
The Sources and Limits of Geometric Rigor
from Euclid Through Descartes

Ryan C. Thompson

May 7, 2008

Of all the systems of thinking that have made their way through the ages,
Euclidean geometry remains one of the most appealing and intuitive. It is
also one of the most successful, having been practiced continuously from Greek
antiquity through modern-day schools. We will examine the aspects of geometry
that account for this intuitiveness, as well as several innovations that allowed it
to tackle new and more difficult problems. We begin with an analysis of Euclid’s
Elements, and then we will consider the contributions of two ancient authors,
Archimedes and Apollonius. Lastly, we will see how two authors during the
scientific revolution, Galileo Galilei and René Descartes, pushed geometry into
new areas, namely the realistic and the algebraic.

The focus of each proposition in Euclid’s Elements is what we call a “con-
struction,” and we must consider the significance of this term – that is, what sep-
arates a construction from a mere drawing. Herein lies one source of the Greeks’
confidence in the truth of their propositions: their proofs are constructed, rather
than simply drawn, by a method based on two kinds of objects, the circle and
the straight line. These were the two simplest shapes known to the Greeks, and
also two of the most fundamental to Greek philosophy. In Plato’s Timaeus, he
describes the shape of the world:1

“Wherefore [the Creator] made the world in the form of a globe,
round as from a lathe, having its extremes in every direction equidis-
tant from the centre, the most perfect and the most like itself of all
figures ... the movement suited to his spherical form was assigned to
him, being of all the seven that which is most appropriate to mind
and intelligence; and he was made to move in the same manner and
on the same spot, within his own limits revolving in a circle. All the
other six motions [rectilinear motions up, down, left, right, forward,
and backward] were taken away from him, and he was made not to
partake of their deviations.”

In Aristotle’s De Caelo, too, we see a similar conception of motion: “But all
movement ... is either straight or circular or a combination of these two, which

1Plato, Timaeus. (The Internet Classics Archive);
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Figure 1: Elements I.47 – Fauvel and Gray, p. 115.

are the only simple movements.”2 Greek geometers, then, clearly had a solid
philosophical basis for choosing the figures generated by these two fundamental
motions as the starting points for their geometry. Furthermore, using “natural”
motions as mathematical starting points must certainly have appealed to the
Pythagorean and Platonic ideal of understanding nature through mathematics.

In every extant copy of Euclid’s Elements, a diagram accompanies each
proposition. We may rightly ask whether these diagrams (or similar ones) were
included in the original, or whether later editors added them in an effort to
make the constructions easier to visualize. Several arguments attest to the con-
clusion that the original Greek texts must have included diagrams, but no piece
of evidence shows this more clearly than the fact that many of the propositions
fail to specify essential lettered points in the text yet use those points later in
the proof. As an example, consider Prop. I.47, “Pythagoras’s Theorem,” in
which three squares are constructed on the sides of a right triangle ABC: “For
let there be described on BC the square BDEC, and on BA, AC the squares GB,
HC.”3 The first square, BDEC, is fully specified, with all four vertices named
in an order that uniquely determines their positions. However, the other two

2Aristotle, The Works of Aristotle Vol. 1 (Chicago: Encyclopedia Britannica, Inc., 1952)
p. 359.;

3John Fauvel and Jeremy Gray, The History of Mathematics: A Reader (New York: Pal-
grave Macmil- lan, 1987), p. 115.[6]
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squares are nam ed in the usual Greek fashion, by two diagonally opposite ver-
tices, GB and HC. Point A is implicitly specified as third vertex of both of these
two squares since it is an endpoint of the line segment on which each square
is constructed. The fourth vertices of each these two squares, points F and K
respectively, are never specified in the text of this construction, though both
points appear in the diagram (see Figure 1). However, Euclid uses these points
later in the proof as though they were specified: “And, since the angle DBC is
equal to the angle FBA: for each is right: let the angle ABC be added to each;
therefore the whole angle DBA is equal to the whole angle FBC.”4 He also uses
the unspecified point K in the same fashion. From this and other more subtle
indications, we see that Greek texts not only included diagrams, they exhibited
a strong interdependence between the text and the diagram.5

In modern mathematics, “proof by picture” is considered a logical fallacy and
is especially common among new students of geometry. Furthermore, ancient
Greek philosophers and mathematicians understood this fallacy – Proclus crit-
icizes those who would accept without proof Euclid’s 5th postulate for exactly
this reason:6

To them Geminus has given the proper answer when he said that
we have learned from the very founders of this science not to pay
attention to plausible imaginings in determining what propositions
are to be accepted in geometry ... And Simmias is made by Plato
to say, ‘I am aware that those who make proofs out of probabilities
are impostors.’ ... the conclusion that because [the lines] converge
more as they are extended farther they will meet at some time is
plausible, but not necessary, in the absence of an argument proving
that this is true of straight lines.

