_layout Plain Layout
  8768. \series bold
  8769. \begin_inset Caption Standard
  8770. \begin_layout Plain Layout
  8771. CAN vs.
  8772. TX, Analysis A
  8773. \end_layout
  8774. \end_inset
  8775. \end_layout
  8776. \end_inset
  8777. \end_layout
  8778. \begin_layout Plain Layout
  8779. \align center
  8780. \series bold
  8781. \begin_inset Float figure
  8782. wide false
  8783. sideways false
  8784. status collapsed
  8785. \begin_layout Plain Layout
  8786. \align center
  8787. \begin_inset Graphics
  8788. filename graphics/methylvoom/unadj.dupcor.sva.aw/pval-histograms-PAGE1.pdf
  8789. lyxscale 33
  8790. width 30col%
  8791. groupId meth-pval-hist
  8792. \end_inset
  8793. \end_layout
  8794. \begin_layout Plain Layout
  8795. \series bold
  8796. \begin_inset Caption Standard
  8797. \begin_layout Plain Layout
  8798. AR vs.
  8799. TX, Analysis B
  8800. \end_layout
  8801. \end_inset
  8802. \end_layout
  8803. \end_inset
  8804. \begin_inset space \hfill{}
  8805. \end_inset
  8806. \begin_inset Float figure
  8807. wide false
  8808. sideways false
  8809. status collapsed
  8810. \begin_layout Plain Layout
  8811. \align center
  8812. \begin_inset Graphics
  8813. filename graphics/methylvoom/unadj.dupcor.sva.aw/pval-histograms-PAGE2.pdf
  8814. lyxscale 33
  8815. width 30col%
  8816. groupId meth-pval-hist
  8817. \end_inset
  8818. \end_layout
  8819. \begin_layout Plain Layout
  8820. \series bold
  8821. \begin_inset Caption Standard
  8822. \begin_layout Plain Layout
  8823. ADNR vs.
  8824. TX, Analysis B
  8825. \end_layout
  8826. \end_inset
  8827. \end_layout
  8828. \end_inset
  8829. \begin_inset space \hfill{}
  8830. \end_inset
  8831. \begin_inset Float figure
  8832. wide false
  8833. sideways false
  8834. status collapsed
  8835. \begin_layout Plain Layout
  8836. \align center
  8837. \begin_inset Graphics
  8838. filename graphics/methylvoom/unadj.dupcor.sva.aw/pval-histograms-PAGE3.pdf
  8839. lyxscale 33
  8840. width 30col%
  8841. groupId meth-pval-hist
  8842. \end_inset
  8843. \end_layout
  8844. \begin_layout Plain Layout
  8845. \series bold
  8846. \begin_inset Caption Standard
  8847. \begin_layout Plain Layout
  8848. CAN vs.
  8849. TX, Analysis B
  8850. \end_layout
  8851. \end_inset
  8852. \end_layout
  8853. \end_inset
  8854. \end_layout
  8855. \begin_layout Plain Layout
  8856. \align center
  8857. \series bold
  8858. \begin_inset Float figure
  8859. wide false
  8860. sideways false
  8861. status collapsed
  8862. \begin_layout Plain Layout
  8863. \align center
  8864. \begin_inset Graphics
  8865. filename graphics/methylvoom/unadj.dupcor.sva.voomaw/pval-histograms-PAGE1.pdf
  8866. lyxscale 33
  8867. width 30col%
  8868. groupId meth-pval-hist
  8869. \end_inset
  8870. \end_layout
  8871. \begin_layout Plain Layout
  8872. \series bold
  8873. \begin_inset Caption Standard
  8874. \begin_layout Plain Layout
  8875. AR vs.
  8876. TX, Analysis C
  8877. \end_layout
  8878. \end_inset
  8879. \end_layout
  8880. \end_inset
  8881. \begin_inset space \hfill{}
  8882. \end_inset
  8883. \begin_inset Float figure
  8884. wide false
  8885. sideways false
  8886. status collapsed
  8887. \begin_layout Plain Layout
  8888. \align center
  8889. \begin_inset Graphics
  8890. filename graphics/methylvoom/unadj.dupcor.sva.voomaw/pval-histograms-PAGE2.pdf
  8891. lyxscale 33
  8892. width 30col%
  8893. groupId meth-pval-hist
  8894. \end_inset
  8895. \end_layout
  8896. \begin_layout Plain Layout
  8897. \series bold
  8898. \begin_inset Caption Standard
  8899. \begin_layout Plain Layout
  8900. ADNR vs.
  8901. TX, Analysis C
  8902. \end_layout
  8903. \end_inset
  8904. \end_layout
  8905. \end_inset
  8906. \begin_inset space \hfill{}
  8907. \end_inset
  8908. \begin_inset Float figure
  8909. wide false
  8910. sideways false
  8911. status collapsed
  8912. \begin_layout Plain Layout
  8913. \align center
  8914. \begin_inset Graphics
  8915. filename graphics/methylvoom/unadj.dupcor.sva.voomaw/pval-histograms-PAGE3.pdf
  8916. lyxscale 33
  8917. width 30col%
  8918. groupId meth-pval-hist
  8919. \end_inset
  8920. \end_layout
  8921. \begin_layout Plain Layout
  8922. \series bold
  8923. \begin_inset Caption Standard
  8924. \begin_layout Plain Layout
  8925. CAN vs.
  8926. TX, Analysis C
  8927. \end_layout
  8928. \end_inset
  8929. \end_layout
  8930. \end_inset
  8931. \end_layout
  8932. \begin_layout Plain Layout
  8933. \begin_inset Caption Standard
  8934. \begin_layout Plain Layout
  8935. \series bold
  8936. \begin_inset CommandInset label
  8937. LatexCommand label
  8938. name "fig:meth-p-value-histograms"
  8939. \end_inset
  8940. Probe p-value histograms for each contrast in each analysis.
  8941. \series default
  8942. For each differential methylation test of interest, the distribution of
  8943. p-values across all probes is plotted as a histogram.
  8944. The red solid line indicates the density that would be expected under the
  8945. null hypothesis for all probes (a
  8946. \begin_inset Formula $\mathrm{Uniform}(0,1)$
  8947. \end_inset
  8948. distribution), while the blue dotted line indicates the fraction of p-values
  8949. that actually follow the null hypothesis (
  8950. \begin_inset Formula $\hat{\pi}_{0}$
  8951. \end_inset
  8952. ) estimated using the method of averaging local FDR values
  8953. \begin_inset CommandInset citation
  8954. LatexCommand cite
  8955. key "Phipson2013Thesis"
  8956. literal "false"
  8957. \end_inset
  8958. .
  8959. the blue line is only shown in each plot if the estimate of
  8960. \begin_inset Formula $\hat{\pi}_{0}$
  8961. \end_inset
  8962. for that p-value distribution is different from 1.
  8963. \end_layout
  8964. \end_inset
  8965. \end_layout
  8966. \end_inset
  8967. \end_layout
  8968. \begin_layout Standard
  8969. Table
  8970. \begin_inset CommandInset ref
  8971. LatexCommand ref
  8972. reference "tab:methyl-num-signif"
  8973. plural "false"
  8974. caps "false"
  8975. noprefix "false"
  8976. \end_inset
  8977. shows the number of significantly differentially methylated probes reported
  8978. by each analysis for each comparison of interest at an FDR of 10%.
  8979. As expected, the more elaborate analyses, B and C, report more significant
  8980. probes than the more basic analysis A, consistent with the conclusions
  8981. above that the data contain hidden systematic variations that must be modeled.
  8982. Table
  8983. \begin_inset CommandInset ref
  8984. LatexCommand ref
  8985. reference "tab:methyl-est-nonnull"
  8986. plural "false"
  8987. caps "false"
  8988. noprefix "false"
  8989. \end_inset
  8990. shows the estimated number differentially methylated probes for each test
  8991. from each analysis.
  8992. This was computed by estimating the proportion of null hypotheses that
  8993. were true using the method of
  8994. \begin_inset CommandInset citation
  8995. LatexCommand cite
  8996. key "Phipson2013Thesis"
  8997. literal "false"
  8998. \end_inset
  8999. and subtracting that fraction from the total number of probes, yielding
  9000. an estimate of the number of null hypotheses that are false based on the
  9001. distribution of p-values across the entire dataset.
  9002. Note that this does not identify which null hypotheses should be rejected
  9003. (i.e.
  9004. which probes are significant); it only estimates the true number of such
  9005. probes.
  9006. Once again, analyses B and C result it much larger estimates for the number
  9007. of differentially methylated probes.
  9008. In this case, analysis C, the only analysis that includes voom, estimates
  9009. the largest number of differentially methylated probes for all 3 contrasts.
  9010. If the assumptions of all the methods employed hold, then this represents
  9011. a gain in statistical power over the simpler analysis A.
  9012. Figure
  9013. \begin_inset CommandInset ref
  9014. LatexCommand ref
  9015. reference "fig:meth-p-value-histograms"
  9016. plural "false"
  9017. caps "false"
  9018. noprefix "false"
  9019. \end_inset
  9020. shows the p-value distributions for each test, from which the numbers in
  9021. Table
  9022. \begin_inset CommandInset ref
  9023. LatexCommand ref
  9024. reference "tab:methyl-est-nonnull"
  9025. plural "false"
  9026. caps "false"
  9027. noprefix "false"
  9028. \end_inset
  9029. were generated.
  9030. The distributions for analysis A all have a dip in density near zero, which
  9031. is a strong sign of a poor model fit.
  9032. The histograms for analyses B and C are more well-behaved, with a uniform
  9033. component stretching all the way from 0 to 1 representing the probes for
  9034. which the null hypotheses is true (no differential methylation), and a
  9035. zero-biased component representing the probes for which the null hypothesis
  9036. is false (differentially methylated).
  9037. These histograms do not indicate any major issues with the model fit.
  9038. \end_layout
  9039. \begin_layout Standard
  9040. \begin_inset Flex TODO Note (inline)
  9041. status open
  9042. \begin_layout Plain Layout
  9043. If time allows, maybe generate the PCA plots before/after SVA effect subtraction
  9044. ?
  9045. \end_layout
  9046. \end_inset
  9047. \end_layout
  9048. \begin_layout Section
  9049. Discussion
  9050. \end_layout
  9051. \begin_layout Subsection
  9052. fRMA achieves clinically applicable normalization without sacrificing classifica
  9053. tion performance
  9054. \end_layout
  9055. \begin_layout Standard
  9056. As shown in Figure
  9057. \begin_inset CommandInset ref
  9058. LatexCommand ref
  9059. reference "fig:Classifier-probabilities-RMA"
  9060. plural "false"
  9061. caps "false"
  9062. noprefix "false"
  9063. \end_inset
  9064. , improper normalization, particularly separate normalization of training
  9065. and test samples, leads to unwanted biases in classification.
  9066. In a controlled experimental context, it is always possible to correct
  9067. this issue by normalizing all experimental samples together.
  9068. However, because it is not feasible to normalize all samples together in
  9069. a clinical context, a single-channel normalization is required is required.
  9070. \end_layout
  9071. \begin_layout Standard
  9072. The major concern in using a single-channel normalization is that non-single-cha
  9073. nnel methods can share information between arrays to improve the normalization,
  9074. and single-channel methods risk sacrificing the gains in normalization
  9075. accuracy that come from this information sharing.
  9076. In the case of RMA, this information sharing is accomplished through quantile
  9077. normalization and median polish steps.
  9078. The need for information sharing in quantile normalization can easily be
  9079. removed by learning a fixed set of quantiles from external data and normalizing
  9080. each array to these fixed quantiles, instead of the quantiles of the data
  9081. itself.
  9082. As long as the fixed quantiles are reasonable, the result will be similar
  9083. to standard RMA.
  9084. However, there is no analogous way to eliminate cross-array information
  9085. sharing in the median polish step, so fRMA replaces this with a weighted
  9086. average of probes on each array, with the weights learned from external
  9087. data.
  9088. This step of fRMA has the greatest potential to diverge from RMA un undesirable
  9089. ways.
  9090. \end_layout
  9091. \begin_layout Standard
  9092. However, when run on real data, fRMA performed at least as well as RMA in
  9093. both the internal validation and external validation tests.
  9094. This shows that fRMA can be used to normalize individual clinical samples
  9095. in a class prediction context without sacrificing the classifier performance
  9096. that would be obtained by using the more well-established RMA for normalization.
  9097. The other single-channel normalization method considered, SCAN, showed
  9098. some loss of AUC in the external validation test.
  9099. Based on these results, fRMA is the preferred normalization for clinical
  9100. samples in a class prediction context.
