123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206 |
- <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN"
- "http://www.w3.org/TR/html4/strict.dtd">
- <html>
- <head>
- <title></title>
- <meta http-equiv="content-type" content="text/html; charset=utf-8">
- <style type="text/css">
- td.linenos { background-color: #f0f0f0; padding-right: 10px; }
- span.lineno { background-color: #f0f0f0; padding: 0 5px 0 5px; }
- pre { line-height: 125%; }
- body .hll { background-color: #ffffcc }
- body { background: #f8f8f8; }
- body .c { color: #408080; font-style: italic } /* Comment */
- body .err { border: 1px solid #FF0000 } /* Error */
- body .k { color: #008000; font-weight: bold } /* Keyword */
- body .o { color: #666666 } /* Operator */
- body .ch { color: #408080; font-style: italic } /* Comment.Hashbang */
- body .cm { color: #408080; font-style: italic } /* Comment.Multiline */
- body .cp { color: #BC7A00 } /* Comment.Preproc */
- body .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */
- body .c1 { color: #408080; font-style: italic } /* Comment.Single */
- body .cs { color: #408080; font-style: italic } /* Comment.Special */
- body .gd { color: #A00000 } /* Generic.Deleted */
- body .ge { font-style: italic } /* Generic.Emph */
- body .gr { color: #FF0000 } /* Generic.Error */
- body .gh { color: #000080; font-weight: bold } /* Generic.Heading */
- body .gi { color: #00A000 } /* Generic.Inserted */
- body .go { color: #888888 } /* Generic.Output */
- body .gp { color: #000080; font-weight: bold } /* Generic.Prompt */
- body .gs { font-weight: bold } /* Generic.Strong */
- body .gu { color: #800080; font-weight: bold } /* Generic.Subheading */
- body .gt { color: #0044DD } /* Generic.Traceback */
- body .kc { color: #008000; font-weight: bold } /* Keyword.Constant */
- body .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */
- body .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */
- body .kp { color: #008000 } /* Keyword.Pseudo */
- body .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */
- body .kt { color: #B00040 } /* Keyword.Type */
- body .m { color: #666666 } /* Literal.Number */
- body .s { color: #BA2121 } /* Literal.String */
- body .na { color: #7D9029 } /* Name.Attribute */
- body .nb { color: #008000 } /* Name.Builtin */
- body .nc { color: #0000FF; font-weight: bold } /* Name.Class */
- body .no { color: #880000 } /* Name.Constant */
- body .nd { color: #AA22FF } /* Name.Decorator */
- body .ni { color: #999999; font-weight: bold } /* Name.Entity */
- body .ne { color: #D2413A; font-weight: bold } /* Name.Exception */
- body .nf { color: #0000FF } /* Name.Function */
- body .nl { color: #A0A000 } /* Name.Label */
- body .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */
- body .nt { color: #008000; font-weight: bold } /* Name.Tag */
- body .nv { color: #19177C } /* Name.Variable */
- body .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */
- body .w { color: #bbbbbb } /* Text.Whitespace */
- body .mb { color: #666666 } /* Literal.Number.Bin */
- body .mf { color: #666666 } /* Literal.Number.Float */
- body .mh { color: #666666 } /* Literal.Number.Hex */
- body .mi { color: #666666 } /* Literal.Number.Integer */
- body .mo { color: #666666 } /* Literal.Number.Oct */
- body .sa { color: #BA2121 } /* Literal.String.Affix */
- body .sb { color: #BA2121 } /* Literal.String.Backtick */
- body .sc { color: #BA2121 } /* Literal.String.Char */
- body .dl { color: #BA2121 } /* Literal.String.Delimiter */
- body .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */
- body .s2 { color: #BA2121 } /* Literal.String.Double */
- body .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */
- body .sh { color: #BA2121 } /* Literal.String.Heredoc */
- body .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */
- body .sx { color: #008000 } /* Literal.String.Other */
- body .sr { color: #BB6688 } /* Literal.String.Regex */
- body .s1 { color: #BA2121 } /* Literal.String.Single */
- body .ss { color: #19177C } /* Literal.String.Symbol */
- body .bp { color: #008000 } /* Name.Builtin.Pseudo */
- body .fm { color: #0000FF } /* Name.Function.Magic */
- body .vc { color: #19177C } /* Name.Variable.Class */
- body .vg { color: #19177C } /* Name.Variable.Global */
- body .vi { color: #19177C } /* Name.Variable.Instance */
- body .vm { color: #19177C } /* Name.Variable.Magic */
- body .il { color: #666666 } /* Literal.Number.Integer.Long */
