thesis.lyx 94 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006
  1. #LyX 2.3 created this file. For more info see http://www.lyx.org/
  2. \lyxformat 544
  3. \begin_document
  4. \begin_header
  5. \save_transient_properties true
  6. \origin unavailable
  7. \textclass extbook
  8. \begin_preamble
  9. % List all used files in log output
  10. \listfiles
  11. % Add a DRAFT watermark
  12. \usepackage{draftwatermark}
  13. \SetWatermarkLightness{0.97}
  14. \SetWatermarkScale{1}
  15. % Set up required header format
  16. \usepackage{fancyhdr}
  17. \pagestyle{fancy}
  18. \renewcommand{\headrulewidth}{0pt}
  19. \rhead{}
  20. \lhead{}
  21. \rfoot{}
  22. \lfoot{}
  23. \cfoot{\thepage} % Page number bottom center
  24. % https://tex.stackexchange.com/questions/65680/automatically-bold-first-sentence-of-a-floats-caption
  25. \usepackage{xstring}
  26. \usepackage{etoolbox}
  27. \usepackage{caption}
  28. \captionsetup{labelfont=bf,tableposition=top}
  29. \makeatletter
  30. \newcommand\formatlabel[1]{%
  31. \noexpandarg
  32. \IfSubStr{#1}{.}{%
  33. \StrBefore{#1}{.}[\firstcaption]%
  34. \StrBehind{#1}{.}[\secondcaption]%
  35. \textbf{\firstcaption.} \secondcaption}{%
  36. #1}%
  37. }
  38. \patchcmd{\@caption}{#3}{\formatlabel{#3}}
  39. \makeatother
  40. \end_preamble
  41. \use_default_options true
  42. \begin_modules
  43. todonotes
  44. \end_modules
  45. \maintain_unincluded_children false
  46. \language english
  47. \language_package default
  48. \inputencoding utf8
  49. \fontencoding default
  50. \font_roman "default" "default"
  51. \font_sans "default" "default"
  52. \font_typewriter "default" "default"
  53. \font_math "auto" "auto"
  54. \font_default_family default
  55. \use_non_tex_fonts false
  56. \font_sc false
  57. \font_osf false
  58. \font_sf_scale 100 100
  59. \font_tt_scale 100 100
  60. \use_microtype false
  61. \use_dash_ligatures true
  62. \graphics default
  63. \default_output_format pdf4
  64. \output_sync 0
  65. \bibtex_command default
  66. \index_command default
  67. \paperfontsize 12
  68. \spacing double
  69. \use_hyperref true
  70. \pdf_bookmarks true
  71. \pdf_bookmarksnumbered false
  72. \pdf_bookmarksopen false
  73. \pdf_bookmarksopenlevel 1
  74. \pdf_breaklinks false
  75. \pdf_pdfborder false
  76. \pdf_colorlinks false
  77. \pdf_backref false
  78. \pdf_pdfusetitle true
  79. \papersize letterpaper
  80. \use_geometry true
  81. \use_package amsmath 1
  82. \use_package amssymb 1
  83. \use_package cancel 1
  84. \use_package esint 1
  85. \use_package mathdots 1
  86. \use_package mathtools 1
  87. \use_package mhchem 1
  88. \use_package stackrel 1
  89. \use_package stmaryrd 1
  90. \use_package undertilde 1
  91. \cite_engine basic
  92. \cite_engine_type default
  93. \biblio_style plain
  94. \use_bibtopic false
  95. \use_indices false
  96. \paperorientation portrait
  97. \suppress_date false
  98. \justification true
  99. \use_refstyle 1
  100. \use_minted 0
  101. \index Index
  102. \shortcut idx
  103. \color #008000
  104. \end_index
  105. \leftmargin 1.5in
  106. \topmargin 1in
  107. \rightmargin 1in
  108. \bottommargin 1in
  109. \secnumdepth 3
  110. \tocdepth 3
  111. \paragraph_separation indent
  112. \paragraph_indentation default
  113. \is_math_indent 0
  114. \math_numbering_side default
  115. \quotes_style english
  116. \dynamic_quotes 0
  117. \papercolumns 1
  118. \papersides 2
  119. \paperpagestyle default
  120. \tracking_changes false
  121. \output_changes false
  122. \html_math_output 0
  123. \html_css_as_file 0
  124. \html_be_strict false
  125. \end_header
  126. \begin_body
  127. \begin_layout Title
  128. Bioinformatic analysis of complex, high-throughput genomic and epigenomic
  129. data in the context of immunology and transplant rejection
  130. \end_layout
  131. \begin_layout Author
  132. A thesis presented
  133. \begin_inset Newline newline
  134. \end_inset
  135. by
  136. \begin_inset Newline newline
  137. \end_inset
  138. Ryan C.
  139. Thompson
  140. \begin_inset Newline newline
  141. \end_inset
  142. to
  143. \begin_inset Newline newline
  144. \end_inset
  145. The Scripps Research Institute Graduate Program
  146. \begin_inset Newline newline
  147. \end_inset
  148. in partial fulfillment of the requirements for the degree of
  149. \begin_inset Newline newline
  150. \end_inset
  151. Doctor of Philosophy in the subject of Biology
  152. \begin_inset Newline newline
  153. \end_inset
  154. for
  155. \begin_inset Newline newline
  156. \end_inset
  157. The Scripps Research Institute
  158. \begin_inset Newline newline
  159. \end_inset
  160. La Jolla, California
  161. \end_layout
  162. \begin_layout Date
  163. May 2019
  164. \end_layout
  165. \begin_layout Standard
  166. [Copyright notice]
  167. \end_layout
  168. \begin_layout Standard
  169. [Thesis acceptance form]
  170. \end_layout
  171. \begin_layout Standard
  172. [Dedication]
  173. \end_layout
  174. \begin_layout Standard
  175. [Acknowledgements]
  176. \end_layout
  177. \begin_layout Standard
  178. \begin_inset CommandInset toc
  179. LatexCommand tableofcontents
  180. \end_inset
  181. \end_layout
  182. \begin_layout Standard
  183. \begin_inset FloatList table
  184. \end_inset
  185. \end_layout
  186. \begin_layout Standard
  187. \begin_inset FloatList figure
  188. \end_inset
  189. \end_layout
  190. \begin_layout Standard
  191. [List of Abbreviations]
  192. \end_layout
  193. \begin_layout Standard
  194. \begin_inset Flex TODO Note (inline)
  195. status open
  196. \begin_layout Plain Layout
  197. Look into auto-generated nomenclature list: https://wiki.lyx.org/Tips/Nomenclature
  198. \end_layout
  199. \end_inset
  200. \end_layout
  201. \begin_layout List of TODOs
  202. \end_layout
  203. \begin_layout Standard
  204. [Abstract]
  205. \end_layout
  206. \begin_layout Chapter*
  207. Abstract
  208. \end_layout
  209. \begin_layout Chapter
  210. Introduction
  211. \end_layout
  212. \begin_layout Section
  213. Background & Significance
  214. \end_layout
  215. \begin_layout Subsection
  216. Biological motivation
  217. \end_layout
  218. \begin_layout Itemize
  219. Rejection is the major long-term threat to organ and tissue grafts
  220. \end_layout
  221. \begin_deeper
  222. \begin_layout Itemize
  223. Common mechanisms of rejection
  224. \end_layout
  225. \begin_layout Itemize
  226. Effective immune suppression requires monitoring for rejection and tuning
  227. \end_layout
  228. \begin_layout Itemize
  229. Current tests for rejection (tissue biopsy) are invasive and biased
  230. \end_layout
  231. \begin_layout Itemize
  232. A blood test based on microarrays would be less biased and invasive
  233. \end_layout
  234. \end_deeper
  235. \begin_layout Itemize
  236. Memory cells are resistant to immune suppression
  237. \end_layout
  238. \begin_deeper
  239. \begin_layout Itemize
  240. Mechanisms of resistance in memory cells are poorly understood
  241. \end_layout
  242. \begin_layout Itemize
  243. A better understanding of immune memory formation is needed
  244. \end_layout
  245. \end_deeper
  246. \begin_layout Itemize
  247. Mesenchymal stem cell infusion is a promising new treatment to prevent/delay
  248. rejection
  249. \end_layout
  250. \begin_deeper
  251. \begin_layout Itemize
  252. Demonstrated in mice, but not yet in primates
  253. \end_layout
  254. \begin_layout Itemize
  255. Mechanism currently unknown, but MSC are known to be immune modulatory
  256. \end_layout
  257. \end_deeper
  258. \begin_layout Subsection
  259. Overview of bioinformatic analysis methods
  260. \end_layout
  261. \begin_layout Standard
  262. An overview of all the methods used, including what problem they solve,
  263. what assumptions they make, and a basic description of how they work.
  264. \end_layout
  265. \begin_layout Itemize
  266. ChIP-seq Peak calling
  267. \end_layout
  268. \begin_deeper
  269. \begin_layout Itemize
  270. Cross-correlation analysis to determine fragment size
  271. \end_layout
  272. \begin_layout Itemize
  273. Broad vs narrow peaks
  274. \end_layout
  275. \begin_layout Itemize
  276. SICER for broad peaks
  277. \end_layout
  278. \begin_layout Itemize
  279. IDR for biologically reproducible peaks
  280. \end_layout
  281. \begin_layout Itemize
  282. csaw peak filtering guidelines for unbiased downstream analysis
  283. \end_layout
  284. \end_deeper
  285. \begin_layout Itemize
  286. Normalization is non-trivial and application-dependant
  287. \end_layout
  288. \begin_deeper
  289. \begin_layout Itemize
  290. Expression arrays: RMA & fRMA; why fRMA is needed
  291. \end_layout
  292. \begin_layout Itemize
  293. Methylation arrays: M-value transformation approximates normal data but
  294. induces heteroskedasticity
  295. \end_layout
  296. \begin_layout Itemize
  297. RNA-seq: normalize based on assumption that the average gene is not changing
  298. \end_layout
  299. \begin_layout Itemize
  300. ChIP-seq: complex with many considerations, dependent on experimental methods,
  301. biological system, and analysis goals
  302. \end_layout
  303. \end_deeper
  304. \begin_layout Itemize
  305. Limma: The standard linear modeling framework for genomics
  306. \end_layout
  307. \begin_deeper
  308. \begin_layout Itemize
  309. empirical Bayes variance modeling: limma's core feature
  310. \end_layout
  311. \begin_layout Itemize
  312. edgeR & DESeq2: Extend with negative bonomial GLM for RNA-seq and other
  313. count data
  314. \end_layout
  315. \begin_layout Itemize
  316. voom: Extend with precision weights to model mean-variance trend
  317. \end_layout
  318. \begin_layout Itemize
  319. arrayWeights and duplicateCorrelation to handle complex variance structures
  320. \end_layout
  321. \end_deeper
  322. \begin_layout Itemize
  323. sva and ComBat for batch correction
  324. \end_layout
  325. \begin_layout Itemize
  326. Factor analysis: PCA, MDS, MOFA
  327. \end_layout
  328. \begin_deeper
  329. \begin_layout Itemize
  330. Batch-corrected PCA is informative, but careful application is required
  331. to avoid bias
  332. \end_layout
  333. \end_deeper
  334. \begin_layout Itemize
  335. Gene set analysis: camera and SPIA
  336. \end_layout
  337. \begin_layout Section
  338. Innovation
  339. \end_layout
  340. \begin_layout Itemize
  341. MSC infusion to improve transplant outcomes (prevent/delay rejection)
  342. \end_layout
  343. \begin_deeper
  344. \begin_layout Itemize
  345. Characterize MSC response to interferon gamma
  346. \end_layout
  347. \begin_layout Itemize
  348. IFN-g is thought to stimulate their function
  349. \end_layout
  350. \begin_layout Itemize
  351. Test IFN-g treated MSC infusion as a therapy to delay graft rejection in
  352. cynomolgus monkeys
  353. \end_layout
  354. \begin_layout Itemize
  355. Monitor animals post-transplant using blood RNA-seq at serial time points
  356. \end_layout
  357. \end_deeper
  358. \begin_layout Itemize
  359. Investigate dynamics of histone marks in CD4 T-cell activation and memory
  360. \end_layout
  361. \begin_deeper
  362. \begin_layout Itemize
  363. Previous studies have looked at single snapshots of histone marks
  364. \end_layout
  365. \begin_layout Itemize
  366. Instead, look at changes in histone marks across activation and memory
  367. \end_layout
  368. \end_deeper
  369. \begin_layout Itemize
  370. High-throughput sequencing and microarray technologies
  371. \end_layout
  372. \begin_deeper
  373. \begin_layout Itemize
  374. Powerful methods for assaying gene expression and epigenetics across entire
  375. genomes
  376. \end_layout
  377. \begin_layout Itemize
  378. Proper analysis requires finding and exploiting systematic genome-wide trends
  379. \end_layout
  380. \end_deeper
  381. \begin_layout Chapter
  382. Reproducible genome-wide epigenetic analysis of H3K4 and H3K27 methylation
  383. in naive and memory CD4 T-cell activation
  384. \end_layout
  385. \begin_layout Standard
  386. \begin_inset Flex TODO Note (inline)
  387. status open
  388. \begin_layout Plain Layout
  389. Author list: Me, Sarah, Dan
  390. \end_layout
  391. \end_inset
  392. \end_layout
  393. \begin_layout Section
  394. Approach
  395. \end_layout
  396. \begin_layout Itemize
  397. CD4 T-cells are central to all adaptive immune responses and memory
  398. \end_layout
  399. \begin_layout Itemize
  400. H3K4 and H3K27 methylation are major epigenetic regulators of gene expression
  401. \end_layout
  402. \begin_layout Itemize
  403. Canonically, H3K4 is activating and H3K27 is inhibitory, but the reality
  404. is complex
  405. \end_layout
  406. \begin_layout Itemize
  407. Looking at these marks during CD4 activation and memory should reveal new
  408. mechanistic details
  409. \end_layout
  410. \begin_layout Itemize
  411. Test
  412. \begin_inset Quotes eld
  413. \end_inset
  414. poised promoter
  415. \begin_inset Quotes erd
  416. \end_inset
  417. hypothesis in which H3K4 and H3K27 are both methylated
  418. \end_layout
  419. \begin_layout Itemize
  420. Expand scope of analysis beyond simple promoter counts
  421. \end_layout
  422. \begin_deeper
  423. \begin_layout Itemize
  424. Analyze peaks genome-wide, including in intergenic regions
  425. \end_layout
  426. \begin_layout Itemize
  427. Analysis of coverage distribution shape within promoters, e.g.
  428. upstream vs downstream coverage
  429. \end_layout
  430. \end_deeper
  431. \begin_layout Section
  432. Methods
  433. \end_layout
  434. \begin_layout Itemize
  435. Re-analyze previously published CD4 ChIP-seq & RNA-seq data
  436. \begin_inset CommandInset citation
  437. LatexCommand cite
  438. key "LaMere2016,Lamere2017"
  439. literal "true"
  440. \end_inset
  441. \end_layout
  442. \begin_deeper
  443. \begin_layout Itemize
  444. Completely reimplement analysis from scratch as a reproducible workflow
  445. \end_layout
  446. \begin_layout Itemize
  447. Use newly published methods & algorithms not available during the original
  448. analysis: SICER, csaw, MOFA, ComBat, sva, GREAT, and more
  449. \end_layout
  450. \end_deeper
  451. \begin_layout Itemize
  452. SICER, IDR, csaw, & GREAT to call ChIP-seq peaks genome-wide, perform differenti
  453. al abundance analysis, and relate those peaks to gene expression
  454. \end_layout
  455. \begin_layout Itemize
  456. Promoter counts in sliding windows around each gene's highest-expressed
  457. TSS to investigate coverage distribution within promoters
  458. \end_layout
  459. \begin_layout Section
  460. Results
  461. \end_layout
  462. \begin_layout Standard
  463. \begin_inset Note Note
  464. status open
  465. \begin_layout Plain Layout
  466. Focus on what hypotheses were tested, then select figures that show how
  467. those hypotheses were tested, even if the result is a negative.