  9101. \end_layout
  9102. \begin_layout Subsection
  9103. Robust fRMA vectors can be generated for new array platforms
  9104. \end_layout
  9105. \begin_layout Standard
  9106. \begin_inset Flex TODO Note (inline)
  9107. status open
  9108. \begin_layout Plain Layout
  9109. Look up the exact numbers, do a find & replace for
  9110. \begin_inset Quotes eld
  9111. \end_inset
  9112. 850
  9113. \begin_inset Quotes erd
  9114. \end_inset
  9115. \end_layout
  9116. \end_inset
  9117. \end_layout
  9118. \begin_layout Standard
  9119. The published fRMA normalization vectors for the hgu133plus2 platform were
  9120. generated from a set of about 850 samples chosen from a wide range of tissues,
  9121. which the authors determined was sufficient to generate a robust set of
  9122. normalization vectors that could be applied across all tissues
  9123. \begin_inset CommandInset citation
  9124. LatexCommand cite
  9125. key "McCall2010"
  9126. literal "false"
  9127. \end_inset
  9128. .
  9129. Since we only had hthgu133pluspm for 2 tissues of interest, our needs were
  9130. more modest.
  9131. Even using only 130 samples in 26 batches of 5 samples each for kidney
  9132. biopsies, we were able to train a robust set of fRMA normalization vectors
  9133. that were not meaningfully affected by the random selection of 5 samples
  9134. from each batch.
  9135. As expected, the training process was just as robust for the blood samples
  9136. with 230 samples in 46 batches of 5 samples each.
  9137. Because these vectors were each generated using training samples from a
  9138. single tissue, they are not suitable for general use, unlike the vectors
  9139. provided with fRMA itself.
  9140. They are purpose-built for normalizing a specific type of sample on a specific
  9141. platform.
  9142. This is a mostly acceptable limitation in the context of developing a machine
  9143. learning classifier for diagnosing a disease based on samples of a specific
  9144. tissue.
  9145. \end_layout
  9146. \begin_layout Standard
  9147. \begin_inset Flex TODO Note (inline)
  9148. status open
  9149. \begin_layout Plain Layout
  9150. Talk about how these vectors can be used for any data from these tissues
  9151. on this platform even though they were custom made for this data set.
  9152. \end_layout
  9153. \end_inset
  9154. \end_layout
  9155. \begin_layout Standard
  9156. \begin_inset Flex TODO Note (inline)
  9157. status open
  9158. \begin_layout Plain Layout
  9159. How to bring up that these custom vectors were used in another project by
  9160. someone else that was never published?
  9161. \end_layout
  9162. \end_inset
  9163. \end_layout
  9164. \begin_layout Subsection
  9165. Methylation array data can be successfully analyzed using existing techniques,
  9166. but machine learning poses additional challenges
  9167. \end_layout
  9168. \begin_layout Standard
  9169. Both analysis strategies B and C both yield a reasonable analysis, with
  9170. a mean-variance trend that matches the expected behavior for the non-linear
  9171. M-value transformation (Figure
  9172. \begin_inset CommandInset ref
  9173. LatexCommand ref
  9174. reference "fig:meanvar-sva-aw"
  9175. plural "false"
  9176. caps "false"
  9177. noprefix "false"
  9178. \end_inset
  9179. ) and well-behaved p-value distributions (Figure
  9180. \begin_inset CommandInset ref
  9181. LatexCommand ref
  9182. reference "fig:meth-p-value-histograms"
  9183. plural "false"
  9184. caps "false"
  9185. noprefix "false"
  9186. \end_inset
  9187. ).
  9188. These two analyses also yield similar numbers of significant probes (Table
  9189. \begin_inset CommandInset ref
  9190. LatexCommand ref
  9191. reference "tab:methyl-num-signif"
  9192. plural "false"
  9193. caps "false"
  9194. noprefix "false"
  9195. \end_inset
  9196. ) and similar estimates of the number of differentially methylated probes
  9197. (Table
  9198. \begin_inset CommandInset ref
  9199. LatexCommand ref
  9200. reference "tab:methyl-est-nonnull"
  9201. plural "false"
  9202. caps "false"
  9203. noprefix "false"
  9204. \end_inset
  9205. ).
  9206. The main difference between these two analyses is the method used to account
  9207. for the mean-variance trend.
  9208. In analysis B, the trend is estimated and applied at the probe level: each
  9209. probe's estimated variance is squeezed toward the trend using an empirical
  9210. Bayes procedure (Figure
  9211. \begin_inset CommandInset ref
  9212. LatexCommand ref
  9213. reference "fig:meanvar-sva-aw"
  9214. plural "false"
  9215. caps "false"
  9216. noprefix "false"
  9217. \end_inset
  9218. ).
  9219. In analysis C, the trend is still estimated at the probe level, but instead
  9220. of estimating a single variance value shared across all observations for
  9221. a given probe, the voom method computes an initial estiamte of the variance
  9222. for each observation individually based on where its model-fitted M-value
  9223. falls on the trend line and then assigns inverse-variance weights to model
  9224. the difference in variance between observations.
  9225. An overall variance is still estimated for each probe using the same empirical
  9226. Bayes method, but now the residual trend is flat (Figure
  9227. \begin_inset CommandInset ref
  9228. LatexCommand ref
  9229. reference "fig:meanvar-sva-voomaw"
  9230. plural "false"
  9231. caps "false"
  9232. noprefix "false"
  9233. \end_inset
  9234. ), indicating that the mean-variance trend is adequately modeled by scaling
  9235. the estimated variance for each observation using the weights computed
  9236. by voom.
  9237. \end_layout
  9238. \begin_layout Standard
  9239. The difference between the standard empirical Bayes trended variance modeling
  9240. (analysis B) and voom (analysis C) is analogous to the difference between
  9241. a t-test with equal variance and a t-test with unequal variance, except
  9242. that the unequal group variances used in the latter test are estimated
  9243. based on the mean-variance trend from all the probes rather than the data
  9244. for the specific probe being tested, thus stabilizing the group variance
  9245. estimates by sharing information between probes.
  9246. Allowing voom to model the variance using observation weights in this manner
  9247. allows the linear model fit to concentrate statistical power where it will
  9248. do the most good.
  9249. For example, if a particular probe's M-values are always at the extreme
  9250. of the M-value range (e.g.
  9251. less than -4) for ADNR samples, but the M-values for that probe in TX and
  9252. CAN samples are within the flat region of the mean-variance trend (between
  9253. -3 and +3), voom is able to down-weight the contribution of the high-variance
  9254. M-values from the ADNR samples in order to gain more statistical power
  9255. while testing for differential methylation between TX and CAN.
  9256. In contrast, modeling the mean-variance trend only at the probe level would
  9257. combine the high-variance ADNR samples and lower-variance samples from
  9258. other conditions and estimate an intermediate variance for this probe.
  9259. In practice, analysis B shows that this approach is adequate, but the voom
  9260. approach in analysis C is at least as good on all model fit criteria and
  9261. yields a larger estimate for the number of differentially methylated genes,
  9262. \emph on
  9263. and
  9264. \emph default
  9265. it matches up better with the theoretical
  9266. \end_layout
  9267. \begin_layout Standard
  9268. The significant association of diebetes diagnosis with sample quality is
  9269. interesting.
  9270. The samples with Type 2 diabetes tended to have more variation, averaged
  9271. across all probes, than those with Type 1 diabetes.
  9272. This is consistent with the consensus that type 2 disbetes and the associated
  9273. metabolic syndrome represent a broad dysregulation of the body's endocrine
  9274. signalling related to metabolism [citation needed].
  9275. This dysregulation could easily manifest as a greater degree of variation
  9276. in the DNA methylation patterns of affected tissues.
  9277. In contrast, Type 1 disbetes has a more specific cause and effect, so a
  9278. less variable methylation signature is expected.
  9279. \end_layout
  9280. \begin_layout Standard
  9281. This preliminary anlaysis suggests that some degree of differential methylation
  9282. exists between TX and each of the three types of transplant disfunction
  9283. studied.
  9284. Hence, it may be feasible to train a classifier to diagnose transplant
  9285. disfunction from DNA methylation array data.
  9286. However, the major importance of both SVA and sample quality weighting
  9287. for proper modeling of this data poses significant challenges for any attempt
  9288. at a machine learning on data of similar quality.
  9289. While these are easily used in a modeling context with full sample information,
  9290. neither of these methods is directly applicable in a machine learning context,
  9291. where the diagnosis is not known ahead of time.
  9292. If a machine learning approach for methylation-based diagnosis is to be
  9293. pursued, it will either require machine-learning-friendly methods to address
  9294. the same systematic trends in the data that SVA and sample quality weighting
  9295. address, or it will require higher quality data with substantially less
  9296. systematic perturbation of the data.
  9297. \end_layout
  9298. \begin_layout Section
  9299. Future Directions
  9300. \end_layout
  9301. \begin_layout Standard
  9302. \begin_inset Flex TODO Note (inline)
  9303. status open
  9304. \begin_layout Plain Layout
  9305. Some work was already being done with the existing fRMA vectors.
  9306. Do I mention that here?
  9307. \end_layout
  9308. \end_inset
  9309. \end_layout
  9310. \begin_layout Subsection
  9311. Improving fRMA to allow training from batches of unequal size
  9312. \end_layout
  9313. \begin_layout Standard
  9314. Because the tools for building fRMA normalization vectors require equal-size
  9315. batches, many samples must be discarded from the training data.
  9316. This is undesirable for a few reasons.
  9317. First, more data is simply better, all other things being equal.
  9318. In this case,
  9319. \begin_inset Quotes eld
  9320. \end_inset
  9321. better
  9322. \begin_inset Quotes erd
  9323. \end_inset
  9324. means a more precise estimate of normalization parameters.
  9325. In addition, the samples to be discarded must be chosen arbitrarily, which
  9326. introduces an unnecessary element of randomness into the estimation process.
  9327. While the randomness can be made deterministic by setting a consistent
  9328. random seed, the need for equal size batches also introduces a need for
  9329. the analyst to decide on the appropriate trade-off between batch size and
  9330. the number of batches.
  9331. This introduces an unnecessary and undesirable
  9332. \begin_inset Quotes eld
  9333. \end_inset
  9334. researcher degree of freedom
  9335. \begin_inset Quotes erd
  9336. \end_inset
  9337. into the analysis, since the generated normalization vectors now depend
  9338. on the choice of batch size based on vague selection criteria and instinct,
  9339. which can unintentionally inproduce bias if the researcher chooses a batch
  9340. size based on what seems to yield the most favorable downstream results
  9341. \begin_inset CommandInset citation
  9342. LatexCommand cite
  9343. key "Simmons2011"
  9344. literal "false"
  9345. \end_inset
  9346. .
  9347. \end_layout
  9348. \begin_layout Standard
  9349. Fortunately, the requirement for equal-size batches is not inherent to the
  9350. fRMA algorithm but rather a limitation of the implementation in the frmaTools
  9351. package.
  9352. In personal communication, the package's author, Matthew McCall, has indicated
  9353. that with some work, it should be possible to improve the implementation
  9354. to work with batches of unequal sizes.
  9355. The current implementation ignores the batch size when calculating with-batch
  9356. and between-batch residual variances, since the batch size constant cancels
  9357. out later in the calculations as long as all batches are of equal size.
  9358. Hence, the calculations of these parameters would need to be modified to
  9359. remove this optimization and properly calculate the variances using the
  9360. full formula.
  9361. Once this modification is made, a new strategy would need to be developed
  9362. for assessing the stability of parameter estimates, since the random subsamplin
  9363. g step is eliminated, meaning that different subsamplings can no longer
  9364. be compared as in Figures
  9365. \begin_inset CommandInset ref
  9366. LatexCommand ref
  9367. reference "fig:frma-violin"
  9368. plural "false"
  9369. caps "false"
  9370. noprefix "false"
  9371. \end_inset
  9372. and
  9373. \begin_inset CommandInset ref
  9374. LatexCommand ref
  9375. reference "fig:Representative-MA-plots"
  9376. plural "false"
  9377. caps "false"
  9378. noprefix "false"
  9379. \end_inset
  9380. .
  9381. Bootstrap resampling is likely a good candidate here: sample many training
  9382. sets of equal size from the existing training set with replacement, estimate
  9383. parameters from each resampled training set, and compare the estimated
  9384. parameters between bootstraps in order to quantify the variability in each
  9385. parameter's estimation.
  9386. \end_layout
  9387. \begin_layout Subsection
  9388. Developing methylation arrays as a diagnostic tool for kidney transplant
  9389. rejection
  9390. \end_layout
  9391. \begin_layout Standard
  9392. The current study has showed that DNA methylation, as assayed by Illumina
  9393. 450k methylation arrays, has some potential for diagnosing transplant dysfuncti
  9394. ons, including rejection.
  9395. However, very few probes could be confidently identified as differentially
  9396. methylated between healthy and dysfunctional transplants.
