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Abstract

Transplant rejection mediated by adaptive immune response is the major challenge

to long-term graft survival. Rejection is treated with immune suppressive drugs, but

early diagnosis is essential for effective treatment. Memory lymphocytes are known

to resist immune suppression, but the precise regulatory mechanisms underlying im-

mune memory are still poorly understood. High-throughput genomic assays such as

microarrays, RNA-seq, and ChIP-seq are heavily used in the study of immunology and

transplant rejection. Here we present 3 analyses of such assays in this context. First,

we re-analyze a large data set consisting of H3K4me2, H3K4me3, and H3K27me3

ChIP-seq data and RNA-seq data in naïve and memory CD4+ T-cells using modern

bioinformatics methods designed to address deficiencies in the data and extend the

analysis in several new directions. All 3 histone marks are found to occur in broad re-

gions and are enriched near promoters, but the radius of promoter enrichment is found

to be larger for H3K27me3. We observe that both gene expression and promoter his-

tone methylation in naïve and memory cells converges on a common signature 14 days

after activation, consistent with differentiation of naïve cells into memory cells. The

location of histone modifications within the promoter is also found to be important,

with asymmetric associations with gene expression for peaks located the same distance

up- or downstream of the TSS. Second, we demonstrate the effectiveness of fRMA

as a single-channel normalization for using expression arrays to diagnose transplant

rejection in a clinical diagnostic setting, and we develop a custom fRMA normaliza-

xviii



tion for a previously unsupported array platform. For methylation arrays, we adapt

methods designed for RNA-seq to improve the sensitivity of differential methylation

analysis by modeling the heteroskedasticity inherent in the data. Finally, we present

and validate a novel method for RNA-seq of cynomolgus monkey blood samples using

complementary oligonucleotides to prevent wasteful over-sequencing of globin genes.

These results all demonstrate the usefulness of a toolbox full of flexible and modular

analysis methods in analyzing complex high-throughput assays in contexts ranging

from basic science to translational medicine.
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Chapter 1

Introduction

1.1 Biological motivation

1.1.1 Rejection is the major long-term threat to organ and

tissue allografts

Organ and tissue transplants are a life-saving treatment for people who have lost the

function of an important organ. In some cases, it is possible to transplant a patient’s

own tissue from one area of their body to another, referred to as an autograft. This

is common for tissues that are distributed throughout many areas of the body, such

as skin and bone. However, in cases of organ failure, there is no functional self tissue

remaining, and a transplant from another person – a donor – is required. This is

referred to as an allograft [1].

Because an allograft comes from a donor of the same species who is genetically

distinct from the recipient (with rare exceptions), genetic variants in protein-coding

regions affect the polypeptide sequences encoded by the affected genes, resulting in

protein products in the allograft that differ from the equivalent proteins produced

by the graft recipient’s own tissue. As a result, without intervention, the recipient’s

immune system will eventually identify the graft as foreign tissue and begin attacking
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it. This is called an alloimmune response, and if left unchecked, it eventually results

in failure and death of the graft, a process referred to as transplant rejection [2].

Rejection is the primary obstacle to long-term health and survival of an allograft

[1]. Like any adaptive immune response, an alloimmune response generally occurs

via two broad mechanisms: cellular immunity, in which CD8+ T-cells recognizing

graft-specific antigens induce apoptosis in the graft cells; and humoral immunity, in

which B-cells produce antibodies that bind to graft proteins and direct an immune

response against the graft [2]. In either case, alloimmunity and rejection show most

of the typical hallmarks of an adaptive immune response, in particular mediation by

CD4+ T-cells and formation of immune memory.

1.1.2 Diagnosis and treatment of allograft rejection is a ma-

jor challenge

To prevent rejection, allograft recipients are treated with immune suppressive drugs

[3, 2]. The goal is to achieve sufficient suppression of the immune system to prevent

rejection of the graft without compromising the ability of the immune system to

raise a normal response against infection. As such, a delicate balance must be struck:

insufficient immune suppression may lead to rejection and ultimately loss of the graft;

excessive suppression leaves the patient vulnerable to life-threatening opportunistic

infections [2]. Because every patient’s matabolism is different, achieving this delicate

balance requires drug dosage to be tailored for each patient. Furthermore, dosage

must be tuned over time, as the immune system’s activity varies over time and in

response to external stimuli with no fixed pattern. In order to properly adjust the

dosage of immune suppression drugs, it is necessary to monitor the health of the

transplant and increase the dosage if evidence of rejection or alloimmune activity is

observed.

However, diagnosis of rejection is a significant challenge. Early diagnosis is essen-
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tial in order to step up immune suppression before the immune system damages the

graft beyond recovery [4]. The current gold standard test for graft rejection is a tissue

biopsy, examined for visible signs of rejection by a trained histologist [5]. When a

patient shows symptoms of possible rejection, a “for cause” biopsy is performed to

confirm the diagnosis, and immune suppression is adjusted as necessary. However, in

many cases, the early stages of rejection are asymptomatic, known as “sub-clinical”

rejection. In light of this, is is now common to perform “protocol biopsies” at specific

times after transplantation of a graft, even if no symptoms of rejection are apparent,

in addition to “for cause” biopsies [6, 7, 8, 9].

However, biopsies have a number of downsides that limit their effectiveness as a

diagnostic tool. First, the need for manual inspection by a histologist means that

diagnosis is subject to the biases of the particular histologist examining the biopsy

[5]. In marginal cases, two different histologists may give two different diagnoses to

the same biopsy. Second, a biopsy can only evaluate if rejection is occurring in the

section of the graft from which the tissue was extracted. If rejection is localized to

one section of the graft and the tissue is extracted from a different section, a false

negative diagnosis may result. Most importantly, extraction of tissue from a graft

is invasive and is treated as an injury by the body, which results in inflammation

that in turn promotes increased immune system activity. Hence, the invasiveness of

biopsies severely limits the frequency with which they can safely be performed [8].

Typically, protocol biopsies are not scheduled more than about once per month [7].

A less invasive diagnostic test for rejection would bring manifold benefits. Such a

test would enable more frequent testing and therefore earlier detection of rejection

events. In addition, having a larger pool of historical data for a given patient would

make it easier to evaluate when a given test is outside the normal parameters for

that specific patient, rather than relying on normal ranges for the population as a

whole. Lastly, the accumulated data from more frequent tests would be a boon to
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the transplant research community. Beyond simply providing more data overall, the

better time granularity of the tests will enable studying the progression of a rejection

event on the scale of days to weeks, rather than months.

1.1.3 Memory cells are resistant to immune suppression

One of the defining features of the adaptive immune system is immune memory: the

ability of the immune system to recognize a previously encountered foreign antigen

and respond more quickly and more strongly to that antigen in subsequent encounters

[2]. When the immune system first encounters a new antigen, the T-cells that respond

are known as naïve cells – T-cells that have never detected their target antigens be-

fore. Once activated by their specific antigen presented by an antigen-presenting cell

in the proper co-stimulatory context, naïve cells differentiate into effector cells that

carry out their respective functions in targeting and destroying the source of the for-

eign antigen. The T-cell receptor (TCR) is cell-surface protein complex produced by

T-cells that is responsible for recognizing the T-cell’s specific antigen, presented on

a major histocompatability complex (MHC), the cell-surface protein complex used

by an antigen-presenting cell (APC) to present antigens to the T-cell. However, a

naïve T-cell that recognizes its antigen also requires a co-stimulatory signal, delivered

through other interactions between APC surface proteins and T-cell surface proteins

such as CD28. Without proper co-stimulation, a T-cell that recognizes its antigen

either dies or enters an unresponsive state known as anergy, in which the T-cell be-

comes much more resistant to subsequent activation even with proper co-stimulation.

The dependency of activation on co-stimulation is an important feature of naïve lym-

phocytes that limits “false positive” immune responses against self antigens, because

APCs usually only express the proper co-stimulation after the innate immune system

detects signs of an active infection, such as the presence of common bacterial cell

components or inflamed tissue.
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After the foreign antigen is cleared, most effector cells die since they are no longer

needed, but some differentiate into memory cells and remain alive indefinitely. Like

naïve cells, memory cells respond to detection of their specific antigen by differentiat-

ing into effector cells, ready to fight an infection [2]. However, the memory response

to antigen is qualitatively different: memory cells are more sensitive to detection of

their antigen, and a lower concentration of antigen is suffiicient to activate them [10,

11, 12]. In addition, memory cells are much less dependent on co-stimulation for acti-

vation: they can activate without certain co-stimulatory signals that are required by

naïve cells, and the signals they do require are only required at lower levels in order to

cause activation [11]. Furthermore, mechanisms that induce tolerance (non-response

to antigen) in naïve cells are much less effective on memory cells [11]. Lastly, once

activated, memory cells proliferate and differentiate into effector cells more quickly

than naïve cells do [12]. In combination, these changes in lymphocyte behavior upon

differentiation into memory cells account for the much quicker and stronger response

of the immune system to subsequent exposure to a previously-encountered antigen.

In the context of a pathogenic infection, immune memory is a major advantage,

allowing an organism to rapidly fight off a previously encountered pathogen much

more quickly and effectively than the first time it was encountered [2]. However, if

effector cells that recognize an antigen from an allograft are allowed to differentiate

into memory cells, preventing rejection of the graft becomes much more difficult.

Many immune suppression drugs work by interfering with the co-stimulation that

naïve cells require in order to mount an immune response. Since memory cells do not

require the same degree of co-stimulation, these drugs are not effective at suppressing

an immune response that is mediated by memory cells. Secondly, because memory

cells are able to mount a stronger and faster response to an antigen, all else being equal

stronger immune suppression is required to prevent an immune response mediated by

memory cells.
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However, immune suppression affects the entire immune system, not just cells rec-

ognizing a specific antigen, so increasing the dosage of immune suppression drugs also

increases the risk of complications from a compromised immune system, such as op-

portunistic infections [2]. While the differences in cell surface markers between naïve

and memory cells have been fairly well characterized, the internal regulatory mech-

anisms that allow memory cells to respond more quickly and without co-stimulation

are still poorly understood. In order to develop methods of immune suppression

that either prevent the formation of memory cells or work more effectively against

memory cells, a more complete understanding of the mechanisms of immune memory

formation and regulation is required.

1.1.4 Infusion of allogenic mesenchymal stem cells modulates

the alloimmune response

One promising experimental treatment for transplant rejection involves the infusion

of allogenic mesenchymal stem cells (MSCs). MSCs have been shown to have im-

mune modulatory effects, both in general and specifically in the case of immune

responses against allografts [13, 14, 15, 16]. Furthermore, allogenic MSCs themselves

are immune-evasive and are rejected by the recipient’s immune system more slowly

than most allogenic tissues [17, 18]. In addition, treating MSCs in culture with in-

terferon gamma (IFNγ) is shown to enhance their immunosuppressive properties and

homogenize their cellulat phenotype, making them more amenable to development

into a well-controlled treatment [19, 20]. The mechanisms by which MSCs modulate

the immune system are still poorly understood. Despite this, there is signifcant in-

terest in using IFNγ-activated MSC infusion as a supplementary immune suppressive

treatment for allograft transplantation.

Note that despite the name, none of the above properties of MSCs are believed to

involve their ability as stem cells to differentiate into multiple different mature cell
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types, but rather the intercellular signals they produce [17].

1.2 Overview of bioinformatic analysis methods

The studies presented in this work all involve the analysis of high-throughput genomic

and epigenomic assay data. Assays like microarrays and high-throughput sequencing

(HTS) are powerful methods for interrogating gene expression and epigenetic state

across the entire genome. However, these data present many unique analysis chal-

lenges, and proper analysis requires identifying and exploiting genome-wide trends

in the data to make up for the small sample sizes. A wide array of software tools

is available to analyze these data. This section presents an overview of the most

important methods and tools used throughout the following analyses, including what

problems they solve, what assumptions they make, and a basic description of how

they work.

1.2.1 Limma: The standard linear modeling framework for ge-

nomics

Linear models are a generalization of the t-test and ANOVA to arbitrarily complex

experimental designs [21]. In a typical linear model, there is one dependent variable

observation per sample and a large number of samples. For example, in a linear model

of height as a function of age and sex, there is one height measurement per person.

However, when analyzing genomic data, each sample consists of observations of thou-

sands of dependent variables. For example, in a high-throughput RNA sequencing

(RNA-seq) experiment, the dependent variables may be the count of RNA-seq reads

for each annotated gene, and there are tens of thousands of genes in the human

genome. Since many assays measure other things than gene expression, the abstract

term “feature” is used to refer to each dependent variable being measured, which may
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include any genomic element, such as genes, promoters, peaks, enhancers, exons, etc.

The simplest approach to analyzing such data would be to fit the same model

independently to each feature. However, this is undesirable for most genomics data

sets. Genomics assays like HTS are expensive, and often the process of generating

the samples is also quite expensive and time-consuming. This expense limits the

sample sizes typically employed in genomics experiments, so a typical genomic data

set has far more features being measured than observations (samples) per feature. As

a result, the statistical power of the linear model for each individual feature is likewise

limited by the small number of samples. However, because thousands of features from

the same set of samples are analyzed together, there is an opportunity to improve

the statistical power of the analysis by exploiting shared patterns of variation across

features. This is the core feature of limma, a linear modeling framework designed for

genomic data. Limma is typically used to analyze expression microarray data, and

more recently RNA-seq data, but it can also be used to analyze any other data for

which linear modeling is appropriate.

The central challenge when fitting a linear model is to estimate the variance of the

data accurately. Out of all parameters required to evaluate statistical significance of

an effect, the variance is the most difficult to estimate when sample sizes are small. A

single shared variance could be estimated for all of the features together, and this es-

timate would be very stable, in contrast to the individual feature variance estimates.

However, this would require the assumption that all features have equal variance,

which is known to be false for most genomic data sets (for example, some genes’

expression is known to be more variable than others’). Limma offers a compromise

between these two extremes by using a method called empirical Bayes moderation to

“squeeze” the distribution of estimated variances toward a single common value that

represents the variance of an average feature in the data (Figure 1.1) [22]. While the

individual feature variance estimates are not stable, the common variance estimate for
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Figure 1.1: Example of empirical Bayes squeezing of per-gene variances. A
smooth trend line (red) is fitted to the individual gene variances (light blue) as a
function of average gene abundance (logCPM). Then the individual gene variances
are “squeezed” toward the trend (dark blue).

the entire data set is quite stable, so using a combination of the two yields a variance

estimate for each feature with greater precision than the individual feature variances.

The trade-off for this improvement is that squeezing each estimated variance toward

the common value introduces some bias – the variance will be underestimated for

features with high variance and overestimated for features with low variance. Essen-

tially, limma assumes that extreme variances are less common than variances close

to the common value. The squeezed variance estimates from this empirical Bayes

procedure are shown empirically to yield greater statistical power than either the

individual feature variances or the single common value.

On top of this core framework, limma also implements many other enhancements

that, further relax the assumptions of the model and extend the scope of what kinds

of data it can analyze. Instead of squeezing toward a single common variance value,
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limma can model the common variance as a function of a covariate, such as average

expression [23]. This is essential for RNA-seq data, where higher gene counts yield

more precise expression measurements and therefore smaller variances than low-count

genes. While linear models typically assume that all samples have equal variance,

limma is able to relax this assumption by identifying and down-weighting samples

that diverge more strongly from the linear model across many features [24, 25]. In

addition, limma is also able to fit simple mixed models incorporating one random

effect in addition to the fixed effects represented by an ordinary linear model [26].

Once again, limma shares information between features to obtain a robust estimate

for the random effect correlation.

1.2.2 edgeR provides limma-like analysis features for read count

data

Although limma can be applied to read counts from RNA-seq data, it is less suitable

for counts from chromatin immunoprecipitation followed by high-throughput DNA se-

quencing (ChIP-seq) and other sources, which tend to be much smaller and therefore

violate the assumption of a normal distribution more severely. For all count-based

data, the edgeR package works similarly to limma, but uses a generalized linear model

(GLM) instead of a linear model. Relative to a linear model, a GLM gains flexibil-

ity by relaxing several assumptions, the most important of which is the assumption

of normally distributed errors. This allows the GLM in edgeR to model the counts

directly using a negative binomial (NB) distribution rather than modeling the nor-

malized log counts using a normal distribution as limma does [27, 28, 29].

The NB distribution is a good fit for count data because it can be derived as a

gamma-distributed mixture of Poisson distributions. The reads in an RNA-seq sample

are assumed to be sampled from a much larger population, such that the sampling

process does not significantly affect the proportions. Under this assumption, a gene’s
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read count in an RNA-seq sample is distributed as Binomial(n, p), where n is the total

number of reads sequenced from the sample and p is the proportion of total fragments

in the sample derived from that gene. When n is large and p is small, a Binomial(n, p)

distribution is well-approximated by Poisson(np). Hence, if multiple sequencing runs

are performed on the same RNA-seq sample (with the same gene mixing proportions

each time), each gene’s read count is expected to follow a Poisson distribution. If

the abundance of a gene, p, varies across biological replicates according to a gamma

distribution, and n is held constant, then the result is a gamma-distributed mixture of

Poisson distributions, which is equivalent to the NB distribution. The assumption of a

gamma distribution for the mixing weights is arbitrary, motivated by the convenience

of the numerically tractable NB distribution and the need to select some distribution,

since the true shape of the distribution of biological variance is unknown.

Thus, edgeR’s use of the NB is equivalent to an a priori assumption that the

variation in gene abundances between replicates follows a gamma distribution. The

gamma shape parameter in the context of the NB is called the dispersion, and the

square root of this dispersion is referred to as the biological coefficient of variation

(BCV), since it represents the variability in abundance that was present in the biolog-

ical samples prior to the Poisson “noise” that was generated by the random sampling

of reads in proportion to feature abundances. Like limma, edgeR estimates the BCV

for each feature using an empirical Bayes procedure that represents a compromise

between per-feature dispersions and a single pooled dispersion estimate shared across

all features. For differential abundance testing, edgeR offers a likelihood ratio test

based on the NB GLM. However, this test assumes the dispersion parameter is known

exactly rather than estimated from the data, which can result in overstating the sig-

nificance of differential abundance results. More recently, a quasi-likelihood test has

been introduced that properly factors the uncertainty in dispersion estimation into the

estimates of statistical significance, and this test is recommended over the likelihood
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ratio test in most cases [30].

1.2.3 Calling consensus peaks from ChIP-seq data

Unlike RNA-seq data, in which gene annotations provide a well-defined set of dis-

crete genomic regions in which to count reads, ChIP-seq reads can potentially occur

anywhere in the genome. However, most genome regions will not contain significant

ChIP-seq read coverage, and analyzing every position in the entire genome is statis-

tically and computationally infeasible, so it is necessary to identify regions of interest

inside which ChIP-seq reads will be counted and analyzed. One option is to define a

set of interesting regions a priori, for example by defining a promoter region for each

annotated gene. However, it is also possible to use the ChIP-seq data itself to identify

regions with ChIP-seq read coverage significantly above the background level, known

as peaks.

The challenge in peak calling is that the immunoprecipitation step is not 100%

selective, so some fraction of reads are not derived from DNA fragments that were

bound by the immunoprecipitated protein. These are referred to as background reads.

Biases in amplification and sequencing, as well as the aforementioned Poisson ran-

domness of the sequencing itself, can cause fluctuations in the background level of

reads that resemble peaks, and the true peaks must be distinguished from these. It is

common to sequence the input DNA to the ChIP-seq reaction alongside the immuno-

precipitated product in order to aid in estimating the fluctuations in background level

across the genome.