- </style>
- </head>
- <body>
- <h2></h2>
- <div class="highlight"><pre><span></span><span class="c1"># We will use base 2 logarithms for now</span>
- log.base <span class="o">=</span> <span class="m">2</span>
- <span class="c1"># Read the data in from the file</span>
- filename.data <span class="o">=</span> <span class="s">"Processed_Data_Files/Normalized_Pair_Files/All_norm_pair.txt"</span>
- <span class="c1">#filename.data = "Raw_Data_Files/Pair_Files/All_pair.txt"</span>
- intensity.lin <span class="o"><-</span> read.table<span class="p">(</span>file<span class="o">=</span>filename.data<span class="p">,</span> header<span class="o">=</span><span class="kc">TRUE</span><span class="p">,</span>row.names<span class="o">=</span><span class="s">"PROBE_ID"</span><span class="p">)</span>
- <span class="c1"># Column names and numbers used to categorize the data</span>
- intensity.maincols <span class="o">=</span> <span class="kt">c</span><span class="p">(</span><span class="s">"GENE_EXPR_OPTION"</span><span class="p">,</span> <span class="s">"SEQ_ID"</span><span class="p">,</span> <span class="s">"POSITION"</span><span class="p">)</span>
- intensity.maincolnums <span class="o">=</span> <span class="kp">which</span><span class="p">(</span><span class="kp">names</span><span class="p">(</span>intensity.lin<span class="p">)</span> <span class="o">%in%</span> intensity.maincols<span class="p">)</span>
- <span class="c1"># Column names and numbers containing intensity data</span>
- intensity.datacolnums <span class="o">=</span> <span class="p">(</span><span class="m">1</span><span class="o">:</span><span class="kp">dim</span><span class="p">(</span>intensity.lin<span class="p">)[</span><span class="m">2</span><span class="p">])[</span><span class="o">-</span>intensity.maincolnums<span class="p">]</span> <span class="c1"># i.e. "the rest"</span>
- intensity.datacols <span class="o">=</span> <span class="kp">names</span><span class="p">(</span>intensity.lin<span class="p">)[</span>intensity.datacolnums<span class="p">]</span>
- <span class="c1"># Take the logarithm of the data</span>
- intensity.log <span class="o"><-</span> <span class="kt">data.frame</span><span class="p">(</span>intensity.lin<span class="p">[</span>intensity.maincols<span class="p">],</span><span class="kp">log</span><span class="p">(</span>intensity.lin<span class="p">[</span>intensity.datacols<span class="p">],</span> base <span class="o">=</span> log.base<span class="p">))</span>
- <span class="c1"># Separate into random (i.e. background) and data probes</span>
- <span class="c1"># Split into "intensity$rand" and "intensity$data"</span>
- intensity <span class="o"><-</span> <span class="kp">split</span><span class="p">(</span>x <span class="o">=</span> intensity.log<span class="p">,</span> f <span class="o">=</span> <span class="p">(</span><span class="kp">ifelse</span><span class="p">(</span>intensity.log<span class="o">$</span>GENE_EXPR_OPTION <span class="o">==</span> <span class="s">"RANDOM"</span><span class="p">,</span><span class="s">"rand"</span><span class="p">,</span><span class="s">"data"</span><span class="p">)))</span>
- <span class="kp">rm</span><span class="p">(</span>intensity.lin<span class="p">,</span> intensity.log<span class="p">)</span> <span class="c1"># Discard unused stuff to free memory</span>
- <span class="c1"># This gives a QQ plot of the data against the noise. I used it to select my cutoffs.</span>
- <span class="c1">#qqplot( y=as.vector(as.matrix(intensity$data[sample(1:dim(intensity$data)[1],5000),intensity.datacols])), x=as.vector(as.matrix(intensity$rand[intensity.datacols])), ylab="Data", xlab="Random Control",main = "Log10 QQ plot of Specific Probe Intensities vs. Random Controls")</span>
- <span class="c1"># Detection (low) threshold is 2 sd above mean random background</span>
- intensity.rand.vector <span class="o">=</span> <span class="kp">as.vector</span><span class="p">(</span><span class="kp">as.matrix</span><span class="p">(</span>intensity<span class="o">$</span>rand<span class="p">[</span>intensity.datacols<span class="p">]))</span>
- threshold.low <span class="o">=</span> <span class="kp">mean</span><span class="p">(</span>intensity.rand.vector<span class="p">)</span> <span class="o">+</span> <span class="m">2</span><span class="o">*</span>sd<span class="p">(</span>intensity.rand.vector<span class="p">)</span>
