consistency-train.R.html 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198
  1. <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN"
  2. "http://www.w3.org/TR/html4/strict.dtd">
  3. <html>
  4. <head>
  5. <title></title>
  6. <meta http-equiv="content-type" content="text/html; charset=utf-8">
  7. <style type="text/css">
  8. td.linenos { background-color: #f0f0f0; padding-right: 10px; }
  9. span.lineno { background-color: #f0f0f0; padding: 0 5px 0 5px; }
  10. pre { line-height: 125%; }
  11. body .hll { background-color: #ffffcc }
  12. body { background: #f8f8f8; }
  13. body .c { color: #408080; font-style: italic } /* Comment */
  14. body .err { border: 1px solid #FF0000 } /* Error */
  15. body .k { color: #008000; font-weight: bold } /* Keyword */
  16. body .o { color: #666666 } /* Operator */
  17. body .ch { color: #408080; font-style: italic } /* Comment.Hashbang */
  18. body .cm { color: #408080; font-style: italic } /* Comment.Multiline */
  19. body .cp { color: #BC7A00 } /* Comment.Preproc */
  20. body .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */
  21. body .c1 { color: #408080; font-style: italic } /* Comment.Single */
  22. body .cs { color: #408080; font-style: italic } /* Comment.Special */
  23. body .gd { color: #A00000 } /* Generic.Deleted */
  24. body .ge { font-style: italic } /* Generic.Emph */
  25. body .gr { color: #FF0000 } /* Generic.Error */
  26. body .gh { color: #000080; font-weight: bold } /* Generic.Heading */
  27. body .gi { color: #00A000 } /* Generic.Inserted */
  28. body .go { color: #888888 } /* Generic.Output */
  29. body .gp { color: #000080; font-weight: bold } /* Generic.Prompt */
  30. body .gs { font-weight: bold } /* Generic.Strong */
  31. body .gu { color: #800080; font-weight: bold } /* Generic.Subheading */
  32. body .gt { color: #0044DD } /* Generic.Traceback */
  33. body .kc { color: #008000; font-weight: bold } /* Keyword.Constant */
  34. body .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */
  35. body .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */
  36. body .kp { color: #008000 } /* Keyword.Pseudo */
  37. body .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */
  38. body .kt { color: #B00040 } /* Keyword.Type */
  39. body .m { color: #666666 } /* Literal.Number */
  40. body .s { color: #BA2121 } /* Literal.String */
  41. body .na { color: #7D9029 } /* Name.Attribute */
  42. body .nb { color: #008000 } /* Name.Builtin */
  43. body .nc { color: #0000FF; font-weight: bold } /* Name.Class */
  44. body .no { color: #880000 } /* Name.Constant */
  45. body .nd { color: #AA22FF } /* Name.Decorator */
  46. body .ni { color: #999999; font-weight: bold } /* Name.Entity */
  47. body .ne { color: #D2413A; font-weight: bold } /* Name.Exception */
  48. body .nf { color: #0000FF } /* Name.Function */
  49. body .nl { color: #A0A000 } /* Name.Label */
  50. body .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */
  51. body .nt { color: #008000; font-weight: bold } /* Name.Tag */
  52. body .nv { color: #19177C } /* Name.Variable */
  53. body .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */
  54. body .w { color: #bbbbbb } /* Text.Whitespace */
  55. body .mb { color: #666666 } /* Literal.Number.Bin */
  56. body .mf { color: #666666 } /* Literal.Number.Float */
  57. body .mh { color: #666666 } /* Literal.Number.Hex */
  58. body .mi { color: #666666 } /* Literal.Number.Integer */
  59. body .mo { color: #666666 } /* Literal.Number.Oct */
  60. body .sa { color: #BA2121 } /* Literal.String.Affix */
  61. body .sb { color: #BA2121 } /* Literal.String.Backtick */
  62. body .sc { color: #BA2121 } /* Literal.String.Char */
  63. body .dl { color: #BA2121 } /* Literal.String.Delimiter */
  64. body .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */
  65. body .s2 { color: #BA2121 } /* Literal.String.Double */
  66. body .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */
  67. body .sh { color: #BA2121 } /* Literal.String.Heredoc */
  68. body .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */
  69. body .sx { color: #008000 } /* Literal.String.Other */
  70. body .sr { color: #BB6688 } /* Literal.String.Regex */
  71. body .s1 { color: #BA2121 } /* Literal.String.Single */