There are generally two kinds of peaks that can be identified: narrow peaks and

broadly enriched regions. Proteins that bind specific sites in the genome (such as

many transcription factors) typically show most of their ChIP-seq read coverage at

these specific sites and very little coverage anywhere else. Because the footprint of the

protein is consistent wherever it binds, each peak has a consistent width, typically tens
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to hundreds of base pairs, representing the length of DNA that it binds to. Algorithms

like Model-based Analysis of ChIP-seq (MACS) exploit this pattern to identify specific

loci at which such “narrow peaks” occur by looking for the characteristic peak shape

in the ChIP-seq coverage rising above the surrounding background coverage [31]. In

contrast, some proteins, chief among them histones, do not bind only at a small

number of specific sites, but rather bind potentially almost everywhere in the entire

genome. When looking at histone marks, adjacent histones tend to be similarly

marked, and a given mark may be present on an arbitrary number of consecutive

histones along the genome. Hence, there is no consistent “footprint size” for ChIP-seq

peaks based on histone marks, and peaks typically span many histones. Hence, typical

peaks span many hundreds or even thousands of base pairs. Instead of identifying

specific loci of strong enrichment, algorithms like Spatial Clustering for Identification

of ChIP-Enriched Regions (SICER) assume that peaks are represented in the ChIP-

seq data by modest enrichment above background occurring across broad regions,

and they attempt to identify the extent of those regions [32].

Regardless of the type of peak identified, it is important to identify peaks that

occur consistently across biological replicates. The Encyclopedia Of DNA Elements

(ENCODE) project has developed a method called irreproducible discovery rate

(IDR) for this purpose [33]. The IDR is defined as the probability that a peak

identified in one biological replicate will not also be identified in a second replicate.

Where the more familiar false discovery rate measures the degree of correspondence

between a data-derived ranked list and the (unknown) true list of significant features,

IDR instead measures the degree of correspondence between two ranked lists derived

from different data. IDR assumes that the highest-ranked features are “signal” peaks

that tend to be listed in the same order in both lists, while the lowest-ranked features

are essentially noise peaks, listed in random order with no correspondence between

the lists. IDR attempts to locate the “crossover point” between the signal and the
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noise by determining how far down the list the rank consistency breaks down into

randomness (Figure 1.2).

In addition to other considerations, if called peaks are to be used as regions of

interest for differential abundance analysis, then care must be taken to call peaks in

a way that is blind to differential abundance between experimental conditions, or else

the statistical significance calculations for differential abundance will overstate their

confidence in the results. The csaw package provides guidelines for calling peaks

in this way: peaks are called based on a combination of all ChIP-seq reads from

all experimental conditions, so that the identified peaks are based on the average

abundance across all conditions, which is independent of any differential abundance

between conditions [34].

1.2.4 Normalization of high-throughput data is non-trivial

and application-dependent

High-throughput data sets invariably require some kind of normalization before fur-

ther analysis can be conducted. In general, the goal of normalization is to remove

effects in the data that are caused by technical factors that have nothing to do with

the biology being studied.

For Affymetrix expression arrays, the standard normalization algorithm used in

most analyses is Robust Multichip Average (RMA) [35]. RMA is designed with the

assumption that some fraction of probes on each array will be artifactual and takes

advantage of the fact that each gene is represented by multiple probes by implement-

ing normalization and summarization steps that are robust against outlier probes.

However, RMA uses the probe intensities of all arrays in the data set in the normal-

ization of each individual array, meaning that the normalized expression values in

each array depend on every array in the data set, and will necessarily change each

time an array is added or removed from the data set. If this is undesirable, frozen
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Figure 1.2: Example IDR consistency plot. Peak calls in two replicates are ranked
from highest score (top and right) to lowest score (bottom and left). IDR identifies
reproducible peaks, which rank highly in both replicates (light blue), separating them
from “noise” peak calls whose ranking is not reproducible between replicates (dark
blue).
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Robust Multichip Average (fRMA) implements a variant of RMA where the relevant

distributional parameters are learned from a large reference set of diverse public ar-

ray data sets and then “frozen”, so that each array is effectively normalized against

this frozen reference set rather than the other arrays in the data set under study

[36]. Other available array normalization methods considered include dChip, Global

Rank-invariant Set Normalization (GRSN), and Single-Channel Array Normalization

(SCAN) [37, 38, 39].

In contrast, HTS data present very different normalization challenges. The sim-

plest case is RNA-seq in which read counts are obtained for a set of gene annotations,

yielding a matrix of counts with rows representing genes and columns representing

samples. Because RNA-seq approximates a process of sampling from a population

with replacement, each gene’s count is only interpretable as a fraction of the total

reads for that sample. For that reason, RNA-seq abundances are often reported as

counts per million (CPM). Furthermore, if the abundance of a single gene increases,

then in order for its fraction of the total reads to increase, all other genes’ fractions

must decrease to accommodate it. This effect is known as composition bias, and it is

an artifact of the read sampling process that has nothing to do with the biology of the

samples and must therefore be normalized out. The most commonly used methods

to normalize for composition bias in RNA-seq data seek to equalize the average gene

abundance across samples, under the assumption that the average gene is likely not

changing [40, 41]. The effect of such normalizations is to center the distribution of

log2 fold changes (logFCs) at zero. Note that if a true global difference in gene ex-

pression is present in the data, this difference will be normalized out as well, since it

is indistinguishable from composition bias. In other words, RNA-seq cannot measure

absolute gene expression, only gene expression as a fraction of total reads.

In ChIP-seq data, normalization is not as straightforward. The csaw package

implements several different normalization strategies and provides guidance on when
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to use each one [34]. Briefly, a typical ChIP-seq sample has a bimodal distribu-

tion of read counts: a low-abundance mode representing background regions and a

high-abundance mode representing signal regions. This offers two mutually incom-

patible normalization strategies: equalizing background coverage or equalizing signal

coverage (Figure 1.3). If the experiment is well controlled and chromatin immuno-

precipitation (ChIP) efficiency is known to be consistent across all samples, then

normalizing the background coverage to be equal across all samples is a reasonable

strategy. If this is not a safe assumption, then the preferred strategy is to normalize

the signal regions in a way similar to RNA-seq data by assuming that the average

signal region is not changing abundance between samples. Beyond this, if a ChIP-seq

experiment has a more complicated structure that doesn’t show the typical bimodal

count distribution, it may be necessary to implement a normalization as a smooth

function of abundance. However, this strategy makes a much stronger assumption

about the data: that the average logFC is zero across all abundance levels. Hence,

the simpler scaling normalization based on background or signal regions are generally

preferred whenever possible.

1.2.5 ComBat and SVA for correction of known and unknown

batch effects

In addition to well-understood effects that can be easily normalized out, a data set

often contains confounding biological effects that must be accounted for in the mod-

eling step. For instance, in an experiment with pre-treatment and post-treatment

samples of cells from several different donors, donor variability represents a known

batch effect. The most straightforward correction for known batches is to estimate

the mean for each batch independently and subtract out the differences, so that all

batches have identical means for each feature. However, as with variance estimation,

estimating the differences in batch means is not necessarily robust at the feature
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Figure 1.3: Example MA plot of ChIP-seq read counts in 10kb bins for
two arbitrary samples. The distribution of bins is bimodal along the x axis (av-
erage abundance), with the left mode representing “background” regions with no
protein binding and the right mode representing bound regions. The modes are also
separated on the y axis (logFC), motivating two conflicting normalization strategies:
background normalization (red) and signal normalization (blue and green, two similar
signal normalizations).

18



level, so the ComBat method adds empirical Bayes squeezing of the batch mean dif-

ferences toward a common value, analogous to limma’s empirical Bayes squeezing of

feature variance estimates [42]. Effectively, ComBat assumes that modest differences

between batch means are real batch effects, but extreme differences between batch

means are more likely to be the result of outlier observations that happen to line up

with the batches rather than a genuine batch effect. The result is a batch correction

that is more robust against outliers than simple subtraction of mean differences.

In some data sets, unknown batch effects may be present due to inherent variabil-

ity in the data, either caused by technical or biological effects. Examples of unknown

batch effects include variations in enrichment efficiency between ChIP-seq samples,

variations in populations of different cell types, and the effects of uncontrolled en-

vironmental factors on gene expression in humans or live animals. In an ordinary

linear model context, unknown batch effects cannot be inferred and must be treated

as random noise. However, in high-throughput experiments, once again information

can be shared across features to identify patterns of un-modeled variation that are

repeated in many features. One attractive strategy would be to perform singular

value decomposition (SVD) on the matrix of linear model residuals (which contain

all the un-modeled variation in the data) and take the first few singular vectors as

batch effects. While this can be effective, it makes the unreasonable assumption that

all batch effects are completely uncorrelated with any of the effects being modeled.

surrogate variable analysis (SVA) starts with this approach, but takes some additional

steps to identify batch effects in the full data that are both highly correlated with the

singular vectors in the residuals and least correlated with the effects of interest [43].

Since the final batch effects are estimated from the full data, moderate correlations

between the batch effects and effects of interest are allowed, which gives SVA much

more freedom to estimate the true extent of the batch effects compared to simple

residual SVD. Once the surrogate variables are estimated, they can be included as
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coefficients in the linear model in a similar fashion to known batch effects in order to

subtract out their effects on each feature’s abundance.

1.2.6 Interpreting p-value distributions and estimating false

discovery rates

When testing thousands of genes for differential expression or performing thousands

of statistical tests for other kinds of genomic data, the result is thousands of p-

values. By construction, p-values have a Uniform(0, 1) distribution under the null

hypothesis. This means that if all null hypotheses are true in a large number N of

tests, then for any significance threshold T , approximately N ∗ T p-values would be

called “significant” at that threshold even though the null hypotheses are all true.

These are called false discoveries.

When only a fraction of null hypotheses are true, the p-value distribution will be

a mixture of a uniform component representing the null hypotheses that are true and

a non-uniform component representing the null hypotheses that are not true (Figure

1.4). The fraction belonging to the uniform component is referred to as π0, which

ranges from 1 (all null hypotheses true) to 0 (all null hypotheses false). Furthermore,

the non-uniform component must be biased toward zero, since any evidence against

the null hypothesis pushes the p-value for a test toward zero. We can exploit this fact

to estimate the false discovery rate (FDR) for any significance threshold by estimating

the degree to which the density of p-values left of that threshold exceeds what would

be expected for a uniform distribution. In genomics, the most commonly used FDR

estimation method, and the one used in this work, is that of Benjamini and Hochberg

[44]. This is a conservative method that effectively assumes π0 = 1. Hence it gives

an estimated upper bound for the FDR at any significance threshold, rather than a

point estimate.

We can also estimate π0 for the entire distribution of p-values, which can give an
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Figure 1.4: Example p-value histogram. The distribution of p-values from a large
number of independent tests (such as differential expression tests for each gene in the
genome) is a mixture of a uniform component representing the null hypotheses that
are true (blue shading) and a zero-biased component representing the null hypotheses
that are false (red shading). The FDR for any column in the histogram is the fraction
of that column that is blue. The line y = π0 represents the theoretical uniform
component of this p-value distribution, while the line y = 1 represents the uniform
component when all null hypotheses are true. Note that in real data, the true status
of each hypothesis is unknown, so only the overall shape of the distribution is known.
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idea of the overall signal size in the data without setting any significance threshold

or making any decisions about which specific null hypotheses to reject. As FDR

estimation, there are many methods proposed for estimating π0. The one used in this

work is the Phipson method of averaging local FDR values [45]. Once π0 is estimated,

the number of null hypotheses that are false can be estimated as (1− π0) ∗N .

Conversely, a p-value distribution that is neither uniform nor zero-biased is evi-

dence of a modeling failure. Such a distribution would imply that there is less than

zero evidence against the null hypothesis, which is not possible (in a frequentist set-

ting). Attempting to estimate π0 from such a distribution would yield an estimate

greater than 1, a nonsensical result. The usual cause of a poorly-behaving p-value

distribution is a model assumption that is violated by the data, such as assuming

equal variance between groups (homoskedasticity) when the variance of each group is

not equal (heteroskedasticity) or failing to model a strong confounding batch effect.

In particular, such a p-value distribution is not consistent with a simple lack of signal

in the data, as this should result in a uniform distribution. Hence, observing such a

p-value distribution should prompt a search for violated model assumptions.

1.3 Structure of the thesis

This thesis presents 3 instances of using high-throughput genomic and epigenomic

assays to investigate hypotheses or solve problems relating to the study of transplant

rejection. In Chapter 2, ChIP-seq and RNA-seq are used to investigate the dynamics

of promoter histone methylation as it relates to gene expression in T-cell activation

and memory. Chapter 3 looks at several array-based assays with the potential to

diagnose transplant rejection and shows that analyses of this array data are greatly

improved by paying careful attention to normalization and preprocessing. Chapter

4 presents a custom method for improving RNA-seq of non-human primate blood
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samples by preventing reverse transcription of unwanted globin transcripts. Finally,

Chapter 5 summarizes the overarching lessons and strategies learned through these

analyses that can be applied to all future analyses of high-throughput genomic assays.
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Chapter 2

Reproducible genome-wide

epigenetic analysis of H3K4 and

H3K27 methylation in naïve and

memory CD4+ T-cell activation

Ryan C. Thompson, Sarah A. Lamere, Daniel R. Salomon

2.1 Introduction

CD4+ T-cells are central to all adaptive immune responses, as well as immune memory

[2]. After an infection is cleared, a subset of the naïve CD4+ T-cells that responded to

that infection differentiate into memory CD4+ T-cells, which are responsible for re-

sponding to the same pathogen in the future. Memory CD4+ T-cells are functionally

distinct, able to respond to an infection more quickly and without the co-stimulation

required by naïve CD4+ T-cells. However, the molecular mechanisms underlying

this functional distinction are not well-understood. Epigenetic regulation via histone
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modification is thought to play an important role, but while many studies have looked

at static snapshots of histone methylation in T-cells, few studies have looked at the

dynamics of histone regulation after T-cell activation, nor the differences in histone

methylation between naïve and memory T-cells. H3K4me2, H3K4me3 and H3K27me3

are three histone marks thought to be major epigenetic regulators of gene expression.

The goal of the present study is to investigate the role of these histone marks in CD4+

T-cell activation kinetics and memory differentiation. In static snapshots, H3K4me2

and H3K4me3 are often observed in the promoters of highly transcribed genes, while

H3K27me3 is more often observed in promoters of inactive genes with little to no

transcription occurring. As a result, the two H3K4 marks have been characterized

as “activating” marks, while H3K27me3 has been characterized as “deactivating”.

Despite these characterizations, the actual causal relationship between these histone

modifications and gene transcription is complex and likely involves positive and neg-

ative feedback loops between the two.

2.2 Approach

In order to investigate the relationship between gene expression and these histone

modifications in the context of naïve and memory CD4+ T-cell activation, a previ-

ously published data set of high-throughput RNA sequencing (RNA-seq) data and

chromatin immunoprecipitation followed by high-throughput DNA sequencing (ChIP-

seq) data was re-analyzed using up-to-date methods designed to address the specific

analysis challenges posed by this data set. The data set contains naïve and memory

CD4+ T-cell samples in a time course before and after activation. Like the original

analysis, this analysis looks at the dynamics of these histone marks and compares

them to gene expression dynamics at the same time points during activation, as well

as compares them between naïve and memory cells, in hope of discovering evidence
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of new mechanistic details in the interplay between them. The original analysis of

this data treated each gene promoter as a monolithic unit and mostly assumed that

ChIP-seq reads or peaks occurring anywhere within a promoter were equivalent, re-

gardless of where they occurred relative to the gene structure. For an initial analysis

of the data, this was a necessary simplifying assumption. The current analysis aims

to relax this assumption, first by directly analyzing ChIP-seq peaks for differential

modification, and second by taking a more granular look at the ChIP-seq read cov-

erage within promoter regions to ask whether the location of histone modifications

relative to the gene’s transcription start site (TSS) is an important factor, as opposed

to simple proximity.

2.3 Methods

A reproducible workflow was written to analyze the raw ChIP-seq and RNA-seq

data from previous studies (Gene Expression Omnibus (GEO) accession number

GSE73214) [46, 47, 48, 49]. Briefly, this data consists of RNA-seq and ChIP-seq

from CD4+ T-cells from 4 donors. From each donor, naïve and memory CD4+ T-cells

were isolated separately. Then cultures of both cells were activated with CD3/CD28

beads, and samples were taken at 4 time points: Day 0 (pre-activation), Day 1 (early

activation), Day 5 (peak activation), and Day 14 (post-activation). For each combi-

nation of cell type and time point, RNA was isolated and sequenced, and ChIP-seq

was performed for each of 3 histone marks: H3K4me2, H3K4me3, and H3K27me3.

The ChIP-seq input DNA was also sequenced for each sample. The result was 32

samples for each assay (see Figure 2.1).
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Figure 2.1: Overview of the experimental design.

2.3.1 RNA-seq differential expression analysis

Sequence reads were retrieved from the Sequence Read Archive (SRA) [50]. Five dif-

ferent alignment and quantification methods were tested for the RNA-seq data [51,

52, 53, 54, 55, 56, 57]. Each quantification was tested with both Ensembl transcripts

and GENCODE known gene annotations [58, 59]. Comparisons of downstream re-

sults from each combination of quantification method and reference revealed that all

quantifications gave broadly similar results for most genes, with non being obviously

superior. Salmon quantification with regularization by shoal with the Ensembl anno-

tation was chosen as the method theoretically most likely to partially mitigate some

of the batch effect in the data [55, 56].

Due to an error in sample preparation, the RNA from the samples for days 0 and

5 were sequenced using a different kit than those for days 1 and 14. This induced a

substantial batch effect in the data due to differences in sequencing biases between

the two kits, and this batch effect is unfortunately confounded with the time point

variable (Figure 2.2a). To do the best possible analysis with this data, this batch

effect was subtracted out from the data using ComBat [42], ignoring the time point

variable due to the confounding with the batch variable. The result is a marked

improvement, but the unavoidable confounding with time point means that certain
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real patterns of gene expression will be indistinguishable from the batch effect and

subtracted out as a result. Specifically, any “zig-zag” pattern, such as a gene whose

expression goes up on day 1, down on day 5, and back up again on day 14, will be

attenuated or eliminated entirely. In the context of a T-cell activation time course, it

is unlikely that many genes of interest will follow such an expression pattern, so this

loss was deemed an acceptable cost for correcting the batch effect.

However, removing the systematic component of the batch effect still leaves the

noise component. The gene quantifications from the first batch are substantially

noisier than those in the second batch. This analysis corrected for this by using

limma’s sample weighting method to assign lower weights to the noisy samples of

batch 1 (Figure 2.3) [24, 25]. The resulting analysis gives an accurate assessment

of statistical significance for all comparisons, which unfortunately means a loss of

statistical power for comparisons involving samples in batch 1.

In any case, the RNA-seq counts were first normalized using trimmed mean of M-

values (TMM) [40], converted to normalized log2 counts per million (logCPM) with

quality weights using voomWithQualityWeights [23, 25], and batch-corrected at this

point using ComBat. A linear model was fit to the batch-corrected, quality-weighted

data for each gene using limma, and each gene was tested for differential expression

using limma’s empirical Bayes moderated t-test [60, 23, 61]. P-values were corrected

for multiple testing using the Benjamini-Hochberg (BH) procedure for false discovery

rate (FDR) control [44].