  468. \end_layout
  469. \end_inset
  470. \end_layout
  471. \begin_layout Subsection
  472. H3K4 and H3K27 methylation occur in broad regions and are enriched near
  473. promoters
  474. \end_layout
  475. \begin_layout Itemize
  476. Figures comparing MACS (non-broad peak caller) to SICER/epic (broad peak
  477. caller)
  478. \end_layout
  479. \begin_deeper
  480. \begin_layout Itemize
  481. Compare peak sizes and number of called peaks
  482. \end_layout
  483. \begin_layout Itemize
  484. Show representative IDR consistency plots for both
  485. \end_layout
  486. \end_deeper
  487. \begin_layout Itemize
  488. IDR analysis shows that SICER-called peaks are much more reproducible between
  489. biological replicates
  490. \end_layout
  491. \begin_layout Itemize
  492. Each histone mark is enriched within a certain radius of gene TSS positions,
  493. but that radius is different for each mark (figure)
  494. \end_layout
  495. \begin_layout Subsection
  496. RNA-seq has a large confounding batch effect
  497. \end_layout
  498. \begin_layout Itemize
  499. RNA-seq batch effect can be partially corrected, but still induces uncorrectable
  500. biases in downstream analysis
  501. \end_layout
  502. \begin_deeper
  503. \begin_layout Itemize
  504. Figure showing MDS plot before & after ComBat
  505. \end_layout
  506. \begin_layout Itemize
  507. Figure relating sample weights to batches, cell types, time points, etc.,
  508. showing that one batch is significantly worse quality
  509. \end_layout
  510. \begin_layout Itemize
  511. Figures showing p-value histograms for within-batch and cross-batch contrasts,
  512. showing that cross-batch contrasts have attenuated signal, as do comparisons
  513. within the bad batch
  514. \end_layout
  515. \end_deeper
  516. \begin_layout Subsection
  517. ChIP-seq must be corrected for hidden confounding factors
  518. \end_layout
  519. \begin_layout Itemize
  520. Figures showing pre- and post-SVA MDS plots for each histone mark
  521. \end_layout
  522. \begin_layout Itemize
  523. Figures showing BCV plots with and without SVA for each histone mark
  524. \end_layout
  525. \begin_layout Subsection
  526. H3K4 and H3K27 promoter methylation has broadly the expected correlation
  527. with gene expression
  528. \end_layout
  529. \begin_layout Itemize
  530. H3K4 is correlated with higher expression, and H3K27 is correlated with
  531. lower expression genome-wide
  532. \end_layout
  533. \begin_layout Itemize
  534. Figures showing these correlations: box/violin plots of expression distributions
  535. with every combination of peak presence/absence in promoter
  536. \end_layout
  537. \begin_layout Itemize
  538. Appropriate statistical tests showing significant differences in expected
  539. directions
  540. \end_layout
  541. \begin_layout Subsection
  542. MOFA recovers biologically relevant variation from blind analysis by correlating
  543. across datasets
  544. \end_layout
  545. \begin_layout Itemize
  546. MOFA
  547. \begin_inset CommandInset citation
  548. LatexCommand cite
  549. key "Argelaguet2018"
  550. literal "false"
  551. \end_inset
  552. successfully separates biologically relevant patterns of variation from
  553. technical confounding factors without knowing the sample labels, by finding
  554. latent factors that explain variation across multiple data sets.
  555. \end_layout
  556. \begin_deeper
  557. \begin_layout Itemize
  558. Figure: show percent-variance-explained plot from MOFA and PCA-like plots
  559. for the relevant latent factors
  560. \end_layout
  561. \begin_layout Itemize
  562. MOFA analysis also shows that batch effect correction can't get much better
  563. than it already is (Figure comparing blind MOFA batch correction to ComBat
  564. correction)
  565. \end_layout
  566. \end_deeper
  567. \begin_layout Subsection
  568. Naive-to-memory convergence observed in H3K4 and RNA-seq data, not in H3K27me3
  569. \end_layout
  570. \begin_layout Itemize
  571. H3K4 and RNA-seq data show clear evidence of naive convergence with memory
  572. between days 1 and 5 (MDS plot figure, also compare with last figure from
  573. \begin_inset CommandInset citation
  574. LatexCommand cite
  575. key "LaMere2016"
  576. literal "false"
  577. \end_inset
  578. )
  579. \end_layout
  580. \begin_layout Standard
  581. \begin_inset Flex TODO Note (inline)
  582. status open
  583. \begin_layout Plain Layout
  584. Get explicit permission from Sarah to include the figure
  585. \end_layout
  586. \end_inset
  587. \end_layout
  588. \begin_layout Itemize
  589. Table of numbers of genes different between N & M at each time point, showing
  590. dwindling differences at later time points, consistent with convergence
  591. \end_layout
  592. \begin_layout Itemize
  593. Similar figure for H3K27me3 showing lack of convergence
  594. \end_layout
  595. \begin_layout Subsection
  596. Effect of promoter coverage upstream vs downstream of TSS
  597. \end_layout
  598. \begin_layout Itemize
  599. H3K4me peaks seem to correlate with increased expression as long as they
  600. are anywhere near the TSS
  601. \end_layout
  602. \begin_layout Itemize
  603. H3K27me3 peaks can have different correlations to gene expression depending
  604. on their position relative to TSS (e.g.
  605. upstream vs downstream) Results consistent with
  606. \begin_inset CommandInset citation
  607. LatexCommand cite
  608. key "Young2011"
  609. literal "false"
  610. \end_inset
  611. \end_layout
  612. \begin_layout Section
  613. Discussion
  614. \end_layout
  615. \begin_layout Itemize
  616. "Promoter radius" is not constant and must be defined empirically for a
  617. given data set
  618. \end_layout
  619. \begin_layout Itemize
  620. MOFA shows great promise for accelerating discovery of major biological
  621. effects in multi-omics datasets
  622. \end_layout
  623. \begin_deeper
  624. \begin_layout Itemize
  625. MOFA was added to this analysis late and played primarily a confirmatory
  626. role, but it was able to confirm earlier conclusions with much less prior
  627. information (no sample labels) and much less analyst effort
  628. \end_layout
  629. \begin_layout Itemize
  630. MOFA confirmed that the already-implemented batch correction in the RNA-seq
  631. data was already performing as well as possible given the limitations of
  632. the data
  633. \end_layout
  634. \end_deeper
  635. \begin_layout Itemize
  636. Naive-to-memory convergence implies that naive cells are differentiating
  637. into memory cells, and that gene expression and H3K4 methylation are involved
  638. in this differentiation while H3K27me3 is less involved
  639. \end_layout
  640. \begin_layout Itemize
  641. H3K27me3, canonically regarded as a deactivating mark, seems to have a more
  642. complex
  643. \end_layout
  644. \begin_layout Itemize
  645. Discuss advantages of developing using a reproducible workflow
  646. \end_layout
  647. \begin_layout Chapter
  648. Improving array-based analyses of transplant rejection by optimizing data
  649. preprocessing
  650. \end_layout
  651. \begin_layout Standard
  652. \begin_inset Note Note
  653. status open
  654. \begin_layout Plain Layout
  655. Author list: Me, Sunil, Tom, Padma, Dan
  656. \end_layout
  657. \end_inset
  658. \end_layout
  659. \begin_layout Section
  660. Approach
  661. \end_layout
  662. \begin_layout Subsection
  663. Frozen RMA for clinical microarray classifiers
  664. \end_layout
  665. \begin_layout Subsubsection
  666. Standard normalization methods are unsuitable for clinical application
  667. \end_layout
  668. \begin_layout Standard
  669. As the cost of performing microarray assays falls, there is increasing interest
  670. in using genomic assays for diagnostic purposes, such as distinguishing
  671. healthy transplants (TX) from transplants undergoing acute rejection (AR)
  672. or acute dysfunction with no rejection (ADNR).
  673. However, the the standard normalization algorithm used for microarray data,
  674. Robust Multi-chip Average (RMA)
  675. \begin_inset CommandInset citation
  676. LatexCommand cite
  677. key "Irizarry2003a"
  678. literal "false"
  679. \end_inset
  680. , is not applicable in a clinical setting.
  681. Two of the steps in RMA, quantile normalization and probe summarization
  682. by median polish, depend on every array in the data set being normalized.
  683. This means that adding or removing any arrays from a data set changes the
  684. normalized values for all arrays, and data sets that have been normalized
  685. separately cannot be compared to each other.
  686. Hence, when using RMA, any arrays to be analyzed together must also be
  687. normalized together, and the set of arrays included in the data set must
  688. be held constant throughout an analysis.
  689. \end_layout
  690. \begin_layout Standard
  691. These limitations present serious impediments to the use of arrays as a
  692. diagnostic tool.
  693. When training a classifier, the samples to be classified must not be involved
  694. in any step of the training process, lest their inclusion bias the training
  695. process.
  696. Once a classifier is deployed in a clinical setting, the samples to be
  697. classified will not even
  698. \emph on
  699. exist
  700. \emph default
  701. at the time of training, so including them would be impossible even if
  702. it were statistically justifiable.
  703. Therefore, any machine learning application for microarrays demands that
  704. the normalized expression values computed for an array must depend only
  705. on information contained within that array.
  706. This would ensure that each array's normalization is independent of every
  707. other array, and that arrays normalized separately can still be compared
  708. to each other without bias.
  709. \end_layout
  710. \begin_layout Subsubsection
  711. Frozen RMA satisfies clinical normalization requirements
  712. \end_layout
  713. \begin_layout Standard
  714. Frozen RMA (fRMA) addresses these concerns by replacing the quantile normalizati
  715. on and median polish with alternatives that do not introduce inter-array
  716. dependence, allowing each array to be normalized independently of all others
  717. \begin_inset CommandInset citation
  718. LatexCommand cite
  719. key "McCall2010"
  720. literal "false"
  721. \end_inset
  722. .
  723. Quantile normalization is performed against a pre-generated set of quantiles
  724. learned from a collection of 850 publically available arrays sampled from
  725. a wide variety of tissues in the Gene Expression Omnibus (GEO).
  726. Each array's probe intensity distribution is normalized against these pre-gener
  727. ated quantiles.
  728. The median polish step is replaced with a robust weighted average of probe
  729. intensities, using inverse variance weights learned from the same public
  730. GEO data.
  731. The result is a normalization that satisfies the requirements mentioned
  732. above: each array is normalized independently of all others, and any two
  733. normalized arrays can be compared directly to each other.
  734. \end_layout
  735. \begin_layout Standard
  736. One important limitation of fRMA is that it requires a separate reference
  737. data set from which to learn the parameters (reference quantiles and probe
  738. weights) that will be used to normalize each array.
  739. These parameters are specific to a given array platform, and pre-generated
  740. parameters are only provided for the most common platforms, such as Affymetrix
  741. hgu133plus2.
  742. For a less common platform, is is necessary to learn custom parameters
  743. from in-house data before fRMA can be used to normalize samples on that
  744. platform
  745. \begin_inset CommandInset citation
  746. LatexCommand cite
  747. key "HudsonK.&RemediosC.2010"
  748. literal "false"
  749. \end_inset
  750. .
  751. \end_layout
  752. \begin_layout Subsection
  753. Adapting voom to model heteroskedasticity in methylation array data
  754. \end_layout
  755. \begin_layout Subsubsection
  756. Methylation array preprocessing induces heteroskedasticity
  757. \end_layout
  758. \begin_layout Standard
  759. DNA methylation arrays are a relatively new kind of assay that uses microarrays
  760. to measure the degree of methylation on cytosines in specific regions arrayed
  761. across the genome.
  762. First, bisulfite treatment converts all unmethylated cytosines to uracil
  763. (which then become thymine after amplication) while leaving methylated
  764. cytosines unaffected.
  765. Then, each target region is interrogated with two probes: one binds to
  766. the original genomic sequence and interrogates the level of methylated
  767. DNA, and the other binds to the sequence with all Cs replaced by Ts and
  768. interrogates the level of unmethylated DNA.
  769. \end_layout
  770. \begin_layout Standard
  771. \begin_inset Float figure
  772. wide false
  773. sideways false
  774. status collapsed
  775. \begin_layout Plain Layout
  776. \begin_inset Graphics
  777. filename graphics/methylvoom/sigmoid.pdf
  778. \end_inset
  779. \end_layout
  780. \begin_layout Plain Layout
  781. \begin_inset Caption Standard
  782. \begin_layout Plain Layout
  783. \begin_inset CommandInset label
  784. LatexCommand label
  785. name "fig:Sigmoid-beta-m-mapping"
  786. \end_inset
  787. \series bold
  788. Sigmoid shape of the mapping between β and M values
  789. \end_layout
  790. \end_inset
  791. \end_layout
  792. \end_inset
  793. \end_layout
  794. \begin_layout Standard
  795. After normalization, these two probe intensities are summarized in one of
  796. two ways, each with advantages and disadvantages.
