Differential Expression Analysis of RNA Sequencing Data

Ryan C. Thompson

May 8, 2018

Ryan C. Thompson Differential Expression Analysis of RNA Sequencing Data

- What does RNA-seq measure, and how?
- The raw data: DNA sequence reads
- Getting from reads to counts
- Basic analysis strategy: linear models
- Normalization of RNA-seq counts
- Heteroskedasticity!
- Sharing information between genes
- Multiple testing and FDR

Introduction

What kind of data does it produce?

What kind of data does it produce?

- RNA sequence reads!
- Reads are sampled randomly from the population of RNA transcripts in a sample.

What kind of data does it produce?

- RNA sequence reads!
- Reads are sampled randomly from the population of RNA transcripts in a sample.

How can we measure gene expression levels using RNA sequences?

What kind of data does it produce?

- RNA sequence reads!
- Reads are sampled randomly from the population of RNA transcripts in a sample.

How can we measure gene expression levels using RNA sequences?

- Align reads to the transcriptome
- Count the reads that align to each gene
- A gene's count should be proportional its expression level

What kind of data does it produce?

- RNA sequence reads!
- Reads are sampled randomly from the population of RNA transcripts in a sample.

How can we measure gene expression levels using RNA sequences?

- Align reads to the transcriptome
- Count the reads that align to each gene
- A gene's count should be proportional its expression level

Can we measure anything else?

What kind of data does it produce?

- RNA sequence reads!
- Reads are sampled randomly from the population of RNA transcripts in a sample.

How can we measure gene expression levels using RNA sequences?

- Align reads to the transcriptome
- Count the reads that align to each gene
- A gene's count should be proportional its expression level

Can we measure anything else?

- Alternative splicing
- Discover novel splices/isoforms
- Genotype coding SNPs & SVs

What kind of data does it produce?

- RNA sequence reads!
- Reads are sampled randomly from the population of RNA transcripts in a sample.

How can we measure gene expression levels using RNA sequences?

- Align reads to the transcriptome
- Count the reads that align to each gene
- A gene's count should be proportional its expression level

Can we measure anything else?

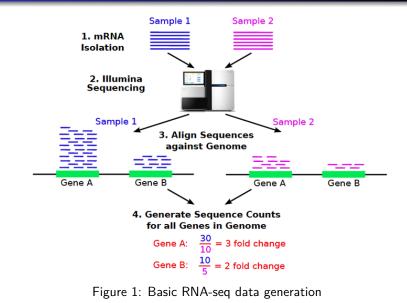
- Alternative splicing
- Discover novel splices/isoforms
- Genotype coding SNPs & SVs

(I won't be covering these, but just be aware that these are options)

- "FASTQ" format: contains both DNA sequence and quality values for each base
- Often compressed with gzip, e.g. Sample_A.fastq.gz

- "FASTQ" format: contains both DNA sequence and quality values for each base
- Often compressed with gzip, e.g. Sample_A.fastq.gz

Here's the general idea



- RNA-seq produces millions of read sequences
- We treat each read as a single observation of a gene, and assume that the abundance of the gene is proportional to how many times it is "observed".
- We **align** those reads to the matching sequence in the genome (or transcriptome), then we **count** the number of reads in each sample that align unambiguously to each gene.
- We discard ambiguous reads, so each count is an exact integer.
- There are more subtleties to counting reads (multi-mapping, alternative splicing, etc.). I'm not covering them here.
- The end result is a **table of genes X samples** with integer counts.

Aligning reads: accounting for splicing

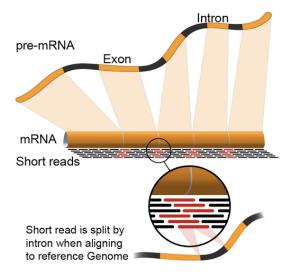


Figure 2: Split mapping of spliced reads

Statistical Analysis of RNA-seq Counts

Our basic strategy: linear models!

- First, we take the logarithm of the the counts, since the distribution after log transform is closer to a normal distribution (i.e. better for linear modeling)
- Then, for each gene we run summary(lm(log_count ~ covariates))
- Get a p-value for each gene

Our basic strategy: linear models!

- First, we take the logarithm of the the counts, since the distribution after log transform is closer to a normal distribution (i.e. better for linear modeling)
- Then, for each gene we run summary(lm(log_count ~ covariates))
- Get a p-value for each gene

Well, that was easy. I guess you can all go home now.