2.3.2 ChIP-seq analyses

Sequence reads were retrieved from SRA [50]. ChIP-seq (and input) reads were

aligned to the Genome Reference Consortium Human Build 38 (GRCh38) genome as-

sembly using Bowtie 2 [62, 63, 57]. Artifact regions were annotated using a custom im-

plementation of the GreyListChIP algorithm, and these “greylists” were merged with
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(a) Before batch correction

(b) After batch correction with ComBat

Figure 2.2: PCoA plots of RNA-seq data showing effect of batch correction.
The uncorrected data (a) shows a clear separation between samples from the two
batches (red and blue) dominating the first principal coordinate. After correction
with ComBat (b), the two batches now have approximately the same center, and the
first two principal coordinates both show separation between experimental conditions
rather than batches. (Note that time points are shown in hours rather than days in
these plots.)
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Figure 2.3: RNA-seq sample weights, grouped by experimental and tech-
nical covariates. Inverse variance weights were estimated for each sample using
limma’s arrayWeights function (part of voomWithQualityWeights). The samples
were grouped by each known covariate and the distribution of weights was plotted
for each group.

the published Encyclopedia Of DNA Elements (ENCODE) blacklists [greylistchip,

64, 65, 46]. Any read or called peak overlapping one of these regions was regarded as

artifactual and excluded from downstream analyses. Figure 2.4 shows the improve-

ment after blacklisting in the strand cross-correlation plots, a common quality control

plot for ChIP-seq data [66, 34]. Peaks were called using epic, an implementation of

the Spatial Clustering for Identification of ChIP-Enriched Regions (SICER) algorithm

[32, 67]. Peaks were also called separately using Model-based Analysis of ChIP-seq

(MACS), but MACS was determined to be a poor fit for the data, and these peak

calls are not used in any further analyses [31]. Consensus peaks were determined

by applying the irreproducible discovery rate (IDR) framework [33, 68] to find peaks

consistently called in the same locations across all 4 donors.

Promoters were defined by computing the distance from each annotated TSS to

the nearest called peak and examining the distribution of distances, observing that
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(a) Cross-correlation plots without removing blacklisted reads.
Without blacklisting, many artifactual peaks are visible in the cross-
correlations of the ChIP-seq samples, and the peak at the true fragment
size (147 bp) is frequently overshadowed by the artifactual peak at the
read length (100 bp).
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(b) Cross-correlation plots with blacklisted reads removed. After
blacklisting, most ChIP-seq samples have clean-looking periodic cross-
correlation plots, with the largest peak around 147 bp, the expected size
for a fragment of DNA from a single nucleosome, and little to no peak at
the read length, 100 bp.

Figure 2.4: Strand cross-correlation plots for ChIP-seq data, before and after blacklisting. The number of reads
starting at each position in the genome was counted separately for the plus and minus strands, and then the correlation coefficient
between the read start counts for both strands (cross-correlation) was computed after shifting the plus strand counts forward
by a specified interval (the delay). This was repeated for every delay value from 0 to 1000, and the cross-correlation values were
plotted as a function of the delay. In good quality samples, cross-correlation is maximized when the delay equals the fragment
size; in poor quality samples, cross-correlation is often maximized when the delay equals the read length, an artifactual peak
whose cause is not fully understood.
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peaks for each histone mark were enriched within a certain distance of the TSS. (Note:

this analysis was performed using the original peak calls and expression values from

GEO [48].) For H3K4me2 and H3K4me3, this distance was about 1 kbp, while for

H3K27me3 it was 2.5 kbp. These distances were used as an “effective promoter radius”

for each mark. The promoter region for each gene was defined as the region of the

genome within this distance upstream or downstream of the gene’s annotated TSS.

For genes with multiple annotated TSSs, a promoter region was defined for each TSS

individually, and any promoters that overlapped (due to multiple TSSs being closer

than 2 times the radius) were merged into one large promoter. Thus, some genes

had multiple promoters defined, which were each analyzed separately for differential

modification.

Reads in promoters, peaks, and sliding windows across the genome were counted

and normalized using csaw and analyzed for differential modification using edgeR

[69, 34, 30, 61]. Unobserved confounding factors in the ChIP-seq data were corrected

using surrogate variable analysis (SVA) [43, 70]. Principal coordinate plots of the

promoter count data for each histone mark before and after subtracting surrogate

variable effects are shown in Figure 2.5.

To investigate whether the location of a peak within the promoter region was

important, “relative coverage profiles” were generated. First, 500-bp sliding windows

were tiled around each annotated TSS: one window centered on the TSS itself, and

10 windows each upstream and downstream, thus covering a 10.5-kb region centered

on the TSS with a total of 21 windows. Reads in each window for each TSS were

counted in each sample, and the counts were normalized and converted to logCPM

as in the differential modification analysis. An abundance threshold was chosen such

that 99% of peak-containing promoters have an average logCPM above this threshold

(Figure 2.6). Then all promoters with an average logCPM above this threshold

were included, and all below that thereshold were filtered out, regardless of whether
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(a) H3K4me2, no correction (b) H3K4me2, SVs subtracted

(c) H3K4me3, no correction (d) H3K4me3, SVs subtracted

(e) H3K27me3, no correction (f) H3K27me3, SVs subtracted

Figure 2.5: PCoA plots of ChIP-seq sliding window data, before and after
subtracting surrogate variables (SVs). For each histone mark, a PCoA plot of
the first 2 principal coordinates was created before and after subtraction of SV effects.
Time points are shown by color and cell type by shape, and samples from the same
time point and cell type are enclosed in a shaded area to aid in visial recognition (this
shaded area has no meaning on the plot). Samples of the same cell type from the
same donor are connected with a line in time point order, showing the “trajectory”
of each donor’s samples over time.
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they actually contained a called peak. This ensures that even promoters containing

undetected peaks will be included, at the cost of likely including many promoters

that do not contain any true peak. Then, the logCPM values of the bins within each

promoter were normalized to an average of zero, such that each window’s normalized

abundance now represents the relative read depth of that window compared to all

other windows in the same promoter. The normalized abundance values for each

window in a promoter are collectively referred to as that promoter’s “relative coverage

profile”.

2.3.3 MOFA analysis of cross-dataset variation patterns

Multi-Omics Factor Analysis (MOFA) was run on all the ChIP-seq windows overlap-

ping consensus peaks for each histone mark, as well as the RNA-seq data, in order

to identify patterns of coordinated variation across all data sets [71]. The results

are summarized in Figure 2.7. Latent factors (LFs) 1, 4, and 5 were determined to

explain the most variation consistently across all data sets (Figure 2.7a), and scatter

plots of these factors show that they also correlate best with the experimental factors

(Figure 2.7b). LF2 captures the batch effect in the RNA-seq data. Removing the

effect of LF2 using MOFA theoretically yields a batch correction that does not de-

pend on knowing the experimental factors. When this was attempted, the resulting

batch correction was comparable to ComBat (see Figure 2.2b), indicating that the

ComBat-based batch correction has little room for improvement given the problems

with the data set.
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Test Est. non-null FDR ≤ 10%

Naïve Day 0 vs Day 1 5992 1613
Naïve Day 0 vs Day 5 3038 32
Naïve Day 0 vs Day 14 1870 190

Memory Day 0 vs Day 1 3195 411
Memory Day 0 vs Day 5 2688 18
Memory Day 0 vs Day 14 1911 227
Day 0 Naïve vs Memory 0 2
Day 1 Naïve vs Memory 9167 5532
Day 5 Naïve vs Memory 0 0
Day 14 Naïve vs Memory 6446 2319

Table 2.1: Estimated and detected differentially expressed genes. “Test”:
Which sample groups were compared; “Est non-null”: Estimated number of dif-
ferentially expressed genes, using the method of averaging local FDR values [45];
“FDR ≤ 10%”: Number of significantly differentially expressed genes at an FDR
threshold of 10%. The total number of genes tested was 16707.
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(a) H3K4me2 (b) H3K4me3 (c) H3K27me3

Figure 2.6: Promoter abundance filtering for relative coverage profiles. For each histone mark, a histogram of promoter
logCPM values was plotted, colored by whether each promoter contains a called peak. The abundance filter for each histone
mark (dotted vertical line) was set such that 99% of peak-containing promoters (blue) are above the threshold, and then all
promoters above this threshold were included in downstream analyses.
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(a) Variance explained in each data set by each latent factor esti-
mated by MOFA. For each LF learned by MOFA, the variance explained
by that factor in each data set (“view”) is shown by the shading of the cells
in the lower section. The upper section shows the total fraction of each
data set’s variance that is explained by all LFs combined.

(b) Scatter plots of specific pairs of MOFA latent factors.
LFs 1, 4, and 5 explain substantial variation in all data sets, so
they were plotted against each other in order to reveal patterns
of variation that are shared across all data sets. These plots can
be interpreted similarly to PCA and PCoA plots.

Figure 2.7: MOFA latent factors identify shared patterns of variation. MOFA was used to estimate latent factors (LFs)
that explain substantial variation in the RNA-seq data and the ChIP-seq data (a). Then specific LFs of interest were selected
and plotted (b).
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2.4 Results

2.4.1 Interpretation of RNA-seq analysis is limited by a ma-

jor confounding factor

Genes called as present in the RNA-seq data were tested for differential expression

between all time points and cell types. The counts of differentially expressed genes

are shown in Table 2.1. Notably, all the results for Day 0 and Day 5 have substantially

fewer genes called differentially expressed than any of the results for other time points.

This is an unfortunate result of the difference in sample quality between the two

batches of RNA-seq data. All the samples in Batch 1, which includes all the samples

from Days 0 and 5, have substantially more variability than the samples in Batch

2, which includes the other time points. This is reflected in the substantially higher

weights assigned to Batch 2 (Figure 2.3). The batch effect has both a systematic

component and a random noise component. While the systematic component was

subtracted out using ComBat (Figure 2.2), no such correction is possible for the

noise component: Batch 1 simply has substantially more random noise in it, which

reduces the statistical power for any differential expression tests involving samples in

that batch.

Despite the difficulty in detecting specific differentially expressed genes, there is

still evidence that differential expression is present for these time points. In Figure 2.8,

there is a clear separation between naïve and memory samples at Day 0, despite the

fact that only 2 genes were significantly differentially expressed for this comparison.

Similarly, the small numbers of genes detected for the Day 0 vs Day 5 comparisons do

not reflect the large separation between these time points in Figure 2.8. In addition,

the MOFA LF plots in Figure 2.7b. This suggests that there is indeed a differential

expression signal present in the data for these comparisons, but the large variability in

the Batch 1 samples obfuscates this signal at the individual gene level. As a result, it is
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Histone Mark # Peaks Mean peak width genome coverage FRiP
H3K4me2 14,965 3,970 1.92% 14.2%
H3K4me3 6,163 2,946 0.588% 6.57%
H3K27me3 18,139 18,967 11.1% 22.5%

Table 2.2: Summary of peak-calling statistics. For each histone mark, the
number of peaks called using SICER at an IDR threshold of 0.05, the mean width of
those peaks, the fraction of the genome covered by peaks, and the fraction of reads
in peaks (FRiP).

impossible to make any meaningful statements about the “size” of the gene signature

for any time point, since the number of significant genes as well as the estimated

number of differentially expressed genes depends so strongly on the variations in

sample quality in addition to the size of the differential expression signal in the data.

Gene-set enrichment analyses are similarly impractical. However, analyses looking at

genome-wide patterns of expression are still practical.

2.4.2 H3K4 and H3K27 methylation occur in broad regions

and are enriched near promoters

Table 2.2 gives a summary of the peak calling statistics for each histone mark. Consis-

tent with previous observations, all 3 histone marks occur in broad regions spanning

many consecutive nucleosomes, rather than in sharp peaks as would be expected for

a transcription factor or other molecule that binds to specific sites. This conclusion

is further supported by Figure 2.4b, in which a clear nucleosome-sized periodicity

is visible in the cross-correlation value for each sample, indicating that each time a

given mark is present on one histone, it is also likely to be found on adjacent histones

as well. H3K27me3 enrichment in particular is substantially more broad than either

H3K4 mark, with a mean peak width of almost 19,000 bp. This is also reflected in

the periodicity observed in Figure 2.4b, which remains strong much farther out for

H3K27me3 than the other marks, showing H3K27me3 especially tends to be found
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Figure 2.8: PCoA plot of RNA-seq samples after ComBat batch correction.
Each point represents an individual sample. Samples with the same combination of
cell type and time point are encircled with a shaded region to aid in visual identi-
fication of the sample groups. Samples of the same cell type from the same donor
are connected by lines to indicate the “trajectory” of each donor’s cells over time in
PCoA space.
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Histone mark Effective promoter radius
H3K4me2 1 kbp
H3K4me3 1 kbp
H3K27me3 2.5 kbp

Table 2.3: Effective promoter radius for each histone mark. These values rep-
resent the approximate distance from transcription start site positions within which
an excess of peaks are found, as shown in Figure 2.9.

on long runs of consecutive histones.

All 3 histone marks tend to occur more often near promoter regions, as shown

in Figure 2.9. The majority of each density distribution is flat, representing the

background density of peaks genome-wide. Each distribution has a peak near zero,

representing an enrichment of peaks close to TSS positions relative to the remainder

of the genome. Interestingly, the “radius” within which this enrichment occurs is not

the same for every histone mark (Table 2.3). For H3K4me2 and H3K4me3, peaks

are most enriched within 1 kbp of TSS positions, while for H3K27me3, enrichment is

broader, extending to 2.5 kbp. These “effective promoter radii” remain approximately

the same across all combinations of experimental condition (cell type, time point, and

donor), so they appear to be a property of the histone mark itself. Hence, these radii

were used to define the promoter regions for each histone mark in all further analyses.

2.4.3 Correlations between gene expression and promoter methy-

lation follow expected genome-wide trends

H3K4me2 and H3K4me2 have previously been reported as activating marks whose

presence in a gene’s promoter is associated with higher gene expression, while H3K27me3

has been reported as inactivating [48, 49]. The data are consistent with this char-

acterization: genes whose promoters (as defined by the radii for each histone mark

listed in 2.3) overlap with a H3K4me2 or H3K4me3 peak tend to have higher expres-

sion than those that don’t, while H3K27me3 is likewise associated with lower gene
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Figure 2.9: Enrichment of peaks in promoter neighborhoods. This plot
shows the distribution of distances from each annotated transcription start site in
the genome to the nearest called peak. Each line represents one combination of his-
tone mark, cell type, and time point. Distributions are smoothed using kernel density
estimation. TSSs that occur within peaks were excluded from this plot to avoid a
large spike at zero that would overshadow the rest of the distribution. (Note: this
figure was generated using the original peak calls and expression values from GEO
[48].)
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expression, as shown in 2.10. This pattern holds across all combinations of cell type

and time point (Welch’s t-test, all p-values ≪ 2.2× 10−16). The difference in average

log2 fragments per kilobase per million fragments (FPKM) values when a peak over-

laps the promoter is about +5.67 for H3K4me2, +5.76 for H3K4me2, and −4.00 for

H3K27me3.

2.4.4 Gene expression and promoter histone methylation pat-

terns show convergence between naïve and memory

cells at day 14

We hypothesized that if naïve cells had differentiated into memory cells by Day 14,

then their patterns of expression and histone modification should converge with those

of memory cells at Day 14. Figure 2.11 shows the patterns of variation in all 3 histone

marks in the promoter regions of the genome using principal coordinate analysis

(PCoA). All 3 marks show a noticeable convergence between the naïve and memory

samples at day 14, visible as an overlapping of the day 14 groups on each plot.

This is consistent with the counts of significantly differentially modified promoters

and estimates of the total numbers of differentially modified promoters shown in

Table 2.4. For all histone marks, evidence of differential modification between naïve

and memory samples was detected at every time point except day 14. The day 14

convergence pattern is also present in the RNA-seq data (Figure 2.11d), albeit in

the 2nd and 3rd principal coordinates, indicating that it is not the most dominant

pattern driving gene expression. Taken together, the data show that promoter histone

methylation for these 3 histone marks and RNA expression for naïve and memory cells

are most similar at day 14, the furthest time point after activation. MOFA was also

able to capture this day 14 convergence pattern in LF5 (Figure 2.7b), which accounts

for shared variation across all 3 histone marks and the RNA-seq data, confirming that
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Figure 2.10: Expression distributions of genes with and without promoter peaks. For each histone mark in each
experimental condition, the average RNA-seq abundance (log2 FPKM) of each gene across all 4 donors was calculated. Genes
were grouped based on whether or not a peak was called in their promoters in that condition, and the distribution of abundance
values was plotted for the no-peak and peak groups. (Note: this figure was generated using the original peak calls and expression
values from GEO [48].)
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this convergence is a coordinated pattern across all 4 data sets. While this observation

does not prove that the naïve cells have differentiated into memory cells at Day 14,

it is consistent with that hypothesis.

2.4.5 Location of H3K4me2 and H3K4me3 promoter cover-

age associates with gene expression

To test whether the position of a histone mark relative to a gene’s TSS was important,

we looked at the “landscape” of ChIP-seq read coverage in naïve Day 0 samples within

5 kbp of each gene’s TSS by binning reads into 500-bp windows tiled across each

promoter logCPM values were calculated for the bins in each promoter and then the

average logCPM for each promoter’s bins was normalized to zero, such that the values

represent coverage relative to other regions of the same promoter rather than being

proportional to absolute read count. The promoters were then clustered based on the

normalized bin abundances using k-means clustering with K = 6. Different values of

K were also tested, but did not substantially change the interpretation of the data.

For H3K4me2, plotting the average bin abundances for each cluster reveals a sim-

ple pattern (Figure 2.12a): Cluster 5 represents a completely flat promoter coverage

profile, likely consisting of genes with no H3K4me2 methylation in the promoter. All

the other clusters represent a continuum of peak positions relative to the TSS. In

order from most upstream to most downstream, they are Clusters 6, 4, 3, 1, and 2.

There do not appear to be any clusters representing coverage patterns other than lone

peaks, such as coverage troughs or double peaks. Next, all promoters were plotted in

a principal component analysis (PCA) plot based on the same relative bin abundance

data, and colored based on cluster membership (Figure 2.12b). The PCA plot shows

Cluster 5 (the “no peak” cluster) at the center, with the other clusters arranged in a

counter-clockwise arc around it in the order noted above, from most upstream peak

to most downstream. Notably, the “clusters” form a single large “cloud” with no ap-
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(a) PCoA plot of H3K4me2 promoters, after
subtracting surrogate variables.

(b) PCoA plot of H3K4me3 promoters, after
subtracting surrogate variables.

(c) PCoA plot of H3K27me3 promoters, after
subtracting surrogate variables.

(d) RNA-seq PCoA, after ComBat batch cor-
rection, showing principal coordinates 2 and 3.

Figure 2.11: PCoA plots for promoter ChIP-seq and expression RNA-seq
data. Each point represents an individual sample. Samples with the same combi-
nation of cell type and time point are encircled with a shaded region to aid in visual
identification of the sample groups. Samples of the same cell type from the same
donor are connected by lines to indicate the “trajectory” of each donor’s cells over
time in PCoA space.
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Number of significant promoters Est. differentially modified promoters
Time Point H3K4me2 H3K4me3 H3K27me3 H3K4me2 H3K4me3 H3K27me3

Day 0 4553 927 6 9967 4149 2404
Day 1 567 278 1570 4370 2145 6598
Day 5 2313 139 490 9450 1148 4141
Day 14 0 0 0 0 0 0

Table 2.4: Number of differentially modified promoters between naïve and memory cells at each time point after
activation. This table shows both the number of differentially modified promoters detected at a 10% FDR threshold (left
half), and the total number of differentially modified promoters estimated using the method of averaging local FDR estimates
[61] (right half).
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parent separation between them, further supporting the conclusion that these clusters

represent an arbitrary partitioning of a continuous distribution of promoter coverage

landscapes. While the clusters are a useful abstraction that aids in visualization, they

are ultimately not an accurate representation of the data. The continuous nature of

the distribution also explains why different values of K led to similar conclusions.

To investigate the association between relative peak position and gene expression,

we plotted the Naïve Day 0 expression for the genes in each cluster (Figure 2.12c).

