presentation.mkdn 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641
  1. ---
  2. title: Bioinformatic analysis of complex, high-throughput genomic and epigenomic data in the context of $\mathsf{CD4}^{+}$ T-cell differentiation and diagnosis and treatment of transplant rejection
  3. author: |
  4. Ryan C. Thompson \
  5. Su Lab \
  6. The Scripps Research Institute
  7. date: October 24, 2019
  8. theme: Boadilla
  9. aspectratio: 169
  10. fontsize: 14pt
  11. ---
  12. ## Organ transplants are a life-saving treatment
  13. ::: incremental
  14. * 36,528 transplants performed in the USA in 2018[^organdonor]
  15. * 100 transplants every day!
  16. * Over 113,000 people on the national transplant waiting list as of
  17. July 2019
  18. :::
  19. [^organdonor]: [organdonor.gov](https://www.organdonor.gov/statistics-stories/statistics.html)
  20. ## Organ donation statistics for the USA in 2018[^organdonor]
  21. \centering
  22. ![](graphics/presentation/transplants-organ-CROP.pdf)
  23. ## Types of grafts
  24. A graft is categorized based on the relationship between donor and recipient:
  25. . . .
  26. ::: incremental
  27. * **Autograft:** Donor and recipient are the *same individual*
  28. * **Allograft:** Donor and recipient are *different individuals* of
  29. the *same species*
  30. * **Xenograft:** Donor and recipient are *different species*
  31. :::
  32. ## Recipient T-cells reject allogenic MHCs
  33. :::::::::: {.columns}
  34. ::: {.column width="55%"}
  35. :::: incremental
  36. * TCR binds to both antigen *and* MHC surface \vspace{10pt}
  37. * HLA genes encoding MHC proteins are highly polymorphic \vspace{10pt}
  38. * Variants in donor MHC can trigger the same T-cell response as a
  39. foreign antigen
  40. ::::
  41. :::
  42. ::: {.column width="40%"}
  43. <!-- ![\footnotesize Janeway's Immunobio- logy (2012), Fig. 9.19](graphics/presentation/janeway-fig9.19-TCR.png){ height=70% } -->
  44. ![TCR binding to self (right) and allogenic (left) MHC\footnotemark](graphics/presentation/tcr_mhc.jpg){ height=70% }
  45. :::
  46. ::::::::::
  47. \footnotetext[3]{\href{https://doi.org/10.1016/j.cell.2007.01.048}{Colf, Bankovich, et al. "How a Single T Cell Receptor Recognizes Both Self and Foreign MHC". In: Cell (2007)}}
  48. ## Allograft rejection is a major long-term problem
  49. ![Kidney allograft survival rates in children by transplant year[^kim-marks]](graphics/presentation/kidney-graft-survival.png){ height=65% }
  50. [^kim-marks]: [Kim & Marks (2014)](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3884158/?report=classic)
  51. ## Rejection is treated with immune suppressive drugs
  52. <!-- TODO: Need a graphic, or maybe a table of common drugs +
  53. mechanisms, or a diagram for periodic checking. -->
  54. ::: incremental
  55. * Graft recipient must take immune suppressive drugs indefinitely
  56. * Graft is monitored for rejection and dosage adjusted over time
  57. * Immune suppression is a delicate balance: too much and too little
  58. are both problematic.