  9397. One likely explanation for this is the predominant influence of unobserved
  9398. confounding factors.
  9399. SVA can model and correct for such factors, but the correction can never
  9400. be perfect, so some degree of unwanted systematic variation will always
  9401. remain after SVA correction.
  9402. If the effect size of the confounding factors was similar to that of the
  9403. factor of interest (in this case, transplant status), this would be an
  9404. acceptable limitation, since removing most of the confounding factors'
  9405. effects would allow the main effect to stand out.
  9406. However, in this data set, the confounding factors have a much larger effect
  9407. size than transplant status, which means that the small degree of remaining
  9408. variation not removed by SVA can still swamp the effect of interest, making
  9409. it difficult to detect.
  9410. This is, of course, a major issue when the end goal is to develop a classifier
  9411. to diagnose transplant rejection from methylation data, since batch-correction
  9412. methods like SVA that work in a linear modeling context cannot be applied
  9413. in a machine learning context.
  9414. \end_layout
  9415. \begin_layout Standard
  9416. Currently, the source of these unwanted systematic variations in the data
  9417. is unknown.
  9418. The best solution would be to determine the cause of the variation and
  9419. eliminate it, thereby eliminating the need to model and remove that variation.
  9420. However, if this proves impractical, another option is to use SVA to identify
  9421. probes that are highly associated with the surrogate variables that describe
  9422. the unwanted variation in the data.
  9423. These probes could be discarded prior to classifier training, in order
  9424. to maximize the chance that the training algorithm will be able to identify
  9425. highly predictive probes from those remaining.
  9426. Lastly, it is possible that some of this unwanted variation is a result
  9427. of the array-based assay being used and would be eliminated by switching
  9428. to assaying DNA methylation using bisulphite sequencing.
  9429. However, this carries the risk that the sequencing assay will have its
  9430. own set of biases that must be corrected for in a different way.
  9431. \end_layout
  9432. \begin_layout Chapter
  9433. Globin-blocking for more effective blood RNA-seq analysis in primate animal
  9434. model
  9435. \end_layout
  9436. \begin_layout Standard
  9437. \begin_inset Flex TODO Note (inline)
  9438. status open
  9439. \begin_layout Plain Layout
  9440. Choose between above and the paper title: Optimizing yield of deep RNA sequencin
  9441. g for gene expression profiling by globin reduction of peripheral blood
  9442. samples from cynomolgus monkeys (Macaca fascicularis).
  9443. \end_layout
  9444. \end_inset
  9445. \end_layout
  9446. \begin_layout Standard
  9447. \begin_inset Flex TODO Note (inline)
  9448. status open
  9449. \begin_layout Plain Layout
  9450. Chapter author list: https://tex.stackexchange.com/questions/156862/displaying-aut
  9451. hor-for-each-chapter-in-book Every chapter gets an author list, which may
  9452. or may not be part of a citation to a published/preprinted paper.
  9453. \end_layout
  9454. \end_inset
  9455. \end_layout
  9456. \begin_layout Standard
  9457. \begin_inset Flex TODO Note (inline)
  9458. status open
  9459. \begin_layout Plain Layout
  9460. Preprint then cite the paper
  9461. \end_layout
  9462. \end_inset
  9463. \end_layout
  9464. \begin_layout Section*
  9465. Abstract
  9466. \end_layout
  9467. \begin_layout Paragraph
  9468. Background
  9469. \end_layout
  9470. \begin_layout Standard
  9471. Primate blood contains high concentrations of globin messenger RNA.
  9472. Globin reduction is a standard technique used to improve the expression
  9473. results obtained by DNA microarrays on RNA from blood samples.
  9474. However, with whole transcriptome RNA-sequencing (RNA-seq) quickly replacing
  9475. microarrays for many applications, the impact of globin reduction for RNA-seq
  9476. has not been previously studied.
  9477. Moreover, no off-the-shelf kits are available for globin reduction in nonhuman
  9478. primates.
  9479. \end_layout
  9480. \begin_layout Paragraph
  9481. Results
  9482. \end_layout
  9483. \begin_layout Standard
  9484. Here we report a protocol for RNA-seq in primate blood samples that uses
  9485. complimentary oligonucleotides to block reverse transcription of the alpha
  9486. and beta globin genes.
  9487. In test samples from cynomolgus monkeys (Macaca fascicularis), this globin
  9488. blocking protocol approximately doubles the yield of informative (non-globin)
  9489. reads by greatly reducing the fraction of globin reads, while also improving
  9490. the consistency in sequencing depth between samples.
  9491. The increased yield enables detection of about 2000 more genes, significantly
  9492. increases the correlation in measured gene expression levels between samples,
  9493. and increases the sensitivity of differential gene expression tests.
  9494. \end_layout
  9495. \begin_layout Paragraph
  9496. Conclusions
  9497. \end_layout
  9498. \begin_layout Standard
  9499. These results show that globin blocking significantly improves the cost-effectiv
  9500. eness of mRNA sequencing in primate blood samples by doubling the yield
  9501. of useful reads, allowing detection of more genes, and improving the precision
  9502. of gene expression measurements.
  9503. Based on these results, a globin reducing or blocking protocol is recommended
  9504. for all RNA-seq studies of primate blood samples.
  9505. \end_layout
  9506. \begin_layout Section
  9507. Approach
  9508. \end_layout
  9509. \begin_layout Standard
  9510. \begin_inset Note Note
  9511. status open
  9512. \begin_layout Plain Layout
  9513. Consider putting some of this in the Intro chapter
  9514. \end_layout
  9515. \begin_layout Itemize
  9516. Cynomolgus monkeys as a model organism
  9517. \end_layout
  9518. \begin_deeper
  9519. \begin_layout Itemize
  9520. Highly related to humans
  9521. \end_layout
  9522. \begin_layout Itemize
  9523. Small size and short life cycle - good research animal
  9524. \end_layout
  9525. \begin_layout Itemize
  9526. Genomics resources still in development
  9527. \end_layout
  9528. \end_deeper
  9529. \begin_layout Itemize
  9530. Inadequacy of existing blood RNA-seq protocols
  9531. \end_layout
  9532. \begin_deeper
  9533. \begin_layout Itemize
  9534. Existing protocols use a separate globin pulldown step, slowing down processing
  9535. \end_layout
  9536. \end_deeper
  9537. \end_inset
  9538. \end_layout
  9539. \begin_layout Standard
  9540. Increasingly, researchers are turning to high-throughput mRNA sequencing
  9541. technologies (RNA-seq) in preference to expression microarrays for analysis
  9542. of gene expression
  9543. \begin_inset CommandInset citation
  9544. LatexCommand cite
  9545. key "Mutz2012"
  9546. literal "false"
  9547. \end_inset
  9548. .
  9549. The advantages are even greater for study of model organisms with no well-estab
  9550. lished array platforms available, such as the cynomolgus monkey (Macaca
  9551. fascicularis).
  9552. High fractions of globin mRNA are naturally present in mammalian peripheral
  9553. blood samples (up to 70% of total mRNA) and these are known to interfere
  9554. with the results of array-based expression profiling
  9555. \begin_inset CommandInset citation
  9556. LatexCommand cite
  9557. key "Winn2010"
  9558. literal "false"
  9559. \end_inset
  9560. .
  9561. The importance of globin reduction for RNA-seq of blood has only been evaluated
  9562. for a deepSAGE protocol on human samples
  9563. \begin_inset CommandInset citation
  9564. LatexCommand cite
  9565. key "Mastrokolias2012"
  9566. literal "false"
  9567. \end_inset
  9568. .
  9569. In the present report, we evaluated globin reduction using custom blocking
  9570. oligonucleotides for deep RNA-seq of peripheral blood samples from a nonhuman
  9571. primate, cynomolgus monkey, using the Illumina technology platform.
  9572. We demonstrate that globin reduction significantly improves the cost-effectiven
  9573. ess of RNA-seq in blood samples.
  9574. Thus, our protocol offers a significant advantage to any investigator planning
  9575. to use RNA-seq for gene expression profiling of nonhuman primate blood
  9576. samples.
  9577. Our method can be generally applied to any species by designing complementary
  9578. oligonucleotide blocking probes to the globin gene sequences of that species.
  9579. Indeed, any highly expressed but biologically uninformative transcripts
  9580. can also be blocked to further increase sequencing efficiency and value
  9581. \begin_inset CommandInset citation
  9582. LatexCommand cite
  9583. key "Arnaud2016"
  9584. literal "false"
  9585. \end_inset
  9586. .
  9587. \end_layout
  9588. \begin_layout Section
  9589. Methods
  9590. \end_layout
  9591. \begin_layout Subsection
  9592. Sample collection
  9593. \end_layout
  9594. \begin_layout Standard
  9595. All research reported here was done under IACUC-approved protocols at the
  9596. University of Miami and complied with all applicable federal and state
  9597. regulations and ethical principles for nonhuman primate research.
  9598. Blood draws occurred between 16 April 2012 and 18 June 2015.
  9599. The experimental system involved intrahepatic pancreatic islet transplantation
  9600. into Cynomolgus monkeys with induced diabetes mellitus with or without
  9601. concomitant infusion of mesenchymal stem cells.
  9602. Blood was collected at serial time points before and after transplantation
  9603. into PAXgene Blood RNA tubes (PreAnalytiX/Qiagen, Valencia, CA) at the
  9604. precise volume:volume ratio of 2.5 ml whole blood into 6.9 ml of PAX gene
  9605. additive.
  9606. \end_layout
  9607. \begin_layout Subsection
  9608. Globin Blocking
  9609. \end_layout
  9610. \begin_layout Standard
  9611. Four oligonucleotides were designed to hybridize to the 3’ end of the transcript
  9612. s for Cynomolgus HBA1, HBA2 and HBB, with two hybridization sites for HBB
  9613. and 2 sites for HBA (the chosen sites were identical in both HBA genes).
  9614. All oligos were purchased from Sigma and were entirely composed of 2’O-Me
  9615. bases with a C3 spacer positioned at the 3’ ends to prevent any polymerase
  9616. mediated primer extension.
  9617. \end_layout
  9618. \begin_layout Quote
  9619. HBA1/2 site 1: GCCCACUCAGACUUUAUUCAAAG-C3spacer
  9620. \end_layout
  9621. \begin_layout Quote
  9622. HBA1/2 site 2: GGUGCAAGGAGGGGAGGAG-C3spacer
  9623. \end_layout
  9624. \begin_layout Quote
  9625. HBB site 1: AAUGAAAAUAAAUGUUUUUUAUUAG-C3spacer
  9626. \end_layout
  9627. \begin_layout Quote
  9628. HBB site 2: CUCAAGGCCCUUCAUAAUAUCCC-C3spacer
  9629. \end_layout
  9630. \begin_layout Subsection
  9631. RNA-seq Library Preparation
  9632. \end_layout
  9633. \begin_layout Standard
  9634. Sequencing libraries were prepared with 200ng total RNA from each sample.
  9635. Polyadenylated mRNA was selected from 200 ng aliquots of cynomologus blood-deri
  9636. ved total RNA using Ambion Dynabeads Oligo(dT)25 beads (Invitrogen) following
  9637. manufacturer’s recommended protocol.
  9638. PolyA selected RNA was then combined with 8 pmol of HBA1/2 (site 1), 8
  9639. pmol of HBA1/2 (site 2), 12 pmol of HBB (site 1) and 12 pmol of HBB (site
  9640. 2) oligonucleotides.
  9641. In addition, 20 pmol of RT primer containing a portion of the Illumina
  9642. adapter sequence (B-oligo-dTV: GAGTTCCTTGGCACCCGAGAATTCCATTTTTTTTTTTTTTTTTTTV)
  9643. and 4 µL of 5X First Strand buffer (250 mM Tris-HCl pH 8.3, 375 mM KCl,
  9644. 15mM MgCl2) were added in a total volume of 15 µL.
  9645. The RNA was fragmented by heating this cocktail for 3 minutes at 95°C and
  9646. then placed on ice.
  9647. This was followed by the addition of 2 µL 0.1 M DTT, 1 µL RNaseOUT, 1 µL
  9648. 10mM dNTPs 10% biotin-16 aminoallyl-2’- dUTP and 10% biotin-16 aminoallyl-2’-
  9649. dCTP (TriLink Biotech, San Diego, CA), 1 µL Superscript II (200U/ µL, Thermo-Fi
  9650. sher).
  9651. A second “unblocked” library was prepared in the same way for each sample
  9652. but replacing the blocking oligos with an equivalent volume of water.
  9653. The reaction was carried out at 25°C for 15 minutes and 42°C for 40 minutes,
  9654. followed by incubation at 75°C for 10 minutes to inactivate the reverse
  9655. transcriptase.