Our basic strategy: linear models!

- First, we take the logarithm of the the counts, since the distribution after log transform is closer to a normal distribution (i.e. better for linear modeling)
- Then, for each gene we run summary(lm(log_count ~ covariates))
- Get a p-value for each gene

Well, that was easy. I guess you can all go home now.

Just kidding! This simple analysis has a bunch of issues that we need to fix if we want a valid analysis.

Questions to think about:

- Does the same count always equal the same expression? Is a count of 10 in sample A equal to a count of 10 in sample B?
- Are all counts equally precise? Which count is more precise: 10 or 1000?
- Do we even have a large enough sample size to do robust statistics?
- Can we use P < 0.05 as our significance threshold? Is there a better significance criterion we can use?

Questions to think about:

- Does the same count always equal the same expression? Is a count of 10 in sample A equal to a count of 10 in sample B?
- Are all counts equally precise? Which count is more precise: 10 or 1000?
- Do we even have a large enough sample size to do robust statistics?
- Can we use P < 0.05 as our significance threshold? Is there a better significance criterion we can use?

We'll see how we can solve all of these problems by adding onto the standard linear model described earlier.

Scaling Normalization for Count Data

- Why do we have to normalize RNA-seq counts?
- What factors do we need to normalize for?
- What factors do we not need to normalize for?

CPM: Normalizing for sequencing depth

- The number of reads output by the sequencer for each sample is random
- Some samples receive more reads than others
- The total read count can vary by over 2-fold in many cases
- 10 counts out of 1 million is not the same as 10 counts out of 2 million
- Introduce "counts per million", a.k.a. CPM

CPM: Normalizing for sequencing depth

- The number of reads output by the sequencer for each sample is random
- Some samples receive more reads than others
- The total read count can vary by over 2-fold in many cases
- 10 counts out of 1 million is not the same as 10 counts out of 2 million
- Introduce "counts per million", a.k.a. CPM

So, 10 counts is not the same in every sample, but 10 CPM is, right?

Example count table

Gene	Control	Treatment
Gene1	20	10
Gene2	20	10
Gene3	20	10
Gene4	20	10
Gene5	20	10
Gene6	20	10
Gene7	20	10
Gene8	20	10
Gene9	20	10
Gene10	20	10
Gene11	0	100
Total	200	200

Example CPM table

Gene	Control	Treatment
Gene1	100000	50000
Gene2	100000	50000
Gene3	100000	50000
Gene4	100000	50000
Gene5	100000	50000
Gene6	100000	50000
Gene7	100000	50000
Gene8	100000	50000
Gene9	100000	50000
Gene10	100000	50000
Gene11	0	500000

Example CPM table

Gene	Control	Treatment
Gene1	100000	50000
Gene2	100000	50000
Gene3	100000	50000
Gene4	100000	50000
Gene5	100000	50000
Gene6	100000	50000
Gene7	100000	50000
Gene8	100000	50000
Gene9	100000	50000
Gene10	100000	50000
Gene11	0	500000

Which gene(s) were affected by the treatment, and how were they affected?

TMM: Normalizing for compositional bias

- Instead of normalizing for total counts, normalize so that the average log fold change is zero
- We have lots of genes, so we make the average robust against outliers by throwing away the highest- and lowest-abundance genes.
- Also throw away the highest and lowest fold changes for the same reason
- Result: "Trimmed Mean of M-values" method, a.k.a. TMM (M-values are the term for log fold changes)
- Apply the normaliztion by modifying the total counts and then computing CPM using the modified totals

So how would we normalize this table with TMM?

Gene	Control	Treatment
Gene1	20	10
Gene2	20	10
Gene3	20	10
Gene4	20	10
Gene5	20	10
Gene6	20	10
Gene7	20	10
Gene8	20	10
Gene9	20	10
Gene10	20	10
Gene11	0	100
Total	200	200

So how would we normalize this table with TMM?

Gene	Control	Treatment
Gene4	20	10
Gene5	20	10
Gene6	20	10
Gene7	20	10
Gene8	20	10
Total	200	200
TMM correction	$\sqrt{2}$	$1/\sqrt{2}$
Normalized total	282.84	141.42

- Discard the genes with the largest changes (Genes 1-3 and 9-11)
- Compute the average ratio of the remaining genes: 20/10 = 2
- Multiply this ratio into the total counts before computing CPM

So how would we normalize this table with TMM?