  59. :::
  60. ## Memory cells: faster, stronger, and more independent
  61. ![Naïve T-cell activated by APC](graphics/presentation/T-cells-A-SVG.png)
  62. ## Memory cells: faster, stronger, and more independent
  63. ![Naïve T-cell differentiates and proliferates into effector T-cells](graphics/presentation/T-cells-B-SVG.png)
  64. ## Memory cells: faster, stronger, and more independent
  65. ![Post-infection, some effectors cells remain as memory cells](graphics/presentation/T-cells-C-SVG.png)
  66. ## Memory cells: faster, stronger, and more independent
  67. ![Memory T-cells respond more strongly to activation](graphics/presentation/T-cells-D-SVG.png)
  68. ::: notes
  69. Compared to naïve cells, memory cells:
  70. * respond to a lower antigen concentration
  71. * respond more strongly at any given antigen concentration
  72. * require less co-stimulation
  73. * are somewhat independent of some types of co-stimulation required by
  74. naïve cells
  75. * evolve over time to respond even more strongly to their antigen
  76. Result:
  77. * Memory cells require progressively higher doses of immune suppresive
  78. drugs
  79. * Dosage cannot be increased indefinitely without compromising the
  80. immune system's ability to fight infection
  81. :::
  82. ## 3 problems relating to transplant rejection
  83. ### 1. How are memory cells different from naïve?
  84. \onslide<2->{Genome-wide epigenetic analysis of H3K4 and H3K27 methylation in naïve
  85. and memory $\mathsf{CD4}^{+}$ T-cell activation}
  86. ### 2. How can we diagnose rejection noninvasively?
  87. \onslide<3->{Improving array-based diagnostics for transplant rejection by
  88. optimizing data preprocessing}
  89. ### 3. How can we evaluate effects of a rejection treatment?
  90. \onslide<4->{Globin-blocking for more effective blood RNA-seq analysis in primate
  91. animal model for experimental graft rejection treatment}
  92. ## Today's focus
  93. ### \Large 1. How are memory cells different from naïve?
  94. \Large
  95. Genome-wide epigenetic analysis of H3K4 and H3K27 methylation in naïve
  96. and memory $\mathsf{CD4}^{+}$ T-cell activation
  97. ## We need a better understanding of immune memory
  98. * Cell surface markers fairly well-characterized
  99. * But internal mechanisms poorly understood
  100. . . .
  101. \vfill
  102. \large
  103. **Hypothesis:** Epigenetic regulation of gene expression through
  104. histone modification is involved in $\mathsf{CD4}^{+}$ T-cell
  105. activation and memory.
  106. ## Which histone marks are we looking at?
  107. . . .
  108. ::: incremental
  109. * **H3K4me3:** "activating" mark associated with active transcription
  110. * **H3K4me2:** Correlated with H3K4me3, hypothesized "poised" state
  111. * **H3K27me3:** "repressive" mark associated with inactive genes
  112. :::
  113. . . .
  114. \vfill
  115. All involved in T-cell differentiation, but activation dynamics
  116. unexplored
  117. ## ChIP-seq measures DNA bound to marked histones[^chipseq]
  118. \centering
  119. ![](graphics/presentation/NRG-chipseq.png){ height=70% }
  120. [^chipseq]: [Furey (2012)](http://www.nature.com/articles/nrg3306)
  121. ## Experimental design
  122. ::: incremental
  123. * Separately isolate naïve and memory $\mathsf{CD4}^{+}$ T-cells from
  124. 4 donors
  125. * Activate with CD3/CD28 beads
  126. * Sample at 4 time points: Day 0 (pre-activation), Day 1 (early
  127. activation), Day 5 (peak activation), and Day 14 (post-activation)
  128. * RNA-seq + ChIP-seq of 3 histone marks (H3K4me2, H3K4me3, & H3K27me3)
  129. for each sample.
  130. :::
  131. Data generated by Sarah Lamere, published in GEO as
  132. [GSE73214](https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE73214)
  133. ## Time points capture phases of immune response
  134. \centering
  135. ![](graphics/presentation/immune-response.png)
  136. ## A few intermediate analysis steps are required
  137. \centering
  138. ![](graphics/CD4-csaw/rulegraphs/rulegraph-all-RASTER100.png)
  139. ## Questions to focus on
  140. ::: incremental
  141. 1. How do we define the "promoter region" for each gene? \vspace{10pt}
  142. 2. How do these histone marks behave in promoter regions? \vspace{10pt}
  143. 3. What can these histone marks tell us about T-cell activation and
  144. differentiation?