However, as we have seen above, Greek proofs depend intimately on their dia-
grams. We may fairly ask then, what difference Greek geometers saw between
their diagrams and “plausible imaginings.” That is, how could each of Euclid’s
proofs rely on an accompanying diagram without relying on implicit and unjus-
tified assumptions contained in that diagram?

By our modern standards, of course, Euclid’s proofs fail this criterion; certain
implicit axioms are indeed supported purely by the diagram. For instance, the
construction in Prop. I.1 does not prove that the two circles intersect. The
circles in the diagram intersect a point C (Figure 2), yet the text gives no
justification for this intersection at all. Rather, the text simply uses the point
of intersection with no prior introduction, in the same way that the text of Prop.
I.47 uses the points F and K.7 This suggests that, to Euclid, the existence of
the intersection point was no less obvious than the existence of the implicitly

4Ibid, p. 116
5Reviel Netz, The Shaping of Deduction in Greek Mathematics (New York: Cambridge

University Press, 1999), pp. 19-26.
6Proclus, A Commentary on the First Book of Euclid’s Elements (New Jersey: Princeton

University Press, 1970), pp. 150-151.
7Euclid, Elements (Chicago: Encyclopedia Britannica, Inc., 1952) p. 2.
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Figure 2: Elements I.1 – Great Books of the Western World, Vol. 11., p. 2.

specified points F and K.
Since modern geometry is so different from the geometry of antiquity, let

us seek an analogy in the learning of arithmetic. Children learn arithmetic
initially through concrete examples – start with one apple, add two more, and
the result is three apples. Absent is any talk of the commutativity of addition,
the reflexivity of equality, or other concepts that we normally associate with
arithmetic. This does not mean that children learn a noncommutative form of
addition, or a nonreflexive version of equality. On the contrary, addition simply
is commutative; equality simply is reflexive. This knowledge is so basic that
an explanation would be meaningless, until we introduce a noncommutative
example, such as matrix multiplication.

In the same way, any person with only a few minutes’ experience using a
compass and straightedge may convince herself that the circles in Prop. I.1
must intersect, even if she cannot explain how she is so certain. The conclusion
is even more clear in this particular case, because any construction of Prop.I.1
must look exactly like Figure 2, the only difference being size, since all equilateral
triangles are similar. The knowledge of this intersection is at least as basic to an
understanding of a circle as commutativity is to addition. Indeed, until modern
students begin to learn abstract algebra, teachers rarely demand an explicit
justification for commutative transformations of expressions, and mathematics
textbooks rarely call attention to such details. Similarly, if Euclid’s Elements is
a geometrical reference book, then we might reasonably expect the same degree
of trivial omission, even if Euclid was aware of the issue.

On a similar note, we may observe that the numbered list of definitions,
postulates, and axioms at the beginning are not as they seem. We have seen
above that the geometer’s fundamental understanding of circles and straight
lines governs certain implicit conclusions about the diagrams. Consistent with
this, Reviel Netz argues that the definitions in Greek mathematical texts have
little bearing on the actual mathematics, and that working definitions of impor-
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tant terms are instead established by their usage throughout the text.8 The list
of “definitions,” “postulates,” and “common notions” is really nothing more than
Euclid’s prose introduction to his work, which later editors have transformed
into an ordered list. As such, the definitions are not rigorous, but upon closer
inspection read rather like general guidelines. Many definitions that we would
consider vital, such as “section of a circle” and “tangent,” are clearly ambiguous.
Indeed, in the original Greek, Euclid defines “tangent” circularly in terms of
another form of the same word, and then he goes on to use both forms of in the
propositions as though the definition did notexist.9 Later authors avoided this
confusion by substituting another unrelated word, for which no author bothered
to give any definition at all. To a modern mathematician who requires a precise
definition for every term, such behavior is unforgivable. However, we have seen
that Euclid relied on properties inherent in the various figures, so what we call
“definitions” are most likely simply an attempt to assign names to previously
understood concepts. If this is the case, vague, imprecise definitions would suf-
fice, and the substitution of words for “tangent” is simply the renaming of an
already well-defined property of lines.

We have repeatedly seen that the roots of Euclidean geometrical rigor lie
in the intuitive appeal to simplicity. Both the simplest motions described by
philosophers and the clearest intuitions about geometrical figures form the basis
for the Greek reasoning about geometry. We now examine how later authors
built on this base.