Gene	Control	Treatment
Gene1	20	10
Gene2	20	10
Gene3	20	10
Gene4	20	10
Gene5	20	10
Gene6	20	10
Gene7	20	10
Gene8	20	10
Gene9	20	10
Gene10	20	10
Gene11	0	100
Total	200	200
TMM correction	$\sqrt{2}$	$1/\sqrt{2}$
Normalized total	282.84	141.42

Same table, normalized by TMM

Gene	Control	Treatment
Gene1	70710	70710
Gene2	70710	70710
Gene3	70710	70710
Gene4	70710	70710
Gene5	70710	70710
Gene6	70710	70710
Gene7	70710	70710
Gene8	70710	70710
Gene9	70710	70710
Gene10	70710	70710
Gene11	0	707107

Now we can see which genes are *really* changing, and which ones are not.

Why wasn't CPM good enough?

- CPM already normalizes for sequencing depth
- But CPM does not account for "compositional bias"
- Because sequencing depth is limited and independent of the biology, genes compete for a limited supply of sequence reads
- If one gene goes up, all others have to go down
- When high-abundance genes change, they can have a drastic effect on all others
- This competition for limited sequencing depth affects the counts of all genes, but has no bearing on the biology, so it requires normalization
- TMM fixes this by requiring that the "average" gene is not changing

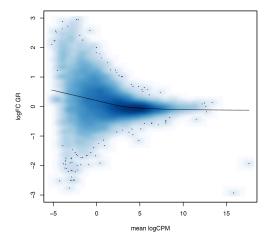
Real-world CPM fail: globin reduction

ო N logFC GR 0 Π ٩ Ϋ́ -5 0 5 10 15 mean logCPM

GR vs non-GR estimated expression level (No TMM)

Figure 3: MA plot (Raw logCPM)

Real-world TMM success



GR vs non-GR estimated expression level (With TMM)

Figure 4: MA plot (With TMM)

FPKM: Normalizing for gene length?

- If gene A and gene B both have 10 CPM in a sample, are they expressed at the same level?
- What if gene A's transcript is 1000 nt long while gene B is 100000?
- If we divide CPM by the transcript length, we get the count of "fragments per kilobase per million fragments sequenced", a.k.a. FPKM

FPKM: Normalizing for gene length?

- If gene A and gene B both have 10 CPM in a sample, are they expressed at the same level?
- What if gene A's transcript is 1000 nt long while gene B is 100000?
- If we divide CPM by the transcript length, we get the count of "fragments per kilobase per million fragments sequenced", a.k.a. FPKM
- This can be used to compare across genes, but it is **not** useful for differential expression, as we will see later.

Better Variance Estimation with limma and voom

- In ideal data, the mean and variance are independent: every measurement has the same precision. This desirable property is called "homoskedastic"
- R's lm() assumes homoskedasticity by default
- If the precision of a measurement depends on its mean or on other factors, the data are "heteroskedsatic", and the model can benefit from estimating and adjusting for this dependency
- We can make this adjustment by adding in weights: more precise measurements get a higher weight, less precise measurements get a lower weight

Counting precision depends on the count

- Which coin is more likely to be fair?
 - Coin A: Flipped it 10 times, got 5 heads & 5 tails
 - Coin B: Flipped it 100 times, got 50 heads & 50 tails

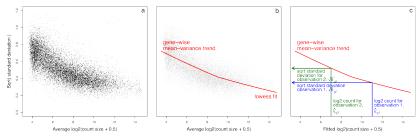
Counting precision depends on the count

- Which coin is more likely to be fair?
 - Coin A: Flipped it 10 times, got 5 heads & 5 tails
 - Coin B: Flipped it 100 times, got 50 heads & 50 tails
- Coin B is more trustworthy because higher counts are more precise

Counting precision depends on the count

- Which coin is more likely to be fair?
 - Coin A: Flipped it 10 times, got 5 heads & 5 tails
 - Coin B: Flipped it 100 times, got 50 heads & 50 tails
- Coin B is more trustworthy because higher counts are more precise
- Genes with higher expression and/or longer genes get higher counts, so they can be measured more precisely
- Also works within a single gene: if Gene A is upregulated in the treatment relative to the control, then the counts in the treatment are also more precise than the control counts
- Samples with higher sequencing depth have more precise measurements for every gene