- <span class="kp">rm</span><span class="p">(</span>intensity.rand.vector<span class="p">)</span>
- <span class="c1"># Saturation (high) threshold is 2-fold down from max possible</span>
- threshold.high <span class="o">=</span> <span class="kp">log</span><span class="p">(</span><span class="m">65535</span><span class="o">/</span><span class="m">2</span><span class="p">,</span> base<span class="o">=</span>log.base<span class="p">)</span>
- <span class="kr">if</span> <span class="p">(</span>threshold.high <span class="o"><=</span> threshold.low<span class="p">)</span> <span class="kp">print</span><span class="p">(</span><span class="s">"Error: low threshold is too high"</span><span class="p">)</span>
- <span class="c1"># Compute needed row statistics</span>
- intensity<span class="o">$</span>data<span class="o">$</span>MAX <span class="o"><-</span> <span class="kp">apply</span><span class="p">(</span>intensity<span class="o">$</span>data<span class="p">[</span>intensity.datacols<span class="p">],</span><span class="m">1</span><span class="p">,</span><span class="kp">max</span><span class="p">)</span>
- <span class="c1"># Actually, we only need the max, it seems. Uncomment these if needed.</span>
- <span class="c1">#intensity$data$MIN <- apply(intensity$data[intensity.datacols],1,min)</span>
- <span class="c1">#intensity$data$MEAN <- rowMeans(intensity$data[intensity.datacols]) # Don't need that one</span>
- <span class="c1">#intensity$data$SD <- apply(intensity$data[intensity.datacols],1,sd) # Don't need that one</span>
- <span class="c1"># Sort probes into three bins: absent, present, and saturated</span>
- <span class="c1"># The integer value of BIN also serves as a rank:</span>
- <span class="c1"># present < saturated < absent; lower is better</span>
- intensity<span class="o">$</span>data<span class="o">$</span>BIN <span class="o"><-</span> <span class="kp">factor</span><span class="p">(</span><span class="m">1</span> <span class="o">+</span> <span class="p">(</span>intensity<span class="o">$</span>data<span class="o">$</span>MAX <span class="o">></span> threshold.high<span class="p">)</span> <span class="o">+</span> <span class="p">(</span>intensity<span class="o">$</span>data<span class="o">$</span>MAX <span class="o"><</span> threshold.low<span class="p">)</span> <span class="o">*</span> <span class="m">2</span><span class="p">,</span> labels <span class="o">=</span> <span class="kt">c</span><span class="p">(</span><span class="s">"present"</span><span class="p">,</span> <span class="s">"saturated"</span><span class="p">,</span> <span class="s">"absent"</span><span class="p">))</span>
- <span class="c1"># Count how many probes from each probeset (SEQ_ID) went into each bin</span>
- <span class="c1"># Also count total probes per set</span>
- <span class="c1"># Counting is done by measuring length of data aggregated by SEQ_ID</span>
- num.probes <span class="o"><-</span> <span class="kp">lapply</span><span class="p">(</span><span class="kt">c</span><span class="p">(</span><span class="kt">list</span><span class="p">(</span>total<span class="o">=</span>intensity<span class="o">$</span>data<span class="p">),</span><span class="kp">split</span><span class="p">(</span>x <span class="o">=</span> intensity<span class="o">$</span>data<span class="p">,</span> f <span class="o">=</span> intensity<span class="o">$</span>data<span class="o">$</span>BIN<span class="p">)),</span> FUN <span class="o">=</span> <span class="kr">function</span> <span class="p">(</span>y<span class="p">)</span> aggregate<span class="p">(</span>x<span class="o">=</span><span class="kp">rep</span><span class="p">(</span><span class="kc">NA</span><span class="p">,</span><span class="kp">dim</span><span class="p">(</span>y<span class="p">)[</span><span class="m">1</span><span class="p">]),</span>by<span class="o">=</span><span class="kt">list</span><span class="p">(</span>SEQ_ID<span class="o">=</span>y<span class="o">$</span>SEQ_ID<span class="p">),</span>FUN<span class="o">=</span><span class="kp">length</span><span class="p">))</span>
- <span class="kr">if</span><span class="p">(</span><span class="kp">mean</span><span class="p">(</span>num.probes<span class="o">$</span>present<span class="o">$</span>x<span class="p">)</span> <span class="o"><</span> <span class="m">3</span><span class="p">)</span> <span class="p">{</span> <span class="kp">print</span><span class="p">(</span><span class="s">"Error: Not enough present probes."</span><span class="p">)</span> <span class="p">}</span>