  9656. \end_layout
  9657. \begin_layout Standard
  9658. The cDNA/RNA hybrid molecules were purified using 1.8X Ampure XP beads (Agencourt
  9659. ) following supplier’s recommended protocol.
  9660. The cDNA/RNA hybrid was eluted in 25 µL of 10 mM Tris-HCl pH 8.0, and then
  9661. bound to 25 µL of M280 Magnetic Streptavidin beads washed per recommended
  9662. protocol (Thermo-Fisher).
  9663. After 30 minutes of binding, beads were washed one time in 100 µL 0.1N NaOH
  9664. to denature and remove the bound RNA, followed by two 100 µL washes with
  9665. 1X TE buffer.
  9666. \end_layout
  9667. \begin_layout Standard
  9668. Subsequent attachment of the 5-prime Illumina A adapter was performed by
  9669. on-bead random primer extension of the following sequence (A-N8 primer:
  9670. TTCAGAGTTCTACAGTCCGACGATCNNNNNNNN).
  9671. Briefly, beads were resuspended in a 20 µL reaction containing 5 µM A-N8
  9672. primer, 40mM Tris-HCl pH 7.5, 20mM MgCl2, 50mM NaCl, 0.325U/µL Sequenase
  9673. 2.0 (Affymetrix, Santa Clara, CA), 0.0025U/µL inorganic pyrophosphatase (Affymetr
  9674. ix) and 300 µM each dNTP.
  9675. Reaction was incubated at 22°C for 30 minutes, then beads were washed 2
  9676. times with 1X TE buffer (200µL).
  9677. \end_layout
  9678. \begin_layout Standard
  9679. The magnetic streptavidin beads were resuspended in 34 µL nuclease-free
  9680. water and added directly to a PCR tube.
  9681. The two Illumina protocol-specified PCR primers were added at 0.53 µM (Illumina
  9682. TruSeq Universal Primer 1 and Illumina TruSeq barcoded PCR primer 2), along
  9683. with 40 µL 2X KAPA HiFi Hotstart ReadyMix (KAPA, Willmington MA) and thermocycl
  9684. ed as follows: starting with 98°C (2 min-hold); 15 cycles of 98°C, 20sec;
  9685. 60°C, 30sec; 72°C, 30sec; and finished with a 72°C (2 min-hold).
  9686. \end_layout
  9687. \begin_layout Standard
  9688. PCR products were purified with 1X Ampure Beads following manufacturer’s
  9689. recommended protocol.
  9690. Libraries were then analyzed using the Agilent TapeStation and quantitation
  9691. of desired size range was performed by “smear analysis”.
  9692. Samples were pooled in equimolar batches of 16 samples.
  9693. Pooled libraries were size selected on 2% agarose gels (E-Gel EX Agarose
  9694. Gels; Thermo-Fisher).
  9695. Products were cut between 250 and 350 bp (corresponding to insert sizes
  9696. of 130 to 230 bps).
  9697. Finished library pools were then sequenced on the Illumina NextSeq500 instrumen
  9698. t with 75 base read lengths.
  9699. \end_layout
  9700. \begin_layout Subsection
  9701. Read alignment and counting
  9702. \end_layout
  9703. \begin_layout Standard
  9704. Reads were aligned to the cynomolgus genome using STAR
  9705. \begin_inset CommandInset citation
  9706. LatexCommand cite
  9707. key "Dobin2013,Wilson2013"
  9708. literal "false"
  9709. \end_inset
  9710. .
  9711. Counts of uniquely mapped reads were obtained for every gene in each sample
  9712. with the “featureCounts” function from the Rsubread package, using each
  9713. of the three possibilities for the “strandSpecific” option: sense, antisense,
  9714. and unstranded
  9715. \begin_inset CommandInset citation
  9716. LatexCommand cite
  9717. key "Liao2014"
  9718. literal "false"
  9719. \end_inset
  9720. .
  9721. A few artifacts in the cynomolgus genome annotation complicated read counting.
  9722. First, no ortholog is annotated for alpha globin in the cynomolgus genome,
  9723. presumably because the human genome has two alpha globin genes with nearly
  9724. identical sequences, making the orthology relationship ambiguous.
  9725. However, two loci in the cynomolgus genome are as “hemoglobin subunit alpha-lik
  9726. e” (LOC102136192 and LOC102136846).
  9727. LOC102136192 is annotated as a pseudogene while LOC102136846 is annotated
  9728. as protein-coding.
  9729. Our globin reduction protocol was designed to include blocking of these
  9730. two genes.
  9731. Indeed, these two genes have almost the same read counts in each library
  9732. as the properly-annotated HBB gene and much larger counts than any other
  9733. gene in the unblocked libraries, giving confidence that reads derived from
  9734. the real alpha globin are mapping to both genes.
  9735. Thus, reads from both of these loci were counted as alpha globin reads
  9736. in all further analyses.
  9737. The second artifact is a small, uncharacterized non-coding RNA gene (LOC1021365
  9738. 91), which overlaps the HBA-like gene (LOC102136192) on the opposite strand.
  9739. If counting is not performed in stranded mode (or if a non-strand-specific
  9740. sequencing protocol is used), many reads mapping to the globin gene will
  9741. be discarded as ambiguous due to their overlap with this ncRNA gene, resulting
  9742. in significant undercounting of globin reads.
  9743. Therefore, stranded sense counts were used for all further analysis in
  9744. the present study to insure that we accurately accounted for globin transcript
  9745. reduction.
  9746. However, we note that stranded reads are not necessary for RNA-seq using
  9747. our protocol in standard practice.
  9748. \end_layout
  9749. \begin_layout Subsection
  9750. Normalization and Exploratory Data Analysis
  9751. \end_layout
  9752. \begin_layout Standard
  9753. Libraries were normalized by computing scaling factors using the edgeR package’s
  9754. Trimmed Mean of M-values method
  9755. \begin_inset CommandInset citation
  9756. LatexCommand cite
  9757. key "Robinson2010"
  9758. literal "false"
  9759. \end_inset
  9760. .
  9761. Log2 counts per million values (logCPM) were calculated using the cpm function
  9762. in edgeR for individual samples and aveLogCPM function for averages across
  9763. groups of samples, using those functions’ default prior count values to
  9764. avoid taking the logarithm of 0.
  9765. Genes were considered “present” if their average normalized logCPM values
  9766. across all libraries were at least -1.
  9767. Normalizing for gene length was unnecessary because the sequencing protocol
  9768. is 3’-biased and hence the expected read count for each gene is related
  9769. to the transcript’s copy number but not its length.
  9770. \end_layout
  9771. \begin_layout Standard
  9772. In order to assess the effect of blocking on reproducibility, Pearson and
  9773. Spearman correlation coefficients were computed between the logCPM values
  9774. for every pair of libraries within the globin-blocked (GB) and unblocked
  9775. (non-GB) groups, and edgeR's “estimateDisp” function was used to compute
  9776. negative binomial dispersions separately for the two groups
  9777. \begin_inset CommandInset citation
  9778. LatexCommand cite
  9779. key "Chen2014"
  9780. literal "false"
  9781. \end_inset
  9782. .
  9783. \end_layout
  9784. \begin_layout Subsection
  9785. Differential Expression Analysis
  9786. \end_layout
  9787. \begin_layout Standard
  9788. All tests for differential gene expression were performed using edgeR, by
  9789. first fitting a negative binomial generalized linear model to the counts
  9790. and normalization factors and then performing a quasi-likelihood F-test
  9791. with robust estimation of outlier gene dispersions
  9792. \begin_inset CommandInset citation
  9793. LatexCommand cite
  9794. key "Lund2012,Phipson2016"
  9795. literal "false"
  9796. \end_inset
  9797. .
  9798. To investigate the effects of globin blocking on each gene, an additive
  9799. model was fit to the full data with coefficients for globin blocking and
  9800. SampleID.
  9801. To test the effect of globin blocking on detection of differentially expressed
  9802. genes, the GB samples and non-GB samples were each analyzed independently
  9803. as follows: for each animal with both a pre-transplant and a post-transplant
  9804. time point in the data set, the pre-transplant sample and the earliest
  9805. post-transplant sample were selected, and all others were excluded, yielding
  9806. a pre-/post-transplant pair of samples for each animal (N=7 animals with
  9807. paired samples).
  9808. These samples were analyzed for pre-transplant vs.
  9809. post-transplant differential gene expression while controlling for inter-animal
  9810. variation using an additive model with coefficients for transplant and
  9811. animal ID.
  9812. In all analyses, p-values were adjusted using the Benjamini-Hochberg procedure
  9813. for FDR control
  9814. \begin_inset CommandInset citation
  9815. LatexCommand cite
  9816. key "Benjamini1995"
  9817. literal "false"
  9818. \end_inset
  9819. .
  9820. \end_layout
  9821. \begin_layout Standard
  9822. \begin_inset Note Note
  9823. status open
  9824. \begin_layout Itemize
  9825. New blood RNA-seq protocol to block reverse transcription of globin genes
  9826. \end_layout
  9827. \begin_layout Itemize
  9828. Blood RNA-seq time course after transplants with/without MSC infusion
  9829. \end_layout
  9830. \end_inset
  9831. \end_layout
  9832. \begin_layout Section
  9833. Results
  9834. \end_layout
  9835. \begin_layout Subsection
  9836. Globin blocking yields a larger and more consistent fraction of useful reads
  9837. \end_layout
  9838. \begin_layout Standard
  9839. \begin_inset ERT
  9840. status open
  9841. \begin_layout Plain Layout
  9842. \backslash
  9843. afterpage{
  9844. \end_layout
  9845. \begin_layout Plain Layout
  9846. \backslash
  9847. begin{landscape}
  9848. \end_layout
  9849. \end_inset
  9850. \end_layout
  9851. \begin_layout Standard
  9852. \begin_inset Float table
  9853. placement p
  9854. wide false
  9855. sideways false
  9856. status open
  9857. \begin_layout Plain Layout
  9858. \align center
  9859. \begin_inset Tabular
  9860. <lyxtabular version="3" rows="4" columns="7">
  9861. <features tabularvalignment="middle">
  9862. <column alignment="center" valignment="top">
  9863. <column alignment="center" valignment="top">
  9864. <column alignment="center" valignment="top">
  9865. <column alignment="center" valignment="top">
  9866. <column alignment="center" valignment="top">
  9867. <column alignment="center" valignment="top">
  9868. <column alignment="center" valignment="top">
  9869. <row>
  9870. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  9871. \begin_inset Text
  9872. \begin_layout Plain Layout
  9873. \end_layout
  9874. \end_inset
  9875. </cell>
  9876. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  9877. \begin_inset Text
  9878. \begin_layout Plain Layout
  9879. \family roman
  9880. \series medium
  9881. \shape up
  9882. \size normal
  9883. \emph off
  9884. \bar no
  9885. \strikeout off
  9886. \xout off
  9887. \uuline off
  9888. \uwave off
  9889. \noun off
  9890. \color none
  9891. Percent of Total Reads
  9892. \end_layout
  9893. \end_inset
  9894. </cell>
  9895. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  9896. \begin_inset Text
  9897. \begin_layout Plain Layout
  9898. \end_layout
  9899. \end_inset
  9900. </cell>
  9901. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  9902. \begin_inset Text
  9903. \begin_layout Plain Layout
  9904. \end_layout
  9905. \end_inset
  9906. </cell>
  9907. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  9908. \begin_inset Text
  9909. \begin_layout Plain Layout
  9910. \end_layout
  9911. \end_inset
  9912. </cell>
  9913. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  9914. \begin_inset Text
  9915. \begin_layout Plain Layout
  9916. \family roman
  9917. \series medium
  9918. \shape up
  9919. \size normal
  9920. \emph off
  9921. \bar no
  9922. \strikeout off
  9923. \xout off
  9924. \uuline off
  9925. \uwave off
  9926. \noun off
  9927. \color none
  9928. Percent of Genic Reads
  9929. \end_layout
  9930. \end_inset
  9931. </cell>
  9932. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  9933. \begin_inset Text
  9934. \begin_layout Plain Layout
  9935. \end_layout
  9936. \end_inset
  9937. </cell>
  9938. </row>
  9939. <row>
  9940. <cell alignment="center" valignment="top" bottomline="true" leftline="true" usebox="none">
  9941. \begin_inset Text
  9942. \begin_layout Plain Layout
  9943. GB
  9944. \end_layout
  9945. \end_inset
  9946. </cell>
  9947. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  9948. \begin_inset Text
  9949. \begin_layout Plain Layout
  9950. \family roman
  9951. \series medium
  9952. \shape up
  9953. \size normal
  9954. \emph off
  9955. \bar no
  9956. \strikeout off
  9957. \xout off
  9958. \uuline off
  9959. \uwave off
