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The Biological Question
How can we tell if two genes/proteins are related?

Without Sequencing:

chemical & physical properties (size, pI, hydrophobicity,
etc.)
biological activity
localization

But this is all circumstantial evidence. Can we do better?

With Sequencing:

Compare the primary sequences!
(Ok, it’s still circumstantial, but at least we can do statistics now.)
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Protein Sequencing

Pehr Edman

1950: Developed a method for
N-terminal polypeptide sequencing

Frederick Sanger

1955: Determined the complete
sequence of insulin

Trypsin digestion,
chromatography, and inference

Showed that proteins have precise
primary sequences

In practice, most protein sequences
are predicted from DNA sequences
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DNA Sequencing

James D. Watson & Francis Crick

1953: Proposed base-pairing as a
model for DNA replication
But their model also implied a
primary sequence for DNA

Fredrick Sanger

1975: Dideoxy chain termination
sequencing method
1977: Sequenced and manually
assembled an entire phage
genome
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4-color fluorescent
chain-terminators
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high-throughput parallel
sequencing
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What was the question again?

Oh yeah, how do we tell if they’re related?
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Theory of Molecular Evolution

Our plan was to compare primary sequences

But how can we relate the primary sequence to
evolutionary history?

Evolution happens one mutation at a time

frequently only changing a singe base/amino acid

diverging genes accumulate divergent mutations

therefore, closely related genes should have similar primary
sequences

Ryan Thompson Sequence Alignment



Introduction
Pairwise Alignment

Conclusion

The Question
History
Molecular Evolution

Theory of Molecular Evolution

Our plan was to compare primary sequences

But how can we relate the primary sequence to
evolutionary history?

Evolution happens one mutation at a time

frequently only changing a singe base/amino acid

diverging genes accumulate divergent mutations

therefore, closely related genes should have similar primary
sequences

Ryan Thompson Sequence Alignment



Introduction
Pairwise Alignment

Conclusion

The Question
History
Molecular Evolution

Theory of Molecular Evolution

Our plan was to compare primary sequences

But how can we relate the primary sequence to
evolutionary history?

Evolution happens one mutation at a time

frequently only changing a singe base/amino acid

diverging genes accumulate divergent mutations

therefore, closely related genes should have similar primary
sequences

Ryan Thompson Sequence Alignment



Introduction
Pairwise Alignment

Conclusion

The Question
History
Molecular Evolution

Theory of Molecular Evolution

Our plan was to compare primary sequences

But how can we relate the primary sequence to
evolutionary history?

Evolution happens one mutation at a time

frequently only changing a singe base/amino acid

diverging genes accumulate divergent mutations

therefore, closely related genes should have similar primary
sequences

Ryan Thompson Sequence Alignment



Introduction
Pairwise Alignment

Conclusion

The Question
History
Molecular Evolution

Theory of Molecular Evolution

Our plan was to compare primary sequences

But how can we relate the primary sequence to
evolutionary history?

Evolution happens one mutation at a time

frequently only changing a singe base/amino acid

diverging genes accumulate divergent mutations

therefore, closely related genes should have similar primary
sequences

Ryan Thompson Sequence Alignment



Introduction
Pairwise Alignment

Conclusion

The Question
History
Molecular Evolution

Theory of Molecular Evolution

Our plan was to compare primary sequences

But how can we relate the primary sequence to
evolutionary history?

Evolution happens one mutation at a time

frequently only changing a singe base/amino acid

diverging genes accumulate divergent mutations

therefore, closely related genes should have similar primary
sequences

Ryan Thompson Sequence Alignment



Introduction
Pairwise Alignment

Conclusion

The Question
History
Molecular Evolution

The Molecular Basis of Evolution (1959)
A short excerpt
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“Optimal” Alignment
What does that mean?

Always finds the best possible alignment between any two
sequences

Naïve optimal algorithm: try every possible alignment

Remeber, that includes all possible gaps

How long would this take? A very long time.

Can we find a faster way? Hint: Yes
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Dynamic Programming

Don’t worry, we’re not talking about computer programming
here

“Programming” in this case means “optimization” or
“planning ahead”

Like checking Google Maps before you try to find your way
on your own.