  72. body .ss { color: #19177C } /* Literal.String.Symbol */
  73. body .bp { color: #008000 } /* Name.Builtin.Pseudo */
  74. body .fm { color: #0000FF } /* Name.Function.Magic */
  75. body .vc { color: #19177C } /* Name.Variable.Class */
  76. body .vg { color: #19177C } /* Name.Variable.Global */
  77. body .vi { color: #19177C } /* Name.Variable.Instance */
  78. body .vm { color: #19177C } /* Name.Variable.Magic */
  79. body .il { color: #666666 } /* Literal.Number.Integer.Long */
  80. </style>
  81. </head>
  82. <body>
  83. <h2></h2>
  84. <div class="highlight"><pre><span></span><span class="c1">#!/usr/bin/env Rscript</span>
  85. <span class="c1"># Script to train multiple fRMA vectors in preparation for consistency</span>
  86. <span class="c1"># evaluation</span>
  87. <span class="kn">library</span><span class="p">(</span>xlsx<span class="p">)</span>
  88. <span class="kn">library</span><span class="p">(</span>frma<span class="p">)</span>
  89. <span class="kn">library</span><span class="p">(</span>frmaTools<span class="p">)</span>
  90. <span class="kn">library</span><span class="p">(</span>stringr<span class="p">)</span>
  91. <span class="kn">library</span><span class="p">(</span>magrittr<span class="p">)</span>
  92. <span class="kn">library</span><span class="p">(</span>plyr<span class="p">)</span>
  93. <span class="kn">library</span><span class="p">(</span>affy<span class="p">)</span>
  94. <span class="kn">library</span><span class="p">(</span>preprocessCore<span class="p">)</span>
  95. <span class="kn">library</span><span class="p">(</span>ggplot2<span class="p">)</span>
  96. <span class="kn">library</span><span class="p">(</span>proto<span class="p">)</span>
  97. <span class="kn">library</span><span class="p">(</span>dplyr<span class="p">)</span>
  98. training.data.dir <span class="o">&lt;-</span> <span class="s">&quot;Training Data&quot;</span>
  99. datasets <span class="o">&lt;-</span> <span class="kt">data.frame</span><span class="p">(</span>Dataset<span class="o">=</span><span class="kp">list.files</span><span class="p">(</span>training.data.dir<span class="p">))</span>
  100. <span class="kp">rownames</span><span class="p">(</span>datasets<span class="p">)</span> <span class="o">&lt;-</span> datasets<span class="o">$</span>Dataset
  101. datasets<span class="o">$</span>Tissue <span class="o">&lt;-</span> <span class="kp">factor</span><span class="p">(</span>str_extract<span class="p">(</span>datasets<span class="o">$</span>Dataset<span class="p">,</span> <span class="s">&quot;\\b(PAX|BX)\\b&quot;</span><span class="p">))</span>
  102. tsmsg <span class="o">&lt;-</span> <span class="kr">function</span><span class="p">(</span><span class="kc">...</span><span class="p">)</span> <span class="p">{</span>
  103. <span class="kp">message</span><span class="p">(</span><span class="kp">date</span><span class="p">(),</span> <span class="s">&quot;: &quot;</span><span class="p">,</span> <span class="kc">...</span><span class="p">)</span>
  104. <span class="p">}</span>
  105. <span class="c1">## Some Scan Dates are marked as identical for multiple batches, which</span>
  106. <span class="c1">## is bad. But the dates embedded in the file names for these batches</span>
  107. <span class="c1">## are different, so we use those dates instead.</span>
  108. parse.date.from.filename <span class="o">&lt;-</span> <span class="kr">function</span><span class="p">(</span>fname<span class="p">)</span> <span class="p">{</span>
  109. res1 <span class="o">&lt;-</span> str_match<span class="p">(</span>fname<span class="p">,</span> <span class="s">&quot;^(\\d\\d)(\\d\\d)(\\d\\d)&quot;</span><span class="p">)[,</span><span class="kt">c</span><span class="p">(</span><span class="m">4</span><span class="p">,</span><span class="m">2</span><span class="p">,</span><span class="m">3</span><span class="p">)]</span>
  110. res2 <span class="o">&lt;-</span> str_match<span class="p">(</span>fname<span class="p">,</span> <span class="s">&quot;^20(\\d\\d)_(\\d\\d)_(\\d\\d)&quot;</span><span class="p">)[,</span><span class="m">-1</span><span class="p">]</span>
  111. res1<span class="p">[</span><span class="kp">is.na</span><span class="p">(</span>res1<span class="p">)]</span> <span class="o">&lt;-</span> res2<span class="p">[</span><span class="kp">is.na</span><span class="p">(</span>res1<span class="p">)]</span>