Archimedes, who lived approximately a century after Euclid, repeatedly
pushed the limits of Greek construction by proving propositions about the areas
or volumes of figures bounded by curved lines and surfaces. Very few such results
were known before Archimedes, and for good reason: with only a compass and
straightedge, one can only draw circular arcs and straight line segments. Using
these two tools (or the shapes that they produce) to construct any other type of
curve is difficult at best, and generally impossible. Archimedes proved his propo-
sitions through the use of potential infinity in the method of “indirect passage
to the limit.”10 Unlike the simpler Euclidean proofs, the proofs of Archimedes
did not furnish a construction of the objects in question, nor did they hint
at how he first arrived at his results. This resulted in considerable specula-
tion (and envy) through the ages until 1906, when a codex surfaced containing
Archimedes’s mechanical method for investigating geometrical questions. The
mechanical method treats geometric figures as physical objects with masses and
centers of gravity, and it also goes further than the method of indirect passage

8The argument here partially follows that of Reviel Netz, The Shaping of Deduction in
Greek Mathematics (New York: Cambridge University Press, 1999), pp. 94-102.

9This particular example is consistent with the hypothesis that ancient Greek writers
worked as many authors do today and wrote the main text before the introduction. In
this case, we could not expect the definitions to have any real bearing on the text of the
propositions themselves. Of course, we have no easy way to determine in what order Euclid
wrote the original text, so this is idle speculation.

10I follow Dijksterhuis in avoiding the name “method of exhaustion” for “a mode of reasoning
which has arisen from the conception of the inexhaustibility of the infinite.” E. J. Dijksterhuis,
Archimedes (Princeton, NJ: Princeton University Press, 1987), p. 130.
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to the limit in that it makes direct use of actual infinity. Archimedes himself
could not seem to decide whether he considered this method rigorous, but he
clearly realized that his peers would not accept them, or else he would not have
bothered to reformulate each proof using the more accepted indirect passage
to the limit. In order to understand the difference between these two kinds of
infinity (potential and actual) and why one but not the other was accepted in
Greek geometry, we must look to prevailing attitudes on the infinite in ancient
Greece – namely, the writings of Aristotle on infinity.

Aristotle’s teachings held sway from his time (ca. 300 BCE) until well into
the scientific revolution in Europe,11 and with them came Aristotle’s writings
on the infinite. In his Physics, Aristotle concludes that the infinite must exist
in some sense, but that in another sense it cannot exist.12 He resolves this
dispute by considering that “being” can mean having the potential to exist, or
it can mean actually existing. Furthermore, one can encounter infinity either
by repeated addition or by repeated division. He concludes that, regarding
magnitudes, in the case of additive infinity, potential existence must imply actual
existence, since a magnitude that exceeds every determinate magnitude is by
definition infinite. Infinitely large magnitudes may not exist in the ancient Greek
conception of the world, which has a finite size and nothing outside of it. On
the other hand, Aristotle sees “no difficulty in refuting the theory of indivisible
lines,”13 since Greek proportion theory requires that any magnitude is divisible
into smaller magnitudes – that is, any line may be divided at any point along its
length, but such division can never yield an infinitely small line. In summary,
the infinite “by way of division” exists potentially in Aristotle’s philosophy, while
the infinite “by way of addition” cannot exist potentially, and no form of infinity
can exist actually.

Despite the theoretical acceptabiliyt of potential infinty, in practice, Greek
geometers tended to avoid arguments involving any form of infinity, partly be-
cause infinity is manifestly impossible to construct, and partly because if they
did use it, they would have to resolve paradoxes like the famous “Zeno’s para-
dox” associated with infinite division. However, they had one tool, the afore-
mentioned “indirect passage to the limit,” that they had applied to relatively
simple cases, such as the ratio of the volumes of a cylinder and a cone of equal
base and height. Each example of this method in Euclid’s Elements invariably
included a construction that resembles Figure 3: a regular 4n-gon inscribed in-
side a circle (and in the text, a similar one circumscribed outside the circle).14
The method worked by a double reductio ad absurdum; in order to prove that
the required equality holds, one assumes that either one of the two equated
magnitudes is greater than the other. In either case, the assumption results
in the conclusion that an inscribed polygon with a sufficiently large number of
sides can be constructed with area larger than the circle, or that a circumscribed

11David C. Lindberg, The Beginnings of Western Science (Chicago: The University of
Chicago Press, 1992), pp. 67-68.

12Aristotle, The Works of Aristotle Vol. 1, pp. 284-285.
13Ibid., p. 284.
14Euclid, Elements (Chicago: Encyclopedia Britannica, Inc., 1952) pp. 351-354. 9
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Figure 3: Elements XII.10 – Great Books of the Western World, Vol. 11., p.
351.

polygon can be constructed with smaller area than the circle, in both cases a
clear contradiction. Finally, since neither of the two quantities considered is
greater than the other, they must be equal.