  145. :::
  146. ## First question
  147. \centering \LARGE
  148. How do we define the "promoter region" for each gene?
  149. ## Histone modifications occur on consecutive histones
  150. ![ChIP-seq coverage in IL2 gene[^lamerethesis]](graphics/presentation/LaMere-thesis-fig3.9-SVG-CROP.png){ height=65% }
  151. [^lamerethesis]: Sarah LaMere. Ph.D. thesis (2015).
  152. ## Histone modifications occur on consecutive histones
  153. \begin{figure}
  154. \centering
  155. \only<1>{\includegraphics[width=\textwidth,height=0.7\textheight]{graphics/presentation/CCF-plots-A-SVG.png}}
  156. \only<2>{\includegraphics[width=\textwidth,height=0.7\textheight]{graphics/presentation/CCF-plots-B-SVG.png}}
  157. \only<3>{\includegraphics[width=\textwidth,height=0.7\textheight]{graphics/presentation/CCF-plots-C-SVG.png}}
  158. \caption{Strand cross-correlation plots show histone-sized wave pattern}
  159. \end{figure}
  160. ## SICER identifies enriched regions across the genome
  161. ![Finding "islands" of coverage with SICER[^sicer]](graphics/presentation/SICER-fig1-SVG.png)
  162. [^sicer]: [Zang et al. (2009)](https://doi.org/10.1093/bioinformatics/btp340)
  163. ## IDR identifies *reproducible* enriched regions
  164. ![Example irreproducible discovery rate[^idr] score consistency plot](graphics/presentation/IDR-example-CROP-RASTER.png){ height=65% }
  165. [^idr]: [Li et al. (2011)](https://doi.org/10.1214/11-AOAS466)
  166. ## Finding enriched regions across the genome
  167. ![Peak-calling summary statistics](graphics/presentation/RCT-thesis-table2.2-SVG-CROP.png)
  168. ## Each histone mark has an "effective promoter radius"
  169. ![Enrichment of peaks near promoters](graphics/presentation/Promoter-Peak-Distance-Profile-SVG.pdf)
  170. ## Peaks in promoters correlate with gene expression
  171. \begin{figure}
  172. \centering
  173. \only<1>{\includegraphics[width=\textwidth,height=0.7\textheight]{graphics/presentation/FPKM-by-Peak-Violin-Plots-A-SVG.png}}
  174. \only<2>{\includegraphics[width=\textwidth,height=0.7\textheight]{graphics/presentation/FPKM-by-Peak-Violin-Plots-B-SVG.png}}
  175. \only<3>{\includegraphics[width=\textwidth,height=0.7\textheight]{graphics/presentation/FPKM-by-Peak-Violin-Plots-C-SVG.png}}
  176. \only<4>{\includegraphics[width=\textwidth,height=0.7\textheight]{graphics/presentation/FPKM-by-Peak-Violin-Plots-D-SVG.png}}
  177. \only<5>{\includegraphics[width=\textwidth,height=0.7\textheight]{graphics/presentation/FPKM-by-Peak-Violin-Plots-Z-SVG.png}}
  178. \caption{Expression distributions of genes with and without promoter peaks}
  179. \end{figure}
  180. ## First question
  181. \centering \LARGE
  182. How do we define the "promoter region" for each gene?
  183. ## Answer: Define the promoter region empirically!