  112. <span class="kp">colnames</span><span class="p">(</span>res1<span class="p">)</span> <span class="o">&lt;-</span> <span class="kt">c</span><span class="p">(</span><span class="s">&quot;year&quot;</span><span class="p">,</span> <span class="s">&quot;month&quot;</span><span class="p">,</span> <span class="s">&quot;day&quot;</span><span class="p">)</span>
  113. res1<span class="p">[,</span><span class="s">&quot;year&quot;</span><span class="p">]</span> <span class="o">%&lt;&gt;%</span> str_c<span class="p">(</span><span class="s">&quot;20&quot;</span><span class="p">,</span> <span class="m">.</span><span class="p">)</span>
  114. <span class="kp">as.Date</span><span class="p">(</span><span class="kp">do.call</span><span class="p">(</span><span class="kp">ISOdate</span><span class="p">,</span> <span class="kt">data.frame</span><span class="p">(</span>res1<span class="p">)))</span>
  115. <span class="p">}</span>
  116. <span class="c1">## This reads in the xlsx file for each of the 7 datasets and combines</span>
  117. <span class="c1">## them into one big table of all samples. The Batch column contains</span>
  118. <span class="c1">## the partitioning of samples into unique combinations of Dataset,</span>
  119. <span class="c1">## Scan Date, and Phenotype. Finally, we split based on Tissue type to</span>
  120. <span class="c1">## get one table for biopsies (BX), and one for blood (PAX).</span>
  121. sample.tables <span class="o">&lt;-</span> ddply<span class="p">(</span>datasets<span class="p">,</span> <span class="m">.</span><span class="p">(</span>Dataset<span class="p">),</span> <span class="kr">function</span><span class="p">(</span>df<span class="p">)</span> <span class="p">{</span>
  122. df <span class="o">&lt;-</span> df<span class="p">[</span><span class="m">1</span><span class="p">,]</span>
  123. <span class="kp">rownames</span><span class="p">(</span>df<span class="p">)</span> <span class="o">&lt;-</span> <span class="kc">NULL</span>
  124. dset.dir <span class="o">&lt;-</span> <span class="kp">file.path</span><span class="p">(</span>training.data.dir<span class="p">,</span> df<span class="o">$</span>Dataset<span class="p">)</span>
  125. x <span class="o">&lt;-</span> read.xlsx<span class="p">(</span><span class="kp">list.files</span><span class="p">(</span>dset.dir<span class="p">,</span> pattern<span class="o">=</span>glob2rx<span class="p">(</span><span class="s">&quot;*.xlsx&quot;</span><span class="p">),</span> full.names<span class="o">=</span><span class="kc">TRUE</span><span class="p">)[</span><span class="m">1</span><span class="p">],</span> <span class="m">1</span><span class="p">)</span> <span class="o">%&gt;%</span>
  126. setNames<span class="p">(</span><span class="kt">c</span><span class="p">(</span><span class="s">&quot;Filename&quot;</span><span class="p">,</span> <span class="s">&quot;Phenotype&quot;</span><span class="p">,</span> <span class="s">&quot;ScanDate&quot;</span><span class="p">))</span>
  127. x<span class="o">$</span>Filename <span class="o">&lt;-</span> <span class="kp">as.character</span><span class="p">(</span>x<span class="o">$</span>Filename<span class="p">)</span>
  128. missing.CEL <span class="o">&lt;-</span> <span class="o">!</span>str_detect<span class="p">(</span>x<span class="o">$</span>Filename<span class="p">,</span> <span class="s">&quot;\\.CEL$&quot;</span><span class="p">)</span>
  129. x<span class="o">$</span>Filename<span class="p">[</span>missing.CEL<span class="p">]</span> <span class="o">&lt;-</span> str_c<span class="p">(</span>x<span class="o">$</span>Filename<span class="p">[</span>missing.CEL<span class="p">],</span> <span class="s">&quot;.CEL&quot;</span><span class="p">)</span>
  130. <span class="kp">stopifnot</span><span class="p">(</span><span class="kp">all</span><span class="p">(</span>str_detect<span class="p">(</span>x<span class="o">$</span>Filename<span class="p">,</span> <span class="s">&quot;\\.CEL$&quot;</span><span class="p">)))</span>
  131. parsed.date <span class="o">&lt;-</span> parse.date.from.filename<span class="p">(</span>x<span class="o">$</span>Filename<span class="p">)</span>