This argument differs in one important respect from most of the other propo-
sitions in Greek geometry: because the construction invokes the potentially in-
finite divisibility of an area (an acceptable practice, according to Aristotle), the
required polygon is not actually constructed. The argument merely proves that
such a polygon (and therefore a contradiction) could be constructed if the two
quantities differ by any finite magnitude. Presumably, the Greeks felt uneasy
about this logic, because none that we know of before Archimedes applied it to
any construction other than the exact one above – every indirect passage to the
limit in the Elements involves a regular 4n-gon inscribed in a circle; nothing else.
This is precisely where Archimedes surpassed his predecessors: he generalized
a method that had previously been applied only to a specific diagram and used
it to prove propositions about numerous other curved figures, both planar and
solid.

Archimedes’s argument in Quadrature of the Parabola, Proposition 24 follows
exactly the same structure as the indirect passage propositions in Elements, ex-
cept that the ratio between successive triangles is different than for a circle, with
the result that area is commensurable with unity (in modern terms, a rational
number).15 This was certainly a startling result at the time, as the parabola
must have seemed, if anything, more complicated than the circle, which had
resisted all attempts at quadrature by compass and straightedge. Inscribing
triangles in a parabolic segment might not seem to be much of a generaliza-

15Archimedes, The Works of Archimedes (Chicago: Encyclopedia Britannica, Inc., 1952),
p. 537.
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Figure 4: Archimedes’s quadrature of the parabola, prop. 24. Fauvel and Gray,
p. 154.

tion, since Archimedes’s diagram (Figure 4)16 closely resembles the diagram
that would result from cutting away the bottom half of Euclid’s.17 However,
Archimedes showed a much more fundamental understanding of the processes
involved. After the parabola, he moved on to three-dimensional solids of revo-
lution, such as spheres, cylinders, paraboloids, and spheroids. In each case, we
see the same general technique: an assumed finite difference between two mag-
nitudes leads to the potential construction of a contradictory figure (typically,
a figure that is both less than and greater than some other figure), allowing
Archimedes to prove the desired equality by double reductio ad absurdum. The
particular figures that Archimedes constructed depended on the situation; he
did not limit himself to regular polygons in a circle, as did his predecessors. Yet,
since his logic is essentially the same, his results are as rigorous as those in Eu-
clid’s Elements. Archimedes did not, in these proofs, come any closer to infinity
than earlier geometers, but he certainly demonstrated far more confidence in
coming as close as he did.

However, the caveat, mentioned above, that indirect passage to the limit
does not actually construct the required figure, left a mystery for Archimedes’s
peers and his successors: how did Archimedes arrive at the results that he then
set out to prove? The answer was finally discovered in 1906, with the revelation
of the Method of Treating Mechanical Problems. In this, Archimedes reveals the
method by which he came to know the results whose proofs he had previously
published. The text describes a series of decidedly atypical constructions in

16This figure and some others have been rotated to save vertical space. Other than rotating
the letters to keep them upright, no further modifications have been made.

17Indeed, if the Greeks drew all curved lines, circular or not, using their compasses, as Netz
and others indicate, then the diagrams might be identical! Netz, The Shaping of Deduction
in Greek Mathematics, p. 17.
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Figure 5: Archimedes’s Method, Prop. 1. Fauvel and Gray, p. 170.

which an object whose center of gravity is moved to a known position is shown
to balance another static object whose center of gravity is already known. The
law of the lever (proved in Archimedes’s On Balancing Planes I ) then gives
the ratio of the magnitudes (which may be areas or volumes, depending on
whether plane or solid objects are under consideration) as the inverse ratio
of their distances from the balance’s fulcrum. Though any type of movement
was rare in Greek constructions, it is not completely absent, especially from
Archimedes’s own work, for example On Spiral Lines. While the movement
described in the Method is not of the same nature, one could easily describe a
Greek construction using the Prop. I.2 of Euclid’s Elements to translate all the
points in a figure using a given line as a vector. Hence, the motion described in
the proof, while unusual, is by no means novel in the context of Greek geometry.
The real curiosity is the method by which Archimedes may take a object whose
center of gravity is unknown and move that unknown center of gravity to a
known position, from which he may then derive the desired ratio.

Let us take the first proposition as an example. In this proposition, Archimedes
exhibits his method on the quadrature of the parabola.18 In the diagram (Fig-
ure 5), Archimedes’s goal is to place the center of gravity of parabola ABC at
the point H, which he has already proven stands in a known proportion with
the center of gravity W of the triangle AFC. However, there is no parabola
visible around H, because the parabola does not arrive there in one piece; in-
stead, Archimedes takes an arbitrary cross-section MO (i.e. a line segment) of

18Archimedes, “The method of treating mechanical problems” in Fauvel & Gray, pp. 169-
171.
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both the parabola and the triangle, and shows that if the parabola’s segment is
placed at TG, it will balance the triangle’s segment. Since any arbitrary pair of
such lines will balance, it follows that any multitude of such pairs of lines will
balance. Now comes the critical step:19

And, since the triangle CFA is made up of all the parallel lines like
MO, and the [parabolic] segment CBA is made up of all the straight
lines like PO within the curve, it follows that the triangle, placed
where it is in the figure, is in equilibrium about K with the segment
CBA placed with its centre of gravity at H.