Voom: modeling the mean-variance trend



voom: Mean-variance trend

Figure 5: Diagram of voom method

Problem: Few replicates makes it hard to estimate variance

- RNA-seq is expensive, so most experiments have very few replicates
- Few replicates means that we can't get a robust estimate of the variance for each gene
- In turn, the means our p-values are less reliable
- But with 1000s of genes, we *can* get a robust estimate of the average variance of all genes
- This would be great if every gene had the same variance, but we know this isn't the case
- Maybe there's a compromise between these two extremes?

Empirical Bayes: Sharing information is caring information

- We will come up with a scheme where genes partially share information with each other about the variance
- First, estimate each gene's variance on its own
- Then, take the average of all the genes' variances
- Now, set each individual gene's variance somewhere between the gene-specific value and the global average
- Result is more accurate than the global average variance *and* more precise than the gene-specific variance
- The more samples we have, the less we rely on the average and the more we can rely on the gene-specific variance

Variance estimation: no squeezing

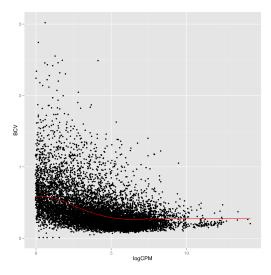


Figure 6: Raw gene-specific variances

Variance estimation: empirical Bayes squeezing

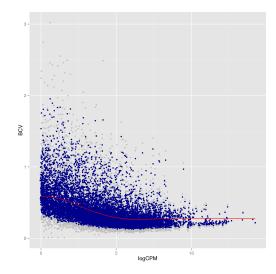


Figure 7: Empirical Bayes squeezed vs raw variances

Multiple Testing Correction; or, why p-values are terrible

- As you've alreayd learned, p-values are uniformly distributed under the null hypothesis
- So any deviation from uniformity in multiple tests can be interpreted as deviation from the null hypothesis
- *Technically*, we're not doing multiple tests, but we *are* testing multiple genes, and that's close enough

FDR: Important definitions and distinctions

- FDR: expected number of false positives in a *list* of genes does not tell the probability of any one gene being a false positive
- Important: FDR is a general term for any false discovery rate calculation – remember to specify the specific method of computing FDR in your Methods section
- Benjamini-Hochberg: an FDR algorithm; puts an upper bound on the FDR
- π_0 : Estimated proportion of all null hypotheses that are true (non-DE genes), a.k.a. prior probability of non-DE
- q-value: Another commonly used algorithm for estimation of FDR; more liberal than BH, but has a chance to overestimate significance
 - Specifically q-value equals BH FDR times $\pi_0;$ or equivalently BH FDR is q-value under the pessimistic assumption that $\pi_0=1$

FDR: Important definitions and distinctions

- FDR: expected number of false positives in a *list* of genes does not tell the probability of any one gene being a false positive
- Important: FDR is a general term for any false discovery rate calculation – remember to specify the specific method of computing FDR in your Methods section
- Benjamini-Hochberg: an FDR algorithm; puts an upper bound on the FDR
- π_0 : Estimated proportion of all null hypotheses that are true (non-DE genes), a.k.a. prior probability of non-DE
- q-value: Another commonly used algorithm for estimation of FDR; more liberal than BH, but has a chance to overestimate significance
 - Specifically q-value equals BH FDR times $\pi_0;$ or equivalently BH FDR is q-value under the pessimistic assumption that $\pi_0=1$
- These definitions are best understood in graphical terms