You use some extra time checking the map and printing it
out

But then you save time because you don’t get lost and
backtrack

In our case, we’ll map the whole “search space” and then
find the best alignment
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Local Alignment of Subsequences
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Smith-Waterman Algorithm (1981)
Local Alignment of Subsequences

Just kidding! I have an interactive demo instead.

http://zucker.limbio-paris13.org/COURS/M1S1-
SMBH/Cours2baba.html
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Homologous Ridges
What a filled-in SW matrix looks like
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Scoring Matrices
A Dash of Biological Significance; or, Not All Mutations are Created Equal

Not all mutations are equally likely

Some mutations are acceptable

Ser↔ Thr, Trp↔ Phe, Val↔ Ile

Some mutations are disruptive

Leu↔ Asp, Val↔ Arg, Tyr↔ Leu

We can quantify the likelihood of all possible mutations
using a scoring matrix
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“Heuristic” Alignment
What does that mean?

Unlike optimal algorithms, heuristic algorithms don’t
guarantee anything

No mathematical proof that says “this algorithm always
works”

You “usually” get “pretty good” results
in practice, this is good enough

Ryan Thompson Sequence Alignment



Introduction
Pairwise Alignment

Conclusion

Optimal Alignment
Heuristic Alignment
Limitations

“Heuristic” Alignment
What does that mean?

Unlike optimal algorithms, heuristic algorithms don’t
guarantee anything

No mathematical proof that says “this algorithm always
works”

You “usually” get “pretty good” results
in practice, this is good enough

Ryan Thompson Sequence Alignment



Introduction
Pairwise Alignment

Conclusion

Optimal Alignment
Heuristic Alignment
Limitations

Why settle?
Why settle for “pretty good” when we can have optimal?

Because it’s faster and requires less memory!

Example: aligning two entire genomes (e.g. mouse &
human)

With Smith-Waterman, this would take about 40 exabytes
(That’s 40 billion gigabytes)

For Comparison:
You’re lucky to have 4 GB of memory in your PC/laptop
Large servers might have 400 GB
You’d still need several million servers to do the full
alignment
It would probably take years to complete

Using BLAST, this could probably be done on an average
PC in a few days.
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Why so slow?

Smith-Waterman is too slow because it computes the
entire n ×m “search space”

If you double the length of each sequence, the search
space is quadrupled

To go faster, we want to efficiently narrow our search and
only do full Smith-Waterman alignments in small areas
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FASTA (1988)
William R. Pearson, Dept. of Biochemistry, U. Va. and David J. Lipman, NIH

Faster than Smith-Waterman, slower than BLAST

Pearson’s goal is not pure speed, but the best tradeoff of
sensitivity, selectivity, and speed

designed to find distantly divergent but related sequences
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FASTA
The Algorithm

Quickly scan for identical stretches

Rescore each stretch using a
scoring matrix
Keep only the top ten

Join nearby segments with
appropriate gap penalties
Keep only segments that join with
the top scoring segment

Optimize alignment with banded
Smith-Waterman
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BLAST (1990)
Altschul et. al.

Compile a list of “words” from the query sequence
Example: PVAKEPIK. . .
Words: PVA, VAK, AKE, KEP, EPI, PIK, . . .

Search for all these small words in the database
words are short and have equal length
no gaps allowed
this allows major optimization

Throw out any matches below a threshold score

“Venus flytrap” selection: only consider pairs of nearby
matches

Finally, use Smith-Waterman to locally extend selected
matches only

Search space is reduced to ∼ n + m instead of n ×m
Ryan Thompson Sequence Alignment
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Ryan Thompson Sequence Alignment
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E-Values
Expecting the Unexpected

BLAST reports an E-value for each alignment

stands for “expect”

This score is effectively a false-discovery rate

“How often would a random alignment score as high as this
alignment?”
If false discovery rate is very low, then this alignment is
probably a true positive

Example: suppose an alignment had an E-value of
E = 1× 10−10

Then we would expect one out of every 10, 000, 000, 000
random searches to yield a result as good as this alignment

For those who prefer p-values: when E < 0.01, P ≈ E
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What Could Possibly Go Wrong?
Nothing, right?

We are only comparing the primary sequence

We can’t easily predict 3D structure from primary
sequence

That goes for both protein and RNA

Some proteins with < 25% sequence identity still fold the
same

RNA folding depends primarily on presence, not identity, of
specific base pairs

Can’t predict posttranslational modifications

Ultimately, primary sequence homology is not a guarantee
of actual relatedness

but it’s pretty good most of the time
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