In the context of Greek thought, Archimedes has committed several sins in this
step: two against Aristotelian philosophy, and one against geometric dimen-
sionality. First, he has taken, implicitly, an actually infinite number of line
segments, since a plane figure cannot possibly contain a finite number of line
segments. Second, he appears to have added these lines and taken the result
to be a plane figure. Furthermore, as noted, this number is infinite, so he has
claimed to reach the infinite by way of addition, another slight against Aristotle.
On a closer inspection, though, the situation is even more ambiguous, because
Archimedes did not say “the triangle CFA is the sum of all the parallel lines;” he
said it is “made up of” all the lines. Clearly, this ambiguity cannot be resolved
without a careful study of the original Greek text, so for now we must leave the
logic of this claim in its current shaky state: all we know is that Archimedes
has claimed that a plane figure is somehow “made up of” an infinite number of
lines.

After this “proof,” Archimedes quickly admits that “the fact here stated is
not actually demonstrated by the argument used.”20 Yet, this seems to contra-
dict his statement from the introduction: “This procedure is, I am persuaded,
no less useful even for the proof of the theorems themselves.”21 Again, without a
study of the original Greek, we may only speculate as to Archimedes’s true opin-
ion of his method and the rigor thereof. Whatever his own thoughts, though,
Archimedes clearly understands that the method is fundamentally different and
probably incompatible with contemporary geometry and natural philosophy of
his time. Still, the care with which he prepared the remainder of the argu-
ment according to geometrical standards shows in what high regard he held his
method, and reflects the hope of its usefulness that he expressed in the intro-
duction. In summary, Archimedes’s approaches to infinity, both potential and
actual, did much to expand the scope of Greek mathematical thought.

Approximately a century after Archimedes, another geometer expanded the
limits of Greek geometry in a different direction. Apollonius of Perga composed
a comprehensive study of the three types of conic sections: the ellipse, the
parabola, and the hyperbola. The conic sections were well-known before Apol-
lonius’s treatment of them; we have already seen how Archimedes squared the

19Ibid., p. 170.
20Archimedes, The Works of Archimedes, p. 572. 21
21Ibid., 569.
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parabola and considered conoids and spheroids. However, Apollonius claims,
quite truthfully, to have developed the geometry of the conic sections “more
fully and universally than in the writings of others.”22 Such reworkings of pre-
viously covered material were common in the Greek mathematical tradition.23
At least in this case, Apollonius backs up his criticisms of earlier authors with a
well-developed and intuitive treatment of the conic sections. Indeed, the means
by which Apollonius generates his sections and the names that he gives to them
are the same that we use today.

Before Apollonius’s Conica (for example, in Archimedes’s treatises), the
ellipse, parabola, and hyperbola were referred to, respectively, as sections of an
acute-, right-, and obtuse-angled cone. These names reflected the manner of
their generation. The angle referred to is the one inside the vertex of the cone,
and the section is always taken in a plane perpendicular to one of the lines on
the surface on the cone.24 If one wished to generate one of each conic section,
one would require three separate cones, one with each kind of angle at its vertex.
Apollonius simplified the generation of the sections in such a way that any cone
could generate any kind of conic section. A slice whose axis is parallel to a line
in the surface of the cone generates a parabola; a slice whose axis intersects
the surface line outside the cone itself generates a hyperbola; a slice whose axis
intersects the surface line on the surface of the cone generates an ellipse.25 The
ability to generate all the conic sections from a single cone must certainly have
appealed to the Greek philosophical ideal of simplicity.

Furthermore, Apollonius gives much more attention to the cone itself – in-
deed, he does not even define the three conic sections until propositions 11-13.
26 The cone and its partner, the conic surface, have the first ten propositions
to themselves, a sort of “mini-treatise” on cones and their sections, in prepa-
ration for the next three propositions, in which the cones may be sectioned in
any which way, as described above.27 To begin, Apollonius gave a more general
definition of a cone than Euclid, who defined a cone as the surface of revolution
generated by a right triangle about one of its shorter legs. Euclid’s definition
necessarily generates what Apollonius calls a right cone, in which the axis and
the base are perpendicular. Apollonius himself also allows oblique cones, whose
bases and axes are not perpendicular. He defines the cone as the surface gener-
ated by a straight line segment with one end (the vertex) fixed, and the other
end revolving around the circumference of the circular base. From this, he also
derives the conic surface, which is generated by the same line segment, when
it is extended indefinitely. He thereby creates an unbounded surface “which

22Apollonius, Conica (Chicago: Encyclopedia Britannica, Inc., 1952), p. 603.
23This is something of an understatement. See Reviel Netz, The Transformation of Math-

ematics in the Early Mediterranean World (New York: Cambridge University Press, 2004),
pp. 60-63.