  797. β
  798. \series bold
  799. \series default
  800. values, interpreted as fraction of DNA copies methylated, range from 0 to
  801. 1.
  802. β
  803. \series bold
  804. \series default
  805. values are conceptually easy to interpret, but the constrained range makes
  806. them unsuitable for linear modeling, and their error distributions are
  807. highly non-normal, which also frustrates linear modeling.
  808. M-values, interpreted as the log ratio of methylated to unmethylated copies,
  809. are computed by mapping the beta values from
  810. \begin_inset Formula $[0,1]$
  811. \end_inset
  812. onto
  813. \begin_inset Formula $(-\infty,+\infty)$
  814. \end_inset
  815. using a sigmoid curve (Figure
  816. \begin_inset CommandInset ref
  817. LatexCommand ref
  818. reference "fig:Sigmoid-beta-m-mapping"
  819. plural "false"
  820. caps "false"
  821. noprefix "false"
  822. \end_inset
  823. ).
  824. This transformation results in values with better statistical perperties:
  825. the unconstrained range is suitable for linear modeling, and the error
  826. distributions are more normal.
  827. Hence, most linear modeling and other statistical testing on methylation
  828. arrays is performed using M-values.
  829. \end_layout
  830. \begin_layout Standard
  831. However, the steep slope of the sigmoid transformation near 0 and 1 tends
  832. to over-exaggerate small differences in β values near those extremes, which
  833. in turn amplifies the error in those values, leading to a U-shaped trend
  834. in the mean-variance curve.
  835. This mean-variance dependency must be accounted for when fitting the linear
  836. model for differential methylation, or else the variance will be systematically
  837. overestimated for probes with moderate M-values and underestimated for
  838. probes with extreme M-values.
  839. \end_layout
  840. \begin_layout Subsubsection
  841. The voom method for RNA-seq data can model this heteroskedasticity
  842. \end_layout
  843. \begin_layout Standard
  844. RNA-seq read count data are also known to show heteroskedasticity, and the
  845. voom method was developed for modeling this heteroskedasticity by estimating
  846. the mean-variance trend in the data and using this trend to assign precision
  847. weights to each observation
  848. \begin_inset CommandInset citation
  849. LatexCommand cite
  850. key "Law2013"
  851. literal "false"
  852. \end_inset
  853. .
  854. While methylation array data are not derived from counts and have a very
  855. different mean-variance relationship from that of typical RNA-seq data,
  856. the voom method makes no specific assumptions on the shape of the mean-variance
  857. relationship - it only assumes that the relationship is smooth enough to
  858. model using a lowess curve.
  859. Hence, the method is sufficiently general to model the mean-variance relationsh
  860. ip in methylation array data.
  861. However, the standard implementation of voom assumes that the input is
  862. given in raw read counts, and minor adjustments are required to run it
  863. on methylation M-values.
  864. \end_layout
  865. \begin_layout Standard
  866. \begin_inset Flex TODO Note (inline)
  867. status open
  868. \begin_layout Plain Layout
  869. Put code on Github and reference it
  870. \end_layout
  871. \end_inset
  872. \end_layout
  873. \begin_layout Section
  874. Methods
  875. \end_layout
  876. \begin_layout Subsection
  877. fRMA
  878. \end_layout
  879. \begin_layout Itemize
  880. Expression array normalization for detecting acute rejection
  881. \end_layout
  882. \begin_layout Itemize
  883. Use frozen RMA, a single-channel variant of RMA
  884. \end_layout
  885. \begin_layout Itemize
  886. Generate custom fRMA normalization vectors for each tissue (biopsy, blood)
  887. \end_layout
  888. \begin_layout Subsubsection
  889. Methylation arrays
  890. \end_layout
  891. \begin_layout Itemize
  892. Methylation arrays for differential methylation in rejection vs.
  893. healthy transplant
  894. \end_layout
  895. \begin_layout Itemize
  896. Adapt voom method originally designed for RNA-seq to model mean-variance
  897. dependence
  898. \end_layout
  899. \begin_layout Itemize
  900. Use sample precision weighting, duplicateCorrelation, and sva to adjust
  901. for other confounding factors
  902. \end_layout
  903. \begin_layout Section
  904. Results
  905. \end_layout
  906. \begin_layout Standard
  907. \begin_inset Flex TODO Note (inline)
  908. status open
  909. \begin_layout Plain Layout
  910. Improve subsection titles in this section
  911. \end_layout
  912. \end_inset
  913. \end_layout
  914. \begin_layout Subsection
  915. fRMA eliminates unwanted dependence of classifier training on normalization
  916. strategy caused by RMA
  917. \end_layout
  918. \begin_layout Subsubsection
  919. Separate normalization with RMA introduces unwanted biases in classification
  920. \end_layout
  921. \begin_layout Standard
  922. \begin_inset Float figure
  923. wide false
  924. sideways false
  925. status collapsed
  926. \begin_layout Plain Layout
  927. \begin_inset Graphics
  928. filename graphics/PAM/predplot.pdf
  929. \end_inset
  930. \end_layout
  931. \begin_layout Plain Layout
  932. \begin_inset Caption Standard
  933. \begin_layout Plain Layout
  934. \begin_inset CommandInset label
  935. LatexCommand label
  936. name "fig:Classifier-probabilities-RMA"
  937. \end_inset
  938. \series bold
  939. Classifier probabilities on validation samples when normalized with RMA
  940. together vs.
  941. separately.
  942. \end_layout
  943. \end_inset
  944. \end_layout
  945. \end_inset
  946. \end_layout
  947. \begin_layout Standard
  948. The initial data set for testing fRMA consisted of 157 hgu133plus2 arrays,
  949. split into a training set (23 TX, 35 AR, 21 ADNR) and a validation set
  950. (23 TX, 34 AR, 21 ADNR), along with an external validation set gathered
  951. from public GEO data (37 TX, 38 AR, no ADNR), all on standard hgu133plus2
  952. Affy arrays
  953. \begin_inset CommandInset citation
  954. LatexCommand cite
  955. key "Kurian2014"
  956. literal "true"
  957. \end_inset
  958. .
  959. \begin_inset Flex TODO Note (inline)
  960. status open
  961. \begin_layout Plain Layout
  962. Find out if PAX or BX
  963. \end_layout
  964. \end_inset
  965. To demonstrate the problem, we considered the problem of training a classifier
  966. to distinguish TX from AR using the TX and AR samples from the training
  967. set and validation set as training data, evaluating performance on the
  968. external validation set.
  969. First, training and evaluation were performed after normalizing all array
  970. samples together as a single set using RMA, and second, the internal samples
  971. were normalized separately from the external samples and the training and
  972. evaluation were repeated.
  973. For each sample in the validation set, the classifier probabilities from
  974. both classifiers were plotted against each other (Fig.
  975. \begin_inset CommandInset ref
  976. LatexCommand ref
  977. reference "fig:Classifier-probabilities-RMA"
  978. plural "false"
  979. caps "false"
  980. noprefix "false"
  981. \end_inset
  982. ).
  983. As expected, separate normalization biases the classifier probabilities,
  984. resulting in several misclassifications.
  985. In this case, the bias from separate normalization causes the classifier
  986. to assign a lower probability of AR to every sample.
  987. Because it is not feasible to normalize all samples together in a clinical
  988. context, this shows that an alternative to RMA is required.
  989. \end_layout
  990. \begin_layout Subsubsection
  991. fRMA achieves equal classification performance while eliminating dependence
  992. on normalization strategy
  993. \end_layout
  994. \begin_layout Standard
  995. \begin_inset Flex TODO Note (inline)
  996. status open
  997. \begin_layout Plain Layout
  998. Figure of ROC curves for each of RMA together, RMA separate, fRMA
  999. \end_layout
  1000. \end_inset
  1001. \end_layout
  1002. \begin_layout Itemize
  1003. fRMA eliminates this issue by normalizing each sample independently to the
  1004. same quantile distribution and summarizing probes using the same weights.
  1005. \end_layout
  1006. \begin_layout Itemize
  1007. Classifier performance on validation set is identical for
  1008. \begin_inset Quotes eld
  1009. \end_inset
  1010. RMA together
  1011. \begin_inset Quotes erd
  1012. \end_inset
  1013. and fRMA, so switching to clinically applicable normalization does not
  1014. sacrifice accuracy
  1015. \end_layout
  1016. \begin_layout Standard
  1017. \begin_inset Flex TODO Note (inline)
  1018. status open
  1019. \begin_layout Plain Layout
  1020. Check the published paper for any other possibly relevant figures to include
  1021. here.
  1022. \end_layout
  1023. \end_inset
  1024. \end_layout
  1025. \begin_layout Subsection
  1026. fRMA with custom-generated vectors
  1027. \end_layout
  1028. \begin_layout Itemize
  1029. Non-standard platform hthgu133pluspm - no pre-built fRMA vectors available,
  1030. so custom vectors must be learned from in-house data
  1031. \end_layout
  1032. \begin_layout Standard
  1033. \begin_inset Float figure
  1034. wide false
  1035. sideways false
  1036. status open
  1037. \begin_layout Plain Layout
  1038. \begin_inset Float figure
  1039. wide false
  1040. sideways false
  1041. status open
  1042. \begin_layout Plain Layout
  1043. \begin_inset Graphics
  1044. filename graphics/frma-pax-bx/batchsize_batches.pdf
  1045. \end_inset
  1046. \end_layout
  1047. \begin_layout Plain Layout
  1048. \begin_inset Caption Standard
  1049. \begin_layout Plain Layout
  1050. Number of batches included as a function of batch size
  1051. \end_layout
  1052. \end_inset
  1053. \end_layout
  1054. \begin_layout Plain Layout
  1055. \end_layout
  1056. \end_inset
  1057. \end_layout
  1058. \begin_layout Plain Layout
  1059. \begin_inset Float figure
  1060. wide false
  1061. sideways false
  1062. status open
  1063. \begin_layout Plain Layout
  1064. \begin_inset Graphics
  1065. filename graphics/frma-pax-bx/batchsize_samples.pdf
  1066. \end_inset
  1067. \end_layout
  1068. \begin_layout Plain Layout
  1069. \begin_inset Caption Standard
  1070. \begin_layout Plain Layout
  1071. Number of samples included as a function of batch size
  1072. \end_layout
  1073. \end_inset
  1074. \end_layout
  1075. \begin_layout Plain Layout
  1076. \end_layout
  1077. \end_inset
  1078. \end_layout
  1079. \begin_layout Plain Layout
  1080. \begin_inset Caption Standard
  1081. \begin_layout Plain Layout
  1082. Effect of batch size selection on number of batches and number of samples
  1083. included in fRMA probe weight learning
  1084. \end_layout
  1085. \end_inset
  1086. \end_layout
  1087. \begin_layout Plain Layout
  1088. \end_layout
  1089. \end_inset
  1090. \end_layout
  1091. \begin_layout Itemize
  1092. Large body of data available for training fRMA: 341 kidney graft biopsy
  1093. samples, 965 blood samples from graft recipients
  1094. \end_layout
  1095. \begin_deeper
  1096. \begin_layout Itemize
  1097. But not all samples can be used (see trade-off figure)
  1098. \end_layout
  1099. \begin_layout Itemize
  1100. Figure showing trade-off between more samples per group and fewer groups
  1101. with that may samples, to justify choice of number of samples per group
  1102. \end_layout
  1103. \begin_layout Itemize
  1104. pre-generated normalization vectors use ~850 samples
  1105. \begin_inset Flex TODO Note (Margin)
  1106. status collapsed
  1107. \begin_layout Plain Layout
  1108. Look up the exact numbers
  1109. \end_layout
  1110. \end_inset
  1111. \begin_inset CommandInset citation
  1112. LatexCommand cite
  1113. key "McCall2010"
  1114. literal "false"
  1115. \end_inset
  1116. , but are designed to be general across all tissues.
  1117. The samples we have are suitable for tissue-specific normalization vectors.
  1118. \end_layout
  1119. \end_deeper
  1120. \begin_layout Itemize
  1121. Figure: MA plot, RMA vs fRMA, to show that the normalization is appreciably
  1122. and non-linearly different
  1123. \end_layout
  1124. \begin_layout Itemize
  1125. Figure MA plot, fRMA vs fRMA with different randomly-chosen sample subsets
  1126. to show consistency
  1127. \end_layout
  1128. \begin_layout Itemize
  1129. custom fRMA normalization improved cross-validated classifier performance
  1130. \end_layout
  1131. \begin_layout Standard
  1132. \begin_inset Flex TODO Note (inline)
  1133. status open
  1134. \begin_layout Plain Layout
  1135. Get a figure from Tom showing classifier performance improvement (compared
  1136. to all-sample RMA, I guess?), if possible
  1137. \end_layout
  1138. \end_inset
  1139. \end_layout
  1140. \begin_layout Subsection
  1141. Adapting voom to methylation array data improves model fit
  1142. \end_layout
  1143. \begin_layout Itemize
  1144. voom, precision weights, and sva improved model fit
  1145. \end_layout
  1146. \begin_deeper
  1147. \begin_layout Itemize
  1148. Also increased sensitivity for detecting differential methylation
  1149. \end_layout
  1150. \end_deeper
  1151. \begin_layout Itemize
  1152. Figure showing (a) heteroskedasticy without voom, (b) voom-modeled mean-variance
  1153. trend, and (c) homoskedastic mean-variance trend after running voom
  1154. \end_layout
  1155. \begin_layout Itemize
  1156. Figure showing sample weights and their relations to
  1157. \end_layout
  1158. \begin_layout Itemize
  1159. Figure showing MDS plot with and without SVA correction
  1160. \end_layout
  1161. \begin_layout Itemize
  1162. Figure and/or table showing improved p-value historgrams/number of significant
  1163. genes (might need to get this from Padma)
  1164. \end_layout
  1165. \begin_layout Section
  1166. Discussion
  1167. \end_layout
  1168. \begin_layout Itemize
  1169. fRMA enables classifying new samples without re-normalizing the entire data
  1170. set
  1171. \end_layout
  1172. \begin_deeper
  1173. \begin_layout Itemize
  1174. Critical for translating a classifier into clinical practice
  1175. \end_layout
  1176. \end_deeper
  1177. \begin_layout Itemize
  1178. Methods like voom designed for RNA-seq can also help with array analysis
  1179. \end_layout
  1180. \begin_layout Itemize
  1181. Extracting and modeling confounders common to many features improves model
  1182. correspondence to known biology
  1183. \end_layout
  1184. \begin_layout Chapter
  1185. Globin-blocking for more effective blood RNA-seq analysis in primate animal
  1186. model
  1187. \end_layout
  1188. \begin_layout Standard
  1189. \begin_inset Flex TODO Note (inline)
  1190. status open
  1191. \begin_layout Plain Layout
  1192. Choose between above and the paper title: Optimizing yield of deep RNA sequencin
  1193. g for gene expression profiling by globin reduction of peripheral blood
  1194. samples from cynomolgus monkeys (Macaca fascicularis).
