thesis.lyx 333 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280142811428214283142841428514286142871428814289142901429114292142931429414295142961429714298142991430014301143021430314304143051430614307143081430914310143111431214313143141431514316143171431814319143201432114322143231432414325143261432714328143291433014331143321433314334143351433614337143381433914340143411434214343143441434514346143471434814349143501435114352143531435414355143561435714358143591436014361143621436314364143651436614367143681436914370143711437214373143741437514376143771437814379143801438114382143831438414385143861438714388143891439014391143921439314394143951439614397143981439914400144011440214403144041440514406144071440814409144101441114412144131441414415144161441714418144191442014421144221442314424144251442614427144281442914430144311443214433144341443514436144371443814439144401444114442144431444414445144461444714448144491445014451144521445314454144551445614457144581445914460144611446214463144641446514466144671446814469144701447114472144731447414475144761447714478144791448014481144821448314484144851448614487144881448914490144911449214493144941449514496144971449814499145001450114502145031450414505145061450714508145091451014511145121451314514145151451614517145181451914520145211452214523145241452514526145271452814529145301453114532145331453414535145361453714538145391454014541145421454314544145451454614547145481454914550145511455214553145541455514556145571455814559145601456114562145631456414565145661456714568145691457014571145721457314574145751457614577145781457914580145811458214583145841458514586145871458814589145901459114592145931459414595145961459714598145991460014601146021460314604146051460614607146081460914610146111461214613146141461514616146171461814619146201462114622146231462414625146261462714628146291463014631146321463314634146351463614637146381463914640146411464214643146441464514646146471464814649146501465114652146531465414655146561465714658146591466014661146621466314664146651466614667146681466914670146711467214673146741467514676146771467814679146801468114682146831468414685146861468714688146891469014691146921469314694146951469614697146981469914700147011470214703147041470514706147071470814709147101471114712147131471414715147161471714718147191472014721147221472314724147251472614727147281472914730147311473214733147341473514736147371473814739147401474114742147431474414745147461474714748147491475014751147521475314754147551475614757147581475914760147611476214763147641476514766147671476814769147701477114772147731477414775147761477714778147791478014781147821478314784147851478614787147881478914790147911479214793147941479514796147971479814799148001480114802148031480414805148061480714808148091481014811148121481314814148151481614817148181481914820148211482214823148241482514826148271482814829148301483114832148331483414835148361483714838148391484014841148421484314844148451484614847148481484914850148511485214853148541485514856148571485814859148601486114862148631486414865148661486714868148691487014871148721487314874148751487614877148781487914880148811488214883148841488514886148871488814889148901489114892148931489414895148961489714898148991490014901149021490314904149051490614907149081490914910149111491214913149141491514916149171491814919149201492114922149231492414925149261492714928149291493014931149321493314934149351493614937149381493914940149411494214943149441494514946149471494814949149501495114952149531495414955149561495714958149591496014961149621496314964149651496614967149681496914970149711497214973149741497514976149771497814979149801498114982149831498414985149861498714988149891499014991149921499314994149951499614997149981499915000150011500215003
  1. #LyX 2.3 created this file. For more info see http://www.lyx.org/
  2. \lyxformat 544
  3. \begin_document
  4. \begin_header
  5. \save_transient_properties true
  6. \origin unavailable
  7. \textclass extbook
  8. \begin_preamble
  9. % List all used files in log output
  10. \listfiles
  11. % Add a DRAFT watermark
  12. %\usepackage{draftwatermark}
  13. %\SetWatermarkLightness{0.97}
  14. %\SetWatermarkScale{1}
  15. % Set up required header format
  16. \usepackage{fancyhdr}
  17. \pagestyle{fancy}
  18. \renewcommand{\headrulewidth}{0pt}
  19. \rhead{}
  20. \lhead{}
  21. \chead{DRAFT}
  22. \rfoot{}
  23. \lfoot{}
  24. \cfoot{\thepage} % Page number bottom center
  25. % Allow FloatBarrier command
  26. \usepackage{placeins}
  27. % Allow landscape pages
  28. \usepackage{pdflscape}
  29. % Allow doing things after the end of the current page
  30. % (to avoid landscape figures breaking up text)
  31. \usepackage{afterpage}
  32. % This one breaks subfigs so it's disabled
  33. % https://tex.stackexchange.com/questions/65680/automatically-bold-first-sentence-of-a-floats-caption
  34. \end_preamble
  35. \use_default_options true
  36. \begin_modules
  37. todonotes
  38. \end_modules
  39. \maintain_unincluded_children false
  40. \language english
  41. \language_package default
  42. \inputencoding utf8
  43. \fontencoding default
  44. \font_roman "default" "default"
  45. \font_sans "default" "default"
  46. \font_typewriter "default" "default"
  47. \font_math "auto" "auto"
  48. \font_default_family default
  49. \use_non_tex_fonts false
  50. \font_sc false
  51. \font_osf false
  52. \font_sf_scale 100 100
  53. \font_tt_scale 100 100
  54. \use_microtype false
  55. \use_dash_ligatures true
  56. \graphics default
  57. \default_output_format pdf4
  58. \output_sync 0
  59. \bibtex_command biber
  60. \index_command default
  61. \paperfontsize 12
  62. \spacing double
  63. \use_hyperref true
  64. \pdf_bookmarks true
  65. \pdf_bookmarksnumbered false
  66. \pdf_bookmarksopen false
  67. \pdf_bookmarksopenlevel 1
  68. \pdf_breaklinks false
  69. \pdf_pdfborder false
  70. \pdf_colorlinks false
  71. \pdf_backref false
  72. \pdf_pdfusetitle true
  73. \papersize letterpaper
  74. \use_geometry true
  75. \use_package amsmath 1
  76. \use_package amssymb 1
  77. \use_package cancel 1
  78. \use_package esint 1
  79. \use_package mathdots 1
  80. \use_package mathtools 1
  81. \use_package mhchem 1
  82. \use_package stackrel 1
  83. \use_package stmaryrd 1
  84. \use_package undertilde 1
  85. \cite_engine biblatex
  86. \cite_engine_type authoryear
  87. \biblio_style plain
  88. \biblatex_bibstyle authoryear
  89. \biblatex_citestyle numeric
  90. \use_bibtopic false
  91. \use_indices false
  92. \paperorientation portrait
  93. \suppress_date false
  94. \justification true
  95. \use_refstyle 1
  96. \use_minted 0
  97. \index Index
  98. \shortcut idx
  99. \color #008000
  100. \end_index
  101. \leftmargin 1.5in
  102. \topmargin 1in
  103. \rightmargin 1in
  104. \bottommargin 1in
  105. \secnumdepth 3
  106. \tocdepth 3
  107. \paragraph_separation indent
  108. \paragraph_indentation default
  109. \is_math_indent 0
  110. \math_numbering_side default
  111. \quotes_style english
  112. \dynamic_quotes 0
  113. \papercolumns 1
  114. \papersides 1
  115. \paperpagestyle default
  116. \tracking_changes false
  117. \output_changes false
  118. \html_math_output 0
  119. \html_css_as_file 0
  120. \html_be_strict false
  121. \end_header
  122. \begin_body
  123. \begin_layout Title
  124. Bioinformatic analysis of complex, high-throughput genomic and epigenomic
  125. data in the context of immunology and transplant rejection
  126. \end_layout
  127. \begin_layout Author
  128. A thesis presented
  129. \begin_inset Newline newline
  130. \end_inset
  131. by
  132. \begin_inset Newline newline
  133. \end_inset
  134. Ryan C.
  135. Thompson
  136. \begin_inset Newline newline
  137. \end_inset
  138. to
  139. \begin_inset Newline newline
  140. \end_inset
  141. The Scripps Research Institute Graduate Program
  142. \begin_inset Newline newline
  143. \end_inset
  144. in partial fulfillment of the requirements for the degree of
  145. \begin_inset Newline newline
  146. \end_inset
  147. Doctor of Philosophy in the subject of Biology
  148. \begin_inset Newline newline
  149. \end_inset
  150. for
  151. \begin_inset Newline newline
  152. \end_inset
  153. The Scripps Research Institute
  154. \begin_inset Newline newline
  155. \end_inset
  156. La Jolla, California
  157. \end_layout
  158. \begin_layout Date
  159. October 2019
  160. \end_layout
  161. \begin_layout Standard
  162. [Copyright notice]
  163. \end_layout
  164. \begin_layout Standard
  165. [Thesis acceptance form]
  166. \end_layout
  167. \begin_layout Standard
  168. [Dedication]
  169. \end_layout
  170. \begin_layout Standard
  171. [Acknowledgements]
  172. \end_layout
  173. \begin_layout Standard
  174. \begin_inset Flex TODO Note (inline)
  175. status open
  176. \begin_layout Plain Layout
  177. I'm looking for feedback on: Section titles; figure formatting; figure legends;
  178. typographical errors; ...
  179. \end_layout
  180. \end_inset
  181. \end_layout
  182. \begin_layout Standard
  183. \begin_inset CommandInset toc
  184. LatexCommand tableofcontents
  185. \end_inset
  186. \end_layout
  187. \begin_layout Standard
  188. \begin_inset FloatList table
  189. \end_inset
  190. \end_layout
  191. \begin_layout Standard
  192. \begin_inset FloatList figure
  193. \end_inset
  194. \end_layout
  195. \begin_layout Standard
  196. [List of Abbreviations]
  197. \end_layout
  198. \begin_layout List of TODOs
  199. \end_layout
  200. \begin_layout Standard
  201. \begin_inset Flex TODO Note (inline)
  202. status open
  203. \begin_layout Plain Layout
  204. Check all figures to make sure they fit on the page with their legends.
  205. \end_layout
  206. \end_inset
  207. \end_layout
  208. \begin_layout Standard
  209. \begin_inset Flex TODO Note (inline)
  210. status open
  211. \begin_layout Plain Layout
  212. Search and replace: naive -> naïve
  213. \end_layout
  214. \end_inset
  215. \end_layout
  216. \begin_layout Standard
  217. \begin_inset Flex TODO Note (inline)
  218. status open
  219. \begin_layout Plain Layout
  220. Look into auto-generated nomenclature list: https://wiki.lyx.org/Tips/Nomenclature.
  221. Otherwise, do a manual pass for all abbreviations at the end.
  222. Do nomenclature/abbreviations independently for each chapter.
  223. \end_layout
  224. \end_inset
  225. \end_layout
  226. \begin_layout Standard
  227. \begin_inset Flex TODO Note (inline)
  228. status open
  229. \begin_layout Plain Layout
  230. Make all descriptions consistent in terms of
  231. \begin_inset Quotes eld
  232. \end_inset
  233. we did X
  234. \begin_inset Quotes erd
  235. \end_inset
  236. vs
  237. \begin_inset Quotes eld
  238. \end_inset
  239. I did X
  240. \begin_inset Quotes erd
  241. \end_inset
  242. vs
  243. \begin_inset Quotes eld
  244. \end_inset
  245. X was done
  246. \begin_inset Quotes erd
  247. \end_inset
  248. .
  249. \end_layout
  250. \end_inset
  251. \end_layout
  252. \begin_layout Chapter*
  253. Abstract
  254. \end_layout
  255. \begin_layout Standard
  256. \begin_inset Note Note
  257. status open
  258. \begin_layout Plain Layout
  259. It is included as an integral part of the thesis and should immediately
  260. precede the introduction.
  261. \end_layout
  262. \begin_layout Plain Layout
  263. Preparing your Abstract.
  264. Your abstract (a succinct description of your work) is limited to 350 words.
  265. UMI will shorten it if they must; please do not exceed the limit.
  266. \end_layout
  267. \begin_layout Itemize
  268. Include pertinent place names, names of persons (in full), and other proper
  269. nouns.
  270. These are useful in automated retrieval.
  271. \end_layout
  272. \begin_layout Itemize
  273. Display symbols, as well as foreign words and phrases, clearly and accurately.
  274. Include transliterations for characters other than Roman and Greek letters
  275. and Arabic numerals.
  276. Include accents and diacritical marks.
  277. \end_layout
  278. \begin_layout Itemize
  279. Do not include graphs, charts, tables, or illustrations in your abstract.
  280. \end_layout
  281. \end_inset
  282. \end_layout
  283. \begin_layout Standard
  284. \begin_inset Flex TODO Note (inline)
  285. status open
  286. \begin_layout Plain Layout
  287. Obviously the abstract gets written last.
  288. \end_layout
  289. \end_inset
  290. \end_layout
  291. \begin_layout Chapter
  292. Introduction
  293. \end_layout
  294. \begin_layout Section
  295. Background & Significance
  296. \end_layout
  297. \begin_layout Subsection
  298. Biological motivation
  299. \end_layout
  300. \begin_layout Standard
  301. \begin_inset Flex TODO Note (inline)
  302. status open
  303. \begin_layout Plain Layout
  304. Rethink the subsection organization after the intro is written.
  305. \end_layout
  306. \end_inset
  307. \end_layout
  308. \begin_layout Standard
  309. \begin_inset Flex TODO Note (inline)
  310. status open
  311. \begin_layout Plain Layout
  312. Citations are needed all over the place.
  313. A lot of this is knowledge I've just absorbed from years of conversation
  314. in the Salomon lab, without ever having seen a citation for it.
  315. \end_layout
  316. \end_inset
  317. \end_layout
  318. \begin_layout Subsubsection
  319. Rejection is the major long-term threat to organ and tissue allografts
  320. \end_layout
  321. \begin_layout Standard
  322. Organ and tissue transplants are a life-saving treatment for people who
  323. have lost the function of an important organ.
  324. In some cases, it is possible to transplant a patient's own tissue from
  325. one area of their body to another, referred to as an autograft.
  326. This is common for tissues that are distributed throughout many areas of
  327. the body, such as skin and bone.
  328. However, in cases of organ failure, there is no functional self tissue
  329. remaining, and a transplant from another person – the donor – is required.
  330. This is referred to as an allograft.
  331. \end_layout
  332. \begin_layout Standard
  333. \begin_inset Flex TODO Note (inline)
  334. status open
  335. \begin_layout Plain Layout
  336. Possible citation for degree of generic variability: https://www.ncbi.nlm.nih.gov/pu
  337. bmed/22424236?dopt=Abstract
  338. \end_layout
  339. \end_inset
  340. \end_layout
  341. \begin_layout Standard
  342. \begin_inset Flex TODO Note (inline)
  343. status open
  344. \begin_layout Plain Layout
  345. How much mechanistic detail is needed here? My work doesn't really go into
  346. specific rejection mechanisms, so I think it's best to keep it basic.
  347. \end_layout
  348. \end_inset
  349. \end_layout
  350. \begin_layout Standard
  351. Because an allograft comes from a different person, it is genetically distinct
  352. from the rest of the recipient's body.
  353. Some genetic variants occur in protein coding regions, resulting in protein
  354. products that differ from the equivalent proteins in the graft recipient's
  355. own tissue.
  356. As a result, without intervention, the recipient's immune system will eventuall
  357. y identify the graft as foreign tissue and begin attacking it, eventually
  358. resulting in failure and death of the graft, a process referred to as transplan
  359. t rejection.
  360. Rejection is the most significant challenge to the long-term health of
  361. an allograft.
  362. Like any adaptive immune response, graft rejection generally occurs via
  363. two broad mechanisms: cellular immunity, in which CD8+ T-cells induce apoptosis
  364. in the graft cells; and humoral immunity, in which B-cells produce antibodies
  365. that bind to graft proteins and direct an immune response against the graft.
  366. In either case, rejection shows most of the typical hallmarks of an adaptive
  367. immune response, in particular mediation by CD4+ T-cells and formation
  368. of immune memory.
  369. \end_layout
  370. \begin_layout Subsubsection
  371. Diagnosis and treatment of allograft rejection is a major challenge
  372. \end_layout
  373. \begin_layout Standard
  374. To prevent rejection, allograft recipients are treated with immune suppression.
  375. The goal is to achieve sufficient suppression of the immune system to prevent
  376. rejection of the graft without compromising the ability of the immune system
  377. to raise a normal response against infection.
  378. As such, a delicate balance must be struck: insufficient immune suppression
  379. may lead to rejection and ultimately loss of the graft; exceissive suppression
  380. leaves the patient vulnerable to life-threatening opportunistic infections.
  381. Because every patient is different, immune suppression must be tailored
  382. for each patient.
  383. Furthermore, immune suppression must be tuned over time, as the immune
  384. system's activity is not static, nor is it held in a steady state.
  385. In order to properly adjust the dosage of immune suppression drugs, it
  386. is necessary to monitor the health of the transplant and increase the dosage
  387. if evidence of rejection is observed.
  388. \end_layout
  389. \begin_layout Standard
  390. However, diagnosis of rejection is a significant challenge.
  391. Early diagnosis is essential in order to step up immune suppression before
  392. the immune system damages the graft beyond recovery.
  393. The current gold standard test for graft rejection is a tissue biopsy,
  394. examained for visible signs of rejection by a trained histologist.
  395. When a patient shows symptoms of possible rejection, a
  396. \begin_inset Quotes eld
  397. \end_inset
  398. for cause
  399. \begin_inset Quotes erd
  400. \end_inset
  401. biopsy is performed to confirm the diagnosis, and immune suppression is
  402. adjusted as necessary.
  403. However, in many cases, the early stages of rejection are asymptomatic,
  404. known as
  405. \begin_inset Quotes eld
  406. \end_inset
  407. sub-clinical
  408. \begin_inset Quotes erd
  409. \end_inset
  410. rejection.
  411. In light of this, is is now common to perform
  412. \begin_inset Quotes eld
  413. \end_inset
  414. protocol biopsies
  415. \begin_inset Quotes erd
  416. \end_inset
  417. at specific times after transplantation of a graft, even if no symptoms
  418. of rejection are apparent, in addition to
  419. \begin_inset Quotes eld
  420. \end_inset
  421. for cause
  422. \begin_inset Quotes erd
  423. \end_inset
  424. biopsies
  425. \begin_inset CommandInset citation
  426. LatexCommand cite
  427. key "Wilkinson2006"
  428. literal "false"
  429. \end_inset
  430. .
  431. \end_layout
  432. \begin_layout Standard
  433. However, biopsies have a number of downsides that limit their effectiveness
  434. as a diagnostic tool.
  435. First, the need for manual inspection by a histologist means that diagnosis
  436. is subject to the biases of the particular histologist examining the biopsy.
  437. In marginal cases two different histologists may give two different diagnoses
  438. to the same biopsy.
  439. Second, a biopsy can only evaluate if rejection is occurring in the section
  440. of the graft from which the tissue was extracted.
  441. If rejection is only occurring in one section of the graft and the tissue
  442. is extracted from a different section, it may result in a false negative
  443. diagnosis.
  444. Most importantly, however, extraction of tissue from a graft is invasive
  445. and is treated as an injury by the body, which results in inflammation
  446. that in turn promotes increased immune system activity.
  447. Hence, the invasiveness of biopsies severely limits the frequency with
  448. which the can safely be performed.
  449. Typically protocol biopsies are not scheduled more than about once per
  450. month
  451. \begin_inset CommandInset citation
  452. LatexCommand cite
  453. key "Wilkinson2006"
  454. literal "false"
  455. \end_inset
  456. .
  457. A less invasive diagnostic test for rejection would bring manifold benefits.
  458. Such a test would enable more frequent testing and therefore earlier detection
  459. of rejection events.
  460. In addition, having a larger pool of historical data for a given patient
  461. would make it easier to evaluate when a given test is outside the normal
  462. parameters for that specific patient, rather than relying on normal ranges
  463. for the population as a whole.
  464. Lastly, more frequent tests would be a boon to the transplant research
  465. community.
  466. Beyond simply providing more data, the increased time granularity of the
  467. tests will enable studying the progression of a rejection event on the
  468. scale of days to weeks, rather than months.
  469. \end_layout
  470. \begin_layout Subsubsection
  471. Memory cells are resistant to immune suppression
  472. \end_layout
  473. \begin_layout Standard
  474. One of the defining features of the adaptive immune system is immune memory:
  475. the ability of the immune system to recognize a previously encountered
  476. foreign antigen and respond more quickly and more strongly to that antigen
  477. in subsequent encounters.
  478. When the immune system first encounters a new antigen, the lymphocytes
  479. that respond are known as naive cells – T-cells and B-cells that have never
  480. detected their target antigens before.
  481. Once activated by their specific antigen presented by an antigen-presenting
  482. cell in the proper co-stimulatory context, naive cells differentiate into
  483. effector cells that carry out their respective functions in targeting and
  484. destroying the source of the foreign antigen.
  485. The requirement for co-stimulation is an important feature of naive cells
  486. that limits
  487. \begin_inset Quotes eld
  488. \end_inset
  489. false positive
  490. \begin_inset Quotes erd
  491. \end_inset
  492. immune responses, because antigen-presenting cells usually only express
  493. the proper co-stimulation after detecting evidence of an infection, such
  494. as the presence of common bacterial cell components or inflamed tissue.
  495. Most effector cells die after the foreign antigen is cleared, but some
  496. remain and differentiate into memory cells.
  497. Like naive cells, memory cells respond to detection of their specific antigen
  498. by differentiating into effector cells, ready to fight an infection.
  499. However, unlike naive cells, memory cells do not require the same degree
  500. of co-stimulatory signaling for activation, and once activated, they proliferat
  501. e and differentiate into effector cells more quickly than naive cells do.
  502. \end_layout
  503. \begin_layout Standard
  504. In the context of a pathogenic infection, immune memory is a major advantage,
  505. allowing an organism to rapidly fight off a previously encountered pathogen
  506. much more quickly and effectively than the first time it was encountered.
  507. However, if effector cells that recognize an antigen from an allograft
  508. are allowed to differentiate into memory cells, suppressing rejection of
  509. the graft becomes much more difficult.
  510. Many immune suppression drugs work by interfering with the co-stimulation
  511. that naive cells require in order to mount an immune response.
  512. Since memory cells do not require this co-stimulation, these drugs are
  513. not effective at suppressing an immune response that is mediated by memory
  514. cells.
  515. Secondly, because memory cells are able to mount a stronger and faster
  516. response to an antigen, all else being equal they require stronger immune
  517. suppression than naive cells to prevent an immune response.
  518. However, immune suppression affects the entire immune system, not just
  519. cells recognizing a specific antigen, so increasing the dosage of immune
  520. suppression drugs also increases the risk of complications from a compromised
  521. immune system, such as opportunistic infections.
  522. While the differences in cell surface markers between naive and memory
  523. cells have been fairly well characterized, the internal regulatory mechanisms
  524. that allow memory cells to respond more quickly and without co-stimulation
  525. are still poorly understood.
  526. In order to develop immune suppression that either prevents the formation
  527. of memory cells or works more effectively against memory cells, the mechanisms
  528. of immune memory formation and regulation must be better understood.
  529. \end_layout
  530. \begin_layout Subsection
  531. Overview of bioinformatic analysis methods
  532. \end_layout
  533. \begin_layout Standard
  534. The studies presented in this work all involve the analysis of high-throughput
  535. genomic and epigenomic data.
  536. These data present many unique analysis challenges, and a wide array of
  537. software tools are available to analyze them.
  538. This section presents an overview of the methods used, including what problems
  539. they solve, what assumptions they make, and a basic description of how
  540. they work.
  541. \end_layout
  542. \begin_layout Standard
  543. \begin_inset Flex TODO Note (inline)
  544. status open
  545. \begin_layout Plain Layout
  546. Many of these points may also be addressed in the approach/methods sections
  547. of the following chapters? Redundant?
  548. \end_layout
  549. \end_inset
  550. \end_layout
  551. \begin_layout Subsubsection
  552. Limma: The standard linear modeling framework for genomics
  553. \end_layout
  554. \begin_layout Standard
  555. Linear models are a generalization of the
  556. \begin_inset Formula $t$
  557. \end_inset
  558. -test and ANOVA to arbitrarily complex experimental designs.
  559. In a typical linear model, there is one dependent variable observation
  560. per sample.
  561. For example, in a linear model of height as a function of age and sex,
  562. there is one height measurement per person.
  563. However, when analyzing genomic data, each sample consists of observations
  564. of thousands of dependent variables.
  565. For example, in an RNA-seq experiment, the dependent variables may be the
  566. count of RNA-seq reads for each annotated gene.
  567. In abstract terms, each dependent variable being measured is referred to
  568. as a feature.
  569. The simplest approach to analyzing such data would be to fit the same model
  570. independently to each feature.
  571. However, this is undesirable for most genomics data sets.
  572. Genomics assays like high-throughput sequencing are expensive, and often
  573. generating the samples is also quite expensive and time-consuming.
  574. This expense limits the sample sizes typically employed in genomics experiments
  575. , and as a result the statistical power of each individual feature's linear
  576. model is likewise limited.
  577. However, because thousands of features from the same samples are analyzed
  578. together, there is an opportunity to improve the statistical power of the
  579. analysis by exploiting shared patterns of variation across features.
  580. This is the core feature of limma, a linear modeling framework designed
  581. for genomic data.
  582. Limma is typically used to analyze expression microarray data, and more
  583. recently RNA-seq data, but it can also be used to analyze any other data
  584. for which linear modeling is appropriate.
  585. \end_layout
  586. \begin_layout Standard
  587. The central challenge when fitting a linear model is to estimate the variance
  588. of the data accurately.
  589. This quantity is the most difficult to estimate when sample sizes are small.
  590. A single shared variance could be estimated for all of the features together,
  591. and this estimate would be very stable, in contrast to the individual feature
  592. variance estimates.
  593. However, this would require the assumption that every feature is equally
  594. variable, which is known to be false for most genomic data sets.
  595. Limma offers a compromise between these two extremes by using a method
  596. called empirical Bayes moderation to
  597. \begin_inset Quotes eld
  598. \end_inset
  599. squeeze
  600. \begin_inset Quotes erd
  601. \end_inset
  602. the distribution of estimated variances toward a single common value that
  603. represents the variance of an average feature in the data
  604. \begin_inset CommandInset citation
  605. LatexCommand cite
  606. key "Smyth2004"
  607. literal "false"
  608. \end_inset
  609. .
  610. While the individual feature variance estimates are not stable, the common
  611. variance estiamate for the entire data set is quite stable, so using a
  612. combination of the two yields a variance estimate for each feature with
  613. greater precision than the individual feature varaiances.
  614. The trade-off for this improvement is that squeezing each estimated variance
  615. toward the common value introduces some bias – the variance will be underestima
  616. ted for features with high variance and overestimated for features with
  617. low variance.
  618. Essentially, limma assumes that extreme variances are less common than
  619. variances close to the common value.
  620. The variance estimates from this empirical Bayes procedure are shown empiricall
  621. y to yield greater statistical power than either the individual feature
  622. variances or the single common value.
  623. \end_layout
  624. \begin_layout Standard
  625. On top of this core framework, limma also implements many other enhancements
  626. that, further relax the assumptions of the model and extend the scope of
  627. what kinds of data it can analyze.
  628. Instead of squeezing toward a single common variance value, limma can model
  629. the common variance as a function of a covariate, such as average expression
  630. \begin_inset CommandInset citation
  631. LatexCommand cite
  632. key "Law2013"
  633. literal "false"
  634. \end_inset
  635. .
  636. This is essential for RNA-seq data, where higher gene counts yield more
  637. precise expression measurements and therefore smaller variances than low-count
  638. genes.
  639. While linear models typically assume that all samples have equal variance,
  640. limma is able to relax this assumption by identifying and down-weighting
  641. samples the diverge more strongly from the lienar model across many features
  642. \begin_inset CommandInset citation
  643. LatexCommand cite
  644. key "Ritchie2006,Liu2015"
  645. literal "false"
  646. \end_inset
  647. .
  648. In addition, limma is also able to fit simple mixed models incorporating
  649. one random effect in addition to the fixed effects represented by an ordinary
  650. linear model
  651. \begin_inset CommandInset citation
  652. LatexCommand cite
  653. key "Smyth2005a"
  654. literal "false"
  655. \end_inset
  656. .
  657. Once again, limma shares information between features to obtain a robust
  658. estimate for the random effect correlation.
  659. \end_layout
  660. \begin_layout Subsubsection
  661. edgeR provides limma-like analysis features for count data
  662. \end_layout
  663. \begin_layout Standard
  664. Although limma can be applied to read counts from RNA-seq data, it is less
  665. suitable for counts from ChIP-seq data, which tend to be much smaller and
  666. therefore violate the assumption of a normal distribution more severely.
  667. For all count-based data, the edgeR package works similarly to limma, but
  668. uses a generalized linear model instead of a linear model.
  669. The most important difference is that the GLM in edgeR models the counts
  670. directly using a negative binomial distribution rather than modeling the
  671. normalized log counts using a normal distribution
  672. \begin_inset CommandInset citation
  673. LatexCommand cite
  674. key "Chen2014,McCarthy2012,Robinson2010a"
  675. literal "false"
  676. \end_inset
  677. .
  678. The negative binomial is a good fit for count data because it can be derived
  679. as a gamma-distributed mixture of Poisson distributions.
  680. The Poisson distribution accurately represents the distribution of counts
  681. expected for a given gene abundance, and the gamma distribution is then
  682. used to represent the variation in gene abundance between biological replicates.
  683. For this reason, the square root of the dispersion paramter of the negative
  684. binomial is sometimes referred to as the biological coefficient of variation,
  685. since it represents the variability that was present in the samples prior
  686. to the Poisson
  687. \begin_inset Quotes eld
  688. \end_inset
  689. noise
  690. \begin_inset Quotes erd
  691. \end_inset
  692. that was generated by the random sampling of reads in proportion to feature
  693. abundances.
  694. The choice of a gamma distribution is arbitrary and motivated by mathematical
  695. convenience, since a gamma-Poisson mixture yields the numerically tractable
  696. negative binomial distribution.
  697. Thus, edgeR assumes
  698. \emph on
  699. a prioi
  700. \emph default
  701. that the variation in abundances between replicates follows a gamma distribution.
  702. For differential abundance testing, edgeR offers a likelihood ratio test,
  703. but more recently recommends a quasi-likelihood test that properly factors
  704. the uncertainty in variance estimation into the statistical significance
  705. for each feature
  706. \begin_inset CommandInset citation
  707. LatexCommand cite
  708. key "Lund2012"
  709. literal "false"
  710. \end_inset
  711. .
  712. \end_layout
  713. \begin_layout Subsubsection
  714. ChIP-seq Peak calling
  715. \end_layout
  716. \begin_layout Standard
  717. Unlike RNA-seq data, in which gene annotations provide a well-defined set
  718. of genomic regions in which to count reads, ChIP-seq data can potentially
  719. occur anywhere in the genome.
  720. However, most genome regions will not contain significant ChIP-seq read
  721. coverage, and analyzing every position in the entire genome is statistically
  722. and computationally infeasible, so it is necesary to identify regions of
  723. interest inside which ChIP-seq reads will be counted and analyzed.
  724. One option is to define a set of interesting regions
  725. \emph on
  726. a priori
  727. \emph default
  728. , for example by defining a promoter region for each annotated gene.
  729. However, it is also possible to use the ChIP-seq data itself to identify
  730. regions with ChIP-seq read coverage significantly above the background
  731. level, known as peaks.
  732. \end_layout
  733. \begin_layout Standard
  734. There are generally two kinds of peaks that can be identified: narrow peaks
  735. and broadly enriched regions.
  736. Proteins like transcription factors that bind specific sites in the genome
  737. typically show most of their read coverage at these specific sites and
  738. very little coverage anywhere else.
  739. Because the footprint of the protein is consistent wherever it binds, each
  740. peak has a consistent size, typically tens to hundreds of base pairs.
  741. Algorithms like MACS exploit this pattern to identify specific loci at
  742. which such
  743. \begin_inset Quotes eld
  744. \end_inset
  745. narrow peaks
  746. \begin_inset Quotes erd
  747. \end_inset
  748. occur by looking for the characteristic peak shape in the ChIP-seq coverage
  749. rising above the surrounding background coverage
  750. \begin_inset CommandInset citation
  751. LatexCommand cite
  752. key "Zhang2008"
  753. literal "false"
  754. \end_inset
  755. .
  756. In contrast, some proteins, chief among them histones, do not bind only
  757. at a small number of specific sites, but rather bind potentailly almost
  758. everywhere in the entire genome.
  759. When looking at histone marks, adjacent histones tend to be similarly marked,
  760. and a given mark may be present on an arbitrary number of consecutive histones
  761. along the genome.
  762. Hence, there is no consistent
  763. \begin_inset Quotes eld
  764. \end_inset
  765. footprint size
  766. \begin_inset Quotes erd
  767. \end_inset
  768. for ChIP-seq peaks based on histone marks, and peaks typically span many
  769. histones.
  770. Hence, typical peaks span many hundreds or even thousands of base pairs.
  771. Instead of identifying specific loci of strong enrichment, algorithms like
  772. SICER assume that peaks are represented in the ChIP-seq data by modest
  773. enrichment above background occurring across broad regions, and they attempt
  774. to identify the extent of those regions
  775. \begin_inset CommandInset citation
  776. LatexCommand cite
  777. key "Zang2009"
  778. literal "false"
  779. \end_inset
  780. .
  781. In all cases, better results are obtained if the local background coverage
  782. level can be estimated from ChIP-seq input samples, since various biases
  783. can result in uneven background coverage.
  784. \end_layout
  785. \begin_layout Standard
  786. Regardless of the type of peak identified, it is important to identify peaks
  787. that occur consistently across biological replicates.
  788. The ENCODE project has developed a method called irreproducible discovery
  789. rate for this purpose
  790. \begin_inset CommandInset citation
  791. LatexCommand cite
  792. key "Li2006"
  793. literal "false"
  794. \end_inset
  795. .
  796. The IDR is defined as the probability that a peak identified in one biological
  797. replicate will
  798. \emph on
  799. not
  800. \emph default
  801. also be identified in a second replicate.
  802. Where the more familiar false discovery rate measures the degree of corresponde
  803. nce between a data-derived ranked list and the true list of significant
  804. features, IDR instead measures the degree of correspondence between two
  805. ranked lists derived from different data.
  806. IDR assumes that the highest-ranked features are
  807. \begin_inset Quotes eld
  808. \end_inset
  809. signal
  810. \begin_inset Quotes erd
  811. \end_inset
  812. peaks that tend to be listed in the same order in both lists, while the
  813. lowest-ranked features are essentially noise peaks, listed in random order
  814. with no correspondence between the lists.
  815. IDR attempts to locate the
  816. \begin_inset Quotes eld
  817. \end_inset
  818. crossover point
  819. \begin_inset Quotes erd
  820. \end_inset
  821. between the signal and the noise by determining how for down the list the
  822. correspondence between feature ranks breaks down.
  823. \end_layout
  824. \begin_layout Standard
  825. In addition to other considerations, if called peaks are to be used as regions
  826. of interest for differential abundance analysis, then care must be taken
  827. to call peaks in a way that is blind to differential abundance between
  828. experimental conditions, or else the statistical significance calculations
  829. for differential abundance will overstate their confidence in the results.
  830. The csaw package provides guidelines for calling peaks in this way: peaks
  831. are called based on a combination of all ChIP-seq reads from all experimental
  832. conditions, so that the identified peaks are based on the average abundance
  833. across all conditions, which is independent of any differential abundance
  834. between condtions
  835. \begin_inset CommandInset citation
  836. LatexCommand cite
  837. key "Lun2015a"
  838. literal "false"
  839. \end_inset
  840. .
  841. \end_layout
  842. \begin_layout Subsubsection
  843. Normalization of high-throughput data is non-trivial and application-dependant
  844. \end_layout
  845. \begin_layout Standard
  846. High-throughput data sets invariable require some kind of normalization
  847. before further analysis can be conducted.
  848. In general, the goal of normalization is to remove effects in the data
  849. that are caused by technical factors that have nothing to do with the biology
  850. being studied.
  851. \end_layout
  852. \begin_layout Standard
  853. For Affymetrix expression arrays, the standard normalization algorithm used
  854. in most analyses is Robust Multichip Average (RMA).
  855. RMA is designed with the assumption that some fraction of probes on each
  856. array will be artifactual and takes advantage of the fact that each gene
  857. is represented by multiple probes by implementing normalization and summarizati
  858. on steps that are robust against outlier probes.
  859. However, RMA uses the probe intensities of all arrays in the data set in
  860. the normalization of each individual array, meaning that the normalized
  861. expression values in each array depend on every array in the data set,
  862. and will necessarily change each time an array is added or removed from
  863. the data set.
  864. If this is undesirable, frozen RMA implements a variant of RMA where the
  865. relevant distributional parameters are learned from a large reference set
  866. of diverse public array data sets and then
  867. \begin_inset Quotes eld
  868. \end_inset
  869. frozen
  870. \begin_inset Quotes erd
  871. \end_inset
  872. , so that each array is effectively normalized against this frozen reference
  873. set rather than the other arrays in the data set under study.
  874. \end_layout
  875. \begin_layout Standard
  876. In contrast, high-throughput sequencing data present very different normalizatio
  877. n challenges.
  878. The simplest case is RNA-seq in which read counts are obtained for a set
  879. of gene annotations, yielding a matrix of counts with rows representing
  880. genes and columns representing samples.
  881. Because RNA-seq approximates a process of sampling from a population with
  882. replacement, each gene's count is only interpretable as a fraction of the
  883. total reads for that sample.
  884. For that reason, RNA-seq abundances are often reported as counts per million
  885. (CPM).
  886. Furthermore, if the abundance of a single gene increases, then in order
  887. for its fraction of the total reads to increase, all other genes' fractions
  888. must decrease to accomodate it.
  889. This effect is known as composition bias, and it is an artifact of the
  890. read sampling process that has nothing to do with the biology of the samples
  891. and must therefore be normalized out.
  892. The most commonly used methods to normalize for composition bias in RNA-seq
  893. data seek to equalize the average gene abundance across samples, under
  894. the assumption that the average gene is likely not changing
  895. \begin_inset CommandInset citation
  896. LatexCommand cite
  897. key "Robinson2010,Anders2010"
  898. literal "false"
  899. \end_inset
  900. .
  901. \end_layout
  902. \begin_layout Standard
  903. In ChIP-seq data, normalization is not as straightforward.
  904. The csaw package implements several different normalization strategies
  905. and provides guidance on when to use each one
  906. \begin_inset CommandInset citation
  907. LatexCommand cite
  908. key "Lun2015a"
  909. literal "false"
  910. \end_inset
  911. .
  912. Briefly, a typical ChIP-seq sample has a bimodal distribution of read counts:
  913. a low-abundance mode representing background regions and a high-abundance
  914. mode representing signal regions.
  915. This offers two potential normalization targets: equalizing background
  916. coverage or equalizing signal coverage.
  917. If the experiment is well controlled and ChIP efficiency is known to be
  918. consistent across all samples, then normalizing the background coverage
  919. to be equal across all samples is a reasonable strategy.
  920. If this is not a safe assumption, then the preferred strategy is to normalize
  921. the signal regions in a way similar to RNA-seq data by assuming that the
  922. average signal region is not changing abundance between samples.
  923. Beyond this, if a ChIP-seq experiment has a more complicated structure
  924. that doesn't show the typical bimodal count distribution, it may be necessary
  925. to implement a normalization as a smooth function of abundance.
  926. However, this strategy makes a much stronger assumption about the data:
  927. that the average log fold change is zero across all abundance levels.
  928. Hence, the simpler scaling normalziations based on background or signal
  929. regions are generally preferred whenever possible.
  930. \end_layout
  931. \begin_layout Subsubsection
  932. ComBat and SVA for correction of known and unknown batch effects
  933. \end_layout
  934. \begin_layout Standard
  935. In addition to well-understood effects that can be easily normalized out,
  936. a data set often contains confounding biological effects that must be accounted
  937. for in the modeling step.
  938. For instance, in an experiment with pre-treatment and post-treatment samples
  939. of cells from several different donors, donor variability represents a
  940. known batch effect.
  941. The most straightforward correction for known batches is to estimate the
  942. mean for each batch independently and subtract out the differences, so
  943. that all batches have identical means for each feature.
  944. However, as with variance estimation, estimating the differences in batch
  945. means is not necessarily robust at the feature level, so the ComBat method
  946. adds empirical Bayes squeezing of the batch mean differences toward a common
  947. value, analogous to limma's empirical Bayes squeezing of feature variance
  948. estimates
  949. \begin_inset CommandInset citation
  950. LatexCommand cite
  951. key "Johnson2007"
  952. literal "false"
  953. \end_inset
  954. .
  955. Effectively, ComBat assumes that modest differences between batch means
  956. are real batch effects, but extreme differences between batch means are
  957. more likely to be the result of outlier observations that happen to line
  958. up with the batches rather than a genuine batch effect.
  959. The result is a batch correction that is more robust against outliers than
  960. simple subtraction of mean differences subtraction.
  961. \end_layout
  962. \begin_layout Standard
  963. In some data sets, unknown batch effects may be present due to inherent
  964. variability in in the data, either caused by technical or biological effects.
  965. Examples of unknown batch effects include variations in enrichment efficiency
  966. between ChIP-seq samples, variations in populations of different cell types,
  967. and the effects of uncontrolled environmental factors on gene expression
  968. in humans or live animals.
  969. In an ordinary linear model context, unknown batch effects cannot be inferred
  970. and must be treated as random noise.
  971. However, in high-throughput experiments, once again information can be
  972. shared across features to identify patterns of un-modeled variation that
  973. are repeated in many features.
  974. One attractive strategy would be to perform singular value decomposition
  975. (SVD) on the matrix os linear model residuals (which contain all the un-modeled
  976. variation in the data) and take the first few singular vectors as batch
  977. effects.
  978. While this can be effective, it makes the unreasonable assumption that
  979. all batch effects are uncorrelated with any of the effects being modeled.
  980. Surrogate variable analysis (SVA) starts with this approach, but takes
  981. some additional steps to identify batch effects in the full data that are
  982. both highly correlated with the singular vectors in the residuals and least
  983. correlated with the effects of interest
  984. \begin_inset CommandInset citation
  985. LatexCommand cite
  986. key "Leek2007"
  987. literal "false"
  988. \end_inset
  989. .
  990. Since the final batch effects are estimated from the full data, moderate
  991. correlations between the batch effects and effects of interest are allowed,
  992. which gives SVA much more freedom to estimate the true extent of the batch
  993. effects compared to simple residual SVD.
  994. Once the surrogate variables are estimated, they can be included as coefficient
  995. s in the linear model in a similar fashion to known batch effects in order
  996. to subtract out their effects on each feature's abundance.
  997. \end_layout
  998. \begin_layout Subsubsection
  999. Factor analysis: PCA, MDS, MOFA
  1000. \end_layout
  1001. \begin_layout Standard
  1002. \begin_inset Flex TODO Note (inline)
  1003. status open
  1004. \begin_layout Plain Layout
  1005. Not sure if this merits a subsection here.
  1006. \end_layout
  1007. \end_inset
  1008. \end_layout
  1009. \begin_layout Itemize
  1010. Batch-corrected PCA is informative, but careful application is required
  1011. to avoid bias
  1012. \end_layout
  1013. \begin_layout Section
  1014. Innovation
  1015. \end_layout
  1016. \begin_layout Standard
  1017. \begin_inset Flex TODO Note (inline)
  1018. status open
  1019. \begin_layout Plain Layout
  1020. Is this entire section redundant with the Approach sections of each chapter?
  1021. I'm not really sure what to write here.
  1022. \end_layout
  1023. \end_inset
  1024. \end_layout
  1025. \begin_layout Subsection
  1026. MSC infusion to improve transplant outcomes (prevent/delay rejection)
  1027. \end_layout
  1028. \begin_layout Standard
  1029. \begin_inset Flex TODO Note (inline)
  1030. status open
  1031. \begin_layout Plain Layout
  1032. Do I still talk about this? It's the motivation for chapter 4, but I don't
  1033. actually present any work related to MSCs.
  1034. \end_layout
  1035. \end_inset
  1036. \end_layout
  1037. \begin_layout Itemize
  1038. Demonstrated in mice, but not yet in primates
  1039. \end_layout
  1040. \begin_layout Itemize
  1041. Mechanism currently unknown, but MSC are known to be immune modulatory
  1042. \end_layout
  1043. \begin_layout Itemize
  1044. Characterize MSC response to interferon gamma
  1045. \end_layout
  1046. \begin_layout Itemize
  1047. IFN-g is thought to stimulate their function
  1048. \end_layout
  1049. \begin_layout Itemize
  1050. Test IFN-g treated MSC infusion as a therapy to delay graft rejection in
  1051. cynomolgus monkeys
  1052. \end_layout
  1053. \begin_layout Itemize
  1054. Monitor animals post-transplant using blood RNA-seq at serial time points
  1055. \end_layout
  1056. \begin_layout Subsection
  1057. Investigate dynamics of histone marks in CD4 T-cell activation and memory
  1058. \end_layout
  1059. \begin_layout Itemize
  1060. Previous studies have looked at single snapshots of histone marks
  1061. \end_layout
  1062. \begin_layout Itemize
  1063. Instead, look at changes in histone marks across activation and memory
  1064. \end_layout
  1065. \begin_layout Subsection
  1066. High-throughput sequencing and microarray technologies
  1067. \end_layout
  1068. \begin_layout Itemize
  1069. Powerful methods for assaying gene expression and epigenetics across entire
  1070. genomes
  1071. \end_layout
  1072. \begin_layout Itemize
  1073. Proper analysis requires finding and exploiting systematic genome-wide trends
  1074. \end_layout
  1075. \begin_layout Chapter
  1076. Reproducible genome-wide epigenetic analysis of H3K4 and H3K27 methylation
  1077. in naive and memory CD4 T-cell activation
  1078. \end_layout
  1079. \begin_layout Standard
  1080. \begin_inset Flex TODO Note (inline)
  1081. status open
  1082. \begin_layout Plain Layout
  1083. Chapter author list: Me, Sarah, Dan
  1084. \end_layout
  1085. \end_inset
  1086. \end_layout
  1087. \begin_layout Standard
  1088. \begin_inset Flex TODO Note (inline)
  1089. status open
  1090. \begin_layout Plain Layout
  1091. Need better section titles throughout the entire chapter
  1092. \end_layout
  1093. \end_inset
  1094. \end_layout
  1095. \begin_layout Section
  1096. Approach
  1097. \end_layout
  1098. \begin_layout Standard
  1099. \begin_inset Flex TODO Note (inline)
  1100. status open
  1101. \begin_layout Plain Layout
  1102. Check on the exact correct way to write
  1103. \begin_inset Quotes eld
  1104. \end_inset
  1105. CD4 T-cell
  1106. \begin_inset Quotes erd
  1107. \end_inset
  1108. .
  1109. I think there might be a plus sign somwehere in there now? Also, maybe
  1110. figure out a reasonable way to abbreviate
  1111. \begin_inset Quotes eld
  1112. \end_inset
  1113. naive CD4 T-cells
  1114. \begin_inset Quotes erd
  1115. \end_inset
  1116. and
  1117. \begin_inset Quotes eld
  1118. \end_inset
  1119. memory CD4 T-cells
  1120. \begin_inset Quotes erd
  1121. \end_inset
  1122. .
  1123. \end_layout
  1124. \end_inset
  1125. \end_layout
  1126. \begin_layout Standard
  1127. \begin_inset Flex TODO Note (inline)
  1128. status open
  1129. \begin_layout Plain Layout
  1130. Is it ok to just copy a bunch of citations from the intros to Sarah's papers?
  1131. That feels like cheating somehow.
  1132. \end_layout
  1133. \end_inset
  1134. \end_layout
  1135. \begin_layout Standard
  1136. CD4 T-cells are central to all adaptive immune responses, as well as immune
  1137. memory [CITE?].
  1138. After an infection is cleared, a subset of the naive CD4 T-cells that responded
  1139. to that infection differentiate into memory CD4 T-cells, which are responsible
  1140. for responding to the same pathogen in the future.
  1141. Memory CD4 T-cells are functionally distinct, able to respond to an infection
  1142. more quickly and without the co-stimulation requried by naive CD4 T-cells.
  1143. However, the molecular mechanisms underlying this functional distinction
  1144. are not well-understood.
  1145. Epigenetic regulation via histone modification is thought to play an important
  1146. role, but while many studies have looked at static snapshots of histone
  1147. methylation in T-cells, few studies have looked at the dynamics of histone
  1148. regulation after T-cell activation, nor the differences in histone methylation
  1149. between naive and memory T-cells.
  1150. H3K4me2, H3K4me3 and H3K27me3 are three histone marks thought to be major
  1151. epigenetic regulators of gene expression.
  1152. The goal of the present study is to investigate the role of these histone
  1153. marks in CD4 T-cell activation kinetics and memory differentiation.
  1154. In static snapshots, H3K4me2 and H3K4me3 are often observed in the promoters
  1155. of highly transcribed genes, while H3K27me3 is more often observed in promoters
  1156. of inactive genes with little to no transcription occurring.
  1157. As a result, the two H3K4 marks have been characterized as
  1158. \begin_inset Quotes eld
  1159. \end_inset
  1160. activating
  1161. \begin_inset Quotes erd
  1162. \end_inset
  1163. marks, while H3K27me3 has been characterized as
  1164. \begin_inset Quotes eld
  1165. \end_inset
  1166. deactivating
  1167. \begin_inset Quotes erd
  1168. \end_inset
  1169. .
  1170. Despite these characterizations, the actual causal relationship between
  1171. these histone modifications and gene transcription is complex and likely
  1172. involves positive and negative feedback loops between the two.
  1173. \end_layout
  1174. \begin_layout Standard
  1175. In order to investigate the relationship between gene expression and these
  1176. histone modifications in the context of naive and memory CD4 T-cell activation,
  1177. a previously published data set of combined RNA-seq and ChIP-seq data was
  1178. re-analyzed using up-to-date methods designed to address the specific analysis
  1179. challenges posed by this data set.
  1180. The data set contains naive and memory CD4 T-cell samples in a time course
  1181. before and after activation.
  1182. Like the original analysis, this analysis looks at the dynamics of these
  1183. marks histone marks and compare them to gene expression dynamics at the
  1184. same time points during activation, as well as comapre them between naive
  1185. and memory cells, in hope of discovering evidence of new mechanistic details
  1186. in the interplay between them.
  1187. The original analysis of this data treated each gene promoter as a monolithinc
  1188. unit and mostly assumed that ChIP-seq reads or peaks occuring anywhere
  1189. within a promoter were equivalent, regardless of where they occurred relative
  1190. to the gene structure.
  1191. For an initial analysis of the data, this was a necessary simplifying assumptio
  1192. n.
  1193. The current analysis aims to relax this assumption, first by directly analyzing
  1194. ChIP-seq peaks for differential modification, and second by taking a mor
  1195. granular look at the ChIP-seq read coverage within promoter regions to
  1196. ask whether the location of histone modifications relative to the gene's
  1197. TSS is an important factor, as opposed to simple proximity.
  1198. \end_layout
  1199. \begin_layout Section
  1200. Methods
  1201. \end_layout
  1202. \begin_layout Standard
  1203. \begin_inset Flex TODO Note (inline)
  1204. status open
  1205. \begin_layout Plain Layout
  1206. Look up some more details from the papers (e.g.
  1207. activation method).