  184. <!-- TODO: Left column: text; right column: flip through relevant image -->
  185. :::::::::: {.columns}
  186. ::: {.column width="50%"}
  187. * H3K4me2, H3K4me3, and H3K27me3 occur in broad regions across the
  188. genome
  189. * Enriched regions occur more commonly near promoters
  190. * Each histone mark has its own "effective promoter radius"
  191. * Presence or absence of a peak within this radius is correlated with
  192. gene expression
  193. :::
  194. ::: {.column width="50%"}
  195. \centering
  196. \only<1>{\includegraphics[width=\textwidth,height=0.7\textheight]{graphics/presentation/CCF-plots-A-SVG.png}}
  197. \only<2>{\includegraphics[width=\textwidth,height=0.7\textheight]{graphics/presentation/Promoter-Peak-Distance-Profile-SVG.pdf}}
  198. \only<3>{\includegraphics[width=\textwidth,height=0.7\textheight]{graphics/presentation/FPKM-by-Peak-Violin-Plots-A-SVG.png}}
  199. :::
  200. ::::::::::
  201. ## Next question
  202. \centering \LARGE
  203. How do these histone marks behave in promoter regions?
  204. ::: notes
  205. Does the position of a histone modification within a gene promoter
  206. matter to that gene's expression, or is it merely the presence or
  207. absence anywhere within the promoter?
  208. :::
  209. ## H3K4me2 promoter neighborhood K-means clusters
  210. ![Cluster means for H3K4me2](graphics/presentation/H3K4me2-neighborhood-clusters-CROP.png){ height=70% }
  211. ## H3K4me2 promoter neighborhood K-means clusters
  212. :::::::::: {.columns}
  213. ::: {.column width="50%"}
  214. ![Cluster means for H3K4me2](graphics/presentation/H3K4me2-neighborhood-clusters-CROP.png){ height=70% }
  215. :::
  216. ::: {.column width="50%"}
  217. <!-- This space intentionally left blank -->
  218. :::
  219. ::::::::::
  220. ## H3K4me2 cluster PCA shows a semicircular "fan"
  221. :::::::::: {.columns}
  222. ::: {.column width="50%"}
  223. ![Cluster means for H3K4me2](graphics/presentation/H3K4me2-neighborhood-clusters-CROP.png){ height=70% }
  224. :::
  225. ::: {.column width="50%"}
  226. ![PCA plot of promoters](graphics/presentation/H3K4me2-neighborhood-PCA-CROP.png){ height=70% }
  227. :::
  228. ::::::::::
  229. ## H3K4me2 near TSS correlates with expression
  230. :::::::::: {.columns}
  231. ::: {.column width="50%"}
  232. ![Cluster means for H3K4me2](graphics/presentation/H3K4me2-neighborhood-clusters-CROP.png){ height=70% }
  233. :::
  234. ::: {.column width="50%"}
  235. ![Cluster expression distributions](graphics/presentation/H3K4me2-neighborhood-expression-CROP-ROT90.png){ height=70% }
  236. :::
  237. ::::::::::
  238. ## H3K4me3 pattern is similar to H3K4me2
  239. :::::::::: {.columns}
  240. ::: {.column width="50%"}
  241. ![Cluster means for H3K4me3](graphics/presentation/H3K4me3-neighborhood-clusters-CROP.png){ height=70% }
  242. :::
  243. ::: {.column width="50%"}
  244. ![PCA plot of promoters](graphics/presentation/H3K4me3-neighborhood-PCA-CROP.png){ height=70% }
  245. :::
  246. ::::::::::
  247. ## H3K4me3 pattern is similar to H3K4me2
  248. :::::::::: {.columns}
  249. ::: {.column width="50%"}
  250. ![Cluster means for H3K4me3](graphics/presentation/H3K4me3-neighborhood-clusters-CROP.png){ height=70% }
  251. :::
  252. ::: {.column width="50%"}
  253. ![Cluster expression distributions](graphics/presentation/H3K4me3-neighborhood-expression-CROP-ROT90.png){ height=70% }
  254. :::
  255. ::::::::::
  256. ## H3K27me3 clusters organize into 3 opposed pairs
  257. :::::::::: {.columns}
  258. ::: {.column width="50%"}
  259. ![Cluster means for H3K27me3](graphics/presentation/H3K27me3-neighborhood-clusters-CROP.png){ height=70% }
  260. :::
  261. ::: {.column width="50%"}
  262. ![PCA plot of promoters](graphics/presentation/H3K27me3-neighborhood-PCA-CROP.png){ height=70% }
  263. :::
  264. ::::::::::
  265. ## Specific H3K27me3 profiles show elevated expression
  266. :::::::::: {.columns}
  267. ::: {.column width="50%"}
  268. ![Cluster means for H3K27me3](graphics/presentation/H3K27me3-neighborhood-clusters-CROP.png){ height=70% }
  269. :::
  270. ::: {.column width="50%"}
  271. ![Cluster expression distributions](graphics/presentation/H3K27me3-neighborhood-expression-CROP-ROT90.png){ height=70% }
  272. :::
  273. ::::::::::