  1195. \end_layout
  1196. \end_inset
  1197. \end_layout
  1198. \begin_layout Standard
  1199. \begin_inset Flex TODO Note (inline)
  1200. status open
  1201. \begin_layout Plain Layout
  1202. Chapter author list: https://tex.stackexchange.com/questions/156862/displaying-aut
  1203. hor-for-each-chapter-in-book Every chapter gets an author list, which may
  1204. or may not be part of a citation to a published/preprinted paper.
  1205. \end_layout
  1206. \end_inset
  1207. \end_layout
  1208. \begin_layout Standard
  1209. \begin_inset Flex TODO Note (inline)
  1210. status open
  1211. \begin_layout Plain Layout
  1212. Preprint then cite the paper
  1213. \end_layout
  1214. \end_inset
  1215. \end_layout
  1216. \begin_layout Section*
  1217. Abstract
  1218. \end_layout
  1219. \begin_layout Paragraph
  1220. Background
  1221. \end_layout
  1222. \begin_layout Standard
  1223. Primate blood contains high concentrations of globin messenger RNA.
  1224. Globin reduction is a standard technique used to improve the expression
  1225. results obtained by DNA microarrays on RNA from blood samples.
  1226. However, with whole transcriptome RNA-sequencing (RNA-seq) quickly replacing
  1227. microarrays for many applications, the impact of globin reduction for RNA-seq
  1228. has not been previously studied.
  1229. Moreover, no off-the-shelf kits are available for globin reduction in nonhuman
  1230. primates.
  1231. \end_layout
  1232. \begin_layout Paragraph
  1233. Results
  1234. \end_layout
  1235. \begin_layout Standard
  1236. Here we report a protocol for RNA-seq in primate blood samples that uses
  1237. complimentary oligonucleotides to block reverse transcription of the alpha
  1238. and beta globin genes.
  1239. In test samples from cynomolgus monkeys (Macaca fascicularis), this globin
  1240. blocking protocol approximately doubles the yield of informative (non-globin)
  1241. reads by greatly reducing the fraction of globin reads, while also improving
  1242. the consistency in sequencing depth between samples.
  1243. The increased yield enables detection of about 2000 more genes, significantly
  1244. increases the correlation in measured gene expression levels between samples,
  1245. and increases the sensitivity of differential gene expression tests.
  1246. \end_layout
  1247. \begin_layout Paragraph
  1248. Conclusions
  1249. \end_layout
  1250. \begin_layout Standard
  1251. These results show that globin blocking significantly improves the cost-effectiv
  1252. eness of mRNA sequencing in primate blood samples by doubling the yield
  1253. of useful reads, allowing detection of more genes, and improving the precision
  1254. of gene expression measurements.
  1255. Based on these results, a globin reducing or blocking protocol is recommended
  1256. for all RNA-seq studies of primate blood samples.
  1257. \end_layout
  1258. \begin_layout Section
  1259. Approach
  1260. \end_layout
  1261. \begin_layout Standard
  1262. \begin_inset Note Note
  1263. status open
  1264. \begin_layout Plain Layout
  1265. Consider putting some of this in the Intro chapter
  1266. \end_layout
  1267. \begin_layout Itemize
  1268. Cynomolgus monkeys as a model organism
  1269. \end_layout
  1270. \begin_deeper
  1271. \begin_layout Itemize
  1272. Highly related to humans
  1273. \end_layout
  1274. \begin_layout Itemize
  1275. Small size and short life cycle - good research animal
  1276. \end_layout
  1277. \begin_layout Itemize
  1278. Genomics resources still in development
  1279. \end_layout
  1280. \end_deeper
  1281. \begin_layout Itemize
  1282. Inadequacy of existing blood RNA-seq protocols
  1283. \end_layout
  1284. \begin_deeper
  1285. \begin_layout Itemize
  1286. Existing protocols use a separate globin pulldown step, slowing down processing
  1287. \end_layout
  1288. \end_deeper
  1289. \end_inset
  1290. \end_layout
  1291. \begin_layout Standard
  1292. Increasingly, researchers are turning to high-throughput mRNA sequencing
  1293. technologies (RNA-seq) in preference to expression microarrays for analysis
  1294. of gene expression
  1295. \begin_inset CommandInset citation
  1296. LatexCommand cite
  1297. key "Mutz2012"
  1298. literal "false"
  1299. \end_inset
  1300. .
  1301. The advantages are even greater for study of model organisms with no well-estab
  1302. lished array platforms available, such as the cynomolgus monkey (Macaca
  1303. fascicularis).
  1304. High fractions of globin mRNA are naturally present in mammalian peripheral
  1305. blood samples (up to 70% of total mRNA) and these are known to interfere
  1306. with the results of array-based expression profiling
  1307. \begin_inset CommandInset citation
  1308. LatexCommand cite
  1309. key "Winn2010"
  1310. literal "false"
  1311. \end_inset
  1312. .
  1313. The importance of globin reduction for RNA-seq of blood has only been evaluated
  1314. for a deepSAGE protocol on human samples
  1315. \begin_inset CommandInset citation
  1316. LatexCommand cite
  1317. key "Mastrokolias2012"
  1318. literal "false"
  1319. \end_inset
  1320. .
  1321. In the present report, we evaluated globin reduction using custom blocking
  1322. oligonucleotides for deep RNA-seq of peripheral blood samples from a nonhuman
  1323. primate, cynomolgus monkey, using the Illumina technology platform.
  1324. We demonstrate that globin reduction significantly improves the cost-effectiven
  1325. ess of RNA-seq in blood samples.
  1326. Thus, our protocol offers a significant advantage to any investigator planning
  1327. to use RNA-seq for gene expression profiling of nonhuman primate blood
  1328. samples.
  1329. Our method can be generally applied to any species by designing complementary
  1330. oligonucleotide blocking probes to the globin gene sequences of that species.
  1331. Indeed, any highly expressed but biologically uninformative transcripts
  1332. can also be blocked to further increase sequencing efficiency and value
  1333. \begin_inset CommandInset citation
  1334. LatexCommand cite
  1335. key "Arnaud2016"
  1336. literal "false"
  1337. \end_inset
  1338. .
  1339. \end_layout
  1340. \begin_layout Section
  1341. Methods
  1342. \end_layout
  1343. \begin_layout Subsection*
  1344. Sample collection
  1345. \end_layout
  1346. \begin_layout Standard
  1347. All research reported here was done under IACUC-approved protocols at the
  1348. University of Miami and complied with all applicable federal and state
  1349. regulations and ethical principles for nonhuman primate research.
  1350. Blood draws occurred between 16 April 2012 and 18 June 2015.
  1351. The experimental system involved intrahepatic pancreatic islet transplantation
  1352. into Cynomolgus monkeys with induced diabetes mellitus with or without
  1353. concomitant infusion of mesenchymal stem cells.
  1354. Blood was collected at serial time points before and after transplantation
  1355. into PAXgene Blood RNA tubes (PreAnalytiX/Qiagen, Valencia, CA) at the
  1356. precise volume:volume ratio of 2.5 ml whole blood into 6.9 ml of PAX gene
  1357. additive.
  1358. \end_layout
  1359. \begin_layout Subsection*
  1360. Globin Blocking
  1361. \end_layout
  1362. \begin_layout Standard
  1363. Four oligonucleotides were designed to hybridize to the 3’ end of the transcript
  1364. s for Cynomolgus HBA1, HBA2 and HBB, with two hybridization sites for HBB
  1365. and 2 sites for HBA (the chosen sites were identical in both HBA genes).
  1366. All oligos were purchased from Sigma and were entirely composed of 2’O-Me
  1367. bases with a C3 spacer positioned at the 3’ ends to prevent any polymerase
  1368. mediated primer extension.
  1369. \end_layout
  1370. \begin_layout Quote
  1371. HBA1/2 site 1: GCCCACUCAGACUUUAUUCAAAG-C3spacer
  1372. \end_layout
  1373. \begin_layout Quote
  1374. HBA1/2 site 2: GGUGCAAGGAGGGGAGGAG-C3spacer
  1375. \end_layout
  1376. \begin_layout Quote
  1377. HBB site 1: AAUGAAAAUAAAUGUUUUUUAUUAG-C3spacer
  1378. \end_layout
  1379. \begin_layout Quote
  1380. HBB site 2: CUCAAGGCCCUUCAUAAUAUCCC-C3spacer
  1381. \end_layout
  1382. \begin_layout Subsection*
  1383. RNA-seq Library Preparation
  1384. \end_layout
  1385. \begin_layout Standard
  1386. Sequencing libraries were prepared with 200ng total RNA from each sample.
  1387. Polyadenylated mRNA was selected from 200 ng aliquots of cynomologus blood-deri
  1388. ved total RNA using Ambion Dynabeads Oligo(dT)25 beads (Invitrogen) following
  1389. manufacturer’s recommended protocol.
  1390. PolyA selected RNA was then combined with 8 pmol of HBA1/2 (site 1), 8
  1391. pmol of HBA1/2 (site 2), 12 pmol of HBB (site 1) and 12 pmol of HBB (site
  1392. 2) oligonucleotides.
  1393. In addition, 20 pmol of RT primer containing a portion of the Illumina
  1394. adapter sequence (B-oligo-dTV: GAGTTCCTTGGCACCCGAGAATTCCATTTTTTTTTTTTTTTTTTTV)
  1395. and 4 µL of 5X First Strand buffer (250 mM Tris-HCl pH 8.3, 375 mM KCl,
  1396. 15mM MgCl2) were added in a total volume of 15 µL.
  1397. The RNA was fragmented by heating this cocktail for 3 minutes at 95°C and
  1398. then placed on ice.
  1399. This was followed by the addition of 2 µL 0.1 M DTT, 1 µL RNaseOUT, 1 µL
  1400. 10mM dNTPs 10% biotin-16 aminoallyl-2’- dUTP and 10% biotin-16 aminoallyl-2’-
  1401. dCTP (TriLink Biotech, San Diego, CA), 1 µL Superscript II (200U/ µL, Thermo-Fi
  1402. sher).
  1403. A second “unblocked” library was prepared in the same way for each sample
  1404. but replacing the blocking oligos with an equivalent volume of water.
  1405. The reaction was carried out at 25°C for 15 minutes and 42°C for 40 minutes,
  1406. followed by incubation at 75°C for 10 minutes to inactivate the reverse
  1407. transcriptase.
  1408. \end_layout
  1409. \begin_layout Standard
  1410. The cDNA/RNA hybrid molecules were purified using 1.8X Ampure XP beads (Agencourt
  1411. ) following supplier’s recommended protocol.
  1412. The cDNA/RNA hybrid was eluted in 25 µL of 10 mM Tris-HCl pH 8.0, and then
  1413. bound to 25 µL of M280 Magnetic Streptavidin beads washed per recommended
  1414. protocol (Thermo-Fisher).
  1415. After 30 minutes of binding, beads were washed one time in 100 µL 0.1N NaOH
  1416. to denature and remove the bound RNA, followed by two 100 µL washes with
  1417. 1X TE buffer.
  1418. \end_layout
  1419. \begin_layout Standard
  1420. Subsequent attachment of the 5-prime Illumina A adapter was performed by
  1421. on-bead random primer extension of the following sequence (A-N8 primer:
  1422. TTCAGAGTTCTACAGTCCGACGATCNNNNNNNN).
  1423. Briefly, beads were resuspended in a 20 µL reaction containing 5 µM A-N8
  1424. primer, 40mM Tris-HCl pH 7.5, 20mM MgCl2, 50mM NaCl, 0.325U/µL Sequenase
  1425. 2.0 (Affymetrix, Santa Clara, CA), 0.0025U/µL inorganic pyrophosphatase (Affymetr
  1426. ix) and 300 µM each dNTP.
  1427. Reaction was incubated at 22°C for 30 minutes, then beads were washed 2
  1428. times with 1X TE buffer (200µL).
  1429. \end_layout
  1430. \begin_layout Standard
  1431. The magnetic streptavidin beads were resuspended in 34 µL nuclease-free
  1432. water and added directly to a PCR tube.
  1433. The two Illumina protocol-specified PCR primers were added at 0.53 µM (Illumina
  1434. TruSeq Universal Primer 1 and Illumina TruSeq barcoded PCR primer 2), along
  1435. with 40 µL 2X KAPA HiFi Hotstart ReadyMix (KAPA, Willmington MA) and thermocycl
  1436. ed as follows: starting with 98°C (2 min-hold); 15 cycles of 98°C, 20sec;
  1437. 60°C, 30sec; 72°C, 30sec; and finished with a 72°C (2 min-hold).
  1438. \end_layout
  1439. \begin_layout Standard
  1440. PCR products were purified with 1X Ampure Beads following manufacturer’s
  1441. recommended protocol.
  1442. Libraries were then analyzed using the Agilent TapeStation and quantitation
  1443. of desired size range was performed by “smear analysis”.
  1444. Samples were pooled in equimolar batches of 16 samples.
  1445. Pooled libraries were size selected on 2% agarose gels (E-Gel EX Agarose
  1446. Gels; Thermo-Fisher).
  1447. Products were cut between 250 and 350 bp (corresponding to insert sizes
  1448. of 130 to 230 bps).
  1449. Finished library pools were then sequenced on the Illumina NextSeq500 instrumen
  1450. t with 75 base read lengths.
  1451. \end_layout
  1452. \begin_layout Subsection*
  1453. Read alignment and counting
  1454. \end_layout
  1455. \begin_layout Standard
  1456. Reads were aligned to the cynomolgus genome using STAR
  1457. \begin_inset CommandInset citation
  1458. LatexCommand cite
  1459. key "Dobin2013,Wilson2013"
  1460. literal "false"
  1461. \end_inset
  1462. .
  1463. Counts of uniquely mapped reads were obtained for every gene in each sample
  1464. with the “featureCounts” function from the Rsubread package, using each
  1465. of the three possibilities for the “strandSpecific” option: sense, antisense,
  1466. and unstranded
  1467. \begin_inset CommandInset citation
  1468. LatexCommand cite
  1469. key "Liao2014"
  1470. literal "false"
  1471. \end_inset
  1472. .