Typical P-value distribution: all null

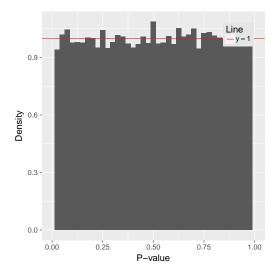


Figure 8: P-value distribution with no signal

Typical P-value distribution: moderate signal

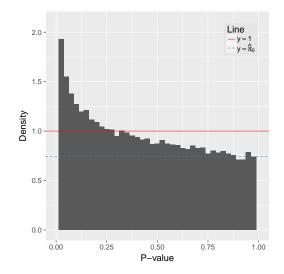


Figure 9: P-value distribution with moderate signal

Typical P-value distribution: moderate signal

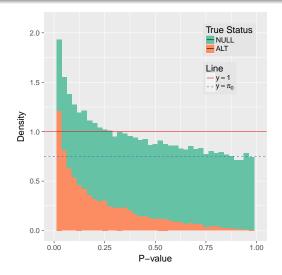


Figure 10: P-value distribution with moderate signal, colored by true status

Evaluating your model using the p-value distribution

- Every p-value distribution should either be uniform or zero-biased
- Any other distribution indicates that your model does not fit the data Fix your model!
- FDR methods will not have a useful interpretation for such a p-value distribution
- Possible issues:
 - Critical assumptions of your model are severely violated (e.g. heteroskedasticity, wrong distribution, too many outliers)
 - Covariates/batch effects not included in your model
 - Highly correlated covariates are splitting the effect
 - Unobserved batch effect or other confounding factor is obscuring the signal
 - You accidentally treated continuous variable as categorical or vice versa (common R pitfall!)
- CANNOT be explained by simple lack of signal

Atypical P-value distribution: Over-Conservative

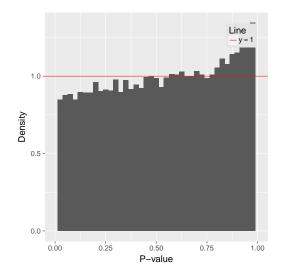


Figure 11: P-value distribution, worse than uniform

Atypical P-value distribution: Bimodal

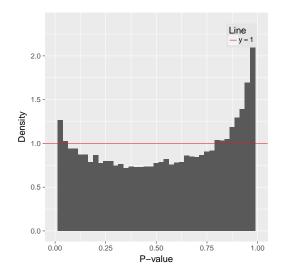


Figure 12: P-value distribution, bimodal

Atypical P-value distribution: Bump in the middle

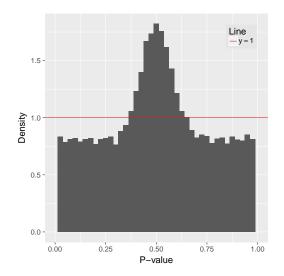


Figure 13: P-value distribution, non-monotonic

Atypical P-value distribution: Discrete values

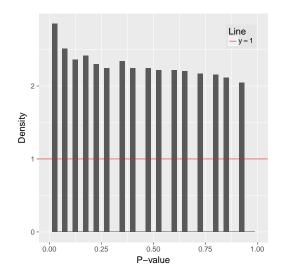


Figure 14: P-value distribution, discrete

Conclusions

- RNA-seq read are aligned and counted to obtain counts for each gene in each sample
- Counts are log-transformed and analyzed using an ordinary linear model...

- RNA-seq read are aligned and counted to obtain counts for each gene in each sample
- Counts are log-transformed and analyzed using an ordinary linear model...
- ...with modifications to account for normalization (TMM) and counting precision (voom), and to improve variance estimation by sharing information between genes (empirical Bayes squeezing)
- Luckily, the limma package does does all of this extra work for you, so it's almost as easy as normal lm()
- Finally, p-values are adjusted for multiple testing to obtain FDRs

Not Pictured: All of these other things

There's a lot more that you can do with RNA-seq data!

- Differential expression using glm and the negative binomial distribution
- Estimation of alternative isoform expression levels
- Differential splicing analysis
- Uneven coverage across gene bodies
- Gene set/pathway enrichment testing for differentially expressed/spliced genes
- Co-expression networks: WCGNA
- Genotyping of coding SNPs
- Association of SNPs with expression levels (eQTLs)
- Association of TFBS/histone marks/miRNA with expression levels (epigenetics & post-transcriptional regulation)

Not Pictured: All of these other things

There's a lot more that you can do with RNA-seq data!

- Differential expression using glm and the negative binomial distribution
- Estimation of alternative isoform expression levels
- Differential splicing analysis
- Uneven coverage across gene bodies
- Gene set/pathway enrichment testing for differentially expressed/spliced genes
- Co-expression networks: WCGNA
- Genotyping of coding SNPs
- Association of SNPs with expression levels (eQTLs)
- Association of TFBS/histone marks/miRNA with expression levels (epigenetics & post-transcriptional regulation)

Many high-throughput technologies are like this. Think carefully about multiple analyses from the same data to get your money's worth!

Any Questions?