  274. ## Current question
  275. \centering \LARGE
  276. How do these histone marks behave in promoter regions?
  277. ## Answer: Presence and position both matter!
  278. ### H3K4me2 & H3K4me3
  279. * Peak closer to promoter $\Rightarrow$ higher gene expression
  280. * Slightly asymmetric in favor of peaks downstream of TSS
  281. . . .
  282. ### H3K27me3
  283. * Depletion of H3K27me3 at TSS $\Rightarrow$ elevated gene expression
  284. * Enrichment of H3K27me3 upstream of TSS $\Rightarrow$ *more* elevated
  285. expression
  286. * Other coverage profiles: no association
  287. ## Last question
  288. \centering \LARGE
  289. What can these histone marks tell us about T-cell activation and
  290. differentiation?
  291. ## Differential modification disappears by Day 14
  292. ![Differential modification between naïve and memory samples at each time point](graphics/presentation/RCT-thesis-table2.4-A-SVG-CROP.pdf)
  293. ## Differential modification disappears by Day 14
  294. ![Differential modification between naïve and memory samples at each time point](graphics/presentation/RCT-thesis-table2.4-B-SVG-CROP.pdf)
  295. ## Promoter H3K4me2 levels converge at Day 14
  296. \centering
  297. ![](graphics/CD4-csaw/ChIP-seq/H3K4me2-promoter-PCA-group-CROP.png)
  298. ## Promoter H3K4me3 levels converge at Day 14
  299. \centering
  300. ![](graphics/CD4-csaw/ChIP-seq/H3K4me3-promoter-PCA-group-CROP.png)
  301. ## Promoter H3K27me3 levels converge at Day 14?
  302. \centering
  303. ![](graphics/CD4-csaw/ChIP-seq/H3K27me3-promoter-PCA-group-CROP.png)
  304. ## Expression converges at Day 14 (in PC 2 & 3)
  305. \centering
  306. ![](graphics/CD4-csaw/RNA-seq/PCA-final-23-CROP.png)
  307. ## But the data isn't really that clean...
  308. :::::::::: {.columns}
  309. ::: {.column width="50%"}
  310. ![H3K4me2](graphics/CD4-csaw/ChIP-seq/H3K4me2-PCA-raw-CROP.png)
  311. :::
  312. ::: {.column width="50%"}
  313. ![H3K4me3](graphics/CD4-csaw/ChIP-seq/H3K4me3-PCA-raw-CROP.png)
  314. :::
  315. ::::::::::
  316. ## But the data isn't really that clean...