Most genes in Cluster 5, the “no peak” cluster, have low expression values. Taking

this as the “baseline” distribution when no H3K4me2 methylation is present, we can

compare the other clusters’ distributions to determine which peak positions are as-

sociated with elevated expression. As might be expected, the 3 clusters representing

peaks closest to the TSS, Clusters 1, 3, and 4, show the highest average expression

distributions. Specifically, these clusters all have their highest ChIP-seq abundance

within 1kb of the TSS, consistent with the previously determined promoter radius.

In contrast, cluster 6, which represents peaks several kbp upstream of the TSS, shows

a slightly higher average expression than baseline, while Cluster 2, which represents

peaks several kbp downstream, doesn’t appear to show any appreciable difference.

Interestingly, the cluster with the highest average expression is Cluster 1, which rep-

resents peaks about 1 kbp downstream of the TSS, rather than Cluster 3, which

represents peaks centered directly at the TSS. This suggests that conceptualizing the

promoter as a region centered on the TSS with a certain “radius” may be an over-

simplification – a peak that is a specific distance from the TSS may have a different

degree of influence depending on whether it is upstream or downstream of the TSS.

All observations described above for H3K4me2 ChIP-seq also appear to hold for

H3K4me3 as well (Figure 2.13). This is expected, since there is a high correlation

between the positions where both histone marks occur.
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(a) Average relative coverage for each bin
in each cluster.

(b) PCA of relative coverage depth, colored by
K-means cluster membership.

(c) Gene expression grouped by promoter cov-
erage clusters.

Figure 2.12: K-means clustering of promoter H3K4me2 relative coverage depth in naïve day 0 samples. H3K4me2
ChIP-seq reads were binned into 500-bp windows tiled across each promoter from 5 kbp upstream to 5 kbp downstream, and
the logCPM values were normalized within each promoter to an average of 0, yielding relative coverage depths. These were then
grouped using K-means clustering with K = 6, and the average bin values were plotted for each cluster (a). The x-axis is the
genomic coordinate of each bin relative to the the transcription start site, and the y-axis is the mean relative coverage depth of
that bin across all promoters in the cluster. Each line represents the average “shape” of the promoter coverage for promoters
in that cluster. PCA was performed on the same data, and the first two PCs were plotted, coloring each point by its K-means
cluster identity (b). For each cluster, the distribution of gene expression values was plotted (c).
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(a) Average relative coverage for each bin in each
cluster.

(b) PCA of relative coverage depth, colored by
K-means cluster membership.

(c) Gene expression grouped by promoter cov-
erage clusters.

Figure 2.13: K-means clustering of promoter H3K4me3 relative coverage depth in naïve day 0 samples. H3K4me3
ChIP-seq reads were binned into 500-bp windows tiled across each promoter from 5 kbp upstream to 5 kbp downstream, and
the logCPM values were normalized within each promoter to an average of 0, yielding relative coverage depths. These were then
grouped using K-means clustering with K = 6, and the average bin values were plotted for each cluster (a). The x-axis is the
genomic coordinate of each bin relative to the the transcription start site, and the y-axis is the mean relative coverage depth of
that bin across all promoters in the cluster. Each line represents the average “shape” of the promoter coverage for promoters
in that cluster. PCA was performed on the same data, and the first two PCs were plotted, coloring each point by its K-means
cluster identity (b). For each cluster, the distribution of gene expression values was plotted (c).
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2.4.6 Patterns of H3K27me3 promoter coverage associate with

gene expression

Unlike both H3K4 marks, whose main patterns of variation appear directly related to

the size and position of a single peak within the promoter, the patterns of H3K27me3

methylation in promoters are more complex (Figure 2.14). Once again looking at the

relative coverage in a 500-bp wide bins in a 5kb radius around each TSS, promoters

were clustered based on the normalized relative coverage values in each bin using

k-means clustering with K = 6 (Figure 2.14a). This time, 3 “axes” of variation can

be observed, each represented by 2 clusters with opposing patterns. The first axis is

greater upstream coverage (Cluster 1) vs. greater downstream coverage (Cluster 3);

the second axis is the coverage at the TSS itself: peak (Cluster 4) or trough (Cluster

2); lastly, the third axis represents a trough upstream of the TSS (Cluster 5) vs.

downstream of the TSS (Cluster 6). Referring to these opposing pairs of clusters as

axes of variation is justified, because they correspond precisely to the first 3 principal

components (PCs) in the PCA plot of the relative coverage values (Figure 2.14b).

The PCA plot reveals that as in the case of H3K4me2, all the “clusters” are really

just sections of a single connected cloud rather than discrete clusters. The cloud is

approximately ellipsoid-shaped, with each PC being an axis of the ellipse, and each

cluster consisting of a pyramidal section of the ellipsoid.

In Figure 2.14c, we can see that Clusters 1 and 2 are the only clusters with higher

gene expression than the others. For Cluster 2, this is expected, since this cluster

represents genes with depletion of H3K27me3 near the promoter. Hence, elevated

expression in cluster 2 is consistent with the conventional view of H3K27me3 as a

deactivating mark. However, Cluster 1, the cluster with the most elevated gene

expression, represents genes with elevated coverage upstream of the TSS, or equiva-

lently, decreased coverage downstream, inside the gene body. The opposite pattern,

in which H3K27me3 is more abundant within the gene body and less abundance in
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(a) Average relative coverage for each bin in each
cluster.

(b) PCA of relative coverage depth, colored by
K-means cluster membership.

(c) Gene expression grouped by promoter cov-
erage clusters.

Figure 2.14: K-means clustering of promoter H3K27me3 relative coverage depth in naïve day 0 samples. H3K27me3
ChIP-seq reads were binned into 500-bp windows tiled across each promoter from 5 kbp upstream to 5 kbp downstream, and
the logCPM values were normalized within each promoter to an average of 0, yielding relative coverage depths. These were then
grouped using k-means clustering with K = 6, and the average bin values were plotted for each cluster (a). The x-axis is the
genomic coordinate of each bin relative to the the transcription start site, and the y-axis is the mean relative coverage depth of
that bin across all promoters in the cluster. Each line represents the average “shape” of the promoter coverage for promoters
in that cluster. PCA was performed on the same data, and the first two PCs were plotted, coloring each point by its K-means
cluster identity (b). (Note: In (b), Cluster 6 is hidden behind all the other clusters.) For each cluster, the distribution of gene
expression values was plotted (c).
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the upstream promoter region, does not show any elevation in gene expression. As

with H3K4me2, this shows that the location of H3K27 trimethylation relative to the

TSS is potentially an important factor beyond simple proximity.

2.5 Discussion

2.5.1 Each histone mark’s “effective promoter extent” must

be determined empirically

Figure 2.9 shows that H3K4me2, H3K4me3, and H3K27me3 are all enriched near

promoters, relative to the rest of the genome, consistent with their conventionally

understood role in regulating gene transcription. Interestingly, the radius within this

enrichment occurs is not the same for each histone mark. H3K4me2 and H3K4me3 are

enriched within a 1 kbp radius, while H3K27me3 is enriched within 2.5 kbp. Notably,

the determined promoter radius was consistent across all experimental conditions,

varying only between different histone marks. This suggests that the conventional

“one size fits all” approach of defining a single promoter region for each gene (or

each TSS) and using that same promoter region for analyzing all types of genomic

data within an experiment may not be appropriate, and a better approach may be

to use a separate promoter radius for each kind of data, with each radius being

derived from the data itself. Furthermore, the apparent asymmetry of upstream and

downstream promoter histone modification with respect to gene expression, seen in

Figures 2.12, 2.13, and 2.14, shows that even the concept of a promoter “radius” is

likely an oversimplification. At a minimum, nearby enrichment of peaks should be

evaluated separately for both upstream and downstream peaks, and an appropriate

“radius” should be selected for each direction.

Figures 2.12 and 2.13 show that the determined promoter radius of 1 kbp is

approximately consistent with the distance from the TSS at which enrichment of
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H3K4 methylation correlates with increased expression, showing that this radius,

which was determined by a simple analysis of measuring the distance from each TSS

to the nearest peak, also has functional significance. For H3K27me3, the correlation

between histone modification near the promoter and gene expression is more complex,

involving non-peak variations such as troughs in coverage at the TSS and asymmetric

coverage upstream and downstream, so it is difficult in this case to evaluate whether

the 2.5 kbp radius determined from TSS-to-peak distances is functionally significant.

However, the two patterns of coverage associated with elevated expression levels both

have interesting features within this radius.

2.5.2 Day 14 convergence is consistent with naïve-to-memory

differentiation

We observed that all 3 histone marks and the gene expression data all exhibit evi-

dence of convergence in abundance between naïve and memory cells by day 14 after

activation (Figure 2.11, Table 2.4). The MOFA LF scatter plots (Figure 2.7b) show

that this pattern of convergence is captured in LF5. Like all the LFs in this plot, this

factor explains a substantial portion of the variance in all 4 data sets, indicating a

coordinated pattern of variation shared across all histone marks and gene expression.

This is consistent with the expectation that any naïve CD4+ T-cells remaining at day

14 should have differentiated into memory cells by that time, and should therefore

have a genomic and epigenomic state similar to memory cells. This convergence is

evidence that these histone marks all play an important role in the naïve-to-memory

differentiation process. A histone mark that was not involved in naïve-to-memory

differentiation would not be expected to converge in this way after activation.

In H3K4me2, H3K4me3, and RNA-seq, this convergence appears to be in progress

already by Day 5, shown by the smaller distance between naïve and memory cells at

day 5 along the y-axes in Figures 2.11a, 2.11b, and 2.11d. This agrees with the model
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Figure 2.15: Lamere 2016 Figure 8 [48], “Model for the role of H3K4 methy-
lation during CD4+ T-cell activation.” (Reproduced with permission.)

proposed by Sarah Lamere based on an prior analysis of the same data, shown in

Figure 2.15, which shows the pattern of H3K4 methylation and expression for naïve

cells and memory cells converging at day 5. This model was developed without the

benefit of the PCoA plots in Figure 2.11, which have been corrected for confounding

factors by ComBat and SVA. This shows that proper batch correction assists in

extracting meaningful patterns in the data while eliminating systematic sources of

irrelevant variation in the data, allowing simple automated procedures like PCoA

to reveal interesting behaviors in the data that were previously only detectable by a

detailed manual analysis. While the ideal comparison to demonstrate this convergence

would be naïve cells at day 14 to memory cells at day 0, this is not feasible in this

experimental system, since neither naïve nor memory cells are able to fully return to

their pre-activation state, as shown by the lack of overlap between days 0 and 14 for

either naïve or memory cells in Figure 2.11.
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2.5.3 The location of histone modifications within the pro-

moter is important

When looking at patterns in the relative coverage of each histone mark near the TSS of

each gene, several interesting patterns were apparent. For H3K4me2 and H3K4me3,

the pattern was straightforward: the consistent pattern across all promoters was a

single peak a few kbp wide, with the main axis of variation being the position of this

peak relative to the TSS (Figures 2.12 & 2.13). There were no obvious “preferred”

positions, but rather a continuous distribution of relative positions ranging all across

the promoter region. The association with gene expression was also straightforward:

peaks closer to the TSS were more strongly associated with elevated gene expression.

Coverage downstream of the TSS appears to be more strongly associated with elevated

expression than coverage at the same distance upstream, indicating that the “effective

promoter region” for H3K4me2 and H3K4me3 may be centered downstream of the

TSS.

The relative promoter coverage for H3K27me3 had a more complex pattern, with

two specific patterns of promoter coverage associated with elevated expression: a

sharp depletion of H3K27me3 around the TSS relative to the surrounding area, and a

depletion of H3K27me3 downstream of the TSS relative to upstream (Figure 2.14). A

previous study found that H3K27me3 depletion within the gene body was associated

with elevated gene expression in 4 different cell types in mice [72]. This is consistent

with the second pattern described here. This study also reported that a spike in cov-

erage at the TSS was associated with lower expression, which is indirectly consistent

with the first pattern described here, in the sense that it associates lower H3K27me3

levels near the TSS with higher expression.
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2.5.4 A reproducible workflow aids in analysis

The analyses described in this chapter were organized into a reproducible work-

flow using the Snakemake workflow management system [73]. As shown in Figure

2.16, the workflow includes many steps with complex dependencies between them.

For example, the step that counts the number of ChIP-seq reads in 500 bp win-

dows in each promoter (the starting point for Figures 2.12, 2.13, and 2.14), named

chipseq_count_tss_neighborhoods, depends on the RNA-seq abundance estimates

in order to select the most-used TSS for each gene, the aligned ChIP-seq reads, the

index for those reads, and the blacklist of regions to be excluded from ChIP-seq

analysis. Each step declares its inputs and outputs, and Snakemake uses these to

determine the dependencies between steps. Each step is marked as depending on all

the steps whose outputs match its inputs, generating the workflow graph in Figure

2.16, which Snakemake uses to determine order in which to execute each step so that

each step is executed only after all of the steps it depends on have completed, thereby

automating the entire workflow from start to finish.

In addition to simply making it easier to organize the steps in the analysis, struc-

turing the analysis as a workflow allowed for some analysis strategies that would not

have been practical otherwise. For example, 5 different RNA-seq quantification meth-

ods were tested against two different reference transcriptome annotations for a total

of 10 different quantifications of the same RNA-seq data. These were then compared

against each other in the exploratory data analysis step, to determine that the results

were not very sensitive to either the choice of quantification method or the choice of

annotation. This was possible with a single script for the exploratory data analysis,

because Snakemake was able to automate running this script for every combination of

method and reference. In a similar manner, two different peak calling methods were

tested against each other, and in this case it was determined that SICER was unam-

biguously superior to MACS for all histone marks studied. By enabling these types of
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Figure 2.16: Dependency graph of steps in reproducible workflow. The analysis flows from left to right. Arrows indicate
which analysis steps depend on the output of other steps.
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comparisons, structuring the analysis as an automated workflow allowed important

analysis decisions to be made in a data-driven way, by running every reasonable op-

tion through the downstream steps, seeing the consequences of choosing each option,

and deciding accordingly.

2.6 Future Directions

The analysis of RNA-seq and ChIP-seq in CD4+ T-cells in Chapter 2 is in many ways

a preliminary study that suggests a multitude of new avenues of investigation. Here

we consider a selection of such avenues.

2.6.1 Previous negative results

Two additional analyses were conducted beyond those reported in the results. First,

we searched for evidence that the presence or absence of a CpG island (CpGi) in the

promoter was correlated with increases or decreases in gene expression or any histone

mark in any of the tested contrasts. Second, we searched for evidence that the relative

ChIP-seq coverage profiles prior to activations could predict the change in expression

of a gene after activation. Neither analysis turned up any clear positive results.

2.6.2 Improve on the idea of an effective promoter radius

This study introduced the concept of an “effective promoter radius” specific to each

histone mark based on distance from the TSS within which an excess of peaks was

called for that mark. This concept was then used to guide further analyses throughout

the study. However, while the effective promoter radius was useful in those analyses,

it is both limited in theory and shown in practice to be a possible oversimplification.

First, the effective promoter radii used in this study were chosen based on manual

inspection of the TSS-to-peak distance distributions in Figure 2.9, selecting round
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numbers of analyst convenience (Table 2.3). It would be better to define an algorithm

that selects a more precise radius based on the features of the graph. One possible

way to do this would be to randomly rearrange the called peaks throughout the

genome many (while preserving the distribution of peak widths) and re-generate the

same plot as in Figure 2.9. This would yield a better “background” distribution that

demonstrates the degree of near-TSS enrichment that would be expected by random

chance. The effective promoter radius could be defined as the point where the true

distribution diverges from the randomized background distribution.

Furthermore, the above definition of effective promoter radius has the significant

limitation of being based on the peak calling method. It is thus very sensitive to the

choice of peak caller and significance threshold for calling peaks, as well as the degree

of saturation in the sequencing. Calling peaks from ChIP-seq samples with insufficient

coverage depth, with the wrong peak caller, or with a different significance threshold

could give a drastically different number of called peaks, and hence a drastically

different distribution of peak-to-TSS distances. To address this, it is desirable to

develop a better method of determining the effective promoter radius that relies only

on the distribution of read coverage around the TSS, independent of the peak calling.

Furthermore, as demonstrated by the upstream-downstream asymmetries observed

in Figures 2.12, 2.13, and 2.14, this definition should determine a different radius for

the upstream and downstream directions. At this point, it may be better to rename

this concept “effective promoter extent” and avoid the word “radius”, since a radius

implies a symmetry about the TSS that is not supported by the data.

Beyond improving the definition of effective promoter extent, functional valida-

tion is necessary to show that this measure of near-TSS enrichment has biological

meaning. Figures 2.12 and 2.13 already provide a very limited functional validation

of the chosen promoter extents for H3K4me2 and H3K4me3 by showing that spikes in

coverage within this region are most strongly correlated with elevated gene expression.
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However, there are other ways to show functional relevance of the promoter extent.

For example, correlations could be computed between read counts in peaks nearby

gene promoters and the expression level of those genes, and these correlations could be

plotted against the distance of the peak upstream or downstream of the gene’s TSS.

If the promoter extent truly defines a “sphere of influence” within which a histone

mark is involved with the regulation of a gene, then the correlations for peaks within

this extent should be significantly higher than those further upstream or downstream.

Peaks within these extents may also be more likely to show differential modification

than those outside genic regions of the genome.

2.6.3 Design experiments to focus on post-activation conver-

gence of naïve & memory cells

In this study, a convergence between naïve and memory cells was observed in both

the pattern of gene expression and in epigenetic state of the 3 histone marks studied,

consistent with the hypothesis that any naïve cells remaining 14 days after activation

have differentiated into memory cells, and that both gene expression and these his-

tone marks are involved in this differentiation. However, the current study was not

designed with this specific hypothesis in mind, and it therefore has some deficiencies

with regard to testing it. The memory CD4+ samples at day 14 do not resemble the

memory samples at day 0, indicating that in the specific model of activation used for

this experiment, the cells are not guaranteed to return to their original pre-activation

state, or perhaps this process takes substantially longer than 14 days. This difference

is expected, as the cell cultures in this experiment were treated with IL2 from day 5

onward [48], so the signalling environments in which the cells are cultured are differ-

ent at day 0 and day 14. This is a challenge for testing the convergence hypothesis

because the ideal comparison to prove that naïve cells are converging to a resting

memory state would be to compare the final naïve time point to the Day 0 memory
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samples, but this comparison is only meaningful if memory cells generally return to

the same “resting” state that they started at.

Because pre-culture and post-culture cells will probably never behave identically

even if they both nominally have a “resting” phenotype, a different experiment should

be designed in which post-activation naive cells are compared to memory cells that

were cultured for the same amount of time but never activated, in addition to post-

activation memory cells. If the convergence hypothesis is correct, both post-activation

cultures should converge on the culture of never-activated memory cells.

In addition, if naïve-to-memory convergence is a general pattern, it should also

be detectable in other epigenetic marks, including other histone marks and DNA

methylation. An experiment should be designed studying a large number of epigenetic

marks known or suspected to be involved in regulation of gene expression, assaying

all of these at the same pre- and post-activation time points. Multi-dataset factor

analysis methods like MOFA can then be used to identify coordinated patterns of

regulation shared across many epigenetic marks. Of course, CD4+ T-cells are not the

only adaptive immune cells that exhibit memory formation. A similar study could be

designed for CD8+ T-cells, B-cells, and even specific subsets of CD4+ T-cells, such as

Th1, Th2, Treg, and Th17 cells, to determine whether these also show convergence.

