thesis.lyx 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880
  1. #LyX 2.3 created this file. For more info see http://www.lyx.org/
  2. \lyxformat 544
  3. \begin_document
  4. \begin_header
  5. \save_transient_properties true
  6. \origin unavailable
  7. \textclass extbook
  8. \begin_preamble
  9. \usepackage{fancyhdr}
  10. \pagestyle{fancy}
  11. \renewcommand{\headrulewidth}{0pt}
  12. \rhead{}
  13. \lhead{}
  14. \rfoot{}
  15. \lfoot{}
  16. \cfoot{\thepage}
  17. \usepackage{draftwatermark}
  18. \end_preamble
  19. \use_default_options true
  20. \maintain_unincluded_children false
  21. \language english
  22. \language_package default
  23. \inputencoding auto
  24. \fontencoding global
  25. \font_roman "default" "default"
  26. \font_sans "default" "default"
  27. \font_typewriter "default" "default"
  28. \font_math "auto" "auto"
  29. \font_default_family default
  30. \use_non_tex_fonts false
  31. \font_sc false
  32. \font_osf false
  33. \font_sf_scale 100 100
  34. \font_tt_scale 100 100
  35. \use_microtype false
  36. \use_dash_ligatures true
  37. \graphics default
  38. \default_output_format default
  39. \output_sync 0
  40. \bibtex_command default
  41. \index_command default
  42. \paperfontsize 12
  43. \spacing double
  44. \use_hyperref false
  45. \papersize letterpaper
  46. \use_geometry true
  47. \use_package amsmath 1
  48. \use_package amssymb 1
  49. \use_package cancel 1
  50. \use_package esint 1
  51. \use_package mathdots 1
  52. \use_package mathtools 1
  53. \use_package mhchem 1
  54. \use_package stackrel 1
  55. \use_package stmaryrd 1
  56. \use_package undertilde 1
  57. \cite_engine basic
  58. \cite_engine_type default
  59. \biblio_style plain
  60. \use_bibtopic false
  61. \use_indices false
  62. \paperorientation portrait
  63. \suppress_date false
  64. \justification true
  65. \use_refstyle 1
  66. \use_minted 0
  67. \index Index
  68. \shortcut idx
  69. \color #008000
  70. \end_index
  71. \leftmargin 1.5in
  72. \topmargin 1in
  73. \rightmargin 1in
  74. \bottommargin 1in
  75. \secnumdepth 3
  76. \tocdepth 3
  77. \paragraph_separation indent
  78. \paragraph_indentation default
  79. \is_math_indent 0
  80. \math_numbering_side default
  81. \quotes_style english
  82. \dynamic_quotes 0
  83. \papercolumns 1
  84. \papersides 2
  85. \paperpagestyle default
  86. \tracking_changes false
  87. \output_changes false
  88. \html_math_output 0
  89. \html_css_as_file 0
  90. \html_be_strict false
  91. \end_header
  92. \begin_body
  93. \begin_layout Title
  94. Bioinformatic analysis of complex, high-throughput genomic and epigenomic
  95. data in the context of immunology and transplant rejection
  96. \end_layout
  97. \begin_layout Author
  98. A thesis presented
  99. \begin_inset Newline newline
  100. \end_inset
  101. by
  102. \begin_inset Newline newline
  103. \end_inset
  104. Ryan C.
  105. Thompson
  106. \begin_inset Newline newline
  107. \end_inset
  108. to
  109. \begin_inset Newline newline
  110. \end_inset
  111. The Scripps Research Institute Graduate Program
  112. \begin_inset Newline newline
  113. \end_inset