24Michael N. Fried and Sabetai Unguru, Apollonius of Perga’s Conica (Leiden, Netherlands:
Koninklijke Brill NV, 2001), p. 75.

25Apollonius, Conica, p. 615-620.
26Fried and Unguru, Apollonius of Perga’s Conica, p. 74. 27.
27Ibid., p. 76.
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increases indefinitely as the generating straight line is produced indefinitely,”28
and in Proposition I.4, he provides the means to cut off a cone of any required
size and similar to the original. He thereby satisfies the need for arbitrarily large
conic sections while skirting around any issues relating to infinity and providing
the intuitiveness of a bounded object. Elegant indeed.

From these solid foundations, Apollonius developed a comprehensive and
rigorous treatment of all the geometrical aspects of the conic sections, including
their symptomata – the proportional relations that hold for the points of a
conic section. Both before and especially after Apollonius, Greek geometers had
realized that these symptomata could give the solutions to some open problems
that no one had solved using a compass and straightedge – namely the trisection
of the angle and the doubling of the cube. However, such solutions encountered
widespread resistance among the mathematical community of the time, precisely
because they were not reproducible with only a compass and a straightedge.
This seems to be an apparent contradiction, as Apollonius had developed the
symptomata of the conics with only a compass and straightedge. The problem
lies, once again, in infinity. Apollonius proved propositions that allow one to
use the symptomata to construct points on the curve of a conic section using
a compass and straightedge. However, one cannot construct the entire curve
in this manner, unless one were to construct an infinite number of points and
add them together, which is impossible in Aristotelian philosophy. Without the
entire curve, one cannot find the intersection of that curve with another curve.
Therefore, to solve the aforementioned problems required the construction of
complete, non-circular, curved lines, an impossible feat by Greek standards.

Thus, at least part of the mathematical community never truly accepted the
conic sections as acceptable for constructions. However, as it became clear that
trisecting the angle and doubling the cube could not be done without them,
pragmatic concerns largely prevailed, and many geometers accepted the conics,
and even more complicated curves, into geometrical constructions, with the
compromise that geometry was partitioned into three kind of problems.29 Plane
problems were those whose solutions required only a compass and straightedge;
solid problems required the conic sections, and linear problems required some
other type of curve. In this way, Euclidean geometry embraced a larger range
of problems and constructions, at the cost of instituting a class hierarchy of
constructions.

We will next consider the innovations in Euclidean geometry that two more
modern mathematicians have contributed: Galileo Galilei and René Descartes.
First, though, we must briefly note that Euclidean geometry underwent several
important changes as it worked its way though the ages between classical Greece
and Renaissance Europe. In one of the most marked changes, later authors
regarded the starting points of geometry, that is, the definitions, postulates, and
axioms, as being much more important than Euclid and his contemporaries. We
have already seen a few hints of this trend: the contention over which lines are

2828Apollonius, Conica, p. 604.
29“Pappus on the three types of geometrical problem,” in Fauvel & Gray, pp. 209-210.
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acceptable as starting points for constructions, and Proclus’s lengthy discourse
on all the starting points of Euclid’s Elements Book I (from which a small
sample was excerpted above). We observed earlier that the starting points in
the Elements and other texts were not part of the main body of the texts, but
rather comprised a more informal introduction. Later authors, like Proclus,
seem not to have been aware of this, and in any case they found numerous
deficiencies in the postulates and axioms, and sought to correct them. The
ultimate result was that the axiomatic foundation of Euclidean geometry grew
to become regarded as an essential contributor to its rigor.

The second change relevant to the current work was the coupling of ge-
ometry and algebra in medieval Islamic mathematics. Beginning at least with
al-Khwarizmi, Islamic mathematicians connected the solutions of equations in-
volving “numbers,” “roots,” and “squares” (that is, what we call quadratic equa-
tions) to the geometrical constructions in Elements Book II. Al-Khwarizmi’s
goal in making this connection was to justify the well-known algebraic and nu-
merical algorithms by lending the rigor of geometry to their justification – that
is, to justify the solution by geometrical construction. In his text, he first worked
through numerical examples of each type of equation, and then gave a geomet-
rical construction to justify his calculations: “Now, however, it is necessary that
we should demonstrate geometrically the truth of the same problems which we
have explained in numbers.”30 This, then is the second important development
between antiquity and the scientific revolution: the use of Euclidean geometry
to justify algebraic solutions to problems.