  132. x<span class="o">$</span>ScanDate<span class="p">[</span><span class="o">!</span><span class="kp">is.na</span><span class="p">(</span>parsed.date<span class="p">)]</span> <span class="o">&lt;-</span> parsed.date<span class="p">[</span><span class="o">!</span><span class="kp">is.na</span><span class="p">(</span>parsed.date<span class="p">)]</span>
  133. x <span class="o">%&gt;%</span> <span class="kp">cbind</span><span class="p">(</span>df<span class="p">)</span> <span class="o">%&gt;%</span>
  134. <span class="kp">transform</span><span class="p">(</span>Filename<span class="o">=</span><span class="kp">file.path</span><span class="p">(</span>dset.dir<span class="p">,</span> Filename<span class="p">),</span>
  135. Batch<span class="o">=</span><span class="kp">droplevels</span><span class="p">(</span>Tissue<span class="o">:</span>Dataset<span class="o">:</span><span class="kp">factor</span><span class="p">(</span>ScanDate<span class="p">)</span><span class="o">:</span>Phenotype<span class="p">))</span> <span class="o">%&gt;%</span>
  136. <span class="kp">subset</span><span class="p">(</span><span class="o">!</span> Filename <span class="o">%in%</span> blacklist<span class="p">)</span> <span class="o">%&gt;%</span>
  137. <span class="kp">subset</span><span class="p">(</span><span class="o">!</span><span class="kp">duplicated</span><span class="p">(</span>Filename<span class="p">))</span>
  138. <span class="p">})</span> <span class="o">%&gt;%</span>
  139. <span class="kp">split</span><span class="p">(</span><span class="m">.</span><span class="o">$</span>Tissue<span class="p">)</span> <span class="o">%&gt;%</span>
  140. <span class="kp">lapply</span><span class="p">(</span><span class="kp">droplevels</span><span class="p">)</span>
  141. <span class="c1">## fRMA requires equal-sized batches, so for each batch size from 3 to</span>
  142. <span class="c1">## 15, compute how many batches have at least that many samples.</span>
  143. x <span class="o">&lt;-</span> <span class="kp">sapply</span><span class="p">(</span><span class="m">3</span><span class="o">:</span><span class="m">15</span><span class="p">,</span> <span class="kr">function</span><span class="p">(</span>i<span class="p">)</span> <span class="kp">sapply</span><span class="p">(</span>sample.tables<span class="p">,</span> <span class="m">.</span> <span class="o">%$%</span> Batch <span class="o">%&gt;%</span> table <span class="o">%&gt;%</span> as.vector <span class="o">%&gt;%</span> <span class="p">{</span><span class="kp">sum</span><span class="p">(</span><span class="m">.</span> <span class="o">&gt;=</span> i<span class="p">)}))</span>
  144. <span class="kp">colnames</span><span class="p">(</span>x<span class="p">)</span> <span class="o">&lt;-</span> <span class="m">3</span><span class="o">:</span><span class="m">15</span>
  145. <span class="c1">## Based on the above and the recommendations in the frmaTools paper,</span>
  146. <span class="c1">## I chose 5 as the optimal batch size. This could be optimized</span>
  147. <span class="c1">## empirically, though.</span>
  148. arrays.per.batch <span class="o">&lt;-</span> <span class="m">5</span>
  149. vectors <span class="o">&lt;-</span> <span class="kp">lapply</span><span class="p">(</span><span class="kp">names</span><span class="p">(</span>sample.tables<span class="p">),</span> <span class="kr">function</span><span class="p">(</span>ttype<span class="p">)</span> <span class="p">{</span>
  150. stab <span class="o">&lt;-</span> sample.tables<span class="p">[[</span>ttype<span class="p">]]</span>
  151. tsmsg<span class="p">(</span><span class="s">&quot;Reading full dataset for &quot;</span><span class="p">,</span> ttype<span class="p">)</span>
  152. affy <span class="o">&lt;-</span> ReadAffy<span class="p">(</span>filenames<span class="o">=</span>stab<span class="o">$</span>Filename<span class="p">,</span> sampleNames<span class="o">=</span><span class="kp">rownames</span><span class="p">(</span>stab<span class="p">))</span>
  153. tsmsg<span class="p">(</span><span class="s">&quot;Getting reference normalziation distribution from full dataset for &quot;</span><span class="p">,</span> ttype<span class="p">)</span>