  114. in partial fulfillment of the requirements for the degree of
  115. \begin_inset Newline newline
  116. \end_inset
  117. Doctor of Philosophy in the subject of Biology
  118. \begin_inset Newline newline
  119. \end_inset
  120. for
  121. \begin_inset Newline newline
  122. \end_inset
  123. The Scripps Research Institute
  124. \begin_inset Newline newline
  125. \end_inset
  126. La Jolla, California
  127. \end_layout
  128. \begin_layout Date
  129. May 2019
  130. \end_layout
  131. \begin_layout Standard
  132. [Copyright notice]
  133. \end_layout
  134. \begin_layout Standard
  135. [Thesis acceptance form]
  136. \end_layout
  137. \begin_layout Standard
  138. [Dedication]
  139. \end_layout
  140. \begin_layout Standard
  141. [Acknowledgements]
  142. \end_layout
  143. \begin_layout Standard
  144. [TOC]
  145. \end_layout
  146. \begin_layout Standard
  147. [List of Tables]
  148. \end_layout
  149. \begin_layout Standard
  150. [List of Figures]
  151. \end_layout
  152. \begin_layout Standard
  153. [List of Abbreviations]
  154. \end_layout
  155. \begin_layout Standard
  156. [Abstract]
  157. \end_layout
  158. \begin_layout Chapter*
  159. Abstract
  160. \end_layout
  161. \begin_layout Chapter*
  162. Introduction
  163. \end_layout
  164. \begin_layout Section*
  165. Background & Significance
  166. \end_layout
  167. \begin_layout Subsection*
  168. Biological motivation
  169. \end_layout
  170. \begin_layout Itemize
  171. Rejection is the major long-term threat to organ and tissue grafts
  172. \end_layout
  173. \begin_deeper
  174. \begin_layout Itemize
  175. Common mechanisms of rejection
  176. \end_layout
  177. \begin_layout Itemize
  178. Effective immune suppression requires monitoring for rejection and tuning
  179. \end_layout
  180. \begin_layout Itemize
  181. Current tests for rejection (tissue biopsy) are invasive and biased
  182. \end_layout
  183. \begin_layout Itemize
  184. A blood test based on microarrays would be less biased and invasive
  185. \end_layout
  186. \end_deeper
  187. \begin_layout Itemize
  188. Memory cells are resistant to immune suppression
  189. \end_layout
  190. \begin_deeper
  191. \begin_layout Itemize
  192. Mechanisms of resistance in memory cells are poorly understood
  193. \end_layout
  194. \begin_layout Itemize
  195. A better understanding of immune memory formation is needed
  196. \end_layout
  197. \end_deeper
  198. \begin_layout Itemize
  199. Mesenchymal stem cell infusion is a promising new treatment to prevent/delay
  200. rejection
  201. \end_layout
  202. \begin_deeper
  203. \begin_layout Itemize
  204. Demonstrated in mice, but not yet in primates
  205. \end_layout
  206. \begin_layout Itemize
  207. Mechanism currently unknown, but MSC are known to be immune modulatory
  208. \end_layout
  209. \end_deeper
  210. \begin_layout Subsection*
  211. Overview of bioinformatic analysis methods
  212. \end_layout
  213. \begin_layout Standard
  214. An overview of all the methods used, including what problem they solve,
  215. what assumptions they make, and a basic description of how they work.