  1473. A few artifacts in the cynomolgus genome annotation complicated read counting.
  1474. First, no ortholog is annotated for alpha globin in the cynomolgus genome,
  1475. presumably because the human genome has two alpha globin genes with nearly
  1476. identical sequences, making the orthology relationship ambiguous.
  1477. However, two loci in the cynomolgus genome are as “hemoglobin subunit alpha-lik
  1478. e” (LOC102136192 and LOC102136846).
  1479. LOC102136192 is annotated as a pseudogene while LOC102136846 is annotated
  1480. as protein-coding.
  1481. Our globin reduction protocol was designed to include blocking of these
  1482. two genes.
  1483. Indeed, these two genes have almost the same read counts in each library
  1484. as the properly-annotated HBB gene and much larger counts than any other
  1485. gene in the unblocked libraries, giving confidence that reads derived from
  1486. the real alpha globin are mapping to both genes.
  1487. Thus, reads from both of these loci were counted as alpha globin reads
  1488. in all further analyses.
  1489. The second artifact is a small, uncharacterized non-coding RNA gene (LOC1021365
  1490. 91), which overlaps the HBA-like gene (LOC102136192) on the opposite strand.
  1491. If counting is not performed in stranded mode (or if a non-strand-specific
  1492. sequencing protocol is used), many reads mapping to the globin gene will
  1493. be discarded as ambiguous due to their overlap with this ncRNA gene, resulting
  1494. in significant undercounting of globin reads.
  1495. Therefore, stranded sense counts were used for all further analysis in
  1496. the present study to insure that we accurately accounted for globin transcript
  1497. reduction.
  1498. However, we note that stranded reads are not necessary for RNA-seq using
  1499. our protocol in standard practice.
  1500. \end_layout
  1501. \begin_layout Subsection*
  1502. Normalization and Exploratory Data Analysis
  1503. \end_layout
  1504. \begin_layout Standard
  1505. Libraries were normalized by computing scaling factors using the edgeR package’s
  1506. Trimmed Mean of M-values method
  1507. \begin_inset CommandInset citation
  1508. LatexCommand cite
  1509. key "Robinson2010"
  1510. literal "false"
  1511. \end_inset
  1512. .
  1513. Log2 counts per million values (logCPM) were calculated using the cpm function
  1514. in edgeR for individual samples and aveLogCPM function for averages across
  1515. groups of samples, using those functions’ default prior count values to
  1516. avoid taking the logarithm of 0.
  1517. Genes were considered “present” if their average normalized logCPM values
  1518. across all libraries were at least -1.
  1519. Normalizing for gene length was unnecessary because the sequencing protocol
  1520. is 3’-biased and hence the expected read count for each gene is related
  1521. to the transcript’s copy number but not its length.
  1522. \end_layout
  1523. \begin_layout Standard
  1524. In order to assess the effect of blocking on reproducibility, Pearson and
  1525. Spearman correlation coefficients were computed between the logCPM values
  1526. for every pair of libraries within the globin-blocked (GB) and unblocked
  1527. (non-GB) groups, and edgeR's “estimateDisp” function was used to compute
  1528. negative binomial dispersions separately for the two groups
  1529. \begin_inset CommandInset citation
  1530. LatexCommand cite
  1531. key "Chen2014"
  1532. literal "false"
  1533. \end_inset
  1534. .
  1535. \end_layout
  1536. \begin_layout Subsection*
  1537. Differential Expression Analysis
  1538. \end_layout
  1539. \begin_layout Standard
  1540. All tests for differential gene expression were performed using edgeR, by
  1541. first fitting a negative binomial generalized linear model to the counts
  1542. and normalization factors and then performing a quasi-likelihood F-test
  1543. with robust estimation of outlier gene dispersions
  1544. \begin_inset CommandInset citation
  1545. LatexCommand cite
  1546. key "Lund2012,Phipson2016"
  1547. literal "false"
  1548. \end_inset
  1549. .
  1550. To investigate the effects of globin blocking on each gene, an additive
  1551. model was fit to the full data with coefficients for globin blocking and
  1552. SampleID.
  1553. To test the effect of globin blocking on detection of differentially expressed
  1554. genes, the GB samples and non-GB samples were each analyzed independently
  1555. as follows: for each animal with both a pre-transplant and a post-transplant
  1556. time point in the data set, the pre-transplant sample and the earliest
  1557. post-transplant sample were selected, and all others were excluded, yielding
  1558. a pre-/post-transplant pair of samples for each animal (N=7 animals with
  1559. paired samples).
  1560. These samples were analyzed for pre-transplant vs.
  1561. post-transplant differential gene expression while controlling for inter-animal
  1562. variation using an additive model with coefficients for transplant and
  1563. animal ID.
  1564. In all analyses, p-values were adjusted using the Benjamini-Hochberg procedure
  1565. for FDR correction
  1566. \begin_inset CommandInset citation
  1567. LatexCommand cite
  1568. key "Benjamini1995"
  1569. literal "false"
  1570. \end_inset
  1571. .
  1572. \end_layout
  1573. \begin_layout Standard
  1574. \begin_inset Note Note
  1575. status open
  1576. \begin_layout Itemize
  1577. New blood RNA-seq protocol to block reverse transcription of globin genes
  1578. \end_layout
  1579. \begin_layout Itemize
  1580. Blood RNA-seq time course after transplants with/without MSC infusion
  1581. \end_layout
  1582. \end_inset
  1583. \end_layout
  1584. \begin_layout Section
  1585. Results
  1586. \end_layout
  1587. \begin_layout Subsection*
  1588. Globin blocking yields a larger and more consistent fraction of useful reads
  1589. \end_layout
  1590. \begin_layout Standard
  1591. The objective of the present study was to validate a new protocol for deep
  1592. RNA-seq of whole blood drawn into PaxGene tubes from cynomolgus monkeys
  1593. undergoing islet transplantation, with particular focus on minimizing the
  1594. loss of useful sequencing space to uninformative globin reads.
  1595. The details of the analysis with respect to transplant outcomes and the
  1596. impact of mesenchymal stem cell treatment will be reported in a separate
  1597. manuscript (in preparation).
  1598. To focus on the efficacy of our globin blocking protocol, 37 blood samples,
  1599. 16 from pre-transplant and 21 from post-transplant time points, were each
  1600. prepped once with and once without globin blocking oligos, and were then
  1601. sequenced on an Illumina NextSeq500 instrument.
  1602. The number of reads aligning to each gene in the cynomolgus genome was
  1603. counted.
  1604. Table 1 summarizes the distribution of read fractions among the GB and
  1605. non-GB libraries.
  1606. In the libraries with no globin blocking, globin reads made up an average
  1607. of 44.6% of total input reads, while reads assigned to all other genes made
  1608. up an average of 26.3%.
  1609. The remaining reads either aligned to intergenic regions (that include
  1610. long non-coding RNAs) or did not align with any annotated transcripts in
  1611. the current build of the cynomolgus genome.
  1612. In the GB libraries, globin reads made up only 3.48% and reads assigned
  1613. to all other genes increased to 50.4%.
  1614. Thus, globin blocking resulted in a 92.2% reduction in globin reads and
  1615. a 91.6% increase in yield of useful non-globin reads.
  1616. \end_layout
  1617. \begin_layout Standard
  1618. This reduction is not quite as efficient as the previous analysis showed
  1619. for human samples by DeepSAGE (<0.4% globin reads after globin reduction)
  1620. \begin_inset CommandInset citation
  1621. LatexCommand cite
  1622. key "Mastrokolias2012"
  1623. literal "false"
  1624. \end_inset
  1625. .
  1626. Nonetheless, this degree of globin reduction is sufficient to nearly double
  1627. the yield of useful reads.
  1628. Thus, globin blocking cuts the required sequencing effort (and costs) to
  1629. achieve a target coverage depth by almost 50%.
  1630. Consistent with this near doubling of yield, the average difference in
  1631. un-normalized logCPM across all genes between the GB libraries and non-GB
  1632. libraries is approximately 1 (mean = 1.01, median = 1.08), an overall 2-fold
  1633. increase.
  1634. Un-normalized values are used here because the TMM normalization correctly
  1635. identifies this 2-fold difference as biologically irrelevant and removes
  1636. it.
  1637. \end_layout
  1638. \begin_layout Standard
  1639. \begin_inset Float figure
  1640. wide false
  1641. sideways false
  1642. status open
  1643. \begin_layout Plain Layout
  1644. \align center
  1645. \begin_inset Graphics
  1646. filename graphics/Globin Paper/figure1 - globin-fractions.pdf
  1647. \end_inset
  1648. \end_layout
  1649. \begin_layout Plain Layout
  1650. \begin_inset Caption Standard
  1651. \begin_layout Plain Layout
  1652. \series bold
  1653. \begin_inset Argument 1
  1654. status collapsed
  1655. \begin_layout Plain Layout
  1656. Fraction of genic reads in each sample aligned to non-globin genes, with
  1657. and without globin blocking (GB).
  1658. \end_layout
  1659. \end_inset
  1660. \begin_inset CommandInset label
  1661. LatexCommand label
  1662. name "fig:Fraction-of-genic-reads"
  1663. \end_inset
  1664. Fraction of genic reads in each sample aligned to non-globin genes, with
  1665. and without globin blocking (GB).
  1666. \series default
  1667. All reads in each sequencing library were aligned to the cyno genome, and
  1668. the number of reads uniquely aligning to each gene was counted.
  1669. For each sample, counts were summed separately for all globin genes and
  1670. for the remainder of the genes (non-globin genes), and the fraction of
  1671. genic reads aligned to non-globin genes was computed.
  1672. Each point represents an individual sample.
  1673. Gray + signs indicate the means for globin-blocked libraries and unblocked
  1674. libraries.
  1675. The overall distribution for each group is represented as a notched box
  1676. plots.
  1677. Points are randomly spread vertically to avoid excessive overlapping.
  1678. \end_layout
  1679. \end_inset
  1680. \end_layout
  1681. \begin_layout Plain Layout
  1682. \end_layout
  1683. \end_inset
  1684. \end_layout
  1685. \begin_layout Standard
  1686. \begin_inset Float table
  1687. placement p
  1688. wide false
  1689. sideways true
  1690. status open
  1691. \begin_layout Plain Layout
  1692. \align center
  1693. \begin_inset Tabular
  1694. <lyxtabular version="3" rows="4" columns="7">
  1695. <features tabularvalignment="middle">
  1696. <column alignment="center" valignment="top">
  1697. <column alignment="center" valignment="top">
  1698. <column alignment="center" valignment="top">
  1699. <column alignment="center" valignment="top">
  1700. <column alignment="center" valignment="top">
  1701. <column alignment="center" valignment="top">
  1702. <column alignment="center" valignment="top">
  1703. <row>
  1704. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1705. \begin_inset Text
  1706. \begin_layout Plain Layout
  1707. \end_layout
  1708. \end_inset
  1709. </cell>
  1710. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1711. \begin_inset Text
  1712. \begin_layout Plain Layout
  1713. \family roman
  1714. \series medium
  1715. \shape up
  1716. \size normal
  1717. \emph off
  1718. \bar no
  1719. \strikeout off
  1720. \xout off
  1721. \uuline off
  1722. \uwave off
  1723. \noun off
  1724. \color none
  1725. Percent of Total Reads
  1726. \end_layout
  1727. \end_inset
  1728. </cell>
  1729. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1730. \begin_inset Text
  1731. \begin_layout Plain Layout
  1732. \end_layout
  1733. \end_inset
  1734. </cell>
  1735. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1736. \begin_inset Text
  1737. \begin_layout Plain Layout
  1738. \end_layout
  1739. \end_inset
  1740. </cell>
  1741. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1742. \begin_inset Text
  1743. \begin_layout Plain Layout
  1744. \end_layout
  1745. \end_inset
  1746. </cell>
  1747. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  1748. \begin_inset Text
  1749. \begin_layout Plain Layout
  1750. \family roman
  1751. \series medium
  1752. \shape up
  1753. \size normal
  1754. \emph off
  1755. \bar no
  1756. \strikeout off
  1757. \xout off
  1758. \uuline off
  1759. \uwave off
  1760. \noun off
  1761. \color none
  1762. Percent of Genic Reads
  1763. \end_layout
  1764. \end_inset
  1765. </cell>
  1766. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  1767. \begin_inset Text
  1768. \begin_layout Plain Layout
  1769. \end_layout
  1770. \end_inset
  1771. </cell>
  1772. </row>
  1773. <row>
  1774. <cell alignment="center" valignment="top" bottomline="true" leftline="true" usebox="none">
  1775. \begin_inset Text
  1776. \begin_layout Plain Layout
  1777. GB
  1778. \end_layout
  1779. \end_inset
  1780. </cell>
  1781. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1782. \begin_inset Text
  1783. \begin_layout Plain Layout
  1784. \family roman
  1785. \series medium
  1786. \shape up
  1787. \size normal
  1788. \emph off
  1789. \bar no
  1790. \strikeout off
  1791. \xout off
  1792. \uuline off
  1793. \uwave off
  1794. \noun off
  1795. \color none
  1796. Non-globin Reads
  1797. \end_layout
  1798. \end_inset
  1799. </cell>
  1800. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1801. \begin_inset Text
  1802. \begin_layout Plain Layout
  1803. \family roman
  1804. \series medium
  1805. \shape up
  1806. \size normal
  1807. \emph off
  1808. \bar no
  1809. \strikeout off
  1810. \xout off
  1811. \uuline off
  1812. \uwave off
  1813. \noun off
  1814. \color none
  1815. Globin Reads
  1816. \end_layout
  1817. \end_inset
  1818. </cell>
  1819. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1820. \begin_inset Text
  1821. \begin_layout Plain Layout
  1822. \family roman
  1823. \series medium
  1824. \shape up
  1825. \size normal
  1826. \emph off
  1827. \bar no
  1828. \strikeout off
  1829. \xout off
  1830. \uuline off
  1831. \uwave off
  1832. \noun off
  1833. \color none