2.6.4 Follow up on hints of interesting patterns in promoter

relative coverage profiles

The analysis of promoter coverage landscapes in resting naive CD4+ T-cells and their

correlations with gene expression raises many interesting questions. The chosen anal-

ysis strategy used a clustering approach, but this approach was subsequently shown

to be a poor fit for the data. In light of this, a better means of dimension reduction

for promoter landscape data is required. In the case of H3K4me2 and H3K4me3,

one option is to define the first 3 principal componets as orthogonal promoter “state
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variables”: upstream vs downstream coverage, TSS-centered peak vs trough, and

proximal upstream trough vs proximal downstream trough. Gene expression could

then be modeled as a function of these three variables, or possibly as a function of

the first N principal components for N larger than 3. For H3K4me2 and H3K4me3,

a better representation might be obtained by transforming the first 2 principal coor-

dinates into a polar coordinate system (r, θ) with the origin at the center of the “no

peak” cluster, where the radius r represents the peak height above the background

and the angle θ represents the peak’s position upstream or downstream of the TSS.

Another weakness in the current analysis is the normalization of the average abun-

dance of each promoter to an average of zero. This allows the abundance value in

each window to represent the relative abundance of that window compared to all the

other windows in the interrogated area. However, while using the remainder of the

windows to set the “background” level against which each window is normalized is

convenient, it is far from optimal. As shown in Table 2.2, many enriched regions

are larger than the 5 kbp radius., which means there may not be any “background”

regions within 5 kbp of the TSS to normalize against. For example, this normaliza-

tion strategy fails to distinguish between a trough in coverage at the TSS and a pair

of wide peaks upstream and downstream of the TSS. Both cases would present as

lower coverage in the windows immediately adjacent to the TSS and higher coverage

in windows further away, but the functional implications of these two cases might

be completely different. To improve the normalization, the background estimation

method used by SICER, which is specifically designed for finding broad regions of

enrichment, should be adapted to estimate the background sequencing depth in each

window from the ChIP-seq input samples, and each window’s read count should be

normalized against the background and reported as a log2 fold change (logFC) relative

to that background.

Lastly, the analysis of promoter coverage landscapes presented in this work only
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looked at promoter coverage of resting naive CD4+ T-cells, with the goal of deter-

mining whether this initial promoter state was predictive of post-activation changes

in gene expression. Changes in the promoter coverage landscape over time have not

yet been considered. This represents a significant analysis challenge, by adding yet

another dimension (genomic coordinate) in to the data.

2.6.5 Investigate causes of high correlation between mutually

exclusive histone marks

The high correlation between coverage depth observed between H3K4me2 and H3K4me3

is both expected and unexpected. Since both marks are associated with elevated

gene transcription, a positive correlation between them is not surprising. However,

these two marks represent different post-translational modifications of the same ly-

sine residue on the histone H3 polypeptide, which means that they cannot both be

present on the same H3 subunit. Thus, the high correlation between them has several

potential explanations. One possible reason is cell population heterogeneity: perhaps

some genomic loci are frequently marked with H3K4me2 in some cells, while in other

cells the same loci are marked with H3K4me3. Another possibility is allele-specific

modifications: the loci are marked in each diploid cell with H3K4me2 on one allele

and H3K4me3 on the other allele. Lastly, since each histone octamer contains 2 H3

subunits, it is possible that having one H3K4me2 mark and one H3K4me3 mark on a

given histone octamer represents a distinct epigenetic state with a different function

than either double H3K4me2 or double H3K4me3.

The hypothesis of allele-specific histone modification can easily be tested with

existing data by locating all heterozygous loci occurring within both H3K4me3 and

H3K4me2 peaks and checking for opposite allelic imbalance between H3K4me3 and

H3K4me2 read at each locus. If the allele fractions in the reads from the two his-

tone marks for each locus are plotted against each other, there should be a negative
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correlation. If no such negative correlation is found, then allele-specific histone mod-

ification is unlikely to be the reason for the high correlation between these histone

marks.

To test the hypothesis that H3K4me2 and H3K4me3 marks are occurring on the

same histones. A double chromatin immunoprecipitation (ChIP) experiment can be

performed [74]. In this assay, the input DNA goes through two sequential immuno-

precipitations with different antibodies: first the anti-H3K4me2 antibody, then the

anti-H3K4me3 antibody. Only bearing both histone marks, and the DNA associated

with them, should be isolated. This can be followed by high-throughput sequencing

(HTS) to form a “double ChIP-seq” assay that can be used to identify DNA regions

bound by the isolated histones [75]. If peaks called from this double ChIP-seq assay

are highly correlated with both H3K4me2 and H3K4me3 peaks, then this is strong

evidence that the correlation between the two marks is actually caused by physical

co-location on the same histone.
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Chapter 3

Improving array-based diagnostics

for transplant rejection by

optimizing data preprocessing

Ryan C. Thompson, Sunil M. Kurian, Thomas Whisnant, Padmaja

Natarajan, Daniel R. Salomon

3.1 Introduction

3.1.1 Proper pre-processing is essential for array data

Microarrays, bead arrays, and similar assays produce raw data in the form of fluo-

rescence intensity measurements, with each intensity measurement proportional to

the abundance of some fluorescently labelled target DNA or RNA sequence that base

pairs to a specific probe sequence. However, the fluorescence measurements for each

probe are also affected my many technical confounding factors, such as the concentra-

tion of target material, strength of off-target binding, the sensitivity of the imaging
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sensor, and visual artifacts in the image. Some array designs also use multiple probe

sequences for each target. Hence, extensive pre-processing of array data is necessary

to normalize out the effects of these technical factors and summarize the informa-

tion from multiple probes to arrive at a single usable estimate of abundance or other

relevant quantity, such as a ratio of two abundances, for each target [76].

The choice of pre-processing algorithms used in the analysis of an array data

set can have a large effect on the results of that analysis. However, despite their

importance, these steps are often neglected or rushed in order to get to the more

scientifically interesting analysis steps involving the actual biology of the system

under study. Hence, it is often possible to achieve substantial gains in statistical

power, model goodness-of-fit, or other relevant performance measures, by checking

the assumptions made by each preprocessing step and choosing specific normaliza-

tion methods tailored to the specific goals of the current analysis.

3.2 Approach

3.2.1 Clinical diagnostic applications for microarrays require

single-channel normalization

As the cost of performing microarray assays falls, there is increasing interest in using

genomic assays for diagnostic purposes, such as distinguishing healthy transplants

(TX) from transplants undergoing acute rejection (AR) or acute dysfunction with

no rejection (ADNR). However, the the standard normalization algorithm used for

microarray data, Robust Multichip Average (RMA) [35], is not applicable in a clinical

setting. Two of the steps in RMA, quantile normalization and probe summarization

by median polish, depend on every array in the data set being normalized. This

means that adding or removing any arrays from a data set changes the normalized

values for all arrays, and data sets that have been normalized separately cannot be
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compared to each other. Hence, when using RMA, any arrays to be analyzed together

must also be normalized together, and the set of arrays included in the data set must

be held constant throughout an analysis.

These limitations present serious impediments to the use of arrays as a diagnostic

tool. When training a classifier, the samples to be classified must not be involved

in any step of the training process, lest their inclusion bias the training process.

Once a classifier is deployed in a clinical setting, the samples to be classified will

not even exist at the time of training, so including them would be impossible even

if it were statistically justifiable. Therefore, any machine learning application for

microarrays demands that the normalized expression values computed for an array

must depend only on information contained within that array. This would ensure

that each array’s normalization is independent of every other array, and that arrays

normalized separately can still be compared to each other without bias. Such a

normalization is commonly referred to as “single-channel normalization”.

Frozen Robust Multichip Average (fRMA) addresses these concerns by replacing

the quantile normalization and median polish with alternatives that do not intro-

duce inter-array dependence, allowing each array to be normalized independently of

all others [36]. Quantile normalization is performed against a pre-generated set of

quantiles learned from a collection of 850 publicly available arrays sampled from a

wide variety of tissues in the Gene Expression Omnibus (GEO). Each array’s probe

intensity distribution is normalized against these pre-generated quantiles. The me-

dian polish step is replaced with a robust weighted average of probe intensities, using

inverse variance weights learned from the same public GEO data. The result is a nor-

malization that satisfies the requirements mentioned above: each array is normalized

independently of all others, and any two normalized arrays can be compared directly

to each other.

One important limitation of fRMA is that it requires a separate reference data
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set from which to learn the parameters (reference quantiles and probe weights) that

will be used to normalize each array. These parameters are specific to a given ar-

ray platform, and pre-generated parameters are only provided for the most common

platforms, such as Affymetrix hgu133plus2. For a less common platform, such as

hthgu133pluspm, is is necessary to learn custom parameters from in-house data be-

fore fRMA can be used to normalize samples on that platform [77].

One other option is the aptly-named Single Channel Array Normalization (SCAN),

which adapts a normalization method originally designed for tiling arrays [39]. SCAN

is truly single-channel in that it does not require a set of normalization parameters

estimated from an external set of reference samples like fRMA does.

3.2.2 Heteroskedasticity must be accounted for in methyla-

tion array data

DNA methylation arrays are a relatively new kind of assay that uses microarrays

to measure the degree of methylation on cytosines in specific regions arrayed across

the genome. First, bisulfite treatment converts all unmethylated cytosines to uracil

(which are read as thymine during amplification and sequencing) while leaving methy-

lated cytosines unaffected. Then, each target region is interrogated with two probes:

one binds to the original genomic sequence and interrogates the level of methy-

lated DNA, and the other binds to the same sequence with all cytosines replaced

by thymidines and interrogates the level of unmethylated DNA.

After normalization, these two probe intensities are summarized in one of two

ways, each with advantages and disadvantages. β values, interpreted as fraction

of DNA copies methylated, range from 0 to 1. β values are conceptually easy to

interpret, but the constrained range makes them unsuitable for linear modeling, and

their error distributions are highly non-normal, which also frustrates linear modeling.

M-values, interpreted as the log ratios of methylated to unmethylated copies for each
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Figure 3.1: Sigmoid shape of the mapping between β and M values. This
mapping is monotonic and non-linear, but it is approximately linear in the neighbor-
hood of (β = 0.5,M = 0).

probe region, are computed by mapping the beta values from [0, 1] onto (−∞,+∞)

using a sigmoid curve (Figure 3.1). This transformation results in values with better

statistical properties: the unconstrained range is suitable for linear modeling, and the

error distributions are more normal. Hence, most linear modeling and other statistical

testing on methylation arrays is performed using M-values.

However, the steep slope of the sigmoid transformation near 0 and 1 tends to

over-exaggerate small differences in β values near those extremes, which in turn am-

plifies the error in those values, leading to a U-shaped trend in the mean-variance

curve: extreme values have higher variances than values near the middle. This mean-

variance dependency must be accounted for when fitting the linear model for differen-
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tial methylation, or else the variance will be systematically overestimated for probes

with moderate M-values and underestimated for probes with extreme M-values. This

is particularly undesirable for methylation data because the intermediate M-values

are the ones of most interest, since they are more likely to represent areas of varying

methylation, whereas extreme M-values typically represent complete methylation or

complete lack of methylation.

High-throughput RNA sequencing (RNA-seq) read count data are also known

to show heteroskedasticity, and the voom method was introduced for modeling this

heteroskedasticity by estimating the mean-variance trend in the data and using this

trend to assign precision weights to each observation [23]. While methylation array

data are not derived from counts and have a very different mean-variance relationship

from that of typical RNA-seq data, the voom method makes no specific assumptions

on the shape of the mean-variance relationship – it only assumes that the relationship

can be modeled as a smooth curve. Hence, the method is sufficiently general to

model the mean-variance relationship in methylation array data. However, while the

method does not require count data as input, the standard implementation of voom

assumes that the input is given in raw read counts, and it must be adapted to run on

methylation M-values.

3.3 Methods

3.3.1 Evaluation of classifier performance with different nor-

malization methods

For testing different expression microarray normalizations, a data set of 157 hgu133plus2

arrays was used, consisting of blood samples from kidney transplant patients whose

grafts had been graded as TX, AR, or ADNR via biopsy and histology (46 TX, 69 AR,

42 ADNR) [5]. Additionally, an external validation set of 75 samples was gathered
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from public GEO data (37 TX, 38 AR, no ADNR).

To evaluate the effect of each normalization on classifier performance, the same

classifier training and validation procedure was used after each normalization method.

The Prediction Analysis for Microarrays (PAM) algorithm was used to train a nearest

shrunken centroid classifier on the training set and select the appropriate threshold for

centroid shrinking [78]. Then the trained classifier was used to predict the class prob-

abilities of each validation sample. From these class probabilities, receiver operating

characteristic (ROC) curves and area under ROC curve (AUC) values were generated

[79]. Each normalization was tested on two different sets of training and validation

samples. For internal validation, the 115 TX and AR arrays in the internal set were

split at random into two equal sized sets, one for training and one for validation, each

containing the same numbers of TX and AR samples as the other set. For external

validation, the full set of 115 TX and AR samples were used as a training set, and

the 75 external TX and AR samples were used as the validation set. Thus, 2 ROC

curves and AUC values were generated for each normalization method: one internal

and one external. Because the external validation set contains no ADNR samples,

only classification of TX and AR samples was considered. The ADNR samples were

included during normalization but excluded from all classifier training and validation.

This ensures that the performance on internal and external validation sets is directly

comparable, since both are performing the same task: distinguishing TX from AR.

Six different normalization strategies were evaluated. First, 2 well-known non-

single-channel normalization methods were considered: RMA and dChip [37, 35].

Since RMA produces expression values on a log2 scale and dChip does not, the val-

ues from dChip were log2 transformed after normalization. Next, RMA and dChip

followed by Global Rank-invariant Set Normalization (GRSN) were tested [38]. Post-

processing with GRSN does not turn RMA or dChip into single-channel methods,

but it may help mitigate batch effects and is therefore useful as a benchmark. Lastly,
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the two single-channel normalization methods, fRMA and SCAN, were tested [36,

39]. When evaluating internal validation performance, only the 157 internal samples

were normalized; when evaluating external validation performance, all 157 internal

samples and 75 external samples were normalized together.

For demonstrating the problem with separate normalization of training and vali-

dation data, one additional normalization was performed: the internal and external

sets were each normalized separately using RMA, and the normalized data for each

set were combined into a single set with no further attempts at normalizing between

the two sets. This represents approximately how RMA would have to be used in a

clinical setting, where the samples to be classified are not available at the time the

classifier is trained.

3.3.2 Generating custom fRMA vectors for hthgu133pluspm

array platform

In order to enable fRMA normalization for the hthgu133pluspm array platform, cus-

tom fRMA normalization vectors were trained using the frmaTools package [77].

Separate vectors were created for two types of samples: kidney graft biopsy samples

and blood samples from graft recipients. For training, 341 kidney biopsy samples

from 2 data sets and 965 blood samples from 5 data sets were used as the reference

set. Arrays were groups into batches based on unique combinations of sample type

(blood or biopsy), diagnosis (TX, AR, etc.), data set, and scan date. Thus, each

batch represents arrays of the same kind that were run together on the same day. For

estimating the probe inverse variance weights, frmaTools requires equal-sized batches,

which means a batch size must be chosen, and then batches smaller than that size

must be ignored, while batches larger than the chosen size must be downsampled.

This downsampling is performed randomly, so the sampling process is repeated 5

times and the resulting normalizations are compared to each other.
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To evaluate the consistency of the generated normalization vectors, the 5 fRMA

vector sets generated from 5 random batch samplings were each used to normalize the

same 20 randomly selected samples from each tissue. Then the normalized expression

values for each probe on each array were compared across all normalizations. Each

fRMA normalization was also compared against the normalized expression values

obtained by normalizing the same 20 samples with ordinary RMA.

3.3.3 Modeling methylation array M-value heteroskedastic-

ity with a modified voom implementation

To investigate the whether DNA methylation could be used to distinguish between

healthy and dysfunctional transplants, a data set of 78 Illumina 450k methylation

arrays from human kidney graft biopsies was analyzed for differential methylation

between 4 transplant statuses: TX, transplants undergoing AR, ADNR, and chronic

allograft nephropathy (CAN). The data consisted of 33 TX, 9 AR, 8 ADNR, and

28 CAN samples. The uneven group sizes are a result of taking the biopsy samples

before the eventual fate of the transplant was known. Each sample was additionally

annotated with a donor identifier (ID) (anonymized), sex, age, ethnicity, creatinine

level, and diabetes diagnosis (all samples in this data set came from patients with

either Type 1 diabetes (T1D) or Type 2 diabetes (T2D)).

The intensity data were first normalized using subset-quantile within array nor-

malization (SWAN) [80], then converted to intensity ratios (beta values) [81]. Any

probes binding to loci that overlapped annotated SNPs were dropped, and the anno-

tated sex of each sample was verified against the sex inferred from the ratio of median

probe intensities for the X and Y chromosomes. Then, the ratios were transformed

to M-values.

From the M-values, a series of parallel analyses was performed, each adding addi-

tional steps into the model fit to accommodate a feature of the data (see Table 3.1).
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Analysis random effect eBayes SVA weights voom
A Yes Yes No No No
B Yes Yes Yes Yes No
C Yes Yes Yes Yes Yes

Table 3.1: Summary of analysis variants for methylation array data. Each
analysis included a different set of steps to adjust or account for various systematic
features of the data. Random effect: The model included a random effect account-
ing for correlation between samples from the same patient [26]; eBayes: Empirical
bayes squeezing of per-probe variances toward the mean-variance trend [82]; SVA:
Surrogate variable analysis to account for unobserved confounders [43]; Weights: Es-
timate sample weights to account for differences in sample quality [25, 24]; voom:
Use mean-variance trend to assign individual sample weights [23]. See the text for a
more detailed explanation of each step.

For analysis A, a “basic” linear modeling analysis was performed, compensating for

known confounders by including terms for the factor of interest (transplant status)

as well as the known biological confounders: sex, age, ethnicity, and diabetes. Since

some samples came from the same patients at different times, the intra-patient cor-

relation was modeled as a random effect, estimating a shared correlation value across

all probes [26]. Then the linear model was fit, and the variance was modeled using

empirical Bayes squeezing toward the mean-variance trend [82]. Finally, t-tests or

F-tests were performed as appropriate for each test: t-tests for single contrasts, and

F-tests for multiple contrasts. P-values were corrected for multiple testing using the

Benjamini-Hochberg (BH) procedure for false discovery rate (FDR) control [44].

For the analysis B, surrogate variable analysis (SVA) was used to infer additional

unobserved sources of heterogeneity in the data [43]. These surrogate variables were

added to the design matrix before fitting the linear model. In addition, sample quality

weights were estimated from the data and used during linear modeling to down-weight

the contribution of highly variable arrays while increasing the weight to arrays with

lower variability[24]. The remainder of the analysis proceeded as in analysis A. For

analysis C, the voom method was adapted to run on methylation array data and used

to model and correct for the mean-variance trend using individual observation weights
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[23], which were combined with the sample weights [25, 24]. Each time weights were

used, they were estimated once before estimating the random effect correlation value,

and then the weights were re-estimated taking the random effect into account. The

remainder of the analysis proceeded as in analysis B.

3.4 Results

3.4.1 Separate normalization with RMA introduces unwanted

biases in classification

To demonstrate the problem with non-single-channel normalization methods, we con-

sidered the problem of training a classifier to distinguish TX from AR using the sam-

ples from the internal set as training data, evaluating performance on the external

set. First, training and evaluation were performed after normalizing all array samples

together as a single set using RMA, and second, the internal samples were normalized

separately from the external samples and the training and evaluation were repeated.

For each sample in the validation set, the classifier probabilities from both classifiers

were plotted against each other (Fig. 3.2). As expected, separate normalization bi-

ases the classifier probabilities, resulting in several misclassifications. In this case, the

bias from separate normalization causes the classifier to assign a lower probability of

AR to every sample.