  216. \end_layout
  217. \begin_layout Itemize
  218. ChIP-seq Peak calling
  219. \end_layout
  220. \begin_deeper
  221. \begin_layout Itemize
  222. Cross-correlation analysis to determine fragment size
  223. \end_layout
  224. \begin_layout Itemize
  225. Broad vs narrow peaks
  226. \end_layout
  227. \begin_layout Itemize
  228. SICER for broad peaks
  229. \end_layout
  230. \begin_layout Itemize
  231. IDR for biologically reproducible peaks
  232. \end_layout
  233. \begin_layout Itemize
  234. csaw peak filtering guidelines for unbiased downstream analysis
  235. \end_layout
  236. \end_deeper
  237. \begin_layout Itemize
  238. Normalization is non-trivial and application-dependant
  239. \end_layout
  240. \begin_deeper
  241. \begin_layout Itemize
  242. Expression arrays: RMA & fRMA; why fRMA is needed
  243. \end_layout
  244. \begin_layout Itemize
  245. Methylation arrays: M-value transformation approximates normal data but
  246. induces heteroskedasticity
  247. \end_layout
  248. \begin_layout Itemize
  249. RNA-seq: normalize based on assumption that the average gene is not changing
  250. \end_layout
  251. \begin_layout Itemize
  252. ChIP-seq: complex with many considerations, dependent on experimental methods,
  253. biological system, and analysis goals
  254. \end_layout
  255. \end_deeper
  256. \begin_layout Itemize
  257. Limma: The standard linear modeling framework for genomics
  258. \end_layout
  259. \begin_deeper
  260. \begin_layout Itemize
  261. empirical Bayes variance modeling: limma's core feature
  262. \end_layout
  263. \begin_layout Itemize
  264. edgeR & DESeq2: Extend with negative bonomial GLM for RNA-seq and other
  265. count data
  266. \end_layout
  267. \begin_layout Itemize
  268. voom: Extend with precision weights to model mean-variance trend
  269. \end_layout
  270. \begin_layout Itemize
  271. arrayWeights and duplicateCorrelation to handle complex variance structures
  272. \end_layout
  273. \end_deeper
  274. \begin_layout Itemize
  275. sva and ComBat for batch correction
  276. \end_layout
  277. \begin_layout Itemize
  278. Factor analysis: PCA, MDS, MOFA
  279. \end_layout
  280. \begin_deeper
  281. \begin_layout Itemize
  282. Batch-corrected PCA is informative, but careful application is required
  283. to avoid bias
  284. \end_layout
  285. \end_deeper
  286. \begin_layout Itemize
  287. Gene set analysis: camera and SPIA
  288. \end_layout
  289. \begin_layout Section*
  290. Innovation
  291. \end_layout
  292. \begin_layout Itemize
  293. MSC infusion to improve transplant outcomes (prevent/delay rejection)
  294. \end_layout
  295. \begin_deeper
  296. \begin_layout Itemize
  297. Characterize MSC response to interferon gamma
  298. \end_layout
  299. \begin_layout Itemize
  300. IFN-g is thought to stimulate their function
  301. \end_layout
  302. \begin_layout Itemize
  303. Test IFN-g treated MSC infusion as a therapy to delay graft rejection in
  304. cynomolgus monkeys
  305. \end_layout
  306. \begin_layout Itemize
  307. Monitor animals post-transplant using blood RNA-seq at serial time points
  308. \end_layout
  309. \end_deeper
  310. \begin_layout Itemize
  311. Investigate dynamics of histone marks in CD4 T-cell activation and memory
  312. \end_layout
  313. \begin_deeper
  314. \begin_layout Itemize
  315. Previous studies have looked at single snapshots of histone marks
  316. \end_layout
  317. \begin_layout Itemize
  318. Instead, look at changes in histone marks across activation and memory
  319. \end_layout
  320. \end_deeper
  321. \begin_layout Itemize
  322. High-throughput sequencing and microarray technologies
  323. \end_layout
  324. \begin_deeper
  325. \begin_layout Itemize
  326. Powerful methods for assaying gene expression and epigenetics across entire
  327. genomes
  328. \end_layout
  329. \begin_layout Itemize
  330. Proper analysis requires finding and exploiting systematic genome-wide trends
  331. \end_layout
  332. \end_deeper
  333. \begin_layout Chapter*
  334. 1.