The first of these changes, the increased importance of axioms as starting
points for geometry, allowed Galileo Galilei convincingly to extend Euclidean
geometry into the real world. None of the Greek authors had done anything
approaching what Galileo did in this direction. Even in Archimedes’s treatises
On Balancing Planes and On Floating Bodies, in which he explores the physical
phenomena of balance and buoyancy, he considers these properties only with
respect to the same ideal figures (though Archimedes must certainly have tested
with real objects). However, by establishing the appropriate axioms, Galileo
could apply geometry and proportion theory to material objects, capable of
breaking and moving.

Like the Platonists, Galileo believed that nature was “written in the lan-
guage of mathematics.”31 However, he conceived differently of the distinction
between the abstract and the concrete. In Plato’s philosophy, there exists an
imperfect world of the senses and the perfect world of the intellect. Galileo
claims, though, that one may conceive of an abstract object, such as a sphere,
that is not perfect, so that it may touch an abstract imperfect plane in more
than one point, even though a perfect sphere and plane may be tangent at only
a single point.32 Logically, then, he decoupled abstractness from perfection, and
claimed that abstract thought could indeed correspond as closely as one wished
to imperfect, concrete phenomena. In his Dialogues Concerning the Two New

30“al-Khwarizmi on the algebraic method,” Fauvel & Gray, p. 230.
31Galileo Galilei, “On mathematics and the world,” in Fauvel & Gray, p. 328.
32Ibid.
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Figure 6: Typical Galilean diagrams. Galileo Galilei, Two New Sciences, p.
181.

Sciences, Galileo sought to follow through on his claim by applying mathematics
to real, physical problems. We see this already in the diagrams, many of which
appear at first sight to be mere drawings rather than geometrical constructions
(see Figure 6). A closer inspection reveals that the object of interest within
the diagram is in fact a rectangular prism, and that it has indeed been drawn
using a straightedge. However, the realistic style of the remainder of the illus-
tration serves to reinforce Galileo’s point that he is proving propositions about
the behavior of real, physical objects.

At the beginning of the first day’s dialogue, Salviati, the representative of
Galileo’s New Sciences, takes the following axiom:33

Since I assume matter to be unchangeable and always the same, it
is clear that we are no less able to treat this constant and invariable
property in a rigid manner than if it belonged to simple and pure
mathematics.

In this statement, Galileo presents a proportional relation, though he has not
worded it as such. The assumed proportion, clarified by subsequent discourse, is
that if two objects are composed of the same material, the ratio of their weights
is the same as that of their volumes. By this axiom along with another kind
of proportional relation, Archimedes’s law of the lever, Galileo can reduce the
question of the weight required to break a solid object to a problem involving
nothing but proportions. At that point, solving the problem by geometrical
means is simple, as Euclidean geometry is well-equipped to manipulate propor-
tions. Galileo’s strategy, then, is to express clear physical relations as axiomatic

33Galileo Galilei, Dialogues Concerning the Two New Sciences (Chicago: Encyclopedia
Britannica, Inc., 1952), pp. 131-132.
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Figure 7: Diagram for Prop. 1 of naturally accelerated motion. Fauvel & Gray,
p. 332.

proportions, and from these, to derive a geometrical problem from a physical
one.

We see this strategy more clearly in the third day’s dialogue, in which the
subject of discourse transitions moves on to the second New Science, that of
motion. Again, Galileo begins with four axioms regarding motion, all of which
follow easily from the Aristotelian definition of uniform motion. As expected,
each of these axioms expresses a proportional relation. For example:34

Axiom I: In the case of one and the same uniform motion, the dis-
tance traversed during a longer interval of time is greater than the
distance traversed during a shorter interval of time.

As in the first two days’ dialogues, Galileo uses these axioms once again to
transform problems involving motion and acceleration into problems involving
proportions, for which he then gives geometrical solutions. Perhaps equally
important, the same axioms provide a means to effect the reverse transformation
on the solutions. Let us take as an example the well-known first proposition on
naturally accelerated motion:35

The time in which any space is traversed by a body starting from rest
and uniformly accelerated is equal to the time in which that same
space would be traversed by the same body moving at a uniform
speed whose value is the mean of the highest speed and the speed
just before acceleration began.

Using his axioms as a guide, Galileo proceeds to construct the diagram shown
in Figure 7, in which CD represents the interval of time and the areas of the
triangle ABE and the rectangle ABFG represent the distances traversed by
the first (accelerated) and second (uniformly moving) objects. At the end of the
proof, the areas are shown equal, and this then allows Galilei to work backwards
and conclude that the two objects will traverse the same distance, because he has

34Ibid., p. 197.
35Ibid., p. 205.
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established a bidirectional correspondence between the areas and the distances
traversed. Thus, Galileo has proved by geometry a proposition that describes
how real objects move under real forces.