3.4.2 fRMA and SCAN maintain classification performance

while eliminating dependence on normalization strat-

egy

For internal validation, the 6 methods’ AUC values ranged from 0.816 to 0.891, as

shown in Table 3.2. Among the non-single-channel normalizations, dChip outper-
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Figure 3.2: Classifier probabilities on validation samples when normalized
with RMA together vs. separately. The PAM classifier algorithm was trained
on the training set of arrays to distinguish AR from TX and then used to assign class
probabilities to the validation set. The process was performed after normalizing all
samples together and after normalizing the training and test sets separately, and the
class probabilities assigned to each sample in the validation set were plotted against
each other. Each axis indicates the posterior probability of AR assigned to a sample
by the classifier in the specified analysis. The color of each point indicates the true
classification of that sample.

77



Normalization Single-channel? Internal Val. AUC External Val. AUC
RMA No 0.852 0.713
dChip No 0.891 0.657

RMA + GRSN No 0.816 0.750
dChip + GRSN No 0.875 0.642

fRMA Yes 0.863 0.718
SCAN Yes 0.853 0.689

Table 3.2: ROC curve AUC values for internal and external validation with
6 different normalization strategies. These AUC values correspond to the ROC
curves in Figure 3.3.

formed RMA, while GRSN reduced the AUC values for both dChip and RMA. Both

single-channel methods, fRMA and SCAN, slightly outperformed RMA, with fRMA

ahead of SCAN. However, the difference between RMA and fRMA is still quite small.

Figure 3.3a shows that the ROC curves for RMA, dChip, and fRMA look very similar

and relatively smooth, while both GRSN curves and the curve for SCAN have a more

jagged appearance.

For external validation, as expected, all the AUC values are lower than the internal

validations, ranging from 0.642 to 0.750 (Table 3.2). With or without GRSN, RMA

shows its dominance over dChip in this more challenging test. Unlike in the internal

validation, GRSN actually improves the classifier performance for RMA, although it

does not for dChip. Once again, both single-channel methods perform about on par

with RMA, with fRMA performing slightly better and SCAN performing a bit worse.

Figure 3.3b shows the ROC curves for the external validation test. As expected, none

of them are as clean-looking as the internal validation ROC curves. The curves for

RMA, RMA+GRSN, and fRMA all look similar, while the other curves look more

divergent.
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(a) ROC curves for PAM on internal validation data
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(b) ROC curves for PAM on external validation data

Figure 3.3: ROC curves for PAM using different normalization strategies.
ROC curves were generated for PAM classification of AR vs TX after 6 different
normalization strategies applied to the same data sets. Only fRMA and SCAN are
single-channel normalizations. The other normalizations are for comparison.

79



3.4.3 fRMA with custom-generated vectors enables single-

channel normalization on hthgu133pluspm platform

In order to enable use of fRMA to normalize hthgu133pluspm, a custom set of fRMA

vectors was created. First, an appropriate batch size was chosen by looking at the

number of batches and number of samples included as a function of batch size (Figure

3.4). For a given batch size, all batches with fewer samples that the chosen size must

be ignored during training, while larger batches must be randomly downsampled

to the chosen size. Hence, the number of samples included for a given batch size

equals the batch size times the number of batches with at least that many samples.

From Figure 3.4b, it is apparent that a batch size of 8 maximizes the number of

samples included in training. Increasing the batch size beyond this causes too many

smaller batches to be excluded, reducing the total number of samples for both tissue

types. However, a batch size of 8 is not necessarily optimal. The article introducing

frmaTools concluded that it was highly advantageous to use a smaller batch size

in order to include more batches, even at the cost of including fewer total samples

in training [77]. To strike an appropriate balance between more batches and more

samples, a batch size of 5 was chosen. For both blood and biopsy samples, this

increased the number of batches included by 10, with only a modest reduction in the

number of samples compared to a batch size of 8. With a batch size of 5, 26 batches

of biopsy samples and 46 batches of blood samples were available.

Since fRMA training requires equal-size batches, larger batches are downsampled

randomly. This introduces a nondeterministic step in the generation of normalization

vectors. To show that this randomness does not substantially change the outcome, the

random downsampling and subsequent vector learning was repeated 5 times, with a

different random seed each time. 20 samples were selected at random as a test set and

normalized with each of the 5 sets of fRMA normalization vectors as well as ordinary

RMA, and the normalized expression values were compared across normalizations.
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Figure 3.4: Effect of batch size selection on number of batches and number
of samples included in fRMA probe weight learning. For batch sizes ranging
from 3 to 15, the number of batches (a) and samples (b) included in probe weight
training were plotted for biopsy (BX) and blood (PAX) samples. The selected batch
size, 5, is marked with a dotted vertical line.
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Figure 3.5 shows a summary of these comparisons for biopsy samples. Comparing

RMA to each of the 5 fRMA normalizations, the distribution of log ratios is somewhat

wide, indicating that the normalizations disagree on the expression values of a fair

number of probe sets. In contrast, comparisons of fRMA against fRMA, the vast

majority of probe sets have very small log ratios, indicating a very high agreement

between the normalized values generated by the two normalizations. This shows that

the fRMA normalization’s behavior is not very sensitive to the random downsampling

of larger batches during training.

Figure 3.7a shows an MA plot of the RMA-normalized values against the fRMA-

normalized values for the same probe sets and arrays, corresponding to the first row of

Figure 3.5. This MA plot shows that not only is there a wide distribution of M-values,

but the trend of M-values is dependent on the average normalized intensity. This is

expected, since the overall trend represents the differences in the quantile normaliza-

tion step. When running RMA, only the quantiles for these specific 20 arrays are used,

while for fRMA the quantile distribution is taking from all arrays used in training.

Figure 3.7b shows a similar MA plot comparing 2 different fRMA normalizations,

corresponding to the 6th row of Figure 3.5. The MA plot is very tightly centered

around zero with no visible trend. Figures 3.6, 3.7c, and 3.7b show exactly the same

information for the blood samples, once again comparing the normalized expression

values between normalizations for all probe sets across 20 randomly selected test ar-

rays. Once again, there is a wider distribution of log ratios between RMA-normalized

values and fRMA-normalized, and a much tighter distribution when comparing dif-

ferent fRMA normalizations to each other, indicating that the fRMA training process

is robust to random batch sub-sampling for the blood samples as well.
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Figure 3.5: Violin plot of log ratios between normalizations for 20 biopsy
samples. Each of 20 randomly selected samples was normalized with RMA and
with 5 different sets of fRMA vectors. The distribution of log ratios between normal-
ized expression values, aggregated across all 20 arrays, was plotted for each pair of
normalizations.
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Figure 3.6: Violin plot of log ratios between normalizations for 20 blood
samples. Each of 20 randomly selected samples was normalized with RMA and
with 5 different sets of fRMA vectors. The distribution of log ratios between normal-
ized expression values, aggregated across all 20 arrays, was plotted for each pair of
normalizations.
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(a) RMA vs. fRMA for biopsy samples. (b) fRMA vs fRMA for biopsy samples.

(c) RMA vs. fRMA for blood samples. (d) fRMA vs fRMA for blood samples.

Figure 3.7: Representative MA plots comparing RMA and custom fRMA
normalizations. For each plot, 20 samples were normalized using 2 different nor-
malizations, and then averages (A) and log ratios (M) were plotted between the two
different normalizations for every probe. For the “fRMA vs fRMA” plots (b & d), two
different fRMA normalizations using vectors from two independent batch samplings
were compared. Density of points is represented by blue shading, and individual
outlier points are plotted.
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3.4.4 SVA, voom, and array weights improve model fit for

methylation array data

Figure 3.8a shows the relationship between the mean M-value and the standard de-

viation calculated for each probe in the methylation array data set. A few features

of the data are apparent. First, the data are very strongly bimodal, with peaks in

the density around M-values of +4 and -4. These modes correspond to methylation

sites that are nearly 100% methylated and nearly 100% unmethylated, respectively.

The strong bimodality indicates that a majority of probes interrogate sites that fall

into one of these two categories. The points in between these modes represent sites

that are either partially methylated in many samples, or are fully methylated in some

samples and fully unmethylated in other samples, or some combination. The next

visible feature of the data is the W-shaped variance trend. The upticks in the variance

trend on either side are expected, based on the sigmoid transformation exaggerating

small differences at extreme M-values (Figure 3.1). However, the uptick in the center

is interesting: it indicates that sites that are not constitutively methylated or un-

methylated have a higher variance. This could be a genuine biological effect, or it

could be spurious noise that is only observable at sites with varying methylation.

In Figure 3.8b, we see the mean-variance trend for the same methylation array

data, this time with surrogate variables and sample quality weights estimated from

the data and included in the model. As expected, the overall average variance is

smaller, since the surrogate variables account for some of the variance. In addition,

the uptick in variance in the middle of the M-value range has disappeared, turning the

W shape into a wide U shape. This indicates that the excess variance in the probes

with intermediate M-values was explained by systematic variations not correlated

with known covariates, and these variations were modeled by the surrogate variables.

The result is a nearly flat variance trend for the entire intermediate M-value range

from about -3 to +3. Note that this corresponds closely to the range within which the
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(a) Mean-variance trend for analysis A. (b) Mean-variance trend for analysis B. (c) Mean-variance trend after voom modeling in
analysis C.

Figure 3.8: Mean-variance trend modeling in methylation array data. The estimated log2(standard deviation) for
each probe is plotted against the probe’s average M-value across all samples as a black point, with some transparency to make
over-plotting more visible, since there are about 450,000 points. Density of points is also indicated by the dark blue contour
lines. The prior variance trend estimated by eBayes is shown in light blue, while the lowess trend of the points is shown in red.
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M-value transformation shown in Figure 3.1 is nearly linear. In contrast, the excess

variance at the extremes (greater than +3 and less than -3) was not “absorbed” by

the surrogate variables and remains in the plot, indicating that this variation has no

systematic component: probes with extreme M-values are uniformly more variable

across all samples, as expected.

Figure 3.8c shows the mean-variance trend after fitting the model with the obser-

vation weights assigned by voom based on the mean-variance trend shown in Figure

3.8b. As expected, the weights exactly counteract the trend in the data, resulting

in a nearly flat trend centered vertically at 1 (i.e. 0 on the log scale). This shows

that the observations with extreme M-values have been appropriately down-weighted

to account for the fact that the noise in those observations has been amplified by

the non-linear M-value transformation. In turn, this gives relatively more weight

to observations in the middle region, which are more likely to correspond to probes

measuring interesting biology (not constitutively methylated or unmethylated).

To determine whether any of the known experimental factors had an impact on

data quality, the sample quality weights estimated from the data were tested for

association with each of the experimental factors (Table 3.3). Diabetes diagnosis was

found to have a potentially significant association with the sample weights, with a

t-test p-value of 1.06 × 10−3. Figure 3.9 shows the distribution of sample weights

grouped by diabetes diagnosis. The samples from patients with T2D were assigned

significantly lower weights than those from patients with T1D. This indicates that

the T2D samples had an overall higher variance on average across all probes.

Table 3.4a shows the number of significantly differentially methylated probes re-

ported by each analysis for each comparison of interest at an FDR of 10%. As

expected, the more elaborate analyses, B and C, report more significant probes than

the more basic analysis A, consistent with the conclusions above that the data contain

hidden systematic variations that must be modeled. Table 3.4b shows the estimated
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Covariate Test used p-value
Transplant Status F-test 0.404
Diabetes Diagnosis t-test 0.00106

Sex t-test 0.148
Age linear regression 0.212

Table 3.3: Association of sample weights with clinical covariates in methy-
lation array data. Computed sample quality log weights were tested for significant
association with each of the variables in the model (1st column). An appropriate test
was selected for each variable based on whether the variable had 2 categories (t-test),
had more than 2 categories (F-test), or was numeric (linear regression). The test
selected is shown in the 2nd column. P-values for association with the log weights are
shown in the 3rd column. No multiple testing adjustment was performed for these
p-values.
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Figure 3.9: Box-and-whiskers plot of sample quality weights grouped by
diabetes diagnosis. Samples were grouped based on diabetes diagnosis, and the
distribution of sample quality weights for each diagnosis was plotted as a box-and-
whiskers plot [83].
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number differentially methylated probes for each test from each analysis. This was

computed by estimating the proportion of null hypotheses that were true using the

method of [45] and subtracting that fraction from the total number of probes, yielding

an estimate of the number of null hypotheses that are false based on the distribution

of p-values across the entire dataset. Note that this does not identify which null

hypotheses should be rejected (i.e. which probes are significant); it only estimates

the true number of such probes. Once again, analyses B and C result it much larger

estimates for the number of differentially methylated probes. In this case, analysis C,

the only analysis that includes voom, estimates the largest number of differentially

methylated probes for all 3 contrasts. If the assumptions of all the methods employed

hold, then this represents a gain in statistical power over the simpler analysis A. Fig-

ure 3.10 shows the p-value distributions for each test, from which the numbers in

Table 3.4b were generated. The distributions for analysis A all have a dip in density

near zero, which is a strong sign of a poor model fit. The histograms for analyses B

and C are more well-behaved, with a uniform component stretching all the way from

0 to 1 representing the probes for which the null hypotheses is true (no differential

methylation), and a zero-biased component representing the probes for which the null

hypothesis is false (differentially methylated). These histograms do not indicate any

major issues with the model fit.

3.5 Discussion

3.5.1 fRMA achieves clinically applicable normalization with-

out sacrificing classification performance

As shown in Figure 3.2, improper normalization, particularly separate normalization

of training and test samples, leads to unwanted biases in classification. In a controlled

experimental context, it is always possible to correct this issue by normalizing all
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Figure 3.10: Probe p-value histograms for each contrast in each analysis.
For each differential methylation test of interest, the distribution of p-values across
all probes is plotted as a histogram. The red solid line indicates the density that would
be expected under the null hypothesis for all probes (a Uniform(0, 1) distribution),
while the blue dotted line indicates the fraction of p-values that actually follow the
null hypothesis (π̂0) estimated using the method of averaging local FDR values [45].
A blue line is only shown in each plot if the estimate of π̂0 for that p-value distribution
is smaller than 1.
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Analysis
Contrast A B C

TX vs AR 0 25 22
TX vs ADNR 7 338 369
TX vs CAN 0 231 278

(a) Number of probes significant at 10%
FDR.

Analysis
Contrast A B C

TX vs AR 0 10,063 11,225
TX vs ADNR 27 12,674 13,086
TX vs CAN 966 20,039 20,955

(b) Estimated number of non-null tests, using the
method of averaging local FDR values [45].

Table 3.4: Estimates of degree of differential methylation in for each con-
trast in each analysis. For each of the analyses in Table 3.1, these tables show the
number of probes called significantly differentially methylated at a threshold of 10%
FDR for each comparison between TX and the other 3 transplant statuses (a) and
the estimated total number of probes that are differentially methylated (b).

experimental samples together. However, because it is not feasible to normalize all

samples together in a clinical context, a single-channel normalization is required.

The major concern in using a single-channel normalization is that non-single-

channel methods can share information between arrays to improve the normalization,

and single-channel methods risk sacrificing the gains in normalization accuracy that

come from this information sharing. In the case of RMA, this information sharing

is accomplished through quantile normalization and median polish steps. The need

for information sharing in quantile normalization can easily be removed by learning

a fixed set of quantiles from external data and normalizing each array to these fixed

quantiles, instead of the quantiles of the data itself. As long as the fixed quantiles are

reasonable, the result will be similar to standard RMA. However, there is no analogous

way to eliminate cross-array information sharing in the median polish step, so fRMA

replaces this with a weighted average of probes on each array, with the weights learned

from external data. This step of fRMA has the greatest potential to diverge from

RMA in undesirable ways.

However, when run on real data, fRMA performed at least as well as RMA in

both the internal validation and external validation tests. This shows that fRMA can

be used to normalize individual clinical samples in a class prediction context without
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sacrificing the classifier performance that would be obtained by using the more well-

established RMA for normalization. The other single-channel normalization method

considered, SCAN, showed some loss of AUC in the external validation test. Based

on these results, fRMA is the preferred normalization for clinical samples in a class

prediction context.

3.5.2 Robust fRMA vectors can be generated for new array

platforms

The published fRMA normalization vectors for the hgu133plus2 platform were gener-

ated from a set of 850 samples chosen from a wide range of tissues, which the authors

determined was sufficient to generate a robust set of normalization vectors that could

be applied across all tissues [36]. Since we only had hthgu133pluspm for 2 tissues of

interest, our needs were more modest. Even using only 130 samples in 26 batches

of 5 samples each for kidney biopsies, we were able to train a robust set of fRMA

normalization vectors that were not meaningfully affected by the random selection of

5 samples from each batch. As expected, the training process was just as robust for

the blood samples with 230 samples in 46 batches of 5 samples each. Because these

vectors were each generated using training samples from a single tissue, they are

not suitable for general use, unlike the vectors provided with fRMA itself. They are

purpose-built for normalizing a specific type of sample on a specific platform. This

is a mostly acceptable limitation in the context of developing a machine learning

classifier for diagnosing a disease from samples of a specific tissue.
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3.5.3 Methylation array data can be successfully analyzed

using existing techniques, but machine learning poses

additional challenges

Both analysis strategies B and C both yield a reasonable analysis, with a mean-

variance trend that matches the expected behavior for the non-linear M-value trans-

formation (Figure 3.8b) and well-behaved p-value distributions (Figure 3.10). These

two analyses also yield similar numbers of significant probes (Table 3.4a) and sim-

ilar estimates of the number of differentially methylated probes (Table 3.4b). The

main difference between these two analyses is the method used to account for the

mean-variance trend. In analysis B, the trend is estimated and applied at the probe

level: each probe’s estimated variance is squeezed toward the trend using an empirical

Bayes procedure (Figure 3.8b). In analysis C, the trend is still estimated at the probe

level, but instead of estimating a single variance value shared across all observations

for a given probe, the voom method computes an initial estimate of the variance

for each observation individually based on where its model-fitted M-value falls on

the trend line and then assigns inverse-variance weights to model the difference in

variance between observations. An overall variance is still estimated for each probe

using the same empirical Bayes method, but now the residual trend is flat (Figure

3.8c), indicating that the mean-variance trend is adequately modeled by scaling the

estimated variance for each observation using the weights computed by voom.

The difference between the standard empirical Bayes trended variance modeling

(analysis B) and voom (analysis C) is analogous to the difference between a t-test

with equal variance and a t-test with unequal variance, except that the unequal group

variances used in the latter test are estimated based on the mean-variance trend from

all the probes rather than the data for the specific probe being tested, thus stabilizing

the group variance estimates by sharing information between probes. Allowing voom
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to model the variance using observation weights in this manner allows the linear model

fit to concentrate statistical power where it will do the most good. For example, if

a particular probe’s M-values are always at the extreme of the M-value range (e.g.

less than -4) for ADNR samples, but the M-values for that probe in TX and CAN

samples are within the flat region of the mean-variance trend (between −3 and +3),

voom is able to down-weight the contribution of the high-variance M-values from the

ADNR samples in order to gain more statistical power while testing for differential

methylation between TX and CAN. In contrast, modeling the mean-variance trend

only at the probe level would combine the high-variance ADNR samples and lower-

variance samples from other conditions and estimate an intermediate variance for this

probe. In practice, analysis B shows that this approach is adequate, but the voom

approach in analysis C performs at least as well on all model fit criteria and yields a

larger estimate for the number of differentially methylated genes, and it matches up

slightly better with the theoretical properties of the data.

The significant association of diabetes diagnosis with sample quality is interesting.

