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Reference-based transcript assembler and
quanti�er

Assembles reads by their genomic positions
Not directly by sequence

Assembly and quanti�cation happen
separately

One could use Cu�inks for one and another
tool for the other

We will explore Cu�inks' approach to both
problems
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Important Terms

Transcript: An RNA molecule transcribed from DNA

Primary transcript: Transcript that has yet to undergo
modi�cation

Genomic location: Pair of coordinates; 5′-TSS & 3′ poly-A
sites (regardless of internal splicing)

Transcriptome: Set of all transcripts with corresponding
abundance values.

Locus: Set of overlapping transcripts that does not overlap
any other locus.

Abundance: The fraction of transcript molecules that come
from a particular source
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Overview of Assembly

Each locus is assembled independently of the others

Algorithm designed to produce an assembly with desirable
properties:

Every fragment is consistent with at least one assembled
transcript
Every transcript is tiled (covered entirely) by reads
The number of transcripts is the minimum required
Abundance estimates are fully determined

In other words, the minimal and most parsimonious set of
transcripts that fully explains the observed reads
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Partial Orders and DAGs

An order is a relation on a set where any two items either have
a relationship of �greater than�, �less than�, or �equal to�.

We can represent a full order by an unbranching number line,
since every item is comparable to every other

A partial order allows any of the above, plus �not comparable
to�

Now, instead of a single line, we have a branching graph � a
�directed acyclic graph�

The partial order is equivalent to the DAG
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Partially Ordering Fragments

Fragments are compatible if they imply
the same splice sites or none (a),
incompatible if they imply di�erent
ones (b)

compatible fragments are ordered by
their start positions

Paired-end fragments can be nested

(c), in which case they are merged
into their containing fragments

Some read pairs are uncertain, because
they are consistent with multiple
splicing patterns (d).

These are excluded from assembly
(but not quanti�cation)
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DAG to Assembly
Deriving transcripts from partially-ordered fragments

A chain is a �path� through the DAG
from source (TSS) to sink (poly-A
site)

Each chain (ideally) represents a
transcript isoform

A partition of the DAG into chains
yields an assembly of the locus into
transcripts

We want the minimum number of
chains required
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Minimum Partition, Maximum Antichain
One algorithm's min is another algorithm's max

An antichain is a set of mutually
incompatible elements

None is upstream or downstream of
any other

�Perpendicular� to every chain

The maximum antichain has the same
size as the minimum number of chains

Think: �maximum branchiness�

An e�cient algorithm exists for �nding
the maximum antichain, and hence,
the required number of transcripts
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Phasing Distant Exons
Psi vs Psi

We may have to choose from multiple ways of partitioning the
DAG

De�ne percent-spliced-in (psi, ψ) for a given fragment as the
fraction of overlapping fragments that are compatible with
that fragment

ψ is an estimate of the fraction of transcripts that include this
fragment

De�ne a cost function for assembling two fragments together:

C (y ,z) =− log(1−|ψy −ψz |)

Key idea: the cost function increases as the ψ values diverge

Choose the minimum partition with minimum cost
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Phasing Example
Stop me if you've heard this one

Max antichain = 2; must choose 2 transcripts

Which ones? Either red/green or blue/magenta
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Phasing Example
Stop me if you've heard this one

blue/magenta phases dissimilar ψ values (bad)
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Phasing Example
Stop me if you've heard this one

red/green phases similar ψ values (good)
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Why Minimize Chain Count?

In the previous example, there could be 3 or 4 isoforms instead
of 2

But it becomes impossible to quantify all 4 isoforms

System with 4 unknowns but only 2 equations

If we don't choose a minimum partition, the quanti�cation is
not uniquely determined

The chosen chains will likely correspond to the most abundant
isoforms
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De�ning the Quanti�cation Problem

Recall a transcriptome is a set of transcripts
with abundances

Given a set of transcripts and a set of reads,
we want to estimate the abundances

First we work forward to �gure out what set
of reads we expect from a given set of
abundances (building the model)

Then we work backward to �gure out the
abundances that best account for the reads
we observe (maximum likelihood estimation,
MLE)
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Statistical Model
How we think RNA-Seq works

Assume that fragments are sampled uniformly from all
transcripts in proportion to their abundances

Could use other distributions, accounting for ampli�cation &
sequencing biases

De�ne fragment abundance: the probability that a fragment
selected at random originiates from that transcript

Longer transcripts yield more fragments
also depends on fragment length distribution

Fragment abundance is easier to estimate, and can easily be
converted to abundance
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Further Simpli�cation
Have mercy on the computer

Finding fragment abundance is theoretically easy, but
numerically hard

Fragment abundance (α) can be decomposed into locus
abundance (β ) and conditional abundance of the fragment
given the locus (γ): α = β · γ
Cu�inks estimates β for each locus and γ for each transcript
in each locus from the data using MLE

β̂ is just the fraction of fragments mapping to a locus
all γ̂ in a locus are found by expectation maximization

Then Cu�inks works backward to α and converts to FPKM

Con�dence intervals are estimated from variances of β̂ and γ̂

Ryan Thompson Cu�inks



Introduction
Assembly

Quanti�cation
Conclusion

Always Allow Novel Transcripts

Cu�inks has an option to quantify a set of
existing transcripts without assembling any
new ones

Do not use this option

This will cause inaccurate quanti�cation of
known transcripts, since reads that should be
attributed to the novel splice forms will
instead be assigned to the known ones
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Summary

Cu�inks is both a transcript assembler and quanti�er

It assembles the most parsimonious minimal set of transcripts
that explains all the data

It quanti�es transcripts by solving for the abundance levels
most likely to generate the observed data

It should be quite reliable for at least getting the dominant
isoform and estimating gene-level abundance
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Practical Optimization
Better cluster-based parallelization of assembly

Assembly is done independently for each locus

One could split a dataset into one SAM �le per locus and then
submit a separate job for each

We currently only submit one job per chromosome

Larger or more complex chromosomes take much longer

Cu�inks can do this itself using threads on one machine, but
not on a cluster

After assembly, concatenate result �les and run a single
instance of Cu�inks to quantify

We would need a script to split a sorted SAM �le of
paired-end reads into loci
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