  1208. \end_layout
  1209. \end_inset
  1210. \end_layout
  1211. \begin_layout Standard
  1212. A reproducible workflow was written to analyze the raw ChIP-seq and RNA-seq
  1213. data from previous studies
  1214. \begin_inset CommandInset citation
  1215. LatexCommand cite
  1216. key "gh-cd4-csaw,LaMere2016,LaMere2017"
  1217. literal "true"
  1218. \end_inset
  1219. .
  1220. Briefly, this data consists of RNA-seq and ChIP-seq from CD4 T-cells cultured
  1221. from 4 donors.
  1222. From each donor, naive and memory CD4 T-cells were isolated separately.
  1223. Then cultures of both cells were activated [how?], and samples were taken
  1224. at 4 time points: Day 0 (pre-activation), Day 1 (early activation), Day
  1225. 5 (peak activation), and Day 14 (post-activation).
  1226. For each combination of cell type and time point, RNA was isolated and
  1227. sequenced, and ChIP-seq was performed for each of 3 histone marks: H3K4me2,
  1228. H3K4me3, and H3K27me3.
  1229. The ChIP-seq input DNA was also sequenced for each sample.
  1230. The result was 32 samples for each assay.
  1231. \end_layout
  1232. \begin_layout Subsection
  1233. RNA-seq differential expression analysis
  1234. \end_layout
  1235. \begin_layout Standard
  1236. \begin_inset Note Note
  1237. status collapsed
  1238. \begin_layout Plain Layout
  1239. \begin_inset Float figure
  1240. wide false
  1241. sideways false
  1242. status open
  1243. \begin_layout Plain Layout
  1244. \align center
  1245. \begin_inset Float figure
  1246. wide false
  1247. sideways false
  1248. status collapsed
  1249. \begin_layout Plain Layout
  1250. \align center
  1251. \begin_inset Graphics
  1252. filename graphics/CD4-csaw/rnaseq-compare/ensmebl-vs-entrez-star-CROP.png
  1253. lyxscale 25
  1254. width 35col%
  1255. groupId rna-comp-subfig
  1256. \end_inset
  1257. \end_layout
  1258. \begin_layout Plain Layout
  1259. \begin_inset Caption Standard
  1260. \begin_layout Plain Layout
  1261. STAR quantification, Entrez vs Ensembl gene annotation
  1262. \end_layout
  1263. \end_inset
  1264. \end_layout
  1265. \end_inset
  1266. \begin_inset space \qquad{}
  1267. \end_inset
  1268. \begin_inset Float figure
  1269. wide false
  1270. sideways false
  1271. status collapsed
  1272. \begin_layout Plain Layout
  1273. \align center
  1274. \begin_inset Graphics
  1275. filename graphics/CD4-csaw/rnaseq-compare/ensmebl-vs-entrez-shoal-CROP.png
  1276. lyxscale 25
  1277. width 35col%
  1278. groupId rna-comp-subfig
  1279. \end_inset
  1280. \end_layout
  1281. \begin_layout Plain Layout
  1282. \begin_inset Caption Standard
  1283. \begin_layout Plain Layout
  1284. Salmon+Shoal quantification, Entrez vs Ensembl gene annotation
  1285. \end_layout
  1286. \end_inset
  1287. \end_layout
  1288. \end_inset
  1289. \end_layout
  1290. \begin_layout Plain Layout
  1291. \align center
  1292. \begin_inset Float figure
  1293. wide false
  1294. sideways false
  1295. status collapsed
  1296. \begin_layout Plain Layout
  1297. \align center
  1298. \begin_inset Graphics
  1299. filename graphics/CD4-csaw/rnaseq-compare/star-vs-hisat2-CROP.png
  1300. lyxscale 25
  1301. width 35col%
  1302. groupId rna-comp-subfig
  1303. \end_inset
  1304. \end_layout
  1305. \begin_layout Plain Layout
  1306. \begin_inset Caption Standard
  1307. \begin_layout Plain Layout
  1308. STAR vs HISAT2 quantification, Ensembl gene annotation
  1309. \end_layout
  1310. \end_inset
  1311. \end_layout
  1312. \end_inset
  1313. \begin_inset space \qquad{}
  1314. \end_inset
  1315. \begin_inset Float figure
  1316. wide false
  1317. sideways false
  1318. status collapsed
  1319. \begin_layout Plain Layout
  1320. \align center
  1321. \begin_inset Graphics
  1322. filename graphics/CD4-csaw/rnaseq-compare/star-vs-salmon-CROP.png
  1323. lyxscale 25
  1324. width 35col%
  1325. groupId rna-comp-subfig
  1326. \end_inset
  1327. \end_layout
  1328. \begin_layout Plain Layout
  1329. \begin_inset Caption Standard
  1330. \begin_layout Plain Layout
  1331. Salomn vs STAR quantification, Ensembl gene annotation
  1332. \end_layout
  1333. \end_inset
  1334. \end_layout
  1335. \end_inset
  1336. \end_layout
  1337. \begin_layout Plain Layout
  1338. \align center
  1339. \begin_inset Float figure
  1340. wide false
  1341. sideways false
  1342. status collapsed
  1343. \begin_layout Plain Layout
  1344. \align center
  1345. \begin_inset Graphics
  1346. filename graphics/CD4-csaw/rnaseq-compare/salmon-vs-kallisto-CROP.png
  1347. lyxscale 25
  1348. width 35col%
  1349. groupId rna-comp-subfig
  1350. \end_inset
  1351. \end_layout
  1352. \begin_layout Plain Layout
  1353. \begin_inset Caption Standard
  1354. \begin_layout Plain Layout
  1355. Salmon vs Kallisto quantification, Ensembl gene annotation
  1356. \end_layout
  1357. \end_inset
  1358. \end_layout
  1359. \end_inset
  1360. \begin_inset space \qquad{}
  1361. \end_inset
  1362. \begin_inset Float figure
  1363. wide false
  1364. sideways false
  1365. status collapsed
  1366. \begin_layout Plain Layout
  1367. \align center
  1368. \begin_inset Graphics
  1369. filename graphics/CD4-csaw/rnaseq-compare/salmon-vs-shoal-CROP.png
  1370. lyxscale 25
  1371. width 35col%
  1372. groupId rna-comp-subfig
  1373. \end_inset
  1374. \end_layout
  1375. \begin_layout Plain Layout
  1376. \begin_inset Caption Standard
  1377. \begin_layout Plain Layout
  1378. Salmon+Shoal vs Salmon alone, Ensembl gene annotation
  1379. \end_layout
  1380. \end_inset
  1381. \end_layout
  1382. \end_inset
  1383. \end_layout
  1384. \begin_layout Plain Layout
  1385. \begin_inset Caption Standard
  1386. \begin_layout Plain Layout
  1387. \begin_inset CommandInset label
  1388. LatexCommand label
  1389. name "fig:RNA-norm-comp"
  1390. \end_inset
  1391. RNA-seq comparisons
  1392. \end_layout
  1393. \end_inset
  1394. \end_layout
  1395. \end_inset
  1396. \end_layout
  1397. \end_inset
  1398. \end_layout
  1399. \begin_layout Standard
  1400. Sequence reads were retrieved from the Sequence Read Archive (SRA)
  1401. \begin_inset CommandInset citation
  1402. LatexCommand cite
  1403. key "Leinonen2011"
  1404. literal "false"
  1405. \end_inset
  1406. .
  1407. Five different alignment and quantification methods were tested for the
  1408. RNA-seq data
  1409. \begin_inset CommandInset citation
  1410. LatexCommand cite
  1411. key "Dobin2012,Kim2019,Liao2014,Pimentel2016,Patro2017,gh-shoal,gh-hg38-ref"
  1412. literal "false"
  1413. \end_inset
  1414. .
  1415. Each quantification was tested with both Ensembl transcripts and UCSC known
  1416. gene annotations [CITE? Also which versions of each?].
  1417. Comparisons of downstream results from each combination of quantification
  1418. method and reference revealed that all quantifications gave broadly similar
  1419. results for most genes, so shoal with the Ensembl annotation was chosen
  1420. as the method theoretically most likely to partially mitigate some of the
  1421. batch effect in the data.
  1422. \end_layout
  1423. \begin_layout Standard
  1424. \begin_inset Float figure
  1425. wide false
  1426. sideways false
  1427. status collapsed
  1428. \begin_layout Plain Layout
  1429. \align center
  1430. \begin_inset Float figure
  1431. wide false
  1432. sideways false
  1433. status open
  1434. \begin_layout Plain Layout
  1435. \align center
  1436. \begin_inset Graphics
  1437. filename graphics/CD4-csaw/RNA-seq/PCA-no-batchsub-CROP.png
  1438. lyxscale 25
  1439. width 75col%
  1440. groupId rna-pca-subfig
  1441. \end_inset
  1442. \end_layout
  1443. \begin_layout Plain Layout
  1444. \begin_inset Caption Standard
  1445. \begin_layout Plain Layout
  1446. \series bold
  1447. \begin_inset CommandInset label
  1448. LatexCommand label
  1449. name "fig:RNA-PCA-no-batchsub"
  1450. \end_inset
  1451. Before batch correction
  1452. \end_layout
  1453. \end_inset
  1454. \end_layout
  1455. \end_inset
  1456. \end_layout
  1457. \begin_layout Plain Layout
  1458. \align center
  1459. \begin_inset Float figure
  1460. wide false
  1461. sideways false
  1462. status open
  1463. \begin_layout Plain Layout
  1464. \align center
  1465. \begin_inset Graphics
  1466. filename graphics/CD4-csaw/RNA-seq/PCA-combat-batchsub-CROP.png
  1467. lyxscale 25
  1468. width 75col%
  1469. groupId rna-pca-subfig
  1470. \end_inset
  1471. \end_layout
  1472. \begin_layout Plain Layout
  1473. \begin_inset Caption Standard
  1474. \begin_layout Plain Layout
  1475. \series bold
  1476. \begin_inset CommandInset label
  1477. LatexCommand label
  1478. name "fig:RNA-PCA-ComBat-batchsub"
  1479. \end_inset
  1480. After batch correction with ComBat
  1481. \end_layout
  1482. \end_inset
  1483. \end_layout
  1484. \end_inset
  1485. \end_layout
  1486. \begin_layout Plain Layout
  1487. \begin_inset Caption Standard
  1488. \begin_layout Plain Layout
  1489. \series bold
  1490. \begin_inset CommandInset label
  1491. LatexCommand label
  1492. name "fig:RNA-PCA"
  1493. \end_inset
  1494. PCoA plots of RNA-seq data showing effect of batch correction.
  1495. \end_layout
  1496. \end_inset
  1497. \end_layout
  1498. \end_inset
  1499. \end_layout
  1500. \begin_layout Standard
  1501. Due to an error in sample preparation, the RNA from the samples for days
  1502. 0 and 5 were sequenced using a different kit than those for days 1 and
  1503. 14.
  1504. This induced a substantial batch effect in the data due to differences
  1505. in sequencing biases between the two kits, and this batch effect is unfortunate
  1506. ly confounded with the time point variable (Figure
  1507. \begin_inset CommandInset ref
  1508. LatexCommand ref
  1509. reference "fig:RNA-PCA-no-batchsub"
  1510. plural "false"
  1511. caps "false"
  1512. noprefix "false"
  1513. \end_inset
  1514. ).
  1515. To do the best possible analysis with this data, this batch effect was
  1516. subtracted out from the data using ComBat
  1517. \begin_inset CommandInset citation
  1518. LatexCommand cite
  1519. key "Johnson2007"
  1520. literal "false"
  1521. \end_inset
  1522. , ignoring the time point variable due to the confounding with the batch
  1523. variable.
  1524. The result is a marked improvement, but the unavoidable counfounding with
  1525. time point means that certain real patterns of gene expression will be
  1526. indistinguishable from the batch effect and subtracted out as a result.
  1527. Specifically, any
  1528. \begin_inset Quotes eld
  1529. \end_inset
  1530. zig-zag
  1531. \begin_inset Quotes erd
  1532. \end_inset
  1533. pattern, such as a gene whose expression goes up on day 1, down on day
  1534. 5, and back up again on day 14, will be attenuated or eliminated entirely.
  1535. In the context of a T-cell activation time course, it is unlikely that
  1536. many genes of interest will follow such an expression pattern, so this
  1537. loss was deemed an acceptable cost for correcting the batch effect.
  1538. \end_layout
  1539. \begin_layout Standard
  1540. \begin_inset Float figure
  1541. wide false
  1542. sideways false
  1543. status collapsed
  1544. \begin_layout Plain Layout
  1545. \begin_inset Flex TODO Note (inline)
  1546. status open
  1547. \begin_layout Plain Layout
  1548. Just take the top row
  1549. \end_layout
  1550. \end_inset
  1551. \end_layout
  1552. \begin_layout Plain Layout
  1553. \align center
  1554. \begin_inset Graphics
  1555. filename graphics/CD4-csaw/RNA-seq/weights-vs-covars-CROP.png
  1556. lyxscale 25
  1557. width 100col%
  1558. groupId colwidth-raster
  1559. \end_inset
  1560. \end_layout
  1561. \begin_layout Plain Layout
  1562. \begin_inset Caption Standard
  1563. \begin_layout Plain Layout
  1564. \series bold
  1565. \begin_inset CommandInset label
  1566. LatexCommand label
  1567. name "fig:RNA-seq-weights-vs-covars"
  1568. \end_inset
  1569. RNA-seq sample weights, grouped by experimental and technical covariates.
  1570. \end_layout
  1571. \end_inset
  1572. \end_layout
  1573. \end_inset
  1574. \end_layout
  1575. \begin_layout Standard
  1576. However, removing the systematic component of the batch effect still leaves
  1577. the noise component.
  1578. The gene quantifications from the first batch are substantially noisier
  1579. than those in the second batch.
  1580. This analysis corrected for this by using limma's sample weighting method
  1581. to assign lower weights to the noisy samples of batch 1
  1582. \begin_inset CommandInset citation
  1583. LatexCommand cite
  1584. key "Ritchie2006,Liu2015"
  1585. literal "false"
  1586. \end_inset
  1587. .
  1588. The resulting analysis gives an accurate assessment of statistical significance
  1589. for all comparisons, which unfortuantely means a loss of statistical power
  1590. for comparisons involving samples in batch 1.
  1591. \end_layout
  1592. \begin_layout Standard
  1593. In any case, the RNA-seq counts were first normalized using trimmed mean
  1594. of M-values
  1595. \begin_inset CommandInset citation
  1596. LatexCommand cite
  1597. key "Robinson2010"
  1598. literal "false"
  1599. \end_inset
  1600. , converted to normalized logCPM with quality weights using voomWithQualityWeigh
  1601. ts
  1602. \begin_inset CommandInset citation
  1603. LatexCommand cite
  1604. key "Law2013,Liu2015"
  1605. literal "false"
  1606. \end_inset
  1607. , and batch-corrected at this point using ComBat.
  1608. A linear model was fit to the batch-corrected, quality-weighted data for
  1609. each gene using limma, and each gene was tested for differential expression
  1610. using limma's empirical Bayes moderated
  1611. \begin_inset Formula $t$
  1612. \end_inset
  1613. -test
  1614. \begin_inset CommandInset citation
  1615. LatexCommand cite
  1616. key "Smyth2005,Law2013,Phipson2013"
  1617. literal "false"
  1618. \end_inset
  1619. .
  1620. \end_layout
  1621. \begin_layout Subsection
  1622. ChIP-seq differential modification analysis
  1623. \end_layout
  1624. \begin_layout Standard
  1625. \begin_inset Float figure
  1626. wide false
  1627. sideways false
  1628. status collapsed
  1629. \begin_layout Plain Layout
  1630. \align center
  1631. \begin_inset Float figure
  1632. wide false
  1633. sideways false
  1634. status open
  1635. \begin_layout Plain Layout
  1636. \align center
  1637. \begin_inset Graphics
  1638. filename graphics/CD4-csaw/csaw/CCF-plots-noBL-PAGE2-CROP.pdf
  1639. lyxscale 50
  1640. height 40theight%
  1641. groupId ccf-subfig
  1642. \end_inset
  1643. \end_layout
  1644. \begin_layout Plain Layout
  1645. \begin_inset Caption Standard
  1646. \begin_layout Plain Layout
  1647. \series bold
  1648. \begin_inset CommandInset label
  1649. LatexCommand label
  1650. name "fig:CCF-without-blacklist"
  1651. \end_inset
  1652. Cross-correlation plots without removing blacklisted reads.
  1653. \series default
  1654. Without blacklisting, many artifactual peaks are visible in the cross-correlatio
  1655. ns of the ChIP-seq samples, and the peak at the true fragment size (147
  1656. \begin_inset space ~
  1657. \end_inset
  1658. bp) is frequently overshadowed by the artifactual peak at the read length
  1659. (100
  1660. \begin_inset space ~
  1661. \end_inset
  1662. bp).
  1663. \end_layout
  1664. \end_inset
  1665. \end_layout
  1666. \end_inset
  1667. \end_layout
  1668. \begin_layout Plain Layout
  1669. \align center
  1670. \begin_inset Float figure
  1671. wide false
  1672. sideways false
  1673. status open
  1674. \begin_layout Plain Layout
  1675. \align center
  1676. \begin_inset Graphics
  1677. filename graphics/CD4-csaw/csaw/CCF-plots-PAGE2-CROP.pdf
  1678. lyxscale 50
  1679. height 40theight%
  1680. groupId ccf-subfig
  1681. \end_inset
  1682. \end_layout
  1683. \begin_layout Plain Layout
  1684. \begin_inset Caption Standard
  1685. \begin_layout Plain Layout
  1686. \series bold
  1687. \begin_inset CommandInset label
  1688. LatexCommand label
  1689. name "fig:CCF-with-blacklist"
  1690. \end_inset
  1691. Cross-correlation plots with blacklisted reads removed.
  1692. \series default
  1693. After blacklisting, most ChIP-seq samples have clean-looking periodic cross-cor
  1694. relation plots, with the largest peak around 147
  1695. \begin_inset space ~
  1696. \end_inset
  1697. bp, the expected size for a fragment of DNA from a single nucleosome, and
  1698. little to no peak at the read length, 100
  1699. \begin_inset space ~
  1700. \end_inset
  1701. bp.
  1702. \end_layout
  1703. \end_inset
  1704. \end_layout
  1705. \end_inset
  1706. \end_layout
  1707. \begin_layout Plain Layout
  1708. \begin_inset Caption Standard
  1709. \begin_layout Plain Layout
  1710. \series bold
  1711. \begin_inset CommandInset label
  1712. LatexCommand label
  1713. name "fig:CCF-master"
  1714. \end_inset
  1715. Strand cross-correlation plots for ChIP-seq data, before and after blacklisting.
  1716. \end_layout
  1717. \end_inset
  1718. \end_layout
  1719. \end_inset
  1720. \end_layout
  1721. \begin_layout Standard
  1722. \begin_inset Note Note
  1723. status open
  1724. \begin_layout Plain Layout
  1725. \begin_inset Float figure
  1726. wide false
  1727. sideways false
  1728. status collapsed
  1729. \begin_layout Plain Layout
  1730. \align center
  1731. \begin_inset Graphics
  1732. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-sample-MAplot-bins-CROP.png
  1733. lyxscale 25
  1734. width 100col%
  1735. groupId colwidth-raster
  1736. \end_inset
  1737. \end_layout
  1738. \begin_layout Plain Layout
  1739. \begin_inset Caption Standard
  1740. \begin_layout Plain Layout
  1741. \series bold
  1742. \begin_inset CommandInset label
  1743. LatexCommand label
  1744. name "fig:MA-plot-bigbins"
  1745. \end_inset
  1746. MA plot of H3K4me2 read counts in 10kb bins for two arbitrary samples.
  1747. \end_layout
  1748. \end_inset
  1749. \end_layout
  1750. \end_inset
  1751. \end_layout
  1752. \end_inset
  1753. \end_layout
  1754. \begin_layout Standard
  1755. \begin_inset Flex TODO Note (inline)
  1756. status open
  1757. \begin_layout Plain Layout
  1758. Be consistent about use of
  1759. \begin_inset Quotes eld
  1760. \end_inset
  1761. differential binding
  1762. \begin_inset Quotes erd
  1763. \end_inset
  1764. vs
  1765. \begin_inset Quotes eld
  1766. \end_inset
  1767. differential modification
  1768. \begin_inset Quotes erd
  1769. \end_inset
  1770. throughout this chapter.
  1771. The latter is usually preferred.
  1772. \end_layout
  1773. \end_inset
  1774. \end_layout
  1775. \begin_layout Standard
  1776. Sequence reads were retrieved from SRA
  1777. \begin_inset CommandInset citation
  1778. LatexCommand cite
  1779. key "Leinonen2011"
  1780. literal "false"
  1781. \end_inset
  1782. .
  1783. ChIP-seq (and input) reads were aligned to GRCh38 genome assembly using
  1784. Bowtie 2
  1785. \begin_inset CommandInset citation
  1786. LatexCommand cite
  1787. key "Langmead2012,Schneider2017,gh-hg38-ref"
  1788. literal "false"
  1789. \end_inset
  1790. .
  1791. Artifact regions were annotated using a custom implementation of the GreyListCh
  1792. IP algorithm, and these
  1793. \begin_inset Quotes eld
  1794. \end_inset
  1795. greylists
  1796. \begin_inset Quotes erd
  1797. \end_inset
  1798. were merged with the published ENCODE blacklists
  1799. \begin_inset CommandInset citation
  1800. LatexCommand cite
  1801. key "greylistchip,Amemiya2019,Dunham2012,gh-cd4-csaw"
  1802. literal "false"
  1803. \end_inset
  1804. .
  1805. Any read or called peak overlapping one of these regions was regarded as
  1806. artifactual and excluded from downstream analyses.
  1807. Figure
  1808. \begin_inset CommandInset ref
  1809. LatexCommand ref
  1810. reference "fig:CCF-master"
  1811. plural "false"
  1812. caps "false"
  1813. noprefix "false"
  1814. \end_inset
  1815. shows the improvement after blacklisting in the strand cross-correlation
  1816. plots, a common quality control plot for ChIP-seq data.
  1817. Peaks were called using epic, an implementation of the SICER algorithm
  1818. \begin_inset CommandInset citation
  1819. LatexCommand cite
  1820. key "Zang2009,gh-epic"
  1821. literal "false"
  1822. \end_inset
  1823. .
  1824. Peaks were also called separately using MACS, but MACS was determined to
  1825. be a poor fit for the data, and these peak calls are not used in any further
  1826. analyses
  1827. \begin_inset CommandInset citation
  1828. LatexCommand cite
  1829. key "Zhang2008"
  1830. literal "false"
  1831. \end_inset
  1832. .
  1833. Consensus peaks were determined by applying the irreproducible discovery
  1834. rate (IDR) framework
  1835. \begin_inset CommandInset citation
  1836. LatexCommand cite
  1837. key "Li2006,gh-idr"
  1838. literal "false"
  1839. \end_inset
  1840. to find peaks consistently called in the same locations across all 4 donors.
  1841. \end_layout
  1842. \begin_layout Standard
  1843. Promoters were defined by computing the distance from each annotated TSS
  1844. to the nearest called peak and examining the distribution of distances,
  1845. observing that peaks for each histone mark were enriched within a certain
  1846. distance of the TSS.
  1847. For H3K4me2 and H3K4me3, this distance was about 1
  1848. \begin_inset space ~
  1849. \end_inset
  1850. kb, while for H3K27me3 it was 2.5
  1851. \begin_inset space ~
  1852. \end_inset
  1853. kb.
  1854. These distances were used as an
  1855. \begin_inset Quotes eld
  1856. \end_inset
  1857. effective promoter radius
  1858. \begin_inset Quotes erd
  1859. \end_inset
  1860. for each mark.
  1861. The promoter region for each gene was defined as the region of the genome
  1862. within this distance upstream or downstream of the gene's annotated TSS.
  1863. For genes with multiple annotated TSSs, a promoter region was defined for
  1864. each TSS individually, and any promoters that overlapped (due to multiple
  1865. TSSs being closer than 2 times the radius) were merged into one large promoter.
  1866. Thus, some genes had multiple promoters defined, which were each analyzed
  1867. separately for differential modification.
  1868. \end_layout
  1869. \begin_layout Standard
  1870. \begin_inset Float figure
  1871. wide false
  1872. sideways false
  1873. status collapsed
  1874. \begin_layout Plain Layout
  1875. \begin_inset Float figure
  1876. wide false
  1877. sideways false
  1878. status collapsed
  1879. \begin_layout Plain Layout
  1880. \align center
  1881. \begin_inset Graphics
  1882. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-PCA-raw-CROP.png
  1883. lyxscale 25
  1884. width 45col%
  1885. groupId pcoa-subfig
  1886. \end_inset
  1887. \end_layout
  1888. \begin_layout Plain Layout
  1889. \begin_inset Caption Standard
  1890. \begin_layout Plain Layout
  1891. \series bold
  1892. \begin_inset CommandInset label
  1893. LatexCommand label
  1894. name "fig:PCoA-H3K4me2-bad"
  1895. \end_inset
  1896. H3K4me2, no correction
  1897. \end_layout
  1898. \end_inset
  1899. \end_layout
  1900. \end_inset
  1901. \begin_inset space \hfill{}
  1902. \end_inset
  1903. \begin_inset Float figure
  1904. wide false
  1905. sideways false
  1906. status collapsed
  1907. \begin_layout Plain Layout
  1908. \align center
  1909. \begin_inset Graphics
  1910. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-PCA-SVsub-CROP.png
  1911. lyxscale 25
  1912. width 45col%
  1913. groupId pcoa-subfig
  1914. \end_inset
  1915. \end_layout
  1916. \begin_layout Plain Layout
  1917. \begin_inset Caption Standard
  1918. \begin_layout Plain Layout
  1919. \series bold
  1920. \begin_inset CommandInset label
  1921. LatexCommand label
  1922. name "fig:PCoA-H3K4me2-good"
  1923. \end_inset
  1924. H3K4me2, SVs subtracted
  1925. \end_layout
  1926. \end_inset
  1927. \end_layout
  1928. \end_inset
  1929. \end_layout
  1930. \begin_layout Plain Layout
  1931. \begin_inset Float figure
  1932. wide false
  1933. sideways false
  1934. status collapsed
  1935. \begin_layout Plain Layout
  1936. \align center
  1937. \begin_inset Graphics
  1938. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-PCA-raw-CROP.png
  1939. lyxscale 25
  1940. width 45col%
  1941. groupId pcoa-subfig
  1942. \end_inset
  1943. \end_layout
  1944. \begin_layout Plain Layout
  1945. \begin_inset Caption Standard
  1946. \begin_layout Plain Layout
  1947. \series bold
  1948. \begin_inset CommandInset label
  1949. LatexCommand label
  1950. name "fig:PCoA-H3K4me3-bad"
  1951. \end_inset
  1952. H3K4me3, no correction
  1953. \end_layout
  1954. \end_inset
  1955. \end_layout
  1956. \end_inset
  1957. \begin_inset space \hfill{}
  1958. \end_inset
  1959. \begin_inset Float figure
  1960. wide false
  1961. sideways false
  1962. status collapsed
  1963. \begin_layout Plain Layout
  1964. \align center
  1965. \begin_inset Graphics
  1966. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-PCA-SVsub-CROP.png
  1967. lyxscale 25
  1968. width 45col%
  1969. groupId pcoa-subfig
  1970. \end_inset
  1971. \end_layout
  1972. \begin_layout Plain Layout
  1973. \begin_inset Caption Standard
  1974. \begin_layout Plain Layout
  1975. \series bold
  1976. \begin_inset CommandInset label
  1977. LatexCommand label
  1978. name "fig:PCoA-H3K4me3-good"
  1979. \end_inset
  1980. H3K4me3, SVs subtracted
  1981. \end_layout
  1982. \end_inset
  1983. \end_layout
  1984. \end_inset
  1985. \end_layout
  1986. \begin_layout Plain Layout
  1987. \begin_inset Float figure
  1988. wide false
  1989. sideways false
  1990. status collapsed
  1991. \begin_layout Plain Layout
  1992. \align center
  1993. \begin_inset Graphics
  1994. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-PCA-raw-CROP.png
  1995. lyxscale 25
  1996. width 45col%
  1997. groupId pcoa-subfig
  1998. \end_inset
  1999. \end_layout
  2000. \begin_layout Plain Layout
  2001. \begin_inset Caption Standard
  2002. \begin_layout Plain Layout
  2003. \series bold
  2004. \begin_inset CommandInset label
  2005. LatexCommand label
  2006. name "fig:PCoA-H3K27me3-bad"
  2007. \end_inset
  2008. H3K27me3, no correction
  2009. \end_layout
  2010. \end_inset
  2011. \end_layout
  2012. \end_inset
  2013. \begin_inset space \hfill{}
  2014. \end_inset
  2015. \begin_inset Float figure
  2016. wide false
  2017. sideways false
  2018. status collapsed
  2019. \begin_layout Plain Layout
  2020. \align center
  2021. \begin_inset Graphics
  2022. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-PCA-SVsub-CROP.png
  2023. lyxscale 25
  2024. width 45col%
  2025. groupId pcoa-subfig
  2026. \end_inset
  2027. \end_layout
  2028. \begin_layout Plain Layout
  2029. \begin_inset Caption Standard
  2030. \begin_layout Plain Layout
  2031. \series bold
  2032. \begin_inset CommandInset label
  2033. LatexCommand label
  2034. name "fig:PCoA-H3K27me3-good"
  2035. \end_inset
  2036. H3K27me3, SVs subtracted
  2037. \end_layout
  2038. \end_inset
  2039. \end_layout
  2040. \end_inset
  2041. \end_layout
  2042. \begin_layout Plain Layout
  2043. \begin_inset Caption Standard
  2044. \begin_layout Plain Layout
  2045. \series bold
  2046. \begin_inset CommandInset label
  2047. LatexCommand label
  2048. name "fig:PCoA-ChIP"
  2049. \end_inset
  2050. PCoA plots of ChIP-seq sliding window data, before and after subtracting
  2051. surrogate variables (SVs).
  2052. \end_layout
  2053. \end_inset
  2054. \end_layout
  2055. \end_inset
  2056. \end_layout
  2057. \begin_layout Standard
  2058. Reads in promoters, peaks, and sliding windows across the genome were counted
  2059. and normalized using csaw and analyzed for differential modification using
  2060. edgeR
  2061. \begin_inset CommandInset citation
  2062. LatexCommand cite
  2063. key "Lun2014,Lun2015a,Lund2012,Phipson2016"
  2064. literal "false"
  2065. \end_inset
  2066. .
  2067. Unobserved confounding factors in the ChIP-seq data were corrected using
  2068. SVA
  2069. \begin_inset CommandInset citation
  2070. LatexCommand cite
  2071. key "Leek2007,Leek2014"
  2072. literal "false"
  2073. \end_inset
  2074. .
  2075. Principal coordinate plots of the promoter count data for each histone
  2076. mark before and after subtracting surrogate variable effects are shown
  2077. in Figure
  2078. \begin_inset CommandInset ref
  2079. LatexCommand ref
  2080. reference "fig:PCoA-ChIP"
  2081. plural "false"
  2082. caps "false"
  2083. noprefix "false"
  2084. \end_inset
  2085. .
  2086. \end_layout
  2087. \begin_layout Standard
  2088. To investigate whether the location of a peak within the promoter region
  2089. was important,
  2090. \begin_inset Quotes eld
  2091. \end_inset
  2092. relative coverage profiles
  2093. \begin_inset Quotes erd
  2094. \end_inset
  2095. were generated.
  2096. First, 500-bp sliding windows were tiled around each annotated TSS: one
  2097. window centered on the TSS itself, and 10 windows each upstream and downstream,
  2098. thus covering a 10.5-kb region centered on the TSS with 21 windows.
  2099. Reads in each window for each TSS were counted in each sample, and the
  2100. counts were normalized and converted to log CPM as in the differential
  2101. modification analysis.
  2102. Then, the logCPM values within each promoter were normalized to an average
  2103. of zero, such that each window's normalized abundance now represents the
  2104. relative read depth of that window compared to all other windows in the
  2105. same promoter.
  2106. The normalized abundance values for each window in a promoter are collectively
  2107. referred to as that promoter's
  2108. \begin_inset Quotes eld
  2109. \end_inset
  2110. relative coverage profile
  2111. \begin_inset Quotes erd
  2112. \end_inset
  2113. .
  2114. \end_layout
  2115. \begin_layout Subsection
  2116. MOFA recovers biologically relevant variation from blind analysis by correlating
  2117. across datasets
  2118. \end_layout
  2119. \begin_layout Standard
  2120. \begin_inset ERT
  2121. status open
  2122. \begin_layout Plain Layout
  2123. \backslash
  2124. afterpage{
  2125. \end_layout
  2126. \begin_layout Plain Layout
  2127. \backslash
  2128. begin{landscape}
  2129. \end_layout
  2130. \end_inset
  2131. \end_layout
  2132. \begin_layout Standard
  2133. \begin_inset Float figure
  2134. wide false
  2135. sideways false
  2136. status open
  2137. \begin_layout Plain Layout
  2138. \begin_inset Float figure
  2139. wide false
  2140. sideways false
  2141. status open
  2142. \begin_layout Plain Layout
  2143. \align center
  2144. \begin_inset Graphics
  2145. filename graphics/CD4-csaw/MOFA-varExplaiend-matrix-CROP.png
  2146. lyxscale 25
  2147. width 45col%
  2148. groupId mofa-subfig
  2149. \end_inset
  2150. \end_layout
  2151. \begin_layout Plain Layout
  2152. \begin_inset Caption Standard
  2153. \begin_layout Plain Layout
  2154. \series bold
  2155. \begin_inset CommandInset label
  2156. LatexCommand label
  2157. name "fig:mofa-varexplained"
  2158. \end_inset
  2159. Variance explained in each data set by each latent factor estimated by MOFA.
  2160. \series default
  2161. For each latent factor (LF) learned by MOFA, the variance explained by
  2162. that factor in each data set (
  2163. \begin_inset Quotes eld
  2164. \end_inset
  2165. view
  2166. \begin_inset Quotes erd
  2167. \end_inset
  2168. ) is shown by the shading of the cells in the lower section.
  2169. The upper section shows the total fraction of each data set's variance
  2170. that is explained by all LFs combined.
  2171. \end_layout
  2172. \end_inset
  2173. \end_layout
  2174. \end_inset
  2175. \begin_inset space \hfill{}
  2176. \end_inset
  2177. \begin_inset Float figure
  2178. wide false
  2179. sideways false
  2180. status open
  2181. \begin_layout Plain Layout
  2182. \align center
  2183. \begin_inset Graphics
  2184. filename graphics/CD4-csaw/MOFA-LF-scatter-CROP.png
  2185. lyxscale 25
  2186. width 45col%
  2187. groupId mofa-subfig
  2188. \end_inset
  2189. \end_layout
  2190. \begin_layout Plain Layout
  2191. \begin_inset Caption Standard
  2192. \begin_layout Plain Layout
  2193. \series bold
  2194. \begin_inset CommandInset label
  2195. LatexCommand label
  2196. name "fig:mofa-lf-scatter"
  2197. \end_inset
  2198. Scatter plots of specific pairs of MOFA latent factors.
  2199. \series default
  2200. LFs 1, 4, and 5 explain substantial variation in all data sets, so they
  2201. are plotted against each other in order to reveal patterns of variation
  2202. that are shared across all data sets.
  2203. \end_layout
  2204. \end_inset
  2205. \end_layout
  2206. \end_inset
  2207. \end_layout
  2208. \begin_layout Plain Layout
  2209. \begin_inset Caption Standard
  2210. \begin_layout Plain Layout
  2211. \series bold
  2212. \begin_inset CommandInset label
  2213. LatexCommand label
  2214. name "fig:MOFA-master"
  2215. \end_inset
  2216. MOFA latent factors separate technical confounders from
  2217. \end_layout
  2218. \end_inset
  2219. \end_layout
  2220. \end_inset
  2221. \end_layout
  2222. \begin_layout Standard
  2223. \begin_inset ERT
  2224. status open
  2225. \begin_layout Plain Layout
  2226. \backslash
  2227. end{landscape}
  2228. \end_layout
  2229. \begin_layout Plain Layout
  2230. }
  2231. \end_layout
  2232. \end_inset
  2233. \end_layout
  2234. \begin_layout Standard
  2235. MOFA was run on all the ChIP-seq windows overlapping consensus peaks for
  2236. each histone mark, as well as the RNA-seq data, in order to identify patterns
  2237. of coordinated variation across all data sets
  2238. \begin_inset CommandInset citation
  2239. LatexCommand cite
  2240. key "Argelaguet2018"
  2241. literal "false"
  2242. \end_inset
  2243. .
  2244. The results are summarized in Figure
  2245. \begin_inset CommandInset ref
  2246. LatexCommand ref
  2247. reference "fig:MOFA-master"
  2248. plural "false"
  2249. caps "false"
  2250. noprefix "false"
  2251. \end_inset
  2252. .
  2253. Latent factors 1, 4, and 5 were determined to explain the most variation
  2254. consistently across all data sets (Fgure
  2255. \begin_inset CommandInset ref
  2256. LatexCommand ref
  2257. reference "fig:mofa-varexplained"
  2258. plural "false"
  2259. caps "false"
  2260. noprefix "false"
  2261. \end_inset
  2262. ), and scatter plots of these factors show that they also correlate best
  2263. with the experimental factors (Figure
  2264. \begin_inset CommandInset ref
  2265. LatexCommand ref
  2266. reference "fig:mofa-lf-scatter"
  2267. plural "false"
  2268. caps "false"
  2269. noprefix "false"
  2270. \end_inset
  2271. ).
  2272. Latent factor 2 captures the batch effect in the RNA-seq data.
  2273. Removing the effect of LF2 using MOFA theoretically yields a batch correction
  2274. that does not depend on knowing the experimental factors.
  2275. When this was attempted, the resulting batch correction was comparable
  2276. to ComBat (see Figure
  2277. \begin_inset CommandInset ref
  2278. LatexCommand ref
  2279. reference "fig:RNA-PCA-ComBat-batchsub"
  2280. plural "false"
  2281. caps "false"
  2282. noprefix "false"
  2283. \end_inset
  2284. ), indicating that the ComBat-based batch correction has little room for
  2285. improvement given the problems with the data set.
  2286. \end_layout
  2287. \begin_layout Standard
  2288. \begin_inset Note Note
  2289. status collapsed
  2290. \begin_layout Plain Layout
  2291. \begin_inset Float figure
  2292. wide false
  2293. sideways false
  2294. status open
  2295. \begin_layout Plain Layout
  2296. \align center
  2297. \begin_inset Graphics
  2298. filename graphics/CD4-csaw/MOFA-batch-correct-CROP.png
  2299. lyxscale 25
  2300. width 100col%
  2301. groupId colwidth-raster
  2302. \end_inset
  2303. \end_layout
  2304. \begin_layout Plain Layout
  2305. \begin_inset Caption Standard
  2306. \begin_layout Plain Layout
  2307. \series bold
  2308. \begin_inset CommandInset label
  2309. LatexCommand label
  2310. name "fig:mofa-batchsub"
  2311. \end_inset
  2312. Result of RNA-seq batch-correction using MOFA latent factors
  2313. \end_layout
  2314. \end_inset
  2315. \end_layout
  2316. \end_inset
  2317. \end_layout
  2318. \end_inset
  2319. \end_layout
  2320. \begin_layout Section
  2321. Results
  2322. \end_layout
  2323. \begin_layout Standard
  2324. \begin_inset Flex TODO Note (inline)
  2325. status open
  2326. \begin_layout Plain Layout
  2327. Focus on what hypotheses were tested, then select figures that show how
  2328. those hypotheses were tested, even if the result is a negative.
  2329. Not every interesting result needs to be in here.
  2330. Chapter should tell a story.
  2331. \end_layout
  2332. \end_inset
  2333. \end_layout
  2334. \begin_layout Standard
  2335. \begin_inset Flex TODO Note (inline)
  2336. status open
  2337. \begin_layout Plain Layout
  2338. Maybe reorder these sections to do RNA-seq, then ChIP-seq, then combined
  2339. analyses?
  2340. \end_layout
  2341. \end_inset
  2342. \end_layout
  2343. \begin_layout Subsection
  2344. Interpretation of RNA-seq analysis is limited by a major confounding factor
  2345. \end_layout
  2346. \begin_layout Standard
  2347. \begin_inset Float table
  2348. wide false
  2349. sideways false
  2350. status collapsed
  2351. \begin_layout Plain Layout
  2352. \align center
  2353. \begin_inset Tabular
  2354. <lyxtabular version="3" rows="11" columns="3">
  2355. <features tabularvalignment="middle">
  2356. <column alignment="center" valignment="top">
  2357. <column alignment="center" valignment="top">
  2358. <column alignment="center" valignment="top">
  2359. <row>
  2360. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2361. \begin_inset Text
  2362. \begin_layout Plain Layout
  2363. Test
  2364. \end_layout
  2365. \end_inset
  2366. </cell>
  2367. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2368. \begin_inset Text
  2369. \begin_layout Plain Layout
  2370. Est.
  2371. non-null
  2372. \end_layout
  2373. \end_inset
  2374. </cell>
  2375. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2376. \begin_inset Text
  2377. \begin_layout Plain Layout
  2378. \begin_inset Formula $\mathrm{FDR}\le10\%$
  2379. \end_inset
  2380. \end_layout
  2381. \end_inset
  2382. </cell>
  2383. </row>
  2384. <row>
  2385. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2386. \begin_inset Text
  2387. \begin_layout Plain Layout
  2388. Naive Day 0 vs Day 1
  2389. \end_layout
  2390. \end_inset
  2391. </cell>
  2392. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2393. \begin_inset Text
  2394. \begin_layout Plain Layout
  2395. 5992
  2396. \end_layout
  2397. \end_inset
  2398. </cell>
  2399. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2400. \begin_inset Text
  2401. \begin_layout Plain Layout
  2402. 1613
  2403. \end_layout
  2404. \end_inset
  2405. </cell>
  2406. </row>
  2407. <row>
  2408. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2409. \begin_inset Text
  2410. \begin_layout Plain Layout
  2411. Naive Day 0 vs Day 5
  2412. \end_layout
  2413. \end_inset
  2414. </cell>
  2415. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2416. \begin_inset Text
  2417. \begin_layout Plain Layout
  2418. 3038
  2419. \end_layout
  2420. \end_inset
  2421. </cell>
  2422. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2423. \begin_inset Text
  2424. \begin_layout Plain Layout
  2425. 32
  2426. \end_layout
  2427. \end_inset
  2428. </cell>
  2429. </row>
  2430. <row>
  2431. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2432. \begin_inset Text
  2433. \begin_layout Plain Layout
  2434. Naive Day 0 vs Day 14
  2435. \end_layout
  2436. \end_inset
  2437. </cell>
  2438. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2439. \begin_inset Text
  2440. \begin_layout Plain Layout
  2441. 1870
  2442. \end_layout
  2443. \end_inset
  2444. </cell>
  2445. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2446. \begin_inset Text
  2447. \begin_layout Plain Layout
  2448. 190
  2449. \end_layout
  2450. \end_inset
  2451. </cell>
  2452. </row>
  2453. <row>
  2454. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2455. \begin_inset Text
  2456. \begin_layout Plain Layout
  2457. Memory Day 0 vs Day 1
  2458. \end_layout
  2459. \end_inset
  2460. </cell>
  2461. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2462. \begin_inset Text
  2463. \begin_layout Plain Layout
  2464. 3195
  2465. \end_layout
  2466. \end_inset
  2467. </cell>
  2468. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2469. \begin_inset Text
  2470. \begin_layout Plain Layout
  2471. 411
  2472. \end_layout
  2473. \end_inset
  2474. </cell>
  2475. </row>
  2476. <row>
  2477. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2478. \begin_inset Text
  2479. \begin_layout Plain Layout
  2480. Memory Day 0 vs Day 5
  2481. \end_layout
  2482. \end_inset
  2483. </cell>
  2484. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2485. \begin_inset Text
  2486. \begin_layout Plain Layout
  2487. 2688
  2488. \end_layout
  2489. \end_inset
  2490. </cell>
  2491. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2492. \begin_inset Text
  2493. \begin_layout Plain Layout
  2494. 18
  2495. \end_layout
  2496. \end_inset
  2497. </cell>
  2498. </row>
  2499. <row>
  2500. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2501. \begin_inset Text
  2502. \begin_layout Plain Layout
  2503. Memory Day 0 vs Day 14
  2504. \end_layout
  2505. \end_inset
  2506. </cell>
  2507. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2508. \begin_inset Text
  2509. \begin_layout Plain Layout
  2510. 1911
  2511. \end_layout
  2512. \end_inset
  2513. </cell>
  2514. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2515. \begin_inset Text
  2516. \begin_layout Plain Layout
  2517. 227
  2518. \end_layout
  2519. \end_inset
  2520. </cell>
  2521. </row>
  2522. <row>
  2523. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2524. \begin_inset Text
  2525. \begin_layout Plain Layout
  2526. Day 0 Naive vs Memory
  2527. \end_layout
  2528. \end_inset
  2529. </cell>
  2530. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2531. \begin_inset Text
  2532. \begin_layout Plain Layout
  2533. 0
  2534. \end_layout
  2535. \end_inset
  2536. </cell>
  2537. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2538. \begin_inset Text
  2539. \begin_layout Plain Layout
  2540. 2
  2541. \end_layout
  2542. \end_inset
  2543. </cell>
  2544. </row>
  2545. <row>
  2546. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2547. \begin_inset Text
  2548. \begin_layout Plain Layout
  2549. Day 1 Naive vs Memory
  2550. \end_layout
  2551. \end_inset
  2552. </cell>
  2553. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2554. \begin_inset Text
  2555. \begin_layout Plain Layout
  2556. 9167
  2557. \end_layout
  2558. \end_inset
  2559. </cell>
  2560. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2561. \begin_inset Text
  2562. \begin_layout Plain Layout
  2563. 5532
  2564. \end_layout
  2565. \end_inset
  2566. </cell>
  2567. </row>
  2568. <row>
  2569. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2570. \begin_inset Text
  2571. \begin_layout Plain Layout
  2572. Day 5 Naive vs Memory
  2573. \end_layout
  2574. \end_inset
  2575. </cell>
  2576. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2577. \begin_inset Text
  2578. \begin_layout Plain Layout
  2579. 0
  2580. \end_layout
  2581. \end_inset
  2582. </cell>
  2583. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2584. \begin_inset Text
  2585. \begin_layout Plain Layout
  2586. 0
  2587. \end_layout
  2588. \end_inset
  2589. </cell>
  2590. </row>
  2591. <row>
  2592. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2593. \begin_inset Text
  2594. \begin_layout Plain Layout
  2595. Day 14 Naive vs Memory
  2596. \end_layout
  2597. \end_inset
  2598. </cell>
  2599. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2600. \begin_inset Text
  2601. \begin_layout Plain Layout
  2602. 6446
  2603. \end_layout
  2604. \end_inset
  2605. </cell>
  2606. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2607. \begin_inset Text
  2608. \begin_layout Plain Layout
  2609. 2319
  2610. \end_layout
  2611. \end_inset
  2612. </cell>
  2613. </row>
  2614. </lyxtabular>
  2615. \end_inset
  2616. \end_layout
  2617. \begin_layout Plain Layout
  2618. \begin_inset Caption Standard
  2619. \begin_layout Plain Layout
  2620. \series bold
  2621. \begin_inset CommandInset label
  2622. LatexCommand label
  2623. name "tab:Estimated-and-detected-rnaseq"
  2624. \end_inset
  2625. Estimated and detected differentially expressed genes.
  2626. \series default
  2627. \begin_inset Quotes eld
  2628. \end_inset
  2629. Test
  2630. \begin_inset Quotes erd
  2631. \end_inset
  2632. : Which sample groups were compared;
  2633. \begin_inset Quotes eld
  2634. \end_inset
  2635. Est non-null
  2636. \begin_inset Quotes erd
  2637. \end_inset
  2638. : Estimated number of differentially expressed genes, using the method of
  2639. averaging local FDR values
  2640. \begin_inset CommandInset citation
  2641. LatexCommand cite
  2642. key "Phipson2013Thesis"
  2643. literal "false"
  2644. \end_inset
  2645. ;
  2646. \begin_inset Quotes eld
  2647. \end_inset
  2648. \begin_inset Formula $\mathrm{FDR}\le10\%$
  2649. \end_inset
  2650. \begin_inset Quotes erd
  2651. \end_inset
  2652. : Number of significantly differentially expressed genes at an FDR threshold
  2653. of 10%.
  2654. The total number of genes tested was 16707.
  2655. \end_layout
  2656. \end_inset
  2657. \end_layout
  2658. \end_inset
  2659. \end_layout
  2660. \begin_layout Standard
  2661. \begin_inset Float figure
  2662. wide false
  2663. sideways false
  2664. status collapsed
  2665. \begin_layout Plain Layout
  2666. \align center
  2667. \begin_inset Graphics
  2668. filename graphics/CD4-csaw/RNA-seq/PCA-final-12-CROP.png
  2669. lyxscale 25
  2670. width 100col%
  2671. groupId colwidth-raster
  2672. \end_inset
  2673. \end_layout
  2674. \begin_layout Plain Layout
  2675. \begin_inset Caption Standard
  2676. \begin_layout Plain Layout
  2677. \series bold
  2678. \begin_inset CommandInset label
  2679. LatexCommand label
  2680. name "fig:rna-pca-final"
  2681. \end_inset
  2682. PCoA plot of RNA-seq samples after ComBat batch correction.
  2683. \series default
  2684. Each point represents an individual sample.
  2685. Samples with the same combination of cell type and time point are encircled
  2686. with a shaded region to aid in visual identification of the sample groups.
  2687. Samples with of same cell type from the same donor are connected by lines
  2688. to indicate the
  2689. \begin_inset Quotes eld
  2690. \end_inset
  2691. trajectory
  2692. \begin_inset Quotes erd
  2693. \end_inset
  2694. of each donor's cells over time in PCoA space.
  2695. \end_layout
  2696. \end_inset
  2697. \end_layout
  2698. \begin_layout Plain Layout
  2699. \end_layout
  2700. \end_inset
  2701. \end_layout
  2702. \begin_layout Standard
  2703. Genes called present in the RNA-seq data were tested for differential expression
  2704. between all time points and cell types.
  2705. The counts of differentially expressed genes are shown in Table
  2706. \begin_inset CommandInset ref
  2707. LatexCommand ref
  2708. reference "tab:Estimated-and-detected-rnaseq"
  2709. plural "false"
  2710. caps "false"
  2711. noprefix "false"
  2712. \end_inset
  2713. .