  1834. All Genic Reads
  1835. \end_layout
  1836. \end_inset
  1837. </cell>
  1838. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1839. \begin_inset Text
  1840. \begin_layout Plain Layout
  1841. \family roman
  1842. \series medium
  1843. \shape up
  1844. \size normal
  1845. \emph off
  1846. \bar no
  1847. \strikeout off
  1848. \xout off
  1849. \uuline off
  1850. \uwave off
  1851. \noun off
  1852. \color none
  1853. All Aligned Reads
  1854. \end_layout
  1855. \end_inset
  1856. </cell>
  1857. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  1858. \begin_inset Text
  1859. \begin_layout Plain Layout
  1860. \family roman
  1861. \series medium
  1862. \shape up
  1863. \size normal
  1864. \emph off
  1865. \bar no
  1866. \strikeout off
  1867. \xout off
  1868. \uuline off
  1869. \uwave off
  1870. \noun off
  1871. \color none
  1872. Non-globin Reads
  1873. \end_layout
  1874. \end_inset
  1875. </cell>
  1876. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  1877. \begin_inset Text
  1878. \begin_layout Plain Layout
  1879. \family roman
  1880. \series medium
  1881. \shape up
  1882. \size normal
  1883. \emph off
  1884. \bar no
  1885. \strikeout off
  1886. \xout off
  1887. \uuline off
  1888. \uwave off
  1889. \noun off
  1890. \color none
  1891. Globin Reads
  1892. \end_layout
  1893. \end_inset
  1894. </cell>
  1895. </row>
  1896. <row>
  1897. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1898. \begin_inset Text
  1899. \begin_layout Plain Layout
  1900. \family roman
  1901. \series medium
  1902. \shape up
  1903. \size normal
  1904. \emph off
  1905. \bar no
  1906. \strikeout off
  1907. \xout off
  1908. \uuline off
  1909. \uwave off
  1910. \noun off
  1911. \color none
  1912. Yes
  1913. \end_layout
  1914. \end_inset
  1915. </cell>
  1916. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1917. \begin_inset Text
  1918. \begin_layout Plain Layout
  1919. \family roman
  1920. \series medium
  1921. \shape up
  1922. \size normal
  1923. \emph off
  1924. \bar no
  1925. \strikeout off
  1926. \xout off
  1927. \uuline off
  1928. \uwave off
  1929. \noun off
  1930. \color none
  1931. 50.4% ± 6.82
  1932. \end_layout
  1933. \end_inset
  1934. </cell>
  1935. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1936. \begin_inset Text
  1937. \begin_layout Plain Layout
  1938. \family roman
  1939. \series medium
  1940. \shape up
  1941. \size normal
  1942. \emph off
  1943. \bar no
  1944. \strikeout off
  1945. \xout off
  1946. \uuline off
  1947. \uwave off
  1948. \noun off
  1949. \color none
  1950. 3.48% ± 2.94
  1951. \end_layout
  1952. \end_inset
  1953. </cell>
  1954. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1955. \begin_inset Text
  1956. \begin_layout Plain Layout
  1957. \family roman
  1958. \series medium
  1959. \shape up
  1960. \size normal
  1961. \emph off
  1962. \bar no
  1963. \strikeout off
  1964. \xout off
  1965. \uuline off
  1966. \uwave off
  1967. \noun off
  1968. \color none
  1969. 53.9% ± 6.81
  1970. \end_layout
  1971. \end_inset
  1972. </cell>
  1973. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1974. \begin_inset Text
  1975. \begin_layout Plain Layout
  1976. \family roman
  1977. \series medium
  1978. \shape up
  1979. \size normal
  1980. \emph off
  1981. \bar no
  1982. \strikeout off
  1983. \xout off
  1984. \uuline off
  1985. \uwave off
  1986. \noun off
  1987. \color none
  1988. 89.7% ± 2.40
  1989. \end_layout
  1990. \end_inset
  1991. </cell>
  1992. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  1993. \begin_inset Text
  1994. \begin_layout Plain Layout
  1995. \family roman
  1996. \series medium
  1997. \shape up
  1998. \size normal
  1999. \emph off
  2000. \bar no
  2001. \strikeout off
  2002. \xout off
  2003. \uuline off
  2004. \uwave off
  2005. \noun off
  2006. \color none
  2007. 93.5% ± 5.25
  2008. \end_layout
  2009. \end_inset
  2010. </cell>
  2011. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2012. \begin_inset Text
  2013. \begin_layout Plain Layout
  2014. \family roman
  2015. \series medium
  2016. \shape up
  2017. \size normal
  2018. \emph off
  2019. \bar no
  2020. \strikeout off
  2021. \xout off
  2022. \uuline off
  2023. \uwave off
  2024. \noun off
  2025. \color none
  2026. 6.49% ± 5.25
  2027. \end_layout
  2028. \end_inset
  2029. </cell>
  2030. </row>
  2031. <row>
  2032. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2033. \begin_inset Text
  2034. \begin_layout Plain Layout
  2035. \family roman
  2036. \series medium
  2037. \shape up
  2038. \size normal
  2039. \emph off
  2040. \bar no
  2041. \strikeout off
  2042. \xout off
  2043. \uuline off
  2044. \uwave off
  2045. \noun off
  2046. \color none
  2047. No
  2048. \end_layout
  2049. \end_inset
  2050. </cell>
  2051. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2052. \begin_inset Text
  2053. \begin_layout Plain Layout
  2054. \family roman
  2055. \series medium
  2056. \shape up
  2057. \size normal
  2058. \emph off
  2059. \bar no
  2060. \strikeout off
  2061. \xout off
  2062. \uuline off
  2063. \uwave off
  2064. \noun off
  2065. \color none
  2066. 26.3% ± 8.95
  2067. \end_layout
  2068. \end_inset
  2069. </cell>
  2070. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2071. \begin_inset Text
  2072. \begin_layout Plain Layout
  2073. \family roman
  2074. \series medium
  2075. \shape up
  2076. \size normal
  2077. \emph off
  2078. \bar no
  2079. \strikeout off
  2080. \xout off
  2081. \uuline off
  2082. \uwave off
  2083. \noun off
  2084. \color none
  2085. 44.6% ± 16.6
  2086. \end_layout
  2087. \end_inset
  2088. </cell>
  2089. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2090. \begin_inset Text
  2091. \begin_layout Plain Layout
  2092. \family roman
  2093. \series medium
  2094. \shape up
  2095. \size normal
  2096. \emph off
  2097. \bar no
  2098. \strikeout off
  2099. \xout off
  2100. \uuline off
  2101. \uwave off
  2102. \noun off
  2103. \color none
  2104. 70.1% ± 9.38
  2105. \end_layout
  2106. \end_inset
  2107. </cell>
  2108. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2109. \begin_inset Text
  2110. \begin_layout Plain Layout
  2111. \family roman
  2112. \series medium
  2113. \shape up
  2114. \size normal
  2115. \emph off
  2116. \bar no
  2117. \strikeout off
  2118. \xout off
  2119. \uuline off
  2120. \uwave off
  2121. \noun off
  2122. \color none
  2123. 90.7% ± 5.16
  2124. \end_layout
  2125. \end_inset
  2126. </cell>
  2127. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2128. \begin_inset Text
  2129. \begin_layout Plain Layout
  2130. \family roman
  2131. \series medium
  2132. \shape up
  2133. \size normal
  2134. \emph off
  2135. \bar no
  2136. \strikeout off
  2137. \xout off
  2138. \uuline off
  2139. \uwave off
  2140. \noun off
  2141. \color none
  2142. 38.8% ± 17.1
  2143. \end_layout
  2144. \end_inset
  2145. </cell>
  2146. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2147. \begin_inset Text
  2148. \begin_layout Plain Layout
  2149. \family roman
  2150. \series medium
  2151. \shape up
  2152. \size normal
  2153. \emph off
  2154. \bar no
  2155. \strikeout off
  2156. \xout off
  2157. \uuline off
  2158. \uwave off
  2159. \noun off
  2160. \color none
  2161. 61.2% ± 17.1
  2162. \end_layout
  2163. \end_inset
  2164. </cell>
  2165. </row>
  2166. </lyxtabular>
  2167. \end_inset
  2168. \end_layout
  2169. \begin_layout Plain Layout
  2170. \begin_inset Caption Standard
  2171. \begin_layout Plain Layout
  2172. \series bold
  2173. \begin_inset Argument 1
  2174. status collapsed
  2175. \begin_layout Plain Layout
  2176. Fractions of reads mapping to genomic features in GB and non-GB samples.
  2177. \end_layout
  2178. \end_inset
  2179. \begin_inset CommandInset label
  2180. LatexCommand label
  2181. name "tab:Fractions-of-reads"
  2182. \end_inset
  2183. Fractions of reads mapping to genomic features in GB and non-GB samples.
  2184. \series default
  2185. All values are given as mean ± standard deviation.
  2186. \end_layout
  2187. \end_inset
  2188. \end_layout
  2189. \begin_layout Plain Layout
  2190. \end_layout
  2191. \end_inset
  2192. \end_layout
  2193. \begin_layout Standard
  2194. Another important aspect is that the standard deviations in Table
  2195. \begin_inset CommandInset ref
  2196. LatexCommand ref
  2197. reference "tab:Fractions-of-reads"
  2198. plural "false"
  2199. caps "false"
  2200. noprefix "false"
  2201. \end_inset
  2202. are uniformly smaller in the GB samples than the non-GB ones, indicating
  2203. much greater consistency of yield.
  2204. This is best seen in the percentage of non-globin reads as a fraction of
  2205. total reads aligned to annotated genes (genic reads).
  2206. For the non-GB samples, this measure ranges from 10.9% to 80.9%, while for
  2207. the GB samples it ranges from 81.9% to 99.9% (Figure
  2208. \begin_inset CommandInset ref
  2209. LatexCommand ref
  2210. reference "fig:Fraction-of-genic-reads"
  2211. plural "false"
  2212. caps "false"
  2213. noprefix "false"
  2214. \end_inset
  2215. ).
  2216. This means that for applications where it is critical that each sample
  2217. achieve a specified minimum coverage in order to provide useful information,
  2218. it would be necessary to budget up to 10 times the sequencing depth per
  2219. sample without globin blocking, even though the average yield improvement
  2220. for globin blocking is only 2-fold, because every sample has a chance of
  2221. being 90% globin and 10% useful reads.
  2222. Hence, the more consistent behavior of GB samples makes planning an experiment
  2223. easier and more efficient because it eliminates the need to over-sequence
  2224. every sample in order to guard against the worst case of a high-globin
  2225. fraction.
  2226. \end_layout
  2227. \begin_layout Subsection*
  2228. Globin blocking lowers the noise floor and allows detection of about 2000
  2229. more genes
  2230. \end_layout
  2231. \begin_layout Standard
  2232. \begin_inset Flex TODO Note (inline)
  2233. status open
  2234. \begin_layout Plain Layout
  2235. Remove redundant titles from figures
  2236. \end_layout
  2237. \end_inset
  2238. \end_layout
  2239. \begin_layout Standard
  2240. \begin_inset Float figure
  2241. wide false
  2242. sideways false
  2243. status open
  2244. \begin_layout Plain Layout
  2245. \align center
  2246. \begin_inset Graphics
  2247. filename graphics/Globin Paper/figure2 - aveLogCPM-colored.pdf
  2248. \end_inset
  2249. \end_layout
  2250. \begin_layout Plain Layout
  2251. \begin_inset Caption Standard
  2252. \begin_layout Plain Layout
  2253. \series bold
  2254. \begin_inset Argument 1
  2255. status collapsed
  2256. \begin_layout Plain Layout
  2257. Distributions of average group gene abundances when normalized separately
  2258. or together.
  2259. \end_layout
  2260. \end_inset
  2261. \begin_inset CommandInset label
  2262. LatexCommand label
  2263. name "fig:logcpm-dists"
  2264. \end_inset
  2265. Distributions of average group gene abundances when normalized separately
  2266. or together.
  2267. \series default
  2268. All reads in each sequencing library were aligned to the cyno genome, and
  2269. the number of reads uniquely aligning to each gene was counted.
  2270. Genes with zero counts in all libraries were discarded.
  2271. Libraries were normalized using the TMM method.
  2272. Libraries were split into globin-blocked (GB) and non-GB groups and the
  2273. average abundance for each gene in both groups, measured in log2 counts
  2274. per million reads counted, was computed using the aveLogCPM function.
  2275. The distribution of average gene logCPM values was plotted for both groups
  2276. using a kernel density plot to approximate a continuous distribution.
  2277. The logCPM GB distributions are marked in red, non-GB in blue.
  2278. The black vertical line denotes the chosen detection threshold of -1.
  2279. Top panel: Libraries were split into GB and non-GB groups first and normalized
  2280. separately.
  2281. Bottom panel: Libraries were all normalized together first and then split
  2282. into groups.
  2283. \end_layout
  2284. \end_inset
  2285. \end_layout
  2286. \begin_layout Plain Layout
  2287. \end_layout
  2288. \end_inset
  2289. \end_layout
  2290. \begin_layout Standard
  2291. Since globin blocking yields more usable sequencing depth, it should also
  2292. allow detection of more genes at any given threshold.
  2293. When we looked at the distribution of average normalized logCPM values
  2294. across all libraries for genes with at least one read assigned to them,
  2295. we observed the expected bimodal distribution, with a high-abundance "signal"
  2296. peak representing detected genes and a low-abundance "noise" peak representing
  2297. genes whose read count did not rise above the noise floor (Figure
  2298. \begin_inset CommandInset ref
  2299. LatexCommand ref
  2300. reference "fig:logcpm-dists"
  2301. plural "false"
  2302. caps "false"
  2303. noprefix "false"
  2304. \end_inset
  2305. ).
  2306. Consistent with the 2-fold increase in raw counts assigned to non-globin
  2307. genes, the signal peak for GB samples is shifted to the right relative
  2308. to the non-GB signal peak.
  2309. When all the samples are normalized together, this difference is normalized
  2310. out, lining up the signal peaks, and this reveals that, as expected, the
  2311. noise floor for the GB samples is about 2-fold lower.
  2312. This greater separation between signal and noise peaks in the GB samples
  2313. means that low-expression genes should be more easily detected and more
  2314. precisely quantified than in the non-GB samples.
  2315. \end_layout
  2316. \begin_layout Standard
  2317. \begin_inset Float figure
  2318. wide false
  2319. sideways false
  2320. status open
  2321. \begin_layout Plain Layout
  2322. \align center
  2323. \begin_inset Graphics
  2324. filename graphics/Globin Paper/figure3 - detection.pdf
  2325. \end_inset
  2326. \end_layout
  2327. \begin_layout Plain Layout
  2328. \begin_inset Caption Standard
  2329. \begin_layout Plain Layout
  2330. \series bold
  2331. \begin_inset Argument 1
  2332. status collapsed
  2333. \begin_layout Plain Layout
  2334. Gene detections as a function of abundance thresholds in globin-blocked
  2335. (GB) and non-GB samples.
