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Outline

What does RNA-seq measure, and how?
The raw data: DNA sequence reads
Getting from reads to counts
Basic analysis strategy: linear models
Normalization of RNA-seq counts
Heteroskedasticity!
Sharing information between genes
Multiple testing and FDR
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Introduction
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What is RNA sequencing?

What kind of data does it produce?

RNA sequence reads!
Reads are sampled randomly from the population of RNA
transcripts in a sample.

How can we measure gene expression levels using RNA sequences?
Align reads to the transcriptome
Count the reads that align uniquely to each gene
A gene’s count should be proportional its expression level

Can we measure anything else?
Alternative splicing
Discover novel splices/isoforms
Genotype coding SNPs

(I won’t be covering these, but just be aware that these are options)
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What do “reads” look like?

“FASTQ” format: contains both DNA sequence and quality
values for each base

@071112_SLXA-EAS1_s_7:5:1:817:345
GGGTGATGGCCGCTGCCGATGGCGTCAAATCCCACC
+071112_SLXA-EAS1_s_7:5:1:817:345
IIIIIIIIIIIIIIIIIIIIIIIIIIIIII9IG9IC
@071112_SLXA-EAS1_s_7:5:1:801:338
GTTCAGGGATACGACGTTTGTATTTTAAGAATCTGA
+071112_SLXA-EAS1_s_7:5:1:801:338
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII6IBI

Often compressed with gzip, e.g. Sample_A.fastq.gz
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Here’s the general idea

Figure 1: Basic RNA-seq data generation
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Generating a count matrix from an RNA-seq experiment

RNA-seq produces millions of read sequences
We treat each read as a single observation of a gene, and
assume that the abundance of the gene is proportional to how
many times it is “observed”.
We align those reads to the matching sequence in the genome
(or transcriptome), then we count the number of reads in each
sample that align unambiguously to each gene.
We discard ambiguous reads, so each count is an exact integer.
There are more subtleties to counting reads (multi-mapping,
alternative splicing, etc.). I’m not covering them here.
The end result is a table of genes X samples with integer
counts.
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Aligning reads: accounting for splicing

Figure 2: Split mapping of spliced reads
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Statistical Analysis of RNA-seq Counts
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Our basic strategy: linear models!

First, we take the logarithm of the the counts, since the
distribution after log transform is closer to a normal
distribution (i.e. better for linear modeling)
Then, for each gene we run:

summary(lm(log_count ~ covariates))

Get a p-value for each gene

Well, that was easy. I’ll see you this afternoon for the lab.
Just kidding! This simple analysis has a bunch of issues that we
need to fix if we want a valid analysis.
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What’s wrong with a simple linear model like this?

Questions to think about:

Does the same count always equal the same expression? Is a
count of 10 in sample A equal to a count of 10 in sample B?
Are all counts equally precise? Which count is more precise, a
10 or 1000?
Is our sample size large enough to do estimate parameters
precisely?
Can we use P < 0.05 as our significance threshold? How can
we determine a better threshold?

We’ll see how we can embellish the standard linear model described
earlier to address all of these problems.
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Scaling Normalization for Count Data
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Why normalize?

Why do we have to normalize RNA-seq counts?
What factors do we need to normalize for?
What factors do we not need to normalize for?
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CPM: Normalizing for sequencing depth

The number of reads output by the sequencer for each sample
is random
Some samples receive more reads than others
The total read count can vary by over 2-fold in many cases
10 counts out of 1 million is not the same as 10 counts out of
2 million
Introduce “counts per million”, a.k.a. CPM

So, 10 counts is not the same in every sample, but 10 CPM is, right?
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Example count table

Gene Control Treatment

Gene1 10 10
Gene2 10 10
Gene3 20 10
Gene4 20 10
Gene5 20 10
Gene6 20 10
Gene7 20 10
Gene8 20 10
Gene9 20 10
Gene10 40 10
Gene11 100 200

Total 300 300
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Example CPM table

Gene Control Treatment log2(T/C)

Gene1 33333 33333 0
Gene2 33333 33333 0
Gene3 66667 33333 -1
Gene4 66667 33333 -1
Gene5 66667 33333 -1
Gene6 66667 33333 -1
Gene7 66667 33333 -1
Gene8 66667 33333 -1
Gene9 66667 33333 -1
Gene10 133333 33333 -2
Gene11 333333 666667 +1

Which gene(s) were affected by the treatment, and how were they
affected?
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TMM: Normalizing for compositional bias

Instead of normalizing for total counts, normalize so that the
average log fold change is zero
We have lots of genes, so we make the average robust against
outliers by throwing away the highest- and lowest-abundance
genes.
Also throw away the highest and lowest fold changes for the
same reason
Result: “Trimmed Mean of M-values” method, a.k.a. TMM
(M-values are the term for log fold changes)
Apply the normaliztion by modifying the total counts and then
computing CPM using the modified totals
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So how would we normalize this table with TMM?