  2714. Notably, all the results for Day 0 and Day 5 have substantially fewer genes
  2715. called differentially expressed than any of the results for other time
  2716. points.
  2717. This is an unfortunate result of the difference in sample quality between
  2718. the two batches of RNA-seq data.
  2719. All the samples in Batch 1, which includes all the samples from Days 0
  2720. and 5, have substantially more variability than the samples in Batch 2,
  2721. which includes the other time points.
  2722. This is reflected in the substantially higher weights assigned to Batch
  2723. 2 (Figure
  2724. \begin_inset CommandInset ref
  2725. LatexCommand ref
  2726. reference "fig:RNA-seq-weights-vs-covars"
  2727. plural "false"
  2728. caps "false"
  2729. noprefix "false"
  2730. \end_inset
  2731. ).
  2732. The batch effect has both a systematic component and a random noise component.
  2733. While the systematic component was subtracted out using ComBat (Figure
  2734. \begin_inset CommandInset ref
  2735. LatexCommand ref
  2736. reference "fig:RNA-PCA"
  2737. plural "false"
  2738. caps "false"
  2739. noprefix "false"
  2740. \end_inset
  2741. ), no such correction is possible for the noise component: Batch 1 simply
  2742. has substantially more random noise in it, which reduces the statistical
  2743. power for any differential expression tests involving samples in that batch.
  2744. \end_layout
  2745. \begin_layout Standard
  2746. Despite the difficulty in detecting specific differentially expressed genes,
  2747. there is still evidence that differential expression is present for these
  2748. time points.
  2749. In Figure
  2750. \begin_inset CommandInset ref
  2751. LatexCommand ref
  2752. reference "fig:rna-pca-final"
  2753. plural "false"
  2754. caps "false"
  2755. noprefix "false"
  2756. \end_inset
  2757. , there is a clear separation between naive and memory samples at Day 0,
  2758. despite the fact that only 2 genes were significantly differentially expressed
  2759. for this comparison.
  2760. Similarly, the small numbers of genes detected for the Day 0 vs Day 5 compariso
  2761. ns do not reflect the large separation between these time points in Figure
  2762. \begin_inset CommandInset ref
  2763. LatexCommand ref
  2764. reference "fig:rna-pca-final"
  2765. plural "false"
  2766. caps "false"
  2767. noprefix "false"
  2768. \end_inset
  2769. .
  2770. In addition, the MOFA latent factor plots in Figure
  2771. \begin_inset CommandInset ref
  2772. LatexCommand ref
  2773. reference "fig:mofa-lf-scatter"
  2774. plural "false"
  2775. caps "false"
  2776. noprefix "false"
  2777. \end_inset
  2778. .
  2779. This suggests that there is indeed a differential expression signal present
  2780. in the data for these comparisons, but the large variability in the Batch
  2781. 1 samples obfuscates this signal at the individual gene level.
  2782. As a result, it is impossible to make any meaningful statements about the
  2783. \begin_inset Quotes eld
  2784. \end_inset
  2785. size
  2786. \begin_inset Quotes erd
  2787. \end_inset
  2788. of the gene signature for any time point, since the number of significant
  2789. genes as well as the estimated number of differentially expressed genes
  2790. depends so strongly on the variations in sample quality in addition to
  2791. the size of the differential expression signal in the data.
  2792. Gene-set enrichment analyses are similarly impractical.
  2793. However, analyses looking at genome-wide patterns of expression are still
  2794. practical.
  2795. \end_layout
  2796. \begin_layout Subsection
  2797. H3K4 and H3K27 methylation occur in broad regions and are enriched near
  2798. promoters
  2799. \end_layout
  2800. \begin_layout Standard
  2801. \begin_inset Float table
  2802. wide false
  2803. sideways false
  2804. status collapsed
  2805. \begin_layout Plain Layout
  2806. \align center
  2807. \begin_inset Flex TODO Note (inline)
  2808. status open
  2809. \begin_layout Plain Layout
  2810. Also get
  2811. \emph on
  2812. median
  2813. \emph default
  2814. peak width and maybe other quantiles (25%, 75%)
  2815. \end_layout
  2816. \end_inset
  2817. \end_layout
  2818. \begin_layout Plain Layout
  2819. \align center
  2820. \begin_inset Tabular
  2821. <lyxtabular version="3" rows="4" columns="5">
  2822. <features tabularvalignment="middle">
  2823. <column alignment="center" valignment="top">
  2824. <column alignment="center" valignment="top">
  2825. <column alignment="center" valignment="top">
  2826. <column alignment="center" valignment="top">
  2827. <column alignment="center" valignment="top">
  2828. <row>
  2829. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2830. \begin_inset Text
  2831. \begin_layout Plain Layout
  2832. Histone Mark
  2833. \end_layout
  2834. \end_inset
  2835. </cell>
  2836. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2837. \begin_inset Text
  2838. \begin_layout Plain Layout
  2839. # Peaks
  2840. \end_layout
  2841. \end_inset
  2842. </cell>
  2843. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2844. \begin_inset Text
  2845. \begin_layout Plain Layout
  2846. Mean peak width
  2847. \end_layout
  2848. \end_inset
  2849. </cell>
  2850. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2851. \begin_inset Text
  2852. \begin_layout Plain Layout
  2853. genome coverage
  2854. \end_layout
  2855. \end_inset
  2856. </cell>
  2857. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2858. \begin_inset Text
  2859. \begin_layout Plain Layout
  2860. FRiP
  2861. \end_layout
  2862. \end_inset
  2863. </cell>
  2864. </row>
  2865. <row>
  2866. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2867. \begin_inset Text
  2868. \begin_layout Plain Layout
  2869. H3K4me2
  2870. \end_layout
  2871. \end_inset
  2872. </cell>
  2873. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2874. \begin_inset Text
  2875. \begin_layout Plain Layout
  2876. 14965
  2877. \end_layout
  2878. \end_inset
  2879. </cell>
  2880. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2881. \begin_inset Text
  2882. \begin_layout Plain Layout
  2883. 3970
  2884. \end_layout
  2885. \end_inset
  2886. </cell>
  2887. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2888. \begin_inset Text
  2889. \begin_layout Plain Layout
  2890. 1.92%
  2891. \end_layout
  2892. \end_inset
  2893. </cell>
  2894. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2895. \begin_inset Text
  2896. \begin_layout Plain Layout
  2897. 14.2%
  2898. \end_layout
  2899. \end_inset
  2900. </cell>
  2901. </row>
  2902. <row>
  2903. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2904. \begin_inset Text
  2905. \begin_layout Plain Layout
  2906. H3K4me3
  2907. \end_layout
  2908. \end_inset
  2909. </cell>
  2910. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2911. \begin_inset Text
  2912. \begin_layout Plain Layout
  2913. 6163
  2914. \end_layout
  2915. \end_inset
  2916. </cell>
  2917. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2918. \begin_inset Text
  2919. \begin_layout Plain Layout
  2920. 2946
  2921. \end_layout
  2922. \end_inset
  2923. </cell>
  2924. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  2925. \begin_inset Text
  2926. \begin_layout Plain Layout
  2927. 0.588%
  2928. \end_layout
  2929. \end_inset
  2930. </cell>
  2931. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  2932. \begin_inset Text
  2933. \begin_layout Plain Layout
  2934. 6.57%
  2935. \end_layout
  2936. \end_inset
  2937. </cell>
  2938. </row>
  2939. <row>
  2940. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2941. \begin_inset Text
  2942. \begin_layout Plain Layout
  2943. H3K27me3
  2944. \end_layout
  2945. \end_inset
  2946. </cell>
  2947. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2948. \begin_inset Text
  2949. \begin_layout Plain Layout
  2950. 18139
  2951. \end_layout
  2952. \end_inset
  2953. </cell>
  2954. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2955. \begin_inset Text
  2956. \begin_layout Plain Layout
  2957. 18967
  2958. \end_layout
  2959. \end_inset
  2960. </cell>
  2961. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  2962. \begin_inset Text
  2963. \begin_layout Plain Layout
  2964. 11.1%
  2965. \end_layout
  2966. \end_inset
  2967. </cell>
  2968. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  2969. \begin_inset Text
  2970. \begin_layout Plain Layout
  2971. 22.5%
  2972. \end_layout
  2973. \end_inset
  2974. </cell>
  2975. </row>
  2976. </lyxtabular>
  2977. \end_inset
  2978. \end_layout
  2979. \begin_layout Plain Layout
  2980. \begin_inset Caption Standard
  2981. \begin_layout Plain Layout
  2982. \series bold
  2983. \begin_inset CommandInset label
  2984. LatexCommand label
  2985. name "tab:peak-calling-summary"
  2986. \end_inset
  2987. Peak-calling summary.
  2988. \series default
  2989. For each histone mark, the number of peaks called using SICER at an IDR
  2990. threshold of ???, the mean width of those peaks, the fraction of the genome
  2991. covered by peaks, and the fraction of reads in peaks (FRiP).
  2992. \end_layout
  2993. \end_inset
  2994. \end_layout
  2995. \end_inset
  2996. \end_layout
  2997. \begin_layout Standard
  2998. Table
  2999. \begin_inset CommandInset ref
  3000. LatexCommand ref
  3001. reference "tab:peak-calling-summary"
  3002. plural "false"
  3003. caps "false"
  3004. noprefix "false"
  3005. \end_inset
  3006. gives a summary of the peak calling statistics for each histone mark.
  3007. Consistent with previous observations [CITATION NEEDED], all 3 histone
  3008. marks occur in broad regions spanning many consecutive nucleosomes, rather
  3009. than in sharp peaks as would be expected for a transcription factor or
  3010. other molecule that binds to specific sites.
  3011. This conclusion is further supported by Figure
  3012. \begin_inset CommandInset ref
  3013. LatexCommand ref
  3014. reference "fig:CCF-with-blacklist"
  3015. plural "false"
  3016. caps "false"
  3017. noprefix "false"
  3018. \end_inset
  3019. , in which a clear nucleosome-sized periodicity is visible in the cross-correlat
  3020. ion value for each sample, indicating that each time a given mark is present
  3021. on one histone, it is also likely to be found on adjacent histones as well.
  3022. H3K27me3 enrichment in particular is substantially more broad than either
  3023. H3K4 mark, with a mean peak width of almost 19,000 bp.
  3024. This is also reflected in the periodicity observed in Figure
  3025. \begin_inset CommandInset ref
  3026. LatexCommand ref
  3027. reference "fig:CCF-with-blacklist"
  3028. plural "false"
  3029. caps "false"
  3030. noprefix "false"
  3031. \end_inset
  3032. , which remains strong much farther out for H3K27me3 than the other marks,
  3033. showing H3K27me3 especially tends to be found on long runs of consecutive
  3034. histones.
  3035. \end_layout
  3036. \begin_layout Standard
  3037. \begin_inset Float figure
  3038. wide false
  3039. sideways false
  3040. status open
  3041. \begin_layout Plain Layout
  3042. \begin_inset Flex TODO Note (inline)
  3043. status open
  3044. \begin_layout Plain Layout
  3045. Ensure this figure uses the peak calls from the new analysis.
  3046. \end_layout
  3047. \end_inset
  3048. \end_layout
  3049. \begin_layout Plain Layout
  3050. \begin_inset Flex TODO Note (inline)
  3051. status open
  3052. \begin_layout Plain Layout
  3053. Need a control: shuffle all peaks and repeat, N times.
  3054. Do real vs shuffled control both in a top/bottom arrangement.
  3055. \end_layout
  3056. \end_inset
  3057. \end_layout
  3058. \begin_layout Plain Layout
  3059. \begin_inset Flex TODO Note (inline)
  3060. status open
  3061. \begin_layout Plain Layout
  3062. Consider counting TSS inside peaks as negative number indicating how far
  3063. \emph on
  3064. inside
  3065. \emph default
  3066. the peak the TSS is (i.e.
  3067. distance to nearest non-peak area).
  3068. \end_layout
  3069. \end_inset
  3070. \end_layout
  3071. \begin_layout Plain Layout
  3072. \begin_inset Flex TODO Note (inline)
  3073. status open
  3074. \begin_layout Plain Layout
  3075. The H3K4 part of this figure is included in
  3076. \begin_inset CommandInset citation
  3077. LatexCommand cite
  3078. key "LaMere2016"
  3079. literal "false"
  3080. \end_inset
  3081. as Fig.
  3082. S2.
  3083. Do I need to do anything about that?
  3084. \end_layout
  3085. \end_inset
  3086. \end_layout
  3087. \begin_layout Plain Layout
  3088. \align center
  3089. \begin_inset Graphics
  3090. filename graphics/CD4-csaw/Promoter Peak Distance Profile-PAGE1-CROP.pdf
  3091. lyxscale 50
  3092. width 80col%
  3093. \end_inset
  3094. \end_layout
  3095. \begin_layout Plain Layout
  3096. \begin_inset Caption Standard
  3097. \begin_layout Plain Layout
  3098. \series bold
  3099. \begin_inset CommandInset label
  3100. LatexCommand label
  3101. name "fig:near-promoter-peak-enrich"
  3102. \end_inset
  3103. Enrichment of peaks in promoter neighborhoods.
  3104. \series default
  3105. This plot shows the distribution of distances from each annotated transcription
  3106. start site in the genome to the nearest called peak.
  3107. Each line represents one combination of histone mark, cell type, and time
  3108. point.
  3109. Distributions are smoothed using kernel density estimation [CITE? see ggplot2
  3110. stat_density()].
  3111. Transcription start sites that occur
  3112. \emph on
  3113. within
  3114. \emph default
  3115. peaks were excluded from this plot to avoid a large spike at zero that
  3116. would overshadow the rest of the distribution.
  3117. \end_layout
  3118. \end_inset
  3119. \end_layout
  3120. \end_inset
  3121. \end_layout
  3122. \begin_layout Standard
  3123. \begin_inset Float table
  3124. wide false
  3125. sideways false
  3126. status collapsed
  3127. \begin_layout Plain Layout
  3128. \align center
  3129. \begin_inset Tabular
  3130. <lyxtabular version="3" rows="4" columns="2">
  3131. <features tabularvalignment="middle">
  3132. <column alignment="center" valignment="top">
  3133. <column alignment="center" valignment="top">
  3134. <row>
  3135. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3136. \begin_inset Text
  3137. \begin_layout Plain Layout
  3138. Histone mark
  3139. \end_layout
  3140. \end_inset
  3141. </cell>
  3142. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3143. \begin_inset Text
  3144. \begin_layout Plain Layout
  3145. Effective promoter radius
  3146. \end_layout
  3147. \end_inset
  3148. </cell>
  3149. </row>
  3150. <row>
  3151. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3152. \begin_inset Text
  3153. \begin_layout Plain Layout
  3154. H3K4me2
  3155. \end_layout
  3156. \end_inset
  3157. </cell>
  3158. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3159. \begin_inset Text
  3160. \begin_layout Plain Layout
  3161. 1 kb
  3162. \end_layout
  3163. \end_inset
  3164. </cell>
  3165. </row>
  3166. <row>
  3167. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3168. \begin_inset Text
  3169. \begin_layout Plain Layout
  3170. H3K4me3
  3171. \end_layout
  3172. \end_inset
  3173. </cell>
  3174. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3175. \begin_inset Text
  3176. \begin_layout Plain Layout
  3177. 1 kb
  3178. \end_layout
  3179. \end_inset
  3180. </cell>
  3181. </row>
  3182. <row>
  3183. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3184. \begin_inset Text
  3185. \begin_layout Plain Layout
  3186. H3K27me3
  3187. \end_layout
  3188. \end_inset
  3189. </cell>
  3190. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3191. \begin_inset Text
  3192. \begin_layout Plain Layout
  3193. 2.5 kb
  3194. \end_layout
  3195. \end_inset
  3196. </cell>
  3197. </row>
  3198. </lyxtabular>
  3199. \end_inset
  3200. \end_layout
  3201. \begin_layout Plain Layout
  3202. \begin_inset Caption Standard
  3203. \begin_layout Plain Layout
  3204. \series bold
  3205. \begin_inset CommandInset label
  3206. LatexCommand label
  3207. name "tab:effective-promoter-radius"
  3208. \end_inset
  3209. Effective promoter radius for each histone mark.
  3210. \series default
  3211. These values represent the approximate distance from transcription start
  3212. site positions within which an excess of peaks are found, as shown in Figure
  3213. \begin_inset CommandInset ref
  3214. LatexCommand ref
  3215. reference "fig:near-promoter-peak-enrich"
  3216. plural "false"
  3217. caps "false"
  3218. noprefix "false"
  3219. \end_inset
  3220. .
  3221. \end_layout
  3222. \end_inset
  3223. \end_layout
  3224. \begin_layout Plain Layout
  3225. \end_layout
  3226. \end_inset
  3227. \end_layout
  3228. \begin_layout Standard
  3229. All 3 histone marks tend to occur more often near promoter regions, as shown
  3230. in Figure
  3231. \begin_inset CommandInset ref
  3232. LatexCommand ref
  3233. reference "fig:near-promoter-peak-enrich"
  3234. plural "false"
  3235. caps "false"
  3236. noprefix "false"
  3237. \end_inset
  3238. .
  3239. The majority of each density distribution is flat, representing the background
  3240. density of peaks genome-wide.
  3241. Each distribution has a peak near zero, representing an enrichment of peaks
  3242. close transcription start site (TSS) positions relative to the remainder
  3243. of the genome.
  3244. Interestingly, the
  3245. \begin_inset Quotes eld
  3246. \end_inset
  3247. radius
  3248. \begin_inset Quotes erd
  3249. \end_inset
  3250. within which this enrichment occurs is not the same for every histone mark
  3251. (Table
  3252. \begin_inset CommandInset ref
  3253. LatexCommand ref
  3254. reference "tab:effective-promoter-radius"
  3255. plural "false"
  3256. caps "false"
  3257. noprefix "false"
  3258. \end_inset
  3259. ).
  3260. For H3K4me2 and H3K4me3, peaks are most enriched within 1
  3261. \begin_inset space ~
  3262. \end_inset
  3263. kbp of TSS positions, while for H3K27me3, enrichment is broader, extending
  3264. to 2.5
  3265. \begin_inset space ~
  3266. \end_inset
  3267. kbp.
  3268. These
  3269. \begin_inset Quotes eld
  3270. \end_inset
  3271. effective promoter radii
  3272. \begin_inset Quotes erd
  3273. \end_inset
  3274. remain approximately the same across all combinations of experimental condition
  3275. (cell type, time point, and donor), so they appear to be a property of
  3276. the histone mark itself.
  3277. Hence, these radii were used to define the promoter regions for each histone
  3278. mark in all further analyses.
  3279. \end_layout
  3280. \begin_layout Standard
  3281. \begin_inset Flex TODO Note (inline)
  3282. status open
  3283. \begin_layout Plain Layout
  3284. Consider also showing figure for distance to nearest peak center, and reference
  3285. median peak size once that is known.
  3286. \end_layout
  3287. \end_inset
  3288. \end_layout
  3289. \begin_layout Subsection
  3290. H3K4 and H3K27 promoter methylation has broadly the expected correlation
  3291. with gene expression
  3292. \end_layout
  3293. \begin_layout Standard
  3294. \begin_inset Float figure
  3295. wide false
  3296. sideways false
  3297. status collapsed
  3298. \begin_layout Plain Layout
  3299. \begin_inset Flex TODO Note (inline)
  3300. status open
  3301. \begin_layout Plain Layout
  3302. This figure is generated from the old analysis.
  3303. Eiher note that in some way or re-generate it from the new peak calls.
  3304. \end_layout
  3305. \end_inset
  3306. \end_layout
  3307. \begin_layout Plain Layout
  3308. \align center
  3309. \begin_inset Graphics
  3310. filename graphics/CD4-csaw/FPKM by Peak Violin Plots-CROP.pdf
  3311. lyxscale 50
  3312. width 100col%
  3313. \end_inset
  3314. \end_layout
  3315. \begin_layout Plain Layout
  3316. \begin_inset Caption Standard
  3317. \begin_layout Plain Layout
  3318. \series bold
  3319. \begin_inset CommandInset label
  3320. LatexCommand label
  3321. name "fig:fpkm-by-peak"
  3322. \end_inset
  3323. Expression distributions of genes with and without promoter peaks.
  3324. \end_layout
  3325. \end_inset
  3326. \end_layout
  3327. \end_inset
  3328. \end_layout
  3329. \begin_layout Standard
  3330. H3K4me2 and H3K4me2 have previously been reported as activating marks whose
  3331. presence in a gene's promoter is associated with higher gene expression,
  3332. while H3K27me3 has been reported as inactivating [CITE].
  3333. The data are consistent with this characterization: genes whose promoters
  3334. (as defined by the radii for each histone mark listed in
  3335. \begin_inset CommandInset ref
  3336. LatexCommand ref
  3337. reference "tab:effective-promoter-radius"
  3338. plural "false"
  3339. caps "false"
  3340. noprefix "false"
  3341. \end_inset
  3342. ) overlap with a H3K4me2 or H3K4me3 peak tend to have higher expression
  3343. than those that don't, while H3K27me3 is likewise associated with lower
  3344. gene expression, as shown in
  3345. \begin_inset CommandInset ref
  3346. LatexCommand ref
  3347. reference "fig:fpkm-by-peak"
  3348. plural "false"
  3349. caps "false"
  3350. noprefix "false"
  3351. \end_inset
  3352. .
  3353. This pattern holds across all combinations of cell type and time point
  3354. (Welch's
  3355. \emph on
  3356. t
  3357. \emph default
  3358. -test, all
  3359. \begin_inset Formula $p\mathrm{-values}\ll2.2\times10^{-16}$
  3360. \end_inset
  3361. ).
  3362. The difference in average log FPKM values when a peak overlaps the promoter
  3363. is about
  3364. \begin_inset Formula $+5.67$
  3365. \end_inset
  3366. for H3K4me2,
  3367. \begin_inset Formula $+5.76$
  3368. \end_inset
  3369. for H3K4me2, and
  3370. \begin_inset Formula $-4.00$
  3371. \end_inset
  3372. for H3K27me3.
  3373. \end_layout
  3374. \begin_layout Standard
  3375. \begin_inset Flex TODO Note (inline)
  3376. status open
  3377. \begin_layout Plain Layout
  3378. I also have some figures looking at interactions between marks (e.g.
  3379. what if a promoter has both H3K4me3 and H3K27me3), but I don't know if
  3380. that much detail is warranted here, since all the effects just seem approximate
  3381. ly additive anyway.
  3382. \end_layout
  3383. \end_inset
  3384. \end_layout
  3385. \begin_layout Subsection
  3386. Gene expression and promoter histone methylation patterns in naive and memory
  3387. show convergence at day 14
  3388. \end_layout
  3389. \begin_layout Standard
  3390. \begin_inset ERT
  3391. status open
  3392. \begin_layout Plain Layout
  3393. \backslash
  3394. afterpage{
  3395. \end_layout
  3396. \begin_layout Plain Layout
  3397. \backslash
  3398. begin{landscape}
  3399. \end_layout
  3400. \end_inset
  3401. \end_layout
  3402. \begin_layout Standard
  3403. \begin_inset Float table
  3404. wide false
  3405. sideways false
  3406. status open
  3407. \begin_layout Plain Layout
  3408. \align center
  3409. \begin_inset Tabular
  3410. <lyxtabular version="3" rows="6" columns="7">
  3411. <features tabularvalignment="middle">
  3412. <column alignment="center" valignment="top">
  3413. <column alignment="center" valignment="top">
  3414. <column alignment="center" valignment="top">
  3415. <column alignment="center" valignment="top">
  3416. <column alignment="center" valignment="top">
  3417. <column alignment="center" valignment="top">
  3418. <column alignment="center" valignment="top">
  3419. <row>
  3420. <cell alignment="center" valignment="top" usebox="none">
  3421. \begin_inset Text
  3422. \begin_layout Plain Layout
  3423. \end_layout
  3424. \end_inset
  3425. </cell>
  3426. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3427. \begin_inset Text
  3428. \begin_layout Plain Layout
  3429. Number of significant promoters
  3430. \end_layout
  3431. \end_inset
  3432. </cell>
  3433. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3434. \begin_inset Text
  3435. \begin_layout Plain Layout
  3436. \end_layout
  3437. \end_inset
  3438. </cell>
  3439. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3440. \begin_inset Text
  3441. \begin_layout Plain Layout
  3442. \end_layout
  3443. \end_inset
  3444. </cell>
  3445. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3446. \begin_inset Text
  3447. \begin_layout Plain Layout
  3448. Est.
  3449. differentially modified promoters
  3450. \end_layout
  3451. \end_inset
  3452. </cell>
  3453. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3454. \begin_inset Text
  3455. \begin_layout Plain Layout
  3456. \end_layout
  3457. \end_inset
  3458. </cell>
  3459. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3460. \begin_inset Text
  3461. \begin_layout Plain Layout
  3462. \end_layout
  3463. \end_inset
  3464. </cell>
  3465. </row>
  3466. <row>
  3467. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3468. \begin_inset Text
  3469. \begin_layout Plain Layout
  3470. Time Point
  3471. \end_layout
  3472. \end_inset
  3473. </cell>
  3474. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3475. \begin_inset Text
  3476. \begin_layout Plain Layout
  3477. H3K4me2
  3478. \end_layout
  3479. \end_inset
  3480. </cell>
  3481. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3482. \begin_inset Text
  3483. \begin_layout Plain Layout
  3484. H3K4me3
  3485. \end_layout
  3486. \end_inset
  3487. </cell>
  3488. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3489. \begin_inset Text
  3490. \begin_layout Plain Layout
  3491. H3K27me3
  3492. \end_layout
  3493. \end_inset
  3494. </cell>
  3495. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3496. \begin_inset Text
  3497. \begin_layout Plain Layout
  3498. H3K4me2
  3499. \end_layout
  3500. \end_inset
  3501. </cell>
  3502. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3503. \begin_inset Text
  3504. \begin_layout Plain Layout
  3505. H3K4me3
  3506. \end_layout
  3507. \end_inset
  3508. </cell>
  3509. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3510. \begin_inset Text
  3511. \begin_layout Plain Layout
  3512. H3K27me3
  3513. \end_layout
  3514. \end_inset
  3515. </cell>
  3516. </row>
  3517. <row>
  3518. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3519. \begin_inset Text
  3520. \begin_layout Plain Layout
  3521. Day 0
  3522. \end_layout
  3523. \end_inset
  3524. </cell>
  3525. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3526. \begin_inset Text
  3527. \begin_layout Plain Layout
  3528. 4553
  3529. \end_layout
  3530. \end_inset
  3531. </cell>
  3532. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3533. \begin_inset Text
  3534. \begin_layout Plain Layout
  3535. 927
  3536. \end_layout
  3537. \end_inset
  3538. </cell>
  3539. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3540. \begin_inset Text
  3541. \begin_layout Plain Layout
  3542. 6
  3543. \end_layout
  3544. \end_inset
  3545. </cell>
  3546. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3547. \begin_inset Text
  3548. \begin_layout Plain Layout
  3549. 9967
  3550. \end_layout
  3551. \end_inset
  3552. </cell>
  3553. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3554. \begin_inset Text
  3555. \begin_layout Plain Layout
  3556. 4149
  3557. \end_layout
  3558. \end_inset
  3559. </cell>
  3560. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3561. \begin_inset Text
  3562. \begin_layout Plain Layout
  3563. 2404
  3564. \end_layout
  3565. \end_inset
  3566. </cell>
  3567. </row>
  3568. <row>
  3569. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3570. \begin_inset Text
  3571. \begin_layout Plain Layout
  3572. Day 1
  3573. \end_layout
  3574. \end_inset
  3575. </cell>
  3576. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3577. \begin_inset Text
  3578. \begin_layout Plain Layout
  3579. 567
  3580. \end_layout
  3581. \end_inset
  3582. </cell>
  3583. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3584. \begin_inset Text
  3585. \begin_layout Plain Layout
  3586. 278
  3587. \end_layout
  3588. \end_inset
  3589. </cell>
  3590. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3591. \begin_inset Text
  3592. \begin_layout Plain Layout
  3593. 1570
  3594. \end_layout
  3595. \end_inset
  3596. </cell>
  3597. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3598. \begin_inset Text
  3599. \begin_layout Plain Layout
  3600. 4370
  3601. \end_layout
  3602. \end_inset
  3603. </cell>
  3604. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3605. \begin_inset Text
  3606. \begin_layout Plain Layout
  3607. 2145
  3608. \end_layout
  3609. \end_inset
  3610. </cell>
  3611. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3612. \begin_inset Text
  3613. \begin_layout Plain Layout
  3614. 6598
  3615. \end_layout
  3616. \end_inset
  3617. </cell>
  3618. </row>
  3619. <row>
  3620. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3621. \begin_inset Text
  3622. \begin_layout Plain Layout
  3623. Day 5
  3624. \end_layout
  3625. \end_inset
  3626. </cell>
  3627. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3628. \begin_inset Text
  3629. \begin_layout Plain Layout
  3630. 2313
  3631. \end_layout
  3632. \end_inset
  3633. </cell>
  3634. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3635. \begin_inset Text
  3636. \begin_layout Plain Layout
  3637. 139
  3638. \end_layout
  3639. \end_inset
  3640. </cell>
  3641. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3642. \begin_inset Text
  3643. \begin_layout Plain Layout
  3644. 490
  3645. \end_layout
  3646. \end_inset
  3647. </cell>
  3648. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3649. \begin_inset Text
  3650. \begin_layout Plain Layout
  3651. 9450
  3652. \end_layout
  3653. \end_inset
  3654. </cell>
  3655. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  3656. \begin_inset Text
  3657. \begin_layout Plain Layout
  3658. 1148
  3659. \end_layout
  3660. \end_inset
  3661. </cell>
  3662. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  3663. \begin_inset Text
  3664. \begin_layout Plain Layout
  3665. 4141
  3666. \end_layout
  3667. \end_inset
  3668. </cell>
  3669. </row>
  3670. <row>
  3671. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3672. \begin_inset Text
  3673. \begin_layout Plain Layout
  3674. Day 14
  3675. \end_layout
  3676. \end_inset
  3677. </cell>
  3678. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3679. \begin_inset Text
  3680. \begin_layout Plain Layout
  3681. 0
  3682. \end_layout
  3683. \end_inset
  3684. </cell>
  3685. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3686. \begin_inset Text
  3687. \begin_layout Plain Layout
  3688. 0
  3689. \end_layout
  3690. \end_inset
  3691. </cell>
  3692. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3693. \begin_inset Text
  3694. \begin_layout Plain Layout
  3695. 0
  3696. \end_layout
  3697. \end_inset
  3698. </cell>
  3699. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3700. \begin_inset Text
  3701. \begin_layout Plain Layout
  3702. 0
  3703. \end_layout
  3704. \end_inset
  3705. </cell>
  3706. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  3707. \begin_inset Text
  3708. \begin_layout Plain Layout
  3709. 0
  3710. \end_layout
  3711. \end_inset
  3712. </cell>
  3713. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  3714. \begin_inset Text
  3715. \begin_layout Plain Layout
  3716. 0
  3717. \end_layout
  3718. \end_inset
  3719. </cell>
  3720. </row>
  3721. </lyxtabular>
  3722. \end_inset
  3723. \end_layout
  3724. \begin_layout Plain Layout
  3725. \begin_inset Caption Standard
  3726. \begin_layout Plain Layout
  3727. \series bold
  3728. \begin_inset CommandInset label
  3729. LatexCommand label
  3730. name "tab:Number-signif-promoters"
  3731. \end_inset
  3732. Number of differentially modified promoters between naive and memory cells
  3733. at each time point after activation.
  3734. \series default
  3735. This table shows both the number of differentially modified promoters detected
  3736. at a 10% FDR threshold (left half), and the total number of differentially
  3737. modified promoters as estimated using the method of
  3738. \begin_inset CommandInset citation
  3739. LatexCommand cite
  3740. key "Phipson2013"
  3741. literal "false"
  3742. \end_inset
  3743. (right half).
  3744. \end_layout
  3745. \end_inset
  3746. \end_layout
  3747. \end_inset
  3748. \end_layout
  3749. \begin_layout Standard
  3750. \begin_inset ERT
  3751. status open
  3752. \begin_layout Plain Layout
  3753. \backslash
  3754. end{landscape}
  3755. \end_layout
  3756. \begin_layout Plain Layout
  3757. }
  3758. \end_layout
  3759. \end_inset
  3760. \end_layout
  3761. \begin_layout Standard
  3762. \begin_inset Float figure
  3763. placement p
  3764. wide false
  3765. sideways false
  3766. status open
  3767. \begin_layout Plain Layout
  3768. \align center
  3769. \begin_inset Float figure
  3770. wide false
  3771. sideways false
  3772. status open
  3773. \begin_layout Plain Layout
  3774. \align center
  3775. \begin_inset Graphics
  3776. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-promoter-PCA-group-CROP.png
  3777. lyxscale 25
  3778. width 45col%
  3779. groupId pcoa-prom-subfig
  3780. \end_inset
  3781. \end_layout
  3782. \begin_layout Plain Layout
  3783. \begin_inset Caption Standard
  3784. \begin_layout Plain Layout
  3785. \series bold
  3786. \begin_inset CommandInset label
  3787. LatexCommand label
  3788. name "fig:PCoA-H3K4me2-prom"
  3789. \end_inset
  3790. PCoA plot of H3K4me2 promoters, after subtracting surrogate variables
  3791. \end_layout
  3792. \end_inset
  3793. \end_layout
  3794. \end_inset
  3795. \begin_inset space \hfill{}
  3796. \end_inset
  3797. \begin_inset Float figure
  3798. wide false
  3799. sideways false
  3800. status open
  3801. \begin_layout Plain Layout
  3802. \align center
  3803. \begin_inset Graphics
  3804. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-promoter-PCA-group-CROP.png
  3805. lyxscale 25
  3806. width 45col%
  3807. groupId pcoa-prom-subfig
  3808. \end_inset
  3809. \end_layout
  3810. \begin_layout Plain Layout
  3811. \begin_inset Caption Standard
  3812. \begin_layout Plain Layout
  3813. \series bold
  3814. \begin_inset CommandInset label
  3815. LatexCommand label
  3816. name "fig:PCoA-H3K4me3-prom"
  3817. \end_inset
  3818. PCoA plot of H3K4me3 promoters, after subtracting surrogate variables
  3819. \end_layout
  3820. \end_inset
  3821. \end_layout
  3822. \end_inset
  3823. \end_layout
  3824. \begin_layout Plain Layout
  3825. \align center
  3826. \begin_inset Float figure
  3827. wide false
  3828. sideways false
  3829. status collapsed
  3830. \begin_layout Plain Layout
  3831. \align center
  3832. \begin_inset Graphics
  3833. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-promoter-PCA-group-CROP.png
  3834. lyxscale 25
  3835. width 45col%
  3836. groupId pcoa-prom-subfig
  3837. \end_inset
  3838. \end_layout
  3839. \begin_layout Plain Layout
  3840. \begin_inset Caption Standard
  3841. \begin_layout Plain Layout
  3842. \series bold
  3843. \begin_inset CommandInset label
  3844. LatexCommand label
  3845. name "fig:PCoA-H3K27me3-prom"
  3846. \end_inset
  3847. PCoA plot of H3K27me3 promoters, after subtracting surrogate variables
  3848. \end_layout
  3849. \end_inset
  3850. \end_layout
  3851. \end_inset
  3852. \begin_inset space \hfill{}
  3853. \end_inset
  3854. \begin_inset Float figure
  3855. wide false
  3856. sideways false
  3857. status open
  3858. \begin_layout Plain Layout
  3859. \align center
  3860. \begin_inset Graphics
  3861. filename graphics/CD4-csaw/RNA-seq/PCA-final-23-CROP.png
  3862. lyxscale 25
  3863. width 45col%
  3864. groupId pcoa-prom-subfig
  3865. \end_inset
  3866. \end_layout
  3867. \begin_layout Plain Layout
  3868. \begin_inset Caption Standard
  3869. \begin_layout Plain Layout
  3870. \series bold
  3871. \begin_inset CommandInset label
  3872. LatexCommand label
  3873. name "fig:RNA-PCA-group"
  3874. \end_inset
  3875. RNA-seq PCoA showing principal coordiantes 2 and 3.
  3876. \end_layout
  3877. \end_inset
  3878. \end_layout
  3879. \end_inset
  3880. \end_layout
  3881. \begin_layout Plain Layout
  3882. \begin_inset Caption Standard
  3883. \begin_layout Plain Layout
  3884. \series bold
  3885. \begin_inset CommandInset label
  3886. LatexCommand label
  3887. name "fig:PCoA-promoters"
  3888. \end_inset
  3889. PCoA plots for promoter ChIP-seq and expression RNA-seq data
  3890. \end_layout
  3891. \end_inset
  3892. \end_layout
  3893. \end_inset
  3894. \end_layout
  3895. \begin_layout Standard
  3896. \begin_inset Flex TODO Note (inline)
  3897. status open
  3898. \begin_layout Plain Layout
  3899. Check up on figure refs in this paragraph
  3900. \end_layout
  3901. \end_inset
  3902. \end_layout
  3903. \begin_layout Standard
  3904. We hypothesized that if naive cells had differentiated into memory cells
  3905. by Day 14, then their patterns of expression and histone modification should
  3906. converge with those of memory cells at Day 14.
  3907. Figure
  3908. \begin_inset CommandInset ref
  3909. LatexCommand ref
  3910. reference "fig:PCoA-promoters"
  3911. plural "false"
  3912. caps "false"
  3913. noprefix "false"
  3914. \end_inset
  3915. shows the patterns of variation in all 3 histone marks in the promoter
  3916. regions of the genome using principal coordinate analysis.
  3917. All 3 marks show a noticeable convergence between the naive and memory
  3918. samples at day 14, visible as an overlapping of the day 14 groups on each
  3919. plot.
  3920. This is consistent with the counts of significantly differentially modified
  3921. promoters and estimates of the total numbers of differentially modified
  3922. promoters shown in Table
  3923. \begin_inset CommandInset ref
  3924. LatexCommand ref
  3925. reference "tab:Number-signif-promoters"
  3926. plural "false"
  3927. caps "false"
  3928. noprefix "false"
  3929. \end_inset
  3930. .
  3931. For all histone marks, evidence of differential modification between naive
  3932. and memory samples was detected at every time point except day 14.
  3933. The day 14 convergence pattern is also present in the RNA-seq data (Figure
  3934. \begin_inset CommandInset ref
  3935. LatexCommand ref
  3936. reference "fig:RNA-PCA-group"
  3937. plural "false"
  3938. caps "false"
  3939. noprefix "false"
  3940. \end_inset
  3941. ), albiet in the 2nd and 3rd principal coordinates, indicating that it is
  3942. not the most dominant pattern driving gene expression.
  3943. Taken together, the data show that promoter histone methylation for these
  3944. 3 histone marks and RNA expression for naive and memory cells are most
  3945. similar at day 14, the furthest time point after activation.
  3946. MOFA was also able to capture this day 14 convergence pattern in latent
  3947. factor 5 (Figure
  3948. \begin_inset CommandInset ref
  3949. LatexCommand ref
  3950. reference "fig:mofa-lf-scatter"
  3951. plural "false"
  3952. caps "false"
  3953. noprefix "false"
  3954. \end_inset
  3955. ), which accounts for shared variation across all 3 histone marks and the
  3956. RNA-seq data, confirming that this convergence is a coordinated pattern
  3957. across all 4 data sets.
  3958. While this observation does not prove that the naive cells have differentiated
  3959. into memory cells at Day 14, it is consistent with that hypothesis.
  3960. \end_layout
  3961. \begin_layout Subsection
  3962. Effect of H3K4me2 and H3K4me3 promoter coverage upstream vs downstream of
  3963. TSS
  3964. \end_layout
  3965. \begin_layout Standard
  3966. \begin_inset Flex TODO Note (inline)
  3967. status open
  3968. \begin_layout Plain Layout
  3969. Need a better section title, for this and the next one.
  3970. \end_layout
  3971. \end_inset
  3972. \end_layout
  3973. \begin_layout Standard
  3974. \begin_inset Flex TODO Note (inline)
  3975. status open
  3976. \begin_layout Plain Layout
  3977. Make sure use of coverage/abundance/whatever is consistent.
  3978. \end_layout
  3979. \end_inset
  3980. \end_layout
  3981. \begin_layout Standard
  3982. \begin_inset Flex TODO Note (inline)
  3983. status open
  3984. \begin_layout Plain Layout
  3985. For the figures in this section and the next, the group labels are arbitrary,
  3986. so if time allows, it would be good to manually reorder them in a logical
  3987. way, e.g.
  3988. most upstream to most downstream.
  3989. If this is done, make sure to update the text with the correct group labels.
  3990. \end_layout
  3991. \end_inset
  3992. \end_layout
  3993. \begin_layout Standard
  3994. \begin_inset ERT
  3995. status open
  3996. \begin_layout Plain Layout
  3997. \backslash
  3998. afterpage{
  3999. \end_layout
  4000. \begin_layout Plain Layout
  4001. \backslash
  4002. begin{landscape}
  4003. \end_layout
  4004. \end_inset
  4005. \end_layout
  4006. \begin_layout Standard
  4007. \begin_inset Float figure
  4008. wide false
  4009. sideways false
  4010. status open
  4011. \begin_layout Plain Layout
  4012. \align center
  4013. \begin_inset Float figure
  4014. wide false
  4015. sideways false
  4016. status open
  4017. \begin_layout Plain Layout
  4018. \align center
  4019. \begin_inset Graphics
  4020. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-neighborhood-clusters-CROP.png
  4021. lyxscale 25
  4022. width 30col%
  4023. groupId covprof-subfig
  4024. \end_inset
  4025. \end_layout
  4026. \begin_layout Plain Layout
  4027. \begin_inset Caption Standard
  4028. \begin_layout Plain Layout
  4029. \series bold
  4030. \begin_inset CommandInset label
  4031. LatexCommand label
  4032. name "fig:H3K4me2-neighborhood-clusters"
  4033. \end_inset
  4034. Average relative coverage for each bin in each cluster
  4035. \end_layout
  4036. \end_inset
  4037. \end_layout
  4038. \end_inset
  4039. \begin_inset space \hfill{}
  4040. \end_inset
  4041. \begin_inset Float figure
  4042. wide false
  4043. sideways false
  4044. status open
  4045. \begin_layout Plain Layout
  4046. \align center
  4047. \begin_inset Graphics
  4048. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-neighborhood-PCA-CROP.png
  4049. lyxscale 25
  4050. width 30col%
  4051. groupId covprof-subfig
  4052. \end_inset
  4053. \end_layout
  4054. \begin_layout Plain Layout
  4055. \begin_inset Caption Standard
  4056. \begin_layout Plain Layout
  4057. \series bold
  4058. \begin_inset CommandInset label
  4059. LatexCommand label
  4060. name "fig:H3K4me2-neighborhood-pca"
  4061. \end_inset
  4062. PCA of relative coverage depth, colored by K-means cluster membership.
  4063. \end_layout
  4064. \end_inset
  4065. \end_layout
  4066. \end_inset
  4067. \begin_inset space \hfill{}
  4068. \end_inset
  4069. \begin_inset Float figure
  4070. wide false
  4071. sideways false
  4072. status open
  4073. \begin_layout Plain Layout
  4074. \align center
  4075. \begin_inset Graphics
  4076. filename graphics/CD4-csaw/ChIP-seq/H3K4me2-neighborhood-expression-CROP.png
  4077. lyxscale 25
  4078. width 30col%
  4079. groupId covprof-subfig
  4080. \end_inset
  4081. \end_layout
  4082. \begin_layout Plain Layout
  4083. \begin_inset Caption Standard
  4084. \begin_layout Plain Layout
  4085. \series bold
  4086. \begin_inset CommandInset label
  4087. LatexCommand label
  4088. name "fig:H3K4me2-neighborhood-expression"
  4089. \end_inset
  4090. Gene expression grouped by promoter coverage clusters.
  4091. \end_layout
  4092. \end_inset
  4093. \end_layout
  4094. \end_inset
  4095. \end_layout
  4096. \begin_layout Plain Layout
  4097. \begin_inset Caption Standard
  4098. \begin_layout Plain Layout
  4099. \series bold
  4100. \begin_inset CommandInset label
  4101. LatexCommand label
  4102. name "fig:H3K4me2-neighborhood"
  4103. \end_inset
  4104. K-means clustering of promoter H3K4me2 relative coverage depth in naive
  4105. day 0 samples.
  4106. \series default
  4107. H3K4me2 ChIP-seq reads were binned into 500-bp windows tiled across each
  4108. promoter from 5
  4109. \begin_inset space ~
  4110. \end_inset
  4111. kbp upstream to 5
  4112. \begin_inset space ~
  4113. \end_inset
  4114. kbp downstream, and the logCPM values were normalized within each promoter
  4115. to an average of 0, yielding relative coverage depths.
  4116. These were then grouped using K-means clustering with
  4117. \begin_inset Formula $K=6$
  4118. \end_inset
  4119. ,
  4120. \series bold
  4121. \series default
  4122. and the average bin values were plotted for each cluster (a).
  4123. The
  4124. \begin_inset Formula $x$
  4125. \end_inset
  4126. -axis is the genomic coordinate of each bin relative to the the transcription
  4127. start site, and the
  4128. \begin_inset Formula $y$
  4129. \end_inset
  4130. -axis is the mean relative coverage depth of that bin across all promoters
  4131. in the cluster.
  4132. Each line represents the average
  4133. \begin_inset Quotes eld
  4134. \end_inset
  4135. shape
  4136. \begin_inset Quotes erd
  4137. \end_inset
  4138. of the promoter coverage for promoters in that cluster.
  4139. PCA was performed on the same data, and the first two principal components
  4140. were plotted, coloring each point by its K-means cluster identity (b).
  4141. For each cluster, the distribution of gene expression values was plotted
  4142. (c).
  4143. \end_layout
  4144. \end_inset
  4145. \end_layout
  4146. \end_inset
  4147. \end_layout
  4148. \begin_layout Standard
  4149. \begin_inset ERT
  4150. status open
  4151. \begin_layout Plain Layout
  4152. \backslash
  4153. end{landscape}
  4154. \end_layout
  4155. \begin_layout Plain Layout
  4156. }
  4157. \end_layout
  4158. \end_inset
  4159. \end_layout
  4160. \begin_layout Standard
  4161. To test whether the position of a histone mark relative to a gene's transcriptio
  4162. n start site (TSS) was important, we looked at the
  4163. \begin_inset Quotes eld
  4164. \end_inset
  4165. landscape
  4166. \begin_inset Quotes erd
  4167. \end_inset
  4168. of ChIP-seq read coverage in naive Day 0 samples within 5 kb of each gene's
  4169. TSS by binning reads into 500-bp windows tiled across each promoter LogCPM
  4170. values were calculated for the bins in each promoter and then the average
  4171. logCPM for each promoter's bins was normalized to zero, such that the values
  4172. represent coverage relative to other regions of the same promoter rather
  4173. than being proportional to absolute read count.
  4174. The promoters were then clustered based on the normalized bin abundances
  4175. using
  4176. \begin_inset Formula $k$
  4177. \end_inset
  4178. -means clustering with
  4179. \begin_inset Formula $K=6$
  4180. \end_inset
  4181. .
  4182. Different values of
  4183. \begin_inset Formula $K$
  4184. \end_inset
  4185. were also tested, but did not substantially change the interpretation of
  4186. the data.
  4187. \end_layout
  4188. \begin_layout Standard
  4189. For H3K4me2, plotting the average bin abundances for each cluster reveals
  4190. a simple pattern (Figure
  4191. \begin_inset CommandInset ref
  4192. LatexCommand ref
  4193. reference "fig:H3K4me2-neighborhood-clusters"
  4194. plural "false"
  4195. caps "false"
  4196. noprefix "false"
  4197. \end_inset
  4198. ): Cluster 5 represents a completely flat promoter coverage profile, likely
  4199. consisting of genes with no H3K4me2 methylation in the promoter.
  4200. All the other clusters represent a continuum of peak positions relative
  4201. to the TSS.
  4202. In order from must upstream to most downstream, they are Clusters 6, 4,
  4203. 3, 1, and 2.
  4204. There do not appear to be any clusters representing coverage patterns other
  4205. than lone peaks, such as coverage troughs or double peaks.
  4206. Next, all promoters were plotted in a PCA plot based on the same relative
  4207. bin abundance data, and colored based on cluster membership (Figure
  4208. \begin_inset CommandInset ref
  4209. LatexCommand ref
  4210. reference "fig:H3K4me2-neighborhood-pca"
  4211. plural "false"
  4212. caps "false"
  4213. noprefix "false"
  4214. \end_inset
  4215. ).
  4216. The PCA plot shows Cluster 5 (the
  4217. \begin_inset Quotes eld
  4218. \end_inset
  4219. no peak
  4220. \begin_inset Quotes erd
  4221. \end_inset
  4222. cluster) at the center, with the other clusters arranged in a counter-clockwise
  4223. arc around it in the order noted above, from most upstream peak to most
  4224. downstream.
  4225. Notably, the
  4226. \begin_inset Quotes eld
  4227. \end_inset
  4228. clusters
  4229. \begin_inset Quotes erd
  4230. \end_inset
  4231. form a single large
  4232. \begin_inset Quotes eld
  4233. \end_inset
  4234. cloud
  4235. \begin_inset Quotes erd
  4236. \end_inset
  4237. with no apparent separation between them, further supporting the conclusion
  4238. that these clusters represent an arbitrary partitioning of a continuous
  4239. distribution of promoter coverage landscapes.
  4240. While the clusters are a useful abstraction that aids in visualization,
  4241. they are ultimately not an accurate representation of the data.
  4242. A better representation might be something like a polar coordinate system
  4243. with the origin at the center of Cluster 5, where the radius represents
  4244. the peak height above the background and the angle represents the peak's
  4245. position upstream or downstream of the TSS.
  4246. The continuous nature of the distribution also explains why different values
  4247. of
  4248. \begin_inset Formula $K$
  4249. \end_inset
  4250. led to similar conclusions.
  4251. \end_layout
  4252. \begin_layout Standard
  4253. \begin_inset Flex TODO Note (inline)
  4254. status open
  4255. \begin_layout Plain Layout
  4256. RNA-seq values in the plots use logCPM but should really use logFPKM or
  4257. logTPM.
  4258. Fix if time allows.
  4259. \end_layout
  4260. \end_inset
  4261. \end_layout
  4262. \begin_layout Standard
  4263. \begin_inset Flex TODO Note (inline)
  4264. status open
  4265. \begin_layout Plain Layout
  4266. Should have a table of p-values on difference of means between Cluster 5
  4267. and the others.