  335. Reproducible genome-wide epigenetic analysis of H3K4 and H3K27 methylation
  336. in naive and memory CD4 T-cell activation
  337. \end_layout
  338. \begin_layout Section*
  339. Approach
  340. \end_layout
  341. \begin_layout Itemize
  342. CD4 T-cells are central to all adaptive immune responses and memory
  343. \end_layout
  344. \begin_layout Itemize
  345. H3K4 and H3K27 methylation are major epigenetic regulators of gene expression
  346. \end_layout
  347. \begin_layout Itemize
  348. Canonically, H3K4 is activating and H3K27 is inhibitory, but the reality
  349. is complex
  350. \end_layout
  351. \begin_layout Itemize
  352. Looking at these marks during CD4 activation and memory should reveal new
  353. mechanistic details
  354. \end_layout
  355. \begin_layout Itemize
  356. Test
  357. \begin_inset Quotes eld
  358. \end_inset
  359. poised promoter
  360. \begin_inset Quotes erd
  361. \end_inset
  362. hypothesis in which H3K4 and H3K27 are both methylated
  363. \end_layout
  364. \begin_layout Itemize
  365. Expand scope of analysis beyond simple promoter counts
  366. \end_layout
  367. \begin_deeper
  368. \begin_layout Itemize
  369. Analyze peaks genome-wide, including in intergenic regions
  370. \end_layout
  371. \begin_layout Itemize
  372. Analysis of coverage distribution shape within promoters, e.g.
  373. upstream vs downstream coverage
  374. \end_layout
  375. \end_deeper
  376. \begin_layout Section*
  377. Methods
  378. \end_layout
  379. \begin_layout Itemize
  380. Re-analyze previously published CD4 ChIP-seq & RNA-seq data
  381. \begin_inset CommandInset citation
  382. LatexCommand cite
  383. key "LaMere2016,Lamere2017"
  384. literal "true"
  385. \end_inset
  386. \end_layout
  387. \begin_deeper
  388. \begin_layout Itemize
  389. Completely reimplement analysis from scratch as a reproducible workflow
  390. \end_layout
  391. \begin_layout Itemize
  392. Use newly published methods & algorithms not available during the original
  393. analysis: SICER, csaw, MOFA, ComBat, sva, GREAT, and more
  394. \end_layout
  395. \end_deeper
  396. \begin_layout Itemize
  397. SICER, IDR, csaw, & GREAT to call ChIP-seq peaks genome-wide, perform differenti
  398. al abundance analysis, and relate those peaks to gene expression
  399. \end_layout
  400. \begin_layout Itemize
  401. Promoter counts in sliding windows around each gene's highest-expressed
  402. TSS to investigate coverage distribution within promoters
  403. \end_layout
  404. \begin_layout Section*
  405. Results
  406. \end_layout
  407. \begin_layout Itemize
  408. Different histone marks have different effective promoter radii
  409. \end_layout
  410. \begin_layout Itemize
  411. H3K4 and RNA-seq data show clear evidence of naive convergence with memory
  412. between days 1 and 5
  413. \end_layout
  414. \begin_layout Itemize
  415. Promoter coverage distribution affects gene expression independent of total
  416. promoter count
  417. \end_layout
  418. \begin_layout Itemize
  419. Remaining analyses to complete:
  420. \end_layout
  421. \begin_deeper
  422. \begin_layout Itemize
  423. Look for naive-to-memory convergence in H3K27 data
  424. \end_layout
  425. \begin_layout Itemize
  426. Look at enriched pathways for day 0 to day 1 (activation) compared to day
  427. 1 to day 5 (putative naive-to-memory differentiation)
  428. \end_layout
  429. \begin_layout Itemize
  430. Find genes with different expression patterns in naive vs.
  431. memory and try to explain the difference with the Day 0 histone mark data
  432. \end_layout
  433. \begin_deeper
  434. \begin_layout Itemize
  435. Determine whether co-occurrence of H3K4me3 and H3K27me3 (proposed
  436. \begin_inset Quotes eld
  437. \end_inset
  438. poised
  439. \begin_inset Quotes erd
  440. \end_inset
  441. state) has effects on post-activation expression dynamics
  442. \end_layout
  443. \begin_layout Itemize
  444. Promoter coverage distribution dynamics throughout activation for interesting
  445. subsets of genes
  446. \end_layout
  447. \end_deeper
  448. \begin_layout Itemize
  449. (Backup) Compare and contrast behavior of promoter peaks vs intergenic (putative
  450. enhancer) peaks (GREAT analysis)