  2336. \end_layout
  2337. \end_inset
  2338. \begin_inset CommandInset label
  2339. LatexCommand label
  2340. name "fig:Gene-detections"
  2341. \end_inset
  2342. Gene detections as a function of abundance thresholds in globin-blocked
  2343. (GB) and non-GB samples.
  2344. \series default
  2345. Average abundance (logCPM,
  2346. \begin_inset Formula $\log_{2}$
  2347. \end_inset
  2348. counts per million reads counted) was computed by separate group normalization
  2349. as described in Figure
  2350. \begin_inset CommandInset ref
  2351. LatexCommand ref
  2352. reference "fig:logcpm-dists"
  2353. plural "false"
  2354. caps "false"
  2355. noprefix "false"
  2356. \end_inset
  2357. for both the GB and non-GB groups, as well as for all samples considered
  2358. as one large group.
  2359. For each every integer threshold from -2 to 3, the number of genes detected
  2360. at or above that logCPM threshold was plotted for each group.
  2361. \end_layout
  2362. \end_inset
  2363. \end_layout
  2364. \begin_layout Plain Layout
  2365. \end_layout
  2366. \end_inset
  2367. \end_layout
  2368. \begin_layout Standard
  2369. Based on these distributions, we selected a detection threshold of -1, which
  2370. is approximately the leftmost edge of the trough between the signal and
  2371. noise peaks.
  2372. This represents the most liberal possible detection threshold that doesn't
  2373. call substantial numbers of noise genes as detected.
  2374. Among the full dataset, 13429 genes were detected at this threshold, and
  2375. 22276 were not.
  2376. When considering the GB libraries and non-GB libraries separately and re-comput
  2377. ing normalization factors independently within each group, 14535 genes were
  2378. detected in the GB libraries while only 12460 were detected in the non-GB
  2379. libraries.
  2380. Thus, GB allowed the detection of 2000 extra genes that were buried under
  2381. the noise floor without GB.
  2382. This pattern of at least 2000 additional genes detected with GB was also
  2383. consistent across a wide range of possible detection thresholds, from -2
  2384. to 3 (see Figure
  2385. \begin_inset CommandInset ref
  2386. LatexCommand ref
  2387. reference "fig:Gene-detections"
  2388. plural "false"
  2389. caps "false"
  2390. noprefix "false"
  2391. \end_inset
  2392. ).
  2393. \end_layout
  2394. \begin_layout Subsection*
  2395. Globin blocking does not add significant additional noise or decrease sample
  2396. quality
  2397. \end_layout
  2398. \begin_layout Standard
  2399. One potential worry is that the globin blocking protocol could perturb the
  2400. levels of non-globin genes.
  2401. There are two kinds of possible perturbations: systematic and random.
  2402. The former is not a major concern for detection of differential expression,
  2403. since a 2-fold change in every sample has no effect on the relative fold
  2404. change between samples.
  2405. In contrast, random perturbations would increase the noise and obscure
  2406. the signal in the dataset, reducing the capacity to detect differential
  2407. expression.
  2408. \end_layout
  2409. \begin_layout Standard
  2410. \begin_inset Float figure
  2411. wide false
  2412. sideways false
  2413. status open
  2414. \begin_layout Plain Layout
  2415. \align center
  2416. \begin_inset Graphics
  2417. filename graphics/Globin Paper/figure4 - maplot-colored.pdf
  2418. \end_inset
  2419. \end_layout
  2420. \begin_layout Plain Layout
  2421. \begin_inset Caption Standard
  2422. \begin_layout Plain Layout
  2423. \begin_inset Argument 1
  2424. status collapsed
  2425. \begin_layout Plain Layout
  2426. MA plot showing effects of globin blocking on each gene's abundance.
  2427. \end_layout
  2428. \end_inset
  2429. \begin_inset CommandInset label
  2430. LatexCommand label
  2431. name "fig:MA-plot"
  2432. \end_inset
  2433. \series bold
  2434. MA plot showing effects of globin blocking on each gene's abundance.
  2435. \series default
  2436. All libraries were normalized together as described in Figure
  2437. \begin_inset CommandInset ref
  2438. LatexCommand ref
  2439. reference "fig:logcpm-dists"
  2440. plural "false"
  2441. caps "false"
  2442. noprefix "false"
  2443. \end_inset
  2444. , and genes with an average logCPM below -1 were filtered out.
  2445. Each remaining gene was tested for differential abundance with respect
  2446. to globin blocking (GB) using edgeR’s quasi-likelihod F-test, fitting a
  2447. negative binomial generalized linear model to table of read counts in each
  2448. library.
  2449. For each gene, edgeR reported average abundance (logCPM),
  2450. \begin_inset Formula $\log_{2}$
  2451. \end_inset
  2452. fold change (logFC), p-value, and Benjamini-Hochberg adjusted false discovery
  2453. rate (FDR).
  2454. Each gene's logFC was plotted against its logCPM, colored by FDR.
  2455. Red points are significant at ≤10% FDR, and blue are not significant at
  2456. that threshold.
  2457. The alpha and beta globin genes targeted for blocking are marked with large
  2458. triangles, while all other genes are represented as small points.
  2459. \end_layout
  2460. \end_inset
  2461. \end_layout
  2462. \begin_layout Plain Layout
  2463. \end_layout
  2464. \end_inset
  2465. \end_layout
  2466. \begin_layout Standard
  2467. \begin_inset Flex TODO Note (inline)
  2468. status open
  2469. \begin_layout Plain Layout
  2470. Standardize on
  2471. \begin_inset Quotes eld
  2472. \end_inset
  2473. log2
  2474. \begin_inset Quotes erd
  2475. \end_inset
  2476. notation
  2477. \end_layout
  2478. \end_inset
  2479. \end_layout
  2480. \begin_layout Standard
  2481. The data do indeed show small systematic perturbations in gene levels (Figure
  2482. \begin_inset CommandInset ref
  2483. LatexCommand ref
  2484. reference "fig:MA-plot"
  2485. plural "false"
  2486. caps "false"
  2487. noprefix "false"
  2488. \end_inset
  2489. ).
  2490. Other than the 3 designated alpha and beta globin genes, two other genes
  2491. stand out as having especially large negative log fold changes: HBD and
  2492. LOC1021365.
  2493. HBD, delta globin, is most likely targeted by the blocking oligos due to
  2494. high sequence homology with the other globin genes.
  2495. LOC1021365 is the aforementioned ncRNA that is reverse-complementary to
  2496. one of the alpha-like genes and that would be expected to be removed during
  2497. the globin blocking step.
  2498. All other genes appear in a cluster centered vertically at 0, and the vast
  2499. majority of genes in this cluster show an absolute log2(FC) of 0.5 or less.
  2500. Nevertheless, many of these small perturbations are still statistically
  2501. significant, indicating that the globin blocking oligos likely cause very
  2502. small but non-zero systematic perturbations in measured gene expression
  2503. levels.
  2504. \end_layout
  2505. \begin_layout Standard
  2506. \begin_inset Float figure
  2507. wide false
  2508. sideways false
  2509. status open
  2510. \begin_layout Plain Layout
  2511. \align center
  2512. \begin_inset Graphics
  2513. filename graphics/Globin Paper/figure5 - corrplot.pdf
  2514. \end_inset
  2515. \end_layout
  2516. \begin_layout Plain Layout
  2517. \begin_inset Caption Standard
  2518. \begin_layout Plain Layout
  2519. \series bold
  2520. \begin_inset Argument 1
  2521. status collapsed
  2522. \begin_layout Plain Layout
  2523. Comparison of inter-sample gene abundance correlations with and without
  2524. globin blocking.
  2525. \end_layout
  2526. \end_inset
  2527. \begin_inset CommandInset label
  2528. LatexCommand label
  2529. name "fig:gene-abundance-correlations"
  2530. \end_inset
  2531. Comparison of inter-sample gene abundance correlations with and without
  2532. globin blocking (GB).
  2533. \series default
  2534. All libraries were normalized together as described in Figure 2, and genes
  2535. with an average abundance (logCPM, log2 counts per million reads counted)
  2536. less than -1 were filtered out.
  2537. Each gene’s logCPM was computed in each library using the edgeR cpm function.
  2538. For each pair of biological samples, the Pearson correlation between those
  2539. samples' GB libraries was plotted against the correlation between the same
  2540. samples’ non-GB libraries.
  2541. Each point represents an unique pair of samples.
  2542. The solid gray line shows a quantile-quantile plot of distribution of GB
  2543. correlations vs.
  2544. that of non-GB correlations.
  2545. The thin dashed line is the identity line, provided for reference.
  2546. \end_layout
  2547. \end_inset
  2548. \end_layout
  2549. \begin_layout Plain Layout
  2550. \end_layout
  2551. \end_inset
  2552. \end_layout
  2553. \begin_layout Standard
  2554. To evaluate the possibility of globin blocking causing random perturbations
  2555. and reducing sample quality, we computed the Pearson correlation between
  2556. logCPM values for every pair of samples with and without GB and plotted
  2557. them against each other (Figure
  2558. \begin_inset CommandInset ref
  2559. LatexCommand ref
  2560. reference "fig:gene-abundance-correlations"
  2561. plural "false"
  2562. caps "false"
  2563. noprefix "false"
  2564. \end_inset
  2565. ).
  2566. The plot indicated that the GB libraries have higher sample-to-sample correlati
  2567. ons than the non-GB libraries.
  2568. Parametric and nonparametric tests for differences between the correlations
  2569. with and without GB both confirmed that this difference was highly significant
  2570. (2-sided paired t-test: t = 37.2, df = 665, P ≪ 2.2e-16; 2-sided Wilcoxon
  2571. sign-rank test: V = 2195, P ≪ 2.2e-16).
  2572. Performing the same tests on the Spearman correlations gave the same conclusion
  2573. (t-test: t = 26.8, df = 665, P ≪ 2.2e-16; sign-rank test: V = 8781, P ≪ 2.2e-16).
  2574. The edgeR package was used to compute the overall biological coefficient
  2575. of variation (BCV) for GB and non-GB libraries, and found that globin blocking
  2576. resulted in a negligible increase in the BCV (0.417 with GB vs.
  2577. 0.400 without).
  2578. The near equality of the BCVs for both sets indicates that the higher correlati
  2579. ons in the GB libraries are most likely a result of the increased yield
  2580. of useful reads, which reduces the contribution of Poisson counting uncertainty
  2581. to the overall variance of the logCPM values
  2582. \begin_inset CommandInset citation
  2583. LatexCommand cite
  2584. key "McCarthy2012"
  2585. literal "false"
  2586. \end_inset
  2587. .
  2588. This improves the precision of expression measurements and more than offsets
  2589. the negligible increase in BCV.