  4268. \end_layout
  4269. \end_inset
  4270. \end_layout
  4271. \begin_layout Standard
  4272. To investigate the association between relative peak position and gene expressio
  4273. n, we plotted the Naive Day 0 expression for the genes in each cluster (Figure
  4274. \begin_inset CommandInset ref
  4275. LatexCommand ref
  4276. reference "fig:H3K4me2-neighborhood-expression"
  4277. plural "false"
  4278. caps "false"
  4279. noprefix "false"
  4280. \end_inset
  4281. ).
  4282. Most genes in Cluster 5, the
  4283. \begin_inset Quotes eld
  4284. \end_inset
  4285. no peak
  4286. \begin_inset Quotes erd
  4287. \end_inset
  4288. cluster, have low expression values.
  4289. Taking this as the
  4290. \begin_inset Quotes eld
  4291. \end_inset
  4292. baseline
  4293. \begin_inset Quotes erd
  4294. \end_inset
  4295. distribution when no H3K4me2 methylation is present, we can compare the
  4296. other clusters' distributions to determine which peak positions are associated
  4297. with elevated expression.
  4298. As might be expected, the 3 clusters representing peaks closest to the
  4299. TSS, Clusters 1, 3, and 4, show the highest average expression distributions.
  4300. Specifically, these clusters all have their highest ChIP-seq abundance
  4301. within 1kb of the TSS, consistent with the previously determined promoter
  4302. radius.
  4303. In contrast, cluster 6, which represents peaks several kb upstream of the
  4304. TSS, shows a slightly higher average expression than baseline, while Cluster
  4305. 2, which represents peaks several kb downstream, doesn't appear to show
  4306. any appreciable difference.
  4307. Interestingly, the cluster with the highest average expression is Cluster
  4308. 1, which represents peaks about 1 kb downstream of the TSS, rather than
  4309. Cluster 3, which represents peaks centered directly at the TSS.
  4310. This suggests that conceptualizing the promoter as a region centered on
  4311. the TSS with a certain
  4312. \begin_inset Quotes eld
  4313. \end_inset
  4314. radius
  4315. \begin_inset Quotes erd
  4316. \end_inset
  4317. may be an oversimplification – a peak that is a specific distance from
  4318. the TSS may have a different degree of influence depending on whether it
  4319. is upstream or downstream of the TSS.
  4320. \end_layout
  4321. \begin_layout Standard
  4322. \begin_inset ERT
  4323. status open
  4324. \begin_layout Plain Layout
  4325. \backslash
  4326. afterpage{
  4327. \end_layout
  4328. \begin_layout Plain Layout
  4329. \backslash
  4330. begin{landscape}
  4331. \end_layout
  4332. \end_inset
  4333. \end_layout
  4334. \begin_layout Standard
  4335. \begin_inset Float figure
  4336. wide false
  4337. sideways false
  4338. status open
  4339. \begin_layout Plain Layout
  4340. \align center
  4341. \begin_inset Float figure
  4342. wide false
  4343. sideways false
  4344. status open
  4345. \begin_layout Plain Layout
  4346. \align center
  4347. \begin_inset Graphics
  4348. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-neighborhood-clusters-CROP.png
  4349. lyxscale 25
  4350. width 30col%
  4351. groupId covprof-subfig
  4352. \end_inset
  4353. \end_layout
  4354. \begin_layout Plain Layout
  4355. \begin_inset Caption Standard
  4356. \begin_layout Plain Layout
  4357. \series bold
  4358. \begin_inset CommandInset label
  4359. LatexCommand label
  4360. name "fig:H3K4me3-neighborhood-clusters"
  4361. \end_inset
  4362. Average relative coverage for each bin in each cluster
  4363. \end_layout
  4364. \end_inset
  4365. \end_layout
  4366. \end_inset
  4367. \begin_inset space \hfill{}
  4368. \end_inset
  4369. \begin_inset Float figure
  4370. wide false
  4371. sideways false
  4372. status open
  4373. \begin_layout Plain Layout
  4374. \align center
  4375. \begin_inset Graphics
  4376. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-neighborhood-PCA-CROP.png
  4377. lyxscale 25
  4378. width 30col%
  4379. groupId covprof-subfig
  4380. \end_inset
  4381. \end_layout
  4382. \begin_layout Plain Layout
  4383. \begin_inset Caption Standard
  4384. \begin_layout Plain Layout
  4385. \series bold
  4386. \begin_inset CommandInset label
  4387. LatexCommand label
  4388. name "fig:H3K4me3-neighborhood-pca"
  4389. \end_inset
  4390. PCA of relative coverage depth, colored by K-means cluster membership.
  4391. \end_layout
  4392. \end_inset
  4393. \end_layout
  4394. \end_inset
  4395. \begin_inset space \hfill{}
  4396. \end_inset
  4397. \begin_inset Float figure
  4398. wide false
  4399. sideways false
  4400. status open
  4401. \begin_layout Plain Layout
  4402. \align center
  4403. \begin_inset Graphics
  4404. filename graphics/CD4-csaw/ChIP-seq/H3K4me3-neighborhood-expression-CROP.png
  4405. lyxscale 25
  4406. width 30col%
  4407. groupId covprof-subfig
  4408. \end_inset
  4409. \end_layout
  4410. \begin_layout Plain Layout
  4411. \begin_inset Caption Standard
  4412. \begin_layout Plain Layout
  4413. \series bold
  4414. \begin_inset CommandInset label
  4415. LatexCommand label
  4416. name "fig:H3K4me3-neighborhood-expression"
  4417. \end_inset
  4418. Gene expression grouped by promoter coverage clusters.
  4419. \end_layout
  4420. \end_inset
  4421. \end_layout
  4422. \end_inset
  4423. \end_layout
  4424. \begin_layout Plain Layout
  4425. \begin_inset Caption Standard
  4426. \begin_layout Plain Layout
  4427. \series bold
  4428. \begin_inset CommandInset label
  4429. LatexCommand label
  4430. name "fig:H3K4me3-neighborhood"
  4431. \end_inset
  4432. K-means clustering of promoter H3K4me3 relative coverage depth in naive
  4433. day 0 samples.
  4434. \series default
  4435. H3K4me2 ChIP-seq reads were binned into 500-bp windows tiled across each
  4436. promoter from 5
  4437. \begin_inset space ~
  4438. \end_inset
  4439. kbp upstream to 5
  4440. \begin_inset space ~
  4441. \end_inset
  4442. kbp downstream, and the logCPM values were normalized within each promoter
  4443. to an average of 0, yielding relative coverage depths.
  4444. These were then grouped using K-means clustering with
  4445. \begin_inset Formula $K=6$
  4446. \end_inset
  4447. ,
  4448. \series bold
  4449. \series default
  4450. and the average bin values were plotted for each cluster (a).
  4451. The
  4452. \begin_inset Formula $x$
  4453. \end_inset
  4454. -axis is the genomic coordinate of each bin relative to the the transcription
  4455. start site, and the
  4456. \begin_inset Formula $y$
  4457. \end_inset
  4458. -axis is the mean relative coverage depth of that bin across all promoters
  4459. in the cluster.
  4460. Each line represents the average
  4461. \begin_inset Quotes eld
  4462. \end_inset
  4463. shape
  4464. \begin_inset Quotes erd
  4465. \end_inset
  4466. of the promoter coverage for promoters in that cluster.
  4467. PCA was performed on the same data, and the first two principal components
  4468. were plotted, coloring each point by its K-means cluster identity (b).
  4469. For each cluster, the distribution of gene expression values was plotted
  4470. (c).
  4471. \end_layout
  4472. \end_inset
  4473. \end_layout
  4474. \end_inset
  4475. \end_layout
  4476. \begin_layout Standard
  4477. \begin_inset ERT
  4478. status open
  4479. \begin_layout Plain Layout
  4480. \backslash
  4481. end{landscape}
  4482. \end_layout
  4483. \begin_layout Plain Layout
  4484. }
  4485. \end_layout
  4486. \end_inset
  4487. \end_layout
  4488. \begin_layout Standard
  4489. \begin_inset Flex TODO Note (inline)
  4490. status open
  4491. \begin_layout Plain Layout
  4492. Is there more to say here?
  4493. \end_layout
  4494. \end_inset
  4495. \end_layout
  4496. \begin_layout Standard
  4497. All observations described above for H3K4me2 ChIP-seq also appear to hold
  4498. for H3K4me3 as well (Figure
  4499. \begin_inset CommandInset ref
  4500. LatexCommand ref
  4501. reference "fig:H3K4me3-neighborhood"
  4502. plural "false"
  4503. caps "false"
  4504. noprefix "false"
  4505. \end_inset
  4506. ).
  4507. This is expected, since there is a high correlation between the positions
  4508. where both histone marks occur.
  4509. \end_layout
  4510. \begin_layout Subsection
  4511. Promoter coverage H3K27me3
  4512. \end_layout
  4513. \begin_layout Standard
  4514. \begin_inset ERT
  4515. status open
  4516. \begin_layout Plain Layout
  4517. \backslash
  4518. afterpage{
  4519. \end_layout
  4520. \begin_layout Plain Layout
  4521. \backslash
  4522. begin{landscape}
  4523. \end_layout
  4524. \end_inset
  4525. \end_layout
  4526. \begin_layout Standard
  4527. \begin_inset Float figure
  4528. wide false
  4529. sideways false
  4530. status collapsed
  4531. \begin_layout Plain Layout
  4532. \align center
  4533. \begin_inset Float figure
  4534. wide false
  4535. sideways false
  4536. status open
  4537. \begin_layout Plain Layout
  4538. \align center
  4539. \begin_inset Graphics
  4540. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-neighborhood-clusters-CROP.png
  4541. lyxscale 25
  4542. width 30col%
  4543. groupId covprof-subfig
  4544. \end_inset
  4545. \end_layout
  4546. \begin_layout Plain Layout
  4547. \begin_inset Caption Standard
  4548. \begin_layout Plain Layout
  4549. \series bold
  4550. \begin_inset CommandInset label
  4551. LatexCommand label
  4552. name "fig:H3K27me3-neighborhood-clusters"
  4553. \end_inset
  4554. Average relative coverage for each bin in each cluster
  4555. \end_layout
  4556. \end_inset
  4557. \end_layout
  4558. \end_inset
  4559. \begin_inset space \hfill{}
  4560. \end_inset
  4561. \begin_inset Float figure
  4562. wide false
  4563. sideways false
  4564. status open
  4565. \begin_layout Plain Layout
  4566. \align center
  4567. \begin_inset Graphics
  4568. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-neighborhood-PCA-CROP.png
  4569. lyxscale 25
  4570. width 30col%
  4571. groupId covprof-subfig
  4572. \end_inset
  4573. \end_layout
  4574. \begin_layout Plain Layout
  4575. \begin_inset Caption Standard
  4576. \begin_layout Plain Layout
  4577. \series bold
  4578. \begin_inset CommandInset label
  4579. LatexCommand label
  4580. name "fig:H3K27me3-neighborhood-pca"
  4581. \end_inset
  4582. PCA of relative coverage depth, colored by K-means cluster membership.
  4583. \series default
  4584. Note that Cluster 6 is hidden behind all the other clusters.
  4585. \end_layout
  4586. \end_inset
  4587. \end_layout
  4588. \end_inset
  4589. \begin_inset space \hfill{}
  4590. \end_inset
  4591. \begin_inset Float figure
  4592. wide false
  4593. sideways false
  4594. status open
  4595. \begin_layout Plain Layout
  4596. \align center
  4597. \begin_inset Graphics
  4598. filename graphics/CD4-csaw/ChIP-seq/H3K27me3-neighborhood-expression-CROP.png
  4599. lyxscale 25
  4600. width 30col%
  4601. groupId covprof-subfig
  4602. \end_inset
  4603. \end_layout
  4604. \begin_layout Plain Layout
  4605. \begin_inset Caption Standard
  4606. \begin_layout Plain Layout
  4607. \series bold
  4608. \begin_inset CommandInset label
  4609. LatexCommand label
  4610. name "fig:H3K27me3-neighborhood-expression"
  4611. \end_inset
  4612. Gene expression grouped by promoter coverage clusters.
  4613. \end_layout
  4614. \end_inset
  4615. \end_layout
  4616. \end_inset
  4617. \end_layout
  4618. \begin_layout Plain Layout
  4619. \begin_inset Flex TODO Note (inline)
  4620. status open
  4621. \begin_layout Plain Layout
  4622. Repeated figure legends are kind of an issue here.
  4623. What to do?
  4624. \end_layout
  4625. \end_inset
  4626. \end_layout
  4627. \begin_layout Plain Layout
  4628. \begin_inset Caption Standard
  4629. \begin_layout Plain Layout
  4630. \series bold
  4631. \begin_inset CommandInset label
  4632. LatexCommand label
  4633. name "fig:H3K27me3-neighborhood"
  4634. \end_inset
  4635. K-means clustering of promoter H3K27me3 relative coverage depth in naive
  4636. day 0 samples.
  4637. \series default
  4638. H3K27me3 ChIP-seq reads were binned into 500-bp windows tiled across each
  4639. promoter from 5
  4640. \begin_inset space ~
  4641. \end_inset
  4642. kbp upstream to 5
  4643. \begin_inset space ~
  4644. \end_inset
  4645. kbp downstream, and the logCPM values were normalized within each promoter
  4646. to an average of 0, yielding relative coverage depths.
  4647. These were then grouped using
  4648. \begin_inset Formula $k$
  4649. \end_inset
  4650. -means clustering with
  4651. \begin_inset Formula $K=6$
  4652. \end_inset
  4653. ,
  4654. \series bold
  4655. \series default
  4656. and the average bin values were plotted for each cluster (a).
  4657. The
  4658. \begin_inset Formula $x$
  4659. \end_inset
  4660. -axis is the genomic coordinate of each bin relative to the the transcription
  4661. start site, and the
  4662. \begin_inset Formula $y$
  4663. \end_inset
  4664. -axis is the mean relative coverage depth of that bin across all promoters
  4665. in the cluster.
  4666. Each line represents the average
  4667. \begin_inset Quotes eld
  4668. \end_inset
  4669. shape
  4670. \begin_inset Quotes erd
  4671. \end_inset
  4672. of the promoter coverage for promoters in that cluster.
  4673. PCA was performed on the same data, and the first two principal components
  4674. were plotted, coloring each point by its K-means cluster identity (b).
  4675. For each cluster, the distribution of gene expression values was plotted
  4676. (c).
  4677. \end_layout
  4678. \end_inset
  4679. \end_layout
  4680. \end_inset
  4681. \end_layout
  4682. \begin_layout Standard
  4683. \begin_inset ERT
  4684. status open
  4685. \begin_layout Plain Layout
  4686. \backslash
  4687. end{landscape}
  4688. \end_layout
  4689. \begin_layout Plain Layout
  4690. }
  4691. \end_layout
  4692. \end_inset
  4693. \end_layout
  4694. \begin_layout Standard
  4695. \begin_inset Flex TODO Note (inline)
  4696. status open
  4697. \begin_layout Plain Layout
  4698. Should maybe re-explain what was done or refer back to the previous section.
  4699. \end_layout
  4700. \end_inset
  4701. \end_layout
  4702. \begin_layout Standard
  4703. Unlike both H3K4 marks, whose main patterns of variation appear directly
  4704. related to the size and position of a single peak within the promoter,
  4705. the patterns of H3K27me3 methylation in promoters are more complex (Figure
  4706. \begin_inset CommandInset ref
  4707. LatexCommand ref
  4708. reference "fig:H3K27me3-neighborhood"
  4709. plural "false"
  4710. caps "false"
  4711. noprefix "false"
  4712. \end_inset
  4713. ).
  4714. Once again looking at the relative coverage in a 500-bp wide bins in a
  4715. 5kb radius around each TSS, promoters were clustered based on the normalized
  4716. relative coverage values in each bin using
  4717. \begin_inset Formula $k$
  4718. \end_inset
  4719. -means clustering with
  4720. \begin_inset Formula $K=6$
  4721. \end_inset
  4722. (Figure
  4723. \begin_inset CommandInset ref
  4724. LatexCommand ref
  4725. reference "fig:H3K27me3-neighborhood-clusters"
  4726. plural "false"
  4727. caps "false"
  4728. noprefix "false"
  4729. \end_inset
  4730. ).
  4731. This time, 3
  4732. \begin_inset Quotes eld
  4733. \end_inset
  4734. axes
  4735. \begin_inset Quotes erd
  4736. \end_inset
  4737. of variation can be observed, each represented by 2 clusters with opposing
  4738. patterns.
  4739. The first axis is greater upstream coverage (Cluster 1) vs.
  4740. greater downstream coverage (Cluster 3); the second axis is the coverage
  4741. at the TSS itself: peak (Cluster 4) or trough (Cluster 2); lastly, the
  4742. third axis represents a trough upstream of the TSS (Cluster 5) vs.
  4743. downstream of the TSS (Cluster 6).
  4744. Referring to these opposing pairs of clusters as axes of variation is justified
  4745. , because they correspond precisely to the first 3 principal components
  4746. in the PCA plot of the relative coverage values (Figure
  4747. \begin_inset CommandInset ref
  4748. LatexCommand ref
  4749. reference "fig:H3K27me3-neighborhood-pca"
  4750. plural "false"
  4751. caps "false"
  4752. noprefix "false"
  4753. \end_inset
  4754. ).
  4755. The PCA plot reveals that as in the case of H3K4me2, all the
  4756. \begin_inset Quotes eld
  4757. \end_inset
  4758. clusters
  4759. \begin_inset Quotes erd
  4760. \end_inset
  4761. are really just sections of a single connected cloud rather than discrete
  4762. clusters.
  4763. The cloud is approximately ellipsoid-shaped, with each PC being an axis
  4764. of the ellipse, and each cluster consisting of a pyrimidal section of the
  4765. ellipsoid.
  4766. \end_layout
  4767. \begin_layout Standard
  4768. In Figure
  4769. \begin_inset CommandInset ref
  4770. LatexCommand ref
  4771. reference "fig:H3K27me3-neighborhood-expression"
  4772. plural "false"
  4773. caps "false"
  4774. noprefix "false"
  4775. \end_inset
  4776. , we can see that Clusters 1 and 2 are the only clusters with higher gene
  4777. expression than the others.
  4778. For Cluster 2, this is expected, since this cluster represents genes with
  4779. depletion of H3K27me3 near the promoter.
  4780. Hence, elevated expression in cluster 2 is consistent with the conventional
  4781. view of H3K27me3 as a deactivating mark.
  4782. However, Cluster 1, the cluster with the most elevated gene expression,
  4783. represents genes with elevated coverage upstream of the TSS, or equivalently,
  4784. decreased coverage downstream, inside the gene body.
  4785. The opposite pattern, in which H3K27me3 is more abundant within the gene
  4786. body and less abundance in the upstream promoter region, does not show
  4787. any elevation in gene expression.
  4788. As with H3K4me2, this shows that the location of H3K27 trimethylation relative
  4789. to the TSS is potentially an important factor beyond simple proximity.
  4790. \end_layout
  4791. \begin_layout Standard
  4792. \begin_inset Flex TODO Note (inline)
  4793. status open
  4794. \begin_layout Plain Layout
  4795. Show the figures where the negative result ended this line of inquiry.
  4796. I need to debug some errors resulting from an R upgrade to do this.
  4797. \end_layout
  4798. \end_inset
  4799. \end_layout
  4800. \begin_layout Subsection
  4801. Defined pattern analysis
  4802. \end_layout
  4803. \begin_layout Standard
  4804. \begin_inset Flex TODO Note (inline)
  4805. status open
  4806. \begin_layout Plain Layout
  4807. This was where I defined interesting expression patterns and then looked
  4808. at initial relative promoter coverage for each expression pattern.
  4809. Negative result.
  4810. I forgot about this until recently.
  4811. Worth including? Remember to also write methods.
  4812. \end_layout
  4813. \end_inset
  4814. \end_layout
  4815. \begin_layout Subsection
  4816. Promoter CpG islands?
  4817. \end_layout
  4818. \begin_layout Standard
  4819. \begin_inset Flex TODO Note (inline)
  4820. status collapsed
  4821. \begin_layout Plain Layout
  4822. I forgot until recently about the work I did on this.
  4823. Worth including? Remember to also write methods.
  4824. \end_layout
  4825. \end_inset
  4826. \end_layout
  4827. \begin_layout Section
  4828. Discussion
  4829. \end_layout
  4830. \begin_layout Standard
  4831. \begin_inset Flex TODO Note (inline)
  4832. status open
  4833. \begin_layout Plain Layout
  4834. Write better section headers
  4835. \end_layout
  4836. \end_inset
  4837. \end_layout
  4838. \begin_layout Subsection
  4839. Effective promoter radius
  4840. \end_layout
  4841. \begin_layout Standard
  4842. Figure
  4843. \begin_inset CommandInset ref
  4844. LatexCommand ref
  4845. reference "fig:near-promoter-peak-enrich"
  4846. plural "false"
  4847. caps "false"
  4848. noprefix "false"
  4849. \end_inset
  4850. shows that H3K4me2, H3K4me3, and H3K27me3 are all enriched near promoters,
  4851. relative to the rest of the genome, consistent with their conventionally
  4852. understood role in regulating gene transcription.
  4853. Interestingly, the radius within this enrichment occurs is not the same
  4854. for each histone mark.
  4855. H3K4me2 and H3K4me3 are enriched within a 1
  4856. \begin_inset space \thinspace{}
  4857. \end_inset
  4858. kb radius, while H3K27me3 is enriched within 2.5
  4859. \begin_inset space \thinspace{}
  4860. \end_inset
  4861. kb.
  4862. Notably, the determined promoter radius was consistent across all experimental
  4863. conditions, varying only between different histone marks.
  4864. This suggests that the conventional
  4865. \begin_inset Quotes eld
  4866. \end_inset
  4867. one size fits all
  4868. \begin_inset Quotes erd
  4869. \end_inset
  4870. approach of defining a single promoter region for each gene (or each TSS)
  4871. and using that same promoter region for analyzing all types of genomic
  4872. data within an experiment may not be appropriate, and a better approach
  4873. may be to use a separate promoter radius for each kind of data, with each
  4874. radius being derived from the data itself.
  4875. Furthermore, the apparent assymetry of upstream and downstream promoter
  4876. histone modification with respect to gene expression, seen in Figures
  4877. \begin_inset CommandInset ref
  4878. LatexCommand ref
  4879. reference "fig:H3K4me2-neighborhood"
  4880. plural "false"
  4881. caps "false"
  4882. noprefix "false"
  4883. \end_inset
  4884. ,
  4885. \begin_inset CommandInset ref
  4886. LatexCommand ref
  4887. reference "fig:H3K4me3-neighborhood"
  4888. plural "false"
  4889. caps "false"
  4890. noprefix "false"
  4891. \end_inset
  4892. , and
  4893. \begin_inset CommandInset ref
  4894. LatexCommand ref
  4895. reference "fig:H3K27me3-neighborhood"
  4896. plural "false"
  4897. caps "false"
  4898. noprefix "false"
  4899. \end_inset
  4900. , shows that even the concept of a promoter
  4901. \begin_inset Quotes eld
  4902. \end_inset
  4903. radius
  4904. \begin_inset Quotes erd
  4905. \end_inset
  4906. is likely an oversimplification.
  4907. At a minimum, nearby enrichment of peaks should be evaluated separately
  4908. for both upstream and downstream peaks, and an appropriate
  4909. \begin_inset Quotes eld
  4910. \end_inset
  4911. radius
  4912. \begin_inset Quotes erd
  4913. \end_inset
  4914. should be selected for each direction.
  4915. \end_layout
  4916. \begin_layout Standard
  4917. Figures
  4918. \begin_inset CommandInset ref
  4919. LatexCommand ref
  4920. reference "fig:H3K4me2-neighborhood"
  4921. plural "false"
  4922. caps "false"
  4923. noprefix "false"
  4924. \end_inset
  4925. and
  4926. \begin_inset CommandInset ref
  4927. LatexCommand ref
  4928. reference "fig:H3K4me3-neighborhood"
  4929. plural "false"
  4930. caps "false"
  4931. noprefix "false"
  4932. \end_inset
  4933. show that the determined promoter radius of 1
  4934. \begin_inset space ~
  4935. \end_inset
  4936. kb is approximately consistent with the distance from the TSS at which enrichmen
  4937. t of H3K4 methylationis correlates with increased expression, showing that
  4938. this radius, which was determined by a simple analysis of measuring the
  4939. distance from each TSS to the nearest peak, also has functional significance.
  4940. For H3K27me3, the correlation between histone modification near the promoter
  4941. and gene expression is more complex, involving non-peak variations such
  4942. as troughs in coverage at the TSS and asymmetric coverage upstream and
  4943. downstream, so it is difficult in this case to evaluate whether the 2.5
  4944. \begin_inset space ~
  4945. \end_inset
  4946. kb radius determined from TSS-to-peak distances is functionally significant.
  4947. However, the two patterns of coverage associated with elevated expression
  4948. levels both have interesting features within this radius.
  4949. \end_layout
  4950. \begin_layout Standard
  4951. \begin_inset Flex TODO Note (inline)
  4952. status open
  4953. \begin_layout Plain Layout
  4954. My instinct is to say
  4955. \begin_inset Quotes eld
  4956. \end_inset
  4957. further study is needed
  4958. \begin_inset Quotes erd
  4959. \end_inset
  4960. here, but that goes in Chapter 5, right?
  4961. \end_layout
  4962. \end_inset
  4963. \end_layout
  4964. \begin_layout Subsection
  4965. Convergence
  4966. \end_layout
  4967. \begin_layout Standard
  4968. \begin_inset Flex TODO Note (inline)
  4969. status open
  4970. \begin_layout Plain Layout
  4971. Look up some more references for these histone marks being involved in memory
  4972. differentiation.
  4973. (Ask Sarah)
  4974. \end_layout
  4975. \end_inset
  4976. \end_layout
  4977. \begin_layout Standard
  4978. We have observed that all 3 histone marks and the gene expression data all
  4979. exhibit evidence of convergence in abundance between naive and memory cells
  4980. by day 14 after activation (Figure
  4981. \begin_inset CommandInset ref
  4982. LatexCommand ref
  4983. reference "fig:PCoA-promoters"
  4984. plural "false"
  4985. caps "false"
  4986. noprefix "false"
  4987. \end_inset
  4988. , Table
  4989. \begin_inset CommandInset ref
  4990. LatexCommand ref
  4991. reference "tab:Number-signif-promoters"
  4992. plural "false"
  4993. caps "false"
  4994. noprefix "false"
  4995. \end_inset
  4996. ).
  4997. The MOFA latent factor scatter plots (Figure
  4998. \begin_inset CommandInset ref
  4999. LatexCommand ref
  5000. reference "fig:mofa-lf-scatter"
  5001. plural "false"
  5002. caps "false"
  5003. noprefix "false"
  5004. \end_inset
  5005. ) show that this pattern of convergence is captured in latent factor 5.
  5006. Like all the latent factors in this plot, this factor explains a substantial
  5007. portion of the variance in all 4 data sets, indicating a coordinated pattern
  5008. of variation shared across all histone marks and gene expression.
  5009. This, of course, is consistent with the expectation that any naive CD4
  5010. T-cells remaining at day 14 should have differentiated into memory cells
  5011. by that time, and should therefore have a genomic state similar to memory
  5012. cells.
  5013. This convergence is evidence that these histone marks all play an important
  5014. role in the naive-to-memory differentiation process.
  5015. A histone mark that was not involved in naive-to-memory differentiation
  5016. would not be expected to converge in this way after activation.
  5017. \end_layout
  5018. \begin_layout Standard
  5019. \begin_inset Float figure
  5020. wide false
  5021. sideways false
  5022. status collapsed
  5023. \begin_layout Plain Layout
  5024. \align center
  5025. \begin_inset Graphics
  5026. filename graphics/CD4-csaw/LaMere2016_fig8.pdf
  5027. lyxscale 50
  5028. width 60col%
  5029. groupId colwidth
  5030. \end_inset
  5031. \end_layout
  5032. \begin_layout Plain Layout
  5033. \begin_inset Caption Standard
  5034. \begin_layout Plain Layout
  5035. \series bold
  5036. \begin_inset CommandInset label
  5037. LatexCommand label
  5038. name "fig:Lamere2016-Fig8"
  5039. \end_inset
  5040. Lamere 2016 Figure 8
  5041. \begin_inset CommandInset citation
  5042. LatexCommand cite
  5043. key "LaMere2016"
  5044. literal "false"
  5045. \end_inset
  5046. ,
  5047. \begin_inset Quotes eld
  5048. \end_inset
  5049. Model for the role of H3K4 methylation during CD4 T-cell activation.
  5050. \begin_inset Quotes erd
  5051. \end_inset
  5052. \series default
  5053. Reproduced with permission.
  5054. \end_layout
  5055. \end_inset
  5056. \end_layout
  5057. \end_inset
  5058. \end_layout
  5059. \begin_layout Standard
  5060. In H3K4me2, H3K4me3, and RNA-seq, this convergence appears to be in progress
  5061. already by Day 5, shown by the smaller distance between naive and memory
  5062. cells at day 5 along the
  5063. \begin_inset Formula $y$
  5064. \end_inset
  5065. -axes in Figures
  5066. \begin_inset CommandInset ref
  5067. LatexCommand ref
  5068. reference "fig:PCoA-H3K4me2-prom"
  5069. plural "false"
  5070. caps "false"
  5071. noprefix "false"
  5072. \end_inset
  5073. ,
  5074. \begin_inset CommandInset ref
  5075. LatexCommand ref
  5076. reference "fig:PCoA-H3K4me3-prom"
  5077. plural "false"
  5078. caps "false"
  5079. noprefix "false"
  5080. \end_inset
  5081. , and
  5082. \begin_inset CommandInset ref
  5083. LatexCommand ref
  5084. reference "fig:RNA-PCA-group"
  5085. plural "false"
  5086. caps "false"
  5087. noprefix "false"
  5088. \end_inset
  5089. .
  5090. This agrees with the model proposed by Sarah Lamere based on an prior analysis
  5091. of the same data, shown in Figure
  5092. \begin_inset CommandInset ref
  5093. LatexCommand ref
  5094. reference "fig:Lamere2016-Fig8"
  5095. plural "false"
  5096. caps "false"
  5097. noprefix "false"
  5098. \end_inset
  5099. , which shows the pattern of H3K4 methylation and expression for naive cells
  5100. and memory cells converging at day 5.
  5101. This model was developed without the benefit of the PCoA plots in Figure
  5102. \begin_inset CommandInset ref
  5103. LatexCommand ref
  5104. reference "fig:PCoA-promoters"
  5105. plural "false"
  5106. caps "false"
  5107. noprefix "false"
  5108. \end_inset
  5109. , which have been corrected for confounding factors by ComBat and SVA.
  5110. This shows that proper batch correction assists in extracting meaningful
  5111. patterns in the data while eliminating systematic sources of irrelevant
  5112. variation in the data, allowing simple automated procedures like PCoA to
  5113. reveal interesting behaviors in the data that were previously only detectable
  5114. by a detailed manual analysis.
  5115. \end_layout
  5116. \begin_layout Standard
  5117. While the ideal comparison to demonstrate this convergence would be naive
  5118. cells at day 14 to memory cells at day 0, this is not feasible in this
  5119. experimental system, since neither naive nor memory cells are able to fully
  5120. return to their pre-activation state, as shown by the lack of overlap between
  5121. days 0 and 14 for either naive or memory cells in Figure
  5122. \begin_inset CommandInset ref
  5123. LatexCommand ref
  5124. reference "fig:PCoA-promoters"
  5125. plural "false"
  5126. caps "false"
  5127. noprefix "false"
  5128. \end_inset
  5129. .
  5130. \end_layout
  5131. \begin_layout Subsection
  5132. Positional
  5133. \end_layout
  5134. \begin_layout Standard
  5135. When looking at patterns in the relative coverage of each histone mark near
  5136. the TSS of each gene, several interesting patterns were apparent.
  5137. For H3K4me2 and H3K4me3, the pattern was straightforward: the consistent
  5138. pattern across all promoters was a single peak a few kb wide, with the
  5139. main axis of variation being the position of this peak relative to the
  5140. TSS (Figures
  5141. \begin_inset CommandInset ref
  5142. LatexCommand ref
  5143. reference "fig:H3K4me2-neighborhood"
  5144. plural "false"
  5145. caps "false"
  5146. noprefix "false"
  5147. \end_inset
  5148. &
  5149. \begin_inset CommandInset ref
  5150. LatexCommand ref
  5151. reference "fig:H3K4me3-neighborhood"
  5152. plural "false"
  5153. caps "false"
  5154. noprefix "false"
  5155. \end_inset
  5156. ).
  5157. There were no obvious
  5158. \begin_inset Quotes eld
  5159. \end_inset
  5160. preferred
  5161. \begin_inset Quotes erd
  5162. \end_inset
  5163. positions, but rather a continuous distribution of relative positions ranging
  5164. all across the promoter region.
  5165. The association with gene expression was also straightforward: peaks closer
  5166. to the TSS were more strongly associated with elevated gene expression.
  5167. Coverage downstream of the TSS appears to be more strongly associated with
  5168. elevated expression than coverage the same distance upstream, indicating
  5169. that the
  5170. \begin_inset Quotes eld
  5171. \end_inset
  5172. effective promoter region
  5173. \begin_inset Quotes erd
  5174. \end_inset
  5175. for H3K4me2 and H3K4me3 may be centered downstream of the TSS.
  5176. \end_layout
  5177. \begin_layout Standard
  5178. The relative promoter coverage for H3K27me3 had a more complex pattern,
  5179. with two specific patterns of promoter coverage associated with elevated
  5180. expression: a sharp depletion of H3K27me3 around the TSS relative to the
  5181. surrounding area, and a depletion of H3K27me3 downstream of the TSS relative
  5182. to upstream (Figure
  5183. \begin_inset CommandInset ref
  5184. LatexCommand ref
  5185. reference "fig:H3K27me3-neighborhood"
  5186. plural "false"
  5187. caps "false"
  5188. noprefix "false"
  5189. \end_inset
  5190. ).
  5191. A previous study found that H3K27me3 depletion within the gene body was
  5192. associated with elevated gene expression in 4 different cell types in mice
  5193. \begin_inset CommandInset citation
  5194. LatexCommand cite
  5195. key "Young2011"
  5196. literal "false"
  5197. \end_inset
  5198. .
  5199. This is consistent with the second pattern described here.
  5200. This study also reported that a spike in coverage at the TSS was associated
  5201. with
  5202. \emph on
  5203. lower
  5204. \emph default
  5205. expression, which is indirectly consistent with the first pattern described
  5206. here, in the sense that it associates lower H3K27me3 levels near the TSS
  5207. with higher expression.
  5208. \end_layout
  5209. \begin_layout Subsection
  5210. Workflow
  5211. \end_layout
  5212. \begin_layout Standard
  5213. \begin_inset ERT
  5214. status open
  5215. \begin_layout Plain Layout
  5216. \backslash
  5217. afterpage{
  5218. \end_layout
  5219. \begin_layout Plain Layout
  5220. \backslash
  5221. begin{landscape}
  5222. \end_layout
  5223. \end_inset
  5224. \end_layout
  5225. \begin_layout Standard
  5226. \begin_inset Float figure
  5227. wide false
  5228. sideways false
  5229. status open
  5230. \begin_layout Plain Layout
  5231. \align center
  5232. \begin_inset Graphics
  5233. filename graphics/CD4-csaw/rulegraphs/rulegraph-all.pdf
  5234. lyxscale 50
  5235. width 100col%
  5236. height 95theight%
  5237. \end_inset
  5238. \end_layout
  5239. \begin_layout Plain Layout
  5240. \begin_inset Caption Standard
  5241. \begin_layout Plain Layout
  5242. \begin_inset CommandInset label
  5243. LatexCommand label
  5244. name "fig:rulegraph"
  5245. \end_inset
  5246. \series bold
  5247. Dependency graph of steps in reproducible workflow.
  5248. \end_layout
  5249. \end_inset
  5250. \end_layout
  5251. \end_inset
  5252. \end_layout
  5253. \begin_layout Standard
  5254. \begin_inset ERT
  5255. status open
  5256. \begin_layout Plain Layout
  5257. \backslash
  5258. end{landscape}
  5259. \end_layout
  5260. \begin_layout Plain Layout
  5261. }
  5262. \end_layout
  5263. \end_inset
  5264. \end_layout
  5265. \begin_layout Standard
  5266. The analyses described in this chapter were organized into a reproducible
  5267. workflow using the Snakemake workflow management system.
  5268. As shown in Figure
  5269. \begin_inset CommandInset ref
  5270. LatexCommand ref
  5271. reference "fig:rulegraph"
  5272. plural "false"
  5273. caps "false"
  5274. noprefix "false"
  5275. \end_inset
  5276. , the workflow includes many steps with complex dependencies between them.
  5277. For example, the step that counts the number of ChIP-seq reads in 500
  5278. \begin_inset space ~
  5279. \end_inset
  5280. bp windows in each promoter (the starting point for Figures
  5281. \begin_inset CommandInset ref
  5282. LatexCommand ref
  5283. reference "fig:H3K4me2-neighborhood"
  5284. plural "false"
  5285. caps "false"
  5286. noprefix "false"
  5287. \end_inset
  5288. ,
  5289. \begin_inset CommandInset ref
  5290. LatexCommand ref
  5291. reference "fig:H3K4me3-neighborhood"
  5292. plural "false"
  5293. caps "false"
  5294. noprefix "false"
  5295. \end_inset
  5296. , and
  5297. \begin_inset CommandInset ref
  5298. LatexCommand ref
  5299. reference "fig:H3K27me3-neighborhood"
  5300. plural "false"
  5301. caps "false"
  5302. noprefix "false"
  5303. \end_inset
  5304. ), named
  5305. \begin_inset Formula $\texttt{chipseq\_count\_tss\_neighborhoods}$
  5306. \end_inset
  5307. , depends on the RNA-seq abundance estimates in order to select the most-used
  5308. TSS for each gene, the aligned ChIP-seq reads, the index for those reads,
  5309. and the blacklist of regions to be excluded from ChIP-seq analysis.
  5310. Each step declares its inputs and outputs, and Snakemake uses these to
  5311. determine the dependencies between steps.
  5312. Each step is marked as depending on all the steps whose outputs match its
  5313. inputs, generating the workflow graph in Figure
  5314. \begin_inset CommandInset ref
  5315. LatexCommand ref
  5316. reference "fig:rulegraph"
  5317. plural "false"
  5318. caps "false"
  5319. noprefix "false"
  5320. \end_inset
  5321. , which Snakemake uses to determine order in which to execute each step
  5322. so that each step is executed only after all of the steps it depends on
  5323. have completed, thereby automating the entire workflow from start to finish.
  5324. \end_layout
  5325. \begin_layout Standard
  5326. In addition to simply making it easier to organize the steps in the analysis,
  5327. structuring the analysis as a workflow allowed for some analysis strategies
  5328. that would not have been practical otherwise.
  5329. For example, 5 different RNA-seq quantification methods were tested against
  5330. two different reference transcriptome annotations for a total of 10 different
  5331. quantifications of the same RNA-seq data.
  5332. These were then compared against each other in the exploratory data analysis
  5333. step, to determine that the results were not very sensitive to either the
  5334. choice of quantification method or the choice of annotation.
  5335. This was possible with a single script for the exploratory data analysis,
  5336. because Snakemake was able to automate running this script for every combinatio
  5337. n of method and reference.
  5338. In a similar manner, two different peak calling methods were tested against
  5339. each other, and in this case it was determined that SICER was unambiguously
  5340. superior to MACS for all histone marks studied.
  5341. By enabling these types of comparisons, structuring the analysis as an
  5342. automated workflow allowed important analysis decisions to be made in a
  5343. data-driven way, by running every reasonable option through the downstream
  5344. steps, seeing the consequences of choosing each option, and deciding accordingl
  5345. y.
  5346. \end_layout
  5347. \begin_layout Subsection
  5348. Data quality issues limit conclusions
  5349. \end_layout
  5350. \begin_layout Standard
  5351. \begin_inset Flex TODO Note (inline)
  5352. status open
  5353. \begin_layout Plain Layout
  5354. Is this needed?
  5355. \end_layout
  5356. \end_inset
  5357. \end_layout
  5358. \begin_layout Section
  5359. Future Directions
  5360. \end_layout
  5361. \begin_layout Standard
  5362. The analysis of RNA-seq and ChIP-seq in CD4 T-cells in Chapter 2 is in many
  5363. ways a preliminary study that suggests a multitude of new avenues of investigat
  5364. ion.
  5365. Here we consider a selection of such avenues.
  5366. \end_layout
  5367. \begin_layout Subsection
  5368. Negative results
  5369. \end_layout
  5370. \begin_layout Standard
  5371. Two additional analyses were conducted beyond those reported in the results.
  5372. First, we searched for evidence that the presence or absence of a CpG island
  5373. in the promoter was correlated with increases or decreases in gene expression
  5374. or any histone mark in any of the tested contrasts.
  5375. Second, we searched for evidence that the relative ChIP-seq coverage profiles
  5376. prior to activations could predict the change in expression of a gene after
  5377. activation.
  5378. Neither analysis turned up any clear positive results.
  5379. \end_layout
  5380. \begin_layout Subsection
  5381. Improve on the idea of an effective promoter radius
  5382. \end_layout
  5383. \begin_layout Standard
  5384. This study introduced the concept of an
  5385. \begin_inset Quotes eld
  5386. \end_inset
  5387. effective promoter radius
  5388. \begin_inset Quotes erd
  5389. \end_inset
  5390. specific to each histone mark based on distince from the TSS within which
  5391. an excess of peaks was called for that mark.
  5392. This concept was then used to guide further analyses throughout the study.
  5393. However, while the effective promoter radius was useful in those analyses,
  5394. it is both limited in theory and shown in practice to be a possible oversimplif
  5395. ication.
  5396. First, the effective promoter radii used in this study were chosen based
  5397. on manual inspection of the TSS-to-peak distance distributions in Figure
  5398. \begin_inset CommandInset ref
  5399. LatexCommand ref
  5400. reference "fig:near-promoter-peak-enrich"
  5401. plural "false"
  5402. caps "false"
  5403. noprefix "false"
  5404. \end_inset
  5405. , selecting round numbers of analyst convenience (Table
  5406. \begin_inset CommandInset ref
  5407. LatexCommand ref
  5408. reference "tab:effective-promoter-radius"
  5409. plural "false"
  5410. caps "false"
  5411. noprefix "false"
  5412. \end_inset
  5413. ).
  5414. It would be better to define an algorithm that selects a more precise radius
  5415. based on the features of the graph.
  5416. One possible way to do this would be to randomly rearrange the called peaks
  5417. throughout the genome many (while preserving the distribution of peak widths)
  5418. and re-generate the same plot as in Figure
  5419. \begin_inset CommandInset ref
  5420. LatexCommand ref
  5421. reference "fig:near-promoter-peak-enrich"
  5422. plural "false"
  5423. caps "false"
  5424. noprefix "false"
  5425. \end_inset
  5426. .
  5427. This would yield a better
  5428. \begin_inset Quotes eld
  5429. \end_inset
  5430. background
  5431. \begin_inset Quotes erd
  5432. \end_inset
  5433. distribution that demonstrates the degree of near-TSS enrichment that would
  5434. be expected by random chance.
  5435. The effective promoter radius could be defined as the point where the true
  5436. distribution diverges from the randomized background distribution.
  5437. \end_layout
  5438. \begin_layout Standard
  5439. Furthermore, the above definition of effective promoter radius has the significa
  5440. nt limitation of being based on the peak calling method.
  5441. It is thus very sensitive to the choice of peak caller and significance
  5442. threshold for calling peaks, as well as the degree of saturation in the
  5443. sequencing.
  5444. Calling peaks from ChIP-seq samples with insufficient coverage depth, with
  5445. the wrong peak caller, or with a different significance threshold could
  5446. give a drastically different number of called peaks, and hence a drastically
  5447. different distribution of peak-to-TSS distances.
  5448. To address this, it is desirable to develop a better method of determining
  5449. the effective promoter radius that relies only on the distribution of read
  5450. coverage around the TSS, independent of the peak calling.
  5451. Furthermore, as demonstrated by the upstream-downstream asymmetries observed
  5452. in Figures
  5453. \begin_inset CommandInset ref
  5454. LatexCommand ref
  5455. reference "fig:H3K4me2-neighborhood"
  5456. plural "false"
  5457. caps "false"
  5458. noprefix "false"
  5459. \end_inset
  5460. ,
  5461. \begin_inset CommandInset ref
  5462. LatexCommand ref
  5463. reference "fig:H3K4me3-neighborhood"
  5464. plural "false"
  5465. caps "false"
  5466. noprefix "false"
  5467. \end_inset
  5468. , and
  5469. \begin_inset CommandInset ref
  5470. LatexCommand ref
  5471. reference "fig:H3K27me3-neighborhood"
  5472. plural "false"
  5473. caps "false"
  5474. noprefix "false"
  5475. \end_inset
  5476. , this definition should determine a different radius for the upstream and
  5477. downstream directions.
  5478. At this point, it may be better to rename this concept
  5479. \begin_inset Quotes eld
  5480. \end_inset
  5481. effective promoter extent
  5482. \begin_inset Quotes erd
  5483. \end_inset
  5484. and avoid the word
  5485. \begin_inset Quotes eld
  5486. \end_inset
  5487. radius
  5488. \begin_inset Quotes erd
  5489. \end_inset
  5490. , since a radius implies a symmetry about the TSS that is not supported
  5491. by the data.
  5492. \end_layout
  5493. \begin_layout Standard
  5494. Beyond improving the definition of effective promoter extent, functional
  5495. validation is necessary to show that this measure of near-TSS enrichment
  5496. has biological meaning.
  5497. Figures
  5498. \begin_inset CommandInset ref
  5499. LatexCommand ref
  5500. reference "fig:H3K4me2-neighborhood"
  5501. plural "false"
  5502. caps "false"
  5503. noprefix "false"
  5504. \end_inset
  5505. and
  5506. \begin_inset CommandInset ref
  5507. LatexCommand ref
  5508. reference "fig:H3K4me3-neighborhood"
  5509. plural "false"
  5510. caps "false"
  5511. noprefix "false"
  5512. \end_inset
  5513. already provide a very limited functional validation of the chosen promoter
  5514. extents for H3K4me2 and H3K4me3 by showing that spikes in coverage within
  5515. this region are most strongly correlated with elevated gene expression.
  5516. However, there are other ways to show functional relevance of the promoter
  5517. extent.
  5518. For example, correlations could be computed between read counts in peaks
  5519. nearby gene promoters and the expression level of those genes, and these
  5520. correlations could be plotted against the distance of the peak upstream
  5521. or downstream of the gene's TSS.
  5522. If the promoter extent truly defines a
  5523. \begin_inset Quotes eld
  5524. \end_inset
  5525. sphere of influence
  5526. \begin_inset Quotes erd
  5527. \end_inset
  5528. within which a histone mark is involved with the regulation of a gene,
  5529. then the correlations for peaks within this extent should be significantly
  5530. higher than those further upstream or downstream.
  5531. Peaks within these extents may also be more likely to show differential
  5532. modification than those outside genic regions of the genome.
  5533. \end_layout
  5534. \begin_layout Subsection
  5535. Design experiments to focus on post-activation convergence of naive & memory
  5536. cells
  5537. \end_layout
  5538. \begin_layout Standard
  5539. In this study, a convergence between naive and memory cells was observed
  5540. in both the pattern of gene expression and in epigenetic state of the 3
  5541. histone marks studied, consistent with the hypothesis that any naive cells
  5542. remaining 14 days after activation have differentiated into memory cells,
  5543. and that both gene expression and these histone marks are involved in this
  5544. differentiation.
  5545. However, the current study was not designed with this specific hypothesis
  5546. in mind, and it therefore has some deficiencies with regard to testing
  5547. it.
  5548. The memory CD4 samples at day 14 do not resemble the memory samples at
  5549. day 0, indicating that in the specific model of activation used for this
  5550. experiment, the cells are not guaranteed to return to their original pre-activa
  5551. tion state, or perhaps this process takes substantially longer than 14 days.
  5552. This is a challenge for the convergence hypothesis because the ideal comparison
  5553. to prove that naive cells are converging to a resting memory state would
  5554. be to compare the final naive time point to the Day 0 memory samples, but
  5555. this comparison is only meaningful if memory cells generally return to
  5556. the same
  5557. \begin_inset Quotes eld
  5558. \end_inset
  5559. resting
  5560. \begin_inset Quotes erd
  5561. \end_inset
  5562. state that they started at.
  5563. \end_layout
  5564. \begin_layout Standard
  5565. To better study the convergence hypothesis, a new experiment should be designed
  5566. using a model system for T-cell activation that is known to allow cells
  5567. to return as closely as possible to their pre-activation state.
  5568. Alternatively, if it is not possible to find or design such a model system,
  5569. the same cell cultures could be activated serially multiple times, and
  5570. sequenced after each activation cycle right before the next activation.
  5571. It is likely that several activations in the same model system will settle
  5572. into a cylical pattern, converging to a consistent
  5573. \begin_inset Quotes eld
  5574. \end_inset
  5575. resting
  5576. \begin_inset Quotes erd
  5577. \end_inset
  5578. state after each activation, even if this state is different from the initial
  5579. resting state at Day 0.
  5580. If so, it will be possible to compare the final states of both naive and
  5581. memory cells to show that they converge despite different initial conditions.
  5582. \end_layout
  5583. \begin_layout Standard
  5584. In addition, if naive-to-memory convergence is a general pattern, it should
  5585. also be detectable in other epigenetic marks, including other histone marks
  5586. and DNA methylation.
  5587. An experiment should be designed studying a large number of epigenetic
  5588. marks known or suspected to be involved in regulation of gene expression,
  5589. assaying all of these at the same pre- and post-activation time points.
  5590. Multi-dataset factor analysis methods like MOFA can then be used to identify
  5591. coordinated patterns of regulation shared across many epigenetic marks.
  5592. If possible, some
  5593. \begin_inset Quotes eld
  5594. \end_inset
  5595. negative control
  5596. \begin_inset Quotes erd
  5597. \end_inset
  5598. marks should be included that are known
  5599. \emph on
  5600. not
  5601. \emph default
  5602. to be involved in T-cell activation or memory formation.
  5603. Of course, CD4 T-cells are not the only adaptive immune cells with memory.
  5604. A similar study could be designed for CD8 T-cells, B-cells, and even specific
  5605. subsets of CD4 T-cells.
  5606. \end_layout
  5607. \begin_layout Subsection
  5608. Follow up on hints of interesting patterns in promoter relative coverage
  5609. profiles
  5610. \end_layout
  5611. \begin_layout Standard
  5612. \begin_inset Flex TODO Note (inline)
  5613. status open
  5614. \begin_layout Plain Layout
  5615. I think I might need to write up the negative results for the Promoter CpG
  5616. and defined pattern analysis before writing this section.