- <span class="c1"># Something below this needs updating</span>
- <span class="c1"># 2 rankings: Nimblegen's and distance from probeset mean</span>
- <span class="c1"># Nimblegen's rank is read from the design file</span>
- <span class="c1"># Probeinfo file</span>
- <span class="c1"># This is information parsed from the design file.</span>
- <span class="c1"># The design file can't be used directly because info on probe</span>
- <span class="c1"># selection is not in separate columns.</span>
- filename.probeinfo <span class="o">=</span> <span class="s">"Design_Files/071031_U_Va_Tobacco_Expr.probeinfo"</span>
- probeinfo <span class="o"><-</span> read.table<span class="p">(</span>filename.probeinfo<span class="p">,</span>header<span class="o">=</span><span class="kc">TRUE</span><span class="p">,</span>row.names<span class="o">=</span><span class="s">"PROBE_ID"</span><span class="p">,</span>as.is<span class="o">=</span><span class="s">"SEQ"</span><span class="p">)</span>
- <span class="c1"># Use probe names as row names for indexing</span>
- <span class="c1">#row.names(probeinfo) <- as.character(probeinfo$PROBE_ID)</span>
- <span class="c1"># Add Nimblegen rank to the main data frame</span>
- intensity<span class="o">$</span>data<span class="p">[</span><span class="kt">c</span><span class="p">(</span><span class="s">"RANK"</span><span class="p">,</span><span class="s">"SEQ"</span><span class="p">)]</span> <span class="o"><-</span> probeinfo<span class="p">[</span><span class="kp">row.names</span><span class="p">(</span>intensity<span class="o">$</span>data<span class="p">),</span><span class="kt">c</span><span class="p">(</span><span class="s">"RANK"</span><span class="p">,</span><span class="s">"SEQ"</span><span class="p">)]</span>
- <span class="c1"># For present probes, rank is based on correlation to probeset mean</span>
- <span class="c1"># Read probeset means from calls file</span>
- filename.calls <span class="o">=</span> <span class="s">"Processed_Data_Files/Normalized_Calls_Files/All_norm_calls.txt"</span>
- calls.lin <span class="o"><-</span> read.table<span class="p">(</span>filename.calls<span class="p">,</span>header<span class="o">=</span><span class="kc">TRUE</span><span class="p">,</span>row.names<span class="o">=</span><span class="s">"SEQ_ID"</span><span class="p">)</span>
- <span class="c1"># This line simultaneously logs the data and gives the same column order as the intensity table</span>
- probeset.means <span class="o">=</span> <span class="kp">log</span><span class="p">(</span>calls.lin<span class="p">[</span>intensity.datacols<span class="p">],</span> base<span class="o">=</span>log.base<span class="p">)</span>
- <span class="kp">rm</span><span class="p">(</span>calls.lin<span class="p">)</span>
- <span class="c1"># Collect the relevant data into matrices for efficiency</span>
- probes.present.data <span class="o">=</span> <span class="kp">t</span><span class="p">(</span>intensity<span class="o">$</span>data<span class="p">[</span>intensity<span class="o">$</span>data<span class="o">$</span>BIN <span class="o">==</span> <span class="s">"present"</span><span class="p">,</span>intensity.datacols<span class="p">])</span>
- probeset.means.data <span class="o">=</span> <span class="kp">t</span><span class="p">(</span>probeset.means<span class="p">[</span>intensity<span class="o">$</span>data<span class="o">$</span>SEQ_ID<span class="p">[</span>intensity<span class="o">$</span>data<span class="o">$</span>BIN <span class="o">==</span> <span class="s">"present"</span><span class="p">],])</span>
- <span class="c1"># We invert the correlation so that lower is better</span>
- intensity<span class="o">$</span>data<span class="o">$</span>RANK<span class="p">[</span>intensity<span class="o">$</span>data<span class="o">$</span>BIN <span class="o">==</span> <span class="s">"present"</span><span class="p">]</span> <span class="o"><-</span> <span class="kp">sapply</span><span class="p">(</span><span class="m">1</span><span class="o">:</span><span class="kp">dim</span><span class="p">(</span>probes.present.data<span class="p">)[</span><span class="m">2</span><span class="p">],</span><span class="kr">function</span> <span class="p">(</span>x<span class="p">)</span> <span class="p">{</span> <span class="o">-</span>cor<span class="p">(</span>probes.present.data<span class="p">[,</span>x<span class="p">],</span>probeset.means.data<span class="p">[,</span>x<span class="p">])</span> <span class="p">})</span>