  9960. \noun off
  9961. \color none
  9962. Non-globin Reads
  9963. \end_layout
  9964. \end_inset
  9965. </cell>
  9966. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  9967. \begin_inset Text
  9968. \begin_layout Plain Layout
  9969. \family roman
  9970. \series medium
  9971. \shape up
  9972. \size normal
  9973. \emph off
  9974. \bar no
  9975. \strikeout off
  9976. \xout off
  9977. \uuline off
  9978. \uwave off
  9979. \noun off
  9980. \color none
  9981. Globin Reads
  9982. \end_layout
  9983. \end_inset
  9984. </cell>
  9985. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  9986. \begin_inset Text
  9987. \begin_layout Plain Layout
  9988. \family roman
  9989. \series medium
  9990. \shape up
  9991. \size normal
  9992. \emph off
  9993. \bar no
  9994. \strikeout off
  9995. \xout off
  9996. \uuline off
  9997. \uwave off
  9998. \noun off
  9999. \color none
  10000. All Genic Reads
  10001. \end_layout
  10002. \end_inset
  10003. </cell>
  10004. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10005. \begin_inset Text
  10006. \begin_layout Plain Layout
  10007. \family roman
  10008. \series medium
  10009. \shape up
  10010. \size normal
  10011. \emph off
  10012. \bar no
  10013. \strikeout off
  10014. \xout off
  10015. \uuline off
  10016. \uwave off
  10017. \noun off
  10018. \color none
  10019. All Aligned Reads
  10020. \end_layout
  10021. \end_inset
  10022. </cell>
  10023. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10024. \begin_inset Text
  10025. \begin_layout Plain Layout
  10026. \family roman
  10027. \series medium
  10028. \shape up
  10029. \size normal
  10030. \emph off
  10031. \bar no
  10032. \strikeout off
  10033. \xout off
  10034. \uuline off
  10035. \uwave off
  10036. \noun off
  10037. \color none
  10038. Non-globin Reads
  10039. \end_layout
  10040. \end_inset
  10041. </cell>
  10042. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  10043. \begin_inset Text
  10044. \begin_layout Plain Layout
  10045. \family roman
  10046. \series medium
  10047. \shape up
  10048. \size normal
  10049. \emph off
  10050. \bar no
  10051. \strikeout off
  10052. \xout off
  10053. \uuline off
  10054. \uwave off
  10055. \noun off
  10056. \color none
  10057. Globin Reads
  10058. \end_layout
  10059. \end_inset
  10060. </cell>
  10061. </row>
  10062. <row>
  10063. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10064. \begin_inset Text
  10065. \begin_layout Plain Layout
  10066. \family roman
  10067. \series medium
  10068. \shape up
  10069. \size normal
  10070. \emph off
  10071. \bar no
  10072. \strikeout off
  10073. \xout off
  10074. \uuline off
  10075. \uwave off
  10076. \noun off
  10077. \color none
  10078. Yes
  10079. \end_layout
  10080. \end_inset
  10081. </cell>
  10082. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10083. \begin_inset Text
  10084. \begin_layout Plain Layout
  10085. \family roman
  10086. \series medium
  10087. \shape up
  10088. \size normal
  10089. \emph off
  10090. \bar no
  10091. \strikeout off
  10092. \xout off
  10093. \uuline off
  10094. \uwave off
  10095. \noun off
  10096. \color none
  10097. 50.4% ± 6.82
  10098. \end_layout
  10099. \end_inset
  10100. </cell>
  10101. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10102. \begin_inset Text
  10103. \begin_layout Plain Layout
  10104. \family roman
  10105. \series medium
  10106. \shape up
  10107. \size normal
  10108. \emph off
  10109. \bar no
  10110. \strikeout off
  10111. \xout off
  10112. \uuline off
  10113. \uwave off
  10114. \noun off
  10115. \color none
  10116. 3.48% ± 2.94
  10117. \end_layout
  10118. \end_inset
  10119. </cell>
  10120. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10121. \begin_inset Text
  10122. \begin_layout Plain Layout
  10123. \family roman
  10124. \series medium
  10125. \shape up
  10126. \size normal
  10127. \emph off
  10128. \bar no
  10129. \strikeout off
  10130. \xout off
  10131. \uuline off
  10132. \uwave off
  10133. \noun off
  10134. \color none
  10135. 53.9% ± 6.81
  10136. \end_layout
  10137. \end_inset
  10138. </cell>
  10139. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10140. \begin_inset Text
  10141. \begin_layout Plain Layout
  10142. \family roman
  10143. \series medium
  10144. \shape up
  10145. \size normal
  10146. \emph off
  10147. \bar no
  10148. \strikeout off
  10149. \xout off
  10150. \uuline off
  10151. \uwave off
  10152. \noun off
  10153. \color none
  10154. 89.7% ± 2.40
  10155. \end_layout
  10156. \end_inset
  10157. </cell>
  10158. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10159. \begin_inset Text
  10160. \begin_layout Plain Layout
  10161. \family roman
  10162. \series medium
  10163. \shape up
  10164. \size normal
  10165. \emph off
  10166. \bar no
  10167. \strikeout off
  10168. \xout off
  10169. \uuline off
  10170. \uwave off
  10171. \noun off
  10172. \color none
  10173. 93.5% ± 5.25
  10174. \end_layout
  10175. \end_inset
  10176. </cell>
  10177. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  10178. \begin_inset Text
  10179. \begin_layout Plain Layout
  10180. \family roman
  10181. \series medium
  10182. \shape up
  10183. \size normal
  10184. \emph off
  10185. \bar no
  10186. \strikeout off
  10187. \xout off
  10188. \uuline off
  10189. \uwave off
  10190. \noun off
  10191. \color none
  10192. 6.49% ± 5.25
  10193. \end_layout
  10194. \end_inset
  10195. </cell>
  10196. </row>
  10197. <row>
  10198. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10199. \begin_inset Text
  10200. \begin_layout Plain Layout
  10201. \family roman
  10202. \series medium
  10203. \shape up
  10204. \size normal
  10205. \emph off
  10206. \bar no
  10207. \strikeout off
  10208. \xout off
  10209. \uuline off
  10210. \uwave off
  10211. \noun off
  10212. \color none
  10213. No
  10214. \end_layout
  10215. \end_inset
  10216. </cell>
  10217. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10218. \begin_inset Text
  10219. \begin_layout Plain Layout
  10220. \family roman
  10221. \series medium
  10222. \shape up
  10223. \size normal
  10224. \emph off
  10225. \bar no
  10226. \strikeout off
  10227. \xout off
  10228. \uuline off
  10229. \uwave off
  10230. \noun off
  10231. \color none
  10232. 26.3% ± 8.95
  10233. \end_layout
  10234. \end_inset
  10235. </cell>
  10236. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10237. \begin_inset Text
  10238. \begin_layout Plain Layout
  10239. \family roman
  10240. \series medium
  10241. \shape up
  10242. \size normal
  10243. \emph off
  10244. \bar no
  10245. \strikeout off
  10246. \xout off
  10247. \uuline off
  10248. \uwave off
  10249. \noun off
  10250. \color none
  10251. 44.6% ± 16.6
  10252. \end_layout
  10253. \end_inset
  10254. </cell>
  10255. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10256. \begin_inset Text
  10257. \begin_layout Plain Layout
  10258. \family roman
  10259. \series medium
  10260. \shape up
  10261. \size normal
  10262. \emph off
  10263. \bar no
  10264. \strikeout off
  10265. \xout off
  10266. \uuline off
  10267. \uwave off
  10268. \noun off
  10269. \color none
  10270. 70.1% ± 9.38
  10271. \end_layout
  10272. \end_inset
  10273. </cell>
  10274. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10275. \begin_inset Text
  10276. \begin_layout Plain Layout
  10277. \family roman
  10278. \series medium
  10279. \shape up
  10280. \size normal
  10281. \emph off
  10282. \bar no
  10283. \strikeout off
  10284. \xout off
  10285. \uuline off
  10286. \uwave off
  10287. \noun off
  10288. \color none
  10289. 90.7% ± 5.16
  10290. \end_layout
  10291. \end_inset
  10292. </cell>
  10293. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10294. \begin_inset Text
  10295. \begin_layout Plain Layout
  10296. \family roman
  10297. \series medium
  10298. \shape up
  10299. \size normal
  10300. \emph off
  10301. \bar no
  10302. \strikeout off
  10303. \xout off
  10304. \uuline off
  10305. \uwave off
  10306. \noun off
  10307. \color none
  10308. 38.8% ± 17.1
  10309. \end_layout
  10310. \end_inset
  10311. </cell>
  10312. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  10313. \begin_inset Text
  10314. \begin_layout Plain Layout
  10315. \family roman
  10316. \series medium
  10317. \shape up
  10318. \size normal
  10319. \emph off
  10320. \bar no
  10321. \strikeout off
  10322. \xout off
  10323. \uuline off
  10324. \uwave off
  10325. \noun off
  10326. \color none
  10327. 61.2% ± 17.1
  10328. \end_layout
  10329. \end_inset
  10330. </cell>
  10331. </row>
  10332. </lyxtabular>
  10333. \end_inset
  10334. \end_layout
  10335. \begin_layout Plain Layout
  10336. \begin_inset Caption Standard
  10337. \begin_layout Plain Layout
  10338. \series bold
  10339. \begin_inset Argument 1
  10340. status collapsed
  10341. \begin_layout Plain Layout
  10342. Fractions of reads mapping to genomic features in GB and non-GB samples.
  10343. \end_layout
  10344. \end_inset
  10345. \begin_inset CommandInset label
  10346. LatexCommand label
  10347. name "tab:Fractions-of-reads"
  10348. \end_inset
  10349. Fractions of reads mapping to genomic features in GB and non-GB samples.
  10350. \series default
  10351. All values are given as mean ± standard deviation.
  10352. \end_layout
  10353. \end_inset
  10354. \end_layout
  10355. \end_inset
  10356. \end_layout
  10357. \begin_layout Standard
  10358. \begin_inset ERT
  10359. status open
  10360. \begin_layout Plain Layout
  10361. \backslash
  10362. end{landscape}
  10363. \end_layout
  10364. \begin_layout Plain Layout
  10365. }
  10366. \end_layout
  10367. \end_inset
  10368. \end_layout
  10369. \begin_layout Standard
  10370. The objective of the present study was to validate a new protocol for deep
  10371. RNA-seq of whole blood drawn into PaxGene tubes from cynomolgus monkeys
  10372. undergoing islet transplantation, with particular focus on minimizing the
  10373. loss of useful sequencing space to uninformative globin reads.
  10374. The details of the analysis with respect to transplant outcomes and the
  10375. impact of mesenchymal stem cell treatment will be reported in a separate
  10376. manuscript (in preparation).
  10377. To focus on the efficacy of our globin blocking protocol, 37 blood samples,
  10378. 16 from pre-transplant and 21 from post-transplant time points, were each
  10379. prepped once with and once without globin blocking oligos, and were then
  10380. sequenced on an Illumina NextSeq500 instrument.
  10381. The number of reads aligning to each gene in the cynomolgus genome was
  10382. counted.
  10383. Table 1 summarizes the distribution of read fractions among the GB and
  10384. non-GB libraries.
  10385. In the libraries with no globin blocking, globin reads made up an average
  10386. of 44.6% of total input reads, while reads assigned to all other genes made
  10387. up an average of 26.3%.
  10388. The remaining reads either aligned to intergenic regions (that include
  10389. long non-coding RNAs) or did not align with any annotated transcripts in
  10390. the current build of the cynomolgus genome.
  10391. In the GB libraries, globin reads made up only 3.48% and reads assigned
  10392. to all other genes increased to 50.4%.
  10393. Thus, globin blocking resulted in a 92.2% reduction in globin reads and
  10394. a 91.6% increase in yield of useful non-globin reads.
  10395. \end_layout
  10396. \begin_layout Standard
  10397. This reduction is not quite as efficient as the previous analysis showed
  10398. for human samples by DeepSAGE (<0.4% globin reads after globin reduction)
  10399. \begin_inset CommandInset citation
  10400. LatexCommand cite
  10401. key "Mastrokolias2012"
  10402. literal "false"
  10403. \end_inset
  10404. .
  10405. Nonetheless, this degree of globin reduction is sufficient to nearly double
  10406. the yield of useful reads.
  10407. Thus, globin blocking cuts the required sequencing effort (and costs) to
  10408. achieve a target coverage depth by almost 50%.
  10409. Consistent with this near doubling of yield, the average difference in
  10410. un-normalized logCPM across all genes between the GB libraries and non-GB
  10411. libraries is approximately 1 (mean = 1.01, median = 1.08), an overall 2-fold
  10412. increase.
  10413. Un-normalized values are used here because the TMM normalization correctly
  10414. identifies this 2-fold difference as biologically irrelevant and removes
  10415. it.