  5617. \end_layout
  5618. \end_inset
  5619. \end_layout
  5620. \begin_layout Itemize
  5621. Also find better normalizations: maybe borrow from MACS/SICER background
  5622. correction methods?
  5623. \end_layout
  5624. \begin_layout Itemize
  5625. For H3K4, define polar coordinates based on PC1 & 2: R = peak size, Theta
  5626. = peak position.
  5627. Then correlate with expression.
  5628. \end_layout
  5629. \begin_layout Itemize
  5630. Current analysis only at Day 0.
  5631. Need to study across time points.
  5632. \end_layout
  5633. \begin_layout Itemize
  5634. Integrating data across so many dimensions is a significant analysis challenge
  5635. \end_layout
  5636. \begin_layout Subsection
  5637. Investigate causes of high correlation between mutually exclusive histone
  5638. marks
  5639. \end_layout
  5640. \begin_layout Standard
  5641. The high correlation between coverage depth observed between H3K4me2 and
  5642. H3K4me3 is both expected and unexpected.
  5643. Since both marks are associated with elevated gene transcription, a positive
  5644. correlation between them is not surprising.
  5645. However, these two marks represent different post-translational modifications
  5646. of the
  5647. \emph on
  5648. same
  5649. \emph default
  5650. lysine residue on the histone H3 polypeptide, which means that they cannot
  5651. both be present on the same H3 subunit.
  5652. Thus, the high correlation between them has several potential explanations.
  5653. One possible reason is cell population heterogeneity: perhaps some genomic
  5654. loci are frequently marked with H3K4me2 in some cells, while in other cells
  5655. the same loci are marked with H3K4me3.
  5656. Another possibility is allele-specific modifications: the loci are marked
  5657. in each diploid cell with H3K4me2 on one allele and H3K4me3 on the other
  5658. allele.
  5659. Lastly, since each histone octamer contains 2 H3 subunits, it is possible
  5660. that having one H3K4me2 mark and one H3K4me3 mark on a given histone octamer
  5661. represents a distinct epigenetic state with a different function than either
  5662. double H3K4me2 or double H3K4me3.
  5663. \end_layout
  5664. \begin_layout Standard
  5665. These three hypotheses could be disentangled by single-cell ChIP-seq.
  5666. If the correlation between these two histone marks persists even within
  5667. the reads for each individual cell, then cell population heterogeneity
  5668. cannot explain the correlation.
  5669. Allele-specific modification can be tested for by looking at the correlation
  5670. between read coverage of the two histone marks at heterozygous loci.
  5671. If the correlation between read counts for opposite loci is low, then this
  5672. is consistent with allele-specific modification.
  5673. Finally if the modifications do not separate by either cell or allele,
  5674. the colocation of these two marks is most likely occurring at the level
  5675. of individual histones, with the heterogenously modified histone representing
  5676. a distinct state.
  5677. \end_layout
  5678. \begin_layout Standard
  5679. However, another experiment would be required to show direct evidence of
  5680. such a heterogeneously modified state.
  5681. Specifically a
  5682. \begin_inset Quotes eld
  5683. \end_inset
  5684. double ChIP
  5685. \begin_inset Quotes erd
  5686. \end_inset
  5687. experiment would need to be performed, where the input DNA is first subjected
  5688. to an immunoprecipitation pulldown from the anti-H3K4me2 antibody, and
  5689. then the enriched material is collected, with proteins still bound, and
  5690. immunoprecipitated
  5691. \emph on
  5692. again
  5693. \emph default
  5694. using the anti-H3K4me3 antibody.
  5695. If this yields significant numbers of non-artifactual reads in the same
  5696. regions as the individual pulldowns of the two marks, this is strong evidence
  5697. that the two marks are occurring on opposite H3 subunits of the same histones.
  5698. \end_layout
  5699. \begin_layout Standard
  5700. \begin_inset Flex TODO Note (inline)
  5701. status open
  5702. \begin_layout Plain Layout
  5703. Try to see if double ChIP-seq is actually feasible, and if not, come up
  5704. with some other idea for directly detecting the mixed mod state.
  5705. Oh! Actually ChIP-seq isn't required, only double ChIP followed by quantificati
  5706. on.
  5707. That's one possible angle.
  5708. \end_layout
  5709. \end_inset
  5710. \end_layout
  5711. \begin_layout Chapter
  5712. Improving array-based diagnostics for transplant rejection by optimizing
  5713. data preprocessing
  5714. \end_layout
  5715. \begin_layout Standard
  5716. \begin_inset Note Note
  5717. status open
  5718. \begin_layout Plain Layout
  5719. Chapter author list: Me, Sunil, Tom, Padma, Dan
  5720. \end_layout
  5721. \end_inset
  5722. \end_layout
  5723. \begin_layout Section
  5724. Approach
  5725. \end_layout
  5726. \begin_layout Subsection
  5727. Proper pre-processing is essential for array data
  5728. \end_layout
  5729. \begin_layout Standard
  5730. \begin_inset Flex TODO Note (inline)
  5731. status open
  5732. \begin_layout Plain Layout
  5733. This section could probably use some citations
  5734. \end_layout
  5735. \end_inset
  5736. \end_layout
  5737. \begin_layout Standard
  5738. Microarrays, bead arrays, and similar assays produce raw data in the form
  5739. of fluorescence intensity measurements, with the each intensity measurement
  5740. proportional to the abundance of some fluorescently-labelled target DNA
  5741. or RNA sequence that base pairs to a specific probe sequence.
  5742. However, these measurements for each probe are also affected my many technical
  5743. confounding factors, such as the concentration of target material, strength
  5744. of off-target binding, and the sensitivity of the imaging sensor.
  5745. Some array designs also use multiple probe sequences for each target.
  5746. Hence, extensive pre-processing of array data is necessary to normalize
  5747. out the effects of these technical factors and summarize the information
  5748. from multiple probes to arrive at a single usable estimate of abundance
  5749. or other relevant quantity, such as a ratio of two abundances, for each
  5750. target.
  5751. \end_layout
  5752. \begin_layout Standard
  5753. The choice of pre-processing algorithms used in the analysis of an array
  5754. data set can have a large effect on the results of that analysis.
  5755. However, despite their importance, these steps are often neglected or rushed
  5756. in order to get to the more scientifically interesting analysis steps involving
  5757. the actual biology of the system under study.
  5758. Hence, it is often possible to achieve substantial gains in statistical
  5759. power, model goodness-of-fit, or other relevant performance measures, by
  5760. checking the assumptions made by each preprocessing step and choosing specific
  5761. normalization methods tailored to the specific goals of the current analysis.
  5762. \end_layout
  5763. \begin_layout Subsection
  5764. Clinical diagnostic applications for microarrays require single-channel
  5765. normalization
  5766. \end_layout
  5767. \begin_layout Standard
  5768. As the cost of performing microarray assays falls, there is increasing interest
  5769. in using genomic assays for diagnostic purposes, such as distinguishing
  5770. healthy transplants (TX) from transplants undergoing acute rejection (AR)
  5771. or acute dysfunction with no rejection (ADNR).
  5772. However, the the standard normalization algorithm used for microarray data,
  5773. Robust Multi-chip Average (RMA)
  5774. \begin_inset CommandInset citation
  5775. LatexCommand cite
  5776. key "Irizarry2003a"
  5777. literal "false"
  5778. \end_inset
  5779. , is not applicable in a clinical setting.
  5780. Two of the steps in RMA, quantile normalization and probe summarization
  5781. by median polish, depend on every array in the data set being normalized.
  5782. This means that adding or removing any arrays from a data set changes the
  5783. normalized values for all arrays, and data sets that have been normalized
  5784. separately cannot be compared to each other.
  5785. Hence, when using RMA, any arrays to be analyzed together must also be
  5786. normalized together, and the set of arrays included in the data set must
  5787. be held constant throughout an analysis.
  5788. \end_layout
  5789. \begin_layout Standard
  5790. These limitations present serious impediments to the use of arrays as a
  5791. diagnostic tool.
  5792. When training a classifier, the samples to be classified must not be involved
  5793. in any step of the training process, lest their inclusion bias the training
  5794. process.
  5795. Once a classifier is deployed in a clinical setting, the samples to be
  5796. classified will not even
  5797. \emph on
  5798. exist
  5799. \emph default
  5800. at the time of training, so including them would be impossible even if
  5801. it were statistically justifiable.
  5802. Therefore, any machine learning application for microarrays demands that
  5803. the normalized expression values computed for an array must depend only
  5804. on information contained within that array.
  5805. This would ensure that each array's normalization is independent of every
  5806. other array, and that arrays normalized separately can still be compared
  5807. to each other without bias.
  5808. Such a normalization is commonly referred to as
  5809. \begin_inset Quotes eld
  5810. \end_inset
  5811. single-channel normalization
  5812. \begin_inset Quotes erd
  5813. \end_inset
  5814. .
  5815. \end_layout
  5816. \begin_layout Standard
  5817. Frozen RMA (fRMA) addresses these concerns by replacing the quantile normalizati
  5818. on and median polish with alternatives that do not introduce inter-array
  5819. dependence, allowing each array to be normalized independently of all others
  5820. \begin_inset CommandInset citation
  5821. LatexCommand cite
  5822. key "McCall2010"
  5823. literal "false"
  5824. \end_inset
  5825. .
  5826. Quantile normalization is performed against a pre-generated set of quantiles
  5827. learned from a collection of 850 publically available arrays sampled from
  5828. a wide variety of tissues in the Gene Expression Omnibus (GEO).
  5829. Each array's probe intensity distribution is normalized against these pre-gener
  5830. ated quantiles.
  5831. The median polish step is replaced with a robust weighted average of probe
  5832. intensities, using inverse variance weights learned from the same public
  5833. GEO data.
  5834. The result is a normalization that satisfies the requirements mentioned
  5835. above: each array is normalized independently of all others, and any two
  5836. normalized arrays can be compared directly to each other.
  5837. \end_layout
  5838. \begin_layout Standard
  5839. One important limitation of fRMA is that it requires a separate reference
  5840. data set from which to learn the parameters (reference quantiles and probe
  5841. weights) that will be used to normalize each array.
  5842. These parameters are specific to a given array platform, and pre-generated
  5843. parameters are only provided for the most common platforms, such as Affymetrix
  5844. hgu133plus2.
  5845. For a less common platform, such as hthgu133pluspm, is is necessary to
  5846. learn custom parameters from in-house data before fRMA can be used to normalize
  5847. samples on that platform
  5848. \begin_inset CommandInset citation
  5849. LatexCommand cite
  5850. key "McCall2011"
  5851. literal "false"
  5852. \end_inset
  5853. .
  5854. \end_layout
  5855. \begin_layout Standard
  5856. One other option is the aptly-named Single Channel Array Normalization (SCAN),
  5857. which adapts a normalization method originally designed for tiling arrays
  5858. \begin_inset CommandInset citation
  5859. LatexCommand cite
  5860. key "Piccolo2012"
  5861. literal "false"
  5862. \end_inset
  5863. .
  5864. SCAN is truly single-channel in that it does not require a set of normalization
  5865. paramters estimated from an external set of reference samples like fRMA
  5866. does.
  5867. \end_layout
  5868. \begin_layout Subsection
  5869. Heteroskedasticity must be accounted for in methylation array data
  5870. \end_layout
  5871. \begin_layout Standard
  5872. DNA methylation arrays are a relatively new kind of assay that uses microarrays
  5873. to measure the degree of methylation on cytosines in specific regions arrayed
  5874. across the genome.
  5875. First, bisulfite treatment converts all unmethylated cytosines to uracil
  5876. (which then become thymine after amplication) while leaving methylated
  5877. cytosines unaffected.
  5878. Then, each target region is interrogated with two probes: one binds to
  5879. the original genomic sequence and interrogates the level of methylated
  5880. DNA, and the other binds to the same sequence with all cytosines replaced
  5881. by thymidines and interrogates the level of unmethylated DNA.
  5882. \end_layout
  5883. \begin_layout Standard
  5884. \begin_inset Float figure
  5885. wide false
  5886. sideways false
  5887. status collapsed
  5888. \begin_layout Plain Layout
  5889. \align center
  5890. \begin_inset Graphics
  5891. filename graphics/methylvoom/sigmoid.pdf
  5892. lyxscale 50
  5893. width 60col%
  5894. groupId colwidth
  5895. \end_inset
  5896. \end_layout
  5897. \begin_layout Plain Layout
  5898. \begin_inset Caption Standard
  5899. \begin_layout Plain Layout
  5900. \begin_inset CommandInset label
  5901. LatexCommand label
  5902. name "fig:Sigmoid-beta-m-mapping"
  5903. \end_inset
  5904. \series bold
  5905. Sigmoid shape of the mapping between β and M values
  5906. \end_layout
  5907. \end_inset
  5908. \end_layout
  5909. \end_inset
  5910. \end_layout
  5911. \begin_layout Standard
  5912. After normalization, these two probe intensities are summarized in one of
  5913. two ways, each with advantages and disadvantages.
  5914. β
  5915. \series bold
  5916. \series default
  5917. values, interpreted as fraction of DNA copies methylated, range from 0 to
  5918. 1.
  5919. β
  5920. \series bold
  5921. \series default
  5922. values are conceptually easy to interpret, but the constrained range makes
  5923. them unsuitable for linear modeling, and their error distributions are
  5924. highly non-normal, which also frustrates linear modeling.
  5925. M-values, interpreted as the log ratio of methylated to unmethylated copies,
  5926. are computed by mapping the beta values from
  5927. \begin_inset Formula $[0,1]$
  5928. \end_inset
  5929. onto
  5930. \begin_inset Formula $(-\infty,+\infty)$
  5931. \end_inset
  5932. using a sigmoid curve (Figure
  5933. \begin_inset CommandInset ref
  5934. LatexCommand ref
  5935. reference "fig:Sigmoid-beta-m-mapping"
  5936. plural "false"
  5937. caps "false"
  5938. noprefix "false"
  5939. \end_inset
  5940. ).
  5941. This transformation results in values with better statistical perperties:
  5942. the unconstrained range is suitable for linear modeling, and the error
  5943. distributions are more normal.
  5944. Hence, most linear modeling and other statistical testing on methylation
  5945. arrays is performed using M-values.
  5946. \end_layout
  5947. \begin_layout Standard
  5948. However, the steep slope of the sigmoid transformation near 0 and 1 tends
  5949. to over-exaggerate small differences in β values near those extremes, which
  5950. in turn amplifies the error in those values, leading to a U-shaped trend
  5951. in the mean-variance curve: extreme values have higher variances than values
  5952. near the middle.
  5953. This mean-variance dependency must be accounted for when fitting the linear
  5954. model for differential methylation, or else the variance will be systematically
  5955. overestimated for probes with moderate M-values and underestimated for
  5956. probes with extreme M-values.
  5957. This is particularly undesirable for methylation data because the intermediate
  5958. M-values are the ones of most interest, since they are more likely to represent
  5959. areas of varying methylation, whereas extreme M-values typically represent
  5960. complete methylation or complete lack of methylation.
  5961. \end_layout
  5962. \begin_layout Standard
  5963. RNA-seq read count data are also known to show heteroskedasticity, and the
  5964. voom method was introduced for modeling this heteroskedasticity by estimating
  5965. the mean-variance trend in the data and using this trend to assign precision
  5966. weights to each observation
  5967. \begin_inset CommandInset citation
  5968. LatexCommand cite
  5969. key "Law2013"
  5970. literal "false"
  5971. \end_inset
  5972. .
  5973. While methylation array data are not derived from counts and have a very
  5974. different mean-variance relationship from that of typical RNA-seq data,
  5975. the voom method makes no specific assumptions on the shape of the mean-variance
  5976. relationship – it only assumes that the relationship can be modeled as
  5977. a smooth curve.
  5978. Hence, the method is sufficiently general to model the mean-variance relationsh
  5979. ip in methylation array data.
  5980. However, the standard implementation of voom assumes that the input is
  5981. given in raw read counts, and it must be adapted to run on methylation
  5982. M-values.
  5983. \end_layout
  5984. \begin_layout Section
  5985. Methods
  5986. \end_layout
  5987. \begin_layout Subsection
  5988. Evaluation of classifier performance with different normalization methods
  5989. \end_layout
  5990. \begin_layout Standard
  5991. For testing different expression microarray normalizations, a data set of
  5992. 157 hgu133plus2 arrays was used, consisting of blood samples from kidney
  5993. transplant patients whose grafts had been graded as TX, AR, or ADNR via
  5994. biopsy and histology (46 TX, 69 AR, 42 ADNR)
  5995. \begin_inset CommandInset citation
  5996. LatexCommand cite
  5997. key "Kurian2014"
  5998. literal "true"
  5999. \end_inset
  6000. .
  6001. Additionally, an external validation set of 75 samples was gathered from
  6002. public GEO data (37 TX, 38 AR, no ADNR).
  6003. \end_layout
  6004. \begin_layout Standard
  6005. \begin_inset Flex TODO Note (inline)
  6006. status open
  6007. \begin_layout Plain Layout
  6008. Find appropriate GEO identifiers if possible.
  6009. Kurian 2014 says GSE15296, but this seems to be different data.
  6010. I also need to look up the GEO accession for the external validation set.
  6011. \end_layout
  6012. \end_inset
  6013. \end_layout
  6014. \begin_layout Standard
  6015. To evaluate the effect of each normalization on classifier performance,
  6016. the same classifier training and validation procedure was used after each
  6017. normalization method.
  6018. The PAM package was used to train a nearest shrunken centroid classifier
  6019. on the training set and select the appropriate threshold for centroid shrinking.
  6020. Then the trained classifier was used to predict the class probabilities
  6021. of each validation sample.
  6022. From these class probabilities, ROC curves and area-under-curve (AUC) values
  6023. were generated
  6024. \begin_inset CommandInset citation
  6025. LatexCommand cite
  6026. key "Turck2011"
  6027. literal "false"
  6028. \end_inset
  6029. .
  6030. Each normalization was tested on two different sets of training and validation
  6031. samples.
  6032. For internal validation, the 115 TX and AR arrays in the internal set were
  6033. split at random into two equal sized sets, one for training and one for
  6034. validation, each containing the same numbers of TX and AR samples as the
  6035. other set.
  6036. For external validation, the full set of 115 TX and AR samples were used
  6037. as a training set, and the 75 external TX and AR samples were used as the
  6038. validation set.
  6039. Thus, 2 ROC curves and AUC values were generated for each normalization
  6040. method: one internal and one external.
  6041. Because the external validation set contains no ADNR samples, only classificati
  6042. on of TX and AR samples was considered.
  6043. The ADNR samples were included during normalization but excluded from all
  6044. classifier training and validation.
  6045. This ensures that the performance on internal and external validation sets
  6046. is directly comparable, since both are performing the same task: distinguising
  6047. TX from AR.
  6048. \end_layout
  6049. \begin_layout Standard
  6050. \begin_inset Flex TODO Note (inline)
  6051. status open
  6052. \begin_layout Plain Layout
  6053. Summarize the get.best.threshold algorithm for PAM threshold selection, or
  6054. just put the code online?
  6055. \end_layout
  6056. \end_inset
  6057. \end_layout
  6058. \begin_layout Standard
  6059. Six different normalization strategies were evaluated.
  6060. First, 2 well-known non-single-channel normalization methods were considered:
  6061. RMA and dChip
  6062. \begin_inset CommandInset citation
  6063. LatexCommand cite
  6064. key "Li2001,Irizarry2003a"
  6065. literal "false"
  6066. \end_inset
  6067. .
  6068. Since RMA produces expression values on a log2 scale and dChip does not,
  6069. the values from dChip were log2 transformed after normalization.
  6070. Next, RMA and dChip followed by Global Rank-invariant Set Normalization
  6071. (GRSN) were tested
  6072. \begin_inset CommandInset citation
  6073. LatexCommand cite
  6074. key "Pelz2008"
  6075. literal "false"
  6076. \end_inset
  6077. .
  6078. Post-processing with GRSN does not turn RMA or dChip into single-channel
  6079. methods, but it may help mitigate batch effects and is therefore useful
  6080. as a benchmark.
  6081. Lastly, the two single-channel normalization methods, fRMA and SCAN, were
  6082. tested
  6083. \begin_inset CommandInset citation
  6084. LatexCommand cite
  6085. key "McCall2010,Piccolo2012"
  6086. literal "false"
  6087. \end_inset
  6088. .
  6089. When evaluting internal validation performance, only the 157 internal samples
  6090. were normalized; when evaluating external validation performance, all 157
  6091. internal samples and 75 external samples were normalized together.
  6092. \end_layout
  6093. \begin_layout Standard
  6094. For demonstrating the problem with separate normalization of training and
  6095. validation data, one additional normalization was performed: the internal
  6096. and external sets were each normalized separately using RMA, and the normalized
  6097. data for each set were combined into a single set with no further attempts
  6098. at normalizing between the two sets.
  6099. The represents approximately how RMA would have to be used in a clinical
  6100. setting, where the samples to be classified are not available at the time
  6101. the classifier is trained.
  6102. \end_layout
  6103. \begin_layout Subsection
  6104. Generating custom fRMA vectors for hthgu133pluspm array platform
  6105. \end_layout
  6106. \begin_layout Standard
  6107. In order to enable fRMA normalization for the hthgu133pluspm array platform,
  6108. custom fRMA normalization vectors were trained using the frmaTools package
  6109. \begin_inset CommandInset citation
  6110. LatexCommand cite
  6111. key "McCall2011"
  6112. literal "false"
  6113. \end_inset
  6114. .
  6115. Separate vectors were created for two types of samples: kidney graft biopsy
  6116. samples and blood samples from graft recipients.
  6117. For training, a 341 kidney biopsy samples from 2 data sets and 965 blood
  6118. samples from 5 data sets were used as the reference set.
  6119. Arrays were groups into batches based on unique combinations of sample
  6120. type (blood or biopsy), diagnosis (TX, AR, etc.), data set, and scan date.
  6121. Thus, each batch represents arrays of the same kind that were run together
  6122. on the same day.
  6123. For estimating the probe inverse variance weights, frmaTools requires equal-siz
  6124. ed batches, which means a batch size must be chosen, and then batches smaller
  6125. than that size must be ignored, while batches larger than the chosen size
  6126. must be downsampled.
  6127. This downsampling is performed randomly, so the sampling process is repeated
  6128. 5 times and the resulting normalizations are compared to each other.
  6129. \end_layout
  6130. \begin_layout Standard
  6131. To evaluate the consistency of the generated normalization vectors, the
  6132. 5 fRMA vector sets generated from 5 random batch samplings were each used
  6133. to normalize the same 20 randomly selected samples from each tissue.
  6134. Then the normalized expression values for each probe on each array were
  6135. compared across all normalizations.
  6136. Each fRMA normalization was also compared against the normalized expression
  6137. values obtained by normalizing the same 20 samples with ordinary RMA.
  6138. \end_layout
  6139. \begin_layout Subsection
  6140. Modeling methylation array M-value heteroskedasticy in linear models with
  6141. modified voom implementation
  6142. \end_layout
  6143. \begin_layout Standard
  6144. \begin_inset Flex TODO Note (inline)
  6145. status open
  6146. \begin_layout Plain Layout
  6147. Put code on Github and reference it.
  6148. \end_layout
  6149. \end_inset
  6150. \end_layout
  6151. \begin_layout Standard
  6152. To investigate the whether DNA methylation could be used to distinguish
  6153. between healthy and dysfunctional transplants, a data set of 78 Illumina
  6154. 450k methylation arrays from human kidney graft biopsies was analyzed for
  6155. differential metylation between 4 transplant statuses: healthy transplant
  6156. (TX), transplants undergoing acute rejection (AR), acute dysfunction with
  6157. no rejection (ADNR), and chronic allograpft nephropathy (CAN).
  6158. The data consisted of 33 TX, 9 AR, 8 ADNR, and 28 CAN samples.
  6159. The uneven group sizes are a result of taking the biopsy samples before
  6160. the eventual fate of the transplant was known.
  6161. Each sample was additionally annotated with a donor ID (anonymized), Sex,
  6162. Age, Ethnicity, Creatinine Level, and Diabetes diagnosois (all samples
  6163. in this data set came from patients with either Type 1 or Type 2 diabetes).
  6164. \end_layout
  6165. \begin_layout Standard
  6166. The intensity data were first normalized using subset-quantile within array
  6167. normalization (SWAN)
  6168. \begin_inset CommandInset citation
  6169. LatexCommand cite
  6170. key "Maksimovic2012"
  6171. literal "false"
  6172. \end_inset
  6173. , then converted to intensity ratios (beta values)
  6174. \begin_inset CommandInset citation
  6175. LatexCommand cite
  6176. key "Aryee2014"
  6177. literal "false"
  6178. \end_inset
  6179. .
  6180. Any probes binding to loci that overlapped annotated SNPs were dropped,
  6181. and the annotated sex of each sample was verified against the sex inferred
  6182. from the ratio of median probe intensities for the X and Y chromosomes.
  6183. Then, the ratios were transformed to M-values.
  6184. \end_layout
  6185. \begin_layout Standard
  6186. \begin_inset Float table
  6187. wide false
  6188. sideways false
  6189. status open
  6190. \begin_layout Plain Layout
  6191. \align center
  6192. \begin_inset Tabular
  6193. <lyxtabular version="3" rows="4" columns="6">
  6194. <features tabularvalignment="middle">
  6195. <column alignment="center" valignment="top">
  6196. <column alignment="center" valignment="top">
  6197. <column alignment="center" valignment="top">
  6198. <column alignment="center" valignment="top">
  6199. <column alignment="center" valignment="top">
  6200. <column alignment="center" valignment="top">
  6201. <row>
  6202. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6203. \begin_inset Text
  6204. \begin_layout Plain Layout
  6205. Analysis
  6206. \end_layout
  6207. \end_inset
  6208. </cell>
  6209. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6210. \begin_inset Text
  6211. \begin_layout Plain Layout
  6212. random effect
  6213. \end_layout
  6214. \end_inset
  6215. </cell>
  6216. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6217. \begin_inset Text
  6218. \begin_layout Plain Layout
  6219. eBayes
  6220. \end_layout
  6221. \end_inset
  6222. </cell>
  6223. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6224. \begin_inset Text
  6225. \begin_layout Plain Layout
  6226. SVA
  6227. \end_layout
  6228. \end_inset
  6229. </cell>
  6230. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6231. \begin_inset Text
  6232. \begin_layout Plain Layout
  6233. weights
  6234. \end_layout
  6235. \end_inset
  6236. </cell>
  6237. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  6238. \begin_inset Text
  6239. \begin_layout Plain Layout
  6240. voom
  6241. \end_layout
  6242. \end_inset
  6243. </cell>
  6244. </row>
  6245. <row>
  6246. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6247. \begin_inset Text
  6248. \begin_layout Plain Layout
  6249. A
  6250. \end_layout
  6251. \end_inset
  6252. </cell>
  6253. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6254. \begin_inset Text
  6255. \begin_layout Plain Layout
  6256. Yes
  6257. \end_layout
  6258. \end_inset
  6259. </cell>
  6260. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6261. \begin_inset Text
  6262. \begin_layout Plain Layout
  6263. Yes
  6264. \end_layout
  6265. \end_inset
  6266. </cell>
  6267. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6268. \begin_inset Text
  6269. \begin_layout Plain Layout
  6270. No
  6271. \end_layout
  6272. \end_inset
  6273. </cell>
  6274. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6275. \begin_inset Text
  6276. \begin_layout Plain Layout
  6277. No
  6278. \end_layout
  6279. \end_inset
  6280. </cell>
  6281. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  6282. \begin_inset Text
  6283. \begin_layout Plain Layout
  6284. No
  6285. \end_layout
  6286. \end_inset
  6287. </cell>
  6288. </row>
  6289. <row>
  6290. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6291. \begin_inset Text
  6292. \begin_layout Plain Layout
  6293. B
  6294. \end_layout
  6295. \end_inset
  6296. </cell>
  6297. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6298. \begin_inset Text
  6299. \begin_layout Plain Layout
  6300. Yes
  6301. \end_layout
  6302. \end_inset
  6303. </cell>
  6304. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6305. \begin_inset Text
  6306. \begin_layout Plain Layout
  6307. Yes
  6308. \end_layout
  6309. \end_inset
  6310. </cell>
  6311. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6312. \begin_inset Text
  6313. \begin_layout Plain Layout
  6314. Yes
  6315. \end_layout
  6316. \end_inset
  6317. </cell>
  6318. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6319. \begin_inset Text
  6320. \begin_layout Plain Layout
  6321. Yes
  6322. \end_layout
  6323. \end_inset
  6324. </cell>
  6325. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  6326. \begin_inset Text
  6327. \begin_layout Plain Layout
  6328. No
  6329. \end_layout
  6330. \end_inset
  6331. </cell>
  6332. </row>
  6333. <row>
  6334. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6335. \begin_inset Text
  6336. \begin_layout Plain Layout
  6337. C
  6338. \end_layout
  6339. \end_inset
  6340. </cell>
  6341. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6342. \begin_inset Text
  6343. \begin_layout Plain Layout
  6344. Yes
  6345. \end_layout
  6346. \end_inset
  6347. </cell>
  6348. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6349. \begin_inset Text
  6350. \begin_layout Plain Layout
  6351. Yes
  6352. \end_layout
  6353. \end_inset
  6354. </cell>
  6355. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6356. \begin_inset Text
  6357. \begin_layout Plain Layout
  6358. Yes
  6359. \end_layout
  6360. \end_inset
  6361. </cell>
  6362. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6363. \begin_inset Text
  6364. \begin_layout Plain Layout
  6365. Yes
  6366. \end_layout
  6367. \end_inset
  6368. </cell>
  6369. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  6370. \begin_inset Text
  6371. \begin_layout Plain Layout
  6372. Yes
  6373. \end_layout
  6374. \end_inset
  6375. </cell>
  6376. </row>
  6377. </lyxtabular>
  6378. \end_inset
  6379. \end_layout
  6380. \begin_layout Plain Layout
  6381. \begin_inset Caption Standard
  6382. \begin_layout Plain Layout
  6383. \series bold
  6384. \begin_inset CommandInset label
  6385. LatexCommand label
  6386. name "tab:Summary-of-meth-analysis"
  6387. \end_inset
  6388. Summary of analysis variants for methylation array data.
  6389. \series default
  6390. Each analysis included a different set of steps to adjust or account for
  6391. various systematic features of the data.
  6392. Random effect: The model included a random effect accounting for correlation
  6393. between samples from the same patient
  6394. \begin_inset CommandInset citation
  6395. LatexCommand cite
  6396. key "Smyth2005a"
  6397. literal "false"
  6398. \end_inset
  6399. ; eBayes: Empirical bayes squeezing of per-probe variances toward the mean-varia
  6400. nce trend
  6401. \begin_inset CommandInset citation
  6402. LatexCommand cite
  6403. key "Ritchie2015"
  6404. literal "false"
  6405. \end_inset
  6406. ; SVA: Surrogate variable analysis to account for unobserved confounders
  6407. \begin_inset CommandInset citation
  6408. LatexCommand cite
  6409. key "Leek2007"
  6410. literal "false"
  6411. \end_inset
  6412. ; Weights: Estimate sample weights to account for differences in sample
  6413. quality
  6414. \begin_inset CommandInset citation
  6415. LatexCommand cite
  6416. key "Liu2015,Ritchie2006"
  6417. literal "false"
  6418. \end_inset
  6419. ; voom: Use mean-variance trend to assign individual sample weights
  6420. \begin_inset CommandInset citation
  6421. LatexCommand cite
  6422. key "Law2013"
  6423. literal "false"
  6424. \end_inset
  6425. .
  6426. See the text for a more detailed explanation of each step.
  6427. \end_layout
  6428. \end_inset
  6429. \end_layout
  6430. \end_inset
  6431. \end_layout
  6432. \begin_layout Standard
  6433. From the M-values, a series of parallel analyses was performed, each adding
  6434. additional steps into the model fit to accomodate a feature of the data
  6435. (see Table
  6436. \begin_inset CommandInset ref
  6437. LatexCommand ref
  6438. reference "tab:Summary-of-meth-analysis"
  6439. plural "false"
  6440. caps "false"
  6441. noprefix "false"
  6442. \end_inset
  6443. ).
  6444. For analysis A, a
  6445. \begin_inset Quotes eld
  6446. \end_inset
  6447. basic
  6448. \begin_inset Quotes erd
  6449. \end_inset
  6450. linear modeling analysis was performed, compensating for known confounders
  6451. by including terms for the factor of interest (transplant status) as well
  6452. as the known biological confounders: sex, age, ethnicity, and diabetes.
  6453. Since some samples came from the same patients at different times, the
  6454. intra-patient correlation was modeled as a random effect, estimating a
  6455. shared correlation value across all probes
  6456. \begin_inset CommandInset citation
  6457. LatexCommand cite
  6458. key "Smyth2005a"
  6459. literal "false"
  6460. \end_inset
  6461. .
  6462. Then the linear model was fit, and the variance was modeled using empirical
  6463. Bayes squeezing toward the mean-variance trend
  6464. \begin_inset CommandInset citation
  6465. LatexCommand cite
  6466. key "Ritchie2015"
  6467. literal "false"
  6468. \end_inset
  6469. .
  6470. Finally, t-tests or F-tests were performed as appropriate for each test:
  6471. t-tests for single contrasts, and F-tests for multiple contrasts.
  6472. P-values were corrected for multiple testing using the Benjamini-Hochberg
  6473. procedure for FDR control
  6474. \begin_inset CommandInset citation
  6475. LatexCommand cite
  6476. key "Benjamini1995"
  6477. literal "false"
  6478. \end_inset
  6479. .
  6480. \end_layout
  6481. \begin_layout Standard
  6482. For the analysis B, surrogate variable analysis (SVA) was used to infer
  6483. additional unobserved sources of heterogeneity in the data
  6484. \begin_inset CommandInset citation
  6485. LatexCommand cite
  6486. key "Leek2007"
  6487. literal "false"
  6488. \end_inset
  6489. .
  6490. These surrogate variables were added to the design matrix before fitting
  6491. the linear model.
  6492. In addition, sample quality weights were estimated from the data and used
  6493. during linear modeling to down-weight the contribution of highly variable
  6494. arrays while increasing the weight to arrays with lower variability
  6495. \begin_inset CommandInset citation
  6496. LatexCommand cite
  6497. key "Ritchie2006"
  6498. literal "false"
  6499. \end_inset
  6500. .
  6501. The remainder of the analysis proceeded as in analysis A.
  6502. For analysis C, the voom method was adapted to run on methylation array
  6503. data and used to model and correct for the mean-variance trend using individual
  6504. observation weights
  6505. \begin_inset CommandInset citation
  6506. LatexCommand cite
  6507. key "Law2013"
  6508. literal "false"
  6509. \end_inset
  6510. , which were combined with the sample weights
  6511. \begin_inset CommandInset citation
  6512. LatexCommand cite
  6513. key "Liu2015,Ritchie2006"
  6514. literal "false"
  6515. \end_inset
  6516. .
  6517. Each time weights were used, they were estimated once before estimating
  6518. the random effect correlation value, and then the weights were re-estimated
  6519. taking the random effect into account.
  6520. The remainder of the analysis proceeded as in analysis B.
  6521. \end_layout
  6522. \begin_layout Section
  6523. Results
  6524. \end_layout
  6525. \begin_layout Standard
  6526. \begin_inset Flex TODO Note (inline)
  6527. status open
  6528. \begin_layout Plain Layout
  6529. Improve subsection titles in this section.
  6530. \end_layout
  6531. \end_inset
  6532. \end_layout
  6533. \begin_layout Standard
  6534. \begin_inset Flex TODO Note (inline)
  6535. status open
  6536. \begin_layout Plain Layout
  6537. Reconsider subsection organization?
  6538. \end_layout
  6539. \end_inset
  6540. \end_layout
  6541. \begin_layout Subsection
  6542. Separate normalization with RMA introduces unwanted biases in classification
  6543. \end_layout
  6544. \begin_layout Standard
  6545. \begin_inset Float figure
  6546. wide false
  6547. sideways false
  6548. status open
  6549. \begin_layout Plain Layout
  6550. \align center
  6551. \begin_inset Graphics
  6552. filename graphics/PAM/predplot.pdf
  6553. lyxscale 50
  6554. width 60col%
  6555. groupId colwidth
  6556. \end_inset
  6557. \end_layout
  6558. \begin_layout Plain Layout
  6559. \begin_inset Caption Standard
  6560. \begin_layout Plain Layout
  6561. \begin_inset CommandInset label
  6562. LatexCommand label
  6563. name "fig:Classifier-probabilities-RMA"
  6564. \end_inset
  6565. \series bold
  6566. Classifier probabilities on validation samples when normalized with RMA
  6567. together vs.
  6568. separately.
  6569. \series default
  6570. The PAM classifier algorithm was trained on the training set of arrays to
  6571. distinguish AR from TX and then used to assign class probabilities to the
  6572. validation set.
  6573. The process was performed after normalizing all samples together and after
  6574. normalizing the training and test sets separately, and the class probabilities
  6575. assigned to each sample in the validation set were plotted against each
  6576. other (PP(AR), posterior probability of being AR).
  6577. The color of each point indicates the true classification of that sample.
  6578. \end_layout
  6579. \end_inset
  6580. \end_layout
  6581. \end_inset
  6582. \end_layout
  6583. \begin_layout Standard
  6584. To demonstrate the problem with non-single-channel normalization methods,
  6585. we considered the problem of training a classifier to distinguish TX from
  6586. AR using the samples from the internal set as training data, evaluating
  6587. performance on the external set.
  6588. First, training and evaluation were performed after normalizing all array
  6589. samples together as a single set using RMA, and second, the internal samples
  6590. were normalized separately from the external samples and the training and
  6591. evaluation were repeated.
  6592. For each sample in the validation set, the classifier probabilities from
  6593. both classifiers were plotted against each other (Fig.
  6594. \begin_inset CommandInset ref
  6595. LatexCommand ref
  6596. reference "fig:Classifier-probabilities-RMA"
  6597. plural "false"
  6598. caps "false"
  6599. noprefix "false"
  6600. \end_inset
  6601. ).
  6602. As expected, separate normalization biases the classifier probabilities,
  6603. resulting in several misclassifications.
  6604. In this case, the bias from separate normalization causes the classifier
  6605. to assign a lower probability of AR to every sample.
  6606. \end_layout
  6607. \begin_layout Subsection
  6608. fRMA and SCAN maintain classification performance while eliminating dependence
  6609. on normalization strategy
  6610. \end_layout
  6611. \begin_layout Standard
  6612. \begin_inset Float figure
  6613. wide false
  6614. sideways false
  6615. status open
  6616. \begin_layout Plain Layout
  6617. \align center
  6618. \begin_inset Float figure
  6619. placement tb
  6620. wide false
  6621. sideways false
  6622. status open
  6623. \begin_layout Plain Layout
  6624. \align center
  6625. \begin_inset Graphics
  6626. filename graphics/PAM/ROC-TXvsAR-internal.pdf
  6627. lyxscale 50
  6628. height 40theight%
  6629. groupId roc-pam
  6630. \end_inset
  6631. \end_layout
  6632. \begin_layout Plain Layout
  6633. \begin_inset Caption Standard
  6634. \begin_layout Plain Layout
  6635. \begin_inset CommandInset label
  6636. LatexCommand label
  6637. name "fig:ROC-PAM-int"
  6638. \end_inset
  6639. ROC curves for PAM on internal validation data
  6640. \end_layout
  6641. \end_inset
  6642. \end_layout
  6643. \end_inset
  6644. \end_layout
  6645. \begin_layout Plain Layout
  6646. \align center
  6647. \begin_inset Float figure
  6648. placement tb
  6649. wide false
  6650. sideways false
  6651. status open
  6652. \begin_layout Plain Layout
  6653. \align center
  6654. \begin_inset Graphics
  6655. filename graphics/PAM/ROC-TXvsAR-external.pdf
  6656. lyxscale 50
  6657. height 40theight%
  6658. groupId roc-pam
  6659. \end_inset
  6660. \end_layout
  6661. \begin_layout Plain Layout
  6662. \begin_inset Caption Standard
  6663. \begin_layout Plain Layout
  6664. \begin_inset CommandInset label
  6665. LatexCommand label
  6666. name "fig:ROC-PAM-ext"
  6667. \end_inset
  6668. ROC curves for PAM on external validation data
  6669. \end_layout
  6670. \end_inset
  6671. \end_layout
  6672. \end_inset
  6673. \end_layout
  6674. \begin_layout Plain Layout
  6675. \begin_inset Caption Standard
  6676. \begin_layout Plain Layout
  6677. \series bold
  6678. \begin_inset CommandInset label
  6679. LatexCommand label
  6680. name "fig:ROC-PAM-main"
  6681. \end_inset
  6682. ROC curves for PAM using different normalization strategies.
  6683. \series default
  6684. ROC curves were generated for PAM classification of AR vs TX after 6 different
  6685. normalization strategies applied to the same data sets.
  6686. Only fRMA and SCAN are single-channel normalizations.
  6687. The other normalizations are for comparison.
  6688. \end_layout
  6689. \end_inset
  6690. \end_layout
  6691. \end_inset
  6692. \end_layout
  6693. \begin_layout Standard
  6694. \begin_inset Float table
  6695. wide false
  6696. sideways false
  6697. status open
  6698. \begin_layout Plain Layout
  6699. \align center
  6700. \begin_inset Tabular
  6701. <lyxtabular version="3" rows="7" columns="4">
  6702. <features tabularvalignment="middle">
  6703. <column alignment="center" valignment="top">
  6704. <column alignment="center" valignment="top">
  6705. <column alignment="center" valignment="top">
  6706. <column alignment="center" valignment="top">
  6707. <row>
  6708. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6709. \begin_inset Text
  6710. \begin_layout Plain Layout
  6711. \family roman
  6712. \series medium
  6713. \shape up
  6714. \size normal
  6715. \emph off
  6716. \bar no
  6717. \strikeout off
  6718. \xout off
  6719. \uuline off
  6720. \uwave off
  6721. \noun off
  6722. \color none
  6723. Normalization
  6724. \end_layout
  6725. \end_inset
  6726. </cell>
  6727. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6728. \begin_inset Text
  6729. \begin_layout Plain Layout
  6730. Single-channel?
  6731. \end_layout
  6732. \end_inset
  6733. </cell>
  6734. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  6735. \begin_inset Text
  6736. \begin_layout Plain Layout
  6737. \family roman
  6738. \series medium
  6739. \shape up
  6740. \size normal
  6741. \emph off
  6742. \bar no
  6743. \strikeout off
  6744. \xout off
  6745. \uuline off
  6746. \uwave off
  6747. \noun off
  6748. \color none
  6749. Internal Val.
  6750. AUC
  6751. \end_layout
  6752. \end_inset
  6753. </cell>
  6754. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  6755. \begin_inset Text
  6756. \begin_layout Plain Layout
  6757. External Val.
  6758. AUC
  6759. \end_layout
  6760. \end_inset
  6761. </cell>
  6762. </row>
  6763. <row>
  6764. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6765. \begin_inset Text
  6766. \begin_layout Plain Layout
  6767. \family roman
  6768. \series medium
  6769. \shape up
  6770. \size normal
  6771. \emph off
  6772. \bar no
  6773. \strikeout off
  6774. \xout off
  6775. \uuline off
  6776. \uwave off
  6777. \noun off
  6778. \color none
  6779. RMA
  6780. \end_layout
  6781. \end_inset
  6782. </cell>
  6783. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6784. \begin_inset Text
  6785. \begin_layout Plain Layout
  6786. No
  6787. \end_layout
  6788. \end_inset
  6789. </cell>
  6790. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6791. \begin_inset Text
  6792. \begin_layout Plain Layout
  6793. \family roman
  6794. \series medium
  6795. \shape up
  6796. \size normal
  6797. \emph off
  6798. \bar no
  6799. \strikeout off
  6800. \xout off
  6801. \uuline off
  6802. \uwave off
  6803. \noun off
  6804. \color none
  6805. 0.852
  6806. \end_layout
  6807. \end_inset
  6808. </cell>
  6809. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  6810. \begin_inset Text
  6811. \begin_layout Plain Layout
  6812. \family roman
  6813. \series medium
  6814. \shape up
  6815. \size normal
  6816. \emph off
  6817. \bar no
  6818. \strikeout off
  6819. \xout off
  6820. \uuline off
  6821. \uwave off
  6822. \noun off
  6823. \color none
  6824. 0.713
  6825. \end_layout
  6826. \end_inset
  6827. </cell>
  6828. </row>
  6829. <row>
  6830. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6831. \begin_inset Text
  6832. \begin_layout Plain Layout
  6833. \family roman
  6834. \series medium
  6835. \shape up
  6836. \size normal
  6837. \emph off
  6838. \bar no
  6839. \strikeout off
  6840. \xout off
  6841. \uuline off
  6842. \uwave off
  6843. \noun off
  6844. \color none
  6845. dChip
  6846. \end_layout
  6847. \end_inset
  6848. </cell>
  6849. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6850. \begin_inset Text
  6851. \begin_layout Plain Layout
  6852. No
  6853. \end_layout
  6854. \end_inset
  6855. </cell>
  6856. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6857. \begin_inset Text
  6858. \begin_layout Plain Layout
  6859. \family roman
  6860. \series medium
  6861. \shape up
  6862. \size normal
  6863. \emph off
  6864. \bar no
  6865. \strikeout off
  6866. \xout off
  6867. \uuline off
  6868. \uwave off
  6869. \noun off
  6870. \color none
  6871. 0.891
  6872. \end_layout
  6873. \end_inset
  6874. </cell>
  6875. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  6876. \begin_inset Text
  6877. \begin_layout Plain Layout
  6878. \family roman
  6879. \series medium
  6880. \shape up
  6881. \size normal
  6882. \emph off
  6883. \bar no
  6884. \strikeout off
  6885. \xout off
  6886. \uuline off
  6887. \uwave off
  6888. \noun off
  6889. \color none
  6890. 0.657
  6891. \end_layout
  6892. \end_inset
  6893. </cell>
  6894. </row>
  6895. <row>
  6896. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6897. \begin_inset Text
  6898. \begin_layout Plain Layout
  6899. \family roman
  6900. \series medium
  6901. \shape up
  6902. \size normal
  6903. \emph off
  6904. \bar no
  6905. \strikeout off
  6906. \xout off
  6907. \uuline off
  6908. \uwave off
  6909. \noun off
  6910. \color none
  6911. RMA + GRSN
  6912. \end_layout
  6913. \end_inset
  6914. </cell>
  6915. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6916. \begin_inset Text
  6917. \begin_layout Plain Layout
  6918. No
  6919. \end_layout
  6920. \end_inset
  6921. </cell>
  6922. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6923. \begin_inset Text
  6924. \begin_layout Plain Layout
  6925. \family roman
  6926. \series medium
  6927. \shape up
  6928. \size normal
  6929. \emph off
  6930. \bar no
  6931. \strikeout off
  6932. \xout off
  6933. \uuline off
  6934. \uwave off
  6935. \noun off
  6936. \color none
  6937. 0.816
  6938. \end_layout
  6939. \end_inset
  6940. </cell>
  6941. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  6942. \begin_inset Text
  6943. \begin_layout Plain Layout
  6944. \family roman
  6945. \series medium
  6946. \shape up
  6947. \size normal
  6948. \emph off
  6949. \bar no
  6950. \strikeout off
  6951. \xout off
  6952. \uuline off
  6953. \uwave off
  6954. \noun off
  6955. \color none
  6956. 0.750
  6957. \end_layout
  6958. \end_inset
  6959. </cell>
  6960. </row>
  6961. <row>
  6962. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6963. \begin_inset Text
  6964. \begin_layout Plain Layout
  6965. \family roman
  6966. \series medium
  6967. \shape up
  6968. \size normal
  6969. \emph off
  6970. \bar no
  6971. \strikeout off
  6972. \xout off
  6973. \uuline off
  6974. \uwave off
  6975. \noun off
  6976. \color none
  6977. dChip + GRSN
  6978. \end_layout
  6979. \end_inset
  6980. </cell>
  6981. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6982. \begin_inset Text
  6983. \begin_layout Plain Layout
  6984. No
  6985. \end_layout
  6986. \end_inset
  6987. </cell>
  6988. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  6989. \begin_inset Text
  6990. \begin_layout Plain Layout
  6991. \family roman
  6992. \series medium
  6993. \shape up
  6994. \size normal
  6995. \emph off
  6996. \bar no
  6997. \strikeout off
  6998. \xout off
  6999. \uuline off
  7000. \uwave off
  7001. \noun off
  7002. \color none
  7003. 0.875
  7004. \end_layout
  7005. \end_inset
  7006. </cell>
  7007. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  7008. \begin_inset Text
  7009. \begin_layout Plain Layout
  7010. \family roman
  7011. \series medium
  7012. \shape up
  7013. \size normal
  7014. \emph off
  7015. \bar no
  7016. \strikeout off
  7017. \xout off
  7018. \uuline off
  7019. \uwave off
  7020. \noun off
  7021. \color none
  7022. 0.642
  7023. \end_layout
  7024. \end_inset
  7025. </cell>
  7026. </row>
  7027. <row>
  7028. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7029. \begin_inset Text
  7030. \begin_layout Plain Layout
  7031. \family roman
  7032. \series medium
  7033. \shape up
  7034. \size normal
  7035. \emph off
  7036. \bar no
  7037. \strikeout off
  7038. \xout off
  7039. \uuline off
  7040. \uwave off
  7041. \noun off
  7042. \color none
  7043. fRMA
  7044. \end_layout
  7045. \end_inset
  7046. </cell>
  7047. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7048. \begin_inset Text
  7049. \begin_layout Plain Layout
  7050. Yes
  7051. \end_layout
  7052. \end_inset
  7053. </cell>
  7054. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  7055. \begin_inset Text
  7056. \begin_layout Plain Layout
  7057. \family roman
  7058. \series medium
  7059. \shape up
  7060. \size normal
  7061. \emph off
  7062. \bar no
  7063. \strikeout off
  7064. \xout off
  7065. \uuline off
  7066. \uwave off
  7067. \noun off
  7068. \color none
  7069. 0.863
  7070. \end_layout
  7071. \end_inset
  7072. </cell>
  7073. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  7074. \begin_inset Text
  7075. \begin_layout Plain Layout
  7076. \family roman
  7077. \series medium
  7078. \shape up
  7079. \size normal
  7080. \emph off
  7081. \bar no
  7082. \strikeout off
  7083. \xout off
  7084. \uuline off
  7085. \uwave off
  7086. \noun off
  7087. \color none
  7088. 0.718
  7089. \end_layout
  7090. \end_inset
  7091. </cell>
  7092. </row>
  7093. <row>
  7094. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  7095. \begin_inset Text
  7096. \begin_layout Plain Layout
  7097. \family roman
  7098. \series medium
  7099. \shape up
  7100. \size normal
  7101. \emph off
  7102. \bar no
  7103. \strikeout off
  7104. \xout off
  7105. \uuline off
  7106. \uwave off
  7107. \noun off
  7108. \color none
  7109. SCAN
  7110. \end_layout
  7111. \end_inset
  7112. </cell>
  7113. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  7114. \begin_inset Text
  7115. \begin_layout Plain Layout
  7116. Yes
  7117. \end_layout
  7118. \end_inset
  7119. </cell>
  7120. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  7121. \begin_inset Text
  7122. \begin_layout Plain Layout
  7123. \family roman
  7124. \series medium
  7125. \shape up
  7126. \size normal
  7127. \emph off
  7128. \bar no
  7129. \strikeout off
  7130. \xout off
  7131. \uuline off
  7132. \uwave off
  7133. \noun off
  7134. \color none
  7135. 0.853
  7136. \end_layout
  7137. \end_inset
  7138. </cell>
  7139. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  7140. \begin_inset Text
  7141. \begin_layout Plain Layout
  7142. \family roman
  7143. \series medium
  7144. \shape up
  7145. \size normal
  7146. \emph off
  7147. \bar no
  7148. \strikeout off
  7149. \xout off
  7150. \uuline off
  7151. \uwave off
  7152. \noun off
  7153. \color none
  7154. 0.689
  7155. \end_layout
  7156. \end_inset
  7157. </cell>
  7158. </row>
  7159. </lyxtabular>
  7160. \end_inset
  7161. \end_layout
  7162. \begin_layout Plain Layout
  7163. \begin_inset Caption Standard
  7164. \begin_layout Plain Layout
  7165. \begin_inset CommandInset label
  7166. LatexCommand label
  7167. name "tab:AUC-PAM"
  7168. \end_inset
  7169. \series bold
  7170. ROC curve AUC values for internal and external validation with 6 different
  7171. normalization strategies.