  317. :::::::::: {.columns}
  318. ::: {.column width="50%"}
  319. ![H3K27me3](graphics/CD4-csaw/ChIP-seq/H3K27me3-PCA-raw-CROP.png)
  320. :::
  321. ::: {.column width="50%"}
  322. ![RNA-seq](graphics/CD4-csaw/RNA-seq/PCA-no-batchsub-CROP.png)
  323. :::
  324. ::::::::::
  325. ## MOFA: cross-dataset factor analysis
  326. ![MOFA factor analysis schematic[^mofa]](graphics/presentation/MOFA-fig1A-SVG.png){ height=70% }
  327. [^mofa]: [Argelaguet, Velten, et. al. (2018)](https://onlinelibrary.wiley.com/doi/abs/10.15252/msb.20178124)
  328. ## Some factors are shared while others are not
  329. \centering
  330. ![Variance explained in each data set by each LF](graphics/presentation/MOFA-varExplained-matrix-A-CROP.png){ height=70% }
  331. ## 3 factors are shared across all 4 data sets
  332. \centering
  333. ![LFs 1, 4, and 5 explain variation in all 4 data sets](graphics/presentation/MOFA-varExplained-matrix-B-CROP.png){ height=70% }
  334. ## MOFA LF5 captures convergence pattern
  335. ![LF1 & LF4: time point effect; LF5: convergence](graphics/presentation/MOFA-LF-scatter-wide.png)
  336. <!-- { height=70% } -->
  337. ## Last question
  338. \centering \LARGE
  339. What can these histone marks tell us about T-cell activation and
  340. differentiation?
  341. ## Answer: Epigenetic convergence between naïve and memory!
  342. * Almost no differential histone modification observed between naïve and
  343. memory at Day 14, despite plenty of differential modification at
  344. earlier time points.
  345. * Expression and 3 histone marks all show "convergence" between naïve
  346. and memory by Day 14 in the first 2 or 3 principal coordinates.
  347. * MOFA captures this convergence pattern in a single latent factor,
  348. indicating that this is a shared pattern across all 4 data sets.
  349. <!-- ## Slide -->
  350. <!-- ![(Insert figure legend)](graphics/CD4-csaw/LaMere2016_fig8.pdf) -->
  351. ## Questions to focus on
  352. ### How do we define the "promoter region" for each gene?
  353. Define empirically using peak-to-promoter distances; validate by
  354. correlation with expression.
  355. . . .
  356. ### How do these histone marks behave in promoter regions?
  357. Location matters! Specific coverage patterns correlated with elevated
  358. expression.
  359. . . .
  360. ### What can we learn about T-cell activation and differentiation?
  361. Epigenetic & expression state of naïve and memory converges late after
  362. activation, consistent with naïve differentiation into memory.
  363. ## Further conclusions & future directions
  364. * "Effective promoter region" is a valid concept but "radius"
  365. oversimplifies: seek a better definition
  366. * Coverage profiles were only examined in naïve day 0 samples: further
  367. analysis could incorporate time and cell type
  368. * Coverage profile normalization induces degeneracy: adapt a better
  369. normalization from peak callers like SICER
  370. * Unimodal distribution of promoter coverage profiles is unexpected
  371. ## Further conclusions & future directions
  372. * Experiment was not designed to directly test the epigenetic
  373. convergence hypothesis: future experiments could include cultured
  374. but un-activated controls
  375. * High correlation between H3K4me3 and H3K4me2 is curious given they
  376. are mutually exclusive: design experiments to determine the degree
  377. of actual co-occurrence
  378. ## Implications for transplant biology
  379. ::: incremental
  380. * Epigenetic regulation through histone methylation is surely involved
  381. in immune memory
  382. * Can we stop memory cells from forming by perturbing histone
  383. methylation?
  384. * Can we disrupt memory cell function during rejection by perturbing
  385. histone methylation?
  386. * Can we suggest druggable targets for better immune suppression by
  387. looking at epigenetically upregulated genes in memory cells?
  388. :::
  389. ## Acknowledgements
  390. * My mentors, past and present: Drs. Terry Gaasterland, Daniel
  391. Salomon, and Andrew Su
  392. * My committee: Drs. Nicholas Schork, Ali Torkamani, Michael
  393. Petrascheck, and Luc Teyton.
  394. * My many collaborators in the Salomon Lab
  395. * The Scripps Genomics Core
  396. * My parents, John & Chris Thompson
  397. ## {.plain}
  398. \centering
  399. \huge
  400. Questions?