  10416. \end_layout
  10417. \begin_layout Standard
  10418. \begin_inset Float figure
  10419. wide false
  10420. sideways false
  10421. status collapsed
  10422. \begin_layout Plain Layout
  10423. \align center
  10424. \begin_inset Graphics
  10425. filename graphics/Globin Paper/figure1 - globin-fractions.pdf
  10426. lyxscale 50
  10427. width 75col%
  10428. \end_inset
  10429. \end_layout
  10430. \begin_layout Plain Layout
  10431. \begin_inset Caption Standard
  10432. \begin_layout Plain Layout
  10433. \series bold
  10434. \begin_inset Argument 1
  10435. status collapsed
  10436. \begin_layout Plain Layout
  10437. Fraction of genic reads in each sample aligned to non-globin genes, with
  10438. and without globin blocking (GB).
  10439. \end_layout
  10440. \end_inset
  10441. \begin_inset CommandInset label
  10442. LatexCommand label
  10443. name "fig:Fraction-of-genic-reads"
  10444. \end_inset
  10445. Fraction of genic reads in each sample aligned to non-globin genes, with
  10446. and without globin blocking (GB).
  10447. \series default
  10448. All reads in each sequencing library were aligned to the cyno genome, and
  10449. the number of reads uniquely aligning to each gene was counted.
  10450. For each sample, counts were summed separately for all globin genes and
  10451. for the remainder of the genes (non-globin genes), and the fraction of
  10452. genic reads aligned to non-globin genes was computed.
  10453. Each point represents an individual sample.
  10454. Gray + signs indicate the means for globin-blocked libraries and unblocked
  10455. libraries.
  10456. The overall distribution for each group is represented as a notched box
  10457. plots.
  10458. Points are randomly spread vertically to avoid excessive overlapping.
  10459. \end_layout
  10460. \end_inset
  10461. \end_layout
  10462. \end_inset
  10463. \end_layout
  10464. \begin_layout Standard
  10465. Another important aspect is that the standard deviations in Table
  10466. \begin_inset CommandInset ref
  10467. LatexCommand ref
  10468. reference "tab:Fractions-of-reads"
  10469. plural "false"
  10470. caps "false"
  10471. noprefix "false"
  10472. \end_inset
  10473. are uniformly smaller in the GB samples than the non-GB ones, indicating
  10474. much greater consistency of yield.
  10475. This is best seen in the percentage of non-globin reads as a fraction of
  10476. total reads aligned to annotated genes (genic reads).
  10477. For the non-GB samples, this measure ranges from 10.9% to 80.9%, while for
  10478. the GB samples it ranges from 81.9% to 99.9% (Figure
  10479. \begin_inset CommandInset ref
  10480. LatexCommand ref
  10481. reference "fig:Fraction-of-genic-reads"
  10482. plural "false"
  10483. caps "false"
  10484. noprefix "false"
  10485. \end_inset
  10486. ).
  10487. This means that for applications where it is critical that each sample
  10488. achieve a specified minimum coverage in order to provide useful information,
  10489. it would be necessary to budget up to 10 times the sequencing depth per
  10490. sample without globin blocking, even though the average yield improvement
  10491. for globin blocking is only 2-fold, because every sample has a chance of
  10492. being 90% globin and 10% useful reads.
  10493. Hence, the more consistent behavior of GB samples makes planning an experiment
  10494. easier and more efficient because it eliminates the need to over-sequence
  10495. every sample in order to guard against the worst case of a high-globin
  10496. fraction.
  10497. \end_layout
  10498. \begin_layout Subsection
  10499. Globin blocking lowers the noise floor and allows detection of about 2000
  10500. more low-expression genes
  10501. \end_layout
  10502. \begin_layout Standard
  10503. \begin_inset Flex TODO Note (inline)
  10504. status open
  10505. \begin_layout Plain Layout
  10506. Remove redundant titles from figures
  10507. \end_layout
  10508. \end_inset
  10509. \end_layout
  10510. \begin_layout Standard
  10511. \begin_inset Float figure
  10512. wide false
  10513. sideways false
  10514. status collapsed
  10515. \begin_layout Plain Layout
  10516. \align center
  10517. \begin_inset Graphics
  10518. filename graphics/Globin Paper/figure2 - aveLogCPM-colored.pdf
  10519. lyxscale 50
  10520. height 60theight%
  10521. \end_inset
  10522. \end_layout
  10523. \begin_layout Plain Layout
  10524. \begin_inset Caption Standard
  10525. \begin_layout Plain Layout
  10526. \series bold
  10527. \begin_inset Argument 1
  10528. status collapsed
  10529. \begin_layout Plain Layout
  10530. Distributions of average group gene abundances when normalized separately
  10531. or together.
  10532. \end_layout
  10533. \end_inset
  10534. \begin_inset CommandInset label
  10535. LatexCommand label
  10536. name "fig:logcpm-dists"
  10537. \end_inset
  10538. Distributions of average group gene abundances when normalized separately
  10539. or together.
  10540. \series default
  10541. All reads in each sequencing library were aligned to the cyno genome, and
  10542. the number of reads uniquely aligning to each gene was counted.
  10543. Genes with zero counts in all libraries were discarded.
  10544. Libraries were normalized using the TMM method.
  10545. Libraries were split into globin-blocked (GB) and non-GB groups and the
  10546. average abundance for each gene in both groups, measured in log2 counts
  10547. per million reads counted, was computed using the aveLogCPM function.
  10548. The distribution of average gene logCPM values was plotted for both groups
  10549. using a kernel density plot to approximate a continuous distribution.
  10550. The logCPM GB distributions are marked in red, non-GB in blue.
  10551. The black vertical line denotes the chosen detection threshold of -1.
  10552. Top panel: Libraries were split into GB and non-GB groups first and normalized
  10553. separately.
  10554. Bottom panel: Libraries were all normalized together first and then split
  10555. into groups.
  10556. \end_layout
  10557. \end_inset
  10558. \end_layout
  10559. \begin_layout Plain Layout
  10560. \end_layout
  10561. \end_inset
  10562. \end_layout
  10563. \begin_layout Standard
  10564. Since globin blocking yields more usable sequencing depth, it should also
  10565. allow detection of more genes at any given threshold.
  10566. When we looked at the distribution of average normalized logCPM values
  10567. across all libraries for genes with at least one read assigned to them,
  10568. we observed the expected bimodal distribution, with a high-abundance "signal"
  10569. peak representing detected genes and a low-abundance "noise" peak representing
  10570. genes whose read count did not rise above the noise floor (Figure
  10571. \begin_inset CommandInset ref
  10572. LatexCommand ref
  10573. reference "fig:logcpm-dists"
  10574. plural "false"
  10575. caps "false"
  10576. noprefix "false"
  10577. \end_inset
  10578. ).
  10579. Consistent with the 2-fold increase in raw counts assigned to non-globin
  10580. genes, the signal peak for GB samples is shifted to the right relative
  10581. to the non-GB signal peak.
  10582. When all the samples are normalized together, this difference is normalized
  10583. out, lining up the signal peaks, and this reveals that, as expected, the
  10584. noise floor for the GB samples is about 2-fold lower.
  10585. This greater separation between signal and noise peaks in the GB samples
  10586. means that low-expression genes should be more easily detected and more
  10587. precisely quantified than in the non-GB samples.
  10588. \end_layout
  10589. \begin_layout Standard
  10590. \begin_inset Float figure
  10591. wide false
  10592. sideways false
  10593. status collapsed
  10594. \begin_layout Plain Layout
  10595. \align center
  10596. \begin_inset Graphics
  10597. filename graphics/Globin Paper/figure3 - detection.pdf
  10598. lyxscale 50
  10599. width 70col%
  10600. \end_inset
  10601. \end_layout
  10602. \begin_layout Plain Layout
  10603. \begin_inset Caption Standard
  10604. \begin_layout Plain Layout
  10605. \series bold
  10606. \begin_inset Argument 1
  10607. status collapsed
  10608. \begin_layout Plain Layout
  10609. Gene detections as a function of abundance thresholds in globin-blocked
  10610. (GB) and non-GB samples.
  10611. \end_layout
  10612. \end_inset
  10613. \begin_inset CommandInset label
  10614. LatexCommand label
  10615. name "fig:Gene-detections"
  10616. \end_inset
  10617. Gene detections as a function of abundance thresholds in globin-blocked
  10618. (GB) and non-GB samples.
  10619. \series default
  10620. Average abundance (logCPM,
  10621. \begin_inset Formula $\log_{2}$
  10622. \end_inset
  10623. counts per million reads counted) was computed by separate group normalization
  10624. as described in Figure
  10625. \begin_inset CommandInset ref
  10626. LatexCommand ref
  10627. reference "fig:logcpm-dists"
  10628. plural "false"
  10629. caps "false"
  10630. noprefix "false"
  10631. \end_inset
  10632. for both the GB and non-GB groups, as well as for all samples considered
  10633. as one large group.
  10634. For each every integer threshold from -2 to 3, the number of genes detected
  10635. at or above that logCPM threshold was plotted for each group.
  10636. \end_layout
  10637. \end_inset
  10638. \end_layout
  10639. \begin_layout Plain Layout
  10640. \end_layout
  10641. \end_inset
  10642. \end_layout
  10643. \begin_layout Standard
  10644. Based on these distributions, we selected a detection threshold of -1, which
  10645. is approximately the leftmost edge of the trough between the signal and
  10646. noise peaks.
  10647. This represents the most liberal possible detection threshold that doesn't
  10648. call substantial numbers of noise genes as detected.
  10649. Among the full dataset, 13429 genes were detected at this threshold, and
  10650. 22276 were not.
  10651. When considering the GB libraries and non-GB libraries separately and re-comput
  10652. ing normalization factors independently within each group, 14535 genes were
  10653. detected in the GB libraries while only 12460 were detected in the non-GB
  10654. libraries.
  10655. Thus, GB allowed the detection of 2000 extra genes that were buried under
  10656. the noise floor without GB.
  10657. This pattern of at least 2000 additional genes detected with GB was also
  10658. consistent across a wide range of possible detection thresholds, from -2
  10659. to 3 (see Figure
  10660. \begin_inset CommandInset ref
  10661. LatexCommand ref
  10662. reference "fig:Gene-detections"
  10663. plural "false"
  10664. caps "false"
  10665. noprefix "false"
  10666. \end_inset
  10667. ).
  10668. \end_layout
  10669. \begin_layout Subsection
  10670. Globin blocking does not add significant additional noise or decrease sample
  10671. quality
  10672. \end_layout
  10673. \begin_layout Standard
  10674. One potential worry is that the globin blocking protocol could perturb the
  10675. levels of non-globin genes.
  10676. There are two kinds of possible perturbations: systematic and random.
  10677. The former is not a major concern for detection of differential expression,
  10678. since a 2-fold change in every sample has no effect on the relative fold
  10679. change between samples.
  10680. In contrast, random perturbations would increase the noise and obscure
  10681. the signal in the dataset, reducing the capacity to detect differential
  10682. expression.
  10683. \end_layout
  10684. \begin_layout Standard
  10685. \begin_inset Float figure
  10686. wide false
  10687. sideways false
  10688. status collapsed
  10689. \begin_layout Plain Layout
  10690. \align center
  10691. \begin_inset Graphics
  10692. filename graphics/Globin Paper/figure4 - maplot-colored.pdf
  10693. lyxscale 50
  10694. width 60col%
  10695. groupId colwidth
  10696. \end_inset
  10697. \end_layout
  10698. \begin_layout Plain Layout
  10699. \begin_inset Caption Standard
  10700. \begin_layout Plain Layout
  10701. \begin_inset Argument 1
  10702. status collapsed
  10703. \begin_layout Plain Layout
  10704. MA plot showing effects of globin blocking on each gene's abundance.
  10705. \end_layout
  10706. \end_inset
  10707. \begin_inset CommandInset label
  10708. LatexCommand label
  10709. name "fig:MA-plot"
  10710. \end_inset
  10711. \series bold
  10712. MA plot showing effects of globin blocking on each gene's abundance.
  10713. \series default
  10714. All libraries were normalized together as described in Figure
  10715. \begin_inset CommandInset ref
  10716. LatexCommand ref
  10717. reference "fig:logcpm-dists"
  10718. plural "false"
  10719. caps "false"
  10720. noprefix "false"
  10721. \end_inset
  10722. , and genes with an average logCPM below -1 were filtered out.
  10723. Each remaining gene was tested for differential abundance with respect
  10724. to globin blocking (GB) using edgeR’s quasi-likelihood F-test, fitting
  10725. a negative binomial generalized linear model to table of read counts in
  10726. each library.
  10727. For each gene, edgeR reported average abundance (logCPM),
  10728. \begin_inset Formula $\log_{2}$
  10729. \end_inset
  10730. fold change (logFC), p-value, and Benjamini-Hochberg adjusted false discovery
  10731. rate (FDR).