The samples with T2D tended to have more variation, averaged across all probes, than

those with T1D. This is consistent with the consensus that T2D and the associated

metabolic syndrome represent a broad dysregulation of the body’s endocrine signaling

related to metabolism [84, 85, 86]. This dysregulation could easily manifest as a

greater degree of variation in the DNA methylation patterns of affected tissues. In

contrast, T1D has a more specific cause and effect, so a less variable methylation

signature is expected.

This preliminary analysis suggests that some degree of differential methylation

exists between TX and each of the three types of transplant disfunction studied.

Hence, it may be feasible to train a classifier to diagnose transplant disfunction from

DNA methylation array data. However, the major importance of both SVA and

sample quality weighting for proper modeling of this data poses significant challenges
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for any attempt at a machine learning on data of similar quality. While these are easily

used in a modeling context with full sample information, neither of these methods is

directly applicable in a machine learning context, where the diagnosis is not known

ahead of time. If a machine learning approach for methylation-based diagnosis is to

be pursued, it will either require machine-learning-friendly methods to address the

same systematic trends in the data that SVA and sample quality weighting address,

or it will require higher quality data with substantially less systematic perturbation

of the data.

3.6 Future Directions

3.6.1 Improving fRMA to allow training from batches of un-

equal size

Because the tools for building fRMA normalization vectors require equal-size batches,

many samples must be discarded from the training data. This is undesirable for a few

reasons. First, more data is simply better, all other things being equal. In this case,

“better” means a more precise estimate of normalization parameters. In addition, the

samples to be discarded must be chosen arbitrarily, which introduces an unnecessary

element of randomness into the estimation process. While the randomness can be

made deterministic by setting a consistent random seed, the need for equal size batches

also introduces a need for the analyst to decide on the appropriate trade-off between

batch size and the number of batches. This introduces an unnecessary and undesirable

“researcher degree of freedom” into the analysis, since the generated normalization

vectors now depend on the choice of batch size based on vague selection criteria and

instinct, which can unintentionally introduce bias if the researcher chooses a batch

size based on what seems to yield the most favorable downstream results [87].

Fortunately, the requirement for equal-size batches is not inherent to the fRMA
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algorithm but rather a limitation of the implementation in the frmaTools package.

In personal communication, the package’s author, Matthew McCall, has indicated

that with some work, it should be possible to improve the implementation to work

with batches of unequal sizes. The current implementation ignores the batch size

when calculating with-batch and between-batch residual variances, since the batch

size constant cancels out later in the calculations as long as all batches are of equal

size. Hence, the calculations of these parameters would need to be modified to remove

this optimization and properly calculate the variances using the full formula. Once

this modification is made, a new strategy would need to be developed for assessing the

stability of parameter estimates, since the random sub-sampling step is eliminated,

meaning that different sub-samplings can no longer be compared as in Figures ?? and

3.7. Bootstrap resampling is likely a good candidate here: sample many training sets

of equal size from the existing training set with replacement, estimate parameters

from each resampled training set, and compare the estimated parameters between

bootstraps in order to quantify the variability in each parameter’s estimation.

3.6.2 Developing methylation arrays as a diagnostic tool for

kidney transplant rejection

The current study has showed that DNA methylation, as assayed by Illumina 450k

methylation arrays, has some potential for diagnosing transplant dysfunctions, includ-

ing rejection. However, very few probes could be confidently identified as differentially

methylated between healthy and dysfunctional transplants. One likely explanation

for this is the predominant influence of unobserved confounding factors. SVA can

model and correct for such factors, but the correction can never be perfect, so some

degree of unwanted systematic variation will always remain after SVA correction. If

the effect size of the confounding factors was similar to that of the factor of interest

(in this case, transplant status), this would be an acceptable limitation, since re-
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moving most of the confounding factors’ effects would allow the main effect to stand

out. However, in this data set, the confounding factors have a much larger effect size

than transplant status, which means that the small degree of remaining variation not

removed by SVA can still swamp the effect of interest, making it difficult to detect.

This is, of course, a major issue when the end goal is to develop a classifier to diag-

nose transplant rejection from methylation data, since batch-correction methods like

SVA that work in a linear modeling context cannot be applied in a machine learning

context.

Currently, the source of these unwanted systematic variations in the data is un-

known. The best solution would be to determine the cause of the variation and

eliminate it, thereby eliminating the need to model and remove that variation. How-

ever, if this proves impractical, another option is to use SVA to identify probes that

are highly associated with the surrogate variables that describe the unwanted varia-

tion in the data. These probes could be discarded prior to classifier training, in order

to maximize the chance that the training algorithm will be able to identify highly pre-

dictive probes from those remaining. Lastly, it is possible that some of this unwanted

variation is a result of the array-based assay being used and would be eliminated by

switching to assaying DNA methylation using bisulphite sequencing. However, this

carries the risk that the sequencing assay will have its own set of biases that must be

corrected for in a different way.
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Chapter 4

Globin-blocking for more effective

blood RNA-seq analysis in primate

animal model

Ryan C. Thompson, Terri Gelbart, Steven R. Head, Phillip Ordoukha-

nian, Courtney Mullen, Dongmei Han, Dora Berman, Amelia Bartholomew,

Norma Kenyon, Daniel R. Salomon

Abstract

Background Primate blood contains high concentrations of globin messenger RNA

(mRNA). Globin reduction is a standard technique used to improve the expression

results obtained by DNA microarrays on RNA from blood samples. However, with

high-throughput RNA sequencing (RNA-seq) quickly replacing microarrays for many

applications, the impact of globin reduction for RNA-seq is less well-studied. More-

over, no off-the-shelf kits are available for globin reduction in nonhuman primates.
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Results Here we report a protocol for RNA-seq in primate blood samples that uses

complimentary oligonucleotides (oligos) to block reverse transcription of the alpha and

beta globin genes. In test samples from cynomolgus monkeys (Macaca fascicularis),

this globin blocking (GB) protocol approximately doubles the yield of informative

(non-globin) reads by greatly reducing the fraction of globin reads, while also im-

proving the consistency in sequencing depth between samples. The increased yield

enables detection of about 2000 more genes, significantly increases the correlation

in measured gene expression levels between samples, and increases the sensitivity of

differential gene expression tests.

Conclusions These results show that GB significantly improves the cost-effectiveness

of RNA-seq in primate blood samples by doubling the yield of useful reads, allowing

detection of more genes, and improving the precision of gene expression measure-

ments. Based on these results, a globin reducing or blocking protocol is recommended

for all RNA-seq studies of primate blood samples.

4.1 Introduction

As part of a multi-lab PO1 grant to study mesenchymal stem cell (MSC) infusion

as a treatment for graft rejection in cynomolgus monkeys (Macaca fascicularis), a

large number of serial blood draws from cynomolgus monkeys were planned in order

to monitor the progress of graft healing and eventual rejection after transplantation.

In order to streamline the process of performing high-throughput RNA sequencing

(RNA-seq) on these blood samples, we developed a custom sequencing protocol. In

the developement of this protocol, we required a solution for the problem of excess

globin reads. High fractions of globin messenger RNA (mRNA) are naturally present

in mammalian peripheral blood samples (up to 70% of total mRNA) and these are

known to interfere with the results of array-based expression profiling [88]. Globin re-
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duction is also necessary for RNA-seq of blood samples, though for unrelated reasons:

without globin reduction, many RNA-seq reads will be derived from the globin genes,

leaving fewer for the remainder of the genes in the transcriptome. However, existing

strategies for globin reduction require an additional step during sample preparation

to deplete the population of globin transcripts from the sample prior to reverse tran-

scription [89, 90, 91]. Furthermore, off-the-shelf globin reduction kits are generally

targeted at human or mouse globin, not cynomolgus monkey, and sequence identity

between human and cyno globin genes cannot be automatically assumed. Hence, we

sought to incorporate a custom globin reduction method into our RNA-seq protocol

purely by adding additional reagents to an existing step in the sample preparation.

4.2 Approach

We evaluated globin reduction for RNA-seq by blocking reverse transcription of globin

transcripts using custom blocking oligonucleotides (oligos). We demonstrate that

globin blocking (GB) significantly improves the cost-effectiveness of RNA-seq in blood

samples. Thus, our protocol offers a significant advantage to any investigator planning

to use RNA-seq for gene expression profiling of nonhuman primate blood samples.

Our method can be generally applied to any species by designing complementary

oligo blocking probes to the globin gene sequences of that species. Indeed, any highly

expressed but biologically uninformative transcripts can also be blocked to further

increase sequencing efficiency and value [92].
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4.3 Methods

4.3.1 Sample collection

All research reported here was done under IACUC-approved protocols at the Uni-

versity of Miami and complied with all applicable federal and state regulations and

ethical principles for nonhuman primate research. Blood draws occurred between

16 April 2012 and 18 June 2015. The experimental system involved intrahepatic pan-

creatic islet transplantation into Cynomolgus monkeys with induced diabetes mellitus

with or without concomitant infusion of mesenchymal stem cells. Blood was collected

at serial time points before and after transplantation into PAXgene Blood RNA tubes

(PreAnalytiX/Qiagen, Valencia, CA) at the precise volume:volume ratio of 2.5 ml

whole blood into 6.9 ml of PAX gene additive.

4.3.2 Globin blocking oligonucleotide design

Four oligos were designed to hybridize to the 3′ end of the transcripts for the Cynomol-

gus alpha and beta globin, with two hybridization sites for each gene. All oligos were

purchased from Sigma and were entirely composed of 2′O-Me bases with a C3 spacer

positioned at the 3′ ends to prevent any polymerase mediated primer extension.

HBA1/2 site 1: GCCCACUCAGACUUUAUUCAAAG-C3spacer

HBA1/2 site 2: GGUGCAAGGAGGGGAGGAG-C3spacer

HBB site 1: AAUGAAAAUAAAUGUUUUUUAUUAG-C3spacer

HBB site 2: CUCAAGGCCCUUCAUAAUAUCCC-C3spacer
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4.3.3 RNA-seq library preparation

Sequencing libraries were prepared with 200 ng total RNA from each sample. Polyadeny-

lated mRNA was selected from 200 ng aliquots of cynomolgus blood-derived total

RNA using Ambion Dynabeads Oligo(dT)25 beads (Invitrogen) following the man-

ufacturer’s recommended protocol. PolyA selected RNA was then combined with

8 pmol of HBA1/2 (site 1), 8 pmol of HBA1/2 (site 2), 12 pmol of HBB (site 1)

and 12 pmol of HBB (site 2) oligos. In addition, 20 pmol of RT primer containing

a portion of the Illumina adapter sequence (B-oligo-dTV: GAGTTCCTTGGCAC-

CCGAGAATTCCATTTTTTTTTTTTTTTTTTTV) and 4 μL of 5X First Strand

buffer (250 mM Tris-HCl pH 8.3, 375 mM KCl, 15 mM MgCl2) were added in a total

volume of 15 µL. The RNA was fragmented by heating this cocktail for 3 minutes at

95°C and then placed on ice. This was followed by the addition of 2 µL 0.1 M DTT,

1 µL RNaseOUT, 1 µL 10 mM dNTPs 10% biotin-16 aminoallyl-2′- dUTP and 10%

biotin-16 aminoallyl-2′-dCTP (TriLink Biotech, San Diego, CA), 1 µL Superscript II

(200 U/µL, Thermo-Fisher). A second “unblocked” library was prepared in the same

way for each sample but replacing the blocking oligos with an equivalent volume of

water. The reaction was carried out at 25°C for 15 minutes and 42°C for 40 minutes,

followed by incubation at 75°C for 10 minutes to inactivate the reverse transcriptase.

The cDNA/RNA hybrid molecules were purified using 1.8X Ampure XP beads

(Agencourt) following supplier’s recommended protocol. The cDNA/RNA hybrid

was eluted in 25 µL of 10 mM Tris-HCl pH 8.0, and then bound to 25 µL of M280

Magnetic Streptavidin beads washed per recommended protocol (Thermo-Fisher).

After 30 minutes of binding, beads were washed one time in 100 µL 0.1 N NaOH to

denature and remove the bound RNA, followed by two 100 µL washes with 1X TE

buffer.

Subsequent attachment of the 5′ Illumina A adapter was performed by on-bead

random primer extension of the following sequence (A-N8 primer: TTCAGAGTTCTACAGTCCGACGATCNNNNNNNN).
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Briefly, beads were resuspended in a 20 µL reaction containing 5 µM A-N8 primer,

40 mM Tris-HCl pH 7.5, 20 mM MgCl2, 50 mM NaCl, 0.325 U/µL Sequenase 2.0

(Affymetrix, Santa Clara, CA), 0.0025 U/µL inorganic pyrophosphatase (Affymetrix)

and 300 µM each dNTP. Reaction was incubated at 22°C for 30 minutes, then beads

were washed 2 times with 1X TE buffer (200 µL).

The magnetic streptavidin beads were resuspended in 34 µL nuclease-free water

and added directly to a polymerase chain reaction (PCR) tube. The two Illumina

protocol-specified PCR primers were added at 0.53 µM (Illumina TruSeq Universal

Primer 1 and Illumina TruSeq barcoded PCR primer 2), along with 40 µL 2X KAPA

HiFi Hotstart ReadyMix (KAPA, Willmington MA) and thermocycled as follows:

starting with 98°C (2 min-hold); 15 cycles of 98°C, 20sec; 60°C, 30sec; 72°C, 30sec;

and finished with a 72°C (2 min-hold).

PCR products were purified with 1X Ampure Beads following manufacturer’s

recommended protocol. Libraries were then analyzed using the Agilent TapeStation

and quantitation of desired size range was performed by “smear analysis”. Samples

were pooled in equimolar batches of 16 samples. Pooled libraries were size selected

on 2% agarose gels (E-Gel EX Agarose Gels; Thermo-Fisher). Products were cut

between 250 and 350 bp (corresponding to insert sizes of 130 to 230 bp). Finished

library pools were then sequenced on the Illumina NextSeq500 instrument with 75 bp

read lengths.

4.3.4 Read alignment and counting

Reads were aligned to the cynomolgus genome using STAR [Dobin2012, 93]. Counts

of uniquely mapped reads were obtained for every gene in each sample with the

featureCounts function from the Rsubread package, using each of the three possi-

bilities for the strandSpecific option: sense, antisense, and unstranded [53]. A few

artifacts in the cynomolgus genome annotation complicated read counting. First, no
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ortholog is annotated for alpha globin in the cynomolgus genome, presumably be-

cause the human genome has two alpha globin genes with nearly identical sequences,

making the orthology relationship ambiguous. However, two loci in the cynomol-

gus genome are annotated as “hemoglobin subunit alpha-like” (LOC102136192 and

LOC102136846). LOC102136192 is annotated as a pseudogene while LOC102136846

is annotated as protein-coding. Our globin reduction protocol was designed to include

blocking of these two genes. Indeed, these two genes together have almost the same

read counts in each library as the properly-annotated HBB gene and much larger

counts than any other gene in the unblocked libraries, giving confidence that reads

derived from the real alpha globin are mapping to both genes. Thus, reads from both

of these loci were counted as alpha globin reads in all further analyses. The second

artifact is a small, uncharacterized non-coding RNA gene (LOC102136591), which

overlaps the HBA-like gene (LOC102136192) on the opposite strand. If counting is

not performed in stranded mode (or if a non-strand-specific sequencing protocol is

used), many reads mapping to the globin gene will be discarded as ambiguous due

to their overlap with this non-coding RNA (ncRNA) gene, resulting in significant

undercounting of globin reads. Therefore, stranded sense counts were used for all fur-

ther analysis in the present study to insure that we accurately accounted for globin

transcript reduction. However, we note that stranded reads are not necessary for

RNA-seq using our protocol in standard practice.

4.3.5 Normalization and exploratory data analysis

Libraries were normalized by computing scaling factors using the edgeR package’s

trimmed mean of M-values (TMM) method [40]. Log2 counts per million (logCPM)

values were calculated using the cpm function in edgeR for individual samples and

aveLogCPM function for averages across groups of samples, using those functions’

default prior count values to avoid taking the logarithm of 0. Genes were considered

105



“present” if their average normalized logCPM values across all libraries were at least

−1. Normalizing for gene length was unnecessary because the sequencing protocol is

3′-biased and hence the expected read count for each gene is related to the transcript’s

copy number but not its length.

In order to assess the effect of GB on reproducibility, Pearson and Spearman

correlation coefficients were computed between the logCPM values for every pair of

libraries within the GB non-GB groups, and edgeR’s estimateDisp function was used

to compute negative binomial (NB) dispersions separately for the two groups [27].

4.3.6 Differential expression analysis

All tests for differential gene expression were performed using edgeR, by first fitting a

NB generalized linear model (GLM) to the counts and normalization factors and then

performing a quasi-likelihood F-test with robust estimation of outlier gene dispersions

[30, 61]. To investigate the effects of GB on each gene, an additive model was fit to

the full data with coefficients for GB and Sample identifier (ID). To test the effect

of GB on detection of differentially expressed genes, the GB samples and non-GB

samples were each analyzed independently as follows: for each animal with both a

pre-transplant and a post-transplant time point in the data set, the pre-transplant

sample and the earliest post-transplant sample were selected, and all others were

excluded, yielding a pre-/post-transplant pair of samples for each animal (N = 7

animals with paired samples). These samples were analyzed for pre-transplant vs.

post-transplant differential gene expression while controlling for inter-animal varia-

tion using an additive model with coefficients for transplant and animal ID. In all

analyses, p-values were adjusted using the Benjamini-Hochberg (BH) procedure for

false discovery rate (FDR) control [44].
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4.4 Results

4.4.1 Globin blocking yields a larger and more consistent

fraction of useful reads

The objective of the present study was to validate a new protocol for deep RNA-seq of

whole blood drawn into PaxGene tubes from cynomolgus monkeys undergoing islet

transplantation, with particular focus on minimizing the loss of useful sequencing

space to uninformative globin reads. The details of the analysis with respect to

transplant outcomes and the impact of mesenchymal stem cell treatment will be

reported in a separate manuscript (in preparation). To focus on the efficacy of our

GB protocol, 37 blood samples, 16 from pre-transplant and 21 from post-transplant

time points, were each prepped once with and once without GB oligos, and were then

sequenced on an Illumina NextSeq500 instrument. The number of reads aligning

to each gene in the cynomolgus genome was counted. Table 4.1 summarizes the

distribution of read fractions among the GB and non-GB libraries. In the libraries

with no GB, globin reads made up an average of 44.6% of total input reads, while

reads assigned to all other genes made up an average of 26.3%. The remaining reads

either aligned to intergenic regions (that include long non-coding RNAs) or did not

align with any annotated transcripts in the current build of the cynomolgus genome.

In the GB libraries, globin reads made up only 3.48% and reads assigned to all other

genes increased to 50.4%. Thus, GB resulted in a 92.2% reduction in globin reads

and a 91.6% increase in yield of useful non-globin reads.

This reduction is not quite as efficient as the previous analysis showed for human

samples by DeepSAGE (<0.4% globin reads after globin reduction) [89]. Nonethe-

less, this degree of globin reduction is sufficient to nearly double the yield of useful

reads. Thus, GB cuts the required sequencing effort (and costs) to achieve a target

coverage depth by almost 50%. Consistent with this near doubling of yield, the av-
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Percent of Total Reads Percent of Genic Reads
GB Non-globin Reads Globin Reads All Genic Reads All Aligned Reads Non-globin Reads Globin Reads
Yes 50.4% ± 6.82 3.48% ± 2.94 53.9% ± 6.81 89.7% ± 2.40 93.5% ± 5.25 6.49% ± 5.25
No 26.3% ± 8.95 44.6% ± 16.6 70.1% ± 9.38 90.7% ± 5.16 38.8% ± 17.1 61.2% ± 17.1

Table 4.1: Fractions of reads mapping to genomic features in GB and non-GB samples. All values are given as mean
± standard deviation.
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erage difference in un-normalized logCPM across all genes between the GB libraries

and non-GB libraries is approximately 1 (mean = 1.01, median = 1.08), an overall

2-fold increase. Un-normalized values are used here because the TMM normalization

correctly identifies this 2-fold difference as biologically irrelevant and removes it.