  154. normVec <span class="o">&lt;-</span> normalize.quantiles.determine.target<span class="p">(</span>pm<span class="p">(</span>bg.correct.rma<span class="p">(</span>affy<span class="p">)))</span>
  155. <span class="kp">rm</span><span class="p">(</span>affy<span class="p">);</span> <span class="kp">gc</span><span class="p">()</span>
  156. <span class="c1">## Set the random seed for reproducibility.</span>
  157. <span class="kp">set.seed</span><span class="p">(</span><span class="m">1986</span><span class="p">)</span>
  158. <span class="kp">lapply</span><span class="p">(</span><span class="m">1</span><span class="o">:</span><span class="m">5</span><span class="p">,</span> <span class="kr">function</span><span class="p">(</span>i<span class="p">)</span> <span class="p">{</span>
  159. <span class="kp">on.exit</span><span class="p">(</span><span class="kp">gc</span><span class="p">())</span>
  160. tsmsg<span class="p">(</span><span class="s">&quot;Starting training run number &quot;</span><span class="p">,</span> i<span class="p">,</span> <span class="s">&quot; for &quot;</span><span class="p">,</span> ttype<span class="p">)</span>
  161. tsmsg<span class="p">(</span><span class="s">&quot;Selecting batches for &quot;</span><span class="p">,</span> ttype<span class="p">)</span>
  162. <span class="c1">## Keep only batches with enough samples</span>
  163. big.enough <span class="o">&lt;-</span> stab<span class="o">$</span>Batch <span class="o">%&gt;%</span> table <span class="o">%&gt;%</span> <span class="m">.</span><span class="p">[</span><span class="m">.</span><span class="o">&gt;=</span> arrays.per.batch<span class="p">]</span> <span class="o">%&gt;%</span> <span class="kp">names</span>
  164. stab <span class="o">&lt;-</span> stab<span class="p">[</span>stab<span class="o">$</span>Batch <span class="o">%in%</span> big.enough<span class="p">,]</span> <span class="o">%&gt;%</span> <span class="kp">droplevels</span>
  165. <span class="c1">## Sample an equal number of arrays from each batch</span>
  166. subtab <span class="o">&lt;-</span> ddply<span class="p">(</span>stab<span class="p">,</span> <span class="m">.</span><span class="p">(</span>Batch<span class="p">),</span> <span class="kr">function</span><span class="p">(</span>df<span class="p">)</span> <span class="p">{</span>
  167. df<span class="p">[</span><span class="kp">sample</span><span class="p">(</span><span class="kp">seq</span><span class="p">(</span><span class="kp">nrow</span><span class="p">(</span>df<span class="p">)),</span> size<span class="o">=</span>arrays.per.batch<span class="p">),]</span>
  168. <span class="p">})</span>
  169. tsmsg<span class="p">(</span><span class="s">&quot;Making fRMA vectors&quot;</span><span class="p">)</span>
  170. <span class="c1">## Make fRMA vectors, using normVec from full dataset</span>
  171. res <span class="o">&lt;-</span> makeVectorsAffyBatch<span class="p">(</span>subtab<span class="o">$</span>Filename<span class="p">,</span> subtab<span class="o">$</span>Batch<span class="p">,</span> normVec<span class="o">=</span>normVec<span class="p">)</span>
  172. tsmsg<span class="p">(</span><span class="s">&quot;Finished training run number &quot;</span><span class="p">,</span> i<span class="p">,</span> <span class="s">&quot; for &quot;</span><span class="p">,</span> ttype<span class="p">)</span>
  173. res
  174. <span class="p">})</span> <span class="o">%&gt;%</span> setNames<span class="p">(</span><span class="m">.</span><span class="p">,</span> str_c<span class="p">(</span><span class="s">&quot;V&quot;</span><span class="p">,</span> <span class="kp">seq_along</span><span class="p">(</span><span class="m">.</span><span class="p">)))</span>
  175. <span class="p">})</span> <span class="o">%&gt;%</span> setNames<span class="p">(</span><span class="kp">names</span><span class="p">(</span>sample.tables<span class="p">))</span>
  176. <span class="kp">saveRDS</span><span class="p">(</span>vectors<span class="p">,</span> <span class="s">&quot;consistency-vectors.RDS&quot;</span><span class="p">)</span>
  177. <span class="kp">save.image</span><span class="p">(</span><span class="s">&quot;consistency.rda&quot;</span><span class="p">)</span>
  178. <span class="c1">## Continues in consistency-evaluate.R</span>
  179. </pre></div>
  180. </body>
  181. </html>