- <span class="c1"># Done with these</span>
- <span class="kp">rm</span><span class="p">(</span><span class="s">"probes.present.data"</span><span class="p">,</span><span class="s">"probeset.means.data"</span><span class="p">)</span>
- <span class="c1"># Sort by bin, then rank</span>
- intensity<span class="o">$</span>data.ranked <span class="o">=</span> intensity<span class="o">$</span>data<span class="p">[</span><span class="kp">order</span><span class="p">(</span>intensity<span class="o">$</span>data<span class="o">$</span>BIN<span class="p">,</span>intensity<span class="o">$</span>data<span class="o">$</span>RANK<span class="p">),]</span>
- <span class="c1"># Split by SEQ_ID</span>
- probes.ranked <span class="o"><-</span> <span class="kp">split</span><span class="p">(</span>x<span class="o">=</span><span class="kp">row.names</span><span class="p">(</span>intensity<span class="o">$</span>data.ranked<span class="p">),</span>
- f<span class="o">=</span>intensity<span class="o">$</span>data.ranked<span class="o">$</span>SEQ_ID<span class="p">,</span>
- drop<span class="o">=</span><span class="kc">TRUE</span><span class="p">)</span>
- <span class="c1"># Set the desired number of probes per sequence</span>
- num.probes.desired <span class="o"><-</span> <span class="m">3</span>
- <span class="c1"># A function to make any vector have length n, by truncating longer ones and padding shorter ones with NA</span>
- firstN <span class="o"><-</span> <span class="kr">function</span> <span class="p">(</span>v<span class="p">,</span>n<span class="p">)</span> <span class="kt">c</span><span class="p">(</span>v<span class="p">,</span><span class="kp">rep</span><span class="p">(</span><span class="kc">NA</span><span class="p">,</span>n<span class="p">))[</span><span class="m">1</span><span class="o">:</span>n<span class="p">]</span>
- <span class="c1"># A function to take a string and append P1, P2, P3, etc. up to PN.</span>
- probenamesN <span class="o"><-</span> <span class="kr">function</span> <span class="p">(</span>s<span class="p">,</span>n<span class="p">)</span> <span class="p">(</span><span class="kp">paste</span><span class="p">(</span>s<span class="p">,</span><span class="s">"P"</span><span class="p">,</span><span class="m">1</span><span class="o">:</span>n<span class="p">,</span>sep<span class="o">=</span><span class="s">""</span><span class="p">))[</span><span class="m">1</span><span class="o">:</span>n<span class="p">]</span>
- probes.selected <span class="o"><-</span> <span class="kt">c</span><span class="p">(</span><span class="kp">sapply</span><span class="p">(</span>probes.ranked<span class="p">,</span>firstN<span class="p">,</span>num.probes.desired<span class="p">))</span>
- <span class="kp">names</span><span class="p">(</span>probes.selected<span class="p">)</span> <span class="o"><-</span> <span class="kt">c</span><span class="p">(</span><span class="kp">sapply</span><span class="p">(</span><span class="kp">names</span><span class="p">(</span>probes.ranked<span class="p">),</span>probenamesN<span class="p">,</span>num.probes.desired<span class="p">))</span>
- <span class="c1"># Filter NA</span>
- probes.selected <span class="o"><-</span> probes.selected<span class="p">[</span><span class="o">!</span><span class="kp">is.na</span><span class="p">(</span>probes.selected<span class="p">)]</span>
- probes.selected.fasta <span class="o"><-</span> <span class="kp">paste</span><span class="p">(</span>sep<span class="o">=</span><span class="s">""</span><span class="p">,</span><span class="s">">"</span><span class="p">,</span><span class="kp">names</span><span class="p">(</span>probes.selected<span class="p">),</span><span class="s">"\n"</span><span class="p">,</span>intensity<span class="o">$</span>data<span class="p">[</span>probes.selected<span class="p">,</span><span class="s">"SEQ"</span><span class="p">])</span>
- <span class="kp">cat</span><span class="p">(</span>sep<span class="o">=</span><span class="s">"\n"</span><span class="p">,</span>probes.selected.fasta<span class="p">,</span>file<span class="o">=</span><span class="s">"selected_probes.fasta"</span><span class="p">)</span>
- <span class="kp">save.image</span><span class="p">(</span>file<span class="o">=</span><span class="s">"probesel.rda"</span><span class="p">)</span>
- </pre></div>
- </body>
- </html>
|