  451. \end_layout
  452. \begin_deeper
  453. \begin_layout Itemize
  454. Put results in context of important T-cell pathways & gene expression data
  455. \end_layout
  456. \end_deeper
  457. \end_deeper
  458. \begin_layout Section*
  459. Discussion
  460. \end_layout
  461. \begin_layout Itemize
  462. "Promoter radius" is not constant and must be defined empirically for a
  463. given data set
  464. \end_layout
  465. \begin_layout Itemize
  466. Evaluate evidence for poised promoters and enhancer effects on gene expression
  467. dynamics of naive-to-memory differentiation
  468. \end_layout
  469. \begin_layout Itemize
  470. Compare to published work on other epigenetic marks (e.g.
  471. chromatin accessibility)
  472. \end_layout
  473. \begin_layout Chapter*
  474. 2.
  475. Improving array-based analyses of transplant rejection by optimizing data
  476. preprocessing
  477. \end_layout
  478. \begin_layout Section*
  479. Approach
  480. \end_layout
  481. \begin_layout Itemize
  482. Machine-learning applications demand a "single-channel" normalization method
  483. \end_layout
  484. \begin_layout Itemize
  485. frozen RMA is a good solution, but not trivial to apply
  486. \end_layout
  487. \begin_layout Itemize
  488. Methylation array data preprocessing induces heteroskedasticity
  489. \end_layout
  490. \begin_layout Itemize
  491. Need to account for this mean-variance dependency in analysis
  492. \end_layout
  493. \begin_layout Section*
  494. Methods
  495. \end_layout
  496. \begin_layout Itemize
  497. Expression array normalization for detecting acute rejection
  498. \end_layout
  499. \begin_layout Itemize
  500. Use frozen RMA, a single-channel variant of RMA
  501. \end_layout
  502. \begin_layout Itemize
  503. Generate custom fRMA normalization vectors for each tissue (biopsy, blood)
  504. \end_layout
  505. \begin_layout Itemize
  506. Methylation arrays for differential methylation in rejection vs.
  507. healthy transplant
  508. \end_layout
  509. \begin_layout Itemize
  510. Adapt voom method originally designed for RNA-seq to model mean-variance
  511. dependence
  512. \end_layout
  513. \begin_layout Itemize
  514. Use sample precision weighting and sva to adjust for other confounding factors
  515. \end_layout
  516. \begin_layout Section*
  517. Results
  518. \end_layout
  519. \begin_layout Itemize
  520. custom fRMA normalization improved cross-validated classifier performance
  521. \begin_inset CommandInset citation
  522. LatexCommand cite
  523. key "Kurian2014"
  524. literal "true"
  525. \end_inset
  526. \end_layout
  527. \begin_layout Itemize
  528. voom, precision weights, and sva improved model fit
  529. \end_layout
  530. \begin_deeper
  531. \begin_layout Itemize
  532. Also increased sensitivity for detecting differential methylation
  533. \end_layout
  534. \end_deeper
  535. \begin_layout Section*
  536. Discussion
  537. \end_layout
  538. \begin_layout Itemize
  539. fRMA enables classifying new samples without re-normalizing the entire data
  540. set
  541. \end_layout
  542. \begin_deeper
  543. \begin_layout Itemize
  544. Critical for translating a classifier into clinical practice
  545. \end_layout
  546. \end_deeper
  547. \begin_layout Itemize
  548. Methods like voom designed for RNA-seq can also help with array analysis
  549. \end_layout
  550. \begin_layout Itemize
  551. Extracting and modeling confounders common to many features improves model
  552. correspondence to known biology
  553. \end_layout
  554. \begin_layout Chapter*
  555. 3.
  556. Globin-blocking for more effective blood RNA-seq analysis in primate animal
  557. model
  558. \end_layout
  559. \begin_layout Standard
  560. \begin_inset Note Note
  561. status open
  562. \begin_layout Plain Layout
  563. Paper title: Optimizing yield of deep RNA sequencing for gene expression
  564. profiling by globin reduction of peripheral blood samples from cynomolgus
  565. monkeys (Macaca fascicularis).