  2590. \end_layout
  2591. \begin_layout Subsection*
  2592. More differentially expressed genes are detected with globin blocking
  2593. \end_layout
  2594. \begin_layout Standard
  2595. \begin_inset Float table
  2596. wide false
  2597. sideways false
  2598. status open
  2599. \begin_layout Plain Layout
  2600. \align center
  2601. \begin_inset Tabular
  2602. <lyxtabular version="3" rows="5" columns="5">
  2603. <features tabularvalignment="middle">
  2604. <column alignment="center" valignment="top">
  2605. <column alignment="center" valignment="top">
  2606. <column alignment="center" valignment="top">
  2607. <column alignment="center" valignment="top">
  2608. <column alignment="center" valignment="top">
  2609. <row>
  2610. <cell alignment="center" valignment="top" usebox="none">
  2611. \begin_inset Text
  2612. \begin_layout Plain Layout
  2613. \end_layout
  2614. \end_inset
  2615. </cell>
  2616. <cell alignment="center" valignment="top" usebox="none">
  2617. \begin_inset Text
  2618. \begin_layout Plain Layout
  2619. \end_layout
  2620. \end_inset
  2621. </cell>
  2622. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2623. \begin_inset Text
  2624. \begin_layout Plain Layout
  2625. \series bold
  2626. No Globin Blocking
  2627. \end_layout
  2628. \end_inset
  2629. </cell>
  2630. <cell multicolumn="2" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2631. \begin_inset Text
  2632. \begin_layout Plain Layout
  2633. \end_layout
  2634. \end_inset
  2635. </cell>
  2636. <cell multicolumn="2" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2637. \begin_inset Text
  2638. \begin_layout Plain Layout
  2639. \end_layout
  2640. \end_inset
  2641. </cell>
  2642. </row>
  2643. <row>
  2644. <cell alignment="center" valignment="top" usebox="none">
  2645. \begin_inset Text
  2646. \begin_layout Plain Layout
  2647. \end_layout
  2648. \end_inset
  2649. </cell>
  2650. <cell alignment="center" valignment="top" usebox="none">
  2651. \begin_inset Text
  2652. \begin_layout Plain Layout
  2653. \end_layout
  2654. \end_inset
  2655. </cell>
  2656. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2657. \begin_inset Text
  2658. \begin_layout Plain Layout
  2659. \series bold
  2660. Up
  2661. \end_layout
  2662. \end_inset
  2663. </cell>
  2664. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2665. \begin_inset Text
  2666. \begin_layout Plain Layout
  2667. \series bold
  2668. NS
  2669. \end_layout
  2670. \end_inset
  2671. </cell>
  2672. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2673. \begin_inset Text
  2674. \begin_layout Plain Layout
  2675. \series bold
  2676. Down
  2677. \end_layout
  2678. \end_inset
  2679. </cell>
  2680. </row>
  2681. <row>
  2682. <cell multirow="3" alignment="center" valignment="middle" topline="true" bottomline="true" leftline="true" usebox="none">
  2683. \begin_inset Text
  2684. \begin_layout Plain Layout
  2685. \series bold
  2686. Globin-Blocking
  2687. \end_layout
  2688. \end_inset
  2689. </cell>
  2690. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2691. \begin_inset Text
  2692. \begin_layout Plain Layout
  2693. \series bold
  2694. Up
  2695. \end_layout
  2696. \end_inset
  2697. </cell>
  2698. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2699. \begin_inset Text
  2700. \begin_layout Plain Layout
  2701. \family roman
  2702. \series medium
  2703. \shape up
  2704. \size normal
  2705. \emph off
  2706. \bar no
  2707. \strikeout off
  2708. \xout off
  2709. \uuline off
  2710. \uwave off
  2711. \noun off
  2712. \color none
  2713. 231
  2714. \end_layout
  2715. \end_inset
  2716. </cell>
  2717. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2718. \begin_inset Text
  2719. \begin_layout Plain Layout
  2720. \family roman
  2721. \series medium
  2722. \shape up
  2723. \size normal
  2724. \emph off
  2725. \bar no
  2726. \strikeout off
  2727. \xout off
  2728. \uuline off
  2729. \uwave off
  2730. \noun off
  2731. \color none
  2732. 515
  2733. \end_layout
  2734. \end_inset
  2735. </cell>
  2736. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2737. \begin_inset Text
  2738. \begin_layout Plain Layout
  2739. \family roman
  2740. \series medium
  2741. \shape up
  2742. \size normal
  2743. \emph off
  2744. \bar no
  2745. \strikeout off
  2746. \xout off
  2747. \uuline off
  2748. \uwave off
  2749. \noun off
  2750. \color none
  2751. 2
  2752. \end_layout
  2753. \end_inset
  2754. </cell>
  2755. </row>
  2756. <row>
  2757. <cell multirow="4" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2758. \begin_inset Text
  2759. \begin_layout Plain Layout
  2760. \end_layout
  2761. \end_inset
  2762. </cell>
  2763. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2764. \begin_inset Text
  2765. \begin_layout Plain Layout
  2766. \series bold
  2767. NS
  2768. \end_layout
  2769. \end_inset
  2770. </cell>
  2771. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2772. \begin_inset Text
  2773. \begin_layout Plain Layout
  2774. \family roman
  2775. \series medium
  2776. \shape up
  2777. \size normal
  2778. \emph off
  2779. \bar no
  2780. \strikeout off
  2781. \xout off
  2782. \uuline off
  2783. \uwave off
  2784. \noun off
  2785. \color none
  2786. 160
  2787. \end_layout
  2788. \end_inset
  2789. </cell>
  2790. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2791. \begin_inset Text
  2792. \begin_layout Plain Layout
  2793. \family roman
  2794. \series medium
  2795. \shape up
  2796. \size normal
  2797. \emph off
  2798. \bar no
  2799. \strikeout off
  2800. \xout off
  2801. \uuline off
  2802. \uwave off
  2803. \noun off
  2804. \color none
  2805. 11235
  2806. \end_layout
  2807. \end_inset
  2808. </cell>
  2809. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2810. \begin_inset Text
  2811. \begin_layout Plain Layout
  2812. \family roman
  2813. \series medium
  2814. \shape up
  2815. \size normal
  2816. \emph off
  2817. \bar no
  2818. \strikeout off
  2819. \xout off
  2820. \uuline off
  2821. \uwave off
  2822. \noun off
  2823. \color none
  2824. 136
  2825. \end_layout
  2826. \end_inset
  2827. </cell>
  2828. </row>
  2829. <row>
  2830. <cell multirow="4" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2831. \begin_inset Text
  2832. \begin_layout Plain Layout
  2833. \end_layout
  2834. \end_inset
  2835. </cell>
  2836. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2837. \begin_inset Text
  2838. \begin_layout Plain Layout
  2839. \series bold
  2840. Down
  2841. \end_layout
  2842. \end_inset
  2843. </cell>
  2844. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2845. \begin_inset Text
  2846. \begin_layout Plain Layout
  2847. \family roman
  2848. \series medium
  2849. \shape up
  2850. \size normal
  2851. \emph off
  2852. \bar no
  2853. \strikeout off
  2854. \xout off
  2855. \uuline off
  2856. \uwave off
  2857. \noun off
  2858. \color none
  2859. 0
  2860. \end_layout
  2861. \end_inset
  2862. </cell>
  2863. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2864. \begin_inset Text
  2865. \begin_layout Plain Layout
  2866. \family roman
  2867. \series medium
  2868. \shape up
  2869. \size normal
  2870. \emph off
  2871. \bar no
  2872. \strikeout off
  2873. \xout off
  2874. \uuline off
  2875. \uwave off
  2876. \noun off
  2877. \color none
  2878. 548
  2879. \end_layout
  2880. \end_inset
  2881. </cell>
  2882. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2883. \begin_inset Text
  2884. \begin_layout Plain Layout
  2885. \family roman
  2886. \series medium
  2887. \shape up
  2888. \size normal
  2889. \emph off
  2890. \bar no
  2891. \strikeout off
  2892. \xout off
  2893. \uuline off
  2894. \uwave off
  2895. \noun off
  2896. \color none
  2897. 127
  2898. \end_layout
  2899. \end_inset
  2900. </cell>
  2901. </row>
  2902. </lyxtabular>
  2903. \end_inset
  2904. \end_layout
  2905. \begin_layout Plain Layout
  2906. \begin_inset Caption Standard
  2907. \begin_layout Plain Layout
  2908. \series bold
  2909. \begin_inset Argument 1
  2910. status open
  2911. \begin_layout Plain Layout
  2912. Comparison of significantly differentially expressed genes with and without
  2913. globin blocking.
  2914. \end_layout
  2915. \end_inset
  2916. \begin_inset CommandInset label
  2917. LatexCommand label
  2918. name "tab:Comparison-of-significant"
  2919. \end_inset
  2920. Comparison of significantly differentially expressed genes with and without
  2921. globin blocking.
  2922. \series default
  2923. Up, Down: Genes significantly up/down-regulated in post-transplant samples
  2924. relative to pre-transplant samples, with a false discovery rate of 10%
  2925. or less.
  2926. NS: Non-significant genes (false discovery rate greater than 10%).
  2927. \end_layout
  2928. \end_inset
  2929. \end_layout
  2930. \begin_layout Plain Layout
  2931. \end_layout
  2932. \end_inset
  2933. \end_layout
  2934. \begin_layout Standard
  2935. To compare performance on differential gene expression tests, we took subsets
  2936. of both the GB and non-GB libraries with exactly one pre-transplant and
  2937. one post-transplant sample for each animal that had paired samples available
  2938. for analysis (N=7 animals, N=14 samples in each subset).
  2939. The same test for pre- vs.
  2940. post-transplant differential gene expression was performed on the same
  2941. 7 pairs of samples from GB libraries and non-GB libraries, in each case
  2942. using an FDR of 10% as the threshold of significance.
  2943. Out of 12954 genes that passed the detection threshold in both subsets,
  2944. 358 were called significantly differentially expressed in the same direction
  2945. in both sets; 1063 were differentially expressed in the GB set only; 296
  2946. were differentially expressed in the non-GB set only; 2 genes were called
  2947. significantly up in the GB set but significantly down in the non-GB set;
  2948. and the remaining 11235 were not called differentially expressed in either
  2949. set.
  2950. These data are summarized in Table
  2951. \begin_inset CommandInset ref
  2952. LatexCommand ref
  2953. reference "tab:Comparison-of-significant"
  2954. plural "false"
  2955. caps "false"
  2956. noprefix "false"
  2957. \end_inset
  2958. .
  2959. The differences in BCV calculated by EdgeR for these subsets of samples
  2960. were negligible (BCV = 0.302 for GB and 0.297 for non-GB).
  2961. \end_layout
  2962. \begin_layout Standard
  2963. The key point is that the GB data results in substantially more differentially
  2964. expressed calls than the non-GB data.
  2965. Since there is no gold standard for this dataset, it is impossible to be
  2966. certain whether this is due to under-calling of differential expression
  2967. in the non-GB samples or over-calling in the GB samples.
  2968. However, given that both datasets are derived from the same biological
  2969. samples and have nearly equal BCVs, it is more likely that the larger number
  2970. of DE calls in the GB samples are genuine detections that were enabled
  2971. by the higher sequencing depth and measurement precision of the GB samples.
  2972. Note that the same set of genes was considered in both subsets, so the
  2973. larger number of differentially expressed gene calls in the GB data set
  2974. reflects a greater sensitivity to detect significant differential gene
  2975. expression and not simply the larger total number of detected genes in
  2976. GB samples described earlier.
  2977. \end_layout
  2978. \begin_layout Section
  2979. Discussion
  2980. \end_layout
  2981. \begin_layout Standard
  2982. The original experience with whole blood gene expression profiling on DNA
  2983. microarrays demonstrated that the high concentration of globin transcripts
  2984. reduced the sensitivity to detect genes with relatively low expression
  2985. levels, in effect, significantly reducing the sensitivity.
  2986. To address this limitation, commercial protocols for globin reduction were
  2987. developed based on strategies to block globin transcript amplification
  2988. during labeling or physically removing globin transcripts by affinity bead
  2989. methods
  2990. \begin_inset CommandInset citation
  2991. LatexCommand cite
  2992. key "Winn2010"
  2993. literal "false"
  2994. \end_inset
  2995. .
  2996. More recently, using the latest generation of labeling protocols and arrays,
  2997. it was determined that globin reduction was no longer necessary to obtain
  2998. sufficient sensitivity to detect differential transcript expression
  2999. \begin_inset CommandInset citation
  3000. LatexCommand cite
  3001. key "NuGEN2010"
  3002. literal "false"
  3003. \end_inset
  3004. .
  3005. However, we are not aware of any publications using these currently available
  3006. protocols the with latest generation of microarrays that actually compare
  3007. the detection sensitivity with and without globin reduction.
  3008. However, in practice this has now been adopted generally primarily driven
  3009. by concerns for cost control.
  3010. The main objective of our work was to directly test the impact of globin
  3011. gene transcripts and a new globin blocking protocol for application to
  3012. the newest generation of differential gene expression profiling determined
  3013. using next generation sequencing.
  3014. \end_layout
  3015. \begin_layout Standard
  3016. The challenge of doing global gene expression profiling in cynomolgus monkeys
  3017. is that the current available arrays were never designed to comprehensively
  3018. cover this genome and have not been updated since the first assemblies
  3019. of the cynomolgus genome were published.
  3020. Therefore, we determined that the best strategy for peripheral blood profiling
  3021. was to do deep RNA-seq and inform the workflow using the latest available
  3022. genome assembly and annotation
  3023. \begin_inset CommandInset citation
  3024. LatexCommand cite
  3025. key "Wilson2013"
  3026. literal "false"
  3027. \end_inset
  3028. .
  3029. However, it was not immediately clear whether globin reduction was necessary
  3030. for RNA-seq or how much improvement in efficiency or sensitivity to detect
  3031. differential gene expression would be achieved for the added cost and work.
  3032. \end_layout
  3033. \begin_layout Standard
  3034. We only found one report that demonstrated that globin reduction significantly
  3035. improved the effective read yields for sequencing of human peripheral blood
  3036. cell RNA using a DeepSAGE protocol
  3037. \begin_inset CommandInset citation
  3038. LatexCommand cite
  3039. key "Mastrokolias2012"
  3040. literal "false"
  3041. \end_inset
  3042. .
  3043. The approach to DeepSAGE involves two different restriction enzymes that
  3044. purify and then tag small fragments of transcripts at specific locations
  3045. and thus, significantly reduces the complexity of the transcriptome.
  3046. Therefore, we could not determine how DeepSAGE results would translate
  3047. to the common strategy in the field for assaying the entire transcript
  3048. population by whole-transcriptome 3’-end RNA-seq.
  3049. Furthermore, if globin reduction is necessary, we also needed a globin
  3050. reduction method specific to cynomolgus globin sequences that would work
  3051. an organism for which no kit is available off the shelf.
  3052. \end_layout
  3053. \begin_layout Standard
  3054. As mentioned above, the addition of globin blocking oligos has a very small
  3055. impact on measured expression levels of gene expression.
  3056. However, this is a non-issue for the purposes of differential expression
  3057. testing, since a systematic change in a gene in all samples does not affect
  3058. relative expression levels between samples.
  3059. However, we must acknowledge that simple comparisons of gene expression
  3060. data obtained by GB and non-GB protocols are not possible without additional
  3061. normalization.
  3062. \end_layout
  3063. \begin_layout Standard
  3064. More importantly, globin blocking not only nearly doubles the yield of usable
  3065. reads, it also increases inter-sample correlation and sensitivity to detect
  3066. differential gene expression relative to the same set of samples profiled
  3067. without blocking.
  3068. In addition, globin blocking does not add a significant amount of random
  3069. noise to the data.
  3070. Globin blocking thus represents a cost-effective way to squeeze more data
  3071. and statistical power out of the same blood samples and the same amount
  3072. of sequencing.
  3073. In conclusion, globin reduction greatly increases the yield of useful RNA-seq
  3074. reads mapping to the rest of the genome, with minimal perturbations in
  3075. the relative levels of non-globin genes.
  3076. Based on these results, globin transcript reduction using sequence-specific,
  3077. complementary blocking oligonucleotides is recommended for all deep RNA-seq
  3078. of cynomolgus and other nonhuman primate blood samples.
  3079. \end_layout
  3080. \begin_layout Chapter
  3081. Future Directions
  3082. \end_layout
  3083. \begin_layout Itemize
  3084. Study other epigenetic marks in more contexts
  3085. \end_layout
  3086. \begin_deeper
  3087. \begin_layout Itemize
  3088. DNA methylation, histone marks, chromatin accessibility & conformation in
  3089. CD4 T-cells
  3090. \end_layout
  3091. \begin_layout Itemize
  3092. Also look at other types lymphocytes: CD8 T-cells, B-cells, NK cells
  3093. \end_layout
  3094. \end_deeper
  3095. \begin_layout Itemize
  3096. Investigate epigenetic regulation of lifespan extension in
  3097. \emph on
  3098. C.
  3099. elegans
  3100. \end_layout
  3101. \begin_deeper
  3102. \begin_layout Itemize
  3103. ChIP-seq of important transcriptional regulators to see how transcriptional
  3104. drift is prevented
  3105. \end_layout
  3106. \end_deeper
  3107. \begin_layout Standard
  3108. \begin_inset ERT
  3109. status open
  3110. \begin_layout Plain Layout
  3111. % Use "References" instead of "Bibliography"
  3112. \end_layout
  3113. \begin_layout Plain Layout
  3114. \backslash
  3115. renewcommand{
  3116. \backslash
  3117. bibname}{References}
  3118. \end_layout
  3119. \end_inset
  3120. \end_layout
  3121. \begin_layout Standard
  3122. \begin_inset Flex TODO Note (inline)
  3123. status open
  3124. \begin_layout Plain Layout
  3125. Check bib entry formatting & sort order
  3126. \end_layout
  3127. \end_inset
  3128. \end_layout
  3129. \begin_layout Standard
  3130. \begin_inset CommandInset bibtex
  3131. LatexCommand bibtex
  3132. btprint "btPrintCited"
  3133. bibfiles "refs"
  3134. options "bibtotoc,unsrt"
  3135. \end_inset
  3136. \end_layout
  3137. \end_body
  3138. \end_document