  7172. \series default
  7173. These AUC values correspond to the ROC curves in Figure
  7174. \begin_inset CommandInset ref
  7175. LatexCommand ref
  7176. reference "fig:ROC-PAM-main"
  7177. plural "false"
  7178. caps "false"
  7179. noprefix "false"
  7180. \end_inset
  7181. .
  7182. \end_layout
  7183. \end_inset
  7184. \end_layout
  7185. \end_inset
  7186. \end_layout
  7187. \begin_layout Standard
  7188. For internal validation, the 6 methods' AUC values ranged from 0.816 to 0.891,
  7189. as shown in Table
  7190. \begin_inset CommandInset ref
  7191. LatexCommand ref
  7192. reference "tab:AUC-PAM"
  7193. plural "false"
  7194. caps "false"
  7195. noprefix "false"
  7196. \end_inset
  7197. .
  7198. Among the non-single-channel normalizations, dChip outperformed RMA, while
  7199. GRSN reduced the AUC values for both dChip and RMA.
  7200. Both single-channel methods, fRMA and SCAN, slightly outperformed RMA,
  7201. with fRMA ahead of SCAN.
  7202. However, the difference between RMA and fRMA is still quite small.
  7203. Figure
  7204. \begin_inset CommandInset ref
  7205. LatexCommand ref
  7206. reference "fig:ROC-PAM-int"
  7207. plural "false"
  7208. caps "false"
  7209. noprefix "false"
  7210. \end_inset
  7211. shows that the ROC curves for RMA, dChip, and fRMA look very similar and
  7212. relatively smooth, while both GRSN curves and the curve for SCAN have a
  7213. more jagged appearance.
  7214. \end_layout
  7215. \begin_layout Standard
  7216. For external validation, as expected, all the AUC values are lower than
  7217. the internal validations, ranging from 0.642 to 0.750 (Table
  7218. \begin_inset CommandInset ref
  7219. LatexCommand ref
  7220. reference "tab:AUC-PAM"
  7221. plural "false"
  7222. caps "false"
  7223. noprefix "false"
  7224. \end_inset
  7225. ).
  7226. With or without GRSN, RMA shows its dominance over dChip in this more challengi
  7227. ng test.
  7228. Unlike in the internal validation, GRSN actually improves the classifier
  7229. performance for RMA, although it does not for dChip.
  7230. Once again, both single-channel methods perform about on par with RMA,
  7231. with fRMA performing slightly better and SCAN performing a bit worse.
  7232. Figure
  7233. \begin_inset CommandInset ref
  7234. LatexCommand ref
  7235. reference "fig:ROC-PAM-ext"
  7236. plural "false"
  7237. caps "false"
  7238. noprefix "false"
  7239. \end_inset
  7240. shows the ROC curves for the external validation test.
  7241. As expected, none of them are as clean-looking as the internal validation
  7242. ROC curves.
  7243. The curves for RMA, RMA+GRSN, and fRMA all look similar, while the other
  7244. curves look more divergent.
  7245. \end_layout
  7246. \begin_layout Subsection
  7247. fRMA with custom-generated vectors enables single-channel normalization
  7248. on hthgu133pluspm platform
  7249. \end_layout
  7250. \begin_layout Standard
  7251. \begin_inset Float figure
  7252. wide false
  7253. sideways false
  7254. status open
  7255. \begin_layout Plain Layout
  7256. \align center
  7257. \begin_inset Float figure
  7258. placement tb
  7259. wide false
  7260. sideways false
  7261. status collapsed
  7262. \begin_layout Plain Layout
  7263. \align center
  7264. \begin_inset Graphics
  7265. filename graphics/frma-pax-bx/batchsize_batches.pdf
  7266. lyxscale 50
  7267. height 35theight%
  7268. groupId frmatools-subfig
  7269. \end_inset
  7270. \end_layout
  7271. \begin_layout Plain Layout
  7272. \begin_inset Caption Standard
  7273. \begin_layout Plain Layout
  7274. \begin_inset CommandInset label
  7275. LatexCommand label
  7276. name "fig:batch-size-batches"
  7277. \end_inset
  7278. \series bold
  7279. Number of batches usable in fRMA probe weight learning as a function of
  7280. batch size.
  7281. \end_layout
  7282. \end_inset
  7283. \end_layout
  7284. \end_inset
  7285. \end_layout
  7286. \begin_layout Plain Layout
  7287. \align center
  7288. \begin_inset Float figure
  7289. placement tb
  7290. wide false
  7291. sideways false
  7292. status collapsed
  7293. \begin_layout Plain Layout
  7294. \align center
  7295. \begin_inset Graphics
  7296. filename graphics/frma-pax-bx/batchsize_samples.pdf
  7297. lyxscale 50
  7298. height 35theight%
  7299. groupId frmatools-subfig
  7300. \end_inset
  7301. \end_layout
  7302. \begin_layout Plain Layout
  7303. \begin_inset Caption Standard
  7304. \begin_layout Plain Layout
  7305. \begin_inset CommandInset label
  7306. LatexCommand label
  7307. name "fig:batch-size-samples"
  7308. \end_inset
  7309. \series bold
  7310. Number of samples usable in fRMA probe weight learning as a function of
  7311. batch size.
  7312. \end_layout
  7313. \end_inset
  7314. \end_layout
  7315. \end_inset
  7316. \end_layout
  7317. \begin_layout Plain Layout
  7318. \begin_inset Caption Standard
  7319. \begin_layout Plain Layout
  7320. \series bold
  7321. \begin_inset CommandInset label
  7322. LatexCommand label
  7323. name "fig:frmatools-batch-size"
  7324. \end_inset
  7325. Effect of batch size selection on number of batches and number of samples
  7326. included in fRMA probe weight learning.
  7327. \series default
  7328. For batch sizes ranging from 3 to 15, the number of batches (a) and samples
  7329. (b) included in probe weight training were plotted for biopsy (BX) and
  7330. blood (PAX) samples.
  7331. The selected batch size, 5, is marked with a dotted vertical line.
  7332. \end_layout
  7333. \end_inset
  7334. \end_layout
  7335. \end_inset
  7336. \end_layout
  7337. \begin_layout Standard
  7338. In order to enable use of fRMA to normalize hthgu133pluspm, a custom set
  7339. of fRMA vectors was created.
  7340. First, an appropriate batch size was chosen by looking at the number of
  7341. batches and number of samples included as a function of batch size (Figure
  7342. \begin_inset CommandInset ref
  7343. LatexCommand ref
  7344. reference "fig:frmatools-batch-size"
  7345. plural "false"
  7346. caps "false"
  7347. noprefix "false"
  7348. \end_inset
  7349. ).
  7350. For a given batch size, all batches with fewer samples that the chosen
  7351. size must be ignored during training, while larger batches must be randomly
  7352. downsampled to the chosen size.
  7353. Hence, the number of samples included for a given batch size equals the
  7354. batch size times the number of batches with at least that many samples.
  7355. From Figure
  7356. \begin_inset CommandInset ref
  7357. LatexCommand ref
  7358. reference "fig:batch-size-samples"
  7359. plural "false"
  7360. caps "false"
  7361. noprefix "false"
  7362. \end_inset
  7363. , it is apparent that that a batch size of 8 maximizes the number of samples
  7364. included in training.
  7365. Increasing the batch size beyond this causes too many smaller batches to
  7366. be excluded, reducing the total number of samples for both tissue types.
  7367. However, a batch size of 8 is not necessarily optimal.
  7368. The article introducing frmaTools concluded that it was highly advantageous
  7369. to use a smaller batch size in order to include more batches, even at the
  7370. expense of including fewer total samples in training
  7371. \begin_inset CommandInset citation
  7372. LatexCommand cite
  7373. key "McCall2011"
  7374. literal "false"
  7375. \end_inset
  7376. .
  7377. To strike an appropriate balance between more batches and more samples,
  7378. a batch size of 5 was chosen.
  7379. For both blood and biopsy samples, this increased the number of batches
  7380. included by 10, with only a modest reduction in the number of samples compared
  7381. to a batch size of 8.
  7382. With a batch size of 5, 26 batches of biopsy samples and 46 batches of
  7383. blood samples were available.
  7384. \end_layout
  7385. \begin_layout Standard
  7386. \begin_inset Float figure
  7387. wide false
  7388. sideways false
  7389. status collapsed
  7390. \begin_layout Plain Layout
  7391. \begin_inset Float figure
  7392. wide false
  7393. sideways false
  7394. status open
  7395. \begin_layout Plain Layout
  7396. \align center
  7397. \begin_inset Graphics
  7398. filename graphics/frma-pax-bx/M-BX-violin.pdf
  7399. lyxscale 40
  7400. width 45col%
  7401. groupId m-violin
  7402. \end_inset
  7403. \end_layout
  7404. \begin_layout Plain Layout
  7405. \begin_inset Caption Standard
  7406. \begin_layout Plain Layout
  7407. \begin_inset CommandInset label
  7408. LatexCommand label
  7409. name "fig:m-bx-violin"
  7410. \end_inset
  7411. \series bold
  7412. Violin plot of inter-normalization log ratios for biopsy samples.
  7413. \end_layout
  7414. \end_inset
  7415. \end_layout
  7416. \end_inset
  7417. \begin_inset space \hfill{}
  7418. \end_inset
  7419. \begin_inset Float figure
  7420. wide false
  7421. sideways false
  7422. status collapsed
  7423. \begin_layout Plain Layout
  7424. \align center
  7425. \begin_inset Graphics
  7426. filename graphics/frma-pax-bx/M-PAX-violin.pdf
  7427. lyxscale 40
  7428. width 45col%
  7429. groupId m-violin
  7430. \end_inset
  7431. \end_layout
  7432. \begin_layout Plain Layout
  7433. \begin_inset Caption Standard
  7434. \begin_layout Plain Layout
  7435. \begin_inset CommandInset label
  7436. LatexCommand label
  7437. name "fig:m-pax-violin"
  7438. \end_inset
  7439. \series bold
  7440. Violin plot of inter-normalization log ratios for blood samples.
  7441. \end_layout
  7442. \end_inset
  7443. \end_layout
  7444. \end_inset
  7445. \end_layout
  7446. \begin_layout Plain Layout
  7447. \begin_inset Caption Standard
  7448. \begin_layout Plain Layout
  7449. \begin_inset CommandInset label
  7450. LatexCommand label
  7451. name "fig:frma-violin"
  7452. \end_inset
  7453. \series bold
  7454. Violin plot of log ratios between normalizations for 20 biopsy samples.
  7455. \series default
  7456. Each of 20 randomly selected samples was normalized with RMA and with 5
  7457. different sets of fRMA vectors.
  7458. The distribution of log ratios between normalized expression values, aggregated
  7459. across all 20 arrays, was plotted for each pair of normalizations.
  7460. \end_layout
  7461. \end_inset
  7462. \end_layout
  7463. \end_inset
  7464. \end_layout
  7465. \begin_layout Standard
  7466. Since fRMA training requires equal-size batches, larger batches are downsampled
  7467. randomly.
  7468. This introduces a nondeterministic step in the generation of normalization
  7469. vectors.
  7470. To show that this randomness does not substantially change the outcome,
  7471. the random downsampling and subsequent vector learning was repeated 5 times,
  7472. with a different random seed each time.
  7473. 20 samples were selected at random as a test set and normalized with each
  7474. of the 5 sets of fRMA normalization vectors as well as ordinary RMA, and
  7475. the normalized expression values were compared across normalizations.
  7476. Figure
  7477. \begin_inset CommandInset ref
  7478. LatexCommand ref
  7479. reference "fig:m-bx-violin"
  7480. plural "false"
  7481. caps "false"
  7482. noprefix "false"
  7483. \end_inset
  7484. shows a summary of these comparisons for biopsy samples.
  7485. Comparing RMA to each of the 5 fRMA normalizations, the distribution of
  7486. log ratios is somewhat wide, indicating that the normalizations disagree
  7487. on the expression values of a fair number of probe sets.
  7488. In contrast, comparisons of fRMA against fRMA, the vast mojority of probe
  7489. sets have very small log ratios, indicating a very high agreement between
  7490. the normalized values generated by the two normalizations.
  7491. This shows that the fRMA normalization's behavior is not very sensitive
  7492. to the random downsampling of larger batches during training.
  7493. \end_layout
  7494. \begin_layout Standard
  7495. \begin_inset Float figure
  7496. wide false
  7497. sideways false
  7498. status open
  7499. \begin_layout Plain Layout
  7500. \align center
  7501. \begin_inset Float figure
  7502. wide false
  7503. sideways false
  7504. status collapsed
  7505. \begin_layout Plain Layout
  7506. \align center
  7507. \begin_inset Graphics
  7508. filename graphics/frma-pax-bx/MA-BX-RMA.fRMA-RASTER.png
  7509. lyxscale 10
  7510. width 45col%
  7511. groupId ma-frma
  7512. \end_inset
  7513. \end_layout
  7514. \begin_layout Plain Layout
  7515. \begin_inset Caption Standard
  7516. \begin_layout Plain Layout
  7517. \begin_inset CommandInset label
  7518. LatexCommand label
  7519. name "fig:ma-bx-rma-frma"
  7520. \end_inset
  7521. RMA vs.
  7522. fRMA for biopsy samples.
  7523. \end_layout
  7524. \end_inset
  7525. \end_layout
  7526. \end_inset
  7527. \begin_inset space \hfill{}
  7528. \end_inset
  7529. \begin_inset Float figure
  7530. wide false
  7531. sideways false
  7532. status collapsed
  7533. \begin_layout Plain Layout
  7534. \align center
  7535. \begin_inset Graphics
  7536. filename graphics/frma-pax-bx/MA-BX-fRMA.fRMA-RASTER.png
  7537. lyxscale 10
  7538. width 45col%
  7539. groupId ma-frma
  7540. \end_inset
  7541. \end_layout
  7542. \begin_layout Plain Layout
  7543. \begin_inset Caption Standard
  7544. \begin_layout Plain Layout
  7545. \begin_inset CommandInset label
  7546. LatexCommand label
  7547. name "fig:ma-bx-frma-frma"
  7548. \end_inset
  7549. fRMA vs fRMA for biopsy samples.
  7550. \end_layout
  7551. \end_inset
  7552. \end_layout
  7553. \end_inset
  7554. \end_layout
  7555. \begin_layout Plain Layout
  7556. \align center
  7557. \begin_inset Float figure
  7558. wide false
  7559. sideways false
  7560. status collapsed
  7561. \begin_layout Plain Layout
  7562. \align center
  7563. \begin_inset Graphics
  7564. filename graphics/frma-pax-bx/MA-PAX-RMA.fRMA-RASTER.png
  7565. lyxscale 10
  7566. width 45col%
  7567. groupId ma-frma
  7568. \end_inset
  7569. \end_layout
  7570. \begin_layout Plain Layout
  7571. \begin_inset Caption Standard
  7572. \begin_layout Plain Layout
  7573. \begin_inset CommandInset label
  7574. LatexCommand label
  7575. name "fig:MA-PAX-rma-frma"
  7576. \end_inset
  7577. RMA vs.
  7578. fRMA for blood samples.
  7579. \end_layout
  7580. \end_inset
  7581. \end_layout
  7582. \end_inset
  7583. \begin_inset space \hfill{}
  7584. \end_inset
  7585. \begin_inset Float figure
  7586. wide false
  7587. sideways false
  7588. status collapsed
  7589. \begin_layout Plain Layout
  7590. \align center
  7591. \begin_inset Graphics
  7592. filename graphics/frma-pax-bx/MA-PAX-fRMA.fRMA-RASTER.png
  7593. lyxscale 10
  7594. width 45col%
  7595. groupId ma-frma
  7596. \end_inset
  7597. \end_layout
  7598. \begin_layout Plain Layout
  7599. \begin_inset Caption Standard
  7600. \begin_layout Plain Layout
  7601. \begin_inset CommandInset label
  7602. LatexCommand label
  7603. name "fig:MA-PAX-frma-frma"
  7604. \end_inset
  7605. fRMA vs fRMA for blood samples.
  7606. \end_layout
  7607. \end_inset
  7608. \end_layout
  7609. \end_inset
  7610. \end_layout
  7611. \begin_layout Plain Layout
  7612. \begin_inset Caption Standard
  7613. \begin_layout Plain Layout
  7614. \series bold
  7615. \begin_inset CommandInset label
  7616. LatexCommand label
  7617. name "fig:Representative-MA-plots"
  7618. \end_inset
  7619. Representative MA plots comparing RMA and custom fRMA normalizations.
  7620. \series default
  7621. For each plot, 20 samples were normalized using 2 different normalizations,
  7622. and then averages (A) and log ratios (M) were plotted between the two different
  7623. normalizations for every probe.
  7624. For the
  7625. \begin_inset Quotes eld
  7626. \end_inset
  7627. fRMA vs fRMA
  7628. \begin_inset Quotes erd
  7629. \end_inset
  7630. plots (b & d), two different fRMA normalizations using vectors from two
  7631. independent batch samplings were compared.
  7632. Density of points is represented by blue shading, and individual outlier
  7633. points are plotted.
  7634. \end_layout
  7635. \end_inset
  7636. \end_layout
  7637. \end_inset
  7638. \end_layout
  7639. \begin_layout Standard
  7640. Figure
  7641. \begin_inset CommandInset ref
  7642. LatexCommand ref
  7643. reference "fig:ma-bx-rma-frma"
  7644. plural "false"
  7645. caps "false"
  7646. noprefix "false"
  7647. \end_inset
  7648. shows an MA plot of the RMA-normalized values against the fRMA-normalized
  7649. values for the same probe sets and arrays, corresponding to the first row
  7650. of Figure
  7651. \begin_inset CommandInset ref
  7652. LatexCommand ref
  7653. reference "fig:m-bx-violin"
  7654. plural "false"
  7655. caps "false"
  7656. noprefix "false"
  7657. \end_inset
  7658. .
  7659. This MA plot shows that not only is there a wide distribution of M-values,
  7660. but the trend of M-values is dependent on the average normalized intensity.
  7661. This is expected, since the overall trend represents the differences in
  7662. the quantile normalization step.
  7663. When running RMA, only the quantiles for these specific 20 arrays are used,
  7664. while for fRMA the quantile distribution is taking from all arrays used
  7665. in training.
  7666. Figure
  7667. \begin_inset CommandInset ref
  7668. LatexCommand ref
  7669. reference "fig:ma-bx-frma-frma"
  7670. plural "false"
  7671. caps "false"
  7672. noprefix "false"
  7673. \end_inset
  7674. shows a similar MA plot comparing 2 different fRMA normalizations, correspondin
  7675. g to the 6th row of Figure
  7676. \begin_inset CommandInset ref
  7677. LatexCommand ref
  7678. reference "fig:m-bx-violin"
  7679. plural "false"
  7680. caps "false"
  7681. noprefix "false"
  7682. \end_inset
  7683. .
  7684. The MA plot is very tightly centered around zero with no visible trend.
  7685. Figures
  7686. \begin_inset CommandInset ref
  7687. LatexCommand ref
  7688. reference "fig:m-pax-violin"
  7689. plural "false"
  7690. caps "false"
  7691. noprefix "false"
  7692. \end_inset
  7693. ,
  7694. \begin_inset CommandInset ref
  7695. LatexCommand ref
  7696. reference "fig:MA-PAX-rma-frma"
  7697. plural "false"
  7698. caps "false"
  7699. noprefix "false"
  7700. \end_inset
  7701. , and
  7702. \begin_inset CommandInset ref
  7703. LatexCommand ref
  7704. reference "fig:ma-bx-frma-frma"
  7705. plural "false"
  7706. caps "false"
  7707. noprefix "false"
  7708. \end_inset
  7709. show exactly the same information for the blood samples, once again comparing
  7710. the normalized expression values between normalizations for all probe sets
  7711. across 20 randomly selected test arrays.
  7712. Once again, there is a wider distribution of log ratios between RMA-normalized
  7713. values and fRMA-normalized, and a much tighter distribution when comparing
  7714. different fRMA normalizations to each other, indicating that the fRMA training
  7715. process is robust to random batch downsampling for the blood samples as
  7716. well.
  7717. \end_layout
  7718. \begin_layout Subsection
  7719. SVA, voom, and array weights improve model fit for methylation array data
  7720. \end_layout
  7721. \begin_layout Standard
  7722. \begin_inset ERT
  7723. status open
  7724. \begin_layout Plain Layout
  7725. \backslash
  7726. afterpage{
  7727. \end_layout
  7728. \begin_layout Plain Layout
  7729. \backslash
  7730. begin{landscape}
  7731. \end_layout
  7732. \end_inset
  7733. \end_layout
  7734. \begin_layout Standard
  7735. \begin_inset Float figure
  7736. wide false
  7737. sideways false
  7738. status open
  7739. \begin_layout Plain Layout
  7740. \begin_inset Flex TODO Note (inline)
  7741. status open
  7742. \begin_layout Plain Layout
  7743. Fix axis labels:
  7744. \begin_inset Quotes eld
  7745. \end_inset
  7746. log2 M-value
  7747. \begin_inset Quotes erd
  7748. \end_inset
  7749. is redundant because M-values are already log scale
  7750. \end_layout
  7751. \end_inset
  7752. \end_layout
  7753. \begin_layout Plain Layout
  7754. \begin_inset Float figure
  7755. wide false
  7756. sideways false
  7757. status collapsed
  7758. \begin_layout Plain Layout
  7759. \align center
  7760. \begin_inset Graphics
  7761. filename graphics/methylvoom/unadj.dupcor/meanvar-trends-PAGE1-CROP-RASTER.png
  7762. lyxscale 15
  7763. width 30col%
  7764. groupId voomaw-subfig
  7765. \end_inset
  7766. \end_layout
  7767. \begin_layout Plain Layout
  7768. \begin_inset Caption Standard
  7769. \begin_layout Plain Layout
  7770. \begin_inset CommandInset label
  7771. LatexCommand label
  7772. name "fig:meanvar-basic"
  7773. \end_inset
  7774. Mean-variance trend for analysis A.
  7775. \end_layout
  7776. \end_inset
  7777. \end_layout
  7778. \end_inset
  7779. \begin_inset space \hfill{}
  7780. \end_inset
  7781. \begin_inset Float figure
  7782. wide false
  7783. sideways false
  7784. status collapsed
  7785. \begin_layout Plain Layout
  7786. \align center
  7787. \begin_inset Graphics
  7788. filename graphics/methylvoom/unadj.dupcor.sva.aw/meanvar-trends-PAGE1-CROP-RASTER.png
  7789. lyxscale 15
  7790. width 30col%
  7791. groupId voomaw-subfig
  7792. \end_inset
  7793. \end_layout
  7794. \begin_layout Plain Layout
  7795. \begin_inset Caption Standard
  7796. \begin_layout Plain Layout
  7797. \begin_inset CommandInset label
  7798. LatexCommand label
  7799. name "fig:meanvar-sva-aw"
  7800. \end_inset
  7801. Mean-variance trend for analysis B.
  7802. \end_layout
  7803. \end_inset
  7804. \end_layout
  7805. \end_inset
  7806. \begin_inset space \hfill{}
  7807. \end_inset
  7808. \begin_inset Float figure
  7809. wide false
  7810. sideways false
  7811. status collapsed
  7812. \begin_layout Plain Layout
  7813. \align center
  7814. \begin_inset Graphics
  7815. filename graphics/methylvoom/unadj.dupcor.sva.voomaw/meanvar-trends-PAGE2-CROP-RASTER.png
  7816. lyxscale 15
  7817. width 30col%
  7818. groupId voomaw-subfig
  7819. \end_inset
  7820. \end_layout
  7821. \begin_layout Plain Layout
  7822. \begin_inset Caption Standard
  7823. \begin_layout Plain Layout
  7824. \begin_inset CommandInset label
  7825. LatexCommand label
  7826. name "fig:meanvar-sva-voomaw"
  7827. \end_inset
  7828. Mean-variance trend after voom modeling in analysis C.
  7829. \end_layout
  7830. \end_inset
  7831. \end_layout
  7832. \end_inset
  7833. \end_layout
  7834. \begin_layout Plain Layout
  7835. \begin_inset Caption Standard
  7836. \begin_layout Plain Layout
  7837. \series bold
  7838. Mean-variance trend modeling in methylation array data.
  7839. \series default
  7840. The estimated log2(standard deviation) for each probe is plotted against
  7841. the probe's average M-value across all samples as a black point, with some
  7842. transparency to make overplotting more visible, since there are about 450,000
  7843. points.
  7844. Density of points is also indicated by the dark blue contour lines.
  7845. The prior variance trend estimated by eBayes is shown in light blue, while
  7846. the lowess trend of the points is shown in red.
  7847. \end_layout
  7848. \end_inset
  7849. \end_layout
  7850. \end_inset
  7851. \end_layout
  7852. \begin_layout Standard
  7853. \begin_inset ERT
  7854. status open
  7855. \begin_layout Plain Layout
  7856. \backslash
  7857. end{landscape}
  7858. \end_layout
  7859. \begin_layout Plain Layout
  7860. }
  7861. \end_layout
  7862. \end_inset
  7863. \end_layout
  7864. \begin_layout Standard
  7865. Figure
  7866. \begin_inset CommandInset ref
  7867. LatexCommand ref
  7868. reference "fig:meanvar-basic"
  7869. plural "false"
  7870. caps "false"
  7871. noprefix "false"
  7872. \end_inset
  7873. shows the relationship between the mean M-value and the standard deviation
  7874. calculated for each probe in the methylation array data set.
  7875. A few features of the data are apparent.
  7876. First, the data are very strongly bimodal, with peaks in the density around
  7877. M-values of +4 and -4.
  7878. These modes correspond to methylation sites that are nearly 100% methylated
  7879. and nearly 100% unmethylated, respectively.
  7880. The strong bomodality indicates that a majority of probes interrogate sites
  7881. that fall into one of these two categories.
  7882. The points in between these modes represent sites that are either partially
  7883. methylated in many samples, or are fully methylated in some samples and
  7884. fully unmethylated in other samples, or some combination.
  7885. The next visible feature of the data is the W-shaped variance trend.
  7886. The upticks in the variance trend on either side are expected, based on
  7887. the sigmoid transformation exaggerating small differences at extreme M-values
  7888. (Figure
  7889. \begin_inset CommandInset ref
  7890. LatexCommand ref
  7891. reference "fig:Sigmoid-beta-m-mapping"
  7892. plural "false"
  7893. caps "false"
  7894. noprefix "false"
  7895. \end_inset
  7896. ).
  7897. However, the uptick in the center is interesting: it indicates that sites
  7898. that are not constitutitively methylated or unmethylated have a higher
  7899. variance.
  7900. This could be a genuine biological effect, or it could be spurious noise
  7901. that is only observable at sites with varying methylation.
  7902. \end_layout
  7903. \begin_layout Standard
  7904. In Figure
  7905. \begin_inset CommandInset ref
  7906. LatexCommand ref
  7907. reference "fig:meanvar-sva-aw"
  7908. plural "false"
  7909. caps "false"
  7910. noprefix "false"
  7911. \end_inset
  7912. , we see the mean-variance trend for the same methylation array data, this
  7913. time with surrogate variables and sample quality weights estimated from
  7914. the data and included in the model.
  7915. As expected, the overall average variance is smaller, since the surrogate
  7916. variables account for some of the variance.
  7917. In addition, the uptick in variance in the middle of the M-value range
  7918. has disappeared, turning the W shape into a wide U shape.
  7919. This indicates that the excess variance in the probes with intermediate
  7920. M-values was explained by systematic variations not correlated with known
  7921. covariates, and these variations were modeled by the surrogate variables.
  7922. The result is a nearly flat variance trend for the entire intermediate
  7923. M-value range from about -3 to +3.
  7924. Note that this corresponds closely to the range within which the M-value
  7925. transformation shown in Figure
  7926. \begin_inset CommandInset ref
  7927. LatexCommand ref
  7928. reference "fig:Sigmoid-beta-m-mapping"
  7929. plural "false"
  7930. caps "false"
  7931. noprefix "false"
  7932. \end_inset
  7933. is nearly linear.
  7934. In contrast, the excess variance at the extremes (greater than +3 and less
  7935. than -3) was not
  7936. \begin_inset Quotes eld
  7937. \end_inset
  7938. absorbed
  7939. \begin_inset Quotes erd
  7940. \end_inset
  7941. by the surrogate variables and remains in the plot, indicating that this
  7942. variation has no systematic component: probes with extreme M-values are
  7943. uniformly more variable across all samples, as expected.
  7944. \end_layout
  7945. \begin_layout Standard
  7946. Figure
  7947. \begin_inset CommandInset ref
  7948. LatexCommand ref
  7949. reference "fig:meanvar-sva-voomaw"
  7950. plural "false"
  7951. caps "false"
  7952. noprefix "false"
  7953. \end_inset
  7954. shows the mean-variance trend after fitting the model with the observation
  7955. weights assigned by voom based on the mean-variance trend shown in Figure
  7956. \begin_inset CommandInset ref
  7957. LatexCommand ref
  7958. reference "fig:meanvar-sva-aw"
  7959. plural "false"
  7960. caps "false"
  7961. noprefix "false"
  7962. \end_inset
  7963. .
  7964. As expected, the weights exactly counteract the trend in the data, resulting
  7965. in a nearly flat trend centered vertically at 1 (i.e.
  7966. 0 on the log scale).
  7967. This shows that the observations with extreme M-values have been appropriately
  7968. down-weighted to account for the fact that the noise in those observations
  7969. has been amplified by the non-linear M-value transformation.
  7970. In turn, this gives relatively more weight to observervations in the middle
  7971. region, which are more likely to correspond to probes measuring interesting
  7972. biology (not constitutively methylated or unmethylated).
  7973. \end_layout
  7974. \begin_layout Standard
  7975. \begin_inset Float table
  7976. wide false
  7977. sideways false
  7978. status open
  7979. \begin_layout Plain Layout
  7980. \align center
  7981. \begin_inset Tabular
  7982. <lyxtabular version="3" rows="5" columns="3">
  7983. <features tabularvalignment="middle">
  7984. <column alignment="center" valignment="top">
  7985. <column alignment="center" valignment="top">
  7986. <column alignment="center" valignment="top">
  7987. <row>
  7988. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  7989. \begin_inset Text
  7990. \begin_layout Plain Layout
  7991. Covariate
  7992. \end_layout
  7993. \end_inset
  7994. </cell>
  7995. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  7996. \begin_inset Text
  7997. \begin_layout Plain Layout
  7998. Test used
  7999. \end_layout
  8000. \end_inset
  8001. </cell>
  8002. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  8003. \begin_inset Text
  8004. \begin_layout Plain Layout
  8005. p-value
  8006. \end_layout
  8007. \end_inset
  8008. </cell>
  8009. </row>
  8010. <row>
  8011. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8012. \begin_inset Text
  8013. \begin_layout Plain Layout
  8014. Transplant Status
  8015. \end_layout
  8016. \end_inset
  8017. </cell>
  8018. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8019. \begin_inset Text
  8020. \begin_layout Plain Layout
  8021. F-test
  8022. \end_layout
  8023. \end_inset
  8024. </cell>
  8025. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8026. \begin_inset Text
  8027. \begin_layout Plain Layout
  8028. 0.404
  8029. \end_layout
  8030. \end_inset
  8031. </cell>
  8032. </row>
  8033. <row>
  8034. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8035. \begin_inset Text
  8036. \begin_layout Plain Layout
  8037. Diabetes Diagnosis
  8038. \end_layout
  8039. \end_inset
  8040. </cell>
  8041. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8042. \begin_inset Text
  8043. \begin_layout Plain Layout
  8044. \emph on
  8045. t
  8046. \emph default
  8047. -test
  8048. \end_layout
  8049. \end_inset
  8050. </cell>
  8051. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8052. \begin_inset Text
  8053. \begin_layout Plain Layout
  8054. 0.00106
  8055. \end_layout
  8056. \end_inset
  8057. </cell>
  8058. </row>
  8059. <row>
  8060. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8061. \begin_inset Text
  8062. \begin_layout Plain Layout
  8063. Sex
  8064. \end_layout
  8065. \end_inset
  8066. </cell>
  8067. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8068. \begin_inset Text
  8069. \begin_layout Plain Layout
  8070. \emph on
  8071. t
  8072. \emph default
  8073. -test
  8074. \end_layout
  8075. \end_inset
  8076. </cell>
  8077. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8078. \begin_inset Text
  8079. \begin_layout Plain Layout
  8080. 0.148
  8081. \end_layout
  8082. \end_inset
  8083. </cell>
  8084. </row>
  8085. <row>
  8086. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8087. \begin_inset Text
  8088. \begin_layout Plain Layout
  8089. Age
  8090. \end_layout
  8091. \end_inset
  8092. </cell>
  8093. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8094. \begin_inset Text
  8095. \begin_layout Plain Layout
  8096. linear regression
  8097. \end_layout
  8098. \end_inset
  8099. </cell>
  8100. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  8101. \begin_inset Text
  8102. \begin_layout Plain Layout
  8103. 0.212
  8104. \end_layout
  8105. \end_inset
  8106. </cell>
  8107. </row>
  8108. </lyxtabular>
  8109. \end_inset
  8110. \end_layout
  8111. \begin_layout Plain Layout
  8112. \begin_inset Caption Standard
  8113. \begin_layout Plain Layout
  8114. \series bold
  8115. \begin_inset CommandInset label
  8116. LatexCommand label
  8117. name "tab:weight-covariate-tests"
  8118. \end_inset
  8119. Association of sample weights with clinical covariates in methylation array
  8120. data.
  8121. \series default
  8122. Computed sample quality log weights were tested for significant association
  8123. with each of the variables in the model (1st column).
  8124. An appropriate test was selected for each variable based on whether the
  8125. variable had 2 categories (
  8126. \emph on
  8127. t
  8128. \emph default
  8129. -test), had more than 2 categories (F-test), or was numeric (linear regression).
  8130. The test selected is shown in the 2nd column.
  8131. P-values for association with the log weights are shown in the 3rd column.
  8132. No multiple testing adjustment was performed for these p-values.
  8133. \end_layout
  8134. \end_inset
  8135. \end_layout
  8136. \end_inset
  8137. \end_layout
  8138. \begin_layout Standard
  8139. \begin_inset Float figure
  8140. wide false
  8141. sideways false
  8142. status open
  8143. \begin_layout Plain Layout
  8144. \begin_inset Flex TODO Note (inline)
  8145. status open
  8146. \begin_layout Plain Layout
  8147. Redo the sample weight boxplot with notches, and remove fill colors
  8148. \end_layout
  8149. \end_inset
  8150. \end_layout
  8151. \begin_layout Plain Layout
  8152. \align center
  8153. \begin_inset Graphics
  8154. filename graphics/methylvoom/unadj.dupcor.sva.voomaw/sample-weights-PAGE3-CROP.pdf
  8155. lyxscale 50
  8156. width 60col%
  8157. groupId colwidth
  8158. \end_inset
  8159. \end_layout
  8160. \begin_layout Plain Layout
  8161. \begin_inset Caption Standard
  8162. \begin_layout Plain Layout
  8163. \begin_inset CommandInset label
  8164. LatexCommand label
  8165. name "fig:diabetes-sample-weights"
  8166. \end_inset
  8167. \series bold
  8168. Box-and-whiskers plot of sample quality weights grouped by diabetes diagnosis.
  8169. \series default
  8170. Samples were grouped based on diabetes diagnosis, and the distribution of
  8171. sample quality weights for each diagnosis was plotted as a box-and-whiskers
  8172. plot
  8173. \begin_inset CommandInset citation
  8174. LatexCommand cite
  8175. key "McGill1978"
  8176. literal "false"
  8177. \end_inset
  8178. .
  8179. \end_layout
  8180. \end_inset
  8181. \end_layout
  8182. \begin_layout Plain Layout
  8183. \end_layout
  8184. \end_inset
  8185. \end_layout
  8186. \begin_layout Standard
  8187. To determine whether any of the known experimental factors had an impact
  8188. on data quality, the sample quality weights estimated from the data were
  8189. tested for association with each of the experimental factors (Table
  8190. \begin_inset CommandInset ref
  8191. LatexCommand ref
  8192. reference "tab:weight-covariate-tests"
  8193. plural "false"
  8194. caps "false"
  8195. noprefix "false"
  8196. \end_inset
  8197. ).
  8198. Diabetes diagnosis was found to have a potentially significant association
  8199. with the sample weights, with a t-test p-value of
  8200. \begin_inset Formula $1.06\times10^{-3}$
  8201. \end_inset
  8202. .
  8203. Figure
  8204. \begin_inset CommandInset ref
  8205. LatexCommand ref
  8206. reference "fig:diabetes-sample-weights"
  8207. plural "false"
  8208. caps "false"
  8209. noprefix "false"
  8210. \end_inset
  8211. shows the distribution of sample weights grouped by diabetes diagnosis.
  8212. The samples from patients with Type 2 diabetes were assigned significantly
  8213. lower weights than those from patients with Type 1 diabetes.
  8214. This indicates that the type 2 diabetes samples had an overall higher variance
  8215. on average across all probes.
  8216. \end_layout
  8217. \begin_layout Standard
  8218. \begin_inset Float table
  8219. wide false
  8220. sideways false
  8221. status open
  8222. \begin_layout Plain Layout
  8223. \align center
  8224. \begin_inset Flex TODO Note (inline)
  8225. status open
  8226. \begin_layout Plain Layout
  8227. Consider transposing these tables
  8228. \end_layout
  8229. \end_inset
  8230. \end_layout
  8231. \begin_layout Plain Layout
  8232. \begin_inset Float table
  8233. wide false
  8234. sideways false
  8235. status open
  8236. \begin_layout Plain Layout
  8237. \align center
  8238. \begin_inset Tabular
  8239. <lyxtabular version="3" rows="5" columns="4">
  8240. <features tabularvalignment="middle">
  8241. <column alignment="center" valignment="top">
  8242. <column alignment="center" valignment="top">
  8243. <column alignment="center" valignment="top">
  8244. <column alignment="center" valignment="top">
  8245. <row>
  8246. <cell alignment="center" valignment="top" usebox="none">
  8247. \begin_inset Text
  8248. \begin_layout Plain Layout
  8249. \end_layout
  8250. \end_inset
  8251. </cell>
  8252. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8253. \begin_inset Text
  8254. \begin_layout Plain Layout
  8255. Analysis
  8256. \end_layout
  8257. \end_inset
  8258. </cell>
  8259. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8260. \begin_inset Text
  8261. \begin_layout Plain Layout
  8262. \end_layout
  8263. \end_inset
  8264. </cell>
  8265. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8266. \begin_inset Text
  8267. \begin_layout Plain Layout
  8268. \end_layout
  8269. \end_inset
  8270. </cell>
  8271. </row>
  8272. <row>
  8273. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8274. \begin_inset Text
  8275. \begin_layout Plain Layout
  8276. Contrast
  8277. \end_layout
  8278. \end_inset
  8279. </cell>
  8280. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8281. \begin_inset Text
  8282. \begin_layout Plain Layout
  8283. A
  8284. \end_layout
  8285. \end_inset
  8286. </cell>
  8287. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8288. \begin_inset Text
  8289. \begin_layout Plain Layout
  8290. B
  8291. \end_layout
  8292. \end_inset
  8293. </cell>
  8294. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  8295. \begin_inset Text
  8296. \begin_layout Plain Layout
  8297. C
  8298. \end_layout
  8299. \end_inset
  8300. </cell>
  8301. </row>
  8302. <row>
  8303. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8304. \begin_inset Text
  8305. \begin_layout Plain Layout
  8306. TX vs AR
  8307. \end_layout
  8308. \end_inset
  8309. </cell>
  8310. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8311. \begin_inset Text
  8312. \begin_layout Plain Layout
  8313. 0
  8314. \end_layout
  8315. \end_inset
  8316. </cell>
  8317. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8318. \begin_inset Text
  8319. \begin_layout Plain Layout
  8320. 25
  8321. \end_layout
  8322. \end_inset
  8323. </cell>
  8324. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8325. \begin_inset Text
  8326. \begin_layout Plain Layout
  8327. 22
  8328. \end_layout
  8329. \end_inset
  8330. </cell>
  8331. </row>
  8332. <row>
  8333. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8334. \begin_inset Text
  8335. \begin_layout Plain Layout
  8336. TX vs ADNR
  8337. \end_layout
  8338. \end_inset
  8339. </cell>
  8340. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8341. \begin_inset Text
  8342. \begin_layout Plain Layout
  8343. 7
  8344. \end_layout
  8345. \end_inset
  8346. </cell>
  8347. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8348. \begin_inset Text
  8349. \begin_layout Plain Layout
  8350. 338
  8351. \end_layout
  8352. \end_inset
  8353. </cell>
  8354. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8355. \begin_inset Text
  8356. \begin_layout Plain Layout
  8357. 369
  8358. \end_layout
  8359. \end_inset
  8360. </cell>
  8361. </row>
  8362. <row>
  8363. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8364. \begin_inset Text
  8365. \begin_layout Plain Layout
  8366. TX vs CAN
  8367. \end_layout
  8368. \end_inset
  8369. </cell>
  8370. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8371. \begin_inset Text
  8372. \begin_layout Plain Layout
  8373. 0
  8374. \end_layout
  8375. \end_inset
  8376. </cell>
  8377. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8378. \begin_inset Text
  8379. \begin_layout Plain Layout
  8380. 231
  8381. \end_layout
  8382. \end_inset
  8383. </cell>
  8384. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  8385. \begin_inset Text
  8386. \begin_layout Plain Layout
  8387. 278
  8388. \end_layout
  8389. \end_inset
  8390. </cell>
  8391. </row>
  8392. </lyxtabular>
  8393. \end_inset
  8394. \end_layout
  8395. \begin_layout Plain Layout
  8396. \begin_inset Caption Standard
  8397. \begin_layout Plain Layout
  8398. \begin_inset CommandInset label
  8399. LatexCommand label
  8400. name "tab:methyl-num-signif"
  8401. \end_inset
  8402. Number of probes significant at 10% FDR.
  8403. \end_layout
  8404. \end_inset
  8405. \end_layout
  8406. \end_inset
  8407. \begin_inset space \hfill{}
  8408. \end_inset
  8409. \begin_inset Float table
  8410. wide false
  8411. sideways false
  8412. status open
  8413. \begin_layout Plain Layout
  8414. \align center
  8415. \begin_inset Tabular
  8416. <lyxtabular version="3" rows="5" columns="4">
  8417. <features tabularvalignment="middle">
  8418. <column alignment="center" valignment="top">
  8419. <column alignment="center" valignment="top">
  8420. <column alignment="center" valignment="top">
  8421. <column alignment="center" valignment="top">
  8422. <row>
  8423. <cell alignment="center" valignment="top" usebox="none">
  8424. \begin_inset Text
  8425. \begin_layout Plain Layout
  8426. \end_layout
  8427. \end_inset
  8428. </cell>
  8429. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8430. \begin_inset Text
  8431. \begin_layout Plain Layout
  8432. Analysis
  8433. \end_layout
  8434. \end_inset
  8435. </cell>
  8436. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8437. \begin_inset Text
  8438. \begin_layout Plain Layout
  8439. \end_layout
  8440. \end_inset
  8441. </cell>
  8442. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8443. \begin_inset Text
  8444. \begin_layout Plain Layout
  8445. \end_layout
  8446. \end_inset
  8447. </cell>
  8448. </row>
  8449. <row>
  8450. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8451. \begin_inset Text
  8452. \begin_layout Plain Layout
  8453. Contrast
  8454. \end_layout
  8455. \end_inset
  8456. </cell>
  8457. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8458. \begin_inset Text
  8459. \begin_layout Plain Layout
  8460. A
  8461. \end_layout
  8462. \end_inset
  8463. </cell>
  8464. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8465. \begin_inset Text
  8466. \begin_layout Plain Layout
  8467. B
  8468. \end_layout
  8469. \end_inset
  8470. </cell>
  8471. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  8472. \begin_inset Text
  8473. \begin_layout Plain Layout
  8474. C
  8475. \end_layout
  8476. \end_inset
  8477. </cell>
  8478. </row>
  8479. <row>
  8480. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8481. \begin_inset Text
  8482. \begin_layout Plain Layout
  8483. TX vs AR
  8484. \end_layout
  8485. \end_inset
  8486. </cell>
  8487. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8488. \begin_inset Text
  8489. \begin_layout Plain Layout
  8490. 0
  8491. \end_layout
  8492. \end_inset
  8493. </cell>
  8494. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8495. \begin_inset Text
  8496. \begin_layout Plain Layout
  8497. 10,063
  8498. \end_layout
  8499. \end_inset
  8500. </cell>
  8501. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8502. \begin_inset Text
  8503. \begin_layout Plain Layout
  8504. 11,225
  8505. \end_layout
  8506. \end_inset
  8507. </cell>
  8508. </row>
  8509. <row>
  8510. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8511. \begin_inset Text
  8512. \begin_layout Plain Layout
  8513. TX vs ADNR
  8514. \end_layout
  8515. \end_inset
  8516. </cell>
  8517. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8518. \begin_inset Text
  8519. \begin_layout Plain Layout
  8520. 27
  8521. \end_layout
  8522. \end_inset
  8523. </cell>
  8524. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  8525. \begin_inset Text
  8526. \begin_layout Plain Layout
  8527. 12,674
  8528. \end_layout
  8529. \end_inset
  8530. </cell>
  8531. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  8532. \begin_inset Text
  8533. \begin_layout Plain Layout
  8534. 13,086
  8535. \end_layout
  8536. \end_inset
  8537. </cell>
  8538. </row>
  8539. <row>
  8540. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8541. \begin_inset Text
  8542. \begin_layout Plain Layout
  8543. TX vs CAN
  8544. \end_layout
  8545. \end_inset
  8546. </cell>
  8547. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8548. \begin_inset Text
  8549. \begin_layout Plain Layout
  8550. 966
  8551. \end_layout
  8552. \end_inset
  8553. </cell>
  8554. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  8555. \begin_inset Text
  8556. \begin_layout Plain Layout
  8557. 20,039
  8558. \end_layout
  8559. \end_inset
  8560. </cell>
  8561. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  8562. \begin_inset Text
  8563. \begin_layout Plain Layout
  8564. 20,955
  8565. \end_layout
  8566. \end_inset
  8567. </cell>
  8568. </row>
  8569. </lyxtabular>
  8570. \end_inset
  8571. \end_layout
  8572. \begin_layout Plain Layout
  8573. \begin_inset Caption Standard
  8574. \begin_layout Plain Layout
  8575. \begin_inset CommandInset label
  8576. LatexCommand label
  8577. name "tab:methyl-est-nonnull"
  8578. \end_inset
  8579. Estimated number of non-null tests, using the method of averaging local
  8580. FDR values
  8581. \begin_inset CommandInset citation
  8582. LatexCommand cite
  8583. key "Phipson2013Thesis"
  8584. literal "false"
  8585. \end_inset
  8586. .
  8587. \end_layout
  8588. \end_inset
  8589. \end_layout
  8590. \end_inset
  8591. \end_layout
  8592. \begin_layout Plain Layout
  8593. \begin_inset Caption Standard
  8594. \begin_layout Plain Layout
  8595. \series bold
  8596. Estimates of degree of differential methylation in for each contrast in
  8597. each analysis.
  8598. \series default
  8599. For each of the analyses in Table
  8600. \begin_inset CommandInset ref
  8601. LatexCommand ref
  8602. reference "tab:Summary-of-meth-analysis"
  8603. plural "false"
  8604. caps "false"
  8605. noprefix "false"
  8606. \end_inset
  8607. , these tables show the number of probes called significantly differentially
  8608. methylated at a threshold of 10% FDR for each comparison between TX and
  8609. the other 3 transplant statuses (a) and the estimated total number of probes
  8610. that are differentially methylated (b).