Another important aspect is that the standard deviations in Table 4.1 are uni-

formly smaller in the GB samples than the non-GB ones, indicating much greater

consistency of yield. This is best seen in the percentage of non-globin reads as a frac-

tion of total reads aligned to annotated genes (genic reads). For the non-GB samples,

this measure ranges from 10.9% to 80.9%, while for the GB samples it ranges from

81.9% to 99.9% (Figure 4.1 ). This means that for applications where it is critical

that each sample achieve a specified minimum coverage in order to provide useful

information, it would be necessary to budget up to 10 times the sequencing depth

per sample without GB, even though the average yield improvement for GB is only

2-fold, because every sample has a chance of being 90% globin and 10% useful reads.

Hence, the more consistent behavior of GB samples makes planning an experiment

easier and more efficient because it eliminates the need to over-sequence every sample

in order to guard against the worst case of a high-globin fraction.

4.4.2 Globin blocking lowers the noise floor and allows de-

tection of about 2000 more low-expression genes

Since GB yields more usable sequencing depth, it should also allow detection of more

genes at any given threshold. When we looked at the distribution of average normal-

ized logCPM values across all libraries for genes with at least one read assigned to

them, we observed the expected bimodal distribution, with a high-abundance "sig-

nal" peak representing detected genes and a low-abundance "noise" peak representing

genes whose read count did not rise above the noise floor (Figure 4.2). Consistent

with the 2-fold increase in raw counts assigned to non-globin genes, the signal peak
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Figure 4.1: Fraction of genic reads in each sample aligned to non-globin
genes, with and without GB. All reads in each sequencing library were aligned
to the cyno genome, and the number of reads uniquely aligning to each gene was
counted. For each sample, counts were summed separately for all globin genes and for
the remainder of the genes (non-globin genes), and the fraction of genic reads aligned
to non-globin genes was computed. Each point represents an individual sample. Gray
+ signs indicate the means for globin-blocked libraries and unblocked libraries. The
overall distribution for each group is represented as a notched box plot. Points are
randomly spread vertically to avoid excessive overlapping.

for GB samples is shifted to the right relative to the non-GB signal peak. When all

the samples are normalized together, this difference is normalized out, lining up the

signal peaks, and this reveals that, as expected, the noise floor for the GB samples is

about 2-fold lower. This greater separation between signal and noise peaks in the GB

samples means that low-expression genes should be more easily detected and more

precisely quantified than in the non-GB samples.

Based on these distributions, we selected a detection threshold of −1, which is ap-

proximately the leftmost edge of the trough between the signal and noise peaks. This

represents the most liberal possible detection threshold that doesn’t call substantial

numbers of noise genes as detected. Among the full dataset, 13429 genes were de-

tected at this threshold, and 22276 were not. When considering the GB libraries and

non-GB libraries separately and re-computing normalization factors independently

within each group, 14535 genes were detected in the GB libraries while only 12460

were detected in the non-GB libraries. Thus, GB allowed the detection of 2000 extra

110



Normalized Separately

Normalized Together

0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.4

0 5 10

Average logCPM

D
en

si
ty

Group

GB

NoGB

logCPM Distributions

Figure 4.2: Distributions of average group gene abundances when normal-
ized separately or together. All reads in each sequencing library were aligned
to the cyno genome, and the number of reads uniquely aligning to each gene was
counted. Genes with zero counts in all libraries were discarded. Libraries were nor-
malized using the TMM method. Libraries were split into GB and non-GB groups and
the average logCPM was computed. The distribution of average gene logCPM values
was plotted for both groups using a kernel density plot to approximate a continuous
distribution. The GB logCPM distributions are marked in red, non-GB in blue. The
black vertical line denotes the chosen detection threshold of −1. Top panel: Libraries
were split into GB and non-GB groups first and normalized separately. Bottom panel:
Libraries were all normalized together first and then split into groups.
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Figure 4.3: Gene detections as a function of abundance thresholds in GB and
non-GB samples. Average logCPM was computed by separate group normalization
as described in Figure 4.2 for both the GB and non-GB groups, as well as for all
samples considered as one large group. For each every integer threshold from −2 to
3, the number of genes detected at or above that logCPM threshold was plotted for
each group.

genes that were buried under the noise floor without GB. This pattern of at least

2000 additional genes detected with GB was also consistent across a wide range of

possible detection thresholds, from -2 to 3 (see Figure 4.3).

4.4.3 Globin blocking does not add significant additional noise

or decrease sample quality

One potential worry is that the GB protocol could perturb the levels of non-globin

genes. There are two kinds of possible perturbations: systematic and random. The

former is not a major concern for detection of differential expression, since a 2-fold

change in every sample has no effect on the relative fold change between samples. In

contrast, random perturbations would increase the noise and obscure the signal in

the dataset, reducing the capacity to detect differential expression.

The data do indeed show small systematic perturbations in gene levels (Figure

4.4). Other than the 3 designated alpha and beta globin genes, two other genes
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stand out as having especially large negative log2 fold changes (logFCs): HBD and

LOC1021365. HBD, delta globin, is most likely targeted by the blocking oligos due

to high sequence homology with the other globin genes. LOC1021365 is the afore-

mentioned ncRNA that is reverse-complementary to one of the alpha-like genes and

that would be expected to be removed during the GB step. All other genes appear in

a cluster centered vertically at 0, and the vast majority of genes in this cluster show

an absolute logFC of 0.5 or less. Nevertheless, many of these small perturbations are

still statistically significant, indicating that the GB oligos likely cause very small but

non-zero systematic perturbations in measured gene expression levels.

To evaluate the possibility of GB causing random perturbations and reducing sam-

ple quality, we computed the Pearson correlation between logCPM values for every

pair of samples with and without GB and plotted them against each other (Figure

4.5). The plot indicated that the GB libraries have higher sample-to-sample correla-

tions than the non-GB libraries. Parametric and nonparametric tests for differences

between the correlations with and without GB both confirmed that this difference

was highly significant (2-sided paired t-test: t = 37.2, d.f. = 665, P ≪ 2.2 × 10−16;

2-sided Wilcoxon sign-rank test: V = 2195, P ≪ 2.2 × 10−16). Performing the

same tests on the Spearman correlations gave the same conclusion (t-test: t = 26.8,

d.f. = 665, P ≪ 2.2× 10−16; sign-rank test: V = 8781, P ≪ 2.2× 10−16). The edgeR

package was used to compute the overall biological coefficient of variation (BCV) for

GB and non-GB libraries, and found that GB resulted in a negligible increase in the

BCV (0.417 with GB vs. 0.400 without). The near equality of the BCV for both sets

indicates that the higher correlations in the GB libraries are most likely a result of

the increased yield of useful reads, which reduces the contribution of Poisson count-

ing uncertainty to the overall variance of the logCPM values [28]. This improves the

precision of expression measurements and more than offsets the negligible increase in

BCV.
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Figure 4.4: MA plot showing effects of GB on each gene’s abundance. All li-
braries were normalized together as described in Figure 4.2, and genes with an average
logCPM below −1 were filtered out. Each remaining gene was tested for differential
abundance with respect to GB using edgeR’s quasi-likelihood F-test, fitting a NB
GLM to table of read counts in each library. For each gene, edgeR reported aver-
age logCPM, logFC, p-value, and BH-adjusted FDR. Each gene’s logFC was plotted
against its logCPM, colored by FDR. Red points are significant at ≤ 10% FDR, and
blue are not significant at that threshold. The alpha and beta globin genes targeted
for blocking are marked with large triangles, while all other genes are represented as
small points.
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Figure 4.5: Comparison of inter-sample gene abundance correlations with
and without GB. All libraries were normalized together as described in Figure
4.2, and genes with an average logCPM less than −1 were filtered out. Each gene’s
logCPM was computed in each library using edgeR’s cpm function. For each pair of
biological samples, the Pearson correlation between those samples’ GB libraries was
plotted against the correlation between the same samples’ non-GB libraries. Each
point represents an unique pair of samples. The solid gray line shows a quantile-
quantile plot of the distribution of inter-sample correlations with GB vs. without
GB. The thin dashed line is the identity line, provided for reference.
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No Globin Blocking
Up NS Down

Globin-Blocking
Up 231 515 2
NS 160 11235 136

Down 0 548 127

Table 4.2: Comparison of significantly differentially expressed genes with
and without globin blocking. Up, Down: Genes significantly up/down-regulated
in post-transplant samples relative to pre-transplant samples, with a false discovery
rate of 10% or less. NS: Non-significant genes (false discovery rate greater than 10%).

4.4.4 More differentially expressed genes are detected with

globin blocking

To compare performance on differential gene expression tests, we took subsets of

both the GB and non-GB libraries with exactly one pre-transplant and one post-

transplant sample for each animal that had paired samples available for analysis

(N = 7 animals, N = 14 samples in each subset). The same test for pre- vs. post-

transplant differential gene expression was performed on the same 7 pairs of samples

from GB libraries and non-GB libraries, in each case using an FDR of 10% as the

threshold of significance. Out of 12,954 genes that passed the detection threshold

in both subsets, 358 were called significantly differentially expressed in the same

direction in both sets; 1063 were differentially expressed in the GB set only; 296 were

differentially expressed in the non-GB set only; 2 genes were called significantly up in

the GB set but significantly down in the non-GB set; and the remaining 11,235 were

not called differentially expressed in either set. These data are summarized in Table

4.2. The differences in BCV calculated by edgeR for these subsets of samples were

negligible (BCV = 0.302 for GB and 0.297 for non-GB).

The key point is that the GB data results in substantially more differentially ex-

pressed calls than the non-GB data. Since there is no gold standard for this dataset,

it is impossible to be certain whether this is due to under-calling of differential ex-

pression in the non-GB samples or over-calling in the GB samples. However, given
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that both datasets are derived from the same biological samples and have nearly equal

BCVs, it is more likely that the larger number of differential expression calls in the

GB samples are genuine detections that were enabled by the higher sequencing depth

and measurement precision of the GB samples. Note that the same set of genes was

considered in both subsets, so the larger number of differentially expressed gene calls

in the GB data set reflects a greater sensitivity to detect significant differential gene

expression and not simply the larger total number of detected genes in GB samples

described earlier.

4.5 Discussion

The original experience with whole blood gene expression profiling on DNA microar-

rays demonstrated that the high concentration of globin transcripts reduced the sen-

sitivity to detect genes with relatively low expression levels, in effect, significantly

reducing the sensitivity. To address this limitation, commercial protocols for globin

reduction were developed based on strategies to block globin transcript amplification

during labeling or physically removing globin transcripts by affinity bead methods

[88]. More recently, using the latest generation of labeling protocols and arrays, it

was determined that globin reduction was no longer necessary to obtain sufficient sen-

sitivity to detect differential transcript expression [94]. However, we are not aware

of any publications using these currently available protocols with the latest genera-

tion of microarrays that actually compare the detection sensitivity with and without

globin reduction. However, in practice this has now been adopted generally primarily

driven by concerns for cost control. The main objective of our work was to directly

test the impact of globin gene transcripts and a new GB protocol for application to

the newest generation of differential gene expression profiling determined using next

generation sequencing.
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The challenge of doing global gene expression profiling in cynomolgus monkeys

is that the current available arrays were never designed to comprehensively cover

this genome and have not been updated since the first assemblies of the cynomolgus

genome were published. Therefore, we determined that the best strategy for periph-

eral blood profiling was to perform deep RNA-seq and inform the workflow using

the latest available genome assembly and annotation [93]. However, it was not im-

mediately clear whether globin reduction was necessary for RNA-seq or how much

improvement in efficiency or sensitivity to detect differential gene expression would

be achieved for the added cost and effort.

Existing strategies for globin reduction involve degradation or physical removal

of globin transcripts in a separate step prior to reverse transcription [89, 90, 91].

This additional step adds significant time, complexity, and cost to sample prepara-

tion. Faced with the need to perform RNA-seq on large numbers of blood samples

we sought a solution to globin reduction that could be achieved purely by adding ad-

ditional reagents during the reverse transcription reaction. Furthermore, we needed

a globin reduction method specific to cynomolgus globin sequences that would work

an organism for which no kit is available off the shelf.

As mentioned above, the addition of GB oligos has a very small impact on mea-

sured expression levels of gene expression. However, this is a non-issue for the pur-

poses of differential expression testing, since a systematic change in a gene in all

samples does not affect relative expression levels between samples. However, we

must acknowledge that simple comparisons of gene expression data obtained by GB

and non-GB protocols are not possible without additional normalization.

More importantly, GB not only nearly doubles the yield of usable reads, it also

increases inter-sample correlation and sensitivity to detect differential gene expression

relative to the same set of samples profiled without GB. In addition, GB does not

add a significant amount of random noise to the data. GB thus represents a cost-
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effective and low-effort way to squeeze more data and statistical power out of the

same blood samples and the same amount of sequencing. In conclusion, GB greatly

increases the yield of useful RNA-seq reads mapping to the rest of the genome, with

minimal perturbations in the relative levels of non-globin genes. Based on these

results, globin transcript reduction using sequence-specific, complementary blocking

oligos is recommended for all deep RNA-seq of cynomolgus and other nonhuman

primate blood samples.

4.6 Future Directions

One drawback of the GB method presented in this analysis is a poor yield of genic

reads, only around 50%. In a separate experiment, the reagent mixture was modified

so as to address this drawback, resulting in a method that produces an even better

reduction in globin reads without reducing the overall fraction of genic reads. How-

ever, the data showing this improvement consists of only a few test samples, so the

larger data set analyzed above was chosen in order to demonstrate the effectiveness

of the method in reducing globin reads while preserving the biological signal.

The motivation for developing a fast practical way to enrich for non-globin reads

in cyno blood samples was to enable a large-scale RNA-seq experiment investigating

the effects of mesenchymal stem cell infusion on blood gene expression in cynomologus

transplant recipients in a time course after transplantation. With the GB method in

place, the way is now clear for this experiment to proceed.
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Chapter 5

Conclusions

In this work, I have presented a wide range of applications for high-thoughput ge-

nomic and epigenomic assays based on sequencing and arrays in the context of im-

munology and transplant rejection. Chapter 2 described the use of high-throughput

RNA sequencing (RNA-seq) and chromatin immunoprecipitation followed by high-

throughput DNA sequencing (ChIP-seq) to investigate the interplay between pro-

moter histone marks and gene expression during activation of naïve and memory

CD4+ T-cells. Chapter 3 explored the use of expression microarrays and methylation

arrays for diagnosing transplant rejection. Chapter 4 introduced a new RNA-seq pro-

tocol for sequencing blood samples from cynomolgus monkeys designed to expedite

gene expression profiling in serial blood samples from monkeys who received an exper-

imental treatment for transplant rejection based on mesenchymal stem cells (MSCs).

These applications range from basic science to translational medicine, but in all cases,

high-thoughput genomic assays were central to the results.
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5.1 Every high-throughput analysis presents unique

analysis challenges

In addition, each of these applications of high-throughput genomic assays presented

unique analysis challenges that could not be solved simply by stringing together stan-

dard off-the-shelf methods into a straightforward analysis pipeline. In every case, a

bespoke analysis workflow tailored to the data was required, and in no case was it

possible to determine every step in the workflow fully prior to seeing the data. For

example, exploratory data analysis of the CD4+ T-cell RNA-seq data uncovered the

batch effect, and the analysis was adjusted to compensate for it. Similarly, analysis

of the ChIP-seq data required choosing an “effective promoter radius” based on the

data itself, and several different peak callers were tested before the correct choice be-

came clear. In the development of custom frozen Robust Multichip Average (fRMA)

vectors, an appropriate batch size had to be chosen based on the properties of the

training data. In the analysis of methylation array data, the appropriate analysis

strategy was not obvious and was determined by trying several plausible strategies

and inspecting the model paramters afterward to determine which strategy appeared

to best capture the observed properties of the data and which strategies appeared to

have systematic errors as a result of failing to capture those properties. The globin

blocking (GB) protocol went through several rounds of testing before satisfactory per-

formance was achieved, and as mentioned, optimization of the protocol has continued

past the version described here. These are only a few examples out of many instances

of analysis decisions motivated by the properties of the data.
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5.2 Successful data analysis requires a toolbox, not

a pipeline

Multiple times throughout this work, I have attempted to construct standard, reusable,

pipelines for analysis of specific kinds of data, such as RNA-seq or ChIP-seq. Each

time, the very next data set containing this data broke one or more of the assumptions

I had built into the pipeline, such as an RNA-seq dataset where some samples aligned

to the sense strand while others aligned to the antisense strand, or the discovery that

the effective promoter radius varies by histone mark. Each violation of an assumption

required a significant rewrite of the pipeline’s code in order to accommodate the new

aspect of the data. The prospect of reusability turned out to be a pipe(line) dream.

After several attempts to extend my pipelines to be general enough to handle an

ever-increasing variety of data idiosyncrasies, I realized that it was actually less work

to reimplement an analysis workflow from scratch each time rather than try to adapt

an existing workflow that was originally designed for a different data set.

Once I embraced the idea of writing a bespoke analysis workflow for every data set

instead of a one-size-fits-all pipeline, I stopped thinking of the pipeline as the atomic

unit of analysis. Instead, I focused on developing an understanding of the component

parts of each pipeline, which problems each part solves, and what assumptions it

makes, so that when I was presented with a new data set, I could quickly select

the appropriate analysis methods for that data set and compose them into a new

workflow to answer the demands of a new data set. In cases where no off-the-shelf

method existed to address a specific aspect of the data, knowing about a wide range of

analysis methods allowed me to select the one that was closest to what I needed and

adapt it accordingly, even if it was not originally designed to handle the kind of data I

was analyzing. For example, when analyzing heteroskedastic methylation array data,

I adapted the voom method from limma, which was originally designed to model
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heteroskedasticity in RNA-seqdata [23]. While voom was designed to accept read

counts, I determined that this was not a fundamental assumption of the method but

rather a limitation of the specific implementation, and I was able to craft a modified

implementation that accepted log2 ratios (M-values) from methylation arrays. In

contrast, adapting another method such as edgeR for methylation arrays would not

be possible, since many steps of the edgeR workflow, from normalization to dispersion

estimation to model fitting, assume that the input is given on the scale of raw counts

and take full advantage of this assumption [40, 29, 28, 27]. In short, I collected a

“toolbox” full of useful modular analysis methods and developed the knowledge of

when and where each could be applied, as well as how to compose them on demand

into pipelines for specific data sets. This prepared me to handle the idiosyncrasies of

any new data set, even when the new data has problems that I have not previously

encountered in any other data set.

Reusable pipelines have their place, but that place is in automating established

processes, not researching new science. For example, the custom fRMA vectors devel-

oped in Chapter 3, are being incorporated into an automated pipeline for diagnosing

transplant rejection using biopsy and blood samples from transplant recipients. Once

ready, this diagnostic method will consist of normalization using the pre-trained

fRMA vectors, followed by classification of the sample by a pre-trained classifier,

which outputs a posterior probability of acute rejection. This is a perfect use case for

a proper pipeline: repeating the exact same sequence of analysis steps many times.

The input to the pipeline is sufficiently well-controlled that we can guarantee it will

satisfy the assumptions of the pipeline. But research data is not so well-controlled,

so when analyzing data in a research context, the analysis must conform to the data,

rather than trying to force the data to conform to a preferred analysis strategy. That

means having a toolbox full of composable methods ready to respond to the observed

properties of the data.
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