Gene Control Treatment

Gene1 10 10
Gene2 10 10
Gene3 20 10
Gene4 20 10
Gene5 20 10
Gene6 20 10
Gene7 20 10
Gene8 20 10
Gene9 20 10
Gene10 40 10
Gene11 100 200

Total 300 300
TMM correction

√
2 1/

√
2

Normalized total 424.26 212.13
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Same table, normalized by TMM

Gene Control Treatment log2(T/C)

Gene1 23570 47140 +1
Gene2 23570 47140 +1
Gene3 47140 47140 0
Gene4 47140 47140 0
Gene5 47140 47140 0
Gene6 47140 47140 0
Gene7 47140 47140 0
Gene8 47140 47140 0
Gene9 47140 47140 0
Gene10 94281 47140 -1
Gene11 235702 942809 +2

Now we can see which genes are really changing.
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Why wasn’t CPM good enough?

CPM already normalizes for sequencing depth
But CPM does not account for “compositional bias”
Because sequencing depth is limited and independent of the
biology, genes compete for a limited supply of sequence reads
If one gene goes up, all others have to go down
When high-abundance genes change, they can have a drastic
effect on all others
This competition for limited sequencing depth affects the
counts of all genes, but has no bearing on the biology, so it
requires normalization
TMM fixes this by assuming that the “average” gene is not
changing
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Real-world CPM fail: globin reduction

Figure 3: MA plot (Raw logCPM)

Ryan C. Thompson Advanced RNA-seq analysis



Real-world TMM success

Figure 4: MA plot (With TMM)
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FPKM: Normalizing for gene length?

If gene A and gene B both have 10 CPM in a sample, are they
expressed at the same level?
What if gene A’s transcript is 1000 nt long while gene B is
100000?
If we divide CPM by the transcript length, we get the count of
“fragments per kilobase per million fragments sequenced”, a.k.a.
FPKM

This can be used to compare across genes, but it is not useful
for differential expression tests, as we will see later.
More recently: TPM, which is like FPKM but comparable
across samples
FPKM/TPM still require composition normalization (i.e. TMM
or similar)
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Better Variance Estimation with limma and
voom
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Heteroskedasticity: Easier to understand than to say it

In ideal data, the mean and variance are independent: every
measurement has the same precision. This desirable property is
called “homoskedastic”
R’s lm() assumes homoskedasticity by default
If the precision of a measurement depends on its mean or on
other factors, the data are “heteroskedsatic”, and the model
would benefit from adjusting for this dependency
We can do this adjustment by adding in weights: more precise
measurements get a higher weight, less precise measurements
get a lower weight
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Counting precision depends on the count

Which coin is more trustworthy?
Coin A: Flipped 10 times, 5 heads & 5 tails
Coin B: Flipped 100 times, 50 heads & 50 tails

Coin B is more trustworthy because it has remained fair over a
larger number of flips
higher counts are more precise

Genes with higher expression and/or longer transcripts get
higher counts, so they can be measured more precisely
Also works within a single gene: if Gene A is upregulated in the
treatment relative to the control, then the counts in the
treatment are also more precise than the control counts
Samples with higher sequencing depth are more precise for all
genes
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Voom: modeling the mean-variance trend

Figure 5: Diagram of voom method

Lower counts get lower weights, higher counts get higher
weights
Samples with higher depth have higher counts and hence
higher weights for all genes on overage
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Problem: Few replicates makes it hard to estimate variance

RNA-seq is expensive, so most experiments have very few
replicates
Few replicates means that we can’t get a robust estimate of
the variance for each gene
In turn, the means our p-values are less reliable
But with 1000s of genes, we can get a robust estimate of the
average variance of all genes
This would be great if every gene had the same variance, but
we know this isn’t the case
Can we compromise between these two extremes?
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Empirical Bayes: Sharing (information) is caring

We will come up with a scheme where genes partially share
information with each other about the variance