  8611. \end_layout
  8612. \end_inset
  8613. \end_layout
  8614. \end_inset
  8615. \end_layout
  8616. \begin_layout Standard
  8617. \begin_inset Float figure
  8618. wide false
  8619. sideways false
  8620. status open
  8621. \begin_layout Plain Layout
  8622. \align center
  8623. \series bold
  8624. \begin_inset Float figure
  8625. wide false
  8626. sideways false
  8627. status collapsed
  8628. \begin_layout Plain Layout
  8629. \align center
  8630. \begin_inset Graphics
  8631. filename graphics/methylvoom/unadj.dupcor/pval-histograms-PAGE1.pdf
  8632. lyxscale 33
  8633. width 30col%
  8634. groupId meth-pval-hist
  8635. \end_inset
  8636. \end_layout
  8637. \begin_layout Plain Layout
  8638. \series bold
  8639. \begin_inset Caption Standard
  8640. \begin_layout Plain Layout
  8641. AR vs.
  8642. TX, Analysis A
  8643. \end_layout
  8644. \end_inset
  8645. \end_layout
  8646. \begin_layout Plain Layout
  8647. \end_layout
  8648. \end_inset
  8649. \begin_inset space \hfill{}
  8650. \end_inset
  8651. \begin_inset Float figure
  8652. wide false
  8653. sideways false
  8654. status collapsed
  8655. \begin_layout Plain Layout
  8656. \align center
  8657. \begin_inset Graphics
  8658. filename graphics/methylvoom/unadj.dupcor/pval-histograms-PAGE2.pdf
  8659. lyxscale 33
  8660. width 30col%
  8661. groupId meth-pval-hist
  8662. \end_inset
  8663. \end_layout
  8664. \begin_layout Plain Layout
  8665. \series bold
  8666. \begin_inset Caption Standard
  8667. \begin_layout Plain Layout
  8668. ADNR vs.
  8669. TX, Analysis A
  8670. \end_layout
  8671. \end_inset
  8672. \end_layout
  8673. \end_inset
  8674. \begin_inset space \hfill{}
  8675. \end_inset
  8676. \begin_inset Float figure
  8677. wide false
  8678. sideways false
  8679. status collapsed
  8680. \begin_layout Plain Layout
  8681. \align center
  8682. \begin_inset Graphics
  8683. filename graphics/methylvoom/unadj.dupcor/pval-histograms-PAGE3.pdf
  8684. lyxscale 33
  8685. width 30col%
  8686. groupId meth-pval-hist
  8687. \end_inset
  8688. \end_layout
  8689. \begin_layout Plain Layout
  8690. \series bold
  8691. \begin_inset Caption Standard
  8692. \begin_layout Plain Layout
  8693. CAN vs.
  8694. TX, Analysis A
  8695. \end_layout
  8696. \end_inset
  8697. \end_layout
  8698. \end_inset
  8699. \end_layout
  8700. \begin_layout Plain Layout
  8701. \align center
  8702. \series bold
  8703. \begin_inset Float figure
  8704. wide false
  8705. sideways false
  8706. status collapsed
  8707. \begin_layout Plain Layout
  8708. \align center
  8709. \begin_inset Graphics
  8710. filename graphics/methylvoom/unadj.dupcor.sva.aw/pval-histograms-PAGE1.pdf
  8711. lyxscale 33
  8712. width 30col%
  8713. groupId meth-pval-hist
  8714. \end_inset
  8715. \end_layout
  8716. \begin_layout Plain Layout
  8717. \series bold
  8718. \begin_inset Caption Standard
  8719. \begin_layout Plain Layout
  8720. AR vs.
  8721. TX, Analysis B
  8722. \end_layout
  8723. \end_inset
  8724. \end_layout
  8725. \end_inset
  8726. \begin_inset space \hfill{}
  8727. \end_inset
  8728. \begin_inset Float figure
  8729. wide false
  8730. sideways false
  8731. status collapsed
  8732. \begin_layout Plain Layout
  8733. \align center
  8734. \begin_inset Graphics
  8735. filename graphics/methylvoom/unadj.dupcor.sva.aw/pval-histograms-PAGE2.pdf
  8736. lyxscale 33
  8737. width 30col%
  8738. groupId meth-pval-hist
  8739. \end_inset
  8740. \end_layout
  8741. \begin_layout Plain Layout
  8742. \series bold
  8743. \begin_inset Caption Standard
  8744. \begin_layout Plain Layout
  8745. ADNR vs.
  8746. TX, Analysis B
  8747. \end_layout
  8748. \end_inset
  8749. \end_layout
  8750. \end_inset
  8751. \begin_inset space \hfill{}
  8752. \end_inset
  8753. \begin_inset Float figure
  8754. wide false
  8755. sideways false
  8756. status collapsed
  8757. \begin_layout Plain Layout
  8758. \align center
  8759. \begin_inset Graphics
  8760. filename graphics/methylvoom/unadj.dupcor.sva.aw/pval-histograms-PAGE3.pdf
  8761. lyxscale 33
  8762. width 30col%
  8763. groupId meth-pval-hist
  8764. \end_inset
  8765. \end_layout
  8766. \begin_layout Plain Layout
  8767. \series bold
  8768. \begin_inset Caption Standard
  8769. \begin_layout Plain Layout
  8770. CAN vs.
  8771. TX, Analysis B
  8772. \end_layout
  8773. \end_inset
  8774. \end_layout
  8775. \end_inset
  8776. \end_layout
  8777. \begin_layout Plain Layout
  8778. \align center
  8779. \series bold
  8780. \begin_inset Float figure
  8781. wide false
  8782. sideways false
  8783. status collapsed
  8784. \begin_layout Plain Layout
  8785. \align center
  8786. \begin_inset Graphics
  8787. filename graphics/methylvoom/unadj.dupcor.sva.voomaw/pval-histograms-PAGE1.pdf
  8788. lyxscale 33
  8789. width 30col%
  8790. groupId meth-pval-hist
  8791. \end_inset
  8792. \end_layout
  8793. \begin_layout Plain Layout
  8794. \series bold
  8795. \begin_inset Caption Standard
  8796. \begin_layout Plain Layout
  8797. AR vs.
  8798. TX, Analysis C
  8799. \end_layout
  8800. \end_inset
  8801. \end_layout
  8802. \end_inset
  8803. \begin_inset space \hfill{}
  8804. \end_inset
  8805. \begin_inset Float figure
  8806. wide false
  8807. sideways false
  8808. status collapsed
  8809. \begin_layout Plain Layout
  8810. \align center
  8811. \begin_inset Graphics
  8812. filename graphics/methylvoom/unadj.dupcor.sva.voomaw/pval-histograms-PAGE2.pdf
  8813. lyxscale 33
  8814. width 30col%
  8815. groupId meth-pval-hist
  8816. \end_inset
  8817. \end_layout
  8818. \begin_layout Plain Layout
  8819. \series bold
  8820. \begin_inset Caption Standard
  8821. \begin_layout Plain Layout
  8822. ADNR vs.
  8823. TX, Analysis C
  8824. \end_layout
  8825. \end_inset
  8826. \end_layout
  8827. \end_inset
  8828. \begin_inset space \hfill{}
  8829. \end_inset
  8830. \begin_inset Float figure
  8831. wide false
  8832. sideways false
  8833. status collapsed
  8834. \begin_layout Plain Layout
  8835. \align center
  8836. \begin_inset Graphics
  8837. filename graphics/methylvoom/unadj.dupcor.sva.voomaw/pval-histograms-PAGE3.pdf
  8838. lyxscale 33
  8839. width 30col%
  8840. groupId meth-pval-hist
  8841. \end_inset
  8842. \end_layout
  8843. \begin_layout Plain Layout
  8844. \series bold
  8845. \begin_inset Caption Standard
  8846. \begin_layout Plain Layout
  8847. CAN vs.
  8848. TX, Analysis C
  8849. \end_layout
  8850. \end_inset
  8851. \end_layout
  8852. \end_inset
  8853. \end_layout
  8854. \begin_layout Plain Layout
  8855. \begin_inset Caption Standard
  8856. \begin_layout Plain Layout
  8857. \series bold
  8858. \begin_inset CommandInset label
  8859. LatexCommand label
  8860. name "fig:meth-p-value-histograms"
  8861. \end_inset
  8862. Probe p-value histograms for each contrast in each analysis.
  8863. \series default
  8864. For each differential methylation test of interest, the distribution of
  8865. p-values across all probes is plotted as a histogram.
  8866. The red solid line indicates the density that would be expected under the
  8867. null hypothesis for all probes (a
  8868. \begin_inset Formula $\mathrm{Uniform}(0,1)$
  8869. \end_inset
  8870. distribution), while the blue dotted line indicates the fraction of p-values
  8871. that actually follow the null hypothesis (
  8872. \begin_inset Formula $\hat{\pi}_{0}$
  8873. \end_inset
  8874. ) estimated using the method of averaging local FDR values
  8875. \begin_inset CommandInset citation
  8876. LatexCommand cite
  8877. key "Phipson2013Thesis"
  8878. literal "false"
  8879. \end_inset
  8880. .
  8881. the blue line is only shown in each plot if the estimate of
  8882. \begin_inset Formula $\hat{\pi}_{0}$
  8883. \end_inset
  8884. for that p-value distribution is different from 1.
  8885. \end_layout
  8886. \end_inset
  8887. \end_layout
  8888. \end_inset
  8889. \end_layout
  8890. \begin_layout Standard
  8891. Table
  8892. \begin_inset CommandInset ref
  8893. LatexCommand ref
  8894. reference "tab:methyl-num-signif"
  8895. plural "false"
  8896. caps "false"
  8897. noprefix "false"
  8898. \end_inset
  8899. shows the number of significantly differentially methylated probes reported
  8900. by each analysis for each comparison of interest at an FDR of 10%.
  8901. As expected, the more elaborate analyses, B and C, report more significant
  8902. probes than the more basic analysis A, consistent with the conclusions
  8903. above that the data contain hidden systematic variations that must be modeled.
  8904. Table
  8905. \begin_inset CommandInset ref
  8906. LatexCommand ref
  8907. reference "tab:methyl-est-nonnull"
  8908. plural "false"
  8909. caps "false"
  8910. noprefix "false"
  8911. \end_inset
  8912. shows the estimated number differentially methylated probes for each test
  8913. from each analysis.
  8914. This was computed by estimating the proportion of null hypotheses that
  8915. were true using the method of
  8916. \begin_inset CommandInset citation
  8917. LatexCommand cite
  8918. key "Phipson2013Thesis"
  8919. literal "false"
  8920. \end_inset
  8921. and subtracting that fraction from the total number of probes, yielding
  8922. an estimate of the number of null hypotheses that are false based on the
  8923. distribution of p-values across the entire dataset.
  8924. Note that this does not identify which null hypotheses should be rejected
  8925. (i.e.
  8926. which probes are significant); it only estimates the true number of such
  8927. probes.
  8928. Once again, analyses B and C result it much larger estimates for the number
  8929. of differentially methylated probes.
  8930. In this case, analysis C, the only analysis that includes voom, estimates
  8931. the largest number of differentially methylated probes for all 3 contrasts.
  8932. If the assumptions of all the methods employed hold, then this represents
  8933. a gain in statistical power over the simpler analysis A.
  8934. Figure
  8935. \begin_inset CommandInset ref
  8936. LatexCommand ref
  8937. reference "fig:meth-p-value-histograms"
  8938. plural "false"
  8939. caps "false"
  8940. noprefix "false"
  8941. \end_inset
  8942. shows the p-value distributions for each test, from which the numbers in
  8943. Table
  8944. \begin_inset CommandInset ref
  8945. LatexCommand ref
  8946. reference "tab:methyl-est-nonnull"
  8947. plural "false"
  8948. caps "false"
  8949. noprefix "false"
  8950. \end_inset
  8951. were generated.
  8952. The distributions for analysis A all have a dip in density near zero, which
  8953. is a strong sign of a poor model fit.
  8954. The histograms for analyses B and C are more well-behaved, with a uniform
  8955. component stretching all the way from 0 to 1 representing the probes for
  8956. which the null hypotheses is true (no differential methylation), and a
  8957. zero-biased component representing the probes for which the null hypothesis
  8958. is false (differentially methylated).
  8959. These histograms do not indicate any major issues with the model fit.
  8960. \end_layout
  8961. \begin_layout Standard
  8962. \begin_inset Flex TODO Note (inline)
  8963. status open
  8964. \begin_layout Plain Layout
  8965. If time allows, maybe generate the PCA plots before/after SVA effect subtraction
  8966. ?
  8967. \end_layout
  8968. \end_inset
  8969. \end_layout
  8970. \begin_layout Section
  8971. Discussion
  8972. \end_layout
  8973. \begin_layout Subsection
  8974. fRMA achieves clinically applicable normalization without sacrificing classifica
  8975. tion performance
  8976. \end_layout
  8977. \begin_layout Standard
  8978. As shown in Figure
  8979. \begin_inset CommandInset ref
  8980. LatexCommand ref
  8981. reference "fig:Classifier-probabilities-RMA"
  8982. plural "false"
  8983. caps "false"
  8984. noprefix "false"
  8985. \end_inset
  8986. , improper normalization, particularly separate normalization of training
  8987. and test samples, leads to unwanted biases in classification.
  8988. In a controlled experimental context, it is always possible to correct
  8989. this issue by normalizing all experimental samples together.
  8990. However, because it is not feasible to normalize all samples together in
  8991. a clinical context, a single-channel normalization is required is required.
  8992. \end_layout
  8993. \begin_layout Standard
  8994. The major concern in using a single-channel normalization is that non-single-cha
  8995. nnel methods can share information between arrays to improve the normalization,
  8996. and single-channel methods risk sacrificing the gains in normalization
  8997. accuracy that come from this information sharing.
  8998. In the case of RMA, this information sharing is accomplished through quantile
  8999. normalization and median polish steps.
  9000. The need for information sharing in quantile normalization can easily be
  9001. removed by learning a fixed set of quantiles from external data and normalizing
  9002. each array to these fixed quantiles, instead of the quantiles of the data
  9003. itself.
  9004. As long as the fixed quantiles are reasonable, the result will be similar
  9005. to standard RMA.
  9006. However, there is no analogous way to eliminate cross-array information
  9007. sharing in the median polish step, so fRMA replaces this with a weighted
  9008. average of probes on each array, with the weights learned from external
  9009. data.
  9010. This step of fRMA has the greatest potential to diverge from RMA un undesirable
  9011. ways.
  9012. \end_layout
  9013. \begin_layout Standard
  9014. However, when run on real data, fRMA performed at least as well as RMA in
  9015. both the internal validation and external validation tests.
  9016. This shows that fRMA can be used to normalize individual clinical samples
  9017. in a class prediction context without sacrificing the classifier performance
  9018. that would be obtained by using the more well-established RMA for normalization.
  9019. The other single-channel normalization method considered, SCAN, showed
  9020. some loss of AUC in the external validation test.
  9021. Based on these results, fRMA is the preferred normalization for clinical
  9022. samples in a class prediction context.
  9023. \end_layout
  9024. \begin_layout Subsection
  9025. Robust fRMA vectors can be generated for new array platforms
  9026. \end_layout
  9027. \begin_layout Standard
  9028. \begin_inset Flex TODO Note (inline)
  9029. status open
  9030. \begin_layout Plain Layout
  9031. Look up the exact numbers, do a find & replace for
  9032. \begin_inset Quotes eld
  9033. \end_inset
  9034. 850
  9035. \begin_inset Quotes erd
  9036. \end_inset
  9037. \end_layout
  9038. \end_inset
  9039. \end_layout
  9040. \begin_layout Standard
  9041. The published fRMA normalization vectors for the hgu133plus2 platform were
  9042. generated from a set of about 850 samples chosen from a wide range of tissues,
  9043. which the authors determined was sufficient to generate a robust set of
  9044. normalization vectors that could be applied across all tissues
  9045. \begin_inset CommandInset citation
  9046. LatexCommand cite
  9047. key "McCall2010"
  9048. literal "false"
  9049. \end_inset
  9050. .
  9051. Since we only had hthgu133pluspm for 2 tissues of interest, our needs were
  9052. more modest.
  9053. Even using only 130 samples in 26 batches of 5 samples each for kidney
  9054. biopsies, we were able to train a robust set of fRMA normalization vectors
  9055. that were not meaningfully affected by the random selection of 5 samples
  9056. from each batch.
  9057. As expected, the training process was just as robust for the blood samples
  9058. with 230 samples in 46 batches of 5 samples each.
  9059. Because these vectors were each generated using training samples from a
  9060. single tissue, they are not suitable for general use, unlike the vectors
  9061. provided with fRMA itself.
  9062. They are purpose-built for normalizing a specific type of sample on a specific
  9063. platform.
  9064. This is a mostly acceptable limitation in the context of developing a machine
  9065. learning classifier for diagnosing a disease based on samples of a specific
  9066. tissue.
  9067. \end_layout
  9068. \begin_layout Standard
  9069. \begin_inset Flex TODO Note (inline)
  9070. status open
  9071. \begin_layout Plain Layout
  9072. Talk about how these vectors can be used for any data from these tissues
  9073. on this platform even though they were custom made for this data set.
  9074. \end_layout
  9075. \end_inset
  9076. \end_layout
  9077. \begin_layout Standard
  9078. \begin_inset Flex TODO Note (inline)
  9079. status open
  9080. \begin_layout Plain Layout
  9081. How to bring up that these custom vectors were used in another project by
  9082. someone else that was never published?
  9083. \end_layout
  9084. \end_inset
  9085. \end_layout
  9086. \begin_layout Subsection
  9087. Methylation array data can be successfully analyzed using existing techniques,
  9088. but machine learning poses additional challenges
  9089. \end_layout
  9090. \begin_layout Standard
  9091. Both analysis strategies B and C both yield a reasonable analysis, with
  9092. a mean-variance trend that matches the expected behavior for the non-linear
  9093. M-value transformation (Figure
  9094. \begin_inset CommandInset ref
  9095. LatexCommand ref
  9096. reference "fig:meanvar-sva-aw"
  9097. plural "false"
  9098. caps "false"
  9099. noprefix "false"
  9100. \end_inset
  9101. ) and well-behaved p-value distributions (Figure
  9102. \begin_inset CommandInset ref
  9103. LatexCommand ref
  9104. reference "fig:meth-p-value-histograms"
  9105. plural "false"
  9106. caps "false"
  9107. noprefix "false"
  9108. \end_inset
  9109. ).
  9110. These two analyses also yield similar numbers of significant probes (Table
  9111. \begin_inset CommandInset ref
  9112. LatexCommand ref
  9113. reference "tab:methyl-num-signif"
  9114. plural "false"
  9115. caps "false"
  9116. noprefix "false"
  9117. \end_inset
  9118. ) and similar estimates of the number of differentially methylated probes
  9119. (Table
  9120. \begin_inset CommandInset ref
  9121. LatexCommand ref
  9122. reference "tab:methyl-est-nonnull"
  9123. plural "false"
  9124. caps "false"
  9125. noprefix "false"
  9126. \end_inset
  9127. ).
  9128. The main difference between these two analyses is the method used to account
  9129. for the mean-variance trend.
  9130. In analysis B, the trend is estimated and applied at the probe level: each
  9131. probe's estimated variance is squeezed toward the trend using an empirical
  9132. Bayes procedure (Figure
  9133. \begin_inset CommandInset ref
  9134. LatexCommand ref
  9135. reference "fig:meanvar-sva-aw"
  9136. plural "false"
  9137. caps "false"
  9138. noprefix "false"
  9139. \end_inset
  9140. ).
  9141. In analysis C, the trend is still estimated at the probe level, but instead
  9142. of estimating a single variance value shared across all observations for
  9143. a given probe, the voom method computes an initial estiamte of the variance
  9144. for each observation individually based on where its model-fitted M-value
  9145. falls on the trend line and then assigns inverse-variance weights to model
  9146. the difference in variance between observations.
  9147. An overall variance is still estimated for each probe using the same empirical
  9148. Bayes method, but now the residual trend is flat (Figure
  9149. \begin_inset CommandInset ref
  9150. LatexCommand ref
  9151. reference "fig:meanvar-sva-voomaw"
  9152. plural "false"
  9153. caps "false"
  9154. noprefix "false"
  9155. \end_inset
  9156. ), indicating that the mean-variance trend is adequately modeled by scaling
  9157. the estimated variance for each observation using the weights computed
  9158. by voom.
  9159. \end_layout
  9160. \begin_layout Standard
  9161. The difference between the standard empirical Bayes trended variance modeling
  9162. (analysis B) and voom (analysis C) is analogous to the difference between
  9163. a t-test with equal variance and a t-test with unequal variance, except
  9164. that the unequal group variances used in the latter test are estimated
  9165. based on the mean-variance trend from all the probes rather than the data
  9166. for the specific probe being tested, thus stabilizing the group variance
  9167. estimates by sharing information between probes.
  9168. Allowing voom to model the variance using observation weights in this manner
  9169. allows the linear model fit to concentrate statistical power where it will
  9170. do the most good.
  9171. For example, if a particular probe's M-values are always at the extreme
  9172. of the M-value range (e.g.
  9173. less than -4) for ADNR samples, but the M-values for that probe in TX and
  9174. CAN samples are within the flat region of the mean-variance trend (between
  9175. -3 and +3), voom is able to down-weight the contribution of the high-variance
  9176. M-values from the ADNR samples in order to gain more statistical power
  9177. while testing for differential methylation between TX and CAN.
  9178. In contrast, modeling the mean-variance trend only at the probe level would
  9179. combine the high-variance ADNR samples and lower-variance samples from
  9180. other conditions and estimate an intermediate variance for this probe.
  9181. In practice, analysis B shows that this approach is adequate, but the voom
  9182. approach in analysis C is at least as good on all model fit criteria and
  9183. yields a larger estimate for the number of differentially methylated genes,
  9184. \emph on
  9185. and
  9186. \emph default
  9187. it matches up better with the theoretical
  9188. \end_layout
  9189. \begin_layout Standard
  9190. The significant association of diebetes diagnosis with sample quality is
  9191. interesting.
  9192. The samples with Type 2 diabetes tended to have more variation, averaged
  9193. across all probes, than those with Type 1 diabetes.
  9194. This is consistent with the consensus that type 2 disbetes and the associated
  9195. metabolic syndrome represent a broad dysregulation of the body's endocrine
  9196. signalling related to metabolism [citation needed].
  9197. This dysregulation could easily manifest as a greater degree of variation
  9198. in the DNA methylation patterns of affected tissues.
  9199. In contrast, Type 1 disbetes has a more specific cause and effect, so a
  9200. less variable methylation signature is expected.
  9201. \end_layout
  9202. \begin_layout Standard
  9203. This preliminary anlaysis suggests that some degree of differential methylation
  9204. exists between TX and each of the three types of transplant disfunction
  9205. studied.
  9206. Hence, it may be feasible to train a classifier to diagnose transplant
  9207. disfunction from DNA methylation array data.
  9208. However, the major importance of both SVA and sample quality weighting
  9209. for proper modeling of this data poses significant challenges for any attempt
  9210. at a machine learning on data of similar quality.
  9211. While these are easily used in a modeling context with full sample information,
  9212. neither of these methods is directly applicable in a machine learning context,
  9213. where the diagnosis is not known ahead of time.
  9214. If a machine learning approach for methylation-based diagnosis is to be
  9215. pursued, it will either require machine-learning-friendly methods to address
  9216. the same systematic trends in the data that SVA and sample quality weighting
  9217. address, or it will require higher quality data with substantially less
  9218. systematic perturbation of the data.
  9219. \end_layout
  9220. \begin_layout Section
  9221. Future Directions
  9222. \end_layout
  9223. \begin_layout Standard
  9224. \begin_inset Flex TODO Note (inline)
  9225. status open
  9226. \begin_layout Plain Layout
  9227. Some work was already being done with the existing fRMA vectors.
  9228. Do I mention that here?
  9229. \end_layout
  9230. \end_inset
  9231. \end_layout
  9232. \begin_layout Subsection
  9233. Improving fRMA to allow training from batches of unequal size
  9234. \end_layout
  9235. \begin_layout Standard
  9236. Because the tools for building fRMA normalization vectors require equal-size
  9237. batches, many samples must be discarded from the training data.
  9238. This is undesirable for a few reasons.
  9239. First, more data is simply better, all other things being equal.
  9240. In this case,
  9241. \begin_inset Quotes eld
  9242. \end_inset
  9243. better
  9244. \begin_inset Quotes erd
  9245. \end_inset
  9246. means a more precise estimate of normalization parameters.
  9247. In addition, the samples to be discarded must be chosen arbitrarily, which
  9248. introduces an unnecessary element of randomness into the estimation process.
  9249. While the randomness can be made deterministic by setting a consistent
  9250. random seed, the need for equal size batches also introduces a need for
  9251. the analyst to decide on the appropriate trade-off between batch size and
  9252. the number of batches.
  9253. This introduces an unnecessary and undesirable
  9254. \begin_inset Quotes eld
  9255. \end_inset
  9256. researcher degree of freedom
  9257. \begin_inset Quotes erd
  9258. \end_inset
  9259. into the analysis, since the generated normalization vectors now depend
  9260. on the choice of batch size based on vague selection criteria and instinct,
  9261. which can unintentionally inproduce bias if the researcher chooses a batch
  9262. size based on what seems to yield the most favorable downstream results
  9263. \begin_inset CommandInset citation
  9264. LatexCommand cite
  9265. key "Simmons2011"
  9266. literal "false"
  9267. \end_inset
  9268. .
  9269. \end_layout
  9270. \begin_layout Standard
  9271. Fortunately, the requirement for equal-size batches is not inherent to the
  9272. fRMA algorithm but rather a limitation of the implementation in the frmaTools
  9273. package.
  9274. In personal communication, the package's author, Matthew McCall, has indicated
  9275. that with some work, it should be possible to improve the implementation
  9276. to work with batches of unequal sizes.
  9277. The current implementation ignores the batch size when calculating with-batch
  9278. and between-batch residual variances, since the batch size constant cancels
  9279. out later in the calculations as long as all batches are of equal size.
  9280. Hence, the calculations of these parameters would need to be modified to
  9281. remove this optimization and properly calculate the variances using the
  9282. full formula.
  9283. Once this modification is made, a new strategy would need to be developed
  9284. for assessing the stability of parameter estimates, since the random subsamplin
  9285. g step is eliminated, meaning that different subsamplings can no longer
  9286. be compared as in Figures
  9287. \begin_inset CommandInset ref
  9288. LatexCommand ref
  9289. reference "fig:frma-violin"
  9290. plural "false"
  9291. caps "false"
  9292. noprefix "false"
  9293. \end_inset
  9294. and
  9295. \begin_inset CommandInset ref
  9296. LatexCommand ref
  9297. reference "fig:Representative-MA-plots"
  9298. plural "false"
  9299. caps "false"
  9300. noprefix "false"
  9301. \end_inset
  9302. .
  9303. Bootstrap resampling is likely a good candidate here: sample many training
  9304. sets of equal size from the existing training set with replacement, estimate
  9305. parameters from each resampled training set, and compare the estimated
  9306. parameters between bootstraps in order to quantify the variability in each
  9307. parameter's estimation.
  9308. \end_layout
  9309. \begin_layout Subsection
  9310. Developing methylation arrays as a diagnostic tool for kidney transplant
  9311. rejection
  9312. \end_layout
  9313. \begin_layout Standard
  9314. The current study has showed that DNA methylation, as assayed by Illumina
  9315. 450k methylation arrays, has some potential for diagnosing transplant dysfuncti
  9316. ons, including rejection.
  9317. However, very few probes could be confidently identified as differentially
  9318. methylated between healthy and dysfunctional transplants.
  9319. One likely explanation for this is the predominant influence of unobserved
  9320. confounding factors.
  9321. SVA can model and correct for such factors, but the correction can never
  9322. be perfect, so some degree of unwanted systematic variation will always
  9323. remain after SVA correction.
  9324. If the effect size of the confounding factors was similar to that of the
  9325. factor of interest (in this case, transplant status), this would be an
  9326. acceptable limitation, since removing most of the confounding factors'
  9327. effects would allow the main effect to stand out.
  9328. However, in this data set, the confounding factors have a much larger effect
  9329. size than transplant status, which means that the small degree of remaining
  9330. variation not removed by SVA can still swamp the effect of interest, making
  9331. it difficult to detect.
  9332. This is, of course, a major issue when the end goal is to develop a classifier
  9333. to diagnose transplant rejection from methylation data, since batch-correction
  9334. methods like SVA that work in a linear modeling context cannot be applied
  9335. in a machine learning context.
  9336. \end_layout
  9337. \begin_layout Standard
  9338. Currently, the source of these unwanted systematic variations in the data
  9339. is unknown.
  9340. The best solution would be to determine the cause of the variation and
  9341. eliminate it, thereby eliminating the need to model and remove that variation.
  9342. However, if this proves impractical, another option is to use SVA to identify
  9343. probes that are highly associated with the surrogate variables that describe
  9344. the unwanted variation in the data.
  9345. These probes could be discarded prior to classifier training, in order
  9346. to maximize the chance that the training algorithm will be able to identify
  9347. highly predictive probes from those remaining.
  9348. Lastly, it is possible that some of this unwanted variation is a result
  9349. of the array-based assay being used and would be eliminated by switching
  9350. to assaying DNA methylation using bisulphite sequencing.
  9351. However, this carries the risk that the sequencing assay will have its
  9352. own set of biases that must be corrected for in a different way.
  9353. \end_layout
  9354. \begin_layout Chapter
  9355. Globin-blocking for more effective blood RNA-seq analysis in primate animal
  9356. model
  9357. \end_layout
  9358. \begin_layout Standard
  9359. \begin_inset Flex TODO Note (inline)
  9360. status open
  9361. \begin_layout Plain Layout
  9362. Choose between above and the paper title: Optimizing yield of deep RNA sequencin
  9363. g for gene expression profiling by globin reduction of peripheral blood
  9364. samples from cynomolgus monkeys (Macaca fascicularis).
  9365. \end_layout
  9366. \end_inset
  9367. \end_layout
  9368. \begin_layout Standard
  9369. \begin_inset Flex TODO Note (inline)
  9370. status open
  9371. \begin_layout Plain Layout
  9372. Chapter author list: https://tex.stackexchange.com/questions/156862/displaying-aut
  9373. hor-for-each-chapter-in-book Every chapter gets an author list, which may
  9374. or may not be part of a citation to a published/preprinted paper.
  9375. \end_layout
  9376. \end_inset
  9377. \end_layout
  9378. \begin_layout Standard
  9379. \begin_inset Flex TODO Note (inline)
  9380. status open
  9381. \begin_layout Plain Layout
  9382. Preprint then cite the paper
  9383. \end_layout
  9384. \end_inset
  9385. \end_layout
  9386. \begin_layout Section*
  9387. Abstract
  9388. \end_layout
  9389. \begin_layout Paragraph
  9390. Background
  9391. \end_layout
  9392. \begin_layout Standard
  9393. Primate blood contains high concentrations of globin messenger RNA.
  9394. Globin reduction is a standard technique used to improve the expression
  9395. results obtained by DNA microarrays on RNA from blood samples.
  9396. However, with whole transcriptome RNA-sequencing (RNA-seq) quickly replacing
  9397. microarrays for many applications, the impact of globin reduction for RNA-seq
  9398. has not been previously studied.
  9399. Moreover, no off-the-shelf kits are available for globin reduction in nonhuman
  9400. primates.
  9401. \end_layout
  9402. \begin_layout Paragraph
  9403. Results
  9404. \end_layout
  9405. \begin_layout Standard
  9406. Here we report a protocol for RNA-seq in primate blood samples that uses
  9407. complimentary oligonucleotides to block reverse transcription of the alpha
  9408. and beta globin genes.
  9409. In test samples from cynomolgus monkeys (Macaca fascicularis), this globin
  9410. blocking protocol approximately doubles the yield of informative (non-globin)
  9411. reads by greatly reducing the fraction of globin reads, while also improving
  9412. the consistency in sequencing depth between samples.
  9413. The increased yield enables detection of about 2000 more genes, significantly
  9414. increases the correlation in measured gene expression levels between samples,
  9415. and increases the sensitivity of differential gene expression tests.
  9416. \end_layout
  9417. \begin_layout Paragraph
  9418. Conclusions
  9419. \end_layout
  9420. \begin_layout Standard
  9421. These results show that globin blocking significantly improves the cost-effectiv
  9422. eness of mRNA sequencing in primate blood samples by doubling the yield
  9423. of useful reads, allowing detection of more genes, and improving the precision
  9424. of gene expression measurements.
  9425. Based on these results, a globin reducing or blocking protocol is recommended
  9426. for all RNA-seq studies of primate blood samples.
  9427. \end_layout
  9428. \begin_layout Section
  9429. Approach
  9430. \end_layout
  9431. \begin_layout Standard
  9432. \begin_inset Note Note
  9433. status open
  9434. \begin_layout Plain Layout
  9435. Consider putting some of this in the Intro chapter
  9436. \end_layout
  9437. \begin_layout Itemize
  9438. Cynomolgus monkeys as a model organism
  9439. \end_layout
  9440. \begin_deeper
  9441. \begin_layout Itemize
  9442. Highly related to humans
  9443. \end_layout
  9444. \begin_layout Itemize
  9445. Small size and short life cycle - good research animal
  9446. \end_layout
  9447. \begin_layout Itemize
  9448. Genomics resources still in development
  9449. \end_layout
  9450. \end_deeper
  9451. \begin_layout Itemize
  9452. Inadequacy of existing blood RNA-seq protocols
  9453. \end_layout
  9454. \begin_deeper
  9455. \begin_layout Itemize
  9456. Existing protocols use a separate globin pulldown step, slowing down processing
  9457. \end_layout
  9458. \end_deeper
  9459. \end_inset
  9460. \end_layout
  9461. \begin_layout Standard
  9462. Increasingly, researchers are turning to high-throughput mRNA sequencing
  9463. technologies (RNA-seq) in preference to expression microarrays for analysis
  9464. of gene expression
  9465. \begin_inset CommandInset citation
  9466. LatexCommand cite
  9467. key "Mutz2012"
  9468. literal "false"
  9469. \end_inset
  9470. .
  9471. The advantages are even greater for study of model organisms with no well-estab
  9472. lished array platforms available, such as the cynomolgus monkey (Macaca
  9473. fascicularis).
  9474. High fractions of globin mRNA are naturally present in mammalian peripheral
  9475. blood samples (up to 70% of total mRNA) and these are known to interfere
  9476. with the results of array-based expression profiling
  9477. \begin_inset CommandInset citation
  9478. LatexCommand cite
  9479. key "Winn2010"
  9480. literal "false"
  9481. \end_inset
  9482. .
  9483. The importance of globin reduction for RNA-seq of blood has only been evaluated
  9484. for a deepSAGE protocol on human samples
  9485. \begin_inset CommandInset citation
  9486. LatexCommand cite
  9487. key "Mastrokolias2012"
  9488. literal "false"
  9489. \end_inset
  9490. .
  9491. In the present report, we evaluated globin reduction using custom blocking
  9492. oligonucleotides for deep RNA-seq of peripheral blood samples from a nonhuman
  9493. primate, cynomolgus monkey, using the Illumina technology platform.
  9494. We demonstrate that globin reduction significantly improves the cost-effectiven
  9495. ess of RNA-seq in blood samples.
  9496. Thus, our protocol offers a significant advantage to any investigator planning
  9497. to use RNA-seq for gene expression profiling of nonhuman primate blood
  9498. samples.
  9499. Our method can be generally applied to any species by designing complementary
  9500. oligonucleotide blocking probes to the globin gene sequences of that species.
  9501. Indeed, any highly expressed but biologically uninformative transcripts
  9502. can also be blocked to further increase sequencing efficiency and value
  9503. \begin_inset CommandInset citation
  9504. LatexCommand cite
  9505. key "Arnaud2016"
  9506. literal "false"
  9507. \end_inset
  9508. .
  9509. \end_layout
  9510. \begin_layout Section
  9511. Methods
  9512. \end_layout
  9513. \begin_layout Subsection
  9514. Sample collection
  9515. \end_layout
  9516. \begin_layout Standard
  9517. All research reported here was done under IACUC-approved protocols at the
  9518. University of Miami and complied with all applicable federal and state
  9519. regulations and ethical principles for nonhuman primate research.
  9520. Blood draws occurred between 16 April 2012 and 18 June 2015.
  9521. The experimental system involved intrahepatic pancreatic islet transplantation
  9522. into Cynomolgus monkeys with induced diabetes mellitus with or without
  9523. concomitant infusion of mesenchymal stem cells.
  9524. Blood was collected at serial time points before and after transplantation
  9525. into PAXgene Blood RNA tubes (PreAnalytiX/Qiagen, Valencia, CA) at the
  9526. precise volume:volume ratio of 2.5 ml whole blood into 6.9 ml of PAX gene
  9527. additive.
  9528. \end_layout
  9529. \begin_layout Subsection
  9530. Globin Blocking
  9531. \end_layout
  9532. \begin_layout Standard
  9533. Four oligonucleotides were designed to hybridize to the 3’ end of the transcript
  9534. s for Cynomolgus HBA1, HBA2 and HBB, with two hybridization sites for HBB
  9535. and 2 sites for HBA (the chosen sites were identical in both HBA genes).
  9536. All oligos were purchased from Sigma and were entirely composed of 2’O-Me
  9537. bases with a C3 spacer positioned at the 3’ ends to prevent any polymerase
  9538. mediated primer extension.
  9539. \end_layout
  9540. \begin_layout Quote
  9541. HBA1/2 site 1: GCCCACUCAGACUUUAUUCAAAG-C3spacer
  9542. \end_layout
  9543. \begin_layout Quote
  9544. HBA1/2 site 2: GGUGCAAGGAGGGGAGGAG-C3spacer
  9545. \end_layout
  9546. \begin_layout Quote
  9547. HBB site 1: AAUGAAAAUAAAUGUUUUUUAUUAG-C3spacer
  9548. \end_layout
  9549. \begin_layout Quote
  9550. HBB site 2: CUCAAGGCCCUUCAUAAUAUCCC-C3spacer
  9551. \end_layout
  9552. \begin_layout Subsection
  9553. RNA-seq Library Preparation
  9554. \end_layout
  9555. \begin_layout Standard
  9556. Sequencing libraries were prepared with 200ng total RNA from each sample.
  9557. Polyadenylated mRNA was selected from 200 ng aliquots of cynomologus blood-deri
  9558. ved total RNA using Ambion Dynabeads Oligo(dT)25 beads (Invitrogen) following
  9559. manufacturer’s recommended protocol.
  9560. PolyA selected RNA was then combined with 8 pmol of HBA1/2 (site 1), 8
  9561. pmol of HBA1/2 (site 2), 12 pmol of HBB (site 1) and 12 pmol of HBB (site
  9562. 2) oligonucleotides.
  9563. In addition, 20 pmol of RT primer containing a portion of the Illumina
  9564. adapter sequence (B-oligo-dTV: GAGTTCCTTGGCACCCGAGAATTCCATTTTTTTTTTTTTTTTTTTV)
  9565. and 4 µL of 5X First Strand buffer (250 mM Tris-HCl pH 8.3, 375 mM KCl,
  9566. 15mM MgCl2) were added in a total volume of 15 µL.
  9567. The RNA was fragmented by heating this cocktail for 3 minutes at 95°C and
  9568. then placed on ice.
  9569. This was followed by the addition of 2 µL 0.1 M DTT, 1 µL RNaseOUT, 1 µL
  9570. 10mM dNTPs 10% biotin-16 aminoallyl-2’- dUTP and 10% biotin-16 aminoallyl-2’-
  9571. dCTP (TriLink Biotech, San Diego, CA), 1 µL Superscript II (200U/ µL, Thermo-Fi
  9572. sher).
  9573. A second “unblocked” library was prepared in the same way for each sample
  9574. but replacing the blocking oligos with an equivalent volume of water.
  9575. The reaction was carried out at 25°C for 15 minutes and 42°C for 40 minutes,
  9576. followed by incubation at 75°C for 10 minutes to inactivate the reverse
  9577. transcriptase.
  9578. \end_layout
  9579. \begin_layout Standard
  9580. The cDNA/RNA hybrid molecules were purified using 1.8X Ampure XP beads (Agencourt
  9581. ) following supplier’s recommended protocol.
  9582. The cDNA/RNA hybrid was eluted in 25 µL of 10 mM Tris-HCl pH 8.0, and then
  9583. bound to 25 µL of M280 Magnetic Streptavidin beads washed per recommended
  9584. protocol (Thermo-Fisher).
  9585. After 30 minutes of binding, beads were washed one time in 100 µL 0.1N NaOH
  9586. to denature and remove the bound RNA, followed by two 100 µL washes with
  9587. 1X TE buffer.
  9588. \end_layout
  9589. \begin_layout Standard
  9590. Subsequent attachment of the 5-prime Illumina A adapter was performed by
  9591. on-bead random primer extension of the following sequence (A-N8 primer:
  9592. TTCAGAGTTCTACAGTCCGACGATCNNNNNNNN).
  9593. Briefly, beads were resuspended in a 20 µL reaction containing 5 µM A-N8
  9594. primer, 40mM Tris-HCl pH 7.5, 20mM MgCl2, 50mM NaCl, 0.325U/µL Sequenase
  9595. 2.0 (Affymetrix, Santa Clara, CA), 0.0025U/µL inorganic pyrophosphatase (Affymetr
  9596. ix) and 300 µM each dNTP.
  9597. Reaction was incubated at 22°C for 30 minutes, then beads were washed 2
  9598. times with 1X TE buffer (200µL).
  9599. \end_layout
  9600. \begin_layout Standard
  9601. The magnetic streptavidin beads were resuspended in 34 µL nuclease-free
  9602. water and added directly to a PCR tube.
  9603. The two Illumina protocol-specified PCR primers were added at 0.53 µM (Illumina
  9604. TruSeq Universal Primer 1 and Illumina TruSeq barcoded PCR primer 2), along
  9605. with 40 µL 2X KAPA HiFi Hotstart ReadyMix (KAPA, Willmington MA) and thermocycl
  9606. ed as follows: starting with 98°C (2 min-hold); 15 cycles of 98°C, 20sec;
  9607. 60°C, 30sec; 72°C, 30sec; and finished with a 72°C (2 min-hold).
  9608. \end_layout
  9609. \begin_layout Standard
  9610. PCR products were purified with 1X Ampure Beads following manufacturer’s
  9611. recommended protocol.
  9612. Libraries were then analyzed using the Agilent TapeStation and quantitation
  9613. of desired size range was performed by “smear analysis”.
  9614. Samples were pooled in equimolar batches of 16 samples.
  9615. Pooled libraries were size selected on 2% agarose gels (E-Gel EX Agarose
  9616. Gels; Thermo-Fisher).
  9617. Products were cut between 250 and 350 bp (corresponding to insert sizes
  9618. of 130 to 230 bps).
  9619. Finished library pools were then sequenced on the Illumina NextSeq500 instrumen
  9620. t with 75 base read lengths.
  9621. \end_layout
  9622. \begin_layout Subsection
  9623. Read alignment and counting
  9624. \end_layout
  9625. \begin_layout Standard
  9626. Reads were aligned to the cynomolgus genome using STAR
  9627. \begin_inset CommandInset citation
  9628. LatexCommand cite
  9629. key "Dobin2013,Wilson2013"
  9630. literal "false"
  9631. \end_inset
  9632. .
  9633. Counts of uniquely mapped reads were obtained for every gene in each sample
  9634. with the “featureCounts” function from the Rsubread package, using each
  9635. of the three possibilities for the “strandSpecific” option: sense, antisense,
  9636. and unstranded
  9637. \begin_inset CommandInset citation
  9638. LatexCommand cite
  9639. key "Liao2014"
  9640. literal "false"
  9641. \end_inset
  9642. .
  9643. A few artifacts in the cynomolgus genome annotation complicated read counting.
  9644. First, no ortholog is annotated for alpha globin in the cynomolgus genome,
  9645. presumably because the human genome has two alpha globin genes with nearly
  9646. identical sequences, making the orthology relationship ambiguous.
  9647. However, two loci in the cynomolgus genome are as “hemoglobin subunit alpha-lik
  9648. e” (LOC102136192 and LOC102136846).
  9649. LOC102136192 is annotated as a pseudogene while LOC102136846 is annotated
  9650. as protein-coding.
  9651. Our globin reduction protocol was designed to include blocking of these
  9652. two genes.
  9653. Indeed, these two genes have almost the same read counts in each library
  9654. as the properly-annotated HBB gene and much larger counts than any other
  9655. gene in the unblocked libraries, giving confidence that reads derived from
  9656. the real alpha globin are mapping to both genes.
  9657. Thus, reads from both of these loci were counted as alpha globin reads
  9658. in all further analyses.
  9659. The second artifact is a small, uncharacterized non-coding RNA gene (LOC1021365
  9660. 91), which overlaps the HBA-like gene (LOC102136192) on the opposite strand.
  9661. If counting is not performed in stranded mode (or if a non-strand-specific
  9662. sequencing protocol is used), many reads mapping to the globin gene will
  9663. be discarded as ambiguous due to their overlap with this ncRNA gene, resulting
  9664. in significant undercounting of globin reads.
  9665. Therefore, stranded sense counts were used for all further analysis in
  9666. the present study to insure that we accurately accounted for globin transcript
  9667. reduction.
  9668. However, we note that stranded reads are not necessary for RNA-seq using
  9669. our protocol in standard practice.
  9670. \end_layout
  9671. \begin_layout Subsection
  9672. Normalization and Exploratory Data Analysis
  9673. \end_layout
  9674. \begin_layout Standard
  9675. Libraries were normalized by computing scaling factors using the edgeR package’s
  9676. Trimmed Mean of M-values method
  9677. \begin_inset CommandInset citation
  9678. LatexCommand cite
  9679. key "Robinson2010"
  9680. literal "false"
  9681. \end_inset
  9682. .
  9683. Log2 counts per million values (logCPM) were calculated using the cpm function
  9684. in edgeR for individual samples and aveLogCPM function for averages across
  9685. groups of samples, using those functions’ default prior count values to
  9686. avoid taking the logarithm of 0.
  9687. Genes were considered “present” if their average normalized logCPM values
  9688. across all libraries were at least -1.
  9689. Normalizing for gene length was unnecessary because the sequencing protocol
  9690. is 3’-biased and hence the expected read count for each gene is related
  9691. to the transcript’s copy number but not its length.
  9692. \end_layout
  9693. \begin_layout Standard
  9694. In order to assess the effect of blocking on reproducibility, Pearson and
  9695. Spearman correlation coefficients were computed between the logCPM values
  9696. for every pair of libraries within the globin-blocked (GB) and unblocked
  9697. (non-GB) groups, and edgeR's “estimateDisp” function was used to compute
  9698. negative binomial dispersions separately for the two groups
  9699. \begin_inset CommandInset citation
  9700. LatexCommand cite
  9701. key "Chen2014"
  9702. literal "false"
  9703. \end_inset
  9704. .
  9705. \end_layout
  9706. \begin_layout Subsection
  9707. Differential Expression Analysis
  9708. \end_layout
  9709. \begin_layout Standard
  9710. All tests for differential gene expression were performed using edgeR, by
  9711. first fitting a negative binomial generalized linear model to the counts
  9712. and normalization factors and then performing a quasi-likelihood F-test
  9713. with robust estimation of outlier gene dispersions
  9714. \begin_inset CommandInset citation
  9715. LatexCommand cite
  9716. key "Lund2012,Phipson2016"
  9717. literal "false"
  9718. \end_inset
  9719. .
  9720. To investigate the effects of globin blocking on each gene, an additive
  9721. model was fit to the full data with coefficients for globin blocking and
  9722. SampleID.
  9723. To test the effect of globin blocking on detection of differentially expressed
  9724. genes, the GB samples and non-GB samples were each analyzed independently
  9725. as follows: for each animal with both a pre-transplant and a post-transplant
  9726. time point in the data set, the pre-transplant sample and the earliest
  9727. post-transplant sample were selected, and all others were excluded, yielding
  9728. a pre-/post-transplant pair of samples for each animal (N=7 animals with
  9729. paired samples).
  9730. These samples were analyzed for pre-transplant vs.
  9731. post-transplant differential gene expression while controlling for inter-animal
  9732. variation using an additive model with coefficients for transplant and
  9733. animal ID.
  9734. In all analyses, p-values were adjusted using the Benjamini-Hochberg procedure
  9735. for FDR control
  9736. \begin_inset CommandInset citation
  9737. LatexCommand cite
  9738. key "Benjamini1995"
  9739. literal "false"
  9740. \end_inset
  9741. .