  566. \end_layout
  567. \end_inset
  568. \end_layout
  569. \begin_layout Standard
  570. \begin_inset Note Note
  571. status open
  572. \begin_layout Plain Layout
  573. How to integrate/credit sections written by others (e.g.
  574. wetlab methods)? (Majority of paper text is written by me.)
  575. \end_layout
  576. \end_inset
  577. \end_layout
  578. \begin_layout Standard
  579. \begin_inset Note Note
  580. status open
  581. \begin_layout Plain Layout
  582. Move paper's Background section into thesis Introduction section?
  583. \end_layout
  584. \end_inset
  585. \end_layout
  586. \begin_layout Section*
  587. Approach
  588. \end_layout
  589. \begin_layout Itemize
  590. Cynomolgus monkeys as a model organism
  591. \end_layout
  592. \begin_deeper
  593. \begin_layout Itemize
  594. Highly related to humans
  595. \end_layout
  596. \begin_layout Itemize
  597. Small size and short life cycle - good research animal
  598. \end_layout
  599. \begin_layout Itemize
  600. Genomics resources still in development
  601. \end_layout
  602. \end_deeper
  603. \begin_layout Itemize
  604. Inadequacy of existing blood RNA-seq protocols
  605. \end_layout
  606. \begin_deeper
  607. \begin_layout Itemize
  608. Existing protocols use a separate globin pulldown step, slowing down processing
  609. \end_layout
  610. \end_deeper
  611. \begin_layout Section*
  612. Methods
  613. \end_layout
  614. \begin_layout Itemize
  615. New blood RNA-seq protocol to block reverse transcription of globin genes
  616. \end_layout
  617. \begin_layout Itemize
  618. Blood RNA-seq time course after transplants with/without MSC infusion
  619. \end_layout
  620. \begin_layout Section*
  621. Results
  622. \end_layout
  623. \begin_layout Itemize
  624. New blood RNA-seq protocol increases effective yield 2-fold while maintaining
  625. sample quality (paper)
  626. \end_layout
  627. \begin_layout Itemize
  628. MSC treatment signature is swamped by much larger post-transplant stress/injury
  629. response (analysis to demonstrate application of developed protocol to
  630. real data)
  631. \end_layout
  632. \begin_layout Section*
  633. Discussion
  634. \end_layout
  635. \begin_layout Itemize
  636. Globin-blocking is highly effective and efficient for blood RNA-seq
  637. \end_layout
  638. \begin_layout Itemize
  639. More work required to tease out subtle post-transplant MSC signature in
  640. living animals
  641. \end_layout
  642. \begin_layout Part*
  643. Future Directions
  644. \end_layout
  645. \begin_layout Itemize
  646. Study other epigenetic marks in more contexts
  647. \end_layout
  648. \begin_deeper
  649. \begin_layout Itemize
  650. DNA methylation, histone marks, chromatin accessibility & conformation in
  651. CD4 T-cells
  652. \end_layout
  653. \begin_layout Itemize
  654. Also look at other types lymphocytes: CD8 T-cells, B-cells, NK cells
  655. \end_layout
  656. \end_deeper
  657. \begin_layout Itemize
  658. Investigate epigenetic regulation of lifespan extension in
  659. \emph on
  660. C.
  661. elegans
  662. \end_layout
  663. \begin_deeper
  664. \begin_layout Itemize
  665. ChIP-seq of important transcriptional regulators to see how transcriptional
  666. drift is prevented
  667. \end_layout
  668. \end_deeper
  669. \begin_layout Standard
  670. \begin_inset ERT
  671. status open
  672. \begin_layout Plain Layout
  673. % Use "References" instead of "Bibliography"
  674. \end_layout
  675. \begin_layout Plain Layout
  676. \backslash
  677. renewcommand{
  678. \backslash
  679. bibname}{References}
  680. \end_layout
  681. \end_inset
  682. \end_layout
  683. \begin_layout Standard
  684. \begin_inset CommandInset bibtex
  685. LatexCommand bibtex
  686. bibfiles "refs"
  687. options "plain"
  688. \end_inset
  689. \end_layout
  690. \end_body
  691. \end_document