In some sense, then, Galileo did not extend Euclidean geometry. Rather
than truly apply geometry to the real world, Galileo brought real problems into
the logical space occupied by geometry, using proportions as the critical link
between the real and the abstract. However, by using the same proportions to
translate the geometrical conclusion into a physical one, he extended the domain
of geometrical rigor into new, previously unsolved problems, even if he did not
truly extend the geometry itself.

Finally, we consider René Descartes, with respect to his contributions to
Euclidean geometry. We saw earlier that medieval Islamic mathematicians had
established that one could use geometric constructions to lend rigor to alge-
braically derived solutions to arithmetic problems. The new algebra gradually
filtered from the Islamic world into Europe throughout the late medieval period
and the early parts of the scientific revolution. Descartes strongly supported
the complementary idea to this one; that is, that one may convert a geomet-
ric problem to an algebraic one, solve it algebraically, and then translate the
algebraic results back to draw geometric conclusions. In short, Descartes’s in-
novation was to justify geometry using algebra. Just as Galileo established a
bidirectional link from ideal geometry to real-world problems, Descartes did the
same for geometry and algebra. However, the situation here is somewhat re-
versed. Galileo used his link to bring problems into the realm of geometry, while
Descartes used his to bring them from geometry into algebra, and then accepted
the algebraic conclusions as geometrically proven. Naturally, such a move met
with considerably more criticism from his contemporaries.

In order to regard any algebraic equation as geometrically rigorous, Descartes
necessarily had to regard all algebraic curves as geometrically constructable,36
for the geometric equivalent of an algebraic manipulation would require the con-
struction of the curves described by the equations. However, in order to uphold
the geometric standard of rigor, he needed a geometrical criterion to determine
which curves were constructable. He claimed that any curve that “can be con-
ceived of as described by a continuous motion or by several successive motions,
each motion being completely determined by those which precede” ought to be
acceptable for the purposes of geometrical construction, because for such curves
“an exact knowledge of the magnitude of each is always obtainable.”37 He might
have said, using the terminology that Apollonius and others had applied to the
conics, that such curves have defined symptomata that may be used to deter-
mine ratios and proportions. Indeed, he used an analogy to the generations of
the conic sections by the intersection of a cone and a plane, saying that any of
his curves may be traced by the intersection of two or more moving lines.38

To demonstrate his meaning, Descartes described a mechanical instrument
36“H. J. M. Bos on Descartes’s Geometry,” Fauvel & Gray, pp. 349-350.
37René Descartes, The Geometry of René Descartes (Chicago: The Open Court Publishing

Company, 1925), p. 43.
38Ibid.
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Figure 8: Descartes’s curve-generating instrument. Fauvel & Gray, p. 345.

(Figure 8) that could generate a whole family of curves from the intersections
of moving lines. The key to his conception of these curves as geometrically
constructable is that a single continuous motion, the opening of the angle XYZ,
causes the parts of the instrument to move in a unique manner, such that
each motion is “completely determined by those which precede.” In modern
terms, we might say that the instrument has only a single degree of freedom,
because any given angle XYZ determines a unique point on each curve.39 Note
that the piece BY functions as a simple compass that describes a circular arc
AB. This stresses Descartes’s point that there is no reasonable criterion for
geometric acceptability that could accept the circular arc AB while rejecting
the other curves AD, AF, AH, etc., and by extension any curve that could
be generated by an instrument whose motions are completely determined by a
single continuous motion. Of course, Descartes was still a long way from proving
that any algebraic curve could be constructed by such an instrument, but his
demonstration served partially to strip away the Greek philosophical seal of
approval from the two “simplest” motions, the circle and straight line.

Those who accepted Descartes’s views on geometry added an impressive new
array of tools to their geometrical toolbox: an infinte variety of curves, and the
algebraic tools to manipulate them easily. This came at a cost, of course, for
Descartes had glossed over several important points of rigor, confident that his
successors would fill in the gaps. As with the conics of Apollonius, the pragmatic

39Or, even more succinctly and anachronistically, that points on the curve are functions
only of the angle XYZ.
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value of this new toolset often outweighed doubts of its rigor, and Descartes’s
view gradually came to be the accepted one.

The geometry of Descartes may appear radically different from that seen
in Euclid’s Elements and other classical Greek works, but this change reflects
a broader shift in the underlying intuitions that supported geometry through
the ages. Just as Euclid took the properties of circles and lines to be self-
evident, Descartes perceived certain properties of algebraic equations and curves
clearly and distinctly, and he used his understanding of these curves to develop
an improved theory of geometry. All throughout, however, the emphasis on
simplicity and basic intuition remained a constant source of rigor in Euclidean
geometry.
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