  10732. Each gene's logFC was plotted against its logCPM, colored by FDR.
  10733. Red points are significant at ≤10% FDR, and blue are not significant at
  10734. that threshold.
  10735. The alpha and beta globin genes targeted for blocking are marked with large
  10736. triangles, while all other genes are represented as small points.
  10737. \end_layout
  10738. \end_inset
  10739. \end_layout
  10740. \begin_layout Plain Layout
  10741. \end_layout
  10742. \end_inset
  10743. \end_layout
  10744. \begin_layout Standard
  10745. \begin_inset Flex TODO Note (inline)
  10746. status open
  10747. \begin_layout Plain Layout
  10748. Standardize on
  10749. \begin_inset Quotes eld
  10750. \end_inset
  10751. log2
  10752. \begin_inset Quotes erd
  10753. \end_inset
  10754. notation
  10755. \end_layout
  10756. \end_inset
  10757. \end_layout
  10758. \begin_layout Standard
  10759. The data do indeed show small systematic perturbations in gene levels (Figure
  10760. \begin_inset CommandInset ref
  10761. LatexCommand ref
  10762. reference "fig:MA-plot"
  10763. plural "false"
  10764. caps "false"
  10765. noprefix "false"
  10766. \end_inset
  10767. ).
  10768. Other than the 3 designated alpha and beta globin genes, two other genes
  10769. stand out as having especially large negative log fold changes: HBD and
  10770. LOC1021365.
  10771. HBD, delta globin, is most likely targeted by the blocking oligos due to
  10772. high sequence homology with the other globin genes.
  10773. LOC1021365 is the aforementioned ncRNA that is reverse-complementary to
  10774. one of the alpha-like genes and that would be expected to be removed during
  10775. the globin blocking step.
  10776. All other genes appear in a cluster centered vertically at 0, and the vast
  10777. majority of genes in this cluster show an absolute log2(FC) of 0.5 or less.
  10778. Nevertheless, many of these small perturbations are still statistically
  10779. significant, indicating that the globin blocking oligos likely cause very
  10780. small but non-zero systematic perturbations in measured gene expression
  10781. levels.
  10782. \end_layout
  10783. \begin_layout Standard
  10784. \begin_inset Float figure
  10785. wide false
  10786. sideways false
  10787. status collapsed
  10788. \begin_layout Plain Layout
  10789. \align center
  10790. \begin_inset Graphics
  10791. filename graphics/Globin Paper/figure5 - corrplot.pdf
  10792. lyxscale 50
  10793. width 70col%
  10794. \end_inset
  10795. \end_layout
  10796. \begin_layout Plain Layout
  10797. \begin_inset Caption Standard
  10798. \begin_layout Plain Layout
  10799. \series bold
  10800. \begin_inset Argument 1
  10801. status collapsed
  10802. \begin_layout Plain Layout
  10803. Comparison of inter-sample gene abundance correlations with and without
  10804. globin blocking.
  10805. \end_layout
  10806. \end_inset
  10807. \begin_inset CommandInset label
  10808. LatexCommand label
  10809. name "fig:gene-abundance-correlations"
  10810. \end_inset
  10811. Comparison of inter-sample gene abundance correlations with and without
  10812. globin blocking (GB).
  10813. \series default
  10814. All libraries were normalized together as described in Figure 2, and genes
  10815. with an average abundance (logCPM, log2 counts per million reads counted)
  10816. less than -1 were filtered out.
  10817. Each gene’s logCPM was computed in each library using the edgeR cpm function.
  10818. For each pair of biological samples, the Pearson correlation between those
  10819. samples' GB libraries was plotted against the correlation between the same
  10820. samples’ non-GB libraries.
  10821. Each point represents an unique pair of samples.
  10822. The solid gray line shows a quantile-quantile plot of distribution of GB
  10823. correlations vs.
  10824. that of non-GB correlations.
  10825. The thin dashed line is the identity line, provided for reference.
  10826. \end_layout
  10827. \end_inset
  10828. \end_layout
  10829. \begin_layout Plain Layout
  10830. \end_layout
  10831. \end_inset
  10832. \end_layout
  10833. \begin_layout Standard
  10834. To evaluate the possibility of globin blocking causing random perturbations
  10835. and reducing sample quality, we computed the Pearson correlation between
  10836. logCPM values for every pair of samples with and without GB and plotted
  10837. them against each other (Figure
  10838. \begin_inset CommandInset ref
  10839. LatexCommand ref
  10840. reference "fig:gene-abundance-correlations"
  10841. plural "false"
  10842. caps "false"
  10843. noprefix "false"
  10844. \end_inset
  10845. ).
  10846. The plot indicated that the GB libraries have higher sample-to-sample correlati
  10847. ons than the non-GB libraries.
  10848. Parametric and nonparametric tests for differences between the correlations
  10849. with and without GB both confirmed that this difference was highly significant
  10850. (2-sided paired t-test: t = 37.2, df = 665, P ≪ 2.2e-16; 2-sided Wilcoxon
  10851. sign-rank test: V = 2195, P ≪ 2.2e-16).
  10852. Performing the same tests on the Spearman correlations gave the same conclusion
  10853. (t-test: t = 26.8, df = 665, P ≪ 2.2e-16; sign-rank test: V = 8781, P ≪ 2.2e-16).
  10854. The edgeR package was used to compute the overall biological coefficient
  10855. of variation (BCV) for GB and non-GB libraries, and found that globin blocking
  10856. resulted in a negligible increase in the BCV (0.417 with GB vs.
  10857. 0.400 without).
  10858. The near equality of the BCVs for both sets indicates that the higher correlati
  10859. ons in the GB libraries are most likely a result of the increased yield
  10860. of useful reads, which reduces the contribution of Poisson counting uncertainty
  10861. to the overall variance of the logCPM values
  10862. \begin_inset CommandInset citation
  10863. LatexCommand cite
  10864. key "McCarthy2012"
  10865. literal "false"
  10866. \end_inset
  10867. .
  10868. This improves the precision of expression measurements and more than offsets
  10869. the negligible increase in BCV.
  10870. \end_layout
  10871. \begin_layout Subsection
  10872. More differentially expressed genes are detected with globin blocking
  10873. \end_layout
  10874. \begin_layout Standard
  10875. \begin_inset Float table
  10876. wide false
  10877. sideways false
  10878. status collapsed
  10879. \begin_layout Plain Layout
  10880. \align center
  10881. \begin_inset Tabular
  10882. <lyxtabular version="3" rows="5" columns="5">
  10883. <features tabularvalignment="middle">
  10884. <column alignment="center" valignment="top">
  10885. <column alignment="center" valignment="top">
  10886. <column alignment="center" valignment="top">
  10887. <column alignment="center" valignment="top">
  10888. <column alignment="center" valignment="top">
  10889. <row>
  10890. <cell alignment="center" valignment="top" usebox="none">
  10891. \begin_inset Text
  10892. \begin_layout Plain Layout
  10893. \end_layout
  10894. \end_inset
  10895. </cell>
  10896. <cell alignment="center" valignment="top" usebox="none">
  10897. \begin_inset Text
  10898. \begin_layout Plain Layout
  10899. \end_layout
  10900. \end_inset
  10901. </cell>
  10902. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  10903. \begin_inset Text
  10904. \begin_layout Plain Layout
  10905. \series bold
  10906. No Globin Blocking
  10907. \end_layout
  10908. \end_inset
  10909. </cell>
  10910. <cell multicolumn="2" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10911. \begin_inset Text
  10912. \begin_layout Plain Layout
  10913. \end_layout
  10914. \end_inset
  10915. </cell>
  10916. <cell multicolumn="2" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  10917. \begin_inset Text
  10918. \begin_layout Plain Layout
  10919. \end_layout
  10920. \end_inset
  10921. </cell>
  10922. </row>
  10923. <row>
  10924. <cell alignment="center" valignment="top" usebox="none">
  10925. \begin_inset Text
  10926. \begin_layout Plain Layout
  10927. \end_layout
  10928. \end_inset
  10929. </cell>
  10930. <cell alignment="center" valignment="top" usebox="none">
  10931. \begin_inset Text
  10932. \begin_layout Plain Layout
  10933. \end_layout
  10934. \end_inset
  10935. </cell>
  10936. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10937. \begin_inset Text
  10938. \begin_layout Plain Layout
  10939. \series bold
  10940. Up
  10941. \end_layout
  10942. \end_inset
  10943. </cell>
  10944. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10945. \begin_inset Text
  10946. \begin_layout Plain Layout
  10947. \series bold
  10948. NS
  10949. \end_layout
  10950. \end_inset
  10951. </cell>
  10952. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  10953. \begin_inset Text
  10954. \begin_layout Plain Layout
  10955. \series bold
  10956. Down
  10957. \end_layout
  10958. \end_inset
  10959. </cell>
  10960. </row>
  10961. <row>
  10962. <cell multirow="3" alignment="center" valignment="middle" topline="true" bottomline="true" leftline="true" usebox="none">
  10963. \begin_inset Text
  10964. \begin_layout Plain Layout
  10965. \series bold
  10966. Globin-Blocking
  10967. \end_layout
  10968. \end_inset
  10969. </cell>
  10970. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10971. \begin_inset Text
  10972. \begin_layout Plain Layout
  10973. \series bold
  10974. Up
  10975. \end_layout
  10976. \end_inset
  10977. </cell>
  10978. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10979. \begin_inset Text
  10980. \begin_layout Plain Layout
  10981. \family roman
  10982. \series medium
  10983. \shape up
  10984. \size normal
  10985. \emph off
  10986. \bar no
  10987. \strikeout off
  10988. \xout off
  10989. \uuline off
  10990. \uwave off
  10991. \noun off
  10992. \color none
  10993. 231
  10994. \end_layout
  10995. \end_inset
  10996. </cell>
  10997. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10998. \begin_inset Text
  10999. \begin_layout Plain Layout
  11000. \family roman
  11001. \series medium
  11002. \shape up
  11003. \size normal
  11004. \emph off
  11005. \bar no
  11006. \strikeout off
  11007. \xout off
  11008. \uuline off
  11009. \uwave off
  11010. \noun off
  11011. \color none
  11012. 515
  11013. \end_layout
  11014. \end_inset
  11015. </cell>
  11016. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  11017. \begin_inset Text
  11018. \begin_layout Plain Layout
  11019. \family roman
  11020. \series medium
  11021. \shape up
  11022. \size normal
  11023. \emph off
  11024. \bar no
  11025. \strikeout off
  11026. \xout off
  11027. \uuline off
  11028. \uwave off
  11029. \noun off
  11030. \color none
  11031. 2
  11032. \end_layout
  11033. \end_inset
  11034. </cell>
  11035. </row>
  11036. <row>
  11037. <cell multirow="4" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  11038. \begin_inset Text
  11039. \begin_layout Plain Layout
  11040. \end_layout
  11041. \end_inset
  11042. </cell>
  11043. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  11044. \begin_inset Text
  11045. \begin_layout Plain Layout
  11046. \series bold
  11047. NS
  11048. \end_layout
  11049. \end_inset
  11050. </cell>
  11051. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  11052. \begin_inset Text
  11053. \begin_layout Plain Layout
  11054. \family roman
  11055. \series medium
  11056. \shape up
  11057. \size normal
  11058. \emph off
  11059. \bar no
  11060. \strikeout off
  11061. \xout off
  11062. \uuline off
  11063. \uwave off
  11064. \noun off
  11065. \color none
  11066. 160
  11067. \end_layout
  11068. \end_inset
  11069. </cell>
  11070. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  11071. \begin_inset Text
  11072. \begin_layout Plain Layout
  11073. \family roman
  11074. \series medium
  11075. \shape up
  11076. \size normal
  11077. \emph off
  11078. \bar no
  11079. \strikeout off
  11080. \xout off
  11081. \uuline off
  11082. \uwave off
  11083. \noun off
  11084. \color none
  11085. 11235
  11086. \end_layout
  11087. \end_inset
  11088. </cell>
  11089. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  11090. \begin_inset Text
  11091. \begin_layout Plain Layout
  11092. \family roman
  11093. \series medium
  11094. \shape up
  11095. \size normal
  11096. \emph off
  11097. \bar no
  11098. \strikeout off
  11099. \xout off
  11100. \uuline off
  11101. \uwave off
  11102. \noun off
  11103. \color none
  11104. 136
  11105. \end_layout
  11106. \end_inset
  11107. </cell>
  11108. </row>
  11109. <row>
  11110. <cell multirow="4" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  11111. \begin_inset Text
  11112. \begin_layout Plain Layout
  11113. \end_layout
  11114. \end_inset
  11115. </cell>
  11116. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  11117. \begin_inset Text
  11118. \begin_layout Plain Layout
  11119. \series bold
  11120. Down
  11121. \end_layout
  11122. \end_inset
  11123. </cell>
  11124. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  11125. \begin_inset Text
  11126. \begin_layout Plain Layout
  11127. \family roman
  11128. \series medium
  11129. \shape up
  11130. \size normal
  11131. \emph off
  11132. \bar no
  11133. \strikeout off
  11134. \xout off
  11135. \uuline off
  11136. \uwave off
  11137. \noun off
  11138. \color none
  11139. 0
  11140. \end_layout
  11141. \end_inset
  11142. </cell>
  11143. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  11144. \begin_inset Text
  11145. \begin_layout Plain Layout
  11146. \family roman
  11147. \series medium
  11148. \shape up
  11149. \size normal
  11150. \emph off
  11151. \bar no
  11152. \strikeout off
  11153. \xout off
  11154. \uuline off
  11155. \uwave off
  11156. \noun off
  11157. \color none
  11158. 548
  11159. \end_layout
  11160. \end_inset
  11161. </cell>
  11162. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  11163. \begin_inset Text
  11164. \begin_layout Plain Layout
  11165. \family roman
  11166. \series medium
  11167. \shape up
  11168. \size normal
  11169. \emph off
  11170. \bar no
  11171. \strikeout off
  11172. \xout off
  11173. \uuline off
  11174. \uwave off
  11175. \noun off
  11176. \color none
  11177. 127
  11178. \end_layout
  11179. \end_inset
  11180. </cell>
  11181. </row>
  11182. </lyxtabular>
  11183. \end_inset
  11184. \end_layout
  11185. \begin_layout Plain Layout
  11186. \begin_inset Caption Standard
  11187. \begin_layout Plain Layout
  11188. \series bold
  11189. \begin_inset Argument 1
  11190. status open
  11191. \begin_layout Plain Layout
  11192. Comparison of significantly differentially expressed genes with and without
  11193. globin blocking.