  9742. \end_layout
  9743. \begin_layout Standard
  9744. \begin_inset Note Note
  9745. status open
  9746. \begin_layout Itemize
  9747. New blood RNA-seq protocol to block reverse transcription of globin genes
  9748. \end_layout
  9749. \begin_layout Itemize
  9750. Blood RNA-seq time course after transplants with/without MSC infusion
  9751. \end_layout
  9752. \end_inset
  9753. \end_layout
  9754. \begin_layout Section
  9755. Results
  9756. \end_layout
  9757. \begin_layout Subsection
  9758. Globin blocking yields a larger and more consistent fraction of useful reads
  9759. \end_layout
  9760. \begin_layout Standard
  9761. \begin_inset ERT
  9762. status open
  9763. \begin_layout Plain Layout
  9764. \backslash
  9765. afterpage{
  9766. \end_layout
  9767. \begin_layout Plain Layout
  9768. \backslash
  9769. begin{landscape}
  9770. \end_layout
  9771. \end_inset
  9772. \end_layout
  9773. \begin_layout Standard
  9774. \begin_inset Float table
  9775. placement p
  9776. wide false
  9777. sideways false
  9778. status open
  9779. \begin_layout Plain Layout
  9780. \align center
  9781. \begin_inset Tabular
  9782. <lyxtabular version="3" rows="4" columns="7">
  9783. <features tabularvalignment="middle">
  9784. <column alignment="center" valignment="top">
  9785. <column alignment="center" valignment="top">
  9786. <column alignment="center" valignment="top">
  9787. <column alignment="center" valignment="top">
  9788. <column alignment="center" valignment="top">
  9789. <column alignment="center" valignment="top">
  9790. <column alignment="center" valignment="top">
  9791. <row>
  9792. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  9793. \begin_inset Text
  9794. \begin_layout Plain Layout
  9795. \end_layout
  9796. \end_inset
  9797. </cell>
  9798. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  9799. \begin_inset Text
  9800. \begin_layout Plain Layout
  9801. \family roman
  9802. \series medium
  9803. \shape up
  9804. \size normal
  9805. \emph off
  9806. \bar no
  9807. \strikeout off
  9808. \xout off
  9809. \uuline off
  9810. \uwave off
  9811. \noun off
  9812. \color none
  9813. Percent of Total Reads
  9814. \end_layout
  9815. \end_inset
  9816. </cell>
  9817. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  9818. \begin_inset Text
  9819. \begin_layout Plain Layout
  9820. \end_layout
  9821. \end_inset
  9822. </cell>
  9823. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  9824. \begin_inset Text
  9825. \begin_layout Plain Layout
  9826. \end_layout
  9827. \end_inset
  9828. </cell>
  9829. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  9830. \begin_inset Text
  9831. \begin_layout Plain Layout
  9832. \end_layout
  9833. \end_inset
  9834. </cell>
  9835. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  9836. \begin_inset Text
  9837. \begin_layout Plain Layout
  9838. \family roman
  9839. \series medium
  9840. \shape up
  9841. \size normal
  9842. \emph off
  9843. \bar no
  9844. \strikeout off
  9845. \xout off
  9846. \uuline off
  9847. \uwave off
  9848. \noun off
  9849. \color none
  9850. Percent of Genic Reads
  9851. \end_layout
  9852. \end_inset
  9853. </cell>
  9854. <cell multicolumn="2" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  9855. \begin_inset Text
  9856. \begin_layout Plain Layout
  9857. \end_layout
  9858. \end_inset
  9859. </cell>
  9860. </row>
  9861. <row>
  9862. <cell alignment="center" valignment="top" bottomline="true" leftline="true" usebox="none">
  9863. \begin_inset Text
  9864. \begin_layout Plain Layout
  9865. GB
  9866. \end_layout
  9867. \end_inset
  9868. </cell>
  9869. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  9870. \begin_inset Text
  9871. \begin_layout Plain Layout
  9872. \family roman
  9873. \series medium
  9874. \shape up
  9875. \size normal
  9876. \emph off
  9877. \bar no
  9878. \strikeout off
  9879. \xout off
  9880. \uuline off
  9881. \uwave off
  9882. \noun off
  9883. \color none
  9884. Non-globin Reads
  9885. \end_layout
  9886. \end_inset
  9887. </cell>
  9888. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  9889. \begin_inset Text
  9890. \begin_layout Plain Layout
  9891. \family roman
  9892. \series medium
  9893. \shape up
  9894. \size normal
  9895. \emph off
  9896. \bar no
  9897. \strikeout off
  9898. \xout off
  9899. \uuline off
  9900. \uwave off
  9901. \noun off
  9902. \color none
  9903. Globin Reads
  9904. \end_layout
  9905. \end_inset
  9906. </cell>
  9907. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  9908. \begin_inset Text
  9909. \begin_layout Plain Layout
  9910. \family roman
  9911. \series medium
  9912. \shape up
  9913. \size normal
  9914. \emph off
  9915. \bar no
  9916. \strikeout off
  9917. \xout off
  9918. \uuline off
  9919. \uwave off
  9920. \noun off
  9921. \color none
  9922. All Genic Reads
  9923. \end_layout
  9924. \end_inset
  9925. </cell>
  9926. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  9927. \begin_inset Text
  9928. \begin_layout Plain Layout
  9929. \family roman
  9930. \series medium
  9931. \shape up
  9932. \size normal
  9933. \emph off
  9934. \bar no
  9935. \strikeout off
  9936. \xout off
  9937. \uuline off
  9938. \uwave off
  9939. \noun off
  9940. \color none
  9941. All Aligned Reads
  9942. \end_layout
  9943. \end_inset
  9944. </cell>
  9945. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  9946. \begin_inset Text
  9947. \begin_layout Plain Layout
  9948. \family roman
  9949. \series medium
  9950. \shape up
  9951. \size normal
  9952. \emph off
  9953. \bar no
  9954. \strikeout off
  9955. \xout off
  9956. \uuline off
  9957. \uwave off
  9958. \noun off
  9959. \color none
  9960. Non-globin Reads
  9961. \end_layout
  9962. \end_inset
  9963. </cell>
  9964. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  9965. \begin_inset Text
  9966. \begin_layout Plain Layout
  9967. \family roman
  9968. \series medium
  9969. \shape up
  9970. \size normal
  9971. \emph off
  9972. \bar no
  9973. \strikeout off
  9974. \xout off
  9975. \uuline off
  9976. \uwave off
  9977. \noun off
  9978. \color none
  9979. Globin Reads
  9980. \end_layout
  9981. \end_inset
  9982. </cell>
  9983. </row>
  9984. <row>
  9985. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  9986. \begin_inset Text
  9987. \begin_layout Plain Layout
  9988. \family roman
  9989. \series medium
  9990. \shape up
  9991. \size normal
  9992. \emph off
  9993. \bar no
  9994. \strikeout off
  9995. \xout off
  9996. \uuline off
  9997. \uwave off
  9998. \noun off
  9999. \color none
  10000. Yes
  10001. \end_layout
  10002. \end_inset
  10003. </cell>
  10004. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10005. \begin_inset Text
  10006. \begin_layout Plain Layout
  10007. \family roman
  10008. \series medium
  10009. \shape up
  10010. \size normal
  10011. \emph off
  10012. \bar no
  10013. \strikeout off
  10014. \xout off
  10015. \uuline off
  10016. \uwave off
  10017. \noun off
  10018. \color none
  10019. 50.4% ± 6.82
  10020. \end_layout
  10021. \end_inset
  10022. </cell>
  10023. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10024. \begin_inset Text
  10025. \begin_layout Plain Layout
  10026. \family roman
  10027. \series medium
  10028. \shape up
  10029. \size normal
  10030. \emph off
  10031. \bar no
  10032. \strikeout off
  10033. \xout off
  10034. \uuline off
  10035. \uwave off
  10036. \noun off
  10037. \color none
  10038. 3.48% ± 2.94
  10039. \end_layout
  10040. \end_inset
  10041. </cell>
  10042. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10043. \begin_inset Text
  10044. \begin_layout Plain Layout
  10045. \family roman
  10046. \series medium
  10047. \shape up
  10048. \size normal
  10049. \emph off
  10050. \bar no
  10051. \strikeout off
  10052. \xout off
  10053. \uuline off
  10054. \uwave off
  10055. \noun off
  10056. \color none
  10057. 53.9% ± 6.81
  10058. \end_layout
  10059. \end_inset
  10060. </cell>
  10061. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10062. \begin_inset Text
  10063. \begin_layout Plain Layout
  10064. \family roman
  10065. \series medium
  10066. \shape up
  10067. \size normal
  10068. \emph off
  10069. \bar no
  10070. \strikeout off
  10071. \xout off
  10072. \uuline off
  10073. \uwave off
  10074. \noun off
  10075. \color none
  10076. 89.7% ± 2.40
  10077. \end_layout
  10078. \end_inset
  10079. </cell>
  10080. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10081. \begin_inset Text
  10082. \begin_layout Plain Layout
  10083. \family roman
  10084. \series medium
  10085. \shape up
  10086. \size normal
  10087. \emph off
  10088. \bar no
  10089. \strikeout off
  10090. \xout off
  10091. \uuline off
  10092. \uwave off
  10093. \noun off
  10094. \color none
  10095. 93.5% ± 5.25
  10096. \end_layout
  10097. \end_inset
  10098. </cell>
  10099. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  10100. \begin_inset Text
  10101. \begin_layout Plain Layout
  10102. \family roman
  10103. \series medium
  10104. \shape up
  10105. \size normal
  10106. \emph off
  10107. \bar no
  10108. \strikeout off
  10109. \xout off
  10110. \uuline off
  10111. \uwave off
  10112. \noun off
  10113. \color none
  10114. 6.49% ± 5.25
  10115. \end_layout
  10116. \end_inset
  10117. </cell>
  10118. </row>
  10119. <row>
  10120. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10121. \begin_inset Text
  10122. \begin_layout Plain Layout
  10123. \family roman
  10124. \series medium
  10125. \shape up
  10126. \size normal
  10127. \emph off
  10128. \bar no
  10129. \strikeout off
  10130. \xout off
  10131. \uuline off
  10132. \uwave off
  10133. \noun off
  10134. \color none
  10135. No
  10136. \end_layout
  10137. \end_inset
  10138. </cell>
  10139. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10140. \begin_inset Text
  10141. \begin_layout Plain Layout
  10142. \family roman
  10143. \series medium
  10144. \shape up
  10145. \size normal
  10146. \emph off
  10147. \bar no
  10148. \strikeout off
  10149. \xout off
  10150. \uuline off
  10151. \uwave off
  10152. \noun off
  10153. \color none
  10154. 26.3% ± 8.95
  10155. \end_layout
  10156. \end_inset
  10157. </cell>
  10158. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10159. \begin_inset Text
  10160. \begin_layout Plain Layout
  10161. \family roman
  10162. \series medium
  10163. \shape up
  10164. \size normal
  10165. \emph off
  10166. \bar no
  10167. \strikeout off
  10168. \xout off
  10169. \uuline off
  10170. \uwave off
  10171. \noun off
  10172. \color none
  10173. 44.6% ± 16.6
  10174. \end_layout
  10175. \end_inset
  10176. </cell>
  10177. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10178. \begin_inset Text
  10179. \begin_layout Plain Layout
  10180. \family roman
  10181. \series medium
  10182. \shape up
  10183. \size normal
  10184. \emph off
  10185. \bar no
  10186. \strikeout off
  10187. \xout off
  10188. \uuline off
  10189. \uwave off
  10190. \noun off
  10191. \color none
  10192. 70.1% ± 9.38
  10193. \end_layout
  10194. \end_inset
  10195. </cell>
  10196. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10197. \begin_inset Text
  10198. \begin_layout Plain Layout
  10199. \family roman
  10200. \series medium
  10201. \shape up
  10202. \size normal
  10203. \emph off
  10204. \bar no
  10205. \strikeout off
  10206. \xout off
  10207. \uuline off
  10208. \uwave off
  10209. \noun off
  10210. \color none
  10211. 90.7% ± 5.16
  10212. \end_layout
  10213. \end_inset
  10214. </cell>
  10215. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10216. \begin_inset Text
  10217. \begin_layout Plain Layout
  10218. \family roman
  10219. \series medium
  10220. \shape up
  10221. \size normal
  10222. \emph off
  10223. \bar no
  10224. \strikeout off
  10225. \xout off
  10226. \uuline off
  10227. \uwave off
  10228. \noun off
  10229. \color none
  10230. 38.8% ± 17.1
  10231. \end_layout
  10232. \end_inset
  10233. </cell>
  10234. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  10235. \begin_inset Text
  10236. \begin_layout Plain Layout
  10237. \family roman
  10238. \series medium
  10239. \shape up
  10240. \size normal
  10241. \emph off
  10242. \bar no
  10243. \strikeout off
  10244. \xout off
  10245. \uuline off
  10246. \uwave off
  10247. \noun off
  10248. \color none
  10249. 61.2% ± 17.1
  10250. \end_layout
  10251. \end_inset
  10252. </cell>
  10253. </row>
  10254. </lyxtabular>
  10255. \end_inset
  10256. \end_layout
  10257. \begin_layout Plain Layout
  10258. \begin_inset Caption Standard
  10259. \begin_layout Plain Layout
  10260. \series bold
  10261. \begin_inset Argument 1
  10262. status collapsed
  10263. \begin_layout Plain Layout
  10264. Fractions of reads mapping to genomic features in GB and non-GB samples.
  10265. \end_layout
  10266. \end_inset
  10267. \begin_inset CommandInset label
  10268. LatexCommand label
  10269. name "tab:Fractions-of-reads"
  10270. \end_inset
  10271. Fractions of reads mapping to genomic features in GB and non-GB samples.
  10272. \series default
  10273. All values are given as mean ± standard deviation.
  10274. \end_layout
  10275. \end_inset
  10276. \end_layout
  10277. \end_inset
  10278. \end_layout
  10279. \begin_layout Standard
  10280. \begin_inset ERT
  10281. status open
  10282. \begin_layout Plain Layout
  10283. \backslash
  10284. end{landscape}
  10285. \end_layout
  10286. \begin_layout Plain Layout
  10287. }
  10288. \end_layout
  10289. \end_inset
  10290. \end_layout
  10291. \begin_layout Standard
  10292. The objective of the present study was to validate a new protocol for deep
  10293. RNA-seq of whole blood drawn into PaxGene tubes from cynomolgus monkeys
  10294. undergoing islet transplantation, with particular focus on minimizing the
  10295. loss of useful sequencing space to uninformative globin reads.
  10296. The details of the analysis with respect to transplant outcomes and the
  10297. impact of mesenchymal stem cell treatment will be reported in a separate
  10298. manuscript (in preparation).
  10299. To focus on the efficacy of our globin blocking protocol, 37 blood samples,
  10300. 16 from pre-transplant and 21 from post-transplant time points, were each
  10301. prepped once with and once without globin blocking oligos, and were then
  10302. sequenced on an Illumina NextSeq500 instrument.
  10303. The number of reads aligning to each gene in the cynomolgus genome was
  10304. counted.
  10305. Table 1 summarizes the distribution of read fractions among the GB and
  10306. non-GB libraries.
  10307. In the libraries with no globin blocking, globin reads made up an average
  10308. of 44.6% of total input reads, while reads assigned to all other genes made
  10309. up an average of 26.3%.
  10310. The remaining reads either aligned to intergenic regions (that include
  10311. long non-coding RNAs) or did not align with any annotated transcripts in
  10312. the current build of the cynomolgus genome.
  10313. In the GB libraries, globin reads made up only 3.48% and reads assigned
  10314. to all other genes increased to 50.4%.
  10315. Thus, globin blocking resulted in a 92.2% reduction in globin reads and
  10316. a 91.6% increase in yield of useful non-globin reads.
  10317. \end_layout
  10318. \begin_layout Standard
  10319. This reduction is not quite as efficient as the previous analysis showed
  10320. for human samples by DeepSAGE (<0.4% globin reads after globin reduction)
  10321. \begin_inset CommandInset citation
  10322. LatexCommand cite
  10323. key "Mastrokolias2012"
  10324. literal "false"
  10325. \end_inset
  10326. .
  10327. Nonetheless, this degree of globin reduction is sufficient to nearly double
  10328. the yield of useful reads.
  10329. Thus, globin blocking cuts the required sequencing effort (and costs) to
  10330. achieve a target coverage depth by almost 50%.
  10331. Consistent with this near doubling of yield, the average difference in
  10332. un-normalized logCPM across all genes between the GB libraries and non-GB
  10333. libraries is approximately 1 (mean = 1.01, median = 1.08), an overall 2-fold
  10334. increase.
  10335. Un-normalized values are used here because the TMM normalization correctly
  10336. identifies this 2-fold difference as biologically irrelevant and removes
  10337. it.
  10338. \end_layout
  10339. \begin_layout Standard
  10340. \begin_inset Float figure
  10341. wide false
  10342. sideways false
  10343. status collapsed
  10344. \begin_layout Plain Layout
  10345. \align center
  10346. \begin_inset Graphics
  10347. filename graphics/Globin Paper/figure1 - globin-fractions.pdf
  10348. lyxscale 50
  10349. width 75col%
  10350. \end_inset
  10351. \end_layout
  10352. \begin_layout Plain Layout
  10353. \begin_inset Caption Standard
  10354. \begin_layout Plain Layout
  10355. \series bold
  10356. \begin_inset Argument 1
  10357. status collapsed
  10358. \begin_layout Plain Layout
  10359. Fraction of genic reads in each sample aligned to non-globin genes, with
  10360. and without globin blocking (GB).
  10361. \end_layout
  10362. \end_inset
  10363. \begin_inset CommandInset label
  10364. LatexCommand label
  10365. name "fig:Fraction-of-genic-reads"
  10366. \end_inset
  10367. Fraction of genic reads in each sample aligned to non-globin genes, with
  10368. and without globin blocking (GB).
  10369. \series default
  10370. All reads in each sequencing library were aligned to the cyno genome, and
  10371. the number of reads uniquely aligning to each gene was counted.
  10372. For each sample, counts were summed separately for all globin genes and
  10373. for the remainder of the genes (non-globin genes), and the fraction of
  10374. genic reads aligned to non-globin genes was computed.
  10375. Each point represents an individual sample.
  10376. Gray + signs indicate the means for globin-blocked libraries and unblocked
  10377. libraries.
  10378. The overall distribution for each group is represented as a notched box
  10379. plots.
  10380. Points are randomly spread vertically to avoid excessive overlapping.
  10381. \end_layout
  10382. \end_inset
  10383. \end_layout
  10384. \end_inset
  10385. \end_layout
  10386. \begin_layout Standard
  10387. Another important aspect is that the standard deviations in Table
  10388. \begin_inset CommandInset ref
  10389. LatexCommand ref
  10390. reference "tab:Fractions-of-reads"
  10391. plural "false"
  10392. caps "false"
  10393. noprefix "false"
  10394. \end_inset
  10395. are uniformly smaller in the GB samples than the non-GB ones, indicating
  10396. much greater consistency of yield.
  10397. This is best seen in the percentage of non-globin reads as a fraction of
  10398. total reads aligned to annotated genes (genic reads).
  10399. For the non-GB samples, this measure ranges from 10.9% to 80.9%, while for
  10400. the GB samples it ranges from 81.9% to 99.9% (Figure
  10401. \begin_inset CommandInset ref
  10402. LatexCommand ref
  10403. reference "fig:Fraction-of-genic-reads"
  10404. plural "false"
  10405. caps "false"
  10406. noprefix "false"
  10407. \end_inset
  10408. ).
  10409. This means that for applications where it is critical that each sample
  10410. achieve a specified minimum coverage in order to provide useful information,
  10411. it would be necessary to budget up to 10 times the sequencing depth per
  10412. sample without globin blocking, even though the average yield improvement
  10413. for globin blocking is only 2-fold, because every sample has a chance of
  10414. being 90% globin and 10% useful reads.
  10415. Hence, the more consistent behavior of GB samples makes planning an experiment
  10416. easier and more efficient because it eliminates the need to over-sequence
  10417. every sample in order to guard against the worst case of a high-globin
  10418. fraction.
  10419. \end_layout
  10420. \begin_layout Subsection
  10421. Globin blocking lowers the noise floor and allows detection of about 2000
  10422. more low-expression genes
  10423. \end_layout
  10424. \begin_layout Standard
  10425. \begin_inset Flex TODO Note (inline)
  10426. status open
  10427. \begin_layout Plain Layout
  10428. Remove redundant titles from figures
  10429. \end_layout
  10430. \end_inset
  10431. \end_layout
  10432. \begin_layout Standard
  10433. \begin_inset Float figure
  10434. wide false
  10435. sideways false
  10436. status collapsed
  10437. \begin_layout Plain Layout
  10438. \align center
  10439. \begin_inset Graphics
  10440. filename graphics/Globin Paper/figure2 - aveLogCPM-colored.pdf
  10441. lyxscale 50
  10442. height 60theight%
  10443. \end_inset
  10444. \end_layout
  10445. \begin_layout Plain Layout
  10446. \begin_inset Caption Standard
  10447. \begin_layout Plain Layout
  10448. \series bold
  10449. \begin_inset Argument 1
  10450. status collapsed
  10451. \begin_layout Plain Layout
  10452. Distributions of average group gene abundances when normalized separately
  10453. or together.
  10454. \end_layout
  10455. \end_inset
  10456. \begin_inset CommandInset label
  10457. LatexCommand label
  10458. name "fig:logcpm-dists"
  10459. \end_inset
  10460. Distributions of average group gene abundances when normalized separately
  10461. or together.
  10462. \series default
  10463. All reads in each sequencing library were aligned to the cyno genome, and
  10464. the number of reads uniquely aligning to each gene was counted.
  10465. Genes with zero counts in all libraries were discarded.
  10466. Libraries were normalized using the TMM method.
  10467. Libraries were split into globin-blocked (GB) and non-GB groups and the
  10468. average abundance for each gene in both groups, measured in log2 counts
  10469. per million reads counted, was computed using the aveLogCPM function.
  10470. The distribution of average gene logCPM values was plotted for both groups
  10471. using a kernel density plot to approximate a continuous distribution.
  10472. The logCPM GB distributions are marked in red, non-GB in blue.
  10473. The black vertical line denotes the chosen detection threshold of -1.
  10474. Top panel: Libraries were split into GB and non-GB groups first and normalized
  10475. separately.
  10476. Bottom panel: Libraries were all normalized together first and then split
  10477. into groups.
  10478. \end_layout
  10479. \end_inset
  10480. \end_layout
  10481. \begin_layout Plain Layout
  10482. \end_layout
  10483. \end_inset
  10484. \end_layout
  10485. \begin_layout Standard
  10486. Since globin blocking yields more usable sequencing depth, it should also
  10487. allow detection of more genes at any given threshold.
  10488. When we looked at the distribution of average normalized logCPM values
  10489. across all libraries for genes with at least one read assigned to them,
  10490. we observed the expected bimodal distribution, with a high-abundance "signal"
  10491. peak representing detected genes and a low-abundance "noise" peak representing
  10492. genes whose read count did not rise above the noise floor (Figure
  10493. \begin_inset CommandInset ref
  10494. LatexCommand ref
  10495. reference "fig:logcpm-dists"
  10496. plural "false"
  10497. caps "false"
  10498. noprefix "false"
  10499. \end_inset
  10500. ).
  10501. Consistent with the 2-fold increase in raw counts assigned to non-globin
  10502. genes, the signal peak for GB samples is shifted to the right relative
  10503. to the non-GB signal peak.
  10504. When all the samples are normalized together, this difference is normalized
  10505. out, lining up the signal peaks, and this reveals that, as expected, the
  10506. noise floor for the GB samples is about 2-fold lower.
  10507. This greater separation between signal and noise peaks in the GB samples
  10508. means that low-expression genes should be more easily detected and more
  10509. precisely quantified than in the non-GB samples.
  10510. \end_layout
  10511. \begin_layout Standard
  10512. \begin_inset Float figure
  10513. wide false
  10514. sideways false
  10515. status collapsed
  10516. \begin_layout Plain Layout
  10517. \align center
  10518. \begin_inset Graphics
  10519. filename graphics/Globin Paper/figure3 - detection.pdf
  10520. lyxscale 50
  10521. width 70col%
  10522. \end_inset
  10523. \end_layout
  10524. \begin_layout Plain Layout
  10525. \begin_inset Caption Standard
  10526. \begin_layout Plain Layout
  10527. \series bold
  10528. \begin_inset Argument 1
  10529. status collapsed
  10530. \begin_layout Plain Layout
  10531. Gene detections as a function of abundance thresholds in globin-blocked
  10532. (GB) and non-GB samples.
  10533. \end_layout
  10534. \end_inset
  10535. \begin_inset CommandInset label
  10536. LatexCommand label
  10537. name "fig:Gene-detections"
  10538. \end_inset
  10539. Gene detections as a function of abundance thresholds in globin-blocked
  10540. (GB) and non-GB samples.
  10541. \series default
  10542. Average abundance (logCPM,
  10543. \begin_inset Formula $\log_{2}$
  10544. \end_inset
  10545. counts per million reads counted) was computed by separate group normalization
  10546. as described in Figure
  10547. \begin_inset CommandInset ref
  10548. LatexCommand ref
  10549. reference "fig:logcpm-dists"
  10550. plural "false"
  10551. caps "false"
  10552. noprefix "false"
  10553. \end_inset
  10554. for both the GB and non-GB groups, as well as for all samples considered
  10555. as one large group.
  10556. For each every integer threshold from -2 to 3, the number of genes detected
  10557. at or above that logCPM threshold was plotted for each group.
  10558. \end_layout
  10559. \end_inset
  10560. \end_layout
  10561. \begin_layout Plain Layout
  10562. \end_layout
  10563. \end_inset
  10564. \end_layout
  10565. \begin_layout Standard
  10566. Based on these distributions, we selected a detection threshold of -1, which
  10567. is approximately the leftmost edge of the trough between the signal and
  10568. noise peaks.
  10569. This represents the most liberal possible detection threshold that doesn't
  10570. call substantial numbers of noise genes as detected.
  10571. Among the full dataset, 13429 genes were detected at this threshold, and
  10572. 22276 were not.
  10573. When considering the GB libraries and non-GB libraries separately and re-comput
  10574. ing normalization factors independently within each group, 14535 genes were
  10575. detected in the GB libraries while only 12460 were detected in the non-GB
  10576. libraries.
  10577. Thus, GB allowed the detection of 2000 extra genes that were buried under
  10578. the noise floor without GB.
  10579. This pattern of at least 2000 additional genes detected with GB was also
  10580. consistent across a wide range of possible detection thresholds, from -2
  10581. to 3 (see Figure
  10582. \begin_inset CommandInset ref
  10583. LatexCommand ref
  10584. reference "fig:Gene-detections"
  10585. plural "false"
  10586. caps "false"
  10587. noprefix "false"
  10588. \end_inset
  10589. ).
  10590. \end_layout
  10591. \begin_layout Subsection
  10592. Globin blocking does not add significant additional noise or decrease sample
  10593. quality
  10594. \end_layout
  10595. \begin_layout Standard
  10596. One potential worry is that the globin blocking protocol could perturb the
  10597. levels of non-globin genes.
  10598. There are two kinds of possible perturbations: systematic and random.
  10599. The former is not a major concern for detection of differential expression,
  10600. since a 2-fold change in every sample has no effect on the relative fold
  10601. change between samples.
  10602. In contrast, random perturbations would increase the noise and obscure
  10603. the signal in the dataset, reducing the capacity to detect differential
  10604. expression.
  10605. \end_layout
  10606. \begin_layout Standard
  10607. \begin_inset Float figure
  10608. wide false
  10609. sideways false
  10610. status collapsed
  10611. \begin_layout Plain Layout
  10612. \align center
  10613. \begin_inset Graphics
  10614. filename graphics/Globin Paper/figure4 - maplot-colored.pdf
  10615. lyxscale 50
  10616. width 60col%
  10617. groupId colwidth
  10618. \end_inset
  10619. \end_layout
  10620. \begin_layout Plain Layout
  10621. \begin_inset Caption Standard
  10622. \begin_layout Plain Layout
  10623. \begin_inset Argument 1
  10624. status collapsed
  10625. \begin_layout Plain Layout
  10626. MA plot showing effects of globin blocking on each gene's abundance.
  10627. \end_layout
  10628. \end_inset
  10629. \begin_inset CommandInset label
  10630. LatexCommand label
  10631. name "fig:MA-plot"
  10632. \end_inset
  10633. \series bold
  10634. MA plot showing effects of globin blocking on each gene's abundance.
  10635. \series default
  10636. All libraries were normalized together as described in Figure
  10637. \begin_inset CommandInset ref
  10638. LatexCommand ref
  10639. reference "fig:logcpm-dists"
  10640. plural "false"
  10641. caps "false"
  10642. noprefix "false"
  10643. \end_inset
  10644. , and genes with an average logCPM below -1 were filtered out.
  10645. Each remaining gene was tested for differential abundance with respect
  10646. to globin blocking (GB) using edgeR’s quasi-likelihood F-test, fitting
  10647. a negative binomial generalized linear model to table of read counts in
  10648. each library.
  10649. For each gene, edgeR reported average abundance (logCPM),
  10650. \begin_inset Formula $\log_{2}$
  10651. \end_inset
  10652. fold change (logFC), p-value, and Benjamini-Hochberg adjusted false discovery
  10653. rate (FDR).
  10654. Each gene's logFC was plotted against its logCPM, colored by FDR.
  10655. Red points are significant at ≤10% FDR, and blue are not significant at
  10656. that threshold.
  10657. The alpha and beta globin genes targeted for blocking are marked with large
  10658. triangles, while all other genes are represented as small points.
  10659. \end_layout
  10660. \end_inset
  10661. \end_layout
  10662. \begin_layout Plain Layout
  10663. \end_layout
  10664. \end_inset
  10665. \end_layout
  10666. \begin_layout Standard
  10667. \begin_inset Flex TODO Note (inline)
  10668. status open
  10669. \begin_layout Plain Layout
  10670. Standardize on
  10671. \begin_inset Quotes eld
  10672. \end_inset
  10673. log2
  10674. \begin_inset Quotes erd
  10675. \end_inset
  10676. notation
  10677. \end_layout
  10678. \end_inset
  10679. \end_layout
  10680. \begin_layout Standard
  10681. The data do indeed show small systematic perturbations in gene levels (Figure
  10682. \begin_inset CommandInset ref
  10683. LatexCommand ref
  10684. reference "fig:MA-plot"
  10685. plural "false"
  10686. caps "false"
  10687. noprefix "false"
  10688. \end_inset
  10689. ).
  10690. Other than the 3 designated alpha and beta globin genes, two other genes
  10691. stand out as having especially large negative log fold changes: HBD and
  10692. LOC1021365.
  10693. HBD, delta globin, is most likely targeted by the blocking oligos due to
  10694. high sequence homology with the other globin genes.
  10695. LOC1021365 is the aforementioned ncRNA that is reverse-complementary to
  10696. one of the alpha-like genes and that would be expected to be removed during
  10697. the globin blocking step.
  10698. All other genes appear in a cluster centered vertically at 0, and the vast
  10699. majority of genes in this cluster show an absolute log2(FC) of 0.5 or less.
  10700. Nevertheless, many of these small perturbations are still statistically
  10701. significant, indicating that the globin blocking oligos likely cause very
  10702. small but non-zero systematic perturbations in measured gene expression
  10703. levels.
  10704. \end_layout
  10705. \begin_layout Standard
  10706. \begin_inset Float figure
  10707. wide false
  10708. sideways false
  10709. status collapsed
  10710. \begin_layout Plain Layout
  10711. \align center
  10712. \begin_inset Graphics
  10713. filename graphics/Globin Paper/figure5 - corrplot.pdf
  10714. lyxscale 50
  10715. width 70col%
  10716. \end_inset
  10717. \end_layout
  10718. \begin_layout Plain Layout
  10719. \begin_inset Caption Standard
  10720. \begin_layout Plain Layout
  10721. \series bold
  10722. \begin_inset Argument 1
  10723. status collapsed
  10724. \begin_layout Plain Layout
  10725. Comparison of inter-sample gene abundance correlations with and without
  10726. globin blocking.
  10727. \end_layout
  10728. \end_inset
  10729. \begin_inset CommandInset label
  10730. LatexCommand label
  10731. name "fig:gene-abundance-correlations"
  10732. \end_inset
  10733. Comparison of inter-sample gene abundance correlations with and without
  10734. globin blocking (GB).
  10735. \series default
  10736. All libraries were normalized together as described in Figure 2, and genes
  10737. with an average abundance (logCPM, log2 counts per million reads counted)
  10738. less than -1 were filtered out.
  10739. Each gene’s logCPM was computed in each library using the edgeR cpm function.
  10740. For each pair of biological samples, the Pearson correlation between those
  10741. samples' GB libraries was plotted against the correlation between the same
  10742. samples’ non-GB libraries.
  10743. Each point represents an unique pair of samples.
  10744. The solid gray line shows a quantile-quantile plot of distribution of GB
  10745. correlations vs.
  10746. that of non-GB correlations.
  10747. The thin dashed line is the identity line, provided for reference.
  10748. \end_layout
  10749. \end_inset
  10750. \end_layout
  10751. \begin_layout Plain Layout
  10752. \end_layout
  10753. \end_inset
  10754. \end_layout
  10755. \begin_layout Standard
  10756. To evaluate the possibility of globin blocking causing random perturbations
  10757. and reducing sample quality, we computed the Pearson correlation between
  10758. logCPM values for every pair of samples with and without GB and plotted
  10759. them against each other (Figure
  10760. \begin_inset CommandInset ref
  10761. LatexCommand ref
  10762. reference "fig:gene-abundance-correlations"
  10763. plural "false"
  10764. caps "false"
  10765. noprefix "false"
  10766. \end_inset
  10767. ).
  10768. The plot indicated that the GB libraries have higher sample-to-sample correlati
  10769. ons than the non-GB libraries.
  10770. Parametric and nonparametric tests for differences between the correlations
  10771. with and without GB both confirmed that this difference was highly significant
  10772. (2-sided paired t-test: t = 37.2, df = 665, P ≪ 2.2e-16; 2-sided Wilcoxon
  10773. sign-rank test: V = 2195, P ≪ 2.2e-16).
  10774. Performing the same tests on the Spearman correlations gave the same conclusion
  10775. (t-test: t = 26.8, df = 665, P ≪ 2.2e-16; sign-rank test: V = 8781, P ≪ 2.2e-16).
  10776. The edgeR package was used to compute the overall biological coefficient
  10777. of variation (BCV) for GB and non-GB libraries, and found that globin blocking
  10778. resulted in a negligible increase in the BCV (0.417 with GB vs.
  10779. 0.400 without).
  10780. The near equality of the BCVs for both sets indicates that the higher correlati
  10781. ons in the GB libraries are most likely a result of the increased yield
  10782. of useful reads, which reduces the contribution of Poisson counting uncertainty
  10783. to the overall variance of the logCPM values
  10784. \begin_inset CommandInset citation
  10785. LatexCommand cite
  10786. key "McCarthy2012"
  10787. literal "false"
  10788. \end_inset
  10789. .
  10790. This improves the precision of expression measurements and more than offsets
  10791. the negligible increase in BCV.
  10792. \end_layout
  10793. \begin_layout Subsection
  10794. More differentially expressed genes are detected with globin blocking
  10795. \end_layout
  10796. \begin_layout Standard
  10797. \begin_inset Float table
  10798. wide false
  10799. sideways false
  10800. status collapsed
  10801. \begin_layout Plain Layout
  10802. \align center
  10803. \begin_inset Tabular
  10804. <lyxtabular version="3" rows="5" columns="5">
  10805. <features tabularvalignment="middle">
  10806. <column alignment="center" valignment="top">
  10807. <column alignment="center" valignment="top">
  10808. <column alignment="center" valignment="top">
  10809. <column alignment="center" valignment="top">
  10810. <column alignment="center" valignment="top">
  10811. <row>
  10812. <cell alignment="center" valignment="top" usebox="none">
  10813. \begin_inset Text
  10814. \begin_layout Plain Layout
  10815. \end_layout
  10816. \end_inset
  10817. </cell>
  10818. <cell alignment="center" valignment="top" usebox="none">
  10819. \begin_inset Text
  10820. \begin_layout Plain Layout
  10821. \end_layout
  10822. \end_inset
  10823. </cell>
  10824. <cell multicolumn="1" alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  10825. \begin_inset Text
  10826. \begin_layout Plain Layout
  10827. \series bold
  10828. No Globin Blocking
  10829. \end_layout
  10830. \end_inset
  10831. </cell>
  10832. <cell multicolumn="2" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  10833. \begin_inset Text
  10834. \begin_layout Plain Layout
  10835. \end_layout
  10836. \end_inset
  10837. </cell>
  10838. <cell multicolumn="2" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  10839. \begin_inset Text
  10840. \begin_layout Plain Layout
  10841. \end_layout
  10842. \end_inset
  10843. </cell>
  10844. </row>
  10845. <row>
  10846. <cell alignment="center" valignment="top" usebox="none">
  10847. \begin_inset Text
  10848. \begin_layout Plain Layout
  10849. \end_layout
  10850. \end_inset
  10851. </cell>
  10852. <cell alignment="center" valignment="top" usebox="none">
  10853. \begin_inset Text
  10854. \begin_layout Plain Layout
  10855. \end_layout
  10856. \end_inset
  10857. </cell>
  10858. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10859. \begin_inset Text
  10860. \begin_layout Plain Layout
  10861. \series bold
  10862. Up
  10863. \end_layout
  10864. \end_inset
  10865. </cell>
  10866. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10867. \begin_inset Text
  10868. \begin_layout Plain Layout
  10869. \series bold
  10870. NS
  10871. \end_layout
  10872. \end_inset
  10873. </cell>
  10874. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  10875. \begin_inset Text
  10876. \begin_layout Plain Layout
  10877. \series bold
  10878. Down
  10879. \end_layout
  10880. \end_inset
  10881. </cell>
  10882. </row>
  10883. <row>
  10884. <cell multirow="3" alignment="center" valignment="middle" topline="true" bottomline="true" leftline="true" usebox="none">
  10885. \begin_inset Text
  10886. \begin_layout Plain Layout
  10887. \series bold
  10888. Globin-Blocking
  10889. \end_layout
  10890. \end_inset
  10891. </cell>
  10892. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10893. \begin_inset Text
  10894. \begin_layout Plain Layout
  10895. \series bold
  10896. Up
  10897. \end_layout
  10898. \end_inset
  10899. </cell>
  10900. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10901. \begin_inset Text
  10902. \begin_layout Plain Layout
  10903. \family roman
  10904. \series medium
  10905. \shape up
  10906. \size normal
  10907. \emph off
  10908. \bar no
  10909. \strikeout off
  10910. \xout off
  10911. \uuline off
  10912. \uwave off
  10913. \noun off
  10914. \color none
  10915. 231
  10916. \end_layout
  10917. \end_inset
  10918. </cell>
  10919. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10920. \begin_inset Text
  10921. \begin_layout Plain Layout
  10922. \family roman
  10923. \series medium
  10924. \shape up
  10925. \size normal
  10926. \emph off
  10927. \bar no
  10928. \strikeout off
  10929. \xout off
  10930. \uuline off
  10931. \uwave off
  10932. \noun off
  10933. \color none
  10934. 515
  10935. \end_layout
  10936. \end_inset
  10937. </cell>
  10938. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  10939. \begin_inset Text
  10940. \begin_layout Plain Layout
  10941. \family roman
  10942. \series medium
  10943. \shape up
  10944. \size normal
  10945. \emph off
  10946. \bar no
  10947. \strikeout off
  10948. \xout off
  10949. \uuline off
  10950. \uwave off
  10951. \noun off
  10952. \color none
  10953. 2
  10954. \end_layout
  10955. \end_inset
  10956. </cell>
  10957. </row>
  10958. <row>
  10959. <cell multirow="4" alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10960. \begin_inset Text
  10961. \begin_layout Plain Layout
  10962. \end_layout
  10963. \end_inset
  10964. </cell>
  10965. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10966. \begin_inset Text
  10967. \begin_layout Plain Layout
  10968. \series bold
  10969. NS
  10970. \end_layout
  10971. \end_inset
  10972. </cell>
  10973. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10974. \begin_inset Text
  10975. \begin_layout Plain Layout
  10976. \family roman
  10977. \series medium
  10978. \shape up
  10979. \size normal
  10980. \emph off
  10981. \bar no
  10982. \strikeout off
  10983. \xout off
  10984. \uuline off
  10985. \uwave off
  10986. \noun off
  10987. \color none
  10988. 160
  10989. \end_layout
  10990. \end_inset
  10991. </cell>
  10992. <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
  10993. \begin_inset Text
  10994. \begin_layout Plain Layout
  10995. \family roman
  10996. \series medium
  10997. \shape up
  10998. \size normal
  10999. \emph off
  11000. \bar no
  11001. \strikeout off
  11002. \xout off
  11003. \uuline off
  11004. \uwave off
  11005. \noun off
  11006. \color none
  11007. 11235
  11008. \end_layout
  11009. \end_inset
  11010. </cell>
  11011. <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
  11012. \begin_inset Text
  11013. \begin_layout Plain Layout
  11014. \family roman
  11015. \series medium
  11016. \shape up
  11017. \size normal
  11018. \emph off
  11019. \bar no
  11020. \strikeout off
  11021. \xout off
  11022. \uuline off
  11023. \uwave off
  11024. \noun off
  11025. \color none
  11026. 136
  11027. \end_layout
  11028. \end_inset
  11029. </cell>
  11030. </row>
  11031. <row>
  11032. <cell multirow="4" alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  11033. \begin_inset Text
  11034. \begin_layout Plain Layout
  11035. \end_layout
  11036. \end_inset
  11037. </cell>
  11038. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  11039. \begin_inset Text
  11040. \begin_layout Plain Layout
  11041. \series bold
  11042. Down
  11043. \end_layout
  11044. \end_inset
  11045. </cell>
  11046. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  11047. \begin_inset Text
  11048. \begin_layout Plain Layout
  11049. \family roman
  11050. \series medium
  11051. \shape up
  11052. \size normal
  11053. \emph off
  11054. \bar no
  11055. \strikeout off
  11056. \xout off
  11057. \uuline off
  11058. \uwave off
  11059. \noun off
  11060. \color none
  11061. 0
  11062. \end_layout
  11063. \end_inset
  11064. </cell>
  11065. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
  11066. \begin_inset Text
  11067. \begin_layout Plain Layout
  11068. \family roman
  11069. \series medium
  11070. \shape up
  11071. \size normal
  11072. \emph off
  11073. \bar no
  11074. \strikeout off
  11075. \xout off
  11076. \uuline off
  11077. \uwave off
  11078. \noun off
  11079. \color none
  11080. 548
  11081. \end_layout
  11082. \end_inset
  11083. </cell>
  11084. <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
  11085. \begin_inset Text
  11086. \begin_layout Plain Layout
  11087. \family roman
  11088. \series medium
  11089. \shape up
  11090. \size normal
  11091. \emph off
  11092. \bar no
  11093. \strikeout off
  11094. \xout off
  11095. \uuline off
  11096. \uwave off
  11097. \noun off
  11098. \color none
  11099. 127
  11100. \end_layout
  11101. \end_inset
  11102. </cell>
  11103. </row>
  11104. </lyxtabular>
  11105. \end_inset
  11106. \end_layout
  11107. \begin_layout Plain Layout
  11108. \begin_inset Caption Standard
  11109. \begin_layout Plain Layout
  11110. \series bold
  11111. \begin_inset Argument 1
  11112. status open
  11113. \begin_layout Plain Layout
  11114. Comparison of significantly differentially expressed genes with and without
  11115. globin blocking.
  11116. \end_layout
  11117. \end_inset
  11118. \begin_inset CommandInset label
  11119. LatexCommand label
  11120. name "tab:Comparison-of-significant"
  11121. \end_inset
  11122. Comparison of significantly differentially expressed genes with and without
  11123. globin blocking.
  11124. \series default
  11125. Up, Down: Genes significantly up/down-regulated in post-transplant samples
  11126. relative to pre-transplant samples, with a false discovery rate of 10%
  11127. or less.
  11128. NS: Non-significant genes (false discovery rate greater than 10%).
  11129. \end_layout
  11130. \end_inset
  11131. \end_layout
  11132. \begin_layout Plain Layout
  11133. \end_layout
  11134. \end_inset
  11135. \end_layout
  11136. \begin_layout Standard
  11137. To compare performance on differential gene expression tests, we took subsets
  11138. of both the GB and non-GB libraries with exactly one pre-transplant and
  11139. one post-transplant sample for each animal that had paired samples available
  11140. for analysis (N=7 animals, N=14 samples in each subset).
  11141. The same test for pre- vs.
  11142. post-transplant differential gene expression was performed on the same
  11143. 7 pairs of samples from GB libraries and non-GB libraries, in each case
  11144. using an FDR of 10% as the threshold of significance.
  11145. Out of 12954 genes that passed the detection threshold in both subsets,
  11146. 358 were called significantly differentially expressed in the same direction
  11147. in both sets; 1063 were differentially expressed in the GB set only; 296
  11148. were differentially expressed in the non-GB set only; 2 genes were called
  11149. significantly up in the GB set but significantly down in the non-GB set;
  11150. and the remaining 11235 were not called differentially expressed in either
  11151. set.
  11152. These data are summarized in Table
  11153. \begin_inset CommandInset ref
  11154. LatexCommand ref
  11155. reference "tab:Comparison-of-significant"
  11156. plural "false"
  11157. caps "false"
  11158. noprefix "false"
  11159. \end_inset
  11160. .
  11161. The differences in BCV calculated by EdgeR for these subsets of samples
  11162. were negligible (BCV = 0.302 for GB and 0.297 for non-GB).
  11163. \end_layout
  11164. \begin_layout Standard
  11165. The key point is that the GB data results in substantially more differentially
  11166. expressed calls than the non-GB data.
  11167. Since there is no gold standard for this dataset, it is impossible to be
  11168. certain whether this is due to under-calling of differential expression
  11169. in the non-GB samples or over-calling in the GB samples.
  11170. However, given that both datasets are derived from the same biological
  11171. samples and have nearly equal BCVs, it is more likely that the larger number
  11172. of DE calls in the GB samples are genuine detections that were enabled
  11173. by the higher sequencing depth and measurement precision of the GB samples.
  11174. Note that the same set of genes was considered in both subsets, so the
  11175. larger number of differentially expressed gene calls in the GB data set
  11176. reflects a greater sensitivity to detect significant differential gene
  11177. expression and not simply the larger total number of detected genes in
  11178. GB samples described earlier.
  11179. \end_layout
  11180. \begin_layout Section
  11181. Discussion
  11182. \end_layout
  11183. \begin_layout Standard
  11184. The original experience with whole blood gene expression profiling on DNA
  11185. microarrays demonstrated that the high concentration of globin transcripts
  11186. reduced the sensitivity to detect genes with relatively low expression
  11187. levels, in effect, significantly reducing the sensitivity.
  11188. To address this limitation, commercial protocols for globin reduction were
  11189. developed based on strategies to block globin transcript amplification
  11190. during labeling or physically removing globin transcripts by affinity bead
  11191. methods
  11192. \begin_inset CommandInset citation
  11193. LatexCommand cite
  11194. key "Winn2010"
  11195. literal "false"
  11196. \end_inset
  11197. .
  11198. More recently, using the latest generation of labeling protocols and arrays,
  11199. it was determined that globin reduction was no longer necessary to obtain
  11200. sufficient sensitivity to detect differential transcript expression
  11201. \begin_inset CommandInset citation
  11202. LatexCommand cite
  11203. key "NuGEN2010"
  11204. literal "false"
  11205. \end_inset
  11206. .
  11207. However, we are not aware of any publications using these currently available
  11208. protocols the with latest generation of microarrays that actually compare
  11209. the detection sensitivity with and without globin reduction.
  11210. However, in practice this has now been adopted generally primarily driven
  11211. by concerns for cost control.
  11212. The main objective of our work was to directly test the impact of globin
  11213. gene transcripts and a new globin blocking protocol for application to
  11214. the newest generation of differential gene expression profiling determined
  11215. using next generation sequencing.
  11216. \end_layout
  11217. \begin_layout Standard
  11218. The challenge of doing global gene expression profiling in cynomolgus monkeys
  11219. is that the current available arrays were never designed to comprehensively
  11220. cover this genome and have not been updated since the first assemblies
  11221. of the cynomolgus genome were published.
  11222. Therefore, we determined that the best strategy for peripheral blood profiling
  11223. was to do deep RNA-seq and inform the workflow using the latest available
  11224. genome assembly and annotation
  11225. \begin_inset CommandInset citation
  11226. LatexCommand cite
  11227. key "Wilson2013"
  11228. literal "false"
  11229. \end_inset
  11230. .
  11231. However, it was not immediately clear whether globin reduction was necessary
  11232. for RNA-seq or how much improvement in efficiency or sensitivity to detect
  11233. differential gene expression would be achieved for the added cost and work.
  11234. \end_layout
  11235. \begin_layout Standard
  11236. We only found one report that demonstrated that globin reduction significantly
  11237. improved the effective read yields for sequencing of human peripheral blood
  11238. cell RNA using a DeepSAGE protocol
  11239. \begin_inset CommandInset citation
  11240. LatexCommand cite
  11241. key "Mastrokolias2012"
  11242. literal "false"
  11243. \end_inset
  11244. .
  11245. The approach to DeepSAGE involves two different restriction enzymes that
  11246. purify and then tag small fragments of transcripts at specific locations
  11247. and thus, significantly reduces the complexity of the transcriptome.
  11248. Therefore, we could not determine how DeepSAGE results would translate
  11249. to the common strategy in the field for assaying the entire transcript
  11250. population by whole-transcriptome 3’-end RNA-seq.
  11251. Furthermore, if globin reduction is necessary, we also needed a globin
  11252. reduction method specific to cynomolgus globin sequences that would work
  11253. an organism for which no kit is available off the shelf.
  11254. \end_layout
  11255. \begin_layout Standard
  11256. As mentioned above, the addition of globin blocking oligos has a very small
  11257. impact on measured expression levels of gene expression.
  11258. However, this is a non-issue for the purposes of differential expression
  11259. testing, since a systematic change in a gene in all samples does not affect
  11260. relative expression levels between samples.
  11261. However, we must acknowledge that simple comparisons of gene expression
  11262. data obtained by GB and non-GB protocols are not possible without additional
  11263. normalization.
  11264. \end_layout
  11265. \begin_layout Standard
  11266. More importantly, globin blocking not only nearly doubles the yield of usable
  11267. reads, it also increases inter-sample correlation and sensitivity to detect
  11268. differential gene expression relative to the same set of samples profiled
  11269. without blocking.
  11270. In addition, globin blocking does not add a significant amount of random
  11271. noise to the data.
  11272. Globin blocking thus represents a cost-effective way to squeeze more data
  11273. and statistical power out of the same blood samples and the same amount
  11274. of sequencing.
  11275. In conclusion, globin reduction greatly increases the yield of useful RNA-seq
  11276. reads mapping to the rest of the genome, with minimal perturbations in
  11277. the relative levels of non-globin genes.
  11278. Based on these results, globin transcript reduction using sequence-specific,
  11279. complementary blocking oligonucleotides is recommended for all deep RNA-seq
  11280. of cynomolgus and other nonhuman primate blood samples.
  11281. \end_layout
  11282. \begin_layout Section
  11283. Future Directions
  11284. \end_layout
  11285. \begin_layout Standard
  11286. One drawback of the globin blocking method presented in this analysis is
  11287. a poor yield of genic reads, only around 50%.
  11288. In a separate experiment, the reagent mixture was modified so as to address
  11289. this drawback, resulting in a method that produces an even better reduction
  11290. in globin reads without reducing the overall fraction of genic reads.
  11291. However, the data showing this improvement consists of only a few test
  11292. samples, so the larger data set analyzed above was chosen in order to demonstra
  11293. te the effectiveness of the method in reducing globin reads while preserving
  11294. the biological signal.
  11295. \end_layout
  11296. \begin_layout Standard
  11297. The motivation for developing a fast practical way to enrich for non-globin
  11298. reads in cyno blood samples was to enable a large-scale RNA-seq experiment
  11299. investigating the effects of mesenchymal stem cell infusion on blood gene
  11300. expression in cynomologus transplant recipients in a time course after
  11301. transplantation.
  11302. With the globin blocking method in place, the way is now clear for this
  11303. experiment to proceed.
  11304. \end_layout
  11305. \begin_layout Chapter
  11306. Future Directions
  11307. \end_layout
  11308. \begin_layout Standard
  11309. \begin_inset Flex TODO Note (inline)
  11310. status open
  11311. \begin_layout Plain Layout
  11312. If there are any chapter-independent future directions, put them here.
  11313. Otherwise, delete this section.
  11314. Check in the directions if this is OK.
  11315. \end_layout
  11316. \end_inset
  11317. \end_layout
  11318. \begin_layout Standard
  11319. \begin_inset ERT
  11320. status collapsed
  11321. \begin_layout Plain Layout
  11322. % Use "References" as the title of the Bibliography
  11323. \end_layout
  11324. \begin_layout Plain Layout
  11325. \backslash
  11326. renewcommand{
  11327. \backslash
  11328. bibname}{References}
  11329. \end_layout
  11330. \end_inset
  11331. \end_layout
  11332. \begin_layout Standard
  11333. \begin_inset CommandInset bibtex
  11334. LatexCommand bibtex
  11335. btprint "btPrintCited"
  11336. bibfiles "code-refs,refs-PROCESSED"
  11337. options "bibtotoc,unsrt"
  11338. \end_inset
  11339. \end_layout
  11340. \begin_layout Standard
  11341. \begin_inset Flex TODO Note (inline)
  11342. status open
  11343. \begin_layout Plain Layout
  11344. Check bib entry formatting & sort order
  11345. \end_layout
  11346. \end_inset
  11347. \end_layout
  11348. \begin_layout Standard
  11349. \begin_inset Flex TODO Note (inline)
  11350. status open
  11351. \begin_layout Plain Layout
  11352. Check in-text citation format.
  11353. Probably don't just want [1], [2], etc.
  11354. \end_layout
  11355. \end_inset
  11356. \end_layout
  11357. \end_body
  11358. \end_document