1 Estimate variance for each gene normally
2 Take the average of all the genes’ variances
3 Set each individual gene’s variance somewhere between the

gene-specific value and the global average

This result is more accurate than the global average variance
and more precise than the gene-specific variance
Empirically better performance in simulations and real tests
with positive controls
Adaptive: as we add more samples, we rely less on the average
and more on the gene-specific variances

Easier to understand visually
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Variance estimation: no squeezing

Figure 6: Raw gene-specific SD
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Variance estimation: Global average (prior) SD

Figure 7: Mean of gene-specific SD
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Variance estimation: empirical Bayes squeezing

Figure 8: Empirical Bayes squeezed vs raw variances
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Multiple Testing Correction; or, why p-values
are terrible
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Assessing your model with p-value histograms

By definition, p-values are uniformly distributed under the null
hypothesis
So any deviation from uniformity in multiple tests can be
interpreted as deviation from the null hypothesis
Technically, we’re not doing multiple tests, but we are testing
multiple genes, and that’s close enough to exploit the
aggregate properties of p-values
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FDR: Important definitions and distinctions

FDR: expected number of false positives in a list of genes –
does not tell the probability of any one gene being a false
positive
Important: FDR is a general term for any false discovery rate
calculation – remember to specify the specific method of
computing FDR in your Methods section
Benjamini-Hochberg: an FDR algorithm; puts an upper bound
on the FDR
π0: Estimated proportion of all null hypotheses that are true
(non-DE genes), a.k.a. prior probability of non-DE
q-value: Another commonly used algorithm for estimation of
FDR; more liberal than BH, but has a chance to overestimate
significance

Specifically: q-value equals BH FDR times π0; or equivalently
BH FDR is q-value under the pessimistic assumption that
π0 = 1

These definitions are best understood in graphical terms
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Typical P-value distribution: all null
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Figure 9: P-value distribution with no signal
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Typical P-value distribution: moderate signal
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Figure 10: P-value distribution with moderate signal
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Typical P-value distribution: moderate signal
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Figure 11: P-value distribution with moderate signal, colored by true status
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Evaluating your model using the p-value distribution

Every p-value distribution should either be uniform or
zero-biased
Any other distribution indicates that your model does not fit
the data - Go back and fix your model!
FDR methods will not have a useful interpretation for an
invalid p-value distribution
Possible causes:

Critical assumptions of your model are severely violated (e.g.
heteroskedasticity, wrong distribution, excess outliers)
Important covariates/batch effects not included in your model
Highly correlated covariates are splitting the effect size
Unobserved batch effect or other confounding factor is
obscuring the signal
You accidentally treated continuous variable as categorical or
vice versa (common R pitfall!)

CANNOT be explained by simple lack of signal or excess noise
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Atypical P-value distribution: Over-Conservative
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Figure 12: P-value distribution, worse than uniform
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Atypical P-value distribution: Bimodal
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Figure 13: P-value distribution, bimodal
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Atypical P-value distribution: Bump in the middle
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Figure 14: P-value distribution, non-monotonic
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Atypical P-value distribution: Discrete values
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Figure 15: P-value distribution, discrete
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Conclusions

RNA-seq read are aligned and counted to obtain counts for
each gene in each sample
Counts are log-transformed and analyzed using an ordinary
linear model. . .

. . . with modifications to account for:
normalization (TMM)
counting precision (voom)
variance estimation (empirical Bayes squeezing/information
sharing)
Luckily, the limma package does does all of this extra work for
you, so it’s almost as easy as normal lm()
Finally, p-values are adjusted for multiple testing to obtain
FDRs
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Not Pictured: All of these other things

There’s a lot more that you can do with RNA-seq data!

Differential expression using glm and the negative binomial
distribution
Estimation of alternative isoform expression levels
Differential splicing analysis
Uneven coverage across gene bodies
Gene set/pathway enrichment testing for differentially
expressed/spliced genes
Co-expression networks: WCGNA
Variant calling of coding SNPs
Association of SNPs with expression levels (eQTLs)
Association of TFBS/histone marks/miRNA with expression
levels (epigenetics & post-transcriptional regulation)

Many high-throughput technologies are like this. Think carefully
about multiple analyses you can do with the same data to get your
money’s worth!
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Any Questions?
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Reminder: Hands-on lab session this afternoon

Join us again at 1:00 PM in room 3A-216 for a hands-on session
where you can follow along with an analysis of a real, complex data
set. Focus will be on the importance of exploratory analysis for
selecting the correct model for your data, and what a difference the
correct model can make for statistical significance.
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