  11194. \end_layout
  11195. \end_inset
  11196. \begin_inset CommandInset label
  11197. LatexCommand label
  11198. name "tab:Comparison-of-significant"
  11199. \end_inset
  11200. Comparison of significantly differentially expressed genes with and without
  11201. globin blocking.
  11202. \series default
  11203. Up, Down: Genes significantly up/down-regulated in post-transplant samples
  11204. relative to pre-transplant samples, with a false discovery rate of 10%
  11205. or less.
  11206. NS: Non-significant genes (false discovery rate greater than 10%).
  11207. \end_layout
  11208. \end_inset
  11209. \end_layout
  11210. \begin_layout Plain Layout
  11211. \end_layout
  11212. \end_inset
  11213. \end_layout
  11214. \begin_layout Standard
  11215. To compare performance on differential gene expression tests, we took subsets
  11216. of both the GB and non-GB libraries with exactly one pre-transplant and
  11217. one post-transplant sample for each animal that had paired samples available
  11218. for analysis (N=7 animals, N=14 samples in each subset).
  11219. The same test for pre- vs.
  11220. post-transplant differential gene expression was performed on the same
  11221. 7 pairs of samples from GB libraries and non-GB libraries, in each case
  11222. using an FDR of 10% as the threshold of significance.
  11223. Out of 12954 genes that passed the detection threshold in both subsets,
  11224. 358 were called significantly differentially expressed in the same direction
  11225. in both sets; 1063 were differentially expressed in the GB set only; 296
  11226. were differentially expressed in the non-GB set only; 2 genes were called
  11227. significantly up in the GB set but significantly down in the non-GB set;
  11228. and the remaining 11235 were not called differentially expressed in either
  11229. set.
  11230. These data are summarized in Table
  11231. \begin_inset CommandInset ref
  11232. LatexCommand ref
  11233. reference "tab:Comparison-of-significant"
  11234. plural "false"
  11235. caps "false"
  11236. noprefix "false"
  11237. \end_inset
  11238. .
  11239. The differences in BCV calculated by EdgeR for these subsets of samples
  11240. were negligible (BCV = 0.302 for GB and 0.297 for non-GB).
  11241. \end_layout
  11242. \begin_layout Standard
  11243. The key point is that the GB data results in substantially more differentially
  11244. expressed calls than the non-GB data.
  11245. Since there is no gold standard for this dataset, it is impossible to be
  11246. certain whether this is due to under-calling of differential expression
  11247. in the non-GB samples or over-calling in the GB samples.
  11248. However, given that both datasets are derived from the same biological
  11249. samples and have nearly equal BCVs, it is more likely that the larger number
  11250. of DE calls in the GB samples are genuine detections that were enabled
  11251. by the higher sequencing depth and measurement precision of the GB samples.
  11252. Note that the same set of genes was considered in both subsets, so the
  11253. larger number of differentially expressed gene calls in the GB data set
  11254. reflects a greater sensitivity to detect significant differential gene
  11255. expression and not simply the larger total number of detected genes in
  11256. GB samples described earlier.
  11257. \end_layout
  11258. \begin_layout Section
  11259. Discussion
  11260. \end_layout
  11261. \begin_layout Standard
  11262. The original experience with whole blood gene expression profiling on DNA
  11263. microarrays demonstrated that the high concentration of globin transcripts
  11264. reduced the sensitivity to detect genes with relatively low expression
  11265. levels, in effect, significantly reducing the sensitivity.
  11266. To address this limitation, commercial protocols for globin reduction were
  11267. developed based on strategies to block globin transcript amplification
  11268. during labeling or physically removing globin transcripts by affinity bead
  11269. methods
  11270. \begin_inset CommandInset citation
  11271. LatexCommand cite
  11272. key "Winn2010"
  11273. literal "false"
  11274. \end_inset
  11275. .
  11276. More recently, using the latest generation of labeling protocols and arrays,
  11277. it was determined that globin reduction was no longer necessary to obtain
  11278. sufficient sensitivity to detect differential transcript expression
  11279. \begin_inset CommandInset citation
  11280. LatexCommand cite
  11281. key "NuGEN2010"
  11282. literal "false"
  11283. \end_inset
  11284. .
  11285. However, we are not aware of any publications using these currently available
  11286. protocols the with latest generation of microarrays that actually compare
  11287. the detection sensitivity with and without globin reduction.
  11288. However, in practice this has now been adopted generally primarily driven
  11289. by concerns for cost control.
  11290. The main objective of our work was to directly test the impact of globin
  11291. gene transcripts and a new globin blocking protocol for application to
  11292. the newest generation of differential gene expression profiling determined
  11293. using next generation sequencing.
  11294. \end_layout
  11295. \begin_layout Standard
  11296. The challenge of doing global gene expression profiling in cynomolgus monkeys
  11297. is that the current available arrays were never designed to comprehensively
  11298. cover this genome and have not been updated since the first assemblies
  11299. of the cynomolgus genome were published.
  11300. Therefore, we determined that the best strategy for peripheral blood profiling
  11301. was to do deep RNA-seq and inform the workflow using the latest available
  11302. genome assembly and annotation
  11303. \begin_inset CommandInset citation
  11304. LatexCommand cite
  11305. key "Wilson2013"
  11306. literal "false"
  11307. \end_inset
  11308. .
  11309. However, it was not immediately clear whether globin reduction was necessary
  11310. for RNA-seq or how much improvement in efficiency or sensitivity to detect
  11311. differential gene expression would be achieved for the added cost and work.
  11312. \end_layout
  11313. \begin_layout Standard
  11314. We only found one report that demonstrated that globin reduction significantly
  11315. improved the effective read yields for sequencing of human peripheral blood
  11316. cell RNA using a DeepSAGE protocol
  11317. \begin_inset CommandInset citation
  11318. LatexCommand cite
  11319. key "Mastrokolias2012"
  11320. literal "false"
  11321. \end_inset
  11322. .
  11323. The approach to DeepSAGE involves two different restriction enzymes that
  11324. purify and then tag small fragments of transcripts at specific locations
  11325. and thus, significantly reduces the complexity of the transcriptome.
  11326. Therefore, we could not determine how DeepSAGE results would translate
  11327. to the common strategy in the field for assaying the entire transcript
  11328. population by whole-transcriptome 3’-end RNA-seq.
  11329. Furthermore, if globin reduction is necessary, we also needed a globin
  11330. reduction method specific to cynomolgus globin sequences that would work
  11331. an organism for which no kit is available off the shelf.
  11332. \end_layout
  11333. \begin_layout Standard
  11334. As mentioned above, the addition of globin blocking oligos has a very small
  11335. impact on measured expression levels of gene expression.
  11336. However, this is a non-issue for the purposes of differential expression
  11337. testing, since a systematic change in a gene in all samples does not affect
  11338. relative expression levels between samples.
  11339. However, we must acknowledge that simple comparisons of gene expression
  11340. data obtained by GB and non-GB protocols are not possible without additional
  11341. normalization.
  11342. \end_layout
  11343. \begin_layout Standard
  11344. More importantly, globin blocking not only nearly doubles the yield of usable
  11345. reads, it also increases inter-sample correlation and sensitivity to detect
  11346. differential gene expression relative to the same set of samples profiled
  11347. without blocking.
  11348. In addition, globin blocking does not add a significant amount of random
  11349. noise to the data.
  11350. Globin blocking thus represents a cost-effective way to squeeze more data
  11351. and statistical power out of the same blood samples and the same amount
  11352. of sequencing.
  11353. In conclusion, globin reduction greatly increases the yield of useful RNA-seq
  11354. reads mapping to the rest of the genome, with minimal perturbations in
  11355. the relative levels of non-globin genes.
  11356. Based on these results, globin transcript reduction using sequence-specific,
  11357. complementary blocking oligonucleotides is recommended for all deep RNA-seq
  11358. of cynomolgus and other nonhuman primate blood samples.
  11359. \end_layout
  11360. \begin_layout Section
  11361. Future Directions
  11362. \end_layout
  11363. \begin_layout Standard
  11364. One drawback of the globin blocking method presented in this analysis is
  11365. a poor yield of genic reads, only around 50%.
  11366. In a separate experiment, the reagent mixture was modified so as to address
  11367. this drawback, resulting in a method that produces an even better reduction
  11368. in globin reads without reducing the overall fraction of genic reads.
  11369. However, the data showing this improvement consists of only a few test
  11370. samples, so the larger data set analyzed above was chosen in order to demonstra
  11371. te the effectiveness of the method in reducing globin reads while preserving
  11372. the biological signal.
  11373. \end_layout
  11374. \begin_layout Standard
  11375. The motivation for developing a fast practical way to enrich for non-globin
  11376. reads in cyno blood samples was to enable a large-scale RNA-seq experiment
  11377. investigating the effects of mesenchymal stem cell infusion on blood gene
  11378. expression in cynomologus transplant recipients in a time course after
  11379. transplantation.
  11380. With the globin blocking method in place, the way is now clear for this
  11381. experiment to proceed.
  11382. \end_layout
  11383. \begin_layout Chapter
  11384. Future Directions
  11385. \end_layout
  11386. \begin_layout Standard
  11387. \begin_inset Flex TODO Note (inline)
  11388. status open
  11389. \begin_layout Plain Layout
  11390. If there are any chapter-independent future directions, put them here.
  11391. Otherwise, delete this section.
  11392. Check in the directions if this is OK.
  11393. \end_layout
  11394. \end_inset
  11395. \end_layout
  11396. \begin_layout Chapter
  11397. Closing remarks
  11398. \end_layout
  11399. \begin_layout Standard
  11400. \begin_inset ERT
  11401. status collapsed
  11402. \begin_layout Plain Layout
  11403. % Use "References" as the title of the Bibliography
  11404. \end_layout
  11405. \begin_layout Plain Layout
  11406. \backslash
  11407. renewcommand{
  11408. \backslash
  11409. bibname}{References}
  11410. \end_layout
  11411. \end_inset
  11412. \end_layout
  11413. \begin_layout Standard
  11414. \begin_inset CommandInset bibtex
  11415. LatexCommand bibtex
  11416. btprint "btPrintCited"
  11417. bibfiles "code-refs,refs-PROCESSED"
  11418. options "bibtotoc,unsrt"
  11419. \end_inset
  11420. \end_layout
  11421. \begin_layout Standard
  11422. \begin_inset Flex TODO Note (inline)
  11423. status open
  11424. \begin_layout Plain Layout
  11425. Check bib entry formatting & sort order
  11426. \end_layout
  11427. \end_inset
  11428. \end_layout
  11429. \begin_layout Standard
  11430. \begin_inset Flex TODO Note (inline)
  11431. status open
  11432. \begin_layout Plain Layout
  11433. Check in-text citation format.
  11434. Probably don't just want [1], [2], etc.
  11435. \end_layout
  11436. \end_inset
  11437. \end_layout
  11438. \